Science.gov

Sample records for 13c labeled samples

  1. Linking autotrophic activity in environmental samples with specific bacterial taxa by detection of 13C-labelled fatty acids.

    PubMed

    Knief, Claudia; Altendorf, Karlheinz; Lipski, André

    2003-11-01

    A method for the detection of physiologically active autotrophic bacteria in complex microbial communities was developed based on labelling with the stable isotope 13C. Labelling of autotrophic nitrifying, sulphur-oxidizing and iron-oxidizing populations was performed in situ by incubation with NaH[13C]O3. Incorporated label into fatty acid methyl esters (FAMEs) was detected and quantified using gas chromatography-mass spectrometry in single ion monitoring mode. Before the analyses of different environmental samples, the protocol was evaluated in pure culture experiments. In different environmental samples a selective labelling of fatty acids demonstrated which microbial taxa were responsible for the respective chemolithoautotrophic activity. The most strongly labelled fatty acids of a sample from a sulphide treating biofilter from an animal rendering plant were cis-7-hexadecenoic acid (16:1 cis7) and 11-methyl hexadecanoic acid (16:0 11methyl), which are as-yet not known for any sulphide-oxidizing autotroph. The fatty acid labelling pattern of an experimental biotrickling filter sample supplied with dimethyl disulphide clearly indicated the presence and activity of sulphide-oxidizing bacteria of the genus Thiobacillus. For a third environmental sample from an acid mining lake sediment, the assignment of autotrophic activity to bacteria of the genus Leptospirillum but not to Acidithiobacillus could be made by this method, as the fatty acid patterns of these bacteria show clear differences.

  2. Synthesis of exemestane labelled with (13)C.

    PubMed

    Fontana, Erminia; Pignatti, Alberto; Giribone, Danilo; Di Salle, Enrico

    2008-08-01

    The synthesis of exemestane Aromasin, an irreversible steroidal aromatase inhibitor, specifically labelled with (13)C is reported. The preparation of [(13)C(3)]exemestane was achieved according to an eight-step procedure starting from the commercially available testosterone.

  3. Does the time of the sampling matter in 13C pulse labeling and chasing experiments? A case study on beech seedlings

    NASA Astrophysics Data System (ADS)

    Gavrichkova, Olga; Thoms, Ronny; Muhr, Jan; Karlowsky, Stefan; Keitel, Claudia; Kayler, Zachary; Calfapietra, Carlo; Gessler, Arthur; Brugnoli, Enrico; Gleixner, Gerd

    2016-04-01

    13C pulse labeling and chasing is a valuable and very popular tool for determination of the fate and turnover rates of C in plant-soil systems. Continuous isoflux measurements became an accessible reality allowing to cover completely the diurnal variation in label assimilation and respiration fluxes. Label turnover in multiple pools, especially of those located belowground, is more often assessed instead by isolated day-time samplings. By increasing the sampling frequency of belowground compartments we aimed to catch the short-term diurnal variations in label allocation and to link these processes with label dynamics in the aboveground biomass. For these purposes we labeled 3-m height soil-grown European beech seedlings with 13C enriched CO2 and traced the flow of 13C within belowground plant-soil continuum. Continuous soil isoflux measurements were accompanied by a 3-h-frequency sampling of root and soil material during the first 48 h, followed by a daily sampling in the successive 5 days. The amount of label found in microbial biomass depended partially on the amount of roots in the sample. Microbial biomass C (MBC) and microbial respiration showed very strong correlation, suggesting the possibility to use one as a proxy of the other. MBC enrichment showed a clear diurnal pattern with night-time and early morning peaks. These peaks were similar in shape and shifted by one sampling when compared to root sugars enrichment. Soil respiration showed instead a single bell-shape peak in 13C, likely due to a sequence of peaks of root and microbial origin. 13C flow into soil microbial functional groups was assessed less frequently through phospholipid fatty acid analyses (PLFA). The microorganisms were separated into two distinct groups by the time of the appearance of the label in the single PLFAs. The first group was characterized by a fast appearance of the label and higher enrichment and was composed of Gram negative bacteria and saprotrophic fungi likely living in

  4. C4'/H4' selective, non-uniformly sampled 4D HC(P)CH experiment for sequential assignments of (13)C-labeled RNAs.

    PubMed

    Saxena, Saurabh; Stanek, Jan; Cevec, Mirko; Plavec, Janez; Koźmiński, Wiktor

    2014-11-01

    A through bond, C4'/H4' selective, "out and stay" type 4D HC(P)CH experiment is introduced which provides sequential connectivity via H4'(i)-C4'(i)-C4'(i-1)-H4'(i-1) correlations. The (31)P dimension (used in the conventional 3D HCP experiment) is replaced with evolution of better dispersed C4' dimension. The experiment fully utilizes (13)C-labeling of RNA by inclusion of two C4' evolution periods. An additional evolution of H4' is included to further enhance peak resolution. Band selective (13)C inversion pulses are used to achieve selectivity and prevent signal dephasing due to the of C4'-C3' and C4'-C5' homonuclear couplings. For reasonable resolution, non-uniform sampling is employed in all indirect dimensions. To reduce sensitivity losses, multiple quantum coherences are preserved during shared-time evolution and coherence transfer delays. In the experiment the intra-nucleotide peaks are suppressed whereas inter-nucleotide peaks are enhanced to reduce the ambiguities. The performance of the experiment is verified on a fully (13)C, (15)N-labeled 34-nt hairpin RNA comprising typical structure elements.

  5. Synthesis of Site-Specifically (13)C Labeled Linoleic Acids.

    PubMed

    Offenbacher, Adam R; Zhu, Hui; Klinman, Judith P

    2016-10-12

    Soybean lipoxygenase-1 (SLO-1) catalyzes the C-H abstraction from the reactive carbon (C-11) in linoleic acid as the first and rate-determining step in the formation of alkylhydroperoxides. While previous labeling strategies have focused on deuterium labeling to ascertain the primary and secondary kinetic isotope effects for this reaction, there is an emerging interest and need for selectively enriched (13)C isotopologues. In this report, we present synthetic strategies for site-specific (13)C labeled linoleic acid substrates. We take advantage of a Corey-Fuchs formyl to terminal (13)C-labeled alkyne conversion, using (13)CBr4 as the labeling source, to reduce the number of steps from a previous fatty acid (13)C synthetic labeling approach. The labeled linoleic acid substrates are useful as nuclear tunneling markers and for extracting active site geometries of the enzyme-substrate complex in lipoxygenase.

  6. Application of 13C-labeling and 13C-13C COSY NMR experiments in the structure determination of a microbial natural product.

    PubMed

    Kwon, Yun; Park, Sunghyouk; Shin, Jongheon; Oh, Dong-Chan

    2014-08-01

    The elucidation of the structures of complex natural products bearing many quaternary carbons remains challenging, even in this advanced spectroscopic era. (13)C-(13)C COSY NMR spectroscopy shows direct couplings between (13)C and (13)C, which comprise the backbone of a natural product. Thus, this type of experiment is particularly useful for natural products bearing consecutive quaternary carbons. However, the low sensitivity of (13)C-based NMR experiments, due to the low natural abundance of the (13)C nucleus, is problematic when applying these techniques. Our efforts in the (13)C labeling of a microbial natural product, cyclopiazonic acid (1), by feeding (13)C-labeled glucose to the fungal culture, enabled us to acquire (13)C-(13)C COSY NMR spectra on a milligram scale that clearly show the carbon backbone of the compound. This is the first application of (13)C-(13)C COSY NMR experiments for a natural product. The results suggest that (13)C-(13)C COSY NMR spectroscopy can be routinely used for the structure determination of microbial natural products by (13)C-enrichment of a compound with (13)C-glucose.

  7. Economical synthesis of 13C-labeled opiates, cocaine derivatives and selected urinary metabolites by derivatization of the natural products.

    PubMed

    Karlsen, Morten; Liu, Huiling; Johansen, Jon Eigill; Hoff, Bård Helge

    2015-03-25

    The illegal use of opiates and cocaine is a challenge world-wide, but some derivatives are also valuable pharmaceuticals. Reference samples of the active ingredients and their metabolites are needed both for controlling administration in the clinic and to detect drugs of abuse. Especially, (13)C-labeled compounds are useful for identification and quantification purposes by mass spectroscopic techniques, potentially increasing accuracy by minimizing ion alteration/suppression effects. Thus, the synthesis of [acetyl-(13)C4]heroin, [acetyl-(13)C4-methyl-(13)C]heroin, [acetyl-(13)C2-methyl-(13)C]6-acetylmorphine, [N-methyl-(13)C-O-metyl-(13)C]codeine and phenyl-(13)C6-labeled derivatives of cocaine, benzoylecgonine, norcocaine and cocaethylene was undertaken to provide such reference materials. The synthetic work has focused on identifying (13)C atom-efficient routes towards these derivatives. Therefore, the (13)C-labeled opiates and cocaine derivatives were made from the corresponding natural products.

  8. Metabolic flux analysis using 13C peptide label measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    13C metabolic flux analysis (MFA) has become the experimental method of choice to investigate cellular metabolism. MFA has established flux maps of central metabolism for dozens of microbes, cell cultures, and plant seeds. Steady-state MFA utilizes isotopic labeling measurements of amino acids obtai...

  9. NMR structure analysis of uniformly 13C-labeled carbohydrates.

    PubMed

    Fontana, Carolina; Kovacs, Helena; Widmalm, Göran

    2014-06-01

    In this study, a set of nuclear magnetic resonance experiments, some of them commonly used in the study of (13)C-labeled proteins and/or nucleic acids, is applied for the structure determination of uniformly (13)C-enriched carbohydrates. Two model substances were employed: one compound of low molecular weight [(UL-(13)C)-sucrose, 342 Da] and one compound of medium molecular weight ((13)C-enriched O-antigenic polysaccharide isolated from Escherichia coli O142, ~10 kDa). The first step in this approach involves the assignment of the carbon resonances in each monosaccharide spin system using the anomeric carbon signal as the starting point. The (13)C resonances are traced using (13)C-(13)C correlations from homonuclear experiments, such as (H)CC-CT-COSY, (H)CC-NOESY, CC-CT-TOCSY and/or virtually decoupled (H)CC-TOCSY. Based on the assignment of the (13)C resonances, the (1)H chemical shifts are derived in a straightforward manner using one-bond (1)H-(13)C correlations from heteronuclear experiments (HC-CT-HSQC). In order to avoid the (1) J CC splitting of the (13)C resonances and to improve the resolution, either constant-time (CT) in the indirect dimension or virtual decoupling in the direct dimension were used. The monosaccharide sequence and linkage positions in oligosaccharides were determined using either (13)C or (1)H detected experiments, namely CC-CT-COSY, band-selective (H)CC-TOCSY, HC-CT-HSQC-NOESY or long-range HC-CT-HSQC. However, due to the short T2 relaxation time associated with larger polysaccharides, the sequential information in the O-antigen polysaccharide from E. coli O142 could only be elucidated using the (1)H-detected experiments. Exchanging protons of hydroxyl groups and N-acetyl amides in the (13)C-enriched polysaccharide were assigned by using HC-H2BC spectra. The assignment of the N-acetyl groups with (15)N at natural abundance was completed by using HN-SOFAST-HMQC, HNCA, HNCO and (13)C-detected (H)CACO spectra.

  10. Influence of 13C isotopic labeling location of 13C DNP of acetate using TEMPO free radical

    NASA Astrophysics Data System (ADS)

    Parish, Christopher; Niedbalski, Peter; Lumata, Lloyd

    2015-03-01

    Dynamic nuclear polarization (DNP) via the dissolution method enhances the liquid-state magnetic resonance (NMR or MRI) signals of insensitive nuclear spins by at least 10,000-fold. The basis for all these signal enhancements at room temperature is the polarization transfer from the electrons to nuclear spins at cryogenic temperature and high magnetic field. In this work, we have studied the influence of the location of 13C isotopic labeling on the DNP of sodium acetate at 3.35 T and 1.4 K using a wide ESR linewidth free radical 4-oxo-TEMPO. The carbonyl [1-13C]acetate spins produced a polarization level that is almost twice that of the methyl [2-13C]acetate spins. On the other hand, the polarization of the methyl 13C spins doubled to reach the level of [1-13C]acetate when the methyl group was deuterated. Meanwhile, the solid-state nuclear relaxation of these samples are the same and do not correlate with the polarization levels. These behavior implies that the nuclear relaxation for these samples is dominated by the contribution from the free radicals and the polarization levels can be explained by a thermodynamic picture of DNP.

  11. Structure of uniaxially aligned 13C labeled silk fibroin fibers with solid state 13C-NMR

    NASA Astrophysics Data System (ADS)

    Demura, Makoto; Yamazaki, Yasunobu; Asakura, Tetsuo; Ogawa, Katsuaki

    1998-01-01

    Carbon-13 isotopic labeling of B. mori silk fibroin was achieved biosynthetically with [1- 13C] glycine in order to determine the carbonyl bond orientation angle of glycine sites with the silk fibroin. Angular dependence of 13C solid state NMR spectra of uniaxially oriented silk fibroin fiber block sample due to the carbonyl 13C chemical shift anisotropy was simulated according to the chemical shift transformation with Euler angles, αF and βF, from principal axis system (PAS) to fiber axis system (FAS). The another Euler angles, αDCO and βDCO, for transformation from PAS to the molecular symmetry axis were determined from the [1- 13C] glycine sequence model compounds for the silk fibroin. By the combination of these Euler angles, the carbonyl bond orientation angle with respect to FAS of the [1- 13C] glycine sites of the silk fibroin was determined to be 90 ± 5°. This value is in agreement with the X-ray diffraction and our previous solid state NMR data of B. mori silk fibroin fiber (a typical β-pleated sheet) within experimental error.

  12. Accurate measurements of 13C-13C distances in uniformly 13C-labeled proteins using multi-dimensional four-oscillating field solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Straasø, Lasse Arnt; Nielsen, Jakob Toudahl; Bjerring, Morten; Khaneja, Navin; Nielsen, Niels Chr.

    2014-09-01

    Application of sets of 13C-13C internuclear distance restraints constitutes a typical key element in determining the structure of peptides and proteins by magic-angle-spinning solid-state NMR spectroscopy. Accurate measurements of the structurally highly important 13C-13C distances in uniformly 13C-labeled peptides and proteins, however, pose a big challenge due to the problem of dipolar truncation. Here, we present novel two-dimensional (2D) solid-state NMR experiments capable of extracting distances between carbonyl (13C') and aliphatic (13Caliphatic) spins with high accuracy. The method is based on an improved version of the four-oscillating field (FOLD) technique [L. A. Straasø, M. Bjerring, N. Khaneja, and N. C. Nielsen, J. Chem. Phys. 130, 225103 (2009)] which circumvents the problem of dipolar truncation, thereby offering a base for accurate extraction of internuclear distances in many-spin systems. The ability to extract reliable accurate distances is demonstrated using one- and two-dimensional variants of the FOLD experiment on uniformly 13C,15N-labeled-L-isoleucine. In a more challenging biological application, FOLD 2D experiments are used to determine a large number of 13C'-13Caliphatic distances in amyloid fibrils formed by the SNNFGAILSS fibrillating core of the human islet amyloid polypeptide with uniform 13C,15N-labeling on the FGAIL fragment.

  13. The fate of (13)C-labelled and non-labelled inulin predisposed to large bowel fermentation in rats.

    PubMed

    Butts, Christine A; Paturi, Gunaranjan; Tavendale, Michael H; Hedderley, Duncan; Stoklosinski, Halina M; Herath, Thanuja D; Rosendale, Douglas; Roy, Nicole C; Monro, John A; Ansell, Juliet

    2016-04-01

    The fate of stable-isotope (13)C labelled and non-labelled inulin catabolism by the gut microbiota was assessed in a healthy rat model. Sprague-Dawley male rats were randomly assigned to diets containing either cellulose or inulin, and were fed these diets for 3 days. On day (d) 4, rats allocated to the inulin diet received (13)C-labelled inulin. The rats were then fed the respective non-labelled diets (cellulose or inulin) until sampling (d4, d5, d6, d7, d10 and d11). Post feeding of (13)C-labelled substrate, breath analysis showed that (13)C-inulin cleared from the host within a period of 36 hours. Faecal (13)C demonstrated the clearance of inulin from gut with a (13)C excess reaching maximum at 24 hours (d5) and then declining gradually. There were greater variations in caecal organic acid concentrations from d4 to d6, with higher concentrations of acetic, butyric and propionic acids observed in the rats fed inulin compared to those fed cellulose. Inulin influenced caecal microbial glycosidase activity, increased colon crypt depth, and decreased the faecal output and polysaccharide content compared to the cellulose diet. In summary, the presence of inulin in the diet positively influenced large bowel microbial fermentation.

  14. Accurate determinations of one-bond 13C-13C couplings in 13C-labeled carbohydrates

    NASA Astrophysics Data System (ADS)

    Azurmendi, Hugo F.; Freedberg, Darón I.

    2013-03-01

    Carbon plays a central role in the molecular architecture of carbohydrates, yet the availability of accurate methods for 1DCC determination has not been sufficiently explored, despite the importance that such data could play in structural studies of oligo- and polysaccharides. Existing methods require fitting intensity ratios of cross- to diagonal-peaks as a function of the constant-time (CT) in CT-COSY experiments, while other methods utilize measurement of peak separation. The former strategies suffer from complications due to peak overlap, primarily in regions close to the diagonal, while the latter strategies are negatively impacted by the common occurrence of strong coupling in sugars, which requires a reliable assessment of their influence in the context of RDC determination. We detail a 13C-13C CT-COSY method that combines a variation in the CT processed with diagonal filtering to yield 1JCC and RDCs. The strategy, which relies solely on cross-peak intensity modulation, is inspired in the cross-peak nulling method used for JHH determinations, but adapted and extended to applications where, like in sugars, large one-bond 13C-13C couplings coexist with relatively small long-range couplings. Because diagonal peaks are not utilized, overlap problems are greatly alleviated. Thus, one-bond couplings can be determined from different cross-peaks as either active or passive coupling. This results in increased accuracy when more than one determination is available, and in more opportunities to measure a specific coupling in the presence of severe overlap. In addition, we evaluate the influence of strong couplings on the determination of RDCs by computer simulations. We show that individual scalar couplings are notably affected by the presence of strong couplings but, at least for the simple cases studied, the obtained RDC values for use in structural calculations were not, because the errors introduced by strong couplings for the isotropic and oriented phases are very

  15. Accurate determinations of one-bond 13C-13C couplings in 13C-labeled carbohydrates.

    PubMed

    Azurmendi, Hugo F; Freedberg, Darón I

    2013-03-01

    Carbon plays a central role in the molecular architecture of carbohydrates, yet the availability of accurate methods for (1)D(CC) determination has not been sufficiently explored, despite the importance that such data could play in structural studies of oligo- and polysaccharides. Existing methods require fitting intensity ratios of cross- to diagonal-peaks as a function of the constant-time (CT) in CT-COSY experiments, while other methods utilize measurement of peak separation. The former strategies suffer from complications due to peak overlap, primarily in regions close to the diagonal, while the latter strategies are negatively impacted by the common occurrence of strong coupling in sugars, which requires a reliable assessment of their influence in the context of RDC determination. We detail a (13)C-(13)C CT-COSY method that combines a variation in the CT processed with diagonal filtering to yield (1)J(CC) and RDCs. The strategy, which relies solely on cross-peak intensity modulation, is inspired in the cross-peak nulling method used for J(HH) determinations, but adapted and extended to applications where, like in sugars, large one-bond (13)C-(13)C couplings coexist with relatively small long-range couplings. Because diagonal peaks are not utilized, overlap problems are greatly alleviated. Thus, one-bond couplings can be determined from different cross-peaks as either active or passive coupling. This results in increased accuracy when more than one determination is available, and in more opportunities to measure a specific coupling in the presence of severe overlap. In addition, we evaluate the influence of strong couplings on the determination of RDCs by computer simulations. We show that individual scalar couplings are notably affected by the presence of strong couplings but, at least for the simple cases studied, the obtained RDC values for use in structural calculations were not, because the errors introduced by strong couplings for the isotropic and

  16. A method to trace root-respired CO2 using a 13C label

    NASA Astrophysics Data System (ADS)

    Cooperdock, S.; Breecker, D.; Litvak, M. E.

    2014-12-01

    In order to partition total soil respiration into root respiration and decomposition under ambient conditions in desert soils, the following method was developed using 13C-labeled CO2 in a modern juniper savannah in central New Mexico. The labeled CO2 was mixed with ambient air and pumped into a small (2.5 m diameter and 1.4 m tall) juniper tree canopy . 10 L of the 13CO2 was sufficient to generate a stream of air at 20 L/min for 1 hour with a CO2 concentration of 540 ppm and a δ13C value of approximately 35,000‰. Plastic tarpaulins were used as a wind block. The 13CO2 -labeled air was applied to the canopy during peak photosynthesis between 10 and 11 am on June 30 2014 during which canopy air CO2 was elevated by approximately 10 ppm over ambient and had δ13C values ranging from 50 to 1000 ‰. Over the next three days, gas and tissue samples were collected in order to trace the 13C label through the juniper tree. Leaf and root samples collected from the labeled tree and from several control trees were loaded into exetainer vials, flushed with CO2-free air and incubated in the dark for 5 hours in order to measure the carbon isotope composition of respired CO2. Samples of soil pore space gas were collected from wells under the labeled tree and a control tree and were transported to the laboratory in He-flushed exetainer vials. The δ13C values of CO2 in the soil gas samples and in the headspace of incubation vials were measured using an isotope ratio mass spectrometer. The δ13C values of foliar respiration were significantly higher than those of the control (by 3.6‰, p < 0.01) one and two days after labeling and δ13C values of root-respired CO2 were significantly higher (by 0.7‰, p = 0.01) than those of the control three days after labeling. In addition, δ13C values of soil respired CO2, determined from measurements of soil pore space CO2 at 50 cm three days after labeling, were significantly higher (by 0.7‰, p < 0.03)) for the labeled tree than control

  17. Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide.

    PubMed

    Cai, Weiwei; Piner, Richard D; Stadermann, Frank J; Park, Sungjin; Shaibat, Medhat A; Ishii, Yoshitaka; Yang, Dongxing; Velamakanni, Aruna; An, Sung Jin; Stoller, Meryl; An, Jinho; Chen, Dongmin; Ruoff, Rodney S

    2008-09-26

    The detailed chemical structure of graphite oxide (GO), a layered material prepared from graphite almost 150 years ago and a precursor to chemically modified graphenes, has not been previously resolved because of the pseudo-random chemical functionalization of each layer, as well as variations in exact composition. Carbon-13 (13C) solid-state nuclear magnetic resonance (SSNMR) spectra of GO for natural abundance 13C have poor signal-to-noise ratios. Approximately 100% 13C-labeled graphite was made and converted to 13C-labeled GO, and 13C SSNMR was used to reveal details of the chemical bonding network, including the chemical groups and their connections. Carbon-13-labeled graphite can be used to prepare chemically modified graphenes for 13C SSNMR analysis with enhanced sensitivity and for fundamental studies of 13C-labeled graphite and graphene.

  18. Biokinetics of (13)C in the human body after oral administration of (13)C-labeled glucose as an index for the biokinetics of (14)C.

    PubMed

    Masuda, Tsuyoshi; Tako, Yasuhiro; Matsushita, Kensaku; Takeda, Hiroshi; Endo, Masahiro; Nakamura, Yuji; Hisamatsu, Shun'ichi

    2016-09-01

    The retention of (13)C in the human body after oral administration of (13)C-labeled glucose was studied in three healthy volunteer subjects to estimate the 50 year cumulative body burden for (13)C as an index of the committed dose of the radioisotope (14)C. After administration of (13)C-labeled glucose, the volunteers ingested controlled diets with a fixed number of calories for 112 d. Samples of breath and urine were collected up to 112 d after administration. Samples of feces were collected up to 14 d after administration. Hair samples were obtained at 119 d after administration and analyzed as a representative index of the rate of excretion of organic (13)C via pathways such as skin cell exfoliation and mucus secretion. All samples were analyzed for (13)C/(12)C atomic ratio to determine the rate of excretion via each pathway. We then constructed a metabolic model with a total of four pathways (breath, urine, feces, and other) comprising seven compartments. We determined the values of the biokinetic parameters in the model by using the obtained excretion data. From 74% to 94% of the (13)C administered was excreted in breath, whereas  <2% was excreted in urine and feces. In the other pathway, the excretion rate constant in the compartment with the longest residence time stretched to hundreds of days but the rate constant for each subject was not statistically significant (P value  >  0.1). In addition, the dataset for one of the three subjects was markedly different from those of the other two. When we estimated the 50 year cumulative body burden for (13)C by using our model and we included non-statistically significant parameters, a considerable cumulative body burden was found in the compartments excreting to the other pathway. Although our results on the cumulative body burden of (13)C from orally administered carbon as glucose were inconclusive, we found that the compartments excreting to the other pathway had a markedly long residence time and

  19. Synthesis and applications of selectively {sup 13}C-labeled RNA

    SciTech Connect

    SantaLucia, J. Jr.; Shen, L.X.; Lewis, H.; Cai, Z.; Tinoci, I. Jr.

    1994-12-01

    Spectral overlap is a substantial problem in NMR studies of RNA molecules >30 nucleotides. To overcome this difficulty, we synthesized selectively {sup 13}C-labeled RNAs and adapted several isotope-edited two- and three-dimensional NMR experiments originally developed for protein studies. We optimized protocols for synthesis of multi-gram quantities of CTP, UTp, ATP, and GTP using a combination of synthetic organic and enzymatic methods. Uracil is prepared in 40 to 50% yield from {sup 13}C-cyanide in two steps. Using acetyl- tribenzoyl-ribose and standard chemistry uracil is then attached to the sugar (90% yield). The tribenzoyl-uridine intermediate is converted into uridine or cytidine quantitatively, depending on the deblocking protocol. Labeled purines are synthesized using simple pyrimidine precursors and reacting with {sup 13}C-formic acid (80% yield). Purine nucleosides are then synthesized using uridine phosphorylase and purine nucleoside phosphorylase. The nucleosides were converted to NMPs by treatment with POC1{sub 3} in triethylphosphate. We converted NMPs to NTPs by standard enzymatic methods. Selectively labeled RNAs were synthesized by run-off transcription using {sup 13}C-labeled NTPs. Several different strategies help solve over-lap problems in larger RNAs. Isotope-edited two-dimensional NMR experiments such as {omega}1-1/2 X-filtered NOESY simplify NMR spectra by dividing the normal NOESY spectrum into two subspectra-one involving NOEs from protons bound to {sup 12}C and one from protons bound to {sup 13}C. For example, we labeled A and U residues of a 34-nucleotide pseudoknot, and the {sup 12}C subspectrum of the 1/2 X-filtered NOESY contained NOEs only from G and C residues (along with adenine 2H); the {sup 13}C subspectrum contained NOEs only from A and U residues. Each subspectrum has less overlap than the NOESY of an unlabeled sample; the editing strategy allows each resonance to be identified by residue type (A, C, G, or U).

  20. Synthesis of isotopically labeled R- or S-[.sup.13C, .sup.2H] glycerols

    DOEpatents

    Martinez, Rodolfo A.; Unkefer, Clifford J.; Alvarez, Marc A.

    2008-01-22

    The present invention is directed to asymmetric chiral labeled glycerols including at least one chiral atom, from one to two .sup.13C atoms and from zero to four deuterium atoms bonded directly to a carbon atom, e.g., (2S) [1,2-.sup.13C.sub.2]glycerol and (2R) [1,2-.sup.13C.sub.2]glycerol, and to the use of such chiral glycerols in the preparation of labeled amino acids.

  1. Microbial metabolism in soil at low temperatures: Mechanisms unraveled by position-specific 13C labeling

    NASA Astrophysics Data System (ADS)

    Bore, Ezekiel

    2016-04-01

    Microbial transformation of organic substances in soil is the most important process of the C cycle. Most of the current studies base their information about transformation of organic substances on incubation studies under laboratory conditions and thus, we have a profound knowledge on SOM transformations at ambient temperatures. However, metabolic pathway activities at low temperature are not well understood, despite the fact that the processes are relevant for many soils globally and seasonally. To analyze microbial metabolism at low soil temperatures, isotopomeres of position-specifically 13C labeled glucose were incubated at three temperature; 5, -5 -20 oC. Soils were sampled after 1, 3 and 10 days and additionally after 30 days for samples at -20 °C. The 13C from individual molecule position was quantifed in respired CO2, bulk soil, extractable organic C and extractable microbial biomass by chloroform fumigation extraction (CFE) and cell membranes of microbial communities classified by 13C phospholipid fatty acid (PLFA) analysis. 13CO2 released showed a dominance of the flux from C-1 position at 5 °C. Consequently, at 5 °C, pentose phosphate pathway activity is a dominant metabolic pathway of glucose metabolization. In contrast to -5 °C and -20 oC, metabolic behaviors completely switched towards a preferential respiration of the glucose C-4 position. With decreasing temperature, microorganism strongly shifted towards metabolization of glucose via glycolysis which indicates a switch to cellular maintenance. High recoveries of 13C in extractable microbial biomass at -5 °C indicates optimal growth condition for the microorganisms. PLFA analysis showed high incorporation of 13C into Gram negative bacteria at 5 °C but decreased with temperature. Gram positive bacteria out-competed Gram negatives with decreasing temperature. This study revealed a remarkable microbial activity at temperatures below 0 °C, differing significantly from that at ambient

  2. Methanogenic capabilities of ANME-archaea deduced from (13) C-labelling approaches.

    PubMed

    Bertram, Sebastian; Blumenberg, Martin; Michaelis, Walter; Siegert, Michael; Krüger, Martin; Seifert, Richard

    2013-08-01

    Anaerobic methanotrophic archaea (ANME) are ubiquitous in marine sediments where sulfate dependent anaerobic oxidation of methane (AOM) occurs. Despite considerable progress in the understanding of AOM, physiological details are still widely unresolved. We investigated two distinct microbial mat samples from the Black Sea that were dominated by either ANME-1 or ANME-2. The (13) C lipid stable isotope probing (SIP) method using labelled substances, namely methane, bicarbonate, acetate, and methanol, was applied, and the substrate-dependent methanogenic capabilities were tested. Our data provide strong evidence for a versatile physiology of both, ANME-1 and ANME-2. Considerable methane production rates (MPRs) from CO2 -reduction were observed, particularly from ANME-2 dominated samples and in the presence of methane, which supports the hypothesis of a co-occurrence of methanotrophy and methanogenesis in the AOM systems (AOM/MPR up to 2:1). The experiments also revealed strong methylotrophic capabilities through (13) C-assimilation from labelled methanol, which was independent of the presence of methane. Additionally, high MPRs from methanol were detected in both of the mat samples. As demonstrated by the (13) C-uptake into lipids, ANME-1 was found to thrive also under methane free conditions. Finally, C35 -isoprenoid hydrocarbons were identified as new lipid biomarkers for ANME-1, most likely functioning as a hydrogen sink during methanogenesis.

  3. (13)C-Labeling the carbon-fixation pathway of a highly efficient artificial photosynthetic system.

    PubMed

    Liu, Chong; Nangle, Shannon N; Colón, Brendan C; Silver, Pamela A; Nocera, Daniel G

    2017-03-15

    Interfacing the CO2-fixing microorganism, Ralstonia eutropha, to the energy derived from hydrogen produced by water splitting is a viable approach to achieving renewable CO2 reduction at high efficiencies. We employ (13)C-labeling to report on the nature of CO2 reduction in the inorganic water splitting|R. eutropha hybrid system. Accumulated biomass in a reactor under a (13)C-enriched CO2 atmosphere may be sampled at different time points during CO2 reduction. Converting the sampled biomass into gaseous CO2 allows the (13)C/(12)C ratio to be determined by gas chromatography-mass spectrometry. After 2 hours of inoculation and the initiation of water splitting, the microbes adapted and began to convert CO2 into biomass. The observed time evolution of the (13)C/(12)C ratio in accumulated biomass is consistent with a Monod model for carbon fixation. Carbon dioxide produced by catabolism was found to be minimal. This rapid response of the bacteria to a hydrogen input and to subsequent CO2 reduction at high efficiency are beneficial to achieving artificial photosynthesis for the storage of renewable energy.

  4. Biosynthetic production of universally (13)C-labelled polyunsaturated fatty acids as reference materials for natural health product research.

    PubMed

    Le, Phuong Mai; Fraser, Catherine; Gardner, Graeme; Liang, Wei-Wan; Kralovec, Jaroslav A; Cunnane, Stephen C; Windust, Anthony J

    2007-09-01

    Long-chain polyunsaturated fatty acids (LCPUFA) including eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) have become important natural health products with numerous proven benefits related to brain function and cardiovascular health. Not only are omega-3 fatty acids available in a plethora of dietary supplements, but they are also increasingly being incorporated as triglycerides into conventional foods, including bread, milk, yoghurt and confectionaries. Recently, transgenic oil seed crops and livestock have been developed that enhance omega-3 fatty acid content. This diverse array of matrices presents a difficult analytical challenge and is compounded further by samples generated through clinical research. Stable isotope (13)C-labelled LCPUFA standards offer many advantages as research tools because they may be distinguished from their naturally abundant counterparts by mass spectrometry and directly incorporated as internal standards into analytical procedures. Further, (13)C-labelled LCPUFAs are safe to use as metabolic tracers to study uptake and metabolism in humans. Currently, (13)C-labelled LCPUFAs are expensive, available in limited supply and not in triglyceride form. To resolve these issues, marine heterotrophic microorganisms are being isolated and screened for LCPUFA production with a view to the efficient biosynthetic production of U-(13)C-labelled fatty acids using U-(13)C glucose as a carbon source. Of 37 isolates obtained, most were thraustochytrids, and either DHA or omega-6 docosapentaenoic acid (22:5n-6) were produced as the major LCPUFA. The marine protist Hyalochlorella marina was identified as a novel source of EPA and omega-3 docosapentaenoic acid (22:5n-3). As proof of principle, gram-level production of (13)C-labelled DHA has been achieved with high chemical purity ( >99%) and high (13)C incorporation levels (>90%), as confirmed by NMR and MS analyses. Finally, U-(13)C-DHA was enzymatically re-esterified to

  5. Preparation of 13C/15N-labeled oligomers using the polymerase chain reaction

    DOEpatents

    Chen, Xian; Gupta, Goutam; Bradbury, E. Morton

    2001-01-01

    Preparation of .sup.13 C/.sup.15 N-labeled DNA oligomers using the polymerase chain reaction (PCR). A PCR based method for uniform (.sup.13 C/.sup.15 N)-labeling of DNA duplexes is described. Multiple copies of a blunt-ended duplex are cloned into a plasmid, each copy containing the sequence of interest and restriction Hinc II sequences at both the 5' and 3' ends. PCR using bi-directional primers and uniformly .sup.13 C/.sup.15 N-labeled dNTP precursors generates labeled DNA duplexes containing multiple copies of the sequence of interest. Twenty-four cycles of PCR, followed by restriction and purification, gave the uniformly .sup.13 C/.sup.15 N-labeled duplex sequence with a 30% yield. Such labeled duplexes find significant applications in multinuclear magnetic resonance spectroscopy.

  6. Origin of acetaldehyde during milk fermentation using (13)C-labeled precursors.

    PubMed

    Ott, A; Germond, J E; Chaintreau, A

    2000-05-01

    Acetaldehyde formation by Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus during fermentation of cow's milk was investigated using (13)C-labeled glucose, L-threonine, and pyruvate with a recent static-and-trapped-headspace technique that does not require derivatization of acetaldehyde prior to gas chromatography-mass spectrometry. Over 90% and almost 100% of acetaldehyde originated from glucose during fermentation by L. delbrueckii subsp. bulgaricus and S. thermophilus, respectively, taking into account both singly and doubly labeled acetaldehyde. As both microorganisms showed threonine aldolase activity and formed labeled acetaldehyde from (13)C-labeled threonine during the fermentation of milk, this amino acid should also contribute to the acetaldehyde produced.

  7. The use of 13C labeling to enhance the sensitivity of 13C solid-state CPMAS NMR to study polymorphism in low dose solid formulations.

    PubMed

    Booy, Kees-Jan; Wiegerinck, Peter; Vader, Jan; Kaspersen, Frans; Lambregts, Dorette; Vromans, Herman; Kellenbach, Edwin

    2005-02-01

    (13)C labeling was used to enhance the sensitivity of (13)C solid-state NMR to study the effect of tabletting on the polymorphism of a steroidal drug. The steroidal drug Org OD 14 was (13)C labeled and formulated into tablets containing only 0.5-2.5% active ingredient. The tablets were subsequently studied by solid-state (13)C CPMAS NMR. The crystalline form present in tablets could readily be analyzed in tablets. No change in crystalline form was observed as a result of formulation or in subsequent stability studies. Solid-state NMR in combination with (13)C labeling can, in suitable cases, be used as a strategy to study the effect of formulation on the polymorphism of low dose drugs.

  8. 13C-labelled microdialysis studies of cerebral metabolism in TBI patients☆

    PubMed Central

    Carpenter, Keri L.H.; Jalloh, Ibrahim; Gallagher, Clare N.; Grice, Peter; Howe, Duncan J.; Mason, Andrew; Timofeev, Ivan; Helmy, Adel; Murphy, Michael P.; Menon, David K.; Kirkpatrick, Peter J.; Carpenter, T. Adrian; Sutherland, Garnette R.; Pickard, John D.; Hutchinson, Peter J.

    2014-01-01

    Human brain chemistry is incompletely understood and better methodologies are needed. Traumatic brain injury (TBI) causes metabolic perturbations, one result of which includes increased brain lactate levels. Attention has largely focussed on glycolysis, whereby glucose is converted to pyruvate and lactate, and is proposed to act as an energy source by feeding into neurons’ tricarboxylic acid (TCA) cycle, generating ATP. Also reportedly upregulated by TBI is the pentose phosphate pathway (PPP) that does not generate ATP but produces various molecules that are putatively neuroprotective, antioxidant and reparative, in addition to lactate among the end products. We have developed a novel combination of 13C-labelled cerebral microdialysis both to deliver 13C-labelled substrates into brains of TBI patients and recover the 13C-labelled metabolites, with high-resolution 13C NMR analysis of the microdialysates. This methodology has enabled us to achieve the first direct demonstration in humans that the brain can utilise lactate via the TCA cycle. We are currently using this methodology to make the first direct comparison of glycolysis and the PPP in human brain. In this article, we consider the application of 13C-labelled cerebral microdialysis for studying brain energy metabolism in patients. We set this methodology within the context of metabolic pathways in the brain, and 13C research modalities addressing them. PMID:24361470

  9. (13)C-labelled microdialysis studies of cerebral metabolism in TBI patients.

    PubMed

    Carpenter, Keri L H; Jalloh, Ibrahim; Gallagher, Clare N; Grice, Peter; Howe, Duncan J; Mason, Andrew; Timofeev, Ivan; Helmy, Adel; Murphy, Michael P; Menon, David K; Kirkpatrick, Peter J; Carpenter, T Adrian; Sutherland, Garnette R; Pickard, John D; Hutchinson, Peter J

    2014-06-16

    Human brain chemistry is incompletely understood and better methodologies are needed. Traumatic brain injury (TBI) causes metabolic perturbations, one result of which includes increased brain lactate levels. Attention has largely focussed on glycolysis, whereby glucose is converted to pyruvate and lactate, and is proposed to act as an energy source by feeding into neurons' tricarboxylic acid (TCA) cycle, generating ATP. Also reportedly upregulated by TBI is the pentose phosphate pathway (PPP) that does not generate ATP but produces various molecules that are putatively neuroprotective, antioxidant and reparative, in addition to lactate among the end products. We have developed a novel combination of (13)C-labelled cerebral microdialysis both to deliver (13)C-labelled substrates into brains of TBI patients and recover the (13)C-labelled metabolites, with high-resolution (13)C NMR analysis of the microdialysates. This methodology has enabled us to achieve the first direct demonstration in humans that the brain can utilise lactate via the TCA cycle. We are currently using this methodology to make the first direct comparison of glycolysis and the PPP in human brain. In this article, we consider the application of (13)C-labelled cerebral microdialysis for studying brain energy metabolism in patients. We set this methodology within the context of metabolic pathways in the brain, and (13)C research modalities addressing them.

  10. Characterization of uniformly and atom-specifically 13C-labeled heparin and heparan sulfate polysaccharide precursors using 13C NMR spectroscopy and ESI mass spectrometry

    PubMed Central

    Nguyen, Thao K. N.; Tran, Vy M.; Victor, Xylophone V.; Skalicky, Jack J.; Kuberan, Balagurunathan

    2010-01-01

    The biological actions of heparin and heparan sulfate, two structurally related glycosaminoglycans, depend on the organization of the complex heparanome. Due to the structural complexity of the heparanome, the sequence of variably sulfonated uronic acid and glucosamine residues is usually characterized by the analysis of smaller oligosaccharide and disaccharide fragments. Even characterization of smaller heparin/heparan sulfate oligosaccharide or disaccharide fragments using simple 1D 1H NMR spectroscopy is often complicated by the extensive signal overlap. 13C NMR signals, on the other hand, overlap less and therefore, 13C NMR spectroscopy can greatly facilitate the structural elucidation of the complex heparanome and provide finer insights into the structural basis for biological functions. This is the first report of the preparation of anomeric carbon-specific 13C-labeled heparin/heparan sulfate precursors from the Escherichia coli K5 strain. Uniformly 13C- and 15N-labeled precursors were also produced and characterized by 13C NMR spectroscopy. Mass spectrometric analysis of enzymatically fragmented disaccharides revealed that anomeric carbon-specific labeling efforts resulted in a minor loss/scrambling of 13C in the precursor backbone, whereas uniform labeling efforts resulted in greater than 95% 13C isotope enrichment in the precursor backbone. These labeled precursors provided high-resolution NMR signals with great sensitivity and set the stage for studying the heparanome–proteome interactions. PMID:20832774

  11. Integrated 13C-metabolic flux analysis of 14 parallel labeling experiments in Escherichia coli.

    PubMed

    Crown, Scott B; Long, Christopher P; Antoniewicz, Maciek R

    2015-03-01

    The use of parallel labeling experiments for (13)C metabolic flux analysis ((13)C-MFA) has emerged in recent years as the new gold standard in fluxomics. The methodology has been termed COMPLETE-MFA, short for complementary parallel labeling experiments technique for metabolic flux analysis. In this contribution, we have tested the limits of COMPLETE-MFA by demonstrating integrated analysis of 14 parallel labeling experiments with Escherichia coli. An effort on such a massive scale has never been attempted before. In addition to several widely used isotopic tracers such as [1,2-(13)C]glucose and mixtures of [1-(13)C]glucose and [U-(13)C]glucose, four novel tracers were applied in this study: [2,3-(13)C]glucose, [4,5,6-(13)C]glucose, [2,3,4,5,6-(13)C]glucose and a mixture of [1-(13)C]glucose and [4,5,6-(13)C]glucose. This allowed us for the first time to compare the performance of a large number of isotopic tracers. Overall, there was no single best tracer for the entire E. coli metabolic network model. Tracers that produced well-resolved fluxes in the upper part of metabolism (glycolysis and pentose phosphate pathways) showed poor performance for fluxes in the lower part of metabolism (TCA cycle and anaplerotic reactions), and vice versa. The best tracer for upper metabolism was 80% [1-(13)C]glucose+20% [U-(13)C]glucose, while [4,5,6-(13)C]glucose and [5-(13)C]glucose both produced optimal flux resolution in the lower part of metabolism. COMPLETE-MFA improved both flux precision and flux observability, i.e. more independent fluxes were resolved with smaller confidence intervals, especially exchange fluxes. Overall, this study demonstrates that COMPLETE-MFA is a powerful approach for improving flux measurements and that this methodology should be considered in future studies that require very high flux resolution.

  12. Synthesis and NMR studies of (13)C-labeled vitamin D metabolites.

    PubMed

    Okamura, William H; Zhu, Gui-Dong; Hill, David K; Thomas, Richard J; Ringe, Kerstin; Borchardt, Daniel B; Norman, Anthony W; Mueller, Leonard J

    2002-03-08

    Isotope-labeled drug molecules may be useful for probing by NMR spectroscopy the conformation of ligand associated with biological hosts such as membranes and proteins. Triple-labeled [7,9,19-(13)C(3)]-vitamin D(3) (56), its 25-hydroxylated and 1 alpha,25-dihydroxylated metabolites (58 and 68, respectively), and other labeled materials have been synthesized via coupling of [9-(13)C]-Grundmann's ketone 39 or its protected 25-hydroxy derivative 43 with labeled A ring enyne fragments 25 or 26. The labeled CD-ring fragment 39 was prepared by a sequence involving Grignard addition of [(13)C]-methylmagnesium iodide to Grundmann's enone 28, oxidative cleavage, functional group modifications leading to seco-iodide 38, and finally a kinetic enolate S(N)2 cycloalkylation. The C-7,19 double labeling of the A-ring enyne was achieved by the Corey-Fuchs/Wittig processes on keto aldehyde 11. By employing these labeled fragments in the Wilson-Mazur route, the C-7,9,19 triple-(13)C-labeled metabolites 56, 58, and 68 as well as other (13)C-labeled metabolites have been prepared. In an initial NMR investigation of one of the labeled metabolites prepared in this study, namely [7,9,19-(13)C(3)]-25-hydroxyvitamin D(3) (58), the three (13)C-labeled carbons of the otherwise water insoluble steroid could be clearly detected by (13)C NMR analysis at 0.1 mM in a mixture of CD(3)OD/D(2)O (60/40) or in aqueous dimethylcyclodextrin solution and at 2 mM in 20 mM sodium dodecyl sulfate (SDS) aqueous micellar solution. In the SDS micellar solution, a double half-filter NOESY experiment revealed that the distance between the H(19Z) and H(7) protons is significantly shorter than that of the corresponding distance calculated from the solid state (X-ray) structure of the free ligand. The NMR data in micelles reveals that 58 exists essentially completely in the alpha-conformer with the 3 beta-hydroxyl equatorially oriented, just as in the solid state. The shortened distance (H(19Z))-H(7)) in micellar

  13. 13C-NOESY-HSQC with Split Carbon Evolution for Increased Resolution with Uniformly Labeled Proteins

    NASA Astrophysics Data System (ADS)

    Baur, Matthias; Gemmecker, Gerd; Kessler, Horst

    1998-06-01

    Two new pulse sequences are presented for the recording of 2D13C-HSQC and 3D13C-NOESY-HSQC experiments, containing two consecutive carbon evolution periods. The two periods are separated by az-filter which creates a clean CxHz-quantum state for evolution in the second period. Each period is incremented (in anon-constant-time fashion) only to the extent that the defocusing of carbon inphase magnetization throughJ-coupling with neighboring carbons remains insignificant. Therefore,13C homonuclearJ-couplings are rendered ineffective, reducing the loss of signal and peak splitting commonly associated with long13C evolution times. The two periods are incremented according to a special acquisition protocol employing a13C-13C gradient echo to yield a data set analogous to one obtained by evolution over the added duration of both periods. The spectra recorded with the new technique on uniformly13C-labeled proteins at twice the evolution time of the standard13C-HSQC experiment display a nearly twofold enhancement of resolution in the carbon domain, while maintaining a good sensitivity even in the case of large proteins. Applied to the IIAManprotein ofE. coli(31 kDa), the13C-HSQC experiment recorded with a carbon evolution time of 2 × 8 ms showed a 36% decrease in linewidths compared to the standard13C-HSQC experiment, and theS/Nratio of representative cross-peaks was reduced to 40%. This reduction reflects mostly the typical loss of intensity observed when recording with an increased resolution. The13C-NOESY-HSQC experiment derived from the13C-HSQC experiment yielded additional NOE restraints between resonances which previously had been unresolved.

  14. Structural analysis of uniformly (13)C-labelled solids from selective angle measurements at rotational resonance.

    PubMed

    Patching, Simon G; Edwards, Rachel; Middleton, David A

    2009-08-01

    We demonstrate that individual H-C-C-H torsional angles in uniformly labelled organic solids can be estimated by selective excitation of (13)C double-quantum coherences under magic-angle spinning at rotational resonance. By adapting a straightforward one-dimensional experiment described earlier [T. Karlsson, M. Eden, H. Luhman, M.H. Levitt, J. Magn. Reson. 145 (2000) 95-107], a double-quantum filtered spectrum selective for Calpha and Cbeta of uniformly labelled L-[(13)C,(15)N]valine is obtained with 25% efficiency. The evolution of Calpha-Cbeta double-quantum coherence under the influence of the dipolar fields of bonded protons is monitored to provide a value of the Halpha-Calpha-Cbeta-Hbeta torsional angle that is consistent with the crystal structure. In addition, double-quantum filtration selective for C6 and C1' of uniformly labelled [(13)C,(15)N]uridine is achieved with 12% efficiency for a (13)C-(13)C distance of 2.5A, yielding a reliable estimate of the C6-H and C1'-H projection angle defining the relative orientations of the nucleoside pyrimidine and ribose rings. This procedure will be useful, in favourable cases, for structural analysis of fully labelled small molecules such as receptor ligands that are not readily synthesised with labels placed selectively at structurally diagnostic sites.

  15. Structural analysis of uniformly 13C-labelled solids from selective angle measurements at rotational resonance

    NASA Astrophysics Data System (ADS)

    Patching, Simon G.; Edwards, Rachel; Middleton, David A.

    2009-08-01

    We demonstrate that individual H-C-C-H torsional angles in uniformly labelled organic solids can be estimated by selective excitation of 13C double-quantum coherences under magic-angle spinning at rotational resonance. By adapting a straightforward one-dimensional experiment described earlier [T. Karlsson, M. Eden, H. Luhman, M.H. Levitt, J. Magn. Reson. 145 (2000) 95-107], a double-quantum filtered spectrum selective for Cα and Cβ of uniformly labelled L-[ 13C, 15N]valine is obtained with 25% efficiency. The evolution of Cα-Cβ double-quantum coherence under the influence of the dipolar fields of bonded protons is monitored to provide a value of the Hα-Cα-Cβ-Hβ torsional angle that is consistent with the crystal structure. In addition, double-quantum filtration selective for C6 and C1' of uniformly labelled [ 13C, 15N]uridine is achieved with 12% efficiency for a 13C- 13C distance of 2.5 Å, yielding a reliable estimate of the C6-H and C1'-H projection angle defining the relative orientations of the nucleoside pyrimidine and ribose rings. This procedure will be useful, in favourable cases, for structural analysis of fully labelled small molecules such as receptor ligands that are not readily synthesised with labels placed selectively at structurally diagnostic sites.

  16. A roadmap for interpreting 13C metabolite labeling patterns from cells

    PubMed Central

    Buescher, Joerg M.; Antoniewicz, Maciek R.; Boros, Laszlo G.; Burgess, Shawn C.; Brunengraber, Henri; Clish, Clary B.; DeBerardinis, Ralph J.; Feron, Olivier; Frezza, Christian; Ghesquiere, Bart; Gottlieb, Eyal; Hiller, Karsten; Jones, Russell G.; Kamphorst, Jurre J.; Kibbey, Richard G.; Kimmelman, Alec C.; Locasale, Jason W.; Lunt, Sophia Y.; Maddocks, Oliver D. K.; Malloy, Craig; Metallo, Christian M.; Meuillet, Emmanuelle J.; Munger, Joshua; Nöh, Katharina; Rabinowitz, Joshua D.; Ralser, Markus; Sauer, Uwe; Stephanopoulos, Gregory; St-Pierre, Julie; Tennant, Daniel A.; Wittmann, Christoph; Vander Heiden, Matthew G.; Vazquez, Alexei; Vousden, Karen; Young, Jamey D.; Zamboni, Nicola; Fendt, Sarah-Maria

    2015-01-01

    Measuring intracellular metabolism has increasingly led to important insights in biomedical research. 13C tracer analysis, although less information-rich than quantitative 13C flux analysis that requires computational data integration, has been established as a time-efficient method to unravel relative pathway activities, qualitative changes in pathway contributions, and nutrient contributions. Here, we review selected key issues in interpreting 13C metabolite labeling patterns, with the goal of drawing accurate conclusions from steady state and dynamic stable isotopic tracer experiments. PMID:25731751

  17. Determination of sup 13 C labeling pattern of citric acid cycle intermediates by gas chromatography-mass spectrometry

    SciTech Connect

    Di Donato, L.; Montgomery, J.A.; Des Rosiers, C.; David, F.; Garneau, M.; Brunengraber, H. )

    1990-02-26

    Investigations of the regulation of the citric acid cycle require determination of labeling patterns of cycle intermediates. These were assayed to date, using infusion of: (i) ({sup 14}C)tracer followed by chemical degradation of intermediates and (ii) ({sup 13}C)tracer followed by NMR analysis of intermediates. The authors developed a strategy to analyze by GC-MS the ({sup 13}C) labeling pattern of {mu}mole samples of citrate (CIT), isocitrate (ICIT), 2-ketoglutarate (2-KG), glutamate (GLU) and glutamine (GLN). These are enzymatically or chemically converted to 2-KG, ICIT, 4-aminobutyrate (GABA) and 2-hydroxyglutarate (2-OHG). GC-MS analyses of TMS or TBDMS derivatives of these compounds yield the enrichment of each carbon. The authors confirmed the identity of each fragment using the spectra of (1-{sup 13}C), (5-{sup 13}C), (2,3,3,4,4-{sup 2}H{sub 5})glutamate and (1-{sup 13}C), (1,4-{sup 13}C)GABA.

  18. A Method to Constrain Genome-Scale Models with 13C Labeling Data

    PubMed Central

    García Martín, Héctor; Kumar, Vinay Satish; Weaver, Daniel; Ghosh, Amit; Chubukov, Victor; Mukhopadhyay, Aindrila; Arkin, Adam; Keasling, Jay D.

    2015-01-01

    Current limitations in quantitatively predicting biological behavior hinder our efforts to engineer biological systems to produce biofuels and other desired chemicals. Here, we present a new method for calculating metabolic fluxes, key targets in metabolic engineering, that incorporates data from 13C labeling experiments and genome-scale models. The data from 13C labeling experiments provide strong flux constraints that eliminate the need to assume an evolutionary optimization principle such as the growth rate optimization assumption used in Flux Balance Analysis (FBA). This effective constraining is achieved by making the simple but biologically relevant assumption that flux flows from core to peripheral metabolism and does not flow back. The new method is significantly more robust than FBA with respect to errors in genome-scale model reconstruction. Furthermore, it can provide a comprehensive picture of metabolite balancing and predictions for unmeasured extracellular fluxes as constrained by 13C labeling data. A comparison shows that the results of this new method are similar to those found through 13C Metabolic Flux Analysis (13C MFA) for central carbon metabolism but, additionally, it provides flux estimates for peripheral metabolism. The extra validation gained by matching 48 relative labeling measurements is used to identify where and why several existing COnstraint Based Reconstruction and Analysis (COBRA) flux prediction algorithms fail. We demonstrate how to use this knowledge to refine these methods and improve their predictive capabilities. This method provides a reliable base upon which to improve the design of biological systems. PMID:26379153

  19. Parallel labeling experiments validate Clostridium acetobutylicum metabolic network model for (13)C metabolic flux analysis.

    PubMed

    Au, Jennifer; Choi, Jungik; Jones, Shawn W; Venkataramanan, Keerthi P; Antoniewicz, Maciek R

    2014-11-01

    In this work, we provide new insights into the metabolism of Clostridium acetobutylicum ATCC 824 obtained using a systematic approach for quantifying fluxes based on parallel labeling experiments and (13)C-metabolic flux analysis ((13)C-MFA). Here, cells were grown in parallel cultures with [1-(13)C]glucose and [U-(13)C]glucose as tracers and (13)C-MFA was used to quantify intracellular metabolic fluxes. Several metabolic network models were compared: an initial model based on current knowledge, and extended network models that included additional reactions that improved the fits of experimental data. While the initial network model did not produce a statistically acceptable fit of (13)C-labeling data, an extended network model with five additional reactions was able to fit all data with 292 redundant measurements. The model was subsequently trimmed to produce a minimal network model of C. acetobutylicum for (13)C-MFA, which could still reproduce all of the experimental data. The flux results provided valuable new insights into the metabolism of C. acetobutylicum. First, we found that TCA cycle was effectively incomplete, as there was no measurable flux between α-ketoglutarate and succinyl-CoA, succinate and fumarate, and malate and oxaloacetate. Second, an active pathway was identified from pyruvate to fumarate via aspartate. Third, we found that isoleucine was produced exclusively through the citramalate synthase pathway in C. acetobutylicum and that CAC3174 was likely responsible for citramalate synthase activity. These model predictions were confirmed in several follow-up tracer experiments. The validated metabolic network model established in this study can be used in future investigations for unbiased (13)C-flux measurements in C. acetobutylicum.

  20. Use of 13C-Labeled Substrates to Determine Relative Methane Production Rates in Hypersaline Microbial Communities

    NASA Astrophysics Data System (ADS)

    Kelley, C. A.; Bebout, B.; Chanton, J.

    2015-12-01

    Rates and pathways of methane production were determined from photosynthetic soft microbial mats and gypsum-encrusted endoevaporites collected in hypersaline environments from California, Mexico and Chile, as well as an organic-rich mud from a pond in the El Tatio volcanic fields, Chile. Samples (mud, homogenized soft mats and endoevaporites) were incubated anaerobically with deoxygenated site water, and the increase in methane concentration through time in the headspaces of the incubation vials was used to determine methane production rates. To ascertain the substrates used by the methanogens, 13C-labeled methylamines, methanol, dimethylsulfide, acetate or bicarbonate were added to the incubations (one substrate per vial) and the stable isotopic composition of the resulting methane was measured. The vials amended with 13C-labeled methylamines produced the most 13C-enriched methane, generally followed by the 13C-labeled methanol-amended vials. The stable isotope data and the methane production rates were used to determine first order rate constants for each of the substrates at each of the sites. Estimates of individual substrate use revealed that the methylamines produced 55 to 92% of the methane generated, while methanol was responsible for another 8 to 40%.

  1. Isotopomer studies of gluconeogenesis and the Krebs cycle with 13C-labeled lactate.

    PubMed

    Katz, J; Wals, P; Lee, W N

    1993-12-05

    Fasted rats were intragastrically infused with either [2,3-13C]lactate or [1,2,3-13C]lactate. The infusate also contained 14C-labeled lactate and [3-3H]glucose. Glucose, alanine, glutamate, and glutamine were isolated from liver and blood. There was near complete equilibration of lactate and alanine, and the relative specific activities and relative enrichments were the same in blood and liver. Glucose was cleaved enzymatically to lactate. The compounds were examined by gas chromatography-mass spectroscopy. From the mass isotopomer spectra of the lactate, glutamate, and glutamine and their cleavage fragments the positional isotopomer composition of these compounds was obtained. The enrichment and isotopomer pattern in the lactate from cleaved glucose represents that in phosphoenolpyruvate (PEP). When [1,2,3-13C]lactate was infused the mass isotopomer spectrum of glutamates consisted only of compounds containing either one, two, or three 13C carbons per molecule (m1, m2, and m3). There was little 13C in C-4 and C-5 of glutamate. The rate of pyruvate decarboxylation is low, and 3-4% of the acetyl-CoA flux in the Krebs cycle is contributed by lactate carbon. The major isotopomers in lactate, alanine, and PEP were m3 and m2 with 13C in C-2 and C-3. The predominant isotopomer in PEP from [2,3-13C]lactate was m2 with 13C in C-2 and C-3. There was much more of m1 isotopomer with 13C in C-3 and C-2 than the m1 isotopomer with 13C in C-1. There was very little m3, the isotopomer with 13C in all three carbons. Most of the 13C in C-3 and C-4 of glucose and C-1 of glutamate was introduced via 13CO2 fixation. From the isotopomer distribution and the rate of glucose turnover we deduced, applying the analysis described in the "Appendix," the absolute rates of gluconeogenic pathways, recycling of PEP and the Cori cycle, and flux in the Krebs cycle. The flux from oxaloacetate (OAA)-->PEP was seven times that of OAA-->citrate, and about half of PEP was recycled to pyruvate via

  2. Parallel labeling experiments for pathway elucidation and (13)C metabolic flux analysis.

    PubMed

    Antoniewicz, Maciek R

    2015-12-01

    Metabolic pathway models provide the foundation for quantitative studies of cellular physiology through the measurement of intracellular metabolic fluxes. For model organisms metabolic models are well established, with many manually curated genome-scale model reconstructions, gene knockout studies and stable-isotope tracing studies. However, for non-model organisms a similar level of knowledge is often lacking. Compartmentation of cellular metabolism in eukaryotic systems also presents significant challenges for quantitative (13)C-metabolic flux analysis ((13)C-MFA). Recently, innovative (13)C-MFA approaches have been developed based on parallel labeling experiments, the use of multiple isotopic tracers and integrated data analysis, that allow more rigorous validation of pathway models and improved quantification of metabolic fluxes. Applications of these approaches open new research directions in metabolic engineering, biotechnology and medicine.

  3. Accurate measurements of {sup 13}C-{sup 13}C distances in uniformly {sup 13}C-labeled proteins using multi-dimensional four-oscillating field solid-state NMR spectroscopy

    SciTech Connect

    Straasø, Lasse Arnt; Nielsen, Jakob Toudahl; Bjerring, Morten; Nielsen, Niels Chr.; Khaneja, Navin

    2014-09-21

    Application of sets of {sup 13}C-{sup 13}C internuclear distance restraints constitutes a typical key element in determining the structure of peptides and proteins by magic-angle-spinning solid-state NMR spectroscopy. Accurate measurements of the structurally highly important {sup 13}C-{sup 13}C distances in uniformly {sup 13}C-labeled peptides and proteins, however, pose a big challenge due to the problem of dipolar truncation. Here, we present novel two-dimensional (2D) solid-state NMR experiments capable of extracting distances between carbonyl ({sup 13}C′) and aliphatic ({sup 13}C{sub aliphatic}) spins with high accuracy. The method is based on an improved version of the four-oscillating field (FOLD) technique [L. A. Straasø, M. Bjerring, N. Khaneja, and N. C. Nielsen, J. Chem. Phys. 130, 225103 (2009)] which circumvents the problem of dipolar truncation, thereby offering a base for accurate extraction of internuclear distances in many-spin systems. The ability to extract reliable accurate distances is demonstrated using one- and two-dimensional variants of the FOLD experiment on uniformly {sup 13}C,{sup 15}N-labeled-L-isoleucine. In a more challenging biological application, FOLD 2D experiments are used to determine a large number of {sup 13}C′-{sup 13}C{sub aliphatic} distances in amyloid fibrils formed by the SNNFGAILSS fibrillating core of the human islet amyloid polypeptide with uniform {sup 13}C,{sup 15}N-labeling on the FGAIL fragment.

  4. Monitoring electron donor metabolism under variable electron acceptor conditions using 13C-labeled lactate

    NASA Astrophysics Data System (ADS)

    Bill, M.; Conrad, M. E.; Yang, L.; Beller, H. R.; Brodie, E. L.

    2010-12-01

    Three sets of flow-through columns constructed with aquifer sediment from Hanford (WA) were used to study reduction of Cr(VI) to poorly soluble Cr(III) under denitrifying, sulfate-reducing/fermentative, and iron-reducing conditions with lactate as the electron donor. In order to understand the relationship between electron donors and biomarkers, and to determine the differences in carbon isotope fractionation resulting from different microbial metabolic processes, we monitored the variation in carbon isotopes in dissolved inorganic carbon (DIC), in total organic carbon (TOC), and in lactate, acetate and propionate. The greatest enrichment in 13C in columns was observed under denitrifying conditions. The δ13C of DIC increased by ~1750 to ~2000‰ fifteen days after supplementation of natural abundance lactate with a 13C-labeled lactate tracer (for an influent δ13C of ~2250‰ for the lactate) indicating almost complete oxidation of the electron donor. The denitrifying columns were among the most active columns and had the highest cell counts and the denitrification rate was highly correlated with Cr(VI) reduction rate. δ13C values of DIC ranged from ~540 to ~1170‰ for iron-reducing conditions. The lower enrichment in iron columns was related to the lower biological activity observed with lower yields of RNA and cell numbers in the column effluents. The carbon isotope shift in the sulfate-reducing ~198 to ~1960‰ for sulfate-reducing conditions reflecting the lower levels of the lactate in these columns. Additionally, in two of the sulfate columns, almost complete fermentation of the lactate occurred, producing acetate and propionate with the labeled carbon signature, but relatively smaller amounts of inorganic carbon. For all electron-accepting conditions, TOC yielded similar δ13C values as lactate stock solutions. Differences in C use efficiency, metabolic rate or metabolic pathway contributed to the differing TOC δ13C to DIC δ13C ratios between treatments

  5. Affordable uniform isotope labeling with (2)H, (13)C and (15)N in insect cells.

    PubMed

    Sitarska, Agnieszka; Skora, Lukasz; Klopp, Julia; Roest, Susan; Fernández, César; Shrestha, Binesh; Gossert, Alvar D

    2015-06-01

    For a wide range of proteins of high interest, the major obstacle for NMR studies is the lack of an affordable eukaryotic expression system for isotope labeling. Here, a simple and affordable protocol is presented to produce uniform labeled proteins in the most prevalent eukaryotic expression system for structural biology, namely Spodoptera frugiperda insect cells. Incorporation levels of 80% can be achieved for (15)N and (13)C with yields comparable to expression in full media. For (2)H,(15)N and (2)H,(13)C,(15)N labeling, incorporation is only slightly lower with 75 and 73%, respectively, and yields are typically twofold reduced. The media were optimized for isotope incorporation, reproducibility, simplicity and cost. High isotope incorporation levels for all labeling patterns are achieved by using labeled algal amino acid extracts and exploiting well-known biochemical pathways. The final formulation consists of just five commercially available components, at costs 12-fold lower than labeling media from vendors. The approach was applied to several cytosolic and secreted target proteins.

  6. Asymmetry of (13)C labeled 3-pyruvate affords improved site specific labeling of RNA for NMR spectroscopy.

    PubMed

    Thakur, Chandar S; Dayie, T Kwaku

    2011-12-01

    Selective isotopic labeling provides an unparalleled window within which to study the structure and dynamics of RNAs by high resolution NMR spectroscopy. Unlike commonly used carbon sources, the asymmetry of (13)C-labeled pyruvate provides selective labeling in both the ribose and base moieties of nucleotides using E. coli variants, that until now were not feasible. Here we show that an E. coli mutant strain that lacks succinate and malate dehydrogenases (DL323) and grown on [3-(13)C]-pyruvate affords ribonucleotides with site specific labeling at C5' (~95%) and C1' (~42%) and minimal enrichment elsewhere in the ribose ring. Enrichment is also achieved at purine C2 and C8 (~95%) and pyrimidine C5 (~100%) positions with minimal labeling at pyrimidine C6 and purine C5 positions. These labeling patterns contrast with those obtained with DL323 E. coli grown on [1, 3-(13)C]-glycerol for which the ribose ring is labeled in all but the C4' carbon position, leading to multiplet splitting of the C1', C2' and C3' carbon atoms. The usefulness of these labeling patterns is demonstrated with a 27-nt RNA fragment derived from the 30S ribosomal subunit. Removal of the strong magnetic coupling within the ribose and base leads to increased sensitivity, substantial simplification of NMR spectra, and more precise and accurate dynamic parameters derived from NMR relaxation measurements. Thus these new labels offer valuable probes for characterizing the structure and dynamics of RNA that were previously limited by the constraint of uniformly labeled nucleotides.

  7. Optimal tracers for parallel labeling experiments and (13)C metabolic flux analysis: A new precision and synergy scoring system.

    PubMed

    Crown, Scott B; Long, Christopher P; Antoniewicz, Maciek R

    2016-11-01

    (13)C-Metabolic flux analysis ((13)C-MFA) is a widely used approach in metabolic engineering for quantifying intracellular metabolic fluxes. The precision of fluxes determined by (13)C-MFA depends largely on the choice of isotopic tracers and the specific set of labeling measurements. A recent advance in the field is the use of parallel labeling experiments for improved flux precision and accuracy. However, as of today, no systemic methods exist for identifying optimal tracers for parallel labeling experiments. In this contribution, we have addressed this problem by introducing a new scoring system and evaluating thousands of different isotopic tracer schemes. Based on this extensive analysis we have identified optimal tracers for (13)C-MFA. The best single tracers were doubly (13)C-labeled glucose tracers, including [1,6-(13)C]glucose, [5,6-(13)C]glucose and [1,2-(13)C]glucose, which consistently produced the highest flux precision independent of the metabolic flux map (here, 100 random flux maps were evaluated). Moreover, we demonstrate that pure glucose tracers perform better overall than mixtures of glucose tracers. For parallel labeling experiments the optimal isotopic tracers were [1,6-(13)C]glucose and [1,2-(13)C]glucose. Combined analysis of [1,6-(13)C]glucose and [1,2-(13)C]glucose labeling data improved the flux precision score by nearly 20-fold compared to widely use tracer mixture 80% [1-(13)C]glucose +20% [U-(13)C]glucose.

  8. Anaerobic Methane Oxidation in Soils - revealed using 13C-labelled methane tracers

    NASA Astrophysics Data System (ADS)

    Riekie, G. J.; Baggs, E. M.; Killham, K. S.; Smith, J. U.

    2008-12-01

    In marine sediments, anaerobic methane oxidation is a significant biogeochemical process limiting methane flux from ocean to atmosphere. To date, evidence for anaerobic methane oxidation in terrestrial environments has proved elusive, and its significance is uncertain. In this study, an isotope dilution method specifically designed to detect the process of anaerobic methane oxidation in methanogenic wetland soils is applied. Methane emissions of soils from three contrasting permanently waterlogged sites in Scotland are investigated in strictly anoxic microcosms to which 13C- labelled methane is added, and changes in the concentration and 12C/13C isotope ratios of methane and carbon dioxide are subsequently measured and used to calculate separate the separate components of the methane flux. The method used takes into account the 13C-methane associated with methanogenesis, and the amount of methane dissolved in the soil. The calculations make no prior assumptions about the kinetics of methane production or oxidation. The results indicate that methane oxidation can take place in anoxic soil environments. The clearest evidence for anaerobic methane oxidation is provided by soils from a minerotrophic fen site (pH 6.0) in Bin Forest underlain by ultra-basic and serpentine till. In the fresh soil anoxic microcosms, net consumption methane was observed, and the amount of headspace 13C-CO2 increased at a greater rate than the 12+13C-CO2, further proof of methane oxidation. A net increase in methane was measured in microcosms of soil from Murder Moss, an alkaline site, pH 6.5, with a strong calcareous influence. However, the 13C-CH4 data provided evidence of methane oxidation, both in the disappearance of C- CH4 and appearance of smaller quantities of 13C-CO2. The least alkaline (pH 5.5) microcosms, of Gateside Farm soil - a granitic till - exhibited net methanogenesis and the changes in 13C-CH4 and 13C-CO2 here followed the pattern expected if no methane is consumed

  9. Survival of free-living Acholeplasma in aerated pig manure slurry revealed by 13C-labeled bacterial biomass probing

    PubMed Central

    Hanajima, Dai; Aoyagi, Tomo; Hori, Tomoyuki

    2015-01-01

    Many studies have been performed on microbial community succession and/or predominant taxa during the composting process; however, the ecophysiological roles of microorganisms are not well understood because microbial community structures are highly diverse and dynamic. Bacteria are the most important contributors to the organic-waste decomposition process, while decayed bacterial cells can serve as readily digested substrates for other microbial populations. In this study, we investigated the active bacterial species responsible for the assimilation of dead bacterial cells and their components in aerated pig manure slurry by using 13C-labeled bacterial biomass probing. After 3 days of forced aeration, 13C-labeled and unlabeled dead Escherichia coli cell suspensions were added to the slurry. The suspensions contained 13C-labeled and unlabeled bacterial cell components, possibly including the cell wall and membrane, as well as intracellular materials. RNA extracted from each slurry sample 2 h after addition of E. coli suspension was density-resolved by isopycnic centrifugation and analyzed by terminal restriction fragment length polymorphism, followed by cloning and sequencing of bacterial 16S rRNA genes. In the heavy isotopically labeled RNA fraction, the predominant 13C-assimilating population was identified as belonging to the genus Acholeplasma, which was not detected in control heavy RNA. Acholeplasma spp. have limited biosynthetic capabilities and possess a wide variety of transporters, resulting in their metabolic dependence on external carbon and energy sources. The prevalence of Acholeplasma spp. was further confirmed in aerated pig manure slurry from four different pig farms by pyrosequencing of 16S rRNA genes; their relative abundance was ∼4.4%. Free-living Acholeplasma spp. had a competitive advantage for utilizing dead bacterial cells and their components more rapidly relative to other microbial populations, thus allowing the survival and prevalence

  10. Vitamin K absorption and kinetics in human subjects after consumption of 13C-labelled phylloquinone from kale.

    PubMed

    Novotny, Janet A; Kurilich, Anne C; Britz, Steven J; Baer, David J; Clevidence, Beverly A

    2010-09-01

    The absorption and plasma disappearance of vitamin K were investigated by uniformly labelling phylloquinone in kale with carbon-13, and by feeding the kale to study subjects. Seven healthy volunteers ingested a single 400 g serving of kale with 30 g vegetable oil. The kale provided 156 nmol of phylloquinone. Serial plasma samples were collected and analysed for the appearance of 13C-phylloquinone by HPLC-MS. Six of the subjects showed significant amounts of labelled phylloquinone in plasma, though one subject's plasma was not consistently enriched above the detection limit, and this subject's baseline plasma phylloquinone level was the lowest in the group. After ingestion of the labelled kale, plasma 13C-phylloquinone concentration increased rapidly to a peak between 6 and 10 h, and then rapidly decreased. Average peak plasma concentration for the six subjects with detectable 13C-phylloquinone was 2.1 nmol/l. Plasma concentration-time data were analysed by compartmental modelling. Modelling results demonstrated a mean (n 6) bioavailability of phylloquinone from kale to be 4.7%. Plasma and tissue half-times for phylloquinone were found to be 8.8 and 215 h, respectively.

  11. Enhancing Phospholipid Fatty Acid Profiling of Soil Bacterial Communities via Substrate- Specific 13C-labelling

    NASA Astrophysics Data System (ADS)

    Evershed, R. P.; Maxfield, P. J.; Bingham, E. M.; Dildar, N.; Brennand, E. L.; Hornibrook, E.

    2008-12-01

    A range of culture-independent methods, has recently emerged to study environmental microorganisms in situ[1]. One such method is phospholipid fatty acid (PLFA) analysis, wherein these ubiquitous membrane lipids provide a powerful tool for the study of unculturable soil microorganisms. PLFA analyses have been used to investigate the impacts of a wide range of environmental factors on the soil microbial community. An acknowledged shortcoming of the PLFAs approach is the lack the chemotaxonoic specificity, which restricts the ability of the method to probe the activities of specific functional groups of the microbial community selectively. However, the selectivity of PLFAs analyses can be enhanced by incubating soils with 13C- labelled substrates followed by gas chromatography-combustion-isotope ratio mass spectrometry to reveal the specific PLFAs incorporating the 13C-label. The application of this approach will be demonstrated through our recent work on methanotrophic bacteria in soils. We applied this approach initially to mineral soils[2] and then extended chemotaxonomic assessments by using a combination of 13C-labelled PLFAs and hopanoids [3]. We have used this approach to explore the properties of high affinity methanotrophs in a range of environments, investigating the relationship between methane oxidation rates and the nature and magnitude of the methanotrophic community for the first time[4,5] More recently we extended the technique using a novel time series 13C-labelling of PLFAs[6] to estimate the rate and progression of 13C- label incorporation and turnover of methanotrophic populations. This modified approach has been used to investigate the impacts of various environmental variables, e.g. soil type, vegetation cover and land use, on the methanotrophic biomass[7.8]. The unique nature of the 13CH4 as a gaseous substate/carbon source means that can be readily introduced into soils via a specific subset of the soil microbial biomass, thereby offering many

  12. Production and NMR signal optimization of hyperpolarized 13C-labeled amino acids

    NASA Astrophysics Data System (ADS)

    Parish, Christopher; Niedbalski, Peter; Ferguson, Sarah; Kiswandhi, Andhika; Lumata, Lloyd

    Amino acids are targeted nutrients for consumption by cancers to sustain their rapid growth and proliferation. 13C-enriched amino acids are important metabolic tracers for cancer diagnostics using nuclear magnetic resonance (NMR) spectroscopy. Despite this diagnostic potential, 13C NMR of amino acids however is hampered by the inherently low NMR sensitivity of the 13C nuclei. In this work, we have employed a physics technique known as dynamic nuclear polarization (DNP) to enhance the NMR signals of 13C-enriched amino acids. DNP works by transferring the high polarization of electrons to the nuclear spins via microwave irradiation at low temperature and high magnetic field. Using a fast dissolution method in which the frozen polarized samples are dissolved rapidly with superheated water, injectable solutions of 13C-amino acids with highly enhanced NMR signals (by at least 5,000-fold) were produced at room temperature. Factors that affect the NMR signal enhancement levels such as the choice of free radical polarizing agents and sample preparation will be discussed along with the thermal mixing physics model of DNP. The authors would like to acknowledge the support by US Dept of Defense Award No. W81XWH-14-1-0048 and Robert A. Welch Foundation Grant No. AT-1877.

