Science.gov

Sample records for 14-3-3 binding motif

  1. 14-3-3-Pred: improved methods to predict 14-3-3-binding phosphopeptides

    PubMed Central

    Madeira, Fábio; Tinti, Michele; Murugesan, Gavuthami; Berrett, Emily; Stafford, Margaret; Toth, Rachel; Cole, Christian; MacKintosh, Carol; Barton, Geoffrey J.

    2015-01-01

    Motivation: The 14-3-3 family of phosphoprotein-binding proteins regulates many cellular processes by docking onto pairs of phosphorylated Ser and Thr residues in a constellation of intracellular targets. Therefore, there is a pressing need to develop new prediction methods that use an updated set of 14-3-3-binding motifs for the identification of new 14-3-3 targets and to prioritize the downstream analysis of >2000 potential interactors identified in high-throughput experiments. Results: Here, a comprehensive set of 14-3-3-binding targets from the literature was used to develop 14-3-3-binding phosphosite predictors. Position-specific scoring matrix, support vector machines (SVM) and artificial neural network (ANN) classification methods were trained to discriminate experimentally determined 14-3-3-binding motifs from non-binding phosphopeptides. ANN, position-specific scoring matrix and SVM methods showed best performance for a motif window spanning from −6 to +4 around the binding phosphosite, achieving Matthews correlation coefficient of up to 0.60. Blind prediction showed that all three methods outperform two popular 14-3-3-binding site predictors, Scansite and ELM. The new methods were used for prediction of 14-3-3-binding phosphosites in the human proteome. Experimental analysis of high-scoring predictions in the FAM122A and FAM122B proteins confirms the predictions and suggests the new 14-3-3-predictors will be generally useful. Availability and implementation: A standalone prediction web server is available at http://www.compbio.dundee.ac.uk/1433pred. Human candidate 14-3-3-binding phosphosites were integrated in ANIA: ANnotation and Integrated Analysis of the 14-3-3 interactome database. Contact: cmackintosh@dundee.ac.uk or gjbarton@dundee.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25735772

  2. Evolution of signal multiplexing by 14-3-3-binding 2R-ohnologue protein families in the vertebrates

    PubMed Central

    Tinti, Michele; Johnson, Catherine; Toth, Rachel; Ferrier, David E. K.; MacKintosh, Carol

    2012-01-01

    14-3-3 proteins regulate cellular responses to stimuli by docking onto pairs of phosphorylated residues on target proteins. The present study shows that the human 14-3-3-binding phosphoproteome is highly enriched in 2R-ohnologues, which are proteins in families of two to four members that were generated by two rounds of whole genome duplication at the origin of the vertebrates. We identify 2R-ohnologue families whose members share a ‘lynchpin’, defined as a 14-3-3-binding phosphosite that is conserved across members of a given family, and aligns with a Ser/Thr residue in pro-orthologues from the invertebrate chordates. For example, the human receptor expression enhancing protein (REEP) 1–4 family has the commonest type of lynchpin motif in current datasets, with a phosphorylatable serine in the –2 position relative to the 14-3-3-binding phosphosite. In contrast, the second 14-3-3-binding sites of REEPs 1–4 differ and are phosphorylated by different kinases, and hence the REEPs display different affinities for 14-3-3 dimers. We suggest a conceptual model for intracellular regulation involving protein families whose evolution into signal multiplexing systems was facilitated by 14-3-3 dimer binding to lynchpins, which gave freedom for other regulatory sites to evolve. While increased signalling complexity was needed for vertebrate life, these systems also generate vulnerability to genetic disorders. PMID:22870394

  3. Characterization and small-molecule stabilization of the multisite tandem binding between 14-3-3 and the R domain of CFTR.

    PubMed

    Stevers, Loes M; Lam, Chan V; Leysen, Seppe F R; Meijer, Femke A; van Scheppingen, Daphne S; de Vries, Rens M J M; Carlile, Graeme W; Milroy, Lech G; Thomas, David Y; Brunsveld, Luc; Ottmann, Christian

    2016-03-01

    Cystic fibrosis is a fatal genetic disease, most frequently caused by the retention of the CFTR (cystic fibrosis transmembrane conductance regulator) mutant protein in the endoplasmic reticulum (ER). The binding of the 14-3-3 protein to the CFTR regulatory (R) domain has been found to enhance CFTR trafficking to the plasma membrane. To define the mechanism of action of this protein-protein interaction, we have examined the interaction in vitro. The disordered multiphosphorylated R domain contains nine different 14-3-3 binding motifs. Furthermore, the 14-3-3 protein forms a dimer containing two amphipathic grooves that can potentially bind these phosphorylated motifs. This results in a number of possible binding mechanisms between these two proteins. Using multiple biochemical assays and crystal structures, we show that the interaction between them is governed by two binding sites: The key binding site of CFTR (pS768) occupies one groove of the 14-3-3 dimer, and a weaker, secondary binding site occupies the other binding groove. We show that fusicoccin-A, a natural-product tool compound used in studies of 14-3-3 biology, can stabilize the interaction between 14-3-3 and CFTR by selectively interacting with a secondary binding motif of CFTR (pS753). The stabilization of this interaction stimulates the trafficking of mutant CFTR to the plasma membrane. This definition of the druggability of the 14-3-3-CFTR interface might offer an approach for cystic fibrosis therapeutics.

  4. The Peripheral Binding of 14-3-3γ to Membranes Involves Isoform-Specific Histidine Residues

    PubMed Central

    Ying, Ming; Halskau, Øyvind; Baumann, Anne; Rodriguez-Larrea, David; Costas, Miguel; Underhaug, Jarl; Sanchez-Ruiz, Jose M.; Martinez, Aurora

    2012-01-01

    Mammalian 14-3-3 protein scaffolds include seven conserved isoforms that bind numerous phosphorylated protein partners and regulate many cellular processes. Some 14-3-3-isoforms, notably γ, have elevated affinity for membranes, which might contribute to modulate the subcellular localization of the partners and substantiate the importance of investigating molecular mechanisms of membrane interaction. By applying surface plasmon resonance we here show that the binding to phospholipid bilayers is stimulated when 14-3-3γ is complexed with its partner, a peptide corresponding to the Ser19-phosphorylated N-terminal region of tyrosine hydroxylase. Moreover, membrane interaction is dependent on salts of kosmotropic ions, which also stabilize 14-3-3γ. Electrostatic analysis of available crystal structures of γ and of the non-membrane-binding ζ-isoform, complemented with molecular dynamics simulations, indicate that the electrostatic potential distribution of phosphopeptide-bound 14-3-3γ is optimal for interaction with the membrane through amphipathic helices at the N-terminal dimerization region. In addition, His158, and especially His195, both specific to 14-3-3γ and located at the convex lateral side, appeared to be pivotal for the ligand induced membrane interaction, as corroborated by site-directed mutagenesis. The participation of these histidine residues might be associated to their increased protonation upon membrane binding. Overall, these results reveal membrane-targeting motifs and give insights on mechanisms that furnish the 14-3-3γ scaffold with the capacity for tuned shuffling from soluble to membrane-bound states. PMID:23189152

  5. A fusicoccin binding protein belongs to the family of 14-3-3 brain protein homologs.

    PubMed Central

    Korthout, H A; de Boer, A H

    1994-01-01

    The fusicoccin binding protein (FCBP) is a highly conserved plasma membrane protein present in all higher plants tested thus far. It exhibits high- and low-affinity binding for the fungal toxin fusicoccin (FC). We purified the active FCBP from a fraction highly enriched in plasma membrane by selective precipitation and anion exchange chromatography. After SDS-PAGE, the two FCBP subunits of 30 and 31 kD were detected as major bands. Amino acid sequence analysis of the 31-kD polypeptide displayed a high degree of identity with so-called 14-3-3 proteins, a class of mammalian brain proteins initially described as regulators of neurotransmitter synthesis and protein kinase C inhibitors. Thereafter, we affinity purified the 30- and 31-kD FCBP subunits, using biotinylated FC in combination with a monomeric avidin column. Immunodecoration of these 30- and 31-kD FCBP subunits with polyclonal antibodies raised against a 14-3-3 homolog from yeast confirmed the identity of the FCBP as a 14-3-3 homolog. Similar to all 14-3-3 protein homologs, the FCBP seems to exist as a dimer in native form. Thus far, the FCBP is the only 14-3-3 homolog with a receptor-like function. The conserved structure of the 14-3-3 protein family is a further indication that the FCBP plays an important role in the physiology of higher plants. PMID:7827499

  6. Characterization and small-molecule stabilization of the multisite tandem binding between 14-3-3 and the R domain of CFTR

    PubMed Central

    Stevers, Loes M.; Lam, Chan V.; Leysen, Seppe F. R.; Meijer, Femke A.; van Scheppingen, Daphne S.; de Vries, Rens M. J. M.; Carlile, Graeme W.; Milroy, Lech G.; Thomas, David Y.; Brunsveld, Luc; Ottmann, Christian

    2016-01-01

    Cystic fibrosis is a fatal genetic disease, most frequently caused by the retention of the CFTR (cystic fibrosis transmembrane conductance regulator) mutant protein in the endoplasmic reticulum (ER). The binding of the 14-3-3 protein to the CFTR regulatory (R) domain has been found to enhance CFTR trafficking to the plasma membrane. To define the mechanism of action of this protein–protein interaction, we have examined the interaction in vitro. The disordered multiphosphorylated R domain contains nine different 14-3-3 binding motifs. Furthermore, the 14-3-3 protein forms a dimer containing two amphipathic grooves that can potentially bind these phosphorylated motifs. This results in a number of possible binding mechanisms between these two proteins. Using multiple biochemical assays and crystal structures, we show that the interaction between them is governed by two binding sites: The key binding site of CFTR (pS768) occupies one groove of the 14-3-3 dimer, and a weaker, secondary binding site occupies the other binding groove. We show that fusicoccin-A, a natural-product tool compound used in studies of 14-3-3 biology, can stabilize the interaction between 14-3-3 and CFTR by selectively interacting with a secondary binding motif of CFTR (pS753). The stabilization of this interaction stimulates the trafficking of mutant CFTR to the plasma membrane. This definition of the druggability of the 14-3-3–CFTR interface might offer an approach for cystic fibrosis therapeutics. PMID:26888287

  7. Functional relationship between CABIT, SAM and 14-3-3 binding domains of GAREM1 that play a role in its subcellular localization

    SciTech Connect

    Nishino, Tasuku; Matsunaga, Ryota; Konishi, Hiroaki

    2015-08-21

    GAREM1 (Grb2-associated regulator of Erk/MAPK1) is an adaptor protein that is involved in the epidermal growth factor (EGF) pathway. The nuclear localization of GAREM1 depends on the nuclear localization sequence (NLS), which is located at the N-terminal CABIT (cysteine-containing, all in Themis) domain. Here, we identified 14-3-3ε as a GAREM-binding protein, and its binding site is closely located to the NLS. This 14-3-3 binding site was of the atypical type and independent of GAREM phosphorylation. Moreover, the binding of 14-3-3 had an effect on the nuclear localization of GAREM1. Unexpectedly, we observed that the CABIT domain had intramolecular association with the C-terminal SAM (sterile alpha motif) domain. This association might be inhibited by binding of 14-3-3 at the CABIT domain. Our results demonstrate that the mechanism underlying the nuclear localization of GAREM1 depends on its NLS in the CABIT domain, which is controlled by the binding of 14-3-3 and the C-terminal SAM domain. We suggest that the interplay between 14-3-3, SAM domain and CABIT domain might be responsible for the distribution of GAREM1 in mammalian cells. - Highlights: • 14-3-3ε regulated the nuclear localization of GAREM1 as its binding partner. • The atypical 14-3-3 binding site of GAREM1 is located near the NLS in CABIT domain. • The CABIT domain had intramolecular association with the SAM domain in GAREM1. • Subcellular localization of GAREM1 is affected with its CABIT-SAM interaction.

  8. Binding of 14-3-3 reader proteins to phosphorylated DNMT1 facilitates aberrant DNA methylation and gene expression

    PubMed Central

    Estève, Pierre-Olivier; Zhang, Guoqiang; Ponnaluri, V.K. Chaithanya; Deepti, Kanneganti; Chin, Hang Gyeong; Dai, Nan; Sagum, Cari; Black, Karynne; Corrêa, Ivan R.; Bedford, Mark T.; Cheng, Xiaodong; Pradhan, Sriharsa

    2016-01-01

    Mammalian DNA (cytosine-5) methyltransferase 1 (DNMT1) is essential for maintenance methylation. Phosphorylation of Ser143 (pSer143) stabilizes DNMT1 during DNA replication. Here, we show 14-3-3 is a reader protein of DNMT1pSer143. In mammalian cells 14-3-3 colocalizes and binds DNMT1pSer143 post-DNA replication. The level of DNMT1pSer143 increased with overexpression of 14-3-3 and decreased by its depletion. Binding of 14-3-3 proteins with DNMT1pSer143 resulted in inhibition of DNA methylation activity in vitro. In addition, overexpression of 14-3-3 in NIH3T3 cells led to decrease in DNMT1 specific activity resulting in hypomethylation of the genome that was rescued by transfection of DNMT1. Genes representing cell migration, mobility, proliferation and focal adhesion pathway were hypomethylated and overexpressed. Furthermore, overexpression of 14-3-3 also resulted in enhanced cell invasion. Analysis of TCGA breast cancer patient data showed significant correlation for DNA hypomethylation and reduced patient survival with increased 14-3-3 expressions. Therefore, we suggest that 14-3-3 is a crucial reader of DNMT1pSer143 that regulates DNA methylation and altered gene expression that contributes to cell invasion. PMID:26553800

  9. Subcellular Targeting of p33ING1b by Phosphorylation-Dependent 14-3-3 Binding Regulates p21WAF1 Expression

    PubMed Central

    Gong, Wei; Russell, Michael; Suzuki, Keiko; Riabowol, Karl

    2006-01-01

    ING1 is a type II tumor suppressor that affects cell growth, stress signaling, apoptosis, and DNA repair by altering chromatin structure and regulating transcription. Decreased ING1 expression is seen in several human cancers, and mislocalization has been noted in diverse types of cancer cells. Aberrant targeting may, therefore, functionally inactivate ING1. Bioinformatics analysis identified a sequence between the nuclear localization sequence and plant homeodomain domains of ING1 that closely matched the binding motif of 14-3-3 proteins that target cargo proteins to specific subcellular locales. We find that the widely expressed p33ING1b splicing isoform of ING1 interacts with members of the 14-3-3 family of proteins and that this interaction is regulated by the phosphorylation status of ING1. 14-3-3 binding resulted in significant amounts of p33ING1b protein being tethered in the cytoplasm. As shown previously, ectopic expression of p33ING1b increased levels of the p21Waf1 cyclin-dependent kinase inhibitor upon UV-induced DNA damage. Overexpression of 14-3-3 inhibited the up-regulation of p21Waf1 by p33ING1b, consistent with the idea that mislocalization blocks at least one of ING1's biological activities. These data support the idea that the 14-3-3 proteins play a crucial role in regulating the activity of p33ING1b by directing its subcellular localization. PMID:16581770

  10. 14-3-3 theta binding to cell cycle regulatory factors is enhanced by HIV-1 Vpr

    PubMed Central

    Bolton, Diane L; Barnitz, Robert A; Sakai, Keiko; Lenardo, Michael J

    2008-01-01

    Background Despite continuing advances in our understanding of AIDS pathogenesis, the mechanism of CD4+ T cell depletion in HIV-1-infected individuals remains unclear. The HIV-1 Vpr accessory protein causes cell death, likely through a mechanism related to its ability to arrest cells in the G2,M phase. Recent evidence implicated the scaffold protein, 14-3-3, in Vpr cell cycle blockade. Results We found that in human T cells, 14-3-3 plays an active role in mediating Vpr-induced cell cycle arrest and reveal a dramatic increase in the amount of Cdk1, Cdc25C, and CyclinB1 bound to 14-3-3 θ during Vprv-induced G2,M arrest. By contrast, a cell-cycle-arrest-dead Vpr mutant failed to augment 14-3-3 θ association with Cdk1 and CyclinB1. Moreover, G2,M arrest caused by HIV-1 infection strongly correlated with a disruption in 14-3-3 θ binding to centrosomal proteins, Plk1 and centrin. Finally, Vpr caused elevated levels of CyclinB1, Plk1, and Cdk1 in a complex with the nuclear transport and spindle assembly protein, importin β. Conclusion Thus, our data reveal a new facet of Vpr-induced cell cycle arrest involving previously unrecognized abnormal rearrangements of multiprotein assemblies containing key cell cycle regulatory proteins. Reviewers This article was reviewed by David Kaplan, Nathaniel R. Landau and Yan Zhou. PMID:18445273

  11. Rethinking the role of phosducin: Light-regulated binding of phosducin to 14-3-3 in rod inner segments

    PubMed Central

    Nakano, Koichi; Chen, Jing; Tarr, George E.; Yoshida, Tatsuro; Flynn, Julia M.; Bitensky, Mark W.

    2001-01-01

    Phosducin (Pd), a small protein found abundantly in photoreceptors, is widely assumed to regulate light sensitivity in the rod outer segment through interaction with the heterotrimeric G protein transducin. But, based on histochemistry and Western blot analysis, Pd is found almost entirely in the inner segment in both light and dark, most abundantly near the rod synapse. We report a second small protein, 14-3-3, in the rod with a similar distribution. By immunoprecipitation, phospho-Pd is found to interact with 14-3-3 in material from dark-adapted retina, and this interaction is markedly diminished by light, which dephosphorylates Pd. Conversely, unphosphorylated Pd binds to inner segment G protein(s) in the light. From these results and reported functions of 14-3-3, we have constructed a hypothesis for the regulation of light sensitivity at the level of rod synapse. By dissociating the Pd/14-3-3 complex, light enables both proteins to function in this role. PMID:11287646

  12. Deletion of the cruciform binding domain in CBP/14-3-3 displays reduced origin binding and initiation of DNA replication in budding yeast

    PubMed Central

    Yahyaoui, Wafaa; Callejo, Mario; Price, Gerald B; Zannis-Hadjopoulos, Maria

    2007-01-01

    Background Initiation of eukaryotic DNA replication involves many protein-protein and protein-DNA interactions. We have previously shown that 14-3-3 proteins bind cruciform DNA and associate with mammalian and yeast replication origins in a cell cycle dependent manner. Results By expressing the human 14-3-3ε, as the sole member of 14-3-3 proteins family in Saccharomyces cerevisiae, we show that 14-3-3ε complements the S. cerevisiae Bmh1/Bmh2 double knockout, conserves its cruciform binding activity, and associates in vivo with the yeast replication origins ARS307. Deletion of the α5-helix, the potential cruciform binding domain of 14-3-3, decreased the cruciform binding activity of the protein as well as its association with the yeast replication origins ARS307 and ARS1. Furthermore, the mutant cells had a reduced ability to stably maintain plasmids bearing one or multiple origins. Conclusion 14-3-3, a cruciform DNA binding protein, associates with yeast origins of replication and functions as an initiator of DNA replication, presumably through binding to cruciform DNA forming at yeast replicators. PMID:17430600

  13. 14-3-3 and its binding partners are regulators of protein–protein interactions during spermatogenesis

    PubMed Central

    Sun, Shengyi; Wong, Elissa W P; Li, Michelle W M; Lee, Will M; Cheng, C Yan

    2009-01-01

    During spermatogenesis, spermiation takes place at the adluminal edge of the seminiferous epithelium at stage VIII of the epithelial cycle during which fully developed spermatids (i.e. spermatozoa) detach from the epithelium in adult rat testes. This event coincides with the migration of preleptotene/leptotene spermatocytes across the blood–testis barrier from the basal to the apical (or adluminal) compartment. At stage XIV of the epithelial cycle, Pachytene spermatocytes (diploid, 2n) differentiate into diplotene spermatocytes (tetraploid, 4n) in the apical compartment of the epithelium, which begin meiosis I to be followed by meiosis II to form spermatids (haploid, 1n) at stage XIVof the epithelial cycle. These spermatids, in turn, undergo extensive morphological changes and traverse the seminiferous epithelium until they differentiate into elongated spermatids. Thus, there are extensive changes at the Sertoli–Sertoli and Sertoli–germ cell interface via protein ‘coupling’ and ‘uncoupling’ between cell adhesion protein complexes, as well as changes in interactions between integral membrane proteins and their peripheral adaptors, regulatory protein kinases and phosphatases, and the cytoskeletal proteins. These precisely coordinated protein–protein interactions affect cell adhesion and cell movement. In this review, we focus on the 14-3-3 protein family, whose members have different binding partners in the seminiferous epithelium. Recent studies have illustrated that 14-3-3 affects protein–protein interactions in the seminiferous epithelium, and regulates cell adhesion possibly via its effects on intracellular protein trafficking and cell-polarity proteins. This review provides a summary on the latest findings regarding the role of 14-3-3 family of proteins and their potential implications on spermatogenesis. We also highlight research areas that deserve attentions by investigators. PMID:19366886

  14. Structural characterization of a unique interface between carbohydrate response element-binding protein (ChREBP) and 14-3-3β protein.

    PubMed

    Ge, Qiang; Huang, Nian; Wynn, R Max; Li, Yang; Du, Xinlin; Miller, Bonnie; Zhang, Hong; Uyeda, Kosaku

    2012-12-07

    Carbohydrate response element-binding protein (ChREBP) is an insulin-independent, glucose-responsive transcription factor that is expressed at high levels in liver hepatocytes where it plays a critical role in converting excess carbohydrates to fat for storage. In response to fluctuating glucose levels, hepatic ChREBP activity is regulated in large part by nucleocytoplasmic shuttling of ChREBP protein via interactions with 14-3-3 proteins. The N-terminal ChREBP regulatory region is necessary and sufficient for glucose-responsive ChREBP nuclear import and export. Here, we report the crystal structure of a complex of 14-3-3β bound to the N-terminal regulatory region of ChREBP at 2.4 Å resolution. The crystal structure revealed that the α2 helix of ChREBP (residues 117-137) adopts a well defined α-helical conformation and binds 14-3-3 in a phosphorylation-independent manner that is different from all previously characterized 14-3-3 and target protein-binding modes. ChREBP α2 interacts with 14-3-3 through both electrostatic and van der Waals interactions, and the binding is partially mediated by a free sulfate or phosphate. Structure-based mutagenesis and binding assays indicated that disrupting the observed 14-3-3 and ChREBP α2 interface resulted in a loss of complex formation, thus validating the novel protein interaction mode in the 14-3-3β·ChREBP α2 complex.

  15. Phosphorylation of HopQ1, a Type III Effector from Pseudomonas syringae, Creates a Binding Site for Host 14-3-3 Proteins1[C][W][OA

    PubMed Central

    Giska, Fabian; Lichocka, Małgorzata; Piechocki, Marcin; Dadlez, Michał; Schmelzer, Elmon; Hennig, Jacek; Krzymowska, Magdalena

    2013-01-01

    HopQ1 (for Hrp outer protein Q), a type III effector secreted by Pseudomonas syringae pv phaseolicola, is widely conserved among diverse genera of plant bacteria. It promotes the development of halo blight in common bean (Phaseolus vulgaris). However, when this same effector is injected into Nicotiana benthamiana cells, it is recognized by the immune system and prevents infection. Although the ability to synthesize HopQ1 determines host specificity, the role it plays inside plant cells remains unexplored. Following transient expression in planta, HopQ1 was shown to copurify with host 14-3-3 proteins. The physical interaction between HopQ1 and 14-3-3a was confirmed in planta using the fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy technique. Moreover, mass spectrometric analyses detected specific phosphorylation of the canonical 14-3-3 binding site (RSXpSXP, where pS denotes phosphoserine) located in the amino-terminal region of HopQ1. Amino acid substitution within this motif abrogated the association and led to altered subcellular localization of HopQ1. In addition, the mutated HopQ1 protein showed reduced stability in planta. These data suggest that the association between host 14-3-3 proteins and HopQ1 is important for modulating the properties of this bacterial effector. PMID:23396834

  16. Multisite phosphorylation of 14-3-3 proteins by calcium-dependent protein kinases

    PubMed Central

    Swatek, Kirby N.; Wilson, Rashaun S.; Ahsan, Nagib; Tritz, Rebecca L.; Thelen, Jay J.

    2014-01-01

    Plant 14-3-3 proteins are phosphorylated at multiple sites in vivo; however, the protein kinase(s) responsible are unknown. Of the 34 CPK (calcium-dependent protein kinase) paralogues in Arabidopsis thaliana, three (CPK1, CPK24 and CPK28) contain a canonical 14-3-3-binding motif. These three, in addition to CPK3, CPK6 and CPK8, were tested for activity against recombinant 14-3-3 proteins χ and ε. Using an MS-based quantitative assay we demonstrate phosphorylation of 14-3-3 χ and ε at a total of seven sites, one of which is an in vivo site discovered in Arabidopsis. CPK autophosphorylation was also comprehensively monitored by MS and revealed a total of 45 sites among the six CPKs analysed, most of which were located within the N-terminal variable and catalytic domains. Among these CPK autophosphorylation sites was Tyr463 within the calcium-binding EF-hand domain of CPK28. Of all CPKs assayed, CPK28, which contained an autophosphorylation site (Ser43) within a canonical 14-3-3-binding motif, showed the highest activity against 14-3-3 proteins. Phosphomimetic mutagenesis of Ser72 to aspartate on 14-3-3χ, which is adjacent to the 14-3-3-binding cleft and conserved among all 14-3-3 isoforms, prevented 14-3-3-mediated inhibition of phosphorylated nitrate reductase. PMID:24438037

  17. Yeast 14-3-3 proteins.

    PubMed

    van Heusden, G Paul H; Steensma, H Yde

    2006-02-01

    14-3-3 proteins form a family of highly conserved proteins which are present in all eukaryotic organisms investigated, often in multiple isoforms, up to 13 in some plants. They interact with more than 200 different, mostly phosphorylated proteins. The molecular consequences of 14-3-3 binding are diverse: this binding may result in stabilization of the active or inactive phosphorylated form of the protein, to a conformational alteration leading to activation or inhibition, to a different subcellular localization, to the interaction with other proteins or to shielding of binding sites. The binding partners, and hence the 14-3-3 proteins, are involved in almost every cellular process and 14-3-3 proteins have been linked to several diseases, such as cancer, Alzheimer's disease, the neurological Miller-Dieker and spinocerebellar ataxia type 1 diseases and bovine spongiform encephalopathy (BSE). The yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe both have two genes encoding 14-3-3 proteins, BMH1 and BMH2 and rad24 and rad25, respectively. In these yeasts, 14-3-3 proteins are essential in most laboratory strains. As in higher eukaryotes, yeast 14-3-3 proteins bind to numerous proteins involved in a variety of cellular processes. Recent genome-wide studies on yeast strains with impaired 14-3-3 function support the participation of 14-3-3 proteins in numerous yeast cellular processes. Given the high evolutionary conservation of the 14-3-3 proteins, the experimental accessibility and relative simplicity of yeasts make them excellent model organisms for elucidating the function of the 14-3-3 protein family.

  18. Regulation of IRSp53-Dependent Filopodial Dynamics by Antagonism between 14-3-3 Binding and SH3-Mediated Localization ▿ †

    PubMed Central

    Robens , Jeffrey M.; Yeow-Fong, Lee; Ng, Elsa; Hall, Christine; Manser, Ed

    2010-01-01

    Filopodia are dynamic structures found at the leading edges of most migrating cells. IRSp53 plays a role in filopodium dynamics by coupling actin elongation with membrane protrusion. IRSp53 is a Cdc42 effector protein that contains an N-terminal inverse-BAR (Bin-amphipysin-Rvs) domain (IRSp53/MIM homology domain [IMD]) and an internal SH3 domain that associates with actin regulatory proteins, including Eps8. We demonstrate that the SH3 domain functions to localize IRSp53 to lamellipodia and that IRSp53 mutated in its SH3 domain fails to induce filopodia. Through SH3 domain-swapping experiments, we show that the related IRTKS SH3 domain is not functional in lamellipodial localization. IRSp53 binds to 14-3-3 after phosphorylation in a region that lies between the CRIB and SH3 domains. This association inhibits binding of the IRSp53 SH3 domain to proteins such as WAVE2 and Eps8 and also prevents Cdc42-GTP interaction. The antagonism is achieved by phosphorylation of two related 14-3-3 binding sites at T340 and T360. In the absence of phosphorylation at these sites, filopodium lifetimes in cells expressing exogenous IRSp53 are extended. Our work does not conform to current views that the inverse-BAR domain or Cdc42 controls IRSp53 localization but provides an alternative model of how IRSp53 is recruited (and released) to carry out its functions at lamellipodia and filopodia. PMID:19933840

  19. A dual phosphorylation switch controls 14-3-3-dependent cell surface expression of TASK-1

    PubMed Central

    Kilisch, Markus; Lytovchenko, Olga; Arakel, Eric C.; Bertinetti, Daniela; Schwappach, Blanche

    2016-01-01

    ABSTRACT The transport of the K+ channels TASK-1 and TASK-3 (also known as KCNK3 and KCNK9, respectively) to the cell surface is controlled by the binding of 14-3-3 proteins to a trafficking control region at the extreme C-terminus of the channels. The current model proposes that phosphorylation-dependent binding of 14-3-3 sterically masks a COPI-binding motif. However, the direct effects of phosphorylation on COPI binding and on the binding parameters of 14-3-3 isoforms are still unknown. We find that phosphorylation of the trafficking control region prevents COPI binding even in the absence of 14-3-3, and we present a quantitative analysis of the binding of all human 14-3-3 isoforms to the trafficking control regions of TASK-1 and TASK-3. Surprisingly, the affinities of 14-3-3 proteins for TASK-1 are two orders of magnitude lower than for TASK-3. Furthermore, we find that phosphorylation of a second serine residue in the C-terminus of TASK-1 inhibits 14-3-3 binding. Thus, phosphorylation of the trafficking control region can stimulate or inhibit transport of TASK-1 to the cell surface depending on the target serine residue. Our findings indicate that control of TASK-1 trafficking by COPI, kinases, phosphatases and 14-3-3 proteins is highly dynamic. PMID:26743085

  20. Two genes encoding GF14 (14-3-3) proteins in Zea mays. Structure, expression, and potential regulation by the G-box binding complex.

    PubMed Central

    de Vetten, N C; Ferl, R J

    1994-01-01

    Two maize (Zea mays) genes, designated GRF1 and GRF2, have been isolated and characterized. The proteins encoded by these genes, called GF14 proteins, participate in protein/DNA complexes and show more than 60% identity with a highly conserved, widely distributed protein family, collectively referred to as 14-3-3 proteins. Members of the 14-3-3 protein family have been reported to activate Tyr and Trp hydroxylases, modulate protein kinase C activity, and activate ADP-ribosyltransferase. The mRNAs of the GRF genes are encoded by six exons interrupted by five introns. The transcriptional units of the GRF genes were found to be very similar, with complete conservation of the intron positions. In addition, the length and nucleotide sequences of the two genes' introns were highly conserved. The 5' flanking sequences of the two GRF genes were compared and regions of homology and divergence identified. This comparison revealed the presence of a conserved G-box element in the 5' flanking region of both genes. Electrophoretic mobility shift assays of maize protein extract with the GRF G-box indicates that GBF binds to this G-box site in the 5' up stream region of GRF. Antibody supershifts indicate that GF14 protein is associated with the G-box-binding complex that interacts with the GRF upstream region. PMID:7846163

  1. Regulation of the wheat MAP kinase phosphatase 1 by 14-3-3 proteins.

    PubMed

    Ghorbel, Mouna; Cotelle, Valérie; Ebel, Chantal; Zaidi, Ikram; Ormancey, Mélanie; Galaud, Jean-Philippe; Hanin, Moez

    2017-04-01

    Plant MAP kinase phosphatases (MKPs) are major regulators of MAPK signaling pathways and play crucial roles in controlling growth, development and stress responses. The presence of several functional domains in plant MKPs such as a dual specificity phosphatase catalytic domain, gelsolin, calmodulin-binding and serine-rich domains, suggests that MKPs can interact with distinct cellular partners, others than MAPKs. In this report, we identified a canonical mode I 14-3-3-binding motif (574KLPSLP579) located at the carboxy-terminal region of the wheat MKP, TMKP1. We found that this motif is well-conserved among other MKPs from monocots including Hordeum vulgare, Brachypodium distachyon and Aegilops taushii. Using co-immunoprecipitation assays, we provide evidence for interaction between TMKP1 and 14-3-3 proteins in wheat. Moreover, the phosphatase activity of TMKP1 is increased in a phospho-dependent manner by either Arabidopsis or yeast 14-3-3 isoforms. TMKP1 activation by 14-3-3 proteins is enhanced by Mn(2+), whereas in the presence of Ca(2+) ions, TMKP1 activation was limited to Arabidopsis 14-3-3φ (phi), an isoform harboring an EF-hand motif. Such findings strongly suggest that 14-3-3 proteins, in conjunction with specific divalent cations, may stimulate TMKP1 activity and point-out that 14-3-3 proteins bind and regulate the activity of a MKP in eukaryotes.

  2. Structural basis for protein–protein interactions in the 14-3-3 protein family

    PubMed Central

    Yang, Xiaowen; Lee, Wen Hwa; Sobott, Frank; Papagrigoriou, Evangelos; Robinson, Carol V.; Grossmann, J. Günter; Sundström, Michael; Doyle, Declan A.; Elkins, Jonathan M.

    2006-01-01

    The seven members of the human 14-3-3 protein family regulate a diverse range of cell signaling pathways by formation of protein–protein complexes with signaling proteins that contain phosphorylated Ser/Thr residues within specific sequence motifs. Previously, crystal structures of three 14-3-3 isoforms (zeta, sigma, and tau) have been reported, with structural data for two isoforms deposited in the Protein Data Bank (zeta and sigma). In this study, we provide structural detail for five 14-3-3 isoforms bound to ligands, providing structural coverage for all isoforms of a human protein family. A comparative structural analysis of the seven 14-3-3 proteins revealed specificity determinants for binding of phosphopeptides in a specific orientation, target domain interaction surfaces and flexible adaptation of 14-3-3 proteins through domain movements. Specifically, the structures of the beta isoform in its apo and peptide bound forms showed that its binding site can exhibit structural flexibility to facilitate binding of its protein and peptide partners. In addition, the complex of 14-3-3 beta with the exoenzyme S peptide displayed a secondary structural element in the 14-3-3 peptide binding groove. These results show that the 14-3-3 proteins are adaptable structures in which internal flexibility is likely to facilitate recognition and binding of their interaction partners. PMID:17085597

  3. 14-3-3-dependent inhibition of the deubiquitinating activity of UBPY and its cancellation in the M phase.

    PubMed

    Mizuno, Emi; Kitamura, Naomi; Komada, Masayuki

    2007-10-01

    The deubiquitinating enzyme UBPY, also known as USP8, regulates cargo sorting and membrane traffic at early endosomes. Here we demonstrate the regulatory mechanism of the UBPY catalytic activity. We identified 14-3-3 epsilon, gamma, and zeta as UBPY-binding proteins using co-immunoprecipitation followed by mass spectrometric analysis. The 14-3-3 binding of UBPY was inhibited by mutating the consensus 14-3-3-binding motif RSYS(680)SP, by phosphatase treatment, and by competition with the Ser(680)-phosphorylated RSYS(680)SP peptide. Metabolic labeling with [(32)P]orthophosphate and immunoblotting using antibody against the phosphorylated 14-3-3-binding motif showed that Ser(680) is a major phosphorylation site in UBPY. These results indicated that 14-3-3s bind to the region surrounding Ser(680) in a phosphorylation-dependent manner. The mutation at Ser(680) led to enhanced ubiquitin isopeptidase activity of UBPY toward poly-ubiquitin chains and a cellular substrate, epidermal growth factor receptor, in vitro and in vivo. Moreover, addition of 14-3-3epsilon inhibited the UBPY activity in vitro. Finally, UBPY was dephosphorylated at Ser(680) and dissociated from 14-3-3s in the M phase, resulting in enhanced activity of UBPY during cell division. We conclude that UBPY is catalytically inhibited in a phosphorylation-dependent manner by 14-3-3s during the interphase, and this regulation is cancelled in the M phase.

  4. The 14-3-3s

    PubMed Central

    Ferl, Robert J; Manak, Michael S; Reyes, Matthew F

    2002-01-01

    Multiple members of the 14-3-3 protein family have been found in all eukaryotes so far investigated, yet they are apparently absent from prokaryotes. The major native forms of 14-3-3s are homo- and hetero-dimers, the biological functions of which are to interact physically with specific client proteins and thereby effect a change in the client. As a result, 14-3-3s are involved in a vast array of processes such as the response to stress, cell-cycle control, and apoptosis, serving as adapters, activators, and repressors. There are currently 133 full-length sequences available in GenBank for this highly conserved protein family. A phylogenetic tree based on the conserved middle core region of the protein sequences shows that, in plants, the 14-3-3 family can be divided into two clearly defined groups. The core region encodes an amphipathic groove that binds the multitude of client proteins that have conserved 14-3-3-recognition sequences. The amino and carboxyl termini of 14-3-3 proteins are much more divergent than the core region and may interact with isoform-specific client proteins and/or confer specialized subcellular and tissue localization. PMID:12184815

  5. A20 zinc finger protein inhibits TNF-induced apoptosis and stress response early in the signaling cascades and independently of binding to TRAF2 or 14-3-3 proteins.

    PubMed

    Lademann, U; Kallunki, T; Jäättelä, M

    2001-03-01

    A20 zinc finger protein is a negative regulator of tumor necrosis factor (TNF)-induced signaling pathways leading to apoptosis, stress response and inflammation. A20 has been shown to bind to TNF-receptor-associated factor 2 (TRAF2) and 14-3-3 chaperone proteins. Our data indicate that the zinc finger domain of A20 is sufficient and that neither TRAF2 nor 14-3-3 binding is necessary for the inhibitory effects of A20. Mutations in the 14-3-3 binding site of A20 did, however, result in a partial cleavage of A20 protein suggesting that 14-3-3 chaperone proteins may stabilize A20. Furthermore, we show that A20 acts early in TNF-induced signaling cascades blocking both TNF-induced rapid activation of c-Jun N-terminal kinase and processing of the receptor-associated caspase-8. Taken together our data indicate that the zinc finger domain of A20 contains all necessary functional domains required for the inhibition of TNF signaling and that A20 may function at the level of the receptor signaling complex.

  6. PRMT5 C-terminal Phosphorylation Modulates a 14-3-3/PDZ Interaction Switch.

    PubMed

    Espejo, Alexsandra B; Gao, Guozhen; Black, Karynne; Gayatri, Sitaram; Veland, Nicolas; Kim, Jeesun; Chen, Taiping; Sudol, Marius; Walker, Cheryl; Bedford, Mark T

    2017-02-10

    PRMT5 is the primary enzyme responsible for the deposition of the symmetric dimethylarginine in mammalian cells. In an effort to understand how PRMT5 is regulated, we identified a threonine phosphorylation site within a C-terminal tail motif, which is targeted by the Akt/serum- and glucocorticoid-inducible kinases. While investigating the function of this posttranslational modification, we serendipitously discovered that its free C-terminal tail binds PDZ domains (when unphosphorylated) and 14-3-3 proteins (when phosphorylated). In essence, a phosphorylation event within the last few residues of the C-terminal tail generates a posttranslational modification-dependent PDZ/14-3-3 interaction "switch." The C-terminal motif of PRMT5 is required for plasma membrane association, and loss of this switching capacity is not compatible with life. This signaling phenomenon was recently reported for the HPV E6 oncoprotein but has not yet been observed for mammalian proteins. To investigate the prevalence of PDZ/14-3-3 switching in signal transduction, we built a protein domain microarray that harbors PDZ domains and 14-3-3 proteins. We have used this microarray to interrogate the C-terminal tails of a small group of candidate proteins and identified ERBB4, PGHS2, and IRK1 (as well as E6 and PRMT5) as conforming to this signaling mode, suggesting that PDZ/14-3-3 switching may be a broad biological paradigm.

  7. 14-3-3-dependent inhibition of the deubiquitinating activity of UBPY and its cancellation in the M phase

    SciTech Connect

    Mizuno, Emi; Kitamura, Naomi; Komada, Masayuki

    2007-10-01

    The deubiquitinating enzyme UBPY, also known as USP8, regulates cargo sorting and membrane traffic at early endosomes. Here we demonstrate the regulatory mechanism of the UBPY catalytic activity. We identified 14-3-3 {epsilon}, {gamma}, and {zeta} as UBPY-binding proteins using co-immunoprecipitation followed by mass spectrometric analysis. The 14-3-3 binding of UBPY was inhibited by mutating the consensus 14-3-3-binding motif RSYS{sup 680}SP, by phosphatase treatment, and by competition with the Ser{sup 680}-phosphorylated RSYS{sup 680}SP peptide. Metabolic labeling with [{sup 32}P]orthophosphate and immunoblotting using antibody against the phosphorylated 14-3-3-binding motif showed that Ser{sup 680} is a major phosphorylation site in UBPY. These results indicated that 14-3-3s bind to the region surrounding Ser{sup 680} in a phosphorylation-dependent manner. The mutation at Ser{sup 680} led to enhanced ubiquitin isopeptidase activity of UBPY toward poly-ubiquitin chains and a cellular substrate, epidermal growth factor receptor, in vitro and in vivo. Moreover, addition of 14-3-3{epsilon} inhibited the UBPY activity in vitro. Finally, UBPY was dephosphorylated at Ser{sup 680} and dissociated from 14-3-3s in the M phase, resulting in enhanced activity of UBPY during cell division. We conclude that UBPY is catalytically inhibited in a phosphorylation-dependent manner by 14-3-3s during the interphase, and this regulation is cancelled in the M phase.

  8. 14-3-3 proteins: regulators of numerous eukaryotic proteins.

    PubMed

    van Heusden, G Paul H

    2005-09-01

    14-3-3 proteins form a family of highly conserved proteins capable of binding to more than 200 different mostly phosphorylated proteins. They are present in all eukaryotic organisms investigated, often in multiple isoforms, up to 13 in some plants. 14-3-3 binding partners are involved in almost every cellular process and 14-3-3 proteins play a key role in these processes. 14-3-3 proteins interact with products encoded by oncogenes, with filament forming proteins involved in Alzheimer'ss disease and many other proteins related to human diseases. Disturbance of the interactions with 14-3-3 proteins may lead to diseases like cancer and the neurological Miller-Dieker disease. The molecular consequences of 14-3-3 binding are diverse and only partly understood. Binding of a protein to a 14-3-3 protein may result in stabilization of the active or inactive phosphorylated form of the protein, to a conformational alteration leading to activation or inhibition, to a different subcellular localization or to the interaction with other proteins. Currently genome- and proteome-wide studies are contributing to a wider knowledge of this important family of proteins.

  9. Small-Molecule Stabilization of the 14-3-3/Gab2 Protein-Protein Interaction (PPI) Interface.

    PubMed

    Bier, David; Bartel, Maria; Sies, Katharina; Halbach, Sebastian; Higuchi, Yusuke; Haranosono, Yu; Brummer, Tilman; Kato, Nobuo; Ottmann, Christian

    2016-04-19

    Small-molecule modulation of protein-protein interactions (PPIs) is one of the most promising new areas in drug discovery. In the vast majority of cases only inhibition or disruption of PPIs is realized, whereas the complementary strategy of targeted stabilization of PPIs is clearly under-represented. Here, we report the example of a semi-synthetic natural product derivative--ISIR-005--that stabilizes the cancer-relevant interaction of the adaptor protein 14-3-3 and Gab2. The crystal structure of ISIR-005 in complex with 14-3-3 and the binding motif of Gab2 comprising two phosphorylation sites (Gab2pS210pT391) showed how the stabilizing molecule binds to the rim-of-the-interface of the protein complex. Only in the direct vicinity of 14-3-3/Gab2pT391 site is a pre-formed pocket occupied by ISIR-005; binding of the Gab2pS210 motif to 14-3-3 does not create an interface pocket suitable for the molecule. Accordingly, ISIR-005 only stabilizes the binding of the Gab2pT391 but not the Gab2pS210 site. This study represents structural and biochemical proof of the druggability of the 14-3-3/Gab2 PPI interface with important implications for the development of PPI stabilizers.

  10. Plant 14-3-3s: omnipotent metabolic phosphopartners?

    PubMed

    Sehnke, P C; Ferl, R J

    2000-10-31

    The accurate regulation of metabolism is crucial to the existence all organisms. The inappropriate activation of metabolic enzymes can waste precious energy; likewise, the failure to activate metabolic enzymes can disrupt homeostasis and lead to suboptimal cellular (and organismic) responses. Plants use several means to control their metabolic proteins, including a two-step process of protein phosphorylation and subsequent binding by phosphospecific binding proteins termed 14-3-3 proteins. Sehnke and Ferl discuss how 14-3-3 proteins regulate the activity of nitrate reductase and the H(+)-ATPase pump in plants, and compare the functions of 14-3-3 proteins in plants and animals.

  11. An RNA motif that binds ATP

    NASA Technical Reports Server (NTRS)

    Sassanfar, M.; Szostak, J. W.

    1993-01-01

    RNAs that contain specific high-affinity binding sites for small molecule ligands immobilized on a solid support are present at a frequency of roughly one in 10(10)-10(11) in pools of random sequence RNA molecules. Here we describe a new in vitro selection procedure designed to ensure the isolation of RNAs that bind the ligand of interest in solution as well as on a solid support. We have used this method to isolate a remarkably small RNA motif that binds ATP, a substrate in numerous biological reactions and the universal biological high-energy intermediate. The selected ATP-binding RNAs contain a consensus sequence, embedded in a common secondary structure. The binding properties of ATP analogues and modified RNAs show that the binding interaction is characterized by a large number of close contacts between the ATP and RNA, and by a change in the conformation of the RNA.

  12. Phosphorylation of Arabidopsis Ubiquitin Ligase ATL31 Is Critical for Plant Carbon/Nitrogen Nutrient Balance Response and Controls the Stability of 14-3-3 Proteins*

    PubMed Central

    Yasuda, Shigetaka; Sato, Takeo; Maekawa, Shugo; Aoyama, Shoki; Fukao, Yoichiro; Yamaguchi, Junji

    2014-01-01

    Ubiquitin ligase plays a fundamental role in regulating multiple cellular events in eukaryotes by fine-tuning the stability and activity of specific target proteins. We have previously shown that ubiquitin ligase ATL31 regulates plant growth in response to nutrient balance between carbon and nitrogen (C/N) in Arabidopsis. Subsequent study demonstrated that ATL31 targets 14-3-3 proteins for ubiquitination and modulates the protein abundance in response to C/N-nutrient status. However, the underlying mechanism for the targeting of ATL31 to 14-3-3 proteins remains unclear. Here, we show that ATL31 interacts with 14-3-3 proteins in a phosphorylation-dependent manner. We identified Thr209, Ser247, Ser270, and Ser303 as putative 14-3-3 binding sites on ATL31 by motif analysis. Mutation of these Ser/Thr residues to Ala in ATL31 inhibited the interaction with 14-3-3 proteins, as demonstrated by yeast two-hybrid and co-immunoprecipitation analyses. Additionally, we identified in vivo phosphorylation of Thr209 and Ser247 on ATL31 by MS analysis. A peptide competition assay showed that the application of synthetic phospho-Thr209 peptide, but not the corresponding unphosphorylated peptide, suppresses the interaction between ATL31 and 14-3-3 proteins. Moreover, Arabidopsis plants overexpressing mutated ATL31, which could not bind to 14-3-3 proteins, showed accumulation of 14-3-3 proteins and growth arrest in disrupted C/N-nutrient conditions similar to wild-type plants, although overexpression of intact ATL31 resulted in repression of 14-3-3 accumulation and tolerance to the conditions. Together, these results demonstrate that the physiological role of phosphorylation at 14-3-3 binding sites on ATL31 is to modulate the binding ability and stability of 14-3-3 proteins to control plant C/N-nutrient response. PMID:24722992

  13. 14-3-3 Proteins: insights from genome-wide studies in yeast.

    PubMed

    van Heusden, G Paul H

    2009-11-01

    14-3-3 proteins form a family of highly conserved, acidic, dimeric proteins. These proteins have been identified in all eukaryotic species investigated, often in multiple isoforms, up to 13 in the plant Arabidopsis thaliana. Hundreds of proteins, from diverse eukaryotic organisms, implicated in numerous cellular processes, have been identified as binding partners of 14-3-3 proteins. Therefore, the major activity of 14-3-3 proteins seems to be its ability to bind other intracellular proteins. Binding to 14-3-3 proteins may result in a conformational change of the protein required for its full activity or for inhibition of its activity, in interaction between two binding partners or in a different subcellular localization. Most of these interactions take place after phosphorylation of the binding partners. These observations suggest a major role of 14-3-3 proteins in regulatory networks. Here, the information on 14-3-3 proteins gathered from several genome- and proteome-wide studies in the yeast Saccharomyces cerevisiae is reviewed. In particular, the protein kinases responsible for the phosphorylation of 14-3-3 binding partners, phosphorylation of 14-3-3 proteins themselves, the transcriptional regulation of the 14-3-3 genes, and the role of 14-3-3 proteins in transcription are addressed. These large scale studies may help understand the function of 14-3-3 proteins at a cellular level rather than at the level of a single process.

  14. Membrane proteins as 14-3-3 clients in functional regulation and intracellular transport.

    PubMed

    Smith, Andrew J; Daut, Jürgen; Schwappach, Blanche

    2011-06-01

    14-3-3 proteins regulate the function and subcellular sorting of membrane proteins. Often, 14-3-3 binding to client proteins requires phosphorylation of the client, but the relevant kinase is unknown in most cases. We summarize current progress in identifying kinases that target membrane proteins with 14-3-3 binding sites and discuss the molecular mechanisms of 14-3-3 action. One of the kinases involved is Akt/PKB, which has recently been shown to activate the 14-3-3-dependent switch in a number of client membrane proteins.

  15. 14-3-3 Proteins in Guard Cell Signaling

    PubMed Central

    Cotelle, Valérie; Leonhardt, Nathalie

    2016-01-01

    Guard cells are specialized cells located at the leaf surface delimiting pores which control gas exchanges between the plant and the atmosphere. To optimize the CO2 uptake necessary for photosynthesis while minimizing water loss, guard cells integrate environmental signals to adjust stomatal aperture. The size of the stomatal pore is regulated by movements of the guard cells driven by variations in their volume and turgor. As guard cells perceive and transduce a wide array of environmental cues, they provide an ideal system to elucidate early events of plant signaling. Reversible protein phosphorylation events are known to play a crucial role in the regulation of stomatal movements. However, in some cases, phosphorylation alone is not sufficient to achieve complete protein regulation, but is necessary to mediate the binding of interactors that modulate protein function. Among the phosphopeptide-binding proteins, the 14-3-3 proteins are the best characterized in plants. The 14-3-3s are found as multiple isoforms in eukaryotes and have been shown to be involved in the regulation of stomatal movements. In this review, we describe the current knowledge about 14-3-3 roles in the regulation of their binding partners in guard cells: receptors, ion pumps, channels, protein kinases, and some of their substrates. Regulation of these targets by 14-3-3 proteins is discussed and related to their function in guard cells during stomatal movements in response to abiotic or biotic stresses. PMID:26858725

  16. Eimeria tenella: 14-3-3 protein interacts with telomerase.

    PubMed

    Zhao, Na; Gong, Pengtao; Cheng, Baiqi; Li, Jianhua; Yang, Zhengtao; Li, He; Yang, Ju; Zhang, Guocai; Zhang, Xichen

    2014-10-01

    Telomerase, consisting of telomerase RNA and telomerase reverse transcriptase (TERT), is responsible for the maintenance of the end of linear chromosomes. TERT, as the catalytic subunit of telomerase, plays a critical role in telomerase activity. Researches indicate TERT-associated proteins participate in the regulation of telomerase assembly, posttranslational modification, localization, and enzymatic function. Here, the telomerase RNA-binding domain of Eimeria tenella TERT (EtTRBD) was cloned into pGBKT7 and performed as the bait. α-Galactosidase assay showed that the bait plasmid did not activate Gal4 reporter gene. Further, we isolated an EtTRBD-associated protein, 14-3-3, by yeast two-hybrid screening using the constructed bait plasmid. To confirm the interaction, EtTRBD and 14-3-3 were expressed by prokaryotic and eukaryotic expression systems. Pull-down assays by purified proteins demonstrated a direct bind between EtTRBD and 14-3-3. Co-immunoprecipitation techniques successfully validated that 14-3-3 interacted with EtTRBD in 293T cells. The protein-protein interaction provides a starting point for more in-depth studies on telomerase and telomere regulation in E. tenella.

  17. 14-3-3 proteins are promising LRRK2 interactors.

