Science.gov

Sample records for 14-15 micron two-color

  1. 8-9 and 14-15 Micron Two-Color 640x486 GaAs/AlGaAs Quantum Well Infrared Photodetector (QWIP) Focal Plane Array Camera

    NASA Technical Reports Server (NTRS)

    Gunapala, S. D.; Bandara, S. V.; Singh, A.; Liu, J. K.; Rafol, S. B.; Luong, E. M.; Mumolo, J. M.; Tran, N. Q.; Vincent, J. D.; Shott, C. A.

    2000-01-01

    An optimized long-wavelength two-color Quantum Well Infrared Photodetector (QWIP) device structure has been designed. This device structure was grown on a three inch semi-insulating GaAs substrate by molecular beam epitaxy (MBE). This wafer was processed into several 640x486 format monolithically integrated 8-9 and 14-15 micron two color (or dual wavelength) QWIP focal plane arrays (FPAs). These FPAs were then hybridized to 640x486 silicon CMOS readout multiplexers. A thinned (i.e., substrate removed) FPA hybrid was integrated into a liquid helium cooled dewar to perform electrical and optical characterization and to demonstrate simultaneous two-color imagery. The 8-9 micron detectors in the FPA have shown background limited performance (BLIP) at 70 K operating temperature, at 300 K background with f/2 cold stop. The 14-15 micron detectors of the FPA have reached BLIP at 40 K operating temperature at the same background conditions. In this presentation we discuss the performance of this long-wavelength dualband QWIP FPA in quantum efficiency, detectivity, noise equivalent temperature difference (NEAT), uniformity, and operability.

  2. Two-color particle velocimetry

    NASA Astrophysics Data System (ADS)

    Goss, Larry P.; Post, M. E.; Sarka, B.; Trump, D. D.

    1990-11-01

    A novel method for determining two-dimensional velocity flowfields has been developed. The technique, two-color particle-image velocimetry (PIV), is similar to existing PIV techniques except that two different-color laser sources are used to form the light sheets required for exposing the position of particles in a seeded flowfield. A green-colored laser sheet (formed by a doubled Nd:YAG laser) and a red-colored laser sheet (formed by Nd:YAG-pumped dye laser) are employed sequentially to expose the particle positions which are recorded on 35-mm color film. Analysis of the resulting images involves digitizing the exposed film with color filters to separate the green- and red-particle image fields and processing the digitized images with velocity-displacement software. The two-color PIV technique has the advantage that direction, as well as particle displacement, is uniquely determined because the green-particle image occurs before the red one by a known time increment. Velocity measurements utilizing the two-color PIV technique on a propane jet diffusion flame have been made and are discussed.

  3. Two-color particle velocimetry

    NASA Astrophysics Data System (ADS)

    Goss, L. P.; Post, M. E.; Trump, D. D.; Sarka, B.

    A novel method for determining two-dimensional velocity flowfields has been developed. The technique, two-color particle-image velocimetry (PIV), is similar to existing PIV techniques except that two different-color laser sources are used to form the light sheets required for exposing the position of particles in a seeded flowfield. A green-colored laser sheet (formed by a doubled Nd:YAG laser) and a red-colored laser sheet (formed by Nd:YAG-pumped dye laser) are employed sequentially to expose the particle positions which are recorded on 35-mm color film. Analysis of the resulting images involves digitizing the exposed film with color filters to separate the green- and red-particle image fields and processing the digitized images with velocity-displacement software. The two-color PIV technique has the advantage that direction, as well as particle displacement, is uniquely determined because the green-particle image occurs before the red one by a known time increment. Velocity measurements utilizing the two-color PIV technique on a propane jet diffusion flame have been made and are discussed.

  4. Two-color infrared detector

    DOEpatents

    Klem, John F; Kim, Jin K

    2014-05-13

    A two-color detector includes a first absorber layer. The first absorber layer exhibits a first valence band energy characterized by a first valence band energy function. A barrier layer adjoins the first absorber layer at a first interface. The barrier layer exhibits a second valence band energy characterized by a second valence band energy function. The barrier layer also adjoins a second absorber layer at a second interface. The second absorber layer exhibits a third valence band energy characterized by a third valence band energy function. The first and second valence band energy functions are substantially functionally or physically continuous at the first interface and the second and third valence band energy functions are substantially functionally or physically continuous at the second interface.

  5. Two-Color Laser Speckle Shift Strain Measurement System

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret L.; Krasowski, Michael J.; Oberle, Lawrence G.; Greer, Lawrence C., III; Spina, Daniel; Barranger, John

    1996-01-01

    A two color laser speckle shift strain measurement system based on the technique of Yamaguchi was designed. The dual wavelength light output from an Argon Ion laser was coupled into two separate single-mode optical fibers (patchcords). The output of the patchcords is incident on the test specimen (here a structural fiber). Strain on the fiber, in one direction, is produced using an Instron 4502. Shifting interference patterns or speckle patterns will be detected at real-time rates using 2 CCD cameras with image processing performed by a hardware correlator. Strain detected in fibers with diameters from 21 microns to 143 microns is expected to be resolved to 15 mu epsilon. This system was designed to be compact and robust and does not require surface preparation of the structural fibers.

  6. Wakefield generation via two color laser pulses

    SciTech Connect

    Jha, Pallavi; Saroch, Akanksha; Kumar Verma, Nirmal

    2013-05-15

    The analytical study for the evolution of longitudinal as well as transverse electric wakefields, generated via passage of two color laser pulses through uniform plasma, has been presented in the mildly relativistic regime. The frequency difference between the two laser pulses is assumed to be equal to the plasma frequency, in the present analysis. The relative angle between the directions of polarization of the two laser pulses is varied and the wakefield amplitudes are compared. Further, the amplitude of the excited wakes by two color pulses are compared with those generated by a single laser pulse.

  7. Demonstration of KHILS two-color IR projection capability

    NASA Astrophysics Data System (ADS)

    Jones, Lawrence E.; Coker, Jason S.; Garbo, Dennis L.; Olson, Eric M.; Murrer, Robert Lee, Jr.; Bergin, Thomas P.; Goldsmith, George C., II; Crow, Dennis R.; Guertin, Andrew W.; Dougherty, Michael; Marler, Thomas M.; Timms, Virgil G.

    1998-07-01

    For more than a decade, there has been considerable discussion about using different IR bands for the detection of low contrast military targets. Theory predicts that a target can have little to no contrast against the background in one IR band while having a discernible signature in another IR band. A significant amount of effort has been invested towards establishing hardware that is capable of simultaneously imaging in two IR bands to take advantage of this phenomenon. Focal plane arrays (FPA) are starting to materialize with this simultaneous two-color imaging capability. The Kinetic Kill Vehicle Hardware-in-the-loop Simulator (KHILS) team of the Air Force Research Laboratory and the Guided Weapons Evaluation Facility (GWEF), both at Eglin AFB, FL, have spent the last 10 years developing the ability to project dynamic IR scenes to imaging IR seekers. Through the Wideband Infrared Scene Projector (WISP) program, the capability to project two simultaneous IR scenes to a dual color seeker has been established at KHILS. WISP utilizes resistor arrays to produce the IR energy. Resistor arrays are not ideal blackbodies. The projection of two IR colors with resistor arrays, therefore, requires two optically coupled arrays. This paper documents the first demonstration of two-color simultaneous projection at KHILS. Agema cameras were used for the measurements. The Agema's HgCdTe detector has responsivity from 4 to 14 microns. A blackbody and two IR filters (MWIR equals 4.2 t 7.4 microns, LWIR equals 7.7 to 13 microns) were used to calibrate the Agema in two bands. Each filter was placed in front of the blackbody one at a time, and the temperature of the blackbody was stepped up in incremental amounts. The output counts from the Agema were recorded at each temperature. This calibration process established the radiance to Agema output count curves for the two bands. The WISP optical system utilizes a dichroic beam combiner to optically couple the two resistor arrays. The

  8. Millimeter accuracy satellites for two color ranging

    NASA Technical Reports Server (NTRS)

    Degnan, John J.

    1993-01-01

    The principal technical challenge in designing a millimeter accuracy satellite to support two color observations at high altitudes is to provide high optical cross-section simultaneously with minimal pulse spreading. In order to address this issue, we provide, a brief review of some fundamental properties of optical retroreflectors when used in spacecraft target arrays, develop a simple model for a spherical geodetic satellite, and use the model to determine some basic design criteria for a new generation of geodetic satellites capable of supporting millimeter accuracy two color laser ranging. We find that increasing the satellite diameter provides: a larger surface area for additional cube mounting thereby leading to higher cross-sections; and makes the satellite surface a better match for the incoming planar phasefront of the laser beam. Restricting the retroreflector field of view (e.g. by recessing it in its holder) limits the target response to the fraction of the satellite surface which best matches the optical phasefront thereby controlling the amount of pulse spreading. In surveying the arrays carried by existing satellites, we find that European STARLETTE and ERS-1 satellites appear to be the best candidates for supporting near term two color experiments in space.

  9. Two-color bright squeezed vacuum

    SciTech Connect

    Agafonov, Ivan N.; Chekhova, Maria V.

    2010-07-15

    In a strongly pumped nondegenerate traveling-wave optical parametric amplifier, we produce a two-color squeezed vacuum with up to millions of photons per pulse. Our approach to registering this macroscopic quantum state is direct detection of a large number of transverse and longitudinal modes, which is achieved by making the detection time and area much larger than the coherence time and area, respectively. Using this approach, we obtain a record value of twin-beam squeezing for direct detection of bright squeezed vacuum. This makes direct detection of macroscopic squeezed vacuum a practical tool for quantum information applications.

  10. Two color holographic interferometry for microgravity application

    NASA Technical Reports Server (NTRS)

    Trolinger, James D.

    1993-01-01

    Holographic interferometry is a primary candidate for the measurement of temperature and concentration in various crystal growth experiments destined for space. The method measures refractive index changes in the experiment test cell. A refractive index change can be caused by concentration changes, temperature changes, or a combination of temperature and concentration changes. If the refractive index changes are caused by temperature and concentration changes occurring simultaneously in the experiment test cell, the contributions by the two effects cannot be separated by conventional measurement methods. By using two wavelengths, two independent interferograms can be produced from the reconstruction of the hologram. The two interferograms will be different due to dispersion properties of fluid materials. These differences provide the additional information that allows the separation of simultaneously occurring temperature and concentration gradients. There is no other technique available that can provide this type of information. The primary objectives of this effort are to experimentally verify the mathematical theory of two color holographic interferometry and to determine the practical value of this technique for space application. To achieve these objectives, the accuracy and sensitivity of the technique must be determined for geometry's and materials that are relevant to the Materials Processing in the Space program of NASA. This will be achieved through the use of a specially designed two-color holographic interferometry breadboard optical system. In addition to experiments to achieve the primary goals, the breadboard will also provide inputs to the design of an optimum space flight system.

  11. Two-color resonant filamentation in gases

    NASA Astrophysics Data System (ADS)

    Doussot, J.; Béjot, P.; Faucher, O.

    2016-07-01

    In this paper, it is shown that two-photon resonance involving a fundamental field and one of its odd harmonic strongly influences the filamentation process, i.e., the nonlinear propagation of an ultrashort and ultraintense laser field. This particular situation happens, for instance, when a 400 nm fundamental field propagates together with its third harmonic in krypton. Using three-dimensional ab initio calculations, the optical response of krypton is evaluated and the underlying nonlinear refractive indices are extracted. It is found that the resonance also exacerbates higher-order nonlinear processes. Injecting the retrieved higher-order Kerr indices in a nonlinear propagation solver, it is found that the resonance leads to an enhanced defocusing cross-phase modulation that strongly participates to the filament stabilization. This work sheds a light on the mechanism of filamentation, in particular, in the ultraviolet range, where two-color two-photon resonances are expected to occur in many atomic gases.

  12. Two color holographic interferometry for microgravity application

    NASA Technical Reports Server (NTRS)

    Trolinger, James D.; Weber, David C.

    1995-01-01

    Holographic interferometry is a primary candidate for determining temperature and concentration in crystal growth experiments designed for space. The method measures refractive index changes within the fluid of an experimental test cell resulting from temperature and/or concentration changes. When the refractive index changes are caused by simultaneous temperature and concentration changes, the contributions of the two effects cannot be separated by single wavelength interferometry. By using two wavelengths, however, two independent interferograms can provide the additional independent equation required to determine the two unknowns. There is no other technique available that provides this type of information. The primary objectives of this effort were to experimentally verify the mathematical theory of two color holographic interferometry (TCHI) and to determine the practical value of this technique for space application. In the foregoing study, the theory of TCHI has been tested experimentally over a range of interest for materials processing in space where measurements of temperature and concentration in a solution are required. New techniques were developed and applied to stretch the limits beyond what could be done with existing procedures. The study resulted in the production of one of the most advanced, enhanced sensitivity holographic interferometers in existence. The interferometric measurements made at MSFC represent what is believed to be the most accurate holographic interferometric measurements made in a fluid to date. The tests have provided an understanding of the limitations of the technique in practical use.

  13. Storage ring two-color free-electron laser

    NASA Astrophysics Data System (ADS)

    Yan, J.; Hao, H.; Li, J. Y.; Mikhailov, S. F.; Popov, V. G.; Vinokurov, N. A.; Huang, S.; Wu, J.; Günster, S.; Wu, Y. K.

    2016-07-01

    We report a systematic experimental study of a storage ring two-color free-electron laser (FEL) operating simultaneously in the infrared (IR) and ultraviolet (UV) wavelength regions. The two-color FEL lasing has been realized using a pair of dual-band high-reflectivity FEL mirrors with two different undulator configurations. We have demonstrated independent wavelength tuning in a wide range for each lasing color, as well as harmonically locked wavelength tuning when the UV lasing occurs at the second harmonic of the IR lasing. Precise power control of two-color lasing with good power stability has also been achieved. In addition, the impact of the degradation of FEL mirrors on the two-color FEL operation is reported. Furthermore, we have investigated the temporal structures of the two-color FEL beams, showing simultaneous two-color micropulses with their intensity modulations displayed as FEL macropulses.

  14. Development of a two-color FQI

    SciTech Connect

    Butcher, T.; Wei, G.

    1996-07-01

    The Flame Quality Indicator (FQI) concept was developed at Brookhaven National Laboratory as a simple device which could be used to monitor oil burner flames and indicate when a problem was starting to occur. Fault situations which could be identified by the FQI include: fouled nozzle, increased or decreased excess air, blocked air inlet or flue, and use of low quality oil. The basic concept of the FQI is quite simple. A conventional cadmium sulfide photocell is used to measure the amount of light emitted from an oil burner flame when the appliance is fully warmed-up. The measured amount of light is compared to a set point, established during burner tune-up. If the two intensities differ by more than a set range, a {open_quotes}service required{close_quotes} signal is produced. The amount of light which is emitted from an oil burner flame depends upon the amount of {open_quotes}soot{close_quotes} or carbon in the flame, the size and shape of the flame, and the flame temperature. The quality of flame is practically judged by the amount of soot which it is producing and for this reason it is necessary to eliminate effects of other parameters. Temperature is expected to be the most important of these. The FQI eliminates effects due to the chamber environment by establishing a set point for each specific appliance. The transient temperature effects are accounted for by examining the flame brightness only at a single time during the firing cycle. BNL is currently involved with the development of a two-color approach to the monitoring of flame quality. The basic concept involved is the measurement of both flame temperature and total amount of light emitted to allow a more direct estimate to be made of the amount of soot being produced and so the flame quality. The objective is to develop a more sensitive measurement which may be more universally applicable. This paper provides a summary of our approach and results to date in this project.

  15. Bivariate distribution, correlation, and transformation properties of two-color infrared systems.

    PubMed

    Clow, R; McNolty, F

    1974-05-01

    A two-dimensional (two-color) statistical structure is formulated that is applicable to pattern recognition, discrimination, and detection problems occurring in infrared signal-processing systems. The methodology relates physical quantities such as the temperature T of an object, its projected area A, emissivity , range R from the sensor, and noise equivalent flux density (NEFD) to the geometry of a local orthogonal coordinate system where the coordinate axes correspond to the apparent radiant intensity J in each micron bandwidth. The bivariate distribution, correlation, and transformation properties attendant to this framework are discussed in detail. Additional insight into the structure of the problem is achieved by investigating the two-color system in terms of a nonorthogonal local coordinate system. The various results presented in the paper may be extended to three-, four-, or five-color systems by direct analogies.

  16. 15 CFR 14.15 - Metric system of measurement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Metric system of measurement. 14.15 Section 14.15 Commerce and Foreign Trade Office of the Secretary of Commerce UNIFORM ADMINISTRATIVE... system is the preferred measurement system for U.S. trade and commerce. The Act requires each...

  17. 15 CFR 14.15 - Metric system of measurement.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 1 2014-01-01 2014-01-01 false Metric system of measurement. 14.15... COMMERCIAL ORGANIZATIONS Pre-Award Requirements § 14.15 Metric system of measurement. The Metric Conversion... system is the preferred measurement system for U.S. trade and commerce. The Act requires each...

  18. 15 CFR 14.15 - Metric system of measurement.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 1 2011-01-01 2011-01-01 false Metric system of measurement. 14.15... COMMERCIAL ORGANIZATIONS Pre-Award Requirements § 14.15 Metric system of measurement. The Metric Conversion... activities. Metric implementation may take longer where the use of the system is initially impractical...

  19. Reference wavelength method for a two-color pyrometer.

    PubMed

    Hahn, J W; Rhee, C

    1987-12-15

    The reference wavelength method is used for a two-color pyrometer and, with the reference wavelength method, an analytical formula of the ratio temperature for the two-color pyrometer is derived. For one channel of the two-color pyrometer, with a triangular spectral response of 0.1-micro m FWHM and 2.0-micro m peak wavelength, the effective wavelength and the correction factors with several reference wavelengths are determined. By fitting the curves of the effective wavelength and the correction factor to simple functional forms of temperature, the radiance errors for both cases are calculated. Also, it is found that the correction factor determined in a single-color pyrometer can be used directly in one channel of the two-color pyrometer without additional calculation. PMID:20523516

  20. A two-color, self-controlled molecular beacon.

    PubMed

    Biner, Sarah M; Häner, Robert

    2011-12-16

    Control yourself! A two-color molecular beacon with non-nucleosidic chromophores in a triplex stem is presented. Pyrene and PDI fluorophores act as mutual quenchers by formation of a donor-acceptor complex in the closed form. Hybridization with the target results in two independent fluorescence signals. The two-color read-out provides a "self-control" feature, which helps to eliminate false positive signals in imaging and screening applications.

  1. Procedures and recent results for two-color infrared projection

    NASA Astrophysics Data System (ADS)

    Sieglinger, Breck A.; Marlow, Steven A.; Sisko, Richard B.; Thompson, Rhoe A.

    2006-05-01

    Testing of two-color imaging sensors often requires precise spatial alignment, including correction of distortion in the optical paths, beyond what can be achieved mechanically. Testing, in many cases, also demands careful radiometric calibration, which may be complicated by overlap in the spectral responses of the two sensor bands. In this paper, we describe calibration procedures used at the Air Force Research Laboratory hardware-in-the-loop (HWIL) facility at Eglin AFB, and present some results of recent two-color testing in a cryo-vacuum test chamber.

  2. Vertex Exponents of Two-Colored Extremal Ministrong Digraphs

    NASA Astrophysics Data System (ADS)

    Suwilo, Saib

    2011-06-01

    The exponent of a vertex v in a two-colored digraph D(2) is the smallest positive integer h+k such that for each vertex x in D(2) there is a walk of length h+k consisting of h red arcs and k blue arcs. Let D(2) be a primitive two-colored extremalministrong digraphon n vertices. If D(2) has one blue arc, the exponent of the vertices of D(2) lieson the interval [n2-5n+8,n2-3n+1]. If D(2) has two blue arcs, the exponent of the vertices in D(2) lies on the interval [n2-4n+4,n2-n].

  3. Design study for a two-color beta measurement system

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Design analysis of the beam splitter combined two color beta system is presented. Conventional and dichroic beam splitters are discussed. Design analysis of the beta system employing two beams with focusing at separate points is presented. Alterations and basic parameters of the two beam system are discussed. Alterations in the focus of the initial laser and the returning beams are also discussed. Heterodyne efficiencies for the on axis and off axis reflected radiation are included.

  4. AGB Stars In AKARI And IRAS Two-color Diagrams

    NASA Astrophysics Data System (ADS)

    Koopman, Kristen; Sjouwerman, L.; Claussen, M.

    2011-01-01

    Infrared measurements such as from the Infrared Astronomical Satellite (IRAS) all-sky survey and the Midcourse Space Experiment (MSX) Galactic plane survey have been used to statistically distinguish between different types of objects. In particular, two-color diagrams characterize Asymptotic Giant Branch (AGB) stars with different circumstellar shell opacity and thickness, and whether the source is oxygen- or carbon-rich in nature (Van der Veen & Habing 1988, A&A 194, 125; Sjouwerman et al. 2009, ApJ 795, 1554). We present two-color diagrams for AGB stars using infrared data from the AKARI satellite all-sky survey (e.g. Ishihara et al. 2010, A&A 514, A1) and created categories analogous to those for IRAS and MSX two-color diagrams. Our system specifically selects for circumstellar envelopes that are conducive in sustaining SiO maser emission. About 200 new sources were identified in the AKARI data. This research was supported by the Research Experience for Undergraduate Program of the National Science Foundation, and was completed at the National Radio Astronomy Observatory in Socorro, New Mexico.

  5. Orbital analysis of two-color laser ranging

    NASA Astrophysics Data System (ADS)

    Schillak, S. R.

    2013-12-01

    The poster presents the results of analysis of Zimmerwald SLR data for two colors 423nm and 846 nm. Two-color laser ranging were performed by Zimmerwald SLR station from August 2002 to January 2008. The results in each color were treated as two independent stations 7810 Blue and 7810 Infrared. The station positions were determined by NASA Goddard's orbital program GEODYN-II from results of LAGEOS-1 and LAGEOS-2 satellites. The NEU positions stability were equal to 3.5 mm (N), 3.2 mm (E), 16.5 mm (U) for blue and 3.2 mm (N), 2.9 mm (E), 14.6 (U) for infrared. In the period of study were 47 common monthly points for both colors. The difference between N, E, U components in blue and infrared for common points were equal to 0.8×2.0 mm, 0.4×1.9 mm and -4.8×8.7 mm respectively. The differences between Range Biases for both colors independently for LAGEOS-1 and LAGEOS-2 were equal to -5.7×8.6 mm and for -5.0×9.5 mm respectively. The same for both satellites annual wave with amplitude 10 mm was detected. This effect can to be explain by differences in atmospheric correction for each color. This same analysis for station Concepcion (7405) couldn't to be performed due to only 8 common points. In future very important should be laser ranging in two-colors 532 nm and 1064 nm for confirmation presented here results, especially that a new sensitive APD detectors for 1064 nm are now available. The atmospheric correction is critical for SLR accuracy upgrading.

  6. Spinor Slow Light and Two-Color Qubits

    NASA Astrophysics Data System (ADS)

    Yu, Ite; Lee, Meng-Jung; Ruseckas, Julius; Lee, Chin-Yuan; Kudriasov, Viaceslav; Chang, Kao-Fang; Cho, Hung-Wen; Juzeliunas, Gediminas; Yu, Ite A.

    2015-05-01

    We report the first experimental demonstration of two-component or spinor slow light (SSL) using a double tripod (DT) atom-light coupling scheme. The scheme involves three atomic ground states coupled to two excited states by six light fields. The oscillation due to the interaction between the two components was observed. SSL can be used to achieve high conversion efficiencies in the sum frequency generation and is a better method than the widely-used double- Λ scheme. On the basis of the stored light, our data showed that the DT scheme behaves like the two outcomes of an interferometer enabling precision measurements of frequency detuning. Furthermore, the single-photon SSL can be considered as the qubit with the superposition state of two frequency modes or, simply, as the two-color qubit. We experimentally demonstrated a possible application of the DT scheme as quantum memory/rotator for the two-color qubit. This work opens up a new direction in the EIT/slow light research. yu@phys.nthu.edu.tw

  7. Two-color detection with charge sensitive infrared phototransistors

    SciTech Connect

    Kim, Sunmi Kajihara, Yusuke; Komiyama, Susumu; Ueda, Takeji; Satoh, Takashi

    2015-11-02

    Highly sensitive two-color detection is demonstrated at wavelengths of 9 μm and 14.5 μm by using a charge sensitive infrared phototransistor fabricated in a triple GaAs/AlGaAs quantum well (QW) crystal. Two differently thick QWs (7 nm- and 9 nm-thicknesses) serve as photosensitive floating gates for the respective wavelengths via intersubband excitation: The excitation in the QWs is sensed by a third QW, which works as a conducting source-drain channel in the photosensitive transistor. The two spectral bands of detection are shown to be controlled by front-gate biasing, providing a hint for implementing voltage tunable ultra-highly sensitive detectors.

  8. Voltage tunable two-color infrared detection using semiconductor superlattices.

    SciTech Connect

    Majumdar, Amlan; Choi, Kyung K.; Tsui, Daniel Chee; Reno, John Louis

    2003-08-01

    We demonstrate a voltage tunable two-color quantum-well infrared photodetector (QWIP) that consists of multiple periods of two distinct AlGaAs/GaAs superlattices separated by AlGaAs blocking barriers on one side and heavily doped GaAs layers on the other side. The detection peak switches from 9.5 {micro}m under large positive bias to 6 {micro}m under negative bias. The background-limited temperature is 55 K for 9.5 {micro}m detection and 80 K for 6 {micro}m detection. We also demonstrate that the corrugated-QWIP geometry is suitable for coupling normally incident light into the detector.

  9. Two-color beam generation based on wakefield excitation

    NASA Astrophysics Data System (ADS)

    Bettoni, S.; Prat, E.; Reiche, S.

    2016-05-01

    Several beam manipulation methods have been studied and experimentally tested to generate two-color photon beams in free electron laser facilities to accommodate the user requests. We propose to use the interaction of the beam with an oscillating longitudinal wakefield source to obtain a suitable electron beam structure. The bunch generates two subpulses with different energies and delayed in time passing through a magnetic chicane after its longitudinal phase space has been modulated by the wakefield source. According to this approach the power of the emitted radiation is not degraded compared to the monochromatic beam, and the setup in the machine is quite simple because the bunch is manipulated only in the high energy section, where it is more rigid. We present the design applied to SwissFEL. We identified the parameters and the corresponding range of tunability of the time and energy separation among the two subbunches.

  10. Two-color ghost imaging with enhanced angular resolving power

    SciTech Connect

    Karmakar, Sanjit; Shih, Yanhua

    2010-03-15

    This article reports an experimental demonstration on nondegenerate, two-color, biphoton ghost imaging which reproduced a ghost image with enhanced angular resolving power by means of a greater field of view compared with that of classical imaging. With the same imaging magnification, the enhanced angular resolving power and field of view compared with those of classical imaging are 1.25:1 and 1.16:1, respectively. The enhancement of angular resolving power depends on the ratio between the idler and the signal photon frequencies, and the enhancement of the field of view depends mainly on the same ratio and also on the distances of the object plane and the imaging lens from the two-photon source. This article also reports the possibility of reproducing a ghost image with the enhancement of the angular resolving power by means of a greater imaging amplification compared with that of classical imaging.

  11. Two-color holography concept (T-CHI)

    NASA Technical Reports Server (NTRS)

    Vikram, C. S.; Caulfield, H. J.; Workman, G. L.; Trolinger, J. D.; Wood, C. P.; Clark, R. L.; Kathman, A. D.; Ruggiero, R. M.

    1990-01-01

    The Material Processing in the Space Program of NASA-MSFC was active in developing numerous optical techniques for the characterization of fluids in the vicinity of various materials during crystallization and/or solidification. Two-color holographic interferometry demonstrates that temperature and concentration separation in transparent (T-CHI) model systems is possible. The experiments were performed for particular (succinonitrile) systems. Several solutions are possible in Microgravity Sciences and Applications (MSA) experiments on future Shuttle missions. The theory of the T-CHI concept is evaluated. Although particular cases are used for explanations, the concepts developed will be universal. A breadboard system design is also presented for ultimate fabrication and testing of theoretical findings. New developments in holography involving optical fibers and diode lasers are also incorporated.

  12. Two-color photo-initiation/inhibition lithography

    NASA Astrophysics Data System (ADS)

    McLeod, Robert R.; Kowalski, Benjamin A.; Cole, Michael C.

    2010-02-01

    Traditional photolithography begins with single-photon absorption of patterned light by a photo-initiator to locally expose a resist. In two-color photo-initiation/inhibition (2PII) lithography, these exposed regions are confined by a surrounding pattern of inhibitors generated by one-photon absorption of a second color in a photo-inhibitor. Like a stencil used to confine spray-paint to a thin, sharp line, the inhibitory pattern acts as a remotely programmable, transient near-field mask to control the size and shape of the modified resist region. The inhibiting species rapidly recombine in the dark, allowing for fast sequential exposures and thus enabling fabrication of complex two- or threedimensional structures.

  13. Single bump, two-color quantum dot camera

    NASA Astrophysics Data System (ADS)

    Varley, E.; Lenz, M.; Lee, S. J.; Brown, J. S.; Ramirez, D. A.; Stintz, A.; Krishna, S.; Reisinger, Axel; Sundaram, Mani

    2007-08-01

    The authors report a two-color, colocated quantum dot based imaging system used to take multicolor images using a single focal plane array (FPA). The dots-in-a-well (DWELL) detectors consist of an active region composed of InAs quantum dots embedded in In.15Ga.85As quantum wells. DWELL samples were grown using molecular beam epitaxy and fabricated into 320×256 focal plane arrays with indium bumps. The FPA was then hybridized to an Indigo ISC9705 readout circuit and tested. Calibrated blackbody measurements at a device temperature of 77K yield midwave infrared and long wave infrared noise equivalent difference in temperature of ˜55 and 70mK.

  14. Silicon photodiode as the two-color detector

    NASA Astrophysics Data System (ADS)

    Ponomarev, D. B.; Zakharenko, V. A.

    2015-11-01

    This paper describes a silicon photodiode as the two-color photodetector. The work of one photodiode in two spectral ranges is achieved due to the changes of the spectral sensitivity of the photodiodes in the transition from photodiode mode for photovoltaic in the short circuit mode. On the basis of silicon photodiode FD-256 the layout of the spectral ratio pyrometer was assembled and the results of theoretical calculations was confirmed experimentally. The calculated dependences of the coefficient of error of the spectral ratio pyrometer from temperature reverse voltage 10 and 100 V was presented. The calculated dependence of the instrumental error and the assessment of methodological errors of the proposed photodetector spectral ratio was done. According to the results of the presented research was set the task of development photodiode detectors which change the spectral sensitivity depending on the applied voltage.

  15. Noise in two-color electronic distance meter measurements revisited

    USGS Publications Warehouse

    Langbein, J.

    2004-01-01

    Frequent, high-precision geodetic data have temporally correlated errors. Temporal correlations directly affect both the estimate of rate and its standard error; the rate of deformation is a key product from geodetic measurements made in tectonically active areas. Various models of temporally correlated errors are developed and these provide relations between the power spectral density and the data covariance matrix. These relations are applied to two-color electronic distance meter (EDM) measurements made frequently in California over the past 15-20 years. Previous analysis indicated that these data have significant random walk error. Analysis using the noise models developed here indicates that the random walk model is valid for about 30% of the data. A second 30% of the data can be better modeled with power law noise with a spectral index between 1 and 2, while another 30% of the data can be modeled with a combination of band-pass-filtered plus random walk noise. The remaining 10% of the data can be best modeled as a combination of band-pass-filtered plus power law noise. This band-pass-filtered noise is a product of an annual cycle that leaks into adjacent frequency bands. For time spans of more than 1 year these more complex noise models indicate that the precision in rate estimates is better than that inferred by just the simpler, random walk model of noise.

  16. A two color pupil imaging method to detect stellar oscillations

    NASA Astrophysics Data System (ADS)

    Cacciani, A.; Dolci, M.; Jefferies, S. M.; Finsterle, W.; Fossat, E.; Sigismondi, C.; Cesario, L.; Bertello, L.; Varadi, F.

    Observations of stellar intensity oscillations from the ground are strongly affected by intensity fluctuations caused by the atmosphere (scintillation). However, by using a differential observational method that images the pupil of the telescope in two colors at the same time on a single CCD, we can partially compensate for this source of atmospheric noise (which is color dependant) as well as other problems, such as guiding and saturation. Moreover, by placing instruments at different locations (eg. Dome C and South Pole) we can further reduce the atmospheric noise contribution by using cross-spectral methods, such as Random Lag Singular Cross-Spectrum Analysis (RLSCA). (We also decrease the likelihood of gaps in the data string due to bad weather). The RLSCA method is well suited for extracting common oscillatory components from two or more observations, including their relative phases. We have evaluated the performance of our method using real data from SOHO. We find that our differential algorithm can recover the absolute amplitudes of the solar intensity oscillations with an efficiency of 70%. We are currently carrying out tests using a number of telescopes, including Big Bear, Mt. Wilson, Teramo and Milano, while waiting for the South Pole and Dome C sites to become available.

  17. A relative-intensity two-color phosphor thermography system

    NASA Technical Reports Server (NTRS)

    Merski, N. Ronald

    1991-01-01

    The NASA LaRC has developed a relative-intensity two-color phosphor thermography system. This system has become a standard technique for acquiring aerothermodynamic data in LaRC Hypersonic Facilities Complex (HFC). The relative intensity theory and its application to the LaRC phosphor thermography system is discussed along with the investment casting technique which is critical to the utilization of the phosphor method for aerothermodynamic studies. Various approaches to obtaining quantitative heat transfer data using thermographic phosphors are addressed and comparisons between thin-film data and thermographic phosphor data on an orbiter-like configuration are presented. In general, data from these two techniques are in good agreement. A discussion is given on the application of phosphors to integration heat transfer data reduction techniques (the thin film method) and preliminary heat transfer data obtained on a calibration sphere using thin-film equations are presented. Finally, plans for a new phosphor system which uses target recognition software are discussed.

  18. Widely Tunable Two-Color Free-Electron Laser on a Storage Ring.

    PubMed

    Wu, Y K; Yan, J; Hao, H; Li, J Y; Mikhailov, S F; Popov, V G; Vinokurov, N A; Huang, S; Wu, J

    2015-10-30

    With a wide wavelength tuning range, free-electron lasers (FELs) are well suited for producing simultaneous lasing at multiple wavelengths. We present the first experimental results of a novel two-color storage ring FEL. With three undulators and a pair of dual-band mirrors, the two-color FEL can lase simultaneously in infrared (IR) around 720 nm and in ultraviolet (UV) around 360 nm. We have demonstrated independent wavelength tuning in a wide range (60 nm in IR and 24 nm in UV). We have also realized two-color harmonic operation with the UV lasing tuned to the second harmonic of the IR lasing. Furthermore, we have demonstrated good power stability with two-color lasing, and good control of the power sharing between the two colors. PMID:26565470

  19. Widely Tunable Two-Color Free-Electron Laser on a Storage Ring

    NASA Astrophysics Data System (ADS)

    Wu, Y. K.; Yan, J.; Hao, H.; Li, J. Y.; Mikhailov, S. F.; Popov, V. G.; Vinokurov, N. A.; Huang, S.; Wu, J.

    2015-10-01

    With a wide wavelength tuning range, free-electron lasers (FELs) are well suited for producing simultaneous lasing at multiple wavelengths. We present the first experimental results of a novel two-color storage ring FEL. With three undulators and a pair of dual-band mirrors, the two-color FEL can lase simultaneously in infrared (IR) around 720 nm and in ultraviolet (UV) around 360 nm. We have demonstrated independent wavelength tuning in a wide range (60 nm in IR and 24 nm in UV). We have also realized two-color harmonic operation with the UV lasing tuned to the second harmonic of the IR lasing. Furthermore, we have demonstrated good power stability with two-color lasing, and good control of the power sharing between the two colors.

  20. Development of two color laser diagnostics for the ITER poloidal polarimeter.

    PubMed

    Kawahata, K; Akiyama, T; Tanaka, K; Nakayama, K; Okajima, S

    2010-10-01

    Two color laser diagnostics using terahertz laser sources are under development for a high performance operation of the Large Helical Device and for future fusion devices such as ITER. So far, we have achieved high power laser oscillation lines simultaneously oscillating at 57.2 and 47.7 μm by using a twin optically pumped CH(3)OD laser, and confirmed the original function, compensation of mechanical vibration, of the two color laser interferometer. In this article, application of the two color laser diagnostics to the ITER poloidal polarimeter and recent hardware developments will be described.

  1. Two-color surface-emitting lasers using a semiconductor coupled multilayer cavity

    NASA Astrophysics Data System (ADS)

    Kitada, Takahiro; Ota, Hiroto; Lu, Xiangmeng; Kumagai, Naoto; Isu, Toshiro

    2016-11-01

    Two-color surface-emitting lasers were demonstrated, employing a GaAs/AlGaAs coupled multilayer cavity composed of two cavity layers and three distributed Bragg reflector (DBR) multilayers. InGaAs multiple quantum wells (MQWs) with two different well widths were introduced only in the upper cavity, and sandwiched between p- and n-type DBRs. This current-injection type device exhibited two-color lasing in the near-infrared region under room temperature pulsed conditions. Two-color lasing was achieved when the lower cavity had an optimal thickness relative to the upper cavity thickness and the MQW emission properties.

  2. In situ spatial mapping of Gouy phase slip with terahertz generation in two-color field.

    PubMed

    Meng, Chao; Lü, Zhihui; Huang, Yindong; Wang, Xiaowei; Chen, Wenbo; Zhang, Dongwen; Zhao, Zengxiu; Yuan, Jianmin

    2016-05-30

    We establish a one-to-one mapping between the local phase slip and the spatial position near the focus by scanning a thin jet along the propagation direction of laser beams. The measurement shows that the optimal phase of terahertz can be utilized to characterize in situ the spatially dependent relative phase of the two-color field. We also investigate the role of the Gouy phase shift on terahertz generation from two-color laser-induced plasma. The result is of critical importance for phase-dependent applications of two-color laser-field, including high-order harmonic and terahertz generation.

  3. Baryonic matter onset in two-color QCD with heavy quarks

    NASA Astrophysics Data System (ADS)

    Scior, Philipp; von Smekal, Lorenz

    2015-11-01

    We study the cold and dense regime in the phase diagram of two-color QCD with heavy quarks within a three-dimensional effective theory for Polyakov loops. This theory is derived from two-color QCD in a combined strong-coupling and hopping expansion. In particular, we study the onset of diquark density as the finite-density transition of the bosonic baryons in the two-color world. In contrast to previous studies of heavy dense QCD, our zero-temperature extrapolations are consistent with a continuous transition without binding energy. They thus provide evidence that the effective theory for heavy quarks is capable of describing the characteristic differences between diquark condensation in two-color QCD and the liquid-gas transition of nuclear matter in QCD.

  4. Propagation characteristics of two-color laser pulses in homogeneous plasma

    SciTech Connect

    Hemlata,; Saroch, Akanksha; Jha, Pallavi

    2015-11-15

    An analytical and numerical study of the evolution of two-color, sinusoidal laser pulses in cold, underdense, and homogeneous plasma has been presented. The wave equations for the radiation fields driven by linear as well as nonlinear contributions due to the two-color laser pulses have been set up. A variational technique is used to obtain the simultaneous equations describing the evolution of the laser spot size, pulse length, and chirp parameter. Numerical methods are used to graphically analyze the simultaneous evolution of these parameters due to the combined effect of the two-color laser pulses. Further, the pulse parameters are compared with those obtained for a single laser pulse. Significant focusing, compression, and enhanced positive chirp is obtained due to the combined effect of simultaneously propagating two-color pulses as compared to a single pulse propagating in plasma.

  5. Theoretical evaluation of measurement uncertainties of two-color pyrometry applied to optical diagnostics

    SciTech Connect

    Fu Tairan; Cheng Xiaofang; Yang Zangjian

    2008-11-10

    We present a theoretical analysis of two-color pyrometry applied to optical diagnostics. A two-color pyrometer built with a single CCD is advantageous due to the simple system design. We evaluate the possibility and degree of ill-conditionness on the basis of measurement uncertainties for different measurement approaches of this two-color system. We classify measurement approaches. The corresponding ill-conditionness criterion is established. The greater the criterion value is, the worse the ill-conditioned degree of solution is. So, the optimum choice of measurement approach for the two-color system is achieved through intercomparison of the criterion values. Numerical examples are also given to illustrate this point. The theoretical analysis not only provides an effective way of evaluating different measurement approaches, but also may help us to better understand the influences that determine the choices between wavelength/waveband measurements and calibration/noncalibration modes for temperature and soot distribution.

  6. Theoretical evaluation of measurement uncertainties of two-color pyrometry applied to optical diagnostics.

    PubMed

    Fu, Tairan; Cheng, Xiaofang; Yang, Zangjian

    2008-11-10

    We present a theoretical analysis of two-color pyrometry applied to optical diagnostics. A two-color pyrometer built with a single CCD is advantageous due to the simple system design. We evaluate the possibility and degree of ill-conditionness on the basis of measurement uncertainties for different measurement approaches of this two-color system. We classify measurement approaches. The corresponding ill-conditionness criterion is established. The greater the criterion value is, the worse the ill-conditioned degree of solution is. So, the optimum choice of measurement approach for the two-color system is achieved through intercomparison of the criterion values. Numerical examples are also given to illustrate this point. The theoretical analysis not only provides an effective way of evaluating different measurement approaches, but also may help us to better understand the influences that determine the choices between wavelength/waveband measurements and calibration/noncalibration modes for temperature and soot distribution. PMID:19002237

  7. Optimization of infrared two-color multicycle field synthesis for intense-isolated-attosecond-pulse generation

    NASA Astrophysics Data System (ADS)

    Lan, Pengfei; Takahashi, Eiji J.; Midorikawa, Katsumi

    2010-11-01

    We present the optimization of the two-color synthesis method for generating an intense isolated attosecond pulse (IAP) in the multicycle regime. By mixing an infrared assistant pulse with a Ti:sapphire main pulse, we show that an IAP can be produced using a multicycle two-color pulse with a duration longer than 30 fs. We also discuss the influence of the carrier-envelope phase (CEP) and the relative intensity on the generation of IAPs. By optimizing the wavelength of the assistant field, IAP generation becomes insensitive to the CEP slip. Therefore, the optimized two-color method enables us to relax the requirements of pulse duration and easily produce the IAP with a conventional multicycle laser pulse. In addition, it enables us to markedly suppress the ionization of the harmonic medium. This is a major advantage for efficiently generating intense IAPs from a neutral medium by applying the appropriate phase-matching and energy-scaling techniques.

  8. Isolated attosecond pulse generation with the chirped two-color laser field

    NASA Astrophysics Data System (ADS)

    Tai, Huiqin; Li, Fang; Wang, Zhe

    2016-07-01

    We propose a scheme to generate isolated attosecond pulse using a linearly chirped two-color laser field, which includes a fundamental laser field and a weak infrared control laser field in the multicycle regime. The fundamental laser field consists of one linearly up-chirped and one linearly down-chirped pulses. The control pulse is chirped free. We compare the attosecond pulse generated in the chirped two-color field and the chirp-free field. It is found that an IAP can be generated even without carrier envelop phase stabilization in the chirped two-color laser field with a duration of 40 fs. We also discuss the influence of the relative intensity, relative phase, time delay, and chirping parameters on the generation of IAPs.

  9. Optimization of infrared two-color multicycle field synthesis for intense-isolated-attosecond-pulse generation

    SciTech Connect

    Lan Pengfei; Takahashi, Eiji J.; Midorikawa, Katsumi

    2010-11-15

    We present the optimization of the two-color synthesis method for generating an intense isolated attosecond pulse (IAP) in the multicycle regime. By mixing an infrared assistant pulse with a Ti:sapphire main pulse, we show that an IAP can be produced using a multicycle two-color pulse with a duration longer than 30 fs. We also discuss the influence of the carrier-envelope phase (CEP) and the relative intensity on the generation of IAPs. By optimizing the wavelength of the assistant field, IAP generation becomes insensitive to the CEP slip. Therefore, the optimized two-color method enables us to relax the requirements of pulse duration and easily produce the IAP with a conventional multicycle laser pulse. In addition, it enables us to markedly suppress the ionization of the harmonic medium. This is a major advantage for efficiently generating intense IAPs from a neutral medium by applying the appropriate phase-matching and energy-scaling techniques.

  10. A user-friendly two-color super-resolution localization microscope.

    PubMed

    Zhao, Teng; Wang, Ying; Zhai, Yuanliang; Qu, Xiaoxuan; Cheng, Aifang; Du, Shengwang; Loy, M M T

    2015-01-26

    We report a robust two-color method for super-resolution localization microscopy. Two-dye combination of Alexa647 and Alexa750 in an imaging buffer containing COT and using TCEP as switching regent provides matched and balanced switching characteristics for both dyes, allowing simultaneous capture of both on a single camera. Active sample locking stabilizes sample with 1nm accuracy during imaging. With over 4,000 photons emitted from both dyes, two-color superresolution images with high-quality were obtained in a wide range of samples including cell cultures, tissue sections and yeast cells.

  11. Seeded free electron laser operating with two colors: Comments on experimental results

    NASA Astrophysics Data System (ADS)

    Carpanese, M.; Ciocci, F.; Dattoli, G.; Petralia, A.; Petrillo, V.; Torre, A.

    2016-05-01

    Free electron lasers operating with two colors are promising devices for applications. The relevant modelization has provided a good understanding of the underlying physics. In this paper we present an analysis of the experimental results obtained at SPARC_LAB concerning seeded two-colors free electron laser (FEL) operation. The use of an ad hoc developed semi-analytical model based on the small-signal FEL integral equation reproduces most of the observed phenomenology. The paper discusses the reliability of the proposed method, the range of validity and its possible improvement.

  12. Energy exchange between modes in a multimode two-color quantum dot laser with optical feedback.

    PubMed

    Virte, Martin; Pawlus, Robert; Sciamanna, Marc; Panajotov, Krassimir; Breuer, Stefan

    2016-07-15

    We investigate experimentally and theoretically the multimode dynamics of a two-color quantum dot laser subject to time-delayed optical feedback. We unveil energy exchanges between the longitudinal modes of the excited state triggered by variations of the feedback phase, and observe that the modal competition between longitudinal modes appears independently within the ground state and excited state emission. These features are accurately reproduced with a quantum dot laser model extended to take into account multiple modes for both ground and excited states. Finally, we discuss the significant impact of such behavior on feedback-based control of two-color quantum dot lasers.

  13. Directional bond breaking by polarization-gated two-color ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Lin, Kang; Gong, Xiaochun; Song, Qiying; Ji, Qinying; Zhang, Wenbin; Ma, Junyang; Lu, Peifen; Pan, Haifeng; Ding, Jingxin; Zeng, Heping; Wu, Jian

    2016-01-01

    We experimentally investigate directional bond breaking in dissociative single ionization of H2 driven by circularly polarized two-color ultrashort pulses of counter- and co-rotating laser fields. Trefoil or semilunar patterns of directional proton emission in a two-dimensional space spanned by the laser fields are observed, which can be finely controlled by varying the relative phase of the counter- or co-rotating circularly polarized two-color fields, respectively. Our results open new possibilities to manipulate two-dimensional directional bond breaking of molecules by strong laser fields.

  14. Range-dependent effects of optical feedback on multimode two-color quantum dot lasers

    NASA Astrophysics Data System (ADS)

    Virte, Martin; Pawlus, Robert; Elsäßer, Wolfgang; Panajotov, Krassimir; Sciamanna, Marc; Breuer, Stefan

    2016-04-01

    We investigate the behaviour of a multimode two-color quantum dot laser subject to optical feedback. In particular, we focus on the effects of a variation of the external cavity length at the micrometer scale on the laser emission characteristics and especially on its optical spectrum. For each mode, we observe oscillations of the output power with different spectral amplitudes. No clustering or mode grouping effect is observed. Theoretically, we demonstrate a good agreement with a multimode two-color quantum dot laser model.

  15. Two-color chirped-pulse amplification in an ultrabroadband Ti:sapphire ring regenerative amplifier.

    PubMed

    Yamakawa, Koichi; Barty, C P J

    2003-12-01

    We have developed a high-energy, ultrabroadband Ti:sapphire ring regenerative amplifier capable of producing in excess of 20-mJ output at a 10-Hz repetition rate. The technique of chirped-pulse amplification is used to generate two-color, time-synchronized pulses with central wavelength separations of up to approximately 120 nm and with a total energy of 10 mJ by use of a regenerative pulse-shaping technique. Mid-infrared pulses tunable from 6 to 11 microm are generated by difference frequency mixing the two-color outputs.

  16. Two-Color Photoexcitation in a GaNAs/AlGaAs Quantum Well Solar Cell

    NASA Astrophysics Data System (ADS)

    Elborg, Martin; Jo, Masafumi; Ding, Yi; Noda, Takeshi; Mano, Takaaki; Sakoda, Kazuaki

    2012-06-01

    We demonstrate an efficient two-color photoexcitation process in a GaNAs/AlGaAs multiple quantum well (MQW) solar cell. The introduction of N into the GaAs MQW induces a marked reduction in bandgap energy, forming a large conduction band offset, and the formation of localized states. Owning to this deep confinement, the thermal escape of photogenerated carriers from the QWs is greatly suppressed even at room temperature, resulting in a reduction in photocurrent. An additional photocurrent is generated by a two-color absorption process of sub-bandgap photons.

  17. Origin of Two-Color Iridescence in Rock Dove’s Feather

    NASA Astrophysics Data System (ADS)

    Yoshioka, Shinya; Nakamura, Eri; Kinoshita, Shuichi

    2007-01-01

    Iridescence is observed in various kinds of animals that utilize optical interference phenomenon of microstructures to produce their brilliant colors. It appears according to the interference condition that relates the wavelength of the reflected light with the angle of view or incidence. However, the iridescence of the neck feather of rock dove looks very peculiar; the color change is limited only in two colors, green and purple, and the change occurs very suddenly by only slightly shifting the viewing angle. We show that this two-color iridescence originates from the surprisingly simple physical mechanism—thin-layer interference. The peculiarity lies in the fact that the higher-order interference condition is satisfied. This causes the sophisticated correspondence in the spectral line shape between the reflectance and the visual color sensitivities of human eye, and results in the two-color nature of the iridescence. It is also suggested that the rock dove’s vision perceives this two-color iridescence as a tool for visual signaling among rock doves.

  18. Effects of a static electric field on two-color photoassociation between different atoms

    SciTech Connect

    Chakraborty, Debashree; Deb, Bimalendu

    2014-01-15

    We study non-perturbative effects of a static electric field on two-color photoassociation of different atoms. A static electric field induces anisotropy in scattering between two different atoms and hybridizes field-free rotational states of heteronuclear dimers or polar molecules. In a previous paper [D. Chakraborty et al., J. Phys. B 44, 095201 (2011)], the effects of a static electric field on one-color photoassociation between different atoms has been described through field-modified ground-state scattering states, neglecting electric field effects on heteronuclear diatomic bound states. To study the effects of a static electric field on heteronuclear bound states, and the resulting influence on Raman-type two-color photoassociation between different atoms in the presence of a static electric field, we develop a non-perturbative numerical method to calculate static electric field-dressed heteronuclear bound states. We show that the static electric field induced scattering anisotropy as well as hybridization of rotational states strongly influence two-color photoassociation spectra, leading to significant enhancement in PA rate and large shift. In particular, for static electric field strengths of a few hundred kV/cm, two-color PA rate involving high-lying bound states in electronic ground-state increases by several orders of magnitude even in the weak photoassociative coupling regime.

  19. A two-color terawatt laser system for high-intensity laser-plasma experiments

    NASA Astrophysics Data System (ADS)

    Sanders, James; Zgadzaj, Rafal; Downer, Michael

    2012-10-01

    In some high-field laser-plasma experiments, it is advantageous to accompany the main high-energy (˜1 J) laser with a second high-energy pulse (˜0.1 J) which has been frequency-shifted by ˜10%. Such a pulse-pair would have a low walk-off velocity while remaining spectrally distinct for use in two-color pump-probe experiments. Moreover, by shifting the second pulse by ˜plasma frequency, it is theoretically possible to enhance or suppress relativistic self-focusing, which is the first (uncontrolled) step in many laser-plasma experiments. We report a hybrid chirped pulse Raman amplifier (CPRA)/Ti-Sapphire amplifier (>200 mJ, 15-20 nm bandwidth (FWHM), >60 fs duration) that is capable of performing such two-color high-field experiments. When amplified and compressed, this beam's power exceeds 1 TW. This two-color capability can be added to any commercial terawatt laser system without compromising the energy, duration or beam quality of the main system. We will report progress with a two-color seeded relativistic self-phase modulation experiment.

  20. 14,15-EET promotes mitochondrial biogenesis and protects cortical neurons against oxygen/glucose deprivation-induced apoptosis

    SciTech Connect

    Wang, Lai; Chen, Man; Yuan, Lin; Xiang, Yuting; Zheng, Ruimao; Zhu, Shigong

    2014-07-18

    Highlights: • 14,15-EET inhibits OGD-induced apoptosis in cortical neurons. • Mitochondrial biogenesis of cortical neurons is promoted by 14,15-EET. • 14,15-EET preserves mitochondrial function of cortical neurons under OGD. • CREB mediates effect of 14,15-EET on mitochondrial biogenesis and function. - Abstract: 14,15-Epoxyeicosatrienoic acid (14,15-EET), a metabolite of arachidonic acid, is enriched in the brain cortex and exerts protective effect against neuronal apoptosis induced by ischemia/reperfusion. Although apoptosis has been well recognized to be closely associated with mitochondrial biogenesis and function, it is still unclear whether the neuroprotective effect of 14,15-EET is mediated by promotion of mitochondrial biogenesis and function in cortical neurons under the condition of oxygen–glucose deprivation (OGD). In this study, we found that 14,15-EET improved cell viability and inhibited apoptosis of cortical neurons. 14,15-EET significantly increased the mitochondrial mass and the ratio of mitochondrial DNA to nuclear DNA. Key makers of mitochondrial biogenesis, peroxisome proliferator activator receptor gamma-coactivator 1 alpha (PGC-1α), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM), were elevated at both mRNA and protein levels in the cortical neurons treated with 14,15-EET. Moreover, 14,15-EET markedly attenuated the decline of mitochondrial membrane potential, reduced ROS, while increased ATP synthesis. Knockdown of cAMP-response element binding protein (CREB) by siRNA blunted the up-regulation of PGC-1α and NRF-1 stimulated by 14,15-EET, and consequently abolished the neuroprotective effect of 14,15-EET. Our results indicate that 14,15-EET protects neurons from OGD-induced apoptosis by promoting mitochondrial biogenesis and function through CREB mediated activation of PGC-1α and NRF-1.

  1. Magnetic Field Mental Representations of 14-15 Years Old Students

    ERIC Educational Resources Information Center

    Ravanis, Konstantinos; Pantidos, Panagiotis; Vitoratos, Evangelos

    2009-01-01

    Children's mental representations about physical concepts and phenomena play a vital role in the learning process. This is confirmed by the data derived from relevant researches which demonstrate that the students formulate incompatible ideas compared with the scientific ones. In this research we investigate the representations of 14-15 years…

  2. Proceedings: National Conference on Bilingual Education (Austin, Texas, April 14-15, 1972).

    ERIC Educational Resources Information Center

    Dissemination and Assessment Center for Bilingual Education, Austin, TX.

    Goals of the National Conference on Bilingual Education, held on April 14-15, 1972 in Austin, Texas, were to emphasize bilingual education interaction at the national level using outstanding consultants from throughout the United States and to exchange ideas among educators in existing programs. The conference was also organized to give bilingual…

  3. Two-color mid-infrared thermometer with a hollow glass optical fiber

    SciTech Connect

    Small, W. IV; Celliers, P.M.; Da Silva, L.B.; Matthews, D.L.; Soltz, B.A.

    1998-10-01

    We have developed a low-temperature optical-fiber-based two-color infrared thermometer. A single 700-{mu}m-bore hollow glass optical fiber collects and transmits radiation that is then modulated and split into two paths by a reflective optical chopper. Two different thermoelectrically cooled mid-infrared HgCdZnTe photoconductors monitor the chopped signals that are recovered with lock-in amplification. With the two previously obtained blackbody calibration equations, a computer algorithm calculates the true temperature and emissivity of a target in real time, taking into account reflection of the ambient radiation field from the target surface. The small numerical aperture of the hollow glass fiber and the fast response of the detectors, together with the two-color principle, permit high spatial and temporal resolution while allowing the user to dynamically alter the fiber-to-target distance. {copyright} 1998 Optical Society of America

  4. Two-color mid-infrared thermometer with a hollow glass optical fiber.

    PubMed

    Small, W; Celliers, P M; Da Silva, L B; Matthews, D L; Soltz, B A

    1998-10-01

    We have developed a low-temperature optical-fiber-based two-color infrared thermometer. A single 700-mum-bore hollow glass optical fiber collects and transmits radiation that is then modulated and split into two paths by a reflective optical chopper. Two different thermoelectrically cooled mid-infrared HgCdZnTe photoconductors monitor the chopped signals that are recovered with lock-in amplification. With the two previously obtained blackbody calibration equations, a computer algorithm calculates the true temperature and emissivity of a target in real time, taking into account reflection of the ambient radiation field from the target surface. The small numerical aperture of the hollow glass fiber and the fast response of the detectors, together with the two-color principle, permit high spatial and temporal resolution while allowing the user to dynamically alter the fiber-to-target distance.

  5. Experimental demonstration of femtosecond two-color x-ray free-electron lasers.

    PubMed

    Lutman, A A; Coffee, R; Ding, Y; Huang, Z; Krzywinski, J; Maxwell, T; Messerschmidt, M; Nuhn, H-D

    2013-03-29

    With an eye toward extending optical wave-mixing techniques to the x-ray regime, we present the first experimental demonstration of a two-color x-ray free-electron laser at the Linac Coherent Light Source. We combine the emittance-spoiler technique with a magnetic chicane in the undulator section to control the pulse duration and relative delay between two intense x-ray pulses and we use differently tuned canted pole undulators such that the two pulses have different wavelengths as well. Two schemes are shown to produce two-color soft x-ray pulses with a wavelength separation up to ∼1.9% and a controllable relative delay up to 40 fs. PMID:23581326

  6. Two-color Laser Desorption of Nanostructured MgO Thin Films

    SciTech Connect

    Beck, Kenneth M.; Joly, Alan G.; Hess, Wayne P.

    2009-09-30

    Neutral magnesium atom emission from nanostructured MgO thin films is induced using two-color nanosecond laser excitation. We find that combined visible/UV excitation, for single-color pulse energies below the desorption threshold, induces neutral Mg-atom emission with hyperthermal kinetic energies in the range of 0.1- 0.2 eV. The observed metal atom emission is consistent with a mechanism involving rapid electron transfer to 3-coordinated Mg surface sites. The two-color Mg-atom signal is significant only for parallel laser polarizations and temporally overlapped laser pulses indicating that intermediate excited states are short-lived compared to the 5 nanosecond laser pulse duration.

  7. Making ultracold molecules in a two-color pump-dump photoassociation scheme using chirped pulses

    SciTech Connect

    Koch, Christiane P.; Luc-Koenig, Eliane; Masnou-Seeuws, Francoise

    2006-03-15

    This theoretical paper investigates the formation of ground state molecules from ultracold cesium atoms in a two-color scheme. Following previous work on photoassociation with chirped picosecond pulses [Luc-Koenig et al., Phys. Rev. A, 70, 033414 (2004)], we investigate stabilization by a second (dump) pulse. By appropriately choosing the dump pulse parameters and time delay with respect to the photoassociation pulse, we show that a large number of deeply bound molecules are created in the ground triplet state. We discuss (i) broad-bandwidth dump pulses which maximize the probability to form molecules while creating a broad vibrational distribution as well as (ii) narrow-bandwidth pulses populating a single vibrational ground state level, bound by 113 cm{sup -1}. The use of chirped pulses makes the two-color scheme robust, simple, and efficient.

  8. Streaking temporal double-slit interference by an orthogonal two-color laser field.

    PubMed

    Richter, Martin; Kunitski, Maksim; Schöffler, Markus; Jahnke, Till; Schmidt, Lothar P H; Li, Min; Liu, Yunquan; Dörner, Reinhard

    2015-04-10

    We investigate electron momentum distributions from single ionization of Ar by two orthogonally polarized laser pulses of different color. The two-color scheme is used to experimentally control the interference between electron wave packets released at different times within one laser cycle. This intracycle interference pattern is typically hard to resolve in an experiment. With the two-color control scheme, these features become the dominant contribution to the electron momentum distribution. Furthermore, the second color can be used for streaking of the otherwise interfering wave packets establishing a which-way marker. Our investigation shows that the visibility of the interference fringes depends on the degree of the which-way information determined by the controllable phase between the two pulses.

  9. Streaking Temporal Double-Slit Interference by an Orthogonal Two-Color Laser Field

    NASA Astrophysics Data System (ADS)

    Richter, Martin; Kunitski, Maksim; Schöffler, Markus; Jahnke, Till; Schmidt, Lothar P. H.; Li, Min; Liu, Yunquan; Dörner, Reinhard

    2015-04-01

    We investigate electron momentum distributions from single ionization of Ar by two orthogonally polarized laser pulses of different color. The two-color scheme is used to experimentally control the interference between electron wave packets released at different times within one laser cycle. This intracycle interference pattern is typically hard to resolve in an experiment. With the two-color control scheme, these features become the dominant contribution to the electron momentum distribution. Furthermore, the second color can be used for streaking of the otherwise interfering wave packets establishing a which-way marker. Our investigation shows that the visibility of the interference fringes depends on the degree of the which-way information determined by the controllable phase between the two pulses.

  10. A two-colored chewing gum test for assessing masticatory performance: a preliminary study.

    PubMed

    Endo, Toshiya; Komatsuzaki, Akira; Kurokawa, Hiroomi; Tanaka, Satoshi; Kobayashi, Yoshiki; Kojima, Koji

    2014-01-01

    This study was conducted to compare subjective and objective assessment methods of a two-colored chewing gum test and to find out whether these methods are capable of discriminating masticatory performances between sexes. 31 adults, 16 males and 15 females participated in this study. Each subject chewed five samples of two-colored chewing gum sticks for 5, 10, 20, 30 and 50 chewing strokes, respectively. The subjective color-mixing and shape indices for the gum bolus (SCMI-B, SSI-B) and the subjective color-mixing index and objective color-mixing ratio for the gum wafer (SCMI-W, OCMR-W) were evaluated by two independent examiners and, on a different day, re-evaluated by one of the examiners. The SCMI-B and SCMI-W assessments had inter- and intra-examiner reliable agreement at 20 or more chewing strokes. The OCMR-W measurement demonstrated high accuracy and low reproducibility between and within the examiners. There were significant gender differences in the distribution of SCMI-W scores (P = 0.044) and in the mean OCMI-W (P = 0.007). The SCMI-B and SCMI-W assessments and the OCMR-W measurement were reliable and valid at the 20 and 30 chewing strokes in this two-colored chewing gum test. The subjective color-mixing index (SCMI-W) and objective color-mixing ratio (OCMR-W) for the chewing gum wafer are capable of discriminating masticatory performance between sexes in this two-colored chewing gum test and that the OCMR-W measurement is discriminating better than the SCMI-W assessment. PMID:23076496

  11. An effective approach for simulating the two-color infrared seekers

    NASA Astrophysics Data System (ADS)

    Alchekh Yasin, S. Y.; Yrfanean, A. R.; Mosavi, M. R.; Mohammadi, A.

    2014-11-01

    Using two-color, in the infrared seekers became a popular technique to achieve an efficient tracking in the existence of countermeasures. Simulating the seeker for getting the target and flares information signals is a critical task, as the more dynamics and robust simulation will help to achieve more robust IRCCM algorithms. In this paper a general method is stated to be simple, effective, dynamics, and independent of the reticle structure.

  12. A two-colored chewing gum test for assessing masticatory performance: a preliminary study.

    PubMed

    Endo, Toshiya; Komatsuzaki, Akira; Kurokawa, Hiroomi; Tanaka, Satoshi; Kobayashi, Yoshiki; Kojima, Koji

    2014-01-01

    This study was conducted to compare subjective and objective assessment methods of a two-colored chewing gum test and to find out whether these methods are capable of discriminating masticatory performances between sexes. 31 adults, 16 males and 15 females participated in this study. Each subject chewed five samples of two-colored chewing gum sticks for 5, 10, 20, 30 and 50 chewing strokes, respectively. The subjective color-mixing and shape indices for the gum bolus (SCMI-B, SSI-B) and the subjective color-mixing index and objective color-mixing ratio for the gum wafer (SCMI-W, OCMR-W) were evaluated by two independent examiners and, on a different day, re-evaluated by one of the examiners. The SCMI-B and SCMI-W assessments had inter- and intra-examiner reliable agreement at 20 or more chewing strokes. The OCMR-W measurement demonstrated high accuracy and low reproducibility between and within the examiners. There were significant gender differences in the distribution of SCMI-W scores (P = 0.044) and in the mean OCMI-W (P = 0.007). The SCMI-B and SCMI-W assessments and the OCMR-W measurement were reliable and valid at the 20 and 30 chewing strokes in this two-colored chewing gum test. The subjective color-mixing index (SCMI-W) and objective color-mixing ratio (OCMR-W) for the chewing gum wafer are capable of discriminating masticatory performance between sexes in this two-colored chewing gum test and that the OCMR-W measurement is discriminating better than the SCMI-W assessment.

  13. Ultrafast Spatiotemporal Dynamics of Terahertz Generation by Ionizing Two-Color Femtosecond Pulses in Gases

    SciTech Connect

    Babushkin, I.; Kuehn, W.; Reimann, K.; Woerner, M.; Herrmann, J.; Elsaesser, T.; Koehler, C.; Skupin, S.; Berge, L.

    2010-07-30

    We present a combined theoretical and experimental study of spatiotemporal propagation effects in terahertz (THz) generation in gases using two-color ionizing laser pulses. The observed strong broadening of the THz spectra with increasing gas pressure reveals the prominent role of spatiotemporal reshaping and of a plasma-induced blueshift of the pump pulses in the generation process. Results obtained from (3+1)-dimensional simulations are in good agreement with experimental findings and clarify the mechanisms responsible for THz emission.

  14. Two-color mixing for classifying agricultural products for safety and quality

    NASA Astrophysics Data System (ADS)

    Ding, Fujian; Chen, Yud-Ren; Chao, Kuanglin; Chan, Diane E.

    2006-02-01

    We show that the chromaticness of the visual signal that results from the two-color mixing achieved through an optically enhanced binocular device is directly related to the band ratio of light intensity at the two selected wavebands. A technique that implements the band-ratio criterion in a visual device by using two-color mixing is presented here. The device will allow inspectors to identify targets visually in accordance with a two-wavelength band ratio. It is a method of inspection by human vision assisted by an optical device, which offers greater flexibility and better cost savings than a multispectral machine vision system that implements the band-ratio criterion. With proper selection of the two narrow wavebands, discrimination by chromaticness that is directly related to the band ratio can work well. An example application of this technique for the inspection of carcasses chickens of afficted with various diseases is given. An optimal pair of wavelengths of 454 and 578 nm was selected to optimize differences in saturation and hue in CIE LUV color space among different types of target. Another example application, for the detection of chilling injury in cucumbers, is given, here the selected wavelength pair was 504 and 652 nm. The novel two-color mixing technique for visual inspection can be included in visual devices for various applications, ranging from target detection to food safety inspection.

  15. Two-color mixing for classifying agricultural products for safety and quality.

    PubMed

    Ding, Fujian; Chen, Yud-Ren; Chao, Kuanglin; Chan, Diane E

    2006-02-01

    We show that the chromaticness of the visual signal that results from the two-color mixing achieved through an optically enhanced binocular device is directly related to the band ratio of light intensity at the two selected wavebands. A technique that implements the band-ratio criterion in a visual device by using two-color mixing is presented here. The device will allow inspectors to identify targets visually in accordance with a two-wavelength band ratio. It is a method of inspection by human vision assisted by an optical device, which offers greater flexibility and better cost savings than a multispectral machine vision system that implements the band-ratio criterion. With proper selection of the two narrow wavebands, discrimination by chromaticness that is directly related to the band ratio can work well. An example application of this technique for the inspection of carcasses chickens of afficted with various diseases is given. An optimal pair of wavelengths of 454 and 578 nm was selected to optimize differences in saturation and hue in CIE LUV color space among different types of target. Another example application, for the detection of chilling injury in cucumbers, is given, here the selected wavelength pair was 504 and 652 nm. The novel two-color mixing technique for visual inspection can be included in visual devices for various applications, ranging from target detection to food safety inspection.