  13. Metabolic Flux Elucidation for Large-Scale Models Using 13C Labeled Isotopes

    PubMed Central

    Suthers, Patrick F.; Burgard, Anthony P.; Dasika, Madhukar S.; Nowroozi, Farnaz; Van Dien, Stephen; Keasling, Jay D.; Maranas, Costas D.

    2007-01-01

    A key consideration in metabolic engineering is the determination of fluxes of the metabolites within the cell. This determination provides an unambiguous description of metabolism before and/or after engineering interventions. Here, we present a computational framework that combines a constraint-based modeling framework with isotopic label tracing on a large-scale. When cells are fed a growth substrate with certain carbon positions labeled with 13C, the distribution of this label in the intracellular metabolites can be calculated based on the known biochemistry of the participating pathways. Most labeling studies focus on skeletal representations of central metabolism and ignore many flux routes that could contribute to the observed isotopic labeling patterns. In contrast, our approach investigates the importance of carrying out isotopic labeling studies using a more comprehensive reaction network consisting of 350 fluxes and 184 metabolites in Escherichia coli including global metabolite balances on cofactors such as ATP, NADH, and NADPH. The proposed procedure is demonstrated on an E. coli strain engineered to produce amorphadiene, a precursor to the anti-malarial drug artemisinin. The cells were grown in continuous culture on glucose containing 20% [U-13C]glucose; the measurements are made using GC-MS performed on 13 amino acids extracted from the cells. We identify flux distributions for which the calculated labeling patterns agree well with the measurements alluding to the accuracy of the network reconstruction. Furthermore, we explore the robustness of the flux calculations to variability in the experimental MS measurements, as well as highlight the key experimental measurements necessary for flux determination. Finally, we discuss the effect of reducing the model, as well as shed light onto the customization of the developed computational framework to other systems. PMID:17632026

  14. Uniformly sup 13 C-labeled algal protein used to determine amino acid essentiality in vivo

    SciTech Connect

    Berthold, H.K.; Hachey, D.L.; Reeds, P.J.; Klein, P.D. ); Thomas, O.P. ); Hoeksema, S. )

    1991-09-15

    The edible alga Spirulina platensis was uniformly labeled with {sup 13}C by growth in an atmosphere of pure {sup 13}CO{sub 2}. The labeled biomass was then incorporated into the diet of a laying hen for 27 days. The isotopic enrichment of individual amino acids in egg white and yolk proteins, as well as in various tissues of the hen at the end of the feeding period, was analyzed by negative chemical ionization gas chromatography/mass spectrometry. The amino acids of successive eggs showed one of two exclusive enrichment patterns: complete preservation of the intact carbon skeleton or extensive degradation and resynthesis. The same observation was made in tissue proteins. These patterns were cleanly divided according to known nutritional amino acid essentiality/nonessentiality but revealed differences in labeling among the nonessential amino acids: most notable was that proline accretion was derived entirely from the diet. Feeding uniformly {sup 13}C-labeled algal protein and recovering and analyzing de novo-synthesized protein provides a useful method to examine amino acid metabolism and determine conditional amino acid essentially in vivo.

  15. The use of 13-C-labelled polyaromatic hydrocarbons in soil bound residue formation

    SciTech Connect

    Richnow, H.H.; Seifert, R.; Hefter, J.

    1996-12-31

    The formation of non-extractable residues during biodegradation and humification processes in soils and sediments represent a major sink for organic contaminants. We studied the mode of incorporation of polycyclic aromatic hydrocarbons (PAM) and their metabolites into macromolecular organic matter during microbial degradation applying {sup 13}C-labelled compounds. Mineralization rates were determined by measuring the {sup 13}CO{sub 2} production. An incorporation of {sup 13}C-PAH-fragments into humic material could be traced by isotopic analysis of the bulk organic matter. Furthermore, selective chemical degradation reactions were applied to analyze the precise chemical structure of covalently bound {sup 13}C-labelled PAH fragments in soil humic substances. Structural assignments by GC-MS combined with isotope measurements on the bulk organic carbon and the molecular level (IRM-GC-MS) provide useful information on the fate of xenobiotics within the soil. The results are discussed in the context of long-term risk assessment of bioremediated soils.

  16. Computational Platform for Flux Analysis Using 13C-Label Tracing- Phase I SBIR Final Report

    SciTech Connect

    Van Dien, Stephen J.

    2005-04-12

    Isotopic label tracing is a powerful experimental technique that can be combined with metabolic models to quantify metabolic fluxes in an organism under a particular set of growth conditions. In this work we constructed a genome-scale metabolic model of Methylobacterium extorquens, a facultative methylotroph with potential application in the production of useful chemicals from methanol. A series of labeling experiments were performed using 13C-methanol, and the resulting distribution of labeled carbon in the proteinogenic amino acids was determined by mass spectrometry. Algorithms were developed to analyze this data in context of the metabolic model, yielding flux distributions for wild-type and several engineered strains of M. extorquens. These fluxes were compared to those predicted by model simulation alone, and also integrated with microarray data to give an improved understanding of the metabolic physiology of this organism.

  17. Determination of the Orientation and Dynamics of Ergosterol in Model Membranes Using Uniform 13C Labeling and Dynamically Averaged 13C Chemical Shift Anisotropies as Experimental Restraints

    PubMed Central

    Soubias, O.; Jolibois, F.; Massou, S.; Milon, A.; Réat, V.

    2005-01-01

    A new strategy was established to determine the average orientation and dynamics of ergosterol in dimyristoylphosphatidylcholine model membranes. It is based on the analysis of chemical shift anisotropies (CSAs) averaged by the molecular dynamics. Static 13C CSA tensors were computed by quantum chemistry, using the gauge-including atomic-orbital approach within Hartree-Fock theory. Uniformly 13C-labeled ergosterol was purified from Pichia pastoris cells grown on labeled methanol. After reconstitution into dimyristoylphosphatidylcholine lipids, the complete 1H and 13C assignment of ergosterol's resonances was performed using a combination of magic-angle spinning two-dimensional experiments. Dynamically averaged CSAs were determined by standard side-band intensity analysis for isolated 13C resonances (C3 and ethylenic carbons) and by off-magic-angle spinning experiments for other carbons. A set of 18 constraints was thus obtained, from which the sterol's molecular order parameter and average orientation could be precisely defined. The validity of using computed CSAs in this strategy was verified on cholesterol model systems. This new method allowed us to quantify ergosterol's dynamics at three molar ratios: 16 mol % (Ld phase), 30 mol % (Lo phase), and 23 mol % (mixed phases). Contrary to cholesterol, ergosterol's molecular diffusion axis makes an important angle (14°) with the inertial axis of the rigid four-ring system. PMID:15923221

  18. Selective {sup 2}H and {sup 13}C labeling in NMR analysis of solution protein structure and dynamics

    SciTech Connect

    LeMaster, D.M.

    1994-12-01

    Preparation of samples bearing combined isotope enrichment patterns has played a central role in the recent advances in NMR analysis of proteins in solution. In particular, uniform {sup 13}C, {sup 15}N enrichment has made it possible to apply heteronuclear multidimensional correlation experiments for the mainchain assignments of proteins larger than 30 KDa. In contrast, selective labeling approaches can offer advantages in terms of the directedness of the information provided, such as chirality and residue type assignments, as well as through enhancements in resolution and sensitivity that result from editing the spectral complexity, the relaxation pathways and the scalar coupling networks. In addition, the combination of selective {sup 13}C and {sup 2}H enrichment can greatly facilitate the determination of heteronuclear relaxation behavior.

  19. Probing metabolic processes of intact soil microbial communities using position-specific 13C-labeled glucose

    NASA Astrophysics Data System (ADS)

    Fairbanks, D. E.; Hungate, B. A.; KOCH, G. W.; Schwartz, E.; Dijkstra, P.

    2012-12-01

    Soils represent one of the largest carbon pools in the terrestrial biosphere and fluxes into or out of this pool may feedback to current climate change. Understanding the mechanisms behind microbial processes regulating C cycling, microbial turnover, and soil organic matter stabilization is hindered by our lack of understanding of the details of microbial physiology in soils. Position-specific 13C labeled metabolic tracers are proposed as a new way to probe microbial community energy production, biosynthesis, C use efficiency (the proportion of substrate incorporated into microbial biomass), and enables the determination of C fluxes through the various C metabolic pathways. We determined the 13CO2 production from microbial communities within a one hour time frame by adding six isotopomers (1-13C, 2-13C, 3-13C, 4-13C, 5-13C, 6-13C) of glucose in parallel incubations using a young volcanic soil (Pinyon-juniper wood, near Sunset Crater, Flagstaff, Arizona). We compared the measured rates of position-specific 13CO2 production with modeled results based on glucose (1-13C and U-13C) and pyruvate (1-13C and 2,3-13C) incubations. These labeling and modeling techniques may improve our ability to analyze the biochemistry and ecophysiology of intact soil microbial communities.

  20. Hydrogen dynamics in soil organic matter as determined by 13C and 2H labeling experiments

    NASA Astrophysics Data System (ADS)

    Paul, Alexia; Hatté, Christine; Pastor, Lucie; Thiry, Yves; Siclet, Françoise; Balesdent, Jérôme

    2016-12-01

    Understanding hydrogen dynamics in soil organic matter is important to predict the fate of 3H in terrestrial environments. One way to determine hydrogen fate and to point out processes is to examine the isotopic signature of the element in soil. However, the non-exchangeable hydrogen isotopic signal in soil is complex and depends on the fate of organic compounds and microbial biosyntheses that incorporate water-derived hydrogen. To decipher this complex system and to understand the close link between hydrogen and carbon cycles, we followed labeled hydrogen and labeled carbon throughout near-natural soil incubations. We performed incubation experiments with three labeling conditions: 1 - 13C2H double-labeled molecules in the presence of 1H2O; 2 - 13C-labeled molecules in the presence of 2H2O; 3 - no molecule addition in the presence of 2H2O. The preservation of substrate-derived hydrogen after 1 year of incubation (ca. 5 % in most cases) was lower than the preservation of substrate-derived carbon (30 % in average). We highlighted that 70 % of the C-H bonds are broken during the degradation of the molecule, which permits the exchange with water hydrogen. Added molecules are used more for trophic resources. The isotopic composition of the non-exchangeable hydrogen was mainly driven by the incorporation of water hydrogen during microbial biosynthesis. It is linearly correlated with the amount of carbon that is degraded in the soil. The quantitative incorporation of water hydrogen in bulk material and lipids demonstrates that non-exchangeable hydrogen exists in both organic and mineral-bound forms. The proportion of the latter depends on soil type and minerals. This experiment quantified the processes affecting the isotopic composition of non-exchangeable hydrogen, and the results can be used to predict the fate of tritium in the ecosystem or the water deuterium signature in organic matter.

  1. Interaction between rhizosphere microorganisms and plant roots: 13C fluxes in the rhizosphere after pulse labeling

    NASA Astrophysics Data System (ADS)

    Yevdokimov, I. V.; Ruser, R.; Buegger, F.; Marx, M.; Munch, J. C.

    2007-07-01

    The input dynamics of labeled C into pools of soil organic matter and CO2 fluxes from soil were studied in a pot experiment with the pulse labeling of oats and corn under a 13CO2 atmosphere, and the contribution of the root and microbial respiration to the emission of CO2 from the soil was determined from the fluxes of labeled C in the microbial biomass and the evolved carbon dioxide. A considerable amount of 13C (up to 96% of the total amount of the label found in the rhizosphere soil) was incorporated into the biomass of the rhizosphere microorganisms. The diurnal fluctuations of the labeled C pools in the microbial biomass, dissolved organic carbon, and CO2 released in the rhizosphere of oats and corn were related to the day/night changes, i.e., to the on and off periods of the photosynthetic activity of the plants. The average contribution of the corn root respiration (70% of the total CO2 emission from the soil surface) was higher than that of the oats roots (44%), which was related to the lower incorporation of rhizodeposit carbon into the microbial biomass in the soil under the corn plants than in the soil under the oats plants.

  2. Carbon transfer, partitioning and residence time in the plant-soil system: a comparison of two 13C-CO2 labelling techniques

    NASA Astrophysics Data System (ADS)

    Studer, Mirjam S.; Siegwolf, Rolf T. W.; Schmidt, Michael W. I.; Abiven, Samuel

    2014-05-01

    13C-CO2 labelling is a powerful tool to study the carbon (C) dynamics in plant-soil systems, whereby various approaches have been applied, differing in the duration of label exposure, the applied label strength and the sampling intervals. We made a direct comparison of the two main 13C-CO2 labelling techniques - pulse and continuous labelling - and evaluated if different approaches yield the same results regarding the C transfer time, C partitioning and the C residence time in different plant-soil compartments. We conducted a pulse labelling (exposure to 99 atom% 13C-CO2 for three hours, traced for eight days) and a continuous labelling (exposure to 10 atom% 13C-CO2, traced for 14 days) on identical plant-soil systems (Populus deltoides x nigra, Cambisol soil) and under controlled environmental conditions. The plant-soil systems were destructively harvested at five sampling dates, and the soil CO2 efflux was sampled throughout the experiments. The 13C distribution into leaves, petioles, stems, cuttings, roots, soil, microbial biomass and soil respiration was analysed and wee applied exponential (pulse labelling) and logistic (continuous labelling) functions to model the C dynamics. Our results confirm that pulse labelling is best suited to assess the minimum C transfer time, while continuous labelling can be applied to assess the C transfer through a compartment, including short-term storage pools. Both experiments yielded the same C partitioning patterns at the specific sampling days, however, the time of sampling was crucial. For example the results of belowground C partitioning were consistent only after eight days of labelling. The C mean residence times estimated by the rate constant of the exponential and logistic function were largely different for the two techniques, mostly due to the strong model assumptions (e.g. steady state). Pulse and continuous labelling techniques are both well suited to assess C cycling. With pulse labelling, the dynamics of fresh

  3. Sparse (13)C labelling for solid-state NMR studies of P. pastoris expressed eukaryotic seven-transmembrane proteins.

    PubMed

    Liu, Jing; Liu, Chang; Fan, Ying; Munro, Rachel A; Ladizhansky, Vladimir; Brown, Leonid S; Wang, Shenlin

    2016-05-01

    We demonstrate a novel sparse (13)C labelling approach for methylotrophic yeast P. pastoris expression system, towards solid-state NMR studies of eukaryotic membrane proteins. The labelling scheme was achieved by co-utilizing natural abundance methanol and specifically (13)C labelled glycerol as carbon sources in the expression medium. This strategy improves the spectral resolution by 1.5 fold, displays site-specific labelling patterns, and has advantages for collecting long-range distance restraints for structure determination of large eukaryotic membrane proteins by solid-state NMR.

  4. High resolution 4D HPCH experiment for sequential assignment of (13)C-labeled RNAs via phosphodiester backbone.

    PubMed

    Saxena, Saurabh; Stanek, Jan; Cevec, Mirko; Plavec, Janez; Koźmiński, Wiktor

    2015-11-01

    The three-dimensional structure determination of RNAs by NMR spectroscopy requires sequential resonance assignment, often hampered by assignment ambiguities and limited dispersion of (1)H and (13)C chemical shifts, especially of C4'/H4'. Here we present a novel through-bond 4D HPCH NMR experiment involving phosphate backbone where C4'-H4' correlations are resolved along the (1)H3'-(31)P spectral planes. The experiment provides high peak resolution and effectively removes ambiguities encountered during assignments. Enhanced peak dispersion is provided by the inclusion of additional (31)P and (1)H3' dimensions and constant-time evolution of chemical shifts. High spectral resolution is obtained by using non-uniform sampling in three indirect dimensions. The experiment fully utilizes the isotopic (13)C-labeling with evolution of C4' carbons. Band selective (13)C inversion pulses are used to achieve selectivity and prevent signal dephasing due to the C4'-C3' and C4'-C5' homonuclear couplings. Multiple quantum line narrowing is employed to minimize sensitivity loses. The 4D HPCH experiment is verified and successfully applied to a non-coding 34-nt RNA consisting typical structure elements and a 14-nt RNA hairpin capped by cUUCGg tetraloop.

  5. Carbon Metabolism of Soil microorganisms at Low Temperatures: Position-Specific 13C Labeled Glucose Reveals the Story

    NASA Astrophysics Data System (ADS)

    Apostel, C.; Bore, E. K.; Halicki, S.; Kuzyakov, Y.; Dippold, M.

    2015-12-01

    Metabolic pathway activities at low temperature are not well understood, despite the fact that the processes are relevant for many soils globally and seasonally. To analyze soil metabolism at low temperature, isotopomeres of position-specifically 13C labeled glucose were applied at three temperature levels; +5, -5 -20 oC. In additon, one sterilization treatment with sodium azide at +5 oC was also performed. Soils were incubated for 1, 3 and 10 days while soil samples at -20 oC were additionally sampled after 30 days. The 13C from individual molecule position in respired CO2 was quantifed. Incorporation of 13C in bulk soil, extractable microbial biomass by chloroform fumigation extraction (CFE) and cell membranes of different microbial communities classified by 13C phospholipid fatty acid analysis (PLFA) was carried out. Our 13CO2 data showed a dominance of C-1 respiration at +5 °C for treatments with and without sodium azide, but total respiration for sodium azide inhibited treatments increased by 14%. In contrast, at -5 and -20 oC metabolic behavior showed intermingling of preferential respiration of the glucose C-4 and C-1 positions. Therefore, at +5 °C, pentose phosphate pathway activity is a dominant metabolic pathway used by microorganisms to metabolize glucose. The respiration increase due to NaN3 inhibition was attributed to endoenzymes released from dead organisms that are stabilized at the soil matrix and have access to suitable substrate and co-factors to permit their funtions. Our PLFA analysis showed that incorporation of glucose 13C was higher in Gram negative bacteria than other microbial groups as they are most competitive for LMWOS. Only a limited amount of microbial groups maintained their glucose utilizing activity at -5 and -20 °C and they strongly shifted towards a metabolization of glucose via both glycolysis and pentose phosphate pathways indicating both growth and cellular maintenance. This study revealed a remarkable microbial acitivity

  6. Direct uptake of organic carbon by grass roots and allocation in leaves and phytoliths: 13C labeling evidence

    NASA Astrophysics Data System (ADS)

    Alexandre, A.; Balesdent, J.; Cazevieille, P.; Chevassus-Rosset, C.; Signoret, P.; Mazur, J.-C.; Harutyunyan, A.; Doelsch, E.; Basile-Doelsch, I.; Miche, H.; Santos, G. M.

    2015-12-01

    In the rhizosphere, the uptake of low molecular weight carbon (C) and nitrogen (N) by plant roots has been well documented. While organic N uptake relatively to total uptake is important, organic C uptake is supposed to be low relatively to the plant's C budget. Recently, radiocarbon analyses demonstrated that a fraction of C from the soil was occluded in amorphous silica micrometric particles that precipitate in plant cells (phytoliths). Here, we investigated whether and in which extent organic C absorbed by grass roots, under the form of either intact amino acids (AAs) or microbial metabolites, can feed the organic C occluded in phytoliths. For this purpose we added 13C- and 15N-labeled AAs to the silicon-rich hydroponic solution of the grass Festuca arundinacea. The experiment was designed to prevent C leakage from the labeled nutritive solution to the chamber atmosphere. After 14 days of growth, the 13C and 15N enrichments (13C-excess and 15N-excess) in the roots, stems and leaves, and phytoliths, as well as the 13C-excess in AAs extracted from roots and stems and leaves, were quantified relatively to a control experiment in which no labelled AAs were added. The net uptake of 13C derived from the labeled AAs supplied to the nutritive solution (AA-13C) by Festuca arundinacea represented 4.5 % of the total AA-13C supply. AA-13C fixed in the plant represented only 0.13 % of total C. However, the experimental conditions may have underestimated the extent of the process under natural and field conditions. Previous studies showed that 15N and 13C can be absorbed by the roots in several organic and inorganic forms. In the present experiment, the fact that phenylalanine and methionine, that were supplied in high amount to the nutritive solution, were more 13C-enriched than other AAs in the roots and stems and leaves strongly suggested that part of AA-13C was absorbed and translocated in its original AA form. The concentration of AA-13C represented only 0.15 % of the

  7. Metabolite channeling and compartmentation in the human cell line AGE1.HN determined by 13C labeling experiments and 13C metabolic flux analysis.

    PubMed

    Niklas, Jens; Sandig, Volker; Heinzle, Elmar

    2011-12-01

    This study focused on analyzing active pathways and the metabolic flux distribution in human neuronal AGE1.HN cells that is a desirable basis for a rational design and optimization of producing cell lines and production processes for biopharmaceuticals. (13)C-labeling experiments and (13)C metabolic flux analysis were conducted using glucose, glutamine, alanine and lactate tracers in parallel experiments. Connections between cytosolic and mitochondrial metabolite pools were verified, e.g., flux from TCA cycle metabolite (13)C to glycolytic metabolites. It was also found that lactate and alanine are produced from the same pyruvate pool and that consumed alanine is mainly directly metabolized and secreted as lactate. Activity of the pentose phosphate pathway was low being around 2.3% of the glucose uptake flux. This might be compensated in AGE1.HN by high mitochondrial malic enzyme flux producing NADPH. Mitochondrial pyruvate transport was almost zero. Instead pyruvate carbons were channeled via oxaloacetate into the TCA cycle which was mainly fed via α-ketoglutarate and oxaloacetate during the investigated phase. The data indicate that further optimization of this cell line should focus on the improved substrate usage which can be accomplished by an improved connectivity between glycolytic and mitochondrial pyruvate pools or by better control of the substrate uptake.

  8. Monitoring CO[subscript 2] Fixation Using GC-MS Detection of a [superscript 13]C-Label

    ERIC Educational Resources Information Center

    Hammond, Daniel G.; Bridgham, April; Reichert, Kara; Magers, Martin

    2010-01-01

    Much of our understanding of metabolic pathways has resulted from the use of chemical and isotopic labels. In this experiment, a heavy isotope of carbon, [superscript 13]C, is used to label the product of the well-known RuBisCO enzymatic reaction. This is a key reaction in photosynthesis that converts inorganic carbon to organic carbon; a process…

  9. Structure and Metabolic-Flow Analysis of Molecular Complexity in a (13) C-Labeled Tree by 2D and 3D NMR.

    PubMed

    Komatsu, Takanori; Ohishi, Risa; Shino, Amiu; Kikuchi, Jun

    2016-05-10

    Improved signal identification for biological small molecules (BSMs) in a mixture was demonstrated by using multidimensional NMR on samples from (13) C-enriched Rhododendron japonicum (59.5 atom%) cultivated in air containing (13) C-labeled carbon dioxide for 14 weeks. The resonance assignment of 386 carbon atoms and 380 hydrogen atoms in the mixture was achieved. 42 BSMs, including eight that were unlisted in the spectral databases, were identified. Comparisons between the experimental values and the (13) C chemical shift values calculated by density functional theory supported the identifications of unlisted BSMs. Tracing the (13) C/(12) C ratio by multidimensional NMR spectra revealed faster and slower turnover ratios of BSMs involved in central metabolism and those categorized as secondary metabolites, respectively. The identification of BSMs and subsequent flow analysis provided insight into the metabolic systems of the plant.

  10. Using Position-Specific 13C and 14C Labeling and 13C-PLFA Analysis to Assess Microbial Transformations of Free Versus Sorbed Alanine

    NASA Astrophysics Data System (ADS)

    Apostel, C.; Herschbach, J.; Bore, E. K.; Kuzyakov, Y.; Dippold, M. A.

    2015-12-01

    Sorption of charged or partially charged low molecular weight organic substances (LMWOS) to soil mineral surfaces delays microbial uptake and therefore mineralization of LMWOS to CO2, as well as all other biochemical transformations. We used position-specific labeling, a tool of isotope applications novel to soil sciences, to compare the transformation mechanisms of sorbed and non-sorbed alanine in soil. Alanine as an amino acid links C- and N-cycles in soil and therefore is a model substance for the pool of LMWOS. To assess transformations of sorbed alanine, we added position-specific and uniformly 13C and 14C labeled alanine tracer to soil that had previously been sterilized by γ-radiation. The labeled soil was added to non-sterilized soil from the same site and incubated. Soil labeled with the same tracers without previous sorption was prepared and incubated as well. We captured the respired CO2 and determined its 14C-activity at increasing time intervals. The incorporation of 14C into microbial biomass was determined by chloroform fumigation extraction (CFE), and utilization of individual C positions by distinct microbial groups was evaluated by 13C-phospholipid fatty acid analysis (PLFA). A dual peak in the respired CO2 revealed two sorption mechanisms. To compare the fate of individual C atoms independent of their concentration and pool size in soil, we applied the divergence index (DI). The DI reveals the convergent or divergent behavior of C from individual molecule positions during microbial utilization. Alanine C-1 position was mainly oxidized to CO2, while its C-2 and C-3 were preferentially incorporated in microbial biomass and PLFA. This indicates that sorption by the COOH group does not protect this group from preferential oxidation. Microbial metabolism was determinative for the preferential oxidation of individual molecule positions. The use of position-specific labeling revealed mechanisms and kinetics of microbial utilization of sorbed and non

  11. Combining combing and secondary ion mass spectrometry to study DNA on chips using 13C and 15N labeling

    PubMed Central

    Cabin-Flaman, Armelle; Monnier, Anne-Francoise; Coffinier, Yannick; Audinot, Jean-Nicolas; Gibouin, David; Wirtz, Tom; Boukherroub, Rabah; Migeon, Henri-Noël; Bensimon, Aaron; Jannière, Laurent; Ripoll, Camille; Norris, Victor

    2016-01-01

    Dynamic secondary ion mass spectrometry ( D-SIMS) imaging of combed DNA – the combing, imaging by SIMS or CIS method – has been developed previously using a standard NanoSIMS 50 to reveal, on the 50 nm scale, individual DNA fibers labeled with different, non-radioactive isotopes in vivo and to quantify these isotopes. This makes CIS especially suitable for determining the times, places and rates of DNA synthesis as well as the detection of the fine-scale re-arrangements of DNA and of molecules associated with combed DNA fibers. Here, we show how CIS may be extended to 13C-labeling via the detection and quantification of the 13C 14N - recombinant ion and the use of the 13C: 12C ratio, we discuss how CIS might permit three successive labels, and we suggest ideas that might be explored using CIS. PMID:27429742

  12. Probing crystal packing of uniformly (13)C-enriched powder samples using homonuclear dipolar coupling measurements.

    PubMed

    Mollica, Giulia; Dekhil, Myriam; Ziarelli, Fabio; Thureau, Pierre; Viel, Stéphane

    2015-02-01

    The relationship between the crystal packing of powder samples and long-range (13)C-(13)C homonuclear dipolar couplings is presented and illustrated for the case of uniformly (13)C-enriched L-alanine and L-histidine·HCl·H2O. Dipolar coupling measurement is based on the partial reintroduction of dipolar interactions by spinning the sample slightly off-magic-angle, while the coupling of interest for a given spin pair is isolated with a frequency-selective pulse. A cost function is used to correlate the so-derived dipolar couplings to trial crystal structures of the samples under study. This procedure allowed for the investigation of the l-alanine space group and L-histidine·HCl·H2O space group and unit-cell parameters.

  13. Direct uptake of organically derived carbon by grass roots and allocation in leaves and phytoliths: 13C labeling evidence

    NASA Astrophysics Data System (ADS)

    Alexandre, Anne; Balesdent, Jérôme; Cazevieille, Patrick; Chevassus-Rosset, Claire; Signoret, Patrick; Mazur, Jean-Charles; Harutyunyan, Araks; Doelsch, Emmanuel; Basile-Doelsch, Isabelle; Miche, Hélène; Santos, Guaciara M.

    2016-03-01

    In the rhizosphere, the uptake of low-molecular-weight carbon (C) and nitrogen (N) by plant roots has been well documented. While organic N uptake relative to total uptake is important, organic C uptake is supposed to be low relative to the plant's C budget. Recently, radiocarbon analyses demonstrated that a fraction of C from the soil was occluded in amorphous silica micrometric particles that precipitate in plant cells (phytoliths). Here, we investigated whether and to what extent organically derived C absorbed by grass roots can feed the C occluded in phytoliths. For this purpose we added 13C- and 15N-labeled amino acids (AAs) to the silicon-rich hydroponic solution of the grass Festuca arundinacea. The experiment was designed to prevent C leakage from the labeled nutritive solution to the chamber atmosphere. After 14 days of growth, the 13C and 15N enrichments (13C excess and 15N excess) in the roots, stems and leaves as well as phytoliths were measured relative to a control experiment in which no labeled AAs were added. Additionally, the 13C excess was measured at the molecular level, in AAs extracted from roots and stems and leaves. The net uptake of labeled AA-derived 13C reached 4.5 % of the total AA 13C supply. The amount of AA-derived 13C fixed in the plant was minor but not nil (0.28 and 0.10 % of total C in roots and stems/leaves, respectively). Phenylalanine and methionine that were supplied in high amounts to the nutritive solution were more 13C-enriched than other AAs in the plant. This strongly suggested that part of AA-derived 13C was absorbed and translocated into the plant in its original AA form. In phytoliths, AA-derived 13C was detected. Its concentration was on the same order of magnitude as in bulk stems and leaves (0.15 % of the phytolith C). This finding strengthens the body of evidences showing that part of organic compounds occluded in phytoliths can be fed by C entering the plant through the roots. Although this experiment was done in

  14. Enzymatic (13)C labeling and multidimensional NMR analysis of miltiradiene synthesized by bifunctional diterpene cyclase in Selaginella moellendorffii.

    PubMed

    Sugai, Yoshinori; Ueno, Yohei; Hayashi, Ken-ichiro; Oogami, Shingo; Toyomasu, Tomonobu; Matsumoto, Sadamu; Natsume, Masahiro; Nozaki, Hiroshi; Kawaide, Hiroshi

    2011-12-16

    Diterpenes show diverse chemical structures and various physiological roles. The diversity of diterpene is primarily established by diterpene cyclases that catalyze a cyclization reaction to form the carbon skeleton of cyclic diterpene. Diterpene cyclases are divided into two types, monofunctional and bifunctional cyclases. Bifunctional diterpene cyclases (BDTCs) are involved in hormone and defense compound biosyntheses in bryophytes and gymnosperms, respectively. The BDTCs catalyze the successive two-step type-B (protonation-initiated cyclization) and type-A (ionization-initiated cyclization) reactions of geranylgeranyl diphosphate (GGDP). We found that the genome of a lycophyte, Selaginella moellendorffii, contains six BDTC genes with the majority being uncharacterized. The cDNA from S. moellendorffii encoding a BDTC-like enzyme, miltiradiene synthase (SmMDS), was cloned. The recombinant SmMDS converted GGDP to a diterpene hydrocarbon product with a molecular mass of 272 Da. Mutation in the type-B active motif of SmMDS abolished the cyclase activity, whereas (+)-copalyl diphosphate, the reaction intermediate from the conversion of GGDP to the hydrocarbon product, rescued the cyclase activity of the mutant to form a diterpene hydrocarbon. Another mutant lacking type-A activity accumulated copalyl diphosphate as the reaction intermediate. When the diterpene hydrocarbon was enzymatically synthesized from [U-(13)C(6)]mevalonate, all carbons were labeled with (13)C stable isotope (>99%). The fully (13)C-labeled product was subjected to (13)C-(13)C COSY NMR spectroscopic analyses. The direct carbon-carbon connectivities observed in the multidimensional NMR spectra demonstrated that the hydrocarbon product by SmMDS is miltiradiene, a putative biosynthetic precursor of tanshinone identified from the Chinese medicinal herb Salvia miltiorrhiza. Hence, SmMDS functions as a bifunctional miltiradiene synthase in S. moellendorffii. In this study, we demonstrate that one

  15. Microbial transformations of free versus sorbed alanine analyzed by position-specific 13C and 14C labeling and 13C-PLFA analysis

    NASA Astrophysics Data System (ADS)

    Apostel, Carolin; Dippold, Michaela; Bore, Ezekiel; Kuzyakov, Yakov

    2015-04-01

    Sorption of charged or partially charged low molecular weight organic substances (LMWOS) to soil mineral surfaces delays microbial uptake and therefore mineralization of LMWOS to CO2, as well as all other biochemical transformations. We used position-specific labeling, a tool of isotope applications novel to soil sciences, to compare the transformation mechanisms of sorbed and non-sorbed alanine in soil. Alanine as an amino acid links C- and N-cycles in soil and therefore is a model representative for the pool of LMWOS. To assess transformations of sorbed alanine, we combined position-specifically and uniformly 13C and 14C labeled alanine tracer solution with a loamy haplic luvisol that had previously been sterilized by γ-radiation. After shaking the mixtures, the supernatant was removed, as was all non-sorbed alanine by repeated shaking with millipore water. The labeled soil was added to non-sterilized soil from the same site. To compare the effect of sorption, soil labeled with the same position-specifically labeled tracers without previous sorption was prepared and incubated as well. We captured the respired CO2 and determined its 14C-activity at increasing time steps. The incorporation of 14C into microbial biomass was determined by CFE, and utilization of individual C positions by distinct microbial groups was evaluated by 13C-PLFA analysis. A dual peak in the respired CO2 revealed the influence of two sorption mechanisms. Microbial uptake and transformation of the sorbed alanine was 3 times slower compared to non-sorbed alanine. To compare the fate of individual C atoms independent of their concentration and pool size in soil, we introduced the divergence index (DI). The DI reveals the convergent or divergent behaviour of C from individual molecule positions during microbial utilization. The DI revealed, that alanines C-1 position was mainly oxidized to CO2, while its C-2 and C-3 were preferentially incorporated in microbial biomass and PLFAs. This indicates

  16. First airborne samples of a volcanic plume for δ13C of CO2 determinations

    NASA Astrophysics Data System (ADS)

    Fischer, Tobias P.; Lopez, Taryn M.

    2016-04-01

    Volcanic degassing is one of the main natural sources of CO2 to the atmosphere. Carbon isotopes of volcanic gases enable the determination of CO2 sources including mantle, organic or carbonate sediments, and atmosphere. Until recently, this work required sample collection from vents followed by laboratory analyses. Isotope ratio infrared analyzers now enable rapid analyses of plume δ13C-CO2, in situ and in real time. Here we report the first analyses of δ13C-CO2 from airborne samples. These data combined with plume samples from the vent area enable extrapolation to the volcanic source δ13C. We performed our experiment at the previously unsampled and remote Kanaga Volcano in the Western Aleutians. We find a δ13C source composition of -4.4‰, suggesting that CO2 from Kanaga is primarily sourced from the upper mantle with minimal contributions from subducted components. Our method is widely applicable to volcanoes where remote location or activity level precludes sampling using traditional methods.

  17. Assessing microbial utilization of free versus sorbed Alanine by using position-specific 13C labeling and 13C-PLFA analysis

    NASA Astrophysics Data System (ADS)

    Herschbach, Jennifer; Apostel, Carolin; Spielvogel, Sandra; Kuzyakov, Yakov; Dippold, Michaela

    2016-04-01

    Microbial utilization is a key transformation process of soil organic matter (SOM). Sorption of low molecular weight organic substances (LMWOS) to soil mineral surfaces blocks or delays microbial uptake and therefore mineralization of LMWOS to CO2, as well as all other biochemical transformations. We used position-specific labeling, a tool of isotope applications novel to soil science, combined with 13C-phospholipid fatty acid (PLFA) analysis, to assess microbial utilization of sorbed and non-sorbed Alanine in soil. Alanine has various functional groups enabling different sorption mechanisms via its positive charge (e.g. to clay minerals by cation exchange), as well as via its negative charge (e.g. to iron oxides by ligand exchange). To assess changes in the transformation pathways caused by sorption, we added uniformly and position-specifically 13C and 14C labeled Alanine to the Ap of a loamy Luvisol in a short-term (10 days) incubation experiment. To allow for sorption of the tracer solution to an aliquot of this soil, microbial activity was minimized in this subsample by sterilizing the soil by γ-radiation. After shaking, the remaining solutions were filtered and the non-sorbed Alanine was removed with Millipore water and then added to non-sterilized soil. For the free Alanine treatment, solutions with Alanine of similar amount and isotopic composition were prepared, added to the soil and incubated as well. The respired CO2 was trapped in NaOH and its 14C-activity was determined at increasing times intervals. Microbial utilization of Alanine's individual C positions was evaluated in distinct microbial groups classified by 13C-PLFA analysis. Sorption to soil minerals delayed respiration to CO2 and reduced initial respiration rate by 80%. Irrespective of sorption, the highest amount was respired from the carboxylic position (C-1), whereas the amino-bound (C-2) and the methylic position (C-3) were preferentially incorporated into PLFA of microorganisms due to the

  18. Evidence of the photosynthetic origin of monoterpenes emitted by quercus ilex L. leaves by {sup 13}C labeling

    SciTech Connect

    Loreto, F.; Ciccioli, P.; Cecinato, A.; Brancaleoni, E. |

    1996-04-01

    The carbon of the four main monoterpenes emitted by Quercus ilex L. leaves was completely labeled with {sup 13}C after a 20-min feeding with 99% {sup 13}CO{sub 2}. This labeling time course is comparable with the labeling time course of isoprene, the terpenoid emitted by other Quercus species and synthesized in leaf chloroplasts. It is also comparable with that of phosphoglyceric acid. Our experiment therefore provides evidence that monoterpenes emitted by Q. ilex are formed photosynthesis intermediates and may share the same synthetic pathway with isoprene. By analyzing the rate and the distribution of labeling in the different fragments, we looked for evidence of differential carbon labeling in the {alpha}-pinene emitted. However, the labeling pattern was quite uniform in the different fragments, suggesting that the carbon skeleton of the emitted monoterpenes comes from a unique carbon source. 16 refs., 3 figs., 1 tab.

  19. NMR studies of bent DNA using {sup 13}C-enriched samples

    SciTech Connect

    Zimmer, D.P.; Crothers, D.M.

    1994-12-01

    Bending of the DNA double helix can be brought about by introducing runs of adenines (A-tracts) in phase with the helical repeat of the DNA. The requirements for bending of DNA by A-tracts are that the length of the A-tract be greater than 3 base pairs and that the A-tracts must be in phase with the helical repeat (every 10 or 11 bp). Other factors, such as the number of adenines in the run, flanking sequences, and whether the A-tracts are phased with respect to the 5{prime}A or the 3{prime}A, have effects upon the degree of bending as assayed by electrophoretic mobility on native polyacrylamide gels. There are a number of models for bending A-tract DNA. The junction-bending model postulates that the structure of A-tracts is similar to the fiber diffraction structure of poly A, in which there is a significant degree of base pair tilt with respect to the helix axis. In this model, bending occurs at the junction between the A-tract and the B-form helix to allow favorable stacking interactions to occur. The bend of the helix could arise as a result of some other perturbation of B-form DNA by A-tracts, such as propeller twist; bending also could be due to a combination of factors. Our goal is to find the structural features of A-tracts responsible for bending of the helix by performing NMR on oligonucleotides containing A-tracts to obtain higher resolution structural data. One of the problems encountered in NMR structure determination of nucleic acids and other macromolecules is the assignment of resonances to nuclei. This procedure can be greatly facilitated through the use of {sup 13}C-enriched nucleic acid samples. We are developing a technique for the enzymatic synthesis of labeled DNA for NMR. The technique we are developing is similar to RNA labeling techniques already in use. The technique involves growth of methylotrophic bacteria on {sup 13}CH{sub 3}OH.

  20. Fate of xylem-transported 11C- and 13C-labeled CO2 in leaves of poplar.

    PubMed

    Bloemen, Jasper; Bauweraerts, Ingvar; De Vos, Filip; Vanhove, Christian; Vandenberghe, Stefaan; Boeckx, Pascal; Steppe, Kathy

    2015-04-01

    In recent studies, assimilation of xylem-transported CO2 has gained considerable attention as a means of recycling respired CO2 in trees. However, we still lack a clear and detailed picture on the magnitude of xylem-transported CO2 assimilation, in particular within leaf tissues. To this end, detached poplar leaves (Populus × canadensis Moench 'Robusta') were allowed to take up a dissolved (13)CO2 label serving as a proxy of xylem-transported CO2 entering the leaf from the branch. The uptake rate of the (13)C was manipulated by altering the vapor pressure deficit (VPD) (0.84, 1.29 and 1.83 kPa). Highest tissue enrichments were observed under the highest VPD. Among tissues, highest enrichment was observed in the petiole and the veins, regardless of the VPD treatment. Analysis of non-labeled leaves showed that some (13)C diffused from the labeled leaves and was fixed in the mesophyll of the non-labeled leaves. However, (13)C leaf tissue enrichment analysis with elemental analysis coupled to isotope ratio mass spectrometry was limited in spatial resolution at the leaf tissue level. Therefore, (11)C-based CO2 labeling combined with positron autoradiography was used and showed a more detailed spatial distribution within a single tissue, in particular in secondary veins. Therefore, in addition to (13)C, (11) C-based autoradiography can be used to study the fate of xylem-transported CO2 at leaf level, allowing the acquisition of data at a yet unprecedented resolution.

  1. Galacto-oligosaccharides have prebiotic activity in a dynamic in vitro colon model using a (13)C-labeling technique.

    PubMed

    Maathuis, Annet J H; van den Heuvel, Ellen G; Schoterman, Margriet H C; Venema, Koen

    2012-07-01

    Galacto-oligosaccharides (GOS) are considered to be prebiotic, although the contribution of specific members of the microbiota to GOS fermentation and the exact microbial metabolites that are produced upon GOS fermentation are largely unknown. We aimed to determine this using uniformly (13)C-labeled GOS. The normal (control) medium and unlabeled or (13)C-labeled GOS was added to a dynamic, validated, in vitro model of the large-intestine containing an adult-type microbiota. Liquid-chromatography MS was used to measure the incorporation of (13)C label into metabolites. 16S-rRNA stable isotope probing coupled to a phylogenetic micro-array was used to determine label incorporation in microbial biomass. The primary members within the complex microbiota that were directly involved in GOS fermentation were shown to be Bifidobacterium longum, B. bifidum, B. catenulatum, Lactobacillus gasseri, and L. salivarius, in line with the prebiotic effect of GOS, although some other species incorporated (13)C label also. GOS fermentation led to an increase in acetate (+49%) and lactate (+23%) compared with the control. Total organic acid production was 8.50 and 7.52 mmol/g of carbohydrate fed for the GOS and control experiments, respectively. At the same time, the cumulative production of putrefactive metabolites (branched-chain fatty acids and ammonia) was reduced by 55%. Cross-feeding of metabolites from primary GOS fermenters to other members of the microbiota was observed. Our findings support a prebiotic role for GOS and its potential to act as a synbiotic in combination with certain probiotic strains.

  2. Analysis of defect structure in silicon. Characterization of samples from UCP ingot 5848-13C

    NASA Technical Reports Server (NTRS)

    Natesh, R.; Guyer, T.; Stringfellow, G. B.

    1982-01-01

    Statistically significant quantitative structural imperfection measurements were made on samples from ubiquitous crystalline process (UCP) Ingot 5848 - 13 C. Important trends were noticed between the measured data, cell efficiency, and diffusion length. Grain boundary substructure appears to have an important effect on the conversion efficiency of solar cells from Semix material. Quantitative microscopy measurements give statistically significant information compared to other microanalytical techniques. A surface preparation technique to obtain proper contrast of structural defects suitable for QTM analysis was perfected.

  3. Absorption and Distribution Kinetics of the 13C-Labeled Tomato Carotenoid Phytoene in Healthy Adults1234

    PubMed Central

    Riedl, Kenneth M; Rogers, Randy B; Grainger, Elizabeth M; Erdman, John W; Clinton, Steven K

    2016-01-01

    Background: Phytoene is a tomato carotenoid that may contribute to the apparent health benefits of tomato consumption. Although phytoene is a less prominent tomato carotenoid than lycopene, it is a major carotenoid in various human tissues. Phytoene distribution to plasma lipoproteins and tissues differs from lycopene, suggesting the kinetics of phytoene and lycopene differ. Objective: The objective of this study was to characterize the kinetic parameters of phytoene absorption, distribution, and excretion in adults, to better understand why biodistribution of phytoene differs from lycopene. Methods: Four adults (2 males, 2 females) maintained a controlled phytoene diet (1–5 mg/d) for 42 d. On day 14, each consumed 3.2 mg 13C-phytoene, produced using tomato cell suspension culture technology. Blood samples were collected at 0, 1–15, 17, 21, and 24 h and 2, 3, 4, 7, 10, 14, 17, 21, and 28 d after 13C-phytoene consumption. Plasma-unlabeled and plasma-labeled phytoene concentrations were determined using ultra-HPLC–quadrupole time-of-flight-mass spectrometry, and data were fit to a 7-compartment carotenoid kinetic model using WinSAAM 3.0.7 software. Results: Subjects were compliant with a controlled phytoene diet, consuming a mean ± SE of 2.5 ± 0.6 mg/d, resulting in a plasma unlabeled phytoene concentration of 71 ± 14 nmol/L. A maximal plasma 13C-phytoene concentration of 55.6 ± 5.9 nM was achieved 19.8 ± 9.2 h after consumption, and the plasma half-life was 2.3 ± 0.2 d. Compared with previous results for lycopene, phytoene bioavailability was nearly double at 58% ± 19%, the clearance rate from chylomicrons was slower, and the rates of deposition into and utilization by the slow turnover tissue compartment were nearly 3 times greater. Conclusions: Although only differing from lycopene by 4 double bonds, phytoene exhibits markedly different kinetic characteristics in human plasma, providing insight into metabolic processes contributing to phytoene

  4. Multidimensional High-Resolution Magic Angle Spinning and Solution-State NMR Characterization of 13C-labeled Plant Metabolites and Lignocellulose

    PubMed Central

    Mori, Tetsuya; Tsuboi, Yuuri; Ishida, Nobuhiro; Nishikubo, Nobuyuki; Demura, Taku; Kikuchi, Jun

    2015-01-01

    Lignocellulose, which includes mainly cellulose, hemicellulose, and lignin, is a potential resource for the production of chemicals and for other applications. For effective production of materials derived from biomass, it is important to characterize the metabolites and polymeric components of the biomass. Nuclear magnetic resonance (NMR) spectroscopy has been used to identify biomass components; however, the NMR spectra of metabolites and lignocellulose components are ambiguously assigned in many cases due to overlapping chemical shift peaks. Using our 13C-labeling technique in higher plants such as poplar samples, we demonstrated that overlapping peaks could be resolved by three-dimensional NMR experiments to more accurately assign chemical shifts compared with two-dimensional NMR measurements. Metabolites of the 13C-poplar were measured by high-resolution magic angle spinning NMR spectroscopy, which allows sample analysis without solvent extraction, while lignocellulose components of the 13C-poplar dissolved in dimethylsulfoxide/pyridine solvent were analyzed by solution-state NMR techniques. Using these methods, we were able to unambiguously assign chemical shifts of small and macromolecular components in 13C-poplar samples. Furthermore, using samples of less than 5 mg, we could differentiate between two kinds of genes that were overexpressed in poplar samples, which produced clearly modified plant cell wall components. PMID:26143886

  5. Carbon Transfer from the Host to Tuber melanosporum Mycorrhizas and Ascocarps Followed Using a 13C Pulse-Labeling Technique

    PubMed Central

    Le Tacon, François; Zeller, Bernd; Plain, Caroline; Hossann, Christian; Bréchet, Claude; Robin, Christophe

    2013-01-01

    Truffles ascocarps need carbon to grow, but it is not known whether this carbon comes directly from the tree (heterotrophy) or from soil organic matter (saprotrophy). The objective of this work was to investigate the heterotrophic side of the ascocarp nutrition by assessing the allocation of carbon by the host to Tuber melanosporum mycorrhizas and ascocarps. In 2010, a single hazel tree selected for its high truffle (Tuber melanosporum) production and situated in the west part of the Vosges, France, was labeled with 13CO2. The transfer of 13C from the leaves to the fine roots and T. melanosporum mycorrhizas was very slow compared with the results found in the literature for herbaceous plants or other tree species. The fine roots primarily acted as a carbon conduit; they accumulated little 13C and transferred it slowly to the mycorrhizas. The mycorrhizas first formed a carbon sink and accumulated 13C prior to ascocarp development. Then, the mycorrhizas transferred 13C to the ascocarps to provide constitutive carbon (1.7 mg of 13C per day). The ascocarps accumulated host carbon until reaching complete maturity, 200 days after the first labeling and 150 days after the second labeling event. This role of the Tuber ascocarps as a carbon sink occurred several months after the end of carbon assimilation by the host and at low temperature. This finding suggests that carbon allocated to the ascocarps during winter was provided by reserve compounds stored in the wood and hydrolyzed during a period of frost. Almost all of the constitutive carbon allocated to the truffles (1% of the total carbon assimilated by the tree during the growing season) came from the host. PMID:23741356

  6. The biosynthetic pathway of curcuminoid in turmeric (Curcuma longa) as revealed by 13C-labeled precursors.

    PubMed

    Kita, Tomoko; Imai, Shinsuke; Sawada, Hiroshi; Kumagai, Hidehiko; Seto, Haruo

    2008-07-01

    In order to investigate the biosynthesis of curcuminoid in rhizomes of turmeric (Curcuma longa), we established an in vitro culture system of turmeric plants for feeding (13)C-labeled precursors. Analyses of labeled desmethoxycurcumin (DMC), an unsymmetrical curcuminoid, by (13)C-NMR, revealed that one molecule of acetic acid or malonic acid and two molecules of phenylalanine or phenylpropanoids, but not tyrosine, were incorporated into DMC. The incorporation efficiencies of the same precursors into DMC and curcumin were similar, and were in the order malonic acid > acetic acid, and cinnamic acid > p-coumaric acid > ferulic acid. These results suggest the possibility that the pathway to curcuminoids utilized two cinnamoyl CoAs and one malonyl CoA, and that hydroxy- and methoxy-functional groups on the aromatic rings were introduced after the formation of the curcuminoid skeleton.

  7. Development of an LC-MS/MS method for the determination of endogenous cortisol in hair using (13)C3-labeled cortisol as surrogate analyte.

    PubMed

    Binz, Tina M; Braun, Ueli; Baumgartner, Markus R; Kraemer, Thomas

    2016-10-15

    Hair cortisol levels are increasingly applied as a measure for stress in humans and mammals. Cortisol is an endogenous compound and is always present within the hair matrix. Therefore, "cortisol-free hair matrix" is a critical point for any analytical method to accurately quantify especially low cortisol levels. The aim of this project was to modify current methods used for hair cortisol analysis to more accurately determine low endogenous cortisol concentrations in hair. For that purpose, (13)C3-labeled cortisol, which is not naturally present in hair (above 13C natural abundance levels), was used for calibration and comparative validation applying cortisol versus (13)C3-labeled cortisol. Cortisol was extracted from 20mg hair (standard sample amount) applying an optimized single step extraction protocol. An LC-MS/MS method was developed for the quantitative analysis of cortisol using either cortisol or (13)C3-cortisol as calibrators and D7-cortisone as internal standard (IS). The two methods (cortisol/(13)C3-labeled cortisol) were validated in a concentration range up to 500pg/mg and showed good linearity for both analytes (cortisol: R(2)=0.9995; (13)C3-cortisol R(2)=0.9992). Slight differences were observed for limit of detection (LOD) (0.2pg/mg/0.1pg/mg) and limit of quantification (LOQ) (1pg/mg/0.5pg/mg). Precision was good with a maximum deviation of 8.8% and 10% for cortisol and (13)C3-cortisol respectively. Accuracy and matrix effects were good for both analytes except for the quality control (QC) low cortisol. QC low (2.5pg/mg) showed matrix effects (126.5%, RSD 35.5%) and accuracy showed a deviation of 26% when using cortisol to spike. These effects are likely to be caused by the unknown amount of endogenous cortisol in the different hair samples used to determine validation parameters like matrix effect, LOQ and accuracy. No matrix effects were observed for the high QC (400pg/mg) samples. Recovery was good with 92.7%/87.3% (RSD 9.9%/6.2%) for QC low and

  8. Design and Operation of a Continuous 13C and 15N Labeling Chamber for Uniform or Differential, Metabolic and Structural, Plant Isotope Labeling

    PubMed Central

    Soong, Jennifer L; Reuss, Dan; Pinney, Colin; Boyack, Ty; Haddix, Michelle L; Stewart, Catherine E; Cotrufo, M. Francesca

    2014-01-01

    Tracing rare stable isotopes from plant material through the ecosystem provides the most sensitive information about ecosystem processes; from CO2 fluxes and soil organic matter formation to small-scale stable-isotope biomarker probing. Coupling multiple stable isotopes such as 13C with 15N, 18O or 2H has the potential to reveal even more information about complex stoichiometric relationships during biogeochemical transformations. Isotope labeled plant material has been used in various studies of litter decomposition and soil organic matter formation1-4. From these and other studies, however, it has become apparent that structural components of plant material behave differently than metabolic components (i.e. leachable low molecular weight compounds) in terms of microbial utilization and long-term carbon storage5-7. The ability to study structural and metabolic components separately provides a powerful new tool for advancing the forefront of ecosystem biogeochemical studies. Here we describe a method for producing 13C and 15N labeled plant material that is either uniformly labeled throughout the plant or differentially labeled in structural and metabolic plant components. Here, we present the construction and operation of a continuous 13C and 15N labeling chamber that can be modified to meet various research needs. Uniformly labeled plant material is produced by continuous labeling from seedling to harvest, while differential labeling is achieved by removing the growing plants from the chamber weeks prior to harvest. Representative results from growing Andropogon gerardii Kaw demonstrate the system's ability to efficiently label plant material at the targeted levels. Through this method we have produced plant material with a 4.4 atom%13C and 6.7 atom%15N uniform plant label, or material that is differentially labeled by up to 1.29 atom%13C and 0.56 atom%15N in its metabolic and structural components (hot water extractable and hot water residual components

  9. Design and operation of a continuous 13C and 15N labeling chamber for uniform or differential, metabolic and structural, plant isotope labeling.

    PubMed

    Soong, Jennifer L; Reuss, Dan; Pinney, Colin; Boyack, Ty; Haddix, Michelle L; Stewart, Catherine E; Cotrufo, M Francesca

    2014-01-16

    Tracing rare stable isotopes from plant material through the ecosystem provides the most sensitive information about ecosystem processes; from CO2 fluxes and soil organic matter formation to small-scale stable-isotope biomarker probing. Coupling multiple stable isotopes such as (13)C with (15)N, (18)O or (2)H has the potential to reveal even more information about complex stoichiometric relationships during biogeochemical transformations. Isotope labeled plant material has been used in various studies of litter decomposition and soil organic matter formation(1-4). From these and other studies, however, it has become apparent that structural components of plant material behave differently than metabolic components (i.e. leachable low molecular weight compounds) in terms of microbial utilization and long-term carbon storage(5-7). The ability to study structural and metabolic components separately provides a powerful new tool for advancing the forefront of ecosystem biogeochemical studies. Here we describe a method for producing (13)C and (15)N labeled plant material that is either uniformly labeled throughout the plant or differentially labeled in structural and metabolic plant components. Here, we present the construction and operation of a continuous (13)C and (15)N labeling chamber that can be modified to meet various research needs. Uniformly labeled plant material is produced by continuous labeling from seedling to harvest, while differential labeling is achieved by removing the growing plants from the chamber weeks prior to harvest. Representative results from growing Andropogon gerardii Kaw demonstrate the system's ability to efficiently label plant material at the targeted levels. Through this method we have produced plant material with a 4.4 atom%(13)C and 6.7 atom%(15)N uniform plant label, or material that is differentially labeled by up to 1.29 atom%(13)C and 0.56 atom%(15)N in its metabolic and structural components (hot water extractable and hot water

  10. Vibrational studies of {sup 13}C- and {sup 34}S-labelled bis(ethylenedithio)tetrathiafulvalene (ET) donor molecule

    SciTech Connect

    Ferraro, J.R.; Kini, A.M.; Williams, J.M.; Stout, P.

    1994-06-01

    FT-IR and FT-Raman studies of {sup 13}C- and {sup 34}S-labelled bis(ethylenedithio)-tetrathiafulvalene (BEDT-TTF or ET) electron-donor molecules were made and the results presented herein. Assignments for fundamental vibrations in ET were verified. Spectral data confirms that ET has no center-of-symmetry, and that the data can be reconciled by a D-type point group with only slight interactions occurring between the 4 molecules per unit cell.

  11. Synthesis of [13C4]-labeled ∆9-tetrahydrocannabinol and 11-nor-9-carboxy-∆9-tetrahydrocannabinol as internal standards for reducing ion suppressing/alteration effects in LC/MS-MS quantification.

    PubMed

    Karlsen, Morten; Liu, Huiling; Johansen, Jon Eigill; Hoff, Bård Helge

    2014-09-01

    (-)-∆9-Tetrahydrocannabinol is the principal psychoactive component of the cannabis plant and also the active ingredient in some prescribed drugs. To detect and control misuse and monitor administration in clinical settings, reference samples of the native drugs and their metabolites are needed. The accuracy of liquid chromatography/mass spectrometric quantification of drugs in biological samples depends among others on ion suppressing/alteration effects. Especially, 13C-labeled drug analogues are useful for minimzing such interferences. Thus, to provide internal standards for more accurate quantification and for identification purpose, synthesis of [13C4]-∆9-tetrahydro-cannabinol and [13C4]-11-nor-9-carboxy-∆9-tetrahydrocannabinol was developed via [13C4]-olivetol. Starting from [13C4]-olivetol the synthesis of [13C4]-11-nor-9-carboxy-∆9-tetrahydrocannabinol was shortened from three to two steps by employing nitromethane as a co-solvent in condensation with (+)-apoverbenone.

  12. Retrobiosynthetic NMR studies with 13C-labeled glucose. Formation of gallic acid in plants and fungi.

    PubMed

    Werner, I; Bacher, A; Eisenreich, W

    1997-10-10

    The biosynthesis of gallic acid was studied in cultures of the fungus Phycomyces blakesleeanus and in leaves of the tree Rhus typhina. Fungal cultures were grown with [1-13C]glucose or with a mixture of unlabeled glucose and [U-13C6]glucose. Young leaves of R. typhina were kept in an incubation chamber and were supplied with a solution containing a mixture of unlabeled glucose and [U-13C6]glucose via the leaf stem. Isotope distributions in isolated gallic acid and aromatic amino acids were analyzed by one-dimensional 1H and 13C NMR spectroscopy. A quantitative analysis of the complex isotopomer composition of metabolites was obtained by deconvolution of the 13C13C coupling multiplets using numerical simulation methods. This approach required the accurate analysis of heavy isotope chemical shift effects in a variety of different isotopomers and the analysis of long range 13C13C coupling constants. The resulting isotopomer patterns were interpreted using a retrobiosynthetic approach based on a comparison between the isotopomer patterns of gallic acid and tyrosine. The data show that both in the fungus and in the plant all carbon atoms of gallic acid are biosynthetically equivalent to carbon atoms of shikimate. Notably, the carboxylic group of gallic acid is derived from the carboxylic group of an early intermediate of the shikimate pathway and not from the side chain of phenylalanine or tyrosine. It follows that the committed precursor of gallic acid is an intermediate of the shikimate pathway prior to prephenate or arogenate, most probably 5-dehydroshikimate. A formation of gallic acid via phenylalanine, the lignin precursor, caffeic acid, or 3,4, 5-trihydroxycinnamic acid can be ruled out as major pathways in the fungus and in young leaves of R. typhina. The incorporation of uniformly 13C-labeled glucose followed by quantitative NMR analysis of isotopomer patterns is suggested as a general method for biosynthetic studies. As shown by the plant experiment, this

  13. Pentose cycling and the distribution of 13C in trehalose during glucogenesis from 13C-labelled substrates in an insect.

    PubMed

    Thompson, S N; Scales, V M; Bochardt, D B

    1995-07-26

    Redistribution of 13C in trehalose (Tre) due to pentose cycling was observed in vivo in Manduca sexta during glucogenesis from [3-13C]alanine (Ala) and [2-13C]glycerol (Gly). The extent of cycling was affected by dietary composition. Larvae maintained on a low-carbohydrate diet (LCD) exhibited approximately 13% cycling, while those on a complete-balanced diet (CBD) or low-fat diet (LFD) displayed much higher rates of cycling. Significant incorporation of 13C via reversal of the non-oxidative phase was evident on all diets but was greatest on the CBD and LFD. In contrast to conclusions from previous studies with insects, the present results indicate that under normal conditions the pentose pathway is not the principal source of triose phosphates for oxidative catabolism during larval development.

  14. Extreme 13C depletion of CCl2F2 in firn air samples from NEEM, Greenland

    NASA Astrophysics Data System (ADS)

    Zuiderweg, A.; Holzinger, R.; Martinerie, P.; Schneider, R.; Kaiser, J.; Witrant, E.; Etheridge, D.; Rubino, M.; Petrenko, V.; Blunier, T.; Röckmann, T.

    2012-07-01

    A series of 12 high volume air samples collected from the S2 firn core during the North Greenland Eemian Ice Drilling (NEEM) 2009 campaign have been measured for mixing ratio and stable carbon isotope composition of the chlorofluorocarbon CFC-12 (CCl2F2). While the mixing ratio measurements compare favorably to other firn air studies, the isotope results show extreme 13C depletion at the deepest measurable depth (65 m), to values lower than δ13C = -80‰ vs. VPDB (the international stable carbon isotope scale), compared to present day surface tropospheric measurements near -40‰. Firn air modeling was used to interpret these measurements. Reconstructed atmospheric time series indicate even larger depletions (to -120‰) near 1950 AD, with subsequent rapid enrichment of the atmospheric reservoir of the compound to the present day value. Mass-balance calculations show that this change must have been caused by a large change in the isotopic composition of anthropogenic CFC-12 emissions, probably due to technological changes in the CFC production process over the last 80 yr. Propagating the mass-balance calculations into the future demonstrates that as emissions decrease to zero, isotopic fractionation by the stratospheric sinks will lead to continued 13C enrichment in atmospheric CFC-12.

  15. Optimization of 13C dynamic nuclear polarization: isotopic labeling of free radicals

    NASA Astrophysics Data System (ADS)

    Niedbalski, Peter; Parish, Christopher; Kiswandi, Andhika; Lumata, Lloyd

    Dynamic nuclear polarization (DNP) is a physics technique that amplifies the nuclear magnetic resonance (NMR) signals by transferring the high polarization of the electrons to the nuclear spins. Thus, the choice of free radical is crucial in DNP as it can directly affect the NMR signal enhancement levels, typically on the order of several thousand-fold in the liquid-state. In this study, we have investigated the efficiency of four variants of the well-known 4-oxo-TEMPO radical (normal 4-oxo-TEMPO plus its 15N-enriched and/or perdeuterated variants) for use in DNP of an important metabolic tracer [1-13C]acetate. Though the variants have significant differences in electron paramagnetic resonance (EPR) spectra, we have found that changing the composition of the TEMPO radical through deuteration or 15N doping yields no significant difference in 13C DNP efficiency at 3.35 T and 1.2 K. On the other hand, deuteration of the solvent causes a significant increase of 13C polarization that is consistent over all the 4-oxo-TEMPO variants. These findings are consistent with the thermal mixing model of DNP. This work is supported by US Dept of Defense Award No. W81XWH-14-1-0048 and the Robert A. Welch Foundation Grant No. AT-1877.

  16. Utilization of low molecular weight organics by soil microorganisms: combination of 13C-labelling with PLFA analysis

    NASA Astrophysics Data System (ADS)

    Gunina, Anna; Dippold, Michaela; Kuzyakov, Yakov

    2014-05-01

    Microbial metabolisation is the main transformation pathway of low molecular weight organic substances (LMWOS), but detailed knowledge concerning the fate of LMWOS in soils is strongly limited. Considering that various LMWOS classes enter biochemical cycles at different steps, we hypothesise that the percentage of their LMWOS-Carbon (C) used for microbial biomass (MB) production and consequently medium-term stabilisation in soil is different. We traced the three main groups of LMWOS: amino acids, sugars and carboxylic acids, by uniformly labelled 13C-alanine, -glutamate, -glucose, -ribose, -acetate and -palmitate. Incorporation of 13C from these LMWOS into MB (fumigation-extraction method) and into phospholipid fatty acids (PLFAs) (Bligh-Dyer extraction, purification and GC-C-IRMS measurement) was investigated under field conditions 3 d and 10 d after LMWOS application. The activity of microbial utilization of LMWOS for cell membrane construction was estimated by replacement of PLFA-C with 13C. Decomposition of LMWOS-C comprised 20-65% of the total label, whereas incorporation of 13C into MB amounted to 20-50% of initially applied 13C on day three and was reduced to 5-30% on day 10. Incorporation of 13C-labelled LMWOS into MB followed the trend sugars > carboxylic acids > amino acids. Differences in microbial utilisation between LMWOS were observed mainly at day 10. Thus, instead of initial rapid uptake, further metabolism within microbial cells accounts for the individual fate of C from different LMWOS in soils. Incorporation of 13C from each LMWOS into each PLFA occurred, which reflects the ubiquitous ability of all functional microbial groups for LMWOS utilization. The preferential incorporation of palmitate can be attributed to its role as a direct precursor for many fatty acids (FAs) and PLFA formation. Higher incorporation of alanine and glucose compared to glutamate, ribose and acetate reflect the preferential use of glycolysis-derived substances in the FAs

  17. The effect of biochar amendment on the soil microbial community - PLFA analyses and 13C labeling results

    NASA Astrophysics Data System (ADS)

    Watzinger, A.; Feichtmair, S.; Rempt, F.; Anders, E.; Wimmer, B.; Kitzler, B.; Zechmeister-Boltenstern, S.; Horacek, M.; Zehetner, F.; Kloss, S.; Richoz, S.; Soja, G.

    2012-04-01

    The effects of biochar amendment on plant growth and on the chemical / physical soil characteristics are well explored but only few studies have investigated the impact on soil microorganisms. The response of the soil microbial community to biochar amendment was investigated by phospholipid fatty acid (PLFA) analysis in (i) a large scale pot experiment, (ii) a small scale pot experiment using 13C labeled biochar and (iii) an incubation study using 13C labeled biochar. In the large scale pot experiment, three different agricultural soils from Austria (Planosol, Cambisol, Chernozem) and four different types of biochar were investigated. In total, 25 treatments with 5 replicates each were set up and monitored over a year. The results from the pot experiments showed no significant influence of biochar amendment on the total microbial biomass in the first 100 days after biochar addition. However, discriminant analysis showed a distinction of biochar and control soils as well as a strong effect of the pyrolysis temperature on the microbial composition. The effect of biochar was dependent on the type of soil. In the Planosol, some PLFAs were affected positively, especially when adding biochar with a low pyrolysis temperature, in the first month. In the long term, microbial community composition altered. Growth of fungi and gram negative bacteria was enhanced. In the Chernozem, PLFAs from various microbial groups decreased in the long term. Variability in the incubation study was low. Consequently, many PLFAs were significantly affected by biochar amendment. Again, in the Planosol, gram negative bacteria, actinomycetes and, after 2 weeks, gram positive bacteria increased under biochar amendment whereas in the chernozem total microbial biomass and gram positive bacteria were negatively affected in the long term. The 13C labeling studies confirmed the low degradability of the biochar, i.e. no alteration of the content and the δ13C in the soil organic matter within 100 days

  18. Dynamic nuclear polarization-enhanced 1H–13C double resonance NMR in static samples below 20 K

    PubMed Central

    Potapov, Alexey; Thurber, Kent R.; Yau, Wai-Ming; Tycko, Robert

    2012-01-01

    We demonstrate the feasibility of one-dimensional and two-dimensional 1H–13C double resonance NMR experiments with dynamic nuclear polarization (DNP) at 9.4 T and temperatures below 20 K, including both 1H–13C cross-polarization and 1H decoupling, and discuss the effects of polarizing agent type, polarizing agent concentration, temperature, and solvent deuteration. We describe a two-channel low-temperature DNP/NMR probe, capable of carrying the radio-frequency power load required for 1H–13C cross-polarization and high-power proton decoupling. Experiments at 8 K and 16 K reveal a significant T2 relaxation of 13C, induced by electron spin flips. Carr–Purcell experiments and numerical simulations of Carr–Purcell dephasing curves allow us to determine the effective correlation time of electron flips under our experimental conditions. The dependence of the DNP signal enhancement on electron spin concentration shows a maximum near 80 mM. Although no significant difference in the absolute DNP enhancements for triradical (DOTOPA-TEMPO) and biradical (TOTAPOL) dopants was found, the triradical produced greater DNP build-up rates, which are advantageous for DNP experiments. Additionally the feasibility of structural measurements on 13C-labeled biomolecules was demonstrated with a two-dimensional 13C–13C exchange spectrum of selectively 13C-labeled β-amyloid fibrils. PMID:22743540

  19. Combining position-specific 13C labeling with compound-specific isotope analysis: first steps towards soil fluxomics

    NASA Astrophysics Data System (ADS)

    Dippold, Michaela; Kuzyakov, Yakov

    2015-04-01

    Understanding the soil organic matter (SOM) dynamics is one of the most important challenges in soil science. Transformation of low molecular weight organic substances (LMWOS) is a key step in biogeochemical cycles because 1) all high molecular substances pass this stage during their decomposition and 2) only LMWOS will be taken up by microorganisms. Previous studies on LMWOS were focused on determining net fluxes through the LMWOS pool, but they rarely identified transformations. As LMWOS are the preferred C and energy source for microorganisms, the transformations of LMWOS are dominated by biochemical pathways of the soil microorganisms. Thus, understanding fluxes and transformations in soils requires a detailed knowledge on the biochemical pathways and its controlling factors. Tracing C fate in soil by isotopes became on of the most applied and promising biogeochemistry tools. Up to now, studies on LMWOS were nearly exclusively based on uniformly labeled organic substances i.e. all C atoms in the molecules were labeled with 13C or 14C. However, this classical approach did not allow the differentiation between use of intact initial substances in any process, or whether they were transformed to metabolites. The novel tool of position-specific labeling enables to trace molecule atoms separately and thus to determine the cleavage of molecules - a prerequisite for metabolic tracing. Position-specific labeling of LMWOS and quantification of 13CO2 and 13C in bulk soil enabled following the basic metabolic pathways of soil microorganisms. However, only the combination of position-specific 13C labeling with compound-specific isotope analysis of microbial biomarkers and metabolites allowed 1) tracing specific anabolic pathways in diverse microbial communities in soils and 2) identification of specific pathways of individual functional microbial groups. So, these are the prerequisites for soil fluxomics. Our studies combining position-specific labeled glucose with amino

  20. Reliable Identification of Cross-Linked Products in Protein Interaction Studies by 13C-Labeled p-Benzoylphenylalanine

    NASA Astrophysics Data System (ADS)

    Pettelkau, Jens; Ihling, Christian H.; Frohberg, Petra; van Werven, Lars; Jahn, Olaf; Sinz, Andrea

    2014-09-01

    We describe the use of the 13C-labeled artificial amino acid p-benzoyl-L-phenylalanine (Bpa) to improve the reliability of cross-linked product identification. Our strategy is exemplified for two protein-peptide complexes. These studies indicate that in many cases the identification of a cross-link without additional stable isotope labeling would result in an ambiguous assignment of cross-linked products. The use of a 13C-labeled photoreactive amino acid is considered to be preferred over the use of deuterated cross-linkers as retention time shifts in reversed phase chromatography can be ruled out. The observation of characteristic fragment ions additionally increases the reliability of cross-linked product assignment. Bpa possesses a broad reactivity towards different amino acids and the derived distance information allows mapping of spatially close amino acids and thus provides more solid structural information of proteins and protein complexes compared to the longer deuterated amine-reactive cross-linkers, which are commonly used for protein 3D-structure analysis and protein-protein interaction studies.

  1. Biosynthesis, molecular structure, and domain architecture of potato suberin: a (13)C NMR study using isotopically labeled precursors.

    PubMed

    Yan, B; Stark, R E

    2000-08-01

    Although suberin in potato wound periderm is known to be a polyester containing long-chain fatty acids and phenolics embedded within the cell wall, many aspects of its molecular structure and polymer-polymer connectivities remain elusive. The present work combines biosynthetic incorporation of site-specifically (13)C-enriched acetates and phenylalanines with one- and two-dimensional solid-state (13)C NMR spectroscopic methods to monitor the developing suberin polymer. Exogenous acetate is found to be incorporated preferentially at the carboxyl end of the aliphatic carbon chains, suggesting addition during the later elongation steps of fatty acid synthesis. Carboxyl-labeled phenylalanine precursors provide evidence for the concurrent development of phenolic esters and of monolignols typical of lignin. Experiments with ring-labeled phenylalanine precursors demonstrate a predominance of sinapyl and guaiacyl structures among suberin's phenolic moieties. Finally, the analysis of spin-exchange (solid-state NOESY) NMR experiments in ring-labeled suberin indicates distances of no more than 0.5 nm between pairs of phenolic and oxymethine carbons, which are attributed to the aromatic-aliphatic polyester and the cell wall polysaccharide matrix, respectively. These results offer direct and detailed molecular information regarding the insoluble intermediates of suberin biosynthesis, indicate probable covalent linkages between moieties of its polyester and polysaccharide domains, and yield a clearer overall picture of this agriculturally important protective material.

  2. High-resolution direct infusion-based mass spectrometry in combination with whole 13C metabolome isotope labeling allows unambiguous assignment of chemical sum formulas.

    PubMed

    Giavalisco, Patrick; Hummel, Jan; Lisec, Jan; Inostroza, Alvaro Cuadros; Catchpole, Gareth; Willmitzer, Lothar

    2008-12-15

    A new strategy for direct infusion-based metabolite analysis employing a combination of high-resolution mass spectrometry and (13)C-isotope labeling of entire metabolomes is described. Differentially isotope labeled metabolite extracts from otherwise identically grown reference plants were prepared and infused into a Fourier transform ion cyclotron resonance mass spectrometer. The derived accurate mass lists from each extract were searched, using an in-house-developed database search tool, against a number of comprehensive metabolite databases. Comparison of the retrieved chemical formulas from both, the (12)C and (13)C samples, leads to two major advantages compared to nonisotope-based metabolite fingerprinting: first, removal of background contaminations from the result list, due to the (12)C/(13)C peak pairing principle and therefore positive identification of compounds of true biological origin; second, elimination of ambiguity in chemical formula assignment due to the same principle, leading to the clear association of one measured mass to only one chemical formula. Applying this combination of strategies to metabolite extracts of the model plant Arabidopsis thaliana therefore resulted in the reproducible identification of more than 1000 unambiguous chemical sum formulas of biological origin of which more than 80% have not been associated to Arabidopsis before.