    PubMed

    Rudenko, Iakov N; Cookson, Mark R

    2010-09-15

    Mutations in LRRK2 (leucine-rich repeat kinase 2) are the most common cause of familial PD (Parkinson's disease). Mutations that cause PD are found in either the GTPase or kinase domains of LRRK2 or an intervening sequence called the COR [C-terminus of ROC (Ras of complex proteins)] domain. As well as the two catalytic domains, LRRK2 possesses several protein-protein interaction domains, but their function and the proteins with which they interact are poorly understood. In this issue of the Biochemical Journal, Nichols et al. study the interaction of the N-terminal region of LRRK2 with 14-3-3 proteins, regulatory proteins that often bind to phosphorylated regions of components of cell signalling pathways. Using a combination of techniques, Nichols et al. have identified two residues (Ser910 and Ser935) that are critically responsible for 14-3-3 binding. The interaction of LRRK2 with 14-3-3 proteins can prevent dephosphorylation of Ser910/Ser935 and stabilize LRRK2 structure, perhaps by influencing the dimerization of LRRK2. The ability to interact with 14-3-3 correlates with the pattern of intracellular LRRK2 distribution. Collectively, these new results identify a potentially important regulatory mechanism of this complex protein and might provide ways to think about therapeutic opportunities for PD.

  18. A survey of motif finding Web tools for detecting binding site motifs in ChIP-Seq data.

    PubMed

    Tran, Ngoc Tam L; Huang, Chun-Hsi

    2014-02-20

    ChIP-Seq (chromatin immunoprecipitation sequencing) has provided the advantage for finding motifs as ChIP-Seq experiments narrow down the motif finding to binding site locations. Recent motif finding tools facilitate the motif detection by providing user-friendly Web interface. In this work, we reviewed nine motif finding Web tools that are capable for detecting binding site motifs in ChIP-Seq data. We showed each motif finding Web tool has its own advantages for detecting motifs that other tools may not discover. We recommended the users to use multiple motif finding Web tools that implement different algorithms for obtaining significant motifs, overlapping resemble motifs, and non-overlapping motifs. Finally, we provided our suggestions for future development of motif finding Web tool that better assists researchers for finding motifs in ChIP-Seq data.

  19. Molecular characterization of cotton 14-3-3L gene preferentially expressed during fiber elongation.

    PubMed

    Shi, Haiyan; Wang, Xiulan; Li, Dengdi; Tang, Wenkai; Wang, Hong; Xu, Wenliang; Li, Xuebao

    2007-02-01

    The 14-3-3 protein, highly conserved in all eukaryotic cells, is an important regulatory protein. It plays an important role in the growth, amplification, apoptosis, signal transduction, and other crucial life activities of cells. A cDNA encoding a putative 14-3-3 protein was isolated from cotton fiber cDNA library. The cDNA, designated as Gh14-3-3L (Gossypium hirsutum 14-3-3-like), is 1,029 bp in length (including a 762 bp long open reading frame and 5'-/3'-untranslated regions) and deduced a protein with 253 amino acids. The Gh14-3-3L shares higher homology with the known plant 14-3-3 proteins, and possesses the basic structure of 14-3-3 proteins: one dimeric domain, one phosphoralated-serine rich motif, four CC domains, and one EF Hand motif. Northern blotting analysis showed that Gh14-3-3L was predominantly expressed during early fiber development, and reached to the peak of expression in 10 days post anthers (DPA) fiber cells, suggesting that the gene may be involved in regulating fiber elongation. The gene is also expressed at higher level in both ovule and petal, but displays lower or undetectable level of activity in other tissues of cotton.

  20. Arabidopsis 14-3-3 Proteins: Fascinating and Less Fascinating Aspects

    PubMed Central

    Jaspert, Nina; Throm, Christian; Oecking, Claudia

    2011-01-01

    14-3-3 Dimers are well known to interact with diverse target proteins throughout eukaryotes. Most notably, association of 14-3-3s commonly requires phosphorylation of a serine or threonine residue within a specific sequence motif of the client protein. Studies with a focus on individual target proteins have unequivocally demonstrated 14-3-3s to be the crucial factors modifying the client’s activity state upon phosphorylation and, thus, finishing the job initiated by a kinase. In this respect, a recent in-depth analysis of the rice transcription factor FLOWERING LOCUS D1 (OsFD1) revealed 14-3-3s to be essential players in floral induction. Such fascinating discoveries, however, can often be ascribed to the random identification of 14-3-3 as an interaction partner of the favorite protein. In contrast, our understanding of 14-3-3 function in higher organisms is frustratingly limited, mainly due to an overwhelming spectrum of putative targets in combination with the existence of a multigene 14-3-3 family. In this review we will discuss our current understanding of the function of plant 14-3-3 proteins, taking into account recent surveys of the Arabidopsis 14-3-3 interactome. PMID:22639620

  1. The Double-Edged Sword of Prostate Cancer: 14-3-3(sigma)

    DTIC Science & Technology

    2005-12-01

    are highly conserved (1,2). The 14-3-3 proteins play important roles in many biological activities by directly binding to and altering the...apoptotic cell death. 15. SUBJECT TERMS No subject terms provided. 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18 . NUMBER OF...as Adriamycin and mitoxantrone (unpublished observations). 14-3-3σ is a member of a highly conserved family of 14-3-3 proteins that are present in

  2. Modulation of 14-3-3/phosphotarget interaction by physiological concentrations of phosphate and glycerophosphates.

    PubMed

    Sluchanko, Nikolai N; Chebotareva, Natalia A; Gusev, Nikolai B

    2013-01-01

    Molecular mechanisms governing selective binding of a huge number of various phosphorylated protein partners to 14-3-3 remain obscure. Phosphate can bind to 14-3-3 and therefore being present at high intracellular concentration, which undergoes significant changes under physiological conditions, phosphate can theoretically regulate interaction of 14-3-3 with phosphorylated targets. In order to check this hypothesis we analyzed effect of phosphate and other natural abundant anions on interaction of 14-3-3 with phosphorylated human small heat shock protein HspB6 (Hsp20) participating in regulation of different intracellular processes. Inorganic phosphate, glycerol-1-phosphate and glycerol-2-phosphate at physiologically relevant concentrations (5-15 mM) significantly destabilized complexes formed by 14-3-3ζ and phosphorylated HspB6 (pHspB6), presumably, via direct interaction with the substrate-binding site of 14-3-3. Phosphate also destabilized complexes between pHspB6 and 14-3-3γ or the monomeric mutant form of 14-3-3ζ. Inorganic sulfate and pyrophosphate were less effective in modulation of 14-3-3 interaction with its target protein. The inhibitory effect of all anions on pHspB6/14-3-3 interaction was concentration-dependent. It is hypothesized that physiological changes in phosphate anions concentration can modulate affinity and specificity of interaction of 14-3-3 with its multiple targets and therefore the actual phosphointeractome of 14-3-3.

  3. 14-3-3 proteins regulate Tctp–Rheb interaction for organ growth in Drosophila

    PubMed Central

    Le, Thao Phuong; Vuong, Linh Thuong; Kim, Ah-Ram; Hsu, Ya-Chieh; Choi, Kwang-Wook

    2016-01-01

    14-3-3 family proteins regulate multiple signalling pathways. Understanding biological functions of 14-3-3 proteins has been limited by the functional redundancy of conserved isotypes. Here we provide evidence that 14-3-3 proteins regulate two interacting components of Tor signalling in Drosophila, translationally controlled tumour protein (Tctp) and Rheb GTPase. Single knockdown of 14-3-3ɛ or 14-3-3ζ isoform does not show obvious defects in organ development but causes synergistic genetic interaction with Tctp and Rheb to impair tissue growth. 14-3-3 proteins physically interact with Tctp and Rheb. Knockdown of both 14-3-3 isoforms abolishes the binding between Tctp and Rheb, disrupting organ development. Depletion of 14-3-3s also reduces the level of phosphorylated S6 kinase, phosphorylated Thor/4E-BP and cyclin E (CycE). Growth defects from knockdown of 14-3-3 and Tctp are suppressed by CycE overexpression. This study suggests a novel mechanism of Tor regulation mediated by 14-3-3 interaction with Tctp and Rheb. PMID:27151460

  4. Dynamic interactions between 14-3-3 proteins and phosphoproteins regulate diverse cellular processes

    PubMed Central

    2004-01-01

    14-3-3 proteins exert an extraordinarily widespread influence on cellular processes in all eukaryotes. They operate by binding to specific phosphorylated sites on diverse target proteins, thereby forcing conformational changes or influencing interactions between their targets and other molecules. In these ways, 14-3-3s ‘finish the job’ when phosphorylation alone lacks the power to drive changes in the activities of intracellular proteins. By interacting dynamically with phosphorylated proteins, 14-3-3s often trigger events that promote cell survival – in situations from preventing metabolic imbalances caused by sudden darkness in leaves to mammalian cell-survival responses to growth factors. Recent work linking specific 14-3-3 isoforms to genetic disorders and cancers, and the cellular effects of 14-3-3 agonists and antagonists, indicate that the cellular complement of 14-3-3 proteins may integrate the specificity and strength of signalling through to different cellular responses. PMID:15167810

  5. A signature motif in LIM proteins mediates binding to checkpoint proteins and increases tumour radiosensitivity

    PubMed Central

    Xu, Xiaojie; Fan, Zhongyi; Liang, Chaoyang; Li, Ling; Wang, Lili; Liang, Yingchun; Wu, Jun; Chang, Shaohong; Yan, Zhifeng; Lv, Zhaohui; Fu, Jing; Liu, Yang; Jin, Shuai; Wang, Tao; Hong, Tian; Dong, Yishan; Ding, Lihua; Cheng, Long; Liu, Rui; Fu, Shenbo; Jiao, Shunchang; Ye, Qinong

    2017-01-01

    Tumour radiotherapy resistance involves the cell cycle pathway. CDC25 phosphatases are key cell cycle regulators. However, how CDC25 activity is precisely controlled remains largely unknown. Here, we show that LIM domain-containing proteins, such as FHL1, increase inhibitory CDC25 phosphorylation by forming a complex with CHK2 and CDC25, and sequester CDC25 in the cytoplasm by forming another complex with 14-3-3 and CDC25, resulting in increased radioresistance in cancer cells. FHL1 expression, induced by ionizing irradiation in a SP1- and MLL1-dependent manner, positively correlates with radioresistance in cancer patients. We identify a cell-penetrating 11 amino-acid motif within LIM domains (eLIM) that is sufficient for binding CHK2 and CDC25, reducing the CHK2–CDC25 and CDC25–14-3-3 interaction and enhancing CDC25 activity and cancer radiosensitivity accompanied by mitotic catastrophe and apoptosis. Our results provide novel insight into molecular mechanisms underlying CDC25 activity regulation. LIM protein inhibition or use of eLIM may be new strategies for improving tumour radiosensitivity. PMID:28094252

  6. Scaffold functions of 14-3-3 adaptors in B cell immunoglobulin class switch DNA recombination.

    PubMed

    Lam, Tonika; Thomas, Lisa M; White, Clayton A; Li, Guideng; Pone, Egest J; Xu, Zhenming; Casali, Paolo

    2013-01-01

    Class switch DNA recombination (CSR) of the immunoglobulin heavy chain (IgH) locus crucially diversifies antibody biological effector functions. CSR involves the induction of activation-induced cytidine deaminase (AID) expression and AID targeting to switch (S) regions by 14-3-3 adaptors. 14-3-3 adaptors specifically bind to 5'-AGCT-3' repeats, which make up for the core of all IgH locus S regions. They selectively target the upstream and downstream S regions that are set to undergo S-S DNA recombination. We hypothesized that 14-3-3 adaptors function as scaffolds to stabilize CSR enzymatic elements on S regions. Here we demonstrate that all seven 14-3-3β, 14-3-3ε, 14-3-3γ, 14-3-3η, 14-3-3σ, 14-3-3τ and 14-3-3ζ adaptors directly interacted with AID, PKA-Cα (catalytic subunit) and PKA-RIα (regulatory inhibitory subunit) and uracil DNA glycosylase (Ung). 14-3-3 adaptors, however, did not interact with AID C-terminal truncation mutant AIDΔ(180-198) or AIDF193A and AIDL196A point-mutants (which have been shown not to bind to S region DNA and fail to mediate CSR). 14-3-3 adaptors colocalized with AID and replication protein A (RPA) in B cells undergoing CSR. 14-3-3 and AID binding to S region DNA was disrupted by viral protein R (Vpr), an accessory protein of human immunodeficiency virus type-1 (HIV-1), which inhibited CSR without altering AID expression or germline IH-CH transcription. Accordingly, we demonstrated that 14-3-3 directly interact with Vpr, which in turn, also interact with AID, PKA-Cα and Ung. Altogether, our findings suggest that 14-3-3 adaptors play important scaffold functions and nucleate the assembly of multiple CSR factors on S regions. They also show that such assembly can be disrupted by a viral protein, thereby allowing us to hypothesize that small molecule compounds that specifically block 14-3-3 interactions with AID, PKA and/or Ung can be used to inhibit unwanted CSR.

  7. Efficient nuclear export of p65-IkappaBalpha complexes requires 14-3-3 proteins.

    PubMed

    Aguilera, Cristina; Fernández-Majada, Vanessa; Inglés-Esteve, Julia; Rodilla, Verónica; Bigas, Anna; Espinosa, Lluís

    2006-09-01

    IkappaB are responsible for maintaining p65 in the cytoplasm under non-stimulating conditions and promoting the active export of p65 from the nucleus following NFkappaB activation to terminate the signal. We now show that 14-3-3 proteins regulate the NFkappaB signaling pathway by physically interacting with p65 and IkappaBalpha proteins. We identify two functional 14-3-3 binding domains in the p65 protein involving residues 38-44 and 278-283, and map the interaction region of IkappaBalpha in residues 60-65. Mutation of these 14-3-3 binding domains in p65 or IkappaBalpha results in a predominantly nuclear distribution of both proteins. TNFalpha treatment promotes recruitment of 14-3-3 and IkappaBalpha to NFkappaB-dependent promoters and enhances the binding of 14-3-3 to p65. Disrupting 14-3-3 activity by transfection with a dominant-negative 14-3-3 leads to the accumulation of nuclear p65-IkappaBalpha complexes and the constitutive association of p65 with the chromatin. In this situation, NFkappaB-dependent genes become unresponsive to TNFalpha stimulation. Together our results indicate that 14-3-3 proteins facilitate the nuclear export of IkappaBalpha-p65 complexes and are required for the appropriate regulation of NFkappaB signaling.

  8. Drosophila 14-3-3/PAR-5 is an essential mediator of PAR-1 function in axis formation.

    PubMed

    Benton, Richard; Palacios, Isabel M; St Johnston, Daniel

    2002-11-01

    PAR-1 kinases are required to determine the anterior-posterior (A-P) axis in C. elegans and Drosophila, but little is known about their molecular function. We identified 14-3-3 proteins as Drosophila PAR-1 interactors and show that PAR-1 binds a domain of 14-3-3 distinct from the phosphoserine binding pocket. PAR-1 kinases phosphorylate proteins to generate 14-3-3 binding sites and may therefore directly deliver 14-3-3 to these targets. 14-3-3 mutants display identical phenotypes to par-1 mutants in oocyte determination and the polarization of the A-P axis. Together, these results indicate that PAR-1's function is mediated by the binding of 14-3-3 to its substrates. The C. elegans 14-3-3 protein, PAR-5, is also required for A-P polarization, suggesting that this is a conserved mechanism by which PAR-1 establishes cellular asymmetries.

  9. Fusicoccin, 14-3-3 Proteins, and Defense Responses in Tomato Plants1

    PubMed Central

    Roberts, Michael R.; Bowles, Dianna J.

    1999-01-01

    Fusicoccin (FC) is a fungal toxin that activates the plant plasma membrane H+-ATPase by binding with 14-3-3 proteins, causing membrane hyperpolarization. Here we report on the effect of FC on a gene-for-gene pathogen-resistance response and show that FC application induces the expression of several genes involved in plant responses to pathogens. Ten members of the FC-binding 14-3-3 protein gene family were isolated from tomato (Lycopersicon esculentum) to characterize their role in defense responses. Sequence analysis is suggestive of common biochemical functions for these tomato 14-3-3 proteins, but their genes showed different expression patterns in leaves after challenges. Different specific subsets of 14-3-3 genes were induced after treatment with FC and during a gene-for-gene resistance response. Possible roles for the H+-ATPase and 14-3-3 proteins in responses to pathogens are discussed. PMID:10198082

  10. 14-3-3 Mediates Histone Cross-Talk during Transcription Elongation in Drosophila

    PubMed Central

    Karam, Caline S.; Kellner, Wendy A.; Takenaka, Naomi; Clemmons, Alexa W.; Corces, Victor G.

    2010-01-01

    Post-translational modifications of histone proteins modulate the binding of transcription regulators to chromatin. Studies in Drosophila have shown that the phosphorylation of histone H3 at Ser10 (H3S10ph) by JIL-1 is required specifically during early transcription elongation. 14-3-3 proteins bind H3 only when phosphorylated, providing mechanistic insights into the role of H3S10ph in transcription. Findings presented here show that 14-3-3 functions downstream of H3S10ph during transcription elongation. 14-3-3 proteins localize to active genes in a JIL-1–dependent manner. In the absence of 14-3-3, levels of actively elongating RNA polymerase II are severely diminished. 14-3-3 proteins interact with Elongator protein 3 (Elp3), an acetyltransferase that functions during transcription elongation. JIL-1 and 14-3-3 are required for Elp3 binding to chromatin, and in the absence of either protein, levels of H3K9 acetylation are significantly reduced. These results suggest that 14-3-3 proteins mediate cross-talk between histone phosphorylation and acetylation at a critical step in transcription elongation. PMID:20532201

  11. A survey of motif finding Web tools for detecting binding site motifs in ChIP-Seq data

    PubMed Central

    2014-01-01

    Abstract ChIP-Seq (chromatin immunoprecipitation sequencing) has provided the advantage for finding motifs as ChIP-Seq experiments narrow down the motif finding to binding site locations. Recent motif finding tools facilitate the motif detection by providing user-friendly Web interface. In this work, we reviewed nine motif finding Web tools that are capable for detecting binding site motifs in ChIP-Seq data. We showed each motif finding Web tool has its own advantages for detecting motifs that other tools may not discover. We recommended the users to use multiple motif finding Web tools that implement different algorithms for obtaining significant motifs, overlapping resemble motifs, and non-overlapping motifs. Finally, we provided our suggestions for future development of motif finding Web tool that better assists researchers for finding motifs in ChIP-Seq data. Reviewers This article was reviewed by Prof. Sandor Pongor, Dr. Yuriy Gusev, and Dr. Shyam Prabhakar (nominated by Prof. Limsoon Wong). PMID:24555784

  12. Regulation of the Regulators: Post-Translational Modifications, Subcellular, and Spatiotemporal Distribution of Plant 14-3-3 Proteins

    PubMed Central

    Wilson, Rashaun S.; Swatek, Kirby N.; Thelen, Jay J.

    2016-01-01

    14-3-3 proteins bind to and modulate the activity of phosphorylated proteins that regulate a variety of metabolic processes in eukaryotes. Multiple 14-3-3 isoforms are expressed in most organisms and display redundancy in both sequence and function. Plants contain the largest number of 14-3-3 isoforms. For example, Arabidopsis thaliana contains thirteen 14-3-3 genes, each of which is expressed. Interest in the plant 14-3-3 field has swelled over the past decade, largely due to the vast number of possibilities for 14-3-3 metabolic regulation. As the field progresses, it is essential to understand these proteins' activities at both the spatiotemporal and subcellular levels. This review summarizes current knowledge of 14-3-3 proteins in plants, including 14-3-3 interactions, regulatory functions, isoform specificity, and post-translational modifications. We begin with a historical overview and structural analysis of 14-3-3 proteins, which describes the basic principles of 14-3-3 function, and then discuss interactions and regulatory effects of plant 14-3-3 proteins in specific tissues and subcellular compartments. We conclude with a summary of 14-3-3 phosphorylation and current knowledge of the functional effects of this modification in plants. PMID:27242818

  13. Interaction network of the 14-3-3 protein in the ancient protozoan parasite Giardia duodenalis.

    PubMed

    Lalle, Marco; Camerini, Serena; Cecchetti, Serena; Sayadi, Ahmed; Crescenzi, Marco; Pozio, Edoardo

    2012-05-04

    14-3-3s are phosphoserine/phosphotreonine binding proteins that play pivotal roles as regulators of multiple cellular processes in eukaryotes. The flagellated protozoan parasite Giardia duodenalis, the causing agent of giardiasis, is a valuable simplified eukaryotic model. A single 14-3-3 isoform (g14-3-3) is expressed in Giardia, and it is directly involved in the differentiation of the parasite into cyst. To define the overall functions of g14-3-3, the protein interactome has been investigated. A transgenic G. duodenalis strain was engineered to express a FLAG-tagged g14-3-3 under its own promoter. Affinity chromatography coupled with tandem mass spectrometry analysis have been used to purify and identify FLAG-g14-3-3-associated proteins from trophozoites and encysting parasites. A total of 314 putative g14-3-3 interaction partners were identified, including proteins involved in several pathways. Some interactions seemed to be peculiar of one specific stage, while others were shared among the different stages. Furthermore, the interaction of g14-3-3 with the giardial homologue of the CDC7 protein kinase (gCDC7) was characterized, leading to the identification of a multiprotein complex containing not only g14-3-3 and gCDC7 but also a newly identified and highly divergent homologue of DBF4, the putative regulatory subunit of gCDC7. The relevance of g14-3-3 interactions in G. duodenalis biology was discussed.

  14. Structure and ubiquitin binding of the ubiquitin-interacting motif

    SciTech Connect

    Fisher,R.; Wang, B.; Alam, S.; Higginson, D.; Robinson, H.; Sundquist, C.; Hill, C.

    2003-01-01

    Ubiquitylation is used to target proteins into a large number of different biological processes including proteasomal degradation, endocytosis, virus budding, and vacuolar protein sorting (Vps). Ubiquitylated proteins are typically recognized using one of several different conserved ubiquitin binding modules. Here, we report the crystal structure and ubiquitin binding properties of one such module, the ubiquitin-interacting motif (UIM). We found that UIM peptides from several proteins involved in endocytosis and vacuolar protein sorting including Hrs, Vps27p, Stam1, and Eps15 bound specifically, but with modest affinity (K{sub d} = 0.1-1 mM), to free ubiquitin. Full affinity ubiquitin binding required the presence of conserved acidic patches at the N and C terminus of the UIM, as well as highly conserved central alanine and serine residues. NMR chemical shift perturbation mapping experiments demonstrated that all of these UIM peptides bind to the I44 surface of ubiquitin. The 1.45 {angstrom} resolution crystal structure of the second yeast Vps27p UIM (Vps27p-2) revealed that the ubiquitin-interacting motif forms an amphipathic helix. Although Vps27p-2 is monomeric in solution, the motif unexpectedly crystallized as an antiparallel four-helix bundle, and the potential biological implications of UIM oligomerization are therefore discussed.

  15. Analysis of 14-3-3 Family Member Function in Xenopus Embryos by Microinjection of Antisense Morpholino Oligos

    NASA Astrophysics Data System (ADS)

    Lau, Jeffrey M. C.; Muslin, Anthony J.

    The 14-3-3 intracellular phosphoserine/threonine-binding proteins are adapter molecules that regulate signal transduction, cell cycle, nutrient sensing, apoptotic, and cytoskeletal pathways. There are seven 14-3-3 family members, encoded by separate genes, in vertebrate organisms. To evaluate the role of individual 14-3-3 proteins in vertebrate embryonic development, we utilized an antisense morpholino oligo microinjection technique in Xenopus laevis embryos. By use of this method, we showed that embryos lacking specific 14-3-3 proteins displayed unique phenotypic abnormalities. Specifically, embryos lacking 14-3-3 τ exhibited gastrulation and axial patterning defects, but embryos lacking 14-3-3 γ exhibited eye defects without other abnormalities, and embryos lacking 14-3-3 ζ appeared completely normal. These and other results demonstrate the power and specificity of the morpholino antisense oligo microinjection technique.

  16. 14-3-3γ Prevents Centrosome Amplification and Neoplastic Progression

    PubMed Central

    Mukhopadhyay, Amitabha; Sehgal, Lalit; Bose, Arunabha; Gulvady, Anushree; Senapati, Parijat; Thorat, Rahul; Basu, Srikanta; Bhatt, Khyati; Hosing, Amol S.; Balyan, Renu; Borde, Lalit; Kundu, Tapas K.; Dalal, Sorab N.

    2016-01-01

    More than 80% of malignant tumors show centrosome amplification and clustering. Centrosome amplification results from aberrations in the centrosome duplication cycle, which is strictly coordinated with DNA-replication-cycle. However, the relationship between cell-cycle regulators and centrosome duplicating factors is not well understood. This report demonstrates that 14-3-3γ localizes to the centrosome and 14-3-3γ loss leads to centrosome amplification. Loss of 14-3-3γ results in the phosphorylation of NPM1 at Thr-199, causing early centriole disjunction and centrosome hyper-duplication. The centrosome amplification led to aneuploidy and increased tumor formation in mice. Importantly, an increase in passage of the 14-3-3γ-knockdown cells led to an increase in the number of cells containing clustered centrosomes leading to the generation of pseudo-bipolar spindles. The increase in pseudo-bipolar spindles was reversed and an increase in the number of multi-polar spindles was observed upon expression of a constitutively active 14-3-3-binding-defective-mutant of cdc25C (S216A) in the 14-3-3γ knockdown cells. The increase in multi-polar spindle formation was associated with decreased cell viability and a decrease in tumor growth. Our findings uncover the molecular basis of regulation of centrosome duplication by 14-3-3γ and inhibition of tumor growth by premature activation of the mitotic program and the disruption of centrosome clustering. PMID:27253419

  17. 14-3-3ζ Interacts with Stat3 and Regulates Its Constitutive Activation in Multiple Myeloma Cells

    PubMed Central

    Li, Wenliang; Xiong, Qian; Yang, Mingkun; Zheng, Peng; Li, Chongyang; Pei, Jianfeng; Ge, Feng

    2012-01-01

    The 14-3-3 proteins are a family of regulatory signaling molecules that interact with other proteins in a phosphorylation-dependent manner and function as adapter or scaffold proteins in signal transduction pathways. One family member, 14-3-3ζ, is believed to function in cell signaling, cycle control, and apoptotic death. A systematic proteomic analysis done in our laboratory has identified signal transducers and activators of transcription 3 (Stat3) as a novel 14-3-3ζ interacting protein. Following our initial finding, in this study, we provide evidence that 14-3-3ζ interacts physically with Stat3. We further demonstrate that phosphorylation of Stat3 at Ser727 is vital for 14-3-3ζ interaction and mutation of Ser727 to Alanine abolished 14-3-3ζ/Stat3 association. Inhibition of 14-3-3ζ protein expression in U266 cells inhibited Stat3 Ser727 phosphorylation and nuclear translocation, and decreased both Stat3 DNA binding and transcriptional activity. Moreover, 14-3-3ζ is involved in the regulation of protein kinase C (PKC) activity and 14-3-3ζ binding to Stat3 protects Ser727 dephosphorylation from protein phosphatase 2A (PP2A). Taken together, our findings support the model that multiple signaling events impinge on Stat3 and that 14-3-3ζ serves as an essential coordinator for different pathways to regulate Stat3 activation and function in MM cells. PMID:22279540

  18. The pro-inflammatory cytokine 14-3-3ε is a ligand of CD13 in cartilage

    PubMed Central

    Nefla, Meriam; Sudre, Laure; Denat, Guillaume; Priam, Sabrina; Andre-Leroux, Gwenaëlle; Berenbaum, Francis; Jacques, Claire

    2015-01-01

    ABSTRACT Osteoarthritis is a whole-joint disease characterized by the progressive destruction of articular cartilage involving abnormal communication between subchondral bone and cartilage. Our team previously identified 14-3-3ε protein as a subchondral bone soluble mediator altering cartilage homeostasis. The aim of this study was to investigate the involvement of CD13 (also known as aminopeptidase N, APN) in the chondrocyte response to 14-3-3ε. After identifying CD13 in chondrocytes, we knocked down CD13 with small interfering RNA (siRNA) and blocking antibodies in articular chondrocytes. 14-3-3ε-induced MMP-3 and MMP-13 was significantly reduced with CD13 knockdown, which suggests that it has a crucial role in 14-3-3ε signal transduction. Aminopeptidase N activity was identified in chondrocytes, but the activity was unchanged after stimulation with 14-3-3ε. Direct interaction between CD13 and 14-3-3ε was then demonstrated by surface plasmon resonance. Using labeled 14-3-3ε, we also found that 14-3-3ε binds to the surface of chondrocytes in a manner that is dependent on CD13. Taken together, these results suggest that 14-3-3ε might directly bind to CD13, which transmits its signal in chondrocytes to induce a catabolic phenotype similar to that observed in osteoarthritis. The 14-3-3ε–CD13 interaction could be a new therapeutic target in osteoarthritis. PMID:26208633

  19. Molecular Dynamics Simulations and Structural Analysis of Giardia duodenalis 14-3-3 Protein-Protein Interactions.

    PubMed

    Cau, Ylenia; Fiorillo, Annarita; Mori, Mattia; Ilari, Andrea; Botta, Maurizo; Lalle, Marco

    2015-12-28

    Giardiasis is a gastrointestinal diarrheal illness caused by the protozoan parasite Giardia duodenalis, which affects annually over 200 million people worldwide. The limited antigiardial drug arsenal and the emergence of clinical cases refractory to standard treatments dictate the need for new chemotherapeutics. The 14-3-3 family of regulatory proteins, extensively involved in protein-protein interactions (PPIs) with pSer/pThr clients, represents a highly promising target. Despite homology with human counterparts, the single 14-3-3 of G. duodenalis (g14-3-3) is characterized by a constitutive phosphorylation in a region critical for target binding, thus affecting the function and the conformation of g14-3-3/clients interaction. However, to approach the design of specific small molecule modulators of g14-3-3 PPIs, structural elucidations are required. Here, we present a detailed computational and crystallographic study exploring the implications of g14-3-3 phosphorylation on protein structure and target binding. Self-Guided Langevin Dynamics and classical molecular dynamics simulations show that phosphorylation affects locally and globally g14-3-3 conformation, inducing a structural rearrangement more suitable for target binding. Profitable features for g14-3-3/clients interaction were highlighted using a hydrophobicity-based descriptor to characterize g14-3-3 client peptides. Finally, the X-ray structure of g14-3-3 in complex with a mode-1 prototype phosphopeptide was solved and combined with structure-based simulations to identify molecular features relevant for clients binding to g14-3-3. The data presented herein provide a further and structural understanding of g14-3-3 features and set the basis for drug design studies.

  20. 14-3-3 antagonizes Ras-mediated Raf-1 recruitment to the plasma membrane to maintain signaling fidelity.

    PubMed

    Light, Yvonne; Paterson, Hugh; Marais, Richard

    2002-07-01

    We have investigated the role that S259 phosphorylation, S621 phosphorylation, and 14-3-3 binding play in regulating Raf-1 activity. We show that 14-3-3 binding, rather than Raf-1 phosphorylation, is required for the correct regulation of kinase activity. Phosphorylation of S621 is not required for activity, but 14-3-3 binding is essential. When 14-3-3 binding to conserved region 2 (CR2) was disrupted, Raf-1 basal kinase activity was elevated and it could be further activated by (V12,G37)Ras, (V23)TC21, and (V38)R-Ras. Disruption of 14-3-3 binding at CR2 did not recover binding of Raf-1 to (V12,G37)Ras but allowed more efficient recruitment of Raf-1 to the plasma membrane and stimulated its phosphorylation on S338. Finally, (V12)Ras, but not (V12,G37)Ras, displaced 14-3-3 from full-length Raf-1 and the Raf-1 bound to Ras. GTP was still phosphorylated on S259. Our data suggest that stable association of Raf-1 with the plasma membrane requires Ras-mediated displacement of 14-3-3 from CR2. Small G proteins that cannot displace 14-3-3 fail to recruit Raf-1 to the membrane efficiently and so fail to stimulate kinase activity.

  1. Decreased RNA-binding motif 5 expression is associated with tumor progression in gastric cancer.

    PubMed

    Kobayashi, Takahiko; Ishida, Junich; Shimizu, Yuichi; Kawakami, Hiroshi; Suda, Goki; Muranaka, Tetsuhito; Komatsu, Yoshito; Asaka, Masahiro; Sakamoto, Naoya

    2017-03-01

    RNA-binding motif 5 is a putative tumor suppressor gene that modulates cell cycle arrest and apoptosis. We recently demonstrated that RNA-binding motif 5 inhibits cell growth through the p53 pathway. This study evaluated the clinical significance of RNA-binding motif 5 expression in gastric cancer and the effects of altered RNA-binding motif 5 expression on cancer biology in gastric cancer cells. RNA-binding motif 5 protein expression was evaluated by immunohistochemistry using the surgical specimens of 106 patients with gastric cancer. We analyzed the relationships of RNA-binding motif 5 expression with clinicopathological parameters and patient prognosis. We further explored the effects of RNA-binding motif 5 downregulation with short hairpin RNA on cell growth and p53 signaling in MKN45 gastric cancer cells. Immunohistochemistry revealed that RNA-binding motif 5 expression was decreased in 29 of 106 (27.4%) gastric cancer specimens. Decreased RNA-binding motif 5 expression was correlated with histological differentiation, depth of tumor infiltration, nodal metastasis, tumor-node-metastasis stage, and prognosis. RNA-binding motif 5 silencing enhanced gastric cancer cell proliferation and decreased p53 transcriptional activity in reporter gene assays. Conversely, restoration of RNA-binding motif 5 expression suppressed cell growth and recovered p53 transactivation in RNA-binding motif 5-silenced cells. Furthermore, RNA-binding motif 5 silencing reduced the messenger RNA and protein expression of the p53 target gene p21. Our results suggest that RNA-binding motif 5 downregulation is involved in gastric cancer progression and that RNA-binding motif 5 behaves as a tumor suppressor gene in gastric cancer.

  2. Discovery and structural characterization of a small molecule 14-3-3 protein-protein interaction inhibitor

    SciTech Connect

    Zhao, Jing; Du, Yuhong; Horton, John R.; Upadhyay, Anup K.; Lou, Bin; Bai, Yan; Zhang, Xing; Du, Lupei; Li, Minyong; Wang, Binghe; Zhang, Lixin; Barbieri, Joseph T.; Khuri, Fadlo R.; Cheng, Xiaodong; Fu, Haian

    2013-02-14

    The 14-3-3 family of phosphoserine/threonine-recognition proteins engage multiple nodes in signaling networks that control diverse physiological and pathophysiological functions and have emerged as promising therapeutic targets for such diseases as cancer and neurodegenerative disorders. Thus, small molecule modulators of 14-3-3 are much needed agents for chemical biology investigations and therapeutic development. To analyze 14-3-3 function and modulate its activity, we conducted a chemical screen and identified 4-[(2Z)-2-[4-formyl-6-methyl-5-oxo-3-(phosphonatooxymethyl)pyridin-2-ylidene]hydrazinyl]benzoate as a 14-3-3 inhibitor, which we termed FOBISIN (FOurteen-three-three BInding Small molecule INhibitor) 101. FOBISIN101 effectively blocked the binding of 14-3-3 with Raf-1 and proline-rich AKT substrate, 40 kD{sub a} and neutralized the ability of 14-3-3 to activate exoenzyme S ADP-ribosyltransferase. To provide a mechanistic basis for 14-3-3 inhibition, the crystal structure of 14-3-3{zeta} in complex with FOBISIN101 was solved. Unexpectedly, the double bond linking the pyridoxal-phosphate and benzoate moieties was reduced by X-rays to create a covalent linkage of the pyridoxal-phosphate moiety to lysine 120 in the binding groove of 14-3-3, leading to persistent 14-3-3 inactivation. We suggest that FOBISIN101-like molecules could be developed as an entirely unique class of 14-3-3 inhibitors, which may serve as radiation-triggered therapeutic agents for the treatment of 14-3-3-mediated diseases, such as cancer.

  3. 14-3-3ζ Mediates Tau Aggregation in Human Neuroblastoma M17 Cells.

    PubMed

    Li, Tong; Paudel, Hemant K

    2016-01-01

    Microtubule-associated protein tau is the major component of paired helical filaments (PHFs) associated with the neuropathology of Alzheimer's disease (AD). Tau in the normal brain binds and stabilizes microtubules. Tau isolated from PHFs is hyperphosphorylated, which prevents it from binding to microtubules. Tau phosphorylation has been suggested to be involved in the development of NFT pathology in the AD brain. Recently, we showed that 14-3-3ζ is bound to tau in the PHFs and when incubated in vitro with 14-3-3ζ, tau formed amorphous aggregates, single-stranded straight filaments, double stranded ribbon-like filaments and PHF-like filaments that displayed close resemblance with corresponding ultrastructures of AD brain. Surprisingly however, phosphorylated and non-phosphorylated tau aggregated in a similar manner, indicating that tau phosphorylation does not affect in vitro tau aggregation (Qureshi et al (2013) Biochemistry 52, 6445-6455). In this study, we have examined the role of tau phosphorylation in tau aggregation in cellular level. We have found that in human M17 neuroblastoma cells, tau phosphorylation by GSK3β or PKA does not cause tau aggregation, but promotes 14-3-3ζ-induced tau aggregation by destabilizing microtubules. Microtubule disrupting drugs also promoted 14-3-3ζ-induced tau aggregation without changing tau phosphorylation in M17 cell. In vitro, when incubated with 14-3-3ζ and microtubules, nonphosphorylated tau bound to microtubules and did not aggregate. Phosphorylated tau on the other hand did not bind to microtubules and aggregated. Our data indicate that microtubule-bound tau is resistant to 14-3-3ζ-induced tau aggregation and suggest that tau phosphorylation promotes tau aggregation in the brain by detaching tau from microtubules and thus making it accessible to 14-3-3ζ.

  4. 14-3-3ζ Mediates Tau Aggregation in Human Neuroblastoma M17 Cells

    PubMed Central

    Li, Tong; Paudel, Hemant K.

    2016-01-01

    Microtubule-associated protein tau is the major component of paired helical filaments (PHFs) associated with the neuropathology of Alzheimer’s disease (AD). Tau in the normal brain binds and stabilizes microtubules. Tau isolated from PHFs is hyperphosphorylated, which prevents it from binding to microtubules. Tau phosphorylation has been suggested to be involved in the development of NFT pathology in the AD brain. Recently, we showed that 14-3-3ζ is bound to tau in the PHFs and when incubated in vitro with 14-3-3ζ, tau formed amorphous aggregates, single-stranded straight filaments, double stranded ribbon-like filaments and PHF-like filaments that displayed close resemblance with corresponding ultrastructures of AD brain. Surprisingly however, phosphorylated and non-phosphorylated tau aggregated in a similar manner, indicating that tau phosphorylation does not affect in vitro tau aggregation (Qureshi et al (2013) Biochemistry 52, 6445–6455). In this study, we have examined the role of tau phosphorylation in tau aggregation in cellular level. We have found that in human M17 neuroblastoma cells, tau phosphorylation by GSK3β or PKA does not cause tau aggregation, but promotes 14-3-3ζ-induced tau aggregation by destabilizing microtubules. Microtubule disrupting drugs also promoted 14-3-3ζ-induced tau aggregation without changing tau phosphorylation in M17 cell. In vitro, when incubated with 14-3-3ζ and microtubules, nonphosphorylated tau bound to microtubules and did not aggregate. Phosphorylated tau on the other hand did not bind to microtubules and aggregated. Our data indicate that microtubule-bound tau is resistant to 14-3-3ζ-induced tau aggregation and suggest that tau phosphorylation promotes tau aggregation in the brain by detaching tau from microtubules and thus making it accessible to 14-3-3ζ. PMID:27548710

  5. Transgenic Overexpression of 14-3-3 Zeta Protects Hippocampus against Endoplasmic Reticulum Stress and Status Epilepticus In Vivo

    PubMed Central

    Brennan, Gary P.; Jimenez-Mateos, Eva M.; McKiernan, Ross C.; Engel, Tobias; Tzivion, Guri; Henshall, David C.

    2013-01-01

    14-3-3 proteins are ubiquitous molecular chaperones that are abundantly expressed in the brain where they regulate cell functions including metabolism, the cell cycle and apoptosis. Brain levels of several 14-3-3 isoforms are altered in diseases of the nervous system, including epilepsy. The 14-3-3 zeta (ζ) isoform has been linked to endoplasmic reticulum (ER) function in neurons, with reduced levels provoking ER stress and increasing vulnerability to excitotoxic injury. Here we report that transgenic overexpression of 14-3-3ζ in mice results in selective changes to the unfolded protein response pathway in the hippocampus, including down-regulation of glucose-regulated proteins 78 and 94, activating transcription factors 4 and 6, and Xbp1 splicing. No differences were found between wild-type mice and transgenic mice for levels of other 14-3-3 isoforms or various other 14-3-3 binding proteins. 14-3-3ζ overexpressing mice were potently protected against cell death caused by intracerebroventricular injection of the ER stressor tunicamycin. 14-3-3ζ overexpressing mice were also potently protected against neuronal death caused by prolonged seizures. These studies demonstrate that increased 14-3-3ζ levels protect against ER stress and seizure-damage despite down-regulation of the unfolded protein response. Delivery of 14-3-3ζ may protect against pathologic changes resulting from prolonged or repeated seizures or where injuries provoke ER stress. PMID:23359526

  6. Decreased expression of 14-3-3 in Paracoccidioides brasiliensis confirms its involvement in fungal pathogenesis

    PubMed Central

    Marcos, Caroline Maria; da Silva, Julhiany de Fátima; de Oliveira, Haroldo Cesar; Assato, Patrícia Akemi; Singulani, Junya de Lacorte; Lopez, Angela Maria; Tamayo, Diana Patricia; Hernandez-Ruiz, Orville; McEwen, Juan G; Mendes-Giannini, Maria José Soares; Fusco-Almeida, Ana Marisa

    2016-01-01

    The interaction between the fungal pathogen Paracoccidioides brasiliensis and host cells is usually mediated by specific binding events between adhesins on the fungal surface and receptors on the host extracellular matrix or cell surface. One molecule implicated in the P. brasiliensis-host interaction is the 14-3-3 protein. The 14-3-3 protein belongs to a family of conserved regulatory molecules that are expressed in all eukaryotic cells and are involved in diverse cellular functions. Here, we investigated the relevance of the 14-3-3 protein to the virulence of P. brasiliensis. Using antisense RNA technology and Agrobacterium tumefaciens-mediated transformation, we generated a 14-3-3-silenced strain (expression reduced by ˜55%). This strain allowed us to investigate the interaction between 14-3-3 and the host and to correlate the functions of P. brasiliensis 14-3-3 with cellular features, such as morphological characteristics and virulence, that are important for pathogenesis. PMID:26646480

  7. 14-3-3 proteins: key regulators of cell division, signalling and apoptosis.

    PubMed

    van Hemert, M J; Steensma, H Y; van Heusden, G P

    2001-10-01

    The 14-3-3 proteins constitute a family of conserved proteins present in all eukaryotic organisms so far investigated. These proteins have attracted interest because they are involved in important cellular processes such as signal transduction, cell-cycle control, apoptosis, stress response and malignant transformation and because at least 100 different binding partners for the 14-3-3 proteins have been reported. Although the exact function of 14-3-3 proteins is still unknown, they are known to (1) act as adaptor molecules stimulating protein-protein interactions, (2) regulate the subcellular localisation of proteins and (3) activate or inhibit enzymes. In this review, we discuss the role of the 14-3-3 proteins in three cellular processes: cell cycle control, signal transduction and apoptosis. These processes are regulated by the 14-3-3 proteins at multiple steps. The 14-3-3 proteins have an overall inhibitory effect on cell cycle progression and apoptosis, whereas in signal transduction they may act as stimulatory or inhibitory factors. This article contains supplementary material which may be viewed at the BioEssays website at http://www.interscience.wiley.com/jpages/0265-9247/Suppmat/23/v23_10.936.

  8. Identifying DNA Binding Motifs by Combining Data from Different Sources

    SciTech Connect

    Mao, Linyong; Resat, Haluk; Nagib Callaos; Katsuhisa Horimoto; Jake Chen; Amy Sze Chan

    2004-07-19

    A transcription factor regulates the expression of its target genes by binding to their operator regions. It functions by affecting the interactions between RNA polymerases and the gene's promoter. Many transcription factors bind to their targets by recognizing a specific DNA sequence pattern, which is referred to as a consensus sequence or a motif. Since it would remove the possible biases, combining biological data from different sources can be expected to improve the quality of the information extracted from the biological data. We analyzed the microarray gene expression data and the organism's genome sequence jointly to determine the transcription factor recognition sequences with more accuracy. Utilizing such a data integration approach, we have investigated the regulation of the photosynthesis genes of the purple non-sulphur photosynthetic bacterium Rhodobacter sphaeroides. The photosynthesis genes in this organism are tightly regulated as a function of environmental growth conditions by three major regulatory systems, PrrB/PrrA, AppA/PpsR and FnrL. In this study, we have detected a previously undefined PrrA consensus sequence, improved the previously known DNA-binding motif of PpsR, and confirmed the consensus sequence of the global regulator FnrL.

  9. An account of fungal 14-3-3 proteins.

    PubMed

    Kumar, Ravinder

    2017-02-24

    14-3-3s are a group of relatively low molecular weight, acidic, dimeric, protein(s) conserved from single-celled yeast to multicellular vertebrates including humans. Despite lacking catalytic activity, these proteins have been shown to be involved in multiple cellular processes. Apart from their role in normal cellular physiology, recently these proteins have been implicated in various medical consequences. In this present review, fungal 14-3-3 protein localization, interactions, transcription, regulation, their role in the diverse cellular process including DNA duplication, cell cycle, protein trafficking or secretion, apoptosis, autophagy, cell viability under stress, gene expression, spindle positioning, role in carbon metabolism have been discussed. In the end, I also highlighted various roles of yeasts 14-3-3 proteins in tabular form. Thus this review with primary emphasis on yeast will help in appreciating the significance of 14-3-3 proteins in cell physiology.

  10. Genome-Wide Identification, Phylogeny, and Expression Analyses of the 14-3-3 Family Reveal Their Involvement in the Development, Ripening, and Abiotic Stress Response in Banana

    PubMed Central

    Li, Meiying; Ren, Licheng; Xu, Biyu; Yang, Xiaoliang; Xia, Qiyu; He, Pingping; Xiao, Susheng; Guo, Anping; Hu, Wei; Jin, Zhiqiang

    2016-01-01

    Plant 14-3-3 proteins act as critical components of various cellular signaling processes and play an important role in regulating multiple physiological processes. However, less information is known about the 14-3-3 gene family in banana. In this study, 25 14-3-3 genes were identified from the banana genome. Based on the evolutionary analysis, banana 14-3-3 proteins were clustered into ε and non-ε groups. Conserved motif analysis showed that all identified banana 14-3-3 genes had the typical 14-3-3 motif. The gene structure of banana 14-3-3 genes showed distinct class-specific divergence between the ε group and the non-ε group. Most banana 14-3-3 genes showed strong transcript accumulation changes during fruit development and postharvest ripening in two banana varieties, indicating that they might be involved in regulating fruit development and ripening. Moreover, some 14-3-3 genes also showed great changes after osmotic, cold, and salt treatments in two banana varieties, suggested their potential role in regulating banana response to abiotic stress. Taken together, this systemic analysis reveals the involvement of banana 14-3-3 genes in fruit development, postharvest ripening, and response to abiotic stress and provides useful information for understanding the functions of 14-3-3 genes in banana. PMID:27713761

  11. Identification and characterization of protein 14-3-3 in carcinogenic liver fluke Opisthorchis viverrini.

    PubMed

    Kafle, Alok; Puchadapirom, Pranom; Plumworasawat, Sirikanya; Dontumprai, Rieofarng; Chan-On, Waraporn; Buates, Sureemas; Laha, Thewarach; Sripa, Banchob; Suttiprapa, Sutas

    2016-10-27

    Protein 14-3-3s are abundant phospho-serine/threonine binding proteins, which are highly conserved among eukaryotes. Members of this protein family mediate metabolism and signal transduction networks through binding to hundreds of other protein partners. Protein 14-3-3s have been studied in other species of parasitic helminthes, but little is known about this protein in the carcinogenic liver fluke Opisthorchis viverrini. In this study, we identified and characterized protein 14-3-3s of O. viverrini. Seven protein 14-3-3 encoded sequences were retrieved from the O. viverrini genome database. Multiple alignment and phylogenetic analysis were performed. Two isoforms (protein 14-3-3 zeta and protein 14-3-3 epsilon) that have been previously found in the excretory-secretory (ES) products of O. viverrini were produced as recombinant protein in E. coli and the proteins were then used to immunize mice to obtain specific antibodies. Western blot analysis showed that both proteins were detected in all obtainable developmental stages of O. viverrini and the ES products. Immunolocalization revealed that both isoforms were expressed throughout tissues and organs except the gut epithelium. The highest expression was observed in testes especially in developing spermatocytes, suggesting their role in spermatogenesis. Prominent expression was also detected on tegumental surface of the parasite and on epical surface of bile duct epithelium indicates their additional role in host-parasite interaction. These findings indicate that protein 14-3-3s play important role in the life cycle of the parasite and might be involved in the pathogenesis of O. viverrini infection.

  12. 14-3-3 Protects against stress-induced apoptosis

    PubMed Central

    Clapp, C; Portt, L; Khoury, C; Sheibani, S; Norman, G; Ebner, P; Eid, R; Vali, H; Mandato, C A; Madeo, F; Greenwood, M T

    2012-01-01

    Expression of human Bax, a cardinal regulator of mitochondrial membrane permeabilization, causes death in yeast. We screened a human cDNA library for suppressors of Bax-mediated yeast death and identified human 14-3-3β/α, a protein whose paralogs have numerous chaperone-like functions. Here, we show that, yeast cells expressing human 14-3-3β/α are able to complement deletion of the endogenous yeast 14-3-3 and confer resistance to a variety of different stresses including cadmium and cycloheximide. The expression of 14-3-3β/α also conferred resistance to death induced by the target of rapamycin inhibitor rapamycin and by starvation for the amino acid leucine, conditions that induce autophagy. Cell death in response to these autophagic stimuli was also observed in the macroautophagic-deficient atg1Δ and atg7Δ mutants. Furthermore, 14-3-3β/α retained its ability to protect against the autophagic stimuli in these autophagic-deficient mutants arguing against so called ‘autophagic death'. In line, analysis of cell death markers including the accumulation of reactive oxygen species, membrane integrity and cell surface exposure of phosphatidylserine indicated that 14-3-3β/α serves as a specific inhibitor of apoptosis. Finally, we demonstrate functional conservation of these phenotypes using the yeast homolog of 14-3-3: Bmh1. In sum, cell death in response to multiple stresses can be counteracted by 14-3-3 proteins. PMID:22785534

  13. The EFF-1A Cytoplasmic Domain Influences Hypodermal Cell Fusions in C. elegans But Is Not Dependent on 14-3-3 Proteins

    PubMed Central

    Shinn-Thomas, Jessica H.; del Campo, Jacob J.; Wang, Jianjun; Mohler, William A.

    2016-01-01

    Background Regulatory and biophysical mechanisms of cell-cell fusion are largely unknown despite the fundamental requirement for fused cells in eukaryotic development. Only two cellular fusogens that are not of clear recent viral origin have been identified to date, both in nematodes. One of these, EFF-1, is necessary for most cell fusions in Caenorhabditis elegans. Unregulated EFF-1 expression causes lethality due to ectopic fusion between cells not developmentally programmed to fuse, highlighting the necessity of tight fusogen regulation for proper development. Identifying factors that regulate EFF-1 and its paralog AFF-1 could lead to discovery of molecular mechanisms that control cell fusion upstream of the action of a membrane fusogen. Bioinformatic analysis of the EFF-1A isoform’s predicted cytoplasmic domain (endodomain) previously revealed two motifs that have high probabilities of interacting with 14-3-3 proteins when phosphorylated. Mutation of predicted phosphorylation sites within these motifs caused measurable loss of eff-1 gene function in cell fusion in vivo. Moreover, a human 14-3-3 isoform bound to EFF-1::GFP in vitro. We hypothesized that the two 14-3-3 proteins in C. elegans, PAR-5 and FTT-2, may regulate either localization or fusion-inducing activity of EFF-1. Methodology/Principal Findings Timing of fusion events was slightly but significantly delayed in animals unable to produce full-length EFF-1A. Yet, mutagenesis and live imaging showed that phosphoserines in putative 14-3-3 binding sites are not essential for EFF-1::GFP accumulation at the membrane contact between fusion partner cells. Moreover, although the EFF-1A endodomain was required for normal rates of eff-1-dependent epidermal cell fusions, reduced levels of FTT-2 and PAR-5 did not visibly affect the function of wild-type EFF-1 in the hypodermis. Conclusions/Significance Deletion of the EFF-1A endodomain noticeably affects the timing of hypodermal cell fusions in vivo. However

  14. Loss of Par3 promotes lung adenocarcinoma metastasis through 14-3-3ζ protein.

    PubMed

    Song, Tong; Tian, Xia; Kai, Fan; Ke, Jiang; Wei, Zhai; Jing-Song, Li; Si-Hua, Wang; Jian-Jun, Wang

    2016-09-27

    Partitioning defective protein 3 (Par3) can activate the Tiam1/Rac pathway to inhibit invasion and metastasis in many cancers; however, the role of Par3 in lung adenocarcinoma remains unknown. Here we show that Par3 is downregulated in lung adenocarcinoma tissues and is associated with higher rates of lymph node metastasis and recurrence. Our functional study demonstrated that knock-down of Par3 promoted lung adenocarcinoma cell growth, cell migration, tumor formation, and metastasis, all of which were effectively inhibited when 14-3-3ζ was silenced. We found that Par3 binded with 14-3-3ζ protein and also showed that Par3 abrogated the binding of 14-3-3ζ to Tiam1, which was responsible for Rac1 activation. Knock-down of 14-3-3ζ inhibited Tiam1/Rac-GTP activation and blocked the invasive behavior of cells lacking Par3. These data suggest that loss of Par3 promotes metastatic behavior in lung adenocarcinoma cells through 14-3-3ζ protein.