  16. Two-color stabilization of atomic hydrogen in circularly polarized laser fields

    SciTech Connect

    Bauer, D.; Ceccherini, F.

    2002-11-01

    The dynamic stabilization of atomic hydrogen against ionization in high-frequency single- and two-color, circularly polarized laser pulses is observed by numerically solving the three-dimensional, time-dependent Schroedinger equation. The single-color case is revisited and numerically determined ionization rates are compared with both, the exact and the approximate high-frequency Floquet rates. The positions of the peaks in the photoelectron spectra can be explained with the help of dressed initial states. In two-color laser fields of opposite circular polarization, the stabilized probability density may be shaped in various ways. For laser frequencies {omega}{sub 1} and {omega}{sub 2}=n{omega}{sub 1}, n=2,3,..., and sufficiently large excursion amplitudes (n+1) distinct probability density peaks are observed. This may be viewed as the generalization of the well-known 'dichotomy' in linearly polarized laser fields, i.e, as 'trichotomy', 'quatrochotomy', 'pentachotomy' etc. All those observed structures and their 'hula-hoop'-like dynamics can be understood with the help of high-frequency Floquet theory and the two-color Kramers-Henneberger transformation. The shaping of the probability density in the stabilization regime can be realized without additional loss in the survival probability, as compared to the corresponding single-color results.

  17. Two-color high-harmonic generation in plasmas: efficiency dependence on the generating particle properties.

    PubMed

    Emelina, Anna S; Emelin, Mikhail Yu; Ganeev, Rashid A; Suzuki, Masayuki; Kuroda, Hiroto; Strelkov, Vasily V

    2016-06-27

    The high-order harmonic generation (HHG) in silver, gold, and zinc plasma plumes irradiated by orthogonally polarized two-color field is studied theoretically and experimentally. We find an increase of the HHG efficiency in comparison with the single-color case, which essentially depends on the plasma species and harmonic order. An increase of more than an order of magnitude is observed for silver plasma, whereas for gold and zinc it is lower; these results are reproduced in our calculations that include both propagation and microscopic response studies. We show that the widely used theoretical approach assuming the 1s ground state of the generating particle fails to reproduce the experimental results; the agreement is achieved in our theory using the actual quantum numbers of the outer electron of the generating particles. Moreover, our theoretical studies highlight the redistribution of the electronic density in the continuum wave packet as an important aspect of the HHG enhancement in the two-color orthogonally polarized fields with comparable intensities: in the single-color field the electronic trajectories with almost zero return energy are the most populated ones; in the two-color case the total field maximum can be shifted in time so that the trajectories with high return energies (in particular, the cut-off trajectory) become the most populated ones. PMID:27410560

  18. Micronized grinding apparatus

    SciTech Connect

    Williams, R.M.

    1985-06-11

    Apparatus for grinding coal to micron fineness having a grinding chamber with a grinding surface supported by a circumferential wall in the grinding chamber, a plurality of grinding rolls orbiting in the grinding chamber for grinding the coal, air supply bustle surrounding the grinding chamber, air flow restrictor means opening from the air supply bustle to the grinding chamber to create a back pressure in the air supply bustle for substantially evenly distributing the air supplied to the grinding chamber around the circumference of the grinding chamber, and wherein the restrictor means directs the air flow tangentially relative to the circumferential wall of the grinding chamber so that the coal particles are caught up in a cyclonic movement having a large initial horizontally directed force to maintain a body of coal particles in the orbit of the grinding rolls, which horizontal force gradually diminishes as the vertical force component of the air flow lifts the ground coal particles out of the grinding chamber.

  19. Sub-micron filter

    DOEpatents

    Tepper, Frederick; Kaledin, Leonid

    2009-10-13

    Aluminum hydroxide fibers approximately 2 nanometers in diameter and with surface areas ranging from 200 to 650 m.sup.2/g have been found to be highly electropositive. When dispersed in water they are able to attach to and retain electronegative particles. When combined into a composite filter with other fibers or particles they can filter bacteria and nano size particulates such as viruses and colloidal particles at high flux through the filter. Such filters can be used for purification and sterilization of water, biological, medical and pharmaceutical fluids, and as a collector/concentrator for detection and assay of microbes and viruses. The alumina fibers are also capable of filtering sub-micron inorganic and metallic particles to produce ultra pure water. The fibers are suitable as a substrate for growth of cells. Macromolecules such as proteins may be separated from each other based on their electronegative charges.

  20. Two-color resonant four-wave mixing: A tool for double resonance spectroscopy

    SciTech Connect

    Rohlfing, E.A.; Tobiason, J.D.; Dunlop, J.R.; Williams, S.

    1995-08-01

    Two-color resonant four-wave mixing (RFWM) shows great promise in a variety of double-resonance applications in molecular spectroscopy and chemical dynamics. One such application is stimulated emission pumping (SEP), which is a powerful method of characterizing ground-state potential energy surfaces in regions of chemical interest. The authors use time-independent, diagrammatic perturbation theory to identify the resonant terms in the third-order nonlinear susceptibility for each possible scheme by which two-color RFWM can be used for double-resonance spectroscopy. After a spherical tensor analysis they arrive at a signal expression for two-color RFWM that separates the molecular properties from purely laboratory-frame factors. In addition, the spectral response for tuning the DUMP laser in RFWM-SEP is found to be a simple Lorentzian in free-jet experiments. The authors demonstrate the utility of RFWM-SEP and test their theoretical predictions in experiments on jet-cooled transient molecules. In experiments on C{sub 3} they compare the two possible RFWM-SEP processes and show that one is particularly well-suited to the common situation in which the PUMP transition is strong but the DUMP transitions are weak. They obtain RFWM-SEP spectra of the formyl radical, HCO, that probe quasibound vibrational resonances lying above the low threshold for dissociation to H+CO. Varying the polarization of the input beams or PUMP rotational branch produces dramatic effects, in the relative intensities of rotational lines in the RFWM-SEP spectra of HCO; these effects are well-described by their theoretical analysis. Finally, RFWM-SEP spectra of HCO resonances that are homogeneously broadened by dissociation confirm the predicted lineshape and give widths that are in good agreement with those determined via unsaturated fluorescence depletion SEP.

  1. Long wavelength mid-infrared from mixing two colors from a fiber amplifier

    NASA Astrophysics Data System (ADS)

    Bian, Siyuan; Loranger, Sébastien; Kashyap, Raman; Strickland, Donna

    2015-05-01

    At Waterloo, we are developing a high power, short pulse, two-color, Yb:fiber amplifier system to generate the long wavelength (<15μm) side of the molecular fingerprint spectral region, by difference frequency mixing the two colors. This spectral region is important for trace gas detection of explosives. As an example, it has been shown that the strong spectroscopic signatures of a peroxide-based explosive triacetone triperoxide (TATP) occur between 15 and 20 μm. To date, we have achieved a tuning range from 16 to 20 μm with a maximum average power of 1.7 mW. On the short wavelength side, the two colors would need to be pulled further apart, which requires a higher power seed to beat the amplified spontaneous emission that appears at the gain peak of the amplifiers between the two seed colors. On the long wavelength side, we are limited to 20 μm by the transparency region of the nonlinear crystals. We would like to find new nonlinear materials that have transparency from 1 to 30μm. If we could generate wavelengths from 15 to 30 μm with sufficient power, we could extend the spectral region to also cover 8 to 15μm by frequency doubling the longer wavelengths. We are currently working on replacing bulk optics in the system with fiber based optical elements to select the wavelengths as well as stretch and recompress the pulses in order to make the system compact and stable.

  2. Broadband two-color laser-induced incandescence pyrometry approach for nanoparticle characterization with improved sensitivity.

    PubMed

    Flügel, Alexandre; Kiefer, Johannes; Will, Stefan; Leipertz, Alfred

    2013-09-01

    A spectral filtering approach for improving the sensitivity of two-color laser-induced incandescence measurements is proposed. The commonly used bandpass filters providing wavelength selection, and hence temperature sensitivity, are replaced by shortpass and longpass filters, respectively, allowing significantly higher signal intensities to be detected. This modification is of particular interest when nanoparticles with low emissivity, for instance, metal and metal oxide particles, are investigated. An example case in which the conventional optical components are compared with the new approach reveals an improvement by more than one order of magnitude.

  3. Terahertz emission from a two-color plasma filament in a slot waveguide

    SciTech Connect

    Dietze, D.; Unterrainer, K.; Darmo, J.

    2012-02-27

    Terahertz emission in forward direction from a long two-color filament placed in the center of a slot waveguide is reported. The waveguide improves the collection and imaging of the generated THz radiation. By tuning the plate separation and position of the waveguide along the filament axis, the emitted mode can be matched to the collection optics. We achieved an increase of the detected electric field by 40% and of the THz pulse energy by four times compared to the case without waveguide.

  4. Two-Color Single Hybrid Plasmonic Nanoemitters with Real Time Switchable Dominant Emission Wavelength.

    PubMed

    Zhou, Xuan; Wenger, Jérémie; Viscomi, Francesco N; Le Cunff, Loïc; Béal, Jérémie; Kochtcheev, Serguei; Yang, Xuyong; Wiederrecht, Gary P; Colas des Francs, Gérard; Bisht, Anu Singh; Jradi, Safi; Caputo, Roberto; Demir, Hilmi Volkan; Schaller, Richard D; Plain, Jérôme; Vial, Alexandre; Sun, Xiao Wei; Bachelot, Renaud

    2015-11-11

    We demonstrate two-color nanoemitters that enable the selection of the dominant emitting wavelength by varying the polarization of excitation light. The nanoemitters were fabricated via surface plasmon-triggered two-photon polymerization. By using two polymerizable solutions with different quantum dots, emitters of different colors can be positioned selectively in different orientations in the close vicinity of the metal nanoparticles. The dominant emission wavelength of the metal/polymer anisotropic hybrid nanoemitter thus can be selected by altering the incident polarization.

  5. Controlling Nonsequential Double Ionization in Two-Color Circularly Polarized Femtosecond Laser Fields

    NASA Astrophysics Data System (ADS)

    Mancuso, Christopher A.; Dorney, Kevin M.; Hickstein, Daniel D.; Chaloupka, Jan L.; Ellis, Jennifer L.; Dollar, Franklin J.; Knut, Ronny; Grychtol, Patrik; Zusin, Dmitriy; Gentry, Christian; Gopalakrishnan, Maithreyi; Kapteyn, Henry C.; Murnane, Margaret M.

    2016-09-01

    Atoms undergoing strong-field ionization in two-color circularly polarized femtosecond laser fields exhibit unique two-dimensional photoelectron trajectories and can emit bright circularly polarized extreme ultraviolet and soft-x-ray beams. In this Letter, we present the first experimental observation of nonsequential double ionization in these tailored laser fields. Moreover, we can enhance or suppress nonsequential double ionization by changing the intensity ratio and helicity of the two driving laser fields to maximize or minimize high-energy electron-ion rescattering. Our experimental results are explained through classical simulations, which also provide insight into how to optimize the generation of circularly polarized high harmonic beams.

  6. Two-color CO2/HeNe laser interferometer for C-2 experiment.

    PubMed

    Gornostaeva, O; Deng, B H; Garate, E; Gota, H; Kinley, J; Schroeder, J; Tuszewski, M

    2010-10-01

    A six-channel two-color interferometer has been developed for plasma electron density measurements in the C-2 field reversed configuration experiment. A CO(2) laser is utilized as the main probe beams, while copropagating visible HeNe laser beams are mainly sensitive to vibration. Density measurements in C-2 plasmas have shown that this is a reliable turn-key system. The maximum residual phase noise after vibration compensation is less than ±5°, corresponding to a line integral density of 3×10(18) m(-2). The time resolution for routine operation is 2 μs.

  7. Two-color planar laser-induced fluorescence thermometry in aqueous solutions

    SciTech Connect

    Robinson, G. Andrew; Lucht, Robert P.; Laurendeau, Normand M

    2008-05-20

    We demonstrate a two-color planar laser-induced fluorescence technique for obtaining two-dimensional temperature images in water. For this method, a pulsed Nd:YAG laser at 532 nm excites a solution of temperature-sensitive rhodamine 560 and temperature-insensitive sulforhodamine 640. The resulting emissions are optically separated through filters and detected via a charged-couple device (CCD) camera system. A ratio of the two images yields temperature images independent of incident irradiance. An uncertainty in temperature of {+-}1.4 deg. C is established at the 95% confidence interval.

  8. Two color blinking of single strain-induced GaAs quantum dots

    SciTech Connect

    Bertram, D.; Hanna, M.C.; Nozik, A.J.

    1999-05-01

    In this letter we report on a temporal instability in the ground and excited state luminescence of a single strain-induced quantum dot. Using a microscopic photoluminescence technique, we record spectra from a single strain-induced quantum dot in the GaAs/(AlGa)As material system. On a time scale of seconds the luminescence shows an increase and decrease in intensity with an increase of the ground state luminescence correlating with a decrease in the excited state luminescence intensity and vice versa. We term the observed effect two color blinking. {copyright} {ital 1999 American Institute of Physics.}

  9. Stokes image reconstruction for two-color microgrid polarization imaging systems.

    PubMed

    Lemaster, Daniel A

    2011-07-18

    The Air Force Research Laboratory has developed a new microgrid polarization imaging system capable of simultaneously reconstructing linear Stokes parameter images in two colors on a single focal plane array. In this paper, an effective method for extracting Stokes images is presented for this type of camera system. It is also shown that correlations between the color bands can be exploited to significantly increase overall spatial resolution. Test data is used to show the advantages of this approach over bilinear interpolation. The bounds (in terms of available reconstruction bandwidth) on image resolution are also provided. PMID:21934823

  10. Simulation study of wakefield generation by two color laser pulses propagating in homogeneous plasma

    SciTech Connect

    Kumar Mishra, Rohit; Saroch, Akanksha; Jha, Pallavi

    2013-09-15

    This paper deals with a two-dimensional simulation of electric wakefields generated by two color laser pulses propagating in homogeneous plasma, using VORPAL simulation code. The laser pulses are assumed to have a frequency difference equal to the plasma frequency. Simulation studies are performed for two similarly as well as oppositely polarized laser pulses and the respective amplitudes of the generated longitudinal wakefields for the two cases are compared. Enhancement of wake amplitude for the latter case is reported. This simulation study validates the analytical results presented by Jha et al.[Phys. Plasmas 20, 053102 (2013)].

  11. Two-color RESOLFT nanoscopy with green and red fluorescent photochromic proteins.

    PubMed

    Lavoie-Cardinal, Flavie; Jensen, Nickels A; Westphal, Volker; Stiel, Andre C; Chmyrov, Andriy; Bierwagen, Jakob; Testa, Ilaria; Jakobs, Stefan; Hell, Stefan W

    2014-03-17

    Up to now, all demonstrations of reversible saturable optical fluorescence transitions (RESOLFT) superresolution microscopy of living cells have relied on the use of reversibly switchable fluorescent proteins (RSFP) emitting in the green spectral range. Here we show RESOLFT imaging with rsCherryRev1.4, a new red-emitting RSFP enabling a spatial resolution up to four times higher than the diffraction barrier. By co-expressing green and red RSFPs in living cells we demonstrate two-color RESOLFT imaging both for single ("donut") beam scanning and for parallelized versions of RESOLFT nanoscopy where an array of >23,000 "donut-like" minima are scanned simultaneously.

  12. Dynamics of Strong-Field Double Ionization in Two-Color Counterrotating Fields

    NASA Astrophysics Data System (ADS)

    Chaloupka, Jan L.; Hickstein, Daniel D.

    2016-04-01

    The double ionization of helium in bichromatic, circularly polarized intense laser fields is analyzed with a classical ensemble approach. It is found that counterrotating fields produce significant nonsequential double-ion yield and drive novel ionization dynamics. It is shown that distinct pathways to ionization can be modified by altering the relative intensities of the two colors, allowing for unique control of strong-field processes. Electrons are observed to return to the ion at different angles from the angle of ionization, opening new possibilities for probing electronic and molecular structure on the ultrafast time scale.

  13. Two-Color Radiation Generated in a Seeded Free-Electron Laser with Two Electron Beams.

    PubMed

    Petralia, A; Anania, M P; Artioli, M; Bacci, A; Bellaveglia, M; Carpanese, M; Chiadroni, E; Cianchi, A; Ciocci, F; Dattoli, G; Di Giovenale, D; Di Palma, E; Di Pirro, G P; Ferrario, M; Giannessi, L; Innocenti, L; Mostacci, A; Petrillo, V; Pompili, R; Rau, J V; Ronsivalle, C; Rossi, A R; Sabia, E; Shpakov, V; Vaccarezza, C; Villa, F

    2015-07-01

    We present the experimental evidence of the generation of coherent and statistically stable two-color free-electron laser radiation obtained by seeding an electron beam double peaked in energy with a laser pulse single spiked in frequency. The radiation presents two neat spectral lines, with time delay, frequency separation, and relative intensity that can be accurately controlled. The analysis of the emitted radiation shows a temporal coherence and a shot-to-shot regularity in frequency significantly enhanced with respect to the self-amplified spontaneous emission.

  14. True temperature measurement on metallic surfaces using a two-color pyroreflectometer method.

    PubMed

    Hernandez, D; Netchaieff, A; Stein, A

    2009-09-01

    In the most common case of optical pyrometry, the major obstacle in determining the true temperature is the knowledge of the thermo-optical properties for in situ conditions. We present experimental results obtained with a method able to determine the true temperature of metallic surfaces above 500 degrees C when there is not parasitic effect by surrounding radiation. The method is called bicolor pyroreflectometry and it is based on Planck's law, Kirchhoff's law, and the assumption of identical reflectivity indicatrixes for the target surface at two different close wavelengths (here, 1.3 and 1.55 microm). The diffusion factor eta(d), the key parameter of the method, is introduced to determine the convergence temperature T(*), which is expected to be equal to the true temperature T. Our goal is to asses this method for different metallic surfaces. The validation of this method is made by comparison with thermocouples. Measurements were made for tungsten, copper, and aluminum samples of different roughnesses, determined by a rugosimeter. After introducing a theoretical model for two-color pyroreflectometry, we give a description of the experimental setup and present experimental applications of the subject method. The quality of the results demonstrates the usefulness of two-color pyroreflectometry to determine the temperatures of hot metals when the emissivity is not known and for the commercially important case of specular surfaces.

  15. Experimental implementation of a strong two-color asymmetric laser field in the mid-infrared

    NASA Astrophysics Data System (ADS)

    Kaziannis, S.; Danakas, S.; Kotsina, N.; Kosmidis, C.

    2016-05-01

    We report the experimental implementation of a strong two-color (ω/2ω) asymmetric laser field in the mid-infrared regime (MIR) consisting of a fs pulse centered at 1400 nm and its second harmonic (700 nm). Control of the temporal delay between the two pulses with sub-cycle accuracy and, therefore, the two-color field phase is based on the use of a birefringent calcite plate. The experimental methodology is described in detail for the 1400/700 nm case, while its applicability is discussed for a broader wavelength range, nowadays accessible by optical parametric amplifiers. The validity of the proposed methodology is further supported by the application of the asymmetric 1400/700 nm field on the dissociative ionization of carbon monoxide, which is considered to be a benchmark target in the field of coherent control of strong laser-matter interaction. It is demonstrated that efficient control on the directional emission of the CO ionic fragments is achieved by varying the relative phase of the 1400 and 700 nm field components.

  16. An RNA-aptamer-based two-color CRISPR labeling system

    PubMed Central

    Wang, Siyuan; Su, Jun-Han; Zhang, Feng; Zhuang, Xiaowei

    2016-01-01

    The spatial organization and dynamics of chromatin play important roles in essential biological functions. However, direct visualization of endogenous genomic loci in living cells has proven to be laborious until the recent development of CRISPR-Cas9-based chromatin labeling methods. These methods rely on the recognition of specific DNA sequences by CRISPR single-guide RNAs (sgRNAs) and fluorescent–protein-fused catalytically inactive Cas9 to label specific chromatin loci in cells. Previously, multicolor chromatin labeling has been achieved using orthogonal Cas9 proteins from different bacterial species fused to different fluorescent proteins. Here we report the development of an alternative two-color CRISPR labeling method using only the well-characterized Streptococcus pyogenes Cas9, by incorporating MS2 or PP7 RNA aptamers into the sgRNA. The MS2 or PP7 aptamers then recruit the corresponding MS2 or PP7 coat proteins fused with different fluorescent proteins to the target genomic loci. Here we demonstrate specific and orthogonal two-color labeling of repetitive sequences in living human cells using this method. By attaching the MS2 or PP7 aptamers to different locations on the sgRNA, we found that extending the tetraloop and stem loop 2 of the sgRNA with MS2 or PP7 aptamers enhances the signal-to-background ratio of chromatin imaging. PMID:27229896

  17. Two-color probe of high harmonic generation from argon atoms

    NASA Astrophysics Data System (ADS)

    Zhao, Zengxiu; Yuan, Jianmin; Meng, Chao; Chen, Wenbo

    2014-05-01

    Two-color control of high harmonic generation has been proven a powerful in situ tool to characterize the intrinsic chirp of attosecond bursts. The weak second harmonic pulse introduces a phase modulation of the strong field quantum processes, leading to the generation of even-order harmonic. We measure the yields of even-order harmonics from argon gases as a function of the phase delay between the fundamental and its second harmonic pulse. We found that the modulation of even-order harmonics exhibits a phase jump around the 28th harmonic (48eV), closely resembling the result from. However, we show by varying laser intensity that the phase jump is unlikely to be attributed to the switching from short to long trajectories of HHG near the cut-off. In addition, we demonstrate that the phase of jump depends on the driving laser wavelength. Single-active-electron simulation fails to reproduce the experimental observation. We therefore suspect that multielectron response comes into play for the two-color control of HHG from Argon. Preliminary analysis suggests that there exists competing pathways of HHG from inner orbitals, even for argon atoms whose interaction with strong laser fields is usually assumed well described by SAE approximation.

  18. An RNA-aptamer-based two-color CRISPR labeling system.

    PubMed

    Wang, Siyuan; Su, Jun-Han; Zhang, Feng; Zhuang, Xiaowei

    2016-01-01

    The spatial organization and dynamics of chromatin play important roles in essential biological functions. However, direct visualization of endogenous genomic loci in living cells has proven to be laborious until the recent development of CRISPR-Cas9-based chromatin labeling methods. These methods rely on the recognition of specific DNA sequences by CRISPR single-guide RNAs (sgRNAs) and fluorescent-protein-fused catalytically inactive Cas9 to label specific chromatin loci in cells. Previously, multicolor chromatin labeling has been achieved using orthogonal Cas9 proteins from different bacterial species fused to different fluorescent proteins. Here we report the development of an alternative two-color CRISPR labeling method using only the well-characterized Streptococcus pyogenes Cas9, by incorporating MS2 or PP7 RNA aptamers into the sgRNA. The MS2 or PP7 aptamers then recruit the corresponding MS2 or PP7 coat proteins fused with different fluorescent proteins to the target genomic loci. Here we demonstrate specific and orthogonal two-color labeling of repetitive sequences in living human cells using this method. By attaching the MS2 or PP7 aptamers to different locations on the sgRNA, we found that extending the tetraloop and stem loop 2 of the sgRNA with MS2 or PP7 aptamers enhances the signal-to-background ratio of chromatin imaging. PMID:27229896

  19. Larkin-Ovchinnikov-Fulde-Ferrell state in two-color quark matter

    SciTech Connect

    Fukushima, Kenji; Iida, Kei

    2007-09-01

    We explore the phase structure of two-color and two-flavor QCD in the space of the quark chemical potential {mu}{sub q} and the isospin chemical potential {mu}{sub I}. Using a mean-field model we calculate the chiral and diquark condensates, {sigma} and {delta}, self-consistently. In weak coupling and in the chiral limit, we confirm the interval of the isospin chemical potential, 0.71{delta}{sub 0}<{mu}{sub I}<0.75{delta}{sub 0}, in which a single plane-wave Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) phase is favored over isotropic superfluidity and normal quark matter. The LOFF window becomes slightly wider at high density. For stronger coupling with nonzero quark mass, which is relevant to currently available numerical simulations in lattice two-color QCD, the single plane-wave LOFF phase appears only at sufficiently high density. The prediction obtained for the LOFF region could be tested with lattice since we can prove that the present system is free from the fermion sign problem. We draw the energy landscape on which local minima corresponding to the isotropic superfluid phase and the LOFF phase and a local maximum corresponding to the gapless phase are manifest. Our results clearly illustrate the path from the unstable gapless phase down to the LOFF phase.

  20. Experimental implementation of a strong two-color asymmetric laser field in the mid-infrared

    NASA Astrophysics Data System (ADS)

    Kaziannis, S.; Danakas, S.; Kotsina, N.; Kosmidis, C.

    2016-05-01

    We report the experimental implementation of a strong two-color (ω/2ω) asymmetric laser field in the mid-infrared regime (MIR) consisting of a fs pulse centered at 1400 nm and its second harmonic (700 nm). Control of the temporal delay between the two pulses with sub-cycle accuracy and, therefore, the two-color field phase is based on the use of a birefringent calcite plate. The experimental methodology is described in detail for the 1400/700 nm case, while its applicability is discussed for a broader wavelength range, nowadays accessible by optical parametric amplifiers. The validity of the proposed methodology is further supported by the application of the asymmetric 1400/700 nm field on the dissociative ionization of carbon monoxide, which is considered to be a benchmark target in the field of coherent control of strong laser‑matter interaction. It is demonstrated that efficient control on the directional emission of the CO ionic fragments is achieved by varying the relative phase of the 1400 and 700 nm field components.

  1. Two-color two-photon excitation using femtosecond laser pulses.

    PubMed

    Quentmeier, Stefan; Denicke, Stefan; Ehlers, Jan-Eric; Niesner, Raluca A; Gericke, Karl-Heinz

    2008-05-01

    The use of two-color two-photon (2c2p) excitation easily extends the wavelength range of Ti:sapphire lasers to the UV, widening the scope of its applications especially in biological sciences. We report observation of 2c2p excitation fluorescence of p-terphenyl (PTP), 2-methyl-5-t-butyl-p-quaterphenyl (DMQ) and tryptophan upon excitation with 400 and 800 nm wavelengths using the second harmonic and fundamental wavelength of a mode-locked Ti:sapphire femtosecond laser. This excitation is energetically equivalent to a one-photon excitation wavelength at 266 nm. The fluorescence signal is observed only when both wavelengths are spatially and temporally overlapping. Adjustment of the relative delay of the two laser pulses renders a cross correlation curve which is in good agreement with the pulse width of our laser. The fluorescence signal is linearly dependent on the intensity of each of the two colors but quadratically on the total incident illumination power of both colors. In fluorescence microscopy, the use of a combination of intense IR and low-intensity blue light as a substitute for UV light for excitation can have numerous advantages. Additionally, the effect of differently polarized excitation photons relative to each other is demonstrated. This offers information about different transition symmetries and yields deeper insight into the two-photon excitation process. PMID:18407711

  2. Photoassociation dynamics driven by a modulated two-color laser field

    SciTech Connect

    Zhang Wei; Zhao Zeyu; Xie Ting; Wang Gaoren; Huang Yin; Cong Shulin

    2011-11-15

    Photoassociation (PA) dynamics of ultracold cesium atoms steered by a modulated two-color laser field E(t)=E{sub 0}f(t)cos((2{pi}/T{sub p})-{phi})cos({omega}{sub L}t) is investigated theoretically by numerically solving the time-dependent Schroedinger equation. The PA dynamics is sensitive to the phase of envelope (POE) {phi} and the period of the envelope T{sub p}, which indicates that it can be controlled by varying POE {phi} and period T{sub p}. Moreover, we introduce the time- and frequency-resolved spectrum to illustrate how the POE {phi} and the period T{sub p} influence the intensity distribution of the modulated laser pulse and hence change the time-dependent population distribution of photoassociated molecules. When the Gaussian envelope contains a few oscillations, the PA efficiency is also dependent on POE {phi}. The modulated two-color laser field is available in the current experiment based on laser mode-lock technology.

  3. Thermodynamics of two-color QCD and the Nambu Jona-Lasinio model

    SciTech Connect

    Ratti, Claudia; Weise, Wolfram

    2004-09-01

    We investigate two-flavor and two-color QCD at finite temperature and chemical potential in comparison with a corresponding Nambu and Jona-Lasinio model. By minimizing the thermodynamic potential of the system, we confirm that a second-order phase transition occurs at a value of the chemical potential equal to half the mass of the chiral Goldstone mode. For chemical potentials beyond this value the scalar diquarks undergo Bose condensation and the diquark condensate is nonzero. We evaluate the behavior of the chiral condensate, the diquark condensate, the baryon charge density and the masses of scalar diquark, antidiquark and pion, as functions of the chemical potential. Very good agreement is found with lattice QCD (N{sub c}=2) results. We also compare with a model based on leading-order chiral effective field theory.

  4. Attosecond x-ray source generation from two-color polarized gating plasmonic field enhancement

    SciTech Connect

    Feng, Liqiang; Yuan, Minghu; Chu, Tianshu

    2013-12-15

    The plasmonic field enhancement from the vicinity of metallic nanostructures as well as the polarization gating technique has been utilized to the generation of the high order harmonic and the single attosecond x-ray source. Through numerical solution of the time-dependent Schrödinger equation, for moderate the inhomogeneity and the polarized angle of the two fields, we find that not only the harmonic plateau has been extended and enhanced but also the single short quantum path has been selected to contribute to the harmonic. As a result, a series of 50 as pulses around the extreme ultraviolet and the x-ray regions have been obtained. Furthermore, by investigating the other parameters effects on the harmonic emission, we find that this two-color polarized gating plasmonic field enhancement scheme can also be achieved by the multi-cycle pulses, which is much better for experimental realization.

  5. Difference-frequency generation of optical radiation from two-color x-ray pulses.

    PubMed

    Shwartz, E; Shwartz, S

    2015-03-23

    We describe the process of difference-frequency generation of short optical pulses from two-color X-ray pulses. By assuming 10¹¹ photons per X-ray pulse, we predict that the optical count rate can exceed 10⁷ photons per pulse. Similar to other effects involving nonlinear interactions of X-rays and optical radiation, the effect we describe can be used for microscopic studies of chemical bonds and as a probe for light-matter interactions on the atomic scale. Since the X-ray damage threshold is much higher than the optical damage threshold, the efficiency of difference-frequency generation from two X-ray pulses is expected to be orders of magnitude higher than the efficiency of effects such as sum/difference-frequency mixing between X-rays and optical intense short-pulse sources. PMID:25837087

  6. Synthesis of Two-Color Laser Pulses for the Harmonic Cutoff Extension

    NASA Astrophysics Data System (ADS)

    Wang, Guo-Li; Zhou, Li-Hua; Zhao, Song-Feng; Zhou, Xiao-Xin

    2016-05-01

    Increasing simultaneously both the cutoff energy and efficiency is a big challenge to all applications of high-order harmonic generation (HHG). For this purpose, the shaping of the waveform of driving pulse is an alternative approach. Here, we show that the harmonic cutoff can be extended by about two times without reducing harmonic yield after considering macroscopic propagation effects, by adopting a practical way to synthesize two-color fields with fixed energy. Our results, combined with the experimental techniques, show the great potential of HHG as a tabletop light source. Supported by the National Natural Science Foundation of China under Grant Nos. 11264036, 11164025, 11364038, the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20116203120001, and the Basic Scientific Research Foundation for Institution of Higher Learning of Gansu Province

  7. Calibration of a two-color soft x-ray diagnostic for electron temperature measurement

    NASA Astrophysics Data System (ADS)

    Reusch, L. M.; Den Hartog, D. J.; Franz, P.; Goetz, J.; McGarry, M. B.; Stephens, H. D.

    2016-11-01

    The two-color soft x-ray (SXR) tomography diagnostic on the Madison Symmetric Torus is capable of making electron temperature measurements via the double-filter technique; however, there has been a 15% systematic discrepancy between the SXR double-filter (SXRDF) temperature and Thomson scattering (TS) temperature. Here we discuss calibration of the Be filters used in the SXRDF measurement using empirical measurements of the transmission function versus energy at the BESSY II electron storage ring, electron microprobe analysis of filter contaminants, and measurement of the effective density. The calibration does not account for the TS and SXRDF discrepancy, and evidence from experiments indicates that this discrepancy is due to physics missing from the SXRDF analysis rather than instrumentation effects.

  8. Two-Color, Two-Photon Imaging at Long Excitation Wavelengths Using a Diamond Raman Laser.

    PubMed

    Trägårdh, Johanna; Murtagh, Michelle; Robb, Gillian; Parsons, Maddy; Lin, Jipeng; Spence, David J; McConnell, Gail

    2016-08-01

    We demonstrate that the second-Stokes output from a diamond Raman laser, pumped by a femtosecond Ti:Sapphire laser, can be used to efficiently excite red-emitting dyes by two-photon excitation at 1,080 nm and beyond. We image HeLa cells expressing red fluorescent protein, as well as dyes such as Texas Red and Mitotracker Red. We demonstrate the potential for simultaneous two-color, two-photon imaging with this laser by using the residual pump beam for excitation of a green-emitting dye. We demonstrate this for the combination of Alexa Fluor 488 and Alexa Fluor 568. Because the Raman laser extends the wavelength range of the Ti:Sapphire laser, resulting in a laser system tunable to 680-1,200 nm, it can be used for two-photon excitation of a large variety and combination of dyes. PMID:27492283

  9. Angle resolved photoelectron spectroscopy of two-color XUV–NIR ionization with polarization control

    NASA Astrophysics Data System (ADS)

    Düsterer, S.; Hartmann, G.; Babies, F.; Beckmann, A.; Brenner, G.; Buck, J.; Costello, J.; Dammann, L.; De Fanis, A.; Geßler, P.; Glaser, L.; Ilchen, M.; Johnsson, P.; Kazansky, A. K.; Kelly, T. J.; Mazza, T.; Meyer, M.; Nosik, V. L.; Sazhina, I. P.; Scholz, F.; Seltmann, J.; Sotoudi, H.; Viefhaus, J.; Kabachnik, N. M.

    2016-08-01

    Electron emission caused by extreme ultraviolet (XUV) radiation in the presence of a strong near infrared (NIR) field leads to multiphoton interactions that depend on several parameters. Here, a comprehensive study of the influence of the angle between the polarization directions of the NIR and XUV fields on the two-color angle-resolved photoelectron spectra of He and Ne is presented. The resulting photoelectron angular distribution strongly depends on the orientation of the NIR polarization plane with respect to that of the XUV field. The prevailing influence of the intense NIR field over the angular emission characteristics for He(1s) and Ne(2p) ionization lines is shown. The underlying processes are modeled in the frame of the strong field approximation (SFA) which shows very consistent agreement with the experiment reaffirming the power of the SFA for multicolor-multiphoton ionization in this regime.

  10. Enhanced hole boring with two-color relativistic laser pulses in the fast ignition scheme

    NASA Astrophysics Data System (ADS)

    Yu, Changhai; Deng, Aihua; Tian, Ye; Li, Wentao; Wang, Wentao; Zhang, Zhijun; Qi, Rong; Wang, Cheng; Liu, Jiansheng

    2016-08-01

    A scheme of using two-color laser pulses for hole boring into overdense plasma as well as energy transfer into electron and ion beams has been studied using particle-in-cell simulations. Following an ultra-short ultra-intense hole-boring laser pulse with a short central wavelength in extreme ultra-violet range, the main infrared driving laser pulse can be guided in the hollow channel preformed by the former laser and propagate much deeper into an overdense plasma, as compared to the case using the infrared laser only. In addition to efficiently transferring the main driving laser energy into energetic electrons and ions generation deep inside the overdense plasma, the ion beam divergence can be greatly reduced. The results might be beneficial for the fast ignition concept of inertial confinement fusion.

  11. Decrease in deformation rate observed by two-color laser ranging in Long Valley Caldera

    USGS Publications Warehouse

    Linker, M.F.; Langbein, J.O.; McGarr, A.

    1986-01-01

    After the January 1983 earthquake swarm, the last period of notable seismicity, the rapid rate of deformation of the south moat and resurgent dome of the Long Valley caldera diminished. Frequently repeated two-color laser ranging measurements made within a geodetic network in the caldera during the interval June 1983 to November 1984 reveal that, although the deformation accumulated smoothly in time, the rate of extension of many of the baselines decreased by factors of 2 to 3 from mid-1983 to mid-1984. Areal dilatation was the dominant signal during this period, with rates of extension of several baselines reaching as high as 5 parts per million per annum during the summer of 1983. Within the south moat, shear deformation also was apparent. The cumulative deformation can be modeled as the result of injection of material into two points located beneath the resurgent dome in addition to shallow right lateral slip on a vertical fault in the south moat.

  12. Memory effects, two color percolation, and the temperature dependence of Mott variable-range hopping

    NASA Astrophysics Data System (ADS)

    Agam, Oded; Aleiner, Igor L.

    2014-06-01

    There are three basic processes that determine hopping transport: (a) hopping between normally empty sites (i.e., having exponentially small occupation numbers at equilibrium), (b) hopping between normally occupied sites, and (c) transitions between normally occupied and unoccupied sites. In conventional theories all these processes are considered Markovian and the correlations of occupation numbers of different sites are believed to be small (i.e., not exponential in temperature). We show that, contrary to this belief, memory effects suppress the processes of type (c) and manifest themselves in a subleading exponential temperature dependence of the variable-range hopping conductivity. This temperature dependence originates from the property that sites of type (a) and (b) form two independent resistor networks that are weakly coupled to each other by processes of type (c). This leads to a two-color percolation problem which we solve in the critical region.

  13. Two-color continuous-variable quantum entanglement in a singly resonant optical parametric oscillator

    SciTech Connect

    Cuozzo, Domenico; Oppo, Gian-Luca

    2011-10-15

    We apply the input-output theory of optical cavities to formulate a quantum treatment of a continuous-wave singly resonant optical parametric oscillator. This case is mainly relevant to highly nondegenerate signal and idler modes. We show that both intensity and quadrature squeezing are present and that the maximum noise reduction below the standard quantum limit is the same at the signal and idler frequencies as in the doubly resonant case. As the threshold of oscillation is approached, however, the intensity-difference and quadrature spectra display a progressive line narrowing which is absent in the balanced doubly resonant case. By use of the separability criterion for continuous variables, the signal-idler state is found to be entangled over wide ranges of the parameters. We show that attainable levels of squeezing and entanglement make singly resonant configurations ideal candidates for two-color quantum information processes, because of their ease of tuning in experimental realizations.

  14. Mechanisms of two-color laser-induced field-free molecular orientation.

    PubMed

    Spanner, Michael; Patchkovskii, Serguei; Frumker, Eugene; Corkum, Paul

    2012-09-14

    Two mechanisms of two-color (ω+2ω) laser-induced field-free molecular orientation, based on the hyperpolarizability and ionization depletion, are explored and compared. The CO molecule is used as a computational example. While the hyperpolarizability mechanism generates small amounts of orientation at intensities below the ionization threshold, ionization depletion quickly becomes the dominant mechanism as soon as ionizing intensities are reached. Only the ionization mechanism leads to substantial orientation (e.g., on the order of ≳0.1). For intensities typical of laser-induced molecular alignment and orientation experiments, the two mechanisms lead to robust, characteristic timings of the field-free orientation wave-packet revivals relative to the alignment revivals and the revival time. The revival timings can be used to detect the active orientation mechanism experimentally.

  15. Two-Color Strong-Field Photoelectron Spectroscopy and the Phase of the Phase.

    PubMed

    Skruszewicz, S; Tiggesbäumker, J; Meiwes-Broer, K-H; Arbeiter, M; Fennel, Th; Bauer, D

    2015-07-24

    The presence of a weak second-harmonic field in an intense-laser ionization experiment affects the momentum-resolved electron yield, depending on the relative phase between the ω and the 2ω component. The proposed two-color "phase-of-the-phase spectroscopy" quantifies for each final electron momentum a relative-phase contrast (RPC) and a phase of the phase (PP) describing how much and with which phase lag, respectively, the yield changes as a function of the relative phase. Experimental results for RPC and PP spectra for rare gas atoms and CO_{2} are presented. The spectra demonstrate a rather universal structure that is analyzed with the help of a simple model based on electron trajectories, wave-packet spreading, and (multiple) rescattering. Details in the PP and RPC spectra are target sensitive and, thus, may be used to extract structural (or even dynamical) information with high accuracy. PMID:26252678

  16. Quantitative surface temperature measurement using two-color thermographic phosphors and video equipment

    NASA Technical Reports Server (NTRS)

    Buck, Gregory M. (Inventor)

    1989-01-01

    A thermal imaging system provides quantitative temperature information and is particularly useful in hypersonic wind tunnel applications. An object to be measured is prepared by coating with a two-color, ultraviolet-activated, thermographic phosphor. The colors emitted by the phosphor are detected by a conventional color video camera. A phosphor emitting blue and green light with a ratio that varies depending on temperature is used so that the intensity of light in the blue and green wavelengths detected by the blue and green tubes in the video camera can be compared. Signals representing the intensity of blue and green light at points on the surface of a model in a hypersonic wind tunnel are used to calculate a ratio of blue to green light intensity which provides quantitative temperature information for the surface of the model.

  17. Angle resolved photoelectron spectroscopy of two-color XUV-NIR ionization with polarization control

    NASA Astrophysics Data System (ADS)

    Düsterer, S.; Hartmann, G.; Babies, F.; Beckmann, A.; Brenner, G.; Buck, J.; Costello, J.; Dammann, L.; De Fanis, A.; Geßler, P.; Glaser, L.; Ilchen, M.; Johnsson, P.; Kazansky, A. K.; Kelly, T. J.; Mazza, T.; Meyer, M.; Nosik, V. L.; Sazhina, I. P.; Scholz, F.; Seltmann, J.; Sotoudi, H.; Viefhaus, J.; Kabachnik, N. M.

    2016-08-01

    Electron emission caused by extreme ultraviolet (XUV) radiation in the presence of a strong near infrared (NIR) field leads to multiphoton interactions that depend on several parameters. Here, a comprehensive study of the influence of the angle between the polarization directions of the NIR and XUV fields on the two-color angle-resolved photoelectron spectra of He and Ne is presented. The resulting photoelectron angular distribution strongly depends on the orientation of the NIR polarization plane with respect to that of the XUV field. The prevailing influence of the intense NIR field over the angular emission characteristics for He(1s) and Ne(2p) ionization lines is shown. The underlying processes are modeled in the frame of the strong field approximation (SFA) which shows very consistent agreement with the experiment reaffirming the power of the SFA for multicolor-multiphoton ionization in this regime.

  18. Spectral Linewidth Narrowing and Tunable Two-Color Laser Operation of Two Diode Laser Arrays

    SciTech Connect

    Liu, Bo; Braiman, Yehuda

    2012-01-01

    We propose and implement a common external cavity to narrow spectral linewidth of two broad-area laser diode arrays (LDAs) and align their center wavelengths. The locked center wavelength of two LDAs can be tuned in the range of {approx}10 nm by tuning the tilted angle of the diffraction grating. The output beams of two LDAs are spatially overlapped through the polarization beam splitter of the common external cavity, and the total output power equals the power of two LDAs. The center wavelength of each LDA can be independently tuned by shifting the corresponding fast-axis collimation lens. As a result, the high-power two-color LDA operation is demonstrated with the tunable wavelength difference of up to 2 nm ({approx}1 THz).

  19. Theoretical and experimental analyses of the performance of two-color laser ranging systems

    NASA Technical Reports Server (NTRS)

    Im, K. E.; Gardner, C. S.

    1985-01-01

    The statistical properties of the signals reflected from the retroreflector equipped satellites were studied. It is found that coherence interference between pulse reflections from retroreflectors of different ranges on the array platform is the primary cause of signal fluctuations. The performance of a cross-correlation technique to estimate the differential propagation time is analyzed by considering both shot noise and speckle. For the retroreflector arrays, timing performance is dominated by interference induced speckle, and the differential propagation time cannot be resolved to better than the pulse widths of the received signals. The differential timing measurements obtained over a horizontal path are analyzed. The ocean-reflected pulse measurements obtained from the airborne two-color laser altimeter experiment are presented.

  20. Design of a real-time two-color interferometer for MAST Upgrade

    SciTech Connect

    O’Gorman, T. Naylor, G.; Scannell, R.; Cunningham, G.; Martin, R.; Croft, D.; Brunner, K. J.

    2014-11-15

    A single chord two-color CO{sub 2}/HeNe (10.6/0.633 μm) heterodyne laser interferometer has been designed to measure the line integral electron density along the mid-plane of the MAST Upgrade tokamak, with a typical error of 1 × 10{sup 18} m{sup −3} (∼2° phase error) at 4 MHz temporal resolution. To ensure this diagnostic system can be restored from any failures without stopping MAST Upgrade operations, it has been located outside of the machine area. The final design and initial testing of this system, including details of the optics, vibration isolation, and a novel phase detection scheme are discussed in this paper.

  1. Fabrication of optical multilayer for two-color phase plate in super-resolution microscope

    SciTech Connect

    Iketaki, Yoshinori; Kitagawa, Katsuichi; Hidaka, Kohjiro; Kato, Naoki; Hirabayashi, Akira; Bokor, Nandor

    2014-07-15

    In super-resolution microscopy based on fluorescence depletion, the two-color phase plate (TPP) is an indispensable optical element, which can independently control the phase shifts for two beams of different color, i.e., the pump and erase beams. By controlling a phase shift of the erase beam through the TPP, the erase beam can be modulated into a doughnut shape, while the pump beam maintains the initial Gaussian shape. To obtain a reliable optical multiplayer (ML) for the TPP, we designed a ML with only two optical layers by performing numerical optimization. The measured phase shifts generated by the fabricated ML using interferometry correspond to the design values. The beam profiles in the focal plane are also consistent with theoretical results. Although the fabricated ML consists of only two optical layers, the ML can provide a suitable phase modulation function for the TPP in a practical super-resolution microscope.

  2. Fabrication of optical multilayer for two-color phase plate in super-resolution microscope

    NASA Astrophysics Data System (ADS)

    Iketaki, Yoshinori; Kitagawa, Katsuichi; Hidaka, Kohjiro; Kato, Naoki; Hirabayashi, Akira; Bokor, Nandor

    2014-07-01

    In super-resolution microscopy based on fluorescence depletion, the two-color phase plate (TPP) is an indispensable optical element, which can independently control the phase shifts for two beams of different color, i.e., the pump and erase beams. By controlling a phase shift of the erase beam through the TPP, the erase beam can be modulated into a doughnut shape, while the pump beam maintains the initial Gaussian shape. To obtain a reliable optical multiplayer (ML) for the TPP, we designed a ML with only two optical layers by performing numerical optimization. The measured phase shifts generated by the fabricated ML using interferometry correspond to the design values. The beam profiles in the focal plane are also consistent with theoretical results. Although the fabricated ML consists of only two optical layers, the ML can provide a suitable phase modulation function for the TPP in a practical super-resolution microscope.

  3. Coulomb effect on photoelectron momentum distributions in orthogonal two-color laser fields

    NASA Astrophysics Data System (ADS)

    Yu, ShaoGang; Wang, YanLan; Lai, XuanYang; Huang, YiYi; Quan, Wei; Liu, XiaoJun

    2016-09-01

    We theoretically investigate the electron momentum distributions in orthogonally polarized two-color pulses with the Coulomb-Volkov distorted-wave approximation (CVA) theory and focus on the role of the Coulomb potential in the electron momentum distributions by comparing the CVA results with the strong-field approximation (SFA) simulations. Our results show that in comparison with the SFA simulations, the electron momentum distributions in CVA are in better agreement with the experimental observations and the time-dependent Schrödinger equation calculations. By analyzing the phase of the dipole moment, we find that the change of the electron momentum distributions in CVA can be ascribed to the different Coulomb corrections of the phases, which give rise to an enhanced contribution from the forward-rescattering electron and, on the other hand, a decrease of the contribution from the direct electron in the presence of the Coulomb potential.

  4. Two-color photoexcitation of Rydberg states via an electric quadrupole transition

    SciTech Connect

    Li Leping; Gu Quanli; Knee, J. L.; Wright, J. D.; DiSciacca, J. M.; Morgan, T. J.

    2008-03-15

    We report the observation of an electric quadrupole transition between the 4s{sup '}[1/2]{sub 0}{sup o} and 3d[3/2]{sub 2}{sup o} states in the spectrum of argon and use it in the first step of a scheme to excite Rydberg states. The initial identification of the transition is based on one-color, two-photon photoionization. A different experiment utilizing two-color, two-photon photoexcitation to Rydberg states confirms the identification. Despite the unavoidable background of one-color, two-photon photoionization, the latter experimental technique makes possible two-photon spectroscopy of Rydberg states using a resonant intermediate state populated by an electric quadrupole transition.

  5. In Silico Comparative Transcriptome Analysis of Two Color Morphs of the Common Coral Trout (Plectropomus Leopardus)

    PubMed Central

    Wang, Le; Yu, Cuiping; Guo, Liang; Lin, Haoran; Meng, Zining

    2015-01-01

    The common coral trout is one species of major importance in commercial fisheries and aquaculture. Recently, two different color morphs of Plectropomus leopardus were discovered and the biological importance of the color difference is unknown. Since coral trout species are poorly characterized at the molecular level, we undertook the transcriptomic characterization of the two color morphs, one black and one red coral trout, using Illumina next generation sequencing technologies. The study produced 55162966 and 54588952 paired-end reads, for black and red trout, respectively. De novo transcriptome assembly generated 95367 and 99424 unique sequences in black and red trout, respectively, with 88813 sequences shared between them. Approximately 50% of both trancriptomes were functionally annotated by BLAST searches against protein databases. The two trancriptomes were enriched into 25 functional categories and showed similar profiles of Gene Ontology category compositions. 34110 unigenes were grouped into 259 KEGG pathways. Moreover, we identified 14649 simple sequence repeats (SSRs) and designed primers for potential application. We also discovered 130524 putative single nucleotide polymorphisms (SNPs) in the two transcriptomes, supplying potential genomic resources for the coral trout species. In addition, we identified 936 fast-evolving genes and 165 candidate genes under positive selection between the two color morphs. Finally, 38 candidate genes underlying the mechanism of color and pigmentation were also isolated. This study presents the first transcriptome resources for the common coral trout and provides basic information for the development of genomic tools for the identification, conservation, and understanding of the speciation and local adaptation of coral reef fish species. PMID:26713756

  6. Development of Two-Color PIV for Large-Scale Wind Tunnel Facility

    NASA Astrophysics Data System (ADS)

    Gogineni, Sivaram; Goss, Larry; Trump, Darryl; Beutner, Thomas

    1998-11-01

    A two-color PIV technique was implemented in an open circuit, low speed wind tunnel which has a 3.05m x 2.13m test section. A sharp leading edge delta wing model with and without twin vertical tails was chosen for the test runs. The tails were located along a radial line emanating from the apex of the delta wing along a constant 64.3 percent span location. The model was tested at 23-deg. angle of attack, a Mach number of 0.2, and a Reynolds number of 1.87 x 106 (based on root chord). At this condition, no vortex bursting was present over the model surface on the clean delta wing. However, the presence of the tails caused the vortices to burst near the mid-chord location. Furthermore, the bursting was unsteady and a considerable oscillation was observed in the burst location. Several PIV implementation issues such as seeding concentration, laser-sheet illumination, and image recording optics were explored. Smoke particles were introduced into the flow for seeding. Two frequency-doubled Nd:YAG lasers were used (one for green and the other for red) for illuminating the particles. Double-exposed two-color PIV images were acquired at four different locations (both in-front and behind the trailing edge of the model) using 35mm and large-format color photographic films and a high-resolution digital color camera. These color mages were processed using cross-correlation technique and obtained the instantaneous velocity and vorticity distributions. An attempt was also made to compare the results with the CFD solution.

  7. In Silico Comparative Transcriptome Analysis of Two Color Morphs of the Common Coral Trout (Plectropomus Leopardus).

    PubMed

    Wang, Le; Yu, Cuiping; Guo, Liang; Lin, Haoran; Meng, Zining

    2015-01-01

    The common coral trout is one species of major importance in commercial fisheries and aquaculture. Recently, two different color morphs of Plectropomus leopardus were discovered and the biological importance of the color difference is unknown. Since coral trout species are poorly characterized at the molecular level, we undertook the transcriptomic characterization of the two color morphs, one black and one red coral trout, using Illumina next generation sequencing technologies. The study produced 55162966 and 54588952 paired-end reads, for black and red trout, respectively. De novo transcriptome assembly generated 95367 and 99424 unique sequences in black and red trout, respectively, with 88813 sequences shared between them. Approximately 50% of both trancriptomes were functionally annotated by BLAST searches against protein databases. The two trancriptomes were enriched into 25 functional categories and showed similar profiles of Gene Ontology category compositions. 34110 unigenes were grouped into 259 KEGG pathways. Moreover, we identified 14649 simple sequence repeats (SSRs) and designed primers for potential application. We also discovered 130524 putative single nucleotide polymorphisms (SNPs) in the two transcriptomes, supplying potential genomic resources for the coral trout species. In addition, we identified 936 fast-evolving genes and 165 candidate genes under positive selection between the two color morphs. Finally, 38 candidate genes underlying the mechanism of color and pigmentation were also isolated. This study presents the first transcriptome resources for the common coral trout and provides basic information for the development of genomic tools for the identification, conservation, and understanding of the speciation and local adaptation of coral reef fish species.

  8. Two-color optical charge-coupled-device-based pyrometer using a two-peak filter.

    PubMed

    Fu, Tairan; Zhao, Huan; Zeng, Jun; Zhong, Maohua; Shi, Congling

    2010-12-01

    A two-color optical charge-coupled-device (CCD)-based pyrometer was developed using a multipeak interference filter with a color CCD sensor to measure multicolor signals with specified wavelengths. The effective and simple method adjusts the fixed spectrum response characteristics of a color CCD to allow improved temperature measurements. This pyrometer system not only has the advantage of traditional two-color (two-wavelength) pyrometry, but also overcomes the restrictions of color CCDs that can only be applied in waveband measurements. The measurement performance of the system using a two-peak filter (λ(1)=643 nm, λ(2)=564 nm) was evaluated by blackbody experiments. The results show that the low temperature detection limit is increased about 200 K with an increase in the sensitivity of the measured signals compared with the original system without two-peak filter [Fu, et al., Opt. Laser Technol. 42, 586 (2010)]. And the effective temperature range is also increased when T > 1233 K. The measured ratio C(R)/C(G) is monotonically relative to the temperature, which simplifies the measurements. The temperature sensitivity of 2.49 is larger and more uniform than the temperature sensitivity of 1.36 in the previous original system. Thus, the measurement performance of the new system is greatly improved. Finally, as an application, the surface temperature distribution of stainless steel sample in hot environments was determined by this new CCD-based pyrometer. The results agree well with the spectrometer-based results and further verify the applicability of the new system. PMID:21198043

  9. Two-Color Temperature Measurements of a Strongly-Coupled Plasma Jet

    NASA Astrophysics Data System (ADS)

    Tierney, Thomas; Byrd, Karen; Benage, John; Workman, Jonathan; Kyrala, George

    1999-10-01

    Low temperature ( 1eV), high density (ne 10^21cm-3) plasmas are called Strongly-Coupled Plasmas (SCP) when the coulombic interaction energy exceeds the thermal energy. A 3.5kJ Marx Bank is used to electrically heat and explode a radially tamped 160-micron or 200-micron aluminum wire. An axially located 100-micron slit assembly collimates the thermally expanding plasma to create a shaped plume of 1/10^th solid density near one eV, satisfying SCP conditions. The plume's self-emission is optically filtered (439.6nm and 694nm) along two beam paths and then imaged on a framing camera. Under the assumption of blackbody emission, the relative intensities in the two different colors provide a measure of the temperature. The images are used to study the spatial and temporal evolution of the jet. This diagnostic characterizes the initial temperature of the plasma plume that will be used to measure the equation of state (EOS) of a SCP. The design for the EOS experiment will be presented in addition to diagnostics for density and shock velocities.

  10. Two-color method for optical astrometry - Theory and preliminary measurements with the Mark III stellar interferometer

    NASA Technical Reports Server (NTRS)

    Colavita, M. Mark; Shao, Michael; Staelin, David H.

    1987-01-01

    The two-color method for interferometric astrometry provides a means of reducing the error in a stellar position measurement attributable to atmospheric turbulence. The primary limitation of the method is shown to be turbulent water vapor fluctuations. Secondary atmospheric effects caused by diffraction from small refractive-index inhomogeneities and differential refraction for the observation of stars away from zenith are shown to introduce errors that behave as white noise and which should not be significant. Other potential error sources due to photon noise, systematic instrumental effects, and imperfect data reduction are also considered. The improvement in accuracy possible with the two-color method is estimated as a factor of 5-10 over the corresponding one-color measurement. Some preliminary two-color measurements with the Mark III stellar interferometer at Mt. Wilson are presented, which demonstrate a factor of about 5 reduction in the amplitude of the atmospheric fluctuations in a stellar position measurement.

  11. Femtosecond laser-induced periodic surface structures on silicon upon polarization controlled two-color double-pulse irradiation.

    PubMed

    Höhm, Sandra; Herzlieb, Marcel; Rosenfeld, Arkadi; Krüger, Jörg; Bonse, Jörn

    2015-01-12

    Two-color double-fs-pulse experiments were performed on silicon wafers to study the temporally distributed energy deposition in the formation of laser-induced periodic surface structures (LIPSS). A Mach-Zehnder interferometer generated parallel or cross-polarized double-pulse sequences at 400 and 800 nm wavelength, with inter-pulse delays up to a few picoseconds between the sub-ablation 50-fs-pulses. Multiple two-color double-pulse sequences were collinearly focused by a spherical mirror to the sample. The resulting LIPSS characteristics (periods, areas) were analyzed by scanning electron microscopy. A wavelength-dependent plasmonic mechanism is proposed to explain the delay-dependence of the LIPSS. These two-color experiments extend previous single-color studies and prove the importance of the ultrafast energy deposition for LIPSS formation.

  12. Two-color mid-infrared thermometer using a hollow glass optical fiber

    SciTech Connect

    Small, W., IV.; Celliers, P.M.; Da Silva, L.D.; Matthews, D.L.

    1997-06-30

    A non-invasive two-color infrared thermometer has been developed for low-temperature biomedical applications. Mid-infrared radiation from the target is collected via a single 700 {mu}m-bore hollow glass optical fiber, simultaneously split into two paths and modulated by a gold-coated reflective optical chopper, and focused onto two thermoelectrically-cooled HgCdZnTe photoconductors (bandpasses of 2- 6 {mu}m and 2-12 {mu}m, respectively) by gold-coated spherical mirrors. The small numerical aperture of the hollow glass fiber provides high spatial resolution (is less than 1 mm), and the hollow bore eliminates reflective losses. The modulated detector signals are recovered using lock-in amplification, permitting measurement of small low-temperature signal buried in the background. A computer algorithm calculates the true temperature and emissivity of the target in real time based on a previous blackbody (emissivity equal to 1) calibration, taking into account reflection of the ambient radiation field from the target surface.

  13. Two-Color Lateral Flow Assay for Multiplex Detection of Causative Agents Behind Acute Febrile Illnesses.

    PubMed

    Lee, Seoho; Mehta, Saurabh; Erickson, David

    2016-09-01

    Acute undifferentiated febrile illnesses (AFIs) represent a significant health burden worldwide. AFIs can be caused by infection with a number of different pathogens including dengue (DENV) and Chikungunya viruses (CHIKV), and their differential diagnosis is critical to the proper patient management. While rapid diagnostic tests (RDTs) for the detection of IgG/IgM against a single pathogen have played a significant role in enabling the rapid diagnosis in the point-of-care settings, the state-of-the-art assay scheme is incompatible with the multiplex detection of IgG/IgM to more than one pathogen. In this paper, we present a novel assay scheme that uses two-color latex labels for rapid multiplex detection of IgG/IgM. Adapting this assay scheme, we show that 4-plex detection of the IgG/IgM antibodies to DENV and CHIKV is possible in 10 min by using it to correctly identify 12 different diagnostic scenarios. We also show that blue, mixed, and red colorimetric signals corresponding to IgG, IgG/IgM, and IgM positive cases, respectively, can be associated with distinct ranges of hue intensities, which could be exploited by analyzer systems in the future for making accurate, automated diagnosis. This represents the first steps toward the development of a single RDT-based system for the differential diagnosis of numerous AFIs of interest. PMID:27490379

  14. Enhanced sensitivity in H photofragment detection by two-color reduced-Doppler ion imaging

    SciTech Connect

    Epshtein, Michael; Portnov, Alexander; Kupfer, Rotem; Rosenwaks, Salman; Bar, Ilana

    2013-11-14

    Two-color reduced-Doppler (TCRD) and one-color velocity map imaging (VMI) were used for probing H atom photofragments resulting from the ∼243.1 nm photodissociation of pyrrole. The velocity components of the H photofragments were probed by employing two counterpropagating beams at close and fixed wavelengths of 243.15 and 243.12 nm in TCRD and a single beam at ∼243.1 nm, scanned across the Doppler profile in VMI. The TCRD imaging enabled probing of the entire velocity distribution in a single pulse, resulting in enhanced ionization efficiency, as well as improved sensitivity and signal-to-noise ratio. These advantages were utilized for studying the pyrrole photodissociation at ∼243.1 and 225 nm, where the latter wavelength provided only a slight increase in the H yield over the self-signal from the probe beams. The TCRD imaging enabled obtaining high quality H{sup +} images, even for the low H photofragment yields formed in the 225 nm photolysis process, and allowed determining the velocity distributions and anisotropy parameters and getting insight into pyrrole photodissociation.

  15. Differences in Bacterial Community Structure in Two Color Morphs of the Hawaiian Reef Coral Montipora capitata.

    PubMed

    Shore-Maggio, Amanda; Runyon, Christina M; Ushijima, Blake; Aeby, Greta S; Callahan, Sean M

    2015-10-01

    Corals harbor diverse bacterial associations that contribute to the health of the host. Using 16S rRNA pyrosequencing, we compared the bacterial communities of red and orange morphs of the Hawaiian coral Montipora capitata. Although both color morphs shared dominant bacterial genera, weighted and unweighted UniFrac analyses showed distinct bacterial communities. A single operational taxonomic unit (OTU), classified as Vibrio, represented the largest driver of differences between the color morphs. This OTU comprised 35.4% (±5.5%) of the orange morph bacterial community yet comprised 1.1% (±0.6%) of the red morph bacterial community. Cultivable bacteria from the two color morphs were also compared and tested for antibacterial activity. Cultured isolates represented 14 genera (7% of the total genera identified from sequencing data), and all but two cultured isolates had a matching OTU from the sequencing data. Half of the isolates tested (8 out of 16) displayed antibacterial activity against other cultured isolates but not against two known bacterial pathogens of M. capitata. The results from this study demonstrate that the specificity of coral-bacterial associations extends beyond the level of coral species. In addition, culture-dependent methods captured bacterial diversity that was representative of both rare and abundant members of the associated bacterial community, as characterized by culture-independent methods. PMID:26253663

  16. Multi-photon two-color ionization of atoms and ions by femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Douguet, Nicolas; Venzke, Joel; Bartschat, Klaus; Grum-Grzhimailo, Alexei N.; Gryzlova, Elena; Staroselskaya, Ekaterina

    2016-05-01

    We consider several processes related to two-color ionization induced by femtosecond pulses. Using the first and second harmonics of an XUV pulse, one can produce two-pathway interferences, which directly influence the photoelectron angular distribution. We discuss the process with linearly as well as circularly polarized light of various mutual orientations and helicities. Furthermore, combining the XUV light with an optical laser, one can generate sidebands around the main photoelectron line and study a variety of asymmetries in photoelectron emission and their dependencies on the absolute and relative intensities, time delay, and polarization of the light. Calculations for atomic hydrogen, He+(1s) generated by an initial XUV pulse, and Ne(2p) were performed by directly solving the time-dependent Schrödinger equation as well as employing second-order nonstationary perturbation theory. Our predictions serve as guidelines for experiments at various X-ray Free-Electron Laser facilities, such as LCLS, FERMI, FLASH, and the European XFEL. Supported by the NSF under PHY-1430245 and XSEDE PHY-090031.

  17. MSX And IRAS Two-Color Diagrams For Late-Type Stars

    NASA Astrophysics Data System (ADS)

    Capen, Stephanie; Sjouwerman, L.; Claussen, M.

    2009-01-01

    We present the results of a statistical study of late-type, oxygen-rich, asymptotic giant branch (AGB) stars and their circumstellar envelopes (CSEs) using color-color diagrams based on data from the Infrared Astronomical Satellite (IRAS) and the Midcourse Space Experiment (MSX). The study of the two-color diagram of CSEs using data from the IRAS survey (van der Veen and Habing 1988, A & A, 194, 125) was a revolutionary step in the understanding and characterization of late-type star CSEs, their mass-loss properties, and their evolution. We outline the steps of cross-identification, selection, and definition of distinct regions in MSX color-color diagrams in relation to those in the IRAS diagrams, and demonstrate that an MSX color-color diagram is a useful and sound translation for the IRAS diagram in the study of oxygen-rich AGB CSEs. This is a favorable result as it allows the selection of stars, based only on MSX data, for further studies, such as surveys for masers in circumstellar shells and in regions where IRAS was confused. This research was supported by the Research Experience for Undergraduate Program of the National Science Foundation, and was completed at the National Radio Astronomy Observatory in Socorro, New Mexico.

  18. Construction of Two Color Semiconductor Quantum Dots Wire by utilizing the complementarity of DNA

    NASA Astrophysics Data System (ADS)

    Tanaka, Shin-ichi; Miyata, Tomoko; Kato, Takayuki; Namba, Keiichi; Yanagida, Toshio; Sako, Yasushi; Kawata, Satoshi; Inouye, Yasushi

    2008-10-01

    Nano-particles possess size-tunable optical, electrical and magnetic properties. Especially, semiconductor nano-particle (Quantum dot (Q-dot)) can be used for multi-color biological imaging as well as for the construction of multi-functional biosensors and molecular devices. Arrangement of nano-particles at the molecular level is of crucial importance to realize multi-functional biosensors or molecular devices. Here we report a method for DNA-directed arrangement of Q-dot. A template DNA more than 1,000 bases in length with a repeat unit of 100 bases was synthesized by enzymatic reactions. Alternating Q-dots alignment was fabricated by using complementary binding between the template DNA and short fragments of DNA with two different sequences. Each of them was modified with two different colors of Q-dots by the avidin-biotin reaction and a reaction between an amino group and a sulfo-NHS group, respectively. Alignment of Q-dots on the template DNA was assessed by fluorescence microscopy, atomic force microscopy (AFM) and transmission electron microscopy (TEM). In AFM and TEM images, we have successfully observed Q-dots alignment on the template DNA. These results provide a good starting point to the fabrication of two-color Q-dot wire on the template DNA.

  19. Differences in Bacterial Community Structure in Two Color Morphs of the Hawaiian Reef Coral Montipora capitata

    PubMed Central

    Shore-Maggio, Amanda; Runyon, Christina M.; Ushijima, Blake; Aeby, Greta S.

    2015-01-01

    Corals harbor diverse bacterial associations that contribute to the health of the host. Using 16S rRNA pyrosequencing, we compared the bacterial communities of red and orange morphs of the Hawaiian coral Montipora capitata. Although both color morphs shared dominant bacterial genera, weighted and unweighted UniFrac analyses showed distinct bacterial communities. A single operational taxonomic unit (OTU), classified as Vibrio, represented the largest driver of differences between the color morphs. This OTU comprised 35.4% (±5.5%) of the orange morph bacterial community yet comprised 1.1% (±0.6%) of the red morph bacterial community. Cultivable bacteria from the two color morphs were also compared and tested for antibacterial activity. Cultured isolates represented 14 genera (7% of the total genera identified from sequencing data), and all but two cultured isolates had a matching OTU from the sequencing data. Half of the isolates tested (8 out of 16) displayed antibacterial activity against other cultured isolates but not against two known bacterial pathogens of M. capitata. The results from this study demonstrate that the specificity of coral-bacterial associations extends beyond the level of coral species. In addition, culture-dependent methods captured bacterial diversity that was representative of both rare and abundant members of the associated bacterial community, as characterized by culture-independent methods. PMID:26253663

  20. Two-color detector: Mercury-cadmium-telluride as a terahertz and infrared detector

    SciTech Connect

    Sizov, F.; Zabudsky, V.; Petryakov, V.; Golenkov, A.; Andreyeva, K.; Tsybrii, Z.; Dvoretskii, S.