  3. Changes in microbial structure and functional communities at different soil depths during 13C labelled root litter degradation

    NASA Astrophysics Data System (ADS)

    Sanaullah, Muhammad; Baumann, Karen; Chabbi, Abad; Dignac, Marie-France; Maron, Pierre-Alain; Kuzyakov, Yakov; Rumpel, Cornelia

    2014-05-01

    Soil organic matter turnover depends on substrate quality and microbial activity in soil but little is known about how addition of freshly added organic material modifies the diversity of soil microbial communities with in a soil profile. We took advantage of a decomposition experiment, which was carried out at different soil depths under field conditions and sampled litterbags with 13C-labelled wheat roots, incubated in subsoil horizons at 30, 60 and 90 cm depth for up to 36 months. The effect of root litter addition on microbial community structure, diversity and activity was studied by determining total microbial biomass, PLFA signatures, molecular tools (DNA genotyping and pyrosequencing of 16S and 18S rDNAs) and extracellular enzyme activities. Automated ribosomal intergenic spacer analysis (ARISA) was also carried out to determine the differences in microbial community structure. We found that with the addition of root litter, total microbial biomass as well as microbial community composition and structure changed at different soil depths and change was significantly higher at top 30cm soil layer. Moreover, in the topsoil, population of both gram-positive and gram-negative bacteria increased with root litter addition over time, while subsoil horizons were relatively dominated by fungal community. Extra-cellular enzyme activities confirmed relatively higher fungal community at subsoil horizons compared with surface soil layer with bacteria dominant microbial population. Bacterial-ARISA profiling illustrated that the addition of root litter enhanced the abundance of Actinobacteria and Proteobacteria, at all three soil depths. These bacteria correspond to copiotrophic attributes, which can preferentially consume of labile soil organic C pools. While disappearance of oligotrophic Acidobacteria confirmed the shifting of microbial communities due to the addition of readily available substrate. We concluded that root litter mixing altered microbial community

  4. Using 13C-labeled benzene and Raman gas spectroscopy to investigate respiration and biodegradation kinetics following soil contamination

    NASA Astrophysics Data System (ADS)

    Jochum, Tobias; Popp, Juergen; Frosch, Torsten

    2016-04-01

    Soil and groundwater contamination with benzene can cause serious environmental damages. However, many soil microorganisms are capable to adapt and known to strongly control the fate of organic contamination. Cavity enhanced Raman gas spectroscopy (CERS) was applied to investigate the short-term response of indigenous soil bacteria to a sudden surface contamination with benzene regarding the temporal variations of gas products and their exchange rates with the adjacent atmosphere. 13C-labeled benzene was spiked on a silty-loamy soil column (sampled from Hainich National Park, Germany) in order to track and separate the changes in heterotrophic soil respiration - involving 12CO2 and O2 - from the microbial process of benzene degradation, which ultimately forms 13CO2.1 The respiratory quotient (RQ) of 0.98 decreased significantly after the spiking and increased again within 33 hours to a value of 0.72. This coincided with maximum 13CO2 concentration rates (0.63 μ mol m-2 s-1), indicating highest benzene degradation at 33 hours after the spiking event. The diffusion of benzene in the headspace and the biodegradation into 13CO2 were simultaneously monitored and 12 days after the benzene spiking no measurable degradation was detected anymore.1 The RQ finally returned to a value of 0.96 demonstrating the reestablished aerobic respiration. In summary, this study shows the potential of combining Raman gas spectroscopy and stable isotopes to follow soil microbial biodegradation dynamics while simultaneously monitoring the underlying respiration behavior. Support by the Collaborative Research Center 1076 Aqua Diva is kindly acknowledged. We thank Beate Michalzik for soil analysis and discussion. 1. T. Jochum, B. Michalzik, A. Bachmann, J. Popp and T. Frosch, Analyst, 2015, 140, 3143-3149.

  5. Extreme 13C depletion of CCl2F2 in firn air samples from NEEM, Greenland

    NASA Astrophysics Data System (ADS)

    Zuiderweg, A.; Holzinger, R.; Martinerie, P.; Schneider, R.; Kaiser, J.; Witrant, E.; Etheridge, D.; Petrenko, V.; Blunier, T.; Röckmann, T.

    2013-01-01

    A series of 12 high volume air samples collected from the S2 firn core during the North Greenland Eemian Ice Drilling (NEEM) 2009 campaign have been measured for mixing ratio and stable carbon isotope composition of the chlorofluorocarbon CFC-12 (CCl2F2). While the mixing ratio measurements compare favorably to other firn air studies, the isotope results show extreme 13C depletion at the deepest measurable depth (65 m), to values lower than δ13C = -80‰ vs. VPDB (the international stable carbon isotope scale), compared to present day surface tropospheric measurements near -40‰. Firn air modeling was used to interpret these measurements. Reconstructed atmospheric time series indicate even larger depletions (to -120‰) near 1950 AD, with subsequent rapid enrichment of the atmospheric reservoir of the compound to the present day value. Mass-balance calculations show that this change is likely to have been caused by a large change in the isotopic composition of anthropogenic CFC-12 emissions, probably due to technological advances in the CFC production process over the last 80 yr, though direct evidence is lacking.

  6. Use of {sup 13}C NMR to assess the biodegradation of 1-{sup 13}C-labeled acenaphthene in the presence of creosote polynuclear hydrocarbons (PAHs) and naphthalene by mixed bacterial cultures

    SciTech Connect

    Selifonov, S.A.; Bortiatynski, J.M.; Nanny, M.A.; Hatcher, P.G.

    1996-10-01

    1-{sup 13}C-acenaphthene mixed with creosote PAH`s or naphthalene was incubated with bacterial strains known to degrade naphthalene, phenanthrene and acenaphthene. After incubation, the reaction mixtures were extracted with organic solvent, and the biodegradation products were identified by {sup 13}C NMR. An accumulation of intermediate degradation products was identified and attributed to the non-specific action of naphthalene catabolic pathways of the mixed bacterial cultures. An acenaphthene degrading strain, Pseudomonas sp. strain A2279 was added to the nixed bacterial cultures to minimize the formation of the observed dead-end products. The {sup 13}C NMR spectra obtained from the experiments in which strain A2279 was present clearly showed the complete biodegradation of 1-{sup 13}C-acenaphthene without the accumulation of {sup 13}C-labeled products. This set of experiments clearly demonstrates the utility of {sup 13}C NMR as an effective tool for the assessment of the biodegradation of PAH`s such as 1-{sup 13}C-acenaphthene by various microbial strains.

  7. An automated growth enclosure for metabolic labeling of Arabidopsis thaliana with 13C-carbon dioxide - an in vivo labeling system for proteomics and metabolomics research

    PubMed Central

    2011-01-01

    Background Labeling whole Arabidopsis (Arabidopsis thaliana) plants to high enrichment with 13C for proteomics and metabolomics applications would facilitate experimental approaches not possible by conventional methods. Such a system would use the plant's native capacity for carbon fixation to ubiquitously incorporate 13C from 13CO2 gas. Because of the high cost of 13CO2 it is critical that the design conserve the labeled gas. Results A fully enclosed automated plant growth enclosure has been designed and assembled where the system simultaneously monitors humidity, temperature, pressure and 13CO2 concentration with continuous adjustment of humidity, pressure and 13CO2 levels controlled by a computer running LabView software. The enclosure is mounted on a movable cart for mobility among growth environments. Arabidopsis was grown in the enclosure for up to 8 weeks and obtained on average >95 atom% enrichment for small metabolites, such as amino acids and >91 atom% for large metabolites, including proteins and peptides. Conclusion The capability of this labeling system for isotope dilution experiments was demonstrated by evaluation of amino acid turnover using GC-MS as well as protein turnover using LC-MS/MS. Because this 'open source' Arabidopsis 13C-labeling growth environment was built using readily available materials and software, it can be adapted easily to accommodate many different experimental designs. PMID:21310072

  8. Tracing metabolic pathways of lipid biosynthesis in ectomycorrhizal fungi from position-specific 13C-labelling in glucose.

    PubMed

    Scandellari, Francesca; Hobbie, Erik A; Ouimette, Andrew P; Stucker, Valerie K

    2009-12-01

    Six position-specific (13)C-labelled isotopomers of glucose were supplied to the ectomycorrhizal fungi Suillus pungens and Tricholoma flavovirens. From the resulting distribution of (13)C among fungal PLFAs, the overall order and contribution of each glucose atom to fatty acid (13)C enrichment was: C6 (approximately 31%) > C5 (approximately 25%) > C1 (approximately 18%) > C2 (approximately 18%) > C3 (approximately 8%) > C4 (approximately 1%). These data were used to parameterize a metabolic model of the relative fluxes from glucose degradation to lipid synthesis. Our data revealed that a higher amount of carbon is directed to glycolysis than to the oxidative pentose phosphate pathway (60% and 40% respectively) and that a significant part flows through these pathways more than once (73%) due to the reversibility of some glycolysis reactions. Surprisingly, 95% of carbon cycled through glyoxylate prior to incorporation into lipids, possibly to consume the excess of acetyl-CoA produced during fatty acid turnover. Our approach provides a rigorous framework for analysing lipid biosynthesis in fungi. In addition, this approach could ultimately improve the interpretation of isotopic patterns at natural abundance in field studies.

  9. Synthesis and biosynthesis of {sup 13}C-, {sup 15}N-labeled deoxynucleosides useful for biomolecular structural determinations

    SciTech Connect

    Ashburn, D.A.; Garcia, K.; Hanners, J.L.; Silks, L.A. III; Unkefer, C.J.

    1994-12-01

    Currently, there is a great emphasis on elucidating the structure, function, and dynamics of DNA. Much of the research involved in this study uses nuclear magnetic resonance (NMR) spectroscopy. Effective use of NMR spectroscopy for DNA molecules with mw > 10,000 requires stable isotope enrichment. We present strategies for site-specific isotopic labeling of the purine bases adenosine and guanosine and the biosynthesis of (U-{sup 13}C, {sup 15}N) DNA from methylotropic bacteria. With commercially available 6-chloropurine, an effective two-step route leads to 2{prime}-deoxy-(amino-{sup 15}N)adenosine (dA). The resulting d(amino-{sup 15}N)A is used in a series of reactions to synthesize 2{prime}-deoxy-(2-{sup 13}C,1,amino-{sup 15}N{sub 2})guanosine or any combination thereof. An improved biosynthesis of labeled DNA has been accomplished using Methylobacterium extorquens AS1. Each liter of growth medium contains 4 g of methanol to yield 1 g of lyophilized cells. As much as 200 mg of RNA per liter of culture has been obtained. We are currently developing large-scale isolation protocols. General synthetic pathways to oligomeric DNA will be presented.

  10. 13C labeling analysis of sugars by high resolution-mass spectrometry for metabolic flux analysis.

    PubMed

    Acket, Sébastien; Degournay, Anthony; Merlier, Franck; Thomasset, Brigitte

    2017-02-14

    Metabolic flux analysis is particularly complex in plant cells because of highly compartmented metabolism. Analysis of free sugars is interesting because it provides data to define fluxes around hexose, pentose, and triose phosphate pools in different compartment. In this work, we present a method to analyze the isotopomer distribution of free sugars labeled with carbon 13 using a liquid chromatography-high resolution mass spectrometry, without derivatized procedure, adapted for Metabolic flux analysis. Our results showed a good sensitivity, reproducibility and better accuracy to determine isotopic enrichments of free sugars compared to our previous methods [5, 6].

  11. {sup 13}C-enrichment at carbons 8 and 2 of uric acid after {sup 13}C-labeled folate dose in man

    SciTech Connect

    Baggott, Joseph E.; Gorman, Gregory S.; Morgan, Sarah L.; Tamura, Tsunenobu . E-mail: tamurat@uab.edu

    2007-09-21

    To evaluate folate-dependent carbon incorporation into the purine ring, we measured {sup 13}C-enrichment independently at C{sub 2} and C{sub 8} of urinary uric acid (the final catabolite of purines) in a healthy male after an independent oral dose of [6RS]-5-[{sup 13}C]-formyltetrahydrofolate ([6RS]-5-H{sup 13}CO-H{sub 4}folate) or 10-H{sup 13}CO-7,8-dihydrofolate (10-H{sup 13}CO-H{sub 2}folate). The C{sub 2} position was {sup 13}C-enriched more than C{sub 8} after [6RS]-5-H{sup 13}CO-H{sub 4}folate, and C{sub 2} was exclusively enriched after 10-H{sup 13}CO-H{sub 2}folate. The enrichment of C{sub 2} was greater from [6RS]-5-H{sup 13}CO-H{sub 4}folate than 10-H{sup 13}CO-H{sub 2}folate using equimolar bioactive doses. Our data suggest that formyl C of [6RS]-10-H{sup 13}CO-H{sub 4}folate was not equally utilized by glycinamide ribotide transformylase (enriches C{sub 8}) and aminoimidazolecarboxamide ribotide (AICAR) transformylase (enriches C{sub 2}), and the formyl C of 10-H{sup 13}CO-H{sub 2}folate was exclusively used by AICAR transformylase. 10-HCO-H{sub 2}folate may function in vivo as the predominant substrate for AICAR transformylase in humans.

  12. HCN, a triple-resonance NMR technique for selective observation of histidine and tryptophan side chains in 13C/15N-labeled proteins.

    PubMed

    Sudmeier, J L; Ash, E L; Günther, U L; Luo, X; Bullock, P A; Bachovchin, W W

    1996-12-01

    HCN, a new 3D NMR technique for stepwise coherence transfer from 1H to 13C to 15N and reverse through direct spin couplings 1JCH and 1JCN, is presented as a method for detection and assignment of histidine and tryptophan side-chain 1H, 13C, and 15N resonances in uniformly 13C/15N-labeled proteins. Product-operator calculations of cross-peak volumes vs adjustable delay tau 3 were employed for determination of optimal tau 3. For the phosphatidylinositol 3-kinase (PI3K SH3 domain, MW = 9.6 kD) at pH 6, H(C)N, the 1H/15N projection, produced observable cross peaks within 20 min. and was completely selective for the single tryptophan and single histidine. The 3D HCN experiment yielded well-defined cross peaks in 20 h for the 13C/15N-labeled origin-specific DNA binding domain from simian virus 40 T-antigen (T-ag-OBD131-259, MW = 15.4 kD) at pH 5.5. Resonances from all six histidines in T-ag-OBD were observed, and 11 of the 12 1H and 13C chemical shifts and 10 of the 12 15N chemical shifts were determined. The 13C dimension proved essential in assignment of the multiply overlapping 1H and 15N resonances. From the spectra recorded at a single pH, three of the imidazoles were essentially neutral and the other three were partially protonated (22-37%). HCN yielded strong cross peaks after 18 h on a 2.0 mM sample of phenylmethanesulfonyl fluoride (PMSF)-inhibited alpha-lytic protease (MW = 19.8 kD) at pH 4.4. No spectra have been obtained, however, of native or boronic acid-inhibited alpha-lytic protease after 18 h at various temperatures ranging from 5 to 55 degrees C, probably due to efficient relaxation of active-site imidazole 1H and/or 15N nuclei.

  13. Regio-selective detection of dynamic structure of transmembrane alpha-helices as revealed from (13)C NMR spectra of [3-13C]Ala-labeled bacteriorhodopsin in the presence of Mn2+ ion.

    PubMed

    Tuzi, S; Hasegawa, J; Kawaminami, R; Naito, A; Saitô, H

    2001-07-01

    13C Nuclear magnetic resonance (NMR) spectra of [3-(13)C]Ala-labeled bacteriorhodopsin (bR) were edited to give rise to regio-selective signals from hydrophobic transmembrane alpha-helices by using NMR relaxation reagent, Mn(2+) ion. As a result of selective suppression of (13)C NMR signals from the surfaces in the presence of Mn(2+) ions, several (13)C NMR signals of Ala residues in the transmembrane alpha-helices were identified on the basis of site-directed mutagenesis without overlaps from (13)C NMR signals of residues located near the bilayer surfaces. The upper bound of the interatomic distances between (13)C nucleus in bR and Mn(2+) ions bound to the hydrophilic surface to cause suppressed peaks by the presence of Mn(2+) ion was estimated as 8.7 A to result in the signal broadening to 100 Hz and consistent with the data based on experimental finding. The Ala C(beta) (13)C NMR peaks corresponding to Ala-51, Ala-53, Ala-81, Ala-84, and Ala-215 located around the extracellular half of the proton channel and Ala-184 located at the kink in the helix F were successfully identified on the basis of (13)C NMR spectra of bR in the presence of Mn(2+) ion and site-directed replacement of Ala by Gly or Val. Utilizing these peaks as probes to observe local structure in the transmembrane alpha-helices, dynamic conformation of the extracellular half of bR at ambient temperature was examined, and the local structures of Ala-215 and 184 were compared with those elucidated at low temperature. Conformational changes in the transmembrane alpha-helices induced in D85N and E204Q and its long-range transmission from the proton release site to the site around the Schiff base in E204Q were also examined.

  14. Capillary Absorption Spectrometer for 13C Isotopic Composition of Pico to Subpico Molar Sample Quantities

    NASA Astrophysics Data System (ADS)

    Moran, J.; Kelly, J.; Sams, R.; Newburn, M.; Kreuzer, H.; Alexander, M.

    2011-12-01

    Quick incorporation of IR spectroscopy based isotope measurements into cutting edge research in biogeochemical cycling attests to the advantages of a spectroscopy versus mass spectrometry method for making some 13C measurements. The simple principles of optical spectroscopy allow field portability and provide a more robust general platform for isotope measurements. We present results with a new capillary absorption spectrometer (CAS) with the capability of reducing the sample size required for high precision isotopic measurements to the picomolar level and potentially the sub-picomolar level. This work was motivated by the minute sample size requirements for laser ablation isotopic studies of carbon cycling in microbial communities but has potential to be a valuable tool in other areas of biological and geological research. The CAS instrument utilizes a capillary waveguide as a sample chamber for interrogating CO2 via near IR laser absorption spectroscopy. The capillary's small volume (~ 0.5 mL) combined with propagation and interaction of the laser mode with the entire sample reduces sample size requirements to a fraction of that accessible with commercially available IR absorption including those with multi-pass or ring-down cavity systems. Using a continuous quantum cascade laser system to probe nearly adjacent rovibrational transitions of different isotopologues of CO2 near 2307 cm-1 permits sample measurement at low analyte pressures (as low as 2 Torr) for further sensitivity improvement. A novel method to reduce cw-fringing noise in the hollow waveguide is presented, which allows weak absorbance features to be studied at the few ppm level after averaging 1,000 scans in 10 seconds. Detection limits down to the 20 picomoles have been observed, a concentration of approximately 400 ppm at 2 Torr in the waveguide with precision and accuracy at or better than 1 %. Improvements in detection and signal averaging electronics and laser power and mode quality are

  15. 13C-TRIPLY Labeled Ethyl Cyanide Submillimeterwave Study with Lille's Fast Scan Dds-Based Spectrometer

    NASA Astrophysics Data System (ADS)

    Pienkina, A.; Motiyenko, R. A.; Margulès, L.; Müller, Holger S. P.; Guillemin, J.-C.

    2016-06-01

    This study of the 13C-triply labeled species of ethyl cyanide (CH_3CH_2CN) follows our recent work on the three 13C-doubly-labeled that allowed their detection in the line survey recently obtained with ALMA (EMoCA). The detection of isotopologues could improve the knowledge of the astrochemistry. The other goal is to clean the surveys from the lines of known molecules in order to detect new ones, this is especially important for the abundant complex organic molecules like ethyl cyanide. As in the case of the doubly substitued species, no spectroscopic studies exist up to now for 13CH_313CH_213CN, the first predictions were thus obtained from scaled ab initio calculations. The spectra were recorded and analyzed up to 1 THz. More than 5500 lines were fitted with quantum numbers J and K_a up to 95 and 25 respectively. The spectra were obtained with the new version of the Lille's solid state spectrometers. This new version used Direct Digital Synthesizer in order to speed up acquisition time. We constructed a spectrometer covering a decade, from 150 to 1500 GHz, it scans the full range in 24 hours with high sensitivity and accuracy. This work was supported by the CNES and the Action sur Projets de l'INSU, PCMI. This work was also done under ANR-13-BS05-0008-02 IMOLABS Margules, L.; et al. 2015, 69th International Symposium on Molecular Spectroscopy, RI06 Belloche, A.; et al. 2014, Science, 345, 1584

  16. Incorporation of {sup 13}C-labeled intermediates into developing lignin revealed by analytical pyrolysis and CuO oxidation in combination with IRM-GC-MS

    SciTech Connect

    Eglinton, T.I.; Goni, M.A.; Boon, J.J.

    1995-12-31

    Tissue samples from Ginkgo shoots (Ginkgo biloba L.) and Rice grass (Oryzasitiva sp.) incubated in the presence of {sup 13}C-labeled substrates such as coniferin (postulated to be biosynthetic intermediates in lignin biosynthesis) were studied using thermal and chemical dissociation methods in combination with molecular-level isotopic measurements. The aim of the study was (1) to investigate dissociation mechanisms, and (2) to examine and quantify the proportions of labeled material incorporated within each sample. Isotopic analysis of specific dissociation products revealed the presence of the label in its original positions, and only within lignin-derived (phenolic) products. Moreover, the distribution and isotopic composition of the dissociation products strongly suggest an origin from newly-formed lignin. These results clearly indicate that there is no {open_quotes}scrambling{close_quotes} of carbon atoms as a result of the dissociation process, thereby lending support to this analytical approach. In addition, the data provide confidence in the selective labeling approach for elucidation of the structure and biosynthesis of lignin.

  17. Quantitative twoplex glycan analysis using (12)C6 and (13)C6 stable isotope 2-aminobenzoic acid labelling and capillary electrophoresis mass spectrometry.

    PubMed

    Váradi, Csaba; Mittermayr, Stefan; Millán-Martín, Silvia; Bones, Jonathan

    2016-12-01

    Capillary electrophoresis (CE) offers excellent efficiency and orthogonality to liquid chromatographic (LC) separations for oligosaccharide structural analysis. Combination of CE with high resolution mass spectrometry (MS) for glycan analysis remains a challenging task due to the MS incompatibility of background electrolyte buffers and additives commonly used in offline CE separations. Here, a novel method is presented for the analysis of 2-aminobenzoic acid (2-AA) labelled glycans by capillary electrophoresis coupled to mass spectrometry (CE-MS). To ensure maximum resolution and excellent precision without the requirement for excessive analysis times, CE separation conditions including the concentration and pH of the background electrolyte, the effect of applied pressure on the capillary inlet and the capillary length were evaluated. Using readily available (12/13)C6 stable isotopologues of 2-AA, the developed method can be applied for quantitative glycan profiling in a twoplex manner based on the generation of extracted ion electropherograms (EIE) for (12)C6 'light' and (13)C6 'heavy' 2-AA labelled glycan isotope clusters. The twoplex quantitative CE-MS glycan analysis platform is ideally suited for comparability assessment of biopharmaceuticals, such as monoclonal antibodies, for differential glycomic analysis of clinical material for potential biomarker discovery or for quantitative microheterogeneity analysis of different glycosylation sites within a glycoprotein. Additionally, due to the low injection volume requirements of CE, subsequent LC-MS analysis of the same sample can be performed facilitating the use of orthogonal separation techniques for structural elucidation or verification of quantitative performance.

  18. A 13C NMR spectrometric method for the determination of intramolecular δ13C values in fructose from plant sucrose samples.

    PubMed

    Gilbert, Alexis; Silvestre, Virginie; Robins, Richard J; Tcherkez, Guillaume; Remaud, Gérald S

    2011-07-01

    Recent developments in (13) C NMR spectrometry have allowed the determination of intramolecular (13) C/(12) C ratios with high precision. However, the analysis of carbohydrates requires their derivatization to constrain the anomeric carbon. Fructose has proved to be particularly problematic because of a byproduct occurring during derivatization and the complexity of the NMR spectrum of the derivative. Here, we describe a method to determine the intramolecular (13) C/(12) C ratios in fructose by (13) C NMR analysis of the acetyl-isopropylidene derivative. We have applied this method to measure the intramolecular (13) C/(12) C distribution in the fructosyl moiety of sucrose and have compared this with that in the glucosyl moiety. Three prominent features stand out. First, in sucrose from both C(3) and C(4) plants, the C-1 and C-2 positions of the glucosyl and fructosyl moieties are markedly different. Second, these positions in C(3) and C(4) plants show a similar profile. Third, the glucosyl and fructosyl moieties of sucrose from Crassulacean acid metabolism (CAM) metabolism have a different profile. These contrasting values can be interpreted as a result of the isotopic selectivity of enzymes that break or make covalent bonds in glucose metabolism, whereas the distinctive (13) C pattern in CAM sucrose probably indicates a substantial contribution of gluconeogenesis to glucose synthesis.

  19. Metabolic network analysis of Bacillus clausii on minimal and semirich medium using (13)C-labeled glucose.

    PubMed

    Christiansen, Torben; Christensen, Bjarke; Nielsen, Jens

    2002-04-01

    Using (13)C-labeled glucose fed to the facultative alkalophilic Bacillus clausii producing the alkaline serine protease Savinase, the intracellular fluxes were quantified in continuous cultivation and in batch cultivation on a minimal medium. The flux through the pentose phosphate pathway was found to increase with increasing specific growth rate but at a much lower level than previously reported for Bacillus subtilis. Two futile cycles in the pyruvate metabolism were included in the metabolic network. A substantial flux in the futile cycle involving malic enzyme was estimated, whereas only a very small or zero flux through PEP carboxykinase was estimated, indicating that the latter enzyme was not active during growth on glucose. The uptake of the amino acids in a semirich medium containing 15 of the 20 amino acids normally present in proteins was estimated using fully labeled glucose in batch cultivations. It was found that leucine, isoleucine, and phenylalanine were taken up from the medium and not synthesized de novo from glucose. In contrast, serine and threonine were completely synthesized from other metabolites and not taken up from the medium. Valine, proline, and lysine were partly taken up from the medium and partly synthesized from glucose. The metabolic network analysis was extended to include analysis of growth on the semirich medium containing amino acids, and the metabolic flux distribution on this medium was estimated and compared with growth on minimal medium.

  20. Ner protein of phage Mu: Assignments using {sup 13}C/{sup 15}N-labeled protein

    SciTech Connect

    Strzelecka, T.; Gronenborn, A.M.; Clore, G.M.

    1994-12-01

    The Ner protein is a small (74-amino acid) DNA-binding protein that regulates a switch between the lysogenic and lytic stages of phage Mu. It inhibits expression of the C repressor gene and down-regulates its own expression. Two-dimensional NMR experiments on uniformly {sup 15}N-labeled protein provided most of the backbone and some of the sidechain proton assignments. The secondary structure determination using two-dimensional NOESY experiments showed that Ner consists of five {alpha}-helices. However, because most of the sidechain protons could not be assigned, the full structure was not determined. Using uniformly {sup 13}C/{sup 15}N-labeled Ner and a set of three-dimensional experiments, we were able to assign all of the backbone and 98% of the sidechain protons. In particular, the CBCANH and CBCA(CO)NH experiments were used to sequentially assign the C{alpha} and C{beta} resonances; the HCCH-CTOCSY and HCCH-COSY were used to assign sidechain carbon and proton resonances.

  1. Determination of deoxycholic acid pool size and input rate using (24-/sup 13/C)deoxycholic acid and serum sampling

    SciTech Connect

    Stellard, F.; Paumgartner, G.; van Berge Henegouwen, G.P.; van der Werf, S.D.

    1986-11-01

    We have developed an isotope dilution method for determination of deoxycholic acid pool size and input rate which employs oral administration of 50 mg of (24-/sup 13/C)deoxycholic acid and serum sampling. The method has been validated by classical isotope dilution technique using (24-/sup 14/C)deoxycholic acid and bile sampling in five patients with colonic adenomas. Excellent agreement between pool sizes and input rates determined with /sup 13/C/12C isotope ratio measurements in serum and /sup 14/C measurements in bile was obtained when isotope ratios were measured in the conjugated fraction of deoxycholic acid in serum. We conclude that pool size and input rate of deoxycholic acid can accurately be determined by blood sampling after oral administration of (24-/sup 13/C)deoxycholic acid, therewith eliminating the use of radioactive tracers and the need for bile sampling.

  2. Identification of aquatically available carbon from algae through solution-state NMR of whole (13)C-labelled cells.

    PubMed

    Akhter, Mohammad; Dutta Majumdar, Rudraksha; Fortier-McGill, Blythe; Soong, Ronald; Liaghati-Mobarhan, Yalda; Simpson, Myrna; Arhonditsis, George; Schmidt, Sebastian; Heumann, Hermann; Simpson, André J

    2016-06-01

    Green algae and cyanobacteria are primary producers with profound impact on food web functioning. Both represent key carbon sources and sinks in the aquatic environment, helping modulate the dissolved organic matter balance and representing a potential biofuel source. Underlying the impact of algae and cyanobacteria on an ecosystem level is their molecular composition. Herein, intact (13)C-labelled whole cell suspensions of Chlamydomonas reinhardtii, Chlorella vulgaris and Synechocystis were studied using a variety of 1D and 2D (1)H/(13)C solution-state nuclear magnetic resonance (NMR) spectroscopic experiments. Solution-state NMR spectroscopy of whole cell suspensions is particularly relevant as it identifies species that are mobile (dissolved or dynamic gels), 'aquatically available' and directly contribute to the aquatic carbon pool upon lysis, death or become a readily available food source on consumption. In this study, a wide range of metabolites and structural components were identified within the whole cell suspensions. In addition, significant differences in the lipid/triacylglyceride (TAG) content of green algae and cyanobacteria were confirmed. Mobile species in algae are quite different from those in abundance in 'classic' dissolved organic matter (DOM) indicating that if algae are major contributors to DOM, considerable selective preservation of minor components (e.g. sterols) or biotransformation would have to occur. Identifying the metabolites and dissolved components within algal cells by NMR permits future studies of carbon transfer between species and through the food chain, whilst providing a foundation to better understand the role of algae in the formation of DOM and the sequestration/transformation of carbon in aquatic environments.

  3. Evidence for transketolase-like TKTL1 flux in CHO cells based on parallel labeling experiments and (13)C-metabolic flux analysis.

    PubMed

    Ahn, Woo Suk; Crown, Scott B; Antoniewicz, Maciek R

    2016-09-01

    The pentose phosphate pathway (PPP) is a fundamental component of cellular metabolism. It provides precursors for the biosynthesis of nucleotides and contributes to the production of reducing power in the form of NADPH. It has been hypothesized that mammalian cells may contain a hidden reaction in PPP catalyzed by transketolase-like protein 1 (TKTL1) that is closely related to the classical transketolase enzyme; however, until now there has been no direct experimental evidence for this reaction. In this work, we have applied state-of-the-art techniques in (13)C metabolic flux analysis ((13)C-MFA) based on parallel labeling experiments and integrated flux fitting to estimate the TKTL1 flux in CHO cells. We identified a set of three parallel labeling experiments with [1-(13)C]glucose+[4,5,6-(13)C]glucose, [2-(13)C]glucose+[4,5,6-(13)C]glucose, and [3-(13)C]glucose+[4,5,6-(13)C]glucose and developed a new method to measure (13)C-labeling of fructose 6-phosphate by GC-MS that allows intuitive interpretation of mass isotopomer distributions to determine key fluxes in the model, including glycolysis, oxidative PPP, non-oxidative PPP, and the TKTL1 flux. Using these tracers we detected a significant TKTL1 flux in CHO cells at the stationary phase. The flux results suggest that the main function of oxidative PPP in CHO cells at the stationary phase is to fuel the TKTL1 reaction. Overall, this study demonstrates for the first time that carbon atoms can be lost in the PPP, by means other than the oxidative PPP, and that this loss of carbon atoms is consistent with the hypothesized TKTL1 reaction in mammalian cells.

  4. A method for (13)C-labeling of metabolic carbohydrates within French bean leaves (Phaseolus vulgaris L.) for decomposition studies in soils.

    PubMed

    Girardin, Cyril; Rasse, Daniel P; Biron, Philippe; Ghashghaie, Jaleh; Chenu, Claire

    2009-06-01

    The molecular composition of plant residues is suspected to largely govern the fate of their constitutive carbon (C) in soils. Labile compounds, such as metabolic carbohydrates, are affected differently from recalcitrant and structural compounds by soil-C stabilisation mechanisms. Producing (13)C-enriched plant residues with specifically labeled fractions would help us to investigate the fate in soils of the constitutive C of these compounds. The objective of the present research was to test (13)C pulse chase labeling as a method for specifically enriching the metabolic carbohydrate components of plant residues, i.e. soluble sugars and starch. Bean plants were exposed to a (13)CO(2)-enriched atmosphere for 0.5, 1, 2, 3 and 21 h. The major soluble sugars were then determined on water-soluble extracts, and starch on HCl-hydrolysable extracts. The results show a quick differential labeling between water-soluble and water-insoluble compounds. For both groups, (13)C-labeling increased linearly with time. The difference in delta(13)C signature between water-soluble and insoluble fractions was 7 per thousand after 0.5 h and 70 per thousand after 21 h. However, this clear isotopic contrast masked a substantial labeling variability within each fraction. By contrast, metabolic carbohydrates on the one hand (i.e. soluble sugars + starch) and other fractions (essentially cell wall components) on the other hand displayed quite homogeneous signatures within fractions, and a significant difference in labeling between fractions: delta(13)C = 414 +/- 3.7 per thousand and 56 +/- 5.5 per thousand, respectively. Thus, the technique generates labeled plant residues displaying contrasting (13)C-isotopic signatures between metabolic carbohydrates and other compounds, with homogenous signatures within each group. Metabolic carbohydrates being labile compounds, our findings suggest that the technique is particularly appropriate for investigating the effect of compound lability on the long

  5. Probing the origin of acetyl-CoA and oxaloacetate entering the citric acid cycle from the 13C labeling of citrate released by perfused rat hearts.

    PubMed

    Comte, B; Vincent, G; Bouchard, B; Des Rosiers, C

    1997-10-17

    We present a strategy for simultaneous assessment of the relative contributions of anaplerotic pyruvate carboxylation, pyruvate decarboxylation, and fatty acid oxidation to citrate formation in the perfused rat heart. This requires perfusing with a mix of 13C-substrates and determining the 13C labeling pattern of a single metabolite, citrate, by gas chromatography-mass spectrometry. The mass isotopomer distributions of the oxaloacetate and acetyl moieties of citrate allow calculation of the flux ratios: (pyruvate carboxylation)/(pyruvate decarboxylation), (pyruvate carboxylation)/(citrate synthesis), (pyruvate decarboxylation)/(citrate synthesis) (pyruvate carboxylation)/(fatty acid oxidation), and (pyruvate decarboxylation)/(fatty acid oxidation). Calculations, based on precursor-product relationship, are independent of pool size. The utility of our method was demonstrated for hearts perfused under normoxia with [U-13C3](lactate + pyruvate) and [1-13C]octanoate under steady-state conditions. Under these conditions, effluent and tissue citrate were similarly enriched in all 13C mass isotopomers. The use of effluent citrate instead of tissue citrate allows probing substrate fluxes through the various reactions non-invasively in the intact heart. The methodology should also be applicable to hearts perfused with other 13C-substrates, such as 1-13C-labeled long chain fatty acid, and under various conditions, provided that assumptions on which equations are developed are valid.

  6. Measuring and modeling C flux rates through the central metabolic pathways in microbial communities using position-specific 13C-labeled tracers

    NASA Astrophysics Data System (ADS)

    Dijkstra, P.; van Groenigen, K.; Hagerty, S.; Salpas, E.; Fairbanks, D. E.; Hungate, B. A.; KOCH, G. W.; Schwartz, E.

    2012-12-01

    The production of energy and metabolic precursors occurs in well-known processes such as glycolysis and Krebs cycle. We use position-specific 13C-labeled metabolic tracers, combined with models of microbial metabolic organization, to analyze the response of microbial community energy production, biosynthesis, and C use efficiency (CUE) in soils, decomposing litter, and aquatic communities. The method consists of adding position-specific 13C -labeled metabolic tracers to parallel soil incubations, in this case 1-13C and 2,3-13C pyruvate and 1-13C and U-13C glucose. The measurement of CO2 released from the labeled tracers is used to calculate the C flux rates through the various metabolic pathways. A simplified metabolic model consisting of 23 reactions is solved using results of the metabolic tracer experiments and assumptions of microbial precursor demand. This new method enables direct estimation of fundamental aspects of microbial energy production, CUE, and soil organic matter formation in relatively undisturbed microbial communities. We will present results showing the range of metabolic patterns observed in these communities and discuss results from testing metabolic models.

  7. Characterization of metabolic profile of honokiol in rat feces using liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry and (13)C stable isotope labeling.

    PubMed

    Dong, Yinfeng; Tang, Minghai; Song, Hang; Li, Rong; Wang, Chunyu; Ye, Haoyu; Qiu, Neng; Zhang, Yongkui; Chen, Lijuan; Wei, Yuquan

    2014-03-15

    As fecal excretion is one of important routes of elimination of drugs and their metabolites, it is indispensable to investigate the metabolites in feces for more comprehensive information on biotransformation in vivo. In this study, a sensitive and reliable approach based on ultra-performance liquid chromatography/quadrupole-time-of-flight-mass spectrometry (UHPLC-Q-TOF-MS) was applied to characterize the metabolic profile of honokiol in rat feces after the administration of an equimolar mixture of honokiol and [(13)C6]-labeled honokiol. Totally 42 metabolites were discovered and tentatively identified in rat feces samples, 26 metabolites were first reported, including two novel classes of metabolites, methylated and dimeric metabolites of honokiol. Moreover, this study provided basic comparative data on the metabolites in rat plasma, feces and urine, which gave better understanding of the metabolic fate of honokiol in vivo.

  8. Bioconversion of (13)C-labeled microalgal phytosterols to cholesterol by the Northern Bay scallop, Argopecten irradians irradians.

    PubMed

    Giner, José-Luis; Zhao, Hui; Dixon, Mark S; Wikfors, Gary H

    2016-02-01

    Bivalve mollusks lack de novo cholesterol biosynthesis capabilities and therefore rely upon dietary sources of sterols for rapid growth. Microalgae that constitute the main source of nutrition for suspension-feeding bivalves contain a diverse array of phytosterols, in most cases lacking cholesterol. Rapid growth of bivalves on microalgal diets with no cholesterol implies that some phytosterols can satisfy the dietary requirement for cholesterol through metabolic conversion to cholesterol, but such metabolic pathways have not been rigorously demonstrated. In the present study, stable isotope-labeled phytosterols were used to supplement a unialgal diet of Rhodomonas sp. and their biological transformation to cholesterol within scallop tissues was determined using (13)C-NMR spectroscopy. Scallops efficiently dealkylated ∆(5) C29 (24-ethyl) sterols to cholesterol, and the only C28 sterol that was dealkylated efficiently possessed the 24(28)-double bond. Non-metabolized dietary phytosterols accumulated in the soft tissues. Observed formation of ∆(5,7) sterols (provitamin D) from ∆(5) sterols may represent initiation of steroid hormone (possibly ecdysone) biosynthesis. These findings provide a key component necessary for formulation of nutritionally complete microalgal diets for hatchery production of seed for molluscan aquaculture.

  9. Interresidue carbonyl-carbonyl polarization transfer experiments in uniformly 13C, 15N-labeled peptides and proteins

    NASA Astrophysics Data System (ADS)

    Janik, Rafal; Ritz, Emily; Gravelle, Andrew; Shi, Lichi; Peng, Xiaohu; Ladizhansky, Vladimir

    2010-03-01

    In this work, we demonstrate that Homonuclear Rotary Resonance Recoupling (HORROR) can be used to reintroduce carbonyl-carbonyl interresidue dipolar interactions and to achieve efficient polarization transfer between carbonyl atoms in uniformly 13C, 15N-labeled peptides and proteins. We show that the HORROR condition is anisotropically broadened and overall shifted to higher radio frequency intensities because of the CSA effects. These effects are analyzed theoretically using Average Hamiltonian Theory. At spinning frequencies used in this study, 22 kHz, this broadening is experimentally found to be on the order of a kilohertz at a proton field of 600 MHz. To match HORROR condition over all powder orientations, variable amplitude radio frequency (RF) fields are required, and efficient direct transfers on the order of 20-30% can be straightforwardly established. Two- and three-dimensional chemical shift correlation experiments establishing long-range interresidue connectivities (e.g., (N[i]-CO[i - 2])) are demonstrated on the model peptide N-acetyl-valine-leucine, and on the third immunoglobulin binding domain of protein G. Possible future developments are discussed.

  10. Effective Estimation of Dynamic Metabolic Fluxes Using 13C Labeling and Piecewise Affine Approximation: From Theory to Practical Applicability

    PubMed Central

    Schumacher, Robin; Wahl, S. Aljoscha

    2015-01-01

    The design of microbial production processes relies on rational choices for metabolic engineering of the production host and the process conditions. These require a systematic and quantitative understanding of cellular regulation. Therefore, a novel method for dynamic flux identification using quantitative metabolomics and 13C labeling to identify piecewise-affine (PWA) flux functions has been described recently. Obtaining flux estimates nevertheless still required frequent manual reinitalization to obtain a good reproduction of the experimental data and, moreover, did not optimize on all observables simultaneously (metabolites and isotopomer concentrations). In our contribution we focus on measures to achieve faster and robust dynamic flux estimation which leads to a high dimensional parameter estimation problem. Specifically, we address the following challenges within the PWA problem formulation: (1) Fast selection of sufficient domains for the PWA flux functions, (2) Control of over-fitting in the concentration space using shape-prescriptive modeling and (3) robust and efficient implementation of the parameter estimation using the hybrid implicit filtering algorithm. With the improvements we significantly speed up the convergence by efficiently exploiting that the optimization problem is partly linear. This allows application to larger-scale metabolic networks and demonstrates that the proposed approach is not purely theoretical, but also applicable in practice. PMID:26690237

  11. Selective 13C labeling of nucleotides for large RNA NMR spectroscopy using an E. coli strain disabled in the TCA cycle

    PubMed Central

    Thakur, Chandar S.; Sama, Jacob N.; Jackson, Melantha E.; Chen, Bin

    2010-01-01

    Escherichia coli (E. coli) is an ideal organism to tailor-make labeled nucleotides for biophysical studies of RNA. Recently, we showed that adding labeled formate enhanced the isotopic enrichment at protonated carbon sites in nucleotides. In this paper, we show that growth of a mutant E. coli strain DL323 (lacking succinate and malate dehydrogenases) on 13C-2-glycerol and 13C-1,3-glycerol enables selective labeling at many useful sites for RNA NMR spectroscopy. For DL323 E. coli grown in 13C-2-glycerol without labeled formate, all the ribose carbon atoms are labeled except the C3′ and C5′ carbon positions. Consequently the C1′, C2′ and C4′ positions remain singlet. In addition, only the pyrimidine base C6 atoms are substantially labeled to ~96% whereas the C2 and C8 atoms of purine are labeled to ~5%. Supplementing the growth media with 13C-formate increases the labeling at C8 to ~88%, but not C2. Not unexpectedly, addition of exogenous formate is unnecessary for attaining the high enrichment levels of ~88% for the C2 and C8 purine positions in a 13C-1,3-glycerol based growth. Furthermore, the ribose ring is labeled in all but the C4′ carbon position, such that the C2′ and C3′ positions suffer from multiplet splitting but the C5′ position remains singlet and the C1′ position shows a small amount of residual C1′–C2′ coupling. As expected, all the protonated base atoms, except C6, are labeled to ~90%. In addition, labeling with 13C-1,3-glycerol affords an isolated methylene ribose with high enrichment at the C5′ position (~90%) that makes it particularly attractive for NMR applications involving CH2-TROSY modules without the need for decoupling the C4′ carbon. To simulate the tumbling of large RNA molecules, perdeuterated glycerol was added to a mixture of the four nucleotides, and the methylene TROSY experiment recorded at various temperatures. Even under conditions of slow tumbling, all the expected carbon correlations were observed

  12. Fast Volumetric Spatial-Spectral MR Imaging of Hyperpolarized 13C-Labeled Compounds using Multiple Echo 3D bSSFP

    PubMed Central

    Perman, William H.; Bhattacharya, Pratip; Leupold, Jochen; Lin, Alexander P.; Harris, Kent C.; Norton, Valerie A.; Hovener, Jan B.; Ross, Brian D.

    2010-01-01

    PURPOSE The goal of this work was to develop a fast 3D chemical shift imaging technique for the non-invasive measurement of hyperpolarized 13C-labeled substrates and metabolic products at low concentration. MATERIALS AND METHODS Multiple echo 3D balanced steady state MR imaging (ME-3DbSSFP) was performed in vitro on a syringe containing hyperpolarized [1,3,3-2H3; 1-13C]2-hydroxyethylpropionate (HEP) adjacent to a 13C-enriched acetate phantom, and in vivo on a rat before and after IV injection of hyperpolarized HEP at 1.5 T. Chemical shift images of the hyperpolarized HEP were derived from the multiple echo data by Fourier transformation along the echoes on a voxel by voxel basis for each slice of the 3D data set. RESULTS ME-3DbSSFP imaging was able to provide chemical shift images of hyperpolarized HEP in vivo, and in a rat with isotropic 7 mm spatial resolution, 93 Hz spectral resolution and 16 second temporal resolution for a period greater than 45 seconds. CONCLUSION Multiple echo 3D bSSFP imaging can provide chemical shift images of hyperpolarized 13C-labeled compounds in vivo with relatively high spatial resolution and moderate spectral resolution. The increased signal-to-noise ratio (SNR) of this 3D technique will enable the detection of hyperpolarized 13C-labeled metabolites at lower concentrations as compared to a 2D technique. PMID:20171034

  13. Intraseasonal carbon sequestration and allocation in larch trees growing on permafrost in Siberia after (13)C labeling (two seasons of 2013-2014 observation).

    PubMed

    Masyagina, Oxana; Prokushkin, Anatoly; Kirdyanov, Alexander; Artyukhov, Aleksey; Udalova, Tatiana; Senchenkov, Sergey; Rublev, Aleksey

    2016-12-01

    This research is an attempt to study seasonal translocation patterns of photoassimilated carbon within trees of one of the high latitudes widespread deciduous conifer species Larix gmelinii (Rupr. Rupr). For this purpose, we applied whole-tree labeling by (13)CO2, which is a powerful and effective tool for tracing newly developed assimilates translocation to tissues and organs of a tree. Experimental plot has been established in a mature 105-year-old larch stand located within the continuous permafrost area near Tura settlement (Central Siberia, 64°17'13″N, 100°11'55″E, 148 m a.s.l.). Measurements of seasonal photosynthetic activity and foliage parameters (i.e., leaf length, area, biomass, etc.), and sampling were arranged from early growing season (June 8, 2013; May 14, 2014) until yellowing and senescence of needles (September 17, 2013; September 14, 2014). Labeling by (13)C of the tree branch (June 2013, for 3 branch replicates in 3 different trees) and the whole tree was conducted at early (June 2014), middle (July 2014), and late (August 2013) phase of growing season (for different trees in 3 replicates each time) by three pulses [(CO2)max = 3000-4000 ppmv, (13)CO2 (30 % v/v)]. We found at least two different patterns of carbon translocation associated with larch CO2 assimilation depending on needle phenology. In early period of growing season (June), (13)C appearing in newly developed needles is a result of remobilized storage material use for growth purposes. Then approximately at the end of June, growth processes is switching to storage processes lasting to the end of growing season.

  14. Reduced mitochondrial malate dehydrogenase activity has a strong effect on photorespiratory metabolism as revealed by 13C labelling

    PubMed Central

    Lindén, Pernilla; Keech, Olivier; Stenlund, Hans; Gardeström, Per; Moritz, Thomas

    2016-01-01

    Mitochondrial malate dehydrogenase (mMDH) catalyses the interconversion of malate and oxaloacetate (OAA) in the tricarboxylic acid (TCA) cycle. Its activity is important for redox control of the mitochondrial matrix, through which it may participate in regulation of TCA cycle turnover. In Arabidopsis, there are two isoforms of mMDH. Here, we investigated to which extent the lack of the major isoform, mMDH1 accounting for about 60% of the activity, affected leaf metabolism. In air, rosettes of mmdh1 plants were only slightly smaller than wild type plants although the fresh weight was decreased by about 50%. In low CO2 the difference was much bigger, with mutant plants accumulating only 14% of fresh weight as compared to wild type. To investigate the metabolic background to the differences in growth, we developed a 13CO2 labelling method, using a custom-built chamber that enabled simultaneous treatment of sets of plants under controlled conditions. The metabolic profiles were analysed by gas- and liquid- chromatography coupled to mass spectrometry to investigate the metabolic adjustments between wild type and mmdh1. The genotypes responded similarly to high CO2 treatment both with respect to metabolite pools and 13C incorporation during a 2-h treatment. However, under low CO2 several metabolites differed between the two genotypes and, interestingly most of these were closely associated with photorespiration. We found that while the glycine/serine ratio increased, a concomitant altered glutamine/glutamate/α-ketoglutarate relation occurred. Taken together, our results indicate that adequate mMDH activity is essential to shuttle reductants out from the mitochondria to support the photorespiratory flux, and strengthen the idea that photorespiration is tightly intertwined with peripheral metabolic reactions. PMID:26889011

  15. The effect of sample hydration on 13C CPMAS NMR spectra of fulvic acids

    USGS Publications Warehouse

    Hatcher, P.G.; Wilson, M.A.

    1991-01-01

    Three fulvic acids, two of which have been well studied by a number of other groups (Armadale and Suwannee river fulvic acids) have been examined by high resolution solid-state 13C-NMR techniques to delineate the effect of absorbed water. Two main effects of absorbed water were observed: (1) changes in spin lattice relaxation times in the rotating frame and cross polarization times and (2) total loss of signal so that some fulvic acid is effectively in solution. These results suggest that discrepancies in the literature concerning observed relative signal intensities from different structural groups are due to absorbed water and emphasize the necessity for proper precautionary drying before spectroscopic analysis. ?? 1991.

  16. Fermentation and Cost-Effective 13C/15N Labeling of the Nonribosomal Peptide Gramicidin S for Nuclear Magnetic Resonance Structure Analysis

    PubMed Central

    Berditsch, Marina; Afonin, Sergii; Steineker, Anna; Orel, Nataliia; Jakovkin, Igor; Weber, Christian

    2015-01-01

    Gramicidin S (GS) is a nonribosomally synthesized decapeptide from Aneurinibacillus migulanus. Its pronounced antibiotic activity is attributed to amphiphilic structure and enables GS interaction with bacterial membranes. Despite its medical use for over 70 years, the peptide-lipid interactions of GS and its molecular mechanism of action are still not fully understood. Therefore, a comprehensive structural analysis of isotope-labeled GS needs to be performed in its biologically relevant membrane-bound state, using advanced solid-state nuclear magnetic resonance (NMR) spectroscopy. Here, we describe an efficient method for producing the uniformly 13C/15N-labeled peptide in a minimal medium supplemented by selected amino acids. As GS is an intracellular product of A. migulanus, we characterized the producer strain DSM 5759 (rough-convex phenotype) and examined its biosynthetic activity in terms of absolute and biomass-dependent peptide accumulation. We found that the addition of either arginine or ornithine increases the yield only at very high supplementing concentrations (1% and 0.4%, respectively) of these expensive 13C/15N-labeled amino acids. The most cost-effective production of 13C/15N-GS, giving up to 90 mg per gram of dry cell weight, was achieved in a minimal medium containing 1% 13C-glycerol and 0.5% 15N-ammonium sulfate, supplemented with only 0.025% of 13C/15N-phenylalanine. The 100% efficiency of labeling is corroborated by mass spectrometry and preliminary solid-state NMR structure analysis of the labeled peptide in the membrane-bound state. PMID:25795666

  17. 13C-labeled gluconate tracing as a direct and accurate method for determining the pentose phosphate pathway split ratio in Penicillium chrysogenum.

    PubMed

    Kleijn, Roelco J; van Winden, Wouter A; Ras, Cor; van Gulik, Walter M; Schipper, Dick; Heijnen, Joseph J

    2006-07-01

    In this study we developed a new method for accurately determining the pentose phosphate pathway (PPP) split ratio, an important metabolic parameter in the primary metabolism of a cell. This method is based on simultaneous feeding of unlabeled glucose and trace amounts of [U-13C]gluconate, followed by measurement of the mass isotopomers of the intracellular metabolites surrounding the 6-phosphogluconate node. The gluconate tracer method was used with a penicillin G-producing chemostat culture of the filamentous fungus Penicillium chrysogenum. For comparison, a 13C-labeling-based metabolic flux analysis (MFA) was performed for glycolysis and the PPP of P. chrysogenum. For the first time mass isotopomer measurements of 13C-labeled primary metabolites are reported for P. chrysogenum and used for a 13C-based MFA. Estimation of the PPP split ratio of P. chrysogenum at a growth rate of 0.02 h(-1) yielded comparable values for the gluconate tracer method and the 13C-based MFA method, 51.8% and 51.1%, respectively. A sensitivity analysis of the estimated PPP split ratios showed that the 95% confidence interval was almost threefold smaller for the gluconate tracer method than for the 13C-based MFA method (40.0 to 63.5% and 46.0 to 56.5%, respectively). From these results we concluded that the gluconate tracer method permits accurate determination of the PPP split ratio but provides no information about the remaining cellular metabolism, while the 13C-based MFA method permits estimation of multiple fluxes but provides a less accurate estimate of the PPP split ratio.

  18. Human lactation: oxidation and maternal transfer of dietary (13)C-labelled α-linolenic acid into human milk.

    PubMed

    Demmelmair, Hans; Kuhn, Angelika; Dokoupil, Katharina; Hegele, Verena; Sauerwald, Thorsten; Koletzko, Berthold

    2016-06-01

    The origin of fatty acids in milk has not been elucidated in detail. We investigated the contribution of dietary α-linolenic acid (ALA) to human milk fat, its oxidation and endogenous conversion to long-chain polyunsaturated fatty acids. Ten lactating women were given (13)C-ALA orally, and breath and milk samples were collected for a five-day period, while dietary intakes were assessed. 37.5 ± 2.7 % (M ± SE) of the tracer was recovered in breath-CO2, and 7.3 ± 1.1 % was directly transferred into milk. About 0.25 % of the tracer was found in milk long-chain polyunsaturated fatty acids. Combining intake and milk data, we estimate that about 65 % of milk ALA is directly derived from maternal diet. Thus, the major portion of milk ALA is directly derived from the diet, but dietary ALA does not seem to contribute much as a precursor to milk n-3 long-chain polyunsaturated fatty acids within the studied time period.

  19. Straightforward preparation of labeled potassium cyanate by ozonation and application to the synthesis of [13C] or [14C]ureidocarboxylic acids.

    PubMed

    Loreau, Olivier; Marlière, Philippe

    2013-06-15

    The development of new efficient syntheses of labeled reagents is a great challenge. Avoidance of overcomplicated procedures, availability and cost of starting materials are important considerations in choosing the synthetic route. In this report, we describe a facile and rapid preparation of labeled cyanate by ozonation of cyanide, a basic precursor. The crude cyanate was used without purification for the synthesis of various [(13)C] or [(14)C]ureidocarboxylic acids (20-68% yield from potassium cyanide). According to these results, cyanide ozonation may prove to be a promising alternative to traditional preparations of labeled cyanate.

  20. A capillary absorption spectrometer for stable carbon isotope ratio (13C/12C) analysis in very small samples

    NASA Astrophysics Data System (ADS)

    Kelly, J. F.; Sams, R. L.; Blake, T. A.; Newburn, M.; Moran, J.; Alexander, M. L.; Kreuzer, H.

    2012-02-01

    A capillary absorption spectrometer (CAS) suitable for IR laser isotope analysis of small CO2 samples is presented. The system employs a continuous-wave (cw) quantum cascade laser to study nearly adjacent rovibrational transitions of different isotopologues of CO2 near 2307 cm-1 (4.34 μm). This initial CAS system can achieve relative isotopic precision of about 10 ppm 13C, or ˜1‰ (per mil in delta notation relative to Vienna Pee Dee Belemnite) with 20-100 picomoles of entrained sample within the hollow waveguide for CO2 concentrations ˜400-750 ppm. Isotopic analyses of such gas fills in a 1-mm ID hollow waveguide of 0.8 m overall physical path length can be carried out down to ˜2 Torr. Overall 13C/12C ratios can be calibrated to ˜2‰ accuracy with diluted CO2 standards. A novel, low-cost method to reduce cw-fringing noise resulting from multipath distortions in the hollow waveguide is presented, which allows weak absorbance features to be studied at the few ppm level (peak-to-rms) after 1000 scans are co-added in ˜10 s. The CAS is meant to work directly with converted CO2 samples from a laser ablation-catalytic combustion micro-sampler to provide 13C/12C ratios of small biological isolates currently operating with spatial resolutions ˜50 μm.

  1. Atmospheric CO2 level affects plants' carbon use efficiency: insights from a 13C labeling experiment on sunflower stands

    NASA Astrophysics Data System (ADS)

    Gong, Xiaoying; Schäufele, Rudi; Schnyder, Hans

    2015-04-01

    The increase of atmospheric CO2 concentration has been shown to stimulate plant photosynthesis and (to a lesser extent) growth, thereby acting as a possible sink for the additional atmospheric CO2. However, this effect is dependent on the efficiency with which plants convert atmospheric carbon into biomass carbon, since a considerable proportion of assimilated carbon is returned to the atmosphere via plant respiration. As a core parameter for carbon cycling, carbon use efficiency of plants (CUE, the ratio of net primary production to gross primary production) quantifies the proportion of assimilated carbon that is incorporated into plant biomass. CUE has rarely been assessed based on measurements of complete carbon balance, due to methodological difficulties in measuring respiration rate of plants in light. Moreover, foliar respiration is known to be inhibited in light, thus foliar respiration rate is generally lower in light than in dark. However, this phenomenon, termed as inhibition of respiration in light (IRL), has rarely been assessed at the stand-scale and been incorporated into the calculation of CUE. Therefore, how CUE responses to atmospheric CO2 levels is still not clear. We studied CUE of sunflower stands grown at sub-ambient CO2 level (200 μmol mol-1) and elevated CO2 level (1000 μmol mol-1) using mesocosm-scale gas exchange facilities which enabled continuous measurements of 13CO2/12CO2 exchange. Appling steady-state 13C labeling, fluxes of respiration and photosynthesis in light were separated, and tracer kinetic in respiration was analyzed. This study provides the first data on CUE at a mesocosm-level including respiration in light in different CO2 environments. We found that CUE of sunflower was lower at an elevated CO2 level than at a sub-ambient CO2 level; and the ignorance of IRL lead to erroneous estimations of CUE. Variation in CUE at atmospheric CO2 levels was attributed to several mechanisms. In this study, CO2 enrichment i) affected the

  2. Organic vs. conventional grassland management: do (15)N and (13)C isotopic signatures of hay and soil samples differ?

    PubMed

    Klaus, Valentin H; Hölzel, Norbert; Prati, Daniel; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Fischer, Markus; Kleinebecker, Till

    2013-01-01

    Distinguishing organic and conventional products is a major issue of food security and authenticity. Previous studies successfully used stable isotopes to separate organic and conventional products, but up to now, this approach was not tested for organic grassland hay and soil. Moreover, isotopic abundances could be a powerful tool to elucidate differences in ecosystem functioning and driving mechanisms of element cycling in organic and conventional management systems. Here, we studied the δ(15)N and δ(13)C isotopic composition of soil and hay samples of 21 organic and 34 conventional grasslands in two German regions. We also used Δδ(15)N (δ(15)N plant - δ(15)N soil) to characterize nitrogen dynamics. In order to detect temporal trends, isotopic abundances in organic grasslands were related to the time since certification. Furthermore, discriminant analysis was used to test whether the respective management type can be deduced from observed isotopic abundances. Isotopic analyses revealed no significant differences in δ(13)C in hay and δ(15)N in both soil and hay between management types, but showed that δ(13)C abundances were significantly lower in soil of organic compared to conventional grasslands. Δδ(15)N values implied that management types did not substantially differ in nitrogen cycling. Only δ(13)C in soil and hay showed significant negative relationships with the time since certification. Thus, our result suggest that organic grasslands suffered less from drought stress compared to conventional grasslands most likely due to a benefit of higher plant species richness, as previously shown by manipulative biodiversity experiments. Finally, it was possible to correctly classify about two third of the samples according to their management using isotopic abundances in soil and hay. However, as more than half of the organic samples were incorrectly classified, we infer that more research is needed to improve this approach before it can be efficiently

  3. Organic vs. Conventional Grassland Management: Do 15N and 13C Isotopic Signatures of Hay and Soil Samples Differ?

    PubMed Central

    Klaus, Valentin H.; Hölzel, Norbert; Prati, Daniel; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Fischer, Markus; Kleinebecker, Till

    2013-01-01

    Distinguishing organic and conventional products is a major issue of food security and authenticity. Previous studies successfully used stable isotopes to separate organic and conventional products, but up to now, this approach was not tested for organic grassland hay and soil. Moreover, isotopic abundances could be a powerful tool to elucidate differences in ecosystem functioning and driving mechanisms of element cycling in organic and conventional management systems. Here, we studied the δ15N and δ13C isotopic composition of soil and hay samples of 21 organic and 34 conventional grasslands in two German regions. We also used Δδ15N (δ15N plant - δ15N soil) to characterize nitrogen dynamics. In order to detect temporal trends, isotopic abundances in organic grasslands were related to the time since certification. Furthermore, discriminant analysis was used to test whether the respective management type can be deduced from observed isotopic abundances. Isotopic analyses revealed no significant differences in δ13C in hay and δ15N in both soil and hay between management types, but showed that δ13C abundances were significantly lower in soil of organic compared to conventional grasslands. Δδ15N values implied that management types did not substantially differ in nitrogen cycling. Only δ13C in soil and hay showed significant negative relationships with the time since certification. Thus, our result suggest that organic grasslands suffered less from drought stress compared to conventional grasslands most likely due to a benefit of higher plant species richness, as previously shown by manipulative biodiversity experiments. Finally, it was possible to correctly classify about two third of the samples according to their management using isotopic abundances in soil and hay. However, as more than half of the organic samples were incorrectly classified, we infer that more research is needed to improve this approach before it can be efficiently used in practice

  4. Optimization of amino acid type-specific 13C and 15N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm.

    PubMed

    Hefke, Frederik; Bagaria, Anurag; Reckel, Sina; Ullrich, Sandra Johanna; Dötsch, Volker; Glaubitz, Clemens; Güntert, Peter

    2011-02-01

    We present a computational method for finding optimal labeling patterns for the backbone assignment of membrane proteins and other large proteins that cannot be assigned by conventional strategies. Following the approach of Kainosho and Tsuji (Biochemistry 21:6273-6279 (1982)), types of amino acids are labeled with (13)C or/and (15)N such that cross peaks between (13)CO(i - 1) and (15)NH(i) result only for pairs of sequentially adjacent amino acids of which the first is labeled with (13)C and the second with (15)N. In this way, unambiguous sequence-specific assignments can be obtained for unique pairs of amino acids that occur exactly once in the sequence of the protein. To be practical, it is crucial to limit the number of differently labeled protein samples that have to be prepared while obtaining an optimal extent of labeled unique amino acid pairs. Our computer algorithm UPLABEL for optimal unique pair labeling, implemented in the program CYANA and in a standalone program, and also available through a web portal, uses combinatorial optimization to find for a given amino acid sequence labeling patterns that maximize the number of unique pair assignments with a minimal number of differently labeled protein samples. Various auxiliary conditions, including labeled amino acid availability and price, previously known partial assignments, and sequence regions of particular interest can be taken into account when determining optimal amino acid type-specific labeling patterns. The method is illustrated for the assignment of the human G-protein coupled receptor bradykinin B2 (B(2)R) and applied as a starting point for the backbone assignment of the membrane protein proteorhodopsin.

  5. Microbial utilization of sugars in soil assessed by position-specific labeling and compound-specific 13C-PLFA-analysis

    NASA Astrophysics Data System (ADS)

    Apostel, Carolin; Dippold, Michaela; Glaser, Bruno; Kuzyakov, Yakov

    2014-05-01

    For the transformation of low molecular weight organic substances (LMWOS) in soil, which is an important process in the turnover of organic matter, microbial utilization is one of the most important processes. Position-specific labeling combined with compound-specific 13C-PLFA-analysis allows a closer look on the mechanisms of LMWOS transformation in soil. We assessed short- (3 and 10 days) and long-term (half year) transformations of monosaccharides by adding position-specifically 13C labeled glucose and ribose to soil in a field experiment conducted on an agriculturally used luvisol located in north-western Bavaria. We quantified the microbial utilization of the different functional groups by 13C-analysis of microbial biomass with the chloroform-fumigation-extraction method (CFE). 13C-PLFA analysis enabled us to distinguish individual microbial groups and compare their C-utilization. Preferential degradation of glucoses C-3 and C-4 respectively C-1 position enabled differentiation between the two main hexose metabolic pathways - glycolysis and the pentose phosphate pathway. Microbial groups revealed different incorporation of specific C positions into their PLFA. The highest incorporation was reached by the prokaryotic gram- negative groups. The application of position-specifically labeled substances, coupled with compound-specific 13C-PLFA analysis opens a new way to investigate the microbial transformations of LMWOS in soil. Observing single C atoms and their utilization by specific microbial groups allow conclusions about the mechanisms and kinetics of microbial utilization and interaction between these groups and therefore will improve our understanding of soil carbon fluxes.

  6. Identifying sources of methane sampled in the Arctic using δ13C in CH4 and Lagrangian particle dispersion modelling.

    NASA Astrophysics Data System (ADS)

    Cain, Michelle; France, James; Pyle, John; Warwick, Nicola; Fisher, Rebecca; Lowry, Dave; Allen, Grant; O'Shea, Sebastian; Illingworth, Samuel; Jones, Ben; Gallagher, Martin; Welpott, Axel; Muller, Jennifer; Bauguitte, Stephane; George, Charles; Hayman, Garry; Manning, Alistair; Myhre, Catherine Lund; Lanoisellé, Mathias; Nisbet, Euan

    2016-04-01

    An airmass of enhanced methane was sampled during a research flight at ~600 m to ~2000 m altitude between the North coast of Norway and Svalbard on 21 July 2012. The largest source of methane in the summertime Arctic is wetland emissions. Did this enhancement in methane come from wetland emissions? The airmass was identified through continuous methane measurements using a Los Gatos fast greenhouse gas analyser on board the UK's BAe-146 Atmospheric Research Aircraft (ARA) as part of the MAMM (Methane in the Arctic: Measurements and Modelling) campaign. A Lagrangian particle dispersion model (the UK Met Office's NAME model) was run backwards to identify potential methane source regions. This was combined with a methane emission inventory to create "pseudo observations" to compare with the aircraft observations. This modelling was used to constrain the δ13C CH4 wetland source signature (where δ13C CH4 is the ratio of 13C to 12C in methane), resulting in a most likely signature of -73‰ (±4‰7‰). The NAME back trajectories suggest a methane source region of north-western Russian wetlands, and -73‰ is consistent with in situ measurements of wetland methane at similar latitudes in Scandinavia. This analysis has allowed us to study emissions from remote regions for which we do not have in situ observations, giving us an extra tool in the determination of the isotopic source variation of global methane emissions.

  7. Carbon isotopic composition (δ(13)C and (14)C activity) of plant samples in the vicinity of the Slovene nuclear power plant.

    PubMed

    Sturm, Martina; Vreča, Polona; Krajcar Bronić, Ines

    2012-08-01

    δ(13)C values of various plants (apples, wheat, and maize) collected in the vicinity of the Krško Nuclear Power Plant (Slovenia) during 2008 and 2009 were determined. By measuring dried samples and their carbonized counterparts we showed that no significant isotopic fractionation occurs during the carbonization phase of the sample preparation process in the laboratory. The measured δ(13)C values of the plants were used for δ(13)C correction of their measured (14)C activities.

  8. Streamlined pentafluorophenylpropyl column liquid chromatography-tandem quadrupole mass spectrometry and global (13)C-labeled internal standards improve performance for quantitative metabolomics in bacteria.

    PubMed

    Yang, Song; Sadilek, Martin; Lidstrom, Mary E

    2010-11-19

    Streamlined quantitative metabolomics in central metabolism of bacteria would be greatly facilitated by a high-efficiency liquid chromatography (LC) method in conjunction with accurate quantitation. To achieve this goal, a methodology for LC-tandem quadrupole mass spectrometry (LC-MS/MS) involving a pentafluorophenylpropyl (PFPP) column and culture-derived global (13)C-labeled internal standards (I.Ss.) has been developed and compared to hydrophilic interaction liquid chromatography (HILIC)-MS/MS and published combined two-dimensional gas chromatography and LC methods. All 50 tested metabolite standards from 5 classes (amino acids, carboxylic acids, nucleotides, acyl-CoAs and sugar phosphates) displayed good chromatographic separation and sensitivity on the PFPP column. In addition, many important critical pairs such as isomers/isobars (e.g. isoleucine/leucine, methylsuccinic acid/ethylmalonic acid and malonyl-CoA/3-hydroxybutyryl-CoA) and metabolites of similar structure (e.g. malate/fumarate) were resolved better on the PFPP than on the HILIC column. Compared to only one (13)C-labeled I.S., the addition of global (13)C-labeled I.Ss. improved quantitative linearity and accuracy. PFPP-MS/MS with global (13)C-labeled I.Ss. allowed the absolute quantitation of 42 metabolite pool sizes in Methylobacterium extorquens AM1. A comparison of metabolite level changes published previously for ethylamine (C2) versus succinate (C4) cultures of M. extorquens AM1 indicated a good consistency with the data obtained by PFPP-MS/MS, suggesting this single approach has the capability of providing comprehensive metabolite profiling similar to the combination of methods. The more accurate quantification obtained by this method forms a fundamental basis for flux measurements and can be used for metabolism modeling in bacteria in future studies.

  9. Stabilization of glucose-C in microbial cell membranes (PLFA) and cell walls (amino sugars) evaluated by 13C-labelling in a field experiment

    NASA Astrophysics Data System (ADS)

    Gunina, Anna; Kuzyakov, Yakov; Glaser, Bruno

    2015-04-01

    Microorganisms control carbon (C) cycle and strongly contribute to formation of soil organic matter. Strong differences in the turnover of microbial groups and cellular compounds complicate the assessment of their contribution to microbial food webs and C sequestration in soil in situ. The uptake and incorporation of 13C labeled glucose by microbial groups were traced during 50 days after the labeling under field conditions. 13C was analysed: i) in the cytosolic pool by chloroform fumigation extraction, ii) in cell membranes by phospholipid fatty acids (PLFA), iii) in cell walls by amino sugars, and iv) remaining in bulk soil. This allowed tracing C in microbial groups as well as cellular compounds. Mean residence times (MRT) of C in PLFA and the cytosol were 47 and 150 days, respectively. Such long cytosol MRT depends on its heterogeneous composition, which includes high and low molecular weight organics. Amino sugars were mainly originated from microbial residues and thus, observation periods higher than 1 year are required for estimation of their MRT. Relative 13C incorporation (13C portion in total pool C) was the highest for PLFAs (~1.5% at day 3), whereas 13C content of the cytosol and amino sugars was one and two orders of magnitude less, respectively. Relative 13C incorporation into amino sugars of living microorganisms showed only 0.57% on day 3. Therefore, the turnover of cell membrane components is two times faster than that of cell walls, even in living microorganisms. Both PLFAs and amino sugars showed that glucose C was preferentially used by bacteria. 13C incorporation into bacterial cell walls and membranes decreased with time, but increased or remained constant for fungi, reflecting faster turnover of bacteria than fungi. Consequently, bacteria contribute more to the decomposition of low molecular weight organics, whereas fungi consume bacterial products or necromass and contribute more to long-term C stabilisation. Thus, tracing of 13C in cellular

  10. Evidence of polycyclic aromatic hydrocarbon biodegradation in a contaminated aquifer by combined application of in situ and laboratory microcosms using (13)C-labelled target compounds.

    PubMed

    Bahr, Arne; Fischer, Anko; Vogt, Carsten; Bombach, Petra

    2015-02-01

    The number of approaches to evaluate the biodegradation of polycyclic aromatic hydrocarbons (PAHs) within contaminated aquifers is limited. Here, we demonstrate the applicability of a novel method based on the combination of in situ and laboratory microcosms using (13)C-labelled PAHs as tracer compounds. The biodegradation of four PAHs (naphthalene, fluorene, phenanthrene, and acenaphthene) was investigated in an oxic aquifer at the site of a former gas plant. In situ biodegradation of naphthalene and fluorene was demonstrated using in situ microcosms (BACTRAP(®)s). BACTRAP(®)s amended with either [(13)C6]-naphthalene or [(13)C5/(13)C6]-fluorene (50:50) were incubated for a period of over two months in two groundwater wells located at the contaminant source and plume fringe, respectively. Amino acids extracted from BACTRAP(®)-grown cells showed significant (13)C-enrichments with (13)C-fractions of up to 30.4% for naphthalene and 3.8% for fluorene, thus providing evidence for the in situ biodegradation and assimilation of those PAHs at the field site. To quantify the mineralisation of PAHs, laboratory microcosms were set up with BACTRAP(®)-grown cells and groundwater. Naphthalene, fluorene, phenanthrene, or acenaphthene were added as (13)C-labelled substrates. (13)C-enrichment of the produced CO2 revealed mineralisation of between 5.9% and 19.7% for fluorene, between 11.1% and 35.1% for acenaphthene, between 14.2% and 33.1% for phenanthrene, and up to 37.0% for naphthalene over a period of 62 days. Observed PAH mineralisation rates ranged between 17 μg L(-1) d(-1) and 1639 μg L(-1) d(-1). The novel approach combining in situ and laboratory microcosms allowed a comprehensive evaluation of PAH biodegradation at the investigated field site, revealing the method's potential for the assessment of PAH degradation within contaminated aquifers.

  11. Application of Metabolic 13C Labeling in Conjunction with High-Field Nuclear Magnetic Resonance Spectroscopy for Comparative Conformational Analysis of High Mannose-Type Oligosaccharides

    PubMed Central

    Kamiya, Yukiko; Yanagi, Kotaro; Kitajima, Toshihiko; Yamaguchi, Takumi; Chiba, Yasunori; Kato, Koichi

    2013-01-01

    High mannose-type oligosaccharides are enzymatically trimmed in the endoplasmic reticulum, resulting in various processing intermediates with exposed glycotopes that are recognized by a series of lectins involved in glycoprotein fate determination in cells. Although recent crystallographic data have provided the structural basis for the carbohydrate recognition of intracellular lectins, atomic information of dynamic oligosaccharide conformations is essential for a quantitative understanding of the energetics of carbohydrate–lectin interactions. Carbohydrate NMR spectroscopy is useful for characterizing such conformational dynamics, but often hampered by poor spectral resolution and lack of recombinant techniques required to produce homogeneous glycoforms. To overcome these difficulties, we have recently developed a methodology for the preparation of a homogeneous high mannose-type oligosaccharide with 13C labeling using a genetically engineered yeast strain. We herein successfully extended this method to result in the overexpression of 13C-labeled Man9GlcNAc2 (M9) with a newly engineered yeast strain with the deletion of four genes involved in N-glycan processing. This enabled high-field NMR analyses of 13C-labeled M9 in comparison with its processing product lacking the terminal mannose residue ManD2. Long-range NOE data indicated that the outer branches interact with the core in both glycoforms, and such foldback conformations are enhanced upon the removal of ManD2. The observed conformational variabilities might be significantly associated with lectins and glycan-trimming enzymes. PMID:24970159

  12. Probing pyruvate metabolism in normal and mutant fibroblast cell lines using 13C-labeled mass isotopomer analysis and mass spectrometry.