  15. Loss of Par3 promotes lung adenocarcinoma metastasis through 14-3-3ζ protein

    PubMed Central

    Tong, Song; Xia, Tian; Fan, Kai; Jiang, Ke; Zhai, Wei; Li, Jing-Song; Wang, Si-Hua; Wang, Jian-Jun

    2016-01-01

    Partitioning defective protein 3 (Par3) can activate the Tiam1/Rac pathway to inhibit invasion and metastasis in many cancers; however, the role of Par3 in lung adenocarcinoma remains unknown. Here we show that Par3 is downregulated in lung adenocarcinoma tissues and is associated with higher rates of lymph node metastasis and recurrence. Our functional study demonstrated that knock-down of Par3 promoted lung adenocarcinoma cell growth, cell migration, tumor formation, and metastasis, all of which were effectively inhibited when 14-3-3ζ was silenced. We found that Par3 binded with 14-3-3ζ protein and also showed that Par3 abrogated the binding of 14-3-3ζ to Tiam1, which was responsible for Rac1 activation. Knock-down of 14-3-3ζ inhibited Tiam1/Rac-GTP activation and blocked the invasive behavior of cells lacking Par3. These data suggest that loss of Par3 promotes metastatic behavior in lung adenocarcinoma cells through 14-3-3ζ protein. PMID:27588399

  16. Identifying combinatorial regulation of transcription factors and binding motifs

    PubMed Central

    Kato, Mamoru; Hata, Naoya; Banerjee, Nilanjana; Futcher, Bruce; Zhang, Michael Q

    2004-01-01

    Background Combinatorial interaction of transcription factors (TFs) is important for gene regulation. Although various genomic datasets are relevant to this issue, each dataset provides relatively weak evidence on its own. Developing methods that can integrate different sequence, expression and localization data have become important. Results Here we use a novel method that integrates chromatin immunoprecipitation (ChIP) data with microarray expression data and with combinatorial TF-motif analysis. We systematically identify combinations of transcription factors and of motifs. The various combinations of TFs involved multiple binding mechanisms. We reconstruct a new combinatorial regulatory map of the yeast cell cycle in which cell-cycle regulation can be drawn as a chain of extended TF modules. We find that the pairwise combination of a TF for an early cell-cycle phase and a TF for a later phase is often used to control gene expression at intermediate times. Thus the number of distinct times of gene expression is greater than the number of transcription factors. We also see that some TF modules control branch points (cell-cycle entry and exit), and in the presence of appropriate signals they can allow progress along alternative pathways. Conclusions Combining different data sources can increase statistical power as demonstrated by detecting TF interactions and composite TF-binding motifs. The original picture of a chain of simple cell-cycle regulators can be extended to a chain of composite regulatory modules: different modules may share a common TF component in the same pathway or a TF component cross-talking to other pathways. PMID:15287978

  17. Isolation and expression analysis of a homolog of the 14-3-3 epsilon gene in the diamondback moth, Plutella xylostella.

    PubMed

    Yoo, Ji Yeon; Hwang, Se Hui; Han, Yeon Soo; Cho, Saeyoull

    2011-02-01

    A full-length 14-3-3 gene homolog (also referred to as the Px14-3-3 epsilon "ε" or Px14-3-3ε gene) was cloned from cDNA of the diamondback moth, Plutella xylostella. The Px14-3-3 transcript is 789 nucleotides in length, and the predicted polypeptide is 263 amino acids in length, with a calculated molecular mass of 29.6 kDa. The Px14-3-3 gene contains the typical and predicted 14-3-3 domains and motifs. The amino acid sequence of the diamondback moth 14-3-3 gene is very similar to that of other insect epsilons (ε) but not to other insect zetas (ζ). In particular, the protein sequence of the Px14-3-3 gene shows high identity to the Bombyx mori epsilon (96.2%). Western blot analysis using an antibody against Px14-3-3ε verified the expression of 14-3-3ε in the larval, pupal, and adult stages. The Px14-3-3ε expression patterns in all the different tissue types were examined in the fourth instar larvae. Px14-3-3ε was detected in every tissue examined, including the body fat, hemocytes, brain, gut, and cuticle.

  18. The helix bundle: A reversible lipid binding motif

    PubMed Central

    Narayanaswami, Vasanthy; Kiss, Robert S.; Weers, Paul M.M.

    2009-01-01

    Apolipoproteins are the protein components of lipoproteins that have the innate ability to inter convert between a lipid-free and a lipid-bound form in a facile manner, a remarkable property conferred by the helix bundle motif. Composed of a series of four or five amphipathic α-helices that fold to form a helix bundle, this motif allows the en face orientation of the hydrophobic faces of the α-helices in the protein interior in the lipid-free state. A conformational switch then permits helix-helix interactions to be substituted by helix-lipid interactions upon lipid binding interaction. This review compares the apolipoprotein high resolution structures and the factors that trigger this switch in insect apolipophorin III and the mammalian apolipoproteins, apolipoprotein E and apolipoprotein A-I, pointing out the commonalities and key differences in the mode of lipid interaction. Further insights into the lipid bound conformation of apolipoproteins are required to fully understand their functional role under physiological conditions. PMID:19770066

  19. Site-specific regulatory interaction between spinach leaf sucrose-phosphate synthase and 14-3-3 proteins

    NASA Technical Reports Server (NTRS)

    Toroser, D.; Athwal, G. S.; Huber, S. C.; Davies, E. (Principal Investigator)

    1998-01-01

    We report an Mg2+-dependent interaction between spinach leaf sucrose-phosphate synthase (SPS) and endogenous 14-3-3 proteins, as evidenced by co-elution during gel filtration and co-immunoprecipitation. The content of 14-3-3s associated with an SPS immunoprecipitate was inversely related to activity, and was specifically reduced when tissue was pretreated with 5-aminoimidazole-4-carboxamide riboside, suggesting metabolite control in vivo. A synthetic phosphopeptide based on Ser-229 was shown by surface plasmon resonance to bind a recombinant plant 14-3-3, and addition of the phosphorylated SPS-229 peptide was found to stimulate the SPS activity of an SPS:14-3-3 complex. Taken together, the results suggest a regulatory interaction of 14-3-3 proteins with Ser-229 of SPS.

  20. alpha-Synuclein shares physical and functional homology with 14-3-3 proteins.

    PubMed

    Ostrerova, N; Petrucelli, L; Farrer, M; Mehta, N; Choi, P; Hardy, J; Wolozin, B

    1999-07-15

    alpha-Synuclein has been implicated in the pathophysiology of many neurodegenerative diseases, including Parkinson's disease (PD) and Alzheimer's disease. Mutations in alpha-synuclein cause some cases of familial PD (Polymeropoulos et al., 1997; Kruger et al., 1998). In addition, many neurodegenerative diseases show accumulation of alpha-synuclein in dystrophic neurites and in Lewy bodies (Spillantini et al., 1998). Here, we show that alpha-synuclein shares physical and functional homology with 14-3-3 proteins, which are a family of ubiquitous cytoplasmic chaperones. Regions of alpha-synuclein and 14-3-3 proteins share over 40% homology. In addition, alpha-synuclein binds to 14-3-3 proteins, as well as some proteins known to associate with 14-3-3, including protein kinase C, BAD, and extracellular regulated kinase, but not Raf-1. We also show that overexpression of alpha-synuclein inhibits protein kinase C activity. The association of alpha-synuclein with BAD and inhibition of protein kinase C suggests that increased expression of alpha-synuclein could be harmful. Consistent with this hypothesis, we observed that overexpression of wild-type alpha-synuclein is toxic, and overexpression of alpha-synuclein containing the A53T or A30P mutations exhibits even greater toxicity. The activity and binding profile of alpha-synuclein suggests that it might act as a protein chaperone and that accumulation of alpha-synuclein could contribute to cell death in neurodegenerative diseases.

  1. 14-3-3theta Protects against Neurotoxicity in a Cellular Parkinson's Disease Model through Inhibition of the Apoptotic Factor Bax

    PubMed Central

    Slone, Sunny R.; Lesort, Mathieu; Yacoubian, Talene A.

    2011-01-01

    Disruption of 14-3-3 function by alpha-synuclein has been implicated in Parkinson's disease. As 14-3-3s are important regulators of cell death pathways, disruption of 14-3-3s could result in the release of pro-apoptotic factors, such as Bax. We have previously shown that overexpression of 14-3-3θ reduces cell loss in response to rotenone and MPP+ in dopaminergic cell culture and reduces cell loss in transgenic C. elegans that overexpress alpha-synuclein. In this study, we investigate the mechanism for 14-3-3θ's neuroprotection against rotenone toxicity. While 14-3-3s can inhibit many pro-apoptotic factors, we demonstrate that inhibition of one factor in particular, Bax, is important to 14-3-3s' protection against rotenone toxicity in dopaminergic cells. We found that 14-3-3θ overexpression reduced Bax activation and downstream signaling events, including cytochrome C release and caspase 3 activation. Pharmacological inhibition or shRNA knockdown of Bax provided protection against rotenone, comparable to 14-3-3θ's neuroprotective effects. A 14-3-3θ mutant incapable of binding Bax failed to protect against rotenone. These data suggest that 14-3-3θ's neuroprotective effects against rotenone are at least partially mediated by Bax inhibition and point to a potential therapeutic role of 14-3-3s in Parkinson's disease. PMID:21799745

  2. The 14-3-3 protein forms a molecular complex with heat shock protein Hsp60 and cellular prion protein.

    PubMed

    Satoh, Jun-ichi; Onoue, Hiroyuki; Arima, Kunimasa; Yamamura, Takashi

    2005-10-01

    The 14-3-3 protein family consists of acidic 30-kDa proteins composed of 7 isoforms expressed abundantly in neurons and glial cells of the central nervous system (CNS). The 14-3-3 protein identified in the cerebrospinal fluid provides a surrogate marker for premortem diagnosis of Creutzfeldt-Jakob disease, although an active involvement of 14-3-3 in the pathogenesis of prion diseases remains unknown. By protein overlay and mass spectrometric analysis of protein extract of NTera2-derived differentiated neurons, we identified heat shock protein Hsp60 as a 14-3-3-interacting protein. The 14-3-3zeta and gamma isoforms interacted with Hsp60, suggesting that the interaction is not isoform-specific. Furthermore, the interaction was identified in SK-N-SH neuroblastoma, U-373MG astrocytoma, and HeLa cervical carcinoma cells. The cellular prion protein (PrPC) along with Hsp60 was coimmunoprecipitated with 14-3-3 in the human brain protein extract. By protein overlay, 14-3-3 interacted with both recombinant human Hsp60 and PrPC produced by Escherichia coli, indicating that the molecular interaction is phosphorylation-independent. The 14-3-3-binding domain was located in the N-terminal half (NTF) of Hsp60 spanning amino acid residues 27-287 and the NTF of PrPC spanning amino acid residues 23-137. By immunostaining, the 14-3-3 protein Hsp60 and PrPC were colocalized chiefly in the mitochondria of human neuronal progenitor cells in culture, and were coexpressed most prominently in neurons and reactive astrocytes in the human brain. These observations indicate that the 14-3-3 protein forms a molecular complex with Hsp60 and PrPC in the human CNS under physiological conditions and suggest that this complex might become disintegrated in the pathologic process of prion diseases.

  3. 14-3-3 proteins associate with phosphorylated simple epithelial keratins during cell cycle progression and act as a solubility cofactor

    PubMed Central

    1996-01-01

    14-3-3 is a ubiquitous protein family that interacts with several signal transduction kinases. We show that 14-3-3 proteins associate with keratin intermediate filament polypeptides 8 and 18 (K8/18) that are expressed in simple-type epithelia. The association is stoichiometrically significant (> or = one 14-3-3 molecule/keratin tetramer), occurs preferentially with K18, and is phosphorylation- and cell cycle-dependent in that it occurs during S/G2/M phases of the cell cycle when keratins become hyperphosphorylated. Binding of phospho- K8/18 to 14-3-3 can be reconstituted in vitro using recombinant 14-3-3 or using total cellular cytosol. Phosphatase treatment results in dissociation of 14-3-3, and dephosphorylation of phospho-K8/18 prevents reconstitution of the binding. Three cellular keratin subpopulations were analyzed that showed parallel gradients of keratin phosphorylation and 14-3-3 binding. Incubation of 14-3-3 with keratins during or after in vitro filament assembly results in sequestering of additional soluble keratin, only in cases when the keratins were hyperphosphorylated. Our results demonstrate a stoichiometrically significant cell cycle- and phosphorylation-regulated binding of 14-3-3 proteins to K18 and in vitro evidence of a simple epithelial keratin sequestering role for 14-3-3 proteins. PMID:8609167

  4. Magnesium-binding architectures in RNA crystal structures: validation, binding preferences, classification and motif detection

    PubMed Central

    Zheng, Heping; Shabalin, Ivan G.; Handing, Katarzyna B.; Bujnicki, Janusz M.; Minor, Wladek

    2015-01-01

    The ubiquitous presence of magnesium ions in RNA has long been recognized as a key factor governing RNA folding, and is crucial for many diverse functions of RNA molecules. In this work, Mg2+-binding architectures in RNA were systematically studied using a database of RNA crystal structures from the Protein Data Bank (PDB). Due to the abundance of poorly modeled or incorrectly identified Mg2+ ions, the set of all sites was comprehensively validated and filtered to identify a benchmark dataset of 15 334 ‘reliable’ RNA-bound Mg2+ sites. The normalized frequencies by which specific RNA atoms coordinate Mg2+ were derived for both the inner and outer coordination spheres. A hierarchical classification system of Mg2+ sites in RNA structures was designed and applied to the benchmark dataset, yielding a set of 41 types of inner-sphere and 95 types of outer-sphere coordinating patterns. This classification system has also been applied to describe six previously reported Mg2+-binding motifs and detect them in new RNA structures. Investigation of the most populous site types resulted in the identification of seven novel Mg2+-binding motifs, and all RNA structures in the PDB were screened for the presence of these motifs. PMID:25800744

  5. Cotton (Gossypium hirsutum) 14-3-3 proteins participate in regulation of fibre initiation and elongation by modulating brassinosteroid signalling.

    PubMed

    Zhou, Ying; Zhang, Ze-Ting; Li, Mo; Wei, Xin-Zheng; Li, Xiao-Jie; Li, Bing-Ying; Li, Xue-Bao

    2015-02-01

    Cotton (Gossypium hirsutum) fibre is an important natural raw material for textile industry in the world. Understanding the molecular mechanism of fibre development is important for the development of future cotton varieties with superior fibre quality. In this study, overexpression of Gh14-3-3L in cotton promoted fibre elongation, leading to an increase in mature fibre length. In contrast, suppression of expression of Gh14-3-3L, Gh14-3-3e and Gh14-3-3h in cotton slowed down fibre initiation and elongation. As a result, the mature fibres of the Gh14-3-3 RNAi transgenic plants were significantly shorter than those of wild type. This 'short fibre' phenotype of the 14-3-3 RNAi cotton could be partially rescued by application of 2,4-epibrassinolide (BL). Expression levels of the BR-related and fibre-related genes were altered in the Gh14-3-3 transgenic fibres. Furthermore, we identified Gh14-3-3 interacting proteins (including GhBZR1) in cotton. Site mutation assay revealed that Ser163 in GhBZR1 and Lys51/56/53 in Gh14-3-3L/e/h were required for Gh14-3-3-GhBZR1 interaction. Nuclear localization of GhBZR1 protein was induced by BR, and phosphorylation of GhBZR1 by GhBIN2 kinase was helpful for its binding to Gh14-3-3 proteins. Additionally, 14-3-3-regulated GhBZR1 protein may directly bind to GhXTH1 and GhEXP promoters to regulate gene expression for responding rapid fibre elongation. These results suggested that Gh14-3-3 proteins may be involved in regulating fibre initiation and elongation through their interacting with GhBZR1 to modulate BR signalling. Thus, our study provides the candidate intrinsic genes for improving fibre yield and quality by genetic manipulation.

  6. Cannabinoid receptor activation inhibits cell cycle progression by modulating 14-3-3β.

    PubMed

    Jung, Hye-Won; Park, Inae; Ghil, Sungho

    2014-09-01

    Cannabinoids display various pharmacological activities, including tumor regression, anti-inflammatory and neuroprotective effects. To investigate the molecular mechanisms underlying the pharmacological effects of cannabinoids, we used a yeast two-hybrid system to screen a mouse brain cDNA library for proteins interacting with type 1 cannabinoid receptor (CB1R). Using the intracellular loop 3 of CB1R as bait, we identified 14-3-3β as an interacting partner of CB1R and confirmed their interaction using affinity-binding assays. 14-3-3β has been reported to induce a cell cycle delay at the G2/M phase. We tested the effects of cannabinoids on cell cycle progression in HeLa cells synchronized using a double-thymidine block-and-release protocol and found an increase in the population of G2/M phase cells. We further found that CB1R activation augmented the interaction of 14-3-3β with Wee1 and Cdc25B, and promoted phosphorylation of Cdc2 at Tyr-15. These results suggest that cannabinoids induce cell cycle delay at the G2/M phase by activating 14-3-3β.

  7. Impairment of GABAB receptor dimer by endogenous 14-3-3ζ in chronic pain conditions

    PubMed Central

    Laffray, Sophie; Bouali-Benazzouz, Rabia; Papon, Marie-Amélie; Favereaux, Alexandre; Jiang, Yang; Holm, Tina; Spriet, Corentin; Desbarats, Pascal; Fossat, Pascal; Le Feuvre, Yves; Decossas, Marion; Héliot, Laurent; Langel, Ulo; Nagy, Frédéric; Landry, Marc

    2012-01-01

    In the central nervous system, the inhibitory GABAB receptor is the archetype of heterodimeric G protein-coupled receptors (GPCRs). However, the regulation of GABAB dimerization, and more generally of GPCR oligomerization, remains largely unknown. We propose a novel mechanism for inhibition of GPCR activity through de-dimerization in pathological conditions. We show here that 14-3-3ζ, a GABAB1-binding protein, dissociates the GABAB heterodimer, resulting in the impairment of GABAB signalling in spinal neurons. In the dorsal spinal cord of neuropathic rats, 14-3-3ζ is overexpressed and weakens GABAB inhibition. Using anti-14-3-3ζ siRNA or competing peptides disrupts 14-3-3ζ/GABAB1 interaction and restores functional GABAB heterodimers in the dorsal horn. Importantly, both strategies greatly enhance the anti-nociceptive effect of intrathecal Baclofen in neuropathic rats. Taken together, our data provide the first example of endogenous regulation of a GPCR oligomeric state and demonstrate its functional impact on the pathophysiological process of neuropathic pain sensitization. PMID:22692127

  8. Chemical Genetics of 14-3-3 Regulation and Role in Tumor Development

    DTIC Science & Technology

    2006-11-01

    antifungal chemical typically used in the treatment of fungal (Tinea) skin such as athlete’s foot, jock itch, ringworm and tinea versicolor...DeCaprio JA: Cytoplasmic localization of human cdc25C during interphase requires an intact 14-3-3 binding site. Mol Cell Biol 1999, 19(6):4465- 4479. 12...epidermal growth factor receptor signaling pathways of the human prostate epithelial cell line M12. Oncogene 2004, 23(41):6881-6889. 15. Lopez-Girona

  9. Inhibition of the Arabidopsis Salt Overly Sensitive Pathway by 14-3-3 Proteins[C][W

    PubMed Central

    Zhou, Huapeng; Lin, Huixin; Chen, She; Becker, Katia; Yang, Yongqing; Zhao, Jinfeng; Kudla, Jörg; Schumaker, Karen S.; Guo, Yan

    2014-01-01

    The Salt Overly Sensitive (SOS) pathway regulates intracellular sodium ion (Na+) homeostasis and salt tolerance in plants. Until recently, little was known about the mechanisms that inhibit the SOS pathway when plants are grown in the absence of salt stress. In this study, we report that the Arabidopsis thaliana 14-3-3 proteins λ and κ interact with SOS2 and repress its kinase activity. Growth in the presence of salt decreases the interaction between SOS2 and the 14-3-3 proteins, leading to kinase activation in planta. 14-3-3 λ interacts with the SOS2 junction domain, which is important for its kinase activity. A phosphorylation site (Ser-294) is identified within this domain by mass spectrometry. Mutation of Ser-294 to Ala or Asp does not affect SOS2 kinase activity in the absence of the 14-3-3 proteins. However, in the presence of 14-3-3 proteins, the inhibition of SOS2 activity is decreased by the Ser-to-Ala mutation and enhanced by the Ser-to-Asp exchange. These results identify 14-3-3 λ and κ as important regulators of salt tolerance. The inhibition of SOS2 mediated by the binding of 14-3-3 proteins represents a novel mechanism that confers basal repression of the SOS pathway in the absence of salt stress. PMID:24659330

  10. 14-3-3 proteins, FHA domains and BRCT domains in the DNA damage response.

    PubMed

    Mohammad, Duaa H; Yaffe, Michael B

    2009-09-02

    The DNA damage response depends on the concerted activity of protein serine/threonine kinases and modular phosphoserine/threonine-binding domains to relay the damage signal and recruit repair proteins. The PIKK family of protein kinases, which includes ATM/ATR/DNA-PK, preferentially phosphorylate Ser-Gln sites, while their basophilic downstream effecter kinases, Chk1/Chk2/MK2 preferentially phosphorylate hydrophobic-X-Arg-X-X-Ser/Thr-hydrophobic sites. A subset of tandem BRCT domains act as phosphopeptide binding modules that bind to ATM/ATR/DNA-PK substrates after DNA damage. Conversely, 14-3-3 proteins interact with substrates of Chk1/Chk2/MK2. FHA domains have been shown to interact with substrates of ATM/ATR/DNA-PK and CK2. In this review we consider how substrate phosphorylation together with BRCT domains, FHA domains and 14-3-3 proteins function to regulate ionizing radiation-induced nuclear foci and help to establish the G(2)/M checkpoint. We discuss the role of MDC1 a molecular scaffold that recruits early proteins to foci, such as NBS1 and RNF8, through distinct phosphodependent interactions. In addition, we consider the role of 14-3-3 proteins and the Chk2 FHA domain in initiating and maintaining cell cycle arrest.

  11. Genome-wide conserved consensus transcription factor binding motifs are hyper-methylated

    PubMed Central

    2010-01-01

    Background DNA methylation can regulate gene expression by modulating the interaction between DNA and proteins or protein complexes. Conserved consensus motifs exist across the human genome ("predicted transcription factor binding sites": "predicted TFBS") but the large majority of these are proven by chromatin immunoprecipitation and high throughput sequencing (ChIP-seq) not to be biological transcription factor binding sites ("empirical TFBS"). We hypothesize that DNA methylation at conserved consensus motifs prevents promiscuous or disorderly transcription factor binding. Results Using genome-wide methylation maps of the human heart and sperm, we found that all conserved consensus motifs as well as the subset of those that reside outside CpG islands have an aggregate profile of hyper-methylation. In contrast, empirical TFBS with conserved consensus motifs have a profile of hypo-methylation. 40% of empirical TFBS with conserved consensus motifs resided in CpG islands whereas only 7% of all conserved consensus motifs were in CpG islands. Finally we further identified a minority subset of TF whose profiles are either hypo-methylated or neutral at their respective conserved consensus motifs implicating that these TF may be responsible for establishing or maintaining an un-methylated DNA state, or whose binding is not regulated by DNA methylation. Conclusions Our analysis supports the hypothesis that at least for a subset of TF, empirical binding to conserved consensus motifs genome-wide may be controlled by DNA methylation. PMID:20875111

  12. Mitoxantrone and Analogues Bind and Stabilize i-Motif Forming DNA Sequences

    PubMed Central

    Wright, Elisé P.; Day, Henry A.; Ibrahim, Ali M.; Kumar, Jeethendra; Boswell, Leo J. E.; Huguin, Camille; Stevenson, Clare E. M.; Pors, Klaus; Waller, Zoë A. E.

    2016-01-01

    There are hundreds of ligands which can interact with G-quadruplex DNA, yet very few which target i-motif. To appreciate an understanding between the dynamics between these structures and how they can be affected by intervention with small molecule ligands, more i-motif binding compounds are required. Herein we describe how the drug mitoxantrone can bind, induce folding of and stabilise i-motif forming DNA sequences, even at physiological pH. Additionally, mitoxantrone was found to bind i-motif forming sequences preferentially over double helical DNA. We also describe the stabilisation properties of analogues of mitoxantrone. This offers a new family of ligands with potential for use in experiments into the structure and function of i-motif forming DNA sequences. PMID:28004744

  13. Mitoxantrone and Analogues Bind and Stabilize i-Motif Forming DNA Sequences

    NASA Astrophysics Data System (ADS)

    Wright, Elisé P.; Day, Henry A.; Ibrahim, Ali M.; Kumar, Jeethendra; Boswell, Leo J. E.; Huguin, Camille; Stevenson, Clare E. M.; Pors, Klaus; Waller, Zoë A. E.

    2016-12-01

    There are hundreds of ligands which can interact with G-quadruplex DNA, yet very few which target i-motif. To appreciate an understanding between the dynamics between these structures and how they can be affected by intervention with small molecule ligands, more i-motif binding compounds are required. Herein we describe how the drug mitoxantrone can bind, induce folding of and stabilise i-motif forming DNA sequences, even at physiological pH. Additionally, mitoxantrone was found to bind i-motif forming sequences preferentially over double helical DNA. We also describe the stabilisation properties of analogues of mitoxantrone. This offers a new family of ligands with potential for use in experiments into the structure and function of i-motif forming DNA sequences.

  14. The Silencing of a 14-3-3ɛ Homolog in Tenebrio molitor Leads to Increased Antimicrobial Activity in Hemocyte and Reduces Larval Survivability

    PubMed Central

    Seo, Gi Won; Jo, Yong Hun; Seong, Jeong Hwan; Park, Ki Beom; Patnaik, Bharat Bhusan; Tindwa, Hamisi; Kim, Sun-Am; Lee, Yong Seok; Kim, Yu Jung; Han, Yeon Soo

    2016-01-01

    The 14-3-3 family of phosphorylated serine-binding proteins acts as signaling molecules in biological processes such as metabolism, division, differentiation, autophagy, and apoptosis. Herein, we report the requirement of 14-3-3ɛ isoform from Tenebrio molitor (Tm14-3-3ɛ) in the hemocyte antimicrobial activity. The Tm14-3-3ɛ transcript is 771 nucleotides in length and encodes a polypeptide of 256 amino acid residues. The protein has the typical 14-3-3 domain, the nuclear export signal (NES) sequence, and the peptide binding residues. The Tm14-3-3ɛ transcript shows a significant three-fold expression in the hemocyte of T. molitor larvae when infected with Escherichia coli Tm14-3-3ɛ silenced larvae show significantly lower survival rates when infected with E. coli. Under Tm14-3-3ɛ silenced condition, a strong antimicrobial activity is elicited in the hemocyte of the host inoculated with E. coli. This suggests impaired secretion of antimicrobial peptides (AMP) into the hemolymph. Furthermore, a reduction in AMP secretion under Tm14-3-3ɛ silenced condition would be responsible for loss in the capacity to kill bacteria and might explain the reduced survivability of the larvae upon E. coli challenge. This shows that Tm14-3-3ɛ is required to maintain innate immunity in T. molitor by enabling antimicrobial secretion into the hemolymph and explains the functional specialization of the isoform. PMID:27556493

  15. Analysis of Genomic Sequence Motifs for Deciphering Transcription Factor Binding and Transcriptional Regulation in Eukaryotic Cells

    PubMed Central

    Boeva, Valentina

    2016-01-01

    Eukaryotic genomes contain a variety of structured patterns: repetitive elements, binding sites of DNA and RNA associated proteins, splice sites, and so on. Often, these structured patterns can be formalized as motifs and described using a proper mathematical model such as position weight matrix and IUPAC consensus. Two key tasks are typically carried out for motifs in the context of the analysis of genomic sequences. These are: identification in a set of DNA regions of over-represented motifs from a particular motif database, and de novo discovery of over-represented motifs. Here we describe existing methodology to perform these two tasks for motifs characterizing transcription factor binding. When applied to the output of ChIP-seq and ChIP-exo experiments, or to promoter regions of co-modulated genes, motif analysis techniques allow for the prediction of transcription factor binding events and enable identification of transcriptional regulators and co-regulators. The usefulness of motif analysis is further exemplified in this review by how motif discovery improves peak calling in ChIP-seq and ChIP-exo experiments and, when coupled with information on gene expression, allows insights into physical mechanisms of transcriptional modulation. PMID:26941778

  16. Systematic discovery and characterization of regulatory motifs in ENCODE TF binding experiments

    PubMed Central

    Kheradpour, Pouya; Kellis, Manolis

    2014-01-01

    Recent advances in technology have led to a dramatic increase in the number of available transcription factor ChIP-seq and ChIP-chip data sets. Understanding the motif content of these data sets is an important step in understanding the underlying mechanisms of regulation. Here we provide a systematic motif analysis for 427 human ChIP-seq data sets using motifs curated from the literature and also discovered de novo using five established motif discovery tools. We use a systematic pipeline for calculating motif enrichment in each data set, providing a principled way for choosing between motif variants found in the literature and for flagging potentially problematic data sets. Our analysis confirms the known specificity of 41 of the 56 analyzed factor groups and reveals motifs of potential cofactors. We also use cell type-specific binding to find factors active in specific conditions. The resource we provide is accessible both for browsing a small number of factors and for performing large-scale systematic analyses. We provide motif matrices, instances and enrichments in each of the ENCODE data sets. The motifs discovered here have been used in parallel studies to validate the specificity of antibodies, understand cooperativity between data sets and measure the variation of motif binding across individuals and species. PMID:24335146

  17. The Verrucomicrobia LexA-Binding Motif: Insights into the Evolutionary Dynamics of the SOS Response

    PubMed Central

    Erill, Ivan; Campoy, Susana; Kılıç, Sefa; Barbé, Jordi

    2016-01-01

    The SOS response is the primary bacterial mechanism to address DNA damage, coordinating multiple cellular processes that include DNA repair, cell division, and translesion synthesis. In contrast to other regulatory systems, the composition of the SOS genetic network and the binding motif of its transcriptional repressor, LexA, have been shown to vary greatly across bacterial clades, making it an ideal system to study the co-evolution of transcription factors and their regulons. Leveraging comparative genomics approaches and prior knowledge on the core SOS regulon, here we define the binding motif of the Verrucomicrobia, a recently described phylum of emerging interest due to its association with eukaryotic hosts. Site directed mutagenesis of the Verrucomicrobium spinosum recA promoter confirms that LexA binds a 14 bp palindromic motif with consensus sequence TGTTC-N4-GAACA. Computational analyses suggest that recognition of this novel motif is determined primarily by changes in base-contacting residues of the third alpha helix of the LexA helix-turn-helix DNA binding motif. In conjunction with comparative genomics analysis of the LexA regulon in the Verrucomicrobia phylum, electrophoretic shift assays reveal that LexA binds to operators in the promoter region of DNA repair genes and a mutagenesis cassette in this organism, and identify previously unreported components of the SOS response. The identification of tandem LexA-binding sites generating instances of other LexA-binding motifs in the lexA gene promoter of Verrucomicrobia species leads us to postulate a novel mechanism for LexA-binding motif evolution. This model, based on gene duplication, successfully addresses outstanding questions in the intricate co-evolution of the LexA protein, its binding motif and the regulatory network it controls. PMID:27489856

  18. Identification of a common hyaluronan binding motif in the hyaluronan binding proteins RHAMM, CD44 and link protein.

    PubMed Central

    Yang, B; Yang, B L; Savani, R C; Turley, E A

    1994-01-01

    We have previously identified two hyaluronan (HA) binding domains in the HA receptor, RHAMM, that occur near the carboxyl-terminus of this protein. We show here that these two HA binding domains are the only HA binding regions in RHAMM, and that they contribute approximately equally to the HA binding ability of this receptor. Mutation of domain II using recombinant polypeptides of RHAMM demonstrates that K423 and R431, spaced seven amino acids apart, are critical for HA binding activity. Domain I contains two sets of two basic amino acids, each spaced seven residues apart, and mutation of these basic amino acids reduced their binding to HA--Sepharose. These results predict that two basic amino acids flanking a seven amino acid stretch [hereafter called B(X7)B] are minimally required for HA binding activity. To assess whether this motif predicts HA binding in the intact RHAMM protein, we mutated all basic amino acids in domains I and II that form part of these motifs using site-directed mutagenesis and prepared fusion protein from the mutated cDNA. The altered RHAMM protein did not bind HA, confirming that the basic amino acids and their spacing are critical for binding. A specific requirement for arginine or lysine residues was identified since mutation of K430, R431 and K432 to histidine residues abolished binding. Clustering of basic amino acids either within or at either end of the motif enhanced HA binding activity while the occurrence of acidic residues between the basic amino acids reduced binding. The B(X7)B motif, in which B is either R or K and X7 contains no acidic residues and at least one basic amino acid, was found in all HA binding proteins molecularly characterized to date. Recombinant techniques were used to generate chimeric proteins containing either the B(X7)B motifs present in CD44 or link protein, with the amino-terminus of RHAMM (amino acids 1-238) that does not bind HA. All chimeric proteins containing the motif bound HA in transblot analyses

  19. Structural basis for the binding of tryptophan-based motifs by δ-COP

    PubMed Central

    Suckling, Richard J.; Poon, Pak Phi; Travis, Sophie M.; Majoul, Irina V.; Hughson, Frederick M.; Evans, Philip R.; Duden, Rainer; Owen, David J.

    2015-01-01

    Coatomer consists of two subcomplexes: the membrane-targeting, ADP ribosylation factor 1 (Arf1):GTP-binding βγδζ-COP F-subcomplex, which is related to the adaptor protein (AP) clathrin adaptors, and the cargo-binding αβ’ε-COP B-subcomplex. We present the structure of the C-terminal μ-homology domain of the yeast δ-COP subunit in complex with the WxW motif from its binding partner, the endoplasmic reticulum-localized Dsl1 tether. The motif binds at a site distinct from that used by the homologous AP μ subunits to bind YxxΦ cargo motifs with its two tryptophan residues sitting in compatible pockets. We also show that the Saccharomyces cerevisiae Arf GTPase-activating protein (GAP) homolog Gcs1p uses a related WxxF motif at its extreme C terminus to bind to δ-COP at the same site in the same way. Mutations designed on the basis of the structure in conjunction with isothermal titration calorimetry confirm the mode of binding and show that mammalian δ-COP binds related tryptophan-based motifs such as that from ArfGAP1 in a similar manner. We conclude that δ-COP subunits bind Wxn(1–6)[WF] motifs within unstructured regions of proteins that influence the lifecycle of COPI-coated vesicles; this conclusion is supported by the observation that, in the context of a sensitizing domain deletion in Dsl1p, mutating the tryptophan-based motif-binding site in yeast causes defects in both growth and carboxypeptidase Y trafficking/processing. PMID:26578768

  20. Structural basis for the binding of tryptophan-based motifs by δ-COP.

    PubMed

    Suckling, Richard J; Poon, Pak Phi; Travis, Sophie M; Majoul, Irina V; Hughson, Frederick M; Evans, Philip R; Duden, Rainer; Owen, David J

    2015-11-17

    Coatomer consists of two subcomplexes: the membrane-targeting, ADP ribosylation factor 1 (Arf1):GTP-binding βγδζ-COP F-subcomplex, which is related to the adaptor protein (AP) clathrin adaptors, and the cargo-binding αβ'ε-COP B-subcomplex. We present the structure of the C-terminal μ-homology domain of the yeast δ-COP subunit in complex with the WxW motif from its binding partner, the endoplasmic reticulum-localized Dsl1 tether. The motif binds at a site distinct from that used by the homologous AP μ subunits to bind YxxΦ cargo motifs with its two tryptophan residues sitting in compatible pockets. We also show that the Saccharomyces cerevisiae Arf GTPase-activating protein (GAP) homolog Gcs1p uses a related WxxF motif at its extreme C terminus to bind to δ-COP at the same site in the same way. Mutations designed on the basis of the structure in conjunction with isothermal titration calorimetry confirm the mode of binding and show that mammalian δ-COP binds related tryptophan-based motifs such as that from ArfGAP1 in a similar manner. We conclude that δ-COP subunits bind Wxn(1-6)[WF] motifs within unstructured regions of proteins that influence the lifecycle of COPI-coated vesicles; this conclusion is supported by the observation that, in the context of a sensitizing domain deletion in Dsl1p, mutating the tryptophan-based motif-binding site in yeast causes defects in both growth and carboxypeptidase Y trafficking/processing.

  1. WordSpy: identifying transcription factor binding motifs by building a dictionary and learning a grammar

    PubMed Central

    Wang, Guandong; Yu, Taotao; Zhang, Weixiong

    2005-01-01

    Transcription factor (TF) binding sites or motifs (TFBMs) are functional cis-regulatory DNA sequences that play an essential role in gene transcriptional regulation. Although many experimental and computational methods have been developed, finding TFBMs remains a challenging problem. We propose and develop a novel dictionary based motif finding algorithm, which we call WordSpy. One significant feature of WordSpy is the combination of a word counting method and a statistical model which consists of a dictionary of motifs and a grammar specifying their usage. The algorithm is suitable for genome-wide motif finding; it is capable of discovering hundreds of motifs from a large set of promoters in a single run. We further enhance WordSpy by applying gene expression information to separate true TFBMs from spurious ones, and by incorporating negative sequences to identify discriminative motifs. In addition, we also use randomly selected promoters from the genome to evaluate the significance of the discovered motifs. The output from WordSpy consists of an ordered list of putative motifs and a set of regulatory sequences with motif binding sites highlighted. The web server of WordSpy is available at . PMID:15980501

  2. 14-3-3 sigma and 14-3-3 zeta plays an opposite role in cell growth inhibition mediated by transforming growth factor-beta 1.

    PubMed

    Hong, Hye-Young; Jeon, Woo-Kwang; Bae, Eun-Jin; Kim, Shin-Tae; Lee, Ho-Jae; Kim, Seong-Jin; Kim, Byung-Chul

    2010-03-01

    The expression of 14-3-3 proteins is dysregulated in various types of cancer. This study was undertaken to investigate the effects of 14-3-3 zeta and 14-3-3 sigma on cell growth inhibition mediated by transforming growth factor-beta 1 (TGF-beta1). Mouse mammary epithelial cells (Eph4) that are transformed with oncogenic c-H-Ras (EpRas) and no longer sensitive to TGF-beta1-mediated growth inhibition displayed increased expression of 14-3-3 zeta and decreased expression of 14-3-3 sigma compared with parental Eph4 cells. Using small interfering RNA-mediated knockdown and overexpression of 14-3-3 sigma or 14-3-3 zeta, we showed that 14-3-3 sigma is required for TGF-beta1-mediated growth inhibition whereas 14-3-3 zeta negatively modulates this growth inhibitory response. Notably, overexpression of 14-3-3 zeta increased the level of Smad3 protein that is phosphorylated at linker regions and cannot mediate the TGF-beta1 growth inhibitory response. Consistent with this finding, mutation of the 14-3-3 zeta phosphorylation sites in Smad3 markedly reduced the 14-3-3 zeta-mediated inhibition of TGF-beta1-induced p15 promoter-reporter activity and cell cycle arrest, suggesting that these residues are critical targets of 14-3-3 zeta in the suppression of TGF-beta1-mediated growth. Taken together, our findings indicate that dysregulation of 14-3-3 sigma or 14-3-3 zeta contributes to TGF-beta1 resistance in cancer cells.

  3. Human 14-3-3 Paralogs Differences Uncovered by Cross-Talk of Phosphorylation and Lysine Acetylation

    PubMed Central

    Uhart, Marina; Bustos, Diego M.

    2013-01-01

    The 14-3-3 protein family interacts with more than 700 different proteins in mammals, in part as a result of its specific phospho-serine/phospho-threonine binding activity. Upon binding to 14-3-3, the stability, subcellular localization and/or catalytic activity of the ligands are modified. Seven paralogs are strictly conserved in mammalian species. Although initially thought as redundant, the number of studies showing specialization is growing. We created a protein-protein interaction network for 14-3-3, kinases and their substrates signaling in human cells. We included information of phosphorylation, acetylation and other PTM sites, obtaining a complete representation of the 14-3-3 binding partners and their modifications. Using a computational system approach we found that networks of each 14-3-3 isoform are statistically different. It was remarkable to find that Tyr was the most phosphorylatable amino acid in domains of 14-3-3 epsilon partners. This, together with the over-representation of SH3 and Tyr_Kinase domains, suggest that epsilon could be involved in growth factors receptors signaling pathways particularly. We also found that within zeta’s network, the number of acetylated partners (and the number of modify lysines) is significantly higher compared with each of the other isoforms. Our results imply previously unreported hidden differences of the 14-3-3 isoforms interaction networks. The phosphoproteome and lysine acetylome within each network revealed post-transcriptional regulation intertwining phosphorylation and lysine acetylation. A global understanding of these networks will contribute to predict what could occur when regulatory circuits become dysfunctional or are modified in response to external stimuli. PMID:23418452

  4. Association of GABA(B) receptors and members of the 14-3-3 family of signaling proteins.

    PubMed

    Couve, A; Kittler, J T; Uren, J M; Calver, A R; Pangalos, M N; Walsh, F S; Moss, S J

    2001-02-01

    Two GABA(B) receptors, GABA(B)R1 and GABA(B)R2, have been cloned recently. Unlike other G protein-coupled receptors, the formation of a heterodimer between GABA(B)R1 and GABA(B)R2 is required for functional expression. We have used the yeast two hybrid system to identify proteins that interact with the C-terminus of GABA(B)R1. We report a direct association between GABA(B) receptors and two members of the 14-3-3 protein family, 14-3-3eta and 14-3-3zeta. We demonstrate that the C-terminus of GABA(B)R1 associates with 14-3-3zeta in rat brain preparations and tissue cultured cells, that they codistribute after rat brain fractionation, colocalize in neurons, and that the binding site overlaps partially with the coiled-coil domain of GABA(B)R1. Furthermore we show a reduced interaction between the C-terminal domains of GABA(B)R1 and GABA(B)R2 in the presence of 14-3-3. The results strongly suggest that GABA(B)R1 and 14-3-3 associate in the nervous system and begin to reveal the signaling complexities of the GABA(B)R1/GABA(B)R2 receptor heterodimer.

  5. Small yet effective: the ethylene responsive element binding factor-associated amphiphilic repression (EAR) motif.

    PubMed

    Kagale, Sateesh; Rozwadowski, Kevin

    2010-06-01

    The Ethylene-responsive element binding factor-associated Amphiphilic Repression (EAR) motif is a small yet distinct regulatory motif that is conserved in many plant transcriptional regulator (TR) proteins associated with diverse biological functions. We have previously established a list of high-confidence Arabidopsis EAR repressors, the EAR repressome, comprising 219 TRs belonging to 21 different TR families. This class of proteins and the sequence context of the EAR motif exhibited a high degree of conservation across evolutionarily diverse plant species. Our comprehensive genome-wide analysis enabled refining EAR motifs as comprising either LxLxL or DLNxxP. Comparing the representation of these sequence signatures in TRs to that of other repressor motifs we show that the EAR motif is the one most frequently represented, detected in 10 to 25% of the TRs from diverse plant species. The mechanisms involved in regulation of EAR motif function and the cellular fates of EAR repressors are currently not well understood. Our earlier analysis had implicated amino acid residues flanking the EAR motifs in regulation of their functionality. Here, we present additional evidence supporting possible regulation of EAR motif function by phosphorylation of integral or adjacent Ser and/or Thr residues. Additionally, we discuss potential novel roles of EAR motifs in plant-pathogen interaction and processes other than transcriptional repression.

  6. Regulation of transcription by Saccharomyces cerevisiae 14-3-3 proteins

    PubMed Central

    Bruckmann, Astrid; Steensma, H. Yde; Teixeira de Mattos, M. Joost; van Heusden, G. Paul H.

    2004-01-01

    14-3-3 proteins form a family of highly conserved eukaryotic proteins involved in a wide variety of cellular processes, including signalling, apoptosis, cell-cycle control and transcriptional regulation. More than 150 binding partners have been found for these proteins. The yeast Saccharomyces cerevisiae has two genes encoding 14-3-3 proteins, BMH1 and BMH2. A bmh1 bmh2 double mutant is unviable in most laboratory strains. Previously, we constructed a temperature-sensitive bmh2 mutant and showed that mutations in RTG3 and SIN4, both encoding transcriptional regulators, can suppress the temperature-sensitive phenotype of this mutant, suggesting an inhibitory role of the 14-3-3 proteins in Rtg3-dependent transcription [van Heusden and Steensma (2001) Yeast 18, 1479–1491]. In the present paper, we report a genome-wide transcription analysis of a temperature-sensitive bmh2 mutant. Steady-state mRNA levels of 60 open reading frames were increased more than 2.0-fold in the bmh2 mutant, whereas those of 78 open reading frames were decreased more than 2.0-fold. In agreement with our genetic experiments, six genes known to be regulated by Rtg3 showed elevated mRNA levels in the mutant. In addition, several genes with other cellular functions, including those involved in gluconeogenesis, ergosterol biosynthesis and stress response, had altered mRNA levels in the mutant. Our data show that the yeast 14-3-3 proteins negatively regulate Rtg3-dependent transcription, stimulate the transcription of genes involved in ergosterol metabolism and in stress response and are involved in transcription regulation of multiple other genes. PMID:15142031

  7. Regulation of transcription by Saccharomyces cerevisiae 14-3-3 proteins.

    PubMed

    Bruckmann, Astrid; Steensma, H Yde; Teixeira De Mattos, M Joost; Van Heusden, G Paul H

    2004-09-15

    14-3-3 proteins form a family of highly conserved eukaryotic proteins involved in a wide variety of cellular processes, including signalling, apoptosis, cell-cycle control and transcriptional regulation. More than 150 binding partners have been found for these proteins. The yeast Saccharomyces cerevisiae has two genes encoding 14-3-3 proteins, BMH1 and BMH2. A bmh1 bmh2 double mutant is unviable in most laboratory strains. Previously, we constructed a temperature-sensitive bmh2 mutant and showed that mutations in RTG3 and SIN4, both encoding transcriptional regulators, can suppress the temperature-sensitive phenotype of this mutant, suggesting an inhibitory role of the 14-3-3 proteins in Rtg3-dependent transcription [van Heusden and Steensma (2001) Yeast 18, 1479-1491]. In the present paper, we report a genome-wide transcription analysis of a temperature-sensitive bmh2 mutant. Steady-state mRNA levels of 60 open reading frames were increased more than 2.0-fold in the bmh2 mutant, whereas those of 78 open reading frames were decreased more than 2.0-fold. In agreement with our genetic experiments, six genes known to be regulated by Rtg3 showed elevated mRNA levels in the mutant. In addition, several genes with other cellular functions, including those involved in gluconeogenesis, ergosterol biosynthesis and stress response, had altered mRNA levels in the mutant. Our data show that the yeast 14-3-3 proteins negatively regulate Rtg3-dependent transcription, stimulate the transcription of genes involved in ergosterol metabolism and in stress response and are involved in transcription regulation of multiple other genes.

  8. Discovery and validation of information theory-based transcription factor and cofactor binding site motifs.

    PubMed

    Lu, Ruipeng; Mucaki, Eliseos J; Rogan, Peter K

    2016-11-28

    Data from ChIP-seq experiments can derive the genome-wide binding specificities of transcription factors (TFs) and other regulatory proteins. We analyzed 765 ENCODE ChIP-seq peak datasets of 207 human TFs with a novel motif discovery pipeline based on recursive, thresholded entropy minimization. This approach, while obviating the need to compensate for skewed nucleotide composition, distinguishes true binding motifs from noise, quantifies the strengths of individual binding sites based on computed affinity and detects adjacent cofactor binding sites that coordinate with the targets of primary, immunoprecipitated TFs. We obtained contiguous and bipartite information theory-based position weight matrices (iPWMs) for 93 sequence-specific TFs, discovered 23 cofactor motifs for 127 TFs and revealed six high-confidence novel motifs. The reliability and accuracy of these iPWMs were determined via four independent validation methods, including the detection of experimentally proven binding sites, explanation of effects of characterized SNPs, comparison with previously published motifs and statistical analyses. We also predict previously unreported TF coregulatory interactions (e.g. TF complexes). These iPWMs constitute a powerful tool for predicting the effects of sequence variants in known binding sites, performing mutation analysis on regulatory SNPs and predicting previously unrecognized binding sites and target genes.

  9. A compendium of RNA-binding motifs for decoding gene regulation

    PubMed Central

    Ray, Debashish; Kazan, Hilal; Cook, Kate B.; Weirauch, Matthew T.; Najafabadi, Hamed S.; Li, Xiao; Gueroussov, Serge; Albu, Mihai; Zheng, Hong; Yang, Ally; Na, Hong; Irimia, Manuel; Matzat, Leah H.; Dale, Ryan K.; Smith, Sarah A.; Yarosh, Christopher A.; Kelly, Seth M.; Nabet, Behnam; Mecenas, Desirea; Li, Weimin; Laishram, Rakesh S.; Qiao, Mei; Lipshitz, Howard D.; Piano, Fabio; Corbett, Anita H.; Carstens, Russ P.; Frey, Brendan J.; Anderson, Richard A.; Lynch, Kristen W.; Penalva, Luiz O. F.; Lei, Elissa P.; Fraser, Andrew G.; Blencowe, Benjamin J.; Morris, Quaid D.; Hughes, Timothy R.

    2014-01-01

    RNA-binding proteins are key regulators of gene expression, yet only a small fraction have been functionally characterized. Here we report a systematic analysis of the RNA motifs recognized by RNA-binding proteins, encompassing 205 distinct genes from 24 diverse eukaryotes. The sequence specificities of RNA-binding proteins display deep evolutionary conservation, and the recognition preferences for a large fraction of metazoan RNA-binding proteins can thus be inferred from their RNA-binding domain sequence. The motifs that we identify in vitro correlate well with in vivo RNA-binding data. Moreover, we can associate them with distinct functional roles in diverse types of post-transcriptional regulation, enabling new insights into the functions of RNA-binding proteins both in normal physiology and in human disease. These data provide an unprecedented overview of RNA-binding proteins and their targets, and constitute an invaluable resource for determining post-transcriptional regulatory mechanisms in eukaryotes. PMID:23846655

  10. Peptide-based identification of functional motifs and their binding partners.

    PubMed

    Shelton, Martin N; Huang, Ming Bo; Ali, Syed; Johnson, Kateena; Roth, William; Powell, Michael; Bond, Vincent

    2013-06-30

    Specific short peptides derived from motifs found in full-length proteins, in our case HIV-1 Nef, not only retain their biological function, but can also competitively inhibit the function of the full-length protein. A set of 20 Nef scanning peptides, 20 amino acids in length with each overlapping 10 amino acids of its neighbor, were used to identify motifs in Nef responsible for its induction of apoptosis. Peptides containing these apoptotic motifs induced apoptosis at levels comparable to the full-length Nef protein. A second peptide, derived from the Secretion Modification Region (SMR) of Nef, retained the ability to interact with cellular proteins involved in Nef's secretion in exosomes (exNef). This SMRwt peptide was used as the "bait" protein in co-immunoprecipitation experiments to isolate cellular proteins that bind specifically to Nef's SMR motif. Protein transfection and antibody inhibition was used to physically disrupt the interaction between Nef and mortalin, one of the isolated SMR-binding proteins, and the effect was measured with a fluorescent-based exNef secretion assay. The SMRwt peptide's ability to outcompete full-length Nef for cellular proteins that bind the SMR motif, make it the first inhibitor of exNef secretion. Thus, by employing the techniques described here, which utilize the unique properties of specific short peptides derived from motifs found in full-length proteins, one may accelerate the identification of functional motifs in proteins and the development of peptide-based inhibitors of pathogenic functions.

  11. The Pseudomonas syringae effector HopQ1 promotes bacterial virulence and interacts with tomato 14-3-3 proteins in a phosphorylation-dependent manner.