    2015-02-23

    In this paper, issues associated with the development of infrared (IR) and terahertz (THz) radiation detectors based on HgCdTe are discussed. Two-color un-cooled and cooled to 78 K narrow-gap mercury-cadmium-telluride semiconductor thin layers with antennas were considered both as sub-THz (sub-THz) direct detection bolometers and 3–10 μm IR photoconductors. The noise equivalent power (NEP) for one of the detectors studied at ν ≈ 140 GHz reaches NEP{sub 300 K} ≈ 4.5 × 10{sup −10} W/Hz{sup 1/2} and NEP{sub 78 K} ≈ 5 × 10{sup −9} W/Hz{sup 1/2}. The same detector used as an IR photoconductor showed the responsivity at temperatures T = 78 K and 300 K with signal-to-noise ratio S/N ≈ 750 and 50, respectively, under illumination by using IR monochromator and globar as a thermal source.

  1. Quantum control of molecular orientation by two-color laser fields.

    PubMed

    Ohmura, Hideki; Nakanaga, Taisuke

    2004-03-15

    We demonstrate molecular orientation by using phase-controlled two-color omega+2omega laser pulses with an intensity of 1.0x10(12) W/cm(2) and a pulse duration of 130 fs. The orientation of three iodine-containing molecules (IBr, CH(3)I, and C(3)H(5)I) was monitored by the directional asymmetries of the photofragment angular distribution in dissociative ionization. In all three molecules, the directional asymmetry showed an oscillating behavior dependent on the relative phase difference between omega and 2omega pulses. The phase dependence of the directional asymmetry observed in iodine ions and counterpart ions were out of phase with each other. This result shows that a phase-controlled omega+2omega optical field discriminates between parallel and antiparallel configurations of aligned molecules that have a permanent dipole. This method performed well because (1) molecular orientation can be achieved by all-optical fields; (2) the direction of orientation is easily switched by changing the sign of the quantum interference; and (3) this method is free from any resonance constraint and thus can be applied to any molecule.

  2. Enhanced sensitivity in H photofragment detection by two-color reduced-Doppler ion imaging

    NASA Astrophysics Data System (ADS)

    Epshtein, Michael; Portnov, Alexander; Kupfer, Rotem; Rosenwaks, Salman; Bar, Ilana

    2013-11-01

    Two-color reduced-Doppler (TCRD) and one-color velocity map imaging (VMI) were used for probing H atom photofragments resulting from the ˜243.1 nm photodissociation of pyrrole. The velocity components of the H photofragments were probed by employing two counterpropagating beams at close and fixed wavelengths of 243.15 and 243.12 nm in TCRD and a single beam at ˜243.1 nm, scanned across the Doppler profile in VMI. The TCRD imaging enabled probing of the entire velocity distribution in a single pulse, resulting in enhanced ionization efficiency, as well as improved sensitivity and signal-to-noise ratio. These advantages were utilized for studying the pyrrole photodissociation at ˜243.1 and 225 nm, where the latter wavelength provided only a slight increase in the H yield over the self-signal from the probe beams. The TCRD imaging enabled obtaining high quality H+ images, even for the low H photofragment yields formed in the 225 nm photolysis process, and allowed determining the velocity distributions and anisotropy parameters and getting insight into pyrrole photodissociation.

  3. Enhanced sensitivity in H photofragment detection by two-color reduced-Doppler ion imaging.

    PubMed

    Epshtein, Michael; Portnov, Alexander; Kupfer, Rotem; Rosenwaks, Salman; Bar, Ilana

    2013-11-14

    Two-color reduced-Doppler (TCRD) and one-color velocity map imaging (VMI) were used for probing H atom photofragments resulting from the ~243.1 nm photodissociation of pyrrole. The velocity components of the H photofragments were probed by employing two counterpropagating beams at close and fixed wavelengths of 243.15 and 243.12 nm in TCRD and a single beam at ~243.1 nm, scanned across the Doppler profile in VMI. The TCRD imaging enabled probing of the entire velocity distribution in a single pulse, resulting in enhanced ionization efficiency, as well as improved sensitivity and signal-to-noise ratio. These advantages were utilized for studying the pyrrole photodissociation at ~243.1 and 225 nm, where the latter wavelength provided only a slight increase in the H yield over the self-signal from the probe beams. The TCRD imaging enabled obtaining high quality H(+) images, even for the low H photofragment yields formed in the 225 nm photolysis process, and allowed determining the velocity distributions and anisotropy parameters and getting insight into pyrrole photodissociation. PMID:24320267

  4. Two-color excitation system for fluorescence detection in DNA sequencing by capillary array electrophoresis.

    PubMed

    Xue, Gang; Yeung, Edward S

    2002-05-01

    Two computer-controlled galvanometer scanners are adapted for two-dimensional step scanning across a 96-capillary array for laser-induced fluorescence detection. 488 nm and 514 nm laser lines from the same Ar(+) laser were alternately coupled for two-color excitation in each capillary. The signal at a single photomultiplier tube is temporally sorted to distinguish among the capillaries and the excitation wavelengths. Based on the differences in absorption spectra for the dyes, the peak-height ratios in the 488 nm and 514 nm excitation electropherograms were used for peak identification for multiplexed capillary electrophoresis. Successful base calling for 24-capillary DNA sequencing was achieved to 450 bp with 99% accuracy. Advantages include the efficient utilization of light due to the high duty-cycle of step scan, good detection performance due to the reduction of stray light, ruggedness due to the small mass of the galvanometer mirror, low cost due to the simplicity of components and flexibility due to the independent paths for excitation and emission. PMID:12116160

  5. Bias Selective Operation of Sb-Based Two-Color Photodetectors

    NASA Technical Reports Server (NTRS)

    Abedin, M. N.; Refaat, Tamer F.; Bhat, Ishwara B.; Xiao, Yegao; Johnson, David G.

    2006-01-01

    Multicolor detectors have a strong potential to replace conventional single-color detectors in application dealing with the simultaneous detection of more than one wavelength. This will lead to the reduction of heavy and complex optical components now required for spectral discrimination for multi-wavelengths applications. This multicolor technology is simpler, lighter, compact and cheaper with respect to the single-color ones. In this paper, Sb-based two-color detectors fabrication and characterization are presented. The color separation is achieved by fabricating dual band pn junction on a GaSb substrate. The first band consists of an InGaAsSb pn junction for long wavelength detection, while the second band consists of a GaSb pn junction for shorter wavelength detection. Three metal contacts were deposited to access the individual junctions. Surface morphology of multi-layer thin films and also device characteristics of quasi-dual band photodetector were characterized using standard optical microscope and electro-optic techniques respectively. Dark current measurements illustrated the diode behavior of both lattice-matched detector bands. Spectral response measurements indicated either independent operation of both detectors simultaneously, or selective operation of one detector, by the polarity of the bias voltage, while serially accessing both devices.

  6. INFRARED TWO-COLOR DIAGRAMS FOR AGB STARS, POST-AGB STARS, AND PLANETARY NEBULAE

    SciTech Connect

    Suh, Kyung-Won

    2015-08-01

    We present various infrared two-color diagrams (2CDs) for asymptotic giant branch (AGB) stars, post-AGB stars, and Planetary Nebulae (PNe) and investigate possible evolutionary tracks. We use catalogs from the available literature for the sample of 4903 AGB stars (3373 O-rich; 1168 C-rich; 362 S-type), 660 post-AGB stars (326 post-AGB; 334 pre-PN), and 1510 PNe in our Galaxy. For each object in the catalog, we cross-identify the IRAS, AKARI, Midcourse Space Experiment, and 2MASS counterparts. The IR 2CDs can provide useful information about the structure and evolution of the dust envelopes as well as the central stars. To find possible evolutionary tracks from AGB stars to PNe on the 2CDs, we investigate spectral evolution of post-AGB stars by making simple but reasonable assumptions on the evolution of the central star and dust shell. We perform radiative transfer model calculations for the detached dust shells around evolving central stars in the post-AGB phase. We find that the theoretical dust shell model tracks using dust opacity functions of amorphous silicate and amorphous carbon roughly coincide with the densely populated observed points of AGB stars, post-AGB stars, and PNe on various IR 2CDs. Even though some discrepancies are inevitable, the end points of the theoretical post-AGB model tracks generally converge in the region of the observed points of PNe on most 2CDs.

  7. Laser-induced plasmas in air studied using two-color interferometry

    NASA Astrophysics Data System (ADS)

    Yang, Zefeng; Wu, Jian; Wei, Wenfu; Li, Xingwen; Han, Jiaxun; Jia, Shenli; Qiu, Aici

    2016-08-01

    Temporally and spatially resolved density profiles of Cu atoms, electrons, and compressed air, from laser-induced copper plasmas in air, are measured using fast spectral imaging and two-color interferometry. From the intensified CCD images filtered by a narrow-band-pass filter centered at 515.32 nm, the Cu atoms expansion route is estimated and used to determine the position of the fracture surface between the Cu atoms and the air. Results indicate that the Cu atoms density at distances closer to the target (0-0.4 mm) is quite low, with the maximum density appearing at the edge of the plasma's core being ˜4.6 × 1024 m-3 at 304 ns. The free electrons are mainly located in the internal region of the plume, which is supposed to have a higher temperature. The density of the shock wave is (4-6) × 1025 m-3, corresponding to air compression of a factor of 1.7-2.5.

  8. Gradient effects on two-color soot optical pyrometry in a heavy-duty DI diesel engine

    SciTech Connect

    Musculus, Mark P.B.; Singh, Satbir; Reitz, Rolf D.

    2008-04-15

    Two-color soot optical pyrometry is a widely used technique for measuring soot temperature and volume fraction in many practical combustion devices, but line-of-sight soot temperature and volume fraction gradients can introduce significant uncertainties in the measurements. For diesel engines, these uncertainties usually can only be estimated based on assumptions about the soot property gradients along the line of sight, because full three-dimensional transient diesel soot distribution data are not available. Such information is available, however, from multidimensional computer model simulations, which are phenomenologically based, and have been validated against available in-cylinder soot measurements and diesel engine exhaust soot emissions. Using the model-predicted in-cylinder soot distributions, uncertainties in diesel two-color pyrometry data are assessed, both for a conventional high-sooting, high-temperature combustion (HTC) operating condition, and for a low-sooting, low-temperature combustion (LTC) condition. The simulation results confirm that the two-color soot measurements are strongly biased toward the properties of the hot soot. For the HTC condition, line-of-sight gradients in soot temperature span 600 K, causing relatively large errors. The two-color temperature is 200 K higher than the soot-mass-averaged value, while the two-color volume fraction is 50% lower. For the LTC condition, the two-color measurement errors are half as large as for the HTC condition, because the model-predicted soot temperature gradients along the line of sight are half as large. By contrast, soot temperature and volume fraction gradients across the field of view introduce much smaller errors of less than 50 K in temperature and 20% in volume fraction. (author)

  9. Low-Latitude Auroras: The Magnetic Storm of 14-15 May 1921

    NASA Technical Reports Server (NTRS)

    Silverman, S. M.; Cliver, E. W.

    2001-01-01

    We review solar geophysical data relating to the great magnetic storm of 14-15 May 1921, with emphasis on observations of the low-latitude visual aurora. From the reports we have gathered for this event the lowest geomagnetic latitude of definite overhead aurora (coronal form) was 40 deg and the lowest geomagnetic latitude from which auroras were observed on the poleward horizon in the northern hemisphere was 30 deg. For comparison, corresponding overhead/low-latitude values of 48 deg/32 deg and 41 deg/20 deg were reported for the great auroras on 28-29 August and 1-2 September 1859, respectively. However for the 1921 event, there is a report of aurora from Apia, Samoa, in the southern hemisphere, within 13 deg of the geomagnetic equator. This report by professional observers appears to be credible, based on the aurora description and timing, but is puzzling because of the discrepancy with the lowest latitude of observation in the northern hemisphere and the great implied aurora height (approximately 2000 km, assuming overhead aurora at Auckland, New Zealand). We discuss various possibilities that might account for this observation.

  10. Human platelets produce 14,15-oxido-5,8,11-eicosatrienoic acid from phosphatidylinositol

    SciTech Connect

    Ballou, L.R.; Lam, B.K.; Wong, P.Y.K.; Cheung, W.Y.

    1987-05-01

    Human platelets contain a soluble enzyme or enzyme system which catalyzes the formation of a compound more polar than arachidonate from 2-arachidonyl-sn-phosphatidylinositol (PtdIns). The C-value and mass spectrum of the compound appears similar to the reported values of 14,15-oxido-5,8,11-eicosatrienoic acid (EET). 2-Arachidonyl-sn-phosphatidylcholine, 2-arachidonyl-sn-phosphatidylethanolamine and arachidonic acid were not substrates for EET production. The reaction was Ca/sup 2 +/-dependent and insensitive to aspirin, mepacrin and indomethacin. EET formation was greatly reduced under nitrogen or carbon monoxide, however, exposure to atmospheric air rapidly restored EET production to a rate comparable to that under air. Further, neither NADPH nor cyanide affected EET formation, suggesting that a cytochrome P-450 system was not involved. Intact platelets prelabeled with (/sup 14/C)arachidonic acid generated at least 0.5 nmole of EET/10/sup 9/ platelets in response to thrombin; other agonists such as collagen, epinephrine, ADP or ionophore A23187 were not effective. Collectively, these data suggest that human platelets possess an enzyme system which appears to catalyze epoxidation of the arachidonyl moiety of PtdIns and its subsequent hydrolysis to yield EET.

  11. 40 CFR 721.10284 - Poly[oxy(methyl-1,2-ethanediyl)], .alpha.-sulfo-.omega.-hydroxy-, C14-15-branched and linear...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-, C14-15-branched and linear alkyl ethers, sodium salts. 721.10284 Section 721.10284 Protection of...-.omega.-hydroxy-, C14-15-branched and linear alkyl ethers, sodium salts. (a) Chemical substance and...-.omega.-hydroxy-, C14-15-branched and linear alkyl ethers, sodium salts (PMN P-10-487; CAS No....

  12. Dynamics of surface thermal expansion and diffusivity using two-color reflection transient gratings

    SciTech Connect

    Pennington, D.M.; Harris, C.B.

    1993-02-01

    We report ultrafast measurements of the dynamic thermal expansion of a surface and the temperature dependent surface thermal diffusivity using a two-color reflection transient grating technique. Studies were performed on p-type, n-type, and undoped GaAs(100) samples at several temperatures. Using a 75 fs ultraviolet probe with visible excitation beams, the electronic effects that dominate single color experiments become negligible; thus surface expansion due to heating and the subsequent contraction caused by cooling provide the dominant influence on the diffracted probe. The diffracted signal was composed of two components, thermal expansion of the surface and heat flow away from the surface, allowing the determination of the rate of expansion as well as the surface thermal diffusivity. At room temperature a signal rise due to thermal expansion was observed, corresponding to a maximum average displacement of {approx} 1 {angstrom} at 32 ps. Large fringe spacings were used, thus the dominant contributions to the signal were expansion and diffusion perpendicular to the surface. Values for the surface thermal diffusivity of GaAs were measured and found to be in reasonable agreement with bulk values above 50{degrees}K. Below 50{degrees}K, the diffusivity at the surface was more than an order of magnitude slower than in the bulk due to increased phonon boundary scattering. Comparison of the results with a straightforward thermal model yields good agreement over a range of temperatures (12--300{degrees}K). The applicability and advantages of the transient grating technique for studying photothermal and photoacoustic phenomena are discussed.

  13. Rovibronically selected and resolved two-color laser photoionization and photoelectron study of nickel carbide cation

    SciTech Connect

    Chang, Yih Chung; Shi Xiaoyu; Ng, C. Y.; Lau, Kai-Chung; Yin Qingzhu; Liou, H. T.

    2010-08-07

    We have performed a two-color laser photoionization and photoelectron study of nickel carbide (NiC) and its cation (NiC{sup +}). By preparing NiC in a single rovibronic level of an intermediate vibronic state via visible laser excitation prior to ultraviolet laser photoionization, we have measured the photoionization efficiency spectrum of NiC near its ionization threshold, covering the formation of NiC{sup +}(X {sup 2}{Sigma}{sup +};v{sup +}=0-3). We have also obtained well-resolved rotational transitions for the v{sup +}=0 and 1 vibrational bands of the NiC{sup +}(X {sup 2}{Sigma}{sup +}) ground state. The assignment of rotational transitions observed between the neutral NiC intermediate state and the NiC{sup +} ion ground state has allowed the direct determination of a highly precise value for the ionization energy of NiC, IE(NiC)=67 525.1{+-}0.5 cm{sup -1} (8.372 05{+-}0.000 06 eV). This experiment also provides reliable values for the vibrational spacing [{Delta}G(1/2)=859.5{+-}0.5 cm{sup -1}], rotational constants (B{sub e}{sup +}=0.6395{+-}0.0018 cm{sup -1} and {alpha}{sub e}{sup +}=0.0097{+-}0.0009 cm{sup -1}), and equilibrium bond distance (r{sub e}{sup +}=1.628 A) for the NiC{sup +}(X {sup 2}{Sigma}{sup +}) ground state. The experimental results presented here are valuable for benchmarking the development of more reliable ab initio quantum computation procedures for energetic and spectroscopic calculations of transition metal-containing molecules.

  14. Two-photon excitation STED microscopy in two colors in acute brain slices.

    PubMed

    Bethge, Philipp; Chéreau, Ronan; Avignone, Elena; Marsicano, Giovanni; Nägerl, U Valentin

    2013-02-19

    Many cellular structures and organelles are too small to be properly resolved by conventional light microscopy. This is particularly true for dendritic spines and glial processes, which are very small, dynamic, and embedded in dense tissue, making it difficult to image them under realistic experimental conditions. Two-photon microscopy is currently the method of choice for imaging in thick living tissue preparations, both in acute brain slices and in vivo. However, the spatial resolution of a two-photon microscope, which is limited to ~350 nm by the diffraction of light, is not sufficient for resolving many important details of neural morphology, such as the width of spine necks or thin glial processes. Recently developed superresolution approaches, such as stimulated emission depletion microscopy, have set new standards of optical resolution in imaging living tissue. However, the important goal of superresolution imaging with significant subdiffraction resolution has not yet been accomplished in acute brain slices. To overcome this limitation, we have developed a new microscope based on two-photon excitation and pulsed stimulated emission depletion microscopy, which provides unprecedented spatial resolution and excellent experimental access in acute brain slices using a long-working distance objective. The new microscope improves on the spatial resolution of a regular two-photon microscope by a factor of four to six, and it is compatible with time-lapse and simultaneous two-color superresolution imaging in living cells. We demonstrate the potential of this nanoscopy approach for brain slice physiology by imaging the morphology of dendritic spines and microglial cells well below the surface of acute brain slices.

  15. Interaction Between Two CMEs During 14 - 15 February 2011 and Their Unusual Radio Signature

    NASA Astrophysics Data System (ADS)

    Shanmugaraju, A.; Prasanna Subramanian, S.; Vrsnak, Bojan; Ibrahim, M. Syed

    2014-12-01

    We report a detailed analysis of an interaction between two coronal mass ejections (CMEs) that were observed on 14 - 15 February 2011 and the corresponding radio enhancement, which was similar to the "CME cannibalism" reported by Gopalswamy et al. ( Astrophys. J. 548, L91, 2001). A primary CME, with a mean field-of-view velocity of 669 km s-1 in the Solar and Heliospheric Observatory (SOHO)/ Large Angle Spectrometric Coronagraph (LASCO), was more than as twice as fast as the slow CME preceding it (326 km s-1), which indicates that the two CMEs interacted. A radio-enhancement signature (in the frequency range 1 MHz - 400 kHz) due to the CME interaction was analyzed and interpreted using the CME data from LASCO and from the Solar Terrestrial Relations Observatory (STEREO) HI-1, radio data from Wind/ Radio and Plasma Wave Experiment (WAVES), and employing known electron-density models and kinematic modeling. The following results are obtained: i) The CME interaction occurred around 05:00 - 10:00 UT in a height range 20 - 25 R⊙. An unusual radio signature is observed during the time of interaction in the Wind/WAVES dynamic radio spectrum. ii) The enhancement duration shows that the interaction segment might be wider than 5 R⊙. iii) The shock height estimated using density models for the radio enhancement region is 10 - 30 R⊙. iv) Using kinematic modeling and assuming a completely inelastic collision, the decrease of kinetic energy based on speeds from LASCO data is determined to be 0.77×1023 J, and 3.67×1023 J if speeds from STEREO data are considered. vi) The acceleration, momentum, and force are found to be a=-168 m s-2, I=6.1×1018 kg m s-1, and F=1.7×1015 N, respectively, using STEREO data.

  16. Hearing and loud music exposure in 14-15 years old adolescents.

    PubMed

    Serra, Mario R; Biassoni, Ester C; Hinalaf, María; Abraham, Mónica; Pavlik, Marta; Villalobo, Jorge Pérez; Curet, Carlos; Joekes, Silvia; Yacci, María R; Righetti, Andrea

    2014-01-01

    Adolescent exposure to loud music has become a social and health problem whose study demands a holistic approach. The aims of the current study are: (1) To detect early noise-induced hearing loss among adolescents and establish its relationship with their participation in musical recreational activities and (2) to determine sound immission levels in nightclubs and personal music players (PMPs). The participants consisted in 172 14-15 years old adolescents from a technical high school. Conventional and extended high frequency audiometry, transient evoked otoacoustic emissions and questionnaire on recreational habits were administered. Hearing threshold levels (HTLs) were classified as: normal (Group 1), slightly shifted (Group 2), and significantly shifted (Group 3). The musical general exposure (MGE), from participation in recreational musical activities, was categorized in low, moderate, and high exposure. The results revealed an increase of HTL in Group 2 compared with Group 1 (P < 0.01), in Group 3 compared with Group 2 (P < 0.05) only in extended high frequency range, in Group 3 compared with Group 1 (P < 0.01). Besides, a decrease in mean global amplitude, reproducibility and in frequencies amplitude in Group 2 compared with Group 1 (P < 0.05) and in Group 3 compared with Group 1 (P < 0.05). A significant difference (P < 0.05) was found in Group 1's HTL between low and high exposure, showing higher HTL in high exposure. The sound immission measured in nightclubs (107.8-112.2) dBA and PMPs (82.9-104.6) dBA revealed sound levels risky for hearing health according to exposure times. It demonstrates the need to implement preventive and hearing health promoting actions in adolescents.

  17. Hearing and loud music exposure in 14-15 years old adolescents.

    PubMed

    Serra, Mario R; Biassoni, Ester C; Hinalaf, María; Abraham, Mónica; Pavlik, Marta; Villalobo, Jorge Pérez; Curet, Carlos; Joekes, Silvia; Yacci, María R; Righetti, Andrea

    2014-01-01

    Adolescent exposure to loud music has become a social and health problem whose study demands a holistic approach. The aims of the current study are: (1) To detect early noise-induced hearing loss among adolescents and establish its relationship with their participation in musical recreational activities and (2) to determine sound immission levels in nightclubs and personal music players (PMPs). The participants consisted in 172 14-15 years old adolescents from a technical high school. Conventional and extended high frequency audiometry, transient evoked otoacoustic emissions and questionnaire on recreational habits were administered. Hearing threshold levels (HTLs) were classified as: normal (Group 1), slightly shifted (Group 2), and significantly shifted (Group 3). The musical general exposure (MGE), from participation in recreational musical activities, was categorized in low, moderate, and high exposure. The results revealed an increase of HTL in Group 2 compared with Group 1 (P < 0.01), in Group 3 compared with Group 2 (P < 0.05) only in extended high frequency range, in Group 3 compared with Group 1 (P < 0.01). Besides, a decrease in mean global amplitude, reproducibility and in frequencies amplitude in Group 2 compared with Group 1 (P < 0.05) and in Group 3 compared with Group 1 (P < 0.05). A significant difference (P < 0.05) was found in Group 1's HTL between low and high exposure, showing higher HTL in high exposure. The sound immission measured in nightclubs (107.8-112.2) dBA and PMPs (82.9-104.6) dBA revealed sound levels risky for hearing health according to exposure times. It demonstrates the need to implement preventive and hearing health promoting actions in adolescents. PMID:25209042

  18. Spectral bandwidth scaling laws and reconstruction of THz wave packets generated from two-color laser plasma filaments

    NASA Astrophysics Data System (ADS)

    Koulouklidis, A. D.; Fedorov, V. Yu.; Tzortzakis, S.

    2016-03-01

    We find the spectral bandwidth scaling laws of the THz wave packets, produced from two-color laser filaments, as a function of the input laser-pulse duration and demonstrate how one can fully recover the original broadband THz wave packets even using narrow-band detection techniques such as the widespread electro-optic sampling.

  19. Countermeasure effectiveness against a man-portable air-defense system containing a two-color spinscan infrared seeker

    NASA Astrophysics Data System (ADS)

    Jackman, James; Richardson, Mark; Butters, Brian; Walmsley, Roy

    2011-12-01

    Man-portable air-defense (MANPAD) systems have developed sophisticated counter-countermeasures (CCM) to try and defeat any expendable countermeasure that is deployed by an aircraft. One of these is a seeker that is able to detect in two different parts of the electromagnetic spectrum. Termed two-color, the seeker can compare the emissions from the target and a countermeasure in different wavebands and reject the countermeasure. In this paper we describe the modeling process of a two-color infrared seeker using COUNTERSIM, a missile engagement and countermeasure software simulation tool. First, the simulations model a MANPAD with a two-color CCM which is fired against a fast jet model and a transport aircraft model releasing reactive countermeasures. This is then compared to when the aircraft releases countermeasures throughout an engagement up to the hit point to investigate the optimum flare firing time. The results show that the release time of expendable decoys as a countermeasure against a MANPAD with a two-color CCM is critical.

  20. Micronized-Coal Burner Facility

    NASA Technical Reports Server (NTRS)

    Calfo, F. D.; Lupton, M. W.

    1986-01-01

    Micronized-coal (coal-in-oil mix) burner facility developed to fulfill need to generate erosion/corrosion data on series of superalloy specimens. In order to successfully operate gas turbine using COM, two primary conditions must be met. First, there must be adequate atomization of COM and second, minimization of coking of burner. Meeting these conditions will be achieved only by clean burning and flame stability.

  1. Rovibronically selected and resolved two-color laser photoionization and photoelectron study of cobalt carbide cation

    NASA Astrophysics Data System (ADS)

    Huang, Huang; Chang, Yih Chung; Luo, Zhihong; Shi, Xiaoyu; Lam, Chow-Shing; Lau, Kai-Chung; Ng, C. Y.

    2013-03-01

    We have conducted a two-color visible-ultraviolet (VIS-UV) resonance-enhanced laser photoionization efficiency and pulsed field ionization-photoelectron (PFI-PE) study of gaseous cobalt carbide (CoC) near its ionization onset in the total energy range of 61 200-64 510 cm-1. The cold gaseous CoC sample was prepared by a laser ablation supersonically cooled beam source. By exciting CoC molecules thus generated to single N' rotational levels of the intermediate CoC*(2Σ+; v') state using a VIS dye laser prior to UV laser photoionization, we have obtained N+ rotationally resolved PFI-PE spectra for the CoC+(X1Σ+; v+ = 0 and 1) ion vibrational bands free from interference by impurity species except Co atoms produced in the ablation source. The rotationally selected and resolved PFI-PE spectra have made possible unambiguous rotational assignments, yielding accurate values for the adiabatic ionization energy of CoC(X2Σ+), IE(CoC) = 62 384.3 ± 0.6 cm-1 (7.73467 ± 0.00007 eV), the vibrational frequency ωe+ = 985.6 ± 0.6 cm-1, the anharmonicity constant ωe+χe+ = 6.3 ± 0.6 cm-1, the rotational constants (Be+ = 0.7196 ± 0.0005 cm-1, αe+ = 0.0056 ± 0.0008 cm-1), and the equilibrium bond length re+ = 1.534 Å for CoC+(X1Σ+). The observation of the N+ = 0 level in the PFI-PE measurement indicates that the CoC+ ground state is of 1Σ+ symmetry. Large ΔN+ = N+ - N' changes up to 6 are observed for the photoionization transitions CoC+(X1Σ+; v+ = 0-2; N+) ← CoC*(2Σ+; v'; N' = 6, 7, 8, and 9). The highly precise energetic and spectroscopic data obtained in the present study have served as a benchmark for testing theoretical predictions based on state-of-the-art ab initio quantum calculations at the CCSDTQ/CBS level of theory as presented in the companion article.

  2. Two-stack two-color high-strain quantum well infrared photodetector

    NASA Astrophysics Data System (ADS)

    Tidrow, Meimei Z.; Chiang, JungChi; Li, Sheng S.; Bacher, Kenneth L.

    1997-08-01

    A very high performance two-stack, two-color, high strain (HS- ) quantum well infrared photodetector (QWIP) has been demonstrated. The sample was grown on a semi-insulating (100) GaAs by molecular beam epitaxy (MBE). It consists of two stacks of MWIR and LWIR QWIPs as the active region with a 100 nm thick highly doped contact layer grown between the two stacks. Each stack is designed to have detection in one of the two atmospheric windows, 3 - 5 micrometer (MWIR) and 8 - 12 micrometer (LWIR), respectively. The MWIR stack consists of 20 periods of 300 angstrom Al0.38Ga0.62As barrier and 24 angstrom doped In0.35Ga0.65As well sandwiched between two 5 angstrom GaAs, and the LWIR stack is composed of 20 periods of 500 angstrom Al0.27Ga0.73As barrier and 55 angstrom GaAs well. In this work, a 35% of indium has been employed in the MWIR-stack which not only shifts the peak wavelength to 4.3 micrometer, but also enhances the responsivity greatly in this wavelength band. This is due to the fact that higher indium concentration in the InGaAs QW reduces the electron effective mass and increases the intersubband absorption. Despite of the large strain induced by the high indium concentration, the device is highly uniform with very low dark current. For the MWIR stack, a peak responsivity of Rp equals 0.65 A/W and D* equals 1.9 by 1011 cm-Hz1/2/W at 4.3 micrometer, 3 V bias, and 77 K were obtained, while for the LWIR stack, Rp equals 0.55 A/W and D* equals 2.7 by 1010 cm-Hz1/2/W at 9.4 micrometer, 2 V bias, and 77 K were obtained using 45 degree light coupling. Normal incidence without grating coupling also has high responsivity with about 50% for the MWIR stack and 40% for the LWIR stack respectively, compared with the 45 degree incidence coupling. The BLIP temperature was found to be 125 K for the MWIR stack with cutoff wavelength of lambdac equals 4.6 micrometer and 70 K for the LWIR stack with (lambda) c equals 10 micrometer.

  3. High Energy 2-micron Laser Developments

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Trieu, Bo C.; Petros, Mulugeta; Bai, Yingxin; Petzar, Paul J.; Koch, Grady J.; Singh, Upendra N.; Kavaya, Michael J.

    2007-01-01

    This viewgraph presentation shows the development of 2-micron solid state lasers. The topics covered include: 1) Overview 2-micron solid state lasers; 2) Modeling and population inversion measurement; 3) Side pump oscillator; and 4) One Joule 2-m Laser.

  4. Two-color, rolling-circle amplification on antibody microarrays for sensitive, multiplexed serum-protein measurements.

    PubMed

    Zhou, Heping; Bouwman, Kerri; Schotanus, Mark; Verweij, Cornelius; Marrero, Jorge A; Dillon, Deborah; Costa, Jose; Lizardi, Paul; Haab, Brian B

    2004-01-01

    The ability to conveniently and rapidly profile a diverse set of proteins has valuable applications. In a step toward further enabling such a capability, we developed the use of rolling-circle amplification (RCA) to measure the relative levels of proteins from two serum samples, labeled with biotin and digoxigenin, respectively, that have been captured on antibody microarrays. Two-color RCA produced fluorescence up to 30-fold higher than direct-labeling and indirect-detection methods using antibody microarrays prepared on both polyacrylamide-based hydrogels and nitrocellulose. Replicate RCA measurements of multiple proteins from sets of 24 serum samples were highly reproducible and accurate. In addition, RCA enabled reproducible measurements of distinct expression profiles from lower-abundance proteins that were not measurable using the other detection methods. Two-color RCA on antibody microarrays should allow the convenient acquisition of expression profiles from a great diversity of proteins for a variety of applications.

  5. Two-color resonantly enhanced multiphoton ionization and zero-kinetic-energy photoelectron spectroscopy of jet-cooled indan

    NASA Astrophysics Data System (ADS)

    He, Yonggang; Kong, Wei

    2005-06-01

    We report studies of supersonically cooled indan using two-color resonantly enhanced multiphoton ionization and two-color zero-kinetic-energy photoelectron spectroscopy. With the aid of ab initio and density-functional calculations, vibrational modes of the first electronically excited state of the neutral species and those of the cation have been assigned, and the adiabatic ionization energy has been determined to be 68458±5cm-1. Similar to the ground state and the first electronically excited state of the neutral molecule, the ground state of the cation is also proven to be nonplanar, with an estimated barrier of 213cm-1 and a puckering angle of 15.0°. These conclusions will be discussed in comparison with a previous study of an indan derivative 1,3-benzodioxole.

  6. Parity-selective enhancement of field-free molecular orientation in an intense two-color laser field

    SciTech Connect

    Yun, Hyeok; Nam, Chang Hee; Kim, Hyung Taek; Kim, Chul Min; Lee, Jongmin

    2011-12-15

    We investigated the characteristics of molecular orientation induced by a nonresonant two-color femtosecond laser field. By analyzing the rotational dynamics of asymmetric linear molecules, we revealed that the critical parameter in characterizing the molecular orientation was the hyperpolarizability of molecules that selected the excitation paths of rotational states between parity-changing and parity-conserving transitions. Especially, in the case of molecules with small hyperpolarizability, a significant enhancement of orientation was achieved at the half-rotational period, instead of the full-rotational period. This deeper understanding of the hyperpolarizability-dependent characteristics of molecular orientation in a two-color scheme can provide an effective method to achieve significantly enhanced field-free orientation for various polar molecules.

  7. Ionization in orthogonal two-color laser fields: Origin and phase dependences of trajectory-resolved Coulomb effects

    NASA Astrophysics Data System (ADS)

    Richter, Martin; Kunitski, Maksim; Schöffler, Markus; Jahnke, Till; Schmidt, Lothar Ph. H.; Dörner, Reinhard

    2016-09-01

    We report on electron momentum distributions from single ionization of Ar in strong orthogonally polarized two-color (OTC) laser fields measured with the COLTRIMS technique. We study the effect of Coulomb focusing whose signature is a cusplike feature in the center of the electron momentum spectrum. While the direct electrons show the expected strong dependence on the phase between the two colors, surprisingly the Coulomb-focused structure is almost not influenced by the weak second harmonic streaking field. This effect is explained by the use of a CTMC simulation which describes the tunneled electron wave packet in terms of classical trajectories under the influence of the combined Coulomb and OTC laser field. We find a subtle interplay between the initial momentum of the electron upon tunneling, the ionization phase and the action of the Coulomb field that makes the Coulomb focused part of the momentum spectrum apparently insensitive to the weaker streaking field.

  8. Saturation curves of two-color laser-induced incandescence measurements for the investigation of soot optical properties

    NASA Astrophysics Data System (ADS)

    Migliorini, F.; De Iuliis, S.; Maffi, S.; Zizak, G.

    2015-09-01

    Two-color laser-induced incandescence (LII) measurements are carried out in diffusion flames and at the exhaust of a homemade soot generator, both fueled with ethylene and methane. Two-color prompt LII signals, their ratio and the corresponding temperature have been analyzed as a function of laser fluence. In particular, the effect of fuel, soot load and gas/particle initial temperature on LII measurements have been investigated. LII spectral measurements have also been performed in all conditions for validation. The results suggest that the incandescence is sensitive to both optical and non-optical physical properties of the particles. Moreover, soot volume fraction measurements are dependent on the laser fluence used, indicating that the soot temperature influences the refractive index absorption function. Such issues can be overcome by working at high laser fluences, where the saturation curves are independent from the experimental conditions if the soot absorption function near soot sublimation threshold is known.

  9. Coherent control of the dissociation probability of H2+ in ω-3ω two-color fields

    NASA Astrophysics Data System (ADS)

    Xu, Han; Hu, Hongtao; Tong, Xiao-Min; Liu, Peng; Li, Ruxin; Sang, Robert T.; Litvinyuk, Igor V.

    2016-06-01

    We demonstrate that the coherent control of unimolecular reactions by using a waveform-controlled laser fields can lead to a strong modulation on the yield of the reaction. By using a synthesized ω (1800-nm) and 3ω (600-nm) two-color laser field, the probability of photodissociation of H2+ can be strongly modulated by varying the relative phase between the two colors. The dissociation probability maximizes at different relative phases for protons with different kinetic energy, and such energy dependence can also be qualitatively reproduced by our simulation. We attribute the observed dissociation probability modulation to the interference between two different dissociation pathways which start from the same electronic states and end with the same kinetic energy.

  10. Two-color, rolling-circle amplification on antibody microarrays for sensitive, multiplexed serum-protein measurements.

    PubMed

    Zhou, Heping; Bouwman, Kerri; Schotanus, Mark; Verweij, Cornelius; Marrero, Jorge A; Dillon, Deborah; Costa, Jose; Lizardi, Paul; Haab, Brian B

    2004-01-01

    The ability to conveniently and rapidly profile a diverse set of proteins has valuable applications. In a step toward further enabling such a capability, we developed the use of rolling-circle amplification (RCA) to measure the relative levels of proteins from two serum samples, labeled with biotin and digoxigenin, respectively, that have been captured on antibody microarrays. Two-color RCA produced fluorescence up to 30-fold higher than direct-labeling and indirect-detection methods using antibody microarrays prepared on both polyacrylamide-based hydrogels and nitrocellulose. Replicate RCA measurements of multiple proteins from sets of 24 serum samples were highly reproducible and accurate. In addition, RCA enabled reproducible measurements of distinct expression profiles from lower-abundance proteins that were not measurable using the other detection methods. Two-color RCA on antibody microarrays should allow the convenient acquisition of expression profiles from a great diversity of proteins for a variety of applications. PMID:15059261

  11. Accuracy of two-color pyrometry using color high-speed cameras for measurement of luminous flames

    NASA Astrophysics Data System (ADS)

    Usui, Hiroyuki; Mitsui, Kenji

    2007-01-01

    By the recent development in electronics, including new solid-state image sensors such as area CCD and C-MOS sensors and the progress of image processing techniques, new imaging radiometers have been developed which two-dimensionally acquire image data of objects moving at a high speed and under high temperature, and (graphically) present the temperature distribution over the object immediately. We successfully measured the temperature distribution and the term KL distribution, which is the absorption strength of combustion in diesel engine cylinders or other luminous flames taking place at a high speed, using single-sensor color high-speed cameras and applying two-color pyrometry introduced by H. C. Hottel and F. P. Btoughton. The measurement accuracy depends on the accuracy of color reproducibility of the high-speed camera being used which is considered a brightness pyrometer, because two-color pyrometry for measuring luminous flames is based on the brightness temperature at two wavelength bands such as red and green. In this paper, we present a method of maintaining the accuracy of measurement using a high-speed camera as a brightness pyrometer and of two-color pyrometry that was developed based on it.

  12. Unified Total Synthesis of Five Gelsedine-Type Alkaloids: (-)-Gelsenicine, (-)-Gelsedine, (-)-Gelsedilam, (-)-14-Hydroxygelsenicine, and (-)-14,15-Dihydroxygelsenicine.

    PubMed

    Harada, Takaaki; Shimokawa, Jun; Fukuyama, Tohru

    2016-09-16

    The systematic arrangement of a two-carbon unit, hydrogen atom, and oxygen atom on the versatile enal moiety of a non-natural synthetic intermediate successfully led to the unified access to the gelsedine-type alkaloids. The development and use of this new synthetic hub and an array of site-selective transformations resulted in the asymmetric synthesis of (-)-gelsenicine, (-)-gelsedine, (-)-gelsedilam, (-)-14-hydroxygelsenicine, and (-)-14,15-dihydroxygelsenicine. PMID:27580209

  13. Micron-focused ion beamlets

    NASA Astrophysics Data System (ADS)

    Chowdhury, Abhishek; Bhattacharjee, Sudeep

    2010-05-01

    A multiple beam electrode system (MBES) is used to provide focused ion beamlets of elements from a compact microwave plasma. In this study, a honeycomb patterned plasma electrode with micron size apertures for extracting ion beamlets is investigated. The performance of the MBES is evaluated with the help of two widely adopted and commercially available beam simulation tools, AXCEL-INP and SIMION, where the input parameters are obtained from our experiments. A simple theoretical model based upon electrostatic ray optics is employed to compare the results of the simulations. It is found that the results for the beam focal length agree reasonably well. Different geometries are used to optimize the beam spot size and a beam spot ˜5-10 μm is obtained. The multiple ion beamlets will be used to produce microfunctional surfaces on soft matter like polymers. Additionally, the experimental set-up and plans are presented in the light of above applications.

  14. Spectroscopy of the 3 micron emission features

    NASA Technical Reports Server (NTRS)

    Geballe, T. R.; Lacy, J. H.; Persson, S. E.; Mcgregor, P. J.; Soifer, B. T.

    1985-01-01

    High-spectral-resolution observations of the 3.3 and 3.4 microns features in the three planetary nebulae NGC 7027, IC 418, and BD +30 deg 3639, in the H II region S106, and in the 'red rectangle' HD 44179 are presented. The profile of the unidentified 3.3 microns emission feature is similar in all five sources. The unidentified feature previously referred to as the 3.4 microns feature actually consists of two components, a low-level emission from 3.35 to 3.60 microns and a narrow emission peak at 3.40 microns. The strength of the latter feature relative to that of the 3.3 microns feature varies by a a factor of three from source to source. The origin and properties of these features may be explained by further development of the small-grain models of Sellgren (1984) and Leger and Puget (1984).

  15. Multi-terminal Two-color ZnCdSe/ZnCdMgSe Based Quantum-well Infrared Photodetector

    NASA Astrophysics Data System (ADS)

    Kaya, Yasin; Ravikumar, Arvind; Chen, Guopeng; Tamargo, Maria C.; Shen, Aidong; Gmachl, Claire

    Target recognition and identification applications benefits from two-color infrared (IR) detectors in the mid and long-wavelength IR regions. Currently, InGaAs/AlGaAs and GaAs/AlGaAs multiple quantum wells (QWs) grown on GaAs substrate are the most commonly used two-color QW IR photodetectors (QWIPs). However, the lattice-mismatch and the buildup of strain limit the number of QWs that can be grown, in turn increasing the dark current noise, and limiting the device detectivity.In this work, we report on two-color QWIPs based on the large conduction band offset (~1.12ev) ZnCdSe/ZnCdMgSe material system lattice matched to InP. QWIPs were designed based on a bound to quasi-bound transition, centered at 4 μm and 7 μm and each QW is repeated 50 times to eliminate the high dark current and a contact layer is inserted between the two stacks of QWs for independent electrical contacts. Wafers are processed into two step rectangular mesas by lithography and wet etching. Experiments showed absorption spectra centered at 4.9 μm and 7.6 μm at 80 K and the full width at half maximums were Δλ / λ = 21 % and Δλ / λ = 23 % , respectively. Current work studies the Johnson and the background noise limited detectivities of these QWIPs. Current address: School of Earth, Energy and Environmental Sciences, Stanford, CA 94305, USA.

  16. Coherent control of D2/H2 dissociative ionization by a mid-infrared two-color laser field

    NASA Astrophysics Data System (ADS)

    Wanie, Vincent; Ibrahim, Heide; Beaulieu, Samuel; Thiré, Nicolas; Schmidt, Bruno E.; Deng, Yunpei; Alnaser, Ali S.; Litvinyuk, Igor V.; Tong, Xiao-Min; Légaré, François

    2016-01-01

    Steering the electrons during an ultrafast photo-induced process in a molecule influences the chemical behavior of the system, opening the door to the control of photochemical reactions and photobiological processes. Electrons can be efficiently localized using a strong laser field with a well-designed temporal shape of the electric component. Consequently, many experiments have been performed with laser sources in the near-infrared region (800 nm) in the interest of studying and enhancing the electron localization. However, due to its limited accessibility, the mid-infrared (MIR) range has barely been investigated, although it allows to efficiently control small molecules and even more complex systems. To push further the manipulation of basic chemical mechanisms, we used a MIR two-color (1800 and 900 nm) laser field to ionize H2 and D2 molecules and to steer the remaining electron during the photo-induced dissociation. The study of this prototype reaction led to the simultaneous control of four fragmentation channels. The results are well reproduced by a theoretical model solving the time-dependent Schrödinger equation for the molecular ion, identifying the involved dissociation mechanisms. By varying the relative phase between the two colors, asymmetries (i.e., electron localization selectivity) of up to 65% were obtained, corresponding to enhanced or equivalent levels of control compared to previous experiments. Experimentally easier to implement, the use of a two-color laser field leads to a better electron localization than carrier-envelope phase stabilized pulses and applying the technique in the MIR range reveals more dissociation channels than at 800 nm.

  17. Studies of 4-CHLORO-2-FLUOROANISOLE by Two-Color Resonant Two-Photon Mass-Analyzed Threshold Ionization Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wu, Pei-Ying; Tzeng, Wen-Bih

    2016-06-01

    We applied the two-color resonant two-photon mass analyzed threshold ionization technique to record the cation spectra of 4-chloro-2-fluoroanisole by ionizing via five intermediate vibronic levels. The excitation and adiabatic ionization energies were determined to be 35 227, and 67 218 wn, respectively. Spectral analysis and theoretical calculation suggest that the geometry of the aromatic ring of the neutral species in the S1 state is non-planar, but that of the cation in the D0 state is planar.

  18. Observations of strain accumulation across the San Andreas fault near Palmdale, California, with a two-color geodimeter

    USGS Publications Warehouse

    Langbein, J.O.; Linker, M.F.; McGarr, A.; Slater, L.E.

    1982-01-01

    Two-color laser ranging measurements during a 15-month period over a geodetic network spanning the San Andreas fault near Palmdale, California, indicate that the crust expands and contracts aseismically in episodes as short as 2 weeks. Shear strain parallel to the fault has accumulated monotonically since November 1980, but at a variable rate. Improvements in measurement precision and temporal resolution over those of previous geodetic studies near Palmdale have resulted in the definition of a time history of crustal deformation that is much more complex than formerly realized. Copyright ?? 1982 AAAS.

  19. A Two Colorable Fourth Order Compact Difference Scheme and Parallel Iterative Solution of the 3D Convection Diffusion Equation

    NASA Technical Reports Server (NTRS)

    Zhang, Jun; Ge, Lixin; Kouatchou, Jules

    2000-01-01

    A new fourth order compact difference scheme for the three dimensional convection diffusion equation with variable coefficients is presented. The novelty of this new difference scheme is that it Only requires 15 grid points and that it can be decoupled with two colors. The entire computational grid can be updated in two parallel subsweeps with the Gauss-Seidel type iterative method. This is compared with the known 19 point fourth order compact differenCe scheme which requires four colors to decouple the computational grid. Numerical results, with multigrid methods implemented on a shared memory parallel computer, are presented to compare the 15 point and the 19 point fourth order compact schemes.

  20. Enhanced high-order-harmonic generation and wave mixing via two-color multiphoton excitation of atoms and molecules

    NASA Astrophysics Data System (ADS)

    Avetissian, H. K.; Avchyan, B. R.; Mkrtchian, G. F.

    2016-07-01

    We consider harmonics generation and wave mixing by two-color multiphoton resonant excitation of three-level atoms and molecules in strong laser fields. The coherent part of the spectra corresponding to multicolor harmonics generation is investigated. The obtained analytical results on the basis of a generalized rotating wave approximation are in a good agreement with numerical calculations. The results applied to the hydrogen atoms and homonuclear diatomic molecular ions show that one can achieve efficient generation of moderately high multicolor harmonics via multiphoton resonant excitation by appropriate laser pulses.

  1. Two color laser fields for studying the Cooper minimum with phase-matched high-order harmonic generation

    SciTech Connect

    Ba Dinh, Khuong Vu Le, Hoang; Hannaford, Peter; Van Dao, Lap

    2014-05-28

    We experimentally study the observation of the Cooper minimum in a semi-infinite argon-filled gas cell using two-color laser fields at wavelengths of 1400 nm and 800 nm. The experimental results show that the additional 800 nm field can change the macroscopic phase-matching condition through change of the atomic dipole phase associated with the electron in the continuum state and that this approach can be used to control the appearance of the Cooper minimum in the high-order harmonic spectrum in order to study the electronic structure of atoms and molecules.

  2. Terahertz radiation driven by two-color laser pulses at near-relativistic intensities: Competition between photoionization and wakefield effects

    NASA Astrophysics Data System (ADS)

    González de Alaiza Martínez, P.; Davoine, X.; Debayle, A.; Gremillet, L.; Bergé, L.

    2016-06-01

    We numerically investigate terahertz (THz) pulse generation by linearly-polarized, two-color femtosecond laser pulses in highly-ionized argon. Major processes consist of tunneling photoionization and ponderomotive forces associated with transverse and longitudinal field excitations. By means of two-dimensional particle-in-cell (PIC) simulations, we reveal the importance of photocurrent mechanisms besides transverse and longitudinal plasma waves for laser intensities >1015 W/cm2. We demonstrate the following. (i) With two-color pulses, photoionization prevails in the generation of GV/m THz fields up to 1017 W/cm2 laser intensities and suddenly loses efficiency near the relativistic threshold, as the outermost electron shell of ionized Ar atoms has been fully depleted. (ii) PIC results can be explained by a one-dimensional Maxwell-fluid model and its semi-analytical solutions, offering the first unified description of the main THz sources created in plasmas. (iii) The THz power emitted outside the plasma channel mostly originates from the transverse currents.

  3. Terahertz radiation driven by two-color laser pulses at near-relativistic intensities: Competition between photoionization and wakefield effects.

    PubMed

    González de Alaiza Martínez, P; Davoine, X; Debayle, A; Gremillet, L; Bergé, L

    2016-01-01

    We numerically investigate terahertz (THz) pulse generation by linearly-polarized, two-color femtosecond laser pulses in highly-ionized argon. Major processes consist of tunneling photoionization and ponderomotive forces associated with transverse and longitudinal field excitations. By means of two-dimensional particle-in-cell (PIC) simulations, we reveal the importance of photocurrent mechanisms besides transverse and longitudinal plasma waves for laser intensities >10(15) W/cm(2). We demonstrate the following. (i) With two-color pulses, photoionization prevails in the generation of GV/m THz fields up to 10(17) W/cm(2) laser intensities and suddenly loses efficiency near the relativistic threshold, as the outermost electron shell of ionized Ar atoms has been fully depleted. (ii) PIC results can be explained by a one-dimensional Maxwell-fluid model and its semi-analytical solutions, offering the first unified description of the main THz sources created in plasmas. (iii) The THz power emitted outside the plasma channel mostly originates from the transverse currents. PMID:27255689

  4. High-order harmonic generation of N2 molecule in two-color circularly polarized laser fields

    NASA Astrophysics Data System (ADS)

    Hui, Du; Jun, Zhang; Shuai, Ben; Hui-Ying, Zhong; Tong-Tong, Xu; Jing, Guo; Xue-Shen, Liu

    2016-04-01

    The generation of high-order harmonics and the attosecond pulse of the N2 molecule in two-color circularly polarized laser fields are investigated by the strong-field Lewenstein model. We show that the plateau of spectra is dramatically extended and a continuous harmonic spectrum with the bandwidth of 113 eV is obtained. When a static field is added to the x direction, the quantum path control is realized and a supercontinuum spectrum can be obtained, which is beneficial to obtain a shorter attosecond pulse. The underlying physical mechanism is well explained by the time–frequency analysis and the semi-classical three-step model with a finite initial transverse velocity. By superposing several orders of harmonics in the combination of two-color circularly polarized laser fields and a static field, an isolated attosecond pulse with a duration of 30 as can be generated. Project supported by the National Natural Science Foundation of China (Grant Nos. 61575077, 11271158, and 11574117).

  5. Formation of 85Rb2 ultracold molecules via photoassociation by two-color laser fields modulating the Gaussian amplitude

    NASA Astrophysics Data System (ADS)

    Huang, Yin; Zhang, Wei; Wang, Gao-Ren; Xie, Ting; Cong, Shu-Lin

    2012-10-01

    The formations of 85Rb2 molecules via photoassociation (PA) steered by two-color laser fields are explored theoretically in order to find an efficient and robust PA scheme. The PA processes steered by the PA pulses modulated by two Gaussian pulses and by two chirped pulses are discussed and compared in detail. The two pulses are coherent in the picosecond range and reach their maxima at the same time. The influences of the linear chirp rate, the frequency difference between two pulses, and the phase shift of the modulated envelope with respect to the maximum of the Gaussian envelope on the PA process are investigated. The yield of photoassociated molecules on vibrational levels with a binding energy of >1.0 cm-1 with respect to the 5S+5P1/2 dissociation limit can apparently be enhanced by choosing proper pulse parameters. Especially, the two-color laser field modulated by two chirped pulses can raise the PA efficiency on one side, and weaken the dependence of the PA process on phase shift on the other side.

  6. Theoretical study of terahertz generation from atoms and aligned molecules driven by two-color laser fields

    NASA Astrophysics Data System (ADS)

    Chen, Wenbo; Huang, Yindong; Meng, Chao; Liu, Jinlei; Zhou, Zhaoyan; Zhang, Dongwen; Yuan, Jianmin; Zhao, Zengxiu

    2015-09-01

    We study the generation of terahertz radiation from atoms and molecules driven by an ultrashort fundamental laser and its second-harmonic field by solving the time-dependent Schrödinger equation (TDSE). The comparisons between one-, two-, and three-dimensional TDSE numerical simulations show that the initial ionized wave packet and its subsequent acceleration in the laser field and rescattering with long-range Coulomb potential play key roles. We also present the dependence of the optimum phase delay and yield of terahertz radiation on the laser intensity, wavelength, duration, and ratio of two-color laser components. Terahertz wave generation from model hydrogen molecules is further investigated by comparing with high harmonic emission. It is found that the terahertz yield follows the alignment dependence of the ionization rate, while the optimal two-color phase delays vary by a small amount when the alignment angle changes from 0 to 90 degrees, which reflects the alignment dependence of attosecond electron dynamics. Finally, we show that terahertz emission might be used to clarify the origin of interference in high harmonic generation from aligned molecules by coincidentally measuring the alignment-dependent THz yields.

  7. Terahertz radiation driven by two-color laser pulses at near-relativistic intensities: Competition between photoionization and wakefield effects

    PubMed Central

    González de Alaiza Martínez, P.; Davoine, X.; Debayle, A.; Gremillet, L.; Bergé, L.

    2016-01-01

    We numerically investigate terahertz (THz) pulse generation by linearly-polarized, two-color femtosecond laser pulses in highly-ionized argon. Major processes consist of tunneling photoionization and ponderomotive forces associated with transverse and longitudinal field excitations. By means of two-dimensional particle-in-cell (PIC) simulations, we reveal the importance of photocurrent mechanisms besides transverse and longitudinal plasma waves for laser intensities >1015 W/cm2. We demonstrate the following. (i) With two-color pulses, photoionization prevails in the generation of GV/m THz fields up to 1017 W/cm2 laser intensities and suddenly loses efficiency near the relativistic threshold, as the outermost electron shell of ionized Ar atoms has been fully depleted. (ii) PIC results can be explained by a one-dimensional Maxwell-fluid model and its semi-analytical solutions, offering the first unified description of the main THz sources created in plasmas. (iii) The THz power emitted outside the plasma channel mostly originates from the transverse currents. PMID:27255689

  8. Multistabilities and symmetry-broken one-color and two-color states in closely coupled single-mode lasers

    NASA Astrophysics Data System (ADS)

    Clerkin, Eoin; O'Brien, Stephen; Amann, Andreas

    2014-03-01

    We theoretically investigate the dynamics of two mutually coupled, identical single-mode semi-conductor lasers. For small separation and large coupling between the lasers, symmetry-broken one-color states are shown to be stable. In this case the light outputs of the lasers have significantly different intensities while at the same time the lasers are locked to a single common frequency. For intermediate coupling we observe stable symmetry-broken two-color states, where both lasers lase simultaneously at two optical frequencies which are separated by up to 150 GHz. Using a five-dimensional model, we identify the bifurcation structure which is responsible for the appearance of symmetric and symmetry-broken one-color and two-color states. Several of these states give rise to multistabilities and therefore allow for the design of all-optical memory elements on the basis of two coupled single-mode lasers. The switching performance of selected designs of optical memory elements is studied numerically.

  9. Intensity dependence of nonsequential double ionization of helium in IR+XUV two-color laser fields

    NASA Astrophysics Data System (ADS)

    Jin, Facheng; Chen, Jing; Yang, Yujun; Yan, Zong-Chao; Wang, Bingbing

    2016-10-01

    By applying the frequency-domain theory, we investigate the dependence of momentum spectra on laser intensity in a nonsequential double ionization (NSDI) process of helium in infrared (IR) and extreme ultraviolet (XUV) two-color laser fields. We find that the two-color laser fields play distinct roles in an NSDI process, where the IR laser field mainly determines the width of each band, and the XUV laser field mainly plays a role on the NSDI probability. Furthermore, an NSDI process can be decoupled into a two-step process: an above-threshold ionization (ATI), followed by a laser-assisted collision (LAC). It is found that, the IR laser field is responsible for broadening the peak in the ATI process and providing additional momenta to the two ionized electrons in the LAC process; while the XUV laser field plays a crucial role on the strength of the spectrum in the ATI process, and influences the radii of orbits in momentum space in the LAC process.

  10. Terahertz radiation driven by two-color laser pulses at near-relativistic intensities: Competition between photoionization and wakefield effects.

    PubMed

    González de Alaiza Martínez, P; Davoine, X; Debayle, A; Gremillet, L; Bergé, L

    2016-06-03

    We numerically investigate terahertz (THz) pulse generation by linearly-polarized, two-color femtosecond laser pulses in highly-ionized argon. Major processes consist of tunneling photoionization and ponderomotive forces associated with transverse and longitudinal field excitations. By means of two-dimensional particle-in-cell (PIC) simulations, we reveal the importance of photocurrent mechanisms besides transverse and longitudinal plasma waves for laser intensities >10(15) W/cm(2). We demonstrate the following. (i) With two-color pulses, photoionization prevails in the generation of GV/m THz fields up to 10(17) W/cm(2) laser intensities and suddenly loses efficiency near the relativistic threshold, as the outermost electron shell of ionized Ar atoms has been fully depleted. (ii) PIC results can be explained by a one-dimensional Maxwell-fluid model and its semi-analytical solutions, offering the first unified description of the main THz sources created in plasmas. (iii) The THz power emitted outside the plasma channel mostly originates from the transverse currents.

  11. Modeling cloth at micron resolution

    NASA Astrophysics Data System (ADS)

    Bala, Kavita

    2014-02-01

    Fabric is one of the most common materials in our everyday lives, and accurately simulating the appearance of cloth is a critical problem in graphics, design, and virtual prototyping. But modeling and rendering fabric is very challenging because fabrics have a very complex structure, and this structure plays an important role in their visual appearance—cloth is made of fibers that are twisted into yarns which are woven into patterns. Light interacting with this complex structure produce the characteristic visual appearance that humans recognize as silk, cotton, or wool. In this paper we present an end-to-end pipeline to model and render fabrics: we introduce a novel modality to create volume models of fabric at micron resolution using CT technology coupled with photographs; a new technique to synthesize models of user-specified designs from such CT scans; and finally, an efficient algorithm to render these complex volumetric models for practical applications. This pipeline produces the most realistic images of virtual cloth to date, and opens the way to bridging the gap between real and virtual fabric appearance.

  12. High Energy 2-Micron Laser Developments

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Trieu, Bo C.; Petros, Mulugeta; Bai, Yingxin; Petzar, Paul J.; Koch, Grady J.; Singh, Upendra N.; Kavaya, Michael J.

    2007-01-01

    A master oscillator power amplifier, high energy Q-switched 2-micron laser system has been recently demonstrated. The laser and amplifiers are all designed in side-pumped rod configuration, pumped by back-cooled conductive packaged GaAlAs diode laser arrays. This 2-micron laser system provides nearly transform limited beam quality.

  13. One Micron Laser Technology Advancements at GSFC

    NASA Technical Reports Server (NTRS)

    Heaps, William S.

    2010-01-01

    This slide presentation reviews the advancements made in one micron laser technology at Goddard Space Flight Center. It includes information about risk factors that are being addressed by GSFC, and overviews of the various programs that GSFC is currently managing that are using 1 micron laser technology.

  14. Molecular characterization of the t(4;12)(q27~28;q14~15) chromosomal rearrangement in lipoma

    PubMed Central

    Agostini, Antonio; Gorunova, Ludmila; Bjerkehagen, Bodil; Lobmaier, Ingvild; Heim, Sverre; Panagopoulos, Ioannis

    2016-01-01

    Lipomas are common benign soft tissue tumors whose genetic and cytogenetic features are well characterized. The karyotype is usually near- or pseudodiploid with characteristic structural chromosomal aberrations. The most common rearrangements target the high mobility group AT-hook 2 (HMGA2) gene in 12q14.3, with breakpoints occurring within or outside of the gene locus leading to deregulation of HMGA2. The most common fusion partner for HMGA2 in lipoma is lipoma-preferred partner (3q27), but also other genes frequently recombine with HMGA2. Furthermore, truncated HMGA2 transcripts are recurrently observed in lipomas. The present study describes 5 lipomas carrying the translocation t(4;12)(q27~28;q14~15) as the sole chromosomal anomaly, as well as 1 lipoma in which the three-way translocation t(1;4;12)(q21;q27~28;q14~15) was identified. Molecular analyses performed on 4 of these cases detected 4 truncated forms of HMGA2. In 3 tumors, the HMGA2 truncated transcripts included sequences originating from the chromosomal sub-band 4q28.1. Notably, in 2 of these cases, the fourth exon of HMGA2 was fused to transposable elements located in 4q28.1. PMID:27588119

  15. Inline spectrometer for shot-by-shot determination of pulse energies of a two-color X-ray free-electron laser.

    PubMed

    Tamasaku, Kenji; Inubushi, Yuichi; Inoue, Ichiro; Tono, Kensuke; Yabashi, Makina; Ishikawa, Tetsuya

    2016-01-01

    An inline spectrometer has been developed to monitor shot-by-shot pulse energies of a two-color X-ray beam. A thin film of diamond allows inline operation with minimum absorption. The absolute pulse energy for each color is determined by the inline spectrometer combined with a total pulse-energy monitor. A negative correlation is found between the two-color pulse energies.

  16. THUMPER: The 200 Micron Photometer

    NASA Astrophysics Data System (ADS)

    Rinehart, S. A.; Ade, P. A. R.; Griffin, M. J.; Unger, S. J.; Gear, W. K.; Ward-Thompson, D.

    2000-05-01

    THUMPER, the Two-Hundred Micron Photometer, will be a novel new instrument for use on the JCMT and other submillimetre telescopes. Under the best atmospheric conditions at Mauna Kea, a transmission window at 200μ m opens, with atmospheric transmission better than 25% during very dry weather. THUMPER will take advantage of these conditions to take FIR high-resolution (7'') observations with sensitivites comparable to that of instruments previously flown on the Kuiper Airborne Observatory. Further, because of the steep rise in flux towards short wavelengths of thermal sources (which includes most sources of interest), THUMPER will be able to achieve the same SNR as the 450μ m array of SCUBA in a similar amount of time, with similar angular resolution, a capability not provided by any other facility. This instrument will provide powerful new data for the study of many differnt types of astronomical sources, ranging from YSOs and pre-stellar cores to evolved stars to nearby galaxies. One of the primary difficulties in studying such sources is the fact that they have temperature and density distributions which vary across the source. The submillimetre measurements of SCUBA are a powerful tool to study these sources, but these observations are not able to differentiate between temperature and density variations across sources because they do not sample the peak of the Planck function. The FIR observations of ISO and other space-based missions are of value for examination of the global spectral energy distribution, but because of the poor angular resolution of such facilities, cannot be used to separate the effects of temperature and density variations. THUMPER will provide the high-resolution measurements which are needed to differentiate between these effects, opening a valuable new window for FIR astronomy.

  17. Two-Phase Modeling of the Rings in the RXTE Two-Color Diagram of GRS 1915+105

    NASA Astrophysics Data System (ADS)

    Vilhu, Osmi; Nevalainen, Jukka

    1998-11-01

    The Galactic superluminal source GRS 1915+105 was found to experience a peculiar X-ray variability in a narrow count rate range (9300-12,100 counts s-1, 5 PCUs) of the Proportional Counter Array on board the Rossi X-Ray Timing Explorer. This can be seen as a ring-shaped pattern in the two-color diagram of count rates, where the hard hardness F(13-40 keV)/F(2-13 keV) is plotted against the soft hardness F(5-13 keV)/F(2-5 keV). The system runs one cycle with periods ranging between 50 and 100 s for different observations, one rotation in the two-color diagram corresponding to the time between two contiguous maxima in the light curve. We model this behavior successfully with the help of a self-consistent two-phase thermal model in which seed photons from an optically thick classical disk are Comptonized in a hot spherical corona surrounding the inner disk (Poutanen & Svensson; Vilhu et al.; Nevalainen et al.). In the model, changes of two parameters regulate the paths in the two-color diagram: the blackbody temperature Tin of the inner disk and the Thomson optical depth multiplied by the electron temperature of the hot phase τTe. These parameters oscillate with time but with a phase shift between each other, causing the ring-shaped pattern. During the observation studied in more detail (20402-01-30-00), the inner disk radius varied with a 97 s period between 20 and 35 km with an anticorrelation between the coronal τTe and the mass accretion rate Ṁ through the disk, possibly indicating a coupling between the disk and coronal accretion. During a typical cycle, the inner disk radius rapidly shrank and returned more slowly back to the original larger value. In the rings we may see phenomena close to the black hole horizon under near Eddington accretion rates.

  18. A Two-Color Fourier Transform Mm-Wave Spectrometer for Gas Analysis Operating from 260-295 GHZ

    NASA Astrophysics Data System (ADS)

    Steber, Amanda L.; Harris, Brent J.; Lehmann, Kevin K.; Pate, Brooks H.

    2013-06-01

    We have designed a two-color mm-wave spectrometer for Fourier transform mm-wave spectroscopy that uses consumer level components for the tunable synthesizers, digital control of the pulse modulators, and digitization of the coherent free induction decay (FID). The excitation pulses are generated using an x24 active multiplier chain (AMC) that produces a peak power of 30 mW. The microwave input to the AMC is generated in a frequency up conversion circuit that accepts a microwave input frequency from about 2-4 GHz. This circuit also generates the input to the mm-wave subhamonic mixer that creates the local oscillator from a separate 2-4 GHz microwave input. Excitation pulses at two independently tunable frequencies are generated using a dual-channel source based on a low-cost, wideband synthesizer integrated circuit (Valon Technology Model 5008). The outputs of the synthesizer are pulse modulated using a PIN diode switch that is driven using the arbitrary waveform generator (AWG) output of a USB-controlled high-speed digitizer / arbitrary waveform generator combination unit (Tie Pie HS-5 530 XM). The two pulses are combined using a Wilkinson power divider before input to the up conversion circuit. The FID frequency is down converted in a two-stage mixing process to 65 MHz. The two LO frequencies used in the receiver are provided by a second Valon 5008. The FID is digitized at 200 MSamples/s using the 12-bit Tie Pie digitizer. The digital oscilloscope (and its AWG channel) and the two synthesizers use a 10 MHz reference signal from a Rubidium clock to permit time-domain signal averaging. A key feature of the digital oscilloscope is its deep memory of 32 Mpts (complemented by the 64 Mpt memory in the 240 MS/s AWG). This makes it possible to perform several one- and two-color coherent measurements, including pulse echoes and double-resonance spectroscopy, in a single "readout" experiment to speed the analysis of mm-wave rotational spectra. The spectrometer sensitivity

  19. Theoretical investigation of a novel high density cage compound 4,8,11,14,15-pentanitro-2,6,9,13-tetraoxa-4,8,11,14,15-pentaazaheptacyclo[5.5.1.1(3,11).1(5,9)] pentadecane.