    PubMed

    Riazi, Roya; Khairallah, Maya; Cameron, Jessie M; Pencharz, Paul B; Des Rosiers, Christine; Robinson, Brian H

    2009-12-01

    Fibroblast cell lines are frequently used to diagnose genetic mitochondrial defects in children. The effect of enzyme deficiency on overall flux rate through metabolic pathways is, however, not generally considered. We have transposed an experimental paradigm that was developed for isolated perfused organs using (13)C-labeled substrates and (13)C-isotopomer analysis to probe pyruvate mitochondrial metabolism in cultured human fibroblast cell lines with normal or genetically mutant pyruvate decarboxylation (PDC) or carboxylation (PC) activity. Cells were incubated with 1mM [U-(13)C]pyruvate, and the (13)C-molar percent enrichment (MPE) of intracellular pyruvate, citrate, malate (as a surrogate of oxaloacetate) and aspartate was assessed by mass spectrometry. We estimated various flux ratios relevant to metabolic pathways involved in energy production, namely pyruvate formation, PDC, PC, and citrate recycling in the citric acid cycle (CAC). In all cell lines, exogenous pyruvate was predominately decarboxylated (PC/PDC ratios 0.01-0.3). PC-deficient cell lines displayed an expected negligible contribution of PC flux to oxaloacetate formation for citrate synthesis (PC/CS), which was associated with a greater contribution of PDC to acetyl-CoA formation (PDC/CS), and greater recycling of (13)C-labeled citrate into the CAC. In PDH-deficient cell lines, metabolic flux alterations were most apparent in cells with more than 50% reduction in enzyme activity. This led to an unexpected lower PC/CS flux ratio, while the PDC/CS flux ratio was unchanged. These data illustrate the usefulness of this approach in identifying unexpected metabolic consequences of genetic defects related to pyruvate metabolism.

  13. Sample Pesticide Label for Label Review Training

    EPA Pesticide Factsheets

    Pesticide labels translate results of our extensive evaluations of pesticide products into conditions, directions and precautions that define parameters for use of a pesticide with the goal of ensuring protection of human health and the environment.

  14. A Comparison between Radiolabeled Fluorodeoxyglucose Uptake and Hyperpolarized 13C-Labeled Pyruvate Utilization as Methods for Detecting Tumor Response to Treatment12

    PubMed Central

    Witney, Timothy H; Kettunen, Mikko I; Day, Samuel E; Hu, De-en; Neves, Andre A; Gallagher, Ferdia A; Fulton, Sandra M; Brindle, Kevin M

    2009-01-01

    Detection of early tumor responses to treatment can give an indication of clinical outcome. Positron emission tomography measurements of the uptake of the glucose analog, [18F] 2-fluoro-2-deoxy-d-glucose (FDG), have demonstrated their potential for detecting early treatment response in the clinic. We have shown recently that 13C magnetic resonance spectroscopy and spectroscopic imaging measurements of the uptake and conversion of hyperpolarized [1-13C]pyruvate into [1-13C]lactate can be used to detect treatment response in a murine lymphoma model. The present study compares these magnetic resonance measurements with changes in FDG uptake after chemotherapy. A decrease in FDG uptake was found to precede the decrease in flux of hyperpolarized 13C label between pyruvate and lactate, both in tumor cells in vitro and in tumors in vivo. However, the magnitude of the decrease in FDG uptake and the decrease in pyruvate to lactate flux was comparable at 24 hours after drug treatment. In cells, the decrease in FDG uptake was shown to correlate with changes in plasma membrane expression of the facilitative glucose transporters, whereas the decrease in pyruvate to lactate flux could be explained by an increase in poly(ADP-ribose) polymerase activity and subsequent depletion of the NAD(H) pool. These results show that measurement of flux between pyruvate and lactate may be an alternative to FDG-positron emission tomography for imaging tumor treatment response in the clinic. PMID:19484146

  15. Amino acids as a nitrogen source in temperate upland grasslands: the use of dual labelled ((13)C, (15)N) glycine to test for direct uptake by dominant grasses.

    PubMed

    Streeter, T C; Bol, R; Bardgett, R D

    2000-01-01

    It is becoming increasingly apparent that soil amino acids are a principal source of nitrogen (N) for certain plants, and especially those of N-limited environments. This study of temperate upland grasslands used glycine-2-(13)C-(15)N and ((15)NH4)(2)SO(4) labelling techniques to test the hypothesis that plant species which dominate 'unimproved' semi-natural grasslands (Festuca-Agrostis-Galium) are able to utilise amino acid N for growth, whereas those plants which dominate 'improved' grasslands (Lolium-Cynosurus), that receive regular applications of inorganic fertiliser, use inorganic N forms as their main N source. Data from field experiments confirmed that 'free' amino acids were more abundant in 'unimproved' than 'improved' grassland and that glycine was the dominant amino acid type (up to 42% of total). Secondly, the injection of representative amounts of glycine-2-(13)C-(15)N (4.76 and 42.86 mM) into intact soil cores from the two grassland types provided evidence of direct uptake of glycine by plants, with both (15)N and (13)C being detected in plant material of both grasslands. Finally, a microcosm experiment demonstrated no preferential uptake of amino acid N by the grasses which dominate the grassland types, namely Holcus lanatus, Festuca rubra, Agrostis capillaris from the 'unimproved' grassland, and Lolium perenne from the 'improved' grassland. Again, both (13)C and (15)N were detected in all grass species suggesting uptake of intact glycine by these plants.

  16. Evaluation of biodegradability of phenol and bisphenol A during mesophilic and thermophilic municipal solid waste anaerobic digestion using 13C-labeled contaminants.

    PubMed

    Limam, Intissar; Mezni, Mohamed; Guenne, Angéline; Madigou, Céline; Driss, Mohamed Ridha; Bouchez, Théodore; Mazéas, Laurent

    2013-01-01

    In this paper, the isotopic tracing using (13)C-labeled phenol and bisphenol A was used to study their biodegradation during anaerobic digestion of municipal solid waste. Microcosms were incubated anaerobically at 35 °C (mesophilic conditions) and 55 °C (thermophilic conditions) without steering. A continuous follow-up of the production of biogas (CH(4) and CO(2)), was carried out during 130 d until the establishment of stable methanogenesis. Then (13)C(12)-BPA, and (13)C(6)-phenol were injected in microcosms and the follow-up of their degradation was performed simultaneously by gas chromatography isotope-ratio mass spectrometry (GC-IRMS) and gas chromatography mass spectrometry (GC-MS). Moreover, Carbon-13 Nuclear Magnetic Resonance ((13)C-NMR) Spectroscopy is used in the identification of metabolites. This study proves that the mineralization of phenol to CO(2) and CH(4) occurs during anaerobic digestion both in mesophilic and thermophilic conditions with similar kinetics. In mesophilic condition phenol degradation occurs through the benzoic acid pathway. In thermophilic condition it was not possible to identify the complete metabolic pathway as only acetate was identified as metabolite. Our results suggest that mineralization of phenol under thermophilic condition is instantaneous explaining why metabolites are not observed as they do not accumulate. No biodegradation of BPA was observed.

  17. Correlation between the synthetic origin of methamphetamine samples and their 15N and 13C stable isotope ratios.

    PubMed

    Billault, Isabelle; Courant, Frédérique; Pasquereau, Léo; Derrien, Solène; Robins, Richard J; Naulet, Norbert

    2007-06-12

    The active ingredient of ecstasy, N-methyl-3,4-methyldioxyphenylisopropylamine (MDMA) can be manufactured by a number of easy routes from simple precursors. We have synthesised 45 samples of MDMA following the five most common routes using N-precursors from 12 different origins and three different precursors for the aromatic moiety. The 13C and 15N contents of both the precursors and the MDMA samples derived therefrom were measured by isotope ratio mass spectrometry coupled to an elemental analyser (EA-IRMS). We show that within-pathway correlation between the 15N content of the precursor and that of the derived MDMA can be strong but that no general pattern of correlation can be defined. Rather, it is evident that the delta15N values of MDMA are strongly influenced by a combination of the delta15N values of the source of nitrogen used, the route by which the MDMA is synthesised, and the experimental conditions employed. Multivariate analysis (PCA) based on the delta15N values of the synthetic MDMA and of the delta15N and delta13C values of the N-precursors leads to good discrimination between the majority of the reaction conditions tested.

  18. Timing and magnitude of C partitioning through a young loblolly pine (Pinus taeda L.) stand using 13C labeling and shade treatments

    DOE PAGES

    Warren, Jeffrey M.; Iversen, Colleen M.; Garten, Jr., Charles T.; ...

    2011-12-30

    The dynamics of rapid changes in carbon (C) partitioning within forest ecosystems are not well understood, which limits improvement of mechanistic models of C cycling. Our objective was to inform model processes by describing relationships between C partitioning and accessible environmental or physiological measurements, with a special emphasis on short-term C flux through a forest ecosystem. We exposed eight 7-year-old loblolly pine (Pinus taeda L.) trees to air enriched with 13CO2 and then implemented adjacent light shade (LS) and heavy shade (HS) treatments in order to manipulate C uptake and flux. The impacts of shading on photosynthesis, plant water potential,more » sap flow, basal area growth, root growth, and soil CO2 efflux rate (CER) were assessed for each tree over a three-week period. The progression of the 13C label was concurrently tracked from the atmosphere through foliage, phloem, roots, and surface soil CO2 efflux. The HS treatment significantly reduced C uptake, sap flow, stem growth and fine root standing crop, and resulted in greater residual soil water content to 1 m depth. Sap flow was strongly correlated with CER on the previous day, but not the current day, with no apparent treatment effect on the relationship. Although there were apparent reductions in new C flux belowground, the heavy shade treatment did not noticeably reduce the magnitude of belowground autotrophic and heterotrophic respiration based on surface soil CO2 efflux rate (CER), which was overwhelmingly driven by soil temperature and moisture. The 13C label was immediately detected in foliage on label day (half-life = 0.5 d), progressed through phloem by day 2 (half-life = 4.7 d), roots by day 2-4, and subsequently was evident as respiratory release from soil which peaked between days 3-6. The δ13C of soil CO2 efflux was strongly correlated with phloem 13C on the previous day, or two days earlier. While the 13C label was readily tracked through the ecosystem, the fate of root

  19. Specific 13C labeling of leucine, valine and isoleucine methyl groups for unambiguous detection of long-range restraints in protein solid-state NMR studies

    NASA Astrophysics Data System (ADS)

    Fasshuber, Hannes Klaus; Demers, Jean-Philippe; Chevelkov, Veniamin; Giller, Karin; Becker, Stefan; Lange, Adam

    2015-03-01

    Here we present an isotopic labeling strategy to easily obtain unambiguous long-range distance restraints in protein solid-state NMR studies. The method is based on the inclusion of two biosynthetic precursors in the bacterial growth medium, α-ketoisovalerate and α-ketobutyrate, leading to the production of leucine, valine and isoleucine residues that are exclusively 13C labeled on methyl groups. The resulting spectral simplification facilitates the collection of distance restraints, the verification of carbon chemical shift assignments and the measurement of methyl group dynamics. This approach is demonstrated on the type-three secretion system needle of Shigella flexneri, where 49 methyl-methyl and methyl-nitrogen distance restraints including 10 unambiguous long-range distance restraints could be collected. By combining this labeling scheme with ultra-fast MAS and proton detection, the assignment of methyl proton chemical shifts was achieved.

  20. Quantitation of a spin polarization-induced nuclear Overhauser effect (SPINOE) between a hyperpolarized (13) C-labeled cell metabolite and water protons.

    PubMed

    Marco-Rius, Irene; Bohndiek, Sarah E; Kettunen, Mikko I; Larkin, Timothy J; Basharat, Meer; Seeley, Colm; Brindle, Kevin M

    2014-01-01

    The spin polarization-induced nuclear Overhauser effect (SPINOE) describes the enhancement of spin polarization of solvent nuclei by the hyperpolarized spins of a solute. In this communication we demonstrate that SPINOEs can be observed between [1,4-(13) C2 ]fumarate, hyperpolarized using the dissolution dynamic nuclear polarization technique, and solvent water protons. We derive a theoretical expression for the expected enhancement and demonstrate that this fits well with experimental measurements. Although the magnitude of the effect is relatively small (around 2% measured here), the SPINOE increases at lower field strengths, so that at clinically relevant magnetic fields (1.5-3 T) it may be possible to track the passage through the circulation of a bolus containing a hyperpolarized (13) C-labeled substrate through the increase in solvent water (1) H signal.

  1. Simultaneous quantification of labeled (2)H5-glycerol, (13)C6-glucose, and endogenous D-glucose in mouse plasma using liquid chromatography tandem mass spectrometry.

    PubMed

    Jahouh, Farid; Wang, Rong

    2015-11-01

    Monitoring the level of glucose and glycerol or their labeled derivatives in biological fluid for kinetic studies has always been challenging, especially in mice, because of the limited volume in addition to the complexity of plasma. For such application, we developed a simple, fast, and sensitive method for the simultaneous measurement of absolute concentrations of labeled (2)H5-glycerol and (13)C6-glucose as well as endogenous D-glucose using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). In our study, 15.0 μL of mouse plasma was processed by a one-step protein precipitation, followed by LC-MS/MS analysis. The quantification of the analytes was carried out by monitoring the product ion scan of their corresponding deprotonated molecular ions and constructing the extracted ion fragmentogram by choosing a specific product ion for each analyte (equivalent to precursor ion to product ion transitions). The limit of detection (LOD) was evaluated to be 1.0 μM for both (2)H5-glycerol and (13)C6-glucose, and the limit of quantitation (LOQ) was observed to be 5.0 μM for both (2)H5-glycerol and (13)C6-glucose in diluted mice plasma that corresponds to 50 μM in plasma or 4.60 and 9.01 mg/dL of glycerol and glucose in plasma, respectively. The extraction recoveries are 81.9 % (CV = 8.1 %) for (2)H5-glycerol and 26.2 % (CV = 13.6 %) for (13)C6-glucose.

  2. Incorporation of 13C labelled root-shoot residues in soil in the presence of Lumbricus terrestris: An isotopic and molecular approach

    NASA Astrophysics Data System (ADS)

    Vidal, Alix; Alexis, Marie; Nguyen Tu, Thanh Tu; Anquetil, Christelle; Vaury, Véronique; Derenne, Sylvie; Quenea, Katell

    2016-04-01

    Litter from plant biomass deposited on soil surface can either be mineralized; releasing CO2 to the atmosphere, or transferred into the soil as organic compounds. Both pathways depend on biotic factors such as litter characteristics and the of soil organism activity. During the last decades, many studies have focused on the origin of organic matter, with a particular attention to the fate of root and shoot litter. It is generally admitted that roots decompose at a slower rate than shoots, resulting in a higher carbon sequestration in soil for compounds originating from roots. Earthworms play a central role in litter decomposition and carbon cycling, ingesting both organic and mineral compounds which are mixed, complexed and dejected in the form of casts at the soil surface or along earthworm burrows. The simultaneous impact of earthworms and root-shoot on soil carbon cycling is still poorly understood. This study aimed at (1) defining the rate of incorporation of root and shoot litter with or without earthworms and (2) characterizing the molecular composition of soil organic matter upon litter decomposition, after one year of experimentation. A mesocosm experiment was set up to follow the incorporation of 13C labelled Ryegrass root and shoot litter in the soil, in the presence of anecic earthworms (Lumbricus terrestris). Soil samples were collected at 0-20 and 40-60 cm, as well as surface casts, at the beginning and after 1, 2, 4, 8, 24 and 54 weeks of experiment. Organic carbon content and δ13C values were determined for all the samples with Elemental Analysis - Isotope Ratio Mass Spectrometry. Lipid-free soil and cast samples after 54 weeks of incubation were analyzed with Pyrolysis-Gas Chromatography-Mass Spectrometry. Pyrolysis products were grouped into six classes: polysaccharides, lignin derived compounds, phenols, N-compounds, aliphatic compounds and sterols. Each pyrolysis product was quantified thanks to its peak area, relative to the total area of the

  3. Spatial and temporal distribution of 13C labelled plant residues in soil aggregates and Lumbricus terrestris surface casts: A combination of Transmission Electron Microscopy and Nanoscale Secondary Ion Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Vidal, Alix; Remusat, Laurent; Watteau, Françoise; Derenne, Sylvie; Quenea, Katell

    2016-04-01

    Earthworms play a central role in litter decomposition, soil structuration and carbon cycling. They ingest both organic and mineral compounds which are mixed, complexed with mucus and dejected in form of casts at the soil surface and along burrows. Bulk isotopic or biochemical technics have often been used to study the incorporation of litter in soil and casts, but they could not reflect the complex interaction between soil, plant and microorganisms at the microscale. However, the heterogeneous distribution of organic carbon in soil structures induces contrasted microbial activity areas. Nano-scale secondary ion mass spectrometry (NanoSIMS), which is a high spatial resolution method providing elemental and isotopic maps of organic and mineral materials, has recently been applied in soil science (Herrmann et al., 2007; Vogel et al., 2014). The combination of Nano-scale secondary ion mass spectrometry (NanoSIMS) and Transmission Electron Microscopy (TEM) has proven its potential to investigate labelled residues incorporation in earthworm casts (Vidal et al., 2016). In line of this work, we studied the spatial and temporal distribution of plant residues in soil aggregates and earthworm surface casts. This study aimed to (1) identify the decomposition states of labelled plant residues incorporated at different time steps, in casts and soil, (2) identify the microorganisms implied in this decomposition (3) relate the organic matter states of decomposition with their 13C signature. A one year mesocosm experiment was set up to follow the incorporation of 13C labelled Ryegrass (Lolium multiflorum) litter in a soil in the presence of anecic earthworms (Lumbricus terrestris). Soil and surface cast samples were collected after 8 and 54 weeks, embedded in epoxy resin and cut into ultra-thin sections. Soil was fractionated and all and analyzed with TEM and NanoSIMS, obtaining secondary ion images of 12C, 16O, 12C14N, 13C14N and 28Si. The δ13C maps were obtained using the 13C14

  4. HCN, A Triple-Resonance NMR Technique for Selective Observation of Histidine and Tryptophan Side Chains in 13C/ 15N-Labeled Proteins

    NASA Astrophysics Data System (ADS)

    Sudmeier, James L.; Ash, Elissa L.; Günther, Ulrich L.; Luo, Xuelian; Bullock, Peter A.; Bachovchin, William W.

    1996-12-01

    HCN, a new 3D NMR technique for stepwise coherence transfer from1H to13C to15N and reverse through direct spin couplings1JCHand1JCN, is presented as a method for detection and assignment of histidine and tryptophan side-chain1H,13C, and15N resonances in uniformly13C/15N-labeled proteins. Product-operator calculations of cross-peak volumes vs adjustable delay τ3were employed for determination of optimal τ3. For the phosphatidylinositol 3-kinase (PI3K SH3 domain, MW = 9.6 kD) at pH 6, H(C)N, the1H/15N projection, produced observable cross peaks within 20 min. and was completely selective for the single tryptophan and single histidine. The 3D HCN experiment yielded well-defined cross peaks in 20 h for the13C/15N-labeled origin-specific DNA binding domain from simian virus 40 T-antigen (T-ag-OBD131-259, MW = 15.4 kD) at pH 5.5. Resonances from all six histidines in T-ag-OBD were observed, and 11 of the 121H and13C chemical shifts and 10 of the 1215N chemical shifts were determined. The13C dimension proved essential in assignment of the multiply overlapping1H and15N resonances. From the spectra recorded at a single pH, three of the imidazoles were essentially neutral and the other three were partially protonated (22-37%). HCN yielded strong cross peaks after 18 h on a 2.0 mMsample of phenylmethanesulfonyl fluoride (PMSF)-inhibited α-lytic protease (MW = 19.8 kD) at pH 4.4. No spectra have been obtained, however, of native or boronic acid-inhibited α-lytic protease after 18 h at various temperatures ranging from 5 to 55°C, probably due to efficient relaxation of active-site imidazole1H and/or15N nuclei.

  5. Molecular Investigation of the Short-term Sequestration of Natural Abundance 13C -labelled Cow Dung in the Surface Horizons of a Temperate Grassland Soil

    NASA Astrophysics Data System (ADS)

    Dungait, J.; Bol, R.; Evershed, R. P.

    2004-12-01

    An adequate understanding of the carbon (C) sequestration potential of grasslands requires that the quantity and residence times of C inputs be measured. Herbivore dung is largely comprised of plant cell wall material, a significant source of stable C in intensively grazed temperate grassland ecosystems that contributes to the soil carbon budget. Our work uses compound-specific isotope analysis to identify the pattern of input of dung-derived compounds from natural abundance 13C/-labelled cow dung into the surface horizons of a temperate grassland soil over one year. C4 dung (δ 13C \\-12.6 ‰ ) from maize fed cows was applied to a temperate grassland surface (δ 13C \\-29.95 ‰ ) at IGER-North Wyke (Devon, UK), and dung remains and soil cores beneath the treatments collected at ŧ = 7, 14, 28, 56, 112, 224 and 372 days. Bulk dung carbon present in the 0\\-1 cm and 1\\-5 cm surface horizons of a grassland soil over one year was estimated using Δ 13C between C4 dung and C3 dung, after Bol {\\et al.} (2000). The major biochemical components of dung were quantified using proximate forage fibre analyses, after Goering and Van Soest (1970) and identified using `wet' chemical and GC-MS methods. Plant cell wall polysaccharides and lignin were found to account for up to 67 {%} of dung dry matter. Hydrolysed polysaccharides were prepared as alditol acetates for analyses (after Docherty {\\et al.}, 2001), and a novel application of an off-line pyrolysis method applied to measure lignin-derived phenolic compounds (after Poole & van Bergen, 2002). This paper focuses on major events in the incorporation of dung carbon, estimated using natural abundance 13C&-slash;labelling technique. This revealed a major bulk input of dung carbon after a period of significant rainfall with a consequent decline in bulk soil δ 13C values until the end of the experiment (Dungait {\\et al.}, submitted). Findings will be presented revealing contribution of plant cell wall polysaccharides and

  6. Balancing the (carbon) budget: Using linear inverse models to estimate carbon flows and mass-balance 13C:15N labelling experiments in low oxygen sediments.

    NASA Astrophysics Data System (ADS)

    Hunter, William Ross; Van Oevelen, Dick; Witte, Ursula

    2013-04-01

    Over 1 million km2 of seafloor experience permanent low-oxygen conditions within oxygen minimum zones (OMZs). OMZs are predicted to grow as a consequence of climate change, potentially affecting oceanic biogeochemical cycles. The Arabian Sea OMZ impinges upon the western Indian continental margin at bathyal depths (150 - 1500m) producing a strong depth dependent oxygen gradient at the sea floor. The influence of the OMZ upon the short term processing of organic matter by sediment ecosystems was investigated using in situ stable isotope pulse chase experiments. These deployed doses of 13C:15N labeled organic matter onto the sediment surface at four stations from across the OMZ (water depth 540 - 1100 m; [O2] = 0.35 - 15 μM). In order to prevent experimentally anoxia, the mesocosms were not sealed. 13C and 15N labels were traced into sediment, bacteria, fauna and 13C into sediment porewater DIC and DOC. However, the DIC and DOC flux to the water column could not be measured, limiting our capacity to obtain mass-balance for C in each experimental mesocosm. Linear Inverse Modeling (LIM) provides a method to obtain a mass-balanced model of carbon flow that integrates stable-isotope tracer data with community biomass and biogeochemical flux data from a range of sources. Here we present an adaptation of the LIM methodology used to investigate how ecosystem structure influenced carbon flow across the Indian margin OMZ. We demonstrate how oxygen conditions affect food-web complexity, affecting the linkages between the bacteria, foraminifera and metazoan fauna, and their contributions to benthic respiration. The food-web models demonstrate how changes in ecosystem complexity are associated with oxygen availability across the OMZ and allow us to obtain a complete carbon budget for the stationa where stable-isotope labelling experiments were conducted.

  7. 40 CFR 211.108 - Sample label.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Sample label. 211.108 Section 211.108 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS PRODUCT NOISE LABELING General Provisions § 211.108 Sample label. Examples of labels conforming to the requirements...

  8. Vitamin K absorption and kinetics in human subjects after consumption of 13C-labeled phylloquinone from kale

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The absorption and plasma elimination of vitamin K was investigated by uniformly labeling phylloquinone in kale with carbon-13 and feeding the kale to study subjects. Seven healthy volunteers ingested a single 400 g serving of kale with 30 g vegetable oil. The kale provided 156 nmol of phylloquino...

  9. Elemental formula annotation of polar and lipophilic metabolites using (13) C, (15) N and (34) S isotope labelling, in combination with high-resolution mass spectrometry.

    PubMed

    Giavalisco, Patrick; Li, Yan; Matthes, Annemarie; Eckhardt, Aenne; Hubberten, Hans-Michael; Hesse, Holger; Segu, Shruthi; Hummel, Jan; Köhl, Karin; Willmitzer, Lothar

    2011-10-01

    The unbiased and comprehensive analysis of metabolites in any organism presents a major challenge if proper peak annotation and unambiguous assignment of the biological origin of the peaks are required. Here we provide a comprehensive multi-isotope labelling-based strategy using fully labelled (13) C, (15) N and (34) S plant tissues, in combination with a fractionated metabolite extraction protocol. The extraction procedure allows for the simultaneous extraction of polar, semi-polar and hydrophobic metabolites, as well as for the extraction of proteins and starch. After labelling and extraction, the metabolites and lipids were analysed using a high-resolution mass spectrometer providing accurate MS and all-ion fragmentation data, providing an unambiguous readout for every detectable isotope-labelled peak. The isotope labelling assisted peak annotation process employed can be applied in either an automated database-dependent or a database-independent analysis of the plant polar metabolome and lipidome. As a proof of concept, the developed methods and technologies were applied and validated using Arabidopsis thaliana leaf and root extracts. Along with a large repository of assigned elemental compositions, which is provided, we show, using selected examples, the accuracy and reliability of the developed workflow.

  10. Metabolomic profiling of 13C-labelled cellulose digestion in a lower termite: insights into gut symbiont function

    PubMed Central

    Tokuda, Gaku; Tsuboi, Yuuri; Kihara, Kumiko; Saitou, Seikou; Moriya, Sigeharu; Lo, Nathan; Kikuchi, Jun

    2014-01-01

    Termites consume an estimated 3–7 billion tonnes of lignocellulose annually, a role in nature which is unique for a single order of invertebrates. Their food is digested with the help of microbial symbionts, a relationship that has been recognized for 200 years and actively researched for at least a century. Although DNA- and RNA-based approaches have greatly refined the details of the process and the identities of the participants, the allocation of roles in space and time remains unclear. To resolve this issue, a pioneer study is reported using metabolomics to chart the in situ catabolism of 13C-cellulose fed to the dampwood species Hodotermopsis sjostedti. The results confirm that the secretion of endogenous cellulases by the host may be significant to the digestive process and indicate that a major contribution by hindgut bacteria is phosphorolysis of cellodextrins or cellobiose. This study provides evidence that essential amino acid acquisition by termites occurs following the lysis of microbial tissue obtained via proctodaeal trophallaxis. PMID:25009054

  11. 13C- and 15N-Labeling Strategies Combined with Mass Spectrometry Comprehensively Quantify Phospholipid Dynamics in C. elegans

    PubMed Central

    Drechsler, Robin; Gafken, Philip R.; Olsen, Carissa Perez

    2015-01-01

    Membranes define cellular and organelle boundaries, a function that is critical to all living systems. Like other biomolecules, membrane lipids are dynamically maintained, but current methods are extremely limited for monitoring lipid dynamics in living animals. We developed novel strategies in C. elegans combining 13C and 15N stable isotopes with mass spectrometry to directly quantify the replenishment rates of the individual fatty acids and intact phospholipids of the membrane. Using multiple measurements of phospholipid dynamics, we found that the phospholipid pools are replaced rapidly and at rates nearly double the turnover measured for neutral lipid populations. In fact, our analysis shows that the majority of membrane lipids are replaced each day. Furthermore, we found that stearoyl-CoA desaturases (SCDs), critical enzymes in polyunsaturated fatty acid production, play an unexpected role in influencing the overall rates of membrane maintenance as SCD depletion affected the turnover of nearly all membrane lipids. Additionally, the compromised membrane maintenance as defined by LC-MS/MS with SCD RNAi resulted in active phospholipid remodeling that we predict is critical to alleviate the impact of reduced membrane maintenance in these animals. Not only have these combined methodologies identified new facets of the impact of SCDs on the membrane, but they also have great potential to reveal many undiscovered regulators of phospholipid metabolism. PMID:26528916

  12. The Cyanide Ligands of [FeFe] Hydrogenase: Pulse EPR Studies of 13C and 15N-Labeled H-Cluster

    PubMed Central

    2015-01-01

    The two cyanide ligands in the assembled cluster of [FeFe] hydrogenase originate from exogenous l-tyrosine. Using selectively labeled tyrosine substrates, the cyanides were isotopically labeled via a recently developed in vitro maturation procedure allowing advanced electron paramagnetic resonance techniques to probe the electronic structure of the catalytic core of the enzyme. The ratio of the isotropic 13C hyperfine interactions for the two CN– ligands—a reporter of spin density on their respective coordinating iron ions—collapses from ≈5.8 for the Hox form of hydrogenase to <2 for the CO-inhibited form. Additionally, when the maturation was carried out using [15N]-tyrosine, no features previously ascribed to the nitrogen of the bridging dithiolate ligand were observed suggesting that this bridge is not sourced from tyrosine. PMID:25133957

  13. Redox dependent changes at the heme propionates in cytochrome c oxidase from Paracoccus denitrificans: direct evidence from FTIR difference spectroscopy in combination with heme propionate 13C labeling.

    PubMed

    Behr, J; Hellwig, P; Mäntele, W; Michel, H

    1998-05-19

    Specific isotope labeling at the carboxyl groups of the four heme propionates of cytochrome c oxidase from Paracoccus denitrificans was used in order to assign signals observed in electrochemically induced redox Fourier transform infrared (FTIR) difference spectra of this enzyme. For this purpose, the hemA gene of the P. denitrificans strain PD1222, coding for 5-aminolevulinate synthase, was deleted by partial replacement with a kanamycin resistance cartridge, resulting in a stable 5-aminolevulinic acid (ALA) auxotrophy. Normal growth of this deficient strain and cytochrome c oxidase yield comparable to that of P. dentrificans wild-type strain PD1222 could be obtained by supplementation with 0.1 mM ALA in the growth medium. Visible spectra and reduced-minus-oxidized FTIR spectra showed that the purified cytochrome c oxidase had spectral characteristics identical to those of the wild-type enzyme. The decrease of a negative signal at 1676 cm-1 in the reduced-minus-oxidized FTIR difference spectra of the 13C-labeled cytochrome c oxidase in comparison to those of the unlabeled protein allowed the assignment of this signal to a COOH vibration mode of at least one of the four heme propionates. Moreover, a negative band at approximately 1570 cm-1 shifted to smaller wavenumbers in the spectra of the 13C-labeled enzyme in comparison to the spectra of the unlabeled enzyme and was thus assigned to contributions from an antisymmetric COO- mode of one or more of the four heme propionates. Additionally, a positive signal at 1538 cm-1 shifted to approximately 1500 cm-1 in the spectra of the isotopically labeled protein and was therefore assigned to at least one antisymmetric COO- mode of the heme propionates. A negative signal at 1390 cm-1, which has been shifted to 1360 cm-1 in the spectra of the 13C-labeled enzyme, is due to a symmetric COO- mode from at least one heme propionate. These results suggest that at least two of the four heme propionates in cytochrome c oxidase

  14. Multidimensional solid-state NMR studies of the structure and dynamics of pectic polysaccharides in uniformly 13C-labeled Arabidopsis primary cell walls

    SciTech Connect

    Dick-Perez, Marilu; Wang, Tuo; Salazar, Andre; Zabotina, Olga A.; Hong, Mei

    2012-07-08

    Plant cell wall (CW) polysaccharides are responsible for the mechanical strength and growth of plant cells; however, the high-resolution structure and dynamics of the CW polysaccharides are still poorly understood because of the insoluble nature of these molecules. Here, we use 2D and 3D magic-angle-spinning (MAS) solid-state NMR (SSNMR) to investigate the structural role of pectins in the plant CW. Intact and partially depectinated primary CWs of Arabidopsis thaliana were uniformly labeled with 13C and their NMR spectra were compared. Recent 13C resonance assignment of the major polysaccharides in Arabidopsis thaliana CWs allowed us to determine the effects of depectination on the intermolecular packing and dynamics of the remaining wall polysaccharides. 2D and 3D correlation spectra show the suppression of pectin signals, confirming partial pectin removal by chelating agents and sodium carbonate. Importantly, higher cross peaks are observed in 2D and 3D 13C spectra of the depectinated CW, suggesting higher rigidity and denser packing of the remaining wall polysaccharides compared with the intact CW. 13C spin–lattice relaxation times and 1H rotating-frame spin–lattice relaxation times indicate that the polysaccharides are more rigid on both the nanosecond and microsecond timescales in the depectinated CW. Taken together, these results indicate that pectic polysaccharides are highly dynamic and endow the polysaccharide network of the primary CW with mobility and flexibility, which may be important for pectin functions. This study demonstrates the capability of multidimensional SSNMR to determine the intermolecular interactions and dynamic structures of complex plant materials under near-native conditions. Copyright © 2012 John Wiley & Sons, Ltd.

  15. Determining the in vivo regulation of cardiac pyruvate dehydrogenase based on label flux from hyperpolarised [1-13C]pyruvate.

    PubMed

    Schroeder, Marie A; Atherton, Helen J; Heather, Lisa C; Griffin, Julian L; Clarke, Kieran; Radda, George K; Tyler, Damian J

    2011-10-01

    Pyruvate dehydrogenase (PDH) is a key regulator of cardiac substrate selection and is regulated by both pyruvate dehydrogenase kinase (PDK)-mediated phosphorylation and feedback inhibition. The extent to which chronic upregulation of PDK protein levels, acutely increased PDK activity and acute feedback inhibition limit PDH flux remains unclear because existing in vitro assessment methods inherently disrupt the regulation of the enzyme complex. We have demonstrated previously that hyperpolarised (13)C-labelled metabolic tracers coupled with MRS can monitor flux through PDH in vivo. The aim of this study was to determine the relative contributions of acute and chronic changes in PDK and PDH activities to in vivo myocardial PDH flux. We examined both fed and fasted rats with either hyperpolarised [1-(13)C]pyruvate alone or hyperpolarised [1-(13)C]pyruvate co-infused with malate [to modulate mitochondrial nicotinamide adenine dinucleotide (NADH/NAD(+)) and acetyl-coenzyme A (acetyl-CoA)/CoA ratios, which alter both PDH activity and flux]. To confirm the metabolic fate of infused malate, we performed in vitro (1)H NMR spectroscopy on cardiac tissue extracts. We observed that, in fed rats, where PDH activity was high, the presence of malate increased PDH flux by 27%, whereas, in the fasted state, malate infusion had no effect on PDH flux. These observations suggest that pyruvate oxidation is limited by feedback inhibition from acetyl-CoA only when PDH activity is high. Therefore, in the case of PDH, and potentially other enzymes, hyperpolarised (13)C MRI can be used to assess noninvasively enzymatic regulation.

  16. Chemo-Enzymatic Synthesis of (13)C Labeled Complex N-Glycans As Internal Standards for the Absolute Glycan Quantification by Mass Spectrometry.

    PubMed

    Echeverria, Begoña; Etxebarria, Juan; Ruiz, Nerea; Hernandez, Álvaro; Calvo, Javier; Haberger, Markus; Reusch, Dietmar; Reichardt, Niels-Christian

    2015-11-17

    Methods for the absolute quantification of glycans are needed in glycoproteomics, during development and production of biopharmaceuticals and for the clinical analysis of glycan disease markers. Here we present a strategy for the chemo-enzymatic synthesis of (13)C labeled N-glycan libraries and provide an example for their use as internal standards in the profiling and absolute quantification of mAb glycans by matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry. A synthetic biantennary glycan precursor was (13)C-labeled on all four amino sugar residues and enzymatically derivatized to produce a library of 15 glycan isotopologues with a mass increment of 8 Da over the natural products. Asymmetrically elongated glycans were accessible by performing enzymatic reactions on partially protected UV-absorbing intermediates, subsequent fractionation by preparative HPLC, and final hydrogenation. Using a preformulated mixture of eight internal standards, we quantified the glycans in a monoclonal therapeutic antibody with excellent precision and speed.

  17. Design and operation of a continuous 13C and 15N labeling chamber for uniform or differential, metabolic and structural, plant tissue isotope labeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tracing heavy stable isotopes from plant material through the ecosystem provides the most sensitive information about ecosystem processes; from CO2 fluxes and soil organic matter formation to small-scale stable-isotope biomarker probing. Coupling multiple stable isotopes such as 13C with 15N, 18O o...

  18. Detection of adulteration in honey samples added various sugar syrups with 13C/12C isotope ratio analysis method.

    PubMed

    Tosun, Murat

    2013-06-01

    Honey can be adulterated in various ways. One of the adulteration methods is the addition of different sugar syrups during or after honey production. Starch-based sugar syrups, high fructose corn syrup (HFCS), glucose syrup (GS) and saccharose syrups (SS), which are produced from beet or canes, can be used for adulterating honey. In this study, adulterated honey samples were prepared with the addition of HFCS, GS and SS (beet sugar) at a ratio of 0%, 10%, 20%, 40% and 50% by weight. (13)C/(12)C analysis was conducted on these adulterated honey samples using an isotope ratio mass spectrometer in combination with an elemental analyser (EA-IRMS). As a result, adulteration using C(4) sugar syrups (HFCS and GS) could be detected to a certain extent while adulteration of honey using C(3) sugar syrups (beet sugar) could not be detected. Adulteration by using SS (beet sugar) still has a serious detection problem, especially in countries in which beet is used in manufacturing sugar. For this reason, practice and analysis methods are needed to meet this deficit and to detect the adulterations precisely in the studies that will be conducted.

  19. Investigation of the degradation of 13C-labeled fungal biomass in soil - fate of carbon in a soil bioreactor system

    NASA Astrophysics Data System (ADS)

    Schweigert, Michael; Fester, Thomas; Miltner, Anja; Kaestner, Matthias

    2015-04-01

    Nutrient balances and degradation processes in boreal forests are mainly influenced by interactions of plant roots and ectomycorrhizal fungi. Plants benefit from nitrogen compounds provided by their symbiotic interaction partner. In return ectomycorrhiza are provided by large amounts of carbon from the plants which is used for the synthesis of hyphal networks in soil and for metabolic activity for nutrient uptake. Therefore, ectomycorrhizal fungi play a major role in ecosystems of boreal forests and are consequently an important sink for carbon by building large amount of mycelia. Recently, it has been shown that microbial biomass residues contribute significantly to soil organic matter formation. This suggests that also residues of ectomycorrhizal fungi may be an important source for soil organic matter formation in forest soils where these fungi are abundant. However, the fate of ectomycorrhizal biomass residues in soils is unknown. We therefore investigated the fate of ectomycorrhizal biomass in soil in a soil bioreactor system to quantify the contribution of this material to soil organic matter formation. As a model organism, we selected Laccaria bicolor, which was labelled by growing the fungus on 13C glucose. The stable isotope-labeled biomass was then homogenized and incubated in a podzol from a typical forest site in Central Germany. The fate of the labeled biomass was traced by analyzing the amount of 13C mineralized and the amount remaining in the soil. The fungal biomass carbon was mineralized rather rapidly during the first 50 days. Then the mineralization rate slowed down, but mineralization continued until the end of the experiment, when approximately 40% of the 13C was mineralized and 60% remained in soil. In addition, we analyzed biomolecules such as fatty acids to trace the incorporation of the L. bicolor-derived biomass carbon into other microorganisms and to identify potential primary consumers of fungal biomass. By these analyses, we found a

  20. Investigation of the degradation of 13C-labeled fungal biomass in soil - fate of carbon in a soil bioreactor system

    NASA Astrophysics Data System (ADS)

    Schweigert, Michael; Fester, Thomas; Miltner, Anja; Kästner, Matthias

    2014-05-01

    Nutrient balances and degradation processes in boreal forests are mainly influenced by interactions of plant roots and ectomycorrhizal fungi. Plants benefit from nitrogen compounds provided by their symbiotic interaction partner. In return ectomycorrhiza are provided by large amounts of carbon from the plants which is used for the synthesis of hyphal networks in soil and for metabolic activity for nutrient uptake. Therefore ectomycorrhizal fungi play a major role in ecosystems of boreal forests and are consequently an important sink for carbon by building large amounts of mycelia. Recently, it has been shown that microbial biomass residues contribute significantly to soil organic matter formation. This suggests that also residues of ectomycorrhizal fungi may be an important source for soil organic matter formation in forest soils where these fungi are abundant. However, the fate of ectomycorrhizal biomass residues in soils is unknown. We therefore investigated the fate of ectomycorrhizal biomass in soil in a bioreactor system to quantify the contribution of this material to soil organic matter formation. As a model organism, we selected Laccaria bicolor, which was labelled by growing the fungus on 13C glucose. The stable isotope-labeled biomass was then homogenized and incubated in a podzol from a typical forest site in Central Germany. The fate of the labeled biomass was traced by analyzing the amount of 13C mineralized and the amount remaining in the soil. The fungal biomass carbon was mineralized rather rapidly during the first 25 days. Then the mineralization rate slowed down, but mineralization continued until the end of the experiment, when approximately 40% of the 13C was mineralized and 60% remained in soil. In addition, we analyzed biomolecules such as fatty acids to trace the incorporation of the L. bicolor-derived biomass carbon into other microorganisms and to identify potential primary consumers of fungal biomass. By these analyses, we found a

  1. In situ assessment of the velocity of carbon transfer by tracing 13 C in trunk CO2 efflux after pulse labelling: variations among tree species and seasons.

    PubMed

    Dannoura, Masako; Maillard, Pascale; Fresneau, Chantal; Plain, Caroline; Berveiller, Daniel; Gerant, Dominique; Chipeaux, Christophe; Bosc, Alexandre; Ngao, Jérôme; Damesin, Claire; Loustau, Denis; Epron, Daniel

    2011-04-01

    Phloem is the main pathway for transferring photosynthates belowground. In situ(13) C pulse labelling of trees 8-10 m tall was conducted in the field on 10 beech (Fagus sylvatica) trees, six sessile oak (Quercus petraea) trees and 10 maritime pine (Pinus pinaster) trees throughout the growing season. Respired (13) CO2 from trunks was tracked at different heights using tunable diode laser absorption spectrometry to determine time lags and the velocity of carbon transfer (V). The isotope composition of phloem extracts was measured on several occasions after labelling and used to estimate the rate constant of phloem sap outflux (kP ). Pulse labelling together with high-frequency measurement of the isotope composition of trunk CO2 efflux is a promising tool for studying phloem transport in the field. Seasonal variability in V was predicted in pine and oak by bivariate linear regressions with air temperature and soil water content. V differed among the three species consistently with known differences in phloem anatomy between broadleaf and coniferous trees. V increased with tree diameter in oak and beech, reflecting a nonlinear increase in volumetric flow with increasing bark cross-sectional area, which suggests changes in allocation pattern with tree diameter in broadleaf species. Discrepancies between V and kP indicate vertical changes in functional phloem properties.

  2. Profiling sulfation/epimerization pattern of full-length heparan sulfate by NMR following cell culture 13C-glucose metabolic labeling.

    PubMed

    Pegeot, Mathieu; Sadir, Rabia; Eriksson, Inger; Kjellen, Lena; Simorre, Jean-Pierre; Gans, Pierre; Lortat-Jacob, Hugues

    2015-02-01

    Through its ability to interact with proteins, heparan sulfate (HS) fulfills a large variety of functions. Protein binding depends on the level of HS sulfation and epimerization which are cell specific and dynamically regulated. Characterization of this molecule, however, has been restricted to oligosaccharide fragments available in large amount for structural investigation or to sulfate distribution through compositional analysis. Here we developed a (1)H-(13)C 2D NMR-based approach, directly performed on HS isolated from (13)C-labeled cells. By integrating the peak volumes measured at different chemical shifts, this non-destructive analysis allows us to determine both the sulfation and the iduronic/glucuronic profiles of the polysaccharide. Applied to wild-type and N-deacetylase/N-sulfotransferase-deficient fibroblasts as well as to epithelial cells differentiation, it also gives insights into the functional relationships existing between HS biosynthetic enzymes. This approach should be of significant interest to better understand HS changes that occur through physiologic regulations or during pathological development.

  3. Influence of 13C-enriched Foliage Respired CO2 on 13C of Ecosystem-respired CO2 Estimated From Mid-canopy CO2 Sampled During Several Hours After Sunset

    NASA Astrophysics Data System (ADS)

    Mortazavi, B.; Chanton, J.; Smith, M.

    2005-12-01

    Nighttime CO2 concentration and 13C isotopic ratio were measured in the summer and fall of 2004 by two approaches at a Biosphere Atmosphere Stable Isotope Network (BASIN) network site in Florida, USA. The site is a naturally regenerated pine ecosystem dominated by longleaf and slash pine. The first approach consisted in making measurements at multiple heights within the canopy from ground level to top of the canopy just prior to dawn. The second approach consisted in making measurements at mid- canopy at different times from 1 hour after sunset till 2 am. For each method a Keeling plot was used to estimate the isotopic composition of respired CO2 (dCr). dCr values determined with the time-series were enriched relative to those determined from multiple heights just prior to dawn. The 13C of slash pine foliage respired CO2 (dCf) was also measured at temperatures ranging from 6.6 to 30 °C. dCf was enriched initially after dark by as much as 9° and then declined, reaching constant values after a few hours. Maximum enrichment in dCf was measured at the lowest temperature and the decline in dCf towards constant values took longer at lower temperatures. The influence of 13C enriched and temporally variable nighttime foliage respired CO2 accounts for the enriched time-series dCr. A model constrained by field and experimental data was used to determine the impact of the non-constancy of dCf on the linearity and intercept of dCr Keeling plots determined from CO2 samples collected during several hours at mid-canopy height. For the months examined, results indicate that (i) Keeling plots determined from mid-canopy heights were linear despite the addition of temporally variable dCf (range: 5 °) and (ii) the enrichment in the Keeling intercepts determined from samples collected during several hours at mid-canopy compared to those determined from multiple heights were consistent with the addition of 13C enriched foliage respired CO2. A common approach that specifies the time

  4. Efficient Measurement of 3JN,Cγ and 3JC‧,Cγ Coupling Constants of Aromatic Residues in 13C, 15N-Labeled Proteins

    NASA Astrophysics Data System (ADS)

    Löhr, Frank; Rüterjans, Heinz

    2000-09-01

    An NMR pulse sequence is proposed for the simultaneous determination of side chain χ1 torsion-angle related 3JN,Cγ and 3JC‧,Cγ couplings in aromatic amino acid spin systems. The method is of the quantitative J correlation type and takes advantage of attenuated 15N and 1H transverse relaxation by means of the TROSY principle. Unlike previously developed schemes for the measurement of either of the two coupling types, spectra contain internal reference peaks that are usually recorded in separate experiments. Therefore, the desired information is extracted from a single rather than four data sets. The new method is demonstrated with uniformly 13C/15N labeled Desulfovibrio vulgaris flavodoxin, which contains 14 aromatic out of 147 total amino acid residues.

  5. Use of 13C Labeled Carbon Tetrachloride to Demonstrate the Transformation to Carbon Dioxide under Anaerobic Conditions in a Continuous Flow Column

    NASA Astrophysics Data System (ADS)

    Semprini, L.; Azizian, M.

    2012-12-01

    The demonstration of transformation of chlorinated aliphatic compounds (CAHs) in the subsurface is a challenge, especially when the products are carbon dioxide (CO2) and chloride ion. The groundwater contaminant carbon tetrachloride (CT) is of particular interest since a broad range of transformation products can be potentially formed under anaerobic conditions. The ability to demonstrate the transformation of CT to CO2 as a non toxic endproduct, is also of great interest. Results will be presented from a continuous flow column study where 13C labeled CT was used to demonstrate its transformation to CO2. The column was packed with a quartz sand and bioaugmented the Evanite Culture (EV) that is capable of transforming tetrachloroethene (PCE) to ethene. The column was continously fed a synthetic groundwater that was amended with PCE (0.10 mM) and either formate (1.5 mM) or lactate (1.1 mM), which ferments to produce hydrogen (H2) as the ultimate electron donor. Earlier CT transformation studies with the column, in the absence of sulfate reduction, and with formate added as a donor found CT (0.015 mM) was over 98% transformed with about 20% converted to chloroform (CF) (0.003 mM) and with a transient detection of chloromethane (CM). Methane and carbon disulfide, as potential products, were not detected. Neither CT nor CF inhibited the reductive dehalogenation of PCE to ethene. A series of transient studies conducted after these initial CT transformation tests, but in the absence of CT, showed formate remained an effective substrate for maintaining sulfate reduction and PCE transformation. Lactate, which was effectively fermented prior to CT addition, was not effectively fermented, with propionate accumulating as a fermentation product. When lactate was added, PCE was mainly transformed to cis-dichloroethene (cis-DCE) and VC, and sulfate reduction did not occur. In order to restore effective lactate fermentation the column was then bioaugmented with an EV culture that

  6. [13C]-Specific labeling of 8-2' linked (-)-cis-blechnic, (-)-trans-blechnic and (-)-brainic acids in the fern Blechnum spicant

    NASA Technical Reports Server (NTRS)

    Davin, Laurence B.; Wang, Chang-Zeng; Helms, Gregory L.; Lewis, Norman G.

    2003-01-01

    In vivo administration experiments using stable (13C) and radio (14C) labeled precursors established that the optically active 8-2' linked lignans, (-)-cis-blechnic, (-)-trans-blechnic and (-)-trans-brainic acids, were directly derived from L-phenylalanine, cinnamate, and p-coumarate but not either from tyrosine or acetate. The radiochemical time course data suggest that the initial coupling product is (-)-cis-blechnic acid, which is then apparently converted into both (-)-trans-blechnic and (-)-trans-brainic acids in vivo. These findings provide additional evidence for vascular plant proteins engendering distinct but specific phenolic radical-radical coupling modes, i.e., for full control over phenylpropanoid coupling in vivo, whether stereoselective or regiospecific.

  7. Mineral fertilization did not affect decay of old lignin and SOC in a 13C-labeled arable soil over 36 years

    NASA Astrophysics Data System (ADS)

    Hofmann, A.; Heim, A.; Gioacchini, P.; Miltner, A.; Gehre, M.; Schmidt, M. W. I.

    2009-07-01

    Retardation of soil organic carbon (SOC) decay after nitrogen addition to litter or soil has been suggested in several recent studies and has been attributed to a retardation in lignin decay. With our study we tested the long-term effect of mineral fertilization (N+P) on the decay of the SOC component lignin in arable soil. To achieve this, we tracked 13C-labeled lignin and SOC in an arable soil that is part of a 36-year field experiment (conversion from C3 to C4 crops) with two mineral fertilization levels. We could show that fertilization neither retarded nor enhanced the decay of old SOC or lignin over a period of 36 years, proposing that decay of lignin was less sensitive to fertilization than previously suggested. However, for new, C4-derived lignin there were indications that decay might have been enhanced by the fertilization treatment, whereas decay of new SOC was unaffected.

  8. Non-stationary 13C metabolic flux analysis of Chinese hamster ovary cells in batch culture using extracellular labeling highlights metabolic reversibility and compartmentation

    PubMed Central

    2014-01-01

    Background Mapping the intracellular fluxes for established mammalian cell lines becomes increasingly important for scientific and economic reasons. However, this is being hampered by the high complexity of metabolic networks, particularly concerning compartmentation. Results Intracellular fluxes of the CHO-K1 cell line central carbon metabolism were successfully determined for a complex network using non-stationary 13C metabolic flux analysis. Mass isotopomers of extracellular metabolites were determined using [U-13C6] glucose as labeled substrate. Metabolic compartmentation and extracellular transport reversibility proved essential to successfully reproduce the dynamics of the labeling patterns. Alanine and pyruvate reversibility changed dynamically even if their net production fluxes remained constant. Cataplerotic fluxes of cytosolic phosphoenolpyruvate carboxykinase and mitochondrial malic enzyme and pyruvate carboxylase were successfully determined. Glycolytic pyruvate channeling to lactate was modeled by including a separate pyruvate pool. In the exponential growth phase, alanine, glycine and glutamate were excreted, and glutamine, aspartate, asparagine and serine were taken up; however, all these amino acids except asparagine were exchanged reversibly with the media. High fluxes were determined in the pentose phosphate pathway and the TCA cycle. The latter was fueled mainly by glucose but also by amino acid catabolism. Conclusions The CHO-K1 central metabolism in controlled batch culture proves to be robust. It has the main purpose to ensure fast growth on a mixture of substrates and also to mitigate oxidative stress. It achieves this by using compartmentation to control NADPH and NADH availability and by simultaneous synthesis and catabolism of amino acids. PMID:24773761

  9. Optimization of automated gas sample collection and isotope ratio mass spectrometric analysis of delta(13)C of CO(2) in air.

    PubMed

    Zeeman, Matthias J; Werner, Roland A; Eugster, Werner; Siegwolf, Rolf T W; Wehrle, Günther; Mohn, Joachim; Buchmann, Nina

    2008-12-01

    The application of (13)C/(12)C in ecosystem-scale tracer models for CO(2) in air requires accurate measurements of the mixing ratios and stable isotope ratios of CO(2). To increase measurement reliability and data intercomparability, as well as to shorten analysis times, we have improved an existing field sampling setup with portable air sampling units and developed a laboratory setup for the analysis of the delta(13)C of CO(2) in air by isotope ratio mass spectrometry (IRMS). The changes consist of (a) optimization of sample and standard gas flow paths, (b) additional software configuration, and (c) automation of liquid nitrogen refilling for the cryogenic trap. We achieved a precision better than 0.1 per thousand and an accuracy of 0.11 +/- 0.04 per thousand for the measurement of delta(13)C of CO(2) in air and unattended operation of measurement sequences up to 12 h.

  10. High-throughput backbone resonance assignment of small 13C, 15N-labeled proteins by a triple-resonance experiment with four sequential connectivity pathways using chemical shift-dependent, apparent 1J ( 1H, 13C): HNCACB codedHAHB

    NASA Astrophysics Data System (ADS)

    Pegan, Scott; Kwiatkowski, Witek; Choe, Senyon; Riek, Roland

    2003-12-01

    The proposed three-dimensional triple-resonance experiment HNCACB codedHAHB correlates sequential 15N, 1H moieties via the chemical shifts of 13C α, 13C β, 1H α, and 1H β. The four sequential correlation pathways are achieved by the incorporation of the concept of chemical shift-coding [J. Biomol. NMR 25 (2003) 281] to the TROSY-HNCACB experiment. The monitored 1H α and 1H β chemical shifts are then coded in the line shape of the cross-peaks of 13C α, 13C β along the 13C dimension through an apparent residual scalar coupling, the size of which depends on the attached hydrogen chemical shift. The information of four sequential correlation pathways enables a rapid backbone assignment. The HNCACB codedHAHB experiment was applied to ˜85% labeled 13C, 15N-labeled amino-terminal fragment of Vaccinia virus DNA topoisomerase I comprising residues 1-77. After one day of measurement on a Bruker Avance 700 MHz spectrometer and 8 h of manual analysis of the spectrum 93% of the backbone assignment was achieved.

  11. An automated GCxGC-TOF-MS protocol for batch-wise extraction and alignment of mass isotopomer matrixes from differential 13C-labelling experiments: a case study for photoautotrophic-mixotrophic grown Chlamydomonas reinhardtii cells.

    PubMed

    Kempa, Stefan; Hummel, Jan; Schwemmer, Thorsten; Pietzke, Matthias; Strehmel, Nadine; Wienkoop, Stefanie; Kopka, Joachim; Weckwerth, Wolfram

    2009-02-01

    Two dimensional gas chromatography coupled to time-of-flight mass spectrometry (GCxGC-TOF-MS) is a promising technique to overcome limits of complex metabolome analysis using one dimensional GC-TOF-MS. Especially at the stage of data export and data mining, however, convenient procedures to cope with the complexity of GCxGC-TOF-MS data are still in development. Here, we present a high sample throughput protocol exploiting first and second retention index for spectral library search and subsequent construction of a high dimensional data matrix useful for statistical analysis. The method was applied to the analysis of (13)C-labelling experiments in the unicellular green alga Chlamydomonas reinhardtii. We developed a rapid sampling and extraction procedure for Chlamydomonas reinhardtii laboratory strain (CC503), a cell wall deficient mutant. By testing all published quenching protocols we observed dramatic metabolite leakage rates for certain metabolites. To circumvent metabolite leakage, samples were directly quenched and analyzed without separation of the medium. The growth medium was adapted to this rapid sampling protocol to avoid interference with GCxGC-TOF-MS analysis. To analyse batches of samples a new software tool, MetMax, was implemented which extracts the isotopomer matrix from stable isotope labelling experiments together with the first and second retention index (RI1 and RI2). To exploit RI1 and RI2 for metabolite identification we used the Golm metabolome database (GMD [1] with RI1/RI2-reference spectra and new search algorithms. Using those techniques we analysed the dynamics of (13)CO(2) and (13)C-acetate uptake in Chlamydomonas reinhardtii cells in two different steady states namely photoautotroph and mixotroph growth conditions.

  12. Folate is absorbed across the human colon: evidence by using enteric-coated caplets containing 13C-labeled [6S]-5-formyltetrahydrofolate1, 2, 3, 4

    PubMed Central

    Lakoff, Alanna; Fazili, Zia; Aufreiter, Susanne; Pfeiffer, Christine M; Connolly, Bairbie; Gregory, Jesse F; Pencharz, Paul B; O’Connor, Deborah L

    2016-01-01

    Background Folate intakes that do not meet or greatly exceed requirements may be associated with negative health outcomes. A better understanding of contributors that influence the input side will help establish dietary guidance that ensures health benefits without associated risks. Colonic microbiota produce large quantities of folate, and [13C5]5-formyltetrahydrofolate infused during colonoscopy is absorbed. However, it is unclear if significant quantities of folate are absorbed in an intact microbiome. Objective We determined whether and how much of a physiologic dose of [13C5]5-formyltetrahydrofolate delivered in a pH-sensitive enteric caplet to an intact colonic microbiome is absorbed. Design Healthy adults ingested a specially designed pH-sensitive acrylic copolymer–coated barium sulfate caplet that contained 855 nmol (400 μg) [13C5]5-formyltetrahydrofolate. After a washout period ≥4 wk, subjects received an intravenous injection of the same compound (214 nmol). Serially collected blood samples before and after each test dose were analyzed by using a microbiological assay and liquid chromatography–tandem mass spectrometry. Results Caplet disintegration in the colon was observed by fluoroscopic imaging for 6 subjects with a mean (±SD) complete disintegration time of 284 ± 155 min. The mean (±SEM) rate of appearance of [13C5]5-methyltetrahydrofolate in plasma was 0.33 ± 0.09 (caplet) and 5.8 ± 1.2 (intravenous) nmol/h. Likely because of the significant time in the colon, the mean apparent absorption across the colon was 46%. Conclusions Folate is absorbed across the colon in humans with an undisturbed microbiome. This finding and previous observations of the size of the colonic depot of folate and its potential for manipulation by diet (eg, dietary fiber, oligosaccharides, and probiotics) suggest that an individual’s dietary folate requirement may differ depending on the consumption of dietary constituents that affect the size and composition of

  13. De novo biosynthesis of linoleic acid and its conversion to the hydrocarbon (Z,Z)-6,9-heptadecadiene in the astigmatid mite, Carpoglyphus lactis: incorporation experiments with 13C-labeled glucose.

    PubMed

    Shimizu, Nobuhiro; Naito, Michiya; Mori, Naoki; Kuwahara, Yasumasa

    2014-02-01

    De novo biosynthesis of linoleic acid (LA) and its conversion to (Z,Z)-6,9-heptadecadiene were examined in Carpoglyphus lactis (Acarina, Carpoglyphidae). Experiments involving (13)C-administration using [1-(13)C]-d-glucose revealed that (13)C atoms were incorporated into LA of total lipid extracted from the mite, resulting in labeling of all even-numbered carbons. This result demonstrated that LA was produced from (13)C-labeled acetyl-CoA, which is indicative of direct de novo biosynthesis. In these feeding experiments involving [1-(13)C]-D-glucose, (13)C atoms were also incorporated into (Z,Z)-6,9-heptadecadiene, which is one of the major secretory components in the mite. The labeling pattern of (Z,Z)-6,9-heptadecadiene at odd-numbered carbons agreed well with that of LA after loss of the carboxyl carbon. It was concluded that the mites could stably convert LA into (Z,Z)-6,9-heptadecadiene without the dietary requirement of this essential fatty acid.

  14. Application of a nanoEA-IRMS system for δ13C measurement of biomineral-bound organics in samples of diatom opal with nanomolar quantities of C

    NASA Astrophysics Data System (ADS)

    Méndez-Vicente, Ana; María Mejía-Ramírez, Luz; Stoll, Heather

    2013-04-01

    We describe the isotopic measurement of δ13C in very small samples of diatom opal (nanomolar quantities of C) both from fossil sediments and cultures. We use a nano-EA system composed of a combustion elemental analyzer (EA3000 series, Eurovector), with standard 18 mm diameter quartz oxidation-reduction reactors and an ash removal device that aids in removal of uncombusted opal and ensures a long reactor lifetime. This is coupled to a custom designed trapping and cromatography system (Nano-CF, Nu Instruments Ltd.) which cryogenically removes CO2 generated by sample combustion and introduces the gas into a low-flow helium carrier stream to the mass spectrometer (Nu Perspective IRMS instrument, Nu Instruments Ltd.). This technique allows for an important reduction in the minimum sample requirements for analysis compared to a typical EA, however the need to reduce the contribution of the blank to the measured values becomes all the more critical. Blank from the capsules can be minimized through specific protocols including cleaning with solvents and reducing the size of the capsule by cutting it to a smaller size, attaining blanks as low as 13.75±2.15 nmol C. Under these conditions we can accurately measure both standards and diatom reference materials in the range of 100 to 330 nmol C, with a precision of 2σ < 1 ‰. The measured δ13C is independent of sample size in this range for standards or samples with δ13C < -11 ‰, which is the compositional range expected for natural diatom samples. Furthermore, no memory effect is observed in samples with an isotopic δ13C value differing by > 10 ‰ analysed in sequence. Applied to measure biomineral-bound organics in cleaned diatom samples from sediments, the low sample size requirements of this technique allows us to analyse multiple size fractions within one sample, and explore isotopic fractionation patterns between them. We have analysed samples from sediments of both centric and pennate diatoms typically in the

  15. Priming effect of 13C-labelled wheat straw in no-tillage soil under drying and wetting cycles in the Loess Plateau of China

    PubMed Central

    Liu, Enke; Wang, Jianbo; Zhang, Yanqing; Angers, Denis A.; Yan, Changrong; Oweis, Theib; He, Wenqing; Liu, Qin; Chen, Baoqing

    2015-01-01

    The objectives of this study were to determine the effects of drying and wetting (DW) cycles on soil organic carbon (SOC) mineralisation and on the priming effect (PE) induced by the addition of 13C-labelled wheat straw to long-term no-tillage (NT) and conventional-tillage (CT) soils. We observed that the SOC mineralisation rate in rewetted soils was greater than that in soils that were kept at constant water content. The proportion of CO2 derived from the straw declined dramatically during the first 10 days. The priming direction was first positive, and then became slightly negative. The PE was higher under DW cycles than under constant water content. There was no significant effect of the tillage system on the SOC mineralisation rate or PE. The data indicate that the DW cycles had a significant effect on the SOC mineralisation rate and on the PE, demonstrating a positive combined effect between wheat straw and moisture fluctuations. Further research is needed to study the role of microbial communities and C pools in affecting the SOC mineralisation response to DW cycles. PMID:26345303

  16. Two-dimensional IR spectroscopy and segmental 13C labeling reveals the domain structure of human γD-crystallin amyloid fibrils.

    PubMed

    Moran, Sean D; Woys, Ann Marie; Buchanan, Lauren E; Bixby, Eli; Decatur, Sean M; Zanni, Martin T

    2012-02-28

    The structural eye lens protein γD-crystallin is a major component of cataracts, but its conformation when aggregated is unknown. Using expressed protein ligation, we uniformly (13)C labeled one of the two Greek key domains so that they are individually resolved in two-dimensional (2D) IR spectra for structural and kinetic analysis. Upon acid-induced amyloid fibril formation, the 2D IR spectra reveal that the C-terminal domain forms amyloid β-sheets, whereas the N-terminal domain becomes extremely disordered but lies in close proximity to the β-sheets. Two-dimensional IR kinetics experiments show that fibril nucleation and extension occur exclusively in the C-terminal domain. These results are unexpected because the N-terminal domain is less stable in the monomer form. Isotope dilution experiments reveal that each C-terminal domain contributes two or fewer adjacent β-strands to each β-sheet. From these observations, we propose an initial structural model for γD-crystallin amyloid fibrils. Because only 1 μg of protein is required for a 2D IR spectrum, even poorly expressing proteins can be studied under many conditions using this approach. Thus, we believe that 2D IR and protein ligation will be useful for structural and kinetic studies of many protein systems for which IR spectroscopy can be straightforwardly applied, such as membrane and amyloidogenic proteins.

  17. Impacts of proline on the central metabolism of an industrial erythromycin-producing strain Saccharopolyspora erythraea via (13)C labeling experiments.

    PubMed

    Hong, Ming; Huang, Mingzhi; Chu, Ju; Zhuang, Yingping; Zhang, Siliang

    2016-08-10

    Saccharopolyspora erythraea E3 is an important industrial strain for erythromycin production and knowledge on its metabolism is limited. In the present work, (13)C labeling experiments were conducted to characterize the metabolism of S. erythraea E3. We found that S. erythraea E3 was difficult to grow on minimal medium with glucose as sole carbon source and the addition of proline remarkably improved the cell growth. The activity of EMP pathway was very low and ED pathway was alternatively the main glucose utilization pathway. The addition of proline resulted in remarkable changes in the fluxes of central metabolism. The fluxes in PP pathway, in TCA cycle and in ED pathway were 90% higher, 64% and 31% lower on Glc/Pro than on Glc, respectively. The maintenance energy on Glc/Pro was 58.4% lower than that on Glc. The energy charge was lower on Glc than on Glc/Pro, indicating that the cells on Glc suffered from energy burden. This study elucidates the impacts of proline on the central metabolism of S. erythraea and deepens the understanding of its metabolism.

  18. Multi-isotope labelling of organic matter by diffusion of 2H/18O-H2O vapour and 13C-CO2 into the leaves and its distribution within the plant

    NASA Astrophysics Data System (ADS)

    Studer, M. S.; Siegwolf, R. T. W.; Leuenberger, M.; Abiven, S.

    2015-03-01

    Isotope labelling is a powerful tool to study elemental cycling within terrestrial ecosystems. Here we describe a new multi-isotope technique to label organic matter (OM). We exposed poplars (Populus deltoides × nigra) for 14 days to an atmosphere enriched in 13CO2 and depleted in 2H218O. After 1 week, the water-soluble leaf OM (δ13C = 1346 ± 162‰) and the leaf water were strongly labelled (δ18O = -63 ± 8, δ2H = -156 ± 15‰). The leaf water isotopic composition was between the atmospheric and stem water, indicating a considerable back-diffusion of vapour into the leaves (58-69%) in the opposite direction to the net transpiration flow. The atomic ratios of the labels recovered (18O/13C, 2H/13C) were 2-4 times higher in leaves than in the stems and roots. This could be an indication of the synthesis of more condensed compounds in roots and stems (e.g. lignin vs. cellulose) or might be the result of O and H exchange and fractionation processes during phloem transport and biosynthesis. We demonstrate that the three major OM elements (C, O, H) can be labelled and traced simultaneously within the plant. This approach could be of interdisciplinary interest in the fields of plant physiology, palaeoclimatic reconstruction or soil science.

  19. Medium- and long-chain triglycerides labeled with 13C: a comparison of oxidation after oral or parenteral administration in humans.

    PubMed

    Metges, C C; Wolfram, G

    1991-01-01

    The special physical properties of medium-chain triglycerides (MCT) result in some substantial differences in their metabolism compared to that of long-chain triglycerides (LCT). Administering MCT is of importance in enteral nutrition of patients with disturbances of fat digestion or lipoprotein lipase deficiency. Their use in parenteral nutrition is also of interest. The purpose of this study was to compare the rate of conversion of MCT and LCT to CO2 after parenteral or oral administration in humans. At 1-wk intervals, a liquid formula diet (418 kJ/h for 8 h) was given to five healthy volunteers following an overnight fast. Two hours after starting this, they were given either 100 mg [13C]trioctanoate or [13C]trioleate orally or parenterally. Excess 13C in breath carbon dioxide was analyzed by mass-spectrometry, and oxidation rates over 7.5 h were calculated. Oxidation rates for [13C]trioctanoate were on the average 34.7% after enteral and 31.0% after parenteral administration, and for [13C]trioleate, 25.3 and 24.9%, respectively (p less than 0.05, trioctanoate vs. trioleate). The results show that the oxidation of trioctanoate in healthy humans is greater both after oral and parenteral administration and increases more rapidly than that of [13C]trioleate.

  20. The Semiquinone at the Qi Site of the bc1 Complex Explored Using HYSCORE Spectroscopy and Specific Isotopic Labeling of Ubiquinone in Rhodobacter sphaeroides via 13C Methionine and Construction of a Methionine Auxotroph

    PubMed Central

    2015-01-01

    Specific isotopic labeling at the residue or substituent level extends the scope of different spectroscopic approaches to the atomistic level. Here we describe 13C isotopic labeling of the methyl and methoxy ring substituents of ubiquinone, achieved through construction of a methionine auxotroph in Rhodobacter sphaeroides strain BC17 supplemented with l-methionine with the side chain methyl group 13C-labeled. Two-dimensional electron spin echo envelope modulation (HYSCORE) was applied to study the 13C methyl and methoxy hyperfine couplings in the semiquinone generated in situ at the Qi site of the bc1 complex in its membrane environment. The data were used to characterize the distribution of unpaired spin density and the conformations of the methoxy substituents based on density functional theory calculations of 13C hyperfine tensors in the semiquinone of the geometry-optimized X-ray structure of the bc1 complex (Protein Data Bank entry 1PP9) with the highest available resolution. Comparison with other proteins indicates individual orientations of the methoxy groups in each particular case are always different from the methoxy conformations in the anion radical prepared in a frozen alcohol solution. The protocol used in the generation of the methionine auxotroph is more generally applicable and, because it introduces a gene deletion using a suicide plasmid, can be applied repeatedly. PMID:25184535

  1. {sup 13}C-METHYL FORMATE: OBSERVATIONS OF A SAMPLE OF HIGH-MASS STAR-FORMING REGIONS INCLUDING ORION-KL AND SPECTROSCOPIC CHARACTERIZATION

    SciTech Connect

    Favre, Cécile; Bergin, Edwin A.; Crockett, Nathan R.; Neill, Justin L.; Carvajal, Miguel; Field, David; Jørgensen, Jes K.; Bisschop, Suzanne E.; Brouillet, Nathalie; Despois, Didier; Baudry, Alain; Kleiner, Isabelle; Margulès, Laurent; Huet, Thérèse R.; Demaison, Jean E-mail: miguel.carvajal@dfa.uhu.es

    2015-01-01

    We have surveyed a sample of massive star-forming regions located over a range of distances from the Galactic center for methyl formate, HCOOCH{sub 3}, and its isotopologues H{sup 13}COOCH{sub 3} and HCOO{sup 13}CH{sub 3}. The observations were carried out with the APEX telescope in the frequency range 283.4-287.4 GHz. Based on the APEX observations, we report tentative detections of the {sup 13}C-methyl formate isotopologue HCOO{sup 13}CH{sub 3} toward the following four massive star-forming regions: Sgr B2(N-LMH), NGC 6334 IRS 1, W51 e2, and G19.61-0.23. In addition, we have used the 1 mm ALMA science verification observations of Orion-KL and confirm the detection of the {sup 13}C-methyl formate species in Orion-KL and image its spatial distribution. Our analysis shows that the {sup 12}C/{sup 13}C isotope ratio in methyl formate toward the Orion-KL Compact Ridge and Hot Core-SW components (68.4 ± 10.1 and 71.4 ± 7.8, respectively) are, for both the {sup 13}C-methyl formate isotopologues, commensurate with the average {sup 12}C/{sup 13}C ratio of CO derived toward Orion-KL. Likewise, regarding the other sources, our results are consistent with the {sup 12}C/{sup 13}C in CO. We also report the spectroscopic characterization, which includes a complete partition function, of the complex H{sup 13}COOCH{sub 3} and HCOO{sup 13}CH{sub 3} species. New spectroscopic data for both isotopomers H{sup 13}COOCH{sub 3} and HCOO{sup 13}CH{sub 3}, presented in this study, have made it possible to measure this fundamentally important isotope ratio in a large organic molecule for the first time.

  2. 16 CFR Appendix L to Part 305 - Sample Labels

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... FORMAT) ER19JY10.019 PROTOTYPE LABEL 7 LIGHTING FACTS LABEL FOR GENERAL SERVICE LAMPS CONTAINING MERCURY... MERCURY ER19JY10.021 SAMPLE LABEL 11 LIGHTING FACTS LABEL FOR GENERAL SERVICE LAMP CONTAINING MERCURY... MERCURY (TALL ORIENTATION) ER19JY10.023 SAMPLE LABEL 13 LIGHTING FACTS LABEL FOR GENERAL SERVICE...

  3. The pharmacokinetics and metabolism of 14C/13C-labeled ortho-phenylphenol formation following dermal application to human volunteers.

    PubMed

    Timchalk, C; Selim, S; Sangha, G; Bartels, M J

    1998-08-01

    1. The pharmacokinetics and metabolism of uniformly labeled 14C/13C-ortho-phenylphenol (OPP) were followed in six human male volunteers given a single 8 h dermal dose of 6 microg OPP/kg body weight formulated as a 0.4% (w/v) solution in isopropyl alcohol. The application site was covered with a non-occlusive dome allowing free movement of air, but preventing the loss of radioactivity due to physical contact. At 8 h post-exposure the non-occlusive dome was removed, the dose site was wiped with isopropyl alcohol containing swabs and the skin surface repeatedly stripped with tape. Blood specimens, urine, and feces were collected from each volunteer over a 5 day post-exposure period and were analyzed for radioactivity and metabolites (urine only). 2. Following dermal application, peak plasma levels of radioactivity were obtained within 4 h post-exposure and rapidly declined with virtually all of the absorbed dose rapidly excreted into the urine within 24 h post-exposure. A one-compartment pharmacokinetic model was used to describe the time-course of OPP absorption and clearance in male human volunteers. Approximately 43% of the dermally applied dose was absorbed through the skin with an average absorption half-life of 10 h. Once absorbed the renal clearance of OPP was rapid with an average half-life of 0.8 h. The rate limiting step for renal clearance was the relatively slower rate of dermal absorption; therefore the pharmacokinetics of OPP in humans was described by a 'flip-flop' single compartment model. Overall, the pharmacokinetics were similar between individuals, and the model parameters were in excellent agreement with the experimental data. 3. Approximately 73% of the total urinary radioactivity was accounted for as free OPP, OPP-sulfate and OPP-glucuronide conjugates. The sulfate conjugate was the major metabolite (approximately 69%). Therefore, total urinary OPP equivalents (acid-labile conjugates+free OPP) can be used to estimate the systemically absorbed

  4. Production of Hydrolysable Tannin-Like Structures During the Microbial Demethylation of lignin: An Assessment Using13C-Labeled Tetramethylammonium Hydroxide Thermochemolysis.

    NASA Astrophysics Data System (ADS)

    Filley, T.; Blanchette, R.; Nierop, K.; Gamblin, D.