    PubMed

    Li, Wei; Yadeta, Koste A; Elmore, James Mitch; Coaker, Gitta

    2013-04-01

    A key virulence strategy of bacterial pathogens is the delivery of multiple pathogen effector proteins into host cells during infection. The Hrp outer protein Q (HopQ1) effector from Pseudomonas syringae pv tomato (Pto) strain DC3000 is conserved across multiple bacterial plant pathogens. Here, we investigated the virulence function and host targets of HopQ1 in tomato (Solanum lycopersicum). Transgenic tomato lines expressing dexamethasone-inducible HopQ1 exhibited enhanced disease susceptibility to virulent Pto DC3000, the Pto ΔhrcC mutant, and decreased expression of a pathogen-associated molecular pattern-triggered marker gene after bacterial inoculation. HopQ1-interacting proteins were coimmunoprecipitated and identified by mass spectrometry. HopQ1 can associate with multiple tomato 14-3-3 proteins, including TFT1 and TFT5. HopQ1 is phosphorylated in tomato, and four phosphorylated peptides were identified by mass spectrometry. HopQ1 possesses a conserved mode I 14-3-3 binding motif whose serine-51 residue is phosphorylated in tomato and regulates its association with TFT1 and TFT5. Confocal microscopy and fractionation reveal that HopQ1 exhibits nucleocytoplasmic localization, while HopQ1 dephosphorylation mimics exhibit more pronounced nuclear localization. HopQ1 delivered from Pto DC3000 was found to promote bacterial virulence in the tomato genotype Rio Grande 76R. However, the HopQ1(S51A) mutant delivered from Pto DC3000 was unable to promote pathogen virulence. Taken together, our data demonstrate that HopQ1 enhances bacterial virulence and associates with tomato 14-3-3 proteins in a phosphorylation-dependent manner that influences HopQ1's subcellular localization and virulence-promoting activities in planta.

  12. Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice

    PubMed Central

    Bai, Ming-Yi; Zhang, Li-Ying; Gampala, Srinivas S.; Zhu, Sheng-Wei; Song, Wen-Yuan; Chong, Kang; Wang, Zhi-Yong

    2007-01-01

    Brassinosteroids (BR) are essential growth hormones found throughout the plant kingdom. BR bind to the receptor kinase BRI1 on the cell surface to activate a signal transduction pathway that regulates nuclear gene expression and plant growth. To understand the downstream BR signaling mechanism in rice, we studied the function of OsBZR1 using reverse genetic approaches and identified OsBZR1-interacting proteins. Suppressing OsBZR1 expression by RNAi resulted in dwarfism, erect leaves, reduced BR sensitivity, and altered BR-responsive gene expression in transgenic rice plants, demonstrating an essential role of OsBZR1 in BR responses in rice. Moreover, a yeast two-hybrid screen identified 14-3-3 proteins as OsBZR1-interacting proteins. Mutation of a putative 14-3-3-binding site of OsBZR1 abolished its interaction with the 14-3-3 proteins in yeast and in vivo. Such mutant OsBZR1 proteins suppressed the phenotypes of the Arabidopsis bri1–5 mutant and showed an increased nuclear distribution compared with the wild-type protein, suggesting that 14-3-3 proteins directly inhibit OsBZR1 function at least in part by reducing its nuclear localization. These results demonstrate a conserved function of OsBZR1 and an important role of 14-3-3 proteins in brassinosteroid signal transduction in rice. PMID:17699623

  13. 14-3-3 Proteins are essential for regulation of RTG3-dependent transcription in Saccharomyces cerevisiae.

    PubMed

    van Heusden, G P; Steensma, H Y

    2001-12-01

    14-3-3 proteins comprise a family of highly conserved proteins that bind more than 60 different, mostly phosphorylated, proteins. The yeast Saccharomyces cerevisiae has two genes, BMH1 and BMH2, encoding 14-3-3 proteins. Disruption of both genes together is lethal. In this study we constructed a mutant with a single, temperature-sensitive bmh allele. Recessive mutations in SIN4 and RTG3 can suppress the temperature-sensitive phenotype of this mutant. These genes encode a global transcriptional regulator and a basic helix-loop-helix transcription factor, respectively. The yeast 14-3-3 proteins were shown to bind to the Rtg3 protein. Overexpression of RTG3 is lethal even in wild-type cells. These genetic and biochemical data are consistent with a model in which the 14-3-3 proteins are required to keep the Rtg3 protein in an inactive state, which is (one of) the essential function(s) of the 14-3-3 proteins.

  14. LibME-automatic extraction of 3D ligand-binding motifs for mechanistic analysis of protein-ligand recognition.

    PubMed

    He, Wei; Liang, Zhi; Teng, MaiKun; Niu, LiWen

    2016-12-01

    Identifying conserved binding motifs is an efficient way to study protein-ligand recognition. Most 3D binding motifs only contain information from the protein side, and so motifs that combine information from both protein and ligand sides are desired. Here, we propose an algorithm called LibME (Ligand-binding Motif Extractor), which automatically extracts 3D binding motifs composed of the target ligand and surrounding conserved residues. We show that the motifs extracted by LibME for ATP and its analogs are highly similar to well-known motifs reported by previous studies. The superiority of our method to handle flexible ligands was also demonstrated using isocitric acid as an example. Finally, we show that these motifs, together with their visual exhibition, permit better investigating and understanding of protein-ligand recognition process.

  15. Zinc finger binding motifs do not explain recombination rate variation within or between species of Drosophila.

    PubMed

    Heil, Caiti S S; Noor, Mohamed A F

    2012-01-01

    In humans and mice, the Cys(2)His(2) zinc finger protein PRDM9 binds to a DNA sequence motif enriched in hotspots of recombination, possibly modifying nucleosomes, and recruiting recombination machinery to initiate Double Strand Breaks (DSBs). However, since its discovery, some researchers have suggested that the recombinational effect of PRDM9 is lineage or species specific. To test for a conserved role of PRDM9-like proteins across taxa, we use the Drosophila pseudoobscura species group in an attempt to identify recombination associated zinc finger proteins and motifs. We leveraged the conserved amino acid motifs in Cys(2)His(2) zinc fingers to predict nucleotide binding motifs for all Cys(2)His(2) zinc finger proteins in Drosophila pseudoobscura and identified associations with empirical measures of recombination rate. Additionally, we utilized recombination maps from D. pseudoobscura and D. miranda to explore whether changes in the binding motifs between species can account for changes in the recombination landscape, analogous to the effect observed in PRDM9 among human populations. We identified a handful of potential recombination-associated sequence motifs, but the associations are generally tenuous and their biological relevance remains uncertain. Furthermore, we found no evidence that changes in zinc finger DNA binding explains variation in recombination rate between species. We therefore conclude that there is no protein with a DNA sequence specific human-PRDM9-like function in Drosophila. We suggest these findings could be explained by the existence of a different recombination initiation system in Drosophila.

  16. Mutated Leguminous Lectin Containing a Heparin-Binding like Motif in a Carbohydrate-Binding Loop Specifically Binds to Heparin

    PubMed Central

    Abo, Hirohito; Soga, Keisuke; Tanaka, Atsuhiro; Tateno, Hiroaki; Hirabayashi, Jun; Yamamoto, Kazuo

    2015-01-01

    We previously introduced random mutations in the sugar-binding loops of a leguminous lectin and screened the resulting mutated lectins for novel specificities using cell surface display. Screening of a mutated peanut agglutinin (PNA), revealed a mutated PNA with a distinct preference for heparin. Glycan microarray analyses using the mutated lectin fused to the Fc region of human immunoglobulin, revealed that a particular sulfated glycosaminoglycan (GAG), heparin, had the highest binding affinity for mutated PNA among 97 glycans tested, although wild-type PNA showed affinity towards Galβ1-3GalNAc and similar galactosylated glycans. Further analyses of binding specificity using an enzyme-linked immunoadsorbent assay demonstrated that the mutated PNA specifically binds to heparin, and weakly to de-2-O-sulfated heparin, but not to other GAG chains including de-6-O-sulfated and de-N-sulfated heparins. The mutated PNA had six amino acid substitutions within the eight amino acid-long sugar-binding loop. In this loop, the heparin-binding like motif comprised three arginine residues at positions 124, 128, and 129, and a histidine at position 125 was present. Substitution of each arginine or histidine residue to alanine reduced heparin-binding ability, indicating that all of these basic amino acid residues contributed to heparin binding. Inhibition assay demonstrated that heparin and dextran sulfate strongly inhibited mutated PNA binding to heparin in dose-dependent manner. The mutated PNA could distinguish between CHO cells and proteoglycan-deficient mutant cells. This is the first report establishing a novel leguminous lectin that preferentially binds to highly sulfated heparin and may provide novel GAG-binding probes to distinguish between heterogeneous GAG repeating units. PMID:26714191

  17. Identification of cofilin and LIM-domain-containing protein kinase 1 as novel interaction partners of 14-3-3 zeta.

    PubMed Central

    Birkenfeld, Jörg; Betz, Heinrich; Roth, Dagmar

    2003-01-01

    Proteins of the 14-3-3 family have been implicated in various physiological processes, and are thought to function as adaptors in various signal transduction pathways. In addition, 14-3-3 proteins may contribute to the reorganization of the actin cytoskeleton by interacting with as yet unidentified actin-binding proteins. Here we show that the 14-3-3 zeta isoform interacts with both the actin-depolymerizing factor cofilin and its regulatory kinase, LIM (Lin-11/Isl-1/Mec-3)-domain-containing protein kinase 1 (LIMK1). In both yeast two-hybrid assays and glutathione S-transferase pull-down experiments, these proteins bound efficiently to 14-3-3 zeta. Deletion analysis revealed consensus 14-3-3 binding sites on both cofilin and LIMK1. Furthermore, the C-terminal region of 14-3-3 zeta inhibited the binding of cofilin to actin in co-sedimentation experiments. Upon co-transfection into COS-7 cells, 14-3-3 zeta-specific immunoreactivity was redistributed into characteristic LIMK1-induced actin aggregations. Our data are consistent with 14-3-3-protein-induced changes to the actin cytoskeleton resulting from interactions with cofilin and/or LIMK1. PMID:12323073

  18. The Q Motif Is Involved in DNA Binding but Not ATP Binding in ChlR1 Helicase

    PubMed Central

    Ding, Hao; Guo, Manhong; Vidhyasagar, Venkatasubramanian; Talwar, Tanu; Wu, Yuliang

    2015-01-01

    Helicases are molecular motors that couple the energy of ATP hydrolysis to the unwinding of structured DNA or RNA and chromatin remodeling. The conversion of energy derived from ATP hydrolysis into unwinding and remodeling is coordinated by seven sequence motifs (I, Ia, II, III, IV, V, and VI). The Q motif, consisting of nine amino acids (GFXXPXPIQ) with an invariant glutamine (Q) residue, has been identified in some, but not all helicases. Compared to the seven well-recognized conserved helicase motifs, the role of the Q motif is less acknowledged. Mutations in the human ChlR1 (DDX11) gene are associated with a unique genetic disorder known as Warsaw Breakage Syndrome, which is characterized by cellular defects in genome maintenance. To examine the roles of the Q motif in ChlR1 helicase, we performed site directed mutagenesis of glutamine to alanine at residue 23 in the Q motif of ChlR1. ChlR1 recombinant protein was overexpressed and purified from HEK293T cells. ChlR1-Q23A mutant abolished the helicase activity of ChlR1 and displayed reduced DNA binding ability. The mutant showed impaired ATPase activity but normal ATP binding. A thermal shift assay revealed that ChlR1-Q23A has a melting point value similar to ChlR1-WT. Partial proteolysis mapping demonstrated that ChlR1-WT and Q23A have a similar globular structure, although some subtle conformational differences in these two proteins are evident. Finally, we found ChlR1 exists and functions as a monomer in solution, which is different from FANCJ, in which the Q motif is involved in protein dimerization. Taken together, our results suggest that the Q motif is involved in DNA binding but not ATP binding in ChlR1 helicase. PMID:26474416

  19. 14-3-3 inhibition promotes dopaminergic neuron loss and 14-3-3θ overexpression promotes recovery in the MPTP mouse model of Parkinson's disease

    PubMed Central

    Ding, Huiping; Underwood, Rachel; Lavalley, Nicholas; Yacoubian, Talene A.

    2015-01-01

    14-3-3s are a highly conserved protein family that plays important roles in cell survival and interact with several proteins implicated in Parkinson's disease (PD). Disruption of 14-3-3 expression and function has been implicated in the pathogenesis of PD. We have previously shown that increasing the expression level of 14-3-3θ is protective against rotenone and 1-methyl-4-phenylpyridinium (MPP+) in cultured cells. Here, we extend our studies to examine the effects of 14-3-3s in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. We first investigated whether targeted nigral 14-3-3θ overexpression mediated by adeno-associated virus offers neuroprotection against MPTP-induced toxicity. 14-3-3θ overexpression using this approach did not reduce MPTP-induced dopaminergic cell loss in the substantia nigra nor the depletion of dopamine and its metabolites in the striatum at three weeks after MPTP administration. However, 14-3-3θ-overexpressing mice showed a later partial recovery in striatal dopamine metabolites at eight weeks after MPTP administration compared to controls, suggesting that 14-3-3θ overexpression may help in the functional recovery of those dopaminergic neurons that survive. Conversely, we investigated whether disrupting 14-3-3 function in transgenic mice expressing the pan 14-3-3 inhibitor difopein exacerbates MPTP-induced toxicity. We found that difopein expression promoted dopaminergic cell loss in response to MPTP treatment. Together, these findings suggest that 14-3-3θ overexpression promotes recovery of dopamine metabolites whereas 14-3-3 inhibition exacerbates neuron loss in the MPTP mouse model of PD. PMID:26314634

  20. Differences in Spatial Expression between 14-3-3 Isoforms in Germinating Barley Embryos1

    PubMed Central

    Testerink, Christa; van der Meulen, René M.; Oppedijk, Berry J.; de Boer, Albertus H.; Heimovaara-Dijkstra, Sjoukje; Kijne, Jan W.; Wang, Mei

    1999-01-01

    The family of 14-3-3 proteins is ubiquitous in eukaryotes and has been shown to exert an array of functions. We were interested in the possible role of 14-3-3 proteins in seed germination. Therefore, we studied the expression of 14-3-3 mRNA and protein in barley (Hordeum distichum L.) embryos during germination. With the use of specific cDNA probes and antibodies, we could detect individual expression of three 14-3-3 isoforms, 14-3-3A, 14-3-3B, and 14-3-3C. Each homolog was found to be expressed in barley embryos. Whereas protein levels of all three isoforms were constant during germination, mRNA expression was found to be induced upon imbibition of the grains. The induction of 14-3-3A gene expression during germination was different from that of 14-3-3B and 14-3-3C. In situ immunolocalization analysis showed similar spatial expression for 14-3-3A and 14-3-3B, while 14-3-3C expression was markedly different. Whereas 14-3-3A and 14-3-3B were expressed throughout the embryo, 14-3-3C expression was tissue specific, with the strongest expression observed in the scutellum and the L2 layer of the shoot apical meristem. These results show that 14-3-3 homologs are differently regulated in barley embryos, and provide a first step in acquiring more knowledge about the role of 14-3-3 proteins in the germination process. PMID:10482663

  1. Novel DNA binding motifs in the DNA repair enzyme endonuclease III crystal structure.

    PubMed Central

    Thayer, M M; Ahern, H; Xing, D; Cunningham, R P; Tainer, J A

    1995-01-01

    The 1.85 A crystal structure of endonuclease III, combined with mutational analysis, suggests the structural basis for the DNA binding and catalytic activity of the enzyme. Helix-hairpin-helix (HhH) and [4Fe-4S] cluster loop (FCL) motifs, which we have named for their secondary structure, bracket the cleft separating the two alpha-helical domains of the enzyme. These two novel DNA binding motifs and the solvent-filled pocket in the cleft between them all lie within a positively charged and sequence-conserved surface region. Lys120 and Asp138, both shown by mutagenesis to be catalytically important, lie at the mouth of this pocket, suggesting that this pocket is part of the active site. The positions of the HhH motif and protruding FCL motif, which contains the DNA binding residue Lys191, can accommodate B-form DNA, with a flipped-out base bound within the active site pocket. The identification of HhH and FCL sequence patterns in other DNA binding proteins suggests that these motifs may be a recurrent structural theme for DNA binding proteins. Images PMID:7664751

  2. Light modulated activity of root alkaline/neutral invertase involves the interaction with 14-3-3 proteins.

    PubMed

    Gao, Jing; van Kleeff, Paula J M; Oecking, Claudia; Li, Ka Wan; Erban, Alexander; Kopka, Joachim; Hincha, Dirk K; de Boer, Albertus H

    2014-12-01

    Alkaline/neutral invertases (A/N-Invs) are now recognized as essential proteins in plant life. They catalyze the irreversible breakdown of sucrose into glucose and fructose and thus supply the cells with energy as well as signaling molecules. In this study we report on a mechanism that affects the activity of the cytosolic invertase AtCINV1 (At-A/N-InvG or AT1G35580). We demonstrate that Ser547 at the extreme C-terminus of the AtCINV1 protein is a substrate of calcium-dependent kinases (CPK3 and 21) and that phosphorylation creates a high-affinity binding site for 14-3-3 proteins. The invertase as such has basal activity, but we provide evidence that interaction with 14-3-3 proteins enhances its activity. The analysis of three quadruple 14-3-3 mutants generated from six T-DNA insertion mutants of the non-epsilon family shows both specificity as well as redundancy for this function of 14-3-3 proteins. The strong reduction in hexose levels in the roots of one 14-3-3 quadruple mutant plant is in line with the activating function of 14-3-3 proteins. The physiological relevance of this mechanism that affects A/N-invertase activity is underscored by the light-induced activation and is another example of the central role of 14-3-3 proteins in mediating dark/light signaling. The nature of the light-induced signal that travels from the shoot to root and the question whether this signal is transmitted via cytosolic Ca(++) changes that activate calcium-dependent kinases, await further study.

  3. Identification of a binding motif specific to HNF4 by comparative analysis of multiple nuclear receptors

    PubMed Central

    Fang, Bin; Mane-Padros, Daniel; Bolotin, Eugene; Jiang, Tao; Sladek, Frances M.

    2012-01-01

    Nuclear receptors (NRs) regulate gene expression by binding specific DNA sequences consisting of AG[G/T]TCA or AGAACA half site motifs in a variety of configurations. However, those motifs/configurations alone do not adequately explain the diversity of NR function in vivo. Here, a systematic examination of DNA binding specificity by protein-binding microarrays (PBMs) of three closely related human NRs—HNF4α, retinoid X receptor alpha (RXRα) and COUPTF2—reveals an HNF4-specific binding motif (H4-SBM), xxxxCAAAGTCCA, as well as a previously unrecognized polarity in the classical DR1 motif (AGGTCAxAGGTCA) for HNF4α, RXRα and COUPTF2 homodimers. ChIP-seq data indicate that the H4-SBM is uniquely bound by HNF4α but not 10 other NRs in vivo, while NRs PXR, FXRα, Rev-Erbα appear to bind adjacent to H4-SBMs. HNF4-specific DNA recognition and transactivation are mediated by residues Asp69 and Arg76 in the DNA-binding domain; this combination of amino acids is unique to HNF4 among all human NRs. Expression profiling and ChIP data predict ∼100 new human HNF4α target genes with an H4-SBM site, including several Co-enzyme A-related genes and genes with links to disease. These results provide important new insights into NR DNA binding. PMID:22383578

  4. Bayesian multiple-instance motif discovery with BAMBI: inference of recombinase and transcription factor binding sites

    PubMed Central

    Jajamovich, Guido H.; Wang, Xiaodong; Arkin, Adam P.; Samoilov, Michael S.

    2011-01-01

    Finding conserved motifs in genomic sequences represents one of essential bioinformatic problems. However, achieving high discovery performance without imposing substantial auxiliary constraints on possible motif features remains a key algorithmic challenge. This work describes BAMBI—a sequential Monte Carlo motif-identification algorithm, which is based on a position weight matrix model that does not require additional constraints and is able to estimate such motif properties as length, logo, number of instances and their locations solely on the basis of primary nucleotide sequence data. Furthermore, should biologically meaningful information about motif attributes be available, BAMBI takes advantage of this knowledge to further refine the discovery results. In practical applications, we show that the proposed approach can be used to find sites of such diverse DNA-binding molecules as the cAMP receptor protein (CRP) and Din-family site-specific serine recombinases. Results obtained by BAMBI in these and other settings demonstrate better statistical performance than any of the four widely-used profile-based motif discovery methods: MEME, BioProspector with BioOptimizer, SeSiMCMC and Motif Sampler as measured by the nucleotide-level correlation coefficient. Additionally, in the case of Din-family recombinase target site discovery, the BAMBI-inferred motif is found to be the only one functionally accurate from the underlying biochemical mechanism standpoint. C++ and Matlab code is available at http://www.ee.columbia.edu/~guido/BAMBI or http://genomics.lbl.gov/BAMBI/. PMID:21948794

  5. Motif discovery with data mining in 3D protein structure databases: discovery, validation and prediction of the U-shape zinc binding ("Huf-Zinc") motif.

    PubMed

    Maurer-Stroh, Sebastian; Gao, He; Han, Hao; Baeten, Lies; Schymkowitz, Joost; Rousseau, Frederic; Zhang, Louxin; Eisenhaber, Frank

    2013-02-01

    Data mining in protein databases, derivatives from more fundamental protein 3D structure and sequence databases, has considerable unearthed potential for the discovery of sequence motif--structural motif--function relationships as the finding of the U-shape (Huf-Zinc) motif, originally a small student's project, exemplifies. The metal ion zinc is critically involved in universal biological processes, ranging from protein-DNA complexes and transcription regulation to enzymatic catalysis and metabolic pathways. Proteins have evolved a series of motifs to specifically recognize and bind zinc ions. Many of these, so called zinc fingers, are structurally independent globular domains with discontinuous binding motifs made up of residues mostly far apart in sequence. Through a systematic approach starting from the BRIX structure fragment database, we discovered that there exists another predictable subset of zinc-binding motifs that not only have a conserved continuous sequence pattern but also share a characteristic local conformation, despite being included in totally different overall folds. While this does not allow general prediction of all Zn binding motifs, a HMM-based web server, Huf-Zinc, is available for prediction of these novel, as well as conventional, zinc finger motifs in protein sequences. The Huf-Zinc webserver can be freely accessed through this URL (http://mendel.bii.a-star.edu.sg/METHODS/hufzinc/).

  6. RGS3 interacts with 14-3-3 via the N-terminal region distinct from the RGS (regulator of G-protein signalling) domain.

    PubMed Central

    Niu, Jiaxin; Scheschonka, Astrid; Druey, Kirk M; Davis, Amanda; Reed, Eleanor; Kolenko, Vladimir; Bodnar, Richard; Voyno-Yasenetskaya, Tatyana; Du, Xiaoping; Kehrl, John; Dulin, Nickolai O

    2002-01-01

    RGS3 belongs to a family of the regulators of G-protein signalling (RGS), which bind and inhibit the G alpha subunits of heterotrimeric G-proteins via a homologous RGS domain. Increasing evidence suggests that RGS proteins can also interact with targets other than G-proteins. Employing yeast two-hybrid screening of a cDNA library, we identified an interaction between RGS3 and the phosphoserine-binding protein 14-3-3. This interaction was confirmed by in vitro binding and co-immunoprecipitation experiments. RGS3-deletion analysis revealed the presence of a single 14-3-3-binding site located outside of the RGS domain. Ser(264) was then identified as the 14-3-3-binding site of RGS3. The S(264)A mutation resulted in the loss of RGS3 binding to 14-3-3, without affecting its ability to bind G alpha(q). Signalling studies showed that the S(264)A mutant was more potent than the wild-type RGS3 in inhibition of G-protein-mediated signalling. Binding experiments revealed that RGS3 exists in two separate pools, either 14-3-3-bound or G-protein-bound, and that the 14-3-3-bound RGS3 is unable to interact with G-proteins. These data are consistent with the model wherein 14-3-3 serves as a scavenger of RGS3, regulating the amounts of RGS3 available for binding G-proteins. This study describes a new level in the regulation of G-protein signalling, in which the inhibitors of G-proteins, RGS proteins, can themselves be regulated by phosphorylation and binding 14-3-3. PMID:11985497

  7. A designed DNA binding motif that recognizes extended sites and spans two adjacent major grooves†

    PubMed Central

    Rodríguez, Jéssica; Mosquera, Jesús; García-Fandiño, Rebeca; Vázquez, M. Eugenio; Mascareñas, José L.

    2016-01-01

    We report the rational design of a DNA-binding peptide construct composed of the DNA-contacting regions of two transcription factors (GCN4 and GAGA) linked through an AT-hook DNA anchor. The resulting chimera, which represents a new, non-natural DNA binding motif, binds with high affinity and selectivity to a long composite sequence of 13 base pairs (TCAT-AATT-GAGAG). PMID:27252825

  8. Interaction of 14-3-3 proteins with the estrogen receptor alpha F domain provides a drug target interface.

    PubMed

    De Vries-van Leeuwen, Ingrid J; da Costa Pereira, Daniel; Flach, Koen D; Piersma, Sander R; Haase, Christian; Bier, David; Yalcin, Zeliha; Michalides, Rob; Feenstra, K Anton; Jiménez, Connie R; de Greef, Tom F A; Brunsveld, Luc; Ottmann, Christian; Zwart, Wilbert; de Boer, Albertus H

    2013-05-28

    Estrogen receptor alpha (ERα) is involved in numerous physiological and pathological processes, including breast cancer. Breast cancer therapy is therefore currently directed at inhibiting the transcriptional potency of ERα, either by blocking estrogen production through aromatase inhibitors or antiestrogens that compete for hormone binding. Due to resistance, new treatment modalities are needed and as ERα dimerization is essential for its activity, interference with receptor dimerization offers a new opportunity to exploit in drug design. Here we describe a unique mechanism of how ERα dimerization is negatively controlled by interaction with 14-3-3 proteins at the extreme C terminus of the receptor. Moreover, the small-molecule fusicoccin (FC) stabilizes this ERα/14-3-3 interaction. Cocrystallization of the trimeric ERα/14-3-3/FC complex provides the structural basis for this stabilization and shows the importance of phosphorylation of the penultimate Threonine (ERα-T(594)) for high-affinity interaction. We confirm that T(594) is a distinct ERα phosphorylation site in the breast cancer cell line MCF-7 using a phospho-T(594)-specific antibody and by mass spectrometry. In line with its ERα/14-3-3 interaction stabilizing effect, fusicoccin reduces the estradiol-stimulated ERα dimerization, inhibits ERα/chromatin interactions and downstream gene expression, resulting in decreased cell proliferation. Herewith, a unique functional phosphosite and an alternative regulation mechanism of ERα are provided, together with a small molecule that selectively targets this ERα/14-3-3 interface.

  9. The crystal structure of Giardia duodenalis 14-3-3 in the apo form: when protein post-translational modifications make the difference.

    PubMed

    Fiorillo, Annarita; di Marino, Daniele; Bertuccini, Lucia; Via, Allegra; Pozio, Edoardo; Camerini, Serena; Ilari, Andrea; Lalle, Marco

    2014-01-01

    The 14-3-3s are a family of dimeric evolutionary conserved pSer/pThr binding proteins that play a key role in multiple biological processes by interacting with a plethora of client proteins. Giardia duodenalis is a flagellated protozoan that affects millions of people worldwide causing an acute and chronic diarrheal disease. The single giardial 14-3-3 isoform (g14-3-3), unique in the 14-3-3 family, needs the constitutive phosphorylation of Thr214 and the polyglycylation of its C-terminus to be fully functional in vivo. Alteration of the phosphorylation and polyglycylation status affects the parasite differentiation into the cyst stage. To further investigate the role of these post-translational modifications, the crystal structure of the g14-3-3 was solved in the unmodified apo form. Oligomers of g14-3-3 were observed due to domain swapping events at the protein C-terminus. The formation of filaments was supported by TEM. Mutational analysis, in combination with native PAGE and chemical cross-linking, proved that polyglycylation prevents oligomerization. In silico phosphorylation and molecular dynamics simulations supported a structural role for the phosphorylation of Thr214 in promoting target binding. Our findings highlight unique structural features of g14-3-3 opening novel perspectives on the evolutionary history of this protein family and envisaging the possibility to develop anti-giardial drugs targeting g14-3-3.

  10. Identification and characterization of the actin-binding motif of phostensin.

    PubMed

    Wang, Tzu-Fan; Lai, Ning-Sheng; Huang, Kuang-Yung; Huang, Hsien-Lu; Lu, Ming-Chi; Lin, Yu-Shan; Chen, Chun-Yu; Liu, Su-Qin; Lin, Ta-Hsien; Huang, Hsien-Bin

    2012-11-28

    Phostensin, a protein phosphatase 1 F-actin cytoskeleton-targeting subunit encoded by KIAA1949, consists of 165 amino acids and caps the pointed ends of actin filaments. Sequence alignment analyses suggest that the C-terminal region of phostensin, spanning residues 129 to 155, contains a consensus actin-binding motif. Here, we have verified the existence of an actin-binding motif in the C-terminal domain of phostensin using colocalization, F-actin co-sedimentation and single filament binding assays. Our data indicate that the N-terminal region of phostensin (1-129) cannot bind to actin filaments and cannot retard the pointed end elongation of gelsolin-actin seeds. Furthermore, the C-terminal region of phostensin (125-165) multiply bind to the sides of actin filaments and lacks the ability to block the pointed end elongation, suggesting that the actin-binding motif is located in the C-terminal region of the phostensin. Further analyses indicate that phostensin binding to the pointed end of actin filament requires N-terminal residues 35 to 51. These results suggest that phostensin might fold into a rigid structure, allowing the N-terminus to sterically hinder the binding of C-terminus to the sides of actin filament, thus rendering phostensin binding to the pointed ends of actin filaments.

  11. Identification of peptide motif that binds to the surface of zirconia.

    PubMed

    Hashimoto, Kazuhiko; Yoshinari, Masao; Matsuzaka, Kenichi; Shiba, Kiyotaka; Inoue, Takashi

    2011-01-01

    A zirconia-binding peptide motif was identified using a peptide phage display system. Yttria stabilized zirconia beads and discs were used as the target. Quartz crystal microbalance was used to monitor the binding of phages to zirconia. Starting from a library of phages displaying random sequences of 12-mer peptides, we repeated cycles of biopanning against zirconia beads. After four cycles of biopanning, we isolated a phage clone Φ#17. DNA sequencing of the corresponding portion of Φ#17 unexpectedly revealed that it displayed a 58-mer peptide (amino acid sequence: WMPSDVDINDPQGGGSRPNLHQPKPAAEAASKKKSENRKVPFYSHSWY-SSMSEDKRGW). We found that Φ#17 had a 300-fold, significantly higher binding affinity for zirconia discs than phages displaying no peptide. In quartz crystal microbalance assay, a rapid increase in energy dissipation was observed from Φ#17 but not from the control phages, indicating that Φ#17 binds to the surface of zirconia via its displayed peptide. We successfully identified a peptide motif that binds zirconia.

  12. Transcriptional regulation of YWHAZ, the gene encoding 14-3-3ζ.

    PubMed

    Kasinski, Andrea; Dong, Xueyuan; Khuri, Fadlo R; Boss, Jeremy; Fu, Haian

    2014-01-01

    Aberrant expression of oncogenic 14-3-3 proteins is correlated with poor survival of cancer patients. While the underlying mechanism of the abnormal expression in tumors remains elusive for the six oncogenic 14-3-3 isoforms; the potential involvement of a transcriptional component has been suggested. Unfortunately, little experimental data has been reported to support this hypothesis. In this study we describe the genetic structure of YWHAZ, the gene encoding 14-3-3ζ, including the identification of previously unreported transcript variants. In total, five transcript variants were revealed and their expressions confirmed in a panel of cell lines. Expressed sequence tag (EST) database mining and in vitro rapid-amplification of cDNA ends (RACE) confirmed that one variant, 1c, represents >80% of the expressed transcripts, which is also the most efficiently translated. An analysis of the proximal promoter of this variant revealed a functional Cyclic-AMP Response Element (CRE). Factors that bound to the CRE element were recognized through fractionation and subsequent EMSAs. This analysis identified CREB and ATF-1 as the trans-interacting factors. Cell-based assays confirm that ATF-1, and to a lesser extent CREB, bind the endogenous YWHAZ promoter especially under TNF-α stimulating conditions. In support of a role of ATF-1 in the regulation of YWHAZ, silencing of ATF-1 resulted in a marked reduction in two of the five YWHAZ transcripts. These data suggest a novel mechanism for the transcriptional regulation of a major pro-survival gene, YWHAZ, by ATF-1.

  13. A Comparison Study for DNA Motif Modeling on Protein Binding Microarray.

    PubMed

    Wong, Ka-Chun; Li, Yue; Peng, Chengbin; Wong, Hau-San

    2016-01-01

    Transcription factor binding sites (TFBSs) are relatively short (5-15 bp) and degenerate. Identifying them is a computationally challenging task. In particular, protein binding microarray (PBM) is a high-throughput platform that can measure the DNA binding preference of a protein in a comprehensive and unbiased manner; for instance, a typical PBM experiment can measure binding signal intensities of a protein to all possible DNA k-mers (k = 8∼10). Since proteins can often bind to DNA with different binding intensities, one of the major challenges is to build TFBS (also known as DNA motif) models which can fully capture the quantitative binding affinity data. To learn DNA motif models from the non-convex objective function landscape, several optimization methods are compared and applied to the PBM motif model building problem. In particular, representative methods from different optimization paradigms have been chosen for modeling performance comparison on hundreds of PBM datasets. The results suggest that the multimodal optimization methods are very effective for capturing the binding preference information from PBM data. In particular, we observe a general performance improvement if choosing di-nucleotide modeling over mono-nucleotide modeling. In addition, the models learned by the best-performing method are applied to two independent applications: PBM probe rotation testing and ChIP-Seq peak sequence prediction, demonstrating its biological applicability.

  14. The extended AT-hook is a novel RNA binding motif.

    PubMed

    Filarsky, Michael; Zillner, Karina; Araya, Ingrid; Villar-Garea, Ana; Merkl, Rainer; Längst, Gernot; Németh, Attila

    2015-01-01

    The AT-hook has been defined as a DNA binding peptide motif that contains a glycine-arginine-proline (G-R-P) tripeptide core flanked by basic amino acids. Recent reports documented variations in the sequence of AT-hooks and revealed RNA binding activity of some canonical AT-hooks, suggesting a higher structural and functional variability of this protein domain than previously anticipated. Here we describe the discovery and characterization of the extended AT-hook peptide motif (eAT-hook), in which basic amino acids appear symmetrical mainly at a distance of 12-15 amino acids from the G-R-P core. We identified 80 human and 60 mouse eAT-hook proteins and biochemically characterized the eAT-hooks of Tip5/BAZ2A, PTOV1 and GPBP1. Microscale thermophoresis and electrophoretic mobility shift assays reveal the nucleic acid binding features of this peptide motif, and show that eAT-hooks bind RNA with one order of magnitude higher affinity than DNA. In addition, cellular localization studies suggest a role for the N-terminal eAT-hook of PTOV1 in nucleocytoplasmic shuttling. In summary, our findings classify the eAT-hook as a novel nucleic acid binding motif, which potentially mediates various RNA-dependent cellular processes.

  15. Photonic crystal borax competitive binding carbohydrate sensing motif.

    PubMed

    Cui, Qingzhou; Ward Muscatello, Michelle M; Asher, Sanford A

    2009-05-01

    We developed a photonic crystal sensing method for diol containing species such as carbohydrates based on a poly(vinyl alcohol) (PVA) hydrogel containing an embedded crystalline colloidal array (CCA). The polymerized CCA (PCCA) diffracts visible light. We show that in the presence of borax the diffraction wavelength shifts as the concentration of glucose changes. The diffraction shifts result from the competitive binding of glucose to borate, which reduces the concentration of borate bound to the PVA diols.

  16. Application of Synthetic Peptide Arrays To Uncover Cyclic Di-GMP Binding Motifs

    PubMed Central

    Düvel, Juliane; Bense, Sarina; Möller, Stefan; Bertinetti, Daniela; Schwede, Frank; Morr, Michael; Eckweiler, Denitsa; Genieser, Hans-Gottfried; Jänsch, Lothar; Herberg, Friedrich W.; Frank, Ronald

    2015-01-01

    ABSTRACT High levels of the universal bacterial second messenger cyclic di-GMP (c-di-GMP) promote the establishment of surface-attached growth in many bacteria. Not only can c-di-GMP bind to nucleic acids and directly control gene expression, but it also binds to a diverse array of proteins of specialized functions and orchestrates their activity. Since its development in the early 1990s, the synthetic peptide array technique has become a powerful tool for high-throughput approaches and was successfully applied to investigate the binding specificity of protein-ligand interactions. In this study, we used peptide arrays to uncover the c-di-GMP binding site of a Pseudomonas aeruginosa protein (PA3740) that was isolated in a chemical proteomics approach. PA3740 was shown to bind c-di-GMP with a high affinity, and peptide arrays uncovered LKKALKKQTNLR to be a putative c-di-GMP binding motif. Most interestingly, different from the previously identified c-di-GMP binding motif of the PilZ domain (RXXXR) or the I site of diguanylate cyclases (RXXD), two leucine residues and a glutamine residue and not the charged amino acids provided the key residues of the binding sequence. Those three amino acids are highly conserved across PA3740 homologs, and their singular exchange to alanine reduced c-di-GMP binding within the full-length protein. IMPORTANCE In many bacterial pathogens the universal bacterial second messenger c-di-GMP governs the switch from the planktonic, motile mode of growth to the sessile, biofilm mode of growth. Bacteria adapt their intracellular c-di-GMP levels to a variety of environmental challenges. Several classes of c-di-GMP binding proteins have been structurally characterized, and diverse c-di-GMP binding domains have been identified. Nevertheless, for several c-di-GMP receptors, the binding motif remains to be determined. Here we show that the use of a synthetic peptide array allowed the identification of a c-di-GMP binding motif of a putative c

  17. Investigation of structural mimetics of natural phosphate ion binding motifs.

    PubMed

    Kataev, Evgeny A; Shumilova, Tatiana A

    2015-02-16

    Phosphates are ubiquitous in biology and nearly half of all proteins interact with their partners by means of recognition of phosphate residues. Therefore, a better understanding of the phosphate ion binding by peptidic structures is highly desirable. Two new receptors have been designed and synthesized and their anion binding properties in an acetonitrile solution have been determined. The structure of hosts mimics a part of the kinase active site that is responsible for the recognition of the phosphate residue. New hosts contain additional free amino groups with the aim to facilitate coordination of protonated anions, such as dihydrogen phosphate. According to spectrophotometric measurements, stepwise 1:1 and 1:2 binding modes have been observed for both receptors in the presence of acetate, hydrogen sulfate and dihydrogen phosphate. Compared with the acyclic receptor, the macrocyclic receptor has demonstrated a remarkably enhanced selectivity for dihydrogen phosphate over other anions. Fluorometric measurements have revealed different responses of the acyclic and macrocyclic receptors towards anions. However, in both cases, a 5-8 nm hypsochromic shift of fluorescence maximum has been observed upon interaction of acetate and dihydrogen phosphate with receptors.

  18. Investigating the mechanism of the assembly of FGF1-binding heparan sulfate motifs

    PubMed Central

    Nguyen, Thao Kim Nu; Raman, Karthik; Trana, Vy My; Kuberan, Balagurunathan

    2011-01-01

    Heparan sulfate (HS) chains play crucial biological roles by binding to various signaling molecules including fibroblast growth factors (FGFs). Distinct sulfation patterns of HS chains are required for their binding to FGFs/FGF receptors (FGFRs). These sulfation patterns are putatively regulated by biosynthetic enzyme complexes, called GAGOSOMES, in the Golgi. While the structural requirements of HS-FGF interactions have been described previously, it is still unclear how the FGF-binding motif is assembled in vivo. In this study, we generated HS structures using biosynthetic enzymes in a sequential or concurrent manner to elucidate the potential mechanism by which the FGF1-binding HS motif is assembled. Our results indicate that the HS chains form ternary complexes with FGF1/FGFR when enzymes carry out modifications in a specific manner. PMID:21803043

  19. ConBind: motif-aware cross-species alignment for the identification of functional transcription factor binding sites

    PubMed Central

    Lelieveld, Stefan H.; Schütte, Judith; Dijkstra, Maurits J.J.; Bawono, Punto; Kinston, Sarah J.; Göttgens, Berthold; Heringa, Jaap; Bonzanni, Nicola

    2016-01-01

    Eukaryotic gene expression is regulated by transcription factors (TFs) binding to promoter as well as distal enhancers. TFs recognize short, but specific binding sites (TFBSs) that are located within the promoter and enhancer regions. Functionally relevant TFBSs are often highly conserved during evolution leaving a strong phylogenetic signal. While multiple sequence alignment (MSA) is a potent tool to detect the phylogenetic signal, the current MSA implementations are optimized to align the maximum number of identical nucleotides. This approach might result in the omission of conserved motifs that contain interchangeable nucleotides such as the ETS motif (IUPAC code: GGAW). Here, we introduce ConBind, a novel method to enhance alignment of short motifs, even if their mutual sequence similarity is only partial. ConBind improves the identification of conserved TFBSs by improving the alignment accuracy of TFBS families within orthologous DNA sequences. Functional validation of the Gfi1b + 13 enhancer reveals that ConBind identifies additional functionally important ETS binding sites that were missed by all other tested alignment tools. In addition to the analysis of known regulatory regions, our web tool is useful for the analysis of TFBSs on so far unknown DNA regions identified through ChIP-sequencing. PMID:26721389

  20. Higher order Arabidopsis 14-3-3 mutants show 14-3-3 involvement in primary root growth both under control and abiotic stress conditions

    PubMed Central

    van Kleeff, P. J. M.; Jaspert, N.; Li, K. W.; Rauch, S.; Oecking, C.; de Boer, A. H.

    2014-01-01

    Arabidopsis 14-3-3 proteins are a family of conserved proteins that interact with numerous partner proteins in a phospho-specific manner, and can affect the target proteins in a number of ways; e.g. modification of enzymatic activity. We isolated T-DNA insertion lines in six 14-3-3 genes within the non-epsilon group that phylogenetically group in three closely related gene pairs. In total, 6 single, 3 double, 12 triple, and 3 quadruple mutants were generated. The mutants were phenotyped for primary root growth on control plates: single and double mutants were indistinguishable from WT, whereas six triples and all quadruples showed a shorter primary root. In addition, length of the first epidermal cell with a visible root hair bulge (LEH) was used to determine primary root elongation on medium containing mannitol and 1-aminocyclopropane-1-carboxylic acid (ACC). This analysis showed clear differences depending on the stress and 14-3-3 gene combinations. Next to the phenotypic growth analyses, a 14-3-3 pull-down assay on roots treated with and without mannitol showed that mannitol stress strongly affects the 14-3-3 interactome. In conclusion, we show gene specificity and functional redundancy among 14-3-3 proteins in primary root elongation under control and under abiotic stress conditions and changes in the 14-3-3 interactome during the onset of stress adaptation. PMID:25189593

  1. Mechanism of inhibition of protein kinase C by 14-3-3 isoforms. 14-3-3 isoforms do not have phospholipase A2 activity.

    PubMed Central

    Robinson, K; Jones, D; Patel, Y; Martin, H; Madrazo, J; Martin, S; Howell, S; Elmore, M; Finnen, M J; Aitken, A

    1994-01-01

    The ability of individual members of the 14-3-3 protein family to inhibit protein kinase C (PKC) has been studied by using a synthetic peptide based on the specific 80 kDa substrate for PKC (MARCKS protein) in two different assay systems. Recombinant 14-3-3 and isoforms renatured by a novel method after separation by reverse-phase h.p.l.c. were studied. The detailed effects of diacylglycerol and the phorbol ester phorbol 12-myristate 13-acetate on the inhibition were also investigated. This suggests that one of the sites of interaction of 14-3-3 may be the cysteine-rich (C1) domain in PKC. Since a region in secreted phospholipase A2 (PLA2) shares similarity with this domain, the ability of 14-3-3 to interact with mammalian PLA2 was studied. Cytosolic PLA2 has some similarity to the C2 region of PKC, and the effect of 14-3-3 on this class of PLA2 was also analysed. In contrast with a previous report, no PLA2 activity was found in brain 14-3-3, nor in any of the recombinant proteins tested. These include zeta 14-3-3 isoform, on which the original observation was made. Images Figure 2 PMID:8192676

  2. The LIM motif defines a specific zinc-binding protein domain.

    PubMed

    Michelsen, J W; Schmeichel, K L; Beckerle, M C; Winge, D R

    1993-05-15

    The cysteine-rich protein (CRP) contains two copies of the LIM sequence motif, CX2CX17HX2CX2CX2CX17-CX2C, that was first identified in the homeodomain proteins Lin-11, Is1-1, and Mec-3. The abundance and spacing of the cysteine residues in the LIM motif are reminiscent of a metal-binding domain. We examined the metal-binding properties of CRP isolated from chicken smooth muscle (cCRP) and from a bacterial expression system and observed that cCRP is a specific Zn-binding metalloprotein. Four Zn(II) ions are maximally bound to cCRP, consistent with the idea that each LIM domain coordinates two metal ions. From spectroscopic studies of Co(II)- and 113Cd(II)-substituted cCRP, we determined that each metal ion is tetrahedrally coordinated with cysteinyl sulfurs dominating the ligand types. One metal site within each LIM motif has tetrathiolate (S4) coordination, the second site may either be S4 or S3N1. The LIM motif represents another example of a specific Zn-binding protein sequence.

  3. Olf-1-binding site: characterization of an olfactory neuron-specific promoter motif.

    PubMed Central

    Kudrycki, K; Stein-Izsak, C; Behn, C; Grillo, M; Akeson, R; Margolis, F L

    1993-01-01

    We report characterization of several domains within the 5' flanking region of the olfactory marker protein (OMP) gene that may participate in regulating transcription of this and other olfactory neuron-specific genes. Analysis by electrophoretic mobility shift assay and DNase I footprinting identifies two regions that contain a novel sequence motif. Interactions between this motif and nuclear proteins were detected only with nuclear protein extracts derived from olfactory neuroepithelium, and this activity is more abundant in olfactory epithelium enriched in immature neurons. We have designated a factor(s) involved in this binding as Olf-1. The Olf-1-binding motif consensus sequence was defined as TCCCC(A/T)NGGAG. Studies with transgenic mice indicate that a 0.3-kb fragment of the OMP gene containing one Olf-1 motif is sufficient for olfactory tissue-specific expression of the reporter gene. Some of the other identified sequence motifs also interact specifically with olfactory nuclear protein extracts. We propose that Olf-1 is a novel, olfactory neuron-specific trans-acting factor involved in the cell-specific expression of OMP. Images PMID:8474458

  4. Molecular diversity of LysM carbohydrate-binding motifs in fungi.

    PubMed

    Akcapinar, Gunseli Bayram; Kappel, Lisa; Sezerman, Osman Ugur; Seidl-Seiboth, Verena

    2015-05-01

    LysM motifs are carbohydrate-binding modules found in prokaryotes and eukaryotes. They bind to N-acetylglucosamine-containing carbohydrates, such as chitin, chitio-oligosaccharides and peptidoglycan. In this review, we summarize the features of the protein architecture of LysM-containing proteins in fungi and discuss their so far known biochemical properties, transcriptional profiles and biological functions. Further, based on data from evolutionary analyses and consensus pattern profiling of fungal LysM motifs, we show that they can be classified into a fungal-specific group and a fungal/bacterial group. This facilitates the classification and selection of further LysM proteins for detailed analyses and will contribute to widening our understanding of the functional spectrum of this protein family in fungi. Fungal LysM motifs are predominantly found in subgroup C chitinases and in LysM effector proteins, which are secreted proteins with LysM motifs but no catalytic domains. In enzymes, LysM motifs mediate the attachment to insoluble carbon sources. In plants, receptors containing LysM motifs are responsible for the perception of chitin-oligosaccharides and are involved in beneficial symbiotic interactions between plants and bacteria or fungi, as well as plant defence responses. In plant pathogenic fungi, LysM effector proteins have already been shown to have important functions in the dampening of host defence responses as well as protective functions of fungal hyphae against chitinases. However, the large number and diversity of proteins with LysM motifs that are being unravelled in fungal genome sequencing projects suggest that the functional repertoire of LysM effector proteins in fungi is only partially discovered so far.

  5. Metabolic-Stress-Induced Rearrangement of the 14-3-3ζ Interactome Promotes Autophagy via a ULK1- and AMPK-Regulated 14-3-3ζ Interaction with Phosphorylated Atg9

    PubMed Central

    Weerasekara, Vajira K.; Panek, David J.; Broadbent, David G.; Mortenson, Jeffrey B.; Mathis, Andrew D.; Logan, Gideon N.; Prince, John T.; Thomson, David M.; Thompson, J. Will

    2014-01-01

    14-3-3ζ promotes cell survival via dynamic interactions with a vast network of binding partners, many of which are involved in stress regulation. We show here that hypoxia (low glucose and oxygen) triggers a rearrangement of the 14-3-3ζ interactome to favor an interaction with the core autophagy regulator Atg9A. Our data suggest that the localization of mammalian Atg9A to autophagosomes requires phosphorylation on the C terminus of Atg9A at S761, which creates a 14-3-3ζ docking site. Under basal conditions, this phosphorylation is maintained at a low level and is dependent on both ULK1 and AMPK. However, upon induction of hypoxic stress, activated AMPK bypasses the requirement for ULK1 and mediates S761 phosphorylation directly, resulting in an increase in 14-3-3ζ interactions, recruitment of Atg9A to LC3-positive autophagosomes, and enhanced autophagosome production. These data suggest a novel mechanism whereby the level of autophagy induction can be modulated by AMPK/ULK1-mediated phosphorylation of mammalian Atg9A. PMID:25266655

  6. Sequence-motif Detection of NAD(P)-binding Proteins: Discovery of a Unique Antibacterial Drug Target

    NASA Astrophysics Data System (ADS)

    Hua, Yun Hao; Wu, Chih Yuan; Sargsyan, Karen; Lim, Carmay

    2014-09-01

    Many enzymes use nicotinamide adenine dinucleotide or nicotinamide adenine dinucleotide phosphate (NAD(P)) as essential coenzymes. These enzymes often do not share significant sequence identity and cannot be easily detected by sequence homology. Previously, we determined all distinct locally conserved pyrophosphate-binding structures (3d motifs) from NAD(P)-bound protein structures, from which 1d sequence motifs were derived. Here, we aim to establish the precision of these 3d and 1d motifs to annotate NAD(P)-binding proteins. We show that the pyrophosphate-binding 3d motifs are characteristic of NAD(P)-binding proteins, as they are rarely found in nonNAD(P)-binding proteins. Furthermore, several 1d motifs could distinguish between proteins that bind only NAD and those that bind only NADP. They could also distinguish between NAD(P)-binding proteins from nonNAD(P)-binding ones. Interestingly, one of the pyrophosphate-binding 3d and corresponding 1d motifs was found only in enoyl-acyl carrier protein reductases, which are enzymes essential for bacterial fatty acid biosynthesis. This unique 3d motif serves as an attractive novel drug target, as it is conserved across many bacterial species and is not found in human proteins.

  7. An SOS Regulon under Control of a Noncanonical LexA-Binding Motif in the Betaproteobacteria

    PubMed Central

    Sanchez-Alberola, Neus; Campoy, Susana; Emerson, David; Barbé, Jordi

    2015-01-01

    ABSTRACT The SOS response is a transcriptional regulatory network governed by the LexA repressor that activates in response to DNA damage. In the Betaproteobacteria, LexA is known to target a palindromic sequence with the consensus sequence CTGT-N8-ACAG. We report the characterization of a LexA regulon in the iron-oxidizing betaproteobacterium Sideroxydans lithotrophicus. In silico and in vitro analyses show that LexA targets six genes by recognizing a binding motif with the consensus sequence GAACGaaCGTTC, which is strongly reminiscent of the Bacillus subtilis LexA-binding motif. We confirm that the closely related Gallionella capsiferriformans shares the same LexA-binding motif, and in silico analyses indicate that this motif is also conserved in the Nitrosomonadales and the Methylophilales. Phylogenetic analysis of LexA and the alpha subunit of DNA polymerase III (DnaE) reveal that the organisms harboring this noncanonical LexA form a compact taxonomic cluster within the Betaproteobacteria. However, their lexA gene is unrelated to the standard Betaproteobacteria lexA, and there is evidence of its spread through lateral gene transfer. In contrast to other reported cases of noncanonical LexA-binding motifs, the regulon of S. lithotrophicus is comparable in size and function to that of many other Betaproteobacteria, suggesting that a convergent SOS regulon has reevolved under the control of a new LexA protein. Analysis of the DNA-binding domain of S. lithotrophicus LexA reveals little sequence similarity with that of other LexA proteins targeting similar binding motifs, suggesting that network structure may limit site evolution or that structural constrains make the B. subtilis-type motif an optimal interface for multiple LexA sequences. IMPORTANCE Understanding the evolution of transcriptional systems enables us to address important questions in microbiology, such as the emergence and transfer potential of different regulatory systems to regulate virulence or

  8. Rac1 activation driven by 14-3-3ζ dimerization promotes prostate cancer cell-matrix interactions, motility and transendothelial migration.