    PubMed

    Lin, He; Zhu, Shun-guan; Zhang, Lin; Peng, Xin-hua; Chen, Peng-yuan; Li, Hong-zhen

    2013-03-01

    A novel polynitro cage compound 4,8,11,14,15-pentanitro-2,6,9,13-tetraoxa-4,8,11,14,15-pentaazaheptacyclo [5.5.1.1(3,11).1(5,9)]pentadecane(PNTOPAHP) has been designed and investigated at the DFT-B3LYP/6-31(d) level. Properties, such as electronic structure, IR spectrum, heat of formation, thermodynamic properties and crystal structure have been predicted. This compound is most likely to crystallize in C2/c space group, and the corresponding cell parameters are Z = 8, a = 29.78 Å, b = 6.42 Å, c = 32.69 Å, α = 90.00°, β = 151.05°, γ = 90.00° and ρ = 1.94 g/cm(3). In addition, the detonation velocity and pressure have also been calculated by the empirical Kamlet-Jacobs equation. As a result, the detonation velocity and pressure of this compound are 9.82 km/s, 44.67 GPa, respectively, a little higher than those of 4,10-dinitro-2,6,8,12-tetraoxa-4,10-diazaisowurtzitane(TEX, 9.28 km/s, 40.72 GPa). This compound has a comparable chemical stability to TEX, based on the N-NO(2) trigger bond length analysis. The bond dissociation energy ranges from 153.09 kJ mol(-1) to 186.04 kJ mol(-1), which indicates that this compound meets the thermal stability requirement as an exploitable HEDM. PMID:23111684

  20. Two-color light-emitting diodes with polarization-sensitive high extraction efficiency based on graphene

    NASA Astrophysics Data System (ADS)

    H, Sattarian; S, Shojaei; E, Darabi

    2016-05-01

    In the present study, graphene photonic crystals are employed to enhance the light extraction efficiency (LEE) of two-color, red and blue, light-emitting diode (LED). The transmission characteristics of one-dimensional (1D) Fibonacci graphene photonic crystal LED (FGPC-LED) are investigated by using the transfer matrix method and the scaling study is presented. We analyzed the influence of period, thickness, and permittivity in the structure to enhance the LEE. The transmission spectrum of 1D FGPC has been optimized in detail. In addition, the effects of the angle of incidence and the state of polarization are investigated. As the main result, we found the optimum values of relevant parameters to enhance the extraction of red and blue light from an LED as well as provide perfect omnidirectional and high peak transmission filters for the TE and TM modes.

  1. Theoretical exploration of control factors for the high-order harmonic generation (HHG) spectrum in two-color field.

    PubMed

    Huang, Xinting; Yang, Dapeng; Yao, Li

    2014-09-15

    In this work, the laser-parameter effects on the high-order harmonic generation (HHG) spectrum and attosecond trains by mixing two-color laser field, a visible light field of 800 nm and a mid-infrared (mid-IR) laser pulses of 2400 nm, are theoretically demonstrated for the first time. Different schemes are applied to discuss the function of intensity, carrier-envelope phase (CEP) and pulse duration on the generation of an isolated attosecond pulse. As a consequence, an isolated 16as pulse is obtained by Fourier transforming an ultrabroad XUV continuum of 208 eV with the fundamental field of duration of 6 fs, 9×10(14)W/cm2 of intensity, the duration of 12 fs, the CEPs of the two driving pulses of -π and the relative strength ratio √R=0.2. PMID:24759780

  2. Theoretical exploration of control factors for the high-order harmonic generation (HHG) spectrum in two-color field.

    PubMed

    Huang, Xinting; Yang, Dapeng; Yao, Li

    2014-09-15

    In this work, the laser-parameter effects on the high-order harmonic generation (HHG) spectrum and attosecond trains by mixing two-color laser field, a visible light field of 800 nm and a mid-infrared (mid-IR) laser pulses of 2400 nm, are theoretically demonstrated for the first time. Different schemes are applied to discuss the function of intensity, carrier-envelope phase (CEP) and pulse duration on the generation of an isolated attosecond pulse. As a consequence, an isolated 16as pulse is obtained by Fourier transforming an ultrabroad XUV continuum of 208 eV with the fundamental field of duration of 6 fs, 9×10(14)W/cm2 of intensity, the duration of 12 fs, the CEPs of the two driving pulses of -π and the relative strength ratio √R=0.2.

  3. Discrimination of Glycoproteins from Unglycosylated Proteins in Capillary Electrophoresis: Two-Color LIF Detection Coupled with Post-column Derivatization.

    PubMed

    Kaneta, Takashi

    2016-01-01

    Glycosylation is one of the most important posttranslational modifications (PTMs) which lead to the functionalization of proteins. Here, we describe one method for discriminating glycosylated proteins from unglycosylated ones in their mixture sample by capillary electrophoretic separation and two-color laser-induced fluorescence detection coupled with post-column derivatization. Two lasers emitting at 450 and 532 nm permit the detection of amino groups of proteins derivatized by naphthalene-2,3-dicarboxaldehyde and a fluorescently labeled lectin, tetramethylrhodamine-labeled concanavalin A (Rh-Con A), respectively. When a protein mixture react with Rh-Con A, the glycoproteins bound with Rh-Con A exhibit signals at the same migration time in two electropherograms obtained by 450- and 532-nm lasers whereas unbound proteins show a signal only in the electropherogram of the 450-nm laser. So, when one protein is glycosylated it is detected at the same migration time in the electropherograms obtained by two lasers. PMID:27473478

  4. Interaction of toluene with two-color asymmetric laser fields: Controlling the directional emission of molecular hydrogen fragments

    SciTech Connect

    Kaziannis, S.; Kotsina, N.; Kosmidis, C.

    2014-09-14

    The interaction of toluene with strong asymmetric two-color laser irradiation of 40 fs duration is studied by means of Time of flight mass spectrometry. Highly energetic H{sub 2}{sup +} and H{sub 3}{sup +} fragment ions are produced through an isomerization process taking place within transient multiply charged parent ions. Comparative study of deuterium labeled toluene isotopes enables the discrimination between molecular hydrogen fragments formed exclusively within the CH{sub 3}- part from those that require hydrogen atom exchange between the former and the phenyl moiety. It is demonstrated that by manipulating the relative phase of the ω/2ω field components the selective ionization of oriented toluene molecules can be used as a tool to control the directional emission of the H{sub 2}{sup +}, H{sub 3}{sup +} species.

  5. Ionization-Induced Multiwave Mixing: Terahertz Generation with Two-Color Laser Pulses of Various Frequency Ratios

    NASA Astrophysics Data System (ADS)

    Kostin, V. A.; Laryushin, I. D.; Silaev, A. A.; Vvedenskii, N. V.

    2016-07-01

    Ultrafast strong-field ionization is shown to be accompanied by atypical multiwave mixing with the number of mixed waves defined by the dependence of the ionization rate on the field strength. For two-color laser pulses of various frequency ratios, this results in the excitation of a free-electron current at laser combination frequencies and possibly in the excitation of the zero-frequency (residual) current responsible for terahertz (THz) generation in a formed plasma. The high-order nature of ionization-induced wave mixing may cause THz generation with uncommon laser frequency ratios (such as 2 : 3 and 3 : 4 ) to be virtually as effective as that with the commonly used frequency ratio of 1 : 2 .

  6. Half-cycle pulses in the mid-infrared from a two-color laser-induced filament

    NASA Astrophysics Data System (ADS)

    Voronin, Alexander A.; Nomura, Yutaka; Shirai, Hideto; Fuji, Takao; Zheltikov, Aleksei

    2014-07-01

    Four-wave mixing (FWM) of femtosecond near-infrared laser pulses and its second harmonic in the filamentation regime is shown to give rise to ultrashort field waveforms in the mid-infrared with pulse widths as short as a half of the field cycle and produce ultrabroadband supercontinuum spectra stretching from the mid-IR to the terahertz region. Generation of 7-fs pulses centered at 4.35 μm is demonstrated by a two-color filamentation experiment, where the 25-fs, 800-nm fundamental-wavelength output of a Ti: Sapphire laser is mixed with its second harmonic. The spectral and temporal properties of the mid-IR waveforms, as well as their emission pattern, are consistent with the FWM scenario of frequency conversion generalized to include the Kerr effect and ionization-induced refractive-index modulation.

  7. Analysis of two-color geodimeter measurements of deformation within the Long Valley caldera: June 1983 to October 1985.

    USGS Publications Warehouse

    Langbein, J.; Linker, M.; Tupper, D.

    1987-01-01

    Line length changes from several baselines in a trilateration network within the Long Valley caldera clearly define a decrease in strain rate from June 1983 through October 1985. The data consist of more than 1600 length measurements on 23 baselines using a two- color geodimeter, which has a precision of 0.2 ppm of the line length. A model is constructed using these observations as well as yearly observations of a trilateration network within and near the caldera. The model contains two points of inflation located at 5 and 10 km beneath the resurgent dome of the caldera plus dextral slip on a fault plane within the south moat within an elastic half-space. -from Authors

  8. Polarization switchable two-color plasmonic nano-pixels for creating optical surfaces encoded with dual information states

    NASA Astrophysics Data System (ADS)

    Heydari, Esmaeil; Li, Zhibo; Cooper, Jonathan M.; Clark, Alasdair W.

    2016-03-01

    We demonstrate tunable, polarization-dependent, dual-color plasmonic filters based upon arrays of asymmetric cross-shaped nano-apertures. Acting as individual color emitting nano-pixels, each aperture can selectively transmit one of 2 colors, switched by controlling the polarization of white-light incident on the rear of each pixel. By tuning the dimensions of the pixels we build a polarization sensitive color palette at resolutions far beyond the diffraction limit. Using this switchable color palette we are able to generate complex optical surfaces encoded with dual color and information states; allowing us to embed two color images within the same unit area, using the same set of nanoapertures.

  9. Influences of different gases on the terahertz radiation based on the application of two-color laser pulses

    SciTech Connect

    Moradi, S.; Ganjovi, A.; Shojaei, F.; Saeed, M.

    2015-10-15

    In this work, using a two-dimensional Particle In Cell-Monte Carlo Collision simulation method, a comparative study is performed on the influences of different types of atomic and molecular gases at various background gas pressures on the generation of broadband and intense Terahertz (THz) radiation via the application of two-color laser pulses. These two modes are focused into Argon (Ar), Xenon (Xe), Nitrogen (N{sub 2}), Oxygen (O{sub 2}), and air as the background gaseous media and the plasma channel is created. It is observed that the THz radiation emission dramatically changes due to the propagation effects. A wider THz pulse is emitted from the formed plasma channel at the higher gas pressures. The significant effects of the propagation features of the emitted THz pulse on its energy at the longer lengths of the plasma channel are observed.

  10. Formation of laser-induced periodic surface structures on fused silica upon two-color double-pulse irradiation

    SciTech Connect

    Höhm, S.; Herzlieb, M.; Rosenfeld, A.; Krüger, J.; Bonse, J.

    2013-12-16

    The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of fused silica with multiple irradiation sequences consisting of laser pulse pairs (50 fs single-pulse duration) of two different wavelengths (400 and 800 nm) is studied experimentally. Parallel polarized double-pulse sequences with a variable delay Δt between −10 and +10 ps and between the individual fs-laser pulses were used to investigate the LIPSS periods versus Δt. These two-color experiments reveal the importance of the ultrafast energy deposition to the silica surface by the first laser pulse for LIPSS formation. The second laser pulse subsequently reinforces the previously seeded spatial LIPSS frequencies.

  11. Influences of different gases on the terahertz radiation based on the application of two-color laser pulses

    NASA Astrophysics Data System (ADS)

    Moradi, S.; Ganjovi, A.; Shojaei, F.; Saeed, M.

    2015-10-01

    In this work, using a two-dimensional Particle In Cell-Monte Carlo Collision simulation method, a comparative study is performed on the influences of different types of atomic and molecular gases at various background gas pressures on the generation of broadband and intense Terahertz (THz) radiation via the application of two-color laser pulses. These two modes are focused into Argon (Ar), Xenon (Xe), Nitrogen (N2), Oxygen (O2), and air as the background gaseous media and the plasma channel is created. It is observed that the THz radiation emission dramatically changes due to the propagation effects. A wider THz pulse is emitted from the formed plasma channel at the higher gas pressures. The significant effects of the propagation features of the emitted THz pulse on its energy at the longer lengths of the plasma channel are observed.

  12. Method for sampling sub-micron particles

    DOEpatents

    Gay, Don D.; McMillan, William G.

    1985-01-01

    Apparatus and method steps for collecting sub-micron sized particles include a collection chamber and cryogenic cooling. The cooling is accomplished by coil tubing carrying nitrogen in liquid form, with the liquid nitrogen changing to the gas phase before exiting from the collection chamber in the tubing. Standard filters are used to filter out particles of diameter greater than or equal to 0.3 microns; however the present invention is used to trap particles of less than 0.3 micron in diameter. A blower draws air to said collection chamber through a filter which filters particles with diameters greater than or equal to 0.3 micron. The air is then cryogenically cooled so that moisture and sub-micron sized particles in the air condense into ice on the coil. The coil is then heated so that the ice melts, and the liquid is then drawn off and passed through a Buchner funnel where the liquid is passed through a Nuclepore membrane. A vacuum draws the liquid through the Nuclepore membrane, with the Nuclepore membrane trapping sub-micron sized particles therein. The Nuclepore membrane is then covered on its top and bottom surfaces with sheets of Mylar.RTM. and the assembly is then crushed into a pellet. This effectively traps the sub-micron sized particles for later analysis.

  13. Sub-micron particle sampler apparatus

    DOEpatents

    Gay, Don D.; McMillan, William G.

    1987-01-01

    Apparatus and method steps for collecting sub-micron sized particles include a collection chamber and cryogenic cooling. The cooling is accomplished by coil tubing carrying nitrogen in liquid form, with the liquid nitrogen changing to the gas phase before exiting from the collection chamber in the tubing. Standard filters are used to filter out particles of diameter greater than or equal to 0.3 microns; however the present invention is used to trap particles of less than 0.3 micron in diameter. A blower draws air to said collection chamber through a filter which filters particles with diameters greater than or equal to 0.3 micron. The air is then cryogenically cooled so that moisture and sub-micron sized particles in the air condense into ice on the coil. The coil is then heated so that the ice melts, and the liquid is then drawn off and passed through a Buchner funnel where the liquid is passed through a Nuclepore membrane. A vacuum draws the liquid through the Nuclepore membrane, with the Nuclepore membrane trapping sub-micron sized particles therein. The Nuclepore membrane is then covered on its top and bottom surfaces with sheets of Mylar.RTM. and the assembly is then crushed into a pellet. This effectively traps the sub-micron sized particles for later analysis.

  14. Table-top two-color soft X-ray laser by means of Ni-like plasmas

    NASA Astrophysics Data System (ADS)

    Masoudnia, Leili; Ruiz-Lopez, Mabel; Bleiner, Davide

    2016-04-01

    Laser-produced Ni-like plasmas are known as active media for extreme ultraviolet lasing, with the flexibility to two-color lasing. Two-color laser generation is very complex at accelerator facilities. In this work, plasma lasing at the 3d94d1(J = 0) → 3d94p1(J = 1) (collisional-pumping process) and the 3d94f1(J = 1) → 3d94d1(J = 1) (photo-pumping process) transitions is studied experimentally and computationally. Several key characteristics of collisional- and photo-pumping laser, such as divergence, pointing stability, and intensity have been investigated. The measurements showed different pulse characteristics for the two lasing processes affected by plasma inhomogeneity in temperature and density. Analytical expressions of these characteristics for both collisional- and photo-pumping are derived. It is found that the plasma that maximizes the photo-pumping lasing is 20% hotter and 70% denser than the plasma that optimizes the collisional-pumping lasing. The gain of collisional pumping is ≈4 times higher than the gain for the photo-pumping. The gain lifetime is a factor of ≈5.2 larger for the monopole-pumping. Similarly, the gain thickness is a factor of ≈1.8 larger. It is also found that the gain build-up time for collisional- and photo-pumping is 0.7 ps and 0.9 ps, respectively, whereas the build-up length-scale is 11.5 μm and 6.3 μm, respectively.

  15. Rapid analysis of Forster resonance energy transfer by two-color global fluorescence correlation spectroscopy: trypsin proteinase reaction.

    PubMed

    Eggeling, Christian; Kask, Peet; Winkler, Dirk; Jäger, Stefan

    2005-07-01

    In this study we introduce the combination of two-color global fluorescence correlation spectroscopy (2CG-FCS) and Förster resonance energy transfer (FRET) as a very powerful combination for monitoring biochemical reactions on the basis of single molecule events. 2CG-FCS, which is a new variation emerging from the family of fluorescence correlation spectroscopy, globally analyzes the simultaneously recorded auto- and cross-correlation data from two photon detectors monitoring the fluorescence emission of different colors. Overcoming the limitations inherent in mere auto- and cross-correlation analysis, 2CG-FCS is sensitive in resolving and quantifying fluorescent species that differ in their diffusion characteristics and/or their molecular brightness either in one or both detection channels. It is able to account for effects that have often been considered as sources of severe artifacts in two-color and FRET measurements, the most prominent artifacts comprising photobleaching, cross talk, or concentration variations in sample preparation. Because of its very high statistical accuracy, the combination of FRET and 2CG-FCS is suited for high-throughput applications such as drug screening. Employing beam scanning during data acquisition even further enhances this capability and allows measurement times of <2 s. The improved performance in monitoring a FRET sample was verified by following the protease cleavage reaction of a FRET-active peptide. The FRET-inactive subpopulation of uncleaved substrate could be correctly assigned, revealing a substantial portion of inactive or missing acceptor label. The results were compared to those obtained by two-dimensional fluorescence intensity distribution analysis.

  16. Polar red-emitting rhodamine dyes with reactive groups: synthesis, photophysical properties, and two-color STED nanoscopy applications.

    PubMed

    Kolmakov, Kirill; Wurm, Christian A; Meineke, Dirk N H; Göttfert, Fabian; Boyarskiy, Vadim P; Belov, Vladimir N; Hell, Stefan W

    2014-01-01

    The synthesis, reactivity, and photophysical properties of new rhodamines with intense red fluorescence, two polar residues (hydroxyls, primary phosphates, or sulfonic acid groups), and improved hydrolytic stability of the amino-reactive sites (NHS esters or mixed N-succinimidyl carbonates) are reported. All fluorophores contain an N-alkyl-1,2-dihydro-2,2,4-trimethylquinoline fragment, and most of them bear a fully substituted tetrafluoro phenyl ring with a secondary carboxamide group. The absorption and emission maxima in water are in the range of 635-639 and 655-659 nm, respectively. A vastly simplified approach to red-emitting rhodamines with two phosphate groups that are compatible with diverse functional linkers was developed. As an example, a phosphorylated dye with an azide residue was prepared and was used in a click reaction with a strained alkyne bearing an N-hydroxysuccinimid (NHS) ester group. This method bypasses the undesired activation of phosphate groups, and gives an amphiphilic amino-reactive dye, the solubility and distribution of which between aqueous and organic phases can be controlled by varying the pH. The presence of two hydroxyl groups and a phenyl ring with two carboxyl residues in the dyes with another substitution pattern is sufficient for providing the hydrophilic properties. Selective formation of a mono-N-hydroxysuccinimidyl ester from 5-carboxy isomer of this rhodamine is reported. The fluorescence quantum yields varied from 58 to 92% for free fluorophores, and amounted to 18-64% for antibody conjugates in aqueous buffers. The brightness and photostability of these fluorophores facilitated two-color stimulated emission depletion (STED) fluorescence nanoscopy of biological samples with high contrast and minimal background. Selecting a pair of fluorophores with absorption/emission bands at 579/609 and 635/655 nm enabled two-color channels with low cross-talk and negligible background at approximately 40 nm resolution.

  17. Demonstration of a two-color 320×256 quantum dots-in-a-well focal plane array

    NASA Astrophysics Data System (ADS)

    Varley, Eric S.; Ramirez, David A.; Brown, Jay S.; Lee, Sang Jun; Stintz, Andreas; Lenz, Michael; Krishna, Sanjay; Reisinger, Axel; Sundaram, Mani

    2007-09-01

    In our research group, we develop novel dots-in-a-well (DWELL) photodetectors that are a hybrid of the quantum dot infrared photodetector (QDIP). The DWELL detector consists of an active region composed of InAs quantum dots embedded in InGaAs quantum wells. By adjusting the InGaAs well thickness, our structure allows for the manipulation of the operating wavelength and the nature of the transitions (bound-to-bound, bound-to-quasibound and bound-to-continuum) of the detector. Based on these principles, DWELL samples were grown using molecular beam epitaxy and fabricated into 320 x 256 focal plane arrays (FPAs) with Indium bumps using standard lithography at the University of New Mexico. The FPA evaluated was hybridized to an Indigo 9705 readout integrated circuit (ROIC) in collaboration with QmagiQ LLC and tested with a CamIRa TM system manufactured by SE-IR Corp. From this evaluation, we report the first two-color, co-located quantum dot based imaging system that can be used to take multicolor images using a single FPA. We demonstrated that we can operate the device at an intermediate bias (V b=-1.25 V) and obtain two color response from the FPA at 77K. Using filter lenses, both MWIR and LWIR responses were obtained from the array at the same bias voltage. The MWIR and LWIR responses are thought to be from bound states in the dot to higher and lower lying states in the quantum well respectively. Temporal NEDT for the DWELL FPA was measured to be 80mK at 77K.

  18. Polar red-emitting rhodamine dyes with reactive groups: synthesis, photophysical properties, and two-color STED nanoscopy applications.

    PubMed

    Kolmakov, Kirill; Wurm, Christian A; Meineke, Dirk N H; Göttfert, Fabian; Boyarskiy, Vadim P; Belov, Vladimir N; Hell, Stefan W

    2014-01-01

    The synthesis, reactivity, and photophysical properties of new rhodamines with intense red fluorescence, two polar residues (hydroxyls, primary phosphates, or sulfonic acid groups), and improved hydrolytic stability of the amino-reactive sites (NHS esters or mixed N-succinimidyl carbonates) are reported. All fluorophores contain an N-alkyl-1,2-dihydro-2,2,4-trimethylquinoline fragment, and most of them bear a fully substituted tetrafluoro phenyl ring with a secondary carboxamide group. The absorption and emission maxima in water are in the range of 635-639 and 655-659 nm, respectively. A vastly simplified approach to red-emitting rhodamines with two phosphate groups that are compatible with diverse functional linkers was developed. As an example, a phosphorylated dye with an azide residue was prepared and was used in a click reaction with a strained alkyne bearing an N-hydroxysuccinimid (NHS) ester group. This method bypasses the undesired activation of phosphate groups, and gives an amphiphilic amino-reactive dye, the solubility and distribution of which between aqueous and organic phases can be controlled by varying the pH. The presence of two hydroxyl groups and a phenyl ring with two carboxyl residues in the dyes with another substitution pattern is sufficient for providing the hydrophilic properties. Selective formation of a mono-N-hydroxysuccinimidyl ester from 5-carboxy isomer of this rhodamine is reported. The fluorescence quantum yields varied from 58 to 92% for free fluorophores, and amounted to 18-64% for antibody conjugates in aqueous buffers. The brightness and photostability of these fluorophores facilitated two-color stimulated emission depletion (STED) fluorescence nanoscopy of biological samples with high contrast and minimal background. Selecting a pair of fluorophores with absorption/emission bands at 579/609 and 635/655 nm enabled two-color channels with low cross-talk and negligible background at approximately 40 nm resolution. PMID:24338798

  19. Ionization states of heavy elements observed in the 1974 May 14-15 anomalous solar particle event

    NASA Technical Reports Server (NTRS)

    Ma Sung, L. S.; Gloeckler, G.; Fan, C. Y.; Hovestadt, D.

    1981-01-01

    The charge states of heavy ions accelerated in the (He-3)-Fe-rich solar particle event of May 14-15, 1974 have been determined by the use of using data from the University of Maryland/Max-Planck-Institut experiment on IMP 8. In addition to Fe(+11,12), it is found that both O(+5) and Fe(+16,17,18) are also present, suggesting variations in coronal temperatures over a range from approximately 400,000 to 5,000,000 K. The presence of O(+5) and Fe(+16-18) may be explained by a resonant plasma heating mechanism proposed by Fisk (1978) to account for the enhancements of He-3 and Fe.

  20. Two-color terrameter

    NASA Astrophysics Data System (ADS)

    Huggett, G. R.

    1981-01-01

    The Terrameter is a two-wavelength EDM instrument that has been tested under changing meteorological conditions. This system, based on the dispersive character of the air, can determine the measured distance to better than 1 part in 10 7, without the usual meteorological observations and corrections. The Terrameter simultaneously measures the optical path lengths at two wavelengths (red, 638.8 nm and blue, 441.6 nm). With an internal micro-computer, the correct baseline distance is computed, eliminating the firstorder effects of temperature, pressure and relative humidity fluctuations along the measured line. The instrument is designed to be easily positioned over a horizontal control point to a precision of better than 0.1 mm. Present strainmeters lack the portability and range for high accuracy measurements, and other available distance-measuring instruments do not have the necessary accuracy to measure the strain rates in a reasonably short period of time. The speed, high accuracy, portability and range of the Terrameter make it possible to determine the rate of tectonic deformation in a period of months rather than years. Other applications, such as the determination of the stability of rock faces and salt domes, and the measurement of structural deformation of dams, reservoirs and construction sites, are also possible with this instrument.

  1. The 10 micron spectral structure in comets

    NASA Technical Reports Server (NTRS)

    Lynch, David K.; Russell, Ray W.; Campins, Humberto

    1989-01-01

    The 10 micron spectra of comets Halley (1982i), Wilson (1986l), Kohoutek (1973f) and Bradfield (1987s) are presented and compared. The silicate emission profiles of Halley and Bradfield are seen to be remarkably similar in that both contain a sharp break in the spectrum at 11.3 microns. Comet Bradfield does not show the same double peak structure seen in olivine and reported in Comet Halley be Campins and Ryan (1988) and Bregman, et al. (1987). The authors interpret the 11.3 micron signature as being due to olivine-type dust grains with at least some degree of crystallinity. Olivine alone is not enough to reproduce the shape of the 10 micron structure. However, in view of the authors' past success in fitting interstellar dust features with the emissivity profile obtained from amorphous grains produced by laser-vaporizing olivine, this is a very appealing identification. They note that there are significant variations in olivine spectra due to compositional differences, grain size distribution and related grain temperature variations to make the olivine identification tentative. They further tentatively identify the 9.8 micron feature in Halley as being due to either amorphorous olivine or a phyllosilicate (layer lattice). Neither the spectra of Halley, Kohoutek, nor Bradfield exhibited the 12.2 micron feature seen in Comet Wilson, which may prove diagnostic of the composition or thermal history differences between these comets. IR spectra of various mineral samples are discussed in terms of their match to cometary spectra.

  2. Above-threshold multiphoton detachment of H- by two-color laser fields: Angular distributions and partial rates

    NASA Astrophysics Data System (ADS)

    Telnov, Dmitry A.; Wang, Jingyan; Chu, Shih-I.

    1995-06-01

    We present a general nonperturbative formalism and an efficient and accurate numerical technique for the study of the angular distributions and partial widths for multiphoton above-threshold detachment in two-color fields. The procedure is based on an extension of our recent paper [D. A. Telnov and S.-I Chu, Phys. Rev. A 50, 4099 (1994)] for one-color detachment, and the many-mode Floquet theory [T. S. Ho, S.-I Chu, and J. V. Tietz, Chem. Phys. Lett. 96, 464 (1983)]. The generalization of this procedure is performed for both cases of commensurable and incommensurable frequencies of the two-color fields. The procedure consists of the following elements: (i) Determination of the resonance wave function and complex quasienergy by means of the non-Hermitian Floquet Hamiltonian formalism. The Floquet Hamiltonian is discretized by the complex-scaling generalized pseudospectral technique recently developed [J. Wang, S.-I Chu, and C. Laughlin, Phys. Rev. A 50, 3208 (1994)]. (ii) Calculation of the angular distribution and partial widths based on an exact differential formula and a procedure for the rotation of the resonance wave function back to the real axis. The method is applied to a nonperturbative study of multiphoton above-threshold detachment of H- by 10.6-μm radiation and its third harmonic (the commensurable case). The results show strong dependence on the relative phase δ between the fundamental frequency field and its harmonic. For the intensities used in calculations (1010 W/cm2 for the fundamental frequency, 108 and 109 W/cm2 for the harmonic), the total rate has its maximum at δ=0 and minimum at δ=π. However, this tendency, though valid for the first several above-threshold peaks in the energy spectrum, is reversed for the higher-energy peaks. The energy spectrum for δ=π is broader, and the peak heights decrease more slowly compared to the case of δ=0. The strong phase dependence is also manifested in the angular distributions of the ejected electrons.

  3. Generation of two-color ultra-short radiation pulses from two electron bunches and a chirped seeded free-electron laser

    NASA Astrophysics Data System (ADS)

    Feng, Chao; Wang, Zhen; Wang, Xingtao; Huang, Dazhang

    2016-01-01

    In this paper we describe a new method for the realization of two-color femtosecond radiation pulses in a seeded free-electron laser (FEL). The two-color pulses are obtained from two electron bunches and a chirped seeding laser. Compared to the previous methods based on seeded FELs, our method has the advantages of producing two-color FEL pulses with more flexible tunability both in the pulse durations and separations. Numerical simulations for the Dalian Coherent Light Source confirm that femtosecond XUV pulses with variable pulse durations and time delay can be directly generated from a chirped seed laser at 250 nm by using this technique. We also show the possibility of performing a proof-of-principle experiment of this technique based on the Shanghai Deep-Ultraviolet FEL facility.

  4. Effect of electronic angular momentum exchange on photoelectron anisotropy following the two-color ionization of krypton atoms

    NASA Astrophysics Data System (ADS)

    Saquet, N.; Holland, D. M. P.; Pratt, S. T.; Cubaynes, D.; Tang, X.; Garcia, G. A.; Nahon, L.; Reid, K. L.

    2016-03-01

    We present photoelectron energy and angular distributions for resonant two-photon ionization via several low-lying Rydberg states of atomic Kr. The experiments were performed by using synchrotron radiation to pump the Rydberg states and a continuous-wave laser to probe them. Photoelectron images, recorded with both linear and circular polarized pump and probe light, were obtained in coincidence with mass-analyzed Kr ions. The photoelectron angular distributions and branching ratios for direct ionization into the K r+2P3 /2 and 2P1 /2 spin-orbit continua show considerable dependence on the intermediate level, as well as on the polarizations of the pump and probe light. Photoelectron images were also recorded with several polarization combinations following two-color excitation of the (2P1 /2 ) 5 f [5/2 ] 2 autoionizing resonance. These results are compared with the results of recent work on the corresponding autoionizing resonance in atomic Xe [E. V. Gryzlova et al., New J. Phys. 17, 043054 (2015), 10.1088/1367-2630/17/4/043054].

  5. SPECTROSCOPIC CONFIRMATION OF UV-BRIGHT WHITE DWARFS FROM THE SANDAGE TWO-COLOR SURVEY OF THE GALACTIC PLANE

    SciTech Connect

    Lepine, Sebastien; Bergeron, P.; Lanning, Howard H.

    2011-03-15

    We present spectroscopic observations confirming the identification of hot white dwarfs among UV-bright sources from the Sandage Two-color Survey of the Galactic Plane and listed in the Lanning (Lan) catalog of such sources. A subsample of 213 UV-bright Lan sources have been identified as candidate white dwarfs based on the detection of a significant proper motion. Spectroscopic observations of 46 candidates with the KPNO 2.1 m telescope confirm 30 sources to be hydrogen white dwarfs with subtypes in the DA1-DA6 range, and with one of the stars (Lan 161) having an unresolved M dwarf as a companion. Five more sources are confirmed to be helium white dwarfs, with subtypes from DB3 to DB6. One source (Lan 364) is identified as a DZ 3 white dwarf, with strong lines of calcium. Three more stars are found to have featureless spectra (to within detection limits) and are thus classified as DC white dwarfs. In addition, three sources are found to be hot subdwarfs: Lan 20 and Lan 480 are classified as sdOB, and Lan 432 is classified sdB. The remaining four objects are found to be field F star interlopers. Physical parameters of the DA and DB white dwarfs are derived from model fits.

  6. Tunable Two-color Luminescence and Host-guest Energy Transfer of Fluorescent Chromophores Encapsulated in Metal-Organic Frameworks

    NASA Astrophysics Data System (ADS)

    Yan, Dongpeng; Tang, Yanqun; Lin, Heyang; Wang, Dan

    2014-03-01

    Co-assembly of chromophore guests with host matrices can afford materials which have photofunctionalities different from those of individual components. Compared with clay and zeolite materials, the use of metal-organic frameworks (MOFs) as a host structure for fabricating luminescent host-guest materials is still at an early stage. Herein, we report the incorporation of a laser dye, 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM), into stilbene-based and naphthalene-based MOF systems. The resulting materials exhibit blue/red two-color emission, and the intensity ratio of blue to red fluorescence varies in different planes within the MOF crystal as detected by 3D confocal fluorescence microscopy. The observed changes in ratiometric fluorescence suggest the occurrence of energy transfer from MOF host to DCM molecules, which can be further confirmed by periodic density functional theoretical (DFT) calculations. Moreover, selective changes in luminescence behavior are observed on treating the guest@MOF samples with volatile organic compounds (methanol, acetone and toluene), indicating that these host-guest systems have potential applications as fluorescence sensors. It can be expected that by rational selection of MOF hosts and guest chromophores with suitable emissive colors and energy levels, a wide variety of multi-color luminescent and energy-transfer systems can readily be prepared in a similar manner.

  7. Two-photon, two-color in vivo flow cytometry to noninvasively monitor multiple circulating cell lines

    NASA Astrophysics Data System (ADS)

    Tkaczyk, Eric R.; Zhong, Cheng Frank; Ye, Jing Yong; Katnik, Steve; Myc, Andrzej; Thomas, Thommey; Luker, Kathryn E.; Luker, Gary D.; Baker, James R., Jr.; Norris, Theodore B.

    2007-07-01

    We have developed a new two-photon system for in vivo flow cytometry, thereby allowing us to simultaneously quantify different circulating populations in a single animal. The instrument was able to resolve minute-by-minute depletion dynamics of injected fluorescent microspheres at finer time scales than conventional flow cytometry. Also observed were the circulation dynamics of human MCF-7 and MDA-MB-435 breast cancer cells, which have low and high metastatic potential, respectively. After co-injection of both cell types into mice, markedly greater numbers of MCF-7 cells were present in the circulation at early time points. While low metastatic MCF-7 cells were cleared from the vascular system within 24 hours, detectable numbers of metastatic MDA-MB- 435 cells in the circulation remained constant over time. When we replace the commercial (80-MHz) NIR excitation laser with a reduced-repetition-rate (20-MHz) mode-locked oscillator, the signal is enhanced four-fold, enabling superior detection in blood of cell lines expressing fluorescent proteins tdTomato and mPlum (crosslabeled with DiI and DiD). Detection sensitivity versus incident laser power is understood in terms of detected event photon count distribution, which can be predicted with simple fluorophore distribution assumptions. The technique of two-color, two-photon flow cytometry greatly enhances the capabilities of ex vivo flow cytometry to investigate dynamics of circulating cells in cancer and other important diseases.

  8. Route to optimal generation of soft X-ray high harmonics with synthesized two-color laser pulses

    PubMed Central

    Jin, Cheng; Wang, Guoli; Le, Anh-Thu; Lin, C. D.

    2014-01-01

    High harmonics extending to X-rays have been generated from gases by intense lasers. To establish these coherent broadband radiations as an all-purpose tabletop light source for general applications in science and technology, new methods are needed to overcome the present low conversion efficiencies. Here we show that the conversion efficiency may be drastically increased with an optimized two-color pulse. By employing an optimally synthesized 2-µm mid-infrared laser and a small amount of its third harmonic, we show that harmonic yields from sub- to few-keV energy can be increased typically by ten-fold over the optimized single-color one. By combining with favorable phase-matching and together with the emerging high-repetition MHz mid-infrared lasers, we anticipate efficiency of harmonic yields can be increased by four to five orders in the near future, thus paving the way for employing high harmonics as useful broadband tabletop light sources from the extreme ultraviolet to the X-rays, as well as providing new tools for interrogating ultrafast dynamics of matter at attosecond timescales. PMID:25400015

  9. Intramolecular triplet energy transfer via higher triplet excited state during stepwise two-color two-laser irradiation.

    PubMed

    Oseki, Yosuke; Fujitsuka, Mamoru; Sakamoto, Masanori; Majima, Tetsuro

    2007-10-01

    We studied the energy transfer processes in the molecular array consisting of pyrene (Py), biphenyl (Ph2), and bisphthalimidethiophene (ImT), (Py-Ph2)2-ImT, during two-color two-laser flash photolysis (2-LFP). The first laser irradiation predominantly generates ImT in the lowest triplet excited state (ImT(T1)) because of the efficient singlet energy transfer from Py in the lowest singlet excited state to ImT and, then, intersystem crossing of ImT. ImT(T1) was excited to the higher triplet excited state (Tn) with the second laser irradiation. Then, the triplet energy was rapidly transferred to Py via a two-step triplet energy transfer (TET) process through Ph2. The efficient generation of Py(T1) was suggested from the nanosecond-picosecond 2-LFP. The back-TET from Py(T1) to ImT was observed for several tens of microseconds after the second laser irradiation. The estimated intramolecular TET rate from Py(T1) to ImT was as slow as 3.1 x 104 s-1. Hence, long-lived Py(T1) was selectively and efficiently produced during the 2-LFP.

  10. Thermoreversible Changes in Aligned and Cross-Linked Block Copolymer Melts Studied by Two Color Depolarized Light Scattering

    SciTech Connect

    Wilbur, Jeffrey D.; Gomez, Enrique D.; Ellsworth, Mark W.; Garetz, Bruce A.; Balsara, Nitash P.

    2012-09-04

    A procedure for creating samples that can be repeatedly cycled between weakly aligned and strongly aligned states is described. Poly(styrene-b-isoprene) block copolymer samples were first shear-aligned and then cross-linked using a high energy electron beam. Samples with more than 1.0 cross-links per chain on average showed almost complete recovery of their initial alignment state even after 20 cycles of heating above the order–disorder transition temperature of the un-cross-linked block copolymer. Samples with 1.1 cross-links per chain, which showed over 90% loss of alignment on heating and almost 100% recovery of alignment on cooling, provided the best example of a reversible aligned-to-unaligned transition. Samples with lower cross-linking densities exhibited irreversible loss of alignment upon heating, while those with higher cross-linking densities exhibited less than 90% loss of alignment upon heating. Alignment was quantified by a technique that we call two color depolarized light scattering (TCDLS), an extension of the traditional depolarized light scattering experiment used to determine the state of order in block copolymers. Qualitative confirmation of our interpretation of TCDLS data was obtained by small-angle X-ray scattering and transmission electron microscopy.

  11. Tunable Two-color Luminescence and Host–guest Energy Transfer of Fluorescent Chromophores Encapsulated in Metal-Organic Frameworks

    PubMed Central

    Yan, Dongpeng; Tang, Yanqun; Lin, Heyang; Wang, Dan

    2014-01-01

    Co-assembly of chromophore guests with host matrices can afford materials which have photofunctionalities different from those of individual components. Compared with clay and zeolite materials, the use of metal–organic frameworks (MOFs) as a host structure for fabricating luminescent host–guest materials is still at an early stage. Herein, we report the incorporation of a laser dye, 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM), into stilbene-based and naphthalene-based MOF systems. The resulting materials exhibit blue/red two-color emission, and the intensity ratio of blue to red fluorescence varies in different planes within the MOF crystal as detected by 3D confocal fluorescence microscopy. The observed changes in ratiometric fluorescence suggest the occurrence of energy transfer from MOF host to DCM molecules, which can be further confirmed by periodic density functional theoretical (DFT) calculations. Moreover, selective changes in luminescence behavior are observed on treating the guest@MOF samples with volatile organic compounds (methanol, acetone and toluene), indicating that these host–guest systems have potential applications as fluorescence sensors. It can be expected that by rational selection of MOF hosts and guest chromophores with suitable emissive colors and energy levels, a wide variety of multi-color luminescent and energy-transfer systems can readily be prepared in a similar manner. PMID:24614015

  12. Two-color vibrational, femtosecond, fully resonant electronically enhanced CARS (FREE-CARS) of gas-phase nitric oxide

    NASA Astrophysics Data System (ADS)

    Stauffer, Hans U.; Roy, Sukesh; Schmidt, Jacob B.; Wrzesinski, Paul J.; Gord, James R.

    2016-09-01

    A resonantly enhanced, two-color, femtosecond time-resolved coherent anti-Stokes Raman scattering (CARS) approach is demonstrated and used to explore the nature of the frequency- and time-dependent signals produced by gas-phase nitric oxide (NO). Through careful selection of the input pulse wavelengths, this fully resonant electronically enhanced CARS (FREE-CARS) scheme allows rovibronic-state-resolved observation of time-dependent rovibrational wavepackets propagating on the vibrationally excited ground-state potential energy surface of this diatomic species. Despite the use of broadband, ultrafast time-resolved input pulses, high spectral resolution of gas-phase rovibronic transitions is observed in the FREE-CARS signal, dictated by the electronic dephasing timescales of these states. Analysis and computational simulation of the time-dependent spectra observed as a function of pump-Stokes and Stokes-probe delays provide insight into the rotationally resolved wavepacket motion observed on the excited-state and vibrationally excited ground-state potential energy surfaces of NO, respectively.

  13. Measurement of diffusion and thermal diffusion in ternary fluid mixtures using a two-color optical beam deflection technique

    NASA Astrophysics Data System (ADS)

    Königer, A.; Wunderlich, H.; Köhler, W.

    2010-05-01

    We have developed a highly sensitive two-color beam deflection setup to measure diffusion and thermal diffusion in ternary fluid mixtures following a suggestion of Haugen and Firoozabadi [J. Phys. Chem. B 110, 17678 (2006)]. Simultaneous detection of two laser beams with different wavelengths makes it possible to determine the time dependent concentration profiles of all three components. By comparing the measured beam deflection signals to a numerical solution of the coupled heat and mass transport equations, the diffusion matrix, the thermal diffusion, and the Soret coefficients are obtained by a numerical model combined with a nonlinear least-squares fitting routine. The results can be improved by additional thermal diffusion forced Rayleigh scattering experiments, which yield a contrast-weighted average thermal diffusion coefficient. The three Soret coefficients can be obtained independently from the stationary beam deflection amplitudes. Measurements have been performed on the symmetric (equal weight fractions) ternary mixtures dodecane/isobutylbenzene/1,2,3,4-tetrahydronaphthalene and 1-methylnaphthalene/octane/decane. There is only partial agreement between our results and literature data.

  14. Direct observation of two-color pulse dynamics in passively synchronized Er and Yb mode-locked fiber lasers.

    PubMed

    Hsiang, Wei-Wei; Chiao, Wei-Chih; Wu, Chia-Yi; Lai, Yinchieh

    2011-11-21

    We report direct experimental observation of interesting pulse synchronization dynamics in a cavity-combined Er and Yb mode-locked fiber lasers by measuring the relative position between the two-color pulses in the shared fiber section. The influence of the 1.03 μm pulse on the 1.56 μm single pulse as well as bound soliton pairs can be clearly identified as an effective phase modulation through the XPM effect with the walk-off effect taken into account. For the 1.56 μm single pulse under synchronization, the dependence of the relative position variation and the center wavelength shift on the cavity mismatch detuning is found analogous to the typical characteristics of FM mode-locked lasers with modulation frequency detuning. Moreover, depending on the cavity mismatch, the passively synchronized 1.56 μm bound soliton pairs are found to exhibit two different dynamical behaviors, i.e., phase-locked (in-phase) as well as non-phase-locked. The physical origins for these two kinds of bound soliton pairs are investigated experimentally by disclosing their locations with respective to the copropagating 1.03 μm pulse.

  15. Generation of Two-color Antigen Microarrays for the Simultaneous Detection of IgG and IgM Autoantibodies.

    PubMed

    Chruscinski, Andrzej; Huang, Flora Y Y; Ulndreaj, Antigona; Chua, Conan; Fehlings, Michael; Rao, Vivek; Ross, Heather J; Levy, Gary A

    2016-01-01

    Autoantibodies, which are antibodies against self-antigens, are present in many disease states and can serve as markers for disease activity. The levels of autoantibodies to specific antigens are typically detected with the enzyme-linked immunosorbent assay (ELISA) technique. However, screening for multiple autoantibodies with ELISA can be time-consuming and requires a large quantity of patient sample. The antigen microarray technique is an alternative method that can be used to screen for autoantibodies in a multiplex fashion. In this technique, antigens are arrayed onto specially coated microscope slides with a robotic microarrayer. The slides are probed with patient serum samples and subsequently fluorescent-labeled secondary antibodies are added to detect binding of serum autoantibodies to the antigens. The autoantibody reactivities are revealed and quantified by scanning the slides with a scanner that can detect fluorescent signals. Here we describe methods to generate custom antigen microarrays. Our current arrays are printed with 9 solid pins and can include up to 162 antigens spotted in duplicate. The arrays can be easily customized by changing the antigens in the source plate that is used by the microarrayer. We have developed a two-color secondary antibody detection scheme that can distinguish IgG and IgM reactivities on the same slide surface. The detection system has been optimized to study binding of human and murine autoantibodies. PMID:27685156

  16. Orientation dependence of the ionization of CO and NO in an intense femtosecond two-color laser field

    NASA Astrophysics Data System (ADS)

    Li, Hui; Ray, Dipanwita; de, Sankar; Cao, Wei; Laurent, Guillaume; Wang, Zhenhua; Thu Le, Anh; Cocke, C. Lewis; Znakovskaya, Irina; Kling, Matthias

    2012-06-01

    Two-color (800 nm and 400 nm) ultrashort (30±10 fs) laser pulses were used to ionize and dissociate CO and NO. The emission of C^+q, N^+q and O^+ fragments were measured with a velocity-map-imaging (VMI) system. The data show that the ionization rate is dependent on the orientation of the molecules with respect to the laser polarization. Both molecules ionize more easily when the electric field points from C to O in CO and from N to O in NO. The asymmetry of emission is much higher for CO than for NO. The sign of the asymmetry is not strongly dependent on kinetic energy release (KER). The favored ionization orientation is in agreement with the expectation of the molecular orbital Ammosov-Delone-Krainov (MO-ADK) [1] theory and with a Stark-corrected version of a strong-field-approximation (SFA) calculation [2]. [4pt] [1] X.M. Tong, et al., Phys. Rev. A 66, 033402 (2002).[0pt] [2] H. Li, et al., Phys. Rev. A 84, 043429 (2011).

  17. Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue

    NASA Astrophysics Data System (ADS)

    Krstajić, Nikola; Akram, Ahsan R.; Choudhary, Tushar R.; McDonald, Neil; Tanner, Michael G.; Pedretti, Ettore; Dalgarno, Paul A.; Scholefield, Emma; Girkin, John M.; Moore, Anne; Bradley, Mark; Dhaliwal, Kevin

    2016-04-01

    We demonstrate a fast two-color widefield fluorescence microendoscopy system capable of simultaneously detecting several disease targets in intact human ex vivo lung tissue. We characterize the system for light throughput from the excitation light emitting diodes, fluorescence collection efficiency, and chromatic focal shifts. We demonstrate the effectiveness of the instrument by imaging bacteria (Pseudomonas aeruginosa) in ex vivo human lung tissue. We describe a mechanism of bacterial detection through the fiber bundle that uses blinking effects of bacteria as they move in front of the fiber core providing detection of objects smaller than the fiber core and cladding (˜3 μm). This effectively increases the measured spatial resolution of 4 μm. We show simultaneous imaging of neutrophils, monocytes, and fungus (Aspergillus fumigatus) in ex vivo human lung tissue. The instrument has 10 nM and 50 nM sensitivity for fluorescein and Cy5 solutions, respectively. Lung tissue autofluorescence remains visible at up to 200 fps camera acquisition rate. The optical system lends itself to clinical translation due to high-fluorescence sensitivity, simplicity, and the ability to multiplex several pathological molecular imaging targets simultaneously.

  18. Parametric study of broadband terahertz radiation generation based on interaction of two-color ultra-short laser pulses

    SciTech Connect

    Moradi, S.; Ganjovi, A.; Shojaei, F.; Saeed, M.

    2015-04-15

    In this work, using a two-dimensional kinetic model based on particle in cell-Monte Carlo collision simulation method, the influence of different parameters on the broadband intense Terahertz (THz) radiation generation via application of two-color laser fields, i.e., the fundamental and second harmonic modes, is studied. These two modes are focused into the molecular oxygen (O{sub 2}) with uniform density background gaseous media and the plasma channels are created. Thus, a broadband THz pulse that is around the plasma frequency is emitted from the formed plasma channel and co-propagates with the laser pulse. For different laser pulse shapes, the THz electric field and its spectrum are both calculated. The effects of laser pulse and medium parameters, i.e., positive and negative chirp pulse, number of laser cycles in the pulse, laser pulse shape, background gas pressure, and exerted DC electric field on THz spectrum are verified. Application of a negatively chirped femtosecond (40 fs) laser pulse results in four times enhancement of the THz pulse energy (2 times in THz electric field). The emission of THz radiation is mostly observed in the forward direction.

  19. Two-color two-photon excited fluorescence of indole: Determination of wavelength-dependent molecular parameters

    NASA Astrophysics Data System (ADS)

    Herbrich, Sebastian; Al-Hadhuri, Tawfik; Gericke, Karl-Heinz; Shternin, Peter S.; Smolin, Andrey G.; Vasyutinskii, Oleg S.

    2015-01-01

    We present a detailed study of two-color two-photon excited fluorescence in indole dissolved in propylene glycol. Femtosecond excitation pulses at effective wavelengths from 268 to 293.33 nm were used to populate the two lowest indole excited states 1La and 1Lb and polarized fluorescence was then detected. All seven molecular parameters and the two-photon polarization ratio Ω containing information on two-photon absorption dynamics, molecular lifetime τf, and rotation correlation time τrot have been determined from experiment and analyzed as a function of the excitation wavelength. The analysis of the experimental data has shown that 1Lb-1La inversion occurred under the conditions of our experiment. The two-photon absorption predominantly populated the 1La state at all excitation wavelengths but in the 287-289 nm area which contained an absorption hump of the 1Lb state 0-0 origin. The components of the two-photon excitation tensor S were analyzed giving important information on the principal tensor axes and absorption symmetry. The results obtained are in a good agreement with the results reported by other groups. The lifetime τf and the rotation correlation time τrot showed no explicit dependence on the effective excitation wavelength. Their calculated weighted average values were found to be τf = 3.83 ± 0.14 ns and τrot = 0.74 ± 0.06 ns.

  20. Parametric study of broadband terahertz radiation generation based on interaction of two-color ultra-short laser pulses

    NASA Astrophysics Data System (ADS)

    Moradi, S.; Ganjovi, A.; Shojaei, F.; Saeed, M.

    2015-04-01

    In this work, using a two-dimensional kinetic model based on particle in cell-Monte Carlo collision simulation method, the influence of different parameters on the broadband intense Terahertz (THz) radiation generation via application of two-color laser fields, i.e., the fundamental and second harmonic modes, is studied. These two modes are focused into the molecular oxygen (O2) with uniform density background gaseous media and the plasma channels are created. Thus, a broadband THz pulse that is around the plasma frequency is emitted from the formed plasma channel and co-propagates with the laser pulse. For different laser pulse shapes, the THz electric field and its spectrum are both calculated. The effects of laser pulse and medium parameters, i.e., positive and negative chirp pulse, number of laser cycles in the pulse, laser pulse shape, background gas pressure, and exerted DC electric field on THz spectrum are verified. Application of a negatively chirped femtosecond (40 fs) laser pulse results in four times enhancement of the THz pulse energy (2 times in THz electric field). The emission of THz radiation is mostly observed in the forward direction.

  1. Tunable two-color luminescence and host-guest energy transfer of fluorescent chromophores encapsulated in metal-organic frameworks.

    PubMed

    Yan, Dongpeng; Tang, Yanqun; Lin, Heyang; Wang, Dan

    2014-03-11

    Co-assembly of chromophore guests with host matrices can afford materials which have photofunctionalities different from those of individual components. Compared with clay and zeolite materials, the use of metal-organic frameworks (MOFs) as a host structure for fabricating luminescent host-guest materials is still at an early stage. Herein, we report the incorporation of a laser dye, 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM), into stilbene-based and naphthalene-based MOF systems. The resulting materials exhibit blue/red two-color emission, and the intensity ratio of blue to red fluorescence varies in different planes within the MOF crystal as detected by 3D confocal fluorescence microscopy. The observed changes in ratiometric fluorescence suggest the occurrence of energy transfer from MOF host to DCM molecules, which can be further confirmed by periodic density functional theoretical (DFT) calculations. Moreover, selective changes in luminescence behavior are observed on treating the guest@MOF samples with volatile organic compounds (methanol, acetone and toluene), indicating that these host-guest systems have potential applications as fluorescence sensors. It can be expected that by rational selection of MOF hosts and guest chromophores with suitable emissive colors and energy levels, a wide variety of multi-color luminescent and energy-transfer systems can readily be prepared in a similar manner.

  2. Probing photoelectron angular distributions in molecules with polarization-controlled two-color above-threshold ionization

    NASA Astrophysics Data System (ADS)

    Leitner, Torsten; Taïeb, Richard; Meyer, Michael; Wernet, Philippe

    2015-06-01

    We present polarization-controlled multiphoton two-color above-threshold ionization (TCATI) of molecules. The intensity modulations of valence photoelectron intensities of molecules arising from varying the relative orientation of the linear polarization vectors of femtosecond infrared (IR) and vacuum-ultraviolet (VUV) radiation in TCATI of the highest occupied molecular orbitals of H2O , O2, and N2 are reported. The results on the molecular systems are compared to the 3 p photoionization of atomic Ar, which serves as a reference system. Modeling the large differences of the modulation amplitudes within the soft-photon approximation enables us to extract the one-photon-ionization anisotropy parameter β2. Accounting only for the first sideband due to two-photon TCATI by one VUV and one IR photon we find satisfactory agreement between experiment and simulation for H2O and O2. However, the model fails for N2 and possible reasons are discussed. We discuss that the described approach may represent an alternative way of determining photoelectron angular distributions from valence shells of molecules and indicate future directions for modeling TCATI of molecules.

  3. Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue

    NASA Astrophysics Data System (ADS)

    Krstajić, Nikola; Akram, Ahsan R.; Choudhary, Tushar R.; McDonald, Neil; Tanner, Michael G.; Pedretti, Ettore; Dalgarno, Paul A.; Scholefield, Emma; Girkin, John M.; Moore, Anne; Bradley, Mark; Dhaliwal, Kevin

    2016-04-01

    We demonstrate a fast two-color widefield fluorescence microendoscopy system capable of simultaneously detecting several disease targets in intact human ex vivo lung tissue. We characterize the system for light throughput from the excitation light emitting diodes, fluorescence collection efficiency, and chromatic focal shifts. We demonstrate the effectiveness of the instrument by imaging bacteria (Pseudomonas aeruginosa) in ex vivo human lung tissue. We describe a mechanism of bacterial detection through the fiber bundle that uses blinking effects of bacteria as they move in front of the fiber core providing detection of objects smaller than the fiber core and cladding (˜3 μm). This effectively increases the measured spatial resolution of 4 μm. We show simultaneous imaging of neutrophils, monocytes, and fungus (Aspergillus fumigatus) in ex vivo human lung tissue. The instrument has 10 nM and 50 nM sensitivity for fluorescein and Cy5 solutions, respectively. Lung tissue autofluorescence remains visible at up to 200 fps camera acquisition rate. The optical system lends itself to clinical translation due to high-fluorescence sensitivity, simplicity, and the ability to multiplex several pathological molecular imaging targets simultaneously.

  4. Exploratory 5-micron spectrum of Uranus

    SciTech Connect

    Orton, G.S.; Kaminski, C.D.

    1989-01-01

    The intensity peak at 4.8 microns characterizing the spectrum observed for the disk of Uranus near 5 microns, in June 1987, exhibits steep declines at shorter and longer wavelength. An exploratory discussion is presented of various models in view of these data; it is noted that some component of the radiation must originate near the 140 K atmospheric irrespective of the radiation's origin in sunlight or thermal emission; physical considerations dictate that it be at least partly thermal in origin. One model consistent with the data requires the presence of a cloud top at the 8-bar level. 30 references.

  5. Simultaneous two-phase flow measurement of spray mixing process by means of high-speed two-color PIV

    NASA Astrophysics Data System (ADS)

    Zhang, Ming; Xu, Min; Hung, David L. S.

    2014-09-01

    In this article, a novel high-speed two-color PIV optical diagnostic technique has been developed and applied to simultaneously measure the velocity flow-fields of a multi-hole spark-ignition direct injection (SIDI) fuel injector spray and its ambient gas in a high-pressure constant volume chamber. To allow for the phase discrimination between the fuel droplets and ambient gas, a special tracer-filter system was designed. Fluorescent seeding particles with Sauter mean diameter (SMD) of 4.8 µm were used to trace the gas inside the chamber. With a single high-speed Nd:YLF laser sheet (527 nm) as the incident light source, the Mie-scattering signal marked the phase of the fuel spray, while the fluorescent signal generated from the seeding particles tracked the phase of ambient gas. A high-speed camera, with an image-doubler (mounted in front of the camera lens) that divided the camera pixels into two parts focusing on the same field of view, was used to collect the Mie-scattering signal and LIF (laser induced fluorescence) signal simultaneously with two carefully selected optical filters. To accommodate the large dynamic range of velocities in the two phases (1-2 orders of magnitude difference), two separation times (dt) were introduced. This technique was successfully applied to the liquid spray and ambient gas two-phase flow measurement. The measurement accuracy was compared with those from LDV (laser Doppler velocimetry) measurement and good agreement was obtained. Ambient gas motion surrounding the fuel spray was investigated and characterized into three zones. The momentum transfer process between the fuel spray and ambient gas in each zone was analyzed. The two-phase flow interaction under various superheated conditions was investigated. A strengthened momentum transfer from the liquid spray to the ambient was observed with increased superheat degree.

  6. Two-color two-photon excited fluorescence of indole: Determination of wavelength-dependent molecular parameters

    SciTech Connect

    Herbrich, Sebastian; Al-Hadhuri, Tawfik; Gericke, Karl-Heinz; Shternin, Peter S. Vasyutinskii, Oleg S.; Smolin, Andrey G.

    2015-01-14

    We present a detailed study of two-color two-photon excited fluorescence in indole dissolved in propylene glycol. Femtosecond excitation pulses at effective wavelengths from 268 to 293.33 nm were used to populate the two lowest indole excited states {sup 1}L{sub a} and {sup 1}L{sub b} and polarized fluorescence was then detected. All seven molecular parameters and the two-photon polarization ratio Ω containing information on two-photon absorption dynamics, molecular lifetime τ{sub f}, and rotation correlation time τ{sub rot} have been determined from experiment and analyzed as a function of the excitation wavelength. The analysis of the experimental data has shown that {sup 1}L{sub b}–{sup 1}L{sub a} inversion occurred under the conditions of our experiment. The two-photon absorption predominantly populated the {sup 1}L{sub a} state at all excitation wavelengths but in the 287–289 nm area which contained an absorption hump of the {sup 1}L{sub b} state 0-0 origin. The components of the two-photon excitation tensor S were analyzed giving important information on the principal tensor axes and absorption symmetry. The results obtained are in a good agreement with the results reported by other groups. The lifetime τ{sub f} and the rotation correlation time τ{sub rot} showed no explicit dependence on the effective excitation wavelength. Their calculated weighted average values were found to be τ{sub f} = 3.83 ± 0.14 ns and τ{sub rot} = 0.74 ± 0.06 ns.

  7. Dual Femtosecond TITANIUM:SAPPHIRE Laser for Ultrafast Optical Sampling Two-Color Pump/probe Studies.

    NASA Astrophysics Data System (ADS)

    Luo, Ningyi Daniel

    A pair of self-synchronous Ti:Sapphire lasers have been setup for two-color pump/probe detection in the sub-picosecond time regime. The two 75 femtosecond self -mode-locked Ti:Sapphire lasers are operated asynchronously at slightly different repetition rates to provide continuously varying dynamic delay times. They are tunable at 700-890 nm. The shorter wavelength pulses from one laser are used as a pump source, while the longer wavelength pulses are used as a probe. The sum-frequency pulses generated by the cross-correlation of the two laser pulses are used to define the "time-zero" position and trigger the pump/probe process. The experiment is triggered at the difference frequency, and the signal can be averaged many times allowing a weak signal to build up. Dual-time scale is involved with the interpretation of the signal, which allows the experiment to be carried on the real time scale and the signal to be recorded on a much reduced equivalent time scale. Excited state lifetime measurement of laser HITCI has proven that this technology is practically feasible. Several advantages have been seen: (1) independent wavelength tunability of the pump and probe lasers; (2) variable femto- to nano -second pump/probe time delay; (3) fast (mu s-ms) data collection time; (4) compact optical layout, without the need for optical delay lines and modulators, and thus, simple optical alignment. This study sheds light on the development of a novel compact high speed optical instrument.

  8. Sub-micron particle sampler apparatus and method for sampling sub-micron particles

    DOEpatents

    Gay, D.D.; McMillan, W.G.

    1984-04-12

    Apparatus and method steps for collecting sub-micron sized particles include a collection chamber and cryogenic cooling. The cooling is accomplished by coil tubing carrying nitrogen in liquid form, with the liquid nitrogen changing to the gas phase before exiting from the collection chamber in the tubing. Standard filters are used to filter out particles of diameter greater than or equal to 0.3 microns; however, the present invention is used to trap particles of less than 0.3 micron in diameter. A blower draws air to said collection chamber through a filter which filters particles with diameters greater than or equal to 0.3 micron. The air is then cryogenically cooled so that moisture and sub-micron sized particles in the air condense into ice on the coil. The coil is then heated so that the ice melts, and the liquid is then drawn off and passed through a Buchner funnel where the liquid is passed through a Nuclepore membrane. A vacuum draws the liquid through the Nuclepore membrane, with the Nuclepore membrane trapping sub-micron sized particles therein. The Nuclepore membrane is then covered on its top and bottom surfaces with sheets of Mylar and the assembly is then crushed into a pellet. This effectively traps the sub-micron sized particles for later analysis. 6 figures.

  9. Application of coherent 10 micron imaging lidar

    SciTech Connect

    Simpson, M.L.; Hutchinson, D.P.; Richards, R.K.; Bennett, C.A.

    1997-04-01

    With the continuing progress in mid-IR array detector technology and high bandwidth fan-outs, i.f. electronics, high speed digitizers, and processing capability, true coherent imaging lidar is becoming a reality. In this paper experimental results are described using a 10 micron coherent imaging lidar.

  10. Efavirenz Dissolution Enhancement I: Co-Micronization

    PubMed Central

    da Costa, Maíra Assis; Seiceira, Rafael Cardoso; Rodrigues, Carlos Rangel; Hoffmeister, Cristiane Rodrigues Drago; Cabral, Lucio Mendes; Rocha, Helvécio Vinícius Antunes

    2012-01-01

    AIDS constitutes one of the most serious infectious diseases, representing a major public health priority. Efavirenz (EFV), one of the most widely used drugs for this pathology, belongs to the Class II of the Biopharmaceutics Classification System for drugs with very poor water solubility. To improve EFV’s dissolution profile, changes can be made to the physical properties of the drug that do not lead to any accompanying molecular modifications. Therefore, the study objective was to develop and characterize systems with efavirenz able to improve its dissolution, which were co-processed with sodium lauryl sulfate (SLS) and polyvinylpyrrolidone (PVP). The technique used was co-micronization. Three different drug:excipient ratios were tested for each of the two carriers. The drug dispersion dissolution results showed significant improvement for all the co-processed samples in comparison to non-processed material and corresponding physical mixtures. The dissolution profiles obtained for dispersion with co-micronized SLS samples proved superior to those of co-micronized PVP, with the proportion (1:0.25) proving the optimal mixture. The improvements may be explained by the hypothesis that formation of a hydrophilic layer on the surface of the micronized drug increases the wettability of the system formed, corroborated by characterization results indicating no loss of crystallinity and an absence of interaction at the molecular level. PMID:24300394

  11. The 11 Micron Emissions of Carbon Stars

    NASA Technical Reports Server (NTRS)

    Goebel, J. H.; Cheeseman, P.; Gerbault, F.

    1995-01-01

    A new classification scheme of the IRAS LRS carbon stars is presented. It comprises the separation of 718 probable carbon stars into 12 distinct self-similar spectral groupings. Continuum temperatures are assigned and range from 470 to 5000 K. Three distinct dust species are identifiable: SiC, alpha:C-H, and MgS. In addition to the narrow 11 + micron emission feature that is commonly attributed to SiC, a broad 11 + micron emission feature, that is correlated with the 8.5 and 7.7 micron features, is found and attributed to alpha:C-H. SiC and alpha:C-H band strengths are found to correlate with the temperature progression among the Classes. We find a spectral sequence of Classes that reflects the carbon star evolutionary sequence of spectral types, or alternatively developmental sequences of grain condensation in carbon-rich circumstellar shells. If decreasing temperature corresponds to increasing evolution, then decreasing temperature corresponds to increasing C/O resulting in increasing amounts of carbon rich dust, namely alpha:C-H. If decreasing the temperature corresponds to a grain condensation sequence, then heterogeneous, or induced nucleation scenarios are supported. SiC grains precede alpha:C-H and form the nuclei for the condensation of the latter material. At still lower temperatures, MgS appears to be quite prevalent. No 11.3 micron PAH features are identified in any of the 718 carbon stars. However, one of the coldest objects, IRAS 15048-5702, and a few others, displays an 11.9 micron emission feature characteristic of laboratory samples of coronene. That feature corresponds to the C-H out of plane deformation mode of aromatic hydrocarbon. This band indicates the presence of unsaturated, sp(sup 3), hydrocarbon bonds that may subsequently evolve into saturated bonds, sp(sup 2), if, and when, the star enters the planetary nebulae phase of stellar evolution. The effusion of hydrogen from the hydrocarbon grain results in the evolution in wavelength of this

  12. The 11 Micron Emissions of Cabon Stars

    NASA Technical Reports Server (NTRS)

    Goebel, J. H.; Cheeseman, P.; Gerbault, F.

    1995-01-01

    A new classification scheme of the IRAS LRS carbon stars is presented. It comprises the separation of 718 probable carbon stars into 12 distinct self-similar spectral groupings. Continuum temperatures are assigned and range from 470 to 5000 K. Three distinct dust species are identifiable: SiC, alpha:C-H, and MgS. In addition to the narrow 11 + micron emission feature that is commonly attributed to SiC, a broad 11 + micron emission feature, that is correlated with the 8.5 and 7.7 micron features, is found and attributed to alpha:C-H. SiC and alpha:C-H band strengths are found to correlate with the temperature progression among the Classes. We find a spectral sequence of Classes that reflects the carbon star evolutionary sequence of spectral types, or alternatively developmental sequences of grain condensation in carbon-rich circumstellar shells. If decreasing temperature corresponds to increasing evolution, then decreasing temperature corresponds to increasing CIO resulting in increasing amounts of carbon rich dust, namely alpha:C-H. If decreasing the temperature corresponds to a grain condensation sequence, then heterogeneous, or induced nucleation scenarios are supported. SiC grains precede alpha:C-H and form the nuclei for the condensation of the latter material. At still lower temperatures, MgS appears to be quite prevalent. No 11.3 micron PAH features are identified in any of the 718 carbon stars. However, one of the coldest objects, IRAS 15048-5702, and a few others, displays an 11.9 micron emission feature characteristic of laboratory samples of coronene. That feature corresponds to the C-H out of plane deformation mode of aromatic hydrocarbon. This band indicates the presence of unsaturated, sp(sup 3), hydrocarbon bonds that may subsequently evolve into saturated bonds, sp(sup 2), if, and when, the star enters the planetary nebulae phase of stellar evolution. The effusion of hydrogen from the hydrocarbon grain results in the evolution in wavelength of this

  13. Origin of the Apollo 14, 15, and 17 yellow ultramafic glasses by mixing of deep cumulate remelts

    NASA Astrophysics Data System (ADS)

    Brown, S. M.; Grove, T. L.