    2003-12-01

    Phenolic compounds in soils are important mediators of microbial activity, metal mobility, soil redox, and soil organic matter building processes. Direct tannin input and the microbial decomposition of lignin in litter and soil are important contributors to this pool of phenols. The ability to accurately assess the relative differences in lignin decay (which are initiated by demethylation and side chain oxidation) among synapyl, coniferyl, and p-coumaryl components of detrital lignin requires the ability to determine microbial demethylation within the complex soil residues. Differentiating between hydrolysable tannins and contributions from advanced lignin decay can be problematic for many of the most common molecular techniques such as alkaline CuO oxidation, pyrolysis GC, and tetramethylammonium hydroxide thermochemolysis because of either the masking effects of derivatizing agents, oxidative damage to ortho-phenols or low volatility of lignin monomers. In this study we investigate lignin demethylation and polyhydroxyl-aromatic production in BC and C horizons of sandy forest soils dominated by oak, the A horizon from a red spruce forest, and controlled microbial inoculation studies of woody tissue using in-line 13C-labeled tetramethylammonium hydroxide thermochemolysis. Both white-rot and brown-rot decay resulted in syringyl demethylation, with the latter exhibiting more aggressive demethylation chemistry, while coniferyl monomer demethylation was essentially restricted to brown-rot decay. In a typical brown-rot sequence demethylation of syringyl components occurs more rapidly than coniferyl units within the same tissue and lower molecular weight fragments are likewise more demethylated than lignin monomers containing the full glycerol side chain. Demethylation of both methoxyl groups in the syringyl monomer is evident in soil horizons as well as laboratory inoculations. The latter may suggest demethylation after lignin depolymerization. Low molecular weight

  5. Mass spectrometry-based microassay of 2H and 13C plasma glucose labeling to quantify liver metabolic fluxes in vivo

    PubMed Central

    Hasenour, Clinton M.; Wall, Martha L.; Ridley, D. Emerson; Hughey, Curtis C.; James, Freyja D.; Wasserman, David H.

    2015-01-01

    Mouse models designed to examine hepatic metabolism are critical to diabetes and obesity research. Thus, a microscale method to quantitatively assess hepatic glucose and intermediary metabolism in conscious, unrestrained mice was developed. [13C3]propionate, [2H2]water, and [6,6-2H2]glucose isotopes were delivered intravenously in short- (9 h) and long-term-fasted (19 h) C57BL/6J mice. GC-MS and mass isotopomer distribution (MID) analysis were performed on three 40-μl arterial plasma glucose samples obtained during the euglycemic isotopic steady state. Model-based regression of hepatic glucose and citric acid cycle (CAC)-related fluxes was performed using a comprehensive isotopomer model to track carbon and hydrogen atom transitions through the network and thereby simulate the MIDs of measured fragment ions. Glucose-6-phosphate production from glycogen diminished, and endogenous glucose production was exclusively gluconeogenic with prolonged fasting. Gluconeogenic flux from phosphoenolpyruvate (PEP) remained stable, whereas that from glycerol modestly increased from short- to long-term fasting. CAC flux [i.e., citrate synthase (VCS)] was reduced with long-term fasting. Interestingly, anaplerosis and cataplerosis increased with fast duration; accordingly, pyruvate carboxylation and the conversion of oxaloacetate to PEP were severalfold higher than VCS in long-term fasted mice. This method utilizes state-of-the-art in vivo methodology and comprehensive isotopomer modeling to quantify hepatic glucose and intermediary fluxes during physiological stress in mice. The small plasma requirements permit serial sampling without stress and the affirmation of steady-state glucose kinetics. Furthermore, the approach can accommodate a broad range of modeling assumptions, isotope tracers, and measurement inputs without the need to introduce ad hoc mathematical approximations. PMID:25991647

  6. SIMS ion microscopy imaging of boronophenylalanine (BPA) and 13C15N-labeled phenylalanine in human glioblastoma cells: Relevance of subcellular scale observations to BPA-mediated boron neutron capture therapy of cancer

    NASA Astrophysics Data System (ADS)

    Chandra, Subhash; Lorey, Daniel R., II

    2007-02-01

    p-Boronophenylalanine (BPA) is a clinically approved boron neutron capture therapy (BNCT) agent currently being used in clinical trials of glioblastoma multiforme, melanoma and liver metastases. Secondary ion mass spectrometry (SIMS) observations from the Cornell SIMS Laboratory provided support for using a 6 h infusion of BPA, instead of a 2 h infusion, for achieving higher levels of boron in brain tumor cells. These observations were clinically implemented in Phase II experimental trials of glioblastoma multiforme in Sweden. However, the mechanisms for higher BPA accumulation with longer infusions have remained unknown. In this work, by using 13C15N-labeled phenylalanine and T98G human glioblastoma cells, comparisons between the 10B-delivery of BPA and the accumulation of labeled phenylalanine after 2 and 6 h treatments were made with a Cameca IMS-3f SIMS ion microscope at 500 nm spatial resolution in fast frozen, freeze-fractured, freeze-dried cells. Due to the presence of the Na-K-ATPase in the plasma membrane of most mammalian cells, the cells maintain an approximately 10/1 ratio of K/Na in the intracellular milieu. Therefore, the quantitative imaging of these highly diffusible species in the identical cell in which the boron or labeled amino acid was imaged provides a rule-of-thumb criterion for validation of SIMS observations and the reliability of the cryogenic sampling. The labeled phenylalanine was detected at mass 28, as the 28(13C15N)- molecular ion. Correlative analysis with optical and confocal laser scanning microscopy revealed that fractured freeze-dried glioblastoma cells contained well-preserved ultrastructural details with three discernible subcellular regions: a nucleus or multiple nuclei, a mitochondria-rich perinuclear cytoplasmic region and the remaining cytoplasm. SIMS analysis revealed that the overall cellular signals of both 10B from BPA and 28CN- from labeled phenylalanine increased approximately 1.6-fold between the 2 and 6 h exposures

  7. Synthesis of 3H, 13C,2H3,15N and 14C-labelled SCH 466036, a histamine 3 receptor antagonist.

    PubMed

    Hesk, D; Borges, S; Dumpit, R; Hendershot, S; Koharski, D; Lavey, C; McNamara, P; Voronin, K

    2015-02-01

    The synthesis of [(3)H]SCH 466036, [Me-(3)H3]SCH 466036, [(13)C,(2)H3,(15)N]SCH 466036 and [(14)C]SCH 466036 is described. [(3)H]SCH 466036 was prepared in two steps via Raney Ni-catalysed exchange with tritiated water. [Me-(3)H3]SCH 466036 was prepared in a single step from [(3)H]methyl iodide in 45% yield. [(13)C,(2)H3,(15)N]SCH 466036 was prepared in two steps from [(15)N]hydroxylamine and [(13)C,(2)H3]methyl iodide with an overall yield of 16%. [(14)C]SCH 466036 was prepared in seven steps from [(14)C]potassium cyanide in an overall yield of 13%.

  8. A gas chromatography/combustion/isotope ratio mass spectrometry system for high-precision delta13C measurements of atmospheric methane extracted from ice core samples.

    PubMed

    Behrens, Melanie; Schmitt, Jochen; Richter, Klaus-Uwe; Bock, Michael; Richter, Ulrike C; Levin, Ingeborg; Fischer, Hubertus

    2008-10-01

    Past atmospheric composition can be reconstructed by the analysis of air enclosures in polar ice cores which archive ancient air in decadal to centennial resolution. Due to the different carbon isotopic signatures of different methane sources high-precision measurements of delta13CH4 in ice cores provide clues about the global methane cycle in the past. We developed a highly automated (continuous-flow) gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) technique for ice core samples of approximately 200 g. The methane is melt-extracted using a purge-and-trap method, then separated from the main air constituents, combusted and measured as CO2 by a conventional isotope ratio mass spectrometer. One CO2 working standard, one CH4 and two air reference gases are used to identify potential sources of isotope fractionation within the entire sample preparation process and to enhance the stability, reproducibility and accuracy of the measurement. After correction for gravitational fractionation, pre-industrial air samples from Greenland ice (1831 +/- 40 years) show a delta13C(VPDB) of -49.54 +/- 0.13 per thousand and Antarctic samples (1530 +/- 25 years) show a delta13C(VPDB) of -48.00 +/- 0.12 per thousand in good agreement with published data.

  9. 19 CFR 12.22 - Labels; samples.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Labels; samples. 12.22 Section 12.22 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY SPECIAL CLASSES OF MERCHANDISE Viruses, Serums, Toxins, Antitoxins, and Analogous Products for...

  10. 19 CFR 12.22 - Labels; samples.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Labels; samples. 12.22 Section 12.22 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY SPECIAL CLASSES OF MERCHANDISE Viruses, Serums, Toxins, Antitoxins, and Analogous Products for...

  11. 19 CFR 12.22 - Labels; samples.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Labels; samples. 12.22 Section 12.22 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY SPECIAL CLASSES OF MERCHANDISE Viruses, Serums, Toxins, Antitoxins, and Analogous Products for...

  12. UV-laser-based microscopic dissection of tree rings - a novel sampling tool for δ(13) C and δ(18) O studies.

    PubMed

    Schollaen, Karina; Heinrich, Ingo; Helle, Gerhard

    2014-02-01

    UV-laser-based microscopic systems were utilized to dissect and sample organic tissue for stable isotope measurements from thin wood cross-sections. We tested UV-laser-based microscopic tissue dissection in practice for high-resolution isotopic analyses (δ(13) C/δ(18) O) on thin cross-sections from different tree species. The method allows serial isolation of tissue of any shape and from millimetre down to micrometre scales. On-screen pre-defined areas of interest were automatically dissected and collected for mass spectrometric analysis. Three examples of high-resolution isotopic analyses revealed that: in comparison to δ(13) C of xylem cells, woody ray parenchyma of deciduous trees have the same year-to-year variability, but reveal offsets that are opposite in sign depending on whether wholewood or cellulose is considered; high-resolution tree-ring δ(18) O profiles of Indonesian teak reflect monsoonal rainfall patterns and are sensitive to rainfall extremes caused by ENSO; and seasonal moisture signals in intra-tree-ring δ(18) O of white pine are weighted by nonlinear intra-annual growth dynamics. The applications demonstrate that the use of UV-laser-based microscopic dissection allows for sampling plant tissue at ultrahigh resolution and unprecedented precision. This new technique facilitates sampling for stable isotope analysis of anatomical plant traits like combined tree eco-physiological, wood anatomical and dendroclimatological studies.

  13. Intramolecular N-Glycan/Polypeptide Interactions Observed at Multiple N-Glycan Remodeling Steps through [13C,15N]-N-Acetylglucosamine Labeling of Immunoglobulin G1

    PubMed Central

    2014-01-01

    Asparagine-linked (N) glycosylation is a common eukaryotic protein modification that affects protein folding, function, and stability through intramolecular interactions between N-glycan and polypeptide residues. Attempts to characterize the structure–activity relationship of each N-glycan are hindered by inherent properties of the glycoprotein, including glycan conformational and compositional heterogeneity. These limitations can be addressed by using a combination of nuclear magnetic resonance techniques following enzymatic glycan remodeling to simultaneously generate homogeneous glycoforms. However, widely applicable methods do not yet exist. To address this technological gap, immature glycoforms of the immunoglobulin G1 fragment crystallizable (Fc) were isolated in a homogeneous state and enzymatically remodeled with [13C,15N]-N-acetylglucosamine (GlcNAc). UDP-[13C,15N]GlcNAc was synthesized enzymatically in a one-pot reaction from [13C]glucose and [15N-amido]glutamine. Modifying Fc with recombinantly expressed glycosyltransferases (Gnt1 and Gnt2) and UDP-[13C,15N]GlcNAc resulted in complete glycoform conversion as judged by mass spectrometry. Two-dimensional heteronuclear single-quantum coherence spectra of the Gnt1 product, containing a single [13C,15N]GlcNAc residue on each N-glycan, showed that the N-glycan is stabilized through interactions with polypeptide residues. Similar spectra of homogeneous glycoforms, halted at different points along the N-glycan remodeling pathway, revealed the presence of an increased level of interaction between the N-glycan and polypeptide at each step, including mannose trimming, as the N-glycan was converted to a complex-type, biantennary form. Thus, conformational restriction increases as Fc N-glycan maturation proceeds. Gnt1 and Gnt2 catalyze fundamental reactions in the synthesis of every glycoprotein with a complex-type N-glycan; thus, the strategies presented herein can be applied to a broad range of glycoprotein

  14. (13)C NMR Metabolomics: INADEQUATE Network Analysis.

    PubMed

    Clendinen, Chaevien S; Pasquel, Christian; Ajredini, Ramadan; Edison, Arthur S

    2015-06-02

    The many advantages of (13)C NMR are often overshadowed by its intrinsically low sensitivity. Given that carbon makes up the backbone of most biologically relevant molecules, (13)C NMR offers a straightforward measurement of these compounds. Two-dimensional (13)C-(13)C correlation experiments like INADEQUATE (incredible natural abundance double quantum transfer experiment) are ideal for the structural elucidation of natural products and have great but untapped potential for metabolomics analysis. We demonstrate a new and semiautomated approach called INETA (INADEQUATE network analysis) for the untargeted analysis of INADEQUATE data sets using an in silico INADEQUATE database. We demonstrate this approach using isotopically labeled Caenorhabditis elegans mixtures.

  15. Photobioreactor design for isotopic non-stationary 13C-metabolic flux analysis (INST 13C-MFA) under photoautotrophic conditions.

    PubMed

    Martzolff, Arnaud; Cahoreau, Edern; Cogne, Guillaume; Peyriga, Lindsay; Portais, Jean-Charles; Dechandol, Emmanuel; Le Grand, Fabienne; Massou, Stéphane; Gonçalves, Olivier; Pruvost, Jérémy; Legrand, Jack

    2012-12-01

    Adaptive metabolic behavior of photoautotrophic microorganisms toward genetic and environmental perturbations can be interpreted in a quantitative depiction of carbon flow through a biochemical reaction network using isotopic non-stationary (13) C-metabolic flux analysis (INST (13) C-MFA). To evaluate (13) C-metabolic flux maps for Chlamydomonas reinhardtii, an original experimental framework was designed allowing rapid, reliable collection of high-quality isotopomer data against time. It involved (i) a short-time (13) C labeling injection device based on mixing control in a torus-shaped photobioreactor with plug-flow hydrodynamics allowing a sudden step-change in the (13) C proportion in the substrate feed and (ii) a rapid sampling procedure using an automatic fast filtration method coupled to a manual rapid liquid nitrogen quenching step. (13) C-substrate labeling enrichment was controlled through the total dissolved inorganic carbon concentration in the pulsed solution. First results were obtained from steady-state continuous culture measurements allowing the characterization of the kinetics of label incorporation into light-limited growing cells cultivated in a photobioreactor operating at the maximal biomass productivity for an incident photon flux density of 200 µmol m(-2) s(-1). (13)C label incorporation was measured for 21 intracellular metabolites using IC-MS/MS in 58 samples collected across a labeling experiment duration of 7 min. The fastest labeling rate was observed for 2/3-phosphoglycerate with an apparent isotopic stationary state reached after 300 s. The labeling rate was consistent with the optimized mixing time of about 4.9 s inside the reactor and the shortest reliable sampling period assessed at 5 s.

  16. Measurements of CH4 Mixing Ratio and D/H and 13C/12C Isotope Ratios in Atmospheric Samples from Continental United States

    NASA Astrophysics Data System (ADS)

    Tyler, S. C.; Ajie, H. O.; Gotoh, A. A.; Rice, A. L.

    2002-12-01

    We report δD and δ13C measurements of atmospheric CH4 from air samples collected bi-weekly from fixed surface sites in the United States. Our fixed surface sites are located at the mid-continental site Niwot Ridge, CO (41°N, 105°W) and a Pacific coastal northern hemispheric site receiving strong westerlies, Montaña de Oro, CA (35°N, 121°W). Data from multiyear bi-weekly sampling provide information relating seasonal cycling of CH4 sources and sinks in background air, provide a record of long term trends in CH4 mixing and isotope ratio related to atmospheric CH4 loading, and may reveal information on regional sources of CH4. Measurements of δD-CH4 average -93+/-3‰ (versus V-SMOW) at Niwot Ridge from 1999 through 2001 and -97+/-4‰ at Montaña de Oro from 2000 through 2001. Annual seasonal cycles observed at both sites are 6-7‰ , exhibiting strong anti-correlation with CH4 mixing ratio seasonality that appears to be largely sink-driven (i.e. through reaction with OH). More extensive time series in δ13C-CH4 average -47.2+/-0.1‰ (versus V-PDB) at Niwot Ridge from 1995 through 2001 and -47.3+/-0.2‰ at Montaña de Oro from 1996 through 2001. In contrast to δD-CH4, seasonality in δ13C-CH4 has a relatively poor anti-correlation with seasonality in CH4 mixing ratio, indicating significant source-driven influence. We discuss the implications of these measurements on the atmospheric CH4 budget and detail the precision and accuracy of our data with respect international reference standards. It is our intention to have these data archived and available for modeling and advanced calculations by other atmospheric researchers in the near future.

  17. 13C metabolic flux analysis.

    PubMed

    Wiechert, W

    2001-07-01

    Metabolic flux analysis using 13C-labeled substrates has become an important tool in metabolic engineering. It allows the detailed quantification of all intracellular fluxes in the central metabolism of a microorganism. The method has strongly evolved in recent years by the introduction of new experimental procedures, measurement techniques, and mathematical data evaluation methods. Many of these improvements require advanced skills in the application of nuclear magnetic resonance and mass spectrometry techniques on the one hand and computational and statistical experience on the other hand. This minireview summarizes these recent developments and sketches the major practical problems. An outlook to possible future developments concludes the text.

  18. Methods for metabolic evaluation of prostate cancer cells using proton and 13C HR-MAS spectroscopy and [3-13C] pyruvate as a metabolic substrate

    PubMed Central

    Levin, Yakir S.; Albers, Mark J.; Butler, Thomas N.; Spielman, Daniel; Peehl, Donna M.; Kurhanewicz, John

    2009-01-01

    Prostate cancer has been shown to undergo unique metabolic changes associated with neoplastic transformation, with associated changes in citrate, alanine, and lactate concentrations. 13C HR-MAS spectroscopy provides an opportunity to simultaneously investigate the metabolic pathways implicated in these changes by using 13C labeled substrates as metabolic probes. In this work, a method to reproducibly interrogate metabolism in prostate cancer cells in primary culture was developed using HR-MAS spectroscopy. Optimization of cell culture protocols, labeling parameters, harvesting, storage, and transfer was performed. Using [3-13C] pyruvate as a metabolic probe, 1H and 13C HR-MAS spectroscopy were used to quantify the net amount and fractional enrichment of several labeled metabolites that evolved in multiple cell samples from each of five different prostate cancers. Average enrichment across all cancers was 32.4±5.4% for [3-13C] alanine, 24.5±5.4% for [4-13C] glutamate, 9.1±2.5% for [3-13C] glutamate, 25.2±5.7% for [3-13C] aspartate, and 4.2±1.0% for [3-13C] lactate. Cell samples from the same parent population demonstrated reproducible fractional enrichments of alanine, glutamate, and aspartate to within 12%, 10%, and 10%, respectively. Furthermore, the cells produced a significant amount of [4-13C] glutamate, which supports the bioenergetic theory for prostate cancer. These methods will allow further characterization of metabolic properties of prostate cancer cells in the future. PMID:19780158

  19. Synthesis of 2H- and 13C-substituted dithanes

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2003-01-01

    The present invention is directed to labeled compounds, [2-.sup.13 C]dithiane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to processes of preparing [2-.sup.13 C]dithiane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to labeled compounds, e.g., [.sup.2 H.sub.1-2, .sup.13 C]methanol (arylthio)-, acetates wherein the .sup.13 C atom is directly bonded to exactly one or two deuterium atoms.

  20. Synthesis Of 2h- And 13c-Substituted Dithanes

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2004-05-04

    The present invention is directed to labeled compounds, [2-.sup.13 C]dithane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to processes of preparing [2-.sup.13 C]dithane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to labeled compounds, e.g., [.sup.2 H.sub.1-2, .sup.13 C]methanol (arylthio)-, acetates wherein the .sup.13 C atom is directly bonded to exactly one or two deuterium atoms.

  1. Methane mole fraction and δ13C above and below the trade wind inversion at Ascension Island in air sampled by aerial robotics

    NASA Astrophysics Data System (ADS)

    Brownlow, R.; Lowry, D.; Thomas, R. M.; Fisher, R. E.; France, J. L.; Cain, M.; Richardson, T. S.; Greatwood, C.; Freer, J.; Pyle, J. A.; MacKenzie, A. R.; Nisbet, E. G.

    2016-11-01

    Ascension Island is a remote South Atlantic equatorial site, ideal for monitoring tropical background CH4. In September 2014 and July 2015, octocopters were used to collect air samples in Tedlar bags from different heights above and below the well-defined Trade Wind Inversion (TWI), sampling a maximum altitude of 2700 m above mean sea level. Sampling captured both remote air in the marine boundary layer below the TWI and also air masses above the TWI that had been lofted by convective systems in the African tropics. Air above the TWI was characterized by higher CH4, but no distinct shift in δ13C was observed compared to the air below. Back trajectories indicate that lofted CH4 emissions from Southern Hemisphere Africa have bulk δ13CCH4 signatures similar to background, suggesting mixed emissions from wetlands, agriculture, and biomass burning. The campaigns illustrate the usefulness of unmanned aerial system sampling and Ascension's value for atmospheric measurement in an understudied region.

  2. (13)C-labeled biochemical probes for the study of cancer metabolism with dynamic nuclear polarization-enhanced magnetic resonance imaging.

    PubMed

    Salamanca-Cardona, Lucia; Keshari, Kayvan R

    2015-01-01

    In recent years, advances in metabolic imaging have become dependable tools for the diagnosis and treatment assessment in cancer. Dynamic nuclear polarization (DNP) has recently emerged as a promising technology in hyperpolarized (HP) magnetic resonance imaging (MRI) and has reached clinical relevance with the successful visualization of [1-(13)C] pyruvate as a molecular imaging probe in human prostate cancer. This review focuses on introducing representative compounds relevant to metabolism that are characteristic of cancer tissue: aerobic glycolysis and pyruvate metabolism, glutamine addiction and glutamine/glutamate metabolism, and the redox state and ascorbate/dehydroascorbate metabolism. In addition, a brief introduction of probes that can be used to trace necrosis, pH changes, and other pathways relevant to cancer is presented to demonstrate the potential that HP MRI has to revolutionize the use of molecular imaging for diagnosis and assessment of treatments in cancer.

  3. An overview of methods using (13)C for improved compound identification in metabolomics and natural products.

    PubMed

    Clendinen, Chaevien S; Stupp, Gregory S; Ajredini, Ramadan; Lee-McMullen, Brittany; Beecher, Chris; Edison, Arthur S

    2015-01-01

    Compound identification is a major bottleneck in metabolomics studies. In nuclear magnetic resonance (NMR) investigations, resonance overlap often hinders unambiguous database matching or de novo compound identification. In liquid chromatography-mass spectrometry (LC-MS), discriminating between biological signals and background artifacts and reliable determination of molecular formulae are not always straightforward. We have designed and implemented several NMR and LC-MS approaches that utilize (13)C, either enriched or at natural abundance, in metabolomics applications. For LC-MS applications, we describe a technique called isotopic ratio outlier analysis (IROA), which utilizes samples that are isotopically labeled with 5% (test) and 95% (control) (13)C. This labeling strategy leads to characteristic isotopic patterns that allow the differentiation of biological signals from artifacts and yield the exact number of carbons, significantly reducing possible molecular formulae. The relative abundance between the test and control samples for every IROA feature can be determined simply by integrating the peaks that arise from the 5 and 95% channels. For NMR applications, we describe two (13)C-based approaches. For samples at natural abundance, we have developed a workflow to obtain (13)C-(13)C and (13)C-(1)H statistical correlations using 1D (13)C and (1)H NMR spectra. For samples that can be isotopically labeled, we describe another NMR approach to obtain direct (13)C-(13)C spectroscopic correlations. These methods both provide extensive information about the carbon framework of compounds in the mixture for either database matching or de novo compound identification. We also discuss strategies in which (13)C NMR can be used to identify unknown compounds from IROA experiments. By combining technologies with the same samples, we can identify important biomarkers and corresponding metabolites of interest.

  4. 13 C solid-state NMR study of the 13 C-labeled peptide, (E)8 GGLGGQGAG(A)6 GGAGQGGYGG as a model for the local structure of Nephila clavipes dragline silk (MaSp1) before and after spinning.

    PubMed

    Yazawa, Koji; Yamaguchi, Erika; Knight, David; Asakura, Tetsuo

    2012-06-01

    We prepared the water soluble model peptide, (E)(8) GGLGGQGAG(A)(6) GGAGQGGYGG, to throw light on the local structure of spidroin 1 (MaSpl) protein in spider dragline silk of Nephila clavipes before and after spinning. Solution (13) C NMR showed that the conformation of the peptide in aqueous solution was essentially random coil. Solid-state NMR was used to follow conformation-dependent (13) C chemical shifts in (13) C selectively labeled versions of the peptide. The peptide lyophilized from an aqueous solution at neutral pH (hereafter referred to as "without acid treatment)"was used to mimic the state of the spidroin stored in the spider's silk gland while the peptide precipitated from the acidic solution ("with acid treatment") was used to simulate the role of acid treatment in inducing conformation change in the natural spinning process. In without acid treatment, the fraction of random coil conformation was lowest in the N-terminal region (residues 15-18) when compared with the C-terminus. The conformational change produced by the acid treatment occurred in the sequence, G(15) AG(A)(6) GGAG(27), interposed between pairs of Gly residues pairs, Gly(12,13), and Gly(29,30). The acid treated peptide showed a remarkable decrease in the fraction of random coil conformation from A(20) to A(23) in the poly-Ala region when compared with the peptide without acid treatment. These observations taken together suggest that the peptide can be used as a model for studying the localization of the conformation change in spider silk fibroin in the natural spinning and the role of acid treatment in this process.

  5. Quantitative 13C traces of glucose fate in hepatitis B virus infected hepatocytes.

    PubMed

    Wan, Qianfen; Wang, Yulan; Tang, Huiru

    2017-02-21

    Quantitative characterization of 13C-labeled metabolites is an important part of the stable isotope tracing method widely used in metabolic flux analysis. Due to long relaxation time and low sensitivity of 13C nuclei, direct measurement of 13C labeled metabolites using one dimensional 13C NMR often fails to meet the demand of metabolomics studies especially with large number of samples and metabolites having low abundance. Although HSQC-based 2D NMR methods have improved sensitivity with inversion detection, they are time-consuming thus unsuitable for high-throughput absolute quantification of 13C-labeled metabolites. In this study, we developed a method for absolute quantification of 13C labeled metabolites using naturally abundant TSP as a reference with the first increment of HMQC pulse sequence, taking polarization transfer efficiencies into consideration. We validated this method using a mixture of 13C-labeled alanine, methionine, glucose and formic acid together with a mixture of alanine, lactate, glycine, uridine, cytosine, and hypoxanthine having natural 13C abundance with known concentrations. We subsequently applied this method to analyze the flux of glucose in HepG2 cells infected with hepatitis B virus (HBV). The results showed that HBV infection increased the cellular uptake of glucose, stimulated glycolysis and enhanced the pentose phosphate and hexosamine pathways for biosynthesis of RNA and DNA and nucleotide sugars to facilitate HBV replication. This method saves experimental time and provides a possibility for absolute quantitative tracking of the 13C labeled metabolites for high throughput studies.

  6. Dynamic nuclear polarization-enhanced 13C NMR spectroscopy of static biological solids

    PubMed Central

    Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert

    2013-01-01

    We explore the possibility of using dynamic nuclear polarization (DNP) to enhance signals in structural studies of biological solids by solid state NMR without sample spinning. Specifically, we use 2D 13C-13C exchange spectroscopy to probe the peptide backbone torsion angles (ϕ,ψ) in a series of selectively 13C-labeled 40-residue β-amyloid (Aβ1–40) samples, in both fibrillar and non-fibrillar states. Experiments are carried out at 9.39 T and 8 K, using a static double-resonance NMR probe and low-power microwave irradiation at 264 GHz. In frozen solutions of Aβ1–40 fibrils doped with DOTOPA-TEMPO, we observe DNP signal enhancement factors of 16–21. We show that the orientation- and frequency-dependent spin polarization exchange between sequential backbone carbonyl 13C labels can be simulated accurately using a simple expression for the exchange rate, after experimentally determined homogeneous 13C lineshapes are incorporated in the simulations. The experimental 2D 13C-13C exchange spectra place constraints on the ϕ and ψ angles between the two carbonyl labels. Although the data are not sufficient to determine ϕ and ψ uniquely, the data do provide non-trivial constraints that could be included in structure calculations. With DNP at low temperatures, 2D 13C-13C exchange spectra can be obtained from a 3.5 mg sample of Aβ1–40 fibrils in 4 hr or less, despite the broad 13C chemical shift anisotropy line shapes that are observed in static samples. PMID:23562665

  7. 16 CFR 301.33 - Labeling of samples.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... REGULATIONS UNDER FUR PRODUCTS LABELING ACT Regulations § 301.33 Labeling of samples. Where samples of furs or fur products subject to the act are used to promote or effect sales of fur products, said samples, as well as the fur products purchased therefrom, shall be labeled to show the information required...

  8. 16 CFR 301.33 - Labeling of samples.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... REGULATIONS UNDER FUR PRODUCTS LABELING ACT Regulations § 301.33 Labeling of samples. Where samples of furs or fur products subject to the act are used to promote or effect sales of fur products, said samples, as well as the fur products purchased therefrom, shall be labeled to show the information required...

  9. 16 CFR 301.33 - Labeling of samples.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... REGULATIONS UNDER FUR PRODUCTS LABELING ACT Regulations § 301.33 Labeling of samples. Where samples of furs or fur products subject to the act are used to promote or effect sales of fur products, said samples, as well as the fur products purchased therefrom, shall be labeled to show the information required...

  10. 16 CFR 301.33 - Labeling of samples.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... REGULATIONS UNDER FUR PRODUCTS LABELING ACT Regulations § 301.33 Labeling of samples. Where samples of furs or fur products subject to the act are used to promote or effect sales of fur products, said samples, as well as the fur products purchased therefrom, shall be labeled to show the information required...

  11. 16 CFR 301.33 - Labeling of samples.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REGULATIONS UNDER FUR PRODUCTS LABELING ACT Regulations § 301.33 Labeling of samples. Where samples of furs or fur products subject to the act are used to promote or effect sales of fur products, said samples, as well as the fur products purchased therefrom, shall be labeled to show the information required...

  12. Flux response of glycolysis and storage metabolism during rapid feast/famine conditions in Penicillium chrysogenum using dynamic (13)C labeling.

    PubMed

    de Jonge, Lodewijk; Buijs, Nicolaas A A; Heijnen, Joseph J; van Gulik, Walter M; Abate, Alessandro; Wahl, S Aljoscha

    2014-03-01

    The scale-up of fermentation processes frequently leads to a reduced productivity compared to small-scale screening experiments. Large-scale mixing limitations that lead to gradients in substrate and oxygen availability could influence the microorganism performance. Here, the impact of substrate gradients on a penicillin G producing Penicillium chrysogenum cultivation was analyzed using an intermittent glucose feeding regime. The intermittent feeding led to fluctuations in the extracellular glucose concentration between 400 μM down to 6.5 μM at the end of the cycle. The intracellular metabolite concentrations responded strongly and showed up to 100-fold changes. The intracellular flux changes were estimated on the basis of dynamic (13) C mass isotopomer measurements during three cycles of feast and famine using a novel hybrid modeling approach. The flux estimations indicated a high turnover of internal and external storage metabolites in P. chrysogenum under feast/famine conditions. The synthesis and degradation of storage requires cellular energy (ATP and UTP) in competition with other cellular functions including product formation. Especially, 38% of the incoming glucose was recycled once in storage metabolism. This result indicated that storage turnover is increased under dynamic cultivation conditions and contributes to the observed decrease in productivity compared to reference steady-state conditions.

  13. Metabolic flux analysis of recombinant Pichia pastoris growing on different glycerol/methanol mixtures by iterative fitting of NMR-derived (13)C-labelling data from proteinogenic amino acids.

    PubMed

    Jordà, Joel; de Jesus, Sérgio S; Peltier, Solenne; Ferrer, Pau; Albiol, Joan

    2014-01-25

    The yeast Pichia pastoris has emerged as one of the most promising yeast cell factories for the production of heterologous proteins. The readily available genetic tools and the ease of high-cell density cultivations using methanol or glycerol/methanol mixtures are among the key factors for this development. Previous studies have shown that the use of mixed feeds of glycerol and methanol seem to alleviate the metabolic burden derived from protein production, allowing for higher specific and volumetric process productivities. However, initial studies of glycerol/methanol co-metabolism in P. pastoris by classical metabolic flux analyses using (13)C-derived Metabolic Flux Ratio (METAFoR) constraints were hampered by the reduced labelling information obtained when using C3:C1 substrate mixtures in relation to the conventional C6 substrate, that is, glucose. In this study, carbon flux distributions through the central metabolic pathways in glycerol/methanol co-assimilation conditions have been further characterised using biosynthetically directed fractional (13)C labelling. In particular, metabolic flux distributions were obtained under 3 different glycerol/methanol ratios and growth rates by iterative fitting of NMR-derived (13)C-labelling data from proteinogenic amino acids using the software tool (13)CFlux2. Specifically, cells were grown aerobically in chemostat cultures fed with 80:20, 60:40 and 40:60 (w:w) glycerol/methanol mixtures at two dilutions rates (0.05 hour(-1) and 0.16 hour(-1)), allowing to obtain additional data (biomass composition and extracellular fluxes) to complement pre-existing datasets. The performed (13)C-MFA reveals a significant redistribution of carbon fluxes in the central carbon metabolism as a result of the shift in the dilution rate, while the ratio of carbon sources has a lower impact on carbon flux distribution in cells growing at the same dilution rate. At low growth rate, the percentage of methanol directly dissimilated to CO2 ranges

  14. Coupling a high-temperature catalytic oxidation total organic carbon analyzer to an isotope ratio mass spectrometer to measure natural-abundance delta13C-dissolved organic carbon in marine and freshwater samples.

    PubMed

    Panetta, Robert J; Ibrahim, Mina; Gélinas, Yves

    2008-07-01

    The stable isotope composition of dissolved organic carbon (delta(13)C-DOC) provides powerful information toward understanding carbon sources and cycling, but analytical limitations have precluded its routine measurement in natural samples. Recent interfacing of wet oxidation-based dissolved organic carbon analyzers and isotope ratio mass spectrometers has simplified the measurement of delta(13)C-DOC in freshwaters, but the analysis of salty estuarine/marine samples still proves difficult. Here we describe the coupling of the more widespread high-temperature catalytic oxidation-based total organic carbon analyzer to an isotope ratio mass spectrometer (HTC-IRMS) through cryogenic trapping of analyte gases exiting the HTC analyzer for routine analysis of delta(13)C-DOC in aquatic and marine samples. Targeted elimination of major sources of background CO2 originating from the HTC analyzer allows for the routine measurement of samples over the natural range of DOC concentrations (from 40 microM to over 2000 microM), and salinities (<0.1-36 g/kg). Because consensus reference natural samples for delta(13)C-DOC do not exist, method validation was carried out with water-soluble stable isotope standards as well as previously measured natural samples (IAEA sucrose, Suwannee River Fulvic Acids, Deep Sargasso Sea consensus reference material, and St. Lawrence River water) and result in excellent delta(13)C-DOC accuracy (+/-0.2 per thousand) and precision (+/-0.3 per thousand).

  15. Carbonation of C–S–H and C–A–S–H samples studied by {sup 13}C, {sup 27}Al and {sup 29}Si MAS NMR spectroscopy

    SciTech Connect

    Sevelsted, Tine F.; Skibsted, Jørgen

    2015-05-15

    Synthesized calcium silicate hydrate (C–S–H) samples with Ca/Si ratios of 0.66, 1.0, and 1.5 have been exposed to atmospheric CO{sub 2} at room temperature and high relative humidity and studied after one to 12 weeks. {sup 29}Si NMR reveals that the decomposition of C–S–H caused by carbonation involves two steps and that the decomposition rate decreases with increasing Ca/Si ratio. The first step is a gradual decalcification of the C–S–H where calcium is removed from the interlayer and defect sites in the silicate chains until Ca/Si = 0.67 is reached, ideally corresponding to infinite silicate chains. In the seconds step, calcium from the principal layers is consumed, resulting in the final decomposition of the C–S–H and the formation of an amorphous silica phase composed of Q{sup 3} and Q{sup 4} silicate tetrahedra. The amount of solid carbonates and of carbonate ions in a hydrous environment increases with increasing Ca/Si ratio for the C–S–H, as shown by {sup 13}C NMR. For C–A–S–H samples with Ca/Si = 1.0 and 1.5, {sup 27}Al NMR demonstrates that all aluminium sites associated with the C–S–H are consumed during the carbonation reactions and incorporated mainly as tetrahedral Al(–OSi){sub 4} units in the amorphous silica phase. A small amount of penta-coordinated Al sites has also been identified in the silica phase.

  16. Liquid and gas chromatography coupled to isotope ratio mass spectrometry for the determination of 13C-valine isotopic ratios in complex biological samples.

    PubMed

    Godin, Jean-Philippe; Breuillé, Denis; Obled, Christiane; Papet, Isabelle; Schierbeek, Henk; Hopfgartner, Gérard; Fay, Laurent-Bernard

    2008-10-01

    On-line gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) is commonly used to measure isotopic ratios at natural abundance as well as for tracer studies in nutritional and medical research. However, high-precision (13)C isotopic enrichment can also be measured by liquid chromatography-isotope ratio mass spectrometry (LC-IRMS). Indeed, LC-IRMS can be used, as shown by the new method reported here, to obtain a baseline separation and to measure (13)C isotopic enrichment of underivatised amino acids (Asp, Thr-Ser, Glu, Pro, Gly, Ala, Cys and Val). In case of Val, at natural abundance, the SD(delta(13)C) reported with this method was found to be below 1 per thousand . Another key feature of the new LC-IRMS method reported in this paper is the comparison of the LC-IRMS approach with the conventional GC-C-IRMS determination. To perform this comparative study, isotopic enrichments were measured from underivatised Val and its N(O, S)-ethoxycarbonyl ethyl ester derivative. Between 0.0 and 1.0 molar percent excess (MPE) (delta(13)C= -12.3 to 150.8 per thousand), the calculated root-mean-square (rms) of SD was 0.38 and 0.46 per thousand and the calculated rms of accuracy was 0.023 and 0.005 MPE, respectively, for GC-C-IRMS and LC-IRMS. Both systems measured accurately low isotopic enrichments (0.002 atom percent excess (APE)) with an SD (APE) of 0.0004. To correlate the relative (delta(13)C) and absolute (atom%, APE and MPE) isotopic enrichment of Val measured by the GC-C-IRMS and LC-IRMS devices, mathematical equations showing the slope and intercept of the curves were established and validated with experimental data between 0.0 to 2.3 MPE. Finally, both GC-C-IRMS and LC-IRMS instruments were also used to assess isotopic enrichment of protein-bound (13)C-Val in tibial epiphysis in a tracer study performed in rats. Isotopic enrichments measured by LC-IRMS and GC-C-IRMS were not statistically different (p>0.05). The results of this work indicate that

  17. 13C pulse-labeling assessment of the community structure of active fungi in the rhizosphere of a genetically starch-modified potato (Solanum tuberosum) cultivar and its parental isoline.

    PubMed

    Hannula, S E; Boschker, H T S; de Boer, W; van Veen, J A

    2012-05-01

    • The aim of this study was to gain understanding of the carbon flow from the roots of a genetically modified (GM) amylopectin-accumulating potato (Solanum tuberosum) cultivar and its parental isoline to the soil fungal community using stable isotope probing (SIP). • The microbes receiving (13)C from the plant were assessed through RNA/phospholipid fatty acid analysis with stable isotope probing (PLFA-SIP) at three time-points (1, 5 and 12 d after the start of labeling). The communities of Ascomycota, Basidiomycota and Glomeromycota were analysed separately with RT-qPCR and terminal restriction fragment length polymorphism (T-RFLP). • Ascomycetes and glomeromycetes received carbon from the plant as early as 1 and 5 d after labeling, while basidiomycetes were slower in accumulating the labeled carbon. The rate of carbon allocation in the GM variety differed from that in its parental variety, thereby affecting soil fungal communities. • We conclude that both saprotrophic and mycorrhizal fungi rapidly metabolize organic substrates flowing from the root into the rhizosphere, that there are large differences in utilization of root-derived compounds at a lower phylogenetic level within investigated fungal phyla, and that active communities in the rhizosphere differ between the GM plant and its parental cultivar through effects of differential carbon flow from the plant.

  18. 1H-13C HSQC NMR spectroscopy for estimating procyanidin/prodelphinidin and cis/trans flavan-3-ol ratios of condensed tannin samples: correlation with thiolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies with a diverse array of 22 condensed tannin (CT) fractions from 9 plant species demonstrated that procyanidin/prodelphinidin (PC/PD) and cis/trans flavan-3-ol ratios can be appraised by 1H-13C HSQC NMR. The method was developed from fractions containing 44 to ~100% CT, PC/PD ratios ranging f...

  19. Gastrointestinal handling of [1-13C]palmitic acid in healthy controls and patients with cystic fibrosis

    PubMed Central

    Murphy, J.; Jones, A.; Stolinski, M.; Wootton, S.

    1997-01-01

    Accepted 2 January 1997
 AIM—To examine the gastrointestinal handling of [1-13C]palmitic acid given as the free acid by measuring the excretion of 13C label in stool in 16 healthy children and 11 patients with cystic fibrosis on their habitual enzyme replacement treatment.
METHODS—After an overnight fast, each child ingested 10 mg/kg body weight [1-13C]palmitic acid with a standardised test meal of low natural 13C abundance. A stool sample was collected before the test and all stools were collected thereafter for a period of up to five days. The total enrichment of 13C in stool and the species bearing the 13C label was measured using isotope ratio mass spectrometry.
RESULTS—The proportion of administered 13C label excreted in stool was 24.0% (range 10.7-64.9%) in healthy children and only 4.4% (range 1.2-11.6%) in cystic fibrosis patients. The enrichment of 13C in stool was primarily restricted to the species consumed by the subjects (that is as palmitic acid).
CONCLUSION—There does not appear to be a specific defect in the absorption of [1-13C]palmitic acid in patients with cystic fibrosis. The reasons why cystic fibrosis patients appear to absorb more of this saturated fatty acid than healthy children is not clear and requires further investigation.

 PMID:9196358

  20. Synthesis Of [2h, 13c] And [2h3, 13c]Methyl Aryl Sulfides

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2004-03-30

    The present invention is directed to labeled compounds, [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfides wherein the .sup.13 C methyl group attached to the sulfur of the sulfide includes exactly one, two or three deuterium atoms and the aryl group is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4, and R.sub.5 are each independently, hydrogen, a C.sub.1 -C.sub.4 lower alkyl, a halogen, an amino group from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each a C.sub.1 -C.sub.4 lower alkyl, a phenyl, or an alkoxy group. The present invention is also directed to processes of preparing [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2,.sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfides wherein the .sup.13 C methyl group attached to the sulfur of the sulfide includes exactly one, two or three deuterium atoms. The present invention is also directed to the labeled compounds of [.sup.2 H.sub.1, .sup.13 C]methyl iodide and [.sup.2 H.sub.2, .sup.13 C]methyl iodide.

  1. 16 CFR Appendix L to Part 305 - Sample Labels

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Sample Labels L Appendix L to Part 305... UNDER THE ENERGY POLICY AND CONSERVATION ACT (âAPPLIANCE LABELING RULEâ) Pt. 305, App. L Appendix L to.... At 76 FR 79058, Dec. 21, 2011, appendix L was amended by redesignating samples 10, 11, 12, and...

  2. 16 CFR Appendix L to Part 305 - Sample Labels

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Sample Labels L Appendix L to Part 305... RULEâ) Pt. 305, App. L Appendix L to Part 305—Sample Labels Link to a correction published at 78 FR... affecting appendix L, see the List of CFR Sections Affected, which appears in the Finding Aids section...

  3. Matching isotopic distributions from metabolically labeled samples

    PubMed Central

    McIlwain, Sean; Page, David; Huttlin, Edward L.; Sussman, Michael R.

    2008-01-01

    Motivation: In recent years stable isotopic labeling has become a standard approach for quantitative proteomic analyses. Among the many available isotopic labeling strategies, metabolic labeling is attractive for the excellent internal control it provides. However, analysis of data from metabolic labeling experiments can be complicated because the spacing between labeled and unlabeled forms of each peptide depends on its sequence, and is thus variable from analyte to analyte. As a result, one generally needs to know the sequence of a peptide to identify its matching isotopic distributions in an automated fashion. In some experimental situations it would be necessary or desirable to match pairs of labeled and unlabeled peaks from peptides of unknown sequence. This article addresses this largely overlooked problem in the analysis of quantitative mass spectrometry data by presenting an algorithm that not only identifies isotopic distributions within a mass spectrum, but also annotates matches between natural abundance light isotopic distributions and their metabolically labeled counterparts. This algorithm is designed in two stages: first we annotate the isotopic peaks using a modified version of the IDM algorithm described last year; then we use a probabilistic classifier that is supplemented by dynamic programming to find the metabolically labeled matched isotopic pairs. Such a method is needed for high-throughput quantitative proteomic metabolomic experiments measured via mass spectrometry. Results: The primary result of this article is that the dynamic programming approach performs well given perfect isotopic distribution annotations. Our algorithm achieves a true positive rate of 99% and a false positive rate of 1% using perfect isotopic distribution annotations. When the isotopic distributions are annotated given ‘expert’ selected peaks, the same algorithm gets a true positive rate of 77% and a false positive rate of 1%. Finally, when annotating using

  4. An overview of methods using 13C for improved compound identification in metabolomics and natural products

    PubMed Central

    Clendinen, Chaevien S.; Stupp, Gregory S.; Ajredini, Ramadan; Lee-McMullen, Brittany; Beecher, Chris; Edison, Arthur S.

    2015-01-01

    Compound identification is a major bottleneck in metabolomics studies. In nuclear magnetic resonance (NMR) investigations, resonance overlap often hinders unambiguous database matching or de novo compound identification. In liquid chromatography-mass spectrometry (LC-MS), discriminating between biological signals and background artifacts and reliable determination of molecular formulae are not always straightforward. We have designed and implemented several NMR and LC-MS approaches that utilize 13C, either enriched or at natural abundance, in metabolomics applications. For LC-MS applications, we describe a technique called isotopic ratio outlier analysis (IROA), which utilizes samples that are isotopically labeled with 5% (test) and 95% (control) 13C. This labeling strategy leads to characteristic isotopic patterns that allow the differentiation of biological signals from artifacts and yield the exact number of carbons, significantly reducing possible molecular formulae. The relative abundance between the test and control samples for every IROA feature can be determined simply by integrating the peaks that arise from the 5 and 95% channels. For NMR applications, we describe two 13C-based approaches. For samples at natural abundance, we have developed a workflow to obtain 13C–13C and 13C–1H statistical correlations using 1D 13C and 1H NMR spectra. For samples that can be isotopically labeled, we describe another NMR approach to obtain direct 13C–13C spectroscopic correlations. These methods both provide extensive information about the carbon framework of compounds in the mixture for either database matching or de novo compound identification. We also discuss strategies in which 13C NMR can be used to identify unknown compounds from IROA experiments. By combining technologies with the same samples, we can identify important biomarkers and corresponding metabolites of interest. PMID:26379677

  5. /sup 13/C nuclear magnetic resonance studies of cardiac metabolism

    SciTech Connect

    Seeholzer, S.H.

    1985-01-01

    The last decade has witnessed the increasing use of Nuclear Magnetic Resonance (NMR) techniques for following the metabolic fate of compounds specifically labeled with /sup 13/C. The goals of the present study are: (1) to develop reliable quantitative procedures for measuring the /sup 13/C enrichment of specific carbon sites in compounds enriched by the metabolism of /sup 13/C-labeled substrates in rat heart, and (2) to use these quantitative measurements of fractional /sup 13/C enrichment within the context of a mathematical flux model describing the carbon flow through the TCA cycle and ancillary pathways, as a means for obtaining unknown flux parameters. Rat hearts have been perfused in vitro with various combinations of glucose, acetate, pyruvate, and propionate to achieve steady state flux conditions, followed by perfusion with the same substrates labeled with /sup 13/C in specific carbon sites. The hearts were frozen at different times after addition of /sup 13/C-labeled substrates and neutralized perchloric acid extracts were used to obtain high resolution proton-decoupled /sup 13/C NMR spectra at 90.55 MHz. The fractional /sup 13/C enrichment (F.E.) of individual carbon sites in different metabolites was calculated from the area of the resolved resonances after correction for saturation and nuclear Overhauser effects. These F.E. measurements by /sup 13/C NMR were validated by the analysis of /sup 13/C-/sup 1/H scalar coupling patterns observed in /sup 1/H NMR spectra of the extracted metabolites. The results obtained from perfusion of hearts glucose plus either (2-/sup 13/C) acetate or (3-/sup 13/C) pyruvate are similar to those obtained by previous investigators using /sup 14/C-labeled substrates.

  6. Galactose oxidation using (13)C in healthy and galactosemic children.

    PubMed

    Resende-Campanholi, D R; Porta, G; Ferrioli, E; Pfrimer, K; Ciampo, L A Del; Junior, J S Camelo

    2015-03-01

    Galactosemia is an inborn error of galactose metabolism that occurs mainly as the outcome of galactose-1-phosphate uridyltransferase (GALT) deficiency. The ability to assess galactose oxidation following administration of a galactose-labeled isotope (1-(13)C-galactose) allows the determination of galactose metabolism in a practical manner. We aimed to assess the level of galactose oxidation in both healthy and galactosemic Brazilian children. Twenty-one healthy children and seven children with galactosemia ranging from 1 to 7 years of age were studied. A breath test was used to quantitate (13)CO2 enrichment in exhaled air before and at 30, 60, and 120 min after the oral administration of 7 mg/kg of an aqueous solution of 1-(13)C-galactose to all children. The molar ratios of (13)CO2 and (12)CO2 were quantified by the mass/charge ratio (m/z) of stable isotopes in each air sample by gas-isotope-ratio mass spectrometry. In sick children, the cumulative percentage of (13)C from labeled galactose (CUMPCD) in the exhaled air ranged from 0.03% at 30 min to 1.67% at 120 min. In contrast, healthy subjects showed a much broader range in CUMPCD, with values from 0.4% at 30 min to 5.58% at 120 min. The study found a significant difference in galactose oxidation between children with and without galactosemia, demonstrating that the breath test is useful in discriminating children with GALT deficiencies.

  7. Towards hyperpolarized 13C-succinate imaging of brain cancer

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Pratip; Chekmenev, Eduard Y.; Perman, William H.; Harris, Kent C.; Lin, Alexander P.; Norton, Valerie A.; Tan, Chou T.; Ross, Brian D.; Weitekamp, Daniel P.

    2007-05-01

    We describe a novel 13C enriched precursor molecule, sodium 1- 13C acetylenedicarboxylate, which after hydrogenation by PASADENA (Parahydrogen and Synthesis Allows Dramatically Enhanced Nuclear Alignment) under controlled experimental conditions, becomes hyperpolarized 13C sodium succinate. Fast in vivo 3D FIESTA MR imaging demonstrated that, following carotid arterial injection, the hyperpolarized 13C-succinate appeared in the head and cerebral circulation of normal and tumor-bearing rats. At this time, no in vivo hyperpolarized signal has been localized to normal brain or brain tumor. On the other hand, ex vivo samples of brain harvested from rats bearing a 9L brain tumor, 1 h or more following in vivo carotid injection of hyperpolarized 13C sodium succinate, contained significant concentrations of the injected substrate, 13C sodium succinate, together with 13C maleate and succinate metabolites 1- 13C-glutamate, 5- 13C-glutamate, 1- 13C-glutamine and 5- 13C-glutamine. The 13C substrates and products were below the limits of NMR detection in ex vivo samples of normal brain consistent with an intact blood-brain barrier. These ex vivo results indicate that hyperpolarized 13C sodium succinate may become a useful tool for rapid in vivo identification of brain tumors, providing novel biomarkers in 13C MR spectral-spatial images.

  8. 16 CFR Appendix L to Part 305 - Sample Labels

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Sample Labels L Appendix L to Part 305... UNDER THE ENERGY POLICY AND CONSERVATION ACT (âAPPLIANCE LABELING RULEâ) Pt. 305, App. L Appendix L to.... For Federal Register citations affecting appendix L, see the List of CFR Sections Affected,...

  9. 16 CFR Appendix L to Part 305 - Sample Labels

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Sample Labels L Appendix L to Part 305... UNDER THE ENERGY POLICY AND CONSERVATION ACT (âAPPLIANCE LABELING RULEâ) Pt. 305, App. L Appendix L to... Register citations affecting appendix L, see the List of CFR Sections Affected, which appears in...

  10. Linear ion trap MS(n) of enzymatically synthesized 13C-labeled fructans revealing differentiating fragmentation patterns of β (1-2) and β (1-6) fructans and providing a tool for oligosaccharide identification in complex mixtures.

    PubMed

    Harrison, Scott; Xue, Hong; Lane, Geoff; Villas-Boas, Silas; Rasmussen, Susanne

    2012-02-07

    Fructans are polymeric carbohydrates, which play important roles as plant reserve carbohydrates and stress protectants, and are beneficial for human health and animal production. Fructans are formed by the addition of β-d-fructofuranosyl units to sucrose, leading to very complex mixtures of 1-kestose based inulins, 6-kestose linked levans, and 6G-kestose derived neoseries inulins and levans in cool season grasses such as Lolium perenne. The identification of isomeric fructan oligomers in chromatographic analysis of crude plant extracts is often hampered by the lack of authentic standards, and unambiguous peak assignment usually requires time-consuming analyses of purified fructan oligomers. We have developed a LC-MS(n) method for the separation and detection of fructan isomers and present here evidence for specific MS(n) fragmentation patterns associated with β 1-2 (inulins) and β 2-6 (levans) fructans. LC-MS(n) analysis of (13)C labeled fructan oligomers produced by L. perenne fructosyltransferases expressed in yeast has enabled us to account for the observed fragmentation patterns in terms of preferential cleavage of the glycosidic bond between O- and fructose C2 in both inulins and levans and to differentiate reducing-end from nonreducing end cross ring cleavages in levans. We propose that higher order MS fragmentation patterns can be used to distinguish between the two major classes of fructan, i.e., inulins and levans, without the need for authentic standards.

  11. Uniform {sup 15}N- and {sup 15}N/{sup 13}C-labeling of proteins in mammalian cells and solution structure of the amino terminal fragment of u-PA

    SciTech Connect

    Hansen, A.P.; Petros, A.M.; Meadows, R.P.; Mazar, A.P.; Nettesheim, D.G.; Pederson, T.M.; Fesik, S.W.

    1994-12-01

    Urokinase-type plasminogen activator (u-PA) is a 54-kDa glycoprotein that catalyzes the conversion of plasminogen to plasmin, a broad-specificity protease responsible for the degradation of fibrin clots and extracellular matrix components. The u-PA protein consists of three individual modules: a growth factor domain (GFD), a kringle, and a serine protease domain. The amino terminal fragment (ATF) includes the GFD-responsible for u-PA binding to its receptor-and the kringle domains. This protein was expressed and uniformly {sup 15}N-and {sup 15}N/{sup 13}C-labeled in mammalian cells by methods that will be described. In addition, we present the three-dimensional structure of ATF that was derived from 1299 NOE-derived distance restraints along with the {phi} angle and hydrogen bonding restraints. Although the individual domains in the structures were highly converged, the two domains are structurally independent. The overall structures of the individual domains are very similar to the structures of homologous proteins. However, important structural differences between the growth factor domain of u-PA and other homologous proteins were observed in the region that has been implicated in binding the urokinase receptor. These results may explain, in part, why other growth factors show no appreciable affinity for the urokinase receptor.

  12. Leaf functional response to increasing atmospheric CO(2) concentrations over the last century in two northern Amazonian tree species: a historical δ(13) C and δ(18) O approach using herbarium samples.

    PubMed

    Bonal, Damien; Ponton, Stéphane; Le Thiec, Didier; Richard, Béatrice; Ningre, Nathalie; Hérault, Bruno; Ogée, Jérôme; Gonzalez, Sophie; Pignal, Marc; Sabatier, Daniel; Guehl, Jean-Marc

    2011-08-01

    We assessed the extent of recent environmental changes on leaf morphological (stomatal density, stomatal surface, leaf mass per unit area) and physiological traits (carbon isotope composition, δ(13)C(leaf) , and discrimination, Δ(13)C(leaf) , oxygen isotope composition, δ(18)O(leaf) ) of two tropical rainforest species (Dicorynia guianensis; Humiria balsamifera) that are abundant in the Guiana shield (Northern Amazonia). Leaf samples were collected in different international herbariums to cover a 200 year time-period (1790-2004) and the whole Guiana shield. Using models describing carbon and oxygen isotope fractionations during photosynthesis, different scenarios of change in intercellular CO(2) concentrations inside the leaf (C(i)), stomatal conductance (g), and photosynthesis (A) were tested in order to understand leaf physiological response to increasing air CO(2) concentrations (C(a)). Our results confirmed that both species displayed physiological response to changing C(a) . For both species, we observed a decrease of about 1.7‰ in δ(13)C(leaf) since 1950, without significant change in Δ(13)C(leaf) and leaf morphological traits. Furthermore, there was no clear change in δ(18)O(leaf) for Humiria over this period. Our simulation approach revealed that an increase in A, rather than a decrease in g, explained the observed trends for these tropical rainforest species, allowing them to maintain a constant ratio of C(i)/C(a) .

  13. A new set-up for simultaneous high-precision measurements of CO2, δ13C-CO2 and δ18O-CO2 on small ice core samples

    NASA Astrophysics Data System (ADS)

    Jenk, Theo Manuel; Rubino, Mauro; Etheridge, David; Ciobanu, Viorela Gabriela; Blunier, Thomas

    2016-08-01

    Palaeoatmospheric records of carbon dioxide and its stable carbon isotope composition (δ13C) obtained from polar ice cores provide important constraints on the natural variability of the carbon cycle. However, the measurements are both analytically challenging and time-consuming; thus only data exist from a limited number of sampling sites and time periods. Additional analytical resources with high analytical precision and throughput are thus desirable to extend the existing datasets. Moreover, consistent measurements derived by independent laboratories and a variety of analytical systems help to further increase confidence in the global CO2 palaeo-reconstructions. Here, we describe our new set-up for simultaneous measurements of atmospheric CO2 mixing ratios and atmospheric δ13C and δ18O-CO2 in air extracted from ice core samples. The centrepiece of the system is a newly designed needle cracker for the mechanical release of air entrapped in ice core samples of 8-13 g operated at -45 °C. The small sample size allows for high resolution and replicate sampling schemes. In our method, CO2 is cryogenically and chromatographically separated from the bulk air and its isotopic composition subsequently determined by continuous flow isotope ratio mass spectrometry (IRMS). In combination with thermal conductivity measurement of the bulk air, the CO2 mixing ratio is calculated. The analytical precision determined from standard air sample measurements over ice is ±1.9 ppm for CO2 and ±0.09 ‰ for δ13C. In a laboratory intercomparison study with CSIRO (Aspendale, Australia), good agreement between CO2 and δ13C results is found for Law Dome ice core samples. Replicate analysis of these samples resulted in a pooled standard deviation of 2.0 ppm for CO2 and 0.11 ‰ for δ13C. These numbers are good, though they are rather conservative estimates of the overall analytical precision achieved for single ice sample measurements. Facilitated by the small sample requirement

  14. Profiling human gut bacterial metabolism and its kinetics using [U-13C]glucose and NMR.

    PubMed

    de Graaf, Albert A; Maathuis, Annet; de Waard, Pieter; Deutz, Nicolaas E P; Dijkema, Cor; de Vos, Willem M; Venema, Koen

    2010-01-01

    This study introduces a stable-isotope metabolic approach employing [U-(13)C]glucose that, as a novelty, allows selective profiling of the human intestinal microbial metabolic products of carbohydrate food components, as well as the measurement of the kinetics of their formation pathways, in a single experiment. A well-established, validated in vitro model of human intestinal fermentation was inoculated with standardized gastrointestinal microbiota from volunteers. After culture stabilization, [U-(13)C]glucose was added as an isotopically labeled metabolic precursor. System lumen and dialysate samples were taken at regular intervals. Metabolite concentrations and isotopic labeling were determined by NMR, GC, and enzymatic methods. The main microbial metabolites were lactate, acetate, butyrate, formate, ethanol, and glycerol. They together accounted for a (13)C recovery rate as high as 91.2%. Using an NMR chemical shift prediction approach, several minor products that showed (13)C incorporation were identified as organic acids, amino acids, and various alcohols. Using computer modeling of the (12)C contents and (13)C labeling kinetics, the metabolic fluxes in the gut microbial pathways for synthesis of lactate, formate, acetate, and butyrate were determined separately for glucose and unlabeled background substrates. This novel approach enables the study of the modulation of human intestinal function by single nutrients, providing a new rational basis for achieving control of the short-chain fatty acids profile by manipulating substrate and microbiota composition in a purposeful manner.

  15. Solid-state {sup 19}F and {sup 13}C NMR of room temperature fluorinated graphite and samples thermally treated under fluorine: Low-field and high-resolution studies

    SciTech Connect

    Giraudet, J.; Dubois, M.; Guerin, K.; Pinheiro, J.P.; Hamwi, A.; Stone, W.E.E.; Pirotte, P.; Masin, F. . E-mail: fmasin@ulb.ac.be

    2005-04-15

    Room temperature graphite fluorides consisting of raw material and samples post-treated in pure fluorine atmosphere in the temperature range 100-500 deg. C have been studied by solid-state NMR. Several NMR approaches have been used, both high and low-field {sup 19}F, {sup 19}F MAS and {sup 13}C MAS with {sup 19}F to {sup 13}C cross polarization. The modifications, in the graphitic lattice, of the catalytic iodine fluorides products have been examined. A transformation of the C-F bond character from semi-ionic to covalent has been found to occur at a post-treatment temperature close to 400 deg. C. It is shown that covalency increases with temperature.

  16. Conditions for 13C NMR Detection of 2-Hydroxyglutarate in Tissue Extracts from IDH-Mutated Gliomas

    PubMed Central

    Pichumani, Kumar; Mashimo, Tomoyuki; Baek, Hyeon-Man; Ratnakar, James; Mickey, Bruce; DeBerardinis, Ralph J.; Maher, Elizabeth A.; Bachoo, Robert M.; Malloy, Craig R.; Kovacs, Zoltan

    2015-01-01

    13C NMR spectroscopy of extracts from patient tumor samples provides rich information about metabolism. However, in IDH-mutant gliomas 13C labeling is obscured in glutamate and glutamine by the oncometabolite, 2-hydroxyglutaric acid (2HG), prompting development of a simple method to resolve the metabolites. J-coupled multiplets in 2HG were similar to glutamate and glutamine and could be clearly resolved at pH 6. A cryogenically-cooled 13C probe but not J-resolved heteronuclear single quantum coherence spectroscopy significantly improved detection of 2HG. These methods enable the monitoring of 13C-13C spin-spin couplings in 2HG expressing IDH mutant gliomas. PMID:25908561

  17. (13) C dynamic nuclear polarization using isotopically enriched 4-oxo-TEMPO free radicals.

    PubMed

    Niedbalski, Peter; Parish, Christopher; Kiswandhi, Andhika; Lumata, Lloyd

    2016-12-01

    The nitroxide-based free radical 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) is a widely used polarizing agent in NMR signal amplification via dissolution dynamic nuclear polarization (DNP). In this study, we have thoroughly investigated the effects of (15) N and/or (2) H isotopic labeling of 4-oxo-TEMPO free radical on (13) C DNP of 3 M [1-(13) C] sodium acetate samples in 1 : 1 v/v glycerol : water at 3.35 T and 1.2 K. Four variants of this free radical were used for (13) C DNP: 4-oxo-TEMPO, 4-oxo-TEMPO-(15) N, 4-oxo-TEMPO-d16 and 4-oxo-TEMPO-(15) N,d16 . Our results indicate that, despite the striking differences seen in the electron spin resonance (ESR) spectral features, the (13) C DNP efficiency of these (15) N and/or (2) H-enriched 4-oxo-TEMPO free radicals are relatively the same compared with (13) C DNP performance of the regular 4-oxo-TEMPO. Furthermore, when fully deuterated glassing solvents were used, the (13) C DNP signals of these samples all doubled in the same manner, and the (13) C polarization buildup was faster by a factor of 2 for all samples. The data here suggest that the hyperfine coupling contributions of these isotopically enriched 4-oxo-TEMPO free radicals have negligible effects on the (13) C DNP efficiency at 3.35 T and 1.2 K. These results are discussed in light of the spin temperature model of DNP. Copyright © 2016 John Wiley & Sons, Ltd.

  18. In vivo dynamic turnover of cerebral 13C isotopomers from [U- 13C]glucose

    NASA Astrophysics Data System (ADS)

    Xu, Su; Shen, Jun

    2006-10-01

    An INEPT-based 13C MRS method and a cost-effective and widely available 11.7 Tesla 89-mm bore vertical magnet were used to detect dynamic 13C isotopomer turnover from intravenously infused [U- 13C]glucose in a 211 μL voxel located in the adult rat brain. The INEPT-based 1H → 13C polarization transfer method is mostly adiabatic and therefore minimizes signal loss due to B 1 inhomogeneity of the surface coils used. High quality and reproducible data were acquired as a result of combined use of outer volume suppression, ISIS, and the single-shot three-dimensional localization scheme built in the INEPT pulse sequence. Isotopomer patterns of both glutamate C4 at 34.00 ppm and glutamine C4 at 31.38 ppm are dominated first by a doublet originated from labeling at C4 and C5 but not at C3 (with 1JC4C5 = 51 Hz) and then by a quartet originated from labeling at C3, C4, and C5 (with 1JC3C4 = 35 Hz). A lag in the transition of glutamine C4 pattern from doublet-dominance to quartet dominance as compared to glutamate C4 was observed, which provides an independent verification of the precursor-product relationship between neuronal glutamate and glial glutamine and a significant intercompartmental cerebral glutamate-glutamine cycle between neurons and glial cells.

  19. In vivo investigation of cardiac metabolism in the rat using MRS of hyperpolarized [1-13C] and [2-13C]pyruvate.

    PubMed

    Josan, Sonal; Park, Jae Mo; Hurd, Ralph; Yen, Yi-Fen; Pfefferbaum, Adolf; Spielman, Daniel; Mayer, Dirk

    2013-12-01

    Hyperpolarized (13)C MRS allows the in vivo assessment of pyruvate dehydrogenase complex (PDC) flux, which converts pyruvate to acetyl-coenzyme A (acetyl-CoA). [1-(13)C]pyruvate has been used to measure changes in cardiac PDC flux, with demonstrated increase in (13)C-bicarbonate production after dichloroacetate (DCA) administration. With [1-(13)C]pyruvate, the (13)C label is released as (13 CO2 /(13)C-bicarbonate, and, hence, does not allow us to follow the fate of acetyl-CoA. Pyruvate labeled in the C2 position has been used to track the (13)C label into the TCA (tricarboxylic acid) cycle and measure [5-(13)C]glutamate as well as study changes in [1-(13)C]acetylcarnitine with DCA and dobutamine. This work investigates changes in the metabolic fate of acetyl-CoA in response to metabolic interventions of DCA-induced increased PDC flux in the fed and fasted state, and increased cardiac workload with dobutamine in vivo in rat heart at two different pyruvate doses. DCA led to a modest increase in the (13)C labeling of [5-(13)C]glutamate, and a considerable increase in [1-(13)C]acetylcarnitine and [1,3-(13)C]acetoacetate peaks. Dobutamine resulted in an increased labeling of [2-(13)C]lactate, [2-(13)C]alanine and [5-(13)C]glutamate. The change in glutamate with dobutamine was observed using a high pyruvate dose but not with a low dose. The relative changes in the different metabolic products provide information about the relationship between PDC-mediated oxidation of pyruvate and its subsequent incorporation into the TCA cycle compared with other metabolic pathways. Using a high dose of pyruvate may provide an improved ability to observe changes in glutamate.

  20. Synthesis and applications of {sup 13}C glycerol

    SciTech Connect

    Stocking, E.; Khalsa, O.; Martinez, R.A.; Silks, L.A. III

    1994-12-01

    Due in part to the use of labeled glycerol for the {sup 13}C enrichment of biomolecules, we are currently developing new synthetic routes to various isotopomers of glycerol. Judging from our experience, traditional methods of glycerol synthesis are not easily adapted for isotopic enrichment and/or have poor overall yields (12 to 15%). Furthermore, the use of glycerol for enrichment can be prohibitively expensive and its availability is limited by the level of demand. We are presently developing a short de novo synthesis of glycerol from carbon dioxide ({approximately}53% overall yield for four steps) and are examining the feasibility of synthesizing site-specific {sup 13}C-labeled glycerol and dihydroxyacetone (DHA) from labeled methanol and carbon dioxide. One application of {sup 13}C glycerol we have examined is enzymatic conversion of glycerol to glyceraldehyde-3-monophosphate or dihydroxyacetone monophosphate (DHAP) with yields ranging from 25 to 50% (as determined by NMR spectroscopy). We are also pursuing the chemical conversion of {sup 13}C-labeled DHA to DHAP. We are especially interested in {sup 13}C-labeled DHAP because we are investigating its use as a chemo-enzymatic precursor for both labeled 2-deoxyribose and 2-deoxyribonucleic acids.

  1. Methylation patterns of aquatic humic substances determined by 13C NMR spectroscopy

    USGS Publications Warehouse

    Thorn, K.A.; Steelink, C.; Wershaw, R. L.

    1987-01-01

    13C NMR spectroscopy is used to examine the hydroxyl group functionality of a series of humic and fulvic acids from different aquatic environments. Samples first are methylated with 13C-labeled diazomethane. The NMR spectra of the diazomethylated samples allow one to distinguish between methyl esters of carboxylic acids, methyl ethers of phenolic hydroxyls, and methyl ethers of phenolic hydroxyls adjacent to two substituents. Samples are then permethylated with 13C-labeled methyl iodide/NaH. 13C NMR spectra of permethylated samples show that a significant fraction of the hydroxyl groups is not methylated with diazomethane alone. In these spectra methyl ethers of carbohydrate and aliphatic hydroxyls overlap with methyl ethers of phenolic hydroxyls. Side reactions of the methyltion procedure including carbon methylation in the CH3I/NaH procedure, are also examined. Humic and fulvic acids from bog, swamp, groundwater, and lake waters showssome differences in their distribution of hydroxyl groups, mainly in the concentrations of phenolic hydroxyls, which may be attributed to their different biogeochemical origins. ?? 1987.

  2. 16 CFR 1702.13 - Labeling and packaging samples.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Labeling and packaging samples. 1702.13 Section 1702.13 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF 1970 REGULATIONS PETITIONS FOR EXEMPTIONS FROM POISON PREVENTION PACKAGING ACT REQUIREMENTS;...

  3. 16 CFR 1702.13 - Labeling and packaging samples.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Labeling and packaging samples. 1702.13 Section 1702.13 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF 1970 REGULATIONS PETITIONS FOR EXEMPTIONS FROM POISON PREVENTION PACKAGING ACT REQUIREMENTS;...

  4. 16 CFR 1702.13 - Labeling and packaging samples.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Labeling and packaging samples. 1702.13 Section 1702.13 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF 1970 REGULATIONS PETITIONS FOR EXEMPTIONS FROM POISON PREVENTION PACKAGING ACT REQUIREMENTS;...

  5. 16 CFR 1702.13 - Labeling and packaging samples.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Labeling and packaging samples. 1702.13 Section 1702.13 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF 1970 REGULATIONS PETITIONS FOR EXEMPTIONS FROM POISON PREVENTION PACKAGING ACT REQUIREMENTS;...

  6. 16 CFR 1702.13 - Labeling and packaging samples.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Labeling and packaging samples. 1702.13 Section 1702.13 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION POISON PREVENTION PACKAGING ACT OF 1970 REGULATIONS PETITIONS FOR EXEMPTIONS FROM POISON PREVENTION PACKAGING ACT REQUIREMENTS;...

  7. A straightforward method for stereospecific assignment of val and leu prochiral methyl groups by solid-state NMR: Scrambling in the [2-13C]Glucose labeling scheme

    NASA Astrophysics Data System (ADS)

    Lv, Guohua; Faßhuber, Hannes Klaus; Loquet, Antoine; Demers, Jean-Philippe; Vijayan, Vinesh; Giller, Karin; Becker, Stefan; Lange, Adam

    2013-03-01

    The unambiguous stereospecific assignment of the prochiral methyl groups in Val and Leu plays an important role in the structural investigation of proteins by NMR. Here, we present a straightforward method for their stereospecific solid-state NMR assignment based on [2-13C]Glucose ([2-13C]Glc) as the sole carbon source during protein expression. The approach is fundamentally based on the stereo-selective biosynthetic pathway of Val and Leu, and the co-presence of [2-13C]pyruvate produced mainly by glycolysis and [3-13C]/[1,3-13C]pyruvate most probably formed through scrambling in the pentose phosphate pathway. As a consequence, the isotope spin pairs 13Cβ-13Cγ2 and 13Cα-13Cγ1 in Val, and 13Cγ-13Cδ2 and 13Cβ-13Cδ1 in Leu are obtained. The approach is successfully demonstrated with the stereospecific assignment of the methyl groups of Val and Leu of type 3 secretion system PrgI needles and microcrystalline ubiquitin.

  8. Quantification of 13C pyruvate and 13C lactate in dog blood by reversed-phase liquid chromatography-electrospray ionization mass spectrometry after derivatization with 3-nitrophenylhydrazine.

    PubMed

    Uran, Steinar; Landmark, Kristin Eitrem; Hjellum, Gro; Skotland, Tore

    2007-08-15

    Injection of hyperpolarized (13)C-labelled pyruvate ((13)C pyruvate) is under evaluation as an agent for medical metabolic imaging by measuring formation of (13)C lactate using magnetic resonance spectroscopy of the (13)C nuclei. A quantitative method for analysis of these (13)C-labelled substances in dog blood was needed as part of the development of this agent and we here describe a liquid chromatography-mass spectrometry method for that purpose. Immediately after blood collection, the blood proteins were precipitated using methanol added internal standard ([U-(13)C]pyruvate and [U-(13)C]lactate). Prior to analysis, the compounds were derivatized using 3-nitrophenylhydrazine. Following separation on a Supelco Discovery HS C18 column, (13)C pyruvate and (13)C lactate were detected using negative electrospray ionization mass spectrometry. Calibration standards (4.5-4500 microM (13)C pyruvate and 9-9000 microM (13)C lactate) and added internal standard were used to make the calibration curves, which were fitted to a non-linear equation y=a+bx+cx(2) and weighted with a weighting factor of 1/y(2). The analytical lower limit of quantification of (13)C pyruvate and (13)C lactate was 4.5 and 9 microM, respectively. The total precision of the method was below 9.2% for (13)C pyruvate and below 5.8% for (13)C lactate. The accuracy of the method showed a relative error less than 2.4% for (13)C pyruvate and less than 6.3% for (13)C lactate. The recoveries were in the range 93-115% for (13)C pyruvate and 70-111% for (13)C lactate. Both substances were stable in protein-free supernatant when stored for up to 3 weeks in a -20 degrees C freezer, during three freeze/thaw cycles, and when stored in an autosampler for at least 30 h.

  9. Synthesis Of [2h, 13c]M [2h2m 13c], And [2h3,, 13c] Methyl Aryl Sulfones And Sulfoxides

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.; Schmidt, Jurgen G.