    PubMed

    Goc, Anna; Abdalla, Maha; Al-Azayzih, Ahmad; Somanath, Payaningal R

    2012-01-01

    14-3-3 proteins are ubiquitously expressed dimeric adaptor proteins that have emerged as key mediators of many cell signaling pathways in multiple cell types. Its effects are mainly mediated by binding to selective phosphoserine/threonine proteins. The importance of 14-3-3 proteins in cancer have only started to become apparent and its exact role in cancer progression as well as the mechanisms by which 14-3-3 proteins mediate cancer cell function remain unknown. While protein 14-3-3σ is widely accepted as a tumor suppressor, 14-3-3ζ, β and γ isoforms have been shown to have tumor promoting effects. Despite the importance of 14-3-3 family in mediating various cell processes, the exact role and mechanism of 14-3-3ζ remain unexplored. In the current study, we investigated the role of protein 14-3-3ζ in prostate cancer cell motility and transendothelial migration using biochemical, molecular biology and electric cell-substrate impedance sensing approaches as well as cell based functional assays. Our study indicated that expression with wild-type protein 14-3-3ζ significantly enhanced Rac activity in PC3 cells. In contrast, expression of dimer-resistant mutant of protein 14-3-3ζ (DM-14-3-3) inhibited Rac activity and associated phosphorylation of p21 activated kinase-1 and 2. Expression with wild-type 14-3-3ζ or constitutively active Rac1 enhanced extracellular matrix recognition, lamellipodia formation, cell migration and trans-endothelial migration by PC3 cells. In contrast, expression with DM 14-3-3ζ or DN-Rac1 in PC3 cells significantly inhibited these cell functions. Our results demonstrate for the first time that 14-3-3ζ enhances prostate cancer cell-matrix interactions, motility and transendothelial migration in vitro via activation of Rac1-GTPase and is an important target for therapeutic interventions for prostate cancer.

  9. Protein kinase C-alpha regulates insulin action and degradation by interacting with insulin receptor substrate-1 and 14-3-3 epsilon.

    PubMed

    Oriente, Francesco; Andreozzi, Francesco; Romano, Chiara; Perruolo, Giuseppe; Perfetti, Anna; Fiory, Francesca; Miele, Claudia; Beguinot, Francesco; Formisano, Pietro

    2005-12-09

    Protein kinase C (PKC)-alpha exerts a regulatory function on insulin action. We showed by overlay blot that PKCalpha directly binds a 180-kDa protein, corresponding to IRS-1, and a 30-kDa molecular species, identified as 14-3-3epsilon. In intact NIH-3T3 cells overexpressing insulin receptors (3T3-hIR), insulin selectively increased PKCalpha co-precipitation with IRS-1, but not with IRS-2, and with 14-3-3epsilon, but not with other 14-3-3 isoforms. Overexpression of 14-3-3epsilon in 3T3-hIR cells significantly reduced IRS-1-bound PKCalpha activity, without altering IRS-1/PKCalpha co-precipitation. 14-3-3epsilon overexpression also increased insulin-stimulated insulin receptor and IRS-1 tyrosine phosphorylation, followed by increased activation of Raf1, ERK1/2, and Akt/protein kinase B. Insulin-induced glycogen synthase activity and thymidine incorporation were also augmented. Consistently, selective depletion of 14-3-3epsilon by antisense oligonucleotides caused a 3-fold increase of IRS-1-bound PKCalpha activity and a similarly sized reduction of insulin receptor and IRS-1 tyrosine phosphorylation and signaling. In turn, selective inhibition of PKCalpha expression by antisense oligonucleotides reverted the negative effect of 14-3-3epsilon depletion on insulin signaling. Moreover, PKCalpha inhibition was accompanied by a >2-fold decrease of insulin degradation. Similar results were also obtained by overexpressing 14-3-3epsilon. Thus, in NIH-3T3 cells, insulin induces the formation of multimolecular complexes, including IRS-1, PKCalpha, and 14-3-3epsilon. The presence of 14-3-3epsilon in the complex is not necessary for IRS-1/PKCalpha interaction but modulates PKCalpha activity, thereby regulating insulin signaling and degradation.

  10. Two RNA-binding motifs in eIF3 direct HCV IRES-dependent translation

    PubMed Central

    Sun, Chaomin; Querol-Audí, Jordi; Mortimer, Stefanie A.; Arias-Palomo, Ernesto; Doudna, Jennifer A.; Nogales, Eva; Cate, Jamie H. D.

    2013-01-01

    The initiation of protein synthesis plays an essential regulatory role in human biology. At the center of the initiation pathway, the 13-subunit eukaryotic translation initiation factor 3 (eIF3) controls access of other initiation factors and mRNA to the ribosome by unknown mechanisms. Using electron microscopy (EM), bioinformatics and biochemical experiments, we identify two highly conserved RNA-binding motifs in eIF3 that direct translation initiation from the hepatitis C virus internal ribosome entry site (HCV IRES) RNA. Mutations in the RNA-binding motif of subunit eIF3a weaken eIF3 binding to the HCV IRES and the 40S ribosomal subunit, thereby suppressing eIF2-dependent recognition of the start codon. Mutations in the eIF3c RNA-binding motif also reduce 40S ribosomal subunit binding to eIF3, and inhibit eIF5B-dependent steps downstream of start codon recognition. These results provide the first connection between the structure of the central translation initiation factor eIF3 and recognition of the HCV genomic RNA start codon, molecular interactions that likely extend to the human transcriptome. PMID:23766293

  11. Discovery of widespread GTP-binding motifs in genomic DNA and RNA.

    PubMed

    Curtis, Edward A; Liu, David R

    2013-04-18

    Biological RNAs that bind small molecules have been implicated in a variety of regulatory and catalytic processes. Inspired by these examples, we used in vitro selection to search a pool of genome-encoded RNA fragments for naturally occurring GTP aptamers. Several aptamer classes were identified, including one (the "G motif") with a G-quadruplex structure. Further analysis revealed that most RNA and DNA G-quadruplexes bind GTP. The G motif is abundant in eukaryotes, and the human genome contains ~75,000 examples with dissociation constants comparable to the GTP concentration of a eukaryotic cell (~300 μM). G-quadruplexes play roles in diverse cellular processes, and our findings raise the possibility that GTP may play a role in the function of these elements. Consistent with this possibility, the sequence requirements of several classes of regulatory G-quadruplexes parallel those of GTP binding.

  12. A Common Structural Motif in the Binding of Virulence Factors to Bacterial Secretion Chaperones

    SciTech Connect

    Lilic,M.; Vujanac, M.; Stebbins, C.

    2006-01-01

    Salmonella invasion protein A (SipA) is translocated into host cells by a type III secretion system (T3SS) and comprises two regions: one domain binds its cognate type III secretion chaperone, InvB, in the bacterium to facilitate translocation, while a second domain functions in the host cell, contributing to bacterial uptake by polymerizing actin. We present here the crystal structures of the SipA chaperone binding domain (CBD) alone and in complex with InvB. The SipA CBD is found to consist of a nonglobular polypeptide as well as a large globular domain, both of which are necessary for binding to InvB. We also identify a structural motif that may direct virulence factors to their cognate chaperones in a diverse range of pathogenic bacteria. Disruption of this structural motif leads to a destabilization of several chaperone-substrate complexes from different species, as well as an impairment of secretion in Salmonella.

  13. Identification of the RGG Box Motif in Shadoo: RNA-Binding and Signaling Roles?

    PubMed Central

    Corley, Susan M.; Gready, Jill E.

    2008-01-01

    Using comparative genomics and in-silico analyses, we previously identified a new member of the prion-protein (PrP) family, the gene SPRN, encoding the protein Shadoo (Sho), and suggested its functions might overlap with those of PrP. Extended bioinformatics and conceptual biology studies to elucidate Sho’s functions now reveal Sho has a conserved RGG-box motif, a well-known RNA-binding motif characterized in proteins such as FragileX Mental Retardation Protein. We report a systematic comparative analysis of RGG-box containing proteins which highlights the motif’s functional versatility and supports the suggestion that Sho plays a dual role in cell signaling and RNA binding in brain. These findings provide a further link to PrP, which has well-characterized RNA-binding properties. PMID:19812790

  14. 14-3-3 phosphoprotein interaction networks – does isoform diversity present functional interaction specification?

    PubMed Central

    Paul, Anna-Lisa; Denison, Fiona C.; Schultz, Eric R.; Zupanska, Agata K.; Ferl, Robert J.

    2012-01-01

    The 14-3-3 proteins have emerged as major phosphoprotein interaction proteins and thereby constitute a key node in the Arabidopsis Interactome Map, a node through which a large number of important signals pass. Throughout their history of discovery and description, the 14-3-3s have been described as protein families and there has been some evidence that the different 14-3-3 family members within any organism might carry isoform-specific functions. However, there has also been evidence for redundancy of 14-3-3 function, suggesting that the perceived 14-3-3 diversity may be the accumulation of neutral mutations over evolutionary time and as some 14-3-3 genes develop tissue or organ-specific expression. This situation has led to a currently unresolved question – does 14-3-3 isoform sequence diversity indicate functional diversity at the biochemical or cellular level? We discuss here some of the key observations on both sides of the resulting debate, and present a set of contrastable observations to address the theory functional diversity does exist among 14-3-3 isoforms. The resulting model suggests strongly that there are indeed functional specificities in the 14-3-3s of Arabidopsis. The model further suggests that 14-3-3 diversity and specificity should enter into the discussion of 14-3-3 roles in signal transduction and be directly approached in 14-3-3 experimentation. It is hoped that future studies involving 14-3-3s will continue to address specificity in experimental design and analysis. PMID:22934100

  15. Overexpression of 14-3-3σ counteracts tumorigenicity by positively regulating p73 in vivo

    PubMed Central

    GENG, CUIZHI; SANG, MEIXIANG; YANG, RUILING; GAO, WEI; ZHOU, TAO; WANG, SHIJIE

    2011-01-01

    14-3-3σ, one of the 14-3-3 family members, was initially identified as a human mammary epithelium-specific marker 1. The expression of 14-3-3σ is directly regulated by p53. It has been demonstrated that 14-3-3σ stabilizes p53 and enhances its transcriptional activity through the interaction with p53, suggesting that 14-3-3σ has a positive feedback effect on p53. Our previous study showed that 14-3-3σ is a direct transcriptional target of p73 and enhances the p73-mediated transcriptional as well as pro-apoptotic activity in vitro. In the present study, we explored the tumor-suppressive effect of 14-3-3σ by establishing a breast cancer xenograft nude mouse model with an inducible expression of 14-3-3σ or with an inducible expression of p53/p73 plus 14-3-3σ with ADR treatment. Tumor formation was then assayed. Moreover, 66 primary breast cancer specimens and paired tumor-free breast specimens obtained from the female patients were examined. Results showed that the expression of p73 and 14-3-3σ in breast cancer specimens was significantly lower than the tumor-free breast specimens and that 14-3-3σ expression was positively correlated with the expression of p73. Furthermore, overexpression of 14-3-3σ counteracts tumorigenicity by positively regulating p73 in p53-mutated or -deficient cancers in vivo. Therefore, our results may lead to the use of 14-3-3σ in the therapeutic application for the p53-mutated and p73-expressed breast cancer patients. PMID:22848285

  16. Novel DNA motif binding activity observed in vivo with an estrogen receptor α mutant mouse.

    PubMed

    Hewitt, Sylvia C; Li, Leping; Grimm, Sara A; Winuthayanon, Wipawee; Hamilton, Katherine J; Pockette, Brianna; Rubel, Cory A; Pedersen, Lars C; Fargo, David; Lanz, Rainer B; DeMayo, Francesco J; Schütz, Günther; Korach, Kenneth S

    2014-06-01

    Estrogen receptor α (ERα) interacts with DNA directly or indirectly via other transcription factors, referred to as "tethering." Evidence for tethering is based on in vitro studies and a widely used "KIKO" mouse model containing mutations that prevent direct estrogen response element DNA- binding. KIKO mice are infertile, due in part to the inability of estradiol (E2) to induce uterine epithelial proliferation. To elucidate the molecular events that prevent KIKO uterine growth, regulation of the pro-proliferative E2 target gene Klf4 and of Klf15, a progesterone (P4) target gene that opposes the pro-proliferative activity of KLF4, was evaluated. Klf4 induction was impaired in KIKO uteri; however, Klf15 was induced by E2 rather than by P4. Whole uterine chromatin immunoprecipitation-sequencing revealed enrichment of KIKO ERα binding to hormone response elements (HREs) motifs. KIKO binding to HRE motifs was verified using reporter gene and DNA-binding assays. Because the KIKO ERα has HRE DNA-binding activity, we evaluated the "EAAE" ERα, which has more severe DNA-binding domain mutations, and demonstrated a lack of estrogen response element or HRE reporter gene induction or DNA-binding. The EAAE mouse has an ERα null-like phenotype, with impaired uterine growth and transcriptional activity. Our findings demonstrate that the KIKO mouse model, which has been used by numerous investigators, cannot be used to establish biological functions for ERα tethering, because KIKO ERα effectively stimulates transcription using HRE motifs. The EAAE-ERα DNA-binding domain mutant mouse demonstrates that ERα DNA-binding is crucial for biological and transcriptional processes in reproductive tissues and that ERα tethering may not contribute to estrogen responsiveness in vivo.

  17. Novel DNA Motif Binding Activity Observed In Vivo With an Estrogen Receptor α Mutant Mouse

    PubMed Central

    Li, Leping; Grimm, Sara A.; Winuthayanon, Wipawee; Hamilton, Katherine J.; Pockette, Brianna; Rubel, Cory A.; Pedersen, Lars C.; Fargo, David; Lanz, Rainer B.; DeMayo, Francesco J.; Schütz, Günther; Korach, Kenneth S.

    2014-01-01

    Estrogen receptor α (ERα) interacts with DNA directly or indirectly via other transcription factors, referred to as “tethering.” Evidence for tethering is based on in vitro studies and a widely used “KIKO” mouse model containing mutations that prevent direct estrogen response element DNA- binding. KIKO mice are infertile, due in part to the inability of estradiol (E2) to induce uterine epithelial proliferation. To elucidate the molecular events that prevent KIKO uterine growth, regulation of the pro-proliferative E2 target gene Klf4 and of Klf15, a progesterone (P4) target gene that opposes the pro-proliferative activity of KLF4, was evaluated. Klf4 induction was impaired in KIKO uteri; however, Klf15 was induced by E2 rather than by P4. Whole uterine chromatin immunoprecipitation-sequencing revealed enrichment of KIKO ERα binding to hormone response elements (HREs) motifs. KIKO binding to HRE motifs was verified using reporter gene and DNA-binding assays. Because the KIKO ERα has HRE DNA-binding activity, we evaluated the “EAAE” ERα, which has more severe DNA-binding domain mutations, and demonstrated a lack of estrogen response element or HRE reporter gene induction or DNA-binding. The EAAE mouse has an ERα null–like phenotype, with impaired uterine growth and transcriptional activity. Our findings demonstrate that the KIKO mouse model, which has been used by numerous investigators, cannot be used to establish biological functions for ERα tethering, because KIKO ERα effectively stimulates transcription using HRE motifs. The EAAE-ERα DNA-binding domain mutant mouse demonstrates that ERα DNA-binding is crucial for biological and transcriptional processes in reproductive tissues and that ERα tethering may not contribute to estrogen responsiveness in vivo. PMID:24713037

  18. Transcription factor binding site positioning in yeast: proximal promoter motifs characterize TATA-less promoters.

    PubMed

    Erb, Ionas; van Nimwegen, Erik

    2011-01-01

    The availability of sequence specificities for a substantial fraction of yeast's transcription factors and comparative genomic algorithms for binding site prediction has made it possible to comprehensively annotate transcription factor binding sites genome-wide. Here we use such a genome-wide annotation for comprehensively studying promoter architecture in yeast, focusing on the distribution of transcription factor binding sites relative to transcription start sites, and the architecture of TATA and TATA-less promoters. For most transcription factors, binding sites are positioned further upstream and vary over a wider range in TATA promoters than in TATA-less promoters. In contrast, a group of 6 'proximal promoter motifs' (GAT1/GLN3/DAL80, FKH1/2, PBF1/2, RPN4, NDT80, and ROX1) occur preferentially in TATA-less promoters and show a strong preference for binding close to the transcription start site in these promoters. We provide evidence that suggests that pre-initiation complexes are recruited at TATA sites in TATA promoters and at the sites of the other proximal promoter motifs in TATA-less promoters. TATA-less promoters can generally be classified by the proximal promoter motif they contain, with different classes of TATA-less promoters showing different patterns of transcription factor binding site positioning and nucleosome coverage. These observations suggest that different modes of regulation of transcription initiation may be operating in the different promoter classes. In addition we show that, across all promoter classes, there is a close match between nucleosome free regions and regions of highest transcription factor binding site density. This close agreement between transcription factor binding site density and nucleosome depletion suggests a direct and general competition between transcription factors and nucleosomes for binding to promoters.

  19. Protein Phosphatase 2A Reactivates FOXO3a through a Dynamic Interplay with 14-3-3 and AKT

    PubMed Central

    Singh, Amrik; Ye, Min; Bucur, Octavian; Zhu, Shudong; Tanya Santos, Maria; Rabinovitz, Isaac; Wei, Wenyi; Gao, Daming; Hahn, William C.

    2010-01-01

    Forkhead box transcription factor FOXO3a, a key regulator of cell survival, is regulated by reversible phosphorylation and subcellular localization. Although the kinases regulating FOXO3a activity have been characterized, the role of protein phosphatases (PP) in the control of FOXO3a subcellular localization and function is unknown. In this study, we detected a robust interaction between FOXO3a and PP2A. We further demonstrate that 14-3-3, while not impeding the interaction between PP2A and FOXO3a, restrains its activity toward AKT phosphorylation sites T32/S253. Disruption of PP2A function revealed that after AKT inhibition, PP2A-mediated dephosphorylation of T32/S253 is required for dissociation of 14-3-3, nuclear translocation, and transcriptional activation of FOXO3a. Our findings reveal that distinct phosphatases dephosphorylate conserved AKT motifs within the FOXO family and that PP2A is entwined in a dynamic interplay with AKT and 14-3-3 to directly regulate FOXO3a subcellular localization and transcriptional activation. PMID:20110348

  20. Alternative peptide binding motifs of Qa-2 class Ib molecules define rules for binding of self and nonself peptides.

    PubMed

    Tabaczewski, P; Chiang, E; Henson, M; Stroynowski, I

    1997-09-15

    Studies of naturally processed peptides eluted from membrane-bound and soluble isoforms of murine class Ib Qa-2 molecules determined several features of these ligands, such as the conserved nonameric length and the preferred usage of specific residues at four to six of nine peptide positions. The structural information derived from these studies proved insufficient to distinguish between two interpretations: 1) that Qa-2 are peptide receptors of higher stringency than ordinary class I molecules, and 2) that Qa-2 molecules, like classical class I Ags, bind diverse arrays of peptides. We have addressed this issue by a systematic analysis of peptide residues involved in the binding of membrane-bound Qa-2 molecule, MQ9b. The optimal binding of synthetic peptides in vitro occurs at neutral pH. Two dominant anchors are required for peptide binding to MQ9b: His at position 7 and a hydrophobic residue, Leu, Ile, or Phe, at position 9. In addition, one or two auxiliary anchors participate in binding. The identity and the position of the auxiliary anchors differ from peptide to peptide, suggesting that the binding motifs defined from pool sequencing are composed of many superimposed alternative motifs present in individual peptides. The number of anchors used by Qa-2 peptides is similar to that found in ligands of classical class I Ags. Consequently, the Qa-2 are predicted to bind large repertoires of self and nonself peptides. In support of this interpretation we demonstrate that MQ9b binds strongly 5 of 17 motif-positive, pathogen-derived synthetic peptides.

  1. A threonine turnstile defines a dynamic amphiphilic binding motif in the AAA ATPase p97 allosteric binding site.

    PubMed

    Burnett, James C; Lim, Chaemin; Peyser, Brian D; Samankumara, Lalith P; Kovaliov, Marina; Colombo, Raffaele; Bulfer, Stacie L; LaPorte, Matthew G; Hermone, Ann R; McGrath, Connor F; Arkin, Michelle R; Gussio, Rick; Huryn, Donna M; Wipf, Peter

    2017-03-29

    The turnstile motion of two neighboring threonines sets up a dynamic side chain interplay that can accommodate both polar and apolar ligands in a small molecule allosteric protein binding site. A computational model based on SAR data and both X-ray and cryo-EM structures of the AAA ATPase p97 was used to analyze the effects of paired threonines at the inhibitor site. Specifically, the Thr side chain hydroxyl groups form a hydrogen bonding network that readily accommodates small, highly polar ligand substituents. Conversely, diametric rotation of the χ1 torsion by 150-180° orients the side chain β-methyl groups into the binding cleft, creating a hydrophobic pocket that can accommodate small, apolar substituents. This motif was found to be critical for rationalizing the affinities of a structurally focused set of inhibitors of p97 covering a > 2000-fold variation in potencies, with a preference for either small-highly polar or small-apolar groups. The threonine turnstile motif was further validated by a PDB search that identified analogous binding modes in ligand interactions in PKB, as well as by an analysis of NMR structures demonstrating additional gear-like interactions between adjacent Thr pairs. Combined, these data suggest that the threonine turnstile motif may be a general feature of interest in protein binding pockets.

  2. Identification of putative DnaN-binding motifs in plasmid replication initiation proteins.

    PubMed

    Dalrymple, Brian P; Kongsuwan, Kritaya; Wijffels, Gene

    2007-01-01

    Recently the plasmid RK2 replication initiation protein, TrfA, has been shown to bind to the beta subunit of DNA Polymerase III (DnaN) via a short pentapeptide with the consensus QL[S/D]LF. A second consensus peptide, the hexapeptide QLxLxL, has also been demonstrated to mediate binding to DnaN. Here we describe the results of a comprehensive survey of replication initiation proteins encoded by bacterial plasmids to identify putative DnaN-binding sites. Both pentapeptide and hexapeptide motifs have been identified in a number of families of replication initiation proteins. The distribution of sites is sporadic and closely related families of proteins may differ in the presence, location, or type of putative DnaN-binding motif. Neither motif has been identified in replication initiation proteins encoded by plasmids that replicate via rolling circles or strand displacement. The results suggest that the recruitment of DnaN to the origin of replication of a replisome by plasmid replication initiation proteins is not generally required for plasmid replication, but that in some cases it may be beneficial for efficiency of replication initiation.

  3. AliBiMotif: integrating alignment and biclustering to unravel transcription factor binding sites in DNA sequences.

    PubMed

    Gonçalves, Joana P; Moreau, Yves; Madeira, Sara C

    2012-01-01

    Transcription Factors (TFs) control transcription by binding to specific sites in the promoter regions of the target genes, which can be modelled by structured motifs. In this paper we propose AliBiMotif, a method combining sequence alignment and a biclustering approach based on efficient string matching techniques using suffix trees to unravel approximately conserved sets of blocks (structured motifs) while straightforwardly disregarding non-conserved stretches in-between. The ability to ignore the width of non-conserved regions is a major advantage of the proposed method over other motif finders, as the lengths of the binding sites are usually easier to estimate than the separating distances.

  4. Biophysical Characterization of Essential Phosphorylation at the Flexible C-Terminal Region of C-Raf with 14-3-3ζ Protein

    PubMed Central

    Gayen, Nilanjan; Mroue, Kamal H.; Kar, Rajiv K.; Mandal, Atin K.; Bhunia, Anirban

    2015-01-01

    Phosphorylation at the C-terminal flexible region of the C-Raf protein plays an important role in regulating its biological activity. Auto-phosphorylation at serine 621 (S621) in this region maintains C-Raf stability and activity. This phosphorylation mediates the interaction between C-Raf and scaffold protein 14-3-3ζ to activate the downstream MEK kinase pathway. In this study, we have defined the interaction of C-terminal peptide sequence of C-Raf with 14-3-3ζ protein and determined the possible structural adaptation of this region. Biophysical elucidation of the interaction was carried out using phosphopeptide (residue number 615–630) in the presence of 14-3-3ζ protein. Using isothermal titration calorimetry (ITC), a high binding affinity with micro-molar range was found to exist between the peptide and 14-3-3ζ protein, whereas the non-phosphorylated peptide did not show any appreciable binding affinity. Further interaction details were investigated using several biophysical techniques such as circular dichroism (CD), fluorescence, and nuclear magnetic resonance (NMR) spectroscopy, in addition to molecular modeling. This study provides the molecular basis for C-Raf C-terminal-derived phosphopeptide interaction with 14-3-3ζ protein as well as structural insights responsible for phosphorylated S621-mediated 14-3-3ζ binding at an atomic resolution. PMID:26295714

  5. Plasma Membrane CRPK1-Mediated Phosphorylation of 14-3-3 Proteins Induces Their Nuclear Import to Fine-Tune CBF Signaling during Cold Response.

    PubMed

    Liu, Ziyan; Jia, Yuxin; Ding, Yanglin; Shi, Yiting; Li, Zhen; Guo, Yan; Gong, Zhizhong; Yang, Shuhua

    2017-04-06

    In plant cells, changes in fluidity of the plasma membrane may serve as the primary sensor of cold stress; however, the precise mechanism and how the cell transduces and fine-tunes cold signals remain elusive. Here we show that the cold-activated plasma membrane protein cold-responsive protein kinase 1 (CRPK1) phosphorylates 14-3-3 proteins. The phosphorylated 14-3-3 proteins shuttle from the cytosol to the nucleus, where they interact with and destabilize the key cold-responsive C-repeat-binding factor (CBF) proteins. Consistent with this, the crpk1 and 14-3-3κλ mutants show enhanced freezing tolerance, and transgenic plants overexpressing 14-3-3λ show reduced freezing tolerance. Further study shows that CRPK1 is essential for the nuclear translocation of 14-3-3 proteins and for 14-3-3 function in freezing tolerance. Thus, our study reveals that the CRPK1-14-3-3 module transduces the cold signal from the plasma membrane to the nucleus to modulate CBF stability, which ensures a faithfully adjusted response to cold stress of plants.

  6. Identification of sequence–structure RNA binding motifs for SELEX-derived aptamers

    PubMed Central

    Hoinka, Jan; Zotenko, Elena; Friedman, Adam; Sauna, Zuben E.; Przytycka, Teresa M.

    2012-01-01

    Motivation: Systematic Evolution of Ligands by EXponential Enrichment (SELEX) represents a state-of-the-art technology to isolate single-stranded (ribo)nucleic acid fragments, named aptamers, which bind to a molecule (or molecules) of interest via specific structural regions induced by their sequence-dependent fold. This powerful method has applications in designing protein inhibitors, molecular detection systems, therapeutic drugs and antibody replacement among others. However, full understanding and consequently optimal utilization of the process has lagged behind its wide application due to the lack of dedicated computational approaches. At the same time, the combination of SELEX with novel sequencing technologies is beginning to provide the data that will allow the examination of a variety of properties of the selection process. Results: To close this gap we developed, Aptamotif, a computational method for the identification of sequence–structure motifs in SELEX-derived aptamers. To increase the chances of identifying functional motifs, Aptamotif uses an ensemble-based approach. We validated the method using two published aptamer datasets containing experimentally determined motifs of increasing complexity. We were able to recreate the author's findings to a high degree, thus proving the capability of our approach to identify binding motifs in SELEX data. Additionally, using our new experimental dataset, we illustrate the application of Aptamotif to elucidate several properties of the selection process. Contact: przytyck@ncbi.nlm.nih.gov, Zuben.Sauna@fda.hhs.gov PMID:22689764

  7. Numb directs the subcellular localization of EAAT3 through binding the YxNxxF motif.

    PubMed

    Su, Jin-Feng; Wei, Jian; Li, Pei-Shan; Miao, Hong-Hua; Ma, Yong-Chao; Qu, Yu-Xiu; Xu, Jie; Qin, Jie; Li, Bo-Liang; Song, Bao-Liang; Xu, Zheng-Ping; Luo, Jie

    2016-08-15

    Excitatory amino acid transporter type 3 (EAAT3, also known as SLC1A1) is a high-affinity, Na(+)-dependent glutamate carrier that localizes primarily within the cell and at the apical plasma membrane. Although previous studies have reported proteins and sequence regions involved in EAAT3 trafficking, the detailed molecular mechanism by which EAAT3 is distributed to the correct location still remains elusive. Here, we identify that the YVNGGF sequence in the C-terminus of EAAT3 is responsible for its intracellular localization and apical sorting in rat hepatoma cells CRL1601 and Madin-Darby canine kidney (MDCK) cells, respectively. We further demonstrate that Numb, a clathrin adaptor protein, directly binds the YVNGGF motif and regulates the localization of EAAT3. Mutation of Y503, N505 and F508 within the YVNGGF motif to alanine residues or silencing Numb by use of small interfering RNA (siRNA) results in the aberrant localization of EAAT3. Moreover, both Numb and the YVNGGF motif mediate EAAT3 endocytosis in CRL1601 cells. In summary, our study suggests that Numb is a pivotal adaptor protein that mediates the subcellular localization of EAAT3 through binding the YxNxxF (where x stands for any amino acid) motif.

  8. ATtRACT-a database of RNA-binding proteins and associated motifs.

    PubMed

    Giudice, Girolamo; Sánchez-Cabo, Fátima; Torroja, Carlos; Lara-Pezzi, Enrique

    2016-01-01

    RNA-binding proteins (RBPs) play a crucial role in key cellular processes, including RNA transport, splicing, polyadenylation and stability. Understanding the interaction between RBPs and RNA is key to improve our knowledge of RNA processing, localization and regulation in a global manner. Despite advances in recent years, a unified non-redundant resource that includes information on experimentally validated motifs, RBPs and integrated tools to exploit this information is lacking. Here, we developed a database named ATtRACT (available athttp://attract.cnic.es) that compiles information on 370 RBPs and 1583 RBP consensus binding motifs, 192 of which are not present in any other database. To populate ATtRACT we (i) extracted and hand-curated experimentally validated data from CISBP-RNA, SpliceAid-F, RBPDB databases, (ii) integrated and updated the unavailable ASD database and (iii) extracted information from Protein-RNA complexes present in Protein Data Bank database through computational analyses. ATtRACT provides also efficient algorithms to search a specific motif and scan one or more RNA sequences at a time. It also allows discoveringde novomotifs enriched in a set of related sequences and compare them with the motifs included in the database.Database URL:http:// attract. cnic. es.

  9. Binding of the Grb2 SH2 domain to phosphotyrosine motifs does not change the affinity of its SH3 domains for Sos proline-rich motifs.

    PubMed

    Cussac, D; Frech, M; Chardin, P

    1994-09-01

    Phosphotyrosine peptide binding to Grb2 induces tryptophan fluorescence changes in the Src homology 2 (SH2) domain. Affinities are in the nanomolar range, the Shc peptide having the highest affinity, followed by peptides mimicking Grb2 binding sites on EGF and HGF receptors, the putative sites on insulin and IGF-1 receptors having much lower affinities. Proline-rich peptide binding to the SH3 domains induces fluorescence changes mainly in the C-terminal SH3. Affinities are in the micromolar range, the highest affinity peptides mimicking the first proline-rich motif of the Sos C-terminus. Additional residues before this PVPPPVPP motif provide a minor contribution to the binding, but the two residues after this motif are important and may contribute to specificity. The affinity of each SH3 for each proline-rich motif is too low to account for the high stability of the Grb2-Sos complex, suggesting that Grb2 recognizes other structural features in the Sos C-terminus. Binding of a phosphotyrosine peptide to the SH2 has no effect on the SH3s. Thus the binding of Grb2 to a receptor or to an associated protein phosphorylated on tyrosines is unlikely to activate the exchange factor activity of Sos through a conformational change transmitted from the SH2 to the SH3 domains.

  10. Identification of 14-3-3epsilon substrates from embryonic murine brain.

    PubMed

    Ballif, Bryan A; Cao, Zhongwei; Schwartz, Daniel; Carraway, Kermit L; Gygi, Steven P

    2006-09-01

    Mice deficient in 14-3-3epsilon exhibit abnormal neuronal migration and die perinatally. We report here the first large-scale analysis of 14-3-3 interacting partners from primary animal tissue, identifying from embryonic murine brain 163 14-3-3epsilon interacting proteins and 85 phosphorylation sites on these proteins. Phosphorylation of the deubiquitinating enzyme USP8 at serine 680 was found essential for its interaction with 14-3-3epsilon and for maintaining USP8 in the cytosol.

  11. Genome-Wide Motif Statistics are Shaped by DNA Binding Proteins over Evolutionary Time Scales

    NASA Astrophysics Data System (ADS)

    Qian, Long; Kussell, Edo

    2016-10-01

    The composition of a genome with respect to all possible short DNA motifs impacts the ability of DNA binding proteins to locate and bind their target sites. Since nonfunctional DNA binding can be detrimental to cellular functions and ultimately to organismal fitness, organisms could benefit from reducing the number of nonfunctional DNA binding sites genome wide. Using in vitro measurements of binding affinities for a large collection of DNA binding proteins, in multiple species, we detect a significant global avoidance of weak binding sites in genomes. We demonstrate that the underlying evolutionary process leaves a distinct genomic hallmark in that similar words have correlated frequencies, a signal that we detect in all species across domains of life. We consider the possibility that natural selection against weak binding sites contributes to this process, and using an evolutionary model we show that the strength of selection needed to maintain global word compositions is on the order of point mutation rates. Likewise, we show that evolutionary mechanisms based on interference of protein-DNA binding with replication and mutational repair processes could yield similar results and operate with similar rates. On the basis of these modeling and bioinformatic results, we conclude that genome-wide word compositions have been molded by DNA binding proteins acting through tiny evolutionary steps over time scales spanning millions of generations.

  12. Transcription Factor Binding Site Positioning in Yeast: Proximal Promoter Motifs Characterize TATA-Less Promoters

    PubMed Central

    Erb, Ionas; van Nimwegen, Erik

    2011-01-01

    The availability of sequence specificities for a substantial fraction of yeast's transcription factors and comparative genomic algorithms for binding site prediction has made it possible to comprehensively annotate transcription factor binding sites genome-wide. Here we use such a genome-wide annotation for comprehensively studying promoter architecture in yeast, focusing on the distribution of transcription factor binding sites relative to transcription start sites, and the architecture of TATA and TATA-less promoters. For most transcription factors, binding sites are positioned further upstream and vary over a wider range in TATA promoters than in TATA-less promoters. In contrast, a group of ‘proximal promoter motifs’ (GAT1/GLN3/DAL80, FKH1/2, PBF1/2, RPN4, NDT80, and ROX1) occur preferentially in TATA-less promoters and show a strong preference for binding close to the transcription start site in these promoters. We provide evidence that suggests that pre-initiation complexes are recruited at TATA sites in TATA promoters and at the sites of the other proximal promoter motifs in TATA-less promoters. TATA-less promoters can generally be classified by the proximal promoter motif they contain, with different classes of TATA-less promoters showing different patterns of transcription factor binding site positioning and nucleosome coverage. These observations suggest that different modes of regulation of transcription initiation may be operating in the different promoter classes. In addition we show that, across all promoter classes, there is a close match between nucleosome free regions and regions of highest transcription factor binding site density. This close agreement between transcription factor binding site density and nucleosome depletion suggests a direct and general competition between transcription factors and nucleosomes for binding to promoters. PMID:21931670

  13. DNA familial binding profiles made easy: comparison of various motif alignment and clustering strategies.

    PubMed

    Mahony, Shaun; Auron, Philip E; Benos, Panayiotis V

    2007-03-30

    Transcription factor (TF) proteins recognize a small number of DNA sequences with high specificity and control the expression of neighbouring genes. The evolution of TF binding preference has been the subject of a number of recent studies, in which generalized binding profiles have been introduced and used to improve the prediction of new target sites. Generalized profiles are generated by aligning and merging the individual profiles of related TFs. However, the distance metrics and alignment algorithms used to compare the binding profiles have not yet been fully explored or optimized. As a result, binding profiles depend on TF structural information and sometimes may ignore important distinctions between subfamilies. Prediction of the identity or the structural class of a protein that binds to a given DNA pattern will enhance the analysis of microarray and ChIP-chip data where frequently multiple putative targets of usually unknown TFs are predicted. Various comparison metrics and alignment algorithms are evaluated (a total of 105 combinations). We find that local alignments are generally better than global alignments at detecting eukaryotic DNA motif similarities, especially when combined with the sum of squared distances or Pearson's correlation coefficient comparison metrics. In addition, multiple-alignment strategies for binding profiles and tree-building methods are tested for their efficiency in constructing generalized binding models. A new method for automatic determination of the optimal number of clusters is developed and applied in the construction of a new set of familial binding profiles which improves upon TF classification accuracy. A software tool, STAMP, is developed to host all tested methods and make them publicly available. This work provides a high quality reference set of familial binding profiles and the first comprehensive platform for analysis of DNA profiles. Detecting similarities between DNA motifs is a key step in the comparative study

  14. Analysis of protective antigen peptide binding motifs using bacterial display technology

    NASA Astrophysics Data System (ADS)

    Sarkes, Deborah A.; Dorsey, Brandi L.; Stratis-Cullum, Dimitra N.

    2015-05-01

    In today's fast-paced world, a new biological threat could emerge at any time, necessitating a prompt, reliable, inexpensive detection reagent in each case. Combined with magnetic-activated cell sorting (MACS), bacterial display technology makes it possible to isolate selective, high affinity peptide reagents in days to weeks. Utilizing the eCPX display scaffold is also a rapid way to screen potential peptide reagents. Peptide affinity reagents for protective antigen (PA) of the biothreat Bacillus anthracis were previously discovered using bacterial display. Bioinformatics analysis resulted in the consensus sequence WXCFTC. Additionally, we have discovered PA binding peptides with a WW motif, one of which, YGLHPWWKNAPIGQR, can pull down PA from 1% human serum. The strength of these two motifs combined, to obtain a WWCFTC consensus, is assessed here using Fluorescence Activated Cell Sorting (FACS). While monitoring binding to PA, overall expression of the display scaffold was assessed using the YPet Mona expression control tag (YPet), and specificity was assessed by binding to Streptavidin R-Phycoerythrin (SAPE). The importance of high YPet binding is highlighted as many of the peptides in one of the three replicate experiments fell below our 80% binding threshold. We demonstrate that it is preferable to discard this experiment, due to questionable expression of the peptide itself, than to try to normalize for relative expression. The peptides containing the WWCFTC consensus were of higher affinity and greater specificity than the peptides containing the WW consensus alone, validating further investigation to optimize known PA binders.

  15. Nucleotide sequence and expression of the 14-3-3 from the halotolerant alga Dunaliella salina.

    PubMed

    Wang, Tian-yun; Jing, Chang-Qin; Dong, Wei-Hua; Zhang, Jun-He; Zhang, Yu

    2010-02-01

    Previously we reported the nucleotide sequence of a 14-3-3 cDNA cloned from the unicellular green alga Dunaliella salina, however, the nucleotide sequence of this gene have not been reported so far. In the present study, the cloning and characterization of the nucleotide sequence, the gene copy and expression were undertaken. The coding sequence of the gene was found to be interrupted by five introns of 132, 266, 153, 152 and 625 bp, respectively. Introns 3-5 were found in conserved positions as compared to the Chlamydomonas reinhardtii 14-3-3 gene. D. salina 14-3-3 cDNA was inserted into the prokaryotic expression plasmid pET-28 and transformed into E. coli BL21, and the recombinant expressed 14-3-3 protein was purified from E. coli and immunized the rabbit. Indirect ELISA coated with 14-3-3 illustrated that the rabbit antisera titration was 1:1.00E + 06. Western blotting assays confirmed that prepared rabbit antibodies could recognize the recombinant 14-3-3 protein. Southern blotting results showed that there was only one copy of the 14-3-3 present in the genome of D. salina and 14-3-3 expression did not change throughout the Dnualiella cell cycle.

  16. On the role of residue phosphorylation in 14-3-3 partners: AANAT as a case study.

    PubMed

    Masone, Diego; Uhart, Marina; Bustos, Diego M

    2017-04-07

    Twenty years ago, a novel concept in protein structural biology was discovered: the intrinsically disordered regions (IDRs). These regions remain largely unstructured under native conditions and the more are studied, more properties are attributed to them. Possibly, one of the most important is their ability to conform a new type of protein-protein interaction. Besides the classical domain-to-domain interactions, IDRs follow a 'fly-casting' model including 'induced folding'. Unfortunately, it is only possible to experimentally explore initial and final states. However, the complete movie of conformational changes of protein regions and their characterization can be addressed by in silico experiments. Here, we simulate the binding of two proteins to describe how the phosphorylation of a single residue modulates the entire process. 14-3-3 protein family is considered a master regulator of phosphorylated proteins and from a modern point-of-view, protein phosphorylation is a three component system, with writers (kinases), erasers (phosphatases) and readers. This later biological role is attributed to the 14-3-3 protein family. Our molecular dynamics results show that phosphorylation of the key residue Thr31 in a partner of 14-3-3, the aralkylamine N-acetyltransferase, releases the fly-casting mechanism during binding. On the other hand, the non-phosphorylation of the same residue traps the proteins, systematically and repeatedly driving the simulations into wrong protein-protein conformations.

  17. On the role of residue phosphorylation in 14-3-3 partners: AANAT as a case study

    PubMed Central

    Masone, Diego; Uhart, Marina; Bustos, Diego M.

    2017-01-01

    Twenty years ago, a novel concept in protein structural biology was discovered: the intrinsically disordered regions (IDRs). These regions remain largely unstructured under native conditions and the more are studied, more properties are attributed to them. Possibly, one of the most important is their ability to conform a new type of protein-protein interaction. Besides the classical domain-to-domain interactions, IDRs follow a ‘fly-casting’ model including ‘induced folding’. Unfortunately, it is only possible to experimentally explore initial and final states. However, the complete movie of conformational changes of protein regions and their characterization can be addressed by in silico experiments. Here, we simulate the binding of two proteins to describe how the phosphorylation of a single residue modulates the entire process. 14-3-3 protein family is considered a master regulator of phosphorylated proteins and from a modern point-of-view, protein phosphorylation is a three component system, with writers (kinases), erasers (phosphatases) and readers. This later biological role is attributed to the 14-3-3 protein family. Our molecular dynamics results show that phosphorylation of the key residue Thr31 in a partner of 14-3-3, the aralkylamine N-acetyltransferase, releases the fly-casting mechanism during binding. On the other hand, the non-phosphorylation of the same residue traps the proteins, systematically and repeatedly driving the simulations into wrong protein-protein conformations. PMID:28387381

  18. Automatic generation of 3D motifs for classification of protein binding sites

    PubMed Central

    Nebel, Jean-Christophe; Herzyk, Pawel; Gilbert, David R

    2007-01-01

    Background Since many of the new protein structures delivered by high-throughput processes do not have any known function, there is a need for structure-based prediction of protein function. Protein 3D structures can be clustered according to their fold or secondary structures to produce classes of some functional significance. A recent alternative has been to detect specific 3D motifs which are often associated to active sites. Unfortunately, there are very few known 3D motifs, which are usually the result of a manual process, compared to the number of sequential motifs already known. In this paper, we report a method to automatically generate 3D motifs of protein structure binding sites based on consensus atom positions and evaluate it on a set of adenine based ligands. Results Our new approach was validated by generating automatically 3D patterns for the main adenine based ligands, i.e. AMP, ADP and ATP. Out of the 18 detected patterns, only one, the ADP4 pattern, is not associated with well defined structural patterns. Moreover, most of the patterns could be classified as binding site 3D motifs. Literature research revealed that the ADP4 pattern actually corresponds to structural features which show complex evolutionary links between ligases and transferases. Therefore, all of the generated patterns prove to be meaningful. Each pattern was used to query all PDB proteins which bind either purine based or guanine based ligands, in order to evaluate the classification and annotation properties of the pattern. Overall, our 3D patterns matched 31% of proteins with adenine based ligands and 95.5% of them were classified correctly. Conclusion A new metric has been introduced allowing the classification of proteins according to the similarity of atomic environment of binding sites, and a methodology has been developed to automatically produce 3D patterns from that classification. A study of proteins binding adenine based ligands showed that these 3D patterns are not

  19. Targeting a DNA binding motif of the EVI1 protein by a pyrrole-imidazole polyamide.

    PubMed

    Zhang, Yi; Sicot, Géraldine; Cui, Xiaohui; Vogel, Marion; Wuertzer, Charles A; Lezon-Geyda, Kimberly; Wheeler, John; Harki, Daniel A; Muzikar, Katy A; Stolper, Daniel A; Dervan, Peter B; Perkins, Archibald S

    2011-12-06

    The zinc finger protein EVI1 is causally associated with acute myeloid leukemogenesis, and inhibition of its function with a small molecule therapeutic may provide effective therapy for EVI1-expressing leukemias. In this paper we describe the development of a pyrrole-imidazole polyamide to specifically block EVI1 binding to DNA. We first identify essential domains for leukemogenesis through structure-function studies on both EVI1 and the t(3;21)(q26;q22)-derived RUNX1-MDS1-EVI1 (RME) protein, which revealed that DNA binding to the cognate motif GACAAGATA via the first of two zinc finger domains (ZF1, encompassing fingers 1-7) is essential transforming activity. To inhibit DNA binding via ZF1, we synthesized a pyrrole-imidazole polyamide 1, designed to bind to a subsite within the GACAAGATA motif and thereby block EVI1 binding. DNase I footprinting and electromobility shift assays revealed a specific and high affinity interaction between polyamide 1 and the GACAAGATA motif. In an in vivo CAT reporter assay using NIH-3T3-derived cell line with a chromosome-embedded tet-inducible EVI1-VP16 as well as an EVI1-responsive reporter, polyamide 1 completely blocked EVI1-responsive reporter activity. Growth of a leukemic cell line bearing overexpressed EVI1 was also inhibited by treatment with polyamide 1, while a control cell line lacking EVI1 was not. Finally, colony formation by RME was attenuated by polyamide 1 in a serial replating assay. These studies provide evidence that a cell permeable small molecule may effectively block the activity of a leukemogenic transcription factor and provide a valuable tool to dissect critical functions of EVI1 in leukemogenesis.

  20. Locomotor hyperactivity in 14-3-3ζ KO mice is associated with dopamine transporter dysfunction

    PubMed Central

    Ramshaw, H; Xu, X; Jaehne, E J; McCarthy, P; Greenberg, Z; Saleh, E; McClure, B; Woodcock, J; Kabbara, S; Wiszniak, S; Wang, Ting-Yi; Parish, C; van den Buuse, M; Baune, B T; Lopez, A; Schwarz, Q

    2013-01-01

    Dopamine (DA) neurotransmission requires a complex series of enzymatic reactions that are tightly linked to catecholamine exocytosis and receptor interactions on pre- and postsynaptic neurons. Regulation of dopaminergic signalling is primarily achieved through reuptake of extracellular DA by the DA transporter (DAT) on presynaptic neurons. Aberrant regulation of DA signalling, and in particular hyperactivation, has been proposed as a key insult in the presentation of schizophrenia and related neuropsychiatric disorders. We recently identified 14-3-3ζ as an essential component of neurodevelopment and a central risk factor in the schizophrenia protein interaction network. Our analysis of 14-3-3ζ-deficient mice now shows that baseline hyperactivity of knockout (KO) mice is rescued by the antipsychotic drug clozapine. 14-3-3ζ KO mice displayed enhanced locomotor hyperactivity induced by the DA releaser amphetamine. Consistent with 14-3-3ζ having a role in DA signalling, we found increased levels of DA in the striatum of 14-3-3ζ KO mice. Although 14-3-3ζ is proposed to modulate activity of the rate-limiting DA biosynthesis enzyme, tyrosine hydroxylase (TH), we were unable to identify any differences in total TH levels, TH localization or TH activation in 14-3-3ζ KO mice. Rather, our analysis identified significantly reduced levels of DAT in the absence of notable differences in RNA or protein levels of DA receptors D1–D5. Providing insight into the mechanisms by which 14-3-3ζ controls DAT stability, we found a physical association between 14-3-3ζ and DAT by co-immunoprecipitation. Taken together, our results identify a novel role for 14-3-3ζ in DA neurotransmission and provide support to the hyperdopaminergic basis of pathologies associated with schizophrenia and related disorders. PMID:24301645

  1. Nucleotide binding database NBDB – a collection of sequence motifs with specific protein-ligand interactions

    PubMed Central

    Zheng, Zejun; Goncearenco, Alexander; Berezovsky, Igor N.

    2016-01-01

    NBDB database describes protein motifs, elementary functional loops (EFLs) that are involved in binding of nucleotide-containing ligands and other biologically relevant cofactors/coenzymes, including ATP, AMP, ATP, GMP, GDP, GTP, CTP, PAP, PPS, FMN, FAD(H), NAD(H), NADP, cAMP, cGMP, c-di-AMP and c-di-GMP, ThPP, THD, F-420, ACO, CoA, PLP and SAM. The database is freely available online at http://nbdb.bii.a-star.edu.sg. In total, NBDB contains data on 249 motifs that work in interactions with 24 ligands. Sequence profiles of EFL motifs were derived de novo from nonredundant Uniprot proteome sequences. Conserved amino acid residues in the profiles interact specifically with distinct chemical parts of nucleotide-containing ligands, such as nitrogenous bases, phosphate groups, ribose, nicotinamide, and flavin moieties. Each EFL profile in the database is characterized by a pattern of corresponding ligand–protein interactions found in crystallized ligand–protein complexes. NBDB database helps to explore the determinants of nucleotide and cofactor binding in different protein folds and families. NBDB can also detect fragments that match to profiles of particular EFLs in the protein sequence provided by user. Comprehensive information on sequence, structures, and interactions of EFLs with ligands provides a foundation for experimental and computational efforts on design of required protein functions. PMID:26507856

  2. 14-3-3β protein expression in eosinophilic meningitis caused by Angiostrongylus cantonensis infection

    PubMed Central

    2014-01-01

    Background Angiostrongylus cantonensis is a parasite endemic in the Southeast Asian and Pacific regions. Humans are incidentally infected either by eating uncooked intermediate hosts or by consuming vegetables containing the living third-stage larvae. The 14-3-3β protein is a cerebrospinal fluid (CSF) marker of neuronal damage during the development of Creutzfeldt-Jakob disease. In addition, increased 14-3-3β protein is also found in CSF from patients with a variety of neurological disorders. The goal of this study is to determine the roles of serum/CSF14-3-3β protein in patients with eosinophilic meningitis. Methods In a cohort study among nine Thai laborers with eosinophilic meningitis due to eating raw snails (Pomacea canaliculata), we examined the CSF weekly while patients were still hospitalized and followed up the serum for 6 months. The levels of 14-3-3β protein in CSF were analyzed by western blot and an in-house 14-3-3β enzyme-linked immunosorbent assay (ELISA) measurement was established and tested in an animal model of eosinophilic meningitis. Results The elevated 14-3-3β level was detected in the CSF from eight out of nine (81%) patients After 2 weeks of treatment, all patients showed a declined level or cleared of 14-3-3β protein in the CSF. By developing an in-house ELISA for measurement of 14-3-3β protein, it was found that the serum 14-3-3β level was significantly increased in patients during initial visit. . This finding was consistent to the animal experiment result in which there was severe blood brain barrier damage three weeks after infection and increased 14-3-3β protein expression in the CSF and serum by western blot and in house ELISA. After treatment, the serum 14-3-3β level in meningitis patients was rapidly returned to normal threshold. There was a correlation between initial CSF 14-3-3β level with severity of headache (r = 0.692, p = 0.039), CSF pleocytosis (r = 0.807, p = 0.009) and eosinophilia (r = 0

  3. 14-3-3 Protein isoforms and atypical patterns of the 14-3-3 assay in the diagnosis of Creutzfeldt-Jakob disease.

    PubMed

    Sánchez-Valle, Raquel; Saiz, Albert; Graus, Francesc

    2002-03-01

    A positive 14-3-3 assay is a criterion for probable Creutzfeldt-Jakob disease (CJD). Cerebrospinal fluid (CSF) 14-3-3 is usually detected by immunoblot using an antibody that recognizes all of the 14-3-3 isoforms. In a few cases, the antibody recognizes an inferior band and this pattern is associated with false positive results. We analyzed 43 CSF (26 CJD, 17 controls) samples using antibodies against specific isoforms (beta, epsilon, gamma, tau, xi) and compared the results with those obtained with the standard antibody. The anti-gamma and anti-beta antibody achieved similar results but the presence of atypical patterns made the standard antibody more accurate for the CJD diagnosis. To study the nature of the inferior band, CSF samples were probed with antibodies against light chain immunoglobulins, and immunoblots of human IgG with the standard antibody. The experiments suggested a cross-reaction of the anti-14-3-3 antibody with light chain immunoglobulins.

  4. Identification of an Orthogonal Peptide Binding Motif for Biarsenical Multiuse Affinity Probes

    SciTech Connect

    Chen, Baowei; Cao, Haishi; Yan, Ping; Mayer, M. Uljana; Squier, Thomas C.