    2015-12-01

    We examine the fO2-dependent melting conditions of the Apollo 14 yellow intermediate-Ti ultramafic glasses and the melting processes that formed the full suite of lunar yellow ultramafic glasses. Multiple saturation experiments indicate that the Apollo 14 yellow glass would have been in equilibrium with residual olivine and low-Ca pyroxene near 1530 °C and 2.4 GPa at ΔIW = +2. At ΔIW = -2, the multiple saturation point moves to greater depth and higher temperature to 1580 °C and 3.0 GPa. Combining the results of this study with that of Krawczynski and Grove (2012) on more Ti-rich Apollo orange and red glass indicates that the fO2-induced change in multiple saturation pressure correlates with the Fe-Ti# (molar (FeO + TiO2*)/(MgO + FeO + TiO2*), where TiO2* = all Ti calculated as Ti4+) of the liquid. Further, a decrease in the olivine Fe-Mg exchange coefficient at lower fO2 suggests that Fe2+ is complexing more efficiently with Ti3+ at the expense of Mg in the melt than it did with Ti4+ at higher fO2. Processes involving assimilation and/or fractionation and/or melt-wall rock reaction all fail to produce the within-suite compositional variability observed in the Apollo 14, 15, and 17 yellow glasses. Mixing of remelted source cumulates, combined with small amounts of olivine fractionation, are the only mechanisms that can reproduce all three trends. We present a quantitative model of the mixing process with simultaneous olivine fractionation. Remarkably, the trends can be explained by mixing melts of an ultramafic source (olivine + pigeonite or orthopyroxene), a clinopyroxene + ilmenite bearing cumulate, and KREEP. Lunar mantle overturn is the most likely process that can reconcile the observed major and trace element compositional characteristics and the experimental results. These two constraints are consistent with different models of lunar magma ocean crystallization (Snyder et al., 1992; Eklins-Tanton et al., 2011). A complex, hot thermal history is necessary

  14. Perfecting the Formula: Effective Strategies = Educational Success. A Report from the 2009 Governors Education Symposium (Cary, North Carolina, June 14-15, 2009)

    ERIC Educational Resources Information Center

    NGA Center for Best Practices, 2009

    2009-01-01

    The 2009 "Governors Education Symposium" was co-hosted by the James B. Hunt, Jr. Institute for Educational Leadership and Policy and the National Governors Association Center for Best Practices on June 14-15, 2009, in Cary, North Carolina. Vermont Governor Jim Douglas and former North Carolina Governor Jim Hunt served as co-chairs. This year's…

  15. University-School Partnerships: Polymer Chemistry Days Run at a University for 14-15 Year Olds and Their Impact on Attitudes to Science

    ERIC Educational Resources Information Center

    Shaw, A. J.; Harrison, T. G.; Medley, M. I.; Sellou, L.; Shallcross, K. L.; Croker, S. J.; Williams, S. J.; Shallcross, D. E.

    2010-01-01

    Polymer Chemistry days run by Bristol ChemLabS at the School of Chemistry, University of Bristol for year 10 (14-15 year olds) school students are described. Pre and post questionnaires were analysed to determine the impact on attitudes to science. There was no change in attitudes to the importance of science or practical work in science, but…

  16. Proceedings of the National Conference on Population Library and Information Services (3rd Chapel Hill, N. C., May 14-15, 1970)

    ERIC Educational Resources Information Center

    Kellermann, Priscilla

    Contains the proceedings of the Third National Conference on Population Library and Information Services held in Chapel Hill, North Carolina, May 14-15, 1970. Under the joint sponsorship of the Carolina Population Center and the Population Council of New York, this was the third in a series of annual conference/workshops devoted to library and…

  17. Micron Accurate Absolute Ranging System: Range Extension

    NASA Technical Reports Server (NTRS)

    Smalley, Larry L.; Smith, Kely L.

    1999-01-01

    The purpose of this research is to investigate Fresnel diffraction as a means of obtaining absolute distance measurements with micron or greater accuracy. It is believed that such a system would prove useful to the Next Generation Space Telescope (NGST) as a non-intrusive, non-contact measuring system for use with secondary concentrator station-keeping systems. The present research attempts to validate past experiments and develop ways to apply the phenomena of Fresnel diffraction to micron accurate measurement. This report discusses past research on the phenomena, and the basis of the use Fresnel diffraction distance metrology. The apparatus used in the recent investigations, experimental procedures used, preliminary results are discussed in detail. Continued research and equipment requirements on the extension of the effective range of the Fresnel diffraction systems is also described.

  18. Supersonic Flows in Micron-Sized Geometries

    NASA Astrophysics Data System (ADS)

    Bayt, Robert; Breuer, Kenneth

    1998-11-01

    The results of experiments and numerical simulations of flows in micromachined converging-diverging nozzles are presented. The nozzles are fabricated using deep Reactive Ion Etching (DRIE) and are typically 20-30 microns at the throat with expansion ratios ranging from 5 to 20. The flow channels are 300 microns deep, resulting in a 10:1 or better aspect ratio at the throat. Experimental measurements of mass flow and thrust vs. pressure ratio are presented demonstrating the presence of choked and supersonic flow in the micron-scale gemoetries. Mass flow and thrust efficiencies are also presented and compared with results from two-dimensional Navier-Stokes simulations. It is found that, while the efficiencies are reasonably large (much better than one might expect, considering the small dimension of the nozzles), the boundary layers have a considerable effect, particularly on the thrust efficiency of the device, due to the relatively large displacement thickness which reduces the effective expansion ratio. The boundary layers at the top and bottom of the nozzles also affect the performance, particularly at low Reynolds numbers. Additional experimental and numerical results are also discussed.

  19. Calibration of a high spatial resolution laser two-color heterodyne interferometer for density profile measurements in the TJ-II stellarator

    SciTech Connect

    Acedo, Pablo; Pedreira, P.; Criado, A. R.; Lamela, Horacio; Sanchez, Miguel; Sanchez, Joaquin

    2008-10-15

    A high spatial resolution two-color (CO{sub 2}, {lambda}=10.6 {mu}m, He-Ne, {lambda}=633 nm) interferometer for density profile measurements in the TJ-II stellarator is under development and installation, based in the currently operational single channel two-color heterodyne interferometer. To achieve the objectives of 32 channels, with 4-5 mm lateral separation between plasma chords, careful design and calibration of the interferometric waveforms for both the measurement and vibration compensation wavelengths are undertaken. The first step has been to set up in our laboratories an expanded-beam heterodyne/homodyne interferometer to evaluate the quality of both interferometric wavefronts, a reported source of poor vibration compensation and thus low resolution in the density profile measurements. This novel interferometric setup has allowed us to calibrate the spatial resolution in the profile measurements resulting in {approx}2 mm lateral resolution in the reconstruction of the interferometric wavefront.

  20. Identification of the origin of marker chromosomes by two-color fluorescence in situ hybridization and polymerase chain reaction in azoospermic patients.

    PubMed

    Wei, C L; Cheng, J L; Yang, W C; Li, L Y; Cheng, H C; Fu, J J

    2015-11-19

    Y chromosomal microdeletions at the azoospermia factor locus and chromosome abnormalities have been implicated as the major causes of idiopathic male infertility. A marker chromosome is a structurally abnormal chromosome in which no part can be identified by cytogenetics. In this study, to identify the origin of the marker chromosomes and to perform a genetic diagnosis of patients with azoospermia, two-color fluorescence in situ hybridization (FISH) and polymerase chain reaction (PCR) techniques were carried out. The marker chromosomes for the two patients with azoospermia originated in the Y chromosome; it was ascertained that the karyotype of both patients was 46,X, ish del(Y)(q11)(DYZ3+, DXZ1-). The combination of two-color FISH and PCR techniques is an important method for the identification of the origin of marker chromosomes. Thus, genetic counseling and a clear genetic diagnosis of patients with azoospermia before intracytoplasmic sperm injection or other clinical managements are important.

  1. Bright attosecond soft X-ray pulse trains by transient phase-matching in two-color high-order harmonic generation.

    PubMed

    Schütte, Bernd; Weber, Paul; Kovács, Katalin; Balogh, Emeric; Major, Balázs; Tosa, Valer; Han, Songhee; Vrakking, Marc J J; Varjú, Katalin; Rouzée, Arnaud

    2015-12-28

    We study two-color high-order harmonic generation in Neon with 790 nm and 1300 nm driving laser fields and observe an extreme-ultraviolet continuum that extends to photon energies of 160 eV. Using a 6-mm-long, high pressure gas cell, we optimize the HHG yield at high photon energies and investigate the effect of ionization and propagation under phase-matching conditions that allow us to control the temporal structure of the XUV emission. Numerical simulations that include the 3D propagation of the two-color laser pulse show that a bright isolated attosecond pulse with exceptionally high photon energies can be generated in our experimental conditions due to an efficient hybrid optical and phase-matching gating mechanism. PMID:26832053

  2. Dynamics of the formation of laser-induced periodic surface structures (LIPSS) upon femtosecond two-color double-pulse irradiation of metals, semiconductors, and dielectrics

    NASA Astrophysics Data System (ADS)

    Höhm, S.; Herzlieb, M.; Rosenfeld, A.; Krüger, J.; Bonse, J.

    2016-06-01

    In order to address the dynamics and physical mechanisms of LIPSS formation for three different classes of materials (metals, semiconductors, and dielectrics), two-color double-fs-pulse experiments were performed on Titanium, Silicon and Fused Silica. For that purpose a Mach-Zehnder interferometer generated polarization controlled (parallel or cross-polarized) double-pulse sequences at 400 nm and 800 nm wavelength, with inter-pulse delays up to a few picoseconds. Multiple of these two-color double-pulse sequences were collinearly focused by a spherical mirror to the sample surfaces. The fluence of each individual pulse (400 nm and 800 nm) was always kept below its respective ablation threshold and only the joint action of both pulses lead to the formation of LIPSS. Their resulting characteristics (periods, areas) were analyzed by scanning electron microscopy. The periods along with the LIPSS orientation allow a clear identification of the pulse which dominates the energy coupling to the material. For strong absorbing materials (Silicon, Titanium), a wavelength-dependent plasmonic mechanism can explain the delay-dependence of the LIPSS. In contrast, for dielectrics (Fused Silica) the first pulse always dominates the energy deposition and LIPSS orientation, supporting a non-plasmonic formation scenario. For all materials, these two-color experiments confirm the importance of the ultrafast energy deposition stage for LIPSS formation.

  3. How do we select multiple features? Transient costs for selecting two colors rather than one, persistent costs for color-location conjunctions.

    PubMed

    Lo, Shih-Yu; Holcombe, Alex O

    2014-02-01

    In a previous study Lo, Howard, & Holcombe (Vision Research 63:20-33, 2012), selecting two colors did not induce a performance cost, relative to selecting one color. For example, requiring possible report of both a green and a red target did not yield a worse performance than when both targets were green. Yet a cost of selecting multiple colors was observed when selection needed be contingent on both color and location. When selecting a red target to the left and a green target to the right, superimposing a green distractor to the left and a red distractor to the right impeded performance. Possibly, participants cannot confine attention to a color at a particular location. As a result, distractors that share the target colors disrupt attentional selection of the targets. The attempt to select the targets must then be repeated, which increases the likelihood that the trial terminates when selection is not effective, even for long trials. Consistent with this, here we find a persistent cost of selecting two colors when the conjunction of color and location is needed, but the cost is confined to short exposure durations when the observer just has to monitor red and green stimuli without the need to use the location information. These results suggest that selecting two colors is time-consuming but effective, whereas selection of simultaneous conjunctions is never entirely successful.

  4. Phase control of multichannel molecular high-order harmonic generation by the asymmetric diatomic molecule HeH{sup 2+} in two-color laser fields

    SciTech Connect

    Bian Xuebin; Bandrauk, Andre D.

    2011-02-15

    Multichannel molecular high-order harmonic generation (MHOHG) from the asymmetric diatomic molecule HeH{sup 2+} in two-color laser fields is investigated from numerical simulation of the corresponding time-dependent Schroedinger equation (TDSE). It is found that the laser-induced electron transfer (LIET) plays a crucial role in MHOHG, which leads to the multichannel harmonic generation from the ground and long-lifetime excited states. LIET is sensitive to the phase differences of the two-color laser pulses, which can be used to control the enhanced excitation (EE) and enhanced ionization (EI) of the system. Both EE and EI have a strong influence on the overall intensity of the MHOHG spectrum, and there may be four orders of magnitude difference in the MHOHG intensity between the enhanced and suppressed cases. In addition, owing to the asymmetry of the two-color laser fields and the recombination of electron with the neighboring ion, multiple cutoff energies are observed. The mechanism of these effects are confirmed by classical simulations.

  5. Single-particle tracking of immunoglobulin E receptors (FcεRI) in micron-sized clusters and receptor patches.

    PubMed

    Spendier, Kathrin; Lidke, Keith A; Lidke, Diane S; Thomas, James L

    2012-02-17

    When mast cells contact a monovalent antigen-bearing fluid lipid bilayer, IgE-loaded FcεRI receptors aggregate at contact points and trigger degranulation and the release of immune activators. We used two-color total internal reflection fluorescence microscopy and single-particle tracking to show that most fluorescently labeled receptor complexes diffuse freely within these micron-size clusters, with a diffusion coefficient comparable to free receptors in resting cells. At later times, when the small clusters coalesce to form larger patches, receptors diffuse even more rapidly. In all cases, Monte Carlo diffusion simulations ensured that the tracking results were free of bias, and distinguished biological from statistical variation. These results show the diversity in receptor mobility in mast cells, demonstrating at least three distinct states of receptor diffusivity.

  6. Searching for New Physics from 20 microns to a micron and below

    NASA Astrophysics Data System (ADS)

    Geraci, Andrew; Smullin, Sylvia; Weld, David; Kapitulnik, Aharon; Dimopoulos, Savas

    2004-05-01

    Several recent theoretical ideas suggest that new physics related to gravity may appear at short length scales. For example, light moduli or particles in "large" extra dimensions could mediate macroscopic forces of (super)gravitational strength at length scales below a millimeter. At the 20 microns level, I will discuss the Stanford cantilever experiment (J. Chiaverini, S. J. Smullin, A. A. Geraci, D. M. Weld, A. Kapitulnik, Phys.Rev.Lett. 90, 151101 (2003).), including an improvement involving a magnetic analog which allows force calibration and precision alignment to reduce systematics. I will also discuss some experimental challenges at length scales below a few microns including the Casimir/Van der Waals background, and will describe an experimental prospect to search for new (sub)-micron forces using arrays of trapped Bose-Einstein condensed atoms (Savas Dimopoulos and Andrew A. Geraci, Phys. Rev. D 68, 124021 (2003). ).

  7. Novel Tests of Gravity Below Fifty Microns

    NASA Astrophysics Data System (ADS)

    Martinez, Gabriela; Johnson, Jeremy; Guerrero, Ian; Hoyle, C. D.

    2016-03-01

    Due to inconsistencies between General Relativity and the Standard Model, tests of gravity remain at the forefront of experimental physics. At Humboldt State University, undergraduates and faculty are designing an experiment sensitive enough to detect gravitational interactions below the 50 micron scale. The experiment measures the twist of a torsion pendulum as an attractor mass is oscillated nearby in a parallel plate configuration, providing time varying gravitational torque on the pendulum. The size and distance dependence of the torque variation will provide a means to determine any deviation from current models of gravity on untested scales. Supported by NSF Grants 1065697 and 1306783.

  8. Digital mammography: tradeoffs between 50- and 100-micron pixel size

    NASA Astrophysics Data System (ADS)

    Freedman, Matthew T.; Steller Artz, Dorothy E.; Jafroudi, Hamid; Lo, Shih-Chung B.; Zuurbier, Rebecca A.; Katial, Raj; Hayes, Wendelin S.; Wu, Chris Y.; Lin, Jyh-Shyan; Steinman, Richard M.; Tohme, Walid G.; Mun, Seong K.

    1995-05-01

    Improvements in mammography equipment related to a decrease in pixel size of digital mammography detectors raise questions of the possible effects of these new detectors. Mathematical modeling suggested that the benefits of moving from 100 to 50 micron detectors were slight and might not justify the cost of these new units. Experiments comparing screen film mammography, a storage phosphor 100 micron digital detector, a 50 micron digital breast spot device, 100 micron film digitization and 50 micron film digitization suggests that object conspicuity should be better for digital compared to conventional systems, but that there seemed to be minimal advantage to going from 100 to 50 microns. The 50 micron pixel system appears to provide a slight advantage in object contrast and perhaps in shape definition, but did not allow smaller objects to be detected.

  9. The interstellar 4.62 micron band.

    PubMed

    Pendleton, Y J; Tielens, A G; Tokunaga, A T; Bernstein, M P

    1999-03-01

    We present new 4.5-5.1 micron (2210-1970 cm-1) spectra of embedded protostars, W33 A, AFGL 961 E, AFGL 2136, NGC 7538 IRS 9, and Mon R2 IRS 2, which contain a broad absorption feature located near 4.62 micron (2165 cm-1), commonly referred to in the literature as the "X-C triple bond N" band. The observed peak positions and widths of the interstellar band agree to within 2.5 cm-1 and 5 cm-1, respectively. The strengths of the interstellar 4.62 micrometers band and the ice absorption features in these spectra are not correlated, which suggests a diversity of environmental conditions for the ices we are observing. We explore several possible carriers of the interstellar band and review possible production pathways through far-ultraviolet photolysis (FUV), ion bombardment of interstellar ice analog mixtures, and acid-base reactions. Good fits to the interstellar spectra are obtained with an organic residue produced through ion bombardment of nitrogen-containing ices or with the OCN- ion produced either through acid-base reactions or FUV photolysis of NH3-containing ices.

  10. The 1.2 micron CMOS technology

    NASA Technical Reports Server (NTRS)

    Pina, C. A.

    1985-01-01

    A set of test structures was designed using the Jet Propulsion Laboratory (JPL) test chip assembler and was used to evaluate the first CMOS-bulk foundry runs with feature sizes of 1.2 microns. In addition to the problems associated with the physical scaling of the structures, this geometry provided an additional set of problems, since the design files had to be generated in such a way as to be capable of being processed through p-well, n-well, and twin-well processing lines. This requirement meant that the files containing the geometric design rules as well as the structure design files had to produce process-insensitive designs, a requirement that does not apply to the more mature 3.0-micron CMOS feature size technology. Because of the photolithographic steps required with this feature size, the maximum allowable chip size was 10 x 10 mm, and this chip was divided into 24 project areas, with each area being 1.6 x 1.6 mm in size. The JPL-designed structures occupied 13 out of the 21 allowable project sizes and provided the only test information obtained from these three preliminary runs. The structures were used to successfully evaluate three different manufacturing runs through two separate foundries.

  11. The Two Micron All Sky Survey

    NASA Technical Reports Server (NTRS)

    Kleinmann, S. G.; Lysaght, M. G.; Pughe, W. L.; Schneider, S. E.; Skrutskie, M. F.; Weinberg, M. D.; Price, S. D.; Matthews, K.; Soifer, B. T.; Huchra, J. P.

    1994-01-01

    The Two Micron All Sky Survey (2MASS) will provide a uniform survey of the entire sky at three near-infrared wavebands: J(lambda(sub eff) = 1.25 micrometers), H(lambda(sub eff) = 1.65 micrometers), and K(sub s)(lambda(sub eff) = 2.16 micrometers). A major goal of the survey is to probe large scale structures in the Milky Way and in the Local Universe, exploiting the relatively high transparency of the interstellar medium in the near-infrared, and the high near-infrared luminosities of evolved low- and intermediate-mass stars. A sensitive overview of the near-infrared sky is also an essential next step to maximize the gains achievable with infrared array technology. Our assessment of the astrophysical questions that might be addressed with these new arrays is currently limited by the very bright flux limit of the only preceding large scale near-infrared sky survey, the Two Micron Sky Survey carried out at Caltech in the late 1960's. Near-infrared instruments based on the new array technology have already obtained spectra of objects 1 million times fainter than the limit of the TMSS! This paper summarizes the essential parameters of the 2MASS project and the rationale behind those choices, and gives an overview of results obtained with a prototype camera that has been in operation since May 1992. We conclude with a list of expected data products and a statement of the data release policy.

  12. Shallow and peripheral volcanic sources of inflation revealed by modeling two-color geodimeter and leveling data from Long Valley caldera, California, 1988-1992

    SciTech Connect

    Langbein, J.; Dzurisin, D.; Marshall, G.

    1995-07-10

    The authors refined the model for inflation of the Long Valley caldera near Mammoth Lakes, California, by combining both geodetic measurements of baseline length and elevation changes. Baseline length changes measured using a two-color geodimeter with submillimeter precision revealed that the resurgent dome started to reinflate in late 1989. Measurements between late 1989 and mid-1992 revealed nearly 13 cm of extension across the resurgent dome. Geodetic leveling surveys with approximately 2-mm precision made in late 1988 and in mid-1992 revealed a maximum of about 8 cm of uplift of the resurgent dome. Two elliposidal sources satisfy both the leveling and two-color measurements, whereas spherical point sources could not. The model`s primary inflation source is located 5.5 km beneath the resurgent dome with the two horizontal axes. A second source was added to improve the fit to the two-color measurements. This secondary source is located at a depth between 10 and 20 km beneath the south moat of the caldera and has the geometry of an elongated ellipsoid or pipe that dips down to the northeast. In addition, the leveling data suggest dike intrusion beneath Mammoth Mountain during the 1988-1992 interval, which is likely associated with an intense swarm of small earthquakes during the summer of 1989 at that location. The authors analysis shows the dike intrusion to be the shallowest of the three sources with a depth range of 1-3 km below the surface to the top of the intrusion. 18 refs., 4 figs., 2 tabs.

  13. New MBE buffer for micron- and quarter-micron-gateGaAs MESFETs

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A new buffer layer has been developed that eliminates backgating in GaAs MESFETs and substantially reduces short-channel effects in GaAs MESFETs with 0.27-micron-long gates. The new buffer is grown by molecular beam epitaxy (MBE) at a substrate temperature of 200 C using Ga and As sub 4 beam fluxes. The buffer is crystalline, highly resistive, optically inactive, and can be overgrown with high quality GaAs. GaAs MESFETs with a gate length of 0.27 microns that incorporate the new buffer show improved dc and RF properties in comparison with a similar MESFET with a thin undoped GaAs buffer. To demonstrate the backgating performance improvement afforded by the new buffer, MESFETs were fabricated using a number of different buffer layers and structures. A schematic cross section of the MESFET structure used in this study is shown. The measured gate length, gate width, and source-drain spacing of this device are 2,98, and 5.5 microns, respectively. An ohmic contact, isolated from the MESFET by mesa etching, served as the sidegate. The MESFETs were fabricated in MBE n-GaAs layers grown on the new buffer and also in MBE n-GaAs layers grown on buffer layers of undoped GaAs, AlGaAs, and GaAs/AlGaAs superlattices. All the buffer layers were grown by MBE and are 2 microns thick. The active layer is doped to approximately 2 x 10 to the 17th/cu cm with silicon and is 0.3 microns thick.

  14. Spatial variations of the 3 micron emission features within nebulae

    NASA Technical Reports Server (NTRS)

    Moorhouse, Alan; Geballe, T. R.; Allamandola, Louis J.

    1989-01-01

    The 3 micron spectra is presented for the Orion bar region and the Red Rectangle. In both objects spectra were obtained at more than one location, corresponding to different distances from the excitation source. The well known 3.3 and 3.4 micron emission bands are seen in both objects as well as the recently discovered features at 3.46, 3.51, and 3.57 microns in the Orion bar spectra. The spectra show that the relative strengths of the 3 micron emission features vary within the Orion bar. As distance from the exciting star increases, the 3.4 and 3.51 micron features increase, and the 3.46 micron feature decreases in strength, relative to the strong 3.3 micron feature. These are two possible interpretations which are postulated, each of which involves the breaking of bonds by UV radiation, which removes the modes responsible for the 3.4 micron emission near the star. The two possible bond ruptures are the CH bond in small polycyclic aromatic hydrocarbons (PAHs), or the bond to an aliphatic subgroup. It has to be pointed out that neither interpretation appears entirely satisfactory. The vibrational overtone interpretation cannot explain the presence or behavior of the 3.46 micron feature, whereas the laboratory spectra of aliphatic sidegroups contain many more features in the 3 micron region than are observed in the astronomical sources.

  15. Study of the 20,22Ne+20,22Ne and 10,12,13,14,15C+12C Fusion Reactions with MUSIC

    NASA Astrophysics Data System (ADS)

    Avila, M. L.; Rehm, K. E.; Almaraz-Calderon, S.; Carnelli, P. F. F.; DiGiovine, B.; Esbensen, H.; Hoffman, C. R.; Jiang, C. L.; Kay, B. P.; Lai, J.; Nusair, O.; Pardo, R. C.; Santiago-Gonzalez, D.; Talwar, R.; Ugalde, C.

    2016-05-01

    A highly efficient MUlti-Sampling Ionization Chamber (MUSIC) detector has been developed for measurements of fusion reactions. A study of fusion cross sections in the 10,12,13,14,15C+12C and 20,22Ne+20,22Ne systems has been performed at ATLAS. Experimental results and comparison with theoretical predictions are presented. Furthermore, results of direct measurements of the 17O(α, n)20Ne, 23Ne(α, p)26Mg and 23Ne(α, n)26Al reactions will be discussed.

  16. Energetic ion observations in the magnetic cloud of 14-15 January 1988 and their implications for the magnetic field topology

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Farrugia, C. J.; Burlaga, L. F.

    1991-01-01

    On 14-15 January 1988, a magnetic cloud with a local field topology consistent with an east-west aligned cylindrical flux-rope and which formed the driver of an interplanetary shock passed the earth. Using 0.5-4 MeV/n ion data from the instrument on IMP 8, the paper addresses the question of whether or not magnetic field lines within the magnetic cloud were connected to the sun. An impulsive solar particle event was detected inside the magnetic cloud strongly suggesting that the field lines were rooted at the sun.

  17. Accurate detection of on-state quantum dot and biomolecules in a microfluidic flow with single-molecule two-color coincidence detection.

    PubMed

    Zhang, Chun-Yang; Yang, Kun

    2010-05-01

    Due to their unique optical and electronic properties, quantum dots (QDs) have been widely used in a variety of biosensors for sensitive detection of biomarkers and small molecules. However, single QD exhibits dynamic fluctuation of fluorescence intensity (i.e., blinking) with the transition between on and off states, which adversely influences the development of QD-based optical biosensors. Therefore, the methods for efficient evaluation of on-state QD are especially important and highly desirable. In this paper, a novel and unique approach based on single-molecule two-color coincidence detection is developed to simply and accurately evaluate the on-state QDs in a microfluidic flow. Our results demonstrate that improved QDs in the on state are detected in a microfluidic flow in comparison with that in the Brownian motion state, thus paving the way to the development of single QD-based biosensors for sensitive detection of low-abundance biomolecules. This single-molecule two-color coincidence detection has been applied for the homegeneous detection of nucleic acids in a microfluidic flow with the detection sensitivity of 5.0 fM.

  18. Development of a multi-point two-color pyrometer for tube and wall temperature and emissivity measurement at the CFFF

    SciTech Connect

    Benton, R.D.; Jang, P.R.

    1993-01-01

    The Diagnostic Instrumentation and Analysis Laboratory (DIAL) has been actively engaged in developing and applying advanced optical diagnostic techniques and instrumentation systems to high temperature coal-fired gas streams for over a decade. DIAL's systems have been used primarily in support of the US Department of Energy's (DOE) magnetohydrodynamic (MHD) research program. One of the earliest diagnostic systems developed by DIAL was a two color pyrometer (TCP). The TCP is used to measure surface temperature and emissivity. This system has been used extensively to make measurements in support of the national MHD program. In this system, two commercial single-color pyrometers and a microprocessor system were used to form a TCP to make accurate measurements of surfaces of unknown emissivity and temperature. This paper describes an improvement in the DIAL TCP which provides for near simultaneous multipoint measurements, reduced dependence on electronic circuits. and a greatly improved data display system. Commercial two-color pyrometer systems are not suitable for our work because they do not provide for emissivity measurement The emissivity measurement provides insight into changes in surface characteristics and is an important consideration in our work. A second and important reason for our development of this system is the need to make simultaneous measurements at widely separated points. Finally, the data measured by this system is stored on magnetic media and can be correlated with other measurements on the system, e.g. furnace, under study.

  19. 3 micron spectrophotometry of Comet Halley - Evidence for water ice

    NASA Technical Reports Server (NTRS)

    Bregman, Jesse D.; Tielens, A. G. G. M.; Witteborn, Fred C.; Rank, David M.; Wooden, Diane

    1988-01-01

    Structure has been observed in the 3-3.6 micron preperihelion spectrum of Comet Halley consistent with either an absorption band near 3.1 microns or emission near 3.3 microns. The results suggest that a large fraction of the water molecules lost by the comet are initially ejected in the form of small ice particles rather than in the gas phase.

  20. Near 16 micron CO.sub.2 laser system

    DOEpatents

    Krupke, William F.

    1977-01-01

    Method and apparatus for inducing laser action in CO.sub.2 at a wavelength of 16 microns involving the transition between the 02.sup.0 0 and 01.sup.1 0 states. The population inversion between these two states is achieved by pumping to the 00.sup.0 1 level, suppressing the usual 10.6 micron transition to the 10.sup.0 0 level and encouraging the 9.6 micron transition, thereby populating the 02.sup.0 0 level, as the principal prerequisite for 16 micron laser action between the 02.sup.0 0 and 01.sup.1 0 levels.

  1. Roles of the 2 microns gene products in stable maintenance of the 2 microns plasmid of Saccharomyces cerevisiae.

    PubMed Central

    Reynolds, A E; Murray, A W; Szostak, J W

    1987-01-01

    We have examined the replication and segregation of the Saccharomyces cerevisiae 2 microns circle. The amplification of the plasmid at low copy numbers requires site-specific recombination between the 2 microns inverted repeat sequences catalyzed by the plasmid-encoded FLP gene. No other 2 microns gene products are required. The overexpression of FLP in a strain carrying endogenous 2 microns leads to uncontrolled plasmid replication, longer cell cycles, and cell death. Two different assays show that the level of Flp activity decreases with increasing 2 microns copy number. This regulation requires the products of the REP1 and REP2 genes. These gene products also act together to ensure that 2 microns molecules are randomly segregated between mother and daughter cells at cell division. Images PMID:3316982

  2. NMR Microscopy - Micron-Level Resolution.

    NASA Astrophysics Data System (ADS)

    Kwok, Wing-Chi Edmund

    1990-01-01

    Nuclear Magnetic Resonance Imaging (MRI) has been developed into a powerful and widely used diagnostic tool since the invention of techniques using linear magnetic field gradients in 1973. The variety of imaging contrasts obtainable in MRI, such as spin density, relaxation times and flow rate, gives MRI a significant advantage over other imaging techniques. For common diagnostic applications, image resolutions have been in the order of millimeters with slice thicknesses in centimeters. For many research applications, however, resolutions in the order of tens of microns or smaller are needed. NMR Imaging in these high resolution disciplines is known as NMR microscopy. Compared with conventional microscopy, NMR microscopy has the advantage of being non-invasive and non-destructive. The major obstacles of NMR microscopy are low signal-to-noise ratio and effects due to spin diffusion. To overcome these difficulties, more sensitive RF probes and very high magnetic field gradients have to be used. The most effective way to increase sensitivity is to build smaller probes. Microscope probes of different designs have been built and evaluated. Magnetic field gradient coils that can produce linear field gradients up to 450 Gauss/cm were also assembled. In addition, since microscope probes often employ remote capacitors for RF tuning, the associated signal loss in the transmission line was studied. Imaging experiments have been carried out in a 2.1 Tesla small bore superconducting magnet using the typical two-dimensional spin warp imaging technique. Images have been acquired for both biological and non-biological samples. The highest resolution was obtained in an image of a nerve bundle from the spinal cord of a racoon and has an in-plane resolution of 4 microns. These experiments have demonstrated the potential application of NMR microscopy to pathological research, nervous system study and non -destructive testings of materials. One way to further improve NMR microscopy is

  3. Deformation Behavior of Sub-micron and Micron Sized Alumina Particles in Compression.

    SciTech Connect

    Sarobol, Pylin; Chandross, Michael E.; Carroll, Jay; Mook, William; Boyce, Brad; Kotula, Paul Gabriel; McKenzie, Bonnie Beth; Bufford, Daniel Charles; Hall, Aaron Christopher.

    2014-09-01

    The ability to integrate ceramics with other materials has been limited due to high temperature (>800degC) ceramic processing. Recently, researchers demonstrated a novel process , aerosol deposition (AD), to fabricate ceramic films at room temperature (RT). In this process, sub - micro n sized ceramic particles are accelerated by pressurized gas, impacted on the substrate, plastically deformed, and form a dense film under vacuum. This AD process eliminates high temperature processing thereby enabling new coatings and device integration, in which ceramics can be deposited on metals, plastics, and glass. However, k nowledge in fundamental mechanisms for ceramic particle s to deform and form a dense ceramic film is still needed and is essential in advancing this novel RT technology. In this wo rk, a combination of experimentation and atomistic simulation was used to determine the deformation behavior of sub - micron sized ceramic particle s ; this is the first fundamental step needed to explain coating formation in the AD process . High purity, singl e crystal, alpha alumina particles with nominal size s of 0.3 um and 3.0 um were examined. Particle characterization, using transmission electron microscopy (TEM ), showed that the 0.3 u m particles were relatively defect - free single crystals whereas 3.0 u m p articles were highly defective single crystals or particles contained low angle grain boundaries. Sub - micron sized Al 2 O 3 particles exhibited ductile failure in compression. In situ compression experiments showed 0.3um particles deformed plastically, fractured, and became polycrystalline. Moreover, dislocation activit y was observed within the se particles during compression . These sub - micron sized Al 2 O 3 particles exhibited large accum ulated strain (2 - 3 times those of micron - sized particles) before first fracture. I n agreement with the findings from experimentation , a tomistic simulation s of nano - Al 2 O 3 particles showed dislocation slip and

  4. Two-color x-ray pump x-ray probe study of the core-hole decay dynamics in XeF2

    NASA Astrophysics Data System (ADS)

    Picon, Antonio; Lehmann, C. Stefan; Southworth, Stephen; Ho, Phay; Doumy, Gilles; Kanter, Elliot; Kraessig, Bertold; March, Anne Marie; Moonshiram, Dooshaye; Young, Linda; Pratt, Steve; Ray, Dipanwita; Bostedt, Christoph; Krzywinski, Jacek; Ferguson, Ken; Carron, Sebastian; Bucher, Max; Rolles, Daniel; Erk, Benjamin; Bomme, Cedric; Rudenko, Artem; Osipov, Timur; Berrah, Nora; Cheng, Lan; Stanton, John

    2015-03-01

    To resolve the femtosecond inner-shell dynamics and the subsequent induced electron transfer in a molecule, the core-hole decay dynamics in XeF2 have been directly studied using femtosecond time-resolved x-ray pump x-ray probe coincidence imaging. The study of XeF2 molecule allows us to compare the molecular core-hole decay with the atomic case, Xe atom. To study these processes, the recently developed capability at LCLS was used to generate two-color x-ray pulses with variable delay. A time and position sensitive detector has been used to record the ion fragments in coincidence. The correlated ion kinetic energies make it possible to select and assign different excitation pathways, being able to track the atomic and the molecular core-hole decay dynamics.

  5. Origin of ellipticity of high-order harmonics generated by a two-color laser field in the cross-polarized configuration

    NASA Astrophysics Data System (ADS)

    Stremoukhov, S.; Andreev, A.; Vodungbo, B.; Salières, P.; Mahieu, B.; Lambert, G.

    2016-07-01

    Recently several techniques demonstrated the production of elliptically polarized high harmonics. One of these techniques consists of the interaction in a noble gas of two-color laser beams having orthogonal linear polarizations. Here we present the theoretical explanation of such a result observed in Lambert et al. [Nat. Commun. 6, 6167 (2015), 10.1038/ncomms7167]. Numerical calculations based on the nonperturbative light-atom interaction theory reproduce well the experimental data. The degree of polarization is analyzed for different harmonic orders and found to be high. With the help of a simplified theoretical model it is shown that the degree of harmonic ellipticity depends mainly on the population of atomic state sublevels with different angular momentum projections.

  6. Kinetic study of terahertz generation based on the interaction of two-color ultra-short laser pulses with molecular hydrogen gas

    NASA Astrophysics Data System (ADS)

    Soltani Gishini, M. S.; Ganjovi, A.; Saeed, M.

    2016-06-01

    In this work, using a two dimensional particle in cell-Monte Carlo collision simulation scheme, interaction of two-color ultra-short laser pulses with the molecular hydrogen gas (H2) is examined. The operational laser parameters, i.e., its pulse shape, duration, and waist, are changed and, their effects on the density and kinetic energy of generated electrons, THz electric field, intensity, and spectrum are studied. It is seen that the best pulse shape generating the THz signal radiation with the highest intensity is a trapezoidal pulse, and the intensity of generated THz radiation is increased at the higher pulse durations and waists. For all the operational laser parameters, the maximum value of emitted THz signal frequency always remains lower than 5 THz. The intensity of applied laser pulses is taken about 1014 w/cm2, and it is observed that while a small portion of the gaseous media gets ionized, the radiated THz signal is significant.

  7. Pseudo-rephasing and pseudo-free-induction-decay mechanism in two-color three-pulse photon echo of a binary system.

    PubMed

    Dong, Hui; Ryu, Ian Seungwan; Fleming, Graham R

    2013-12-27

    We investigate the two-color three-pulse photon echo peak shift in a (left-right) binary system, where each component consists of a heterodimer. On the basis of the model, we find that the effect of the excitonic asymmetry between two components leads to an additional factor in the peak shift. A pseudo-rephasing and pseudo-free-induction-decay mechanism is proposed to explain the resultant negative peak shift, when the differences between the two left/right components have the opposite sign. In such a case, estimates of the electronic coupling strength via two- and one-color peak shift experiments lead to an underestimate of the coupling magnitude.

  8. Generation of Bright, Spatially Coherent Soft X-Ray High Harmonics in a Hollow Waveguide Using Two-Color Synthesized Laser Pulses.

    PubMed

    Jin, Cheng; Stein, Gregory J; Hong, Kyung-Han; Lin, C D

    2015-07-24

    We investigate the efficient generation of low-divergence high-order harmonics driven by waveform-optimized laser pulses in a gas-filled hollow waveguide. The drive waveform is obtained by synthesizing two-color laser pulses, optimized such that highest harmonic yields are emitted from each atom. Optimization of the gas pressure and waveguide configuration has enabled us to produce bright and spatially coherent harmonics extending from the extreme ultraviolet to soft x rays. Our study on the interplay among waveguide mode, atomic dispersion, and plasma effect uncovers how dynamic phase matching is accomplished and how an optimized waveform is maintained when optimal waveguide parameters (radius and length) and gas pressure are identified. Our analysis should help laboratory development in the generation of high-flux bright coherent soft x rays as tabletop light sources for applications. PMID:26252685

  9. Femtosecond time-resolved study of the dissociation of small molecules using a two-color vacuum ultraviolet pump and x-ray probe technique.

    NASA Astrophysics Data System (ADS)

    Belkacem, A.; Allison, T.; Khurmi, C.; Wright, T.; Stooke, A.

    2010-03-01

    We developed a unique two-color ultraviolet (UV) pump and extreme ultraviolet (EUV) probe capability to study molecular dissociation and non-adiabatic molecular dynamics of small to complex molecules excited in the UV regime. This capability revolves around the development of a very high intensity high harmonics source in combination with a split-mirror technique. The pump-probe delay has an interferometric stability of better than 100 attoseconds. We used this system to probe the femtosecond internal conversion of excited ethylene, water and oxygen molecules pumped with the 5th harmonic (˜7.75 eV) and probed with the 19th harmonic (˜29.45 eV). The results of these measurements will be presented.

  10. Improved properties of micronized genetically modified flax fibers.

    PubMed

    Dymińska, Lucyna; Szatkowski, Michał; Wróbel-Kwiatkowska, Magdalena; Zuk, Magdalena; Kurzawa, Adam; Syska, Wojciech; Gągor, Anna; Zawadzki, Mirosław; Ptak, Maciej; Mączka, Mirosław; Hanuza, Jerzy; Szopa, Jan

    2012-12-15

    The aim of this study was to investigate the effect of micronization on the compound content, crystalline structure and physicochemical properties of fiber from genetically modified (GM) flax. The GM flax was transformed with three bacterial (Ralstonia eutropha) genes coding for enzymes of polyhydroxybutyrate (PHB) synthesis and under the control of the vascular bundle promoter. The modification resulted in fibers containing the 3-hydroxybutyrate polymer bound to cellulose via hydrogen and ester bonds and antioxidant compounds (phenolic acids, vanillin, vitexin, etc.). The fibers appeared to have a significantly decreased particle size after 20h of ball-milling treatment. Micronized fibers showed reduced phenolic contents and antioxidant capacity compared to the results for untreated fibers. An increased level of PHB was also detected. Micronization introduces structural changes in fiber constituents (cellulose, hemicellulose, pectin, lignin, PHB) and micronized fibers exhibit more functional groups (hydroxyl, carboxyl) derived from those constituents. It is thus concluded that micronization treatments improve the functional properties of the fiber components.

  11. A rapid technique for lymphocyte preparation prior to two-color immunofluorescence analysis of lymphocyte subsets using flow cytometry. Comparison with density gradient separation.

    PubMed

    Mansour, I; Bourin, P; Rouger, P; Doinel, C

    1990-02-20

    A technique is described for lymphocyte preparation which permits analyses by two-color immunofluorescence and flow cytometry. It consists, briefly, of the lysis of red blood cells and washing of white blood cells prior to labeling. We tested this technique with a large panel of monoclonal antibodies in mono- and dual immunofluorescence. By comparing these results to those obtained after density gradient separation, we found the following statistically significant differences: the count of the phenotype B1+ was higher after whole blood lysis preparation than after density gradient separation; whereas, the corresponding counts of OKT4+ and Leu-4-Leu-7+ phenotypes were lower. No difference was detected with OKT8+, Leu-4+, OKT8+Leu-4+, OKT8+Leu-4-, OKT8-Leu-4+, OKT8+Leu-7+, Leu-4+Leu-7+, Leu-4-Leu-11c+, OKT8+Leu-11c+ and OKT8+Leu-15+ phenotypes. We have studied the reproducibility of both methods and the correlation between them. The disparity of the lymphocyte subset count between these two methods, though statistically significant, was relatively weak and seems to be due to the density gradient separation. Since the preparation of lymphocytes using the density gradient method is time consuming, we propose whole blood lysis as an alternative lymphocyte separation method when assessing immune status in human disease by flow cytometry. It offers the following advantages: (i) it does not require additional steps, (ii) it permits two-color immunofluorescence through the labeling of white blood cells after washing, (iii) it is reliable, (iv) it is reproducible, and (v) it is helpful in studies of lymphopenia since it offers the possibility of lymphocyte enrichment.

  12. Two-color SERS microscopy for protein co-localization in prostate tissue with primary antibody-protein A/G-gold nanocluster conjugates

    NASA Astrophysics Data System (ADS)

    Salehi, Mohammad; Schneider, Lilli; Ströbel, Philipp; Marx, Alexander; Packeisen, Jens; Schlücker, Sebastian

    2014-01-01

    SERS microscopy is a novel staining technique in immunohistochemistry, which is based on antibodies labeled with functionalized noble metal colloids called SERS labels or nanotags for optical detection. Conventional covalent bioconjugation of these SERS labels cannot prevent blocking of the antigen recognition sites of the antibody. We present a rational chemical design for SERS label-antibody conjugates which addresses this issue. Highly sensitive, silica-coated gold nanoparticle clusters as SERS labels are non-covalently conjugated to primary antibodies by using the chimeric protein A/G, which selectively recognizes the Fc part of antibodies and therefore prevents blocking of the antigen recognition sites. In proof-of-concept two-color imaging experiments for the co-localization of p63 and PSA on non-neoplastic prostate tissue FFPE specimens, we demonstrate the specificity and signal brightness of these rationally designed primary antibody-protein A/G-gold nanocluster conjugates.SERS microscopy is a novel staining technique in immunohistochemistry, which is based on antibodies labeled with functionalized noble metal colloids called SERS labels or nanotags for optical detection. Conventional covalent bioconjugation of these SERS labels cannot prevent blocking of the antigen recognition sites of the antibody. We present a rational chemical design for SERS label-antibody conjugates which addresses this issue. Highly sensitive, silica-coated gold nanoparticle clusters as SERS labels are non-covalently conjugated to primary antibodies by using the chimeric protein A/G, which selectively recognizes the Fc part of antibodies and therefore prevents blocking of the antigen recognition sites. In proof-of-concept two-color imaging experiments for the co-localization of p63 and PSA on non-neoplastic prostate tissue FFPE specimens, we demonstrate the specificity and signal brightness of these rationally designed primary antibody-protein A/G-gold nanocluster conjugates

  13. Tuberculin Skin Test Negativity Is Under Tight Genetic Control of Chromosomal Region 11p14-15 in Settings With Different Tuberculosis Endemicities

    PubMed Central

    Cobat, Aurélie; Poirier, Christine; Hoal, Eileen; Boland-Auge, Anne; de La Rocque, France; Corrard, François; Grange, Ghislain; Migaud, Mélanie; Bustamante, Jacinta; Boisson-Dupuis, Stéphanie; Casanova, Jean-Laurent; Schurr, Erwin; Alcaïs, Alexandre; Delacourt, Christophe; Abel, Laurent

    2015-01-01

    A substantial proportion of subjects exposed to a contagious tuberculosis case display lack of tuberculin skin test (TST) reactivity. We previously mapped a major locus (TST1) controlling lack of TST reactivity in families from an area in South Africa where tuberculosis is hyperendemic. Here, we conducted a household tuberculosis contact study in a French area where the endemicity of tuberculosis is low. A genome-wide analysis of TST negativity identified a significant linkage signal (P < 3 × 10−5) in close vicinity of TST1. Combined analysis of the 2 samples increased evidence of linkage (P = 2.4 × 10−6), further implicating genetic factors located on 11p14-15. This region overlaps the TNF1 locus controlling mycobacteria-driven tumor necrosis factor α production. PMID:25143445

  14. Investigation of dislocation behavior in micron and sub-micron thin films

    NASA Astrophysics Data System (ADS)

    Hunter, Abigail

    Plastic deformation in crystalline materials is mediated by dislocation motion and their interaction with defects, such as second phase particles, dislocations, grain boundaries and voids. In addition, grain boundaries, free and passivated surfaces have a significant impact on the evolution of dislocations and their intricate structures. In polycrystalline materials, the influence of dislocation motion and interactions results in unique mechanical properties, such as high yield stress and fracture strength and a dependency on grain size. It is observed that for an average grain size in the micron and sub-micron regime, the yield stress increases as the grain size decreases following a power law. This size effect is known as Hall Petch effect. A reliable computational model that describes the mechanical response and failure mechanisms of micron and sub-micron scale devices should incorporate these size effects. A three-dimensional phase field dislocation dynamics model (3D PFDD) is developed. This is a dislocation based plasticity model that accounts for the motion and interactions of individual dislocations with material defects and interfaces, such as obstacles, and grain boundaries. This model is a valuable and efficient research tool that will help to understand plastic deformation on the mesoscopic level, bridging the gap between microscopic and macroscopic studies. For the research presented here, this model is used specifically to understand and simulate dislocation behavior in fcc (face-centered cubic) metal thin films, similar to those used in micro-electro-mechanical systems (MEMS). Incorporating microstructure, such as grain boundaries, is key to accurately predicting deformation behavior in any system. Plastic deformation is affected by both the thickness of the film layers and by the resolution of the film's internal microstructure. In MEMS devices and components that are generally on the micron scale (hundreds of microns in size), the internal

  15. Three-micron spectroscopy of highly reddened field stars

    NASA Technical Reports Server (NTRS)

    Tapia, Mauricio; Persi, P.; Roth, M.; Ferrari-Toniolo, M.

    1989-01-01

    Broad absorption features centered at 3.45 microns and at 3.0-3.0 microns towards a number of late-type supergiants in the vicinity of the galactic center were repeatedly reported. Here, 2.0 to 2.5 and 3.0 to 4.0 micron spectra are presented for field late-type highly reddened (A sub V is approximately 17-27) stars located in different regions of the galactic plane more than 20 deg away from the galactic center direction. The observations, made with the 3.6, 2.2, and 1.0 m ESO telescopes at La Silla, Chile, consists of CVF spectra with resolution lambda/delta lambda is approximately or equal to 100 and IRSPEC spectra with resolution lambda/delta lambda is approximately or equal to 700. In the direction of the most highly reddened stars, definitive detections of the 3.45 and the 3.0 to 3.1 micron absorption features are reported. The 3.45 micron feature was attributed to absorption arising in a vibrational transition resulting from the C-H stretching in organic compounds, while the 3.0 to 3.1 micron broader feature are tentatively attributed to O-H bonds. The observations strongly support that the agent producing the 3.45 micron feature, presumably organic molecules, is an important component of the diffuse interstellar medium and is not characteristic only of the galactic center environment.

  16. Cloud properties inferred from 8-12 micron data

    NASA Technical Reports Server (NTRS)

    Strabala, Kathleen I.; Ackerman, Steven A.; Menzel, W. Paul

    1994-01-01

    A trispectral combination of observations at 8-, 11-, and 12-micron bands is suggested for detecting cloud and cloud properties in the infrared. Atmospheric ice and water vapor absorption peak in opposite halves of the window region so that positive 8-minus-11-micron brightness temperature differences indicate cloud, while near-zero or negative differences indicate clear regions. The absorption coefficient for water increases more between 11 and 12 microns than between 8 and 11 microns, while for ice, the reverse is true. Cloud phases is determined by a scatter diagram of 8-minus-11-micron versus 11-minus-12-micron brightness temperature differences; ice cloud shows a slope greater than 1 and water cloud less than 1. The trispectral brightness temperature method was tested upon high-resolution interferometer data resulting in clear-cloud and cloud-phase delineation. Simulations using differing 8-micron bandwidths revealed no significant degradation of cloud property detection. Thus, the 8-micron bandwidth for future satellites can be selected based on the requirements of other applications, such as surface characterization studies. Application of the technique to current polar-orbiting High-Resolution Infrared Sounder (HIRS)-Advanced Very High Resolution Radiometer (AVHRR) datasets is constrained by the nonuniformity of the cloud scenes sensed within the large HIRS field of view. Analysis of MAS (MODIS Airborne Simulator) high-spatial resolution (500 m) data with all three 8-, 11-, and 12-micron bands revealed sharp delineation of differing cloud and background scenes, from which a simple automated threshold technique was developed. Cloud phase, clear-sky, and qualitative differences in cloud emissivity and cloud height were identified on a case study segment from 24 November 1991, consistent with the scene. More rigorous techniques would allow further cloud parameter clarification. The opportunities for global cloud delineation with the Moderate-Resolution Imaging

  17. Apparatus for handling micron size range particulate material

    NASA Technical Reports Server (NTRS)

    Friichtenicht, J. F.; Roy, N. L. (Inventor)

    1968-01-01

    An apparatus for handling, transporting, or size classifying comminuted material was described in detail. Electrostatic acceleration techniques for classifying particles as to size in the particle range from 0.1 to about 100 microns diameter were employed.

  18. Release of Micronized Copper Particles from Pressure Treated Wood Products.

    EPA Science Inventory

    Micronized copper pressure treated lumber (PTL) has recently been introduced to the consumer market as a replacement for ionized copper PTL. The presence of particulate rather than aqueous copper raises concerns about possible human or environmental exposure. Two common pathways ...

  19. Injection Seeded/Phase-Conjugated 2-micron Laser System

    NASA Technical Reports Server (NTRS)

    Bai, Yingxin; Yu, Jirong; Petros,M.; Petzar, Paul; Trieu, Bo; Lee, Hyung; Singh, U.; Leyva, V.; Shkunov, V.; Rockwell, D.; Betin, A.; Wang, J.

    2007-01-01

    For the first time, beam quality improvement of 2 micron laser using a fiber based phase conjugation mirror has been demonstrated. Single frequency operation is necessary to lower threshold. The reflectivity of PCM is approx. 50%.

  20. Airborne spectrophotometry of Comet Halley from 5 to 9 microns

    NASA Technical Reports Server (NTRS)

    Campins, H.; Bregman, J. D.; Witteborn, F. C.; Wooden, D. H.; Rank, D. M.; Cohen, M.; Allamandola, Louis J.; Tielens, Alexander G. G. M.

    1986-01-01

    Spectrophotometry from 5 to 9 microns (resolution = 0.02) of comet Halley was obtained from the Kuiper Airborne Observatory on 1985 Dec. 12.1 and 1986 April 8.6 and 10.5 UT. Two spectral features are apparent in all the observations, one from 5.24 to 5.6 microns, and the silicate emission feature which has an onset between 7 and 8 microns. There is no evidence for the 7.5 microns feature observed by the Vega 1 spacecraft; the large difference between the areal coverage viewed from the spacecraft and the airplane may explain the discrepancy. Color temperatures significantly higher than a blackbody indicate that small particles are abundant in the coma. Significant spatial and temporal variations in the spectrum show trends similar to those observed from the ground.

  1. Laser materials for the 0.67-microns to 2.5-microns range

    NASA Technical Reports Server (NTRS)

    Toda, Minoru; Zamerowski, Thomas J.; Ladany, Ivan; Martinelli, Ramon U.

    1987-01-01

    Basic requirements for obtaining injection laser action in III-V semiconductors are discussed briefly. A detailed review is presented of materials suitable for lasers emitting at 0.67, 1.44, 1.93, and 2.5 microns. A general approach to the problem is presented, based on curves of materials properties published by Sasaki et al. It is also shown that these curves, although useful, may need correction in certain ranges. It is deduced that certain materials combinations, either proposed in the literature or actually tried, are not appropriate for double heterostructure lasers, because the refractive index of the cladding material is higher than the index of the active material, thus resulting in no waveguiding, and high threshold currents. Recommendations are made about the most promising approach to the achievement of laser action in the four wavelengths mentioned above.

  2. The size of NGC 1068 at 10 microns

    NASA Technical Reports Server (NTRS)

    Becklin, E. E.; Neugebauer, G.; Matthews, K.; Wynn-Williams, C. G.

    1973-01-01

    The data presented show that a majority of the 10-micron emission from NGC 1068 comes from an area with a diameter of about 60 pc. The measurements described were made at 10 microns on two nights at the 200-inch Hale telescope. The data obtained agree with the results obtained by Stein et al. (1973). An approach to reconcile the new data with the variability observed by Rieke and Low (1972) is also discussed.

  3. High-resolution maps of Jupiter at five microns.

    NASA Technical Reports Server (NTRS)

    Keay, C. S. L.; Low, F. J.; Rieke, G. H.; Minton, R. B.

    1973-01-01

    The distribution of 5-micron radiation, emitted from a large number of discrete sources from Jupiter, was observed during the 1972 apparition. These sources are less bright than those observed by Westphal (1969). At least 50 discrete sources having brightness temperatures exceeding 227 K were revealed which were mainly located within three narrow-latitude bands. Strong correlation exists between the 5-micron brightness temperatures of Jovian features and their colors as recorded photographically.

  4. Micron Accuracy Deployment Experiment (MADE), phase A. Volume 1

    NASA Technical Reports Server (NTRS)

    Peterson, Lee D.; Lake, Mark S.

    1995-01-01

    This report documents a Phase A In-STEP flight experiment development effort. The objective of the experiment is to deploy a portion of a segmented reflector on the Shuttle and study its micron-level mechanics. Ground test data are presented which projects that the on-orbit precision of the test article should be approximately 5 microns. Extensive hardware configuration development information is also provided.

  5. New Evaluated Semi-Empirical Formula Using Optical Model for 14-15 MeV ( n, t) Reaction Cross Sections

    NASA Astrophysics Data System (ADS)

    Tel, E.; Durgu, C.; Aydın, A.; Bölükdemir, M. H.; Kaplan, A.; Okuducu, Ş.

    2009-12-01

    In the next century the world will face the need for new energy sources. Nuclear fusion can be one of the most attractive sources of energy from the viewpoint of safety and minimal environmental impact. Fusion will not produce CO2 or SO2 and thus will not contribute to global warming or acid rain. Achieving acceptable performance for a fusion power system in the areas of economics, safety and environmental acceptability, is critically dependent on performance of the blanket and diverter systems which are the primary heat recovery, plasma purification, and tritium breeding systems. Tritium self-sufficiency must be maintained for a commercial power plant. The hybrid reactor is a combination of the fusion and fission processes. For self-sustaining (D-T) fusion driver tritium breeding ratio should be greater than 1.05. So working out the systematics of ( n, t) reaction cross-sections are of great importance for the definition of the excitation function character for the given reaction taking place on various nuclei at energies up to 20 MeV. In this study, we have calculated non-elastic cross-sections by using optical model for ( n, t) reactions at 14-15 MeV energy. We have investigated the excitation function character and reaction Q-values depending on the asymmetry term effect for the ( n, t) reaction cross-sections. We have obtained new coefficients for the ( n, t) reaction cross-sections. We have suggested semi-empirical formulas including optical model nonelastic effects by fitting two parameters for the ( n, t) reaction cross-sections at 14-15 MeV. We have discussed the odd-even effect and the pairing effect considering binding energy systematic of the nuclear shell model for the new experimental data and new cross-sections formulas ( n, t) reactions developed by Tel et al. We have determined a different parameter groups by the classification of nuclei into even-even, even-odd and odd-even for ( n, t) reactions cross-sections. The obtained cross-section formulas

  6. Micronized Organic Magnesium Salts Enhance Opioid Analgesia in Rats

    PubMed Central

    Bujalska-Zadrożny, Magdalena; Kulik, Kamila; Ordak, Michał; Sasinowska-Motyl, Małgorzata; Gąsińska, Emilia; de Corde, Anna; Kowalczyk, Agnieszka; Sacharczuk, Mariusz; Naruszewicz, Marek

    2016-01-01

    Purpose As previously reported, magnesium sulphate administered parenterally significantly increased an opioid antinociception in different kinds of pain. Since the typical form of magnesium salts are poorly and slowly absorbed from the gastrointestinal tract we examined whether their micronized form could increase opioids induced antinociception. Methods In behavioural studies on rats morphine, tramadol and oxycodone together with magnesium (lactate dihydrate, hydroaspartate, chloride) in micronized (particles of size D90 < 50 μm) and conventional forms were used. Changes in pain thresholds were determined using mechanical stimuli. The intestinal absorption of two forms of magnesium lactate dihydrate (at the doses of 7.5 or 15 mg ions) in the porcine gut sac model were also compared. Results Micronized form of magnesium lactate dihydrate or hydroaspartate but not chloride (15 mg of magnesium ions kg-1) enhanced the analgesic activity of orally administered opioids, significantly faster and more effective in comparison to the conventional form of magnesium salts (about 40% for oxycodone administered together with a micronized form of magnesium hydroaspartate). Moreover, in vitro studies of transport across porcine intestines of magnesium ions showed that magnesium salts administered in micronized form were absorbed from the intestines to a greater extent than the normal form of magnesium salts. Conclusions The co-administration of micronized magnesium organic salts with opioids increased their synergetic analgesic effect. This may suggest an innovative approach to the treatment of pain in clinical practice. PMID:27792736

  7. Overcritical plasma ignition and diagnostics from oncoming interaction of two color low energy tightly focused femtosecond laser pulses inside fused silica

    NASA Astrophysics Data System (ADS)

    Potemkin, F. V.; Bravy, B. G.; Bezsudnova, Yu I.; Mareev, E. I.; Starostin, V. M.; Platonenko, V. T.; Gordienko, V. M.

    2016-04-01

    We report overcritical (3.3  ×  1021 cm-3) microplasma produced by low energy colliding IR (infrared) (1.24 μm) and visible (0.62 μm) femtosecond pulses tightly focused (NA  =  0.5) into the bulk of fused silica with on-line monitoring based on third harmonic generated by the IR beam. It was established that the absorbed energy density is the key parameter that determines the micromodification formation threshold and in our experimental conditions it is close to 4.5 kJ cm-3. Non-monotonic behavior of the third harmonic signal as a function of time delay between visible (0.62 μm) and IR (1.24 μm) femtosecond pulses demonstrates the qualitative differences about the two phenomena: one is the seed electrons generation by the visible pulse via multiphoton ionization and second is the avalanche ionization by the IR pulse. We predict that the tandem two-color excitation of wide-bandgap dielectric in comparison with single-color pulse interaction regime allows providing a much higher absorbed energy density and overcritical plasma.

  8. Unraveling the rat blood genome-wide transcriptome after oral administration of lavender oil by a two-color dye-swap DNA microarray approach.

    PubMed

    Hori, Motohide; Kubo, Hiroko; Shibato, Junko; Saito, Tomomi; Ogawa, Tetsuo; Wakamori, Minoru; Masuo, Yoshinori; Shioda, Seiji; Rakwal, Randeep

    2016-06-01

    Lavender oil (LO) is a commonly used essential oil in aromatherapy as non-traditional medicine. With an aim to demonstrate LO effects on the body, we have recently established an animal model investigating the influence of orally administered LO in rat tissues, genome-wide. In this brief, we investigate the effect of LO ingestion in the blood of rat. Rats were administered LO at usual therapeutic dose (5 mg/kg) in humans, and following collection of the venous blood from the heart and extraction of total RNA, the differentially expressed genes were screened using a 4 × 44-K whole-genome rat chip (Agilent microarray platform; Agilent Technologies, Palo Alto, CA, USA) in conjunction with a two-color dye-swap approach. A total of 834 differentially expressed genes in the blood were identified: 362 up-regulated and 472 down-regulated. These genes were functionally categorized using bioinformatics tools. The gene expression inventory of rat blood transcriptome under LO, a first report, has been deposited into the Gene Expression Omnibus (GEO): GSE67499. The data will be a valuable resource in examining the effects of natural products, and which could also serve as a human model for further functional analysis and investigation. PMID:27330992

  9. The mechanics of unrest at Long Valley caldera, California: 1. Modeling the geometry of the source using GPS, leveling and two-color EDM data

    USGS Publications Warehouse

    Battaglia, Maurizio; Segall, P.; Murray, J.; Cervelli, Peter; Langbein, J.

    2003-01-01

    We surveyed 44 existing leveling monuments in Long Valley caldera in July 1999, using dual frequency global positioning system (GPS) receivers. We have been able to tie GPS and leveling to a common reference frame in the Long Valley area and computed the vertical deformation by differencing GPS-based and leveled orthometric heights. The resurgent dome uplifted 74??7 cm from 1975 to 1999. To define the inflation source, we invert two-color EDM and uplift data from the 1985-1999 unrest period using spherical or ellipsoidal sources. We find that the ellipsoidal source satisfies both the vertical and horizontal deformation data, whereas the spherical point source cannot. According to our analysis of the 1985-1999 data, the main source of deformation is a prolate ellipsoid located beneath the resurgent dome at a depth of 5.9 km (95% bounds of 4.9-7.5 km). This body is vertically elongated, has an aspect ratio of 0.475 (95% bounds are 0.25-0.65) and a volume change of 0.086 km3 (95% bounds are 0.06-0.13 km3). Failure to account for the ellipsoidal nature of the source biases the estimated source depth by 2.1 km (35%), and the source volume by 0.038 km3 (44%). ?? 2003 Elsevier B.V. All rights reserved.

  10. Controlling the contributions to high-order harmonic generation from different nuclei of N2 with an orthogonally polarized two-color laser field

    NASA Astrophysics Data System (ADS)

    Du, Hui; Pan, Xue-Fei; Liu, Hai-Feng; Zhang, Hong-Dan; Zhang, Jun; Guo, Jing; Liu, Xue-Shen

    2016-09-01

    The generation of high-order harmonic and the attosecond pulse of the N2 molecule with an orthogonally polarized two-color laser field are investigated by the strong-field Lewenstein model. We show that the control of contributions to high-order harmonic generation (HHG) from different nuclei is realized by properly selecting the relative phase. When the relative phase is chosen to be φ = 0.4π, the contribution to HHG from one nucleus is much more than that from another. Interference between two nuclei can be suppressed greatly; a supercontinuum spectrum of HHG appears from 40 eV to 125 eV. The underlying physical mechanism is well explained by the time–frequency analysis and the semi-classical three-step model with a finite initial transverse velocity. By superposing several orders of harmonics, an isolated attosecond pulse with a duration of 80 as can be generated. Project supported by the National Natural Science Foundation of China (Grant Nos. 11271158, 61575077, and 11574117).

  11. Asymmetry of above-threshold ionization of metal clusters in two-color laser fields: A time-dependent density-functional study

    SciTech Connect

    Nguyen, H.S.; Bandrauk, A.D.; Ullrich, C.A.

    2004-06-01

    Above threshold ionization (ATI) spectra of small metal clusters (e.g., Na{sub 4} and Na{sub 4}{sup +}) are calculated numerically using a spherical jellium model and time-dependent density functional theory for two-color (1064 and 532 nm) ultrashort (25 fs) laser pulses as a function of phase difference between the two fields. ATI spectra and ionized electron fluxes are obtained in the two opposite directions of the linearly polarized laser fields. The asymmetry, defined as the difference in electron yield, is shown to depend strongly on the carrier-envelope phase of the second-harmonic (2{omega}) field. The ATI spectra allow one to identify the range of kinetic energies of the ionized electrons where the asymmetry mainly occurs. Comparisons are made between calculations with and without self-interaction correction and also with previous exact numerical solutions of the one-electron systems H and H{sub 2}{sup +} [A. D. Bandrauk and S. Chelkowski, Phys. Rev. Lett. 84, 3562 (2000)] where such asymmetry effects had first been observed. We find that ATI spectra in the clusters generally have much longer energy plateaus than in previously studied one-electron systems, with cutoffs up to 30-40 times the ponderomotive energy U{sub p}. In high-harmonic generation spectra, on the other hand, no extended plateaus are observed.

  12. Design and initial operation of a two-color soft x-ray camera system on the Compact Toroidal Hybrid experiment

    SciTech Connect

    Herfindal, J. L. Dawson, J. D.; Ennis, D. A.; Hartwell, G. J.; Loch, S. D.; Maurer, D. A.

    2014-11-15

    A multi-camera soft x-ray diagnostic has been developed to measure the equilibrium electron temperature profile and temperature fluctuations due to magnetohydrodynamic activity on the Compact Toroidal Hybrid experiment. The diagnostic consists of three separate cameras each employing two 20-channel diode arrays that view the same plasma region through different beryllium filter thicknesses of 1.8 μm and 3.0 μm allowing electron temperature measurements between 50 eV and 200 eV. The Compact Toroidal Hybrid is a five-field period current-carrying stellarator, in which the presence of plasma current strongly modifies the rotational transform and degree of asymmetry of the equilibrium. Details of the soft x-ray emission, effects of plasma asymmetry, and impurity line radiation on the design and measurement of the two-color diagnostic are discussed. Preliminary estimates of the temperature perturbation due to sawtooth oscillations observed in these hybrid discharges are given.

  13. Controlling the contributions to high-order harmonic generation from different nuclei of N2 with an orthogonally polarized two-color laser field

    NASA Astrophysics Data System (ADS)

    Du, Hui; Pan, Xue-Fei; Liu, Hai-Feng; Zhang, Hong-Dan; Zhang, Jun; Guo, Jing; Liu, Xue-Shen

    2016-09-01

    The generation of high-order harmonic and the attosecond pulse of the N2 molecule with an orthogonally polarized two-color laser field are investigated by the strong-field Lewenstein model. We show that the control of contributions to high-order harmonic generation (HHG) from different nuclei is realized by properly selecting the relative phase. When the relative phase is chosen to be φ = 0.4π, the contribution to HHG from one nucleus is much more than that from another. Interference between two nuclei can be suppressed greatly; a supercontinuum spectrum of HHG appears from 40 eV to 125 eV. The underlying physical mechanism is well explained by the time-frequency analysis and the semi-classical three-step model with a finite initial transverse velocity. By superposing several orders of harmonics, an isolated attosecond pulse with a duration of 80 as can be generated. Project supported by the National Natural Science Foundation of China (Grant Nos. 11271158, 61575077, and 11574117).

  14. Unraveling the rat blood genome-wide transcriptome after oral administration of lavender oil by a two-color dye-swap DNA microarray approach.