    2004-07-20

    The present invention is directed to labeled compounds, [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfones and [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfoxides, wherein the .sup.13 C methyl group attached to the sulfur of the sulfone or sulfoxide includes exactly one, two or three deuterium atoms and the aryl group is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure: ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently, hydrogen, a C.sub.1 -C.sub.4 lower alkyl, a halogen, an amino group from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each a C.sub.1 -C.sub.4 lower alkyl, a phenyl, or an alkoxy group. The present invention is also directed to processes of preparing methyl aryl sulfones and methyl aryl sulfoxides.

  10. 2D DIGE saturation labeling for minute sample amounts.

    PubMed

    Arnold, Georg J; Fröhlich, Thomas

    2012-01-01

    The 2D DIGE technique, based on fluorophores covalently linked to amino acid side chain residues and the concept of an internal standard, has significantly improved reproducibility, sensitivity, and the dynamic range of protein quantification. In saturation DIGE, sulfhydryl groups of cysteines are labeled with cyanine dyes to completion, providing a so far unraveled sensitivity for protein detection and quantification in 2D gel-based proteomic experiments. Only a few micrograms of protein per 2D gel facilitate the analysis of about 2,000 analytes from complex mammalian cell or tissue samples. As a consequence, 2D saturation DIGE is the method of choice when only minute sample amounts are available for quantitative proteome analysis at the level of proteins rather than peptides. Since very low amounts of samples have to be handled in a reproducible manner, saturation DIGE-based proteomic experiments are technically demanding. Moreover, successful saturation DIGE approaches require a strict adherence to adequate reaction conditions at each step. This chapter is dedicated to colleagues already experienced in 2D PAGE protein separation and intends to support the establishment of this ultrasensitive technique in proteomic workgroups. We provide basic guidelines for the experimental design and discuss crucial aspects concerning labeling chemistry, sample preparation, and pitfalls caused by labeling artifacts. A detailed step-by-step protocol comprises all aspects from initial sample preparation to image analysis and statistical evaluation. Furthermore, we describe the generation of preparative saturation DIGE gels necessary for mass spectrometry-based spot identification.

  11. 13C-methionine breath tests for mitochondrial liver function assessment.

    PubMed

    Candelli, M; Miele, L; Armuzzi, A; Nista, E C; Pignataro, G; Fini, L; Cazzato, I A; Zocco, M A; Bartolozzi, F; Gasbarrini, G; Grieco, A; Gasbarrini, A

    2008-01-01

    13C-methionine breath test has been proposed as a non-invasive tool for the assessment of human hepatic mithocondrial function. Two methionine breath labeled with 13C in differents point of his molecular structure have been used for breath test analisys. Aim of this study was to compare two differently 13C-labeled methionines in the evaluation of mitochondrial oxidation in basal conditions and after an acute oxidative stress. 15 healthy male subjects (mean age 30.5 +/- 3.1) received [methyl-13C]-methionine dissolved in water. Breath samples were taken at baseline and and 10, 20, 30, 45, 60, 75, 90, 105 and 120 minutes after the ingestion of the labeled substrate. Forthy-eight hours later, subjects underwent the same test 30 minutes after ethanol ingestion (0,3 g/kg of body weight). Seven-day later, subjects underwent breath test using (L-methionine-1-13COOH) as substrate, in basal condition and after ethanol ingestion. At basal condition, the cumulative percentage of 13CO2 recovered in breath during the test period (%cum-dose) was higher using L-methionine-1-13COOH than [methyl-13C]-methionine (10.25 +/- 1.0 vs 4.07 +/- 0.8; p < 0.01). After ethanol ingestion, % cum dose was significantly decreased at 60 and 120 minutes with both methionines (120 min: 10.25 +/- 1.0 vs 5.03% +/- 1.8; < 0.01 and 4.07 +/- 0.8 vs 2.16% +/- 0.9; p < 0.01, respectively). However, %cum-dose during L-methionine-1-13C-breath test was significantly lower than that observed during methyl-13C-methionine breath test (120 minutes: 5.03% +/- 1.8 vs 2.16% +/- 0.9; p < 0.01). In conclusion, breath test based on L-methionine-1-13COOH seems to show a greater reliability when compared to [methyl-13C]-methionine to assess mitochondrial function because a larger amount of labeled carbon that reaches the Krebs' cicle.

  12. 13C Metabolomics: NMR and IROA for Unknown Identification

    PubMed Central

    Clendinen, Chaevien S.; Stupp, Gregory S.; Wang, Bing; Garrett, Timothy J.; Edison, Arthur S.

    2016-01-01

    Abstract: Background Isotopic Ratio Outlier Analysis (IROA) is an untargeted metabolomics method that uses stable isotopic labeling and LC-HRMS for identification and relative quantification of metabolites in a biological sample under varying experimental conditions. Objective We demonstrate a method using high-sensitivity 13C NMR to identify an unknown metabolite isolated from fractionated material from an IROA LC-HRMS experiment. Methods IROA samples from the nematode Caenorhabditis elegans were fractionated using LC-HRMS using 5 repeated injections and collecting 30 sec fractions. These were concentrated and analyzed by 13C NMR. Results We isotopically labeled samples of C. elegans and collected 2 adjacent LC fractions. By HRMS, one contained at least 2 known metabolites, phenylalanine and inosine, and the other contained tryptophan and an unknown feature with a monoisotopic mass of m/z 380.0742 [M+H]+. With NMR, we were able to easily verify the known compounds, and we then identified the spin system networks responsible for the unknown resonances. After searching the BMRB database and comparing the molecular formula from LC-HRMS, we determined that the fragments were a modified anthranilate and a glucose modified by a phosphate. We then performed quantum chemical NMR chemical shift calculations to determine the most likely isomer, which was 3’-O-phospho-β-D-glucopyranosyl-anthranilate. This compound had previously been found in the same organism, validating our approach. Conclusion We were able to dereplicate previously known metabolites and identify a metabolite that was not in databases by matching resonances to NMR databases and using chemical shift calculations to determine the correct isomer. This approach is efficient and can be used to identify unknown compounds of interest using the same material used for IROA. PMID:28090435

  13. Glucogenesis in an insect, Manduca sexta L., estimated from the 13C isotopomer distribution in trehalose synthesized from [1,3-13C2]glycerol.

    PubMed

    Thompson, S N

    1997-07-19

    Glucogenesis from [3-13C]alanine and [1,3-13C2]glycerol was demonstrated in the insect Manduca sexta by examining the 13C enrichment of trehalose, a non-reducing disaccharide of glucose synthesized in the insect fat body and released into the blood or hemolymph. In insects maintained on a low carbohydrate diet, trehalose synthesized from [3-13C]alanine was selectively enriched at C1 and C6, and C2 and C5. The 13C-labelling pattern indicated the carboxylation of [3-13C]pyruvate, formed by transamination of the [3-13C]alanine followed by randomization of the label at the fumarate step of the tricarboxylic acid cycle and glucose synthesis via the gluconeogenic pathway. 13C enrichment of trehalose was absent in similarly maintained insect larvae administered 3-mercaptopicolinic acid, an inhibitor of hepatic phosphoenolpyruvate carboxykinase. Insects on the low carbohydrate diet also synthesized trehalose from [1,3-13C2]glycerol. 13C multiplets were observed in trehalose C3 and C4 demonstrating the synthesis of three 13C enriched glucose isotopomers from the 13C-labelled glycerol. The relative contributions of 13C-labelled glycerol and unlabelled 3 carbon substrates to the synthesis of the 13C enriched trehalose isotopomers were determined from the multiplet structure at C3, and calculation of minimal rates of glucogenesis were based on the 13C enrichment of C4. The C4/C3 13C enrichment ratio in trehalose synthesized from [1,3-13C2]glycerol was close to unity, and total glucogenesis was calculated after estimation of the expected contribution of unlabelled trehalose synthesis from 3 carbon substrates by comparison of the ratio of unlabelled and labelled contributions to the 13C enriched trehalose isotopomers with the 13C enrichment of [1,3-13C2]glycerol-3-phosphate. The estimated total rates of glucogenesis varied from 0.33 to 2.80 micromol glucose/g fresh weight/h. The blood sugar level of M. sexta was also highly variable. Although the potential importance of

  14. Targeted 13C enrichment of lipid and protein pools in the body reveals circadian changes in oxidative fuel mixture during prolonged fasting: a case study using Japanese quail.

    PubMed

    McCue, Marshall D; Amaya, James A; Yang, Alice S; Erhardt, Erik B; Wolf, Blair O; Hanson, David T

    2013-12-01

    Many animals undergo extended periods of fasting. During these fasts, animals oxidize a ratio of macronutrients dependent on the nutritional, energetic, and hydric requirements of the fasting period. In this study, we use Japanese quail (Coturnix coturnix japonica), a bird with natural intermediate fasting periods, to examine macronutrient use during a 6d fast. We raised groups of quail on isotopically labeled materials ((13)C-1-leucine, (13)C-U-glucose, or (13)C-1-palmitic acid) with the intent of labeling specific macronutrient/tissue pools in each treatment, and then traced their use as fuels by measuring the δ(13)C values of breath CO2. Based on changes in δ(13)C values during the fast, it appears that the carbohydrate label,(13)C-U-glucose, was largely incorporated into the lipid pool and thus breath samples ultimately reflected lipid use rather than carbohydrate use. In the lipid treatment, the (13)C-1-palmitic acid faithfully labeled the lipid pool and was reflected in the kinetics δ(13)C values in breath CO2 during the fast. Endogenous lipid oxidation peaked after 24h of fasting and remained constantly elevated thereafter. The protein label,(13)C-1-leucine, showed clear diurnal periods of protein sparing and degradation, with maximal rates of protein oxidation occurring at night and the lowest rates occurring during the day time. This stable isotope tracer method provides a noninvasive approach to study the nutrient dynamics of fasting animals and should provide new insights into how different types of animals use specific nutrient pools during fasting and possibly other non-steady physiological states.

  15. Automated determination of the stable carbon isotopic composition (δ13C) of total dissolved inorganic carbon (DIC) and total nonpurgeable dissolved organic carbon (DOC) in aqueous samples: RSIL lab codes 1851 and 1852

    USGS Publications Warehouse

    Révész, Kinga M.; Doctor, Daniel H.

    2014-01-01

    The purposes of the Reston Stable Isotope Laboratory (RSIL) lab codes 1851 and 1852 are to determine the total carbon mass and the ratio of the stable isotopes of carbon (δ13C) for total dissolved inorganic carbon (DIC, lab code 1851) and total nonpurgeable dissolved organic carbon (DOC, lab code 1852) in aqueous samples. The analysis procedure is automated according to a method that utilizes a total carbon analyzer as a peripheral sample preparation device for analysis of carbon dioxide (CO2) gas by a continuous-flow isotope ratio mass spectrometer (CF-IRMS). The carbon analyzer produces CO2 and determines the carbon mass in parts per million (ppm) of DIC and DOC in each sample separately, and the CF-IRMS determines the carbon isotope ratio of the produced CO2. This configuration provides a fully automated analysis of total carbon mass and δ13C with no operator intervention, additional sample preparation, or other manual analysis. To determine the DIC, the carbon analyzer transfers a specified sample volume to a heated (70 °C) reaction vessel with a preprogrammed volume of 10% phosphoric acid (H3PO4), which allows the carbonate and bicarbonate species in the sample to dissociate to CO2. The CO2 from the reacted sample is subsequently purged with a flow of helium gas that sweeps the CO2 through an infrared CO2 detector and quantifies the CO2. The CO2 is then carried through a high-temperature (650 °C) scrubber reactor, a series of water traps, and ultimately to the inlet of the mass spectrometer. For the analysis of total dissolved organic carbon, the carbon analyzer performs a second step on the sample in the heated reaction vessel during which a preprogrammed volume of sodium persulfate (Na2S2O8) is added, and the hydroxyl radicals oxidize the organics to CO2. Samples containing 2 ppm to 30,000 ppm of carbon are analyzed. The precision of the carbon isotope analysis is within 0.3 per mill for DIC, and within 0.5 per mill for DOC.

  16. Calculation of total meal d13C from individual food d13C.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Variations in the isotopic signature of carbon in biological samples can be used to distinguish dietary patterns and monitor shifts in metabolism. But for these variations to have meaning, the isotopic signature of the diet must be known. We sought to determine if knowledge of the 13C isotopic abund...

  17. 13C NMR Metabolomics: Applications at Natural Abundance

    PubMed Central

    2015-01-01

    13C NMR has many advantages for a metabolomics study, including a large spectral dispersion, narrow singlets at natural abundance, and a direct measure of the backbone structures of metabolites. However, it has not had widespread use because of its relatively low sensitivity compounded by low natural abundance. Here we demonstrate the utility of high-quality 13C NMR spectra obtained using a custom 13C-optimized probe on metabolomic mixtures. A workflow was developed to use statistical correlations between replicate 1D 13C and 1H spectra, leading to composite spin systems that can be used to search publicly available databases for compound identification. This was developed using synthetic mixtures and then applied to two biological samples, Drosophila melanogaster extracts and mouse serum. Using the synthetic mixtures we were able to obtain useful 13C–13C statistical correlations from metabolites with as little as 60 nmol of material. The lower limit of 13C NMR detection under our experimental conditions is approximately 40 nmol, slightly lower than the requirement for statistical analysis. The 13C and 1H data together led to 15 matches in the database compared to just 7 using 1H alone, and the 13C correlated peak lists had far fewer false positives than the 1H generated lists. In addition, the 13C 1D data provided improved metabolite identification and separation of biologically distinct groups using multivariate statistical analysis in the D. melanogaster extracts and mouse serum. PMID:25140385

  18. (13)C metabolic flux analysis of recombinant expression hosts.

    PubMed

    Young, Jamey D

    2014-12-01

    Identifying host cell metabolic phenotypes that promote high recombinant protein titer is a major goal of the biotech industry. (13)C metabolic flux analysis (MFA) provides a rigorous approach to quantify these metabolic phenotypes by applying isotope tracers to map the flow of carbon through intracellular metabolic pathways. Recent advances in tracer theory and measurements are enabling more information to be extracted from (13)C labeling experiments. Sustained development of publicly available software tools and standardization of experimental workflows is simultaneously encouraging increased adoption of (13)C MFA within the biotech research community. A number of recent (13)C MFA studies have identified increased citric acid cycle and pentose phosphate pathway fluxes as consistent markers of high recombinant protein expression, both in mammalian and microbial hosts. Further work is needed to determine whether redirecting flux into these pathways can effectively enhance protein titers while maintaining acceptable glycan profiles.

  19. Simultaneous determination of stable isotopic compositions of nitrous oxide (δ15N and δ18O of N2O) and methane (δ13C of CH4) in nanomolar quantities from a single water sample

    NASA Astrophysics Data System (ADS)

    Hirota, A.; Tsunogai, U.; Komatsu, D. D.; Nakagawa, F.

    2010-12-01

    The stable isotopic compositions of nitrous oxide (δ15N of N2O and δ18O of N2O, respectively) and methane (δ13C of CH4) have provided us with some interesting geochemical insights. We have developed a rapid, sensitive, and automated analytical system to simultaneously determine the concentrations and stable isotopic compositions of nanomolar quantities of N2O and CH4 in the environmental water, by combining continuous-flow isotope-ratio mass spectrometry and a He-sparging system to extract and purify the dissolved gases. Our system, which is composed of a sparging bottle, a chemical trap, four cold traps and a capillary gas chromatograph that use ultra-pure helium as the carrier gas, achieves complete extraction of N2O and CH4 in a water sample and separation among N2O, CH4, and the other component gases. The flow path subsequent to gas chromatograph was periodically changed to pass the gases through the combustion furnace to convert CH4 and the other hydrocarbons into CO2, or to bypass the combustion furnace for the direct introduction of eluted N2O into the mass spectrometer, for determining the stable isotopic compositions through monitoring m/z = 44, 45, and 46, on the bases of CO2+ and N2O+, respectively. The analytical system can be operated automatically with sequential software programmed on a personal computer. The analytical precisions (the standard deviation of a single measurement) were better than 0.2‰ for δ15N of N2O and 0.3‰ for δ18O of N2O, in the case of more than 6.7 nmol N2O injection and better than 1.4‰ for δ15N of N2O and 2.6‰ for δ18O of N2O, in the case of more than 0.2 nmol N2O injection, respectively. Simultaneously, the analytical precisions were better than 0.07‰ for δ13C of CH4, in the case of more than 5.5 nmol CH4 infection and better than 2.1‰ for δ13C of CH4, when more than 0.024 nmol CH4 injection. In this manner, we can simultaneously determine stable isotopic compositions of a 120 mL water sample having

  20. Notes on the origin of copromacrinite based on nitrogen functionalities and δ13C and δ15N determined on samples from the Peach Orchard coal bed, southern Magoffin County, Kentucky

    USGS Publications Warehouse

    Valentim, Bruno; Algarra, Manuel; Guedes, Alexandra; Ruppert, Leslie F.; Hower, James C.

    2016-01-01

    The study of Peach Orchard coal samples using reflected-light microscopy, isotopic composition, and nitrogen-forms analyses revealed that the macrinite-rich sample contains macrinite with coprolitic features (e.g. oxidation rind, mix of undigested palynomorphs, frequent and randomly located funginite, agglutination pulp of semifusinite reflectance, internal lack of bedding fabric, and suggestion of structures resulting from intestines and stomach walls), more pyrrolic-N (~ 16%), and lower δ13C (~ 2‰ VPDB) and δ15N (~ 4‰ Air) values than the vitrinite and semifusinite + fusinite rich samples. These findings suggest that the maceral macrinite has multiple origins based on petrography and measurable chemical differences between the macrinite, vitrinite, and semifusinite + fusinite fractions within the coal. Assuming that copromacrinite observed is an excretion then the anomalies observed may result from the symbiotic relations between the macrofauna (e.g. cockroaches) and microbiota during the digestive processes, and the nitrogen balance mechanisms inside macrofauna body.

  1. Evaluation of ¹³C- and ²H-labeled internal standards for the determination of amphetamines in biological samples, by reversed-phase ultra-high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Berg, Thomas; Karlsen, Morten; Oiestad, Ase Marit Leere; Johansen, Jon Eigill; Liu, Huiling; Strand, Dag Helge

    2014-05-30

    Stable isotope-labeled internal standards (SIL-ISs) are often used when applying liquid chromatography-tandem mass spectrometry (LC-MS/MS) to analyze for legal and illegal drugs. ISs labeled with (13)C, (15)N, and (18)O are expected to behave more closely to their corresponding unlabeled analytes, compared with that of the more classically used (2)H-labeled ISs. This study has investigated the behavior of amphetamine, (2)H3-, (2)H5, (2)H6-, (2)H8-, (2)H11-, and (13)C6-labeled amphetamine, during sample preparation by liquid-liquid extraction and LC-MS/MS analyses. None or only minor differences in liquid-liquid extraction recoveries of amphetamine and the SIL-ISs were observed. The chromatographic resolution between amphetamine and the (2)H-labeled amphetamines increased with the number of (2)H-substitutes. For chromatographic studies we also included seven additional (13)C6-amphetamines and their analytes. All the (13)C6-labeled ISs were co-eluting with their analytes, both when a basic and when an acidic mobile phase were used. MS/MS analyses of amphetamine and its SIL-ISs showed that the ISs with the highest number of (2)H-substitutes required more energy for fragmentation in the collision cell compared with that of the ISs with a lower number. The findings, in this study, support those of previous studies, showing that (13)C-labeled ISs are superior to (2)H-labeled ISs, for analytical purposes.

  2. 9 CFR 327.12 - Foreign canned or packaged products bearing trade labels; sampling and inspection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... bearing trade labels; sampling and inspection. 327.12 Section 327.12 Animals and Animal Products FOOD....12 Foreign canned or packaged products bearing trade labels; sampling and inspection. (a) Samples of foreign canned or packaged products bearing on their immediate containers trade labels which have not...

  3. 9 CFR 327.12 - Foreign canned or packaged products bearing trade labels; sampling and inspection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... bearing trade labels; sampling and inspection. 327.12 Section 327.12 Animals and Animal Products FOOD....12 Foreign canned or packaged products bearing trade labels; sampling and inspection. (a) Samples of foreign canned or packaged products bearing on their immediate containers trade labels which have not...

  4. 13C-based metabolic flux analysis: fundamentals and practice.

    PubMed

    Yang, Tae Hoon

    2013-01-01

    Isotope-based metabolic flux analysis is one of the emerging technologies applied to system level metabolic phenotype characterization in metabolic engineering. Among the developed approaches, (13)C-based metabolic flux analysis has been established as a standard tool and has been widely applied to quantitative pathway characterization of diverse biological systems. To implement (13)C-based metabolic flux analysis in practice, comprehending the underlying mathematical and computational modeling fundamentals is of importance along with carefully conducted experiments and analytical measurements. Such knowledge is also crucial when designing (13)C-labeling experiments and properly acquiring key data sets essential for in vivo flux analysis implementation. In this regard, the modeling fundamentals of (13)C-labeling systems and analytical data processing are the main topics we will deal with in this chapter. Along with this, the relevant numerical optimization techniques are addressed to help implementation of the entire computational procedures aiming at (13)C-based metabolic flux analysis in vivo.

  5. A scientific workflow framework for (13)C metabolic flux analysis.

    PubMed

    Dalman, Tolga; Wiechert, Wolfgang; Nöh, Katharina

    2016-08-20

    Metabolic flux analysis (MFA) with (13)C labeling data is a high-precision technique to quantify intracellular reaction rates (fluxes). One of the major challenges of (13)C MFA is the interactivity of the computational workflow according to which the fluxes are determined from the input data (metabolic network model, labeling data, and physiological rates). Here, the workflow assembly is inevitably determined by the scientist who has to consider interacting biological, experimental, and computational aspects. Decision-making is context dependent and requires expertise, rendering an automated evaluation process hardly possible. Here, we present a scientific workflow framework (SWF) for creating, executing, and controlling on demand (13)C MFA workflows. (13)C MFA-specific tools and libraries, such as the high-performance simulation toolbox 13CFLUX2, are wrapped as web services and thereby integrated into a service-oriented architecture. Besides workflow steering, the SWF features transparent provenance collection and enables full flexibility for ad hoc scripting solutions. To handle compute-intensive tasks, cloud computing is supported. We demonstrate how the challenges posed by (13)C MFA workflows can be solved with our approach on the basis of two proof-of-concept use cases.

  6. Study of Urban environmental quality through Isotopes δ13C

    NASA Astrophysics Data System (ADS)

    González-Sosa, E.; Mastachi-Loza, C.; Becerril-Piña, R.; Ramos-Salinas, N. M.

    2012-04-01

    Usually, trees with similar pH values on their bark develop epiphytes of similar species, the acidity to be a factor for growth. The aim of the study was evaluate the air quality through isotope δ13C in order to define the levels of environmental quality in the city of Queretaro, Mexico. In this work were collected at least 4 epiphytes positioned in trees of the species Prosopis Laevigata at 25 sites of Queretaro City. The samples were analyzed for trace elements with an inductively coupled plasma atomic emission spectroscopy (ICP). The collecting took place during dry period, in May and early rain June 2011 period, and on four sectors to identify the spatial distribution of pollution, using isotopic analysis of concentration of δ 13C. According with the results there are significant differences among the species in each of the sampled areas. The 5 February Avenue presented greater diversity and richness of δ13C, followed by those who were surveyed in the proximity of the UAQ and finally in the middle-east area. An average value of δ13C-17.92%, followed by those surveyed in the vicinity of the UAQ that correspond to sector I and II with an concentration of δ13C-17.55% and δ13C-17.22%, and finally the samples collected in trees scattered in the East-Sector II and IV with a value of δ13C-17.02% and δ13C-15.62%, respectively. Also were observed differences between the dry and wet period. It is likely that these results of δ 13C in moist period reflect the drag of the isotopes due to rain events that could mark a trend in the dilution of this element, however there is a trend in terms of abundance and composition of finding more impact in those species sampled in dry period, in May and early June 2011.

  7. Optoacoustic 13C-breath test analyzer

    NASA Astrophysics Data System (ADS)

    Harde, Hermann; Helmrich, Günther; Wolff, Marcus

    2010-02-01

    The composition and concentration of exhaled volatile gases reflects the physical ability of a patient. Therefore, a breath analysis allows to recognize an infectious disease in an organ or even to identify a tumor. One of the most prominent breath tests is the 13C-urea-breath test, applied to ascertain the presence of the bacterium helicobacter pylori in the stomach wall as an indication of a gastric ulcer. In this contribution we present a new optical analyzer that employs a compact and simple set-up based on photoacoustic spectroscopy. It consists of two identical photoacoustic cells containing two breath samples, one taken before and one after capturing an isotope-marked substrate, where the most common isotope 12C is replaced to a large extent by 13C. The analyzer measures simultaneously the relative CO2 isotopologue concentrations in both samples by exciting the molecules on specially selected absorption lines with a semiconductor laser operating at a wavelength of 2.744 μm. For a reliable diagnosis changes of the 13CO2 concentration of 1% in the exhaled breath have to be detected at a concentration level of this isotope in the breath of about 500 ppm.

  8. Distinct fungal and bacterial δ13C signatures can drive the increase in soil δ13C with depth

    NASA Astrophysics Data System (ADS)

    Kohl, Lukas; Laganièrea, Jérôme; Edwards, Kate A.; Billings, Sharon A.; Morrill, Penny L.; Van Biesen, Geert; Ziegler, Susan E.

    2015-04-01

    Soil microbial biomass is a key precursor of soil organic carbon (SOC), and the enrichment in 13C during SOC diagenesis has been purported to be driven by increasing proportions of microbially derived SOC. Yet, little is known about how the δ13C of soil microbial biomass - and by extension the δ13C of microbial inputs to SOC - vary in space, time, or with the composition of the microbial community. Phospholipid fatty acids (PLFA) can be analyzed to measure the variation of the natural abundance δ13C values of both individual groups of microorganisms and the microbial community as a whole. Here, we show how variations of δ13CPLFA within the soil profile provides insight into C fluxes in undisturbed soils and demonstrate that distinct δ13C of fungal and bacterial biomass and their relative abundance can drive the increase of bulk δ13CSOC with depth. We studied the variation in natural abundance δ13C signatures of PLFA in podzolic soil profiles from mesic boreal forests in Atlantic Canada. Samples from the organic horizons (L,F,H) and the mineral (B; top 10 cm) horizons were analyzed for δ13C values of PLFA specific to fungi, G+ bacteria, or G- bacteria as proxies for the δ13C of the biomass of these groups, and for δ13C values of PLFA produced by a wide range of microorganisms (e.g. 16:0) as a proxy for the δ13C value of microbial biomass as a whole. Results were compared to fungi:bacteria ratios (F:B) and bulk δ13CSOC values. The δ13C values of group-specific PLFA were driven by differences among source organisms, with fungal PLFA consistently depleted (2.1 to 6.4‰) relative to and G+ and G- bacterial PLFA in the same sample. All group-specific PLFA, however, exhibited nearly constant δ13C values throughout the soil profile, apparently unaffected by the over 2.8‰ increase in δ13CSOC with depth from the L to B horizons. This indicates that bulk SOC poorly represents the substrates actually consumed by soil microorganisms in situ. Instead, our

  9. 13C nuclear magnetic resonance data of lanosterol derivatives—Profiling the steric topology of the steroid skeleton via substituent effects on its 13C NMR

    NASA Astrophysics Data System (ADS)

    Dias, Jerry Ray; Gao, Hongwu

    2009-12-01

    The 13C NMR spectra of over 24 tetracyclic triterpenoid derivatives have been structurally analyzed. The 13C NMR chemical shifts allow one to probe the steric topology of the rigid steroid skeleton and inductive effects of its substituents. Use of deuterium labeling in chemical shift assignment and B-ring aromatic terpenoids are also featured.

  10. The First in Vivo Observation of 13C- 15N Coupling in Mammalian Brain

    NASA Astrophysics Data System (ADS)

    Kanamori, Keiko; Ross, Brian D.

    2001-12-01

    [5-13C,15N]Glutamine, with 1J(13C-15N) of 16 Hz, was observed in vivo in the brain of spontaneously breathing rats by 13C MRS at 4.7 T. The brain [5-13C]glutamine peak consisted of the doublet from [5-13C,15N]glutamine and the center [5-13C,14N]glutamine peak, resulting in an apparent triplet with a separation of 8 Hz. The time course of formation of brain [5-13C,15N]glutamine was monitored in vivo with a time resolution of 20-35 min. This [5-13C,15N]glutamine was formed by glial uptake of released neurotransmitter [5-13C]glutamate and its reaction with 15NH3 catalyzed by the glia-specific glutamine synthetase. The neurotransmitter glutamate C5 was selectively13C-enriched by intravenous [2,5-13C]glucose infusion to 13C-label whole-brain glutamate C5, followed by [12C]glucose infusion to chase 13C from the small and rapidly turning-over glial glutamate pool, leaving 13C mainly in the neurotransmitter [5-13C]glutamate pool, which is sequestered in vesicles until release. Hence, the observed [5-13C,15N]glutamine arises from a coupling between 13C of neuronal origin and 15N of glial origin. Measurement of the rate of brain [5-13C,15N]glutamine formation provides a novel noninvasive method of studying the kinetics of neurotransmitter uptake into glia in vivo, a process that is crucial for protecting the brain from glutamate excitotoxicity.

  11. Measuring changes in substrate utilization in the myocardium in response to fasting using hyperpolarized [1-13C]butyrate and [1-13C]pyruvate

    PubMed Central

    Bastiaansen, Jessica A. M.; Merritt, Matthew E.; Comment, Arnaud

    2016-01-01

    Cardiac dysfunction is often associated with a shift in substrate preference for ATP production. Hyperpolarized (HP) 13C magnetic resonance spectroscopy (MRS) has the unique ability to detect real-time metabolic changes in vivo due to its high sensitivity and specificity. Here a protocol using HP [1-13C]pyruvate and [1-13C]butyrate is used to measure carbohydrate versus fatty acid metabolism in vivo. Metabolic changes in fed and fasted Sprague Dawley rats (n = 36) were studied at 9.4 T after tail vein injections. Pyruvate and butyrate competed for acetyl-CoA production, as evidenced by significant changes in [13C]bicarbonate (−48%), [1-13C]acetylcarnitine (+113%), and [5-13C]glutamate (−63%), following fasting. Butyrate uptake was unaffected by fasting, as indicated by [1-13C]butyrylcarnitine. Mitochondrial pseudoketogenesis facilitated the labeling of the ketone bodies [1-13C]acetoacetate and [1-13C]β-hydroxybutyryate, without evidence of true ketogenesis. HP [1-13C]acetoacetate was increased in fasting (250%) but decreased during pyruvate co-injection (−82%). Combining HP 13C technology and co-administration of separate imaging agents enables noninvasive and simultaneous monitoring of both fatty acid and carbohydrate oxidation. This protocol illustrates a novel method for assessing metabolic flux through different enzymatic pathways simultaneously and enables mechanistic studies of the changing myocardial energetics often associated with disease. PMID:27150735

  12. Propionate metabolism in the rat heart by 13C n.m.r. spectroscopy.

    PubMed Central

    Sherry, A D; Malloy, C R; Roby, R E; Rajagopal, A; Jeffrey, F M

    1988-01-01

    High-resolution 13C n.m.r. spectroscopy has been used to examine propionate metabolism in the perfused rat heart. A number of tricarboxylic acid (TCA) cycle intermediates are observable by 13C n.m.r. in hearts perfused with mixtures of pyruvate and propionate. When the enriched 13C-labelled nucleus originates with pyruvate, the resonances of the intermediates appear as multiplets due to formation of multiply-enriched 13C-labelled isotopomers, whereas when the 13C-labelled nucleus originates with propionate, these same intermediates appear as singlets in the 13C spectrum since entry of propionate into the TCA cycle occurs via succinyl-CoA. An analysis of the isotopomer populations in hearts perfused with [3-13C]pyruvate plus unlabelled propionate indicates that about 27% of the total pyruvate pool available to the heart is derived directly from unlabelled propionate. This was substantiated by perfusing a heart for 2 h with [3-13C]propionate as the only available exogenous substrate. Under these conditions, all of the propionate consumed by the heart, as measured by conventional chemical analysis, ultimately entered the oxidative pathway as [2-13C] or [3-13C]pyruvate. This is consistent with entry of propionate into the TCA cycle intermediate pools as succinyl-CoA and concomitant disposal of malate to pyruvate via the malic enzyme. 13C resonances arising from enriched methylmalonate and propionylcarnitine are also detected in hearts perfused with [3-13C] or [1-13C]propionate which suggests that 13C n.m.r. may be useful as a non-invasive probe in vivo of metabolic abnormalities involving the propionate pathway, such as methylmalonic aciduria or propionic acidaemia. PMID:3178775

  13. Performance limitations of label-free sensors in molecular diagnosis using complex samples

    NASA Astrophysics Data System (ADS)

    Varma, Manoj

    2016-03-01

    Label-free biosensors promised a paradigm involving direct detection of biomarkers from complex samples such as serum without requiring multistep sample processing typical of labelled methods such as ELISA or immunofluorescence assays. Label-free sensors have witnessed decades of development with a veritable zoo of techniques available today exploiting a multitude of physical effects. It is appropriate now to critically assess whether label-free technologies have succeeded in delivering their promise with respect to diagnostic applications, particularly, ambitious goals such as early cancer detection using serum biomarkers, which require low limits of detection (LoD). Comparison of nearly 120 limits of detection (LoD) values reported by labelled and label-free sensing approaches over a wide range of detection techniques and target molecules in serum revealed that labeled techniques achieve 2-3 orders of magnitude better LoDs. Data from experiments where labelled and label-free assays were performed simultaneously using the same assay parameters also confirm that the LoD achieved by labelled techniques is 2 to 3 orders of magnitude better than that by label-free techniques. Furthermore, label-free techniques required significant signal amplification, for e.g. using nanoparticle conjugated secondary antibodies, to achieve LoDs comparable to labelled methods substantially deviating from the original "direct detection" paradigm. This finding has important implications on the practical limits of applying label-free detection methods for molecular diagnosis.

  14. Local deposition of 13C tracer in the JET MKII-HD divertor

    NASA Astrophysics Data System (ADS)

    Likonen, Jari; Airila, M. I.; Coad, J. P.; Hakola, A.; Koivuranta, S.; Ahonen, E.; Alves, E.; Barradas, N.; Widdowson, A.; Rubel, M.; Brezinsek, S.; Groth, M.; JET-EFDA Contributors

    2013-07-01

    Migration and deposition of 13C have been investigated at JET by injecting 13C-labelled methane at the outer divertor base at the end of the 2009 campaign. The 13C deposition profile was measured with enhanced proton scattering (EPS) and secondary ion mass spectrometry (SIMS) techniques. A strong toroidal deposition band for 13C was observed experimentally on each of the analysed four outer divertor floor tiles. In addition, 13C was also found on the vertical edge of load bearing tile (LBT) and at the bottom of the LBT tile facing the puffing hole. Local 13C migration in the vicinity of the injection location was modelled by the ERO code. The ERO simulations also produced the strong toroidal 13C deposition band but there is strong deposition also on the vertical edge of the LBT tile and elsewhere on the horizontal part of the outer divertor floor tile.

  15. New guidelines for δ13C measurements

    USGS Publications Warehouse

    Coplen, Tyler B.; Brand, Willi A.; Gehre, Matthias; Groning, Manfred; Meijer, Harro A. J.; Toman, Blaza; Verkouteren, R. Michael

    2006-01-01

    Consistency of δ13C measurements can be improved 39−47% by anchoring the δ13C scale with two isotopic reference materials differing substantially in 13C/12C. It is recommended thatδ13C values of both organic and inorganic materials be measured and expressed relative to VPDB (Vienna Peedee belemnite) on a scale normalized by assigning consensus values of −46.6‰ to L-SVEC lithium carbonate and +1.95‰ to NBS 19 calcium carbonate. Uncertainties of other reference material values on this scale are improved by factors up to two or more, and the values of some have been notably shifted:  the δ13C of NBS 22 oil is −30.03%.

  16. Sample-efficient learning with auxiliary class-label information

    PubMed Central

    Nguyen, Quang; Valizadegan, Hamed; Seybert, Amy; Hauskrecht, Milos

    2011-01-01

    Building classification models from clinical data collected for past patients often requires additional example labeling and annotation by a human expert. Since example labeling may require to review a complete electronic health record the process can be very time consuming and costly. To make the process more cost-efficient, the number of examples an expert needs to label should be reduced. We develop and test a new approach for the classification learning in which, in addition to class labels provided by an expert, the learner is provided with auxiliary information that reflects how strong the expert feels about the class label. We show that this information can be extremely useful for practical classification tasks based on human assessment and can lead to improved learning with a smaller number of examples. We develop a new classification approach based on the support vector machines and the learning to rank methodologies capable of utilizing the auxiliary information during the model learning process. We demonstrate the benefit of the approach on the problem of learning an alert model for Heparin Induced Thrombocytopenia (HIT) by showing an improved classification performance of the models that are trained on a smaller number of labeled examples. PMID:22195160

  17. Measurement of δ13C values of soil amino acids by GC-C-IRMS using trimethylsilylation: a critical assessment.

    PubMed

    Rubino, Mauro; Milin, Sylvie; D'Onofrio, Antonio; Signoret, Patrick; Hatté, Christine; Balesdent, Jérôme

    2014-01-01

    In this study, we evaluated trimethylsilyl (TMS) derivatives as derivatization reagents for the compound-specific stable carbon isotope analysis of soil amino acids by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). We used non-proteinogenic amino acids to show that the extraction-derivatization-analysis procedure provides a reliable method to measure δ(13)C values of amino acids extracted from soil. However, we found a number of drawbacks that significantly increase the final total uncertainty. These include the following: production of multiple peaks for each amino acid, identified as di-, tri- and tetra-TMS derivatives; a number of TMS-carbon (TMS-C) atoms added lower than the stoichiometric one, possibly due to incomplete combustion; different TMS-C δ(13)C for di-, tri- and tetra-TMS derivatives. For soil samples, only four amino acids (leucine, valine, threonine and serine) provide reliable δ(13)C values with a total average uncertainty of 1.3 ‰. We conclude that trimethylsilyl derivatives are only suitable for determining the (13)C incorporation in amino acids within experiments using (13)C-labelled tracers but cannot be applied for amino acids with natural carbon isotope abundance until the drawbacks described here are overcome and the measured total uncertainty significantly decreased.

  18. Metabolic pathways for ketone body production. /sup 13/C NMR spectroscopy of rat liver in vivo using /sup 13/C-multilabeled fatty acids

    SciTech Connect

    Pahl-Wostl, C.; Seelig, J.

    1986-11-04

    The hormonal regulation of ketogenesis in the liver of living rat has been studied noninvasively with /sup 13/C nuclear magnetic resonance. The spatial selection for the liver was better than 90%, with extrahepatic adipose tissue contribution only a very small amount of signal. The metabolic activities of the liver were investigated by infusion of /sup 13/C-labeled butyrate in the jugular vein of the anesthetized rat. The rate of butyrate infusion was chosen to be close to the maximum oxidative capacity of the rat liver, and the /sup 13/C signal intensities were enhanced by using doubly labeled (1,3-/sup 13/C)butyrate as a substrate. Different /sup 13/C NMR spectra and hence different metabolites were observed depending on the hormonal state of the animal. The /sup 13/C NMR studies demonstrate that even when rate of acetyl-CoA production are high, the disposal of this compound is not identical in fasted and diabetic animals. This supports previous suggestions that the redox state of the mitochondrion represents the most important factor in regulation. For a given metabolic state of the animal, different signal intensities were obtained depending on whether butyrate was labeled at C-1, C-3, or C-1,3. From the ratios of incorporation of /sup 13/C label into the carbons of 3-hydroxybutyrate, it could be estimated that a large fraction of butyrate evaded ..beta..-oxidation to acetyl-CoA but was converted directly to acetoacetyl-CoA. /sup 13/C-labeled glucose could be detected in vivo in the liver of diabetic rats.

  19. Biosynthesis of highly enriched 13C-lycopene for human metabolic studies using repeated batch tomato cell culturing with 13C-glucose.

    PubMed

    Moran, Nancy Engelmann; Rogers, Randy B; Lu, Chi-Hua; Conlon, Lauren E; Lila, Mary Ann; Clinton, Steven K; Erdman, John W

    2013-08-15

    While putative disease-preventing lycopene metabolites are found in both tomato (Solanum lycopersicum) products and in their consumers, mammalian lycopene metabolism is poorly understood. Advances in tomato cell culturing techniques offer an economical tool for generation of highly-enriched (13)C-lycopene for human bioavailability and metabolism studies. To enhance the (13)C-enrichment and yields of labelled lycopene from the hp-1 tomato cell line, cultures were first grown in (13)C-glucose media for three serial batches and produced increasing proportions of uniformly labelled lycopene (14.3±1.2%, 39.6±0.5%, and 48.9±1.5%) with consistent yields (from 5.8 to 9 mg/L). An optimised 9-day-long (13)C-loading and 18-day-long labelling strategy developed based on glucose utilisation and lycopene yields, yielded (13)C-lycopene with 93% (13)C isotopic purity, and 55% of isotopomers were uniformly labelled. Furthermore, an optimised acetone and hexane extraction led to a fourfold increase in lycopene recovery from cultures compared to a standard extraction.

  20. 40 CFR Appendix III to Part 600 - Sample Fuel Economy Label Calculation

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Sample Fuel Economy Label Calculation...) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Pt. 600, App. III Appendix III to Part 600—Sample Fuel Economy Label Calculation Suppose that a manufacturer called...

  1. NOTE The effect of 13C enrichment in the glassing matrix on dynamic nuclear polarization of [1-13C]pyruvate

    NASA Astrophysics Data System (ADS)

    Lumata, Lloyd; Kovacs, Zoltan; Malloy, Craig; Sherry, A. Dean; Merritt, Matthew

    2011-03-01

    Dimethyl sulfoxide (DMSO) can effectively form a glassy matrix necessary for dynamic nuclear polarization (DNP) experiments. We tested the effects of 13C enrichment in DMSO on DNP of [1-13C]pyruvate doped with trityl radical OX063Me. We found that the polarization build-up time τ of pyruvate in 13C-labeled DMSO glassing solution is twice as fast as the unenriched DMSO while the nuclear magnetic resonance enhancement was unchanged. This indicates that 13C-13C spin diffusion is a limiting factor in the kinetics of DNP in this system, but it has a minimal effect on the absolute value of polarization achievable for the target.

  2. The effect of 13C enrichment in the glassing matrix on dynamic nuclear polarization of [1-13C]pyruvate

    NASA Astrophysics Data System (ADS)

    Lumata, Lloyd; Kovacs, Zoltan; Malloy, Craig; Sherry, A. Dean; Merritt, Matthew

    2011-03-01

    Dimethyl sulfoxide (DMSO) can effectively form a glassy matrix necessary for dynamic nuclear polarization (DNP) experiments. We tested the effects of 13C enrichment in DMSO on DNP of [1-13C]pyruvate doped with trityl radical OX063Me. We found that the polarization build-up time τ of pyruvate in 13C-labeled DMSO glassing solution is twice as fast as the unenriched DMSO while the nuclear magnetic resonance enhancement was unchanged. This indicates that 13C-13C spin diffusion is a limiting factor in the kinetics of DNP in this system, but it has a minimal effect on the absolute value of polarization achievable for the target.

  3. OpenMebius: an open source software for isotopically nonstationary 13C-based metabolic flux analysis.

    PubMed

    Kajihata, Shuichi; Furusawa, Chikara; Matsuda, Fumio; Shimizu, Hiroshi

    2014-01-01

    The in vivo measurement of metabolic flux by (13)C-based metabolic flux analysis ((13)C-MFA) provides valuable information regarding cell physiology. Bioinformatics tools have been developed to estimate metabolic flux distributions from the results of tracer isotopic labeling experiments using a (13)C-labeled carbon source. Metabolic flux is determined by nonlinear fitting of a metabolic model to the isotopic labeling enrichment of intracellular metabolites measured by mass spectrometry. Whereas (13)C-MFA is conventionally performed under isotopically constant conditions, isotopically nonstationary (13)C metabolic flux analysis (INST-(13)C-MFA) has recently been developed for flux analysis of cells with photosynthetic activity and cells at a quasi-steady metabolic state (e.g., primary cells or microorganisms under stationary phase). Here, the development of a novel open source software for INST-(13)C-MFA on the Windows platform is reported. OpenMebius (Open source software for Metabolic flux analysis) provides the function of autogenerating metabolic models for simulating isotopic labeling enrichment from a user-defined configuration worksheet. Analysis using simulated data demonstrated the applicability of OpenMebius for INST-(13)C-MFA. Confidence intervals determined by INST-(13)C-MFA were less than those determined by conventional methods, indicating the potential of INST-(13)C-MFA for precise metabolic flux analysis. OpenMebius is the open source software for the general application of INST-(13)C-MFA.

  4. 1H–13C hetero-nuclear dipole–dipole couplings of methyl groups in stationary and magic angle spinning solid-state NMR experiments of peptides and proteins

    PubMed Central

    Wu, Chin H.; Das, Bibhuti B.; Opella, Stanley J.

    2010-01-01

    13C NMR of isotopically labeled methyl groups has the potential to combine spectroscopic simplicity with ease of labeling for protein NMR studies. However, in most high resolution separated local field experiments, such as polarization inversion spin exchange at the magic angle (PISEMA), that are used to measure 1H–13C hetero-nuclear dipolar couplings, the four-spin system of the methyl group presents complications. In this study, the properties of the 1H–13C hetero-nuclear dipolar interactions of 13C-labeled methyl groups are revealed through solid-state NMR experiments on a range of samples, including single crystals, stationary powders, and magic angle spinning of powders, of 13C3 labeled alanine alone and incorporated into a protein. The spectral simplifications resulting from proton detected local field (PDLF) experiments are shown to enhance resolution and simplify the interpretation of results on single crystals, magnetically aligned samples, and powders. The complementarity of stationary sample and magic angle spinning (MAS) measurements of dipolar couplings is demonstrated by applying polarization inversion spin exchange at the magic angle and magic angle spinning (PISEMAMAS) to unoriented samples. PMID:19896874

  5. 13C NMR of tunnelling methyl groups

    NASA Astrophysics Data System (ADS)

    Detken, A.

    The dipolar interactions between the protons and the central 13C nucleus of a 13CH3 group are used to study rotational tunnelling and incoherent dynamics of such groups in molecular solids. Single-crystal 13C NMR spectra are derived for arbitrary values of the tunnel frequency upsilon t. Similarities to ESR and 2H NMR are pointed out. The method is applied to three different materials. In the hydroquinone/acetonitrile clathrate, the unique features in the 13C NMR spectra which arise from tunnelling with a tunnel frequency that is much larger than the dipolar coupling between the methyl protons and the 13C nucleus are demonstrated, and the effects of incoherent dynamics are studied. The broadening of the 13C resonances is related to the width of the quasi-elastic line in neutron scattering. Selective magnetization transfer experiments for studying slow incoherent dynamics are proposed. For the strongly hindered methyl groups of L-alanine, an upper limit for upsilon is derived from the 13C NMR spectrum. In aspirinTM (acetylsalicylic acid), incoherent reorientations dominate the spectra down to the lowest temperatures studied; their rate apparently increases with decreasing temperature below 25K.

  6. Dynamic nuclear polarization of carbonyl and methyl 13C spins in acetate using trityl OX063

    NASA Astrophysics Data System (ADS)

    Niedbalski, Peter; Parish, Christopher; Lumata, Lloyd

    2015-03-01

    Hyperpolarization via dissolution dynamic nuclear polarization (DNP) is a physics technique that amplifies the magnetic resonance signals by several thousand-fold for biomedical NMR spectroscopy and imaging (MRI). Herein we have investigated the effect of carbon-13 isotopic location on the DNP of acetate (one of the biomolecules commonly used for hyperpolarization) at 3.35 T and 1.4 K using a narrow ESR linewidth free radical trityl OX063. We have found that the carbonyl 13C spins yielded about twice the polarization produced in methyl 13C spins. Deuteration of the methyl group, beneficial in the liquid-state, did not produce an improvement in the polarization level at cryogenic conditions. Concurrently, the solid-state nuclear relaxation of these samples correlate with the polarization levels achieved. These results suggest that the location of the 13C isotopic labeling in acetate has a direct impact on the solid-state polarization achieved and is mainly governed by the nuclear relaxation leakage factor.

  7. 15N and13C NMR investigation of hydroxylamine-derivatized humic substances

    USGS Publications Warehouse

    Thorn, K.A.; Arterburn, J.B.; Mikita, M.A.

    1992-01-01

    Five fulvic and humic acid samples of diverse origins were derivatized with 15N-labeled hydroxylamine and analyzed by liquid-phase 15N NMR spectrometry. The 15N NMR spectra indicated that hydroxylamine reacted similarly with all samples and could discriminate among carbonyl functional groups. Oximes were the major derivatives; resonances attributable to hydroxamic acids, the reaction products of hydroxylamine with esters, and resonances attributable to the tautomeric equilibrium position between the nitrosophenol and monoxime derivatives of quinones, the first direct spectroscopic evidence for quinones, also were evident. The 15N NMR spectra also suggested the presence of nitriles, oxazoles, oxazolines, isocyanides, amides, and lactams, which may all be explained in terms of Beckmann reactions of the initial oxime derivatives. INEPT and ACOUSTIC 15N NMR spectra provided complementary information on the derivatized samples. 13C NMR spectra of derivatized samples indicated that the ketone/quinone functionality is incompletely derivatized with hydroxylamine. ?? 1991 American Chemical Society.

  8. 13C Tracer Studies of Metabolism in Mouse Tumor Xenografts

    PubMed Central

    Lane, Andrew N.; Yan, Jun; Fan, Teresa W-M.

    2015-01-01

    Mice are widely used for human tumor xenograft studies of cancer development and drug efficacy and toxicity. Stable isotope tracing coupled with metabolomic analysis is an emerging approach for assaying metabolic network activity. In mouse models there are several routes of tracer introduction, which have particular advantages and disadvantages that depend on the model and the questions addressed. This protocol describes the bolus i.v. route via repeated tail vein injections of solutions of stable isotope enriched tracers including 13C6-glucose and 13C5,15N2-glutamine. Repeated injections give higher enrichments and over longer labeling periods than a single bolus. Multiple injections of glutamine are necessary to achieve adequate enrichment in engrafted tumors. PMID:26693168

  9. Synthesis of [1-.sup.13C]pyruvic acid], [2-.sup.13C]pyruvic acid], [3-.sup.13C]pyruvic acid] and combinations thereof

    DOEpatents

    Martinez, Rodolfo A. , Unkefer; Clifford J. , Alvarez; Marc, A [Santa Fe, NM

    2012-06-12

    The present invention is directed to the labeled compounds, ##STR00001## wherein C* is each either .sup.13C and .sup.12C where at least one C* is .sup.13C, each hydrogen of the methylene group is hydrogen or deuterium, the methyl group includes either zero or three deuterium atoms, Q is sulfide, sulfinyl, or sulfone, Z is an aryl group such as 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, or a phenyl group ##STR00002## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently either hydrogen, a C.sub.1-C.sub.4 lower alkyl, a halogen, and an amino group such as NH.sub.2, NHR and NRR' where R and R' are each independently either a C.sub.1-C.sub.4 lower alkyl, a phenyl, and an alkoxy group, and the methyl group can include either zero or three deuterium atoms. The present invention is also directed to the labeled compounds ##STR00003##

  10. A Peptide-Based Method for 13C Metabolic Flux Analysis in Microbial Communities

    PubMed Central

    Ghosh, Amit; Nilmeier, Jerome; Weaver, Daniel; Adams, Paul D.; Keasling, Jay D.; Mukhopadhyay, Aindrila; Petzold, Christopher J.; Martín, Héctor García

    2014-01-01

    The study of intracellular metabolic fluxes and inter-species metabolite exchange for microbial communities is of crucial importance to understand and predict their behaviour. The most authoritative method of measuring intracellular fluxes, 13C Metabolic Flux Analysis (13C MFA), uses the labeling pattern obtained from metabolites (typically amino acids) during 13C labeling experiments to derive intracellular fluxes. However, these metabolite labeling patterns cannot easily be obtained for each of the members of the community. Here we propose a new type of 13C MFA that infers fluxes based on peptide labeling, instead of amino acid labeling. The advantage of this method resides in the fact that the peptide sequence can be used to identify the microbial species it originates from and, simultaneously, the peptide labeling can be used to infer intracellular metabolic fluxes. Peptide identity and labeling patterns can be obtained in a high-throughput manner from modern proteomics techniques. We show that, using this method, it is theoretically possible to recover intracellular metabolic fluxes in the same way as through the standard amino acid based 13C MFA, and quantify the amount of information lost as a consequence of using peptides instead of amino acids. We show that by using a relatively small number of peptides we can counter this information loss. We computationally tested this method with a well-characterized simple microbial community consisting of two species. PMID:25188426

  11. Imaging pH with hyperpolarized 13C.

    PubMed

    Gallagher, Ferdia A; Kettunen, Mikko I; Brindle, Kevin M

    2011-10-01

    pH is a fundamental physiological parameter that is tightly controlled by endogenous buffers. The acid-base balance is altered in many disease states, such as inflammation, ischemia and cancer. Despite the importance of pH, there are currently no routine methods for imaging the spatial distribution of pH in humans. The enormous gain in sensitivity afforded by dynamic nuclear polarization (DNP) has provided a novel way in which to image tissue pH using MR, which has the potential to be translated into the clinic. This review explores the advantages and disadvantages of current pH imaging techniques and how they compare with DNP-based approaches for the measurement and imaging of pH with hyperpolarized (13)C. Intravenous injection of hyperpolarized (13)C-labeled bicarbonate results in the rapid production of hyperpolarized (13)CO(2) in the reaction catalyzed by carbonic anhydrase. As this reaction is close to equilibrium in the body and is pH dependent, the ratio of the (13)C signal intensities from H(13)CO(3)(-) and (13)CO(2), measured using MRS, can be used to calculate pH in vivo. The application of this technique to a murine tumor model demonstrated that it measured predominantly extracellular pH and could be mapped in the animal using spectroscopic imaging techniques. A second approach has been to use the production of hyperpolarized (13)CO(2) from hyperpolarized [1-(13)C]pyruvate to measure predominantly intracellular pH. In tissues with a high aerobic capacity, such as the heart, the hyperpolarized [1-(13)C]pyruvate undergoes rapid oxidative decarboxylation, catalyzed by intramitochondrial pyruvate dehydrogenase. Provided that there is sufficient carbonic anhydrase present to catalyze the rapid equilibration of the hyperpolarized (13)C label between CO(2) and bicarbonate, the ratio of their resonance intensities may again be used to estimate pH, which, in this case, is predominantly intracellular. As both pyruvate and bicarbonate are endogenous molecules they

  12. Enhancing the [13C]bicarbonate signal in cardiac hyperpolarized [1-13C]pyruvate MRS studies by infusion of glucose, insulin and potassium.

    PubMed

    Lauritzen, Mette Hauge; Laustsen, Christoffer; Butt, Sadia Asghar; Magnusson, Peter; Søgaard, Lise Vejby; Ardenkjær-Larsen, Jan Henrik; Åkeson, Per

    2013-11-01

    A change in myocardial metabolism is a known effect of several diseases. MRS with hyperpolarized (13)C-labelled pyruvate is a technique capable of detecting changes in myocardial pyruvate metabolism, and has proven to be useful for the evaluation of myocardial ischaemia in vivo. However, during fasting, the myocardial glucose oxidation is low and the fatty acid oxidation (β-oxidation) is high, which complicates the interpretation of pyruvate metabolism with the technique. The aim of this study was to investigate whether the infusion of glucose, insulin and potassium (GIK) could increase the myocardial glucose oxidation in the citric acid cycle, reflected as an increase in the [(13)C]bicarbonate signal in cardiac hyperpolarized [1-(13)C]pyruvate MRS measurements in fasted rats. Two groups of rats were infused with two different doses of GIK and investigated by MRS after injection of hyperpolarized [1-(13)C]pyruvate. No [(13)C]bicarbonate signal could be detected in the fasted state. However, a significant increase in the [(13)C]bicarbonate signal was observed by the infusion of a high dose of GIK. This study demonstrates that a high [(13)C]bicarbonate signal can be achieved by GIK infusion in fasted rats. The increased [(13)C]bicarbonate signal indicates an increased flux of pyruvate through the pyruvate dehydrogenase enzyme complex and an increase in myocardial glucose oxidation through the citric acid cycle.

  13. Refined Analysis of Brain Energy Metabolism Using In Vivo Dynamic Enrichment of 13C Multiplets

    PubMed Central

    Dehghani M., Masoumeh; Duarte, João M. N.; Kunz, Nicolas; Gruetter, Rolf

    2016-01-01

    Carbon-13 nuclear magnetic resonance spectroscopy in combination with the infusion of 13C-labeled precursors is a unique approach to study in vivo brain energy metabolism. Incorporating the maximum information available from in vivo localized 13C spectra is of importance to get broader knowledge on cerebral metabolic pathways. Metabolic rates can be quantitatively determined from the rate of 13C incorporation into amino acid neurotransmitters such as glutamate and glutamine using suitable mathematical models. The time course of multiplets arising from 13C-13C coupling between adjacent carbon atoms was expected to provide additional information for metabolic modeling leading to potential improvements in the estimation of metabolic parameters. The aim of the present study was to extend two-compartment neuronal/glial modeling to include dynamics of 13C isotopomers available from fine structure multiplets in 13C spectra of glutamate and glutamine measured in vivo in rats brain at 14.1 T, termed bonded cumomer approach. Incorporating the labeling time courses of 13C multiplets of glutamate and glutamine resulted in elevated precision of the estimated fluxes in rat brain as well as reduced correlations between them. PMID:26969691

  14. 13C NMR of Nephila clavipes major ampullate silk gland.

    PubMed

    Hijirida, D H; Do, K G; Michal, C; Wong, S; Zax, D; Jelinski, L W

    1996-12-01

    The major ampullate glands of the spider Nephila clavipes contain approximately 0.2 microliter each of a highly concentrated (approximately 50%) solution of silk fibroin. Therefore, the reservoir of silk in these glands presents an ideal opportunity to observe prefolded conformations of a protein in its native state. To this end, the structure and conformation of major ampullate gland silk fibroin within the glands of the spider N. clavipes were examined by 13C NMR spectroscopy. These results were compared to those from silk protein first drawn from the spinneret and then denatured. The 13C NMR chemical shifts, along with infrared and circular dichroism data, suggest that the silk fibroin in the glands exists in dynamically averaged helical conformations. Furthermore, there is no evidence of proline residues in U-(13)C-D-glucose-labeled silk. This transient prefolded "molten fibril" state may correspond to the silk I form found in Bombyx mori silk. There is no evidence of the final beta-sheet structure in the ampullate gland silk fibroin before final silk processing. However, the conformation of silk in the glands appears to be in a highly metastable state, as plasticization with water produces the beta-sheet structure. Therefore, the ducts connecting the ampullate glands to the spinnerets play a larger role in silk processing than previously thought.

  15. High-field 13C NMR spectroscopy of tissue in Vivo. A double-resonance surface-coil probe

    NASA Astrophysics Data System (ADS)

    Reo, Nicholas V.; Ewy, Coleen S.; Siegfried, Barry A.; Ackerman, Joseph J. H.

    A double-resonance surface-coil NMR probe is described for performance of high-field (8.5 T) proton decoupled carbon-13 experiments with tissue in vivo. The probe may be accommodated in standard, 89 mm i.d. clear bore, commercial spectrometers and is suitable for studies utilizing small laboratory animals such as mice, hamsters, and rats. A coaxial coil design is employed (10 mm diameter 13C coil, 20 mm diameter 1H coil) which provides ca. 40 dB attenuation between the 13C observe and 1H decouple channels. The inherent efficiency of the surface-coil configuration provides a sensitivity comparable to a commercial probe of the same nominal dimension (10 mm Helmholtz coil) and assures adequate decoupling in conductive samples with ca. 3-5 W power. In the absence of 13C isotopic enrichment, NMR spectra of rat leg, liver, and brain in vivo provide signalto-noise sufficient for 10 min time resolution. Administration of 100 mg of 90% 13C-labeled glucose into a peripheral vein of a ca. 300 g rat resulted in a liver glucose resonance which could be monitored with good signal-to-noise and 3 min time resolution.

  16. A novel proteomic approach for specific identification of tyrosine kinase substrates using [13C]tyrosine.

    PubMed

    Ibarrola, Nieves; Molina, Henrik; Iwahori, Akiko; Pandey, Akhilesh

    2004-04-16

    Proteomic studies to find substrates of tyrosine kinases generally rely on identification of protein bands that are "pulled down" by antiphosphotyrosine antibodies from ligand-stimulated samples. One can obtain erroneous results from such experiments because of two major reasons. First, some proteins might be basally phosphorylated on tyrosine residues in the absence of ligand stimulation. Second, proteins can bind non-specifically to the antibodies or the affinity matrix. Induction of phosphorylation of proteins by ligand must therefore be confirmed by a different approach, which is not always feasible. We have developed a novel proteomic approach to identify substrates of tyrosine kinases in signaling pathways studies based on in vivo labeling of proteins with "light" (12C-labeled) or "heavy" (13C-labeled) tyrosine. This stable isotope labeling in cell culture method enables the unequivocal identification of tyrosine kinase substrates, as peptides derived from true substrates give rise to a unique signature in a mass spectrometry experiment. By using this approach, from a single experiment, we have successfully identified several known substrates of insulin signaling pathway and a novel substrate, polymerase I and transcript release factor, a protein that is implicated in the control of RNA metabolism and regulation of type I collagen promoters. This approach is amenable to high throughput global studies as it simplifies the specific identification of substrates of tyrosine kinases as well as serine/threonine kinases using mass spectrometry.

  17. Comparative absorption of [13C]glucose and [13C]lactose by premature infants.

    PubMed

    Murray, R D; Boutton, T W; Klein, P D; Gilbert, M; Paule, C L; MacLean, W C

    1990-01-01

    Oxidation of orally administered [13C]glucose and [13C]lactose and fecal recovery of malabsorbed substrates were determined in two groups of premature infants. Eighteen studies were performed with six infants at Johns Hopkins Hospital (JHH); 24 studies were performed with nine infants at Columbus Children's Hospital (CCH). The two groups differed in that JHH infants had shorter gestations but were older when studied. Fecal 13C loss after [13C]glucose administration did not differ between the two groups. Compared with glucose, the metabolism of lactose appeared to involve more malabsorption and colonic fermentation in JHH infants than in CCH infants and resulted in higher fecal losses of substrate carbon. Maturation appeared to involve increased proximal intestinal absorption and greater retention of absorbed carbohydrate. Simultaneous absorption of substrate from the small and large intestine may limit the usefulness of breath tests for 13C in the premature infant.

  18. Synthesis of [1-.sup.13C]pyruvic acid], [2-.sup.13C]pyruvic acid], [3-.sup.13C]pyruvic acid] and combinations thereof

    DOEpatents

    Martinez, Rodolfo A.; Unkefer, Clifford J.; Alvarez, Marc A.

    2009-09-01

    The present invention is directed to labeled compounds, of the formulae ##STR00001## wherein C* is each independently selected from the group consisting of .sup.13C and .sup.12C with the proviso that at least one C* is .sup.13C, each hydrogen of the methylene group can independently be either hydrogen or deuterium, the methyl group includes either zero or three deuterium atoms, Q is from the group of sulfide, sulfinyl, and sulfone, Z is an aryl group from the group of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR00002## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently from the group of hydrogen, a C.sub.1-C.sub.4 lower alkyl, a halogen, and an amino group from the group of NH.sub.2, NHR and NRR' where R and R' are each independently from the group of a C.sub.1-C.sub.4 lower alkyl, a phenyl, and an alkoxy group, and the methyl group can include either zero or three deuterium atoms.

  19. Transfer of (13) C between paired Douglas-fir seedlings reveals plant kinship effects and uptake of exudates by ectomycorrhizas.

    PubMed

    Pickles, Brian J; Wilhelm, Roland; Asay, Amanda K; Hahn, Aria S; Simard, Suzanne W; Mohn, William W

    2017-04-01

    Processes governing the fixation, partitioning, and mineralization of carbon in soils are under increasing scrutiny as we develop a more comprehensive understanding of global carbon cycling. Here we examined fixation by Douglas-fir seedlings and transfer to associated ectomycorrhizal fungi, soil microbes, and full-sibling or nonsibling neighbouring seedlings. Stable isotope probing with 99% (13) C-CO2 was applied to trace (13) C-labelled photosynthate throughout plants, fungi, and soil microbes in an experiment designed to assess the effect of relatedness on (13) C transfer between plant pairs. The fixation and transfer of the (13) C label to plant, fungal, and soil microbial tissue was examined in biomass and phospholipid fatty acids. After a 6 d chase period, c. 26.8% of the (13) C remaining in the system was translocated below ground. Enrichment was proportionally greatest in ectomycorrhizal biomass. The presence of mesh barriers (0.5 or 35 μm) between seedlings did not restrict (13) C transfer. Fungi were the primary recipients of (13) C-labelled photosynthate throughout the system, representing 60-70% of total (13) C-enriched phospholipids. Full-sibling pairs exhibited significantly greater (13) C transfer to recipient roots in two of four Douglas-fir families, representing three- and fourfold increases (+ c. 4 μg excess (13) C) compared with nonsibling pairs. The existence of a root/mycorrhizal exudation-hyphal uptake pathway was supported.

  20. Real-time assessment of Krebs cycle metabolism using hyperpolarized 13C magnetic resonance spectroscopy.

    PubMed

    Schroeder, Marie A; Atherton, Helen J; Ball, Daniel R; Cole, Mark A; Heather, Lisa C; Griffin, Julian L; Clarke, Kieran; Radda, George K; Tyler, Damian J

    2009-08-01

    The Krebs cycle plays a fundamental role in cardiac energy production and is often implicated in the energetic imbalance characteristic of heart disease. In this study, we measured Krebs cycle flux in real time in perfused rat hearts using hyperpolarized magnetic resonance spectroscopy (MRS). [2-(13)C]Pyruvate was hyperpolarized and infused into isolated perfused hearts in both healthy and postischemic metabolic states. We followed the enzymatic conversion of pyruvate to lactate, acetylcarnitine, citrate, and glutamate with 1 s temporal resolution. The appearance of (13)C-labeled glutamate was delayed compared with that of other metabolites, indicating that Krebs cycle flux can be measured directly. The production of (13)C-labeled citrate and glutamate was decreased postischemia, as opposed to lactate, which was significantly elevated. These results showed that the control and fluxes of the Krebs cycle in heart disease can be studied using hyperpolarized [2-(13)C]pyruvate.

  1. 13C metabolic flux analysis in complex systems.

    PubMed

    Zamboni, Nicola

    2011-02-01

    Experimental determination of in vivo metabolic rates by methods of (13)C metabolic flux analysis is a pivotal approach to unravel structure and regulation of metabolic networks, in particular with microorganisms grown in minimal media. However, the study of real-life and eukaryotic systems calls for the quantification of fluxes also in cellular compartments, rich media, cell-wide metabolic networks, dynamic systems or single cells. These scenarios drastically increase the complexity of the task, which is only partly dealt by existing approaches that rely on rigorous simulations of label propagation through metabolic networks and require multiple labeling experiments or a priori information on pathway inactivity to simplify the problem. Albeit qualitative and largely driven by human interpretation, statistical analysis of measured (13)C-patterns remains the exclusive alternative to comprehensively handle such complex systems. In the future, this practice will be complemented by novel modeling frameworks to assay particular fluxes within a network by stable isotopic tracer for targeted validation of well-defined hypotheses.

  2. A study on the biosynthesis of hygrophorone B(12) in the mushroom Hygrophorus abieticola reveals an unexpected labelling pattern in the cyclopentenone moiety.

    PubMed

    Otto, Alexander; Porzel, Andrea; Schmidt, Jürgen; Wessjohann, Ludger; Arnold, Norbert

    2015-10-01

    The hitherto unknown natural formation of hygrophorones, antibacterial and antifungal cyclopentenone derivatives from mushrooms, was investigated for hygrophorone B(12) in Hygrophorus abieticola Krieglst. ex Gröger & Bresinsky by feeding experiments in the field using (13)C labelled samples of D-glucose and sodium acetate. The incorporation of (13)C isotopes was extensively studied using 1D and 2D NMR spectroscopy as well as ESI-HRMS analyses. In the experiment with [U-(13)C6]-glucose, six different (13)C2 labelled isotopomers were observed in the 2D INADEQUATE spectrum due to incorporation of [1,2-(13)C2]-acetyl-CoA. This labelling pattern demonstrated that hygrophorone B(12) is derived from a fatty acid-polyketide route instead of a 1,4-α-D-glucan derived anhydrofructose pathway. The experiment with [2-(13)C]-acetate revealed an unexpected incorporation pattern in the cyclopentenone functionality of hygrophorone B(12). Four single-labelled isotopomers, in particular [1-(13)C]-, [2-(13)C]-, [3-(13)C]-, and [4-(13)C]-hygrophorone B(12), were detected that showed only half enrichment in comparison to the respective labelled alkyl side chain carbons. This labelling pattern indicates the formation of a symmetrical intermediate during hygrophorone B(12) biosynthesis. Based on these observations, a biogenetic route via a 4-oxo fatty acid and a chrysotrione B homologue is discussed.

  3. Preliminary studies of a canine 13C-aminopyrine demethylation blood test.

    PubMed Central

    Moeller, E M; Steiner, J M; Williams, D A; Klein, P D

    2001-01-01

    The objectives of this study were to determine whether a 13C-aminopyrine demethylation blood test is technically feasible in clinically healthy dogs, whether oral administration of 13C-aminopyrine causes a detectable increase in percent dose/min (PCD) of 13C administered as 13C-aminopyrine and recovered in gas extracted from blood, and whether gas extraction efficiency has an impact on PCD. A dose of 2 mg/kg body weight of 13C-aminopyrine dissolved in deionized water was administered orally to 6 clinically healthy dogs. Blood samples were taken from each dog 0, 30, 60, and 120 min after administration of the 13C-aminopyrine. Carbon dioxide was extracted from blood samples by addition of acid and analyzed by fractional mass spectrometry. None of the 6 dogs showed any side effects after 13C-aminopyrine administration. All 6 dogs showed a measurable increase of the PCD in gas samples extracted from blood samples at 30 min, 60 min, and 120 min after 13C-aminopyrine administration. Coefficients of variation between the triplicate samples were statistically significantly higher for the %CO2, a measure of extraction efficiency, than for PCD values (P < 0.0001). The 13C-aminopyrine demethylation blood test described here is technically feasible. Oral administration of 13C-aminopyrine did not lead to gross side effects in the 6 dogs. Clinically healthy dogs show a measurable increase of PCD in gas extracted from blood samples after oral administration of 13C-aminopyrine. Efficiency of CO2 extraction from blood samples does not have an impact on PCD determined from these blood samples. This test may prove useful to evaluate hepatic function in dogs. PMID:11227194

  4. 13C MRS studies of neuroenergetics and neurotransmitter cycling in humans.

    PubMed

    Rothman, Douglas L; De Feyter, Henk M; de Graaf, Robin A; Mason, Graeme F; Behar, Kevin L

    2011-10-01

    In the last 25 years, (13)C MRS has been established as the only noninvasive method for the measurement of glutamate neurotransmission and cell-specific neuroenergetics. Although technically and experimentally challenging, (13)C MRS has already provided important new information on the relationship between neuroenergetics and neuronal function, the energy cost of brain function, the high neuronal activity in the resting brain state and how neuroenergetics and neurotransmitter cycling are altered in neurological and psychiatric disease. In this article, the current state of (13)C MRS as it is applied to the study of neuroenergetics and neurotransmitter cycling in humans is reviewed. The focus is predominantly on recent findings in humans regarding metabolic pathways, applications to clinical research and the technical status of the method. Results from in vivo (13)C MRS studies in animals are discussed from the standpoint of the validation of MRS measurements of neuroenergetics and neurotransmitter cycling, and where they have helped to identify key questions to address in human research. Controversies concerning the relationship between neuroenergetics and neurotransmitter cycling and factors having an impact on the accurate determination of fluxes through mathematical modeling are addressed. We further touch upon different (13)C-labeled substrates used to study brain metabolism, before reviewing a number of human brain diseases investigated using (13)C MRS. Future technological developments are discussed that will help to overcome the limitations of (13)C MRS, with special attention given to recent developments in hyperpolarized (13)C MRS.

  5. Application of multiplexed cysteine-labeled complex protein sample for 2D electrophoretic gel alignment.

    PubMed

    Haimi, Perttu; Sikorskaite-Gudziuniene, Sidona; Baniulis, Danas

    2015-06-01

    The analysis of cellular subproteomes by 2DE is hampered by the difficulty of aligning gel images from samples that have very different protein composition. Here, we present a sensitive and cost-effective fluorescent labeling method for analyzing protein samples that is not dependent on their composition. The alignment is guided by inclusion of a complex mixture of proteins that is co-run with the sample. Maleimide-conjugated fluorescent dyes Dy-560 and Dy-635 are used to label the cysteine residues of the sample of interest and the alignment standard, respectively. The two differently labeled mixtures are then combined and separated on a 2D gel and, after selective fluorescence detection, an unsupervised image registration process is used to align the protein patters. In a pilot study, this protocol significantly improved the accuracy of alignment of nuclear proteins with total cellular proteins.

  6. Preparation of Mo-Re-C samples containing Mo7Re13C with the β-Mn-type structure by solid state reaction of planetary-ball-milled powder mixtures of Mo, Re and C, and their crystal structures and superconductivity

    NASA Astrophysics Data System (ADS)

    Oh-ishi, Katsuyoshi; Nagumo, Kenta; Tateishi, Kazuya; Takafumi, Ohnishi; Yoshikane, Kenta; Sugiyama, Machiko; Oka, Kengo; Kobayashi, Ryota

    2017-01-01

    Mo-Re-C compounds containing Mo7Re13C with the β-Mn structure were synthesized with high-melting-temperature metals Mo, Re, and C powders using a conventional solid state method with a planetary ball milling machine instead of the arc melting method. Use of the ball milling machine was necessary to obtain Mo7Re13C with the β-Mn structure using the solid state method. Almost single-phase Mo7Re13C with a trace of impurity were obtained using the synthesis method. By XRF and lattice parameter measurements on the samples, Fe element existed in the compound synthesized using the planetary ball milling machine with a pot and balls made of steel, though Fe element was not detected in the compound synthesized using a pot and balls made of tungsten carbide. The former compound containg the Fe atom did not show superconductivity but the latter compound without the Fe atom showed superconductivity at 6.1 K.

  7. 9 CFR 327.12 - Foreign canned or packaged products bearing trade labels; sampling and inspection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Foreign canned or packaged products... MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY INSPECTION AND CERTIFICATION IMPORTED PRODUCTS § 327.12 Foreign canned or packaged products bearing trade labels; sampling and inspection. (a) Samples...

  8. Detecting response of rat C6 glioma tumors to radiotherapy using hyperpolarized [1- 13C]pyruvate and 13C magnetic resonance spectroscopic imaging.

    PubMed

    Day, Sam E; Kettunen, Mikko I; Cherukuri, Murali Krishna; Mitchell, James B; Lizak, Martin J; Morris, H Douglas; Matsumoto, Shingo; Koretsky, Alan P; Brindle, Kevin M

    2011-02-01

    We show here that hyperpolarized [1-(13) C]pyruvate can be used to detect treatment response in a glioma tumor model; a tumor type where detection of response with (18) fluoro-2-deoxyglucose, using positron emission tomography, is limited by the high background signals from normal brain tissue. (13) C chemical shift images acquired following intravenous injection of hyperpolarized [1-(13) C]pyruvate into rats with implanted C6 gliomas showed significant labeling of lactate within the tumors but comparatively low levels in surrounding brain.Labeled pyruvate was observed at high levels in blood vessels above the brain and from other major vessels elsewhere but was detected at only low levels in tumor and brain.The ratio of hyperpolarized (13) C label in tumor lactate compared to the maximum pyruvate signal in the blood vessels was decreased from 0.38 ± 0.16 to 0.23 ± 0.13, (a reduction of 34%) by 72 h following whole brain irradiation with 15 Gy.