    2007-07-01

    Biarsenical multiuse affinity probes (MAPs) complexed with ethanedithiol (EDT) permit the selective cellular labeling of proteins engineered with tetracysteine motifs, but are limited by the availability of a single binding motif (i.e., CCPGCC or PG tag) that prevents the differential labeling of co-expressed proteins. To overcome this problem, we have used a high-throughput peptide screen to identify an alternate binding motif (i.e., CCKACC or KA tag), which has a similar brightness to the classical sequence upon MAP binding, but displays altered rates and affinities of association that permit the differential labeling of these peptide sequences by the red probe 4,5-bis(1,3,2-dithiarsolan-2-yl)-resorufin (ReAsH-EDT2) or its green cognate 4’,5’-bis(1,3,2-dithoarsolan-2-yl)fluorescein-(1,2-ethanedithiol)2 (FLAsH-EDT2). The utility of this labeling strategy was demonstrated following the expression of PG- and KA-tagged subunits of RNA polymerase expressed in E. coli. Specific labeling of two subunits of RNA polymerase in cellular lysates was achieved, whereby ReAsH-EDT2 is shown to selectively label the PG-tag on RNA polymerase alpha subunit prior to the labeling of the KA-tag sequence of the beta subunit of RNA polymerase with FlAsH-EDT2. These results demonstrate the ability to selectively label multiple individual proteins with orthogonal sequence tags in complex cellular lystates with spectroscopically distinct MAPs, and indicate the absolute specificity of ReAsH to target expressed proteins with essentially no nonspecific binding interactions.

  5. 14-3-3ε Is Required for Germ Cell Migration in Drosophila

    PubMed Central

    Tsigkari, K. Kirki; Acevedo, Summer F.; Skoulakis, Efthimios M. C.

    2012-01-01

    Although 14-3-3 proteins participate in multiple biological processes, isoform-specific specialized functions, as well as functional redundancy are emerging with tissue and developmental stage-specificity. Accordingly, the two 14-3-3ε proteins in Drosophila exhibit functional specificity and redundancy. Homozygotes for loss of function alleles of D14-3-3ε contain significantly fewer germ line cells (pole cells) in their gonads, a phenotype not shared by mutants in the other 14-3-3 gene leo. We show that although D14-3-3ε is enriched within pole cells it is required in mesodermal somatic gonad precursor cells which guide pole cells in their migration through the mesoderm and coalesce with them to form the embryonic gonad. Loss of D14-3-3ε results in defective pole cell migration, reduced pole cell number. We present evidence that D14-3-3ε loss results in reduction or loss of the transcription factor Zfh-1, one of the main regulatory molecules of the pole cell migration, from the somatic gonad precursor cells. PMID:22666326

  6. The cell cycle regulator 14-3-3σ opposes and reverses cancer metabolic reprogramming

    PubMed Central

    Phan, Liem; Chou, Ping-Chieh; Velazquez-Torres, Guermarie; Samudio, Ismael; Parreno, Kenneth; Huang, Yaling; Tseng, Chieh; Vu, Thuy; Gully, Chris; Su, Chun-Hui; Wang, Edward; Chen, Jian; Choi, Hyun-Ho; Fuentes-Mattei, Enrique; Shin, Ji-Hyun; Shiang, Christine; Grabiner, Brian; Blonska, Marzenna; Skerl, Stephen; Shao, Yiping; Cody, Dianna; Delacerda, Jorge; Kingsley, Charles; Webb, Douglas; Carlock, Colin; Zhou, Zhongguo; Hsieh, Yun-Chih; Lee, Jaehyuk; Elliott, Andrew; Ramirez, Marc; Bankson, Jim; Hazle, John; Wang, Yongxing; Li, Lei; Weng, Shaofan; Rizk, Nibal; Wen, Yu Ye; Lin, Xin; Wang, Hua; Wang, Huamin; Zhang, Aijun; Xia, Xuefeng; Wu, Yun; Habra, Mouhammed; Yang, Wei; Pusztai, Lajos; Yeung, Sai-Ching; Lee, Mong-Hong

    2015-01-01

    Summary Extensive reprogramming of cellular energy metabolism is a hallmark of cancer. Despite its importance, the molecular mechanism controlling this tumour metabolic shift remains not fully understood. Here we show that 14-3-3σ regulates cancer metabolic reprogramming and protects cells from tumourigenic transformation. 14-3-3σ opposes tumour-promoting metabolic programs by enhancing c-Myc poly-ubiquitination and subsequent degradation. 14-3-3σ demonstrates the suppressive impact on cancer glycolysis, glutaminolysis, mitochondrial biogenesis and other major metabolic processes of tumours. Importantly, 14-3-3σ expression levels predict overall and recurrence-free survival rates, tumour glucose uptake and metabolic gene expression in breast cancer patients. Thus, these results highlight that 14-3-3σ is an important regulator of tumour metabolism, and loss of 14-3-3σ expression is critical for cancer metabolic reprogramming. We anticipate that pharmacologically elevating the function of 14-3-3σ in tumours could be a promising direction for targeted anti-cancer metabolism therapy development in future. PMID:26179207

  7. A Novel Fibronectin Binding Motif in MSCRAMMs Targets F3 Modules

    PubMed Central

    Prabhakaran, Sabitha; Liang, Xiaowen; Skare, Jonathan T.; Potts, Jennifer R.; Höök, Magnus

    2009-01-01

    Background BBK32 is a surface expressed lipoprotein and fibronectin (Fn)-binding microbial surface component recognizing adhesive matrix molecule (MSCRAMM) of Borrelia burgdorferi, the causative agent of Lyme disease. Previous studies from our group showed that BBK32 is a virulence factor in experimental Lyme disease and located the Fn-binding region to residues 21–205 of the lipoprotein. Methodology/Principal Findings Studies aimed at identifying interacting sites between BBK32 and Fn revealed an interaction between the MSCRAMM and the Fn F3 modules. Further analysis of this interaction showed that BBK32 can cause the aggregation of human plasma Fn in a similar concentration-dependent manner to that of anastellin, the superfibronectin (sFn) inducing agent. The resulting Fn aggregates are conformationally distinct from plasma Fn as indicated by a change in available thermolysin cleavage sites. Recombinant BBK32 and anastellin affect the structure of Fn matrices formed by cultured fibroblasts and inhibit endothelial cell proliferation similarly. Within BBK32, we have located the sFn-forming activity to a region between residues 160 and 175 which contains two sequence motifs that are also found in anastellin. Synthetic peptides mimicking these motifs induce Fn aggregation, whereas a peptide with a scrambled sequence motif was inactive, suggesting that these motifs represent the sFn-inducing sequence. Conclusions/Significance We conclude that BBK32 induces the formation of Fn aggregates that are indistinguishable from those formed by anastellin. The results of this study provide evidence for how bacteria can target host proteins to manipulate host cell activities. PMID:19404402

  8. GABPα Binding to Overlapping ETS and CRE DNA Motifs Is Enhanced by CREB1: Custom DNA Microarrays.

    PubMed

    He, Ximiao; Syed, Khund Sayeed; Tillo, Desiree; Mann, Ishminder; Weirauch, Matthew T; Vinson, Charles

    2015-07-16

    To achieve proper spatiotemporal control of gene expression, transcription factors cooperatively assemble onto specific DNA sequences. The ETS domain protein monomer of GABPα and the B-ZIP domain protein dimer of CREB1 cooperatively bind DNA only when the ETS ((C)/GCGGAA GT: ) and CRE ( GT: GACGTCAC) motifs overlap precisely, producing the ETS↔CRE motif ((C)/GCGGAA GT: GACGTCAC). We designed a Protein Binding Microarray (PBM) with 60-bp DNAs containing four identical sectors, each with 177,440 features that explore the cooperative interactions between GABPα and CREB1 upon binding the ETS↔CRE motif. The DNA sequences include all 15-mers of the form (C)/GCGGA--CG-, the ETS↔CRE motif, and all single nucleotide polymorphisms (SNPs), and occurrences in the human and mouse genomes. CREB1 enhanced GABPα binding to the canonical ETS↔CRE motif CCGGAAGT two-fold, and up to 23-fold for several SNPs at the beginning and end of the ETS motif, which is suggestive of two separate and distinct allosteric mechanisms of cooperative binding. We show that the ETS-CRE array data can be used to identify regions likely cooperatively bound by GABPα and CREB1 in vivo, and demonstrate their ability to identify human genetic variants that might inhibit cooperative binding.

  9. Local motifs involved in the canonical structure of the ligand-binding domain in the nuclear receptor superfamily.

    PubMed

    Tsuji, Motonori

    2014-03-01

    Structural and sequence alignment analyses have revealed the existence of class-dependent and -independent local motifs involved in the overall fold of the ligand-binding domain (LBD) in the nuclear receptor (NR) superfamily. Of these local motifs, three local motifs, i.e., AF-2 fixed motifs, were involved in the agonist conformation of the activation function-2 (AF-2) region of the LBD. Receptor-agonist interactions increased the stability of these AF-2 fixed motifs in the agonist conformation. In contrast, perturbation of the AF-2 fixed motifs by a ligand or another protein molecule led the AF-2 architecture to adopt an antagonist conformation. Knowledge of this process should provide us with novel insights into the 'agonism' and 'antagonism' of NRs.

  10. Characterization of high affinity binding motifs for the discoidin domain receptor DDR2 in collagen.

    PubMed

    Konitsiotis, Antonios D; Raynal, Nicolas; Bihan, Dominique; Hohenester, Erhard; Farndale, Richard W; Leitinger, Birgit

    2008-03-14

    The discoidin domain receptors, DDR1 and DDR2, are receptor tyrosine kinases that are activated by native triple-helical collagen. Here we have located three specific DDR2 binding sites by screening the entire triple-helical domain of collagen II, using the Collagen II Toolkit, a set of overlapping triple-helical peptides. The peptide sequence that bound DDR2 with highest affinity interestingly contained the sequence for the high affinity binding site for von Willebrand factor in collagen III. Focusing on this sequence, we used a set of truncated and alanine-substituted peptides to characterize the sequence GVMGFO (O is hydroxyproline) as the minimal collagen sequence required for DDR2 binding. Based on a recent NMR analysis of the DDR2 collagen binding domain, we generated a model of the DDR2-collagen interaction that explains why a triple-helical conformation is required for binding. Triple-helical peptides comprising the DDR2 binding motif not only inhibited DDR2 binding to collagen II but also activated DDR2 transmembrane signaling. Thus, DDR2 activation may be effected by single triple-helices rather than fibrillar collagen.

  11. Trans-regulation of RNA-binding protein motifs by microRNA

    PubMed Central

    Doyle, Francis; Tenenbaum, Scott A.

    2014-01-01

    The wide array of vital functions that RNA performs is dependent on its ability to dynamically fold into different structures in response to intracellular and extracellular changes. RNA-binding proteins regulate much of this activity by targeting specific RNA structures or motifs. One of these structures, the 3-way RNA junction, is characteristically found in ribosomal RNA and results from the RNA folding in cis, to produce three separate helices that meet around a central unpaired region. Here we demonstrate that 3-way junctions can also form in trans as a result of the binding of microRNAs in an unconventional manner with mRNA by splinting two non-contiguous regions together. This may be used to reinforce the base of a stem-loop motif being targeted by an RNA-binding protein. Trans interactions between non-coding RNA and mRNA may be used to control the post-transcriptional regulatory code and suggests a possible role for some of the recently described transcripts of unknown function expressed from the human genome. PMID:24795744

  12. The 'helix clamp' in HIV-1 reverse transcriptase: a new nucleic acid binding motif common in nucleic acid polymerases.

    PubMed Central

    Hermann, T; Meier, T; Götte, M; Heumann, H

    1994-01-01

    Amino acid sequences homologous to 259KLVGKL (X)16KLLR284 of human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) are conserved in several nucleotide polymerizing enzymes. This amino acid motif has been identified in the crystal structure model as an element of the enzyme's nucleic acid binding apparatus. It is part of the helix-turn-helix structure, alpha H-turn-alpha I, within the 'thumb' region of HIV-1 RT. The motif grasps the complexed nucleic acid at one side. Molecular modeling studies on HIV-1 RT in complex with a nucleic acid fragment suggest that the motif has binding function in the p66 subunit as well as in the p51 subunit, acting as a kind of 'helix clamp'. Given its wide distribution within the nucleic acid polymerases, the helix clamp motif is assumed to be a structure of general significance for nucleic acid binding. Images PMID:7527138

  13. 14-3-3σ regulates keratinocyte proliferation and differentiation by modulating Yap1 cellular localization

    PubMed Central

    Sambandam, Sumitha A.T.; Kasetti, Ramesh Babu; Xue, Lei; Dean, Douglas C.; Lu, Qingxian; Li, Qiutang

    2015-01-01

    The homozygous repeated epilation (Er/Er) mouse mutant of the gene encoding 14-3-3σ displays an epidermal phenotype characterized by hyperproliferative keratinocytes and undifferentiated epidermis. Heterozygous Er/+ mice develop spontaneous skin tumors and are highly sensitive to tumor-promoting DMBA/TPA induction. The molecular mechanisms underlying 14-3-3σ regulation of epidermal proliferation, differentiation, and tumor formation have not been well elucidated. In the present study, we found that Er/Er keratinocytes failed to sequester Yap1 in the cytoplasm, leading to its nuclear localization during epidermal development in vivo and under differentiation-inducing culture conditions in vitro. In addition, enhanced Yap1 nuclear localization was also evident in DMBA/TPA-induced tumors from Er/+ skin. Furthermore, shRNA knockdown of Yap1 expression in Er/Er keratinocytes inhibited their proliferation, suggesting that YAP1 functions as a downstream effector of 14-3-3σ controlling epidermal proliferation. We then demonstrated that keratinocytes express all seven 14-3-3 protein isoforms, some of which form heterodimers with 14-3-3σ, either full-length WT or the mutant form found in Er/Er mice. However Er 14-3-3σ does not interact with Yap1, as demonstrated by co-immunoprecipitation. We conclude that Er 14-3-3σ disrupts the interaction between 14-3-3 and Yap1, thus fails to block Yap1 nuclear transcriptional function, causing continued progenitor expansion and inhibition of differentiation in Er/Er epidermis. PMID:25668240

  14. Insight into centromere-binding properties of ParB proteins: a secondary binding motif is essential for bacterial genome maintenance

    PubMed Central

    Sanchez, Aurore; Rech, Jérôme; Gasc, Cyrielle; Bouet, Jean-Yves

    2013-01-01

    ParB proteins are one of the three essential components of partition systems that actively segregate bacterial chromosomes and plasmids. In binding to centromere sequences, ParB assembles as nucleoprotein structures called partition complexes. These assemblies are the substrates for the partitioning process that ensures DNA molecules are segregated to both sides of the cell. We recently identified the sopC centromere nucleotides required for binding to the ParB homologue of plasmid F, SopB. This analysis also suggested a role in sopC binding for an arginine residue, R219, located outside the helix-turn-helix (HTH) DNA-binding motif previously shown to be the only determinant for sopC-specific binding. Here, we demonstrated that the R219 residue is critical for SopB binding to sopC during partition. Mutating R219 to alanine or lysine abolished partition by preventing partition complex assembly. Thus, specificity of SopB binding relies on two distinct motifs, an HTH and an arginine residue, which define a split DNA-binding domain larger than previously thought. Bioinformatic analysis over a broad range of chromosomal ParBs generalized our findings with the identification of a non-HTH positively charged residue essential for partition and centromere binding, present in a newly identified highly conserved motif. We propose that ParB proteins possess two DNA-binding motifs that form an extended centromere-binding domain, providing high specificity. PMID:23345617

  15. Neurodevelopmental and neuropsychiatric behaviour defects arise from 14-3-3ζ deficiency.

    PubMed

    Cheah, P S; Ramshaw, H S; Thomas, P Q; Toyo-Oka, K; Xu, X; Martin, S; Coyle, P; Guthridge, M A; Stomski, F; van den Buuse, M; Wynshaw-Boris, A; Lopez, A F; Schwarz, Q P

    2012-04-01

    Complex neuropsychiatric disorders are believed to arise from multiple synergistic deficiencies within connected biological networks controlling neuronal migration, axonal pathfinding and synapse formation. Here, we show that deletion of 14-3-3ζ causes neurodevelopmental anomalies similar to those seen in neuropsychiatric disorders such as schizophrenia, autism spectrum disorder and bipolar disorder. 14-3-3ζ-deficient mice displayed striking behavioural and cognitive deficiencies including a reduced capacity to learn and remember, hyperactivity and disrupted sensorimotor gating. These deficits are accompanied by subtle developmental abnormalities of the hippocampus that are underpinned by aberrant neuronal migration. Significantly, 14-3-3ζ-deficient mice exhibited abnormal mossy fibre navigation and glutamatergic synapse formation. The molecular basis of these defects involves the schizophrenia risk factor, DISC1, which interacts isoform specifically with 14-3-3ζ. Our data provide the first evidence of a direct role for 14-3-3ζ deficiency in the aetiology of neurodevelopmental disorders and identifies 14-3-3ζ as a central risk factor in the schizophrenia protein interaction network.

  16. Small-Molecule Stabilization of 14-3-3 Protein-Protein Interactions Stimulates Axon Regeneration.

    PubMed

    Kaplan, Andrew; Morquette, Barbara; Kroner, Antje; Leong, SooYuen; Madwar, Carolin; Sanz, Ricardo; Banerjee, Sara L; Antel, Jack; Bisson, Nicolas; David, Samuel; Fournier, Alyson E

    2017-03-08

    Damaged central nervous system (CNS) neurons have a poor ability to spontaneously regenerate, causing persistent functional deficits after injury. Therapies that stimulate axon growth are needed to repair CNS damage. 14-3-3 adaptors are hub proteins that are attractive targets to manipulate cell signaling. We identify a positive role for 14-3-3s in axon growth and uncover a developmental regulation of the phosphorylation and function of 14-3-3s. We show that fusicoccin-A (FC-A), a small-molecule stabilizer of 14-3-3 protein-protein interactions, stimulates axon growth in vitro and regeneration in vivo. We show that FC-A stabilizes a complex between 14-3-3 and the stress response regulator GCN1, inducing GCN1 turnover and neurite outgrowth. These findings show that 14-3-3 adaptor protein complexes are druggable targets and identify a new class of small molecules that may be further optimized for the repair of CNS damage.

  17. Multiple Binding Modes between HNF4α and the LXXLL Motifs of PGC-1α Lead to Full Activation*

    PubMed Central

    Rha, Geun Bae; Wu, Guangteng; Shoelson, Steven E.; Chi, Young-In

    2009-01-01

    Hepatocyte nuclear factor 4α (HNF4α) is a novel nuclear receptor that participates in a hierarchical network of transcription factors regulating the development and physiology of such vital organs as the liver, pancreas, and kidney. Among the various transcriptional coregulators with which HNF4α interacts, peroxisome proliferation-activated receptor γ (PPARγ) coactivator 1α (PGC-1α) represents a novel coactivator whose activation is unusually robust and whose binding mode appears to be distinct from that of canonical coactivators such as NCoA/SRC/p160 family members. To elucidate the potentially unique molecular mechanism of PGC-1α recruitment, we have determined the crystal structure of HNF4α in complex with a fragment of PGC-1α containing all three of its LXXLL motifs. Despite the presence of all three LXXLL motifs available for interactions, only one is bound at the canonical binding site, with no additional contacts observed between the two proteins. However, a close inspection of the electron density map indicates that the bound LXXLL motif is not a selected one but an averaged structure of more than one LXXLL motif. Further biochemical and functional studies show that the individual LXXLL motifs can bind but drive only minimal transactivation. Only when more than one LXXLL motif is involved can significant transcriptional activity be measured, and full activation requires all three LXXLL motifs. These findings led us to propose a model wherein each LXXLL motif has an additive effect, and the multiple binding modes by HNF4α toward the LXXLL motifs of PGC-1α could account for the apparent robust activation by providing a flexible mechanism for combinatorial recruitment of additional coactivators and mediators. PMID:19846556

  18. Magnetite-Binding Flagellar Filaments Displaying the MamI Loop Motif.

    PubMed

    Bereczk-Tompa, Éva; Pósfai, Mihály; Tóth, Balázs; Vonderviszt, Ferenc

    2016-11-03

    This work aimed at developing a novel method for fabricating 1 D magnetite nanostructures with the help of mutated flagellar filaments. We constructed four different flagellin mutants displaying magnetite-binding motifs: two contained fragments of magnetosome-associated proteins from magnetotactic bacteria (MamI and Mms6), and synthetic sequences were used for the other two. A magnetic selection method identified the MamI mutant as having the highest binding affinity to magnetite. Filaments built from MamI loop-containing flagellin subunits were used as templates to form chains of magnetite nanoparticles along the filament by capturing them from suspension. Our study represents a proof-of-concept that flagellar filaments can be engineered to facilitate formation of 1 D magnetite nanostructures under ambient conditions. In addition, it proves the interaction between MamI and magnetite, with implications for the role of this protein in magnetotactic bacteria.

  19. Binding Mode of Acetylated Histones to Bromodomains: Variations on a Common Motif.

    PubMed

    Marchand, Jean-Rémy; Caflisch, Amedeo

    2015-08-01

    Bromodomains, epigenetic readers that recognize acetylated lysine residues in histone tails, are potential drug targets in cancer and inflammation. Herein we review the crystal structures of human bromodomains in complex with histone tails and analyze the main interaction motifs. The histone backbone is extended and occupies, in one of the two possible orientations, the bromodomain surface groove lined by the ZA and BC loops. The acetyl-lysine side chain is buried in the cavity between the four helices of the bromodomain, and its oxygen atom accepts hydrogen bonds from a structural water molecule and a conserved asparagine residue in the BC loop. In stark contrast to this common binding motif, a large variety of ancillary interactions emerge from our analysis. In 10 of 26 structures, a basic side chain (up to five residues up- or downstream in sequence with respect to the acetyl-lysine) interacts with the carbonyl groups of the C-terminal turn of helix αB. Furthermore, the complexes reveal many heterogeneous backbone hydrogen bonds (direct or water-bridged). These interactions contribute unselectively to the binding of acetylated histone tails to bromodomains, which provides further evidence that specific recognition is modulated by combinations of multiple histone modifications and multiple modules of the proteins involved in transcription.

  20. A calmodulin binding protein from Arabidopsis is induced by ethylene and contains a DNA-binding motif

    NASA Technical Reports Server (NTRS)

    Reddy, A. S.; Reddy, V. S.; Golovkin, M.

    2000-01-01

    Calmodulin (CaM), a key calcium sensor in all eukaryotes, regulates diverse cellular processes by interacting with other proteins. To isolate CaM binding proteins involved in ethylene signal transduction, we screened an expression library prepared from ethylene-treated Arabidopsis seedlings with 35S-labeled CaM. A cDNA clone, EICBP (Ethylene-Induced CaM Binding Protein), encoding a protein that interacts with activated CaM was isolated in this screening. The CaM binding domain in EICBP was mapped to the C-terminus of the protein. These results indicate that calcium, through CaM, could regulate the activity of EICBP. The EICBP is expressed in different tissues and its expression in seedlings is induced by ethylene. The EICBP contains, in addition to a CaM binding domain, several features that are typical of transcription factors. These include a DNA-binding domain at the N terminus, an acidic region at the C terminus, and nuclear localization signals. In database searches a partial cDNA (CG-1) encoding a DNA-binding motif from parsley and an ethylene up-regulated partial cDNA from tomato (ER66) showed significant similarity to EICBP. In addition, five hypothetical proteins in the Arabidopsis genome also showed a very high sequence similarity with EICBP, indicating that there are several EICBP-related proteins in Arabidopsis. The structural features of EICBP are conserved in all EICBP-related proteins in Arabidopsis, suggesting that they may constitute a new family of DNA binding proteins and are likely to be involved in modulating gene expression in the presence of ethylene.

  1. Crystal structures of a yeast 14-3-3 protein from Lachancea thermotolerans in the unliganded form and bound to a human lipid kinase PI4KB-derived peptide reveal high evolutionary conservation.

    PubMed

    Eisenreichova, Andrea; Klima, Martin; Boura, Evzen

    2016-11-01

    14-3-3 proteins bind phosphorylated binding partners to regulate several of their properties, including enzymatic activity, stability and subcellular localization. Here, two crystal structures are presented: the crystal structures of the 14-3-3 protein (also known as Bmh1) from the yeast Lachancea thermotolerans in the unliganded form and bound to a phosphopeptide derived from human PI4KB (phosphatidylinositol 4-kinase B). The structures demonstrate the high evolutionary conservation of ligand recognition by 14-3-3 proteins. The structural analysis suggests that ligand recognition by 14-3-3 proteins evolved very early in the evolution of eukaryotes and remained conserved, underlying the importance of 14-3-3 proteins in physiology.

  2. Individual RNA recognition motifs of TIA-1 and TIAR have different RNA binding specificities.

    PubMed

    Dember, L M; Kim, N D; Liu, K Q; Anderson, P

    1996-02-02

    TIA-1 and TIAR are two closely related RNA recognition motif (RRM) proteins which possess three RRM-type RNA binding domains (RRMs 1, 2, and 3). Although both proteins have been implicated as effectors of apoptotic cell death, the specific functions of TIA-1 and TIAR are not known. We have performed in vitro selection/amplification from pools of random RNA sequences to identify RNAs to which TIA-1 and TIAR bind with high affinity. Both proteins selected RNAs containing one or several short stretches of uridylate residues suggesting that the two proteins have similar RNA binding specificities. Replacement of the uridylate stretch with an equal number of cytidine residues eliminates the protein-RNA interaction. Mutational analysis indicates that, for both TIA-1 and TIAR, it is the second RNA binding domain (RRM 2) which mediates the specific binding to uridylate-rich RNAs. Although RRM 2 is both necessary and sufficient for this interaction, the affinity for the selected RNA (as determined by filter binding assays) does increase when the second domain of TIAR is expressed together with the first and third domains (Kd = 2 x 10(-8) M) rather than alone (Kd = 5 x 10(-8) M). Although RRM 3 (of either TIA-1 or TIAR) does not interact with the uridylate-rich sequences selected by the full-length proteins, it is a bona fide RNA binding domain capable of affinity-precipitating a population of cellular RNAs ranging in size from 0.5 to 5 kilobases. In contrast, RRM 1 does not affinity-precipitate cellular RNA. The inability of RRM 1 to interact with RNA may be due to the presence of negatively charged amino acids within the RNP 1 octamer.

  3. Hydrogen Bonding Motifs in MutSaphla and their response to binding damaged DNA

    NASA Astrophysics Data System (ADS)

    Negureanu, Lacra; Salsbury, Freddie

    2013-03-01

    Over the past decade, there has been a growing interest in studying the binding of damaged DNA to the MutSalpha protein complex. This protein complex, the Msh2/Msh6 complex in humans, is the initial complex that binds mismatched DNA and other DNA defects that occur during replication. This complex has also been shown to bind at least some types of damaged DNA. As a result of this interest, multiple studies have contrasted the interactions of MutSalpha with its normal mismatched substrate and with the interactions of MutsSalpha to DNA damaged by the chemotherapeutic cisplatin. To complement these studies, we examined the interaction between MutSalpha and DNA damaged by carboplatin via all-atom molecular dynamics simulations. These simulations provide evidence for different hydrogen bonding interactions at the protein/DNA and protein/protein interface. The hydrogen bonding motifs found are broadly similar to those found in binding to the adduct from cis-platin, but have distinct differences. These subtle differences may play a role in the way the different damages are signaled by MutS.

  4. Reconstitution of the receptor-binding motif of the SARS coronavirus.

    PubMed

    Freund, Natalia T; Roitburd-Berman, Anna; Sui, Jianhua; Marasco, Wayne A; Gershoni, Jonathan M

    2015-12-01

    The severe acute respiratory syndrome (SARS) coronavirus (CoV) identified in 2003 has infected ∼8000 people worldwide, killing nearly 10% of them. The infection of target cells by the SARS CoV is mediated through the interaction of the viral Spike (S) protein (1255 amino acids) and its cellular receptor, angiotensin-converting enzyme 2 (ACE2). The SARS CoV receptor-binding domain (amino acids N318-T509 of S protein) harbors an extended excursion along its periphery that contacts ACE2 and is designated the receptor-binding motif (RBM, amino acids S432-T486). In addition, the RBM is a major antigenic determinant, able to elicit production of neutralizing antibodies. Hence, the role of the RBM is a bi-functional bioactive surface that can be demonstrated by antibodies such as the neutralizing human anti-SARS monoclonal antibody (mAb) 80R which targets the RBM and competes with the ACE2 receptor for binding. Here, we employ phage-display peptide-libraries to reconstitute a functional RBM. This is achieved by generating a vast collection of candidate RBM peptides that present a diversity of conformations. Screening such 'Conformer Libraries' with corresponding ligands has produced short RBM constructs (ca. 40 amino acids) that can bind both the ACE2 receptor and the neutralizing mAb 80R.

  5. A Siglec-like sialic-acid-binding motif revealed in an adenovirus capsid protein

    PubMed Central

    Rademacher, Christoph; Bru, Thierry; McBride, Ryan; Robison, Elizabeth; Nycholat, Corwin M; Kremer, Eric J; Paulson, James C

    2012-01-01

    Sialic-acid-binding immunoglobulin-like lectins (Siglecs) are a family of transmembrane receptors that are well documented to play roles in regulation of innate and adaptive immune responses. To see whether the features that define the molecular recognition of sialic acid were found in other sialic-acid-binding proteins, we analyzed 127 structures with bound sialic acids found in the Protein Data Bank database. Of these, the canine adenovirus 2-fiber knob protein showed close local structural relationship to Siglecs despite low sequence similarity. The fiber knob harbors a noncanonical sialic-acid recognition site, which was then explored for detailed specificity using a custom glycan microarray comprising 58 diverse sialosides. It was found that the adenoviral protein preferentially recognizes the epitope Neu5Acα2-3[6S]Galβ1-4GlcNAc, a structure previously identified as the preferred ligand for Siglec-8 in humans and Siglec-F in mice. Comparison of the Siglec and fiber knob sialic-acid-binding sites reveal conserved structural elements that are not clearly identifiable from the primary amino acid sequence, suggesting a Siglec-like sialic-acid-binding motif that comprises the consensus features of these proteins in complex with sialic acid. PMID:22522600

  6. Export of malaria proteins requires co-translational processing of the PEXEL motif independent of phosphatidylinositol-3-phosphate binding

    PubMed Central

    Boddey, Justin A.; O'Neill, Matthew T.; Lopaticki, Sash; Carvalho, Teresa G.; Hodder, Anthony N.; Nebl, Thomas; Wawra, Stephan; van West, Pieter; Ebrahimzadeh, Zeinab; Richard, Dave; Flemming, Sven; Spielmann, Tobias; Przyborski, Jude; Babon, Jeff J.; Cowman, Alan F.

    2016-01-01

    Plasmodium falciparum exports proteins into erythrocytes using the Plasmodium export element (PEXEL) motif, which is cleaved in the endoplasmic reticulum (ER) by plasmepsin V (PMV). A recent study reported that phosphatidylinositol-3-phosphate (PI(3)P) concentrated in the ER binds to PEXEL motifs and is required for export independent of PMV, and that PEXEL motifs are functionally interchangeable with RxLR motifs of oomycete effectors. Here we show that the PEXEL does not bind PI(3)P, and that this lipid is not concentrated in the ER. We find that RxLR motifs cannot mediate export in P. falciparum. Parasites expressing a mutated version of KAHRP, with the PEXEL motif repositioned near the signal sequence, prevented PMV cleavage. This mutant possessed the putative PI(3)P-binding residues but is not exported. Reinstatement of PEXEL to its original location restores processing by PMV and export. These results challenge the PI(3)P hypothesis and provide evidence that PEXEL position is conserved for co-translational processing and export. PMID:26832821

  7. Functional identification of a novel 14-3-3 epsilon splicing variant suggests dimerization is not necessary for 14-3-3 epsilon to inhibit UV-induced apoptosis

    SciTech Connect

    Han, Dingding; Ye, Guangming; Liu, Tingting; Chen, Cong; Yang, Xianmei; Wan, Bo; Pan, Yuanwang; Yu, Long

    2010-05-28

    14-3-3 proteins function as a dimer and have been identified to involve in diverse signaling pathways. Here we reported the identification of a novel splicing variant of human 14-3-3 epsilon (14-3-3 epsilon sv), which is derived from a novel exon 1' insertion. The insertion contains a stop codon and leads to a truncated splicing variant of 14-3-3 epsilon. The splicing variant is translated from the exon 2 and results in the deletion of an N-terminal {alpha}-helix which is crucial for the dimerization. Therefore, the 14-3-3 epsilon sv could not form a dimer with 14-3-3 zeta. However, after UV irradiation 14-3-3 epsilon sv could also support cell survival, suggesting monomer of 14-3-3 epsilon is sufficient to protect cell from apoptosis.

  8. Identification of HI-like loop in CELO adenovirus fiber for incorporation of receptor binding motifs.

    PubMed

    Logunov, Denis Y; Zubkova, Olga V; Karyagina-Zhulina, Anna S; Shuvalova, Eugenia A; Karpov, Andrei P; Shmarov, Maxim M; Tutykhina, Irina L; Alyapkina, Yulia S; Grezina, Natalia M; Zinovieva, Natalia A; Ernst, Lev K; Gintsburg, Alexsandr L; Naroditsky, Boris S

    2007-09-01

    Vectors based on the chicken embryo lethal orphan (CELO) avian adenovirus (Ad) have two attractive properties for gene transfer applications: resistance to preformed immune responses to human Ads and the ability to grow in chicken embryos, allowing low-cost production of recombinant viruses. However, a major limitation of this technology is that CELO vectors demonstrate decreased efficiency of gene transfer into cells expressing low levels of the coxsackie-Ad receptor (CAR). In order to improve the efficacy of gene transfer into CAR-deficient cells, we modified viral tropism via genetic alteration of the CELO fiber 1 protein. The alphav integrin-binding motif (RGD) was incorporated at two different sites of the fiber 1 knob domain, within an HI-like loop that we identified and at the C terminus. Recombinant fiber-modified CELO viruses were constructed containing secreted alkaline phosphatase (SEAP) and enhanced green fluorescent protein genes as reporter genes. Our data show that insertion of the RGD motif within the HI-like loop of the fiber resulted in significant enhancement of gene transfer into CAR-negative and CAR-deficient cells. In contrast, CELO vectors containing the RGD motif at the fiber 1 C terminus showed reduced transduction of all cell lines. CELO viruses modified with RGD at the HI-like loop transduced the SEAP reporter gene into rabbit mammary gland cells in vivo with an efficiency significantly greater than that of unmodified CELO vector and similar to that of Ad type 5 vector. These results illustrate the potential for efficient CELO-mediated gene transfer into a broad range of cell types through modification of the identified HI-like loop of the fiber 1 protein.

  9. Structural Basis for the Interaction of a Human Small Heat Shock Protein with the 14-3-3 Universal Signaling Regulator.

    PubMed

    Sluchanko, Nikolai N; Beelen, Steven; Kulikova, Alexandra A; Weeks, Stephen D; Antson, Alfred A; Gusev, Nikolai B; Strelkov, Sergei V

    2017-02-07

    By interacting with hundreds of protein partners, 14-3-3 proteins coordinate vital cellular processes. Phosphorylation of the small heat shock protein, HSPB6, within its intrinsically disordered N-terminal domain activates its interaction with 14-3-3, ultimately triggering smooth muscle relaxation. After analyzing the binding of an HSPB6-derived phosphopeptide to 14-3-3 using isothermal calorimetry and X-ray crystallography, we have determined the crystal structure of the complete assembly consisting of the 14-3-3 dimer and full-length HSPB6 dimer and further characterized this complex in solution using fluorescence spectroscopy, small-angle X-ray scattering, and limited proteolysis. We show that selected intrinsically disordered regions of HSPB6 are transformed into well-defined conformations upon the interaction, whereby an unexpectedly asymmetric structure is formed. This structure provides the first atomic resolution snapshot of a human small HSP in functional state, explains how 14-3-3 proteins sequester their regulatory partners, and can inform the design of small-molecule interaction modifiers to be used as myorelaxants.

  10. Structural basis for the interaction of a human small heat shock protein with the 14-3-3 universal signaling regulator

    PubMed Central

    Sluchanko, Nikolai N.; Beelen, Steven; Kulikova, Alexandra A.; Weeks, Stephen D.; Antson, Alfred A.; Gusev, Nikolai B.; Strelkov, Sergei V.

    2017-01-01

    Summary By interacting with hundreds of protein partners, 14-3-3 proteins coordinate vital cellular processes. Phosphorylation of the small heat shock protein HSPB6 within its intrinsically disordered N-terminal domain activates its interaction with 14-3-3, ultimately triggering smooth muscle relaxation. After analyzing the binding of an HSPB6-derived phosphopeptide to 14-3-3 using isothermal calorimetry and X-ray crystallography, we have determined the crystal structure of the complete assembly consisting of the 14-3-3 dimer and full-length HSPB6 dimer and further characterized this complex in solution using fluorescence spectroscopy, small-angle X-ray scattering and limited proteolysis. We show that selected intrinsically disordered regions of HSPB6 are transformed into well-defined conformations upon the interaction, whereby an unexpectedly asymmetric structure is formed. This structure provides the first-ever atomic resolution snapshot of a human small HSP in functional state, explains how 14-3-3 proteins sequester their regulatory partners, and can inform the design of small-molecule interaction modifiers to be used as myorelaxants. PMID:28089448

  11. CDPKs and 14-3-3 Proteins: Emerging Duo in Signaling.

    PubMed

    Ormancey, Mélanie; Thuleau, Patrice; Mazars, Christian; Cotelle, Valérie

    2017-03-01

    Calcium-dependent protein kinases (CDPKs) are Ca(2+)-sensors that play pivotal roles in plant development and stress responses. They have the unique ability to directly translate intracellular Ca(2+) signals into reversible phosphorylation events of diverse substrates which can mediate interactions with 14-3-3 proteins to modulate protein functions. Recent studies have revealed roles for the coordinated action of CDPKs and 14-3-3s in regulating diverse aspects of plant biology including metabolism, development, and stress responses. We review here the underlying interaction and cross-regulation of the two signaling proteins, and we discuss how this insight has led to the emerging concept of CDPK/14-3-3 signaling modules that could contribute to response specificity.

  12. Improved bioactivity of antimicrobial peptides by addition of amino-terminal copper and nickel (ATCUN) binding motifs.

    PubMed

    Libardo, M Daben; Cervantes, Jorge L; Salazar, Juan C; Angeles-Boza, Alfredo M

    2014-08-01

    Antimicrobial peptides (AMPs) are promising candidates to help circumvent antibiotic resistance, which is an increasing clinical problem. Amino-terminal copper and nickel (ATCUN) binding motifs are known to actively form reactive oxygen species (ROS) upon metal binding. The combination of these two peptidic constructs could lead to a novel class of dual-acting antimicrobial agents. To test this hypothesis, a set of ATCUN binding motifs were screened for their ability to induce ROS formation, and the most potent were then used to modify AMPs with different modes of action. ATCUN binding motif-containing derivatives of anoplin (GLLKRIKTLL-NH2), pro-apoptotic peptide (PAP; KLAKLAKKLAKLAK-NH2), and sh-buforin (RAGLQFPVGRVHRLLRK-NH2) were synthesized and found to be more active than the parent AMPs against a panel of clinically relevant bacteria. The lower minimum inhibitory concentration (MIC) values for the ATCUN-anoplin peptides are attributed to the higher pore-forming activity along with their ability to cause ROS-induced membrane damage. The addition of the ATCUN motifs to PAP also increases its ability to disrupt membranes. DNA damage is the major contributor to the activity of the ATCUN-sh-buforin peptides. Our findings indicate that the addition of ATCUN motifs to AMPs is a simple strategy that leads to AMPs with higher antibacterial activity and possibly to more potent, usable antibacterial agents.

  13. Associating transcription factor-binding site motifs with target GO terms and target genes

    PubMed Central

    Bodén, Mikael; Bailey, Timothy L.

    2008-01-01

    The roles and target genes of many transcription factors (TFs) are still unknown. To predict the roles of TFs, we present a computational method for associating Gene Ontology (GO) terms with TF-binding motifs. The method works by ranking all genes as potential targets of the TF, and reporting GO terms that are significantly associated with highly ranked genes. We also present an approach, whereby these predicted GO terms can be used to improve predictions of TF target genes. This uses a novel gene-scoring function that reflects the insight that genes annotated with GO terms predicted to be associated with the TF are more likely to be its targets. We construct validation sets of GO terms highly associated with known targets of various yeast and human TF. On the yeast reference sets, our prediction method identifies at least one correct GO term for 73% of the TF, 49% of the correct GO terms are predicted and almost one-third of the predicted GO terms are correct. Results on human reference sets are similarly encouraging. Validation of our target gene prediction method shows that its accuracy exceeds that of simple motif scanning. PMID:18544606

  14. Arabidopsis Polycomb Repressive Complex 2 binding sites contain putative GAGA factor binding motifs within coding regions of genes

    PubMed Central

    2013-01-01

    Background Polycomb Repressive Complex 2 (PRC2) is an essential regulator of gene expression that maintains genes in a repressed state by marking chromatin with trimethylated Histone H3 lysine 27 (H3K27me3). In Arabidopsis, loss of PRC2 function leads to pleiotropic effects on growth and development thought to be due to ectopic expression of seed and embryo-specific genes. While there is some understanding of the mechanisms by which specific genes are targeted by PRC2 in animal systems, it is still not clear how PRC2 is recruited to specific regions of plant genomes. Results We used ChIP-seq to determine the genome-wide distribution of hemagglutinin (HA)-tagged FERTLIZATION INDEPENDENT ENDOSPERM (FIE-HA), the Extra Sex Combs homolog protein present in all Arabidopsis PRC2 complexes. We found that the FIE-HA binding sites co-locate with a subset of the H3K27me3 sites in the genome and that the associated genes were more likely to be de-repressed in mutants of PRC2 components. The FIE-HA binding sites are enriched for three sequence motifs including a putative GAGA factor binding site that is also found in Drosophila Polycomb Response Elements (PREs). Conclusions Our results suggest that PRC2 binding sites in plant genomes share some sequence features with Drosophila PREs. However, unlike Drosophila PREs which are located in promoters and devoid of H3K27me3, Arabidopsis FIE binding sites tend to be in gene coding regions and co-localize with H3K27me3. PMID:24001316

  15. Abscisic acid and 14-3-3 proteins control K channel activity in barley embryonic root.

    PubMed

    van den Wijngaard, Paul W J; Sinnige, Mark P; Roobeek, Ilja; Reumer, Annet; Schoonheim, Peter J; Mol, Jos N M; Wang, Mei; De Boer, Albertus H

    2005-01-01

    Germination of seeds proceeds in general in two phases, an initial imbibition phase and a subsequent growth phase. In grasses like barley, the latter phase is evident as the emergence of the embryonic root (radicle). The hormone abscisic acid (ABA) inhibits germination because it prevents the embryo from entering and completing the growth phase. Genetic and physiological studies have identified many steps in the ABA signal transduction cascade, but how it prevents radicle elongation is still not clear. For elongation growth to proceed, uptake of osmotically active substances (mainly K(+)) is essential. Therefore, we have addressed the question of how the activity of K(+) permeable ion channels in the plasma membrane of radicle cells is regulated under conditions of slow (+ABA) and rapid germination (+fusicoccin). We found that ABA arrests radicle growth, inhibits net K(+) uptake and reduces the activity of K(+) (in) channels as measured with the patch-clamp technique. In contrast, fusicoccin (FC), a well-known stimulator of germination, stimulates radicle growth, net K(+) uptake and reduces the activity of K(+) (out) channels. Both types of channels are under the control of 14-3-3 proteins, known as integral components of signal transduction pathways and instrumental in FC action. Intriguingly, 14-3-3 affected both channels in an opposite fashion: whereas K(+) (in) channel activity was fully dependent upon 14-3-3 proteins, K(+) (out) channel activity was reduced by 14-3-3 proteins by 60%. Together with previous data showing that 14-3-3 proteins control the activity of the plasma membrane H(+)-ATPase, this makes 14-3-3 a prime candidate for molecular master regulator of the cellular osmo-pump. Regulation of the osmo-pump activity by ABA and FC is an important mechanism in controlling the growth of the embryonic root during seed germination.

  16. Diagnosing Sporadic Creutzfeldt-Jakob Disease: Accuracy of CSF 14-3-3 Protein Test of the Spinal Fluid

    MedlinePlus

    ... JAKOB DISEASE: ACCURACY OF THE 14-3-3 PROTEIN TEST OF THE SPINAL FLUID This information sheet ... help you understand how the 14-3-3 protein test helps in diagnosing sporadic Creutzfeldt-Jakob disease ( ...

  17. The Motif Tool Assessment Platform (MTAP) for sequence-based transcription factor binding site prediction tools.

    PubMed

    Quest, Daniel; Ali, Hesham

    2010-01-01

    Predicting transcription factor binding sites (TFBS) from sequence is one of the most challenging problems in computational biology. The development of (semi-)automated computer-assisted prediction methods is needed to find TFBS over an entire genome, which is a first step in reconstructing mechanisms that control gene activity. Bioinformatics journals continue to publish diverse methods for predicting TFBS on a monthly basis. To help practitioners in deciding which method to use to predict for a particular TFBS, we provide a platform to assess the quality and applicability of the available methods. Assessment tools allow researchers to determine how methods can be expected to perform on specific organisms or on specific transcription factor families. This chapter introduces the TFBS detection problem and reviews current strategies for evaluating algorithm effectiveness. In this chapter, a novel and robust assessment tool, the Motif Tool Assessment Platform (MTAP), is introduced and discussed.

  18. In vitro evolution of a peptide with a hematite binding motif that may constitute a natural metal-oxide binding archetype.

    PubMed

    Lower, Brian H; Lins, Roberto D; Oestreicher, Zachery; Straatsma, Tjerk P; Hochella, Michael F; Shi, Liang; Lower, Steven K

    2008-05-15

    Phage-display technology was used to evolve peptides that selectively bind to the metal-oxide hematite (Fe2O3) from a library of approximately 3 billion different polypeptides. The sequences of these peptides contained the highly conserved amino acid motif, Ser/Thr-hydrophobic/aromatic-Ser/Thr-Pro-Ser/Thr. To better understand the nature of the peptide-metal oxide binding demonstrated by these experiments, molecular dynamics simulations were carried out for Ser-Pro-Ser at a hematite surface. These simulations show that hydrogen bonding occurs between the two serine amino acids and the hydroxylated hematite surface and that the presence of proline between the hydroxide residues restricts the peptide flexibility, thereby inducing a structural-binding motif. A search of published sequence data revealed that the binding motif (Ser/Thr-Pro-Ser/Thr) is adjacent to the terminal heme-binding domain of both OmcA and MtrC, which are outer membrane cytochromes from the metal-reducing bacterium Shewanella oneidensis MR-1. The entire five amino acid consensus sequence (Ser/Thr-hydrophobic/ aromatic-Ser/Thr-Pro-Ser/Thr) was also found as multiple copies in the primary sequences of metal-oxide binding proteins Sil1 and Sil2 from Thalassiosira pseudonana. We suggest that this motif constitutes a natural metal-oxide binding archetype that could be exploited in enzyme-based biofuel cell design and approaches to synthesize tailored metal-oxide nanostructures.

  19. The structure of FKBP38 in complex with the MEEVD tetratricopeptide binding-motif of Hsp90

    PubMed Central

    Blundell, Katie L. I. M.; Pal, Mohinder; Roe, S. Mark; Pearl, Laurence H.

    2017-01-01

    Tetratricopeptide (TPR) domains are known protein interaction domains. We show that the TPR domain of FKBP8 selectively binds Hsp90, and interactions upstream of the conserved MEEVD motif are critical for tight binding. In contrast FKBP8 failed to bind intact Hsp70. The PPIase domain was not essential for the interaction with Hsp90 and binding was completely encompassed by the TPR domain alone. The conformation adopted by Hsp90 peptides, containing the conserved MEEVD motif, in the crystal structure were similar to that seen for the TPR domains of CHIP, AIP and Tah1. The carboxylate clamp interactions with bound Hsp90 peptide were a critical component of the interaction and mutation of Lys 307, involved in the carboxylate clamp, completely disrupted the interaction with Hsp90. FKBP8 binding to Hsp90 did not substantially influence its ATPase activity. PMID:28278223

  20. 14-3-3ζ and aPKC-ι synergistically facilitate epithelial-mesenchymal transition of cholangiocarcinoma via GSK-3β/snail signaling pathway

    PubMed Central

    He, Jun-chuang; Wang, Jian-ming; Schemmer, Peter; Ma, Chao-qun; Qian, Ya-wei; Yao, Wei; Zhang, Jian; Qi, Wei-peng; Fu, Yang; Feng, Wei; Yang, Tao

    2016-01-01

    Cholangiocarcinoma (CCA) invasion and metastasis are the primary causes of poor survival rates in patients. The epithelial-mesenchymal transition (EMT) is a crucial step in cancer invasion and metastasis. However, it is still unclear of the molecular mechanism. In this study, the expression of 14-3-3ζ and atypical protein kinase C-ι (aPKC-ι) was further detected in CCA tissues and cell lines. Meanwhile, we established the EMT model of CCA cells and investigated 14-3-3ζ and aPKC-ι co-regulatory effect on the EMT in vitro and in vivo. Further, we identified the downstream molecular glycogen synthase kinase 3 beta (GSK-3β)/Snail signalling pathway that contribute to regulating the EMT. Our data showed that the expression of 14-3-3ζ and aPKC-ι was synergistically increased in CCA tissues compared with adjacent noncancerous tissues and was intimately associated with differentiation and the tumour-node-metastasis (TNM) stage. Multivariate Cox regression analysis indicated that high 14-3-3ζ and aPKC-ι expression separately predicted a poor prognosis and were independent prognostic indicators in patients with CCA. The CO-IP experiment confirmed that the mutual binding relationship between 14-3-3ζ and aPKC-ι. Small interfering RNAs and siRNA rescue experiment demonstrated that 14-3-3ζ and aPKC-ι regulated each other. In addition, 14-3-3ζ and aPKC-ι pretreatment by si-RNA inhibit the phosphorylated GSK-3β and Snail expression during EMT. Meanwhile, silence of 14-3-3ζ or aPKC-ι suppressed CCA cells migration, metastasis and proliferation in vitro and in vivo. Our study demonstrates that 14-3-3ζ and aPKC-ι synergistically facilitate EMT of CCA via GSK-3β/Snail signalling pathway, and may be potential therapeutic target for CCA. PMID:27409422

  1. A combined sequence and structure based method for discovering enriched motifs in RNA from in vivo binding data.

    PubMed

    Polishchuk, Maya; Paz, Inbal; Kohen, Refael; Mesika, Rona; Yakhini, Zohar; Mandel-Gutfreund, Yael

    2017-03-06

    RNA binding proteins (RBPs) play an important role in regulating many processes in the cell. RBPs often recognize their RNA targets in a specific manner. In addition to the RNA primary sequence, the structure of the RNA has been shown to play a central role in RNA recognition by RBPs. In recent years, many experimental approaches, both in vitro and in vivo, were developed and employed to identify and characterize RBP targets and extract their binding specificities. In vivo binding techniques, such as CrossLinking and ImmunoPrecipitation (CLIP)-based methods, enable the characterization of protein binding sites on RNA targets. However, these methods do not provide information regarding the structural preferences of the protein. While methods to obtain the structure of RNA are available, inferring both the sequence and the structure preferences of RBPs remains a challenge. Here we present SMARTIV, a novel computational tool for discovering combined sequence and structure binding motifs from in vivo RNA binding data relying on the sequences of the target sites, the ranking of their binding scores and their predicted secondary structure. The combined motifs are provided in a unified representation that is informative and easy for visual perception. We tested the method on CLIP-seq data from different platforms for a variety of RBPs. Overall, we show that our results are highly consistent with known binding motifs of RBPs, offering additional information on their structural preferences.

  2. The RNA recognition motif domains of RBM5 are required for RNA binding and cancer cell proliferation inhibition

    SciTech Connect

    Zhang, Lei; Zhang, Qing; Yang, Yu; Wu, Chuanfang

    2014-02-14

    Highlights: • RNA recognition motif domains of RBM5 are essential for cell proliferation inhibition. • RNA recognition motif domains of RBM5 are essential for apoptosis induction. • RNA recognition motif domains of RBM5 are essential for RNA binding. • RNA recognition motif domains of RBM5 are essential for caspase-2 alternative splicing. - Abstract: RBM5 is a known putative tumor suppressor gene that has been shown to function in cell growth inhibition by modulating apoptosis. RBM5 also plays a critical role in alternative splicing as an RNA binding protein. However, it is still unclear which domains of RBM5 are required for RNA binding and related functional activities. We hypothesized the two putative RNA recognition motif (RRM) domains of RBM5 spanning from amino acids 98–178 and 231–315 are essential for RBM5-mediated cell growth inhibition, apoptosis regulation, and RNA binding. To investigate this hypothesis, we evaluated the activities of the wide-type and mutant RBM5 gene transfer in low-RBM5 expressing A549 cells. We found that, unlike wild-type RBM5 (RBM5-wt), a RBM5 mutant lacking the two RRM domains (RBM5-ΔRRM), is unable to bind RNA, has compromised caspase-2 alternative splicing activity, lacks cell proliferation inhibition and apoptosis induction function in A549 cells. These data provide direct evidence that the two RRM domains of RBM5 are required for RNA binding and the RNA binding activity of RBM5 contributes to its function on apoptosis induction and cell growth inhibition.