    PubMed

    Hori, Motohide; Kubo, Hiroko; Shibato, Junko; Saito, Tomomi; Ogawa, Tetsuo; Wakamori, Minoru; Masuo, Yoshinori; Shioda, Seiji; Rakwal, Randeep

    2016-06-01

    Lavender oil (LO) is a commonly used essential oil in aromatherapy as non-traditional medicine. With an aim to demonstrate LO effects on the body, we have recently established an animal model investigating the influence of orally administered LO in rat tissues, genome-wide. In this brief, we investigate the effect of LO ingestion in the blood of rat. Rats were administered LO at usual therapeutic dose (5 mg/kg) in humans, and following collection of the venous blood from the heart and extraction of total RNA, the differentially expressed genes were screened using a 4 × 44-K whole-genome rat chip (Agilent microarray platform; Agilent Technologies, Palo Alto, CA, USA) in conjunction with a two-color dye-swap approach. A total of 834 differentially expressed genes in the blood were identified: 362 up-regulated and 472 down-regulated. These genes were functionally categorized using bioinformatics tools. The gene expression inventory of rat blood transcriptome under LO, a first report, has been deposited into the Gene Expression Omnibus (GEO): GSE67499. The data will be a valuable resource in examining the effects of natural products, and which could also serve as a human model for further functional analysis and investigation.

  15. Laser damage tests on InSb photodiodes at 1.064 micron and 0.532 micron

    NASA Technical Reports Server (NTRS)

    Bearman, G. H.; Staller, C.; Mahoney, C.

    1992-01-01

    InSb photodiodes were examined for performance degradation after pulsed laser illumination at 0.532 micron and 1.064 micron. Incident laser powers ranged from 6 x 10 exp-18 micron-watts to 16 micron-watts in a 50 pm diameter spot. Dark current and spectral response were both measured before and after illumination. Dark current measurements were taken with the diode blanked off and viewing only 77 K surfaces. Long term stability tests demonstrated that the blackbody did not exhibit long term drifts. Other tests showed that room temperature variations did not affect the diode signal chain or the digitization electronics used in data acquisition. Results of the experiment show that the diodes did not exhibit changes in dark current or spectral response performance as a result of the laser illumination. A typical change in diode spectral response (before/after laser exposure) was about 0.2 percent +/- 0.2 percent.

  16. Effects of a nonionic surfactant (C{sub 14-15} AE-7) on fish survival, growth and reproduction in the laboratory and in outdoor stream mesocosms

    SciTech Connect

    Kline, E.R.; Figueroa, R.A.; Rodgers, J.H. Jr.; Dorn, P.B.

    1996-06-01

    The effects of a nonionic surfactant (C{sub 14-15} AE-7) on survival and growth of juvenile bluegill sunfish and on survival and reproduction of fathead minnows were investigated in the laboratory and in outdoor stream mesocosms. In the laboratory, where the fish were exposed for 10 d, the 96-h LC50 values for bluegill sunfish and fathead minnows were 650 and 770 {micro}g/L, respectively. The no-observed-effect concentration (NOEC) for survival and swimming performance of bluegill sunfish and for survival of fathead minnows was 160 {micro}g/L. The lowest-observed-effect concentration (LOEC) for these toxic responses was 460 {micro}g/L. In the stream mesocosms, where the fish were exposed for 30 d, the NOEC for bluegill sunfish and growth was >330 {micro}g/L. The LOEC for fathead minnow survival was 330 {micro}g/L, and the NOEC was 280 {micro}g/L. Decreased egg laying by fathead minnows was noted in the streams at concentrations of 330 {micro}g/L or greater. Close correspondence between the results of laboratory tests and those obtained under field conditions in the mesocosms indicates that for this surfactant, it may not be necessary to apply ``safety factors`` to extrapolate results from the laboratory to the field.

  17. Investigation of 14-15 MeV ( n, t) Reaction Cross-sections by Using New Evaluated Empirical and Semi-empirical Systematic Formulas

    NASA Astrophysics Data System (ADS)

    Tel, E.; Aydın, A.; Kaplan, A.; Şarer, B.

    2008-09-01

    In the hybrid reactor, tritium self-sufficiency must be maintained for a commercial power plant. For self-sustaining (D-T) fusion driver tritium breeding ratio should be greater than 1.05. Working out the systematics of ( n, t) reaction cross-sections are of great importance for the definition of the excitation function character for the given reaction taking place on various nuclei at energies up to 20 MeV. In this study we have investigated asymmetry term effect for the ( n, t) reaction cross-sections at 14-15 neutron incident energy. It has been discussed the odd-even effect and the pairing effect considering binding energy systematic of the nuclear shell model for the new experimental data and new cross-sections formulas ( n, t) reactions developed by Tel et al. We have determined a different parameter groups by the classification of nuclei into even-even, even-odd and odd-even for ( n, t) reactions cross-sections. The obtained empirical and semi-empirical formulas by fitting two parameter for ( n, t) reactions were given. All calculated results have been compared with the experimental data and the other semi-empirical formulas.

  18. A Euploid Line of Human Embryonic Stem Cells Derived from a 43,XX,dup(9q),+12,-14,-15,-18,-21 Embryo.

    PubMed

    Fonseca, Simone Aparecida Siqueira; Costas, Roberta Montero; Morato-Marques, Mariana; Costa, Silvia; Alegretti, Jose Roberto; Rosenberg, Carla; da Motta, Eduardo Leme Alves; Serafini, Paulo C; Pereira, Lygia V

    2015-01-01

    Aneuploid embryos diagnosed by FISH-based preimplantation genetic screening (PGS) have been shown to yield euploid lines of human embryonic stem cells (hESCs) with a relatively high frequency. Given that the diagnostic procedure is usually based on the analysis of 1-2 blastomeres of 5 to 10-cell cleavage-stage embryos, mosaicism has been a likely explanation for the phenomena. However, FISH-based PGS can have a significant rate of misdiagnosis, and therefore some of those lines may have been derived from euploid embryos misdiagnosed as aneuploid. More recently, coupling of trophectoderm (TE) biopsy at the blastocyst stage and array-CGH lead to a more informative form of PGS. Here we describe the establishment of a new line of hESCs from an embryo with a 43,XX,dup(9q),+12,-14,-15,-18,-21 chromosomal content based on array-CGH of TE biopsy. We show that, despite the complex chromosomal abnormality, the corresponding hESC line BR-6 is euploid (46,XX). Single nucleotide polymorphism analysis showed that the embryo's missing chromosomes were not duplicated in BR-6, suggesting the existence of extensive mosaicism in the TE lineage.

  19. Flood of June 14-15, 1990, in Belmont, Jefferson, and Harrison counties, Ohio, with emphasis on Pipe and Wegee Creek basins near Shadyside

    USGS Publications Warehouse

    Shindel, H.L.

    1991-01-01

    A series of violent thunderstorms caused severe floods and consequent damage in the central part of Ohio during June 14-15, 1990. The eastern part of the State, particularly Belmont, Harrison, and Jefferson Counties, sustained the most damage. In the Pipe and Wegee Creek basins near Shadyside, Belmont County, at least 24 people died and property damage exceeded $10 million. An indirect measurement of discharge on Pipe Creek made near the mouth, indicates a peak discharge of 15,000 ft? /s (cubic feet per second) for the drainage area of 11.3 mi? (square miles) and a unit discharge of 1,330 (ft? /s)/mi? (cubic feet per second per square mile). The recurrence interval for this peak discharge is greater than 100 years. An indirect measurement of discharge of Wegee Creek, made 3 miles upstream from the mouth, indicates a peak discharge of 2,200 (ft? /s) /mi? . The recurrence interval for this peak discharge also is greater than 100 years. Longitudal water-surface profiles showed depths ranging from 7 ft. to 22 ft. The severity of flooding was highly variable. For example, the recurrence interval of the peak discharge at one U.S. Geological Survey streamflow-gaging station was only 2 years, whereas the recurrence interval for the peak discharge was greater than 100 years at another gaging station about 22 miles away.

  20. A Euploid Line of Human Embryonic Stem Cells Derived from a 43,XX,dup(9q),+12,-14,-15,-18,-21 Embryo

    PubMed Central

    Fonseca, Simone Aparecida Siqueira; Costas, Roberta Montero; Morato-Marques, Mariana; Costa, Silvia; Alegretti, Jose Roberto; Rosenberg, Carla; da Motta, Eduardo Leme Alves; Serafini, Paulo C.; Pereira, Lygia V.

    2015-01-01

    Aneuploid embryos diagnosed by FISH-based preimplantation genetic screening (PGS) have been shown to yield euploid lines of human embryonic stem cells (hESCs) with a relatively high frequency. Given that the diagnostic procedure is usually based on the analysis of 1–2 blastomeres of 5 to 10-cell cleavage-stage embryos, mosaicism has been a likely explanation for the phenomena. However, FISH-based PGS can have a significant rate of misdiagnosis, and therefore some of those lines may have been derived from euploid embryos misdiagnosed as aneuploid. More recently, coupling of trophectoderm (TE) biopsy at the blastocyst stage and array-CGH lead to a more informative form of PGS. Here we describe the establishment of a new line of hESCs from an embryo with a 43,XX,dup(9q),+12,-14,-15,-18,-21 chromosomal content based on array-CGH of TE biopsy. We show that, despite the complex chromosomal abnormality, the corresponding hESC line BR-6 is euploid (46,XX). Single nucleotide polymorphism analysis showed that the embryo´s missing chromosomes were not duplicated in BR-6, suggesting the existence of extensive mosaicism in the TE lineage. PMID:26540511

  1. Prescribed 3-D Direct Writing of Suspended Micron/Sub-micron Scale Fiber Structures via a Robotic Dispensing System

    PubMed Central

    Yuan, Hanwen; Cambron, Scott D.; Keynton, Robert S.

    2015-01-01

    A 3-axis dispensing system is utilized to control the initiating and terminating fiber positions and trajectory via the dispensing software. The polymer fiber length and orientation is defined by the spatial positioning of the dispensing system 3-axis stages. The fiber diameter is defined by the prescribed dispense time of the dispensing system valve, the feed rate (the speed at which the stage traverses from an initiating to a terminating position), the gauge diameter of the dispensing tip, the viscosity and surface tension of the polymer solution, and the programmed drawing length. The stage feed rate affects the polymer solution’s evaporation rate and capillary breakup of the filaments. The dispensing system consists of a pneumatic valve controller, a droplet-dispensing valve and a dispensing tip. Characterization of the direct write process to determine the optimum combination of factors leads to repeatedly acquiring the desired range of fiber diameters. The advantage of this robotic dispensing system is the ease of obtaining a precise range of micron/sub-micron fibers onto a desired, programmed location via automated process control. Here, the discussed self-assembled micron/sub-micron scale 3D structures have been employed to fabricate suspended structures to create micron/sub-micron fluidic devices and bioengineered scaffolds. PMID:26132732

  2. On Modeling the Near-Infrared Two-Color Locus of OH/IR Stars with a Constant dM/dt

    NASA Astrophysics Data System (ADS)

    Lewis, B. M.

    2006-08-01

    OH/IR stars fall on a well-defined locus in two-color near-IR (NIR) plots. This locus is replicated by a sequence of self-consistent radiative-transfer models of shells with long-term constant mass loss provided that (1) the initial stellar spectral energy distribution has NIR colors matching those at the foot of the locus and (2) a cold-silicate dust opacity function is used. The models depend on the public code DUSTY. The NIR locus is also followed by models of detached shells: our models are based on shells generated by a constant dM/dt within which a central hole grows, so an expansion-time chronology can be attached to the color evolution of a detached shell. This also provides an upper limit on the time for 1612 MHz masers to disappear after dM/dt-->0. The brevity of this timescale shows that the pumping of 1612 MHz masers is very dependant on the reprocessing of the stellar radiation field occurring within 5rd of the star (where rd is the radius of the hottest dust), which explains why they can disappear on timescales of less than two decades. Our second concern is to explain the distribution along the NIR locus of the OH/IR stars with the reddest IRAS colors, which appear to have ``detached'' shells, even though many are mid-IR (MIR) variables. Since the NIR locus is followed by shells generated by any form of dM/dt, whether constant, interrupted, or periodic, these MIR variables show that most thick, oxygen-rich, circumstellar shells exhibit a severe cyclical modulation in their mass-loss rates, as predicted by Simis in 2001.

  3. Two-color resonance-enhanced multiphoton ionization study of the lowest Rydberg p state of bis(ɛ6-benzene)chromium and its deuterated derivatives

    NASA Astrophysics Data System (ADS)

    Ketkov, Sergey Yu.; Selzle, Heinrich L.; Schlag, Edward W.

    2004-07-01

    Two-color resonance-enhanced multiphoton ionization (REMPI) spectra of jet-cooled (η6-C6H6)2Cr(1), (η6-C6D6)2Cr(2), and (η6-C6D6)(η6-C6D5H)Cr(3) have been measured with use of the 3dz2→R4px,y Rydberg transition as the first step of the electronic excitation. The 000 Rydberg component shifts by 59 and 54 cm-1 to red when one goes from 1 to 2 and 3, respectively. Surprisingly, the REMPI spectra of 1-3 show very rich vibronic structures revealing both totally symmetric vibrations and degenerate vibrational modes. Presence of intense peaks corresponding to the e2g modes in the spectra of 1 and 2 is indicative of Jahn-Teller coupling in the R4px,y Rydberg state. Additional REMPI resonances appear on going from 1 and 2 to 3 as a result of the symmetry reduction. The vibronic components in the spectra of 1-3 were assigned on the basis of the selection rules and comparison with the vibrational frequencies of the 1 and 2 ground-state molecules. The frequencies of over 10 normal vibrations have been determined for the gas-phase 1-3 Rydberg-state molecules from the REMPI experiment. The wavenumber corresponding to the lowest-energy mode (the ring torsion vibration) appears to be 40 cm-1 in 1 and 35 cm-1 in the deuterated complexes. The REMPI peaks are homogeneously broadened. The lower lifetime limits for the upper-state components increase on going from the vibrationless level to higher-lying vibronic states and on going from 1 to the deuterated derivatives.

  4. State-selected and state-to-state photoionization study of trichloroethene using the two-color infrared-vacuum ultraviolet scheme

    NASA Astrophysics Data System (ADS)

    Woo, H. K.; Wang, P.; Lau, K.-C.; Xing, X.; Chang, C.; Ng, C. Y.

    2003-11-01

    By employing the two-color infrared (IR)-vacuum ultraviolet (VUV) laser photoionization (PI) schemes, we have determined the C-H stretching frequencies ν12=3097.7 cm-1 for trichloroethene (CHCl=CCl2) and ν12+=3066 cm-1 for CHCl=CCl2+. On the basis of the IR-VUV-pulsed field ionization-photoelectron (PFI-PE) measurement, the ratio of the state-to-state PI cross section for CHCl=CCl2+(ν12+=1)←CHCl=CCl2(ν12=1) to that for the formation of the ground state ion from the ground state neutral is determined to be 0.24. The VUV-PI efficiency (PIE) spectrum for CHCl=CCl2 and IR-VUV-PIE spectrum for CHCl=CCl2(ν12=1) show that the state-to-state PI cross section for the formation of CHCl=CCl2+ in the ground state from CHCl=CCl2(ν12=1) is ≈0.006 that from CHCl=CCl2 in its ground state. As expected, the IR-VUV-PIE onset for CHCl=CCl2(ν12=1) exhibits less hot-band tailing than the VUV-PIE onset for supersonically cooled CHCl=CCl2. After taking into account the ν12 frequency, the ionization energy values for CHCl=CCl2 determined based on the IR-VUV-PIE and VUV-PFI-PE measurements are found to be in excellent agreement.

  5. Visibility related to backscatter at 1.54 micron

    NASA Technical Reports Server (NTRS)

    Barber, T. L.; Larson, D. R.

    1986-01-01

    The lidar process was shown to have the necessary potential to fulfill the need for a remote measurement of visibility. Visibility can be inferred from a lidar return optical extinction. The wavelength 1.54 micron was chosen, being near the visible wavelength region and having a high eye safety threshol, 200,000 times higher than 1.06 micron; 1.54 is the erbium laser wavelength. This research utilized 105 measured height profiles of natural droplet size distributions data, taken in clouds, fog, and haze. These profiles were examined to determine the completeness of the droplet counting data. It was found that the particle spectrometer data were incomplete in the very light ford and haze so this portion of the data was eliminated. Utilizing the Mie theory, these droplet size distribution profiles were converted to backscatter at 1.54 micron and extinction in the visible region, 0.55 micron. Using Koschmeider's relationship, the extinction profiles were converted to visibility. The visibility and backscatter profiles were compared to develop a relationship between visibility and backscatter at 1.54 micron.

  6. Hearing and loud music exposure in a group of adolescents at the ages of 14-15 and retested at 17-18.

    PubMed

    Biassoni, Ester C; Serra, Mario R; Hinalaf, María; Abraham, Mónica; Pavlik, Marta; Villalobo, Jorge Pérez; Curet, Carlos; Joekes, Silvia; Yacci, María R; Righetti, Andrea

    2014-01-01

    Young people expose themselves to potentially damaging loud sounds while leisure activities and noise induced hearing loss is diagnosed in increasing number of adolescents. Hearing and music exposure in a group of adolescents of a technical high school was assessed at the ages of: 14-15 (test) and 17-18 (retest). The aims of the current study were: (1) To compare the auditory function between test and retest; (2) to compare the musical exposure levels during recreational activities in test and retest; (3) to compare the auditory function with the musical exposure along time in a subgroup of adolescents. The participants in the test were 172 male; in the retest, this number was reduced to 59. At the test and retest the conventional and extended high frequency audiometry, transient evoked otoacoustic emissions (TEOAEs) and recreational habits questionnaire were performed. In the test, hearing threshold levels (HTLs) were classified as: Normal (Group 1), slightly shifted (Group 2), and significantly shifted (Group 3); the Musical General Exposure (MGE), categorized in: Low, moderate, high, and very high exposure. The results revealed a significant difference (P < 0.0001) between test and retest in the HTL and global amplitude of TEOAEs in Group 1, showing an increase of the HTL and a decrease TEOAEs amplitude. A subgroup of adolescents, with normal hearing and low exposure to music in the test, showed an increase of the HTL according with the categories of MGE in the retest. To implement educational programs for assessing hearing function, ear vulnerability and to promote hearing health, would be advisable.

  7. Simultaneous scoring of 10 chromosomes (9,13,14,15,16,18,21,22,X, and Y) in interphase nuclei by using spectral imaging

    NASA Astrophysics Data System (ADS)

    Fung, Jingly; Weier, Heinz-Ulli G.; Goldberg, James D.; Pedersen, Roger A.

    1999-06-01

    Numerical aberrations involving parts of or entire chromosomes have detrimental effects on mammalian embryonic, and perinatal development. Only few fetuses with chromosomal imbalances survive to term, and their abnormalities lead to stillbirth or cause severely altered phenotypes in the offspring (such as trisomies involving chromosomes 13, 18, 21, and anomalies of X, and Y). Because aneuploidy of any of the 24 chromosomes will have significant consequences, an optimized preimplantation and prenatal genetic diagnosis (PGD) test will score all the chromosomes. Since most cells to be analyzed will be in interphase rather than metaphase, we developed a rapid procedure for the analysis of interphase cells such as lymphocytes, amniocytes, or early embryonic cells (blastomeres). Our approach was based on in situ hybridization of chromosome-specific non-isotopically labeled DNA probes and Spectral Imaging. The Spectral Imaging system uses an interferometer instead of standard emission filters in a fluorescence microscope to record high resolution spectra from fluorescently stained specimens. This bio-imaging system combines the techniques of fluorescence optical microscopy, charged coupled device imaging, Fourier spectroscopy, light microscopy, and powerful analysis software. The probe set used here allowed simultaneous detection of 10 chromosomes (9, 13, 14, 15, 16, 18, 21, 22, X, Y) in interphase nuclei. Probes were obtained commercially or prepared in-house. Following 16 - 40 h hybridization to interphase cells and removal of unbound probes, image spectra (range 450 - 850 nm, resolution 10 nm) were recorded and analyzed using an SD200 Spectral Imaging system (ASI, Carlsbad, CA). Initially some amniocytes were unscoreable due to their thickness, and fixation protocols had to be modified to achieve satisfactory results. In summary, this study shows the simultaneous detection of at least 10 different chromosomes in interphase cells using a novel approach for multi

  8. Mapping of a macular drusen susceptibility locus in rhesus macaques to the homologue of human chromosome 6q14-15.

    PubMed

    Singh, Krishna K; Ristau, Steven; Dawson, William W; Krawczak, Michael; Schmidtke, Jörg

    2005-10-01

    Rhesus macaques (Macaca mulatta) are a natural model for retinal drusen formation. The present study aimed at clarifying whether chromosomal regions homologous to candidate genes for drusen formation and progression in humans are also associated with a drusen phenotype in rhesus macaques. Some 42 genetic markers from seven chromosomal regions implicated in macular degeneration syndromes in humans were tested for whether they identified homologous, polymorphic sequences in rhesus DNA. This was found to be the case for seven markers, all of which were subsequently screened for the presence of potentially disease-predisposing alleles in 52 randomly chosen adult animals from the Cayo Santiago population of rhesus macaques (Caribbean Primate Research Center, PR, USA). The high drusen prevalence expected in the Cayo Santiago colony was confirmed in our sample in that 38 animals were found to have drusen (73%). Logistic regression analysis revealed that some alleles of the rhesus homologue of anonymous human marker D6S1036 were consistently over-represented among affected animals. Of two candidate genes located in the respective region, allelic variation in one (IMPG1) showed strong association with drusen formation. We conclude that one or more genes located at the rhesus homologue of human 6q14-15 are likely to play a role in retinal drusen formation, a finding that represents a first step towards the identification of genetic factors implicated in macular drusen formation in rhesus macaques. This is an important tool for the separation of genetic and environmental factors which must occur before satisfactory management methods can be developed.

  9. Structure in the nucleus of NGC 1068 at 10 microns

    NASA Technical Reports Server (NTRS)

    Tresch-Fienberg, R.; Fazio, G. G.; Gezari, D. Y.; Lamb, G. M.; Shu, P. K.; Hoffmann, W. F.; Mccreight, C. R.

    1987-01-01

    New 8-13 micron array camera images of the central kiloparsec of Seyfert 2 galaxy NGC 1068 resolve structure that is similar to that observed at visible and radio wavelengths. The images reveal an infrared source which is extended and asymmetric, with its long axis oriented at P.A. 33 deg. Maps of the spatial distribution of 8-13 micron color temperature and warm dust opacity are derived from the multiwavelength infrared images. The results suggest that there exist two pointlike luminosity sources in the central region of NGC 1068, with the brighter source at the nucleus and the fainter one some 100 pc to the northeast. This geometry strengthens the possibility that the 10 micron emission observed from grains in the nucleus is powered by a nonthermal source. In the context of earlier visible and radio studies, these results considerably strengthen the case for jet-induced star formation in NGC 1068.

  10. Structure in the nucleus of NGC 1068 at 10 microns

    NASA Technical Reports Server (NTRS)

    Tresch-Fienberg, R.; Fazio, G. G.; Gezari, D. Y.; Hoffmann, W. F.; Lamb, G. M.; Shu, P. K.; Mccreight, C. R.

    1987-01-01

    New 8 to 13 micron array camera images of the central kiloparsec of Seyfert 2 galaxy NGC 1068 resolve structure that is similar to that observed at visible and radio wavelengths. The images reveal an infrared source which is extended and asymmetric, with its long axis oriented at P.A. 33 deg. Maps of the spatial distribution of 8 to 13 micron color temperature and warm dust opacity are derived from the multiwavelength infrared images. The results suggest that there exist two pointlike luminosity sources in the central regions of NGC 1068, with the brighter source at the nucleus and the fainter one some 100 pc to the northeast. This geometry strengthens the possibility that the 10 micron emission observed from grains in the nucleus is powered by a nonthermal source. In the context of earlier visible and radio studies, these results considerably strengthen the case for jet induced star formation in NGC 1068.

  11. MSX Observations of the Eclipsed Moon at 4 Microns

    NASA Astrophysics Data System (ADS)

    Howard, J. W.; Little, S. J.; Murdock, T. L.

    1997-07-01

    The lunar eclipse of September 27, 1996 presented the opportunity to observe the 4 micron emission from the moon during totality. The Midcourse Space Experiment (MSX) satellite made observations three times during the totality phase of the eclipse. These observations in Bands B1 (4.22 - 4.36 microns) and B2 (4.24 - 4.45 microns) were used to construct images of the eclipsed moon. The images have been analyzed for temperature and location of thermal anomalies on the moon as well as for temperatures of extended maria and highland areas. Maps of the moon to illustrate the location and brightness of thermal anomalies first seen by Saari and Shorthill (1965) and temperature comparisons with microwave measurements of selected regions on the moon (Sandor and Clancy, 1995) will be made. References: Saari, J. M., and R. W. Shorthill, 1965, Nature, 205, p. 964. Sandor, Brad J., and R. Todd Clancy, 1995, Icarus, 115, p. 387.

  12. The Beauty and Limitations of 10 Micron Heterodyne Interferometry (ISI)

    NASA Technical Reports Server (NTRS)

    Danchi, William C.

    2003-01-01

    Until recently, heterodyne interferometry at 10 microns has been the only successful technique for stellar interferometry in the very difficult atmospheric window from 9-12 microns. For most of its operational lifetime the U.C. Berkeley Infrared Spatial Interferometer was a single-baseline two telescope (1.65 m aperture) system using CO2 lasers as local oscillators. This instrument was designed and constructed from 1983-1988, and first fringes were obtained at Mt. Wilson in June 1988. During the past few years, a third telescope was constructed and just recently the first closure phases were obtained at 11.15 microns. We discuss the history, physics and technology of heterodyne interferometry in the mid-infrared, and some key astronomical results that have come from this unique instrument.

  13. Thermal emission from Saturn's rings at 380 microns

    SciTech Connect

    Roellig, T.L.; Werner, M.W.; Becklin, E.E.

    1988-03-01

    Two different techniques have been used to derive the Saturn disk's ring brightness temperatures from 380-micron observations: (1) comparisons of these wide-beam observation disk-ring system results with those obtained for an earlier epoch, when the rings were edge-on, then differencing the two measurements to obtain a value for the rings' contribution; and (2) ring contribution resolution during scanning along the disk-ring plane, to yield a B-ring brightness temperature of 39 + or - 8 K at 380 microns. The results obtained indicate a gradual decrease of observed ring brightness temperature from the IR to the radio wavelength range. 24 references.

  14. Planetary observations at a wavelength of 355 microns

    SciTech Connect

    De pater, I.; Ulich, B.L.; Kreysa, E.; Chini, R.; Kaman Aerospace Corp., Tucson, AZ; Max-Planck-Institut fuer Radioastronomie, Bonn )

    1989-05-01

    Brightness temperature measurements have been conducted for Jupiter, Saturn, Uranus, and Neptune, as well as the Galilean satellites Europa, Ganymede, and Callisto, and the asteroid Ceres, at 355 microns. The precise shape of the spectra of these bodies can be used to obtain information on their composition and the state of compactness of their surface/subsurface layers. The temperatures obtained for the giant planets agree with both previous measurements and model atmosphere calculations; the present result for Jupiter is noted to be consistent with a model atmosphere spectrum lacking a CH3-ice cloud, or perhaps with one having small (10-micron) particles. 12 refs.

  15. Discovery of new 2 micron sources in Rho Ophiuchi

    NASA Technical Reports Server (NTRS)

    Barsony, M.; Carlstrom, J. E.; Burton, Michael G.; Russell, A. P. G.; Garden, R.

    1989-01-01

    A 144-sq-arcmin region of the Rho Oph star-forming cloud core was surveyed at 2.2 microns, complete to mK = 14. A total of 61 sources are detected, 26 of which have been previously reported, accounting for a total of 35 new sources with mK = 12-14. There is no turnover in the 2-micron luminosity function of the Rho Oph cloud core to a limiting sensitivity of mK = 14. Two of the newly discovered sources are binary companions to previously cataloged objects.

  16. 2.15 Micron Laser Welding Of Gallbladder Tissue

    NASA Astrophysics Data System (ADS)

    Treat, Michael R.; Oz, Mehmet C.; Popp, Howard W.

    1989-09-01

    Laser welding of biliary tissues would be a valuable technique in conventional and endoscopic surgery. Laser welding would allow the avoidance of potentially lithogenic suture material as a sequela to biliary tract surgery. Laser welding would be compatable from the surgical technical standpoint with fiberoptic endoscopic intrumentation. The 2.15 micron thulium-holmium-chromium laser offers tissue penetration on the order of a few hundred microns. We have hypothesized that this laser might be well suited to performing biliary tissue welding. We evaluated this laser in vitro using canine gallbladder tissue and we were able to achieve histologically satisfactory tissue fusion and immediate bursting strengths above physiologically encountered biliary pressures.

  17. High-sensitivity two-color detection of double-stranded DNA with a confocal fluorescence gel scanner using ethidium homodimer and thiazole orange.

    PubMed

    Rye, H S; Quesada, M A; Peck, K; Mathies, R A; Glazer, A N

    1991-01-25

    Ethidium homodimer (EthD; lambda Fmax 620 nm) at EthD:DNA ratios up to 1 dye:4-5 bp forms stable fluorescent complexes with double-stranded DNA (dsDNA) which can be detected with high sensitivity using a confocal fluorescence gel scanner (Glazer, A.N., Peck, K. & Mathies, R.A. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 3851-3855). However, on incubation with unlabeled DNA partial migration of EthD takes place from its complex with dsDNA to the unlabeled DNA. It is shown here that this migration is dependent on the fractional occupancy of intercalating sites in the original dsDNA-EthD complex and that there is no detectable transfer from dsDNA-EthD complexes formed at 50 bp: 1 dye. The monointercalator thiazole orange (TO; lambda Fmax 530 nm) forms readily dissociable complexes with dsDNA with a large fluorescence enhancement on binding (Lee, L.G., Chen, C. & Liu, L.A. (1986) Cytometry 7, 508-517). However, a large molar excess of TO does not displace EthD from its complex with dsDNA. When TO and EthD are bound to the same dsDNA molecule, excitation of TO leads to efficient energy transfer from TO to EthD. This observation shows the practicability of 'sensitizing' EthD fluorescence with a second intercalating dye having a very high absorption coefficient and efficient energy transfer characteristics. Electrophoresis on agarose gels, with TO in the buffer, of preformed linearized M13mp18 DNA-EthD complex together with unlabeled linearized pBR322 permits sensitive fluorescence detection in the same lane of pBR322 DNA-TO complex at 530 nm and of M13mp18 DNA-EthD complex at 620 nm. These observations lay the groundwork for the use of stable DNA-dye intercalation complexes carrying hundreds of chromophores in two-color applications such as the physical mapping of chromosomes.

  18. Characterization of the 1 ^5Πu - 1 ^5Πg Band of C_2 by Two-Color Resonant Four-Wave Mixing and Lif

    NASA Astrophysics Data System (ADS)

    Radi, Peter

    2015-06-01

    The application of two-color resonant four-wave mixing (TC-RFWM) in combination with a discharge slit-source in a molecular beam environment is advantageous for the study of perturbations in C_2. Initial investigations have shown the potential of the method by a detailed deperturbation of the d3Π_g, v=4 state. The deperturbation of the d3Π_g, v=6 state unveiled the presence of the energetically lowest high-spin state of C_2. This dark state gains transition strength through the perturbation process with the d3Π_g, v=6 state yielding weak spectral features that are observable by the high sensitivity of the TC-RFWM technique. The successful deperturbation study of the d3Π_g, v=6 state resulted in the spectroscopic characterization of the quintet (15Πg) and an additional triplet state (d3Π_g, v=19). More recently, investigations have been performed by applying unfolded TC-RFWM to obtain further information on the quintet manifold. The first high-spin transition (15Πu) - 15Πg)) has been observed via an intermediate ``gateway'' state exhibiting both substantial triplet and quintet character owing to the perturbation between the 15Πg), v=0 and the d3Π_g, v=6 states. The high-lying quintet state is found to be predissociative and displays a shallow potential that accommodates three vibrational levels only. Further studies of the high-spin system will be presented in this contribution. By applying TC-RFWM and laser-induced fluorescence, data on the vibrational structure of the 15Πu - 15Πg system is obtained. The results are combined with high-level ab initio computations at the multi-reference configuration interaction (MRCI) level of theory and the largest possible basis currently implemented in the 2012 version of MOLPRO. P. Bornhauser, G. Knopp, T. Gerber, and P.P. Radi, Journal of Molecular Spectroscopy 262, 69 (2010) P. Bornhauser, Y. Sych, G. Knopp, T. Gerber, and P.P. Radi, Journal of Chemical Physics 134, 044302 (2011) Bornhauser, P., Marquardt, R

  19. Post-Hurricane Ike coastal oblique aerial photographs collected along the Alabama, Mississippi, and Louisiana barrier islands and the north Texas coast, September 14-15, 2008

    USGS Publications Warehouse

    Morgan, Karen L. M.; Krohn, M. Dennis; Guy, Kristy K.

    2016-04-28

    The U.S. Geological Survey (USGS), as part of the National Assessment of Coastal Change Hazards project, conducts baseline and storm-response photography missions to document and understand the changes in vulnerability of the Nation's coasts to extreme storms (Morgan, 2009). On September 14-15, 2008, the USGS conducted an oblique aerial photographic survey along the Alabama, Mississippi, and Louisiana barrier islands and the north Texas coast, aboard a Beechcraft Super King Air 200 (aircraft) at an altitude of 500 feet (ft) and approximately 1,200 ft offshore. This mission was flown to collect post-Hurricane Ike data for assessing incremental changes in the beach and nearshore area since the last survey, flown on September 9-10, 2008, and the data can be used in the assessment of future coastal change.The photographs provided in this report are Joint Photographic Experts Group (JPEG) images. ExifTool was used to add the following to the header of each photo: time of collection, Global Positioning System (GPS) latitude, GPS longitude, keywords, credit, artist (photographer), caption, copyright, and contact information. The photograph locations are an estimate of the position of the aircraft at the time the photograph was taken and do not indicate the location of any feature in the images (see the Navigation Data page). These photographs document the state of the barrier islands and other coastal features at the time of the survey. Pages containing thumbnail images of the photographs, referred to as contact sheets, were created in 5-minute segments of flight time. These segments can be found on the Photos and Maps page. Photographs can be opened directly with any JPEG-compatible image viewer by clicking on a thumbnail on the contact sheet.In addition to the photographs, a Google Earth Keyhole Markup Language (KML) file is provided and can be used to view the images by clicking on the marker and then clicking on either the thumbnail or the link above the thumbnail

  20. Post-Hurricane Ike coastal oblique aerial photographs collected along the Alabama, Mississippi, and Louisiana barrier islands and the north Texas coast, September 14-15, 2008

    USGS Publications Warehouse

    Morgan, Karen L. M.; Krohn, M. Dennis; Guy, Kristy K.

    2016-01-01

    The U.S. Geological Survey (USGS), as part of the National Assessment of Coastal Change Hazards project, conducts baseline and storm-response photography missions to document and understand the changes in vulnerability of the Nation's coasts to extreme storms (Morgan, 2009). On September 14-15, 2008, the USGS conducted an oblique aerial photographic survey along the Alabama, Mississippi, and Louisiana barrier islands and the north Texas coast, aboard a Beechcraft Super King Air 200 (aircraft) at an altitude of 500 feet (ft) and approximately 1,200 ft offshore. This mission was flown to collect post-Hurricane Ike data for assessing incremental changes in the beach and nearshore area since the last survey, flown on September 9-10, 2008, and the data can be used in the assessment of future coastal change.The photographs provided in this report are Joint Photographic Experts Group (JPEG) images. ExifTool was used to add the following to the header of each photo: time of collection, Global Positioning System (GPS) latitude, GPS longitude, keywords, credit, artist (photographer), caption, copyright, and contact information. The photograph locations are an estimate of the position of the aircraft at the time the photograph was taken and do not indicate the location of any feature in the images (see the Navigation Data page). These photographs document the state of the barrier islands and other coastal features at the time of the survey. Pages containing thumbnail images of the photographs, referred to as contact sheets, were created in 5-minute segments of flight time. These segments can be found on the Photos and Maps page. Photographs can be opened directly with any JPEG-compatible image viewer by clicking on a thumbnail on the contact sheet.In addition to the photographs, a Google Earth Keyhole Markup Language (KML) file is provided and can be used to view the images by clicking on the marker and then clicking on either the thumbnail or the link above the thumbnail

  1. Azimuthally averaged radial S(sub 100 microns)/S(sub 60 microns) dust color temperatures in spiral galaxies

    NASA Technical Reports Server (NTRS)

    Devereux, Nick A.

    1994-01-01

    The IRAS S(sub 100 micron)/S(sub 60 micron) dust color temperature profiles are presented for two nearby spiral galaxies M 101 and M 81. The radial dust temperature profiles provided an important constraint on the origin of the far-infrared luminosity. The observed dust temperature is compared with that expected for diffuse interstellar dust heated by the general interstellar radiation field within each galaxy. The implications for the contribution of cirrus to the far-infrared luminosity of M 101 and M 81 are discussed.

  2. Micron-gap thermophotovoltaic systems enhanced by nanowires

    NASA Astrophysics Data System (ADS)

    Mirmoosa, Mohammad Sajjad; Simovski, Constantin

    2015-01-01

    We introduce new micron-gap thermophotovoltaic systems enhanced by tungsten nanowires. We theoretically show that these systems allow the frequency-selective super-Planckian spectrum of radiative heat transfer that promises a very efficient generation of electricity. Our system analysis covers practical aspects such as output power per unit area and efficiency of the tap water cooling.

  3. Release of Micronized Copper Particles from Pressure Treated Wood Products

    EPA Science Inventory

    Micronized copper pressure treated lumber (PTL) has recently been introduced to the consumer market as a replacement for ionized copper PTL. The presence of particulate rather than aqueous copper raises concerns about the exposure of humans as well as the environment to the parti...

  4. Biogeography of a human oral microbiome at the micron scale.

    PubMed

    Mark Welch, Jessica L; Rossetti, Blair J; Rieken, Christopher W; Dewhirst, Floyd E; Borisy, Gary G

    2016-02-01

    The spatial organization of complex natural microbiomes is critical to understanding the interactions of the individual taxa that comprise a community. Although the revolution in DNA sequencing has provided an abundance of genomic-level information, the biogeography of microbiomes is almost entirely uncharted at the micron scale. Using spectral imaging fluorescence in situ hybridization as guided by metagenomic sequence analysis, we have discovered a distinctive, multigenus consortium in the microbiome of supragingival dental plaque. The consortium consists of a radially arranged, nine-taxon structure organized around cells of filamentous corynebacteria. The consortium ranges in size from a few tens to a few hundreds of microns in radius and is spatially differentiated. Within the structure, individual taxa are localized at the micron scale in ways suggestive of their functional niche in the consortium. For example, anaerobic taxa tend to be in the interior, whereas facultative or obligate aerobes tend to be at the periphery of the consortium. Consumers and producers of certain metabolites, such as lactate, tend to be near each other. Based on our observations and the literature, we propose a model for plaque microbiome development and maintenance consistent with known metabolic, adherence, and environmental considerations. The consortium illustrates how complex structural organization can emerge from the micron-scale interactions of its constituent organisms. The understanding that plaque community organization is an emergent phenomenon offers a perspective that is general in nature and applicable to other microbiomes. PMID:26811460

  5. Biogeography of a human oral microbiome at the micron scale

    PubMed Central

    Mark Welch, Jessica L.; Rossetti, Blair J.; Rieken, Christopher W.; Dewhirst, Floyd E.; Borisy, Gary G.

    2016-01-01

    The spatial organization of complex natural microbiomes is critical to understanding the interactions of the individual taxa that comprise a community. Although the revolution in DNA sequencing has provided an abundance of genomic-level information, the biogeography of microbiomes is almost entirely uncharted at the micron scale. Using spectral imaging fluorescence in situ hybridization as guided by metagenomic sequence analysis, we have discovered a distinctive, multigenus consortium in the microbiome of supragingival dental plaque. The consortium consists of a radially arranged, nine-taxon structure organized around cells of filamentous corynebacteria. The consortium ranges in size from a few tens to a few hundreds of microns in radius and is spatially differentiated. Within the structure, individual taxa are localized at the micron scale in ways suggestive of their functional niche in the consortium. For example, anaerobic taxa tend to be in the interior, whereas facultative or obligate aerobes tend to be at the periphery of the consortium. Consumers and producers of certain metabolites, such as lactate, tend to be near each other. Based on our observations and the literature, we propose a model for plaque microbiome development and maintenance consistent with known metabolic, adherence, and environmental considerations. The consortium illustrates how complex structural organization can emerge from the micron-scale interactions of its constituent organisms. The understanding that plaque community organization is an emergent phenomenon offers a perspective that is general in nature and applicable to other microbiomes. PMID:26811460

  6. The 100 micron detector development program. [gallium doped germanium photoconductors

    NASA Technical Reports Server (NTRS)

    Moore, W. J.

    1976-01-01

    An effort to optimize gallium-doped germanium photoconductors (Ge:Ga) for use in space for sensitive detection of far infrared radiation in the 100 micron region is described as well as the development of cryogenic apparatus capable of calibrating detectors under low background conditions.

  7. Validar: A Testbed for Advanced 2-Micron Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Koch, Grady J.; Petros, Mulugeta; Barnes, Bruce W.; Beyon, Jeffrey Y.; Amzajerdian, Farzin; Yu, Jirong; Kavaya, Michael J.; Singh, Upendra N.

    2004-01-01

    High-energy 2-microns lasers have been incorporated in a breadboard coherent Doppler lidar to test component technologies and explore applications for remote sensing of the atmosphere. Design of the lidar is presented including aspects in the laser transmitter, receiver, photodetector, and signal processing. Sample data is presented on wind profiling and CO2 concentration measurements.

  8. Five-micron pictures of Jupiter. [infrared and color photography

    NASA Technical Reports Server (NTRS)

    Westphal, J. A.; Matthews, K.; Terrile, R. J.

    1974-01-01

    Several hundred five-micron 'video' pictures of Jupiter, with 1-sec resolution, made during September, October, and December 1973 and compared with color photographs, are shown to exhibit direct, detailed correlations with the darker 'purple' features. Forty-four of these pictures were made just before the Pioneer-10 encounter.

  9. The NASA - Arc 10/20 micron camera

    NASA Technical Reports Server (NTRS)

    Roellig, T. L.; Cooper, R.; Deutsch, L. K.; Mccreight, C.; Mckelvey, M.; Pendleton, Y. J.; Witteborn, F. C.; Yuen, L.; Mcmahon, T.; Werner, M. W.

    1994-01-01

    A new infrared camera (AIR Camera) has been developed at NASA - Ames Research Center for observations from ground-based telescopes. The heart of the camera is a Hughes 58 x 62 pixel Arsenic-doped Silicon detector array that has the spectral sensitivity range to allow observations in both the 10 and 20 micron atmospheric windows.

  10. Variability of Jupiter's Five-Micron Hot Spot Inventory

    NASA Technical Reports Server (NTRS)

    Yanamandra-Fisher, Padma A.; Orton, G. S.; Wakefield, L.; Rogers, J. H.; Simon-Miller, A. A.; Boydstun, K.

    2012-01-01

    Global upheavals on Jupiter involve changes in the albedo of entire axisymmetric regions, lasting several years, with the last two occurring in 1989 and 2006. Against this backdrop of planetary-scale changes, discrete features such as the Great Red Spot (GRS), and other vortices exhibit changes on shorter spatial- and time-scales. We track the variability of the discrete equatorial 5-micron hot spots, semi-evenly spaced in longitude and confined to a narrow latitude band centered at 6.5degN (southern edge of the North Equatorial Belt, NEB), abundant in Voyager images. Tantalizingly similar patterns were observed in the visible (bright plumes and blue-gray regions), where reflectivity in the red is anti-correlated with 5-microns thermal radiance. Ortiz et al. (1998, GRL, 103) characterized the latitude and drift rates of the hot spots, including the descent of the Galileo probe at the southern edge of a 5-micron hot spot, as the superposition of equatorial Rossby waves, with phase speeds between 99 - 103m/s, relative to System III. We note that the high 5-micron radiances correlate well but not perfectly with high 8.57-micron radiances. Because the latter are modulated primarily by changes in the upper ammonia (NH3) ice cloud opacity, this correlation implies that changes in the ammonia ice cloud field may be responsible for the variability seen in the 5-m maps. During the NEB fade (2011 - early 2012), however, these otherwise ubiquitous features were absent, an atmospheric state not seen in decades. The ongoing NEB revival indicates nascent 5-m hot spots as early as April 2012, with corresponding visible dark spots. Their continuing growth through July 2012 indicates the possit.le re-establishment of Rossby waves. The South Equatorial Belt (SEB) and NEB revivals began similarly with an instability that developed into a major outbreak, and many similarities in the observed propagation of clear regions.

  11. Ultra-low emittance beam generation using two-color ionization injection in a CO2 laser-driven plasma accelerator

    SciTech Connect

    Schroeder, Carl; Benedetti, Carlo; Bulanov, Stepan; Chen, Min; Esarey, Eric; Geddes, Cameron; Vay, J.; Yu, Lule; Leemans, Wim

    2015-05-21

    Ultra-low emittance (tens of nm) beams can be generated in a plasma accelerator using ionization injection of electrons into a wakefield. An all-optical method of beam generation uses two laser pulses of different colors. A long-wavelength drive laser pulse (with a large ponderomotive force and small peak electric field) is used to excite a large wakefield without fully ionizing a gas, and a short-wavelength injection laser pulse (with a small ponderomotive force and large peak electric field), co-propagating and delayed with respect to the pump laser, to ionize a fraction of the remaining bound electrons at a trapped wake phase, generating an electron beam that is accelerated in the wake. The trapping condition, the ionized electron distribution, and the trapped bunch dynamics are discussed. Expressions for the beam transverse emittance, parallel and orthogonal to the ionization laser polarization, are presented. An example is shown using a 10-micron CO2 laser to drive the wake and a frequency-doubled Ti:Al2O3 laser for ionization injection.

  12. Convection and overshielding electric fields in the global ionosphere as observed with magnetometers and SuperDARN during the geomagnetic storm on 14-15 December 2006

    NASA Astrophysics Data System (ADS)

    Kikuchi, T.; Ebihara, Y.; Hashimoto, K. K.; Kataoka, R.; Hori, T.; Watari, S.; Nishitani, N.

    2008-12-01

    The convection electric field penetrates to the equatorial ionosphere with no significant shielding effects during the DP2 fluctuation event of period of 30 - 60 min (Nishida, 1968) and during the storm main phase continuing over several hours (Huang et al., 2007). On the other hand, shielding becomes effective during the substorm growth phase (Somajajulu et al., 1987; Kikuchi et al., 2000) and even during storm main phase (Kikuchi et al., 2008). The well-developed shielding electric field results in an overshielding at the beginning of the recovery phase of storm/substorms (Kikuchi et al., 2003, 2008). Thus, the electric field manifests complex features at mid-equatorial latitudes, which is not determined only by the solar wind electric field but strongly controlled by magnetospheric processes such as the ring current. To reveal comparative roles of the convection and overshielding electric fields and in what condition the overshielding occurs at mid-equatorial latitudes, we analyzed the geomagnetic storm on 14-15 December, 2006, characterized by the quasi-periodic DP2 fluctuation of 30 min period at the beginning of the storm. We used magnetometer data from mid- equatorial latitudes to detect magnetic signatures due to the electric field originating in the magnetosphere, and used the SuperDARN data to identify electric fields associated with the solar wind dynamo (Region-1 FAC) and the ring current (R2 FAC). We further calculated an electric potential pattern caused by the R1 and R2 FACs with the comprehensive ring current model (CRCM) to better understand the SuperDARN convection pattern. First we show that the DP2 fluctuation was caused by alternating eastward (e-EJ) and westward currents (w-EJ) in the equatorial ionosphere, which were caused by the southward and northward IMF, respectively. We further show that the e-EJ was associated with the large-scale two-cell convection vortices, while the w-EJ accompanied a reverse flow equatorward of the two

  13. 60 micron luminosity evolution of rich clusters of galaxies

    SciTech Connect

    Kelly, D.M.; Rieke, G.H. )

    1990-10-01

    The average 60-micron flux has been determined for a collection of optically selected galaxy clusters at redshifts ranging from 0.30 to 0.92. The result, 26 mJy per cluster, represents the faintest flux determination known of using the IRAS data base. The flux from this set of clusters has been compared to the 60-micron flux from a sample of nearby galaxy clusters. It is found that the far-infrared luminosity evolution in cluster galaxies can be no more than a factor of 1.7 from z = 0.4 to the present epoch. This upper limit is close to the evolution predicted for simple aging of the stellar populations. Additional processes such as mergers, cannibalism, or enhanced rates of starbursts appear to occur at a low enough level that they have little influence on the far-infrared emission from clusters over this redshift range. 38 refs.

  14. 60 micron luminosity evolution of rich clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Kelly, Douglas M.; Rieke, George H.

    1990-01-01

    The average 60-micron flux has been determined for a collection of optically selected galaxy clusters at redshifts ranging from 0.30 to 0.92. The result, 26 mJy per cluster, represents the faintest flux determination known of using the IRAS data base. The flux from this set of clusters has been compared to the 60-micron flux from a sample of nearby galaxy clusters. It is found that the far-infrared luminosity evolution in cluster galaxies can be no more than a factor of 1.7 from z = 0.4 to the present epoch. This upper limit is close to the evolution predicted for simple aging of the stellar populations. Additional processes such as mergers, cannibalism, or enhanced rates of starbursts appear to occur at a low enough level that they have little influence on the far-infrared emission from clusters over this redshift range.

  15. FIRBACK: A Large Area 175 micron Survey with ISO

    NASA Astrophysics Data System (ADS)

    Lagache, Guilaine

    We have conducted a deep cosmological large area survey at 175 microns with the ISOPHOT instrument in several high latitude regions relatively free of cirrus contamination. The main, but striking, result of this survey is that number counts of sources above 100 mJy is larger by about an order of magnitude than the extrapolation of the nearby IRAS 60 microns population of infrared galaxies. Nevertheless, these counts are consistent with predictions of the source population responsible for the Cosmic Far InfraRed Background detected with COBE. The FIRBACK collaboration involves J. L. Puget, D. L. Clements, H. Dole, R. Gispert, W. T. Reach, F. R. Bouchet, C. Cesarsky, F. X. Desert, D. Elbaz, A. Franceschini, B. Guiderdoni, M. Harwit, D. Lemke, R. Laureijs and A. F. M Moorwood.

  16. Photometric variability of Charon at 2.2 microns

    NASA Technical Reports Server (NTRS)

    Bosh, A. S.; Young, L. A.; Elliot, J. L.; Hammel, H. B.; Baron, R. L.

    1992-01-01

    Pluto-Charon images obtained on each of four nights at 2.2, 1.2, and 1.7 microns are presently fitted by a two-source image model in which the position of Charon and the ratio of its signal to that of Pluto are free parameters. At 2.2 microns, Charon is fainter than Pluto by magnitudes which, when combined with Pluto-Charon system photometry, yield apparent magnitudes of 15.01 + or - 0.08 for Charon at 0.06 lightcurve phase and 15.46 + or - 0.05 at lightcurve phase 0.42. In view of these results, Charon is variable in this filter bypass due to geometric albedo changes as a function of longitude.

  17. Correlation of infrared reflectance ratios at 2.3 microns/1.6 micron and 1.1 micron/1.6 micron with delta O-18 values delineating fossil hydrothermal systems in the Idaho batholith

    NASA Technical Reports Server (NTRS)

    Gillespie, A. R.; Criss, R. E.

    1983-01-01

    Reflectance ratios from laboratory spectra and airborne multispectral images are found to be strongly correlated with delta O-18 values of granite rocks in the Idaho batholith. The correlation is largely a result of interactions between hot water and rock, which lowered the delta O-18 values of the rocks and produced secondary hydrous material. Maps of the ratio of reflectivities at 2.3 and 1.6 microns should delineate fossil hydrothermal systems and provide estimates of alteration intensity. However, hydrous minerals produced during deuteric alteration or weathering cannot be unambiguously distinguished in remotely sensed images from the products of propylitic alteration without the use of narrow-band scanners. The reflectivity at 1.6 micron is strongly correlated with rock density and may be useful in distinguishing rock types in granitic terranes.

  18. Infrared spectrum of Io, 2.8-5.2 microns

    NASA Astrophysics Data System (ADS)

    Cruikshank, D. P.

    1980-02-01

    The reflectance spectrum of Io is presented from 2.8 to 5.2 microns demonstrating the full extent of the broad and deep spectral absorption between 3.5 and 4.8 microns. Laboratory spectra of nitrates and carbonates diluted with sulfur do not satisfactorily reproduce the Io spectrum, but new information based on recently discovered volcanic activity on the satellite lead to consideration of other classes of compounds reported by Fanale et al. (1979). It is concluded that the variability of the supply of condensible SO2 gas to the surface of Io, its removal by sublimination, and the temporal variations in the strength of the SO2 band may provide an index of volcanic activity on Io that can be monitored from the earth.

  19. Sub-Micron Velocity Measurements near a Moving Contact Line

    NASA Astrophysics Data System (ADS)

    Zimmerman, Jeremiah; Weislogel, Mark M.; Tretheway, Derek C.

    2010-03-01

    The displacement of one fluid by an immiscible second fluid (i.e. dynamic wetting), governs many natural and technological processes. Despite extensive studies, understanding and modeling the displacement process remains one of the outstanding problems in fluid mechanics. In this work, we explore the physics of the moving contact line (the idealized line of intersection between two fluids and a solid) with micron resolution particle image velocimetry (μPIV), which enables sub-micron two-dimensional velocity measurements. The measured flow is generated by dynamic wetting in a glass microchannel. The microchannel is mounted on an automated microscope stage with precise velocity control allowing for the static placement of the contact line within the field of view. Full-field velocity measurements within 1 μm of the contact line were made in water/glycerol and fructose/glucose/water solutions. Preliminary results appear to show remarkable similarity to controversial theoretical predictions.

  20. Visualization study on sedimentation of micron iron oxide particles.

    PubMed

    Chen, Jin-Fang; Luo, Ye; Xu, Jun-Hui; Chen, Qi-Ming; Guo, Jia

    2006-09-15

    In this paper, a novel technique combined light-electronic microscopy and computer imaging trace was used for visualization of the sedimentation of micron iron oxide particles in a customized micro-reactor. Micron iron oxide particles were recovered from the cinder of sulfuric acid production by sedimentation separating and hydraulic rating. Effects of particle size, shape and surface roughness on the sedimentation velocity were investigated. For irregular-shape particles, the sedimentation velocity and the geometric parameters of the particles were measured by the imaging trace technique. A correction coefficient (c) was used to modify the Stokes equation. In this study, the relationship between the correction coefficient and the equivalent diameter (d(p)) was found to be linear: c=0.6272-0.0298d(p), for iron oxide particles with equivalent diameter 4-22 microm.

  1. Radiation Pressure Measurements on Micron-Size Individual Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Witherow, W. K.; West, E. A.; Gallagher, D. L.; Adrian, M. L.; Fishman, G. J.; Tankosic, D.; LeClair, A.

    2003-01-01

    Measurements of electromagnetic radiation pressure have been made on individual silica (SiO2) particles levitated in an electrodynamic balance. These measurements were made by inserting single charged particles of known diameter in the 0.2- to 6.82-micron range and irradiating them from above with laser radiation focused to beam widths of approximately 175- 400 microns at ambient pressures particle due to the radiation force is balanced by the electrostatic force indicated by the compensating dc potential applied to the balance electrodes, providing a direct measure of the radiation force on the levitated particle. Theoretical calculations of the radiation pressure with a least-squares fit to the measured data yield the radiation pressure efficiencies of the particles, and comparisons with Mie scattering theory calculations provide the imaginary part of the refractive index of SiO2 and the corresponding extinction and scattering efficiencies.

  2. Mix-and-match lithography for half-micron technology

    NASA Astrophysics Data System (ADS)

    Flack, Warren W.; Dameron, David H.

    1991-08-01

    Half-micron lithography for a production environment is not considered realistic with currently available lithography tools. While optical steppers have high wafer throughputs, they do not have sufficient process latitude at half-micron geometries. In contrast, advanced technologies with sufficient capabilities for half-micron processing such as direct-write e-beam and x-ray lithography are extremely expensive and have low effective throughputs. A mix-and- match lithography approach can take advantage of the best features of both types of systems by sing an optical stepper for noncritical levels and an advanced lithography system for critical levels. In order to facilitate processing of a triple level metal half-micron CMOS technology, a mix-and-match scheme has been developed between a Hitachi HL-700 D e-beam direct write system and an Ultratech 1500 wide-field 1x stepper. The Hitachi is used to pattern an accurate zero or registration level. All critical levels are exposed on the Hitachi and aligned back to this zero level. The Ultratech is used to align all other process levels which do not have critical targets that are placed on subsequent process levels. The mix-and-match approach is discussed, and optical to e-beam as well as e-beam to optical alignment results from seven production lots are presented. The linear alignment error components X translation, Y translation, rotation and magnification are extracted and analyzed to determine their source. It was found that a simple adjustment improved the registration capabilities of these two lithography tools by reducing the X translation, Y translation and rotation standard deviations by a factor of two or more, while greatly reducing the magnification errors between the two tools.

  3. Two micron pore size MCP-based image intensifiers

    NASA Astrophysics Data System (ADS)

    Glesener, John; Estrera, Joseph

    2010-02-01

    Image intensifiers (I2) have many advantages as detectors. They offer single photon sensitivity in an imaging format, they're light in weight and analog I2 systems can operate for hours on a single AA battery. Their light output is such as to exploit the peak in color sensitivity of the human eye. Until recent developments in CMOS sensors, they also were one of the highest resolution sensors available. The closest all solid state solution, the Texas Instruments Impactron chip, comes in a 1 megapixel format. Depending on the level of integration, an Impactron based system can consume 20 to 40 watts in a system configuration. In further investing in I2 technology, L-3 EOS determined that increasing I2 resolution merited a high priority. Increased I2 resolution offers the system user two desirable options: 1) increased detection and identification ranges while maintaining field-of-view (FOV) or 2) increasing FOV while maintaining the original system resolution. One of the areas where an investment in resolution is being made is in the microchannel plate (MCP). Incorporation of a 2 micron MCP into an image tube has the potential of increasing the system resolution of currently fielded systems. Both inverting and non-inverting configurations are being evaluated. Inverting tubes are being characterized in night vision goggle (NVG) and sights. The non-inverting 2 micron tube is being characterized for high resolution I2CMOS camera applications. Preliminary measurements show an increase in the MTF over a standard 5 micron pore size, 6 micron pitch plate. Current results will be presented.

  4. Electromagnetic Emission at Micron Wavelengths from Active Nerves

    PubMed Central

    Fraser, Allan; Frey, Allan H.

    1968-01-01

    In recent years there has been experimental work and speculation bearing upon the significance in neural functioning of electromagnetic energy in the region of the spectrum between 0.3 and 10 μ. We demonstrate, in this experiment, micron wavelength electromagnetic emission from active live crab nerves as compared to inactive live and dead nerves. Further, the data indicate that the active nerve emission is caused by specific biophysical reactions rather than being simply black-body radiation. PMID:5699805

  5. Scanning SQUID susceptometers with sub-micron spatial resolution

    NASA Astrophysics Data System (ADS)

    Kirtley, John R.; Paulius, Lisa; Rosenberg, Aaron J.; Palmstrom, Johanna C.; Holland, Connor M.; Spanton, Eric M.; Schiessl, Daniel; Jermain, Colin L.; Gibbons, Jonathan; Fung, Y.-K.-K.; Huber, Martin E.; Ralph, Daniel C.; Ketchen, Mark B.; Gibson, Gerald W.; Moler, Kathryn A.

    2016-09-01

    Superconducting QUantum Interference Device (SQUID) microscopy has excellent magnetic field sensitivity, but suffers from modest spatial resolution when compared with other scanning probes. This spatial resolution is determined by both the size of the field sensitive area and the spacing between this area and the sample surface. In this paper we describe scanning SQUID susceptometers that achieve sub-micron spatial resolution while retaining a white noise floor flux sensitivity of ≈2μΦ0/Hz1/2. This high spatial resolution is accomplished by deep sub-micron feature sizes, well shielded pickup loops fabricated using a planarized process, and a deep etch step that minimizes the spacing between the sample surface and the SQUID pickup loop. We describe the design, modeling, fabrication, and testing of these sensors. Although sub-micron spatial resolution has been achieved previously in scanning SQUID sensors, our sensors not only achieve high spatial resolution but also have integrated modulation coils for flux feedback, integrated field coils for susceptibility measurements, and batch processing. They are therefore a generally applicable tool for imaging sample magnetization, currents, and susceptibilities with higher spatial resolution than previous susceptometers.

  6. A model for the CI (609 micron) emission of Orion

    NASA Technical Reports Server (NTRS)

    Tielens, A. G. G. M.; Hollenbach, D.

    1985-01-01

    A numerical model energy balance and chemical equilibrium in the photodissociation regions at the edge of molecular clouds is presented. The model is used to calculate the emergent intensities of the following fine-structure lines: OI (at 63, 145 microns); CI (at 609, 370 microns); C II (at 158 microns); and the low-lying rotational transitions of CO. It is shown that column densities in the range 2 x 10 to the 17th to 2 x 10 to the 18th per sq cm can be obtained for the C(+)/C/CO transition region at the edges of molecular clouds. The difference in the column densities is attributed to changes in the charge exchange reactions of C(+) with SiO and S, and to the process of carbon self-healing. It is found that the calculations are in good agreement with the observed conditions in the photodissociation regions behind Orion (1) C Ori, and near the surface of OMC 1.

  7. Dissolution and pharmacokinetics of a novel micronized aspirin formulation.

    PubMed

    Voelker, M; Hammer, M

    2012-08-01

    Aspirin (acetylsalicylic acid, ASA) has been used as an analgesic, antipyretic and antiinflammatory drug for many years. A new 500 mg aspirin tablet formulation containing micronized active ingredient and an effervescent component has been developed for potential improvement in the onset of action for acute pain treatment. This paper describes the dissolution and the pharmacokinetics of the new formulation in comparison with regular aspirin tablets, aspirin granules and aspirin effervescent tablets. Micronized aspirin tablets dissolve significantly faster over a pH range from 1.2 to 6.8 compared to regular 500 mg aspirin tablets. Plasma concentration time curve comparison to regular 500 mg aspirin tablets showed a substantial improvement in the time to maximum plasma concentrations (T(max)) (ASA 17.5 min vs. 45 min) and an increase in maximum plasma concentration (C(max)) (ASA 13.8 μg/ml vs. 4.4 μg/ml) while the overall extent of exposure (AUC) remains almost unchanged. The data suggest a potential improvement for onset of action in treating acute pain with the new micronized aspirin formulation.

  8. Dissolution and pharmacokinetics of a novel micronized aspirin formulation.

    PubMed

    Voelker, M; Hammer, M

    2012-08-01

    Aspirin (acetylsalicylic acid, ASA) has been used as an analgesic, antipyretic and antiinflammatory drug for many years. A new 500 mg aspirin tablet formulation containing micronized active ingredient and an effervescent component has been developed for potential improvement in the onset of action for acute pain treatment. This paper describes the dissolution and the pharmacokinetics of the new formulation in comparison with regular aspirin tablets, aspirin granules and aspirin effervescent tablets. Micronized aspirin tablets dissolve significantly faster over a pH range from 1.2 to 6.8 compared to regular 500 mg aspirin tablets. Plasma concentration time curve comparison to regular 500 mg aspirin tablets showed a substantial improvement in the time to maximum plasma concentrations (T(max)) (ASA 17.5 min vs. 45 min) and an increase in maximum plasma concentration (C(max)) (ASA 13.8 μg/ml vs. 4.4 μg/ml) while the overall extent of exposure (AUC) remains almost unchanged. The data suggest a potential improvement for onset of action in treating acute pain with the new micronized aspirin formulation. PMID:22057729

  9. Measuring micron size beams in the SLC final focus

    SciTech Connect

    McCormick, D.; Ross, M.; DeBarger, S.

    1994-10-01

    A pair of high resolution wire scanners have been built and installed in the SLC final focus. The final focus optics uses a set of de-magnifying telescopes, and an ideal location for a beam size monitor is at one of the magnified image points of the interaction point. The image point chosen for these scanners is in the middle of a large bend magnet. The design beam spots here are about 2 microns in the vertical and 20 microns in the horizontal plane. The scanners presented a number of design challenges. In this paper we discuss the mechanical design of the scanner, and fabrication techniques of its ceramic wire support card which holds many 4 and 7 um carbon wires. Accurate motion of the wire during a scan is critical. In this paper we describe tests of stepper motors, gear combinations, and radiation hardened encoders needed to produce the required motion with a step resolution of 80 nanometers. Also presented here are the results of scattered radiation detector placement studies carried out to optimize the signal from the 4 micron wires. Finally, we present measurements from the scanner.

  10. Radiation Pressure Measurements on Micron Size Individual Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P.D.; Spann, J. F.; Tankosic, D.; Witherow, W. K.; LeClair, A.; West, E.; Sheldon, R.; Gallagher, D. L.; Adrian, M. L.

    2003-01-01

    Measurements of electromagnetic radiation pressure have been made on individual silica (SiO2) particles levitated in an electrodynamic balance. These measurements were made by inserting single charged particles of known diameter in the 0.2 micron to 6.82 micron range and irradiating them from above with laser radiation focused to beam-widths of approx. 175-400 micron, at ambient pressures approx. 10(exp -3) to 10(exp -4) torr. The downward displacement of the particle due to the radiation force is balanced by the electrostatic force indicated by the compensating dc potential applied to the balance electrodes, providing a direct measure of the radiation force on the levitated particle. Theoretical calculations of the radiation pressure with a least-squares fit to the measured data yield the radiation pressure efficiencies of the particles, and comparisons with Mie scattering theory calculations provide the imaginary part of the refractive index of silica and the corresponding extinction and scattering efficiencies.

  11. Bench-Scale Testing of the Micronized Magnetite Process

    SciTech Connect

    Edward R. Torak; Peter J. Suardini

    1997-11-01

    A recent emphasis of the Department of Energy's (DOE's), Coal Preparation Program has been the development of high-efficiency technologies that offer near-term, low-cost improvements in the ability of coal preparation plants to address problems associated with coal fines. In 1992, three cost-shared contracts were awarded to industry, under the first High-Efficiency Preparation (HEP I) solicitation. All three projects involved bench-scale testing of various emerging technologies, at the Federal Energy Technology Center*s (FETC*s), Process Research Facility (PRF). The first HEP I project, completed in mid-1993, was conducted by Process Technology, Inc., with the objective of developing a computerized, on-line system for monitoring and controlling the operation of a column flotation circuit. The second HEP I project, completed in mid-1994, was conducted by a team led by Virginia Polytechnic Institute to test the Mozely Multi-Gravity Separator in combination with the Microcel Flotation Column, for improved removal of mineral matter and pyritic sulfur from fine coal. The last HEP I project, of which the findings are contained in this report, was conducted by Custom Coals Corporation to evaluate and advance a micronized-magnetite-based, fine-coal cycloning technology. The micronized-magnetite coal cleaning technology, also know as the Micro-Mag process, is based on widely used conventional dense-medium cyclone applications, in that it utilizes a finely ground magnetite/water suspension as a separating medium for cleaning fine coal, by density, in a cyclone. However, the micronized-magnetite cleaning technology differs from conventional systems in several ways: ! It utilizes significantly finer magnetite (about 5 to 10 micron mean particle size), as compared to normal mean particle sizes of 20 microns. ! It can effectively beneficiate coal particles down to 500M in size, as compared to the most advanced, existing conventional systems that are limited to a particle bottom

  12. Photon Counting Detectors for the 1.0 - 2.0 Micron Wavelength Range

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.

    2004-01-01

    We describe results on the development of greater than 200 micron diameter, single-element photon-counting detectors for the 1-2 micron wavelength range. The technical goals include quantum efficiency in the range 10-70%; detector diameter greater than 200 microns; dark count rate below 100 kilo counts-per-second (cps), and maximum count rate above 10 Mcps.