  9. Characterization of Acetate and Pyruvate Metabolism in Suspension Cultures of Zea mays by 13C NMR Spectroscopy

    PubMed Central

    Ashworth, Dennis J.; Lee, Rino Y.; Adams, Douglas O.

    1987-01-01

    Carbon-13 nuclear magnetic resonance (NMR) spectroscopy has been applied to the direct observation of acetate and pyruvate metabolism in suspension cultures of Zea mays (var Black Mexican Sweet). Growth of the corn cells in the presence of 2 millimolar [2-13C]acetate resulted in a rapid uptake of the substrate from the medium and initial labeling (0-4 hours) of primarily the intracellular glutamate and malate pools. Further metabolism of these intermediates resulted in labeling of glutamine, aspartate, and alanine. With [1-13C]acetate as the substrate very little incorporation into intermediary metabolites was observed in the 13C NMR spectra due to loss of the label as 13CO2. Uptake of [3-13C]pyruvate by the cells was considerably slower than with [2-13C]acetate; however, the labelling patterns were similar with the exception of increased [3-13C] alanine generation with pyruvate as the substrate. Growth of the cells for up to 96 hours with 2 millimolar [3-13C]pyruvate ultimately resulted in labeling of valine, leucine, isoleucine, threonine, and the polyamine putrescine. PMID:16665721

  10. Multi-objective experimental design for (13)C-based metabolic flux analysis.

    PubMed

    Bouvin, Jeroen; Cajot, Simon; D'Huys, Pieter-Jan; Ampofo-Asiama, Jerry; Anné, Jozef; Van Impe, Jan; Geeraerd, Annemie; Bernaerts, Kristel

    2015-10-01

    (13)C-based metabolic flux analysis is an excellent technique to resolve fluxes in the central carbon metabolism but costs can be significant when using specialized tracers. This work presents a framework for cost-effective design of (13)C-tracer experiments, illustrated on two different networks. Linear and non-linear optimal input mixtures are computed for networks for Streptomyces lividans and a carcinoma cell line. If only glucose tracers are considered as labeled substrate for a carcinoma cell line or S. lividans, the best parameter estimation accuracy is obtained by mixtures containing high amounts of 1,2-(13)C2 glucose combined with uniformly labeled glucose. Experimental designs are evaluated based on a linear (D-criterion) and non-linear approach (S-criterion). Both approaches generate almost the same input mixture, however, the linear approach is favored due to its low computational effort. The high amount of 1,2-(13)C2 glucose in the optimal designs coincides with a high experimental cost, which is further enhanced when labeling is introduced in glutamine and aspartate tracers. Multi-objective optimization gives the possibility to assess experimental quality and cost at the same time and can reveal excellent compromise experiments. For example, the combination of 100% 1,2-(13)C2 glucose with 100% position one labeled glutamine and the combination of 100% 1,2-(13)C2 glucose with 100% uniformly labeled glutamine perform equally well for the carcinoma cell line, but the first mixture offers a decrease in cost of $ 120 per ml-scale cell culture experiment. We demonstrated the validity of a multi-objective linear approach to perform optimal experimental designs for the non-linear problem of (13)C-metabolic flux analysis. Tools and a workflow are provided to perform multi-objective design. The effortless calculation of the D-criterion can be exploited to perform high-throughput screening of possible (13)C-tracers, while the illustrated benefit of multi

  11. 40 CFR Appendix III to Part 600 - Sample Fuel Economy Label Calculation

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Sample Fuel Economy Label Calculation III Appendix III to Part 600 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Pt. 600, App....

  12. 40 CFR Appendix III to Part 600 - Sample Fuel Economy Label Calculation

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Sample Fuel Economy Label Calculation III Appendix III to Part 600 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Pt. 600, App....

  13. Statistical analysis of relative labeled mass spectrometry data from complex samples using ANOVA

    PubMed Central

    Oberg, Ann L.; Mahoney, Douglas W.; Eckel-Passow, Jeanette E.; Malone, Christopher J.; Wolfinger, Russell D.; Hill, Elizabeth G.; Cooper, Leslie T.; Onuma, Oyere K.; Spiro, Craig; Therneau, Terry M.; Bergen, H. Robert

    2008-01-01

    Statistical tools enable unified analysis of data from multiple global proteomic experiments, producing unbiased estimates of normalization terms despite the missing data problem inherent in these studies. The modeling approach, implementation and useful visualization tools are demonstrated via case study of complex biological samples assessed using the iTRAQ™ relative labeling protocol. PMID:18173221

  14. Effects of fasting on serial measurements of hyperpolarized [1-(13) C]pyruvate metabolism in tumors.

    PubMed

    Serrao, Eva M; Rodrigues, Tiago B; Gallagher, Ferdia A; Kettunen, Mikko I; Kennedy, Brett W C; Vowler, Sarah L; Burling, Keith A; Brindle, Kevin M

    2016-08-01

    Imaging of the metabolism of hyperpolarized [1-(13) C]pyruvate has shown considerable promise in preclinical studies in oncology, particularly for the assessment of early treatment response. The repeatability of measurements of (13) C label exchange between pyruvate and lactate was determined in a murine lymphoma model in fasted and non-fasted animals. The fasted state showed lower intra-individual variability, although the [1-(13) C]lactate/[1-(13) C]pyruvate signal ratio was significantly greater in fasted than in non-fasted mice, which may be explained by the higher tumor lactate concentrations in fasted animals. These results indicate that the fasted state may be preferable for the measurement of (13) C label exchange between pyruvate and lactate, as it reduces the variability and therefore should make it easier to detect the effects of therapy. © 2016 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.

  15. Effects of fasting on serial measurements of hyperpolarized [1‐13C]pyruvate metabolism in tumors

    PubMed Central

    Serrao, Eva M.; Rodrigues, Tiago B.; Gallagher, Ferdia A.; Kettunen, Mikko I.; Kennedy, Brett W. C.; Vowler, Sarah L.; Burling, Keith A.

    2016-01-01

    Imaging of the metabolism of hyperpolarized [1‐13C]pyruvate has shown considerable promise in preclinical studies in oncology, particularly for the assessment of early treatment response. The repeatability of measurements of 13C label exchange between pyruvate and lactate was determined in a murine lymphoma model in fasted and non‐fasted animals. The fasted state showed lower intra‐individual variability, although the [1‐13C]lactate/[1‐13C]pyruvate signal ratio was significantly greater in fasted than in non‐fasted mice, which may be explained by the higher tumor lactate concentrations in fasted animals. These results indicate that the fasted state may be preferable for the measurement of 13C label exchange between pyruvate and lactate, as it reduces the variability and therefore should make it easier to detect the effects of therapy. © 2016 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd. PMID:27309986

  16. 40 CFR Appendix Vi to Part 600 - Sample Fuel Economy Labels and Style Guidelines for 2013 and Later Model Years

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Fuel Cell Vehicle Label ER06JY11.051 G. Natural Gas Vehicle Label ER06JY11.052 H. Plug-in Hybrid... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Sample Fuel Economy Labels and Style... PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF...

  17. Deposition of 13C tracer in the JET MkII-HD divertor

    NASA Astrophysics Data System (ADS)

    Likonen, J.; Airila, M.; Alves, E.; Barradas, N.; Brezinsek, S.; Coad, J. P.; Devaux, S.; Groth, M.; Grünhagen, S.; Hakola, A.; Jachmich, S.; Koivuranta, S.; Makkonen, T.; Rubel, M.; Strachan, J.; Stamp, M.; Widdowson, A.; EFDA contributors, JET-

    2011-12-01

    Migration of 13C has been investigated at JET by injecting 13C-labelled methane at the outer divertor base at the end of the 2009 campaign. The 13C deposition profiles on carbon fibre composite divertor tiles were measured by secondary ion mass spectrometry and Rutherford backscattering techniques. 13C was mainly deposited near the puffing location on the outer divertor base tiles. High amounts of 13C were also found at the outer vertical target: at the bottom of the lower and at the top of the upper plates. Thirty-three percent of puffed 13CH4 was instantly pumped out by the divertor cryopump, which is close to the pump duct entrance. Global 13C transport in the torus was modelled by the EDGE2D/EIRENE and DIVIMP codes, and local 13C migration in the vicinity of the injection location by the ERO code. The DIVIMP and EDGE2D simulations show strong prompt deposition of 13C directly adjacent to the injection point as well as in the far scrape-off layer (SOL) along both the inner and outer divertor targets. In addition, the measured 13C deposition along the outer divertor wall tiles is qualitatively reproduced. However, EDGE2D and DIVIMP do not predict any deposition along the divertor surfaces facing the private plasma on the inner floor tile and inboard of the outer strike point on tile 5. The ERO calculations also indicate that most of the deposition occurs close to the injection location on the vertical face of the LBSRP tile and the horizontal part of tile 6.

  18. Confirmation of Fructans biosynthesized in vitro from [1-13C]glucose in asparagus tissues using MALDI-TOF MS and ESI-MS.

    PubMed

    Suzuki, Takashi; Maeda, Tomoo; Grant, Suzanne; Grant, Gordon; Sporns, Peter

    2013-05-15

    Accumulation of Fructans was confirmed in asparagus tissues that had been cultured for 2 days on media supplemented with glucose. It is very common that Fructans are biosynthesized from sucrose. We hypothesized however that Fructans could also be biosynthesized from glucose. Stem tissues of in vitro-cultured asparagus were subcultured for 72 h on a medium containing 0.5M of [1-(13)C]glucose. A medium containing 0.5M of normal ((12)C) glucose was used as control. Carbohydrates were extracted from the tissues and analyzed using HPLC, MALDI-TOF MS and ESI-MS. HPLC results indicated that the accumulation of short-chain Fructans was similar in both (13)C-labelled and control samples. Short-chain Fructans of DP=3-7 were detected using MALDI-TOF MS. The molecular mass of each oligomer in the (13)C-labelled sample was higher than the mass of the natural sample by 1 m/z unit per sugar moiety. The results of ESI-MS on the HPLC fractions of neokestose and 1-kestose showed that these oligomers (DP=3) were biosynthesized from exogenous glucose added to the medium. We conclude that not only exogenous sucrose but glucose can induce Fructan biosynthesis; fructans of both inulin type and inulin neoseries are also biosynthesized from glucose accumulated in asparagus tissues; the glucose molecules (or its metabolic products) were incorporated into Fructans as structural monomers.

  19. Isotopic 13C NMR spectrometry to assess counterfeiting of active pharmaceutical ingredients: site-specific 13C content of aspirin and paracetamol.

    PubMed

    Silvestre, Virginie; Mboula, Vanessa Maroga; Jouitteau, Catherine; Akoka, Serge; Robins, Richard J; Remaud, Gérald S

    2009-10-15

    Isotope profiling is a well-established technique to obtain information about the chemical history of a given compound. However, the current methodology using IRMS can only determine the global (13)C content, leading to the loss of much valuable data. The development of quantitative isotopic (13)C NMR spectrometry at natural abundance enables the measurement of the (13)C content of each carbon within a molecule, thus giving simultaneous access to a number of isotopic parameters. When it is applied to active pharmaceutical ingredients, each manufactured batch can be characterized better than by IRMS. Here, quantitative isotopic (13)C NMR is shown to be a very promising and effective tool for assessing the counterfeiting of medicines, as exemplified by an analysis of aspirin (acetylsalicylic acid) and paracetamol (acetaminophen) samples collected from pharmacies in different countries. It is proposed as an essential complement to (2)H NMR and IRMS.

  20. Production of isotopically-labeled standards from a uniformly labeled precursor for quantitative volatile metabolomic studies

    PubMed Central

    Gómez-Cortés, Pilar; Brenna, J. Thomas; Sacks, Gavin L.

    2012-01-01

    Optimal accuracy and precision in small molecule profiling by mass spectrometry generally requires isotopically labeled standards chemically representative of all compounds of interest. However, preparation of mixed standards from commercially available pure compounds is often prohibitively expensive and time consuming, and many labeled compounds are not available in pure form. We used a single prototype uniformly labeled [U-13C]-compound to generate [U-13C]-volatile standards for use in subsequent experimental profiling studies. [U-13C]-α-linolenic acid (C18:3n-3, ALA) was thermally oxidized to produce labeled lipid degradation volatiles which were subsequently characterized qualitatively and quantitatively. Twenty-five [U-13C]-labeled volatiles were identified by headspace solid-phase microextraction-gas chromatography-time of flight-mass spectrometry (HS-SPME-GC-TOF-MS) by comparison of spectra with unlabeled volatiles. Using 250 μL starting sample, labeled volatiles were quantified by a reverse isotope dilution procedure. Using the [U-13C]-labeled standards, limits of detection comparable to or better than previous HS-SPME reports were achieved, 0.010–1.04 ng/g. The performance of the [U-13C]-volatile standards was evaluated using a commodity soybean oil (CSO) oxidized at 60°C from 0 to 15 d. Relative responses of n-decane, an unlabeled internal standard otherwise absent from the mixture, and [U-13C]-oxidation products changed by up to 8-fold as the CSO matrix was oxidized, demonstrating that reliance on a single standard in volatile profiling studies yields inaccurate results due to changing matrix effects. The [U-13C]-standard mixture was used to quantify 25 volatiles in oxidized CSO and low-ALA soybean oil with an average relative standard deviation of 8.5%. Extension of this approach to other labeled substrates, e.g., [U-13C]-sugars and amino acids, for profiling studies should be feasible and can dramatically improve quantitative results compared to

  1. Foliar d13C within a temperate deciduous forest: spatial, temporal, and species sources of variation

    SciTech Connect

    Garten Jr, Charles T; TaylorJr, G. E.

    1992-04-01

    Foliar {sup 13}C-abundance ({delta}{sup 13}C) was analyzed in the dominant trees of a temperate deciduous forest in east Tennessee (Walker Branch Watershed) to investigate the variation in foliar {delta}{sup 13}C as a function of time (within-year and between years), space (canopy height, watershed topography and habitat) and species (deciduous and coniferous taxa). Various hypotheses were tested by analyzing (i) samples collected from the field during the growing season and (ii) foliar tissues maintained in an archived collection. The {delta}{sup 13}C-value for leaves from the tops of trees was 2 to 3%. more positive than for leaves sampled at lower heights in the canopy. Quercus prinus leaves sampled just prior to autumn leaf fall had significantly more negative {delta}{sup 13}C-values than those sampled during midsummer. On the more xeric ridges, needles of Pinus spp. had more positive {delta}{sup 13}C-values than leaves from deciduous species. Foliar {delta}{sup 13}C-values differed significantly as a function of topography. Deciduous leaves from xeric sites (ridges and slopes) had more positive {delta}{sup 13}C-values than those from mesic (riparian and cove) environments. On the more xeric sites, foliar {delta}{sup 13}C was significantly more positive in 1988 (a dry year) relative to that in 1989 (a year with above-normal precipitation). In contrast, leaf {delta}{sup 13}C in trees from mesic valley bottoms did not differ significantly among years with disparate precipitation. Patterns in foliar {delta}{sup 13}C indicated a higher ratio of net CO{sub 2} assimilation to transpiration (A/E) for trees in more xeric versus mesic habitats, and for trees in xeric habitats during years of drought versus years of normal precipitation. However, A/E (units of mmol CO{sub 2} fixed/mol H{sub 2}O transpired) calculated on the basis of {delta}{sup 13}C-values for leaves from the more xeric sites was higher in a wet year (6.6 {+-} 1.2) versus a dry year (3.4 {+-} 0.4). This

  2. Neuroprotective effects of caffeine in MPTP model of Parkinson's disease: A (13)C NMR study.

    PubMed

    Bagga, Puneet; Chugani, Anup N; Patel, Anant B

    2016-01-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by degeneration of nigrostriatal dopaminergic neurons with an accompanying neuroinflammation leading to loss of dopamine in the basal ganglia. Caffeine, a well-known A2A receptor antagonist is reported to slow down the neuroinflammation caused by activated microglia and reduce the extracellular glutamate in the brain. In this study, we have evaluated the neuroprotective effect of caffeine in the MPTP model of PD by monitoring the region specific cerebral energy metabolism. Adult C57BL6 mice were treated with caffeine (30 mg/kg, i.p.) 30 min prior to MPTP (25 mg/kg, i.p.) administration for 8 days. The paw grip strength of mice was assessed in order to evaluate the motor function after various treatments. For metabolic studies, mice were infused with [1,6-(13)C2]glucose, and (13)C labeling of amino acids was monitored using ex vivo(1)H-[(13)C]-NMR spectroscopy. The paw grip strength was found to be reduced following the MPTP treatment. The caffeine pretreatment showed significant protection against the reduction of paw grip strength in MPTP treated mice. The levels of GABA and myo-inositol were found to be elevated in the striatum of MPTP treated mice. The (13)C labeling of GluC4, GABAC2 and GlnC4 from [1,6-(13)C2]glucose was decreased in the cerebral cortex, striatum, olfactory bulb, thalamus and cerebellum suggesting impaired glutamatergic and GABAergic neuronal activity and neurotransmission of the MPTP treated mice. Most interestingly, the pretreatment of caffeine maintained the (13)C labeling of amino acids to the control values in cortical, olfactory bulb and cerebellum regions while it partially retained in striatal and thalamic regions in MPTP treated mice. The pretreatment of caffeine provides a partial neuro-protection against severe striatal degeneration in the MPTP model of PD.

  3. T(2) relaxation times of (13)C metabolites in a rat hepatocellular carcinoma model measured in vivo using (13)C-MRS of hyperpolarized [1-(13)C]pyruvate.

    PubMed

    Yen, Yi-Fen; Le Roux, Patrick; Mayer, Dirk; King, Randy; Spielman, Daniel; Tropp, James; Butts Pauly, Kim; Pfefferbaum, Adolf; Vasanawala, Shreyas; Hurd, Ralph

    2010-05-01

    A single-voxel Carr-Purcell-Meibloom-Gill sequence was developed to measure localized T(2) relaxation times of (13)C-labeled metabolites in vivo for the first time. Following hyperpolarized [1-(13)C]pyruvate injections, pyruvate and its metabolic products, alanine and lactate, were observed in the liver of five rats with hepatocellular carcinoma and five healthy control rats. The T(2) relaxation times of alanine and lactate were both significantly longer in HCC tumors than in normal livers (p < 0.002). The HCC tumors also showed significantly higher alanine signal relative to the total (13)C signal than normal livers (p < 0.006). The intra- and inter-subject variations of the alanine T(2) relaxation time were 11% and 13%, respectively. The intra- and inter-subject variations of the lactate T(2) relaxation time were 6% and 7%, respectively. The intra-subject variability of alanine to total carbon ratio was 16% and the inter-subject variability 28%. The intra-subject variability of lactate to total carbon ratio was 14% and the inter-subject variability 20%. The study results show that the signal level and relaxivity of [1-(13)C]alanine may be promising biomarkers for HCC tumors. Its diagnostic values in HCC staging and treatment monitoring are yet to be explored.

  4. IsoDesign: a software for optimizing the design of 13C-metabolic flux analysis experiments.

    PubMed

    Millard, Pierre; Sokol, Serguei; Letisse, Fabien; Portais, Jean-Charles

    2014-01-01

    The growing demand for (13) C-metabolic flux analysis ((13) C-MFA) in the field of metabolic engineering and systems biology is driving the need to rationalize expensive and time-consuming (13) C-labeling experiments. Experimental design is a key step in improving both the number of fluxes that can be calculated from a set of isotopic data and the precision of flux values. We present IsoDesign, a software that enables these parameters to be maximized by optimizing the isotopic composition of the label input. It can be applied to (13) C-MFA investigations using a broad panel of analytical tools (MS, MS/MS, (1) H NMR, (13) C NMR, etc.) individually or in combination. It includes a visualization module to intuitively select the optimal label input depending on the biological question to be addressed. Applications of IsoDesign are described, with an example of the entire (13) C-MFA workflow from the experimental design to the flux map including important practical considerations. IsoDesign makes the experimental design of (13) C-MFA experiments more accessible to a wider biological community. IsoDesign is distributed under an open source license at http://metasys.insa-toulouse.fr/software/isodes/

  5. 40 CFR Appendix IV to Part 600 - Sample Fuel Economy Labels for 2008 and Later Model Year Vehicles

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Sample Fuel Economy Labels for 2008... PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Pt. 600, App. IV Appendix IV to Part 600—Sample Fuel Economy Labels for 2008 and Later Model...

  6. 40 CFR Appendix IV to Part 600 - Sample Fuel Economy Labels for 2008 Through 2012 Model Year Vehicles

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Sample Fuel Economy Labels for 2008... PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Pt. 600, App. IV Appendix IV to Part 600—Sample Fuel Economy Labels for 2008 Through 2012...

  7. 40 CFR Appendix IV to Part 600 - Sample Fuel Economy Labels for 2008 and Later Model Year Vehicles

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Sample Fuel Economy Labels for 2008... PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Pt. 600, App. IV Appendix IV to Part 600—Sample Fuel Economy Labels for 2008 and Later Model...

  8. Spinning sidebands from chemical shift anisotropy in 13C MAS imaging.

    PubMed

    Scheler, U; Blümich, B; Spiess, H W

    1993-07-01

    Solid state imaging by 13C MAS imaging is described. The spinning sidebands occurring at moderate spinning speeds, which disturb the images, can be suppressed by TOSS. For rigid solids the spatial resolution that can be achieved in this way is better than that of 1H images at the same spinning speed. Spatially resolved spectra with or without spinning sidebands can likewise be recorded providing information about the isotropic and the anisotropic chemical shifts which can be exploited for the study of structure, order and dynamics. The techniques are demonstrated on a phantom made with 13C-labelled glycine.

  9. 13C magnetic resonance spectroscopy measurements with hyperpolarized [1‐13C] pyruvate can be used to detect the expression of transgenic pyruvate decarboxylase activity in vivo

    PubMed Central

    Dzien, Piotr; Tee, Sui‐Seng; Kettunen, Mikko I.; Lyons, Scott K.; Larkin, Timothy J.; Timm, Kerstin N.; Hu, De‐En; Wright, Alan; Rodrigues, Tiago B.; Serrao, Eva M.; Marco‐Rius, Irene; Mannion, Elizabeth; D'Santos, Paula; Kennedy, Brett W. C.

    2015-01-01

    Purpose Dissolution dynamic nuclear polarization can increase the sensitivity of the 13C magnetic resonance spectroscopy experiment by at least four orders of magnitude and offers a novel approach to the development of MRI gene reporters based on enzymes that metabolize 13C‐labeled tracers. We describe here a gene reporter based on the enzyme pyruvate decarboxylase (EC 4.1.1.1), which catalyzes the decarboxylation of pyruvate to produce acetaldehyde and carbon dioxide. Methods Pyruvate decarboxylase from Zymomonas mobilis (zmPDC) and a mutant that lacked enzyme activity were expressed using an inducible promoter in human embryonic kidney (HEK293T) cells. Enzyme activity was measured in the cells and in xenografts derived from the cells using 13C MRS measurements of the conversion of hyperpolarized [1‐13C] pyruvate to H13 CO3–. Results Induction of zmPDC expression in the cells and in the xenografts derived from them resulted in an approximately two‐fold increase in the H13 CO3–/[1‐13C] pyruvate signal ratio following intravenous injection of hyperpolarized [1‐13C] pyruvate. Conclusion We have demonstrated the feasibility of using zmPDC as an in vivo reporter gene for use with hyperpolarized 13C MRS. Magn Reson Med 76:391–401, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:26388418

  10. Modeling an in-register, parallel "iowa" aβ fibril structure using solid-state NMR data from labeled samples with rosetta.

    PubMed

    Sgourakis, Nikolaos G; Yau, Wai-Ming; Qiang, Wei

    2015-01-06

    Determining the structures of amyloid fibrils is an important first step toward understanding the molecular basis of neurodegenerative diseases. For β-amyloid (Aβ) fibrils, conventional solid-state NMR structure determination using uniform labeling is limited by extensive peak overlap. We describe the characterization of a distinct structural polymorph of Aβ using solid-state NMR, transmission electron microscopy (TEM), and Rosetta model building. First, the overall fibril arrangement is established using mass-per-length measurements from TEM. Then, the fibril backbone arrangement, stacking registry, and "steric zipper" core interactions are determined using a number of solid-state NMR techniques on sparsely (13)C-labeled samples. Finally, we perform Rosetta structure calculations with an explicitly symmetric representation of the system. We demonstrate the power of the hybrid Rosetta/NMR approach by modeling the in-register, parallel "Iowa" mutant (D23N) at high resolution (1.2Å backbone rmsd). The final models are validated using an independent set of NMR experiments that confirm key features.

  11. (13)C metabolic flux analysis of the extremely thermophilic, fast growing, xylose-utilizing Geobacillus strain LC300.

    PubMed

    Cordova, Lauren T; Antoniewicz, Maciek R

    2016-01-01

    Thermophiles are increasingly used as versatile hosts in the biotechnology industry. One of the key advantages of thermophiles is the potential to achieve high rates of feedstock conversion at elevated temperatures. The recently isolated Geobacillus strain LC300 grows extremely fast on xylose, with a doubling time of less than 30 min. In the accompanying paper, the genome of Geobacillus LC300 was sequenced and annotated. In this work, we have experimentally validated the metabolic network model using parallel (13)C-labeling experiments and applied (13)C-metabolic flux analysis to quantify precise metabolic fluxes. Specifically, the complete set of singly labeled xylose tracers, [1-(13)C], [2-(13)C], [3-(13)C], [4-(13)C], and [5-(13)C]xylose, was used for the first time. Isotopic labeling of biomass amino acids was measured by gas chromatography mass spectrometry (GC-MS). Isotopic labeling of carbon dioxide in the off-gas was also measured by an on-line mass spectrometer. The (13)C-labeling data was then rigorously integrated for flux elucidation using the COMPLETE-MFA approach. The results provided important new insights into the metabolism of Geobacillus LC300, its efficient xylose utilization pathways, and the balance between carbon, redox and energy fluxes. The pentose phosphate pathway, glycolysis and TCA cycle were found to be highly active in Geobacillus LC300. The oxidative pentose phosphate pathway was also active and contributed significantly to NADPH production. No transhydrogenase activity was detected. Results from this work provide a solid foundation for future studies of this strain and its metabolic engineering and biotechnological applications.

  12. Evolution of E. coli on [U-13C]Glucose Reveals a Negligible Isotopic Influence on Metabolism and Physiology

    PubMed Central

    Sandberg, Troy E.; Long, Christopher P.; Gonzalez, Jacqueline E.; Feist, Adam M.; Antoniewicz, Maciek R.; Palsson, Bernhard O.

    2016-01-01

    13C-Metabolic flux analysis (13C-MFA) traditionally assumes that kinetic isotope effects from isotopically labeled compounds do not appreciably alter cellular growth or metabolism, despite indications that some biochemical reactions can be non-negligibly impacted. Here, populations of Escherichia coli were adaptively evolved for ~1000 generations on uniformly labeled 13C-glucose, a commonly used isotope for 13C-MFA. Phenotypic characterization of these evolved strains revealed ~40% increases in growth rate, with no significant difference in fitness when grown on either labeled (13C) or unlabeled (12C) glucose. The evolved strains displayed decreased biomass yields, increased glucose and oxygen uptake, and increased acetate production, mimicking what is observed after adaptive evolution on unlabeled glucose. Furthermore, full genome re-sequencing revealed that the key genetic changes underlying these phenotypic alterations were essentially the same as those acquired during adaptive evolution on unlabeled glucose. Additionally, glucose competition experiments demonstrated that the wild-type exhibits no isotopic preference for unlabeled glucose, and the evolved strains have no preference for labeled glucose. Overall, the results of this study indicate that there are no significant differences between 12C and 13C-glucose as a carbon source for E. coli growth. PMID:26964043

  13. The effect of chemical processing on the δ 13C value of plant tissue

    NASA Astrophysics Data System (ADS)

    Van de Water, Peter K.

    2002-04-01

    The effect of standard processing techniques on the δ 13C value of plant tissue was tested using species representing the three photosynthetic pathways, including angiosperms and gymnosperms within the C 3 taxonomic division. The species include Cowania mexicana (C 3 angiosperm), Juniperus osteosperma (C 3 gymnosperm), Opuntia spp. (crassulacean acid metabolism [CAM] angiosperm), and Atriplex canescens (C 4 angiosperm). Each species is represented by 5 plants collected at two different sites, for a total of 10 samples. The samples were processed to whole plant tissue, holocellulose, α-cellulose, and nitrocellulose. An additional process was added with the discovery of residual Ca-oxalate crystals in holocellulose samples. Both C 3 species show δ 13C values becoming 13C enriched with increased processing. The CAM representative shows the opposite trend, with 13C depletion during the progression of treatments. The greatest range of values and most inconsistent trends occur in the C 4 representative. Removal of the Ca-oxalate fraction resulted in different mean weight percentages and δ 13C values among the species. Calculated δ 13C values of the Ca-oxalate crystals show depletion from the tissue values in the two C 3 species and enrichment in the C 4 and CAM representatives. The C. mexicana samples show the greatest change between the tissue and Ca-oxalates (7.3‰) but the least mean weight percentage (11%), whereas A. canescens shows the greatest overall change, with a -2.8‰ isotopic shift and over 48% mean weight percentage. Variability within the samples undergoing each treatment remained relatively unchanged even with increased cellulose purity. This paper provides estimates of isotopic offsets necessary to correct from one treatment to another. Significant differences in δ 13C among different treatments confirm the need to state the tissue fraction analyzed when reporting δ 13C results.

  14. Convergent Synthesis of a Deuterium Labeled Serine Dipeptide Lipid for Analysis of Biological Samples.

    PubMed

    Dietz, Christopher; Clark, Robert B; Nichols, Frank C; Smith, Michael B

    2017-03-08

    Bacterial serine dipeptide lipids are known to promote inflammatory processes and are detected in human tissues associated with periodontal disease or atherosclerosis. Accurate quantification of bacterial serine lipid, specifically lipid 654 [((S)-15-methyl-3-((13-methyltetradecanoyl)oxy)hexadecanoyl)glycyl-L-serine, (3S)-L-serine] isolated from Porphyromonas gingivalis,(1) in biological samples requires the preparation of a stable isotope internal standard for sample supplementation and subsequent mass spectrometric analysis. This report describes the convergent synthesis of a deuterium-substituted serine dipeptide lipid, which is an isotopically labeled homologue that represents a dominant form of serine dipeptide lipid recovered in bacteria.

  15. Wheat Bran Does Not Affect Postprandial Plasma Short-Chain Fatty Acids from 13C-inulin Fermentation in Healthy Subjects

    PubMed Central

    Deroover, Lise; Verspreet, Joran; Luypaerts, Anja; Vandermeulen, Greet; Courtin, Christophe M.; Verbeke, Kristin

    2017-01-01

    Wheat bran (WB) is a constituent of whole grain products with beneficial effects for human health. Within the human colon, such insoluble particles may be colonized by specific microbial teams which can stimulate cross-feeding, leading to a more efficient carbohydrate fermentation and an increased butyrate production. We investigated the extent to which WB fractions with different properties affect the fermentation of other carbohydrates in the colon. Ten healthy subjects performed four test days, during which they consumed a standard breakfast supplemented with 10 g 13C-inulin. A total of 20 g of a WB fraction (unmodified WB, wheat bran with a reduced particle size (WB RPS), or de-starched pericarp-enriched wheat bran (PE WB)) was also added to the breakfast, except for one test day, which served as a control. Blood samples were collected at regular time points for 14 h, in order to measure 13C-labeled short-chain fatty acid (SCFA; acetate, propionate and butyrate) concentrations. Fermentation of 13C-inulin resulted in increased plasma SCFA for about 8 h, suggesting that a sustained increase in plasma SCFA can be achieved by administering a moderate dose of carbohydrates, three times per day. However, the addition of a single dose of a WB fraction did not further increase the 13C-SCFA concentrations in plasma, nor did it stimulate cross-feeding (Wilcoxon signed ranks test). PMID:28117694

  16. The use of tunable diode laser absorption spectroscopy for rapid measurements of the delta13C of animal breath for physiological and ecological studies.

    PubMed

    Engel, Sophia; Lease, Hilary M; McDowell, Nate G; Corbett, Alyssa H; Wolf, Blair O

    2009-05-01

    In this study we introduce the use of tunable diode laser absorption spectroscopy (TDLAS) as a technique for making measurements of the delta13C of animal 'breath' in near real time. The carbon isotope ratios (delta13C) of breath CO2 trace the carbon source of the materials being metabolized, which can provide insight into the use of specific food resources, e.g. those derived from plants using C3 versus C4 or CAM photosynthetic pathways. For physiological studies, labeled substrates and breath analyses provide direct evidence of specific physiological (e.g. fermentative digestion) or enzymatic (e.g. sucrase activity) processes. Although potentially very informative, this approach has rarely been taken in animal physiological or ecological research. In this study we quantify the utilization of different plant resources (photosynthetic types--C3 or C4) in arthropod herbivores by measuring the delta13C of their 'breath' and comparing it with bulk tissue values. We show that breath delta13C values are highly correlated with bulk tissues and for insect herbivores reflect their dietary guild, in our case C3-specialists, C4-specialists, or generalists. TDLAS has a number of advantages that will make it an important tool for physiologists, ecologists and behaviorists: it is non-invasive, fast, very sensitive, accurate, works on animals of a wide range of body sizes, per-sample costs are small, and it is potentially field-deployable.

  17. Earth's magnetic field enabled scalar coupling relaxation of 13C nuclei bound to fast-relaxing quadrupolar 14N in amide groups.

    PubMed

    Chiavazza, Enrico; Kubala, Eugen; Gringeri, Concetta V; Düwel, Stephan; Durst, Markus; Schulte, Rolf F; Menzel, Marion I

    2013-02-01

    Scalar coupling relaxation, which is usually only associated with closely resonant nuclei (e.g., (79)Br-(13)C), can be a very effective relaxation mechanism. While working on hyperpolarized [5-(13)C]glutamine, fast liquid-state polarization decay during transfer to the MRI scanner was observed. This behavior could hypothetically be explained by substantial T(1) shortening due to a scalar coupling contribution (type II) to the relaxation caused by the fast-relaxing quadrupolar (14)N adjacent to the (13)C nucleus in the amide group. This contribution is only effective in low magnetic fields (i.e., less than 800 μT) and prevents the use of molecules bearing the (13)C-amide group as hyperpolarized MRS/MRI probes. In the present work, this hypothesis is explored both theoretically and experimentally. The results show that high hyperpolarization levels can be retained using either a (15)N-labeled amide or by applying a magnetic field during transfer of the sample from the polarizer to the MRI scanner.

  18. Synthesis of [.sup.13C] and [.sup.2H] substituted methacrylic acid, [.sup.13C] and [.sup.2H] substituted methyl methacrylate and/or related compounds

    DOEpatents

    Alvarez, Marc A.; Martinez, Rodolfo A.; Unkefer, Clifford J.

    2008-01-22

    The present invention is directed to labeled compounds of the formulae ##STR00001## wherein Q is selected from the group consisting of --S--, --S(.dbd.O)--, and --S(.dbd.O).sub.2--, Z is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR00002## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently selected from the group consisting of hydrogen, a C.sub.1-C.sub.4 lower alkyl, a halogen, and an amino group selected from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each independently selected from the group consisting of a C.sub.1-C.sub.4 lower alkyl, an aryl, and an alkoxy group, and X is selected from the group consisting of hydrogen, a C.sub.1-C.sub.4 lower alkyl group, and a fully-deuterated C.sub.1-C.sub.4 lower alkyl group. The present invention is also directed to a process of preparing labeled compounds, e.g., process of preparing [.sup.13C]methacrylic acid by reacting a (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13CH.sub.2)-- aryl sulfone precursor with .sup.13CHI to form a (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13C(.sup.13CH.sub.3).sub.2)-- aryl sulfone intermediate, and, reacting the (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13C(.sup.13CH.sub.3).sub.2)-- aryl sulfone intermediate with sodium hydroxide, followed by acid to form [.sup.13C]methacrylic acid. The present invention is further directed to a process of preparing [.sup.2H.sub.8]methyl methacrylate by reacting a (HOOC--C(C.sup.2H.sub.3).sub.2-- aryl sulfinyl intermediate with CD.sub.3I to form a (.sup.2H.sub.3COOC--C(C.sup.2H.sub.3).sub.2)-- aryl sulfinyl intermediate, and heating the(.sup.2H.sub.3COOC--C(C.sup.2H.sub.3).sub.2)-- aryl sulfinyl intermediate at temperatures and for time sufficient to form [.sup.2H.sub.8]methyl methacrylate.

  19. GFT projection NMR for efficient (1)H/ (13)C sugar spin system identification in nucleic acids.

    PubMed

    Atreya, Hanudatta S; Sathyamoorthy, Bharathwaj; Jaipuria, Garima; Beaumont, Victor; Varani, Gabriele; Szyperski, Thomas

    2012-12-01

    A newly implemented G-matrix Fourier transform (GFT) (4,3)D HC(C)CH experiment is presented in conjunction with (4,3)D HCCH to efficiently identify (1)H/(13)C sugar spin systems in (13)C labeled nucleic acids. This experiment enables rapid collection of highly resolved relay 4D HC(C)CH spectral information, that is, shift correlations of (13)C-(1)H groups separated by two carbon bonds. For RNA, (4,3)D HC(C)CH takes advantage of the comparably favorable 1'- and 3'-CH signal dispersion for complete spin system identification including 5'-CH. The (4,3)D HC(C)CH/HCCH based strategy is exemplified for the 30-nucleotide 3'-untranslated region of the pre-mRNA of human U1A protein.

  20. Developments in bile acid kinetic measurements using (13)C and (2)H: 10(5) times improved sensitivity during the last 40 years.

    PubMed

    Stellaard, Frans; Brufau, Gemma; Boverhof, Renze; Jonkers, Elles Zwanet; Boer, Theo; Kuipers, Folkert

    2009-12-01

    Bile acid kinetics involve the measurement of pool sizes and turnover rates of individual bile acids. The technique is based on isotope dilution and was first described in the 1950s using radioactive (14)C-labelled cholic acid (CA). It took until the 1970s before stable isotopes were introduced for this purpose ((13)C, (2)H) and isotope analysis methods were developed for CA and chenodeoxycholic acid (CDCA) applying gas chromatography/electron impact mass spectrometry. Until the 1980s, the isotope enrichment measurements were performed in bile samples aspirated from the duodenum. Thereafter, methodology became available allowing measurements to be performed in blood requiring at least 2 ml serum samples. Simultaneous measurement of kinetics of metabolically dependent CA and deoxycholic acid using (13)C and (2)H labels was introduced. Until the 1990s, this technique was only possible in adult humans due to the large sample sizes. Introduction of pentafluorobenzyl bromide derivatisation and electron capture negative ion mass spectrometry (GC/ECN-MS) reduced the sample volume to 50 microl serum. This allowed isotope abundance measurement of CA in rats and in mice. However, repetitive collection of 100 microl blood samples in mice is too invasive (collection via the orbita) and exhaustive. Therefore, the method development is now focussing on enhanced sensitivity and reduction of blank effects originating from the sample preparation. The final goal is to determine CA isotope enrichments in 20 microl mouse blood obtained from the tail vein. This paper shows the feasibility of reaching this goal.

  1. 13C Tracers for Glucose Degrading Pathway Discrimination in Gluconobacter oxydans 621H

    PubMed Central

    Ostermann, Steffen; Richhardt, Janine; Bringer, Stephanie; Bott, Michael; Wiechert, Wolfgang; Oldiges, Marco

    2015-01-01

    Gluconobacter oxydans 621H is used as an industrial production organism due to its exceptional ability to incompletely oxidize a great variety of carbohydrates in the periplasm. With glucose as the carbon source, up to 90% of the initial concentration is oxidized periplasmatically to gluconate and ketogluconates. Growth on glucose is biphasic and intracellular sugar catabolism proceeds via the Entner–Doudoroff pathway (EDP) and the pentose phosphate pathway (PPP). Here we studied the in vivo contributions of the two pathways to glucose catabolism on a microtiter scale. In our approach we applied specifically 13C labeled glucose, whereby a labeling pattern in alanine was generated intracellularly. This method revealed a dynamic growth phase-dependent pathway activity with increased activity of EDP in the first and PPP in the second growth phase, respectively. Evidence for a growth phase-independent decarboxylation-carboxylation cycle around the pyruvate node was obtained from 13C fragmentation patterns of alanine. For the first time, down-scaled microtiter plate cultivation together with 13C-labeled substrate was applied for G. oxydans to elucidate pathway operation, exhibiting reasonable labeling costs and allowing for sufficient replicate experiments. PMID:26404385

  2. Label-free colorimetric detection of cadmium ions in rice samples using gold nanoparticles.

    PubMed

    Guo, Yongming; Zhang, Yi; Shao, Huawu; Wang, Zhuo; Wang, Xuefei; Jiang, Xingyu

    2014-09-02

    A simple and label-free colorimetric method for cadmium ions (Cd(2+)) detection using unmodified gold nanoparticles (AuNPs) is reported. The unmodified AuNPs easily aggregate in a high concentration of NaCl solution, but the presence of glutathione (GSH) can prevent the salt-induced aggregation of AuNPs. When Cd(2+) is added to the stable mixture of AuNPs, GSH, and NaCl, Cd(2+) can coordinate with 4× GSH as a spherical shaped complex, which decreases the amount of free GSH on the surface of gold nanoparticles to weaken the stability of AuNPs, and AuNPs will easily aggregate in high-salt conditions. On the basis of the mechanism, we design a simple, label-free colorimetric method using AuNPs accompanied by GSH in a high-salt environment to detect Cd(2+) in water and digested rice samples.

  3. Hyperpolarized 13C Metabolic MRI of the Human Heart

    PubMed Central

    Lau, Justin Y.C.; Chen, Albert P.; Geraghty, Benjamin J.; Perks, William J.; Roifman, Idan; Wright, Graham A.; Connelly, Kim A.

    2016-01-01

    Rationale: Altered cardiac energetics is known to play an important role in the progression toward heart failure. A noninvasive method for imaging metabolic markers that could be used in longitudinal studies would be useful for understanding therapeutic approaches that target metabolism. Objective: To demonstrate the first hyperpolarized 13C metabolic magnetic resonance imaging of the human heart. Methods and Results: Four healthy subjects underwent conventional proton cardiac magnetic resonance imaging followed by 13C imaging and spectroscopic acquisition immediately after intravenous administration of a 0.1 mmol/kg dose of hyperpolarized [1-13C]pyruvate. All subjects tolerated the procedure well with no adverse effects reported ≤1 month post procedure. The [1-13C]pyruvate signal appeared within the chambers but not within the muscle. Imaging of the downstream metabolites showed 13C-bicarbonate signal mainly confined to the left ventricular myocardium, whereas the [1-13C]lactate signal appeared both within the chambers and in the myocardium. The mean 13C image signal:noise ratio was 115 for [1-13C]pyruvate, 56 for 13C-bicarbonate, and 53 for [1-13C]lactate. Conclusions: These results represent the first 13C images of the human heart. The appearance of 13C-bicarbonate signal after administration of hyperpolarized [1-13C]pyruvate was readily detected in this healthy cohort (n=4). This shows that assessment of pyruvate metabolism in vivo in humans is feasible using current technology. Clinical Trial Registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT02648009. PMID:27635086

  4. Absolute bioavailability of evacetrapib in healthy subjects determined by simultaneous administration of oral evacetrapib and intravenous [(13) C8 ]-evacetrapib as a tracer.

    PubMed

    Cannady, Ellen A; Aburub, Aktham; Ward, Chris; Hinds, Chris; Czeskis, Boris; Ruterbories, Kenneth; Suico, Jeffrey G; Royalty, Jane; Ortega, Demetrio; Pack, Brian W; Begum, Syeda L; Annes, William F; Lin, Qun; Small, David S

    2016-05-30

    This open-label, single-period study in healthy subjects estimated evacetrapib absolute bioavailability following simultaneous administration of a 130-mg evacetrapib oral dose and 4-h intravenous (IV) infusion of 175 µg [(13) C8 ]-evacetrapib as a tracer. Plasma samples collected through 168 h were analyzed for evacetrapib and [(13) C8 ]-evacetrapib using high-performance liquid chromatography/tandem mass spectrometry. Pharmacokinetic parameter estimates following oral and IV doses, including area under the concentration-time curve (AUC) from zero to infinity (AUC[0-∞]) and to the last measureable concentration (AUC[0-tlast ]), were calculated. Bioavailability was calculated as the ratio of least-squares geometric mean of dose-normalized AUC (oral : IV) and corresponding 90% confidence interval (CI). Bioavailability of evacetrapib was 44.8% (90% CI: 42.2-47.6%) for AUC(0-∞) and 44.3% (90% CI: 41.8-46.9%) for AUC(0-tlast ). Evacetrapib was well tolerated with no reports of clinically significant safety assessment findings. This is among the first studies to estimate absolute bioavailability using simultaneous administration of an unlabeled oral dose with a (13) C-labeled IV microdose tracer at about 1/1000(th) the oral dose, with measurement in the pg/mL range. This approach is beneficial for poorly soluble drugs, does not require additional toxicology studies, does not change oral dose pharmacokinetics, and ultimately gives researchers another tool to evaluate absolute bioavailability.

  5. Novel Imaging Contrast Methods for Hyperpolarized 13 C Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Reed, Galen Durant

    Magnetic resonance imaging using hyperpolarized 13C-labeled small molecules has emerged as an extremely powerful tool for the in vivo monitoring of perfusion and metabolism. This work presents methods for improved imaging, parameter mapping, and image contrast generation for in vivo hyperpolarized 13C MRI. Angiography using hyperpolarized urea was greatly improved with a highly T2-weighted acquisition in combination with 15N labeling of the urea amide groups. This is due to the fact that the T2 of [13C]urea is strongly limited by the scalar coupling to the neighboring quadrupolar 14N. The long in vivo T2 values of [13C, 15N2]urea were utilized for sub-millimeter projection angiography using a contrast agent that could be safely injected in concentrations of 10-100 mM while still tolerated in patients with renal insufficiency. This study also presented the first method for in vivo T2 mapping of hyperpolarized 13C compounds. The in vivo T2 of urea was short in the blood and long within the kidneys. This persistent signal component was isolated to the renal filtrate, thus enabling for the first time direct detection of an imaging contrast agent undergoing glomerular filtration. While highly T2-weighted acquisitions select for molecules with short rotational correlation times, high diffusion weighting selects for those with the long translational correlation times. A specialized spin-echo EPI sequence was developed in order to generate highly diffusion-weighted hyperpolarized 13C images on a clinical MRI system operating within clinical peak- RF and gradient amplitude constraints. Low power adiabatic spin echo pulses were developed in order to generate a sufficiently large refocused bandwidth while maintaining low nominal power. This diffusion weighted acquisition gave enhanced tumor contrast-to-noise ratio when imaging [1-13C]lactate after infusion of [1-13C]pyruvate. Finally, the first in-man hyperpolarized 13C MRI clinical trial is discussed.

  6. Detection of 2,4,6-Trinitrotoluene-Utilizing Anaerobic Bacteria by 15N and 13C Incorporation ▿

    PubMed Central

    Gallagher, Erin M.; Young, Lily Y.; McGuinness, Lora M.; Kerkhof, Lee J.

    2010-01-01

    2,4,6-Trinitrotoluene (15N or 13C labeled) was added to Norfolk Harbor sediments to test whether anaerobic bacteria use TNT for growth. Stable-isotope probing (SIP)-terminal restriction fragment length polymorphism (TRFLP) detected peaks in the [15N]TNT cultures (60, 163, and 168 bp). The 60-bp peak was also present in the [13C]TNT cultures and was related to Lysobacter taiwanensis. PMID:20081008

  7. Single shot three‐dimensional pulse sequence for hyperpolarized 13C MRI

    PubMed Central

    Wang, Jiazheng; Wright, Alan J.; Hu, De‐en; Hesketh, Richard

    2016-01-01

    Purpose Metabolic imaging with hyperpolarized 13C‐labeled cell substrates is a promising technique for imaging tissue metabolism in vivo. However, the transient nature of the hyperpolarization, and its depletion following excitation, limits the imaging time and the number of excitation pulses that can be used. We describe here a single‐shot three‐dimensional (3D) imaging sequence and demonstrate its capability to generate 13C MR images in tumor‐bearing mice injected with hyperpolarized [1‐13C]pyruvate. Methods The pulse sequence acquires a stack‐of‐spirals at two spin echoes after a single excitation pulse and encodes the kz‐dimension in an interleaved manner to enhance robustness to B0 inhomogeneity. Spectral‐spatial pulses are used to acquire dynamic 3D images from selected hyperpolarized 13C‐labeled metabolites. Results A nominal spatial/temporal resolution of 1.25 × 1.25 × 2.5 mm3 × 2 s was achieved in tumor images of hyperpolarized [1‐13C]pyruvate and [1‐13C]lactate acquired in vivo. Higher resolution in the z‐direction, with a different k‐space trajectory, was demonstrated in measurements on a thermally polarized [1‐13C]lactate phantom. Conclusion The pulse sequence is capable of imaging hyperpolarized 13C‐labeled substrates at relatively high spatial and temporal resolutions and is robust to moderate system imperfections. Magn Reson Med 77:740–752, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:26916384

  8. 13C Tracking after 13CO2 Supply Revealed Diurnal Patterns of Wood Formation in Aspen.

    PubMed

    Mahboubi, Amir; Linden, Pernilla; Hedenström, Mattias; Moritz, Thomas; Niittylä, Totte

    2015-06-01

    Wood of trees is formed from carbon assimilated in the photosynthetic tissues. Determining the temporal dynamics of carbon assimilation, subsequent transport into developing wood, and incorporation to cell walls would further our understanding of wood formation in particular and tree growth in general. To investigate these questions, we designed a (13)CO2 labeling system to study carbon transport and incorporation to developing wood of hybrid aspen (Populus tremula × tremuloides). Tracking of (13)C incorporation to wood over a time course using nuclear magnetic resonance spectroscopy revealed diurnal patterns in wood cell wall biosynthesis. The dark period had a differential effect on (13)C incorporation to lignin and cell wall carbohydrates. No (13)C was incorporated into aromatic amino acids of cell wall proteins in the dark, suggesting that cell wall protein biosynthesis ceased during the night. The results show previously unrecognized temporal patterns in wood cell wall biosynthesis, suggest diurnal cycle as a possible cue in the regulation of carbon incorporation to wood, and establish a unique (13)C labeling method for the analysis of wood formation and secondary growth in trees.

  9. 2H-DNP-enhanced 2H–13C solid-state NMR correlation spectroscopy

    PubMed Central

    Maly, Thorsten; Andreas, Loren B.; Smith, Albert A.

    2015-01-01

    Perdeuteration of biological macromolecules for magic angle spinning solid-state NMR spectroscopy can yield high-resolution 2H–13C correlation spectra and the method is therefore of great interest for the structural biology community. Here we demonstrate that the combination of sample deuteration and dynamic nuclear polarization yields resolved 2H–13C correlation spectra with a signal enhancement of ε ≥ 700 compared to a spectrum recorded with microwaves off and otherwise identical conditions. To our knowledge, this is the first time that 2H-DNP has been employed to enhance MAS-NMR spectra of a biologically relevant system. The DNP process is studied using several polarizing agents and the technique is applied to obtain 2H–13C correlation spectra of U-[2H, 13C] proline. PMID:20458422

  10. Assessing Oxidative Stress in Tumors by Measuring the Rate of Hyperpolarized [1-13C]Dehydroascorbic Acid Reduction Using 13C Magnetic Resonance Spectroscopy*

    PubMed Central

    Timm, Kerstin N.; Hu, De-En; Williams, Michael; Wright, Alan J.; Kettunen, Mikko I.; Kennedy, Brett W. C.; Larkin, Timothy J.; Dzien, Piotr; Marco-Rius, Irene; Bohndiek, Sarah E.; Brindle, Kevin M.

    2017-01-01

    Rapid cancer cell proliferation promotes the production of reducing equivalents, which counteract the effects of relatively high levels of reactive oxygen species. Reactive oxygen species levels increase in response to chemotherapy and cell death, whereas an increase in antioxidant capacity can confer resistance to chemotherapy and is associated with an aggressive tumor phenotype. The pentose phosphate pathway is a major site of NADPH production in the cell, which is used to maintain the main intracellular antioxidant, glutathione, in its reduced state. Previous studies have shown that the rate of hyperpolarized [1-13C]dehydroascorbic acid (DHA) reduction, which can be measured in vivo using non-invasive 13C magnetic resonance spectroscopic imaging, is increased in tumors and that this is correlated with the levels of reduced glutathione. We show here that the rate of hyperpolarized [1-13C]DHA reduction is increased in tumors that have been oxidatively prestressed by depleting the glutathione pool by buthionine sulfoximine treatment. This increase was associated with a corresponding increase in pentose phosphate pathway flux, assessed using 13C-labeled glucose, and an increase in glutaredoxin activity, which catalyzes the glutathione-dependent reduction of DHA. These results show that the rate of DHA reduction depends not only on the level of reduced glutathione, but also on the rate of NADPH production, contradicting the conclusions of some previous studies. Hyperpolarized [1-13C]DHA can be used, therefore, to assess the capacity of tumor cells to resist oxidative stress in vivo. However, DHA administration resulted in transient respiratory arrest and cardiac depression, which may prevent translation to the clinic. PMID:27994059

  11. Hyperpolarized 13C MR Markers of Renal Tumor Aggressiveness

    DTIC Science & Technology

    2013-10-01

    reliably distinguish renal cancer aggressiveness for optimal triage of therapies . Hyperpolarized (HP) 13C magnetic resonance spectroscopic imaging (MRSI...reliably distinguish renal cancer aggressiveness for optimal triage of therapies . Hyperpolarized (HP) 13C magnetic resonance spectroscopic imaging (MRSI) is... cancer and normal tissues were obtained from nephrectomy specimens and sliced using Krumdieck slicer. With a precision gauge micrometer, the slice

  12. Functional groups identified by solid state 13C NMR spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal manure is generally high in organic matter intensity so it is well suitable for 13C nuclear magnetic resonance (NMR) analysis. Solid-state 13C NMR techniques used in characterizing organic matter and its components include, but are not limited to, cross-polarization /magic angle spinning (CP...

  13. Large-scale multiplexed quantitative discovery proteomics enabled by the use of an (18)O-labeled "universal" reference sample.

    PubMed

    Qian, Wei-Jun; Liu, Tao; Petyuk, Vladislav A; Gritsenko, Marina A; Petritis, Brianne O; Polpitiya, Ashoka D; Kaushal, Amit; Xiao, Wenzhong; Finnerty, Celeste C; Jeschke, Marc G; Jaitly, Navdeep; Monroe, Matthew E; Moore, Ronald J; Moldawer, Lyle L; Davis, Ronald W; Tompkins, Ronald G; Herndon, David N; Camp, David G; Smith, Richard D

    2009-01-01

    The quantitative comparison of protein abundances across a large number of biological or patient samples represents an important proteomics challenge that needs to be addressed for proteomics discovery applications. Herein, we describe a strategy that incorporates a stable isotope (18)O-labeled "universal" reference sample as a comprehensive set of internal standards for analyzing large sample sets quantitatively. As a pooled sample, the (18)O-labeled "universal" reference sample is spiked into each individually processed unlabeled biological sample and the peptide/protein abundances are quantified based on (16)O/(18)O isotopic peptide pair abundance ratios that compare each unlabeled sample to the identical reference sample. This approach also allows for the direct application of label-free quantitation across the sample set simultaneously along with the labeling-approach (i.e., dual-quantitation) since each biological sample is unlabeled except for the labeled reference sample that is used as internal standards. The effectiveness of this approach for large-scale quantitative proteomics is demonstrated by its application to a set of 18 plasma samples from severe burn patients. When immunoaffinity depletion and cysteinyl-peptide enrichment-based fractionation with high resolution LC-MS measurements were combined, a total of 312 plasma proteins were confidently identified and quantified with a minimum of two unique peptides per protein. The isotope labeling data was directly compared with the label-free (16)O-MS intensity data extracted from the same data sets. The results showed that the (18)O reference-based labeling approach had significantly better quantitative precision compared to the label-free approach. The relative abundance differences determined by the two approaches also displayed strong correlation, illustrating the complementary nature of the two quantitative methods. The simplicity of including the (18)O-reference for accurate quantitation makes this

  14. Concentric Rings K-Space Trajectory for Hyperpolarized 13C MR Spectroscopic Imaging

    PubMed Central

    Jiang, Wenwen; Lustig, Michael; Larson, Peder E.Z.

    2014-01-01

    Purpose To develop a robust and rapid imaging technique for hyperpolarized 13C MR Spectroscopic Imaging (MRSI) and investigate its performance. Methods A concentric rings readout trajectory with constant angular velocity is proposed for hyperpolarized 13C spectroscopic imaging and its properties are analyzed. Quantitative analyses of design tradeoffs are presented for several imaging scenarios. The first application of concentric rings on 13C phantoms and in vivo animal hyperpolarized 13C MRSI studies were performed to demonstrate the feasibility of the proposed method. Finally, a parallel imaging accelerated concentric rings study is presented. Results The concentric rings MRSI trajectory has the advantages of acquisition timesaving compared to echo-planar spectroscopic imaging (EPSI). It provides sufficient spectral bandwidth with relatively high SNR efficiency compared to EPSI and spiral techniques. Phantom and in vivo animal studies showed good image quality with half the scan time and reduced pulsatile flow artifacts compared to EPSI. Parallel imaging accelerated concentric rings showed advantages over Cartesian sampling in g-factor simulations and demonstrated aliasing-free image quality in a hyperpolarized 13C in vivo study. Conclusion The concentric rings trajectory is a robust and rapid imaging technique that fits very well with the speed, bandwidth, and resolution requirements of hyperpolarized 13C MRSI. PMID:25533653

  15. Motion-Insensitive Localized 13C Spectroscopy Using Cyclic and Slice-Selective J Cross Polarization

    NASA Astrophysics Data System (ADS)

    Kunze, C.; Kimmich, R.

    Several new methods are proposed for the sensitive localized detection of 13C nuclei on the basis of cyclic and slice-selective J cross polarization in 13C 1H x spin systems. The 13C nuclei are detected either directly after the amplitude is enhanced by polarization transfer in the rotating frame or, preferably, indirectly by heteronuclear editing of signals of the 1H nuclei coupled to 13C. In the latter case, the sensitivity corresponds to that of 1H rather than to that of 13C resonance. Test experiments are reported. In vitro applications to a hen egg and a fresh porcine shank prove the applicability of the methods to biological objects with 13C in natural abundance. A particular advantage of the new rotating-frame methods over laboratory-frame techniques serving the same purpose is the insensitivity to motions of the object. This is demonstrated by experiments with a moving sample. Hartmann/Hahn mismatch can be compensated using the MOIST modification. The time-averaged absorbed radiofrequency power per kilogram body weight was estimated on the basis of a model for surface power absorption. The result lies well below the standard safety limits for clinical applications.

  16. Multi-year estimates of plant and ecosystem 13C discrimination at AmeriFlux sites

    NASA Astrophysics Data System (ADS)

    Dang, X.; Lai, C.; Hollinger, D. Y.; Bush, S.; Randerson, J. T.; Law, B. E.; Schauer, A. J.; Ehleringer, J.

    2011-12-01

    We estimated plant and ecosystem 13C discrimination continuously at 8 AmeriFlux sites (Howland Forest, Harvard Forest, Wind River Forest, Rannells Prairie, Freeman Ranch, Chestnut Ridge, Metolius, and Marys River fir) over 8 years (2002-2009). We used an observation-based approach from weekly measurements of eddy covariance CO2 fluxes and their 13C/12C ratios to estimate photosynthetic 13C discrimination (△A) and respiration (δ13CR) on seasonal and interannual time scales. The coordinated, systematic flask sampling across the AmeriFlux subnetwork were used for cross-site synthesis of monthly flux estimates [Dang et al. Combining tower mixing ratio and community model data to estimate regional-scale net ecosystem carbon exchange by boundary layer inversion over 4 flux towers in the U.S.A., Journal of Geophysical Research-Biogeosciences, in press]. Here, we evaluated environmental factors that also influenced temporal variability in △A and δ13CR from daily to interannual time scales, comparing atmospheric 13C/12C measurements, leaf and needle organic matter, and tree ring cellulose. Across these major biomes that dominate the continent, we show differential ecophysiological responses to environmental stresses, among which water availability appeared to be a dominant factor. Our decadal measurement period provided robust estimates of atmospheric 13C discrimination by terrestrial ecosystems, but also suggest regions where enhanced monitoring efforts are required (e.g., 13C/12C emission from fire and urban metabolism; increased temporal resolution of 13C measurements in stress-sensitive ecosystems) to make atmospheric 13C/12C measurements an effective constraint for continental-scale assessments of the terrestrial carbon cycle.

  17. Sensitivity and specificity of an abbreviated 13C-mixed triglyceride breath test for measurement of pancreatic exocrine function

    PubMed Central

    Meier, Viola; Wolfram, Kristina U; Rosien, Ulrich; Layer, Peter

    2014-01-01

    Background A modified 13C-mixed triglyceride breath test (13C -MTGT) detects moderate pancreatic exocrine insufficiency noninvasively and reliably, but it requires prolonged breath sampling (6 hours (hr)). Objective We aimed to investigate whether 13C -MTGT can be abbreviated, to optimize clinical usability. Methods We analyzed the 13C-MTGT of 200 consecutive patients, retrospectively. Cumulative 1–5 hr 13C-exhalation values were compared with the standard parameter (6-hr cumulative 13C-exhalation). We determined the sensitivity and specificity of shortened breath sampling periods, by comparison with the normal values from 10 healthy volunteers, whom also underwent a secretin test to quantitate pancreatic secretion. Moreover, we evaluated the influence of gastric emptying (GE), using a 13C-octanoic acid breath test in a subset (N = 117). Results The 1–5 hr cumulative 13C-exhalation tests correlated highly and significantly with the standard parameter (p < 0.0001). Sensitivity for detection of impaired lipolysis was high (≥77%), but the specificity was low (≥38%) for the early measurements. Both parameters were high after 4 hrs (88% and 94%, respectively) and 5 hrs (98% and 91%, respectively). Multivariate linear correlation analysis confirmed that GE strongly influenced early postprandial 13C-exhalation during the 13C-MTGT. Conclusion Shortening of the 13C -MTGT from 6 to 4 hrs of duration was associated with similar diagnostic accuracy, yet increased clinical usability. The influence of GE on early postprandial results of the 13C-MTGT precluded further abbreviation of the test. PMID:25083286

  18. Creating 13C- and 15N-enriched tree leaf litter for decomposition experiments

    NASA Astrophysics Data System (ADS)

    Szlavecz, K. A.; Pitz, S.; Chang, C.; Bernard, M.

    2013-12-01

    Labeling plant material with heavy isotopes of carbon and nitrogen can produce a traceable nutrient signal that can be followed into the different trophic levels and decomposer food web. We treated 60 tree saplings with 13C-enriched CO2 gas and 15N-enriched ammonium nitrate over a three-month period to create dually-labeled plant material for future decomposition experiments. The trees included both early (Red maple, Sweetgum, Tulip poplar) and late (American beech, White oak) successional deciduous tree species, and a conifer, White pine. We constructed a 2.4 m × 2.4 m × 2.4 m environmental chamber that was climate-controlled using an air conditioning system. An Arduino microcontroller interfaced with a Vaisala GMP343 CO2 probe maintained a CO2 concentration between 500-520 ppm by controlling a solenoid valve on the CO2 tank regulator. The trees were placed into the chamber in August 2012 and remained until senescence unless they were lost to death or disease. Ammonium nitrate was added twice, in September and October. Leaf samples were collected prior to the start of the experiment and after senescence, whereas root samples were collected only in December. Samples were dried, ground and analyzed using an isotope ratio mass spectrometer. American beech and White oak had 40% mortality, and 34% of tulip poplar trees were removed because of powdery mildew overgrowth or death. Most tulip poplar trees exhibited a second leaf out following senescence in late September. Nearly 1 kg of litter was produced with tulip poplar representing over half of the total mass. Levels of enrichment varied greatly by species. Beech (-14.2‰) and White oak (-4.8‰) had low levels of enrichment in comparison to early successional species such as Sweetgum (41.7‰) and Tulip poplar (30.7‰ [first leaf fall] and 238.0‰ [second leaf fall]). Leaf enrichment with 15N followed a similar pattern, though it was achieved at a higher level with δ15N values varying from 271.6‰ to 1354.2

  19. Linking Biogeochemistry to Microbial Diversity Using New 13C Approaches

    NASA Astrophysics Data System (ADS)

    Baggs, E. M.

    2005-12-01

    The use of 13C enables us to overcome uncertainties associated with soil C processes and to assess the links between species diversity and ecosystem function. Recent advances in stable isotope techniques enable determination of process rates, for example CH4 oxidation by direct measurement of 13C-CH4 and 13C-CO2. This overcomes uncertainties associated with reliance on changes in net CH4 emission, which may have compromised some earlier studies as both methanogenesis and CH4 oxidation may occur simultaneously in soil, providing significant advances in our understanding of the process of CH4 oxidation. These stable isotope techniques can be combined with molecular techniques (analysis of gene expression, stable isotope probing (SIP)) to relate the measured process to the microbial populations responsible. Here we will give a synthesis of results from experiments in which we applied 13C-CH4 to accurately determine CH4 oxidation rates in soils, and also present results of 13C-SIP from which we can identify the key players in the microbial population that are using the applied 13C substrate. With the 13C-CH4 technique we were able to provide direct evidence of inhibition of CH4 oxidation following fertiliser application (50-300 kg N ha-1) that was less under elevated pCO2, and evidence for anaerobic CH4 oxidation occurring in soil at 75% soil water filled pore space that would not have been apparent from changes in net CH4 emissions. 13C-SIP both through plants (using 13C-CO2) and directly into soil (using 13C-methane and -organic substrates) has revealed how key players in C utilisation vary under different soil conditions, for example, under improved and unimproved grasslands.

  20. A 13C mass isotopomer study of anaplerotic pyruvate carboxylation in perfused rat hearts.

    PubMed

    Comte, B; Vincent, G; Bouchard, B; Jetté, M; Cordeau, S; Rosiers, C D

    1997-10-17

    Anaplerotic pyruvate carboxylation was examined in hearts perfused with physiological concentrations of glucose, [U-13C3]lactate, and [U-13C3]pyruvate. Also, a fatty acid, [1-13C]octanoate, or ketone bodies were added at concentrations providing acetyl-CoA at a rate resulting in either low or substantial pyruvate decarboxylation. Relative contributions of pyruvate and fatty acids to citrate synthesis were determined from the 13C labeling pattern of effluent citrate by gas chromatography-mass spectrometry (see companion article, Comte, B., Vincent, G., Bouchard, B., and Des Rosiers, C. (1997) J. Biol. Chem. 272, 26117-26124). Precision on flux measurements of anaplerotic pyruvate carboxylation depended on the mix of substrates supplied to the heart. Anaplerotic fluxes were precisely determined under conditions where acetyl-CoA was predominantly supplied by beta-oxidation, as it occurred with 0.2 or 1 mM octanoate. Then, anaplerotic pyruvate carboxylation provided 3-8% of the OAA moiety of citrate and was modulated by concentrations of lactate and pyruvate in the physiological range. Also, the contribution of pyruvate to citrate formation through carboxylation was equal to or greater than through decarboxylation. Furthermore, 13C labeling data on tissue citric acid cycle intermediates and pyruvate suggest that (i) anaplerosis occurs also at succinate and (ii) cataplerotic malate decarboxylation is low. Rather, the presence of citrate in the effluent perfusate of hearts perfused with physiological concentrations of glucose, lactate, and pyruvate and concentrations of octanoate leading to maximal oxidative rates suggests a cataplerotic citrate efflux from mitochondria to cytosol. Taken altogether, our data raise the possibility of a link between pyruvate carboxylation and mitochondrial citrate efflux. In view of the proposed feedback regulation of glycolysis by cytosolic citrate, such a link would support a role of anaplerosis and cataplerosis in metabolic signal

  1. (13)C/(12)C isotope ratios of organic acids, glucose and fructose determined by HPLC-co-IRMS for lemon juices authenticity.

    PubMed

    Guyon, Francois; Auberger, Pauline; Gaillard, Laetita; Loublanches, Caroline; Viateau, Maryse; Sabathié, Nathalie; Salagoïty, Marie-Hélène; Médina, Bernard

    2014-03-01

    High performance liquid chromatography linked to isotope ratio mass spectrometry via an interface allowing the chemical oxidation of organic matter (HPLC-co-IRMS) was used to simultaneously determine carbon 13 isotope ratio (δ(13)C) of organic acids, glucose and fructose in lime and lemon juices. Because of the significant difference between organic acids and sugars concentrations, the experimental protocol was optimised by applying a "current jump" to the IRMS device. The filament current is increased of 300μA during elution in order to enhance IRMS sensitivity. Then, analysis were performed on 35 lemon and lime fruits from various geographical origins and squeezed in the laboratory. An overall average δ(13)C values of -25.40±1.62‰, -23.83±1.82‰ and -25.67±1.72‰ is found for organic acids mixture mainly made up of citric acid, glucose and fructose, respectively. These authentic samples allowed the definition of a confidence domain to which have been confronted 30 commercial juices (24 "pure juices" and 6 coming from concentrate). Among these 30 samples, 10 present δ(13)C values outside the defined range revealing an added "C4" type organic acids or sugars, addition not specified on the label that is not in agreement with EU regulation.

  2. Whole-core analysis by sup 13 C NMR

    SciTech Connect

    Vinegar, H.J.; Tutunjian, P.N. ); Edelstein, W.A.; Roemer, P.B. )

    1991-06-01

    This paper reports on a whole-core nuclear magnetic resonance (NMR) system that was used to obtain natural abundance {sup 13}C spectra. The system enables rapid, nondestructive measurements of bulk volume of movable oil, aliphatic/aromatic ratio, oil viscosity, and organic vs. carbonate carbon. {sup 13}C NMR can be used in cores where the {sup 1}H NMR spectrum is too broad to resolve oil and water resonances separately. A 5 1/4-in. {sup 13}C/{sup 1}H NMR coil was installed on a General Electric (GE) CSI-2T NMR imager/spectrometer. With a 4-in.-OD whole core, good {sup 13}C signal/noise ratio (SNR) is obtained within minutes, while {sup 1}H spectra are obtained in seconds. NMR measurements have been made of the {sup 13}C and {sup 1}H density of crude oils with a wide range of API gravities. For light- and medium-gravity oils, the {sup 13}C and {sup 1}H signal per unit volume is constant within about 3.5%. For heavy crudes, the {sup 13}C and {sup 1}H density measured by NMR is reduced by the shortening of spin-spin relaxation time. {sup 13}C and {sup 1}H NMR spin-lattice relaxation times were measured on a suite of Cannon viscosity standards, crude oils (4 to 60{degrees} API), and alkanes (C{sub 5} through C{sub 16}) with viscosities at 77{degrees}F ranging from 0.5 cp to 2.5 {times} 10{sup 7} cp. The {sup 13}C and {sup 1}H relaxation times show a similar correlation with viscosity from which oil viscosity can be estimated accurately for viscosities up to 100 cp. The {sup 13}C surface relaxation rate for oils on water-wet rocks is very low. Nonproton decoupled {sup 13}C NMR is shown to be insensitive to kerogen; thus, {sup 13}C NMR measures only the movable hydrocarbon content of the cores. In carbonates, the {sup 13}C spectrum also contains a carbonate powder pattern useful in quantifying inorganic carbon and distinguishing organic from carbonate carbon.

  3. 13C metabolic flux analysis at a genome-scale.

    PubMed

    Gopalakrishnan, Saratram; Maranas, Costas D

    2015-11-01

    Metabolic models used in 13C metabolic flux analysis generally include a limited number of reactions primarily from central metabolism. They typically omit degradation pathways, complete cofactor balances, and atom transition contributions for reactions outside central metabolism. This study addresses the impact on prediction fidelity of scaling-up mapping models to a genome-scale. The core mapping model employed in this study accounts for (75 reactions and 65 metabolites) primarily from central metabolism. The genome-scale metabolic mapping model (GSMM) (697 reaction and 595 metabolites) is constructed using as a basis the iAF1260 model upon eliminating reactions guaranteed not to carry flux based on growth and fermentation data for a minimal glucose growth medium. Labeling data for 17 amino acid fragments obtained from cells fed with glucose labeled at the second carbon was used to obtain fluxes and ranges. Metabolic fluxes and confidence intervals are estimated, for both core and genome-scale mapping models, by minimizing the sum of square of differences between predicted and experimentally measured labeling patterns using the EMU decomposition algorithm. Overall, we find that both topology and estimated values of the metabolic fluxes remain largely consistent between core and GSM model. Stepping up to a genome-scale mapping model leads to wider flux inference ranges for 20 key reactions present in the core model. The glycolysis flux range doubles due to the possibility of active gluconeogenesis, the TCA flux range expanded by 80% due to the availability of a bypass through arginine consistent with labeling data, and the transhydrogenase reaction flux was essentially unresolved due to the presence of as many as five routes for the inter-conversion of NADPH to NADH afforded by the genome-scale model. By globally accounting for ATP demands in the GSMM model the unused ATP decreased drastically with the lower bound matching the maintenance ATP requirement. A non

  4. Detection of intracellular lactate with localized diffusion { 1H- 13C}-spectroscopy in rat glioma in vivo

    NASA Astrophysics Data System (ADS)

    Pfeuffer, Josef; Lin, Joseph C.; DelaBarre, Lance; Ugurbil, Kamil; Garwood, Michael

    2005-11-01

    The aim of this study was to compare the diffusion characteristic of lactate and alanine in a brain tumor model to that of normal brain metabolites known to be mainly intracellular such as N-acetylaspartate or creatine. The diffusion of 13C-labeled metabolites was measured in vivo with localized NMR spectroscopy at 9.4 T (400 MHz) using a previously described localization and editing pulse sequence known as ACED-STEAM ('adiabatic carbon editing and decoupling'). 13C-labeled glucose was administered and the apparent diffusion coefficients of the glycolytic products, { 1H- 13C}-lactate and { 1H- 13C}-alanine, were determined in rat intracerebral 9L glioma. To obtain insights into { 1H- 13C}-lactate compartmentation (intra- versus extracellular), the pulse sequence used very large diffusion weighting (50 ms/μm 2). Multi-exponential diffusion attenuation of the lactate metabolite signals was observed. The persistence of a lactate signal at very large diffusion weighting provided direct experimental evidence of significant intracellular lactate concentration. To investigate the spatial distribution of lactate and other metabolites, 1H spectroscopic images were also acquired. Lactate and choline-containing compounds were consistently elevated in tumor tissue, but not in necrotic regions and surrounding normal-appearing brain. Overall, these findings suggest that lactate is mainly associated with tumor tissue and that within the time-frame of these experiments at least some of the glycolytic product ([ 13C] lactate) originates from an intracellular compartment.

  5. Label-free isolation and deposition of single bacterial cells from heterogeneous samples for clonal culturing

    PubMed Central

    Riba, J.; Gleichmann, T.; Zimmermann, S.; Zengerle, R.; Koltay, P.