  3. The ABBA motif binds APC/C activators and is shared by APC/C substrates and regulators

    PubMed Central

    Hagting, Anja; Izawa, Daisuke; Mansfeld, Jörg; Gibson, Toby J.; Pines, Jonathon

    2016-01-01

    The APC/C is the ubiquitin ligase that regulates mitosis by targeting specific proteins for degradation at specific times under the control of the Spindle Assembly Checkpoint (SAC). How the APC/C recognises its different substrates is a key problem in the control of cell division. Here, we have identified the ABBA motif in Cyclin A, BUBR1, BUB1 and Acm1, and show that it binds to the APC/C co-activator CDC20. The ABBA motif in Cyclin A is required for its proper degradation in prometaphase through competing with BUBR1 for the same site on CDC20. Moreover, the ABBA motifs in BUBR1 and BUB1 are necessary for the SAC to work at full strength and to recruit CDC20 to kinetochores. Thus, we have identified a conserved motif integral to the proper control of mitosis that connects APC/C substrate recognition with the SAC. PMID:25669885

  4. Chemical Genetics of 14-3-3 Regulation and Role in Tumor Development

    DTIC Science & Technology

    2005-11-01

    from proteolysis (e.g. plant nitrate reductase) or from dephosphorylation (e.g. Raf and BAD). However, to date the most common mode of 14-3-3 function is...the general CRMI-mediated nuclear export I further studied the effects of haloprogin. This compound is a topical antifungal agent whose target is

  5. Identification of 14-3-3 Family in Common Bean and Their Response to Abiotic Stress

    PubMed Central

    Dhaubhadel, Sangeeta; Bian, Shaomin; Li, Xuyan

    2015-01-01

    14-3-3s are a class of conserved regulatory proteins ubiquitously found in eukaryotes, which play important roles in a variety of cellular processes including response to diverse stresses. Although much has been learned about 14-3-3s in several plant species, it remains unknown in common bean. In this study, 9 common bean 14-3-3s (PvGF14s) were identified by exhaustive data mining against the publicly available common bean genomic database. A phylogenetic analysis revealed that each predicted PvGF14 was clustered with two GmSGF14 paralogs from soybean. Both epsilon-like and non-epsilon classes of PvGF14s were found in common bean, and the PvGF14s belonging to each class exhibited similar gene structure. Among 9 PvGF14s, only 8 are transcribed in common bean. Expression patterns of PvGF14s varied depending on tissue type, developmental stage and exposure of plants to stress. A protein-protein interaction study revealed that PvGF14a forms dimer with itself and with other PvGF14 isoforms. This study provides a first comprehensive look at common bean 14-3-3 proteins, a family of proteins with diverse functions in many cellular processes, especially in response to stresses. PMID:26599110

  6. Enhanced Binding Affinity for an i-Motif DNA Substrate Exhibited by a Protein Containing Nucleobase Amino Acids.

    PubMed

    Bai, Xiaoguang; Talukder, Poulami; Daskalova, Sasha M; Roy, Basab; Chen, Shengxi; Li, Zhongxian; Dedkova, Larisa M; Hecht, Sidney M

    2017-03-17

    Several variants of a nucleic acid binding motif (RRM1) of putative transcription factor hnRNP LL containing nucleobase amino acids at specific positions have been prepared and used to study binding affinity for the BCL2 i-motif DNA. Molecular modeling suggested a number of amino acids in RRM1 likely to be involved in interaction with the i-motif DNA, and His24 and Arg26 were chosen for modification based on their potential ability to interact with G14 of the i-motif DNA. Four nucleobase amino acids were introduced into RRM1 at one or both of positions 24 and 26. The introduction of cytosine nucleobase 2 into position 24 of RRM1 increased the affinity of the modified protein for the i-motif DNA, consistent with the possible Watson-Crick interaction of 2 and G14. In comparison, the introduction of uracil nucleobase 3 had a minimal effect on DNA affinity. Two structurally simplified nucleobase analogues (1 and 4) lacking both the N-1 and the 2-oxo substituents were also introduced in lieu of His24. Again, the RRM1 analogue containing 1 exhibited enhanced affinity for the i-motif DNA, while the protein analogue containing 4 bound less tightly to the DNA substrate. Finally, the modified protein containing 1 in lieu of Arg26 also bound to the i-motif DNA more strongly than the wild-type protein, but a protein containing 1 both at positions 24 and 26 bound to the DNA less strongly than wild type. The results support the idea of using nucleobase amino acids as protein constituents for controlling and enhancing DNA-protein interaction. Finally, modification of the i-motif DNA at G14 diminished RRM1-DNA interaction, as well as the ability of nucleobase amino acid 1 to stabilize RRM1-DNA interaction.

  7. Elucidation of a C-rich signature motif in target mRNAs of RNA-binding protein TIAR.

    PubMed

    Kim, Henry S; Kuwano, Yuki; Zhan, Ming; Pullmann, Rudolf; Mazan-Mamczarz, Krystyna; Li, Huai; Kedersha, Nancy; Anderson, Paul; Wilce, Matthew C J; Gorospe, Myriam; Wilce, Jacqueline A

    2007-10-01

    The RNA-binding protein TIAR (related to TIA-1 [T-cell-restricted intracellular antigen 1]) was shown to associate with subsets of mRNAs bearing U-rich sequences in their 3' untranslated regions. TIAR can function as a translational repressor, particularly in response to cytotoxic agents. Using unstressed colon cancer cells, collections of mRNAs associated with TIAR were isolated by immunoprecipitation (IP) of (TIAR-RNA) ribonucleoprotein (RNP) complexes, identified by microarray analysis, and used to elucidate a common signature motif present among TIAR target transcripts. The predicted TIAR motif was an unexpectedly cytosine-rich, 28- to 32-nucleotide-long element forming a stem and a loop of variable size with an additional side loop. The ability of TIAR to bind an RNA oligonucleotide with a representative C-rich TIAR motif sequence was verified in vitro using surface plasmon resonance. By this analysis, TIAR containing two or three RNA recognition domains (TIAR12 and TIAR123) showed low but significant binding to the C-rich sequence. In vivo, insertion of the C-rich motif into a heterologous reporter strongly suppressed its translation in cultured cells. Using this signature motif, an additional approximately 2,209 UniGene targets were identified (2.0% of the total UniGene database). A subset of specific mRNAs were validated by RNP IP analysis. Interestingly, in response to treatment with short-wavelength UV light (UVC), a stress agent causing DNA damage, each of these target mRNAs bearing C-rich motifs dissociated from TIAR. In turn, expression of the encoded proteins was elevated in a TIAR-dependent manner. In sum, we report the identification of a C-rich signature motif present in TIAR target mRNAs whose association with TIAR decreases following exposure to a stress-causing agent.

  8. A novel RNA-binding motif in omnipotent suppressors of translation termination, ribosomal proteins and a ribosome modification enzyme?

    PubMed

    Koonin, E V; Bork, P; Sander, C

    1994-06-11

    Using computer methods for database search, multiple alignment, protein sequence motif analysis and secondary structure prediction, a putative new RNA-binding motif was identified. The novel motif is conserved in yeast omnipotent translation termination suppressor SUP1, the related DOM34 protein and its pseudogene homologue; three groups of eukaryotic and archaeal ribosomal proteins, namely L30e, L7Ae/S6e and S12e; an uncharacterized Bacillus subtilis protein related to the L7A/S6e group; and Escherichia coli ribosomal protein modification enzyme RimK. We hypothesize that a new type of RNA-binding domain may be utilized to deliver additional activities to the ribosome.

  9. The solution structure of an HMG-I(Y)-DNA complex defines a new architectural minor groove binding motif.

    PubMed

    Huth, J R; Bewley, C A; Nissen, M S; Evans, J N; Reeves, R; Gronenborn, A M; Clore, G M

    1997-08-01

    The solution structure of a complex between a truncated form of HMG-I(Y), consisting of the second and third DNA binding domains (residues 51-90), and a DNA dodecamer containing the PRDII site of the interferon-beta promoter has been solved by multidimensional nuclear magnetic resonance spectroscopy. The stoichiometry of the complex is one molecule of HMG-I(Y) to two molecules of DNA. The structure reveals a new architectural minor groove binding motif which stabilizes B-DNA, thereby facilitating the binding of other transcription factors in the opposing major groove. The interactions involve a central Arg-Gly-Arg motif together with two other modules that participate in extensive hydrophobic and polar contracts. The absence of one of these modules in the third DNA binding domain accounts for its-100 fold reduced affinity relative to the second one.

  10. Stb3 binds to ribosomal RNA processing element motifs that control transcriptional responses to growth in Saccharomyces cerevisiae.

    PubMed

    Liko, Dritan; Slattery, Matthew G; Heideman, Warren

    2007-09-07

    Transfer of quiescent Saccharomyces cerevisiae cells to fresh medium rapidly induces hundreds of genes needed for growth. A large subset of these genes is regulated via a DNA sequence motif known as the ribosomal RNA processing element (RRPE). However, no RRPE-binding proteins have been identified. We screened a panel of 6144 glutathione S-transferase-open reading frame fusions for RRPE-binding proteins and identified Stb3 as a specific RRPE-binding protein, both in vitro and in vivo. Chromatin immunoprecipitation experiments showed that glucose increases Stb3 binding to RRPE-containing promoters. Microarray experiments demonstrated that the loss of Stb3 inhibits the transcriptional response to fresh glucose, especially for genes with RRPE motifs. However, these experiments also showed that not all genes containing RRPEs were dependent on Stb3 for expression. Overall our data support a model in which Stb3 plays an important but not exclusive role in the transcriptional response to growth conditions.

  11. Binding of the C-terminal sterile alpha motif (SAM) domain of human p73 to lipid membranes.

    PubMed

    Barrera, Francisco N; Poveda, José A; González-Ros, José M; Neira, José L

    2003-11-21

    The alpha splice variant of p73 (p73alpha), a homologue of the tumor suppressor p53, has close to its C terminus a sterile alpha motif (SAM), SAMp73, that is thought to be involved in protein-protein interactions. Here, we report the lipid binding properties of this domain. Binding was assayed against zwitterionic (phosphatidylcholine) and anionic (phosphatidic acid) lipids and was studied by different biophysical techniques, namely, circular dichroism and fluorescence spectroscopies and differential scanning calorimetry. These techniques unambiguously indicate that SAMp73 binds to lipids. The binding involves protein surface attachment and partial membrane penetration, accompanied by changes in SAMp73 structure.

  12. The Runt domain of AML1 (RUNX1) binds a sequence-conserved RNA motif that mimics a DNA element

    PubMed Central

    Fukunaga, Junichi; Nomura, Yusuke; Tanaka, Yoichiro; Amano, Ryo; Tanaka, Taku; Nakamura, Yoshikazu; Kawai, Gota; Sakamoto, Taiichi; Kozu, Tomoko

    2013-01-01

    AML1 (RUNX1) is a key transcription factor for hematopoiesis that binds to the Runt-binding double-stranded DNA element (RDE) of target genes through its N-terminal Runt domain. Aberrations in the AML1 gene are frequently found in human leukemia. To better understand AML1 and its potential utility for diagnosis and therapy, we obtained RNA aptamers that bind specifically to the AML1 Runt domain. Enzymatic probing and NMR analyses revealed that Apt1-S, which is a truncated variant of one of the aptamers, has a CACG tetraloop and two stem regions separated by an internal loop. All the isolated aptamers were found to contain the conserved sequence motif 5′-NNCCAC-3′ and 5′-GCGMGN′N′-3′ (M:A or C; N and N′ form Watson–Crick base pairs). The motif contains one AC mismatch and one base bulged out. Mutational analysis of Apt1-S showed that three guanines of the motif are important for Runt binding as are the three guanines of RDE, which are directly recognized by three arginine residues of the Runt domain. Mutational analyses of the Runt domain revealed that the amino acid residues used for Apt1-S binding were similar to those used for RDE binding. Furthermore, the aptamer competed with RDE for binding to the Runt domain in vitro. These results demonstrated that the Runt domain of the AML1 protein binds to the motif of the aptamer that mimics DNA. Our findings should provide new insights into RNA function and utility in both basic and applied sciences. PMID:23709277

  13. Cloning of a cellular factor, interleukin binding factor, that binds to NFAT-like motifs in the human immunodeficiency virus long terminal repeat.

    PubMed Central

    Li, C; Lai, C F; Sigman, D S; Gaynor, R B

    1991-01-01

    Human immunodeficiency virus (HIV) gene expression is regulated by both general transcription factors and factors induced by activation of T lymphocytes such as NF-kappa B and the nuclear factor of activated T cells (NFAT). Within the HIV long terminal repeat (LTR), two purine-rich domains between nucleotides -283 and -195 have homology to a regulatory region found in the interleukin 2 promoter, which binds NFAT and other cellular factors. In the HIV LTR, this region has been demonstrated to have both positive and negative regulatory effects on HIV gene expression. In an attempt to clone genes encoding cellular factors that bind to these NFAT-like elements in the HIV LTR, we used lambda gt11 expression cloning with oligonucleotides corresponding to these binding motifs. A ubiquitously expressed cDNA encoding a 60-kDa protein, which we termed interleukin binding factor (ILF), binds specifically to these purine-rich motifs in the HIV LTR. This factor also binds to similar purine-rich motifs in the interleukin 2 promoter, through with lower affinity than to HIV LTR sequences. Sequence analysis reveals that the DNA binding domain of ILF has strong homology to the recently described fork head DNA binding domain found in the Drosophila homeotic protein fork head and a family of hepatocyte nuclear factors, HNF-3. Other domains found in ILF include a nucleotide binding site, an N-glycosylation motif, a signal for ubiquitin-mediated degradation, and a potential nuclear localization signal. These results describe a DNA binding protein that may be involved in both positive and negative regulation of important viral and cellular promoter elements. Images PMID:1909027

  14. A novel microtubule-binding motif identified in a high molecular weight microtubule-associated protein from Trypanosoma brucei

    PubMed Central

    1992-01-01

    The major component of the cytoskeleton of the parasitic hemoflagellate Trypanosoma brucei is a membrane skeleton which consists of a single layer of tightly spaced microtubules. This array encloses the entire cell body, and it is apposed to, and connected with, the overlying cell membrane. The microtubules of this array contain numerous microtubule- associated proteins. Prominent among those is a family of high molecular weight, repetitive proteins which consist to a large extent of tandemly arranged 38-amino acid repeat units. The binding of one of these proteins, MARP-1, to microtubules has now been characterized in vitro and in vivo. MARP-1 binds to microtubules via tubulin domains other than the COOH-termini used by microtubule-associated proteins from mammalian brain, e.g., MAP2 or Tau. In vitro binding assays using recombinant protein, as well as transfection of mammalian cell lines, have established that the repetitive 38-amino acid repeat units represent a novel microtubule-binding motif. This motif is very similar in length to those of the mammalian microtubule-associated proteins Tau, MAP2, and MAP-U, but both its sequence and charge are different. The observation that the microtubule-binding motifs both of the neural and the trypanosomal proteins are of similar length may reflect the fact that both mediate binding to the same repetitive surface, the microtubule, while their sequence and charge differences are in agreement with the observation that they interact with different domains of the tubulins. PMID:1348252

  15. A novel microtubule-binding motif identified in a high molecular weight microtubule-associated protein from Trypanosoma brucei.

    PubMed

    Hemphill, A; Affolter, M; Seebeck, T

    1992-04-01

    The major component of the cytoskeleton of the parasitic hemoflagellate Trypanosoma brucei is a membrane skeleton which consists of a single layer of tightly spaced microtubules. This array encloses the entire cell body, and it is apposed to, and connected with, the overlying cell membrane. The microtubules of this array contain numerous microtubule-associated proteins. Prominent among those is a family of high molecular weight, repetitive proteins which consist to a large extent of tandemly arranged 38-amino acid repeat units. The binding of one of these proteins, MARP-1, to microtubules has now been characterized in vitro and in vivo. MARP-1 binds to microtubules via tubulin domains other than the COOH-termini used by microtubule-associated proteins from mammalian brain, e.g., MAP2 or Tau. In vitro binding assays using recombinant protein, as well as transfection of mammalian cell lines, have established that the repetitive 38-amino acid repeat units represent a novel microtubule-binding motif. This motif is very similar in length to those of the mammalian microtubule-associated proteins Tau, MAP2, and MAP-U, but both its sequence and charge are different. The observation that the microtubule-binding motifs both of the neural and the trypanosomal proteins are of similar length may reflect the fact that both mediate binding to the same repetitive surface, the microtubule, while their sequence and charge differences are in agreement with the observation that they interact with different domains of the tubulins.

  16. Binding motifs in bacterial gene promoters modulate transcriptional effect of global regulators

    SciTech Connect

    Leuze, Michael Rex; Karpinets, Tatiana V; Syed, Mustafa H; Beliaev, Alexander S; Uberbacher, Edward C

    2012-01-01

    Bacterial gene regulation involves transcription factors (TFs) that influence the expression of many genes. Global regulators, including CRP (cAMP Receptor Protein), ArcA, and FNR, can modulate the transcriptional activity of multiple operons. The similarity of a regulatory element s sequence to a TF s consensus binding site (BS) and the position of the regulatory element in an operon promoter are considered the most important determinants of this TF s regulatory influence. In this study we explore the hypothesis that the number of TFBS half-sites (where a half-site is one half of the palindromic BS consensus sequence, which we shall refer to as a binding motif or a BM) of a global regulator in an operon s promoter plays an important role in the operon s transcriptional regulation. We examine empirical data from transcriptional profiling of the CRP regulon in Shewanella oneidenses MR 1 and Escherichia coli, and of the ArcA regulon in S. oneidenses MR 1. We compare the power of CRP BM counts and of full, symmetrical CRP TFBS characteristics, namely similarity to consensus and location, to predict CRP-induced transcriptional activity. We find that CRP BM counts have a nonlinear effect on CRP-dependent transcriptional activity and predict this activity better than full-length TFBS quality or location. Regression analysis indicates that IHF (Integration Host Factor) and ArcA have synergistic effects on CRP-induced gene transcription, positive and negative, respectively. Based on these results, we propose that the fine-tuning of bacterial transcriptional activity by CRP may involves not only the bending of the operon promoter, facilitated by CRP in cooperation with the histone-like protein IHF, but also the cumulative binding affinity of multiple weak BMs.

  17. Interleukin-11 binds specific EF-hand proteins via their conserved structural motifs.

    PubMed

    Kazakov, Alexei S; Sokolov, Andrei S; Vologzhannikova, Alisa A; Permyakova, Maria E; Khorn, Polina A; Ismailov, Ramis G; Denessiouk, Konstantin A; Denesyuk, Alexander I; Rastrygina, Victoria A; Baksheeva, Viktoriia E; Zernii, Evgeni Yu; Zinchenko, Dmitry V; Glazatov, Vladimir V; Uversky, Vladimir N; Mirzabekov, Tajib A; Permyakov, Eugene A; Permyakov, Sergei E

    2017-01-01

    Interleukin-11 (IL-11) is a hematopoietic cytokine engaged in numerous biological processes and validated as a target for treatment of various cancers. IL-11 contains intrinsically disordered regions that might recognize multiple targets. Recently we found that aside from IL-11RA and gp130 receptors, IL-11 interacts with calcium sensor protein S100P. Strict calcium dependence of this interaction suggests a possibility of IL-11 interaction with other calcium sensor proteins. Here we probed specificity of IL-11 to calcium-binding proteins of various types: calcium sensors of the EF-hand family (calmodulin, S100B and neuronal calcium sensors: recoverin, NCS-1, GCAP-1, GCAP-2), calcium buffers of the EF-hand family (S100G, oncomodulin), and a non-EF-hand calcium buffer (α-lactalbumin). A specific subset of the calcium sensor proteins (calmodulin, S100B, NCS-1, GCAP-1/2) exhibits metal-dependent binding of IL-11 with dissociation constants of 1-19 μM. These proteins share several amino acid residues belonging to conservative structural motifs of the EF-hand proteins, 'black' and 'gray' clusters. Replacements of the respective S100P residues by alanine drastically decrease its affinity to IL-11, suggesting their involvement into the association process. Secondary structure and accessibility of the hinge region of the EF-hand proteins studied are predicted to control specificity and selectivity of their binding to IL-11. The IL-11 interaction with the EF-hand proteins is expected to occur under numerous pathological conditions, accompanied by disintegration of plasma membrane and efflux of cellular components into the extracellular milieu.

  18. DNA consensus sequence motif for binding response regulator PhoP, a virulence regulator of Mycobacterium tuberculosis.

    PubMed

    He, Xiaoyuan; Wang, Shuishu

    2014-12-30

    Tuberculosis has reemerged as a serious threat to human health because of the increasing prevalence of drug-resistant strains and synergetic infection with HIV, prompting an urgent need for new and more efficient treatments. The PhoP-PhoR two-component system of Mycobacterium tuberculosis plays an important role in the virulence of the pathogen and thus represents a potential drug target. To study the mechanism of gene transcription regulation by response regulator PhoP, we identified a high-affinity DNA sequence for PhoP binding using systematic evolution of ligands by exponential enrichment. The sequence contains a direct repeat of two 7 bp motifs separated by a 4 bp spacer, TCACAGC(N4)TCACAGC. The specificity of the direct-repeat sequence for PhoP binding was confirmed by isothermal titration calorimetry and electrophoretic mobility shift assays. PhoP binds to the direct repeat as a dimer in a highly cooperative manner. We found many genes previously identified to be regulated by PhoP that contain the direct-repeat motif in their promoter sequences. Synthetic DNA fragments at the putative promoter-binding sites bind PhoP with variable affinity, which is related to the number of mismatches in the 7 bp motifs, the positions of the mismatches, and the spacer and flanking sequences. Phosphorylation of PhoP increases the affinity but does not change the specificity of DNA binding. Overall, our results confirm the direct-repeat sequence as the consensus motif for PhoP binding and thus pave the way for identification of PhoP directly regulated genes in different mycobacterial genomes.

  19. Destabilisation of dimeric 14-3-3 proteins as a novel approach to anti-cancer therapeutics.

    PubMed

    Woodcock, Joanna M; Coolen, Carl; Goodwin, Katy L; Baek, Dong Jae; Bittman, Robert; Samuel, Michael S; Pitson, Stuart M; Lopez, Angel F

    2015-06-10

    14-3-3 proteins play a pivotal role in controlling cell proliferation and survival, two commonly dysregulated hallmarks of cancers. 14-3-3 protein expression is enhanced in many human cancers and correlates with more aggressive tumors and poor prognosis, suggesting a role for 14-3-3 proteins in tumorigenesis and/or progression. We showed previously that the dimeric state of 14-3-3 proteins is regulated by the lipid sphingosine, a physiological inducer of apoptosis. As the functions of 14-3-3 proteins are dependent on their dimeric state, this sphingosine-mediated 14-3-3 regulation provides a possible means to target dimeric 14-3-3 for therapeutic effect. However, sphingosine mimics are needed that are not susceptible to sphingolipid metabolism. We show here the identification and optimization of sphingosine mimetics that render dimeric 14-3-3 susceptible to phosphorylation at a site buried in the dimer interface and induce mitochondrial-mediated apoptosis. Two such compounds, RB-011 and RB-012, disrupt 14-3-3 dimers at low micromolar concentrations and induce rapid down-regulation of Raf-MAPK and PI3K-Akt signaling in Jurkat cells. Importantly, both RB-011 and RB-012 induce apoptosis of human A549 lung cancer cells and RB-012, through disruption of MAPK signaling, reduces xenograft growth in mice. Thus, these compounds provide proof-of-principle for this novel 14-3-3-targeting approach for anti-cancer drug discovery.

  20. 14-3-3ζ Orchestrates Mammary Tumor Onset and Progression via miR221-Mediated Cell Proliferation

    PubMed Central

    Wyszomierski, Shannon L.; Wang, Qingfei; Li, Ping; Sahin, Ozgur; Xiao, Yi; Zhang, Siyuan; Xiong, Yan; Yang, Jun; Wang, Hai; Guo, Hua; Zhang, Jitao D.; Medina, Daniel; Muller, William J.; Yu, Dihua

    2013-01-01

    14-3-3ζ is overexpressed in over 40% of breast cancers but its pathophysiological relevance to tumorigenesis has not been established. Here we show that 14-3-3ζ overexpression is sufficient to induce tumorigenesis in a transgenic mouse model of breast cancer. MMTV-LTR promoter driven HA-14-3-3ζ transgenic mice (MMTV-HA-14-3-3ζ) developed mammary tumors whereas control mice did not. Whey acidic protein promoter driven HA-14-3-3ζ transgenic mice (WAP-HA-14-3-3ζ) developed hyperplastic lesions and showed increased susceptibility to carcinogen-induced tumorigenesis. When crossed with MMTV-neu transgenic mice, 14-3-3ζ.neu transgenic mice exhibited accelerated mammary tumorigenesis and metastasis compared to MMTV-neu mice. Mechanistically, 14-3-3ζ overexpression enhanced MAPK/c-Jun signaling leading to increased miR-221 transcription, which inhibited p27 CDKI translation, and consequently, promoted cell proliferation. Importantly, this 14-3-3ζ/miR-221/p27/proliferation axis is also functioning in patients' breast tumors and associates with high grade cancers. Taken together, our findings show that 14-3-3ζ overexpression has a causal role in mammary tumorigenesis and progression, acting through miR-221 in cooperation with known oncogenic events to drive neoplastic cell proliferation. PMID:24197133

  1. The mammalian heterochromatin protein 1 binds diverse nuclear proteins through a common motif that targets the chromoshadow domain

    SciTech Connect

    Lechner, Mark S. . E-mail: msl27@drexel.edu; Schultz, David C.; Negorev, Dmitri; Maul, Gerd G.; Rauscher, Frank J.

    2005-06-17

    The HP1 proteins regulate epigenetic gene silencing by promoting and maintaining chromatin condensation. The HP1 chromodomain binds to methylated histone H3. More enigmatic is the chromoshadow domain (CSD), which mediates dimerization, transcription repression, and interaction with multiple nuclear proteins. Here we show that KAP-1, CAF-1 p150, and NIPBL carry a canonical amino acid motif, PxVxL, which binds directly to the CSD with high affinity. We also define a new class of variant PxVxL CSD-binding motifs in Sp100A, LBR, and ATRX. Both canonical and variant motifs recognize a similar surface of the CSD dimer as demonstrated by a panel of CSD mutants. These in vitro binding results were confirmed by the analysis of polypeptides found associated with nuclear HP1 complexes and we provide the first evidence of the NIPBL/delangin protein in human cells, a protein recently implicated in the developmental disorder, Cornelia de Lange syndrome. NIPBL is related to Nipped-B, a factor participating in gene activation by remote enhancers in Drosophila melanogaster. Thus, this spectrum of direct binding partners suggests an expanded role for HP1 as factor participating in promoter-enhancer communication, chromatin remodeling/assembly, and sub-nuclear compartmentalization.

  2. DNase I-hypersensitive sites and transcription factor-binding motifs within the mouse E beta meiotic recombination hot spot.

    PubMed

    Shenkar, R; Shen, M H; Arnheim, N

    1991-04-01

    The second intron of the E beta gene in the mouse major histocompatibility complex is the site of a meiotic recombination hot spot. We detected two DNase I-hypersensitive sites in this intron in meiotic cells isolated from mouse testes. One site appears to be constitutive and is found in other tissues regardless of whether or not they express the E beta gene. Near this hypersensitive site are potential binding motifs for H2TF1/KBF1, NF kappa B, and octamer transcription factors. Gel retardation studies with mouse lymphoma cell nuclear extracts confirmed that each of these motifs is capable of binding protein. The binding of transcription factors may contribute to the enhancement of recombination potential by altering chromatin structure and increasing the accessibility of the DNA to the recombination machinery.

  3. Loss of ypk1 function causes rapamycin sensitivity, inhibition of translation initiation and synthetic lethality in 14-3-3-deficient yeast.

    PubMed Central

    Gelperin, Daniel; Horton, Lynn; DeChant, Anne; Hensold, Jack; Lemmon, Sandra K

    2002-01-01

    14-3-3 proteins bind to phosphorylated proteins and regulate a variety of cellular activities as effectors of serine/threonine phosphorylation. To define processes requiring 14-3-3 function in yeast, mutants with increased sensitivity to reduced 14-3-3 protein levels were identified by synthetic lethal screening. One mutation was found to be allelic to YPK1, which encodes a Ser/Thr protein kinase. Loss of Ypk function causes hypersensitivity to rapamycin, similar to 14-3-3 mutations and other mutations affecting the TOR signaling pathway in yeast. Similar to treatment with rapamycin, loss of Ypk function disrupted translation, at least in part by causing depletion of eIF4G, a central adaptor protein required for cap-dependent mRNA translation initiation. In addition, Ypk1 as well as eIF4G protein levels were rapidly depleted upon nitrogen starvation, but not during glucose starvation, even though both conditions inhibit translation initiation. These results suggest that Ypk regulates translation initiation in response to nutrient signals, either through the TOR pathway or in a functionally related pathway parallel to TOR. PMID:12196392

  4. The PDZ-binding motif of Yes-associated protein is required for its co-activation of TEAD-mediated CTGF transcription and oncogenic cell transforming activity

    SciTech Connect

    Shimomura, Tadanori; Miyamura, Norio; Hata, Shoji; Miura, Ryota; Hirayama, Jun Nishina, Hiroshi

    2014-01-17

    Highlights: •Loss of the PDZ-binding motif inhibits constitutively active YAP (5SA)-induced oncogenic cell transformation. •The PDZ-binding motif of YAP promotes its nuclear localization in cultured cells and mouse liver. •Loss of the PDZ-binding motif inhibits YAP (5SA)-induced CTGF transcription in cultured cells and mouse liver. -- Abstract: YAP is a transcriptional co-activator that acts downstream of the Hippo signaling pathway and regulates multiple cellular processes, including proliferation. Hippo pathway-dependent phosphorylation of YAP negatively regulates its function. Conversely, attenuation of Hippo-mediated phosphorylation of YAP increases its ability to stimulate proliferation and eventually induces oncogenic transformation. The C-terminus of YAP contains a highly conserved PDZ-binding motif that regulates YAP’s functions in multiple ways. However, to date, the importance of the PDZ-binding motif to the oncogenic cell transforming activity of YAP has not been determined. In this study, we disrupted the PDZ-binding motif in the YAP (5SA) protein, in which the sites normally targeted by Hippo pathway-dependent phosphorylation are mutated. We found that loss of the PDZ-binding motif significantly inhibited the oncogenic transformation of cultured cells induced by YAP (5SA). In addition, the increased nuclear localization of YAP (5SA) and its enhanced activation of TEAD-dependent transcription of the cell proliferation gene CTGF were strongly reduced when the PDZ-binding motif was deleted. Similarly, in mouse liver, deletion of the PDZ-binding motif suppressed nuclear localization of YAP (5SA) and YAP (5SA)-induced CTGF expression. Taken together, our results indicate that the PDZ-binding motif of YAP is critical for YAP-mediated oncogenesis, and that this effect is mediated by YAP’s co-activation of TEAD-mediated CTGF transcription.

  5. Membrane targeting of TIRAP is negatively regulated by phosphorylation in its phosphoinositide-binding motif

    PubMed Central

    Zhao, Xiaolin; Xiong, Wen; Xiao, Shuyan; Tang, Tuo-Xian; Ellena, Jeffrey F.; Armstrong, Geoffrey S.; Finkielstein, Carla V.; Capelluto, Daniel G. S.

    2017-01-01

    Pathogen-activated Toll-like receptors (TLRs), such as TLR2 and TLR4, dimerize and move laterally across the plasma membrane to phosphatidylinositol (4,5)-bisphosphate-enriched domains. At these sites, TLRs interact with the TIR domain-containing adaptor protein (TIRAP), triggering a signaling cascade that leads to innate immune responses. Membrane recruitment of TIRAP is mediated by its phosphoinositide (PI)-binding motif (PBM). We show that TIRAP PBM transitions from a disordered to a helical conformation in the presence of either zwitterionic micelles or monodispersed PIs. TIRAP PBM bound PIs through basic and nonpolar residues with high affinity, favoring a more ordered structure. TIRAP is phosphorylated at Thr28 within its PBM, which leads to its ubiquitination and degradation. We demonstrate that phosphorylation distorts the helical structure of TIRAP PBM, reducing PI interactions and cell membrane targeting. Our study provides the basis for TIRAP membrane insertion and the mechanism by which it is removed from membranes to avoid sustained innate immune responses. PMID:28225045

  6. A new calmodulin-binding motif for inositol 1,4,5-trisphosphate 3-kinase regulation.

    PubMed

    Franco-Echevarría, Elsa; Baños-Sanz, Jose I; Monterroso, Begoña; Round, Adam; Sanz-Aparicio, Julia; González, Beatriz

    2014-11-01

    IP3-3K [Ins(1,4,5)P3 3-kinase] is a key enzyme that catalyses the synthesis of Ins(1,3,4,5)P4, using Ins(1,4,5)P3 and ATP as substrates. Both inositides, substrate and product, present crucial roles in the cell. Ins(1,4,5)P3 is a key point in Ca2+ metabolism that promotes Ca2+ release from intracellular stores and together with Ins(1,3,4,5)P4 regulates Ca2+ homoeostasis. In addition, Ins(1,3,4,5)P4 is involved in immune cell development. It has been proved that Ca2+/CaM (calmodulin) regulates the activity of IP3-3K, via direct interaction between both enzymes. Although we have extensive structural knowledge of the kinase domains of the three IP3-3K isoforms, no structural information is available about the interaction between IP3-3K and Ca2+/CaM. In the present paper we describe the crystal structure of the complex between human Ca2+/CaM and the CaM-binding region of human IP3-3K isoform A (residues 158-183) and propose a model for a complex including the kinase domain. The structure obtained allowed us to identify all of the key residues involved in the interaction, which have been evaluated by site-directed mutagenesis, pull-down and fluorescence anisotropy experiments. The results allowed the identification of a new CaM-binding motif, expanding our knowledge about how CaM interacts with its partners.

  7. Stimulation of 14-3-3 protein and its isoform on histamine secretion from permeabilized rat peritoneal mast cells.

    PubMed

    Fujii, Toshihiro; Ueeda, Takayuki

    2002-12-01

    The effect of the 14-3-3 protein, an adaptor protein of intracellular signal pathways, on histamine release from rat peritoneal mast cells was investigated. The exogenous 14-3-3 protein from bovine brain increased the Ca(2+)-dependent histamine release from permeabilized mast cells, but only slightly affected the non-permeabilized cells. Partial amino acid sequences showed that the bovine brain 14-3-3 protein contained 14-3-3beta, gamma and zeta isoforms, and that these recombinant isoforms were prepared. Among them, 14-3-3zeta was an active species while the 14-3-3beta and gamma were inactive for histamine release from the permeabilized mast cells. Approximately 15% of the histamine release was stimulated by 14-3-3zeta at 2.5 microM, and half-maximal stimulation occurred at 1 microM. Treatment of the mast cells with wortmannin or staurosporine completely inhibited the stimulatory effect on histamine release caused by Ca(2+) or Ca(2+)/14-3-3zeta, and genistein partially inhibited both stimulatory effects. PD 98059, however, had little effect on the histamine release. These results suggest the possibility that 14-3-3zeta is associated with signal transduction for degranulation of the mast cells.

  8. Aberrant overexpression of an epithelial marker, 14-3-3σ, in a subset of hematological malignancies

    PubMed Central

    Motokura, Toru; Nakamura, Yukari; Sato, Hiroyuki

    2007-01-01

    Background 14-3-3σ is a p53-mediated cell-cycle inhibitor in epithelial cells. The expression of 14-3-3σ is frequently altered in cancers of epithelial origin associated with altered DNA methylation. Since its involvement in a non-epithelial tumor is unknown, we examined 14-3-3σ expression in patients with haematological malignancies. Methods We analyzed 41 hematopoietic cell lines and 129 patients with a variety of hematological malignancies for 14-3-3σ expression with real-time RT-PCR. We also examined protein levels by Western blot analysis and DNA methylation status of the 14-3-3σ gene by methylation-specific PCR analysis of bisulfite-treated DNA. In addition, mutations of p53 gene were identified by RT-PCR-SSCP analysis and the expression levels of 14-3-3σ were compared with those of other cell-cycle inhibitor genes, CDKN2A and ARF. Results The expression levels of 14-3-3σ mRNA in almost all cell lines were low and comparable to those in normal hematopoietic cells except for 2 B-cell lines. On the contrary, 14-3-3σ mRNA was aberrantly overexpressed frequently in mature lymphoid malignancies (30 of 93, 32.3%) and rarely in acute leukemia (3 of 35, 8.6%). 14-3-3σ protein was readily detectable and roughly reflected the mRNA level. In contrast to epithelial tumors, methylation status of the 14-3-3σ gene was not associated with expression in hematological malignancies. Mutations of p53 were identified in 12 patients and associated with lower expression of 14-3-3σ. The expression levels of 14-3-3σ, CDKN2A and ARF were not correlated with but rather reciprocal to one another, suggesting that simultaneous overexpression of any two of them is incompatible with tumor growth. Conclusion 14-3-3σ, an epithelial cell marker, was overexpressed significantly in a subset of mature lymphoid malignancies. This is the first report of aberrant 14-3-3σ expression in non-epithelial tumors in vivo. Since the significance of 14-3-3σ overexpression is unknown even in

  9. The PDZ-binding motif of Yes-associated protein is required for its co-activation of TEAD-mediated CTGF transcription and oncogenic cell transforming activity.

    PubMed

    Shimomura, Tadanori; Miyamura, Norio; Hata, Shoji; Miura, Ryota; Hirayama, Jun; Nishina, Hiroshi

    2014-01-17

    YAP is a transcriptional co-activator that acts downstream of the Hippo signaling pathway and regulates multiple cellular processes, including proliferation. Hippo pathway-dependent phosphorylation of YAP negatively regulates its function. Conversely, attenuation of Hippo-mediated phosphorylation of YAP increases its ability to stimulate proliferation and eventually induces oncogenic transformation. The C-terminus of YAP contains a highly conserved PDZ-binding motif that regulates YAP's functions in multiple ways. However, to date, the importance of the PDZ-binding motif to the oncogenic cell transforming activity of YAP has not been determined. In this study, we disrupted the PDZ-binding motif in the YAP (5SA) protein, in which the sites normally targeted by Hippo pathway-dependent phosphorylation are mutated. We found that loss of the PDZ-binding motif significantly inhibited the oncogenic transformation of cultured cells induced by YAP (5SA). In addition, the increased nuclear localization of YAP (5SA) and its enhanced activation of TEAD-dependent transcription of the cell proliferation gene CTGF were strongly reduced when the PDZ-binding motif was deleted. Similarly, in mouse liver, deletion of the PDZ-binding motif suppressed nuclear localization of YAP (5SA) and YAP (5SA)-induced CTGF expression. Taken together, our results indicate that the PDZ-binding motif of YAP is critical for YAP-mediated oncogenesis, and that this effect is mediated by YAP's co-activation of TEAD-mediated CTGF transcription.

  10. Pear 14-3-3a gene (Pp14-3-3a) is regulated during fruit ripening and senescense, and involved in response to salicylic acid and ethylene signalling.

    PubMed

    Shi, Haiyan; Zhang, Yuxing

    2014-12-01

    14-3-3 proteins play important roles in regulating plant development and phytohormone (abscisic acid, gibberellin and brassinosteroids) signalling. However, their regulation in fruit ripening and senescense, and response to salicylic acid and ethylene signalling are yet to be illustrated. One cDNA encoding putative 14-3-3 protein was isolated from pear (Pyrus pyrifolia) and designated Pp14-3-3a. Phylogenetic analysis clearly demonstrated that Pp14-3-3a belonged to ε-like group of 14-3-3 superfamilies. Real-time quantitative PCR analysis indicated that the expression of Pp14-3-3a gene was developmentally regulated in the fruit. Further study demonstrated that Pp14-3-3a expression was inhibited by salicylic acid and induced by ethylene precursor 1-aminocyclopropane-1-carboxylic acid in pear fruit. These data suggested that Pp14-3-3a might be involved in response to salicylic acid and ethylene signalling during fruit ripening and senescence of pear.

  11. Interferon-induced guanylate-binding proteins lack an N(T)KXD consensus motif and bind GMP in addition to GDP and GTP.

    PubMed

    Cheng, Y S; Patterson, C E; Staeheli, P

    1991-09-01

    The primary structures of interferon (IFN)-induced guanylate-binding proteins (GBPs) were deduced from cloned human and murine cDNAs. These proteins contained only two of the three sequence motifs typically found in GTP/GDP-binding proteins. The N(T)KXD motif, which is believed to confer guanine specificity in other nucleotide-binding proteins, was absent. Nevertheless, the IFN-induced GBPs exhibited a high degree of selectivity for binding to agarose-immobilized guanine nucleotides. An interesting feature of IFN-induced GBPs is that they strongly bound to GMP agarose in addition to GDP and GTP agaroses but failed to bind to ATP agarose and all other nucleotide agaroses tested. Both GTP and GMP, but not ATP, competed for binding of murine GBP-1 to agarose-immobilized GMP. The IFN-induced GBPs thus define a distinct novel family of proteins with GTP-binding activity. We further demonstrate that human and murine cells contain at least two genes encoding IFN-induced GBPs. The cloned murine cDNA codes for GBP-1, an IFN-induced protein previously shown to be absent from mice of Gbp-1b genotype.

  12. Contribution of Sequence Motif, Chromatin State, and DNA Structure Features to Predictive Models of Transcription Factor Binding in Yeast.

    PubMed

    Tsai, Zing Tsung-Yeh; Shiu, Shin-Han; Tsai, Huai-Kuang

    2015-08-01

    Transcription factor (TF) binding is determined by the presence of specific sequence motifs (SM) and chromatin accessibility, where the latter is influenced by both chromatin state (CS) and DNA structure (DS) properties. Although SM, CS, and DS have been used to predict TF binding sites, a predictive model that jointly considers CS and DS has not been developed to predict either TF-specific binding or general binding properties of TFs. Using budding yeast as model, we found that machine learning classifiers trained with either CS or DS features alone perform better in predicting TF-specific binding compared to SM-based classifiers. In addition, simultaneously considering CS and DS further improves the accuracy of the TF binding predictions, indicating the highly complementary nature of these two properties. The contributions of SM, CS, and DS features to binding site predictions differ greatly between TFs, allowing TF-specific predictions and potentially reflecting different TF binding mechanisms. In addition, a "TF-agnostic" predictive model based on three DNA "intrinsic properties" (in silico predicted nucleosome occupancy, major groove geometry, and dinucleotide free energy) that can be calculated from genomic sequences alone has performance that rivals the model incorporating experiment-derived data. This intrinsic property model allows prediction of binding regions not only across TFs, but also across DNA-binding domain families with distinct structural folds. Furthermore, these predicted binding regions can help identify TF binding sites that have a significant impact on target gene expression. Because the intrinsic property model allows prediction of binding regions across DNA-binding domain families, it is TF agnostic and likely describes general binding potential of TFs. Thus, our findings suggest that it is feasible to establish a TF agnostic model for identifying functional regulatory regions in potentially any sequenced genome.

  13. Contribution of Sequence Motif, Chromatin State, and DNA Structure Features to Predictive Models of Transcription Factor Binding in Yeast

    PubMed Central

    Tsai, Zing Tsung-Yeh; Shiu, Shin-Han; Tsai, Huai-Kuang

    2015-01-01

    Transcription factor (TF) binding is determined by the presence of specific sequence motifs (SM) and chromatin accessibility, where the latter is influenced by both chromatin state (CS) and DNA structure (DS) properties. Although SM, CS, and DS have been used to predict TF binding sites, a predictive model that jointly considers CS and DS has not been developed to predict either TF-specific binding or general binding properties of TFs. Using budding yeast as model, we found that machine learning classifiers trained with either CS or DS features alone perform better in predicting TF-specific binding compared to SM-based classifiers. In addition, simultaneously considering CS and DS further improves the accuracy of the TF binding predictions, indicating the highly complementary nature of these two properties. The contributions of SM, CS, and DS features to binding site predictions differ greatly between TFs, allowing TF-specific predictions and potentially reflecting different TF binding mechanisms. In addition, a "TF-agnostic" predictive model based on three DNA “intrinsic properties” (in silico predicted nucleosome occupancy, major groove geometry, and dinucleotide free energy) that can be calculated from genomic sequences alone has performance that rivals the model incorporating experiment-derived data. This intrinsic property model allows prediction of binding regions not only across TFs, but also across DNA-binding domain families with distinct structural folds. Furthermore, these predicted binding regions can help identify TF binding sites that have a significant impact on target gene expression. Because the intrinsic property model allows prediction of binding regions across DNA-binding domain families, it is TF agnostic and likely describes general binding potential of TFs. Thus, our findings suggest that it is feasible to establish a TF agnostic model for identifying functional regulatory regions in potentially any sequenced genome. PMID:26291518

  14. Expression of RNA-binding motif 10 is associated with advanced tumor stage and malignant behaviors of lung adenocarcinoma cancer cells.

    PubMed

    Guan, Guofang; Li, Ranwei; Tang, Wenfang; Liu, Tiecheng; Su, Zhenzhong; Wang, Yan; Tan, Jingjin; Jiang, Shan; Wang, Ke

    2017-03-01

    This study assessed RNA-binding motif 10 expression in lung adenocarcinoma tissues and examined the role and mechanism of RNA-binding motif 10 in the regulation of lung adenocarcinoma malignancy. Lung adenocarcinoma and corresponding adjacent non-tumor lung tissues from 41 patients were subjected to reverse transcription-polymerase chain reaction and Western blot assessment to detect RNA-binding motif 10 expression. Recombinant lentivirus carrying RNA-binding motif 10 complementary DNA was used to infect lung adenocarcinoma cell lines, A549 and H1299 cells. Complementary DNA microarray was used to profile RNA-binding motif 10-regulated genes. Levels of RNA-binding motif 10 messenger RNA and protein were significantly lower in lung adenocarcinoma tissues than those in paired non-tumor tissues (p < 0.001). Reduced RNA-binding motif 10 expression was found to be associated with an advanced tumor stage. RNA-binding motif 10 overexpression inhibited viability and colony formation capacity of lung adenocarcinoma cell lines and induced cell-cycle arrest at G0/G1 phase in A549 cells and at S phase in H1299 cells. Complementary DNA microarray analysis identified 304 upregulated and 386 downregulated genes induced by RNA-binding motif 10 overexpression, which may be involved in cancer, focal adhesion, peroxisome proliferator-activated receptor-regulated gene pathway, cytokine-cytokine receptor interaction, mitogen-activated protein kinase signaling, complement and coagulation cascades, platelet amyloid precursor protein pathway, extracellular matrix-receptor interaction, and small cell lung cancer-related genes. Expression of FGF2, EGFR, WNT5A, NF-κB, and RAP1A was downregulated, whereas expression of AKT2, BIRC3, and JUN was upregulated. RNA-binding motif 10 messenger RNA and protein were reduced in lung adenocarcinoma tissues, and RNA-binding motif 10 overexpression inhibited lung adenocarcinoma cancer cell malignant behavior in vitro. Molecularly, RNA-binding motif

  15. A variety of DNA-binding and multimeric proteins contain the histone fold motif.

    PubMed Central

    Baxevanis, A D; Arents, G; Moudrianakis, E N; Landsman, D

    1995-01-01

    The histone fold motif has previously been identified as a structural feature common to all four core histones and is involved in both histone-histone and histone-DNA interactions. Through the use of a novel motif searching method, a group of proteins containing the histone fold motif has been established. The proteins in this group are involved in a wide variety of functions related mostly to DNA metabolism. Most of these proteins engage in protein-protein or protein-DNA interactions, as do their core histone counterparts. Among these, CCAAT-specific transcription factor CBF and its yeast homologue HAP are two examples of multimeric complexes with different component subunits that contain the histone fold motif. The histone fold proteins are distantly related, with a relatively small degree of absolute sequence similarity. It is proposed that these proteins may share a similar three-dimensional conformation despite the lack of significant sequence similarity. PMID:7651829

  16. Mutation of the Conserved Calcium-Binding Motif in Neisseria gonorrhoeae PilC1 Impacts Adhesion but Not Piliation

    PubMed Central

    Cheng, Yuan; Johnson, Michael D. L.; Burillo-Kirch, Christine; Mocny, Jeffrey C.; Anderson, James E.; Garrett, Christopher K.; Redinbo, Matthew R.

    2013-01-01

    Neisseria gonorrhoeae PilC1 is a member of the PilC family of type IV pilus-associated adhesins found in Neisseria species and other type IV pilus-producing genera. Previously, a calcium-binding domain was described in the C-terminal domains of PilY1 of Pseudomonas aeruginosa and in PilC1 and PilC2 of Kingella kingae. Genetic analysis of N. gonorrhoeae revealed a similar calcium-binding motif in PilC1. To evaluate the potential significance of this calcium-binding region in N. gonorrhoeae, we produced recombinant full-length PilC1 and a PilC1 C-terminal domain fragment. We show that, while alterations of the calcium-binding motif disrupted the ability of PilC1 to bind calcium, they did not grossly affect the secondary structure of the protein. Furthermore, we demonstrate that both full-length wild-type PilC1 and full-length calcium-binding-deficient PilC1 inhibited gonococcal adherence to cultured human cervical epithelial cells, unlike the truncated PilC1 C-terminal domain. Similar to PilC1 in K. kingae, but in contrast to the calcium-binding mutant of P. aeruginosa PilY1, an equivalent mutation in N. gonorrhoeae PilC1 produced normal amounts of pili. However, the N. gonorrhoeae PilC1 calcium-binding mutant still had partial defects in gonococcal adhesion to ME180 cells and genetic transformation, which are both essential virulence factors in this human pathogen. Thus, we conclude that calcium binding to PilC1 plays a critical role in pilus function in N. gonorrhoeae. PMID:24002068

  17. Quantifying protein interaction dynamics by SWATH mass spectrometry: application to the 14-3-3 system.

    PubMed

    Collins, Ben C; Gillet, Ludovic C; Rosenberger, George; Röst, Hannes L; Vichalkovski, Anton; Gstaiger, Matthias; Aebersold, Ruedi

    2013-12-01

    Protein complexes and protein interaction networks are essential mediators of most biological functions. Complexes supporting transient functions such as signal transduction processes are frequently subject to dynamic remodeling. Currently, the majority of studies on the composition of protein complexes are carried out by affinity purification and mass spectrometry (AP-MS) and present a static view of the system. For a better understanding of inherently dynamic biological processes, methods to reliably quantify temporal changes of protein interaction networks are essential. Here we used affinity purification combined with sequential window acquisition of all theoretical spectra (AP-SWATH) mass spectrometry to study the dynamics of the 14-3-3β scaffold protein interactome after stimulation of the insulin-PI3K-AKT pathway. The consistent and reproducible quantification of 1,967 proteins across all stimulation time points provided insights into the 14-3-3β interactome and its dynamic changes following IGF1 stimulation. We therefore establish AP-SWATH as a tool to quantify dynamic changes in protein-complex interaction networks.

  18. Quantitative proteomic dissection of a native 14-3-3ε interacting protein complex associated with hepatocellular carcinoma.

    PubMed

    Bai, Chen; Tang, Siwei; Bai, Chen; Chen, Xian

    2014-04-01

    The 14-3-3 proteins regulate diverse biological processes that are implicated in cancer development, and seven 14-3-3 isoforms were identified with isoform-specific roles in different human tumors. In our previous work, we dissected the interactome of 14-3-3ε formed during the DNA damage response in a hepatocellular carcinoma (HCC) cell using an AACT/SILAC-based quantitative proteomic approach. In this study, we used a similar proteomic approach to profile/identify the 14-3-3ε interactome formed in native HCC cells. Functional categorization and data-dependent network analysis of the native HCC-specific 14-3-3ε interactome revealed that 14-3-3ε is involved in the regulation of multiple biological processes (BPs)/pathways, including cell cycle control, apoptosis, signal transduction, transport, cell adhesion, carbohydrate metabolism, and nucleic acid metabolism. Biological validation further supports that 14-3-3ε, via association with multiple BP/pathway-specific proteins, coordinates the regulation of proliferation, survival, and metastasis of HCC. The findings in this study, together with those of our previous study, provide an extensive profile of the 14-3-3ε interaction network in HCC cells, which should be valuable for understanding the pathology of HCC and HCC therapy.

  19. Toxoplasma gondii: Effect of infection on expression of 14-3-3 proteins in human epithelial cells

    PubMed Central

    Monroy, Fernando P.

    2008-01-01

    14-3-3 proteins are expressed in most eukaryotes organisms and play varied and crucial roles in a wide range of regulatory processes. In mammalian cells, seven 14-3-3 isoforms have been identified. However; it is not known what effect infection has on 14-3-3 isoform expression. In this study human colonic carcinoma cell lines were infected with Toxoplasma gondii for 24 h and expression of 14-3-3 proteins was determined by RT-PCR. HT-29 cells only expressed 3 out of the 7 isoforms while 5 and all 7 isoforms were found in HCT-116 and Caco-2 cells respectively. Infection had little or no effect in the expression of 14-3-3γ, ε, σ, and ξ; but in HCT-116 cells induced expression of 14-3-3η and σ, while 14-3-3β, η, and ξ were induced in HT-29 cells. If 14-3-3 proteins are involved in cell survival and/or prevention of parasite replication, longer incubation times may be required as no differences in percentage of infection were found among the cell lines at 24 h post-infection. PMID:17825295

  20. Proteomics Profiling Reveals Carbohydrate Metabolic Enzymes and 14-3-3 Proteins Play Important Roles for Starch Accumulation during Cassava Root Tuberization.

    PubMed

    Wang, Xuchu; Chang, Lili; Tong, Zheng; Wang, Dongyang; Yin, Qi; Wang, Dan; Jin, Xiang; Yang, Qian; Wang, Liming; Sun, Yong; Huang, Qixing; Guo, Anping; Peng, Ming

    2016-01-21

    Cassava is one of the most important root crops as a reliable source of food and carbohydrates. Carbohydrate metabolism and starch accumulation in cassava storage root is a cascade process that includes large amounts of proteins and cofactors. Here, comparative proteomics were conducted in cassava root at nine developmental stages. A total of 154 identified proteins were found to be differentially expressed during starch accumulation and root tuberization. Many enzymes involved in starch and sucrose metabolism were significantly up-regulated, and functional classification of the differentially expressed proteins demonstrated that the majority were binding-related enzymes. Many proteins were took part in carbohydrate metabolism to produce energy. Among them, three 14-3-3 isoforms were induced to be clearly phosphorylated during storage root enlargement. Overexpression of a cassava 14-3-3 gene in Arabidopsis thaliana confirmed that the older leaves of these transgenic plants contained higher sugar and starch contents than the wild-type leaves. The 14-3-3 proteins and their binding enzymes may play important roles in carbohydrate metabolism and starch accumulation during cassava root tuberization. These results not only deepened our understanding of the tuberous root proteome, but also uncovered new insights into carbohydrate metabolism and starch accumulation during cassava root enlargement.

  1. Nucleocytoplasmic Shuttling of the Golgi Phosphatidylinositol 4-Kinase Pik1 Is Regulated by 14-3-3 Proteins and Coordinates Golgi Function with Cell Growth

    PubMed Central

    Demmel, Lars; Beck, Mike; Klose, Christian; Schlaitz, Anne-Lore; Gloor, Yvonne; Hsu, Peggy P.; Havlis, Jan; Shevchenko, Andrej; Krause, Eberhard; Kalaidzidis, Yannis

    2008-01-01

    The yeast phosphatidylinositol 4-kinase Pik1p is essential for proliferation, and it controls Golgi homeostasis and transport of newly synthesized proteins from this compartment. At the Golgi, phosphatidylinositol 4-phosphate recruits multiple cytosolic effectors involved in formation of post-Golgi transport vesicles. A second pool of catalytically active Pik1p localizes to the nucleus. The physiological significance and regulation of this dual localization of the lipid kinase remains unknown. Here, we show that Pik1p binds to the redundant 14-3-3 proteins Bmh1p and Bmh2p. We provide evidence that nucleocytoplasmic shuttling of Pik1p involves phosphorylation and that 14-3-3 proteins bind Pik1p in the cytoplasm. Nutrient deprivation results in relocation of Pik1p from the Golgi to the nucleus and increases the amount of Pik1p–14-3-3 complex, a process reversed upon restored nutrient supply. These data suggest a role of Pik1p nucleocytoplasmic shuttling in coordination of biosynthetic transport from the Golgi with nutrient signaling. PMID:18172025

  2. Proteomics Profiling Reveals Carbohydrate Metabolic Enzymes and 14-3-3 Proteins Play Important Roles for Starch Accumulation during Cassava Root Tuberization

    PubMed Central

    Wang, Xuchu; Chang, Lili; Tong, Zheng; Wang, Dongyang; Yin, Qi; Wang, Dan; Jin, Xiang; Yang, Qian; Wang, Liming; Sun, Yong; Huang, Qixing; Guo, Anping; Peng, Ming

    2016-01-01

    Cassava is one of the most important root crops as a reliable source of food and carbohydrates. Carbohydrate metabolism and starch accumulation in cassava storage root is a cascade process that includes large amounts of proteins and cofactors. Here, comparative proteomics were conducted in cassava root at nine developmental stages. A total of 154 identified proteins were found to be differentially expressed during starch accumulation and root tuberization. Many enzymes involved in starch and sucrose metabolism were significantly up-regulated, and functional classification of the differentially expressed proteins demonstrated that the majority were binding-related enzymes. Many proteins were took part in carbohydrate metabolism to produce energy. Among them, three 14-3-3 isoforms were induced to be clearly phosphorylated during storage root enlargement. Overexpression of a cassava 14-3-3 gene in Arabidopsis thaliana confirmed that the older leaves of these transgenic plants contained higher sugar and starch contents than the wild-type leaves. The 14-3-3 proteins and their binding enzymes may play important roles in carbohydrate metabolism and starch accumulation during cassava root tuberization. These results not only deepened our understanding of the tuberous root proteome, but also uncovered new insights into carbohydrate metabolism and starch accumulation during cassava root enlargement. PMID:26791570

  3. Asp residues of βDELSEED-motif are required for peptide binding in the Escherichia coli ATP synthase.

    PubMed

    Ahmad, Zulfiqar; Tayou, Junior; Laughlin, Thomas F

    2015-04-01

    This study demonstrates the requirement of Asp-380 and Asp-386 in the βDELSEED-motif of Escherichia coli ATP synthase for peptide binding and inhibition. We studied the inhibition profiles of wild-type and mutant E. coli ATP synthase in presence of c-terminal amide bound melittin and melittin related peptide. Melittin and melittin related peptide inhibited wild-type ATPase almost completely while only partial inhibition was observed in single mutations with replacement of Asp to Ala, Gln, or Arg. Additionally, very little or no inhibition occurred among double mutants βD380A/βD386A, βD380Q/βD386Q, or βD380R/βD386R signifying that removal of one Asp residue allows limited peptide binding. Partial or substantial loss of oxidative phosphorylation among double mutants demonstrates the functional requirement of βD380 and βD386 Asp residues. Moreover, abrogation of wild-type E. coli cell growth and normal growth of mutant cells in presence of peptides provides strong evidence for the requirement of βDELSEED-motif Asp residues for peptide binding. It is concluded that while presence of one Asp residue may allow partial peptide binding, both Asp residues, βD380 and βD386, are essential for proper peptide binding and inhibition of ATP synthase.

  4. Oxidation-induced Structural Changes of Ceruloplasmin Foster NGR Motif Deamidation That Promotes Integrin Binding and Signaling

    PubMed Central

    Barbariga, Marco; Curnis, Flavio; Spitaleri, Andrea; Andolfo, Annapaola; Zucchelli, Chiara; Lazzaro, Massimo; Magnani, Giuseppe; Musco, Giovanna; Corti, Angelo; Alessio, Massimo

    2014-01-01

    Asparagine deamidation occurs spontaneously in proteins during aging; deamidation of Asn-Gly-Arg (NGR) sites can lead to the formation of isoAsp-Gly-Arg (isoDGR), a motif that can recognize the RGD-binding site of integrins. Ceruloplasmin (Cp), a ferroxidase present in the cerebrospinal fluid (CSF), contains two NGR sites in its sequence: one exposed on the protein surface (568NGR) and the other buried in the tertiary structure (962NGR). Considering that Cp can undergo oxidative modifications in the CSF of neurodegenerative diseases, we investigated the effect of oxidation on the deamidation of both NGR motifs and, consequently, on the acquisition of integrin binding properties. We observed that the exposed 568NGR site can deamidate under conditions mimicking accelerated Asn aging. In contrast, the hidden 962NGR site can deamidate exclusively when aging occurs under oxidative conditions, suggesting that oxidation-induced structural changes foster deamidation at this site. NGR deamidation in Cp was associated with gain of integrin-binding function, intracellular signaling, and cell pro-adhesive activity. Finally, Cp aging in the CSF from Alzheimer disease patients, but not in control CSF, causes Cp deamidation with gain of integrin-binding function, suggesting that this transition might also occur in pathological conditions. In conclusion, both Cp NGR sites can deamidate during aging under oxidative conditions, likely as a consequence of oxidative-induced structural changes, thereby promoting a gain of function in integrin binding, signaling, and cell adhesion. PMID:24366863

  5. A DNA-binding protein containing two widely separated zinc finger motifs that recognize the same DNA sequence.

    PubMed

    Fan, C M; Maniatis, T

    1990-01-01

    We have isolated a full-length cDNA clone encoding a protein (PRDII-BF1) that binds specifically to a positive regulatory domain (PRDII) of the human IFN-beta gene promoter, and to a similar sequence present in a number of other promoters and enhancers. The sequence of this protein reveals two novel structural features. First, it is the largest sequence-specific DNA-binding protein reported to date (298 kD). Second, it contains two widely separated sets of C2-H2-type zinc fingers. Remarkably, each set of zinc fingers binds to the same DNA sequence motif with similar affinities and methylation interference patterns. Thus, this protein may act by binding simultaneously to reiterated copies of the same recognition sequence. Although the function of PRDII-BF1 is not known, the level of its mRNA is inducible by serum and virus, albeit with different kinetics.

  6. Validation of 14-3-3 Protein as a Marker in Sporadic Creutzfeldt-Jakob Disease Diagnostic.

    PubMed

    Schmitz, Matthias; Ebert, Elisabeth; Stoeck, Katharina; Karch, André; Collins, Steven; Calero, Miguel; Sklaviadis, Theodor; Laplanche, Jean-Louis; Golanska, Ewa; Baldeiras, Ines; Satoh, Katsuya; Sanchez-Valle, Raquel; Ladogana, Anna; Skinningsrud, Anders; Hammarin, Anna-Lena; Mitrova, Eva; Llorens, Franc; Kim, Yong Sun; Green, Alison; Zerr, Inga

    2016-05-01

    At present, the testing of 14-3-3 protein in cerebrospinal fluid (CSF) is a standard biomarker test in suspected sporadic Creutzfeldt-Jakob disease (sCJD) diagnosis. Increasing 14-3-3 test referrals in CJD reference laboratories in the last years have led to an urgent need to improve established 14-3-3 test methods. The main result of our study was the validation of a commercially available 14-3-3 ELISA next to the commonly used Western blot method as a high-throughput screening test. Hereby, 14-3-3 protein expression was quantitatively analyzed in CSF of 231 sCJD and 2035 control patients. We obtained excellent sensitivity/specificity values of 88 and 96% that are comparable to the established Western blot method. Since standard protocols and preanalytical sample handling have become more important in routine diagnostic, we investigated in a further step the reproducibility and stability of 14-3-3 as a biomarker for human prion diseases. Ring trial data from 2009 to 2013 revealed an increase of Fleiss' kappa from 0.51 to 0.68 indicating an improving reliability of 14-3-3 protein detection. The stability of 14-3-3 protein under short-term and long-term storage conditions at various temperatures and after repeated freezing/thawing cycles was confirmed. Contamination of CSF samples with blood appears likely to be an important factor at a concentration of more than 2500 erythrocytes/μL. Hemolysis of erythrocytes with significant release of 14-3-3 protein started after 2 days at room temperature. We first define clear standards for the sample handling, short- and long-term storage of CSF samples as well as the handling of blood- contaminated samples which may result in artificially elevated CSF levels of 14-3-3.

  7. Human 14-3-3 gamma protein results in abnormal cell proliferation in the developing eye of Drosophila melanogaster

    PubMed Central

    Hong, Sophia W; Qi, Wenqing; Brabant, Marc; Bosco, Giovanni; Martinez, Jesse D

    2008-01-01

    Background 14-3-3 proteins are a family of adaptor proteins that participate in a wide variety of cellular processes. Recent evidence indicates that the expression levels of these proteins are elevated in some human tumors providing circumstantial evidence for their involvement in human cancers. However, the mechanism through which these proteins act in tumorigenesis is uncertain. Results To determine whether elevated levels of 14-3-3 proteins may perturb cell growth we overexpressed human 14-3-3 gamma (h14-3-3 gamma) in Drosophila larvae using the heat shock promoter or the GMR-Gal4 driver and then examined the effect that this had on cell proliferation in the eye imaginal discs of third instar larvae. We found that induction of h14-3-3 gamma resulted in the abnormal appearance of replicating cells in the differentiating proneural photoreceptor cells of eye imaginal discs where h14-3-3 gamma was driven by the heat shock promoter. Similarly, we found that driving h14-3-3 gamma expression specifically in developing eye discs with the GMR-Gal4 driver resulted in increased numbers of replicative cells following the morphogenetic furrow. Interestingly, we found that the effects of overexpressing h1433 gamma on eye development were increased in a genetic background where String (cdc25) function was compromised. Conclusion Taken together our results indicate that h14-3-3 gamma can promote abnormal cell proliferation and may act through Cdc25. This has important implications for 14-3-3 gamma as an oncogene as it suggests that elevated levels of 14-3-3 may confer a growth advantage to cells that overexpress it. PMID:18194556

  8. 14-3-3ζ up-regulates hypoxia-inducible factor-1α in hepatocellular carcinoma via activation of PI3K/Akt/NF-кB signal transduction pathway

    PubMed Central

    Tang, Yufu; Lv, Pengfei; Sun, Zhongyi; Han, Lei; Luo, Bichao; Zhou, Wenping

    2015-01-01

    14-3-3ζ protein, a member of 14-3-3 family, plays important roles in multiple cellular processes. Our previous study showed that 14-3-3ζ could bind to regulate the expression of hypoxia-inducible factor-1α (HIF-1α), which is induced by hypoxia and a crucial factor for induction of tumor metastasis. Moreover, we also have confirmed the response of 14-3-3ζ to hypoxia in our unpublished data as well. Thus, in the present study, we attempted to reveal that whether the regulation effect of 14-3-3ζ on HIF-1α functioned in a similar pattern as hypoxia. Stable regulation of 14-3-3ζ in human HCC cell line SMMC-772 and HCC-LM3 was achieved. The regulation of 14-3-3ζ on HIF-1α mRNA transcription was evaluated by luciferase activity assay and quantitative real-time PCR (qPCR). The effect of 14-3-3ζ on the production of HIF-1α and pathways determining HIF-1α’s response to hypoxia was assessed using western blotting assay. Our results showed that regulation of 14-3-3ζ expression influenced the activity of HIF-1α, phosphatidyl inositol 3-kinase (PI3K), Akt, extracellular signal-regulated kinase 1/2 (ERK1/2), and nuclear factor kappa B (NF-кB). Blocking of these pathways using indicated inhibitors revealed that 14-3-3ζ enhanced the production of HIF-1α via the activation of PI3K/Akt/NF-кB pathway, which was identical to hypoxia induced HIF-1α expression. For the first time, our study described the key role of 14-3-3ζ in the HIF-1α production in HCC cells. And the molecule exerted its function on HIF-1α both by directly binding to it and via PI3K/Akt/NF-кB signal transduction pathway. PMID:26884855

  9. Inhibitory Member of the Apoptosis-stimulating Proteins of the p53 Family (iASPP) Interacts with Protein Phosphatase 1 via a Noncanonical Binding Motif*

    PubMed Central

    Llanos, Susana; Royer, Christophe; Lu, Min; Bergamaschi, Daniele; Lee, Wen Hwa; Lu, Xin

    2011-01-01

    Although kinase mutations have been identified in various human diseases, much less is known about protein phosphatases. Here, we show that all apoptosis-stimulating proteins of p53 (ASPP) family members can bind protein phosphatase 1 (PP1) via two distinct interacting motifs. ASPP2 interacts with PP1 through an RVXF PP1 binding motif, whereas the inhibitory member of the ASPP family (iASPP) interacts with PP1 via a noncanonical motif (RNYF) that is located within its Src homology 3 domain (SH3). Phe-815 is crucial in mediating iASPP/PP1 interaction, and iASPP(F815A) fails to inhibit the transcriptional and apoptotic function of p53. This study identifies iASPP as a new binding partner of PP1, interacting through a noncanonical PP1 binding motif. PMID:21998301

  10. The N-terminal zinc finger of the erythroid transcription factor GATA-1 binds GATC motifs in DNA.

    PubMed

    Newton, A; Mackay, J; Crossley, M

    2001-09-21

    The mammalian transcription factor GATA-1 is required for normal erythroid and megakaryocytic development. GATA-1 contains two zinc fingers, the C-terminal finger, which is known to bind (A/T)GATA(A/G) motifs in DNA and the N-finger, which is important for interacting with co-regulatory proteins such as Friend of GATA (FOG). We now show that, like the C-finger, the N-finger of GATA-1 is also capable of binding DNA but recognizes distinct sequences with the core GATC. We demonstrate that the GATA-1 N-finger can bind these sequences in vitro and that in cellular assays, GATA-1 can activate promoters containing GATC motifs. Experiments with mutant GATA-1 proteins confirm the importance of the N-finger, as the C-finger is not required for transactivation from GATC sites. Recently four naturally occurring mutations in GATA-1 have been shown to be associated with familial blood disorders. These mutations all map to the N-finger domain. We have investigated the effect of these mutations on the recognition of GATC sites by the N-finger and show that one mutation R216Q abolishes DNA binding, whereas the others have only minor effects.

  11. Thermodynamic contribution of backbone conformational entropy in the binding between SH3 domain and proline-rich motif.

    PubMed

    Zeng, Danyun; Shen, Qingliang; Cho, Jae-Hyun

    2017-02-26

    Biological functions of intrinsically disordered proteins (IDPs), and proteins containing intrinsically disordered regions (IDRs) are often mediated by short linear motifs, like proline-rich motifs (PRMs). Upon binding to their target proteins, IDPs undergo a disorder-to-order transition which is accompanied by a large conformational entropy penalty. Hence, the molecular mechanisms underlying control of conformational entropy are critical for understanding the binding affinity and selectivity of IDPs-mediated protein-protein interactions (PPIs). Here, we investigated the backbone conformational entropy change accompanied by binding of the N-terminal SH3 domain (nSH3) of CrkII and PRM derived from guanine nucleotide exchange factor 1 (C3G). In particular, we focused on the estimation of conformational entropy change of disordered PRM upon binding to the nSH3 domain. Quantitative characterization of conformational dynamics of disordered peptides like PRMs is limited. Hence, we combined various methods, including NMR model-free analysis, δ2D, DynaMine, and structure-based calculation of entropy loss. This study demonstrates that the contribution of backbone conformational entropy change is significant in the PPIs mediated by IDPs/IDRs.

  12. Use of Cre/loxP recombination to swap cell binding motifs on the adenoviral capsid protein IX

    SciTech Connect

    Poulin, Kathy L.; Tong, Grace; Vorobyova, Olga; Pool, Madeline; Kothary, Rashmi; Parks, Robin J.

    2011-11-25

    We used Cre/loxP recombination to swap targeting ligands present on the adenoviral capsid protein IX (pIX). A loxP-flanked sequence encoding poly-lysine (pK-binds heparan sulfate proteoglycans) was engineered onto the 3'-terminus of pIX, and the resulting fusion protein allowed for routine virus propagation. Growth of this virus on Cre-expressing cells removed the pK coding sequence, generating virus that could only infect through alternative ligands, such as a tyrosine kinase receptor A (TrkA)-binding motif engineered into the capsid fibre protein for enhanced infection of neuronal cells. We used a similar approach to swap the pK motif on pIX for a sequence encoding a single-domain antibody directed towards CD66c for targeted infection of cancer cells; Cre-mediated removal of the pK-coding sequence simultaneously placed the single-domain antibody coding sequence in frame with pIX. Thus, we have developed a simple method to propagate virus lacking native viral tropism but containing cell-specific binding ligands. - Highlights: > We describe a method to grow virus lacking native tropism but containing novel cell-binding ligands. > Cre/loxP recombination was used to modify the adenovirus genome. > A targeting ligand present on capsid protein IX was removed or replaced using recombination. > Cre-loxP was also used to 'swap' the identity of the targeting ligand present on pIX.

  13. Binding determinants of the small heat shock protein, αB-crystallin: recognition of the ‘IxI' motif

    PubMed Central

    Delbecq, Scott P; Jehle, Stefan; Klevit, Rachel

    2012-01-01

    Small heat shock proteins (sHSPs) play a central role in protein homeostasis under conditions of stress by binding partly unfolded, aggregate-prone proteins and keeping them soluble. Like many sHSPs, the widely expressed human sHSP, αB-crystallin (‘αB'), forms large polydisperse multimeric assemblies. Molecular interactions involved in both sHSP function and oligomer formation remain to be delineated. A growing database of structural information reveals that a central conserved α-crystallin domain (ACD) forms dimeric building blocks, while flanking N- and C-termini direct the formation of larger sHSP oligomers. The most commonly observed inter-subunit interaction involves a highly conserved C-terminal ‘IxI/V' motif and a groove in the ACD that is also implicated in client binding. To investigate the inherent properties of this interaction, peptides mimicking the IxI/V motif of αB and other human sHSPs were tested for binding to dimeric αB-ACD. IxI-mimicking peptides bind the isolated ACD at 22°C in a manner similar to interactions observed in the oligomer at low temperature, confirming these interactions are likely to exist in functional αB oligomers. PMID:23188086

  14. Development of bacterium-based heavy metal biosorbents: Enhanced uptake of cadmium and mercury by Escherichia coli expressing a metal binding motif

    SciTech Connect

    Pazirandeh, M.; Wells, B.M.; Ryan, R.L.

    1998-10-01

    A gene coding for a de novo peptide sequence containing a metal binding motif was chemically synthesized and expressed in Escherichia coli as a fusion with the maltose binding protein. Bacterial cells expressing the metal binding peptide fusion demonstrated enhanced binding of Cd{sup 2+} and Hg{sup 2+} compared to bacterial cells lacking the metal binding peptide. The potential use of genetically engineered bacteria as biosorbents for the removal of heavy metals from wastewaters is discussed.

  15. Phosphorylation-related modification at the dimer interface of 14-3-3ω dramatically alters monomer interaction dynamics.

    PubMed

    Denison, Fiona C; Gökirmak, Tufan; Ferl, Robert J

    2014-01-01

    14-3-3 proteins are generally believed to function as dimers in a broad range of eukaryotic signaling pathways. The consequences of altering dimer stability are not fully understood. Phosphorylation at Ser58 in the dimer interface of mammalian 14-3-3 isoforms has been reported to destabilise dimers. An equivalent residue, Ser62, is present across most Arabidopsis isoforms but the effects of phosphorylation have not been studied in plants. Here, we assessed the effects of phosphorylation at the dimer interface of Arabidopsis 14-3-3ω. Protein kinase A phosphorylated 14-3-3ω at Ser62 and also at a previously unreported residue, Ser67, resulting in a monomer-sized band on native-PAGE. Phosphorylation at Ser62 alone, or with additional Ser67 phosphorylation, was investigated using phosphomimetic versions of 14-3-3ω. In electrophoretic and chromatographic analyses, these mutants showed mobilities intermediate between dimers and monomers. Mobility was increased by detergents, by reducing protein concentration, or by increasing pH or temperature. Urea gradient gels showed complex structural transitions associated with alterations of dimer stability, including a previously unreported 14-3-3 aggregation phenomenon. Overall, our analyses showed that dimer interface modifications such as phosphorylation reduce dimer stability, dramatically affecting the monomer-dimer equilibrium and denaturation trajectory. These findings may have dramatic implications for 14-3-3 structure and function in vivo.

  16. IDENTIFICATION AND EXPRESSION ANALYSIS OF TWO 14-3-3 PROTEINS IN THE MOSQUITO Aedes aegypti, AN IMPORTANT ARBOVIRUSES VECTOR.

    PubMed

    Trujillo-Ocampo, Abel; Cázares-Raga, Febe Elena; Celestino-Montes, Antonio; Cortés-Martínez, Leticia; Rodríguez, Mario H; Hernández-Hernández, Fidel de la Cruz

    2016-11-01

    The 14-3-3 proteins are evolutionarily conserved acidic proteins that form a family with several isoforms in many cell types of plants and animals. In invertebrates, including dipteran and lepidopteran insects, only two isoforms have been reported. 14-3-3 proteins are scaffold molecules that form homo- or heterodimeric complexes, acting as molecular adaptors mediating phosphorylation-dependent interactions with signaling molecules involved in immunity, cell differentiation, cell cycle, proliferation, apoptosis, and cancer. Here, we describe the presence of two isoforms of 14-3-3 in the mosquito Aedes aegypti, the main vector of dengue, yellow fever, chikungunya, and zika viruses. Both isoforms have the conserved characteristics of the family: two protein signatures (PS1 and PS2), an annexin domain, three serine residues, targets for phosphorylation (positions 58, 184, and 233), necessary for their function, and nine alpha helix-forming segments. By sequence alignment and phylogenetic analysis, we found that the molecules correspond to Ɛ and ζ isoforms (Aeae14-3-3ε and Aeae14-3-3ζ). The messengers and protein products were present in all stages of the mosquito life cycle and all the tissues analyzed, with a small predominance of Aeae14-3-3ζ except in the midgut and ovaries of adult females. The 14-3-3 proteins in female midgut epithelial cells were located in the cytoplasm. Our results may provide insights to further investigate the functions of these proteins in mosquitoes.

  17. Identification of novel 14-3-3ζ interacting proteins by quantitative immunoprecipitation combined with knockdown (QUICK).

    PubMed

    Ge, Feng; Li, Wen-Liang; Bi, Li-Jun; Tao, Sheng-Ce; Zhang, Zhi-Ping; Zhang, Xian-En

    2010-11-05

    The family of 14-3-3 proteins has emerged as critical regulators of diverse cellular responses under both physiological and pathological conditions. To gain insight into the molecular action of 14-3-3ζ in multiple myeloma (MM), we performed a systematic proteomic analysis of 14-3-3ζ-associated proteins. This analysis, recently developed by Matthias Mann, termed quantitative immunoprecipitation combined with knockdown (QUICK), integrates RNAi, SILAC, immunoprecipitation, and quantitative MS technologies. Quantitative mass spectrometry analysis allowed us to distinguish 14-3-3ζ-interacting proteins from background proteins, resulting in the identification of 292 proteins in total with 95 novel interactions. Three 14-3-3ζ-interacting proteins-BAX, HSP70, and BAG3-were further confirmed by reciprocal coimmunoprecipitations and colocalization analysis. Our results therefore not only uncover a large number of novel 14-3-3ζ-associated proteins that possess a variety of cellular functions, but also provide new research directions for the study of the functions of 14-3-3ζ. This study also demonstrated that QUICK is a useful approach to detect specific protein-protein interactions with very high confidence and may have a wide range of applications in the investigation of protein complex interaction networks.

  18. 14-3-3ζ regulates the mitochondrial respiratory reserve linked to platelet phosphatidylserine exposure and procoagulant function

    PubMed Central

    Schoenwaelder, Simone M.; Darbousset, Roxane; Cranmer, Susan L.; Ramshaw, Hayley S.; Orive, Stephanie L.; Sturgeon, Sharelle; Yuan, Yuping; Yao, Yu; Krycer, James R.; Woodcock, Joanna; Maclean, Jessica; Pitson, Stuart; Zheng, Zhaohua; Henstridge, Darren C.; van der Wal, Dianne; Gardiner, Elizabeth E.; Berndt, Michael C.; Andrews, Robert K.; James, David E.; Lopez, Angel F.; Jackson, Shaun P.

    2016-01-01

    The 14-3-3 family of adaptor proteins regulate diverse cellular functions including cell proliferation, metabolism, adhesion and apoptosis. Platelets express numerous 14-3-3 isoforms, including 14-3-3ζ, which has previously been implicated in regulating GPIbα function. Here we show an important role for 14-3-3ζ in regulating arterial thrombosis. Interestingly, this thrombosis defect is not related to alterations in von Willebrand factor (VWF)–GPIb adhesive function or platelet activation, but instead associated with reduced platelet phosphatidylserine (PS) exposure and procoagulant function. Decreased PS exposure in 14-3-3ζ-deficient platelets is associated with more sustained levels of metabolic ATP and increased mitochondrial respiratory reserve, independent of alterations in cytosolic calcium flux. Reduced platelet PS exposure in 14-3-3ζ-deficient mice does not increase bleeding risk, but results in decreased thrombin generation and protection from pulmonary embolism, leading to prolonged survival. Our studies define an important role for 14-3-3ζ in regulating platelet bioenergetics, leading to decreased platelet PS exposure and procoagulant function. PMID:27670677

  19. Characterization of a unique motif in LIM mineralization protein-1 that interacts with jun activation-domain-binding protein 1

    PubMed Central

    Sangadala, Sreedhara; Yoshioka, Katsuhito; Enyo, Yoshio; Liu, Yunshan; Titus, Louisa; Boden, Scott D.

    2014-01-01

    Development and repair of the skeletal system and other organs are highly dependent on precise regulation of the bone morphogenetic protein (BMP) pathway. The use of BMPs clinically to induce bone formation has been limited in part by the requirement of much higher doses of recombinant proteins in primates than were needed in cell culture or rodents. Therefore, increasing cellular responsiveness to BMPs has become our focus. We determined that an osteogenic LIM mineralization protein, LMP-1 interacts with Smurf1 (Smad ubiquitin regulatory factor 1) and prevents ubiquitination of Smads resulting in potentiation of BMP activity. In the region of LMP-1 responsible for bone formation, there is a motif that directly interacts with the Smurf1 WW2 domain and thus effectively competes for binding with Smad1 and Smad5, key signaling proteins in the BMP pathway. Here we show that the same region also contains a motif that interacts with Jun activation-domain-binding protein 1 (Jab1) which targets a common Smad, Smad4, shared by both the BMP and transforming growth factor-β (TGF-β) pathways, for proteasomal degradation. Jab1 was first identified as a coactivator of the transcription factor c-Jun. Jab1 binds to Smad4, Smad5, and Smad7, key intracellular signaling molecules of the TGF-β superfamily, and causes ubiquiti-nation and/or degradation of these Smads. We confirmed a direct interaction of Jab1 with LMP-1 using recombinantly expressed wild-type and mutant proteins in slot-blot-binding assays. We hypothesized that LMP-1 binding to Jab1 prevents the binding and subsequent degradation of these Smads causing increased accumulation of osteogenic Smads in cells. We identified a sequence motif in LMP-1 that was predicted to interact with Jab1 based on the MAME/MAST sequence analysis of several cellular signaling molecules that are known to interact with Jab-1. We further mutated the potential key interacting residues in LMP-1 and showed loss of binding to Jab1 in binding

  20. Characterization of a unique motif in LIM mineralization protein-1 that interacts with jun activation-domain-binding protein 1.

    PubMed

    Sangadala, Sreedhara; Yoshioka, Katsuhito; Enyo, Yoshio; Liu, Yunshan; Titus, Louisa; Boden, Scott D

    2014-01-01

    Development and repair of the skeletal system and other organs are highly dependent on precise regulation of the bone morphogenetic protein (BMP) pathway. The use of BMPs clinically to induce bone formation has been limited in part by the requirement of much higher doses of recombinant proteins in primates than were needed in cell culture or rodents. Therefore, increasing cellular responsiveness to BMPs has become our focus. We determined that an osteogenic LIM mineralization protein, LMP-1 interacts with Smurf1 (Smad ubiquitin regulatory factor 1) and prevents ubiquitination of Smads resulting in potentiation of BMP activity. In the region of LMP-1 responsible for bone formation, there is a motif that directly interacts with the Smurf1 WW2 domain and thus effectively competes for binding with Smad1 and Smad5, key signaling proteins in the BMP pathway. Here we show that the same region also contains a motif that interacts with Jun activation-domain-binding protein 1 (Jab1) which targets a common Smad, Smad4, shared by both the BMP and transforming growth factor-β (TGF-β) pathways, for proteasomal degradation. Jab1 was first identified as a coactivator of the transcription factor c-Jun. Jab1 binds to Smad4, Smad5, and Smad7, key intracellular signaling molecules of the TGF-β superfamily, and causes ubiquitination and/or degradation of these Smads. We confirmed a direct interaction of Jab1 with LMP-1 using recombinantly expressed wild-type and mutant proteins in slot-blot-binding assays. We hypothesized that LMP-1 binding to Jab1 prevents the binding and subsequent degradation of these Smads causing increased accumulation of osteogenic Smads in cells. We identified a sequence motif in LMP-1 that was predicted to interact with Jab1 based on the MAME/MAST sequence analysis of several cellular signaling molecules that are known to interact with Jab-1. We further mutated the potential key interacting residues in LMP-1 and showed loss of binding to Jab1 in binding

  1. Sporadic Creutzfeldt-Jakob disease diagnostic accuracy is improved by a new CSF ELISA 14-3-3γ assay.

    PubMed

    Leitão, M J; Baldeiras, I; Almeida, M R; Ribeiro, M H; Santos, A C; Ribeiro, M; Tomás, J; Rocha, S; Santana, I; Oliveira, C R

    2016-05-13

    Protein 14-3-3 is a reliable marker of rapid neuronal damage, specifically increased in cerebrospinal fluid (CSF) of sporadic Creutzfeldt-Jakob disease (sCJD) patients. Its detection is usually performed by Western Blot (WB), prone to methodological issues. Our aim was to evaluate the diagnostic performance of a recently developed quantitative enzyme-linked immunosorbent (ELISA) assay for 14-3-3γ, in comparison with WB and other neurodegeneration markers. CSF samples from 145 patients with suspicion of prion disease, later classified as definite sCJD (n=72) or Non-prion diseases (Non-CJD; n=73) comprised our population. 14-3-3 protein was determined by WB and ELISA. Total Tau (t-Tau) and phosphorylated Tau (p-Tau) were also evaluated. Apolipoprotein E gene (ApoE) and prionic protein gene (PRNP) genotyping was assessed. ELISA 14-3-3γ levels were significantly increased in sCJD compared to Non-CJD patients (p<0.001), showing very good accuracy (AUC=0.982; sensitivity=97%; specificity=94%), and matching WB results in 81% of all cases. It strongly correlated with t-Tau and p-Tau (p<0.0001), showing slightly higher specificity (14-3-3 WB - 63%; Tau - 90%; p-Tau/t-Tau ratio - 88%). From WB inconclusive results (n=44), ELISA 14-3-3γ correctly classified 41 patients. Additionally, logistic regression analysis selected ELISA 14-3-3γ as the best single predictive marker for sCJD (overall accuracy=93%). ApoE and PRNP genotypes did not influence ELISA 14-3-3γ levels. Despite specificity for 14-3-3γ isoform, ELISA results not only match WB evaluation but also help discrimination of inconclusive results. Our results therefore reinforce this assay as a single screening test, allowing higher sample throughput and unequivocal results.

  2. Probing Ca2+-binding capability of viral proteins with the EF-hand motif by grafting approach.

    PubMed

    Zhou, Yubin; Xue, Shenghui; Chen, Yanyi; Yang, Jenny J

    2013-01-01

    Ca(2+) is implicated in almost every step of the life cycle of viruses, including virus entry into host cells, virus replication, virion assembly, maturation, and release. However, due to the lack of prediction algorithms and rigorous validation methods, only limited cases of viral Ca(2+)-binding sites are reported. Here, we introduce a method to predict continuous EF-hand or EF-hand-like motifs in the viral genomes based on their primary sequences. We then introduce a grafting approach, and the use of luminescence resonance energy transfer and Ca(2+) competition assay for experimental verification of predicted Ca(2+)-binding sites. This protocol will be valuable for the prediction and identification of unknown Ca(2+)-binding sites in virus.

  3. Binding motifs in bacterial gene promoters modulate transcriptional effects of global regulators CRP and ArcA

    SciTech Connect

    Leuze, Mike; Karpinets, Tatiana V.; Syed, Mustafa H.; Beliaev, Alex S.; Uberbacher, Edward

    2012-05-30

    Bacterial gene regulation involves transcription factors (TF) that bind to DNA recognition sequences in operon promoters. These recognition sequences, many of which are palindromic, are known as regulatory elements or transcription factor binding sites (TFBS). Some TFs are global regulators that can modulate the expression of hundreds of genes. In this study we examine global regulator half-sites, where a half-site, which we shall call a binding motif (BM), is one half of a palindromic TFBS. We explore the hypothesis that the number of BMs plays an important role in transcriptional regulation, examining empirical data from transcriptional profiling of the CRP and ArcA regulons. We compare the power of BM counts and of full TFBS characteristics to predict induced transcriptional activity. We find that CRP BM counts have a nonlinear effect on CRP-dependent transcriptional activity and predict this activity better than full TFBS quality or location.

  4. [Inhibitory effect of 14-3-3ζ on the proliferation of HL-60 cells and HL-60/VCR cells].

    PubMed

    Liang, Rong; Chen, Xie-Qun; Wang, Zhe; Xiong, Hua; Bai, Qing-Xian; Gao, Guang-Xun; Dong, Bao-Xia; Zhu, Hua-Feng

    2013-08-01

    This study was aimed to investigate the expression and role of 14-3-3ζ in the AML cell lines: sensitive HL-60 and drug-resistant HL-60/VCR cells. Semi-quantitative RT-PCR and Western blot were respectively used to examine the expression of mdr1 mRNA and Pgp in AML cell lines to validate the results of microarray. Western blot was performed to investigate the expression of Pgp, 14-3-3ζ, and anti-apoptosis protein BCL-2, MCL-1 proteins. Immunofluorescence assay was used to detect the subcellular location of 14-3-3ζ protein in HL-60 and HL-60/VCR cells by laser scanning confocal microscopy. Transduction with siRNA was used to silence 14-3-3ζ in AML cell lines. Cell count method and flow cytometry of cell cycle were used to analyze the changes of growth of AML cells. The results found that mdr1 mRNA and Pgp did not expressed in HL-60 cells, but significantly overexpressed in HL-60/VCR cells. Except 14-3-3σ, the expression of other subtypes of 14-3-3 was higher in HL-60/VCR cells than that in HL-60 cells, especially 14-3-3ζ. The higher expression of 14-3-3ζ, BCL-2, MCL-1 protein was observed in HL-60/VCR cells than that in HL-60 cells. These results were same results from gene chip. It was also noticed that 14-3-3ζ was located in the cytoplasma and nuclei of AML cell lines, especially over-expressed in HL-60/VCR cells. Furthermore, suppression of 14-3-3ζ by RNA interference resulted in inhibition of the proliferation of AML cells with decreased protein expression of BCL-2 and MCL-1, especially in HL-60/VCR cells. It is concluded that 14-3-3ζ plays an important role in proliferation of AML cells and associates with BCL-2 and MCL-1 expression. These results suggested that development of therapy targeting 14-3-3ζ may provide novel, effective strategies for refractory and relapsed AML.

  5. Affinity of the heparin binding motif of Noggin1 to heparan sulfate and its visualization in the embryonic tissues.

    PubMed

    Nesterenko, Alexey M; Orlov, Eugeny E; Ermakova, Galina V; Ivanov, Igor A; Semenyuk, Pavel I; Orlov, Victor N; Martynova, Natalia Y; Zaraisky, Andrey G

    Heparin binding motifs were found in many secreted proteins and it was suggested that they are responsible for retardation of the protein diffusion within the intercellular space due to the binding to heparan sulfate proteoglycanes (HSPG). Here we used synthetic FITC labeled heparin binding motif (HBM peptide) of the Xenopus laevis secreted BMP inhibitor Noggin1 to study its diffusion along the surface of the heparin beads by FRAP method. As a result, we have found out that diffusivity of HBM-labeled FITC was indeed much lesser than those predicted by theoretical calculations even for whole protein of the Noggin size. We also compared by isothermal titration calorimetry the binding affinity of HBM and the control oligolysine peptide to several natural polyanions including heparan sulfate (HS), heparin, the bacterial dextran sulfate and salmon sperm DNA, and demonstrated that HBM significantly exceeds oligolysine peptide in the affinity to HS, heparin and DNA. By contrast, oligolysine peptide bound with higher affinity to dextran sulfate. We speculate that such a difference may ensure specificity of the morphogen binding to HSPG and could be explained by steric constrains imposed by different distribution of the negative charges along a given polymeric molecule. Finally, by using EGFP-HBM recombinant protein we have visualized the natural pattern of the Noggin1 binding sites within the X. laevis gastrula and demonstrated that these sites forms a dorsal-ventral concentration gradient, with a maximum in the dorsal blastopore lip. In sum, our data provide a quantitative basis for modeling the process of Noggin1 diffusion in embryonic tissues, considering its interaction with HSPG.

  6. Genome-wide analysis of ethylene-responsive element binding factor-associated amphiphilic repression motif-containing transcriptional regulators in Arabidopsis.

    PubMed

    Kagale, Sateesh; Links, Matthew G; Rozwadowski, Kevin

    2010-03-01

    The ethylene-responsive element binding factor-associated amphiphilic repression (EAR) motif is a transcriptional regulatory motif identified in members of the ethylene-responsive element binding factor, C2H2, and auxin/indole-3-acetic acid families of transcriptional regulators. Sequence comparison of the core EAR motif sites from these proteins revealed two distinct conservation patterns: LxLxL and DLNxxP. Proteins containing these motifs play key roles in diverse biological functions by negatively regulating genes involved in developmental, hormonal, and stress signaling pathways. Through a genome-wide bioinformatics analysis, we have identified the complete repertoire of the EAR repressome in Arabidopsis (Arabidopsis thaliana) comprising 219 proteins belonging to 21 different transcriptional regulator families. Approximately 72% of these proteins contain a LxLxL type of EAR motif, 22% contain a DLNxxP type of EAR motif, and the remaining 6% have a motif where LxLxL and DLNxxP are overlapping. Published in vitro and in planta investigations support approximately 40% of these proteins functioning as negative regulators of gene expression. Comparative sequence analysis of EAR motif sites and adjoining regions has identified additional preferred residues and potential posttranslational modification sites that may influence the functionality of the EAR motif. Homology searches against protein databases of poplar (Populus trichocarpa), grapevine (Vitis vinifera), rice (Oryza sativa), and sorghum (Sorghum bicolor) revealed that the EAR motif is conserved across these diverse plant species. This genome-wide analysis represents the most extensive survey of EAR motif-containing proteins in Arabidopsis to date and provides a resource enabling investigations into their biological roles and the mechanism of EAR motif-mediated transcriptional regulation.

  7. Alteration of the carbohydrate-binding specificity of a C-type lectin CEL-I mutant with an EPN carbohydrate-binding motif.

    PubMed

    Hatakeyama, Tomomitsu; Ishimine, Tomohiro; Baba, Tomohiro; Kimura, Masanari; Unno, Hideaki; Goda, Shuichiro

    2013-07-01

    CEL-I is a Gal/GalNAc-specific C-type lectin isolated from the sea cucumber Cucumaria echinata. This lectin is composed of two carbohydrate-recognition domains (CRDs) with the carbohydrate-recognition motif QPD (Gln-Pro- Asp), which is generally known to exist in galactose-specific C-type CRDs. In the present study, a mutant CEL-I with EPN (Glu-Pro-Asn) motif, which is thought to be responsible for the carbohydrate-recognition of mannose-specific Ctype CRDs, was produced in Escherichia coli, and its effects on the carbohydrate-binding specificity were examined using polyamidoamine dendrimer (PD) conjugated with carbohydrates. Although wild-type CEL-I effectively formed complexes with N-acetylgalactosamine (GalNAc)-PD but not with mannose-PD, the mutant CEL-I showed relatively weak but definite affinity for mannose-PD. These results indicated that the QPD and EPN motifs play a significant role in the carbohydrate-recognition mechanism of CEL-I, especially in the discrimination of galactose and mannose. Additional mutations in the recombinant CEL-I binding site may further increase its specificity for mannose, and should provide insights into designing novel carbohydrate-recognition proteins.

  8. New melanocortin 1 receptor binding motif based on the C-terminal sequence of alpha-melanocyte-stimulating hormone.

    PubMed

    Schiöth, Helgi B; Muceniece, Ruta; Mutule, Ilga; Wikberg, Jarl E S

    2006-10-01

    The C-terminal tripeptide of the alpha-melanocyte stimulating hormone (alpha-MSH11-13) possesses strong antiinflammatory activity without known cellular target. In order to better understand the structural requirements for function of such motif, we designed, synthesized and tested out Trp- and Tyr-containing analogues of the alpha-MSH11-13. Seven alpha-MSH11-13 analogues were synthesized and characterized for their binding to the melanocortin receptors recombinantly expressed in insect (Sf9) cells, infected with baculovirus carrying corresponding MC receptor DNA. We also tested these analogues on B16-F1 mouse melanoma cells endogenously expressing the MC1 receptor for binding and for ability to increase cAMP levels as well as on COS-7 cells transfected with the human MC receptors. The data indicate that HS401 (Ac-Tyr-Lys-Pro-Val-NH2) and HS402 (Ac-Lys-Pro-Val-Tyr-NH2) selectively bound to the MC1 receptor and stimulated cAMP generation in a concentration dependent way while the other Tyr- and Trp-containing alpha-MSH11-13 analogues neither bound to MC receptors nor stimulated cAMP. We have thus identified new MC receptor binding motif derived from the C-terminal sequence of alpha-MSH. The tetrapeptides have novel properties as the both act via MC-ergic pathways and also carry the anti-inflammatory alpha-MSH11-13 message sequence.

  9. The NAP motif of activity-dependent neuroprotective protein (ADNP) regulates dendritic spines through microtubule end binding proteins.

    PubMed

    Oz, S; Kapitansky, O; Ivashco-Pachima, Y; Malishkevich, A; Giladi, E; Skalka, N; Rosin-Arbesfeld, R; Mittelman, L; Segev, O; Hirsch, J A; Gozes, I

    2014-10-01

    The NAP motif of activity-dependent neuroprotective protein (ADNP) enhanced memory scores in patients suffering from mild cognitive impairment and protected activities of daily living in schizophrenia patients, while fortifying microtubule (MT)-dependent axonal transport, in mice and flies. The question is how does NAP fortify MTs? Our sequence analysis identified the MT end-binding protein (EB1)-interacting motif SxIP (SIP, Ser-Ile-Pro) in ADNP/NAP and showed specific SxIP binding sites in all members of the EB protein family (EB1-3). Others found that EB1 enhancement of neurite outgrowth is attenuated by EB2, while EB3 interacts with postsynaptic density protein 95 (PSD-95) to modulate dendritic plasticity. Here, NAP increased PSD-95 expression in dendritic spines, which was inhibited by EB3 silencing. EB1 or EB3, but not EB2 silencing inhibited NAP-mediated cell protection, which reflected NAP binding specificity. NAPVSKIPQ (SxIP=SKIP), but not NAPVAAAAQ mimicked NAP activity. ADNP, essential for neuronal differentiation and brain formation in mouse, a member of the SWI/SNF chromatin remodeling complex and a major protein mutated in autism and deregulated in schizophrenia in men, showed similar EB interactions, which were enhanced by NAP treatment. The newly identified shared MT target of NAP/ADNP is directly implicated in synaptic plasticity, explaining the breadth and efficiency of neuroprotective/neurotrophic capacities.

  10. Definition of an extended MHC class II-peptide binding motif for the autoimmune disease-associated Lewis rat RT1.BL molecule.

    PubMed

    Wauben, M H; van der Kraan, M; Grosfeld-Stulemeyer, M C; Joosten, I

    1997-02-01

    The Lewis rat, an inbred rat strain susceptible to several well-characterized experimental autoimmune diseases, provides a good model to study peptide-mediated immunotherapy. Peptide immunotherapy focussing on the modulation of T cell responses by interfering with TCR-peptide-MHC complex formation requires the elucidation of the molecular basis of TCR-peptide-MHC interactions for an efficient design of modulatory peptides. In the Lewis rat most autoimmune-associated CD4+ T cell responses are MHC class II RT1.BL restricted. In this study, the characteristics of RT1.BL-peptide interactions were explored. A series of substitution analogs of two Lewis rat T cell epitopes was examined in a direct peptide-MHC binding assay on isolated RT1.BL molecules. Furthermore, other autoimmune-related as well as non-disease-related T cell epitopes were tested in the binding assay. This has led to the definition of an extended RT1.BL-peptide binding motif. The RT1.BL-peptide binding motif established in this study is the first described rat MHC-peptide binding motif based on direct MHC-peptide binding experiments. To predict good or intermediate RT1.BL binding peptides, T cell epitope search profiles were deduced from this motif. The motif and search profiles will greatly facilitate the prediction of modulatory peptides based on autoimmune-associated T cell epitopes and the identification of target structures in experimental autoimmune diseases in Lewis rats.

  11. Crystal Structure of (+)-[delta]-Cadinene Synthase from Gossypium arboreum and Evolutionary Divergence of Metal Binding Motifs for Catalysis

    SciTech Connect

    Gennadios, Heather A.; Gonzalez, Veronica; Di Costanzo, Luigi; Li, Amang; Yu, Fanglei; Miller, David J.; Allemann, Rudolf K.; Christianson, David W.

    2009-09-11

    (+)-{delta}-Cadinene synthase (DCS) from Gossypium arboreum (tree cotton) is a sesquiterpene cyclase that catalyzes the cyclization of farnesyl diphosphate in the first committed step of the biosynthesis of gossypol, a phytoalexin that defends the plant from bacterial and fungal pathogens. Here, we report the X-ray crystal structure of unliganded DCS at 2.4 {angstrom} resolution and the structure of its complex with three putative Mg{sup 2+} ions and the substrate analogue inhibitor 2-fluorofarnesyl diphosphate (2F-FPP) at 2.75 {angstrom} resolution. These structures illuminate unusual features that accommodate the trinuclear metal cluster required for substrate binding and catalysis. Like other terpenoid cyclases, DCS contains a characteristic aspartate-rich D{sup 307}DTYD{sup 311} motif on helix D that interacts with Mg{sub A}{sup 2+} and Mg{sub C}{sup 2+}. However, DCS appears to be unique among terpenoid cyclases in that it does not contain the 'NSE/DTE' motif on helix H that specifically chelates Mg{sub B}{sup 2+}, which is usually found as the signature sequence (N,D)D(L,I,V)X(S,T)XXXE (boldface indicates Mg{sub B}{sup 2+} ligands). Instead, DCS contains a second aspartate-rich motif, D{sup 451}DVAE{sup 455}, that interacts with Mg{sub B}{sup 2+}. In this regard, DCS is more similar to the isoprenoid chain elongation enzyme farnesyl diphosphate synthase, which also contains two aspartate-rich motifs, rather than the greater family of terpenoid cyclases. Nevertheless, the structure of the DCS-2F-FPP complex shows that the structure of the trinuclear magnesium cluster is generally similar to that of other terpenoid cyclases despite the alternative Mg{sub B}{sup 2+} binding motif. Analyses of DCS mutants with alanine substitutions in the D{sup 307}DTYD{sup 311} and D{sup 451}DVAE{sup 455} segments reveal the contributions of these segments to catalysis.

  12. 14-3-3{sigma} controls corneal epithelial cell proliferation and differentiation through the Notch signaling pathway

    SciTech Connect

    Xin, Ying; Lu, Qingxian; Li, Qiutang

    2010-02-19

    14-3-3{sigma} (also called stratifin) is specifically expressed in the stratified squamous epithelium and its function was recently shown to be linked to epidermal stratification and differentiation in the skin. In this study, we investigated its role in corneal epithelium cell proliferation and differentiation. We showed that the 14-3-3{sigma} mutation in repeated epilation (Er) mutant mice results in a dominant negative truncated protein. Primary corneal epithelial cells expressing the dominant negative protein failed to undergo high calcium-induced cell cycle arrest and differentiation. We further demonstrated that blocking endogenous 14-3-3{sigma} activity in corneal epithelial cells by overexpressing dominative negative 14-3-3{sigma} led to reduced Notch activity and Notch1/2 transcription. Significantly, expression of the active Notch intracellular domain overcame the block in epithelial cell differentiation in 14-3-3{sigma} mutant-expressing corneal epithelial cells. We conclude that 14-3-3{sigma} is critical for regulating corneal epithelial proliferation and differentiation by regulating Notch signaling activity.

  13. Reversibly Bound Chloride in the Atrial Natriuretic Peptide Receptor Hormone Binding Domain: Possible Allosteric Regulation and a Conserved Structural Motif for the Chloride-binding Site

    SciTech Connect

    Ogawa, H.; Qiu, Y; Philo, J; Arakawa, T; Ogata, C; Misono, K

    2010-01-01

    The binding of atrial natriuretic peptide (ANP) to its receptor requires chloride, and it is chloride concentration dependent. The extracellular domain (ECD) of the ANP receptor (ANPR) contains a chloride near the ANP-binding site, suggesting a possible regulatory role. The bound chloride, however, is completely buried in the polypeptide fold, and its functional role has remained unclear. Here, we have confirmed that chloride is necessary for ANP binding to the recombinant ECD or the full-length ANPR expressed in CHO cells. ECD without chloride (ECD(-)) did not bind ANP. Its binding activity was fully restored by bromide or chloride addition. A new X-ray structure of the bromide-bound ECD is essentially identical to that of the chloride-bound ECD. Furthermore, bromide atoms are localized at the same positions as chloride atoms both in the apo and in the ANP-bound structures, indicating exchangeable and reversible halide binding. Far-UV CD and thermal unfolding data show that ECD(-) largely retains the native structure. Sedimentation equilibrium in the absence of chloride shows that