  13. The micron stroke hypothesis of Alzheimer's disease and dementia.

    PubMed

    Orehek, Allen J

    2012-05-01

    Alzheimer's disease as currently described in the medical literature is often more a description of dementia rather than a specific disease. In over a century of scientific work there has been no proven theory as to the precise pathogenesis of Alzheimer's disease and dementia. As there is no efficient treatment for patients with Alzheimer's disease, prevention or attenuation of the disease is of substantial value. An intricate collection of hypotheses, studies, research, and experience has made it complicated for one to completely understand this disease. The purpose of this hypothesis is to illustrate new concepts and work to link those concepts to the present understanding of an obscure disease. The search for a single unifying hypothesis on the etiology of Alzheimer's disease has been elusive. Many hypotheses associated to Alzheimer's disease have not survived their testing to become theory. Suggested here is that the elusive nature of etiology of dementia is not from one cause, but rather the causes are numerous. Medical terminology used freely for decades is rarely evaluated in the light of a new hypothesis. At the foundation of this work is the suggestion of a new medical term: Micron Strokes. The Micron Stroke Hypothesis of Alzheimer's Disease and Dementia include primary and secondary factors. The primary factors can be briefly described as baseline brain tissue, atrial fibrillation, hypercoaguable state, LDL, carotid artery stenosis, tobacco exposure, hypertension diabetes mellitus, and the presence of systemic inflammation. Dozens of secondary factors contribute to the development of dementia. Most dementia is caused by nine primary categories of factors as they interact to cause micron strokes to the brain.

  14. A High Energy 2-microns Laser for Multiple Lidar Applications

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Singh, Upendra N.; Barnes, James C.; Barnes, Norman P.; Petros, Mulugeta

    2000-01-01

    Solid-state 2-microns laser has been receiving considerable interest because of its eye-safe property and efficient diode pump operation, It has potential for multiple lidar applications to detect water vapor. carbon dioxide and winds. In this paper, we describe a 2-microns double pulsed Ho:Tm:YLF laser and end-pumped amplifier system. A comprehensive theoretical model has been developed to aid the design and optimization of the laser performance. In a single Q-switched pulse operation the residual energy stored in the Tm atoms will be wasted. However, in a double pulses operation mode, the residual energy stored in the Tm atoms will repopulate the Ho atoms that were depleted by the extraction of the first Q-switched pulse. Thus. the Tin sensitized Ho:YLF laser provides a unique advantage in applications that require double pulse operation, such as Differential Absorption Lidar (DIAL). A total output energy of 146 mJ per pulse pair under Q-switch operation is achieved with as high as 4.8% optical to optical efficiency. Compared to a single pulse laser, 70% higher laser efficiency is realized. To obtain high energy while maintaining the high beam quality, a master-oscillator-power-amplifier 2-microns system is designed. We developed an end-pumped Ho:Tm:YLF disk amplifier. This amplifier uses two diode arrays as pump source. A non-imaging lens duct is used to couple the radiation from the laser diode arrays to the laser disk. Preliminary result shows that the efficiency of this laser can be as high as 3%, a factor of three increases over side-pump configuration. This high energy, highly efficient and high beam quality laser is a promising candidate for use in an efficient, multiple lidar applications.

  15. The brightest high-latitude 12-micron IRAS sources

    NASA Technical Reports Server (NTRS)

    Hacking, P.; Beichman, C.; Chester, T.; Neugebauer, G.; Emerson, J.

    1985-01-01

    The Infrared Astronomical Satellite (IRAS) Point Source catalog was searched for sources brighter than 28 Jy (0 mag) at 12 microns with absolute galactic latitude greater than 30 deg excluding the Large Magellanic Cloud. The search resulted in 269 sources, two of which are the galaxies NGC 1068 and M82. The remaining 267 sources are identified with, or have infrared color indices consistent with late-type stars some of which show evidence of circumstellar dust shells. Seven sources are previously uncataloged stars. K and M stars without circumstellar dust shells, M stars with circumstellar dust shells, and carbon stars occupy well-defined regions of infrared color-color diagrams.

  16. A Two Micron Coherent Differential Absorption Lidar Development

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Petros, Mulugeta; Chen, Songsheng; Bai, Yingxin; Petzar, Paul J.; Trieu, Bo C.; Koch, Grady J.; Beyon, Jeffrey Y.; VanValkenburg, Randal L.; Kavaya, Michael J.; Singh, Upendra N.

    2010-01-01

    A pulsed, 2-micron coherent Differential Absorption Lidar (DIAL)/Integrated Path Differential Absorption (IPDA) transceiver, developed under the Laser Risk Reduction Program (LRRP) at NASA, is integrated into a fully functional lidar instrument. This instrument measures atmospheric CO2 profiles (by DIAL) from a ground platform. It allows the investigators to pursue subsequent in science-driven deployments, and provides a unique tool for Active Sensing of CO2 Emissions over Night, Days, and Seasons (ASCENDS) validation that was strongly advocated in the recent ASCENDS Workshop. Keywords: Differential Absorption Lidar, Near Infrared Laser,

  17. Extended 20 micron emission from the center of NGC 1068

    NASA Technical Reports Server (NTRS)

    Telesco, C. M.; Becklin, E. E.; Wynn-Williams, C. G.

    1980-01-01

    Multiaperture photometry of the Seyfert galaxy NGC 1068 is reported which demonstrates that significant 20 micron emission originates at positions located more than 3 arcsec, or 260 pc, from the nucleus. These observations strongly support arguments that most of the infrared flux is thermal emission from dust. It is argued that the dust giving rise to this extended emission cannot be heated solely by a compact nuclear object. It is suggested that there is a powerful energy-generation mechanism, possibly an enormous burst of star formation, operating on a scale much larger than that identified with the visible nucleus.

  18. Micron-scale lens array having diffracting structures

    DOEpatents

    Goldberg, Kenneth A

    2013-10-29

    A novel micron-scale lens, a microlens, is engineered to concentrate light efficiently onto an area of interest, such as a small, light-sensitive detector element in an integrated electronic device. Existing microlens designs imitate the form of large-scale lenses and are less effective at small sizes. The microlenses described herein have been designed to accommodate diffraction effects, which dominate the behavior of light at small length scales. Thus a new class of light-concentrating optical elements with much higher relative performance has been created. Furthermore, the new designs are much easier to fabricate than previous designs.

  19. Advanced composite applications for sub-micron biologically derived microstructures

    NASA Technical Reports Server (NTRS)

    Schnur, J. M.; Price, R. R.; Schoen, P. E.; Bonanventura, Joseph; Kirkpatrick, Douglas

    1991-01-01

    A major thrust of advanced material development is in the area of self-assembled ultra-fine particulate based composites (micro-composites). The application of biologically derived, self-assembled microstructures to form advanced composite materials is discussed. Hollow 0.5 micron diameter cylindrical shaped microcylinders self-assemble from diacetylenic lipids. These microstructures have a multiplicity of potential applications in the material sciences. Exploratory development is proceeding in application areas such as controlled release for drug delivery, wound repair, and biofouling as well as composites for electronic and magnetic applications, and high power microwave cathodes.

  20. Fabrication of Micron Scale Retroreflectors for Novel Biosensors

    NASA Astrophysics Data System (ADS)

    Sherlock, Tim

    Many bioanalytical and diagnostic methods detect the presence of secondary labels, such as colored particles, fluorescent molecules, nanoparticles, and enzyme reaction product, when they accumulate in the presence of the target biomolecules (i.e., bacteria, viruses, etc.) at predetermined locations. In this dissertation, we describe the development of a new class of labels consisting of micro-fabricated retroreflectors that are easy to image, compatible with machine vision automation, and can be detected in solution or within microfluidic channels. The retroreflecting structures are designed to return incident light directly back to its source over a large range of angles, making them extremely detectable using low cost, low numerical aperture objectives, as is evidenced by their common use as lane markers and in safety signs. This work describes two different biosensing systems using these labels. In the first, retroreflectors are fabricated at fixed locations at the base of microfluidic channels and their brightness is attenuated by the biologically-driven accumulation of magnetic particles, thus forming a readout strategy that well-suited for automation and multiplexing. The work demonstrates that single, micron-scale magnetic beads can be rapidly detected over very large areas (square millimeters). The second approach uses suspended corner cube retroreflectors, five microns on a side, as ultra bright labels that are bound to magnetic sample preparation beads in the presence of an analyte. The magnetic particles can then be moved to an imaging site within the sample where the cubes are readily detected. The fabrication of these micron-scale retroreflectors required the development of new lithography, thin film disposition, and reactive ion etching tools and the integration of chip-based structures with microfluidic systems. The dissertation also describes the experimental validation of a Fourier optics model that accounts for diffraction inherent to the micron

  1. WISE 3.4 micron Detection of PTF10acbp

    NASA Astrophysics Data System (ADS)

    Cutri, R. M.; Hoffman, D.; Masci, F.; Conrow, T.; Kasliwal, M. M.; Helou, G.; Ofek, E. O.; Kulkarni, S. R.; Surace, J.

    2011-01-01

    The Wide-field Infrared Survey Explorer (WISE; Wright et al. 2010 AJ 140, 1868) scanned the position of PTF10acbp (ATEL #3094), the luminous red nova in the spiral galaxy UGC 11973, 23 times between 2010 June 17 and June 23, and again 30 times between 2010 December 12 and December 16, just five days after the transient's discovery. The June observations were made during the WISE cryogenic survey yielding images at 3.4, 4.6, 12 and 22 microns.

  2. Spectrophotometry at 10 microns of T Tauri stars

    NASA Technical Reports Server (NTRS)

    Cohen, M.; Witteborn, F. C.

    1985-01-01

    New 8-13 micron spectra of 32 T Tau, or related young, stars are presented. Silicate emission features are commonly seen. Absorptions occur less frequently but also match the properties of silicate materials. The shape of the emission feature suggests that a more crystalline grain is responsible in the T Tau stars than those of the Trapezium region. The evolution of the silicate component of the circumstellar shell around T Tau stars, and its dependence upon stellar wind activity, visual linear polarization, and extinction are investigated. Several correlations suggest that the shells are likely to be flattened, disklike structures rather than spherical.

  3. High-order Raman sidebands generated from the near-infrared to ultraviolet region by four-wave Raman mixing of hydrogen using an ultrashort two-color pump beam.

    PubMed

    Shitamichi, Osamu; Imasaka, Totaro

    2012-12-01

    A two-color pump beam consisting of a fundamental beam of a Ti:sapphire laser (35 fs, 802 nm) and a signal beam generated by optical parametric amplification (55 fs, 1203 nm) was utilized to generate multiple Raman sidebands by vibrational four-wave Raman mixing. The second harmonic emission (401 nm) was further employed as a seed beam for enhancing efficiency. Numerous sidebands emitting at 602, 481, 344, 301, 267, 241, 219, 200, and 185 nm were observed by irradiating the beam onto a screen coated with sodium salicylate. The spectral band width of these emission lines was capable of generating 0.9-fs optical pulses by Fourier synthesis.

  4. Search for Vega-like nearby stars with 12 micron excess

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Probst, Ronald G.

    1991-01-01

    The identification of Vega-like main-sequence stars with 10-micron excess would permit important measurements of the spatial extent of the radiating material with ground-based telescopes. In fact, 55 of the 548 nearby A, F, G, and K dwarfs with IRAS catalog magnitudes at 12 microns appear to have excess 12-micron flux. However, for only two of these stars, Beta Pic and Zeta Lep, was it possible, using small-aperture photometry at 2.2 and 10 microns, to verify that the 12-micron excess is with high likelihood associated with the star. For the remaining stars the apparent 12-micron color of the 106 A, F, G, and K stars in the observing program is only 0.02 mag. Excess flux due to a Vega-like cloud which may surround some of the sources in the observing program, like Alpha Lyrae, is thus typically not detectable at 10 microns.

  5. VTT's micron-scale silicon rib+strip waveguide platform

    NASA Astrophysics Data System (ADS)

    Aalto, Timo; Harjanne, Mikko; Cherchi, Matteo

    2016-05-01

    Silicon rib waveguides enable single-mode (SM) operation even with the combination of multi-micron core dimensions and high refractive index contrast. In such large waveguides the optical mode field is almost completely confined inside the Si core, which leads to small propagation losses and small polarization dependency. The unique SM condition of the rib waveguide also enables the use of an ultra-wide wavelength range, for example from 1.2 to <1.7 μm, without sacrificing either SM operation or low propagation loss. This makes micron-scale Si waveguides particularly well-suited for spectroscopy and extensive wavelength division multiplexing. However, rib waveguides require large bending radii, which lead to large circuit sizes. There are two solutions for this. So-called Euler bends in Si strip waveguides enable low-loss bends down to 1 μm bending radius with less than 0.1 dB/90° loss for both polarizations. Another alternative is a total-internal reflection mirror that can have loss as low as 0.1 dB for both polarizations in either strip or rib waveguides. The excitation of higher order modes in large strip waveguides is avoided by using adiabatic rib-strip converters and low-loss components. With rib and strip waveguides it is possible to reach a unique combination of low loss, extremely small footprint, small polarization dependency, ultra-wide bandwidth and tolerance to high optical powers.

  6. Chemically generated convective transport of micron sized particles

    NASA Astrophysics Data System (ADS)

    Shklyaev, Oleg; Das, Sambeeta; Altemose, Alicia; Shum, Henry; Balazs, Anna; Sen, Ayusman

    2015-11-01

    A variety of chemical and biological applications require manipulation of micron sized objects like cells, viruses, and large molecules. Increasing the size of particles up to a micron reduces performance of techniques based on diffusive transport. Directional transport of cargo toward detecting elements reduces the delivery time and improves performance of sensing devices. We demonstrate how chemical reactions can be used to organize fluid flows carrying particles toward the assigned destinations. Convection is driven by density variations caused by a chemical reaction occurring at a catalyst or enzyme-covered target site. If the reaction causes a reduction in fluid density, as in the case of catalytic decomposition of hydrogen peroxide, then fluid and suspended cargo is drawn toward the target along the bottom surface. The intensity of the fluid flow and the time of cargo delivery are controlled by the amount of reagent in the system. After the reagent has been consumed, the fluid pump stops and particles are found aggregated on and around the enzyme-coated patch. The pumps are reusable, being reactivated upon injection of additional reagent. The developed technique can be implemented in lab-on-a-chip devices for transportation of micro-scale object immersed in solution.

  7. Chip-on-flex with 5-micron features

    NASA Astrophysics Data System (ADS)

    Salmon, Peter C.

    2003-01-01

    A new module packaging method is proposed for electronic systems comprising a motherboard and integrated circuit (IC) chips. Pitches of 10 microns for conductive traces, and 100 microns for bonding pads are achievable. The enabling technology is glass panel manufacture, using equipment and techniques similar to those employed for fabricating liquid crystal display (LCD) panels. Flexible circuits are produced on a glass carrier using a release layer, and the carrier is removed after most of the processing is complete. IC chips are stud bumped and flip chip bonded to wells filled with solder, provided on the flexible circuit. The fabrication density achievable with wafer level packaging (WLP) using silicon wafers is substantially more than is needed for module packaging, as described herein. It is possible to provide WLP performance on glass at a much lower cost. The conductor features on glass are fine enough for the most demanding packaging and assembly techniques. The lowered cost of glass applies to the interconnection circuit plus assembly, test and rework. A test method called Tester-On-Board (TOB) is proposed, employing special-purpose test chips that are directly mounted in the system and mimic the capabilities of external testers. Methods for hermetic sealing, electromagnetic screening, and high-density off-board connections are also proposed.

  8. The micro fabrication using selective laser sintering micron metal powder

    NASA Astrophysics Data System (ADS)

    Chen, Jimin; Wang, Xubao; Zuo, Tiechuan

    2003-04-01

    Selective laser sintering (SLS) is a process that uses a rastering laser to sinter powder particles into a computer defined shape. In order to fabricate micro part with laser sintering the laser beam spot should be focused smaller, on the other hand the size of sintered powder particles should be smaller too. Therefore Nd:YAG laser doubling frequency is used to obtain mini-focus. Based on theories of nonlinear and resonant cavity, an equipment which perform frequency doubling on YAG laser(1.06μm) by the external resonant ring cavity has been designed. With the equipment the wave length of 0.532μm green light was output. The focused laser spot of 15μm diameter was obtained with 10W power. Meanwhile the micron metal powder was used in selective laser micro sintering (SLMS). The behavior of laser sintering different metal powder was investigated. Finally the micro Chinese characters which is small as a tip of match made with laser selective micro sintering micron metal powder are shown.

  9. Micron: an Actively Stabilized Handheld Tool for Microsurgery

    PubMed Central

    MacLachlan, Robert A.; Becker, Brian C.; Tabarés, Jaime Cuevas; Podnar, Gregg W.; Lobes, Louis A.; Riviere, Cameron N.

    2011-01-01

    We describe the design and performance of a hand-held actively stabilized tool to increase accuracy in micro-surgery or other precision manipulation. It removes involuntary motion such as tremor by actuating the tip to counteract the effect of the undesired handle motion. The key components are a three-degree-of-freedom piezoelectric manipulator that has 400 μm range of motion, 1 N force capability, and bandwidth over 100 Hz, and an optical position measurement subsystem that acquires the tool pose with 4 μm resolution at 2000 samples/s. A control system using these components attenuates hand motion by at least 15 dB (a fivefold reduction). By considering the effect of the frequency response of Micron on the human visual feedback loop, we have developed a filter that reduces unintentional motion, yet preserves intuitive eye-hand coordination. We evaluated the effectiveness of Micron by measuring the accuracy of the human/machine system in three simple manipulation tasks. Handheld testing by three eye surgeons and three non-surgeons showed a reduction in position error of between 32% and 52%, depending on the error metric. PMID:23028266

  10. Discovering sub-micron ice particles across Dione' surface

    NASA Astrophysics Data System (ADS)

    Scipioni, Francesca; Schenk, Pual; Tosi, Federico; Clark, Roger; Dalle Ore, Cristina; Combe, Jean-Philippe

    2015-11-01

    Water ice is the most abundant component of Saturn’s mid-sized moons. However, these moons show an albedo asymmetry - their leading sides are bright while their trailing side exhibits dark terrains. Such differences arise from two surface alteration processes: (i) the bombardment of charged particles from the interplanetary medium and driven by Saturn’s magnetosphere on the trailing side, and (ii) the impact of E-ring water ice particles on the satellites’ leading side. As a result, the trailing hemisphere appears to be darker than the leading side. This effect is particularly evident on Dione's surface. A consequence of these surface alteration processes is the formation or the implantation of sub-micron sized ice particles.The presence of such particles influences and modifies the surfaces' spectrum because of Rayleigh scattering by the particles. In the near infrared range of the spectrum, the main sub-micron ice grains spectral indicators are: (i) asymmetry and (ii) long ward minimum shift of the absorption band at 2.02 μm (iii) a decrease in the ratio between the band depths at 1.50 and 2.02 μm (iv) a decrease in the height of the spectral peak at 2.6 μm (v) the suppression of the Fresnel reflection peak at 3.1 μm and (vi) the decrease of the reflection peak at 5 μm relative to those at 3.6 μm.We present results from our ongoing work mapping the variation of sub-micron ice grains spectral indicators across Dione' surface using Cassini-VIMS cubes acquired in the IR range (0.8-5.1 μm). To characterize the global variations of spectral indicators across Dione' surface, we divided it into a 1°x1° grid and then averaged the band depths and peak values inside each square cell.We will investigate if there exist a correspondence with water ice abundance variations by producing water ice' absorption band depths at 1.25, 1.52 and 2.02 μm, and with surface morphology by comparing the results with ISS color maps in the ultraviolet, visible and infrared

  11. The 2-micron plasmid as a nonselectable, stable, high copy number yeast vector

    NASA Technical Reports Server (NTRS)

    Ludwig, D. L.; Bruschi, C. V.

    1991-01-01

    The endogenous 2-microns plasmid of Saccharomyces cerevisiae has been used extensively for the construction of yeast cloning and expression plasmids because it is a native yeast plasmid that is able to be maintained stably in cells at high copy number. Almost invariably, these plasmid constructs, containing some or all 2-microns sequences, exhibit copy number levels lower than 2-microns and are maintained stably only under selective conditions. We were interested in determining if there was a means by which 2-microns could be utilized for vector construction, without forfeiting either copy number or nonselective stability. We identified sites in the 2-microns plasmid that could be used for the insertion of genetic sequences without disrupting 2-microns coding elements and then assessed subsequent plasmid constructs for stability and copy number in vivo. We demonstrate the utility of a previously described 2-microns recombination chimera, pBH-2L, for the manipulation and transformation of 2-microns as a pure yeast plasmid vector. We show that the HpaI site near the STB element in the 2-microns plasmid can be utilized to clone yeast DNA of at least 3.9 kb with no loss of plasmid stability. Additionally, the copy number of these constructs is as high as levels reported for the endogenous 2-microns.

  12. Two Micron Laser Technology Advancements at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.

    2010-01-01

    An Independent Laser Review Panel set up to examine NASA s space-based lidar missions and the technology readiness of lasers appropriate for space-based lidars indicated a critical need for an integrated research and development strategy to move laser transmitter technology from low technical readiness levels to the higher levels required for space missions. Based on the review, a multiyear Laser Risk Reduction Program (LRRP) was initiated by NASA in 2002 to develop technologies that ensure the successful development of the broad range of lidar missions envisioned by NASA. This presentation will provide an overview of the development of pulsed 2-micron solid-state laser technologies at NASA Langley Research Center for enabling space-based measurement of wind and carbon dioxide.

  13. Nature of the 1100 Micron AzTEC-COSMOS Sources

    NASA Astrophysics Data System (ADS)

    Yun, Min Su; Aguirre, J.; Aretxaga, I.; Austermann, J.; Bock, J.; Fazio, G.; Huang, J.; Hughes, D.; Kang, Y.; Kim, S.; Lowenthal, J.; Ma, C.; Mauskopf, P.; Perera, T.; Sanders, D.; Scott, K.; Scoville, N.; Wilson, G.; Yoon, I.

    2006-12-01

    The Cosmic Evolution Survey (COSMOS) is a 2 square degree HST/ACS survey specifically designed to probe galaxy evolution as a function of time and environment (PI: N. Scoville). To take advantage of the extensive complementary databases already available through the COSMOS collaboration, we have undertaken a 1100 micron imaging survey of a 30' x 30' field centered just north of the earlier mm/submm surveys by the Bolocam on CSO and MAMBO on the IRAM 30-m telescope. In this poster paper, we will compare the results of the AzTEC and Bolocam surveys and discuss the nature of the AzTEC sources based on the existing multi-wavelength data in hand.

  14. The 1.083 micron tunable CW semiconductor laser

    NASA Technical Reports Server (NTRS)

    Wang, C. S.; Chen, Jan-Shin; Lu, Ken-Gen; Ouyang, Keng

    1991-01-01

    A tunable CW laser is desired to produce light equivalent to the helium spectral line at 1.08 microns. This laser will serve as an optical pumping source for He-3 and He-4 atoms used in space magnetometers. This light source can be fabricated either as a semiconductor laser diode or a pumped solid state laser. Continuous output power of greater than 10 mW is desired. Semiconductor lasers can be thermally tuned, but must be capable of locking onto the helium resonance lines. Solid state lasers must have efficient pumping sources suitable for space configuration. Additional requirements are as follows: space magnetometer applications will include low mass (less than 0.5 kg), low power consumption (less than 0.75 W), and high stability/reliability for long missions (5-10 years).

  15. The 4 micron spectra of compact infrared sources

    NASA Technical Reports Server (NTRS)

    Hofmann, R.; Larson, H. P.; Fink, U.

    1986-01-01

    High resolution 5 arcsec spectra in the 4 micron region are presented of the central 5 arcsec of the compact near infrared sources K3-50, W51-IRS2 East, and G333.6-0.2. From measured Br-alpha/Pf-beta line ratios and previously published infrared and radio maps, it is concluded that standard recombination theory fails to explain our observations in at least two cases. It is demonstrated that the data are consistent with thermal excitation of the hydrogen lines in strong stellar winds. The Pf-beta Hu-epsilon line ratio, which is completely insensitive to differential extinction, confirms the need for the stellar wind model for the core of G333.6-0.2. From the (K III) line it is estimated that the potassium abundance in G333.6-0.2 is at least equal to the solar value, and possibly enhanced by a factor up to 10.

  16. EUV mask reflectivity measurements with micron-scale spatial resolution

    SciTech Connect

    Goldberg, Kenneth A.; Rekawa, S.B.; Kemp, C.D.; Barty, A.; Anderson, E.H.; Kearney, Patrick; Han, Hakseung

    2008-05-26

    The effort to produce defect-free mask blanks for EUV lithography relies on increasing the detection sensitivity of advanced mask inspection tools, operating at several wavelengths. We describe the unique measurement capabilities of a prototype actinic (EUV wavelength) microscope that is capable of detecting small defects and reflectivity changes that occur on the scale of microns to nanometers. Types of defects: (a) Buried Substrate Defects: particles & pits (causes amplitude and/or phase variations); (b) Surface Contamination (reduces reflectivity and (possibly) contrast); (c) Damage from Inspection and Use (reduces the reflectivity of the multilayer coating). This paper presents an overview of several topics where scanning actinic inspection makes a unique contribution to EUVL research. We describe the role of actinic scanning inspection in four cases: defect repair studies; observations of laser damage; after scanning electron microscopy; and native and programmed defects.

  17. Predicting fracture in micron-scale polycrystalline silicon MEMS structures.

    SciTech Connect

    Hazra, Siddharth S.; de Boer, Maarten Pieter; Boyce, Brad Lee; Ohlhausen, James Anthony; Foulk, James W., III; Reedy, Earl David, Jr.

    2010-09-01

    Designing reliable MEMS structures presents numerous challenges. Polycrystalline silicon fractures in a brittle manner with considerable variability in measured strength. Furthermore, it is not clear how to use a measured tensile strength distribution to predict the strength of a complex MEMS structure. To address such issues, two recently developed high throughput MEMS tensile test techniques have been used to measure strength distribution tails. The measured tensile strength distributions enable the definition of a threshold strength as well as an inferred maximum flaw size. The nature of strength-controlling flaws has been identified and sources of the observed variation in strength investigated. A double edge-notched specimen geometry was also tested to study the effect of a severe, micron-scale stress concentration on the measured strength distribution. Strength-based, Weibull-based, and fracture mechanics-based failure analyses were performed and compared with the experimental results.

  18. 8- to 13-micron spectroscopy of Comet Levy 1990 XX

    NASA Technical Reports Server (NTRS)

    Lynch, David K.; Russell, Ray W.; Hackwell, John A.; Hanner, Martha S.; Hammel, Heidi B.

    1992-01-01

    The results are reported of IR spectroscopy of Comet Levy 1990 XX over a three-day period when the comet was about 1.54 AU from the sun roughly 70 days before perihelion. Comet Levy 1990 XX was bright, and for at least part of its inbound journey toward perihelion, active. At a distance of 1.54 AU from the sun it showed strong structured silicate emission with peaks or shoulders at 9.8 and 11.2 microns. These features resemble those of Comets P/Halley and Bradfield 1987 XXIX. The comet was variable in brightness. Specifically, the contrast of the silicate features changed by a factor of two relative to the continuum level and showed some evidence for a shape change as well.

  19. High spatial resolution 10 micron imaging of IRC + 10216

    NASA Technical Reports Server (NTRS)

    Bloemhof, E. E.; Danchi, W. C.; Townes, C. H.; Mclaren, R. A.

    1988-01-01

    Precise high-resolution 10-micron images of the carbon star IRC + 10216 have been obtained with a scanned linear array. The low noise and high dynamic range of these images permit deconvolution of the telescope point-spread function, revealing the radial brightness distribution of the circumstellar dust shell: approximate reflection symmetry is found in west-east scans, with a distinct division into two components of diameter about 0.40 and 2.2 arcsec. It is shown that this morphology is consistent with published interferometric data that had cast doubt upon an earlier, idealized two-component model. The observed brightness distribution implies that the circumstellar dust density may deviate substantially from the 1/r squared radial dependence expected for spherically symmetric outflow with constant velocity and constant rate of mass loss.

  20. Mars Atmospheric Characterization Using Advanced 2-Micron Orbiting Lidar

    NASA Technical Reports Server (NTRS)

    Singh, U.; Engelund, W.; Refaat, T.; Kavaya, M.; Yu, J.; Petros, M.

    2015-01-01

    Mars atmospheric characterization is critical for exploring the planet. Future Mars missions require landing massive payloads to the surface with high accuracy. The accuracy of entry, descent and landing (EDL) of a payload is a major technical challenge for future Mars missions. Mars EDL depends on atmospheric conditions such as density, wind and dust as well as surface topography. A Mars orbiting 2-micron lidar system is presented in this paper. This advanced lidar is capable of measuring atmospheric pressure and temperature profiles using the most abundant atmospheric carbon dioxide (CO2) on Mars. In addition Martian winds and surface altimetry can be mapped, independent of background radiation or geographical location. This orbiting lidar is a valuable tool for developing EDL models for future Mars missions.

  1. Multiple-Instrument Analyses of Single Micron-Size Particles

    NASA Astrophysics Data System (ADS)

    Admon, Uri; Donohue, David; Aigner, Helmut; Tamborini, Gabriele; Bildstein, Olivier; Betti, Maria

    2005-08-01

    Physical, chemical, and isotopic analyses of individual radioactive and other particles in the micron-size range, key tools in environmental research and in nuclear forensics, require the ability to precisely relocate particles of interest (POIs) in the secondary ion mass spectrometer (SIMS) or in another instrument, after having been located, identified, and characterized in the scanning electron microscope (SEM). This article describes the implementation, testing, and evaluation of the triangulation POIs re-location method, based on microscopic reference marks imprinted on or attached to the sample holder, serving as an inherent coordinate system. In SEM-to-SEM and SEM-to-SIMS experiments re-location precision better than 10 [mu]m and 20 [mu]m, respectively, is readily attainable for instruments using standard specimen stages. The method is fast, easy to apply, and facilitates repeated analyses of individual particles in different instruments and laboratories.

  2. A doublet microlens array for imaging micron-sized objects

    PubMed Central

    Tripathi, A; Chronis, N

    2011-01-01

    We present a high-numerical aperture, doublet microlens array for imaging micron-sized objects. The proposed doublet architecture consists of glass microspheres trapped on a predefined array of silicon microholes and covered with a thin polymer layer. A standard silicon microfabrication process and a novel fluidic assembly technique were combined to obtain an array of 56 μm diameter microlenses with a numerical aperture of ~0.5. Using such an array, we demonstrated brightfield and fluorescent image formation of objects directly on a CCD sensor without the use of intermediate lenses. The proposed technology is a significant advancement toward the unmet need of inexpensive, miniaturized optical modules which can be further integrated with lab-on-chip microfluidic devices and photonic chips for a variety of high-end imaging/detection applications. PMID:22003271

  3. Nanoscale patterns on micron-sized bubbles in foams

    NASA Astrophysics Data System (ADS)

    Dressaire, Emilie; Bell, David; Bee, Rodney; Lips, Alex; Stone, Howard

    2006-11-01

    The rheology and coarsening of foams is closely related to the microstructural characteristics of the small gas bubbles and their surface properties. We present experimental results of a foam formed upon shearing a mixture composed of glucose syrup and sucrose ester. Transmission Electron Microscopy reveals micron-size bubbles whose surfaces are fully covered with regular nanodimension, generally hexagonal, patterns. The influence of the shear rate during foam generation and the setting time on the development of the nanoscale patterns on the gas microcells are described. Plausible routes, driven by disproportionation of the gas from the small bubbles, for the formation of the nanoscale patterns are considered including a nucleation/crystallization pathway (Kim et al. 2003 Langmuir 19, p. 8455) and the buckling of an elastic insoluble surface film.

  4. TIMMI, ESO's new 10 micron Camera/Spectrometer

    NASA Astrophysics Data System (ADS)

    Kaeufl, H. U.; Jouan, R.; Lagage, P. O.; Masse, P.; Mestreau, P.; Tarrius, A.

    TIMMI stands for Thermal Infrared Multi Mode Instrument. TIMMI allows for imaging (at present 16 filters available) with variable magnifications as well as limited long-slit spectroscopy in the 10micron atmospheric window. The instrument was built by the Service d'Astrophysique (SAP) according to ESO's specification in a period of two years. At the telescope the instrument is using the f35 chopping configuration in conjunction with the special adaptor unit. TIMMI control and primary data-acquisition is performed by an VME-based computer (under OS9) while final data storage and online data processing with ESO's image processing system MIDAS is done using an UNIX workstation. While TIMMI will provide new observational possibilities for the ESO users community it is also supposed to become a test-bed to gain experience for similar instrumentation at the VLT.

  5. Passive athermalization of doublets in 8-13 micron waveband

    NASA Astrophysics Data System (ADS)

    Schuster, Norbert

    2014-10-01

    Passive athermalization of lenses has become a key-technology for automotive and other outdoor applications using modern uncooled 25, 17 and 12 micron pixel pitch bolometer arrays. Typical pixel counts for thermal imaging are 384x288 (qVGA), 640x480 (VGA), and 1024x768 (XGA). Two lens arrangements (called Doublets) represent a cost effective way to satisfy resolution requirements of these detectors with F-numbers 1.4 or faster. Thermal drift of index of refraction and the geometrical changes (in lenses and housing) versus temperature defocus the initial image plane from the detector plane. The passive athermalization restricts this drop of spatial resolution in a wide temperature range (typically -40°C…+80°C) to an acceptable value without any additional external refocus. In particular, lenses with long focal lengths and high apertures claim athermalization. A careful choice of lens and housing materials and a sophistical dimensioning lead to three different principles of passivation: The Passive Mechanical Athermalization (PMA) shifts the complete lens cell, the Passive Optical and Mechanical Athermalization (POMA) shifts only one lens inside the housing, the Passive Optical Athermalization (POA) works without any mechanism. All three principles will be demonstrated for a typical narrow-field lens (HFOV about 12°) with high aperture (aperture based F-number 1.3) for the actual uncooled reference detector (17micron VGA). Six design examples using different combinations of lens materials show the impact on spatial lens resolution, on overall length, and on weight. First order relations are discussed. They give some hints for optimization solutions. Pros and cons of different passive athermalization principles are evaluated in regards of housing design, availability of materials and costing. Examples with a convergent GASIR®1-lens in front distinguish by best resolution, short overall length, and lowest weight.

  6. The 11 micron Silicon Carbide Feature in Carbon Star Shells

    NASA Technical Reports Server (NTRS)

    Speck, A. K.; Barlow, M. J.; Skinner, C. J.

    1996-01-01

    Silicon carbide (SiC) is known to form in circumstellar shells around carbon stars. SiC can come in two basic types - hexagonal alpha-SiC or cubic beta-SiC. Laboratory studies have shown that both types of SiC exhibit an emission feature in the 11-11.5 micron region, the size and shape of the feature varying with type, size and shape of the SiC grains. Such a feature can be seen in the spectra of carbon stars. Silicon carbide grains have also been found in meteorites. The aim of the current work is to identity the type(s) of SiC found in circumstellar shells and how they might relate to meteoritic SiC samples. We have used the CGS3 spectrometer at the 3.8 m UKIRT to obtain 7.5-13.5 micron spectra of 31 definite or proposed carbon stars. After flux-calibration, each spectrum was fitted using a chi(exp 2)-minimisation routine equipped with the published laboratory optical constants of six different samples of small SiC particles, together with the ability to fit the underlying continuum using a range of grain emissivity laws. It was found that the majority of observed SiC emission features could only be fitted by alpha-SiC grains. The lack of beta-SiC is surprising, as this is the form most commonly found in meteorites. Included in the sample were four sources, all of which have been proposed to be carbon stars, that appear to show the SiC feature in absorption.

  7. Mass Spectrometry of Atmospheric Aerosol: 1 nanometer to 1 micron

    NASA Astrophysics Data System (ADS)

    Worsnop, D. R.; Ehn, M.; Junninen, H.; Kulmala, M. T.

    2010-12-01

    The role of aerosol particles remains the largest uncertainty in quantitatively assessing past, current and future climate change. The principal reason for that uncertainty arises from the need to characterize and model composition and size dependent aerosol processes, ranging from nanometer to micron scales. Aerosol mass spectrometry results have shown that about half the sub-micron aerosol composition is composed of highly oxygenated organics that are not well understood in terms of photochemical reaction mechanisms (Jimenez et al, 2009). This work has included application of high resolution time-of-flight mass spectrometry (ToFMS) in order to determine elemental and functional group composition of complex organic components. Recently, we have applied similar ToFMS to determine the composition of ambient ions, molecules and clusters, potentially involved in formation and growth of nano-particles (Junninen et al, 2010). Observed organic anions (molecular weight range 200-500 Th) have similar chemical composition as the least volatile secondary organics observed in fine particles; while organic cations are dominated by amines and pyridines. During nucleation events, anions are dominated by sulphuric acid cluster ions (Ehn et al, 2010). In both nanometer and micrometer size ranges, the goal to elucidate the roles of inorganic and organic species, particularly how particle evolution and physical properties depend on mixed compositions. Recent results will be discussed, including ambient and experimental chamber observations. Ehn et al, Atmos. Chem. Phys. Discuss., 10, 14897-14946, 2010 Jimenez et al, Science, 326, 1525-1529, 2009 Junninen et al, Atmos. Meas. Tech., 3, 1039-1053, 2010

  8. Bidirectional reflectance measurement of zinc oxide in 0.25 to 2.5 microns spectrum

    NASA Technical Reports Server (NTRS)

    Scott, R. L., Jr.

    1974-01-01

    An experimental apparatus was designed and used to measure the bidirectional reflectance of zinc oxide in the spectrum 0.25 to 2.5 microns. The nonspecular reflectance is essentially Lambert for wavelengths above 0.40 microns with the most deviation occuring for large source zenith angles. Below 0.400 microns the nonspecular reflectance is greater than Lambert in all directions and is greatest in the forward and backscatter directions. The ratio of the specular component to the nonspecular component at a zenith of 0 degrees was found to increase with source zenith and wavelength for wavelengths above 0.400 microns. Below 0.400 microns this ratio increases as wavelengths decrease. The variation of bidirectional reflectance with wavelength was found to have the characteristics absorption for Zn0 for wavelength below 0.400 microns.

  9. Coherent laser radar at 2 microns using solid-state lasers

    NASA Technical Reports Server (NTRS)

    Henderson, Sammy W.; Suni, Paul J. M.; Hale, Charley P.; Hannon, Stephen M.; Magee, James R.; Bruns, Dale L.; Yuen, Eric H.

    1993-01-01

    Coherent laser radar systems using 2-micron Tm- and Tm, Ho-doped solid-state lasers are useful for the remote range-resolved measurement of atmospheric winds, aerosol backscatter, and DIAL measurements of atmospheric water vapor and CO2 concentrations. Recent measurements made with a 2-micron coherent laser radar system, advances in the laser technology, and atmospheric propagation effects on 2-micron coherent lidar performance are described.

  10. Evaluation of micron size carbon fibers released from burning graphite composites

    NASA Technical Reports Server (NTRS)

    Sussholz, B.

    1980-01-01

    Quantitative estimates were developed of micron carbon fibers released during the burning of graphite composites. Evidence was found of fibrillated particles which were the predominant source of the micron fiber data obtained from large pool fire tests. The fibrillation phenomena were attributed to fiber oxidation effects caused by the fire environment. Analysis of propane burn test records indicated that wind sources can cause considerable carbon fiber oxidation. Criteria estimates were determined for the number of micron carbon fibers released during an aircraft accident. An extreme case analysis indicated that the upper limit of the micron carbon fiber concentration level was only about half the permissible asbestos ceiling concentration level.

  11. Spatial variations of the 3-micron emission features within Orion's Bar

    NASA Technical Reports Server (NTRS)

    Moorhouse, A.; Brand, P. W. J. L.; Geballe, T. R.; Allamandola, L. J.; Tielens, A. G. G. M.

    1988-01-01

    3-micron spectra of the Orion Bar region have been obtained at three positions corresponding to different distances from the exciting source. The recently discovered unidentified features at 3.46, 3.51, and 3.57 microns are clearly visible. The spectra show that the 3.4 and 3.51-micron emission features increase in intensity relative to the strong 3.3-micron feature as the distance from the exciting source increases. The implications for polycyclic aromatic hydrocarbons and recent ideas concerning their ultraviolet excitation and spatial evolution are discussed.

  12. Airborne spectrophotometry of P/Halley from 16 to 30 microns

    NASA Technical Reports Server (NTRS)

    Herter, T.; Gull, G. E.; Campins, H.

    1986-01-01

    Comet Halley was observed in the 16 to 30 micron region using the Cornell University 7-channel spectrometer (resolution = 0.02) on board the Kuiper Airborne Observatory on 1985 Dec. 14.2. A 30-arcsec aperture (FWHM) was used. Measurements centered on the nuclear condensation micron indicate that if present, the 20 micron silicate feature is very weak, and that a relatively narrow strong feature centered at 28.4 microns possibly exists. However, this feature may be an artifact of incomplete correction for telluric water vapor absorption.

  13. High-order Raman sidebands generated from the near-infrared to ultraviolet region by four-wave Raman mixing of hydrogen using an ultrashort two-color pump beam.

    PubMed

    Shitamichi, Osamu; Imasaka, Totaro

    2012-12-01

    A two-color pump beam consisting of a fundamental beam of a Ti:sapphire laser (35 fs, 802 nm) and a signal beam generated by optical parametric amplification (55 fs, 1203 nm) was utilized to generate multiple Raman sidebands by vibrational four-wave Raman mixing. The second harmonic emission (401 nm) was further employed as a seed beam for enhancing efficiency. Numerous sidebands emitting at 602, 481, 344, 301, 267, 241, 219, 200, and 185 nm were observed by irradiating the beam onto a screen coated with sodium salicylate. The spectral band width of these emission lines was capable of generating 0.9-fs optical pulses by Fourier synthesis. PMID:23262742

  14. Selection of quasi-monodisperse super-micron aerosol particles

    NASA Astrophysics Data System (ADS)

    Rösch, Michael; Pfeifer, Sascha; Wiedensohler, Alfred; Stratmann, Frank

    2014-05-01

    Size-segregated quasi monodisperse particles are essential for e.g. fundamental research concerning cloud microphysical processes. Commonly a DMA (Differential Mobility Analyzer) is used to produce quasi-monodisperse submicron particles. Thereto first, polydisperse aerosol particles are bipolarly charged by a neutralizer, and then selected according to their electrical mobility with the DMA [Knutson et al. 1975]. Selecting a certain electrical mobility with a DMA results in a particle size distribution, which contains singly charged particles as well as undesired multiply charged larger particles. Often these larger particles need to either be removed from the generated aerosol or their signals have to be corrected for in the data inversion and interpretation process. This problem becomes even more serious when considering super-micron particles. Here we will present two different techniques for generating quasi-monodisperse super-micron aerosol particles with no or only an insignificant number of larger sized particles being present. First, we use a combination of a cyclone with adjustable aerodynamic cut-off diameter and our custom-built Maxi-DMA [Raddatz et al. 2013]. The cyclone removes particles larger than the desired ones prior to mobility selection with the DMA. This results in a reduction of the number of multiply charged particles of up to 99.8%. Second, we utilize a new combination of cyclone and PCVI (Pumped Counterflow Virtual Impactor), which is based on purely inertial separation and avoids particle charging. The PCVI instrument was previously described by Boulter et al. (2006) and Kulkarni et al. (2011). With our two setups we are able to produce quasi-monodisperse aerosol particles in the diameter range from 0.5 to 4.4 µm without a significant number of larger undesired particles being present. Acknowledgements: This work was done within the framework of the DFG funded Ice Nucleation research UnIT (INUIT, FOR 1525) under WE 4722/1-1. References

  15. Virtual Impactor for Sub-micron Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Bolshakov, A. A.; Strawa, A. W.; Hallar, A. G.

    2005-12-01

    The objective of a virtual impactor is to separate out the larger particles in a flow from the smaller particles in such a way that both sizes of particles are available for sampling. A jet of particle-laden air is accelerated toward a collection probe so that a small gap exists between the acceleration nozzle and the probe. A vacuum is applied to deflect a major portion of the airstream away form the collection probe. Particles larger than a certain size have sufficient momentum so that they cross the deflected streamlines and enter the collection probe, whereas smaller particles follow the deflected streamlines. The result is that the collection probe will contain a higher concentration of larger particles than is in the initial airstream. Typically, virtual impactors are high-flow devices used to separate out particles greater than several microns in diameter. We have developed a special virtual impactor to concentrate aerosol particles of diameters between 0.5 to 1 micron for the purpose of calibrating the optical cavity ring-down instrument [1]. No similar virtual impactors are commercially available. In our design, we have exploited considerations described earlier [2-4]. Performance of our virtual impactor was evaluated in an experimental set-up using TSI 3076 nebulizer and TSI 3936 scanning mobility particle size spectrometer. Under experimental conditions optimized for the best performance of the virtual impactor, we were able to concentrate the 700-nm polystyrene particles no less than 15-fold. However, under experimental conditions optimized for calibrating our cavity ring-down instrument, a concentration factor attainable was from 4 to 5. During calibration experiments, maximum realized particle number densities were 190, 300 and 1600 cm-3 for the 900-nm, 700-nm and 500-nm spheres, respectively. This paper discusses the design of the impactor and laboratory studies verifying its performance. References: 1. A.W. Strawa, R. Castaneda, T. Owano, D.S. Baer

  16. Viewing Seasonality in 8 Megacities at 4 Microns

    NASA Astrophysics Data System (ADS)

    Tomaszewska, M. A.; Kovalskyy, V.; Small, C.; Henebry, G. M.

    2013-12-01

    The middle infrared (MIR) spectral region, between 3 and 5 microns, offers a different perspective on cities. The MIR is the mixing zone of both emitted terrestrial radiation and reflected solar radiation. The relatively long wavelengths enable views of surfaces often obscured by anthropogenic haze. Green vegetation appears very dark in the MIR due to high absorption by leaf water. In contrast, building, roofing, and paving materials reflect much MIR and exposed soils and dried vegetation reflect even more. Thus, physics dictates a strong expression of seasonality in the MIR. But is there sufficient signal in the MIR to merit it as a complementary approach for characterizing urbanized areas and monitoring their dynamics? We have explored this question in a research effort that links two NASA Interdisciplinary Science projects on the effect of cities on the environment. We focused on 8 global megacities: Beijing, Cairo, Istanbul, Mexico, Moscow, Nairobi, New Delhi, and São Paulo. We used Level 1B calibrated radiance data from band 23 (~4 microns) of the Aqua MODIS during ascending passes in 2010. These 1 km data were processed to reduce cloud cover using monthly maximum value compositing into four sensor view zenith angle (VZA) classes: 030°). SNR was higher in the summer

  17. Discovering Motifs in Biological Sequences Using the Micron Automata Processor.

    PubMed

    Roy, Indranil; Aluru, Srinivas

    2016-01-01

    Finding approximately conserved sequences, called motifs, across multiple DNA or protein sequences is an important problem in computational biology. In this paper, we consider the (l, d) motif search problem of identifying one or more motifs of length l present in at least q of the n given sequences, with each occurrence differing from the motif in at most d substitutions. The problem is known to be NP-complete, and the largest solved instance reported to date is (26,11). We propose a novel algorithm for the (l,d) motif search problem using streaming execution over a large set of non-deterministic finite automata (NFA). This solution is designed to take advantage of the micron automata processor, a new technology close to deployment that can simultaneously execute multiple NFA in parallel. We demonstrate the capability for solving much larger instances of the (l, d) motif search problem using the resources available within a single automata processor board, by estimating run-times for problem instances (39,18) and (40,17). The paper serves as a useful guide to solving problems using this new accelerator technology. PMID:26886735

  18. Tunneling of micron-sized droplets through soap films.

    PubMed

    Kim, Ildoo; Wu, X L

    2010-08-01

    When a micron-sized water droplet impacts on a freely suspended soap film with speed v(i), there exists a critical impact velocity of penetration v(C). Droplets with v(i)v(C) tunnel through it. In all cases, the film remains intact despite the fact that the droplet radius (R_{0}=26 μm) is much greater than the film thickness (0

  19. Tunneling of micron-sized droplets through soap films

    NASA Astrophysics Data System (ADS)

    Kim, Ildoo; Wu, X. L.

    2010-08-01

    When a micron-sized water droplet impacts on a freely suspended soap film with speed vi , there exists a critical impact velocity of penetration vC . Droplets with vivC tunnel through it. In all cases, the film remains intact despite the fact that the droplet radius (R0=26μm) is much greater than the film thickness (0

  20. [Micronized purified flavonoid fraction in treatment of pelvic varicose veins].

    PubMed

    Gavrilov, S G; Karalkin, A V; Moskalenko, E P; Beliaeva, E S; Ianina, A M; Kirienko, A I

    2012-01-01

    Presented herein are the results of studying efficacy of micronized purified flavonoid fraction (MPFF) in treatment of pelvic varicose veins (PVV) using reference ray-tracing methods of study. We examined a total of 85 patients with PVV. Of these, 65 subjects were found to have isolated dilatation of pelvic venous plexuses (study group), and 20 were diagnosed as having combined dilation of gonadal veins and venous plexuses of the pelvis (control group). Besides clinical examination, the patients were subjected to ultrasonographic angioscanning (USAS) and emission computed tomography (ECT) of pelvic veins before treatment and 2, 6, 12, 24, 36 and 60 months after the beginning of phlebotrophic therapy. Based on the findings of the clinical and instrumental studies, it was determined that MPFF was most efficient in patients with isolated dilatation of uterine and parametrial veins. In this group of patients, pelvic pain and other symptoms of the disease disappeared completely and the clinical effect persisted for a long time (up to 6-9 months). In the control group, venotonic therapy had a positive effect which was less pronounced as compared to the control group, and pelvic pain reappeared in the nearest time (up to 3 weeks) after withdrawal of MPFF.

  1. Micronization of silybin by the emulsion solvent diffusion method.

    PubMed

    Zhang, Zhi-Bing; Shen, Zhi-Gang; Wang, Jie-Xin; Zhang, Hai-Xia; Zhao, Hong; Chen, Jian-Feng; Yun, Jimmy

    2009-07-01

    Micronized silybin particles were successfully prepared by emulsion solvent diffusion method. Uniform spherical and rod-shaped particles with a mean size of 2.48 and 0.89 microm could be obtained using sodium dodecyl sulfate (SDS) concentration of 0.1 wt% at 30 and 15 degrees C, respectively. The characterization of silybin particles by SEM and particle size distribution (PSD) indicated that with the increase of temperature from 15 to 30 degrees C, the as-prepared particles became bigger and had a tendency to turn into spherical shapes; with the increase of SDS concentration from 0.02 to 0.1 wt%, the span of PSD became narrower while the mean particle size kept almost unchanged. XRD patterns and FT-IR spectra showed that the spherical and rod-shaped silybin particles possessed decreased crystallinity; however, the chemical structure and components were similar to those of the commercial silybin powder. Dissolution tests demonstrated that both of the spherical and rod-shaped silybin particles exhibited significantly enhanced dissolution rate when compared to the commercial silybin powder.

  2. Penetration and Effectiveness of Micronized Copper in Refractory Wood Species.

    PubMed

    Civardi, Chiara; Van den Bulcke, Jan; Schubert, Mark; Michel, Elisabeth; Butron, Maria Isabel; Boone, Matthieu N; Dierick, Manuel; Van Acker, Joris; Wick, Peter; Schwarze, Francis W M R

    2016-01-01

    The North American wood decking market mostly relies on easily treatable Southern yellow pine (SYP), which is being impregnated with micronized copper (MC) wood preservatives since 2006. These formulations are composed of copper (Cu) carbonate particles (CuCO3·Cu(OH)2), with sizes ranging from 1 nm to 250 μm, according to manufacturers. MC-treated SYP wood is protected against decay by solubilized Cu2+ ions and unreacted CuCO3·Cu(OH)2 particles that successively release Cu2+ ions (reservoir effect). The wood species used for the European wood decking market differ from the North American SYP. One of the most common species is Norway spruce wood, which is poorly treatable i.e. refractory due to the anatomical properties, like pore size and structure, and chemical composition, like pit membrane components or presence of wood extractives. Therefore, MC formulations may not suitable for refractory wood species common in the European market, despite their good performance in SYP. We evaluated the penetration effectiveness of MC azole (MCA) in easily treatable Scots pine and in refractory Norway spruce wood. We assessed the effectiveness against the Cu-tolerant wood-destroying fungus Rhodonia placenta. Our findings show that MCA cannot easily penetrate refractory wood species and could not confirm the presence of a reservoir effect. PMID:27649315

  3. Advancing dental implant surface technology--from micron- to nanotopography.

    PubMed

    Mendonça, Gustavo; Mendonça, Daniela B S; Aragão, Francisco J L; Cooper, Lyndon F

    2008-10-01

    Current trends in clinical dental implant therapy include use of endosseous dental implant surfaces embellished with nanoscale topographies. The goal of this review is to consider the role of nanoscale topographic modification of titanium substrates for the purpose of improving osseointegration. Nanotechnology offers engineers and biologists new ways of interacting with relevant biological processes. Moreover, nanotechnology has provided means of understanding and achieving cell specific functions. The various techniques that can impart nanoscale topographic features to titanium endosseous implants are described. Existing data supporting the role of nanotopography suggest that critical steps in osseointegration can be modulated by nanoscale modification of the implant surface. Important distinctions between nanoscale and micron-scale modification of the implant surface are presently considered. The advantages and disadvantages of nanoscale modification of the dental implant surface are discussed. Finally, available data concerning the current dental implant surfaces that utilize nanotopography in clinical dentistry are described. Nanoscale modification of titanium endosseous implant surfaces can alter cellular and tissue responses that may benefit osseointegration and dental implant therapy.

  4. Penetration and Effectiveness of Micronized Copper in Refractory Wood Species

    PubMed Central

    Civardi, Chiara; Van den Bulcke, Jan; Schubert, Mark; Michel, Elisabeth; Butron, Maria Isabel; Boone, Matthieu N.; Dierick, Manuel; Van Acker, Joris; Wick, Peter; Schwarze, Francis W. M. R.

    2016-01-01

    The North American wood decking market mostly relies on easily treatable Southern yellow pine (SYP), which is being impregnated with micronized copper (MC) wood preservatives since 2006. These formulations are composed of copper (Cu) carbonate particles (CuCO3·Cu(OH)2), with sizes ranging from 1 nm to 250 μm, according to manufacturers. MC-treated SYP wood is protected against decay by solubilized Cu2+ ions and unreacted CuCO3·Cu(OH)2 particles that successively release Cu2+ ions (reservoir effect). The wood species used for the European wood decking market differ from the North American SYP. One of the most common species is Norway spruce wood, which is poorly treatable i.e. refractory due to the anatomical properties, like pore size and structure, and chemical composition, like pit membrane components or presence of wood extractives. Therefore, MC formulations may not suitable for refractory wood species common in the European market, despite their good performance in SYP. We evaluated the penetration effectiveness of MC azole (MCA) in easily treatable Scots pine and in refractory Norway spruce wood. We assessed the effectiveness against the Cu-tolerant wood-destroying fungus Rhodonia placenta. Our findings show that MCA cannot easily penetrate refractory wood species and could not confirm the presence of a reservoir effect. PMID:27649315

  5. Micron-gap ThermoPhotoVoltaics (MTPV)

    NASA Astrophysics Data System (ADS)

    DiMatteo, R.; Greiff, P.; Seltzer, D.; Meulenberg, D.; Brown, E.; Carlen, E.; Kaiser, K.; Finberg, S.; Nguyen, H.; Azarkevich, J.; Baldasaro, P.; Beausang, J.; Danielson, L.; Dashiell, M.; DePoy, D.; Ehsani, H.; Topper, W.; Rahner, K.; Siergiej, R.

    2004-11-01

    This paper discusses advances made in the field of Micron-gap ThermoPhotoVoltaics (MTPV). Initial modeling has shown that MTPV may enable significant performance improvements relative to conventional far field TPV. These performance improvements include up to a 10× increase in power density, 30% to 35% fractional increase in conversion efficiency, or alternatively, reduced radiator temperature requirements to as low as 550°C. Recent experimental efforts aimed at supporting these predictions have successfully demonstrated that early current and voltage enhancements could be done repeatedly and at higher temperatures. More importantly, these efforts indicated that no unknown energy transfer process occurs reducing the potential utility of MTPV. Progress has been made by running tests with at least one of the following characteristics relative to the MTPV results reported in 2001: • Tests at over twice the temperature (900°C). • Tests at 50% smaller gaps (0.12 μm) • Tests with emitter areas from 4 to 100 times larger (16 mm2 to 4 cm2). • Tests with over 20× reduction in parasitic spacer heat flow. Remaining fundamental challenges to realizing these improvements relative to the recent breakthroughs in conventional far field TPV include reengineering the photovoltaic (PV) diode, filter, and emitter system for MTPV and engineering devices and systems that can achieve submicron vacuum gaps between surfaces with large temperature differences.

  6. Airborne 20-65 micron spectrophotometry of Comet Halley

    NASA Technical Reports Server (NTRS)

    Glaccum, William; Moseley, S. H.; Campins, Humberto C.; Loewenstein, R. F.

    1988-01-01

    Observations of Comet Halley with a grating spectrometer on board the Kuiper Airborne Observatory on four nights in Dec. 1985 to Apr. 1986 are reported. Low resolution 20 to 65 micrometer spectra of the nucleus with a 40 arcsec FWHM beam was obtained on 17 Dec. 1985, and on 15 and 17 Apr. 1986. On 20 Dec. 1985, only a 20 to 35 micrometer spectrum was obtained. Most of the data have been discussed in a paper where the continuum was dealt with. In that paper, models were fit to the continuum that showed that more micron sized particles of grain similar to amorphous carbon were needed to fit the spectrum than were allowed by the Vega SP-2 mass distribution, or that a fraction of the grains had to be made out of a material whose absorption efficiency fell steeper than lambda sup -1 for lambda greater than 20 micrometers. Spectra was also presented taken at several points on the coma on 15 Apr. which showed that the overall shape to the spectrum is the same in the coma. Tabulated values of the data and calibration curves are available. The spectral features are discussed.

  7. Broadband dielectric microwave microscopy on micron length scales.

    PubMed

    Tselev, Alexander; Anlage, Steven M; Ma, Zhengkun; Melngailis, John

    2007-04-01

    We demonstrate that a near-field microwave microscope based on a transmission line resonator allows imaging in a substantially wide range of frequencies, so that the microscope properties approach those of a spatially resolved impedance analyzer. In the case of an electric probe, the broadband imaging can be used in a direct fashion to separate contributions from capacitive and resistive properties of a sample at length scales on the order of one micron. Using a microwave near-field microscope based on a transmission line resonator we imaged the local dielectric properties of a focused ion beam milled structure on a high-dielectric-constant Ba(0.6)Sr(0.4)TiO(3) thin film in the frequency range from 1.3 to 17.4 GHz. The electrostatic approximation breaks down already at frequencies above approximately 10 GHz for the probe geometry used, and a full-wave analysis is necessary to obtain qualitative information from the images.

  8. Toward Developing a Preventive MERS-CoV Vaccine-Report from a Workshop Organized by the Saudi Arabia Ministry of Health and the International Vaccine Institute, Riyadh, Saudi Arabia, November 14-15, 2015.

    PubMed

    Excler, Jean-Louis; Delvecchio, Christopher J; Wiley, Ryan E; Williams, Marni; Yoon, In-Kyu; Modjarrad, Kayvon; Boujelal, Mohamed; Moorthy, Vasee S; Hersi, Ahmad Salah; Kim, Jerome H

    2016-08-01

    Middle East respiratory syndrome (MERS) remains a serious international public health threat. With the goal of accelerating the development of countermeasures against MERS coronavirus (MERS-CoV), funding agencies, nongovernmental organizations, and researchers across the world assembled in Riyadh, Saudi Arabia, on November 14-15, 2015, to discuss vaccine development challenges. The meeting was spearheaded by the Saudi Ministry of Health and co-organized by the International Vaccine Institute, South Korea. Accelerating the development of a preventive vaccine requires a better understanding of MERS epidemiology, transmission, and pathogenesis in humans and animals. A combination of rodent and nonhuman primate models should be considered in evaluating and developing preventive and therapeutic vaccine candidates. Dromedary camels should be considered for the development of veterinary vaccines. Several vaccine technology platforms targeting the MERS-CoV spike protein were discussed. Mechanisms to maximize investment, provide robust data, and affect public health are urgently needed.

  9. Toward Developing a Preventive MERS-CoV Vaccine-Report from a Workshop Organized by the Saudi Arabia Ministry of Health and the International Vaccine Institute, Riyadh, Saudi Arabia, November 14-15, 2015.

    PubMed

    Excler, Jean-Louis; Delvecchio, Christopher J; Wiley, Ryan E; Williams, Marni; Yoon, In-Kyu; Modjarrad, Kayvon; Boujelal, Mohamed; Moorthy, Vasee S; Hersi, Ahmad Salah; Kim, Jerome H

    2016-08-01

    Middle East respiratory syndrome (MERS) remains a serious international public health threat. With the goal of accelerating the development of countermeasures against MERS coronavirus (MERS-CoV), funding agencies, nongovernmental organizations, and researchers across the world assembled in Riyadh, Saudi Arabia, on November 14-15, 2015, to discuss vaccine development challenges. The meeting was spearheaded by the Saudi Ministry of Health and co-organized by the International Vaccine Institute, South Korea. Accelerating the development of a preventive vaccine requires a better understanding of MERS epidemiology, transmission, and pathogenesis in humans and animals. A combination of rodent and nonhuman primate models should be considered in evaluating and developing preventive and therapeutic vaccine candidates. Dromedary camels should be considered for the development of veterinary vaccines. Several vaccine technology platforms targeting the MERS-CoV spike protein were discussed. Mechanisms to maximize investment, provide robust data, and affect public health are urgently needed. PMID:27439020

  10. An overview on in situ micronization technique - An emerging novel concept in advanced drug delivery.

    PubMed

    Vandana, K R; Prasanna Raju, Y; Harini Chowdary, V; Sushma, M; Vijay Kumar, N

    2014-09-01

    The use of drug powders containing micronized drug particles has been increasing in several pharmaceutical dosage forms to overcome the dissolution and bioavailability problems. Most of the newly developed drugs are poorly water soluble which limits dissolution rate and bioavailability. The dissolution rate can be enhanced by micronization of the drug particles. The properties of the micronized drug substance such as particle size, size distribution, shape, surface properties, and agglomeration behaviour and powder flow are affected by the type of micronization technique used. Mechanical communition, spray drying and supercritical fluid (SCF) technology are the most commonly employed techniques for production of micronized drug particles but the characteristics of the resulting drug product cannot be controlled using these techniques. Hence, a newer technique called in situ micronization is developed in order to overcome the limitations associated with the other techniques. This review summarizes the existing knowledge on in situ micronization techniques. The properties of the resulting drug substance obtained by in situ micronization were also compared.

  11. Method of producing carbon coated nano- and micron-scale particles

    DOEpatents

    Perry, W. Lee; Weigle, John C; Phillips, Jonathan

    2013-12-17

    A method of making carbon-coated nano- or micron-scale particles comprising entraining particles in an aerosol gas, providing a carbon-containing gas, providing a plasma gas, mixing the aerosol gas, the carbon-containing gas, and the plasma gas proximate a torch, bombarding the mixed gases with microwaves, and collecting resulting carbon-coated nano- or micron-scale particles.

  12. Wavelength Shifts of the 7.7 Micron Emission Band in Reflection Nebulae

    NASA Technical Reports Server (NTRS)

    Bregman, Jesse; Temi, Pasquale

    2003-01-01

    Using spatial-spectral data cubes of reflection nebulae obtained by ISOCAM, we have observed a shift in the central wavelength of the 7.7 micron band within several reflection nebulae. The band shifts progressively from approx. 7.8 microns near the edge of the nebulae to approx. 7.6 microns towards the center of the nebulae. The ratio of the 11.3/7.7 micron bands also changes with distance from the central star, first rising from the center towards the edge of the nebula, then falling at the largest distances from the star, consistent with the 11.3/7.7 micron band ratio being controlled by the PAH ionization state. The behavior of the 7.7 micron band center can be explained either by assuming that anions are the origin of the 7.85 micron band and cations the 7.65 micron band, or that the band center wavelength depends on the chemical nature of the PAHs.

  13. An overview on in situ micronization technique – An emerging novel concept in advanced drug delivery

    PubMed Central

    Vandana, K.R.; Prasanna Raju, Y.; Harini Chowdary, V.; Sushma, M.; Vijay Kumar, N.

    2013-01-01

    The use of drug powders containing micronized drug particles has been increasing in several pharmaceutical dosage forms to overcome the dissolution and bioavailability problems. Most of the newly developed drugs are poorly water soluble which limits dissolution rate and bioavailability. The dissolution rate can be enhanced by micronization of the drug particles. The properties of the micronized drug substance such as particle size, size distribution, shape, surface properties, and agglomeration behaviour and powder flow are affected by the type of micronization technique used. Mechanical communition, spray drying and supercritical fluid (SCF) technology are the most commonly employed techniques for production of micronized drug particles but the characteristics of the resulting drug product cannot be controlled using these techniques. Hence, a newer technique called in situ micronization is developed in order to overcome the limitations associated with the other techniques. This review summarizes the existing knowledge on in situ micronization techniques. The properties of the resulting drug substance obtained by in situ micronization were also compared. PMID:25161371

  14. Separating the signal from the noise: Expanding flow cytometry into the sub-micron range.

    EPA Science Inventory

    Cytometry Part A Special Section: Separating the signal from the noise: Expanding flow cytometry into the sub-micron range. The current Cytometry Part A Special Section presents three studies that utilize cytometers to study sub-micron particles. The three studies involve the 1...

  15. Two Color Interferometry with Nonlinear Refractive Properties

    NASA Technical Reports Server (NTRS)

    Vikram, Chandra S.; Witherow, William K.

    2002-01-01

    Using nonlinear refractive properties of salt-water solution at two wavelengths, numerical analysis has been performed to extract temperature and concentration from virtual interferometric fringe data. The theoretical study, using a commercially available equation solving tool, starts with critical fringe counting needs and the role of nonlinear refractive properties in such measurements. Finally, methodology of the analysis, developed codes, and fringe counting accuracy needs are described in detail.

  16. The 3.5 micron light curves of long period variable stars. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Strecker, D. W.

    1973-01-01

    Infrared observations at an effective wavelength of 3.5 microns of a selected group of long period variable (LPV) stars are presented. Mira type and semiregular stars of M, S, and C spectral classifications were monitored throughout the full cycle of variability. Although the variable infrared radiation does not exactly repeat in intensity or time, the regularity is sufficient to produce mean 3.5 micron light curves. The 3.5 micron maximum radiation lags the visual maximum by about one-seventh of a cycle, while the minimum 3.5 micron intensity occurs nearly one-half cycle after infrared maximum. In some stars, there are inflections or humps on the ascending portion of the 3.5 micron light curve which may also be seen in the visual variations.

  17. 20-micron transparency and atmospheric water vapor at the Wyoming Infrared Observatory

    NASA Technical Reports Server (NTRS)

    Grasdalen, G. L.; Gehrz, R. D.; Hackwell, J. A.; Freedman, R.

    1985-01-01

    The atmospheric transparency at 19.5 and 23 microns from the Wyoming Infrared Observatory over the past six years has been examined. It is found that the transparency is largely controlled by the season. Four months: June, July, August, and September have very poor 20-micron transparency. During the rest of the year the transparency is usually quite good at 19.5 microns and moderately good at 23 microns. Using rawinsonde data and theoretical calculations for the expected infrared transparency, the measures of 20-micron transparency were calibrated in terms of atmospheric water-vapor content. The water vapor over the Wyoming Infrared Observatory is found to compare favorably with that above other proposed or developed sites: Mauna Kea, Mount Graham, and Wheeler Peak.

  18. The AGN Content of the Micron all Sky Survey

    NASA Astrophysics Data System (ADS)

    Cutri, R. M.

    2000-01-01

    The Two Micron All Sky Survey (2MASS) began routine operations from its northern facility on Mt. Hopkins, AZ in June of 1997, and from its southern facility on Cerro Tololo, Chile in March of 1998. At each site, highly automated 1.3 m telescopes equipped with identical 3-channel cameras, are systematically imaging the sky in three near infrared wavelength bands, J (1.25 um), H (1.65 um) and K-s (2.17 um). The Survey will ultimately produce an Image Atlas containing nearly two million 512 x 1024 pixel images (1 arcsec/pix) in the three colors, a highly complete and reliable catalog containing approx. 300 million point sources having SNR greater than 10 photometry at J less or = 15.8, H less or = 15.1 and K-s less or = 14.3 mag. and an astrometric accuracy greater than 0.511 RMS, and a catalog of 1-2 million resolved sources, primarily galaxies, having SNR greater than 10 photometric accuracy at J less than or = 15.5, H less than or = 14.8 and K-s less than or = 13.5 mag. The 2MASS Sampler, an introductory set of data, was released to the community in December of 1998 (see http://www.ipac.caltech.edu/2mass/). We review the near IR and optical/IR properties of "conventional" QSOs from UV and optical samples, and estimate the number that will be detected by 2MASS. We also discuss 2MASS's ability to test for for new populations of extremely red AGN that have been missed by UV and Visual surveys, as suggested by from IRAS and radio studies. Results of spectroscopic follow-up of 2MASS-selected new AGN candidates will also be presented.

  19. A micron resolution optical scanner for characterization of silicon detectors

    SciTech Connect

    Shukla, R. A.; Dugad, S. R. Gopal, A. V.; Gupta, S. K.; Prabhu, S. S.; Garde, C. S.

    2014-02-15

    The emergence of high position resolution (∼10 μm) silicon detectors in recent times have highlighted the urgent need for the development of new automated optical scanners of micron level resolution suited for characterizing microscopic features of these detectors. More specifically, for the newly developed silicon photo-multipliers (SiPM) that are compact, possessing excellent photon detection efficiency with gain comparable to photo-multiplier tube. In a short time, since their invention the SiPMs are already being widely used in several high-energy physics and astrophysics experiments as the photon readout element. The SiPM is a high quantum efficiency, multi-pixel photon counting detector with fast timing and high gain. The presence of a wide variety of photo sensitive silicon detectors with high spatial resolution requires their performance evaluation to be carried out by photon beams of very compact spot size. We have designed a high resolution optical scanner that provides a monochromatic focused beam on a target plane. The transverse size of the beam was measured by the knife-edge method to be 1.7 μm at 1 − σ level. Since the beam size was an order of magnitude smaller than the typical feature size of silicon detectors, this optical scanner can be used for selective excitation of these detectors. The design and operational details of the optical scanner, high precision programmed movement of target plane (0.1 μm) integrated with general purpose data acquisition system developed for recording static and transient response photo sensitive silicon detector are reported in this paper. Entire functionality of scanner is validated by using it for selective excitation of individual pixels in a SiPM and identifying response of active and dead regions within SiPM. Results from these studies are presented in this paper.

  20. Modeling photoacoustic spectral features of micron-sized particles.

    PubMed

    Strohm, Eric M; Gorelikov, Ivan; Matsuura, Naomi; Kolios, Michael C

    2014-10-01

    The photoacoustic signal generated from particles when irradiated by light is determined by attributes of the particle such as the size, speed of sound, morphology and the optical absorption coefficient. Unique features such as periodically varying minima and maxima are observed throughout the photoacoustic signal power spectrum, where the periodicity depends on these physical attributes. The frequency content of the photoacoustic signals can be used to obtain the physical attributes of unknown particles by comparison to analytical solutions of homogeneous symmetric geometric structures, such as spheres. However, analytical solutions do not exist for irregularly shaped particles, inhomogeneous particles or particles near structures. A finite element model (FEM) was used to simulate photoacoustic wave propagation from four different particle configurations: a homogeneous particle suspended in water, a homogeneous particle on a reflecting boundary, an inhomogeneous particle with an absorbing shell and non-absorbing core, and an irregularly shaped particle such as a red blood cell. Biocompatible perfluorocarbon droplets, 3-5 μm in diameter containing optically absorbing nanoparticles were used as the representative ideal particles, as they are spherical, homogeneous, optically translucent, and have known physical properties. The photoacoustic spectrum of micron-sized single droplets in suspension and on a reflecting boundary were measured over the frequency range of 100-500 MHz and compared directly to analytical models and the FEM. Good agreement between the analytical model, FEM and measured values were observed for a droplet in suspension, where the spectral minima agreed to within a 3.3 MHz standard deviation. For a droplet on a reflecting boundary, spectral features were correctly reproduced using the FEM but not the analytical model. The photoacoustic spectra from other common particle configurations such as particle with an absorbing shell and a

  1. Micronization increases vitamin E carrying and releasing abilities of insoluble fiber.

    PubMed

    Hsu, Pang-Kuei; Chien, Po-Jung; Chau, Chi-Fai

    2008-03-26

    This study was to investigate the effects of micronization on vitamin-carrying capacity and slow-release ability of carambola (starfruit) insoluble fiber (IF) and cellulose using in vitro and in vivomodels. Upon micronization, carambola IF (8.1 microm) underwent structural changes to expose more functional groups in the fiber matrix and to exhibit higher oil-holding capacity ( approximately 20.4-fold). Micronized fibers in forms of fiber-vitamin composites, particularly the micronized carambola IF-vitamin composite, were capable of carrying vitamin E (alpha-tocopherol) up to 9.6-fold over their unmicronized forms and releasing nutrient gradually. Animal studies demonstrated that the adminstration of micronized carambola IF-vitamin composite could maintain the plasma vitamin E of rats at relatively higher levels (2.1-3.6-fold of the initial values) for at least 5 h. The results suggested that micronized fibers, particularly the micronized carambola IF, could be exploited as potential nutrient carriers in food applications and also be used to produce slow-release formulations.

  2. The 16-39 micron spectroscopy of oxygen-rich stars

    NASA Technical Reports Server (NTRS)

    Forrest, W. J.; Mccarthy, W. J.; Houck, J. R.

    1979-01-01

    Airborne observations of the 16-39 microns spectra of ten oxygen-rich stars with excess emission in the infrared was obtained. The stars show excess emission attributed to circumstellar dust grains in the 16-39 microns region in the form of a broad hump peaking near 18 microns and falling smoothly to longer wavelengths. The emission is similar in character to the emission from the Trapezium region of the Orion nebula indicating the grain materials are quite similar in these objects. The existence of a feature in the 20 microns region is consistent with the 0-Si-0 bending resonance expected for silicate material. The lack of any sharp structure in the spectra indicates the silicate is in an amorphous, disordered form. A simple model of small grains of carbonaceous chondrite silicate material in a diffuse circumstellar envelope is shown to give a good qualitative fit to the observed 8-39 microns circumstellar spectra. Comparison of the observed spectra with the model spectra indicates the grain emissivity falls as 1/lambda squared from 20 microns to 40 microns.

  3. IS THE TWO MICRON ALL SKY SURVEY CLUSTERING DIPOLE CONVERGENT?

    SciTech Connect

    Bilicki, Maciej; Chodorowski, Michal; Jarrett, Thomas; Mamon, Gary A.

    2011-11-01

    There is a long-standing controversy about the convergence of the dipole moment of the galaxy angular distribution (the so-called clustering dipole). Is the dipole convergent at all, and if so, what is the scale of the convergence? We study the growth of the clustering dipole of galaxies as a function of the limiting flux of the sample from the Two Micron All Sky Survey (2MASS). Contrary to some earlier claims, we find that the dipole does not converge before the completeness limit of the 2MASS Extended Source Catalog, i.e., up to 13.5 mag in the near-infrared K{sub s} band (equivalent to an effective distance of 300 Mpc h{sup -1}). We compare the observed growth of the dipole with the theoretically expected, conditional one (i.e., given the velocity of the Local Group relative to the cosmic microwave background), for the {Lambda}CDM power spectrum and cosmological parameters constrained by the Wilkinson Microwave Anisotropy Probe. The observed growth turns out to be within 1{sigma} confidence level of its theoretical counterpart once the proper observational window of the 2MASS flux-limited catalog is included. For a contrast, if the adopted window is a top hat, then the predicted dipole grows significantly faster and converges (within the errors) to its final value for a distance of about 300 Mpc h{sup -1}. By comparing the observational windows, we show that for a given flux limit and a corresponding distance limit, the 2MASS flux-weighted window passes less large-scale signal than the top-hat one. We conclude that the growth of the 2MASS dipole for effective distances greater than 200 Mpc h{sup -1} is only apparent. On the other hand, for a distance of 80 Mpc h{sup -1} (mean depth of the 2MASS Redshift Survey) and the {Lambda}CDM power spectrum, the true dipole is expected to reach only {approx}80% of its final value. Eventually, since for the window function of 2MASS the predicted growth is consistent with the observed one, we can compare the two to evaluate

  4. Low-dosage micronized 17 beta-estradiol prevents bone loss in postmenopausal women

    NASA Technical Reports Server (NTRS)

    Ettinger, B.; Genant, H. K.; Steiger, P.; Madvig, P.

    1992-01-01

    With the use of a double-blind, randomized, dose-ranging design, we tested during an 18-month period the degree of protection against postmenopausal bone loss afforded by micronized 17 beta-estradiol in dosages of 0.5, 1.0, and 2.0 mg. All subjects received supplementation to ensure a minimum of 1500 mg calcium daily. Fifty-one subjects completed at least 1 year of follow-up bone density measurements by quantitative computed tomography and by single- and dual-photon absorptiometry. In the placebo group spinal trabecular bone density decreased 4.9% annually (p less than 0.001), whereas in those taking micronized 17 beta-estradiol bone density tended to increase (annual increases of 0.3% in the 0.5 mg micronized 17 beta-estradiol group, 1.8% in the 1.0 mg micronized 17 beta-estradiol group, and 2.5% in the 2.0 mg micronized 17 beta-estradiol group). After completing the double-blind phase, 41 subjects completed an additional 18 months of follow-up while taking 1.0 mg micronized 17 beta-estradiol. During this time one third of the subjects were randomly assigned to discontinue calcium supplements. Among those who previously received placebo, trabecular bone density increased 4.3% annually, whereas among those who had used micronized 17 beta-estradiol, trabecular bone density response was inversely related to the dosage previously used. Additionally and independently, the level of calcium intake showed a statistically significant correlation with the change in spinal trabecular bone density (r = 0.37, p = 0.02). We conclude that micronized 17 beta-estradiol has a continuous skeletal dose-response effect in the range of 0.5 to 2.0 mg and that calcium intake positively modifies the skeletal response to 1.0 mg micronized 17 beta-estradiol.

  5. Laser Acoustic Microstructure Analysis at the Micron and Nanometer Length Scale

    SciTech Connect

    Telschow, Kenneth Louis; Hurley, David Howard

    2002-05-01

    Laser acoustic approaches to investigating the interaction of elastic waves with microstructure in materials is presented that probe both the micron and nanometer length scales. At the micron length scale, a full-field imaging approach is described that provides quantitative measurement of amplitude and phase of the out-of-plane acoustical motion at GHz frequencies. Specific lateral acoustic modes can be identified in addition to the primary thickness mode with spatial resolution sufficient to image wavelengths as small as 4.5 microns.

  6. Titan - 1.5 micron photometry and spectrophotometry and a search for variability

    NASA Technical Reports Server (NTRS)

    Noll, Keith S.; Knacke, Roger F.

    1993-01-01

    The first photometric measurements of Titan in the mid-IR free of possible contamination from long-wavelength filter leaks are reported. A low-resolution spectrum covering the last unobserved gap in Titan's near-IR spectrum from 3.1 to 5.1 micron is shown. A series of photometric measurements is reported that may lay the foundation for long-term searches for variations in the albedos. Low-resolution spectra of Ganymede, Callisto, and Europa are also reported along with marginal detections of Neptune at 4.8 micron and two 4.8 micron observations of Uranus.

  7. 8- to 13-micron spectrophotometry of Comet IRAS-Araki-Alcock

    NASA Technical Reports Server (NTRS)

    Feierberg, M. A.; Witteborn, F. C.; Johnson, J. R.; Campins, H.

    1984-01-01

    Spectrophotometry between 8.0 and 13.0 microns at 2 percent spectral resolution is presented for areas in and near the nuclear condensation of Comet IRAS-Araki-Alcock (1983d) on May 11 and 12, 1983. All the spectra can be fit very well by blackbody curves, and no 10-micron silicate emissions are seen. The temperature structure of the coma suggests the presence of small (radii less than 5 microns) dust particles within 150 km of the nucleus and larger ones further out. The change in the spatial distribution of the infrared flux between the two nights suggests that an outburst may have occurred sometime on May 11.

  8. Transformation and Release of Micronized Cu used as a Wood Preservative in Treated Wood in Wetland Soil

    EPA Science Inventory

    Micronized Cu (µ-Cu) is used as a wood preservative, replacing toxic Chromated Copper Arsenates. Micronized Cu is Malachite [Cu2CO3(OH)2] that has been milled to micron/submicron particles, many with diameters less than 100 nm, and then mixed with quat or azol biocides. I...

  9. 2-Micron Laser Transmitter for Coherent CO2 DIAL Measurement

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Bai, Yingxin; Yu, Jirong

    2009-01-01

    Carbon dioxide (CO2) has been recognized as one of the most important greenhouse gases. It is essential for the study of global warming to accurately measure the CO2 concentration in the atmosphere and continuously record its variation. A high repetition rate, highly efficient, Q-switched 2-micron laser system as the transmitter of a coherent differential absorption lidar for CO2 measurement has been developed in NASA Langley Research Center. This laser system is capable of making a vertical profiling of CO2 from ground and column measurement of CO2 from air and space-borne platform. The transmitter is a master-slave laser system. The master laser operates in a single frequency, either on-line or off-line of a selected CO2 absorption line. The slave laser is a Q-switched ring-cavity Ho:YLF laser which is pumped by a Tm:fiber laser. The repetition rate can be adjusted from a few hundred Hz to 10 kHz. The injection seeding success rate is from 99.4% to 99.95%. For 1 kHz operation, the output pulse energy is 5.5mJ with the pulse length of 50 ns. The optical-to-optical efficiency is 39% when the pump power is 14.5W. A Ho:YLF laser operating in the range of 2.05 micrometers can be tuned over several characteristic lines of CO2 absorption. Experimentally, a diode pumped Ho:Tm:YLF laser has been successfully used as the transmitter of coherent differential absorption lidar for the measurement of CO2 with a repetition rate of 5 Hz and pulse energy of 75 mJ. For coherent detection, high repetition rate is required for speckle averaging to obtain highly precise measurements. However, a diode pumped Ho:Tm:YLF laser can not operate in high repetition rate due to the large heat loading and up-conversion. A Tm:fiber laser pumped Ho:YLF laser with low heat loading can operate in high repetition rate. A theoretical model has been established to simulate the performance of Tm:fiber laser pumped Ho:YLF lasers. For continuous wave (CW) operation, high pump intensity with small beam

  10. Adiabatic pressure dependence of the 2.7 and 1.9 micron water vapor bands

    NASA Technical Reports Server (NTRS)

    Mathai, C. V.; Walls, W. L.; Broersma, S.

    1977-01-01

    An acoustic excitation technique is used to determine the adiabatic pressure derivative of the spectral absorptance of the 2.7 and 1.9 micron water vapor bands, and the 3.5 micron HCl band. The dependence of this derivative on thermodynamic parameters such as temperature, concentration, and pressure is evaluated. A cross-flow water vapor system is used to measure spectral absorptance. Taking F as the ratio of nonrigid to rotor line strengths, it is found that an F factor correction is needed for the 2.7 micron band. The F factor for the 1.9 micron band is also determined. In the wings of each band a wavelength can be found where the concentration dependence is predominant. Farther out in the wings a local maximum occurs for the temperature derivative. It is suggested that the pressure derivative is significant in the core of the band.

  11. Absorption features in the 5-8 micron spectra of protostars

    NASA Technical Reports Server (NTRS)

    Tielens, A. G. G. M.; Allamandola, L. J.; Bregman, J.; Goebel, J.; Witteborn, F. C.; Dhendecourt, L. B.

    1984-01-01

    High signal-to-noise ratio spectra in the range of 5-8 microns of four sources embedded in molecular clouds are examined using low-temperature laboratory measurements of the 5-8-micron spectra of simple molecules and their mixtures. The absorption, apparent in all four sources, is characterized by highly distinct features ranging from two relatively narrow bands at 6.0 and 6.8 microns in W33A to a broad, shallow, and partially structured feature extending from 5.2 to 7.8 microns in Mon R2-IRS2, BN, and NGC2264. The first feature (W33A) is explained by the OH bending mode in H2O and the CH deformation modes in saturated hydrocarbons; while the second feature (Mon R2-IRS2-type) is explained by the presence of a mixture of saturated and unsaturated hydrocarbons possibly containing strongly electronegative groups.

  12. A Master-Oscillator-Power-Amplifier 2-micron Laser Using Fiber Phase-conjugate Mirror

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Bai, Yingxin; Shkunov, V.; Rockwell, D.; Betin, A.; Wang, J.; Petros, M.; Petzar, Paul; Trieu, Bo

    2007-01-01

    For the first time, a 2-micron master-oscillator-power-amplifier laser using a fiber based phase conjugation mirror has been demonstrated. The beam quality improvement and 56% of the PCM reflectivity have been achieved.

  13. Bench-scale testing of a micronized magnetite, fine-coal cleaning process

    SciTech Connect

    Suardini, P.J.

    1995-11-01

    Custom Coals, International has installed and is presently testing a 500 lb/hr. micronized-magnetite, fine-coal cleaning circuit at PETC`s Process Research Facility (PRF). The cost-shared project was awarded as part of the Coal Preparation Program`s, High Efficiency Preparation Subprogram. The project includes design, construction, testing, and decommissioning of a fully-integrated, bench-scale circuit, complete with feed coal classification to remove the minus 30 micron slimes, dense medium cycloning of the 300 by 30 micron feed coal using a nominal minus 10 micron size magnetite medium, and medium recovery using drain and rinse screens and various stages and types of magnetic separators. This paper describes the project circuit and goals, including a description of the current project status and the sources of coal and magnetite which are being tested.

  14. Taking Another Look at the 3-Micron Absorption Band on Asteroids

    NASA Technical Reports Server (NTRS)

    Howell, E. S.; Rivkin, A. S.; Cohen, B. A.

    2002-01-01

    Improved 3 micron spectra show that band depths have been underestimated. Using a revised continuum, the asteroid and meteorite spectra match better. Additional information is contained in the original extended abstract.

  15. 2-Micron Pulsed Direct Detection IPDA Lidar for Atmospheric CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Reithmaier, Karl; Remus, Ruben; Singh, Upendra; Johnson, Will; Boyer, Charlie; Fay, James; Johnston, Susan; Murchison, Luke

    2014-01-01

    A 2-micron high energy, pulsed Integrated Path Differential Absorption (IPDA) lidar has been developed for atmospheric CO2 measurements. Development of this lidar heavily leverages the 2-micron laser technologies developed in LaRC over the last decade. The high pulse energy, direct detection lidar operating at CO2 2-micron absorption band provides an alternate approach to measure CO2 concentrations. This new 2-micron pulsed IPDA lidar has been flown in spring of this year for total ten flights with 27 flight hours. It is able to make measurements of the total amount of atmospheric CO2 from the aircraft to the ground or cloud. It is expected to provide high-precision measurement capability by unambiguously eliminating contamination from aerosols and clouds that can bias the IPDA measurement.

  16. Preparation of multiparticulate systems for oral delivery of a micronized or nanosized poorly soluble drug.

    PubMed

    Cerea, Matteo; Pattarino, Franco; Foglio Bonda, Andrea; Palugan, Luca; Segale, Lorena; Vecchio, Carlo

    2016-09-01

    The purpose of the present work was to prepare multiparticulate drug delivery systems for oral administration of a poorly soluble drug such as itraconazole. Multiparticulate systems were prepared by extrusion/spheronization technique using a mix of crospovidone, low viscosity hypromellose, microcrystalline cellulose, micronized drug and water. In order to improve the release performance of the multiparticulate systems, the micronized drug was suspended in water with polysorbate 20 and nanonized by a high-pressure homogenization. The suspension of drug nanoparticles was then spray-dried for enabling an easy handling of the drug and for preventing the over-wetting of the powders during extrusion/spheronization processing. Both multiparticulate units prepared with micronized or nanonized drug showed acceptable disintegrating properties. The nanosizing of micronized drug powder provided a significant improvement of drug dissolution rates of the multiparticulates.

  17. Formation of micron and submicron structures on a zirconium oxide surface exposed to nanosecond laser radiation

    SciTech Connect

    Ganin, D V; Mikolutskiy, S I; Khomich, V Yu; Yamshchikov, V A; Tokarev, V N; Shmakov, V A

    2014-04-28

    Possibility of forming quasi-periodic structures of micron and submicron dimensions on a surface of zirconium dioxide under the action of eximer ArF laser radiation is shown experimentally and theoretically. (interaction of laser radiation with matter)

  18. Preparation of multiparticulate systems for oral delivery of a micronized or nanosized poorly soluble drug.

    PubMed

    Cerea, Matteo; Pattarino, Franco; Foglio Bonda, Andrea; Palugan, Luca; Segale, Lorena; Vecchio, Carlo

    2016-09-01

    The purpose of the present work was to prepare multiparticulate drug delivery systems for oral administration of a poorly soluble drug such as itraconazole. Multiparticulate systems were prepared by extrusion/spheronization technique using a mix of crospovidone, low viscosity hypromellose, microcrystalline cellulose, micronized drug and water. In order to improve the release performance of the multiparticulate systems, the micronized drug was suspended in water with polysorbate 20 and nanonized by a high-pressure homogenization. The suspension of drug nanoparticles was then spray-dried for enabling an easy handling of the drug and for preventing the over-wetting of the powders during extrusion/spheronization processing. Both multiparticulate units prepared with micronized or nanonized drug showed acceptable disintegrating properties. The nanosizing of micronized drug powder provided a significant improvement of drug dissolution rates of the multiparticulates. PMID:26786555

  19. FIRBACK Cosmological Survey With ISO: Observing the Cosmic Infrared Background at 170 microns

    NASA Astrophysics Data System (ADS)

    Dole, H.; Gispert, R.; Lagache, G.; Puget, J.-L.; Aussel, H.; Bouchet, F. R.; Ciliegi, P.; Clements, D. L.; Cesarsky, C. J.; Désert, F.-X.; Elbaz, D.; Franceschini, A.; Guiderdoni, B.; Harwit, M.; Laureijs, R.; Lemke, D.; McMahon, R.; Moorwood, A. F. M.; Oliver, S.; Reach, W. T.; Rowan-Robinson, M.; Stickel, M.

    FIRBACK, one of the deepest surveys performed at 170 microns with ISOPHOT, is aimed at the study of the Cosmic Far Infrared Background (CIB). We just summarize here the main results: 1. we studied the footprint of PHOT at 170 microns and check the calibration (see Lagache, 99a) 2. source counts of resolved galaxies suggest strong evolution (see Dole, 99) 3. fluctuations of the CIB are detected (see Lagache, 99)

  20. Nonthermal 10 micron CO2 emission lines in the atmospheres of Mars and Venus

    NASA Technical Reports Server (NTRS)

    Johnson, M. A.; Betz, A. L.; Mclaren, R. A.; Townes, C. H.; Sutton, E. C.

    1976-01-01

    Mechanisms are examined for excitation of strong 10-micron CO2 emission lines seen on Mars and Venus. Line absorption of near-infrared solar flux directly by CO2 or H2O with collisional transfer of energy to CO2 are proposed as likely excitation mechanisms. Altitudes for peak 10-micron emission are estimated to be near 80 km for Mars and 120 km for Venus.

  1. Solid methane on Triton and Pluto - 3- to 4-micron spectrophotometry

    NASA Technical Reports Server (NTRS)

    Spencer, John R.; Buie, Marc W.; Bjoraker, Gordon L.

    1990-01-01

    Methane has been identified in the Pluto/Charon system on the basis of absorption features in the reflectance spectrum at 1.5 and 2.3 microns; attention is presently given to observations of a 3.25 micron-centered deep absorption feature in Triton and Pluto/Charon system reflectance spectra. This absorption may indicate the presence of solid methane, constituting either the dominant surface species or a mixture with a highly transparent substance, such as N2 frost.

  2. Preparation and Characterization of Micronized Artemisinin via a Rapid Expansion of Supercritical Solutions (RESS) Method

    PubMed Central

    Yu, Huimin; Zhao, Xiuhua; Zu, Yuangang; Zhang, Xinjuan; Zu, Baishi; Zhang, Xiaonan

    2012-01-01

    The particle sizes of pharmaceutical substances are important for their bioavailability. Bioavailability can be improved by reducing the particle size of the drug. In this study, artemisinin was micronized by the rapid expansion of supercritical solutions (RESS). The particle size of the unprocessed white needle-like artemisinin particles was 30 to 1200 μm. The optimum micronization conditions are determined as follows: extraction temperature of 62 °C, extraction pressure of 25 MPa, precipitation temperature 45 °C and nozzle diameter of 1000 μm. Under the optimum conditions, micronized artemisinin with a (mean particle size) MPS of 550 nm is obtained. By analysis of variance (ANOVA), extraction temperature and pressure have significant effects on the MPS of the micronized artemisinin. The particle size of micronized artemisinin decreased with increasing extraction temperature and pressure. Moreover, the SEM, LC-MS, FTIR, DSC and XRD allowed the comparison between the crystalline initial state and the micronization particles obtained after the RESS process. The results showed that RESS process has not induced degradation of artemisinin and that processed artemisinin particles have lower crystallinity and melting point. The bulk density of artemisinin was determined before and after RESS process and the obtained results showed that it passes from an initial density of 0.554 to 0.128 g·cm−3 after the processing. The decrease in bulk density of the micronized powder can increase the liquidity of drug particles when they are applied for medicinal preparations. These results suggest micronized powder of artemisinin can be of great potential in drug delivery systems. PMID:22606030

  3. The Carnegie Hubble Program: The Leavitt Law at 3.6 microns and 4.5 microns in the Large Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    Scowcroft, Victoria; Freedman, Wendy L.; Madore, Barry F.; Monson, Andrew J.; Persson, S. E.; Seibert, Mark; Rigby, Jane R.; Sturch, Laura

    2011-01-01

    The Carnegie Hubble Program (CHP) is designed to improve the extragalactic distance scale using data from the post-cryogenic era of Spitzer. The ultimate goal is a determination of the Hubble constant to an accuracy of 2%. This paper is the first in a series on the Cepheid population of the Large Magellanic Cloud, and focuses on the period-luminosity relations (Leavitt laws) that will be used, in conjunction with observations of Milky Way Cepheids, to set the slope and zero-point of the Cepheid distance scale in the mid-infrared. To this end, we have obtained uniformly-sampled light curves for 85 LMC Cepheids, having periods between 6 and 140 days. Period- luminosity and period-color relations are presented in the 3.6 micron and 4.5 micron bands. We demonstrate that the 3.6 micron band is a superb distance indicator. The cyclical variation of the [3.6]-[4.5] color has been measured for the first time. We attribute the amplitude and phase of the color curves to the dissociation and recombination of CO molecules in the Cepheid s atmosphere. The CO affects only the 4.5 micron flux making it a potential metallicity indicator.

  4. Advanced 2-micron Solid-state Laser for Wind and CO2 Lidar Applications

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Trieu, Bo C.; Petros, Mulugeta; Bai, Yingxin; Petzar, Paul J.; Koch, Grady J.; Singh, Upendra N.; Kavaya, Michael J.

    2006-01-01

    Significant advancements in the 2-micron laser development have been made recently. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar (DIAL) system for measuring atmospheric CO2 concentration profiles. The world record 2-micron laser energy is demonstrated with an oscillator and two amplifiers system. It generates more than one joule per pulse energy with excellent beam quality. Based on the successful demonstration of a fully conductive cooled oscillator by using heat pipe technology, an improved fully conductively cooled 2-micron amplifier was designed, manufactured and integrated. It virtually eliminates the running coolant to increase the overall system efficiency and reliability. In addition to technology development and demonstration, a compact and engineering hardened 2-micron laser is under development. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser is expected to be integrated to a lidar system and take field measurements. The recent achievements push forward the readiness of such a laser system for space lidar applications. This paper will review the developments of the state-of-the-art solid-state 2-micron laser.

  5. A new spectral feature on the trailing hemisphere of Europa at 3.78 microns

    NASA Astrophysics Data System (ADS)

    Trumbo, Samantha K.; Fischer, Patrick D.; Brown, Michael E.

    2016-10-01

    We present hemispherically resolved spectra of the surface of Europa from 3.4 – 4.15 microns, which we obtained using Keck NIRSPEC. These include the first high-quality L-band spectra of the surface to extend beyond 4 microns. In our data, we identify a previously unseen spectral feature at 3.78 microns on the trailing hemisphere. This feature is coincident with an SO2 frost absorption. However the corresponding, typically stronger 4.07-micron feature of SO2 frost is absent from our data. This result is contrary to the suggested detection of SO2 at 4.05 microns in Galileo NIMS data [1] of the trailing hemisphere, which was severely affected by radiation noise. Thus, we use simple spectral modeling to argue that the 3.78-micron feature is not easily explained by the presence of SO2 frost on the surface. However, the longitudinal distribution of the feature is consistent with that of a radiolytic product. We explore alternative explanations and discuss other potential candidate species. [1] Hansen and McCord (2008) GRL, 35: L01202.

  6. New long-wavelength Nd:YAG laser at 1. 44 micron: effect on brain

    SciTech Connect

    Martiniuk, R.; Bauer, J.A.; McKean, J.D.; Tulip, J.; Mielke, B.W.

    1989-02-01

    A wavelength-shifted Nd:YAG laser, tuned to coincide with the infrared absorption peak of water at 1.44 microns, was used to make lesions in normal rabbit brain. A total of 48 lesions were made with power up to 20 W, with energy up to 40 joules, and with two different spot sizes. These lesions were compared to lesions made with 1.06 microns radiation from an Nd:YAG laser under identical operating conditions. Measurements of blood-brain barrier damage and width, depth, and volume of tissue affected were obtained 30 minutes after placement of the lesions. It was found that 1.44-microns lesions produced photoevaporative tissue loss at the highest intensities used. The layer of coagulated tissue remaining after photovaporization had a mean thickness of 0.6 mm irrespective of the volume of tissue removed. There was no photovaporization in the 1.06-microns lesions. In addition, the amount of peripheral edema per unit volume of tissue coagulated was approximately half at the 1.44-microns wavelength. These findings suggest that the 1.44-microns Nd:YAG laser may be a useful surgical instrument since it combines the photoevaporative effect of the CO/sub 2/ laser while maintaining the advantages of the conventional Nd:YAG laser (quartz fiber delivery and effective hemostasis).

  7. Preliminary evaluation of a pulsed 2.15-micron laser system for fiberoptic endoscopic surgery.

    PubMed

    Treat, M R; Trokel, S L; Reynolds, R D; DeFilippi, V J; Andrew, J; Liu, J Y; Cohen, M G

    1988-01-01

    There is a need for lasers that are compatible with fiberoptic endoscopes and that provide greater cutting precision than currently can be produced by the widely used Nd:YAG (1.06 micron) laser. Recently available lasers that operate in the 2-micron region fill this need. This laser light energy can be transmitted by low OH- silica fibers and has much less tissue penetration than radiation at 1.06 micron. We have been evaluating a prototype solid state laser system that produces pulses of 2.15 microns light that is delivered by a silica based fiberoptic delivery system with negligible transmission losses. This system is based on a thulium-holmium-chromium doped YAG (Tm-Ho-Cr: YAG) rod that lases at 2.15 micron. The laser does not require cryogenic cooling, toxic gases, or custom utilities and should be practical in a clinical environment. In vivo animal testing of this laser confirms that it provides greater ablating precision than does the Nd:YAG laser at 1.06 micron.

  8. Contribution to the benchmark for ternary mixtures: Measurement of the Soret and thermodiffusion coefficients of tetralin+isobutylbenzene+n-dodecane at a composition of (0.8/0.1/0.1) mass fractions by two-color optical beam deflection.

    PubMed

    Gebhardt, M; Köhler, W

    2015-04-01

    Within the framework of an international benchmark test we have performed measurements of the Soret and thermodiffusion coefficients of the organic ternary mixture (0.8/0.1/0.1 mass fraction) of 1,2,3,4-tetrahydronaphthaline (THN), isobutylbenzene (IBB) and n -dodecane (n C12) at 298.15K by means of a two-color optical beam deflection technique (OBD). The data evaluation procedure is based on a least squares fitting routine for an approximate analytical solution for the Soret cell problem. The condition number of the contrast factor matrix and standard error propagation are used for an error estimation for the measured Soret and thermodiffusion coefficients. The Soret coefficients obtained are S (') T(THN) = (1.20±0.09)×10(-3) K^-1, S (') T(IBB) = (- 0.34±0.14)×10(-3) K^-1, and S (') T(nC12) = (- 0.86±0.06)×10(-3) K^-1 and the corresponding thermodiffusion coefficients are D (') T(THN) = (0.72±0.26)×10(-12) m^2(s K)^-1, D (') T(IBB) = (- 0.22±0.42)×10(-12) m^2(s K)^-1, and D (') T(nC12) = (- 0.50±0.16)×10(-12) m^2(s K)^-1. These results will be used as ground-based reference data for the DCMIX project, where thermodiffusion experiments of ternary mixtures are measured in a microgravity environment aboard the International Space Station (ISS). PMID:25904305

  9. Nuclear hyperfine and quadrupole tensor characterization of the nitrogen hydrogen bond donors to the semiquinone of the QB site in bacterial reaction centers: a combined X- and S-band (14,15)N ESEEM and DFT study.

    PubMed

    Taguchi, Alexander T; O'Malley, Patrick J; Wraight, Colin A; Dikanov, Sergei A

    2014-02-13

    The secondary quinone anion radical QB(-) (SQB) in reaction centers of Rhodobacter sphaeroides interacts with Nδ of His-L190 and Np (peptide nitrogen) of Gly-L225 involved in hydrogen bonds to the QB carbonyls. In this work, S-band (∼3.6 GHz) ESEEM was used with the aim of obtaining a complete characterization of the nuclear quadrupole interaction (nqi) tensors for both nitrogens by approaching the cancelation condition between the isotropic hyperfine coupling and (14)N Zeeman frequency at lower microwave frequencies than traditional X-band (9.5 GHz). By performing measurements at S-band, we found a dominating contribution of Nδ in the form of a zero-field nqi triplet at 0.55, 0.92, and 1.47 MHz, defining the quadrupole coupling constant K = e(2)qQ/4h = 0.4 MHz and associated asymmetry parameter η = 0.69. Estimates of the hyperfine interaction (hfi) tensors for Nδ and Np were obtained from simulations of 1D and 2D (14,15)N X-band and three-pulse (14)N S-band spectra with all nuclear tensors defined in the SQB g-tensor coordinate system. From simulations, we conclude that the contribution of Np to the S-band spectrum is suppressed by its strong nqi and weak isotropic hfi comparable to the level of hyperfine anisotropy, despite the near-cancelation condition for Np at S-band. The excellent agreement between our EPR simulations and DFT calculations of the nitrogen hfi and nqi tensors to SQB is promising for the future application of powder ESEEM to full tensor characterizations.

  10. Nuclear hyperfine and quadrupole tensor characterization of the nitrogen hydrogen bond donors to the semiquinone of the QB site in bacterial reaction centers: a combined X- and S-band (14,15)N ESEEM and DFT study.

    PubMed

    Taguchi, Alexander T; O'Malley, Patrick J; Wraight, Colin A; Dikanov, Sergei A

    2014-02-13

    The secondary quinone anion radical QB(-) (SQB) in reaction centers of Rhodobacter sphaeroides interacts with Nδ of His-L190 and Np (peptide nitrogen) of Gly-L225 involved in hydrogen bonds to the QB carbonyls. In this work, S-band (∼3.6 GHz) ESEEM was used with the aim of obtaining a complete characterization of the nuclear quadrupole interaction (nqi) tensors for both nitrogens by approaching the cancelation condition between the isotropic hyperfine coupling and (14)N Zeeman frequency at lower microwave frequencies than traditional X-band (9.5 GHz). By performing measurements at S-band, we found a dominating contribution of Nδ in the form of a zero-field nqi triplet at 0.55, 0.92, and 1.47 MHz, defining the quadrupole coupling constant K = e(2)qQ/4h = 0.4 MHz and associated asymmetry parameter η = 0.69. Estimates of the hyperfine interaction (hfi) tensors for Nδ and Np were obtained from simulations of 1D and 2D (14,15)N X-band and three-pulse (14)N S-band spectra with all nuclear tensors defined in the SQB g-tensor coordinate system. From simulations, we conclude that the contribution of Np to the S-band spectrum is suppressed by its strong nqi and weak isotropic hfi comparable to the level of hyperfine anisotropy, despite the near-cancelation condition for Np at S-band. The excellent agreement between our EPR simulations and DFT calculations of the nitrogen hfi and nqi tensors to SQB is promising for the future application of powder ESEEM to full tensor characterizations. PMID:24437652

  11. 3,7,10,14,15-pentaacetyl-5-butanoyl-13,17-epoxy-8-myrsinene a novel compound isolated from Pycnocycla spinosa extract with potent anti-spasmodic and antidiarrheal properties

    PubMed Central

    Sadraei, H.; Ghanadian, M.; Asghari, G.; Sharifian, R.

    2015-01-01

    Bioassay monitoring of hydroalcoholic extract from the aerial part of Pyconcycla spinosa revealed that it contains components with spasmolytic activity in vitro. In addition, P. spinosa extract at oral dose of 1-5 mg/kg inhibits diarrhoea in animal models. Pharmacological screening of pure compounds isolated from P. spinosa hydroalcoholic extract led to the identification of 3,7,10,14,15-pentaacetyl-5-butanoyl-13,17-epoxy-8-myrsinene (PABEM) which is a new diterpene. In this research, we have investigated antispasmodic and antidiarrheal effects of PABEM for comparison with P. spinosa extract. Aerial parts of P. spinosa were extracted with ethanol. For antispasmodic studies, rat isolated ileum was suspended in Tyrode's solution in an organ bath. The ileum was contracted by acetylcholine (ACh, 0.5 μM), serotonin (5-HT, 5 μM) or electrical field stimulation (EFS). P. spinosa extract in a concentration dependent manner (10-640 μg/ml) inhibited ileum contractions induced by ACh, 5-HT or EFS. The new compound isolated form P. spinosa extract “PABEM” in a similar manner inhibited the contractile response to ACh, 5-HT and EFS. However, the inhibitory effects of PABEM were observed at much lower bath concentrations. The relaxation effect of PABEM was started at 40 ng/ml bath concentration and with 2.5 μg/ml PABEM in the bath, the contractile responses of ileum were completely abolished. Both hydroalcoholic extract of P. spinosa and PABEM reduced intestinal meal transit and castor oil and MgSO4 induced diarrhoea in mice. However, PABEM was about 10 times more potent than its parent extract. This research shows that PABEM is probably the main component responsible for antispasmodic and antidiarrheal actions of P. spinosa extract. PMID:26430457

  12. Spectral Anomalies in the 11 and 12 micron Region From the Mariner Mars 7 Infrared Spectrometer

    NASA Technical Reports Server (NTRS)

    Kirkland, Laurel E.; Herr, Kenneth C.

    2000-01-01

    Two hundred-forty infrared spectra acquired by the 1969 Mariner Mars 7 Infrared Spectrometer (IRS), spanning the wavelength region 1.8-14.4 micron (5550-690/cm), have recently been recovered and calibrated in both wavelength and intensity. An examination of these IRS spectra has revealed absorptions at 11.25 and 12.5 micron that have not previously been reported for Mars. A search of the literature and spectral data bases shows that materials that exhibit a doublet at 11.25 and 12.5 micron are rare. In this paper we examine potential causes for these features and include a detailed discussion of carbonates, goethite, CO2 ice, and water ice. CO2 ice and water ice measured in transmission do not exhibit bands that match those recorded at 11.25 and 12.5 micron for Mars, which indicates that CO2 or water ice clouds are not the source of these features. Since these bands show no clear correlation with atmospheric path length, they are most likely caused by a surface material. In the IRS database they appear to be exceptionally intense in the western part of the Hellas basin. Goethite exhibits bands that are a good spectral match, but confirming whether goethite causes the features will require additional studies of the 20-50 micron region. These studies will require laboratory measurements of weathering coatings and an examination of spectra recorded of Mars by the 1971 Mariner Mars Infrared Interferometer Spectrometer (IRIS; 5-50 micron 2000200/cm) and the 1996 Thermal Emission Spectrometer (TES; 6-50 micron 1667-200/cm).

  13. Radiative Properties of Cirrus Clouds in the Infrared (8-13 microns) Spectral Region

    NASA Technical Reports Server (NTRS)

    Yang, Ping; Gao, Bo-Cai; Baum, Bryan A.; Hu, Yong X.; Wiscombe, Warren J.; Tsay, Si-Chee; Winker, Dave M.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Atmospheric radiation in the infrared (IR) 8-13 microns spectral region contains a wealth of information that is very useful for the retrieval of ice cloud properties from aircraft or space-borne measurements. To provide the scattering and absorption properties of nonspherical ice crystals that are fundamental to the IR retrieval implementation, we use the finite-difference time domain (FDTD) method to solve for the extinction efficiency, single-scattering albedo, and the asymmetry parameter of the phase function for ice crystals smaller than 40 microns. For particles larger than this size, the improved geometric optics method (IGOM) can be employed to calculate the asymmetry parameter with an acceptable accuracy, provided that we properly account for the inhomogeneity of the refracted wave due to strong absorption inside the ice particle. A combination of the results computed from the two methods provides the asymmetry parameter for the entire practical range of particle sizes between 1 micron and 10000 microns over wavelengths ranging from 8 microns to 13 microns. For the extinction and absorption efficiency calculations, several methods including the IGOM, Mie solution for equivalent spheres (MSFES), and the anomalous diffraction theory (ADT) can lead to a substantial discontinuity in comparison with the FDTD solutions for particle sizes on the order of 40 microns. To overcome this difficulty, we have developed a novel approach called the stretched scattering potential method (SSPM). For the IR 8-13 microns spectral region, we show that SSPM is a more accurate approximation than ADT, MSFES, and IGOM. The SSPM solution can be further refined numerically. Through a combination of the FDTD and SSPM, we have computed the extinction and absorption efficiency for hexagonal ice crystals with sizes ranging from 1 to 10000 microns at 12 wavelengths between 8 and 13 microns Calculations of the cirrus bulk scattering and absorption properties are performed for 30 size

  14. Development of megapixel HgCdTe detector arrays with 15 micron cutoff

    NASA Astrophysics Data System (ADS)

    Forrest, William J.; McMurtry, Craig W.; Dorn, Meghan; Pipher, Judith; Cabrera, Mario S.

    2016-10-01

    I. HistoryHgCdTe is a versatile II-VI semiconductor with a direct-bandgap tunable via the Hg:Cd ratio. Hg:Cd ratio = 53:47 (2.5 micron cutoff) was used on the NICMOS instrument on HST and the 2MASS. Increasing Hg:Cd ratio to 70:30 leads to a 5.4 micron cutoff, utilized in NEOWISE and many JWST instruments. Bailey, Wu et al. (1998) motivated extending this technology to 10 microns and beyond. Bacon, McMurtry et al. (2003, 2004) indicated significant progress toward this longwave (LW) goal.Warm-Spitzer has pioneered passive cooling to below 30 K in space, enabling the JWST mission.II. CurrentNASA's proposed NEOcam mission selected HgCdTe with a 10.6 micron cutoff because it promises natural Zodiacal background limited sensitivity with modest cooling (40 K). Teledyne Imaging Systems (TIS) is producing megapixel arrays with excellent performance (McMurtry, Lee, Dorn et al. (2013)) for this mission.III. FutureModest cooling requirements (circa 30 K) coupled with megapixel arrays and LW sensitivity in the thermal IR make HgCdTe attractive for many infrared instruments. For instance, the spectral signature of a terrestrial planet orbiting in the habitable zone of a nearby star will be the deep and wide absorption by CO_2 centered at 15 microns (Seager and Deming, 2010). LW instruments can enhance Solar System missions, such as exploration of the Enceladus geysers (Spencer, Buratti et al. 2006). Passive cooling will be adequate for these missions. Modern ground-based observatories will benefit from infrared capability out to the N band (7.5-13.6 microns). The required detector temperatures (30-40 K) are easily achievable using commercially available mechanical cryo-coolers (refrigerators).IV. Progress to dateTIS is developing megapixel HgCdTe arrays sensitive out to 15 microns under the direction of the University of Rochester. As a first step, we have produced arrays with a 13 micron cutoff. The initial measurements indicate very promising performance. We will present the

  15. Development of megapixel HgCdTe detector arrays with 15 micron cutoff

    NASA Astrophysics Data System (ADS)

    Forrest, William J.; McMurtry, Craig W.; Dorn, Meghan L.; Pipher, Judith; Cabrera, Mario S.

    2016-06-01

    I. HistoryHgCdTe is a versatile II-VI semiconductor with a direct-bandgap tunable via the Hg:Cd ratio. Hg:Cd ratio = 53:47 (2.5 micron cutoff) was used on the NICMOS instrument on HST and the 2MASS. Increasing Hg:Cd ratio to 70:30 leads to a 5.4 micron cutoff, utilized in NEOWISE and many JWST instruments. Bailey, Wu et al. (1998) motivated extending this technology to 10 microns and beyond. Bacon, McMurtry et al. (2003, 2004) indicated significant progress toward this longwave (LW) goal.Warm-Spitzer has pioneered passive cooling to below 30 K in space, enabling the JWST mission.II. CurrentNASA's proposed NEOcam mission selected HgCdTe with a 10.6 micron cutoff because it promises natural Zodiacal background limited sensitivity with modest cooling (40 K). Teledyne Imaging Systems (TIS) is producing megapixel arrays with excellent performance (McMurtry, Lee, Dorn et al. (2013)) for this mission.III. FutureModest cooling requirements (circa 30 K) coupled with megapixel arrays and LW sensitivity in the thermal IR make HgCdTe attractive for many infrared instruments. For instance, the spectral signature of a terrestrial planet orbiting in the habitable zone of a nearby star will be the deep and wide absorption by CO_2 centered at 15 microns (Seager and Deming, 2010). LW instruments can enhance Solar System missions, such as exploration of the Enceladus geysers (Spencer, Buratti et al. 2006). Passive cooling will be adequate for these missions. Modern ground-based observatories will benefit from infrared capability out to the N band (7.5-13.6 microns). The required detector temperatures (30-40 K) are easily achievable using commercially available mechanical cryo-coolers (refrigerators).IV. Progress to dateTIS is developing megapixel HgCdTe arrays sensitive out to 15 microns under the direction of the University of Rochester. As a first step, we have produced arrays with a 13 micron cutoff. The initial measurements indicate very promising performance. We will present the

  16. Micron-scale plasma membrane curvature is recognized by the septin cytoskeleton

    PubMed Central

    Bridges, Andrew A.; Jentzsch, Maximilian S.; Oakes, Patrick W.; Occhipinti, Patricia

    2016-01-01

    Cells change shape in response to diverse environmental and developmental conditions, creating topologies with micron-scale features. Although individual proteins can sense nanometer-scale membrane curvature, it is unclear if a cell could also use nanometer-scale components to sense micron-scale contours, such as the cytokinetic furrow and base of neuronal branches. Septins are filament-forming proteins that serve as signaling platforms and are frequently associated with areas of the plasma membrane where there is micron-scale curvature, including the cytokinetic furrow and the base of cell protrusions. We report here that fungal and human septins are able to distinguish between different degrees of micron-scale curvature in cells. By preparing supported lipid bilayers on beads of different curvature, we reconstitute and measure the intrinsic septin curvature preference. We conclude that micron-scale curvature recognition is a fundamental property of the septin cytoskeleton that provides the cell with a mechanism to know its local shape. PMID:27044896

  17. Unraveling the 10 micron "silicate" feature of protostars: the detection of frozen interstellar ammonia

    NASA Technical Reports Server (NTRS)

    Lacy, J. H.; Faraji, H.; Sandford, S. A.; Allamandola, L. J.

    1998-01-01

    We present infrared spectra of four embedded protostars in the 750-1230 cm-1 (13.3-8.1 microns) range. For NGC 7538 IRS 9, a new band is reported at 1110 cm-1 (9.01 microns, and several others may be present near 785, 820, 900, 1030, and 1075 cm-1 (12.7, 12.2, 11.1, 9.71, and 9.30 microns). The band 1110 cm-1 is attributed to frozen NH3. Its position and width imply that the NH3 is frozen in a polar, H2O-rich interstellar ice component. The NH3/H2O ice ratio inferred for NGC 7538 IRS 9 is 0.1, making NH3 as important a component as CH3OH and CO2 in the polar ices along this line of sight. At these concentrations, hydrogen bonding between the NH3 and H2O can account for much of the enigmatic low-frequency wing on the 3240 cm-1 (3.09 microns) H2O interstellar ice band. The strength of the implied NH3 deformation fundamental at 1624 cm-1 (6.158 microns) can also account for the absorption at this position reported by ISO.

  18. Progress of 2-micron Detectors for Application to Lidar Remote Sensing

    NASA Technical Reports Server (NTRS)

    Abedin, M. N.; Refaat, Tamer F.; Ismail, Syed; Koch, Grady; Singh, Upendra N.

    2008-01-01

    AlGaAsSb/InGaAsSb heterojunction phototransistors were developed at Astropower, Inc under Laser Risk Reduction Program (LRRP) for operation in the 2-micron region. These phototransistors were optimized for 2-micron detection and have high quantum efficiency (>60%), high gain (>10(exp 3)) and low noise-equivalent- power (<5x10(exp -14) W/Hz), while operating at low bias voltage. One of these phototransistors was tested in lidar mode using the 2-micron CO2 Differential Absorption Lidar (DIAL) system currently under development under the Instrument Incubator Program (IIP) at NASA Langley. Lidar measurements included detecting atmospheric structures consisting of thin clouds in the mid-altitude and near-field boundary layer. These test results are very promising for the application of phototransistors for the two-micron lidar remote sensing. In addition, HgCdTe avalanche photodiodes (APD) acquired from Raytheon were used in atmospheric testing at 2-microns. A discussion of these measurements is also presented in this paper.

  19. 2-Micron Coherent Doppler Lidar Instrument Advancements for Tropospheric Wind Measurement

    NASA Technical Reports Server (NTRS)

    Petros, Mulugeta; Singh, U. N.; Yu, J.; Kavaya, M. J.; Koch, G.

    2014-01-01

    Knowledge derived from global tropospheric wind measurement is an important constituent of our overall understanding of climate behavior [1]. Accurate weather prediction saves lives and protects properties from destructions. High-energy 2-micron laser is the transmitter of choice for coherent Doppler wind detection. In addition to the eye-safety, the wavelength of the transmitter suitably matches the aerosol size in the lower troposphere. Although the technology of the 2-micron laser has been maturing steadily, lidar derived wind data is still a void in the global weather database. In the last decade, researchers at NASA Langley Research Center (LaRC) have been engaged in this endeavor, contributing to the scientific database of 2-micron lidar transmitters. As part of this effort, an in depth analysis of the physics involved in the workings of the Ho: Tm laser systems have been published. In the last few years, we have demonstrated lidar transmitter with over1Joule output energy. In addition, a large body of work has been done in characterizing new laser materials and unique crystal configurations to enhance the efficiency and output energy of the 2-micron laser systems. At present 2-micron lidar systems are measuring wind from both ground and airborne platforms. This paper will provide an overview of the advancements made in recent years and the technology maturity levels attained.

  20. Continuous micron-scaled rope engineering using a rotating multi-nozzle electrospinning emitter

    NASA Astrophysics Data System (ADS)

    Zhang, Chunchen; Gao, Chengcheng; Chang, Ming-Wei; Ahmad, Zeeshan; Li, Jing-Song

    2016-10-01

    Electrospinning (ES) enables simple production of fibers for broad applications (e.g., biomedical engineering, energy storage, and electronics). However, resulting structures are predominantly random; displaying significant disordered fiber entanglement, which inevitably gives rise to structural variations and reproducibility on the micron scale. Surface and structural features on this scale are critical for biomaterials, tissue engineering, and pharmaceutical sciences. In this letter, a modified ES technique using a rotating multi-nozzle emitter is developed and utilized to fabricate continuous micron-scaled polycaprolactone (PCL) ropes, providing control on fiber intercalation (twist) and structural order. Micron-scaled ropes comprising 312 twists per millimeter are generated, and rope diameter and pitch length are regulated using polymer concentration and process parameters. Electric field simulations confirm vector and distribution mechanisms, which influence fiber orientation and deposition during the process. The modified fabrication system provides much needed control on reproducibility and fiber entanglement which is crucial for electrospun biomedical materials.

  1. Spherical Granule Production from Micronized Saltwort (Salicornia herbacea) Powder as Salt Substitute.

    PubMed

    Shin, Myung-Gon; Lee, Gyu-Hee

    2013-03-01

    The whole saltwort plant (Salicornia herbacea) was micronized to develop the table salt substitute. The micronized powder was mixed with distilled water and made into a spherical granule by using the fluid-bed coater (SGMPDW). The SGMPDW had superior flowability to powder; however, it had low dispersibility. To increase the dispersibility of SGMPDW, the micronized powder was mixed with the solution, which contained various soluble solid contents of saltwort aqueous extract (SAE), and made into a spherical granule (SGMPSAE). The SGMPSAE prepared with the higher percentages of solid content of SAE showed improved dispersibility in water and an increase in salty taste. The SGMPSAE prepared with 10% SAE was shown to possess the best physicochemical properties and its relative saltiness compared to NaCl (0.39). In conclusion, SGMPSAEs can be used as a table salt substitute and a functional food material with enhanced absorptivity and convenience. PMID:24471111

  2. Multifrequency observations of blazars. I. The shape of the 1 micron to 2 millimeter continuum

    SciTech Connect

    Gear, W.K.; Robson, E.I.; Brown, L.M.J.; Ade, P.A.R.; Griffin, M.J.; Smith, M.G.; Nolt, I.G.; Radostitz, J.V.; Veeder, G.; Lebofsky, L.

    1985-04-01

    Near-simultaneous measurements in 11 wavebands between 1 micron and 2 mm of a sample of 13 blazars are presented. These measurements represent the first comprehensive attempt to determine the infrared-to-millimeter-wave properties of this class of object, which emit the bulk of their luminosity in the far-infrared region. Most of the sources have very flat millimeter/submillimeter spectra up to the highest observed frequency. However, 3C 279 and 3C 446 show evidence of turnovers in their submillimeter spectra. The 1-4 micron spectra can be characterized by simple power laws, all steeper than -0.9; several sources, however, show evidence of spectral beaks in the 10-20 micron region, suggestive of energy losses. It is shown that the spectral properties are consistent with synchrotron emission from relativistic jets aligned close to the line of sight and the observations are discussed in relation to such models. 54 references.

  3. High resolution 1-20 micron imaging of the nuclear environment of NGC 1068

    NASA Technical Reports Server (NTRS)

    Cameron, M.; Storey, J. W. V.; Rotaciuc, V.; Blietz, M.; Genzel, R.; Krabbe, A.; Verstraete, L.; Vanderwerf, P.; Drapatz, S.; Lee, T.

    1993-01-01

    We present new mid-infrared continuum and near-IR line images of the nuclear environment of the nearby (14 Mpc) Seyfert 2 galaxy NGC 1068. The 8, 10, and 19 micron data were measured with our new mid-IR array camera, MIRACLE, at UKIRT in Nov. 1991 while our images of the H2 2.121 micron and (Fe 2) 1.64 micron lines were obtained with FAST, the MPE imaging spectrometer, at the 4.2m William Herschel Telescope in Aug. 1991. The MIRACLE data were imaged through narrow band (lambda/delta(lambda) greater than or equal to 50) filters whereas FAST incorporates a Fabry-Perot etalon (lambda/delta(lambda) greater than or equal to 950).

  4. Optimization and Innovation of Screw Joints of Micron-Wood-Fiber Molded Products

    NASA Astrophysics Data System (ADS)

    Pan, Chengyi; Zhang, Jianyi

    Micron-wood-fiber molded products are new kinds of high strength man-made wooden products. They are innovative products among molded fiber products nowadays. This paper studied a new method to design their screw joints using optimal design. It has combined the optimal design with reliability design ingeniously. The CAD programming method was put forward, which can optimize the structural parameters of micron-wood-fiber molded products, and may be used on the strength design and the check of innovation for new products. The new calculating method and software had provided effective design method for screw joints of micron-wood-fiber molded products. It would increase the calculating efficiency and precision greatly.

  5. Method and apparatus for generating coherent near 14 and near 16 micron radiation

    DOEpatents

    Krupke, William F.

    1977-01-01

    A method and apparatus for producing coherent radiation in CO.sub.2 vibrational-rotational transitions at wavelengths near 14 and 16 microns. This is accomplished by passing a mixture of N.sub.2 and Ar through a glow discharge producing a high vibrational temperature in the N.sub.2, passing the excited N.sub.2 through a nozzle bank creating a supersonic flow thereof, injecting the CO.sub.2 in the supersonic flow creating a population inversion in the CO.sub.2, and directing the saturating pulse of radiation near 10.6 or 9.6 microns into the excited CO.sub.2 creating a population inversion producing coherent radiation at 14 or 16 microns, respectively.

  6. Identification of Nonlinear Micron-Level Mechanics for a Precision Deployable Joint

    NASA Technical Reports Server (NTRS)

    Bullock, S. J.; Peterson, L. D.

    1994-01-01

    The experimental identification of micron-level nonlinear joint mechanics and dynamics for a pin-clevis joint used in a precision, adaptive, deployable space structure are investigated. The force-state mapping method is used to identify the behavior of the joint under a preload. The results of applying a single tension-compression cycle to the joint under a tensile preload are presented. The observed micron-level behavior is highly nonlinear and involves all six rigid body motion degrees-of-freedom of the joint. it is also suggests that at micron levels of motion modelling of the joint mechanics and dynamics must include the interactions between all internal components, such as the pin, bushings, and the joint node.

  7. Combustion characteristics of fuel droplets with addition of nano and micron-sized aluminum particles

    SciTech Connect

    Gan, Yanan; Qiao, Li

    2011-02-15

    The burning characteristics of fuel droplets containing nano and micron-sized aluminum particles were investigated. Particle size, surfactant concentration, and the type of base fluid were varied. In general, nanosuspensions can last much longer than micron suspensions, and ethanol-based fuels were found to achieve much better suspension than n-decane-based fuels. Five distinctive stages (preheating and ignition, classical combustion, microexplosion, surfactant flame, and aluminum droplet flame) were identified for an n-decane/nano-Al droplet, while only the first three stages occurred for an n-decane/micron-Al droplet. For the same solid loading rate and surfactant concentration, the disruption and microexplosion behavior of the micron suspension occurred later with much stronger intensity. The intense droplet fragmentation was accompanied by shell rupture, which caused a massive explosion of particles, and most of them were burned during this event. On the contrary, for the nanosuspension, combustion of the large agglomerate at the later stage requires a longer time and is less complete because of formation of an oxide shell on the surface. This difference is mainly due to the different structure and characteristics of particle agglomerates formed during the early stage, which is a spherical, porous, and more-uniformly distributed aggregate for the nanosuspension, but it is a densely packed and impermeable shell for the micron suspension. A theoretical analysis was then conducted to understand the effect of particle size on particle collision mechanism and aggregation rate. The results show that for nanosuspensions, particle collision and aggregation are dominated by the random Brownian motion. For micron suspensions, however, they are dominated by fluid motion such as droplet surface regression, droplet expansion resulting from bubble formation, and internal circulation. And the Brownian motion is the least important. This theoretical analysis explains the

  8. Modeling the reflectance spectrum of Callisto 0.25 to 4.1 microns

    NASA Astrophysics Data System (ADS)

    Calvin, W. M.; Clark, R. N.

    1991-02-01

    Models employing Hapke's (1981) radiative transfer theory are presented for the 0.2-4.1 micron reflectance spectrum. A simultaneous intimate, as well as aereal, mixture solution of ice and dark material is envisioned, in order to satisfy both absorption band depths and reflectance levels. The models indicate that the surface's ice component is rather large-grained, and that the major spectral features above about 2.5 microns cannot be accounted for by the ice. Spectra obtained for the nonice material were similar to each other; their absorption features resemble hydrated silicates bearing both oxidation states of iron.

  9. Novel Infrared Phototransistors for Atmospheric CO2 Profiling at 2 microns Wavelength

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Abedin, M. Nurul; Sulima, Oleg V.; Singh, Upendra N.; Ismail, Syed

    2004-01-01

    Two-micron detectors are critical for atmospheric carbon dioxide profiling using the lidar technique. The characterization results of a novel infrared AlGaAsSb/ InGaAsSb phototransistor are reported. Emitter dark current variation with the collector-emitter voltage at different temperatures is acquired to examine the gain mechanism. Spectral response measurements resulted in responsivity as high as 2650 A/W at 2.05 microns wavelength. Bias voltage and temperature effects on the device responsivity are presented. The detectivity of this device is compared to InGaAs and HgCdTe devices.

  10. Anisotropic transport and magnetic properties of arrays of sub-micron wires

    NASA Astrophysics Data System (ADS)

    Piraux, L.; Dubois, S.; Ferain, E.; Legras, R.; Ounadjela, K.; George, J. M.; Maurice, J. L.; Fert, A.

    1997-01-01

    We report a comparative study of anisotropic magnetoresistance and magnetic properties in arrays of sub-micron Ni and Co wires electro-deposited in the cylindrical pores of track-etched polymer membranes. The variation of coercivity and squareness as a function of wire diameter for arrays of almost isolated sub-micron wires is reported in the range 30-500 nm. The Ni and Co-based systems demonstrate different magnetic and magnetoresistive behaviors except for the smallest diameter. It is believed that the observed difference originates from the presence of competing crystal anisotropy in the Co-based system.

  11. Observations of 433 Eros from 1.25 to 3.35 Microns

    NASA Technical Reports Server (NTRS)

    Rivkin, A. S.; Clark, B. E.

    2001-01-01

    We have spectrophotometrically observed 433 Eros, the target of the Near Earth Asteroid Rendezvous (NEAR)-Shoemaker spacecraft, on 1995 December 4 from 1.25 to 3.35 microns. As expected, Eros shows no evidence of an absorption feature over 5% in the 3-micron region, and is interpreted to have an anhydrous surface within observational uncertainties. Our observations in the JHK region agree with previous work by Chapman and Morrison and Murchic and Pieters, but differ from the near-infrared spectrometer spectra reported by Clark et al. Our calculations indicate that thermal flux from Eros is not responsible for this mismatch.

  12. One-Joule-per-Pulse Q-Switched 2-micron Solid State Laser

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Trieu, Bo C.; Modlin, Ed A.; Singh, Upendra N.; Kavaya, Michael J.; Chen, Songsheng; Bai, Yingxin; Petzar, Pual J.; Petros, Mulugeta

    2005-01-01

    Q-switched output of 1.1 J per pulse at 2-micron wavelength has been achieved in a diode pumped Ho:Tm:LuLF laser using a side-pumped rod configuration in a Master-Oscillator-Power-Amplifier (MOPA) architecture. This is the first time that a 2-micron laser has broken the Joule per pulse barrier for Q-switched operation. The total system efficiency reaches 5% and 6.2% for single and double pulse operation, respectively. The system produces excellent 1.4 times of transform limited beam quality.

  13. Double-Pulse Two-Micron IPDA Lidar Simulation for Airborne Carbon Dioxide Measurements

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta

    2015-01-01

    An advanced double-pulsed 2-micron integrated path differential absorption lidar has been developed at NASA Langley Research Center for measuring atmospheric carbon dioxide. The instrument utilizes a state-of-the-art 2-micron laser transmitter with tunable on-line wavelength and advanced receiver. Instrument modeling and airborne simulations are presented in this paper. Focusing on random errors, results demonstrate instrument capabilities of performing precise carbon dioxide differential optical depth measurement with less than 3% random error for single-shot operation from up to 11 km altitude. This study is useful for defining CO2 measurement weighting, instrument setting, validation and sensitivity trade-offs.

  14. Development of technologies for welding interconnects to fifty-micron thick silicon solar cells

    NASA Technical Reports Server (NTRS)

    Patterson, R. E.

    1982-01-01

    A program was conducted to develop technologies for welding interconnects to 50 microns thick, 2 by 2 cm solar cells. The cells were characterized with respect to electrical performance, cell thickness, silver contact thickness, contact waviness, bowing, and fracture strength. Weld schedules were independently developed for each of the three cell types and were coincidentally identical. Thermal shock tests (100 cycles from 100 C to -180 C) were performed on 16 cell coupons for each cell type without any weld joint failures or electrical degradation. Three 48 cell modules (one for each cell type) were assembled with 50 microns thick cells, frosted fused silica covers, silver clad Invar interconnectors, and Kapton substrates.

  15. A simple method to incorporate water vapor absorption in the 15 microns remote temperature sounding

    NASA Technical Reports Server (NTRS)

    Dallu, G.; Prabhakara, C.; Conhath, B. J.

    1975-01-01

    The water vapor absorption in the 15 micron CO2 band, which can affect the remotely sensed temperatures near the surface, are estimated with the help of an empirical method. This method is based on the differential absorption properties of the water vapor in the 11-13 micron window region and does not require a detailed knowledge of the water vapor profile. With this approach Nimbus 4 IRIS radiance measurements are inverted to obtain temperature profiles. These calculated profiles agree with radiosonde data within about 2 C.

  16. Emission features in the spectrum of NGC 7027 near 3. 3 microns at very high resolution

    SciTech Connect

    Lowe, R.P.; Moorhead, J.M.; Wehlau, W.H.; Maillard, J.P. CNRS, Institut d'Astrophysique, Paris )

    1991-02-01

    A very high resolution spectrum is presented of the planetary nebula NGC 7027 over a 200/cm interval centered at 2950/cm, and the features found are described: (1) nebular continuum, (2) atomic recombination lines of H and He II, and (3) three broader emission features of uncertain origin. For the latter the first evidence is presented that the 3.46 micron feature and possibly the 3.40 micron feature are resolvable into a sequence of narrower features. The interpretation of the broader features is discussed in terms of the hypothesis of identification with emission by polycyclic aromatic hydrocarbons. 18 refs.

  17. Measuring charge carrier mobility in photovoltaic devices with micron-scale resolution

    SciTech Connect

    Ashraf, A.; Dissanayake, D. M. N. M.; Eisaman, M. D.

    2015-03-16

    We present a charge-extraction technique, micron-scale charge extraction by linearly increasing voltage, which enables simultaneous spatially resolved measurements of charge carrier mobility and photocurrent in thin-film photovoltaic devices with micron-scale resolution. An intensity-modulated laser with beam diameter near the optical diffraction limit is scanned over the device, while a linear voltage ramp in reverse bias is applied at each position of illumination. We calculate the majority carrier mobility, photocurrent, and number of photogenerated charge carriers from the resulting current transient. We demonstrate this technique on an organic photovoltaic device, but it is applicable to a wide range of photovoltaic materials.

  18. Optical response at 10.6 microns in tungsten silicide Schottky barrier diodes

    NASA Technical Reports Server (NTRS)

    Kumar, Sandeep; Boyd, Joseph T.; Jackson, Howard E.

    1987-01-01

    Optical response to radiation at a wavelength of 10.6 microns in tungsten silicide-silicon Schottky barrier diodes has been observed. Incident photons excite electrons by means of junction plasmon assisted inelastic electron tunneling. At 78 K, a peak in the second derivative of current versus junction bias voltage was observed at a voltage corresponding to the energy of photons having a wavelength of 10.6 microns. This peak increased with increasing incident laser power, saturating at the highest laser powers investigated.

  19. Solid methane on Triton and Pluto - 3- to 4-micron spectrophotometry

    SciTech Connect

    Spencer, J.R.; Buie, M.W.; Bjoraker, G.L. Space Telescope Science Institute, Baltimore, MD NASA, Goddard Space Flight Center, Greenbelt, MD )

    1990-12-01

    Methane has been identified in the Pluto/Charon system on the basis of absorption features in the reflectance spectrum at 1.5 and 2.3 microns; attention is presently given to observations of a 3.25 micron-centered deep absorption feature in Triton and Pluto/Charon system reflectance spectra. This absorption may indicate the presence of solid methane, constituting either the dominant surface species or a mixture with a highly transparent substance, such as N2 frost. 35 refs.

  20. Geometric effects on the mechanical strengths of strong nanocrystalline rhodium sub-micron structures

    NASA Astrophysics Data System (ADS)

    Tsui, Ting Y.; Jahed, Zeinab; Evans, R. D.; Burek, Michael J.

    2015-06-01

    Sub-micron scale nanocrystalline rhodium pillars were fabricated by electron beam lithography and electroplating techniques. The fabricated specimens included solid core pillars and columnar structure with more complex cross-sectional geometries, including x-shaped and annulus shaped. Among these specimens, two groups of sub-micron scale annulus structures with sidewall thicknesses of 250 and 205 nm were fabricated. All of the structures have outer diameters of ~1 μm and consist of average grain size smaller than 22 nm. Uniaxial compression results reveal these rhodium pillars are very strong with true flow stresses exceeding 5 GPa and are not sensitive to the sample cross-sectional geometries.