    2016-01-01

    The isolation and analysis of single prokaryotic cells down to 1 μm and less in size poses a special challenge and requires micro-engineered devices to handle volumes in the picoliter to nanoliter range. Here, an advanced Single-Cell Printer (SCP) was applied for automated and label-free isolation and deposition of bacterial cells encapsulated in 35 pl droplets by inkjet-like printing. To achieve this, dispenser chips to generate micro droplets have been fabricated with nozzles 20 μm in size. Further, the magnification of the optical system used for cell detection was increased. Redesign of the optical path allows for collision-free addressing of any flat substrate since no compartment protrudes below the nozzle of the dispenser chip anymore. The improved system allows for deterministic isolation of individual bacterial cells. A single-cell printing efficiency of 93% was obtained as shown by printing fluorescent labeled E. coli. A 96-well plate filled with growth medium is inoculated with single bacteria cells on average within about 8 min. Finally, individual bacterial cells from a heterogeneous sample of E. coli and E. faecalis were isolated for clonal culturing directly on agar plates in user-defined array geometry. PMID:27596612

  6. Label-free isolation and deposition of single bacterial cells from heterogeneous samples for clonal culturing

    NASA Astrophysics Data System (ADS)

    Riba, J.; Gleichmann, T.; Zimmermann, S.; Zengerle, R.; Koltay, P.

    2016-09-01

    The isolation and analysis of single prokaryotic cells down to 1 μm and less in size poses a special challenge and requires micro-engineered devices to handle volumes in the picoliter to nanoliter range. Here, an advanced Single-Cell Printer (SCP) was applied for automated and label-free isolation and deposition of bacterial cells encapsulated in 35 pl droplets by inkjet-like printing. To achieve this, dispenser chips to generate micro droplets have been fabricated with nozzles 20 μm in size. Further, the magnification of the optical system used for cell detection was increased. Redesign of the optical path allows for collision-free addressing of any flat substrate since no compartment protrudes below the nozzle of the dispenser chip anymore. The improved system allows for deterministic isolation of individual bacterial cells. A single-cell printing efficiency of 93% was obtained as shown by printing fluorescent labeled E. coli. A 96-well plate filled with growth medium is inoculated with single bacteria cells on average within about 8 min. Finally, individual bacterial cells from a heterogeneous sample of E. coli and E. faecalis were isolated for clonal culturing directly on agar plates in user-defined array geometry.

  7. Resolving Confounding Enrichment Kinetics Due to Overlapping Resonance Signals From 13C-Enriched Long Chain Fatty Acid Oxidation and Uptake Within Intact Hearts

    PubMed Central

    O'Donnell, J. Michael; Fasano, Matthew J.; Lewandowski, E. Douglas

    2014-01-01

    Purpose Long chain fatty acid (LCFA) oxidation measurements in the intact heart from 13C-NMR rely on detection of 13C-enriched glutamate. However, progressive increases in overlapping resonance signal from LCFA can confound detection of the glutamate 4-carbon (GLU-C4) signal. We evaluated alternative 13C labeling for exogenous LCFA and developed a simple scheme to distinguish kinetics of LCFA uptake and storage from oxidation. Methods Sequential 13C-NMR spectra were acquired from isolated rat hearts perfused with 13C LCFA and glucose. Spectra were evaluated from hearts supplied: U 13C LCFA, [2,4,6,8,10,12,14,16-13C8] palmitate, [2,4,6,8,10,12,14,16,18-13C9] oleate, [4,6,8,10,12,14,16-13C7] palmitate, or [4,6,8,10,12, 14,16,18-13C8] oleate. Results 13C signal reflected the progressive enrichment at 34.6 ppm from GLU-C4, confounded by additional signal with distinct kinetics attributed to 13C-enriched LCFA 2-carbon (34.0 ppm). Excluding 13C at the 2-carbon of both palmitate and oleate eliminated signal overlap and enabled detection of the exponential enrichment of GLU-C4 for assessing LCFA oxidation. Conclusion Eliminating enrichment at the 2-carbon of 13C LCFA resolved confounding kinetics between GLU-C4 and LCFA 2-carbon signals. With this enrichment scheme, oxidation of LCFA, the primary fuel for cardiac ATP synthesis, can now be more consistently examined in whole organs with dynamic mode, proton-decoupled 13C-NMR. PMID:25199499

  8. PASADENA hyperpolarization of 13C biomolecules: equipment design and installation

    PubMed Central

    Hövener, Jan-Bernd; Chekmenev, Eduard Y.; Harris, Kent C.; Perman, William H.; Robertson, Larry W.; Bhattacharya, Pratip

    2009-01-01

    Object The PASADENA method has achieved hyperpolarization of 16–20% (exceeding 40,000-fold signal enhancement at 4.7 T), in liquid samples of biological molecules relevant to in vivo MRI and MRS. However, there exists no commercial apparatus to perform this experiment conveniently and reproducibly on the routine basis necessary for translation of PASADENA to questions of biomedical importance. The present paper describes equipment designed for rapid production of six to eight liquid samples per hour with high reproducibility of hyperpolarization. Materials and methods Drawing on an earlier, but unpublished, prototype, we provide diagrams of a delivery circuit, a laminar-flow reaction chamber within a low field NMR contained in a compact, movable housing. Assembly instructions are provided from which a computer driven, semiautomated PASADENA polarizer can be constructed. Results Together with an available parahydrogen generator, the polarizer, which can be operated by a single investigator, completes one cycle of hyperpolarization each 52 s. Evidence of efficacy is presented. In contrast to competing, commercially available devices for dynamic nuclear polarization which characteristically require 90 min per cycle, PASADENA provides a low-cost alternative for high throughput. Conclusions This equipment is suited to investigators who have an established small animal NMR and wish to explore the potential of heteronuclear (13C and 15N) MRI, MRS, which harnesses the enormous sensitivity gain offered by hyperpolarization. PMID:19067008

  9. Detection of ochratoxin A in beer samples with a label-free monolithically integrated optoelectronic biosensor.

    PubMed

    Pagkali, Varvara; Petrou, Panagiota S; Salapatas, Alexandros; Makarona, Eleni; Peters, Jeroen; Haasnoot, Willem; Jobst, Gerhard; Economou, Anastasios; Misiakos, Konstantinos; Raptis, Ioannis; Kakabakos, Sotirios E

    2017-02-05

    An optical biosensor for label-free detection of ochratoxin A (OTA) in beer samples is presented. The biosensor consists of an array of ten Mach-Zehnder interferometers (MZIs) monolithically integrated along with their respective broad-band silicon light sources on the same Si chip (37mm(2)). The chip was transformed to biosensor by functionalizing the MZIs sensing arms with an OTA-ovalbumin conjugate. OTA determination was performed by pumping over the chip mixtures of calibrators or samples with anti-OTA antibody following a competitive immunoassay format. An external miniaturized spectrometer was employed to continuously record the transmission spectra of each interferometer. Spectral shifts obtained due to immunoreaction were transformed to phase shifts through Discrete Fourier Transform. The assay had a detection limit of 2.0ng/ml and a dynamic range 4.0-100ng/ml in beer samples, recoveries ranging from 90.6 to 116%, and intra- and inter-assay coefficients of variation of 9% and 14%, respectively. The results obtained with the sensor using OTA-spiked beer samples spiked were in good agreement with those obtained by an ELISA developed using the same antibody. The good analytical performance of the biosensor and the small size of the proposed chip provide for the development of a portable instrument for point-of-need determinations.

  10. 13C-detected NMR experiments for measuring chemical shifts and coupling constants in nucleic acid bases.

    PubMed

    Fiala, Radovan; Sklenár, Vladimír

    2007-10-01

    The paper presents a set of two-dimensional experiments that utilize direct (13)C detection to provide proton-carbon, carbon-carbon and carbon-nitrogen correlations in the bases of nucleic acids. The set includes a (13)C-detected proton-carbon correlation experiment for the measurement of (13)C-(13)C couplings, the CaCb experiment for correlating two quaternary carbons, the HCaCb experiment for the (13)C-(13)C correlations in cases where one of the carbons has a proton attached, the HCC-TOCSY experiment for correlating a proton with a network of coupled carbons, and a (13)C-detected (13)C-(15)N correlation experiment for detecting the nitrogen nuclei that cannot be detected via protons. The IPAP procedure is used for extracting the carbon-carbon couplings and/or carbon decoupling in the direct dimension, while the S(3)E procedure is preferred in the indirect dimension of the carbon-nitrogen experiment to obtain the value of the coupling constant. The experiments supply accurate values of (13)C and (15)N chemical shifts and carbon-carbon and carbon-nitrogen coupling constants. These values can help to reveal structural features of nucleic acids either directly or via induced changes when the sample is dissolved in oriented media.

  11. Random isotopolog libraries for protein perturbation studies. 13C NMR studies on lumazine protein of Photobacterium leiognathi.

    PubMed

    Illarionov, Boris; Lee, Chan Yong; Bacher, Adelbert; Fischer, Markus; Eisenreich, Wolfgang

    2005-11-25

    [graph: see text] Lumazine proteins of luminescent bacteria are paralogs of riboflavin synthase which are devoid of catalytic activity but bind the riboflavin synthase substrate, 6,7-dimethyl-8-ribityllumazine, with high affinity and are believed to serve as optical transponders for bioluminescence emission. Lumazine protein of Photobacterium leiognathi was expressed in a recombinant Escherichia coli host and was reconstituted with mixtures (random libraries) of 13C-labeled isotopologs of 6,7-dimethyl-8-ribityllumazine or riboflavin that had been prepared by biotransformation of [U-(13)C6]-, [1-(13)C1]-, [2-(13)C1]-, and [3-(13)C1]glucose. 13C NMR analysis of the protein/ligand complexes afforded the assignments of the 13C NMR chemical shifts for all carbon atoms of the protein-bound ligands by isotopolog abundance editing. The carbon atoms of the ribityl groups of both ligands studied were shifted up to 6 ppm upon binding to the protein. Chemical shift modulation of the side chain and chromophore carbon atoms due to protein/ligand interaction is discussed on the basis of the sequence similarity between lumazine protein and riboflavin synthase.

  12. Hyperpolarized [1,4-13C]-Diethylsuccinate: A Potential DNP Substrate for In Vivo Metabolic Imaging

    PubMed Central

    Billingsley, Kelvin L.; Josan, Sonal; Park, Jae Mo; Tee, Sui Seng; Spielman-Sun, Eleanor; Hurd, Ralph; Mayer, Dirk; Spielman, Daniel

    2014-01-01

    The tricarboxylic acid cycle (TCA) performs an essential role in the regulation of energy and metabolism, and deficiencies in this pathway are commonly correlated with various diseases. However, the development of non-invasive techniques for the assessment of the cycle in vivo has remained challenging. In this work, the applicability of a novel imaging agent, [1,4-13C]-diethylsuccinate, for hyperpolarized 13C metabolic imaging of the TCA cycle was explored. In vivo spectroscopic studies were conducted in conjunction with in vitro analyses to determine the metabolic fate of the imaging agent. Contrary to previous reports (Zacharias, N. M. et. al. J. Am. Chem. Soc. 2012, 134, 934-943), [13C]-labeled diethylsuccinate was primarily metabolized to succinate-derived products not originating from TCA cycle metabolism. These results illustrate potential issues of utilizing dialkyl ester analogs of TCA cycle intermediates as molecular probes for hyperpolarized 13C metabolic imaging. PMID:24421249

  13. Mapping carbon fate during bleaching in a model cnidarian symbiosis: the application of (13) C metabolomics.

    PubMed

    Hillyer, Katie E; Dias, Daniel A; Lutz, Adrian; Roessner, Ute; Davy, Simon K

    2017-03-08

    Coral bleaching is a major threat to the persistence of coral reefs. Yet we lack detailed knowledge of the metabolic interactions that determine symbiosis function and bleaching-induced change. We mapped autotrophic carbon fate within the free metabolite pools of both partners of a model cnidarian-dinoflagellate symbiosis (Aiptasia-Symbiodinium) during exposure to thermal stress via the stable isotope tracer ((13) C bicarbonate), coupled to GC-MS. Symbiont photodamage and pronounced bleaching coincided with substantial increases in the turnover of non(13) C-labelled pools in the dinoflagellate (lipid and starch store catabolism). However, (13) C enrichment of multiple compounds associated with ongoing carbon fixation and de novo biosynthesis pathways was maintained (glucose, fatty acid and lipogenesis intermediates). Minimal change was also observed in host pools of (13) C-enriched glucose (a major symbiont-derived mobile product). However, host pathways downstream showed altered carbon fate and/or pool composition, with accumulation of compatible solutes and nonenzymic antioxidant precursors. In hospite symbionts continue to provide mobile products to the host, but at a significant cost to themselves, necessitating the mobilization of energy stores. These data highlight the need to further elucidate the role of metabolic interactions between symbiotic partners, during the process of thermal acclimation and coral bleaching.

  14. /sup 1/H and /sup 13/C spin-lattice relaxation in gaseous benzene

    SciTech Connect

    Folkendt, M.M.; Weiss-Lopez, B.E.; True, N.S.

    1988-08-25

    The nuclear spin-lattice relaxation time, T/sub 1/, measured for benzene protons at densities between 0.81 and 54.4 mol/m/sup 3/ (15 and 980 Torr) at 381 K exhibits a characteristic nonlinear density dependence. Analysis of the density-dependent T/sub 1/ data yields a spin-rotation coupling constant, C/sub eff/, of /vert bar/182.6 (0.4)/vert bar/ Hz and an angular momentum reorientation cross section, sigma, of 131 (1) /Angstrom//sup 2/. The /sup 13/C spin-lattice relaxation time of singly labeled /sup 13/C benzene is a linear function of density over the density range 1.07-75.12 mol/m/sup 3/ (20-1330 Torr). /sup 13/C T/sub 1/ values are shorter than /sup 1/H T/sub 1/ values by a factor of ca. 100 at comparable densities. The nuclear Overhauser enhancement factor, /eta/, is 0.0 /plus minus/ 0.02 at densities between 11 and 85.3 mol/m/sup 3/ (200 and 1500 Torr), demonstrating that dipole-dipole relaxation is relatively inefficient in this region. The spin-rotation coupling constant, C/sub eff/, for /sup 13/C nuclei in benzene is estimated to be /vert bar/1602 (68)/vert bar/ Hz.

  15. Magnetic susceptibility effects on 13C MAS NMR spectra of carbon materials and graphite.

    PubMed

    Freita, J C; Emmerich, F G; Cernicchiaro, G R; Sampaio, L C; Bonagamba, T J

    2001-01-01

    13C high-resolution solid-state nuclear magnetic resonance (NMR) was employed to study carbon materials prepared through the thermal decomposition of four different organic precursors (rice hulls, endocarp of babassu coconut, peat, and PVC). For heat treatment temperatures (HTTs) above about 600 C, all materials presented 13C NMR spectra composed of a unique resonance line associated with carbon atoms in aromatic planes. With increasing HTT a continuous broadening of this resonance and a diamagnetic shift in its central frequency were verified for all samples. The evolution of the magnitude and anisotropy of the magnetic susceptibility of the heat-treated carbon samples with HTT explains well these findings. It is shown that these results are better understood when a comparison is made with the features of the 13C NMR spectrum of polycrystalline graphite, for which the magnetic susceptibility effect is also present and is much more pronounced.

  16. Global-mean marine δ13C and its uncertainty in a glacial state estimate

    NASA Astrophysics Data System (ADS)

    Gebbie, Geoffrey; Peterson, Carlye D.; Lisiecki, Lorraine E.; Spero, Howard J.

    2015-10-01

    A paleo-data compilation with 492 δ13C and δ18O observations provides the opportunity to better sample the Last Glacial Maximum (LGM) and infer its global properties, such as the mean δ13C of dissolved inorganic carbon. Here, the paleo-compilation is used to reconstruct a steady-state water-mass distribution for the LGM, that in turn is used to map the data onto a 3D global grid. A global-mean marine δ13C value and a self-consistent uncertainty estimate are derived using the framework of state estimation (i.e., combining a numerical model and observations). The LGM global-mean δ13C is estimated to be 0.14‰ ± 0.20‰ at the two standard error level, giving a glacial-to-modern change of 0.32‰ ± 0.20‰. The magnitude of the error bar is attributed to the uncertain glacial ocean circulation and the lack of observational constraints in the Pacific, Indian, and Southern Oceans. To halve the error bar, roughly four times more observations are needed, although strategic sampling may reduce this number. If dynamical constraints can be used to better characterize the LGM circulation, the error bar can also be reduced to 0.05 to 0.1‰, emphasizing that knowledge of the circulation is vital to accurately map δ13C in three dimensions.

  17. Mass spectrometric 13C/12C determinations to detect high fructose corn syrup in orange juice: collaborative study.

    PubMed

    Doner, L W; Bills, D D; Carro, O; Drimmie, R; Fritz, P; Gearing, J N; Hillaire-Marcel, C; Parker, P L; Reeseman, F M; Smith, B N; Ziegler, H

    1982-05-01

    The 13C/12C ratios in orange juice are sufficiently uniform and different from those in high fructose corn syrup (HFCS) so that the addition of HFCS to orange juice can be detected. HFCS averages -9.7% (parts per thousand) delta 13C, orange juice averages -24.5%, and mixtures of HFCS and orange juice possess intermediate values. One pure orange juice and 4 orange juice -HFCS mixtures containing from 25 to 70% orange juice were properly classified by 7 collaborators. Samples with delta 13C values less negative than -22.1%, 4 standard deviations from the mean of pure juices, can, with a high degree of confidence, be classified as adulterated. Samples with values more negative than -22.1% must be considered unadulterated with HFCS, because pure orange juices possess a range of delta 13C values. The 13C/12C mass spectrometric method was adopted official first action for detecting HFCS in orange juice.

  18. Constraining 3-PG with a new δ13C submodel: a test using the δ13C of tree rings.

    PubMed

    Wei, Liang; Marshall, John D; Link, Timothy E; Kavanagh, Kathleen L; DU, Enhao; Pangle, Robert E; Gag, Peter J; Ubierna, Nerea

    2014-01-01

    A semi-mechanistic forest growth model, 3-PG (Physiological Principles Predicting Growth), was extended to calculate δ(13)C in tree rings. The δ(13)C estimates were based on the model's existing description of carbon assimilation and canopy conductance. The model was tested in two ~80-year-old natural stands of Abies grandis (grand fir) in northern Idaho. We used as many independent measurements as possible to parameterize the model. Measured parameters included quantum yield, specific leaf area, soil water content and litterfall rate. Predictions were compared with measurements of transpiration by sap flux, stem biomass, tree diameter growth, leaf area index and δ(13)C. Sensitivity analysis showed that the model's predictions of δ(13)C were sensitive to key parameters controlling carbon assimilation and canopy conductance, which would have allowed it to fail had the model been parameterized or programmed incorrectly. Instead, the simulated δ(13)C of tree rings was no different from measurements (P > 0.05). The δ(13)C submodel provides a convenient means of constraining parameter space and avoiding model artefacts. This δ(13)C test may be applied to any forest growth model that includes realistic simulations of carbon assimilation and transpiration.

  19. Detection of inflammatory cell function using 13C magnetic resonance spectroscopy of hyperpolarized [6-13C]-arginine

    PubMed Central

    Najac, Chloé; Chaumeil, Myriam M.; Kohanbash, Gary; Guglielmetti, Caroline; Gordon, Jeremy W.; Okada, Hideho; Ronen, Sabrina M.

    2016-01-01

    Myeloid-derived suppressor cells (MDSCs) are highly prevalent inflammatory cells that play a key role in tumor development and are considered therapeutic targets. MDSCs promote tumor growth by blocking T-cell-mediated anti-tumoral immune response through depletion of arginine that is essential for T-cell proliferation. To deplete arginine, MDSCs express high levels of arginase, which catalyzes the breakdown of arginine into urea and ornithine. Here, we developed a new hyperpolarized 13C probe, [6-13C]-arginine, to image arginase activity. We show that [6-13C]-arginine can be hyperpolarized, and hyperpolarized [13C]-urea production from [6-13C]-arginine is linearly correlated with arginase concentration in vitro. Furthermore we show that we can detect a statistically significant increase in hyperpolarized [13C]-urea production in MDSCs when compared to control bone marrow cells. This increase was associated with an increase in intracellular arginase concentration detected using a spectrophotometric assay. Hyperpolarized [6-13C]-arginine could therefore serve to image tumoral MDSC function and more broadly M2-like macrophages. PMID:27507680

  20. Anomalous 13C enrichment in modern marine organic carbon

    USGS Publications Warehouse

    Arthur, M.A.; Dean, W.E.; Claypool, G.E.

    1985-01-01

    Marine organic carbon is heavier isotopically (13C enriched) than most land-plant or terrestrial organic C1. Accordingly, ??13C values of organic C in modern marine sediments are routinely interpreted in terms of the relative proportions of marine and terrestrial sources of the preserved organic matter2,3. When independent geochemical techniques are used to evaluate the source of organic matter in Cretaceous or older rocks, those rocks containing mostly marine organic C are found typically to have lighter (more-negative) ??13C values than rocks containing mostly terrestrial organic C. Here we conclude that marine photosynthesis in mid-Cretaceous and earlier oceans generally resulted in a greater fractionation of C isotopes and produced organic C having lighter ??13C values. Modern marine photosynthesis may be occurring under unusual geological conditions (higher oceanic primary production rates, lower PCO2) that limit dissolved CO2 availability and minimize carbon isotope fractionation4. ?? 1985 Nature Publishing Group.

  1. Sensitive, Efficient Quantitation of 13C-Enriched Nucleic Acids via Ultrahigh-Performance Liquid Chromatography-Tandem Mass Spectrometry for Applications in Stable Isotope Probing.

    PubMed

    Wilhelm, Roland; Szeitz, András; Klassen, Tara L; Mohn, William W

    2014-12-01

    Stable isotope probing (SIP) of nucleic acids is a powerful tool for studying the functional traits of microbial populations within complex communities, but SIP involves a number of technical challenges. Many of the difficulties in DNA-SIP and RNA-SIP experiments can be effectively overcome with an efficient, sensitive method for quantitating the isotopic enrichment of nucleic acids. Here, we present a sensitive method for quantitating (13)C enrichment of nucleic acids, requiring a few nanograms of sample, and we demonstrate its utility in typical DNA-SIP and RNA-SIP experiments. All five nucleobases (adenine, guanine, cytosine, thymine, and uracil) were separated and detected by using ultrahigh-performance liquid chromatography-tandem mass spectrometry. We detected all isotopic species in samples with as low as 1.5 atom% (13)C above natural abundance, using 1-ng loadings. Quantitation was used to characterize the isotopic enrichment kinetics of cellulose- and lignin-based microcosm experiments and to optimize the recovery of enriched nucleic acids. Application of our method will minimize the quantity of expensive isotopically labeled substrates required and reduce the risk of failed experiments due to insufficient recovery of labeled nucleic acids for sequencing library preparation.

  2. Sensitive, Efficient Quantitation of 13C-Enriched Nucleic Acids via Ultrahigh-Performance Liquid Chromatography–Tandem Mass Spectrometry for Applications in Stable Isotope Probing

    PubMed Central

    Wilhelm, Roland; Szeitz, András; Klassen, Tara L.

    2014-01-01

    Stable isotope probing (SIP) of nucleic acids is a powerful tool for studying the functional traits of microbial populations within complex communities, but SIP involves a number of technical challenges. Many of the difficulties in DNA-SIP and RNA-SIP experiments can be effectively overcome with an efficient, sensitive method for quantitating the isotopic enrichment of nucleic acids. Here, we present a sensitive method for quantitating 13C enrichment of nucleic acids, requiring a few nanograms of sample, and we demonstrate its utility in typical DNA-SIP and RNA-SIP experiments. All five nucleobases (adenine, guanine, cytosine, thymine, and uracil) were separated and detected by using ultrahigh-performance liquid chromatography–tandem mass spectrometry. We detected all isotopic species in samples with as low as 1.5 atom% 13C above natural abundance, using 1-ng loadings. Quantitation was used to characterize the isotopic enrichment kinetics of cellulose- and lignin-based microcosm experiments and to optimize the recovery of enriched nucleic acids. Application of our method will minimize the quantity of expensive isotopically labeled substrates required and reduce the risk of failed experiments due to insufficient recovery of labeled nucleic acids for sequencing library preparation. PMID:25217022

  3. CACA-TOCSY with alternate 13C–12C labeling: a 13Cα direct detection experiment for mainchain resonance assignment, dihedral angle information, and amino acid type identification

    PubMed Central

    Takeuchi, Koh; Frueh, Dominique P.; Sun, Zhen-Yu J.; Hiller, Sebastian

    2010-01-01

    We present a 13C direct detection CACA-TOCSY experiment for samples with alternate 13C–12C labeling. It provides inter-residue correlations between 13Cα resonances of residue i and adjacent Cαs at positions i − 1 and i + 1. Furthermore, longer mixing times yield correlations to Cα nuclei separated by more than one residue. The experiment also provides Cα-to-sidechain correlations, some amino acid type identifications and estimates for ψ dihedral angles. The power of the experiment derives from the alternate 13C–12C labeling with [1,3-13C] glycerol or [2-13C] glycerol, which allows utilizing the small scalar 3JCC couplings that are masked by strong 1JCC couplings in uniformly 13C labeled samples. PMID:20383561

  4. Easy Extraction Method To Evaluate δ13C Vanillin by Liquid Chromatography-Isotopic Ratio Mass Spectrometry in Chocolate Bars and Chocolate Snack Foods.

    PubMed

    Bononi, Monica; Quaglia, Giancarlo; Tateo, Fernando

    2015-05-20

    An easy extraction method that permits the use of a liquid chromatography-isotopic ratio mass spectrometry (LC-IRMS) system to evaluate δ(13)C of vanillin in chocolate products and industrial flavorings is presented. The method applies the determination of stable isotopes of carbon to discriminate between natural vanillin from vanilla beans and vanillin from other sources (mixtures from beans, synthesis, or biotechnology). A series of 13 chocolate bars and chocolate snack foods available on the Italian market and 8 vanilla flavorings derived from industrial quality control processes were analyzed. Only 30% of products considered in this work that declared "vanilla" on the label showed data that permitted the declaration "vanilla" according to European Union (EU) Regulation 1334/2008. All samples not citing "vanilla" or "natural flavoring" on the label gave the correct declaration. The extraction method is presented with data useful for statistical evaluation.

  5. Validation of a non-invasive blood-sampling technique for doubly-labelled water experiments.

    PubMed

    Voigt, Christian C; Helversen, Otto Von; Michener, Robert H; Kunz, Thomas H

    2003-04-01

    Two techniques for bleeding small mammals have been used in doubly-labeled water (DLW) studies, including vena puncture and the use of starved nymphal stages of hematophagous reduviid bugs (Reduviidae, Hemiptera). In this study, we tested the validity of using reduviid bugs in doubly-labeled water experiments. We found that the isotope enrichment in initial blood samples collected with bugs was significantly lower compared to isotope enrichment in blood samples obtained using vena puncture. We therefore used the desiccation method for estimating total body water (TBW) in DLW experiments because TBW calculated using the isotope dilution method was overestimated when blood samples were collected using reduviid bugs. In our validation experiment with nectar-feeding bats (Glossophaga soricina), we compared estimates of daily energy expenditure (DEE) using DLW with those derived from the energy balance method. We considered Speakman's equation (controlling for 25% fractionated water loss) as the most appropriate for our study animal and calculated DEE accordingly. On average, DEE estimated with DLW was not significantly different from the mean value obtained with the energy balance method (mean deviation 1.2%). We conclude that although bug hemolymph or intestinal liquids most likely contaminate the samples, estimates of DEE are still valid because the DLW method does not depend on absolute isotope enrichments but on the rate of isotope decrease over time. However, dilution of blood with intestinal liquids or hemolymph from a bug may lead to larger variation in DEE estimates. We also tested how the relative error of DLW estimates changed with varying assumptions about fractionation. We used three additional equations for calculating DEE in DLW experiments. The basic equation for DLW experiments published by Lifson and McClintock (LM-6) assumes no fractionation, resulted in an overestimate of DEE by 10%. Nagy's equation (N-2) controls for changes in body mass but not for

  6. An in Vivo 13C NMR Analysis of the Anaerobic Yeast Metabolism of 1-13C-Glucose

    NASA Astrophysics Data System (ADS)

    Giles, Brent J.; Matsche, Zenziwe; Egeland, Ryan D.; Reed, Ryan A.; Morioka, Scott S.; Taber, Richard L.

    1999-11-01

    A biochemistry laboratory experiment that studies the dynamics of the anaerobic yeast metabolism of 1-13C-D-glucose via NMR is described. Fleischmann's Active Dry yeast, under anaerobic conditions, produces primarily 2-13C-ethanol and some 1-13C-glycerol as end products. An experiment is described in which the yeast is subjected to osmotic shock from an increasing sodium chloride concentration. Under these conditions, the yeast increases the ratio of glycerol to ethanol. The experiment can be accomplished in a single laboratory period.

  7. 13C-phenylalanine breath test detects altered phenylalanine kinetics in schizophrenia patients

    PubMed Central

    Teraishi, T; Ozeki, Y; Hori, H; Sasayama, D; Chiba, S; Yamamoto, N; Tanaka, H; Iijima, Y; Matsuo, J; Kawamoto, Y; Kinoshita, Y; Hattori, K; Ota, M; Kajiwara, M; Terada, S; Higuchi, T; Kunugi, H

    2012-01-01

    Phenylalanine is an essential amino acid required for the synthesis of catecholamines including dopamine. Altered levels of phenylalanine and its metabolites in blood and cerebrospinal fluid have been reported in schizophrenia patients. This study attempted to examine for the first time whether phenylalanine kinetics is altered in schizophrenia using L-[1-13C]phenylalanine breath test (13C-PBT). The subjects were 20 chronically medicated schizophrenia patients (DSM-IV) and the same number of age- and sex-matched controls. 13C-phenylalanine (99 atom% 13C; 100 mg) was administered orally and the breath 13CO2 /12CO2 ratio was monitored for 120 min. The possible effect of antipsychotic medication (risperidone (RPD) or haloperidol (HPD) treatment for 21 days) on 13C-PBT was examined in rats. Body weight (BW), age and diagnostic status were significant predictors of the area under the curve of the time course of Δ13CO2 (‰) and the cumulative recovery rate (CRR) at 120 min. A repeated measures analysis of covariance controlled for age and BW revealed that the patterns of CRR change over time differed between the patients and controls and that Δ13CO2 was lower in the patients than in the controls at all sampling time points during the 120 min test, with an overall significant difference between the two groups. Chronic administration of RPD or HPD had no significant effect on 13C-PBT indices in rats. Our results suggest that 13C-PBT is a novel laboratory test that can detect altered phenylalanine kinetics in chronic schizophrenia patients. Animal experiments suggest that the observed changes are unlikely to be attributable to antipsychotic medication. PMID:22832963

  8. Measuring the 13C content of soil-respired CO2 using a novel open chamber system.

    PubMed

    Midwood, Andrew J; Thornton, Barry; Millard, Pete

    2008-07-01

    Carbon dioxide respired by soils comes from both autotrophic and heterotrophic respiration. 13C has proved useful in differentiating between these two sources, but requires the collection and analysis of CO2 efflux from the soil. We have developed a novel, open chamber system which allows for the accurate and precise quantification of the delta13C of soil-respired CO2. The chamber was tested using online analyses, by configuring a GasBench II and continuous flow isotope ratio mass spectrometer, to measure the delta13C of the chamber air every 120 s. CO2 of known delta13C value was passed through a column of sand and, using the chamber, the CO2 concentration stabilized rapidly, but 60 min was required before the delta13C value was stable and identical to the cylinder gas (-33.3 per thousand). Changing the chamber CO2 concentration between 200 and 900 micromol.mol(-1) did not affect the measured delta13C of the efflux. Measuring the delta13C of the CO2 efflux from soil cores in the laboratory gave a spread of +/-2 per thousand, attributed to heterogeneity in the soil organic matter and roots. Lateral air movement through dry sand led to a change in the delta13C of the surface efflux of up to 8 per thousand. The chamber was used to measure small transient changes (+/-2 per thousand) in the delta13C of soil-respired CO2 from a peaty podzol after gradual heating from 12 to 35 degrees C over 12 h. Finally, soil-respired CO2 was partitioned in a labelling study and the contribution of autotrophic and heterotrophic respiration to the total efflux determined. Potential applications for the chamber in the study of soil respiration are discussed.

  9. On the use of phloem sap δ13C to estimate canopy carbon discrimination

    NASA Astrophysics Data System (ADS)

    Rascher, Katherine; Máguas, Cristina; Werner, Christiane

    2010-05-01

    Although the carbon stable isotope composition (d13C) of bulk leaf material is a good integrative parameter of photosynthetic discrimination and can be used as a reliable ecological index of plant functioning; it is not a good tracer of short-term changes in photosynthetic discrimination. In contrast, d13C of phloem sap is potentially useful as an indicator of short-term changes in canopy photosynthetic discrimination. However, recent research indicates that d13C signatures may be substantially altered by metabolic processes downstream of initial leaf-level carbon fixation (e.g. post-photosynthetic fractionation). Accordingly, before phloem sap d13C can be used as a proxy for canopy level carbon discrimination an understanding of factors influencing the degree and magnitude of post-photosynthetic fractionation and how these vary between species is of paramount importance. In this study, we measured the d13C signature along the basipetal transport pathway in two co-occurring tree species in the field - an understory invasive exotic legume, Acacia longifolia, and a native pine, Pinus pinaster. We measured d13C of bulk leaf and leaf water soluble organic matter (WSOM), phloem sap sampled at two points along the plant axis and leaf and root dark respiration. In general, species differences in photosynthetic discrimination resulted in more enriched d13C values in the water-conserving P. pinaster relative to the water-spending A. longifolia. Post-photosynthetic fractionation led to differences in d13C of carbon pools along the plant axis with progressively more depleted d13C from the canopy to the trunk (~6.5 per mil depletion in A. longifolia and ~0.8per mil depletion in P. pinaster). Leaf and root respiration, d13C, were consistently enriched relative to putative substrates. We hypothesize that the pronounced enrichment of leaf respired CO2 relative to leaf WSOM may have left behind relatively depleted carbon to be loaded into the phloem resulting in d13C depletion

  10. Determination of glucan phosphorylation using heteronuclear 1H, 13C double and 1H, 13C, 31P triple-resonance NMR spectra.

    PubMed

    Schmieder, Peter; Nitschke, Felix; Steup, Martin; Mallow, Keven; Specker, Edgar

    2013-10-01

    Phosphorylation and dephosphorylation of starch and glycogen are important for their physicochemical properties and also their physiological functions. It is therefore desirable to reliably determine the phosphorylation sites. Heteronuclear multidimensional NMR-spectroscopy is in principle a straightforward analytical approach even for complex carbohydrate molecules. With heterogeneous samples from natural sources, however, the task becomes more difficult because a full assignment of the resonances of the carbohydrates is impossible to obtain. Here, we show that the combination of heteronuclear (1) H,(13) C and (1) H,(13) C,(31) P techniques and information derived from spectra of a set of reference compounds can lead to an unambiguous determination of the phosphorylation sites even in heterogeneous samples.

  11. Pre-treatment Effects on Coral Skeletal δ 13C and δ 18O

    NASA Astrophysics Data System (ADS)

    Grottoli, A. G.; Gibb, O.; Wellington, G. M.

    2003-12-01

    Pre-treatment protocols for coral skeletal stable carbon (δ 13C) and oxygen (δ 18O) isotope analyses include no treatment, bleach (NaOH), hydrogen peroxide (H2O2), or vacuum roasting prior to analysis. Such pre-treatments are used to remove organic material prior to isotopic analyses. Researchers that do not pre-treat samples argue that such treatments result in non-linear shifts in coral skeletal δ 13C and δ 18O thus increasing the analytical error in the δ 13C and δ 18O values. Vacuum roasting does cause isotopic shifts and is no longer practiced. However, both no pre-treatment and pre-treatment (with either NaOH or H2O2) coral δ 13C and δ 18O values continue to be published in the literature. In all previous studies of the effects of NaOH and H2O2 pre-treatments on coral δ 13C and δ 18O, the samples sizes were typically small and the exact time interval being sampled and compared was not specifically controlled. Here, we evaluated the effects of NaOH and H2O2 pre-treatments on coral skeletal δ 13C and δ 18O in Pavona clavus and Pavona gigantea from Panama, and Porites compressa from Hawaii. In Panama, at least five coral fragments from five different colonies of each species were stained on November 1978 and April 1979 then collected in November 1979. In Hawaii, at least five coral fragments from five different colonies at 1.7 and 7 m depths were stained on 1 September and 21 November 1996 then collected 2 March 1997. For each fragment, a bulk skeletal sample was extracted representing the entire growth interval between the two stain lines yielding at least 24 mg of material. Sampling between the stain lines ensured that all of the fragments from a given site and species were sampled over the same time interval and avoided any potential contamination from the tissue layer. Eight milligram subsamples from each fragment were subjected to 24 hours of the following treatments: NaOH, H2O2, Milli-Q filtered water (control), or no pre-treatment (control

  12. Turnover of microbial groups and cell components in soil: 13C analysis of cellular biomarkers

    NASA Astrophysics Data System (ADS)

    Gunina, Anna; Dippold, Michaela; Glaser, Bruno; Kuzyakov, Yakov

    2017-01-01

    Microorganisms regulate the carbon (C) cycle in soil, controlling the utilization and recycling of organic substances. To reveal the contribution of particular microbial groups to C utilization and turnover within the microbial cells, the fate of 13C-labelled glucose was studied under field conditions. Glucose-derived 13C was traced in cytosol, amino sugars and phospholipid fatty acid (PLFA) pools at intervals of 3, 10 and 50 days after glucose addition into the soil. 13C enrichment in PLFAs ( ˜ 1.5 % of PLFA C at day 3) was an order of magnitude greater than in cytosol, showing the importance of cell membranes for initial C utilization. The 13C enrichment in amino sugars of living microorganisms at day 3 accounted for 0.57 % of total C pool; as a result, we infer that the replacement of C in cell wall components is 3 times slower than that of cell membranes. The C turnover time in the cytosol (150 days) was 3 times longer than in PLFAs (47 days). Consequently, even though the cytosol pool has the fastest processing rates compared to other cellular compartments, intensive recycling of components here leads to a long C turnover time. Both PLFA and amino-sugar profiles indicated that bacteria dominated in glucose utilization. 13C enrichment decreased with time for bacterial cell membrane components, but it remained constant or even increased for filamentous microorganisms. 13C enrichment of muramic acid was the 3.5 times greater than for galactosamine, showing a more rapid turnover of bacterial cell wall components compared to fungal. Thus, bacteria utilize a greater proportion of low-molecular-weight organic substances, whereas filamentous microorganisms are responsible for further C transformations. Thus, tracing 13C in cellular compounds with contrasting turnover rates elucidated the role of microbial groups and their cellular compartments in C utilization and recycling in soil. The results also reflect that microbial C turnover is not restricted to the death or

  13. Impact of Ho3+-doping on 13C dynamic nuclear polarization using trityl OX063 free radical

    PubMed Central

    Kiswandhi, Andhika; Niedbalski, Peter; Parish, Christopher; Kaur, Pavanjeet; Martins, André; Fidelino, Leila; Khemtong, Chalermchai; Song, Likai; Sherry, A. Dean

    2016-01-01

    We have investigated the effects of Ho-DOTA doping on the dynamic nuclear polarization (DNP) of [1-13C] sodium acetate using trityl OX063 free radical at 3.35 T and 1.2 K. Our results indicate that addition of 2 mM Ho-DOTA on 3 M [1-13C] sodium acetate sample in 1:1 v/v glycerol:water with 15 mM trityl OX063 improves the DNP-enhanced 13C solid-state nuclear polarization by a factor of around 2.7-fold. Similar to the Gd3+ doping effect on 13C DNP, the locations of the positive and negative 13C maximum polarization peaks in the 13C microwave DNP sweep are shifted towards each other with the addition of Ho-DOTA on the DNP sample. W-band electron spin resonance (ESR) studies have revealed that while the shape and linewidth of the trityl OX063 ESR spectrum was not affected by Ho3+-doping, the electron spin-lattice relaxation time T1 of trityl OX063 was prominently reduced at cryogenic temperatures. The reduction of trityl OX063 electron T1 by Ho-doping is linked to the 13C DNP improvement in light of the thermodynamic picture of DNP. Moreover, the presence of Ho-DOTA in the dissolution liquid at room temperature has negligible reduction effect on liquid-state 13C T1, in contrast to Gd3+-doping which drastically reduces the 13C T1. The results here suggest that Ho3+-doping is advantageous over Gd3+ in terms of preservation of hyperpolarized state—an important aspect to consider for in vitro and in vivo NMR or imaging (MRI) experiments where a considerable preparation time is needed to administer the hyperpolarized 13C liquid. PMID:27424954

  14. Unraveling the 13C NMR chemical shifts in single-walled carbon nanotubes: dependence on diameter and electronic structure.

    PubMed

    Engtrakul, Chaiwat; Irurzun, Veronica M; Gjersing, Erica L; Holt, Josh M; Larsen, Brian A; Resasco, Daniel E; Blackburn, Jeffrey L

    2012-03-14

    The atomic specificity afforded by nuclear magnetic resonance (NMR) spectroscopy could enable detailed mechanistic information about single-walled carbon nanotube (SWCNT) functionalization as well as the noncovalent molecular interactions that dictate ground-state charge transfer and separation by electronic structure and diameter. However, to date, the polydispersity present in as-synthesized SWCNT populations has obscured the dependence of the SWCNT (13)C chemical shift on intrinsic parameters such as diameter and electronic structure, meaning that no information is gleaned for specific SWCNTs with unique chiral indices. In this article, we utilize a combination of (13)C labeling and density gradient ultracentrifugation (DGU) to produce an array of (13)C-labeled SWCNT populations with varying diameter, electronic structure, and chiral angle. We find that the SWCNT isotropic (13)C chemical shift decreases systematically with increasing diameter for semiconducting SWCNTs, in agreement with recent theoretical predictions that have heretofore gone unaddressed. Furthermore, we find that the (13)C chemical shifts for small diameter metallic and semiconducting SWCNTs differ significantly, and that the full-width of the isotropic peak for metallic SWCNTs is much larger than that of semiconducting nanotubes, irrespective of diameter.

  15. Natural isotope correction of MS/MS measurements for metabolomics and (13)C fluxomics.

    PubMed

    Niedenführ, Sebastian; ten Pierick, Angela; van Dam, Patricia T N; Suarez-Mendez, Camilo A; Nöh, Katharina; Wahl, S Aljoscha

    2016-05-01

    Fluxomics and metabolomics are crucial tools for metabolic engineering and biomedical analysis to determine the in vivo cellular state. Especially, the application of (13)C isotopes allows comprehensive insights into the functional operation of cellular metabolism. Compared to single MS, tandem mass spectrometry (MS/MS) provides more detailed and accurate measurements of the metabolite enrichment patterns (tandem mass isotopomers), increasing the accuracy of metabolite concentration measurements and metabolic flux estimation. MS-type data from isotope labeling experiments is biased by naturally occurring stable isotopes (C, H, N, O, etc.). In particular, GC-MS(/MS) requires derivatization for the usually non-volatile intracellular metabolites introducing additional natural isotopes leading to measurements that do not directly represent the carbon labeling distribution. To make full use of LC- and GC-MS/MS mass isotopomer measurements, the influence of natural isotopes has to be eliminated (corrected). Our correction approach is analyzed for the two most common applications; (13)C fluxomics and isotope dilution mass spectrometry (IDMS) based metabolomics. Natural isotopes can have an impact on the calculated flux distribution which strongly depends on the substrate labeling and the actual flux distribution. Second, we show that in IDMS based metabolomics natural isotopes lead to underestimated concentrations that can and should be corrected with a nonlinear calibration. Our simulations indicate that the correction for natural abundance in isotope based fluxomics and quantitative metabolomics is essential for correct data interpretation.

  16. NMR-based structural modeling of graphite oxide using multidimensional 13C solid-state NMR and ab initio chemical shift calculations.

    PubMed

    Casabianca, Leah B; Shaibat, Medhat A; Cai, Weiwei W; Park, Sungjin; Piner, Richard; Ruoff, Rodney S; Ishii, Yoshitaka

    2010-04-28

    Chemically modified graphenes and other graphite-based materials have attracted growing interest for their unique potential as lightweight electronic and structural nanomaterials. It is an important challenge to construct structural models of noncrystalline graphite-based materials on the basis of NMR or other spectroscopic data. To address this challenge, a solid-state NMR (SSNMR)-based structural modeling approach is presented on graphite oxide (GO), which is a prominent precursor and interesting benchmark system of modified graphene. An experimental 2D (13)C double-quantum/single-quantum correlation SSNMR spectrum of (13)C-labeled GO was compared with spectra simulated for different structural models using ab initio geometry optimization and chemical shift calculations. The results show that the spectral features of the GO sample are best reproduced by a geometry-optimized structural model that is based on the Lerf-Klinowski model (Lerf, A. et al. Phys. Chem. B 1998, 102, 4477); this model is composed of interconnected sp(2), 1,2-epoxide, and COH carbons. This study also convincingly excludes the possibility of other previously proposed models, including the highly oxidized structures involving 1,3-epoxide carbons (Szabo, I. et al. Chem. Mater. 2006, 18, 2740). (13)C chemical shift anisotropy (CSA) patterns measured by a 2D (13)C CSA/isotropic shift correlation SSNMR were well reproduced by the chemical shift tensor obtained by the ab initio calculation for the former model. The approach presented here is likely to be applicable to other chemically modified graphenes and graphite-based systems.

  17. Spectral density mapping at multiple magnetic fields suitable for 13C NMR relaxation studies

    NASA Astrophysics Data System (ADS)

    Kadeřávek, Pavel; Zapletal, Vojtěch; Fiala, Radovan; Srb, Pavel; Padrta, Petr; Přecechtělová, Jana Pavlíková; Šoltésová, Mária; Kowalewski, Jozef; Widmalm, Göran; Chmelík, Josef; Sklenář, Vladimír; Žídek, Lukáš

    2016-05-01

    Standard spectral density mapping protocols, well suited for the analysis of 15N relaxation rates, introduce significant systematic errors when applied to 13C relaxation data, especially if the dynamics is dominated by motions with short correlation times (small molecules, dynamic residues of macromolecules). A possibility to improve the accuracy by employing cross-correlated relaxation rates and on measurements taken at several magnetic fields has been examined. A suite of protocols for analyzing such data has been developed and their performance tested. Applicability of the proposed protocols is documented in two case studies, spectral density mapping of a uniformly labeled RNA hairpin and of a selectively labeled disaccharide exhibiting highly anisotropic tumbling. Combination of auto- and cross-correlated relaxation data acquired at three magnetic fields was applied in the former case in order to separate effects of fast motions and conformational or chemical exchange. An approach using auto-correlated relaxation rates acquired at five magnetic fields, applicable to anisotropically moving molecules, was used in the latter case. The results were compared with a more advanced analysis of data obtained by interpolation of auto-correlated relaxation rates measured at seven magnetic fields, and with the spectral density mapping of cross-correlated relaxation rates. The results showed that sufficiently accurate values of auto- and cross-correlated spectral density functions at zero and 13C frequencies can be obtained from data acquired at three magnetic fields for uniformly 13C -labeled molecules with a moderate anisotropy of the rotational diffusion tensor. Analysis of auto-correlated relaxation rates at five magnetic fields represents an alternative for molecules undergoing highly anisotropic motions.

  18. Dielectrophoretic label-free immunoassay for rare-analyte quantification in biological samples

    NASA Astrophysics Data System (ADS)

    Velmanickam, Logeeshan; Laudenbach, Darrin; Nawarathna, Dharmakeerthi

    2016-10-01

    The current gold standard for detecting or quantifying target analytes from blood samples is the ELISA (enzyme-linked immunosorbent assay). The detection limit of ELISA is about 250 pg/ml. However, to quantify analytes that are related to various stages of tumors including early detection requires detecting well below the current limit of the ELISA test. For example, Interleukin 6 (IL-6) levels of early oral cancer patients are <100 pg/ml and the prostate specific antigen level of the early stage of prostate cancer is about 1 ng/ml. Further, it has been reported that there are significantly less than 1 pg /mL of analytes in the early stage of tumors. Therefore, depending on the tumor type and the stage of the tumors, it is required to quantify various levels of analytes ranging from ng/ml to pg/ml. To accommodate these critical needs in the current diagnosis, there is a need for a technique that has a large dynamic range with an ability to detect extremely low levels of target analytes (label-free, high-throughput technique based on dielectrophoresis. This technique is capable of quantifying target analytes down to a few thousands of molecules (˜zmoles ).

  19. δ(13)C values of some succulent plants from Madagascar.

    PubMed

    Winter, Klaus

    1979-01-01

    δ(13)C values were determined in 20 succulents from Madagascar. The values were indicative of Crassulacean Acid Metabolism in 10 species of the Didiereaceae, 4 species of the Euphorbiaceae, 2 species of the Crassulaceae and 1 species of the Cucurbitaceae. The Didiereaceae and Euphorbiaceae studied are major components of a high biomass xerophytic flora in the semi-arid southwest and south of Madagascar. Three species of the Euphorbiaceae with succulent stems and non-succulent leaves, which were cultivated outdoors in the Tananarive Botanic Garden, showed C3 like δ(13)C values for both leaves and stems. δ(13)C values of leaf and stem material from a similar species, collected in the south of Madagascar, indicated Crassulacean Acid Metabolism.

  20. {sup 13}C relaxation in an RNA hairpin

    SciTech Connect

    King, G.C. |; Akratos, C.; Xi, Z.; Michnica, M.J.

    1994-12-01

    This initial survey of {sup 13}C relaxation in the {triangle}TAR RNA element has generated a number of interesting results that should prove generally useful for future studies. The most readily comparable study in the literature monitored {sup 13}C relaxation of the methyl groups from unusual bases in tRNA{sup Phe}. The study, which used T{sub 1} and NOE data only, reported order parameters for the methyl group axis that ranged between 0.51 and 0.97-a range similar to that observed here. However, they reported a breakdown of the standard order parameter analysis at higher (118-MHz {sup 13}C) frequencies, which should serve to emphasize the need for a thorough exploration of suitable motional models.

  1. Gas Chromatography-Quadrupole Time-of-Flight Mass Spectrometry-Based Determination of Isotopologue and Tandem Mass Isotopomer Fractions of Primary Metabolites for (13)C-Metabolic Flux Analysis.

    PubMed

    Mairinger, Teresa; Steiger, Matthias; Nocon, Justyna; Mattanovich, Diethard; Koellensperger, Gunda; Hann, Stephan

    2015-12-01

    For the first time an analytical work flow based on accurate mass gas chromatography-quadrupole time-of-flight mass spectrometry (GC-QTOFMS) with chemical ionization for analysis providing a comprehensive picture of (13)C distribution along the primary metabolism is elaborated. The method provides a powerful new toolbox for (13)C-based metabolic flux analysis, which is an emerging strategy in metabolic engineering. In this field, stable isotope tracer experiments based on, for example, (13)C are central for providing characteristic patterns of labeled metabolites, which in turn give insights into the regulation of metabolic pathway kinetics. The new method enables the analysis of isotopologue fractions of 42 free intracellular metabolites within biotechnological samples, while tandem mass isotopomer information is also accessible for a large number of analytes. Hence, the method outperforms previous approaches in terms of metabolite coverage, while also providing rich isotopomer information for a significant number of key metabolites. Moreover, the established work flow includes novel evaluation routines correcting for isotope interference of naturally distributed elements, which is crucial following derivatization of metabolites. Method validation in terms of trueness, precision, and limits of detection was performed, showing excellent analytical figures of merit with an overall maximum bias of 5.8%, very high precision for isotopologue and tandem mass isotopomer fractions representing >10% of total abundance, and absolute limits of detection in the femtomole range. The suitability of the developed method is demonstrated on a flux experiment of Pichia pastoris employing two different tracers, i.e., 1,6(13)C2-glucose and uniformly labeled (13)C-glucose.

  2. Evaluating real-time immunohistochemistry on multiple tissue samples, multiple targets and multiple antibody labeling methods

    PubMed Central

    2013-01-01

    Background Immunohistochemistry (IHC) is a well-established method for the analysis of protein expression in tissue specimens and constitutes one of the most common methods performed in pathology laboratories worldwide. However, IHC is a multi-layered method based on subjective estimations and differences in staining and interpretation has been observed between facilities, suggesting that the analysis of proteins on tissue would benefit from protocol optimization and standardization. Here we describe how the emerging and operator independent tool of real-time immunohistochemistry (RT-IHC) reveals a time resolved description of antibody interacting with target protein in formalin fixed paraffin embedded tissue. The aim was to understand the technical aspects of RT-IHC, regarding generalization of the concept and to what extent it can be considered a quantitative method. Results Three different antibodies labeled with fluorescent or radioactive labels were applied on nine different tissue samples from either human or mouse, and the results for all RT-IHC analyses distinctly show that the method is generally applicable. The collected binding curves showed that the majority of the antibody-antigen interactions did not reach equilibrium within 3 hours, suggesting that standardized protocols for immunohistochemistry are sometimes inadequately optimized. The impact of tissue size and thickness as well as the position of the section on the glass petri dish was assessed in order for practical details to be further elucidated for this emerging technique. Size and location was found to affect signal magnitude to a larger extent than thickness, but the signal from all measurements were still sufficient to trace the curvature. The curvature, representing the kinetics of the interaction, was independent of thickness, size and position and may be a promising parameter for the evaluation of e.g. biopsy sections of different sizes. Conclusions It was found that RT-IHC can be used

  3. Comparison of Glutamate Turnover in Nerve Terminals and Brain Tissue During [1,6-(13)C2]Glucose Metabolism in Anesthetized Rats.

    PubMed

    Patel, Anant B; Lai, James C K; Chowdhury, Golam I M; Rothman, Douglas L; Behar, Kevin L

    2017-01-01

    The (13)C turnover of neurotransmitter amino acids (glutamate, GABA and aspartate) were determined from extracts of forebrain nerve terminals and brain homogenate, and fronto-parietal cortex from anesthetized rats undergoing timed infusions of [1,6-(13)C2]glucose or [2-(13)C]acetate. Nerve terminal (13)C fractional labeling of glutamate and aspartate was lower than those in whole cortical tissue at all times measured (up to 120 min), suggesting either the presence of a constant dilution flux from an unlabeled substrate or an unlabeled (effectively non-communicating on the measurement timescale) glutamate pool in the nerve terminals. Half times of (13)C labeling from [1,6-(13)C2]glucose, as estimated by least squares exponential fitting to the time course data, were longer for nerve terminals (GluC4, 21.8 min; GABAC2 21.0 min) compared to cortical tissue (GluC4, 12.4 min; GABAC2, 14.5 min), except for AspC3, which was similar (26.5 vs. 27.0 min). The slower turnover of glutamate in the nerve terminals (but not GABA) compared to the cortex may reflect selective effects of anesthesia on activity-dependent glucose use, which might be more pronounced in the terminals. The (13)C labeling ratio for glutamate-C4 from [2-(13)C]acetate over that of (13)C-glucose was twice as large in nerve terminals compared to cortex, suggesting that astroglial glutamine under the (13)C glucose infusion was the likely source of much of the nerve terminal dilution. The net replenishment of most of the nerve terminal amino acid pools occurs directly via trafficking of astroglial glutamine.

  4. Energy contribution of octanoate to intact rat brain metabolism measured by 13C nuclear magnetic resonance spectroscopy.

    PubMed

    Ebert, Douglas; Haller, Ronald G; Walton, Marlei E

    2003-07-02

    Glucose is the dominant oxidative fuel for brain, but studies have indicated that fatty acids are used by brain as well. We postulated that fatty acid oxidation in brain could contribute significantly to overall energy usage and account for non-glucose-derived energy production. [2,4,6,8-13C4]octanoate oxidation in intact rats was determined by nuclear magnetic resonance spectroscopy. We found that oxidation of 13C-octanoate in brain is avid and contributes approximately 20% to total brain oxidative energy production. Labeling patterns of glutamate and glutamine were distinct, and analysis of these metabolites indicated compartmentalized oxidation of octanoate in brain. Examination of liver and blood spectra revealed that label from 13C-octanoate was incorporated into glucose and ketones, which enabled calculation of its overall energy contribution to brain metabolism: glucose (predominantly unlabeled) and 13C-labeled octanoate can account for the entire oxidative metabolism of brain. Additionally, flux through anaplerotic pathways relative to tricarboxylic acid cycle flux (Y) was calculated to be 0.08 +/- 0.039 in brain, indicating that anaplerotic flux is significant and should be considered when assessing brain metabolism. Y was associated with the glutamine synthesis compartment, consistent with the view that anaplerotic flux occurs primarily in astrocytes.

  5. Dynamics of PAHs and derived organic compounds in a soil-plant mesocosm spiked with (13)C-phenanthrene.

    PubMed

    Cennerazzo, Johanne; de Junet, Alexis; Audinot, Jean-Nicolas; Leyval, Corinne

    2017-02-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are ubiquitous and persistent soil pollutants. Their fate and the influence of the plant rhizosphere on their dynamics has been extensively studied, but studies mainly focused on their dissipation rate. We conducted a plant-soil mesocosm experiment to study the fate and distribution of PAHs or derived compounds in the extractable fraction, the residual soil, the shoot biomass and the root biomass. The experiment was conducted for 21 days using ryegrass and a forest soil spiked with (13)C-labeled phenanthrene (PHE), using combined IRMS and NanoSIMS for analyses. Almost 90% of the initial extractable PHE content was dissipated within 3 weeks, but no rhizospheric effect was highlighted on PHE dissipation. More than 40% of (13)C-PHE was still in the soil at the end of the experiment, but not as PHE or PAH-derived compounds. Therefore it was under the form of new compounds (metabolites) and/or had been incorporated into the microbial biomass. About 0.36% of the initial (13)C-PHE was recovered in the root and shoot tissues, representing similar (13)C enrichment (E(13)C) as in the soil (E(13)C ≈ 0.04 at.%). Using NanoSIMS, (13)C was also localized at the microscale in the roots and their close environment. Global (13)C enrichment confirmed the results obtained by IRMS. Some hotspots of (13)C enrichment were found, with a high (32)S/(12)C(14)N ratio. Comparing the ratios, sizes and shapes of these hotspots suggested that they could be bacteria.

  6. 40 CFR Appendix IV to Part 600 - Sample Fuel Economy Labels for 2008 Through 2012 Model Year Vehicles

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Sample Fuel Economy Labels for 2008 Through 2012 Model Year Vehicles IV Appendix IV to Part 600 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF...

  7. 40 CFR Appendix Vi to Part 600 - Sample Fuel Economy Labels and Style Guidelines for 2013 and Later Model Years

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Sample Fuel Economy Labels and Style Guidelines for 2013 and Later Model Years VI Appendix VI to Part 600 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF...

  8. 40 CFR Appendix Vi to Part 600 - Sample Fuel Economy Labels and Style Guidelines for 2013 and Later Model Years

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Sample Fuel Economy Labels and Style Guidelines for 2013 and Later Model Years VI Appendix VI to Part 600 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF...

  9. One-step labeling of degenerative neurons in unfixed brain tissue samples using Fluoro-Jade C.

    PubMed

    Gu, Qiang; Schmued, Larry C; Sarkar, Sumit; Paule, Merle G; Raymick, Bryan

    2012-06-30

    Neurodegeneration is the underlying cause of a vast majority of neurological disorders and often a result of brain trauma, stroke, or neurotoxic insult. Here we describe a simple method for labeling degenerating neurons in unfixed brain tissue samples. This method could provide a new avenue for identifying and harvesting degenerative neurons from unfixed brain tissues for subsequent molecular analyses.

  10. Isotopic labeling and LC-APCI-MS quantification for investigating absorption of carotenoids and phylloquinone from kale (Brassica oleracea).

    PubMed

    Kurilich, Anne C; Britz, Steven J; Clevidence, Beverly A; Novotny, Janet A

    2003-08-13

    The ability to study bioavailability of nutrients from foods is an important step in determining the health impact of those nutrients. This work describes a method for studying the bioavailability of nutrients from kale (Brassica oleracea var. Acephala) by labeling the nutrients with carbon-13, feeding the kale to an adult volunteer, and analyzing plasma samples for labeled nutrients. Results showed that conditions for producing atmospheric intrinsically labeled kale had no detrimental effect on plant growth. Lutein, beta-carotene, retinol, and phylloquinone were analyzed using liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. Analysis of plasma samples showed that labeled lutein peaked in plasma at 11 h (0.23 microM), beta-carotene peaked at 8 (0.058 microM) and 24 h (0.062 microM), retinol peaked at 24 h (0.10 microM), and phylloquinone peaked at 7 h (3.0 nM). This method of labeling kale with (13)C was successful for producing clearly defined kinetic curves for (13)C-lutein,(13)C-beta-carotene, (13)C-retinol, and (13)C-phylloquinone.

  11. (13) C-metabolic flux analysis of human adenovirus infection: Implications for viral vector production.

    PubMed

    Carinhas, Nuno; Koshkin, Alexey; Pais, Daniel A M; Alves, Paula M; Teixeira, Ana P

    2017-01-01

    Adenoviruses are human pathogens increasingly used as gene therapy and vaccination vectors. However, their impact on cell metabolism is poorly characterized. We performed carbon labeling experiments with [1,2-(13) C]glucose or [U-(13) C]glutamine to evaluate metabolic alterations in the amniocyte-derived, E1-transformed 1G3 cell line during production of a human adenovirus type 5 vector (AdV5). Nonstationary (13) C-metabolic flux analysis revealed increased fluxes of glycolysis (17%) and markedly PPP (over fourfold) and cytosolic AcCoA formation (nearly twofold) following infection of growing cells. Interestingly, infection of growth-arrested cells increased overall carbon flow even more, including glutamine anaplerosis and TCA cycle activity (both over 1.5-fold), but was unable to stimulate the PPP and was associated with a steep drop in AdV5 replication (almost 80%). Our results underscore the importance of nucleic and fatty acid biosynthesis for adenovirus replication. Overall, we portray a metabolic blueprint of human adenovirus infection, highlighting similarities with other viruses and cancer, and suggest strategies to improve AdV5 production. Biotechnol. Bioeng. 2017;114: 195-207. © 2016 Wiley Periodicals, Inc.

  12. (13)C-metabolic flux analysis of co-cultures: A novel approach.

    PubMed

    Gebreselassie, Nikodimos A; Antoniewicz, Maciek R

    2015-09-01

    In this work, we present a novel approach for performing (13)C metabolic flux analysis ((13)C-MFA) of co-culture systems. We demonstrate for the first time that it is possible to determine metabolic flux distributions in multiple species simultaneously without the need for physical separation of cells or proteins, or overexpression of species-specific products. Instead, metabolic fluxes for each species in a co-culture are estimated directly from isotopic labeling of total biomass obtained using conventional mass spectrometry approaches such as GC-MS. In addition to determining metabolic fluxes, this approach estimates the relative population size of each species in a mixed culture and inter-species metabolite exchange. As such, it enables detailed studies of microbial communities including species dynamics and interactions between community members. The methodology is experimentally validated here using a co-culture of two E. coli knockout strains. Taken together, this work greatly extends the scope of (13)C-MFA to a large number of multi-cellular systems that are of significant importance in biotechnology and medicine.

  13. SUMOFLUX: A Generalized Method for Targeted 13C Metabolic Flux Ratio Analysis.

    PubMed

    Kogadeeva, Maria; Zamboni, Nicola

    2016-09-01

    Metabolic fluxes are a cornerstone of cellular physiology that emerge from a complex interplay of enzymes, carriers, and nutrients. The experimental assessment of in vivo intracellular fluxes using stable isotopic tracers is essential if we are to understand metabolic function and regulation. Flux estimation based on 13C or 2H labeling relies on complex simulation and iterative fitting; processes that necessitate a level of expertise that ordinarily preclude the non-expert user. To overcome this, we have developed SUMOFLUX, a methodology that is broadly applicable to the targeted analysis of 13C-metabolic fluxes. By combining surrogate modeling and machine learning, we trained a predictor to specialize in estimating flux ratios from measurable 13C-data. SUMOFLUX targets specific flux features individually, which makes it fast, user-friendly, applicable to experimental design and robust in terms of experimental noise and exchange flux magnitude. Collectively, we predict that SUMOFLUX's properties realistically pave the way to high-throughput flux analyses.

  14. SUMOFLUX: A Generalized Method for Targeted 13C Metabolic Flux Ratio Analysis

    PubMed Central

    Kogadeeva, Maria

    2016-01-01

    Metabolic fluxes are a cornerstone of cellular physiology that emerge from a complex interplay of enzymes, carriers, and nutrients. The experimental assessment of in vivo intracellular fluxes using stable isotopic tracers is essential if we are to understand metabolic function and regulation. Flux estimation based on 13C or 2H labeling relies on complex simulation and iterative fitting; processes that necessitate a level of expertise that ordinarily preclude the non-expert user. To overcome this, we have developed SUMOFLUX, a methodology that is broadly applicable to the targeted analysis of 13C-metabolic fluxes. By combining surrogate modeling and machine learning, we trained a predictor to specialize in estimating flux ratios from measurable 13C-data. SUMOFLUX targets specific flux features individually, which makes it fast, user-friendly, applicable to experimental design and robust in terms of experimental noise and exchange flux magnitude. Collectively, we predict that SUMOFLUX's properties realistically pave the way to high-throughput flux analyses. PMID:27626798

  15. Cell Proliferation Analysis Using EdU Labeling in Whole Plant and Histological Samples of Arabidopsis.

    PubMed

    Kazda, Anita; Akimcheva, Svetlana; Watson, J Matthew; Riha, Karel

    2016-01-01

    The ability to analyze cell division in both spatial and temporal dimensions within an organism is a key requirement in developmental biology. Specialized cell types within individual organs, such as those within shoot and root apical meristems, have often been identified by differences in their rates of proliferation prior to the characterization of distinguishing molecular markers. Replication-dependent labeling of DNA is a widely used method for assaying cell proliferation. The earliest approaches used radioactive labeling with tritiated thymidine, which were later followed by immunodetection of bromodeoxyuridine (BrdU). A major advance in DNA labeling came with the use of 5-ethynyl-2'deoxyuridine (EdU) which has proven to have multiple advantages over BrdU. Here we describe the methodology for analyzing EdU labeling and retention in whole plants and histological sections of Arabidopsis.

  16. /sup 13/C nuclear magnetic resonance studies of the biosynthesis by Microbacterium ammoniaphilum of L-glutamate selectively enriched with carbon-13

    SciTech Connect

    Walker, T.E.; Han, C.H.; Kollman, V.H.; London, R.E.; Matwiyoff, N.A.

    1982-02-10

    /sup 13/C NMR of isotopically enriched metabolites has been used to study the metabolism of Microbacterium ammoniaphilum, a bacterium which excretes large quantities of L-glutamic acid into the medium. Biosynthesis from 90% (1-/sup 13/C) glucose results in relatively high specificity of the label, with (2,4-/sup 13/C/sub 2/) glutamate as the major product. The predominant biosynthetic pathway for synthesis of glutamate from glucose was determined to be the Embden Meyerhof glycolytic pathway followed by P-enolpyruvate carboxylase and the first third of the Krebs cycle. Different metabolic pathways are associated with different correlations in the enrichment of the carbons, reflected in the spectrum as different /sup 13/C-/sup 13/C scalar multiplet intensities. Hence, intensity and /sup 13/C-/sup 13/C multiplet analysis allows quantitation of the pathways involved. Although blockage of the Krebs cycle at the ..cap alpha..-ketoglutarate dehydrogenase step is the basis for the accumulation of glutamate, significant Krebs cycle activity was found in glucose grown cells, and extensive Krebs cycle activity in cells metabolizing (1-/sup 13/C) acetate. In addition to the observation of the expected metabolites, the disaccharide ..cap alpha..,..cap alpha..-trehalose and ..cap alpha..,..beta..-glucosylamine were identified from the /sup 13/C NMR spectra.

  17. Quantitative 13C NMR characterization of fast pyrolysis oils

    DOE PAGES

    Happs, Renee M.; Lisa, Kristina; Ferrell, III, Jack R.

    2016-10-20

    Quantitative 13C NMR analysis of model catalytic fast pyrolysis (CFP) oils following literature procedures showed poor agreement for aromatic hydrocarbons between NMR measured concentrations and actual composition. Furthermore, modifying integration regions based on DEPT analysis for aromatic carbons resulted in better agreement. Solvent effects were also investigated for hydrotreated CFP oil.

  18. Modeling of the 2007 JET ^13C migration experiments

    NASA Astrophysics Data System (ADS)

    Strachan, J. D.; Likonen, J.; Hakola, A.; Coad, J. P.; Widdowson, A.; Koivuranta, S.; Hole, D. E.; Rubel, M.

    2010-11-01

    Using the last run day of the 2007 JET experimental campaign, ^13CH4 was introduced repeatedly from the vessel top into a single plasma type (H-mode, Ip= 1.6 MA, Bt= 1.6 T). Similar experiments were performed in 2001 (vessel top into L-Mode) and 2004 (outer divertor into H-Mode). Divertor and wall tiles were removed and been analysed using secondary ion mass spectrometry (SIMS) and Rutherford backscattering (RBS) to determine the ^13C migration. ^13C was observed to migrate both to the inner (largest deposit), outer divertor (less) , and the floor tiles (least). This paper reports the EDGE2D/NIMBUS based modelling of the carbon migration. The emphasis is on the comparison of the 2007 results with the 2001 results where both injections were from the machine top but ELMs were present in 2007 but not present in 2001. The ELMs seemed to cause more ^13C re-erosion near the inner strike point. Also of interest is the difference in the Private Flux Region deposits where the changes in divertor geometry between 2004 and 2007 caused differences in the deposits. In 2007, the tilting of the load bearing tile caused regions of the PFR to be shadowed from the inner strike point which were not shadowed in 2004, indicating ^13C neutrals originated from the OSP.

  19. Complete 1H and 13C spectral assignment of floridoside.

    PubMed

    Simon-Colin, Christelle; Kervarec, Nelly; Pichon, Roger; Deslandes, Eric

    2002-02-11

    Floridoside (2-O-alpha-D-galactopyranosylglycerol) was extracted from the red marine alga Rhodymenia palmata, and purified by ion-exchange chromatography: 1D and 2D NMR spectroscopy experiments were used to unambiguously assign the complete 1H and 13C spectra.

  20. Testing compound-specific δ13C of amino acids in mussels as a new approach to determine the average 13C values of primary production in littoral ecosystems

    NASA Astrophysics Data System (ADS)

    Vokhshoori, N. L.; Larsen, T.; McCarthy, M.

    2012-12-01

    Compound-specific isotope analysis of amino acids (CSI-AA) is a technique used to decouple trophic enrichment patterns from source changes at the base of the food web. With this new emerging tool, it is possible to precisely determine both trophic position and δ15N or δ13C source values in higher feeding organisms. While most work to date has focused on nitrogen (N) isotopic values, early work has suggested that δ13C CSI-AA has great potential as a new tracer both to a record δ13C values of primary production (unaltered by trophic transfers), and also to "fingerprint" specific carbon source organisms. Since essential amino acids (EAA) cannot be made de novo in metazoans but must be obtained from diet, the δ13C value of the primary producer is preserved through the food web. Therefore, the δ13C values of EAAs act as a unique signature of different primary producers and can be used to fingerprint the dominant carbon (C) source driving primary production at the base of the food web. In littoral ecosystems, such as the California Upwelling System (CUS), the likely dominant C sources of suspended particulate organic matter (POM) pool are kelp, upwelling phytoplankton or estuarine phytoplankton. While bulk isotopes of C and N are used extensively to resolve relative consumer hierarchy or shifting diet in a food web, we found that the δ13C bulk values in mussels cannot distinguish exact source in littoral ecosystems. Here we show 15 sites within the CUS, between Cape Blanco, OR and La Jolla, CA where mussels were sampled and analyzed for both bulk δ13C and CSI-AA. We found no latitudinal trends, but rather average bulk δ13C values for the entire coastal record were highly consistent (-15.7 ± 0.9‰). The bulk record would suggest either nutrient provisioning from kelp or upwelled phytoplankton, but 13C-AA fingerprinting confines these two sources to upwelling. This suggests that mussels are recording integrated coastal phytoplankton values, with the enriched

  1. Does the Shuram δ13C excursion record Ediacaran oxygenation?

    NASA Astrophysics Data System (ADS)

    Husson, J. M.; Maloof, A. C.; Schoene, B.; Higgins, J. A.

    2013-12-01

    The most negative carbon isotope excursion in Earth history is found in carbonate rocks of the Ediacaran Period (635-542 Ma). Known colloquially as the the 'Shuram' excursion, workers have long noted its tantalizing, broad concordance with the rise of abundant macro-scale fossils in the rock record, variously interpreted as animals, giant protists, macro-algae and lichen, and known as the 'Ediacaran Biota.' Thus, the Shuram excursion has been interpreted by many in the context of a dramatically changing redox state of the Ediacaran oceans - e.g., a result of methane cycling in a low O2 atmosphere, the final destruction of a large pool of recalcitrant dissolved organic carbon (DOC), and the step-wise oxidation of the Ediacaran oceans. More recently, diagenetic interpretations of the Shuram excursion - e.g. sedimentary in-growth of very δ13C depleted authigenic carbonates, meteoric alteration of Ediacaran carbonates, late-stage burial diagenesis - have challenged the various Ediacaran redox models. A rigorous geologic context is required to discriminate between these explanatory models, and determine whether the Shuram excursion can be used to evaluate terminal Neoproterozoic oxygenation. Here, we present chemo-stratigraphic data (δ13C, δ18O, δ44/42Ca and redox sensitive trace element abundances) from 12 measured sections of the Ediacaran-aged Wonoka Formation (Fm.) of South Australia that require a syn-depositional age for the extraordinary range of δ13C values (-12 to +4‰) observed in the formation. In some locations, the Wonoka Fm. is ~700 meters (m) of mixed shelf limestones and siliclastics that record the full 16 ‰ δ13C excursion in a remarkably consistent fashion across 100s of square kilometers of basin area. Fabric-altering diagenesis, where present, occurs at the sub-meter vertical scale, only results in sub-permil offsets in δ13C and cannot be used to explain the full δ13C excursion. In other places, the Wonoka Fm. is host to deep (1 km

  2. Paleoclimate Reconstruction From the d13C Organic and d13C Carbonate Proxies in Triassic Paleosols and Sediments, Ischigualasto Basin Argentina

    NASA Astrophysics Data System (ADS)

    Moore, K. A.; Tabor, N. J.; Montañez, I. P.; Currie, B.; Shipman, T.

    2001-12-01

    Stable carbon isotopes of organic matter and paleosol carbonate from the Triassic Ischigualasto Formation, Argentina are used as a proxy of paleoatmospheric pCO2 and d13CO2. Carbon and Oxygen isotope values were determined for over 100 Triassic pedogenic carbonate nodules and associated organic matter. The d13C of carbonate ranges from -3.29 per mil to -10.56 per mil. The d13C of organic matter ranges from -21.07 per mil to -24.24 per mil. The Hydrogen and Oxygen indices and TOC values indicate that the best preserved organic matter samples yield the most negative d13C values. Reconstructed pCO2 levels were around 1000 ppm V in the early to mid- Triassic and increased to around 2000 ppm V later in the Triassic. This maximum is followed by a fall in pCO2 in the late Triassic. This previously undocumented rapid change in paleo-CO2 levels likely accompanied the evolution of mammal-like reptiles to true dinosaurs as well as rapid climate change.

  3. Optical hyperpolarization of 13C nuclear spins in nanodiamond ensembles

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Schwarz, I.; Jelezko, F.; Retzker, A.; Plenio, M. B.

    2015-11-01

    Dynamical nuclear polarization holds the key for orders of magnitude enhancements of nuclear magnetic resonance signals which, in turn, would enable a wide range of novel applications in biomedical sciences. However, current implementations of DNP require cryogenic temperatures and long times for achieving high polarization. Here we propose and analyze in detail protocols that can achieve rapid hyperpolarization of 13C nuclear spins in randomly oriented ensembles of nanodiamonds at room temperature. Our protocols exploit a combination of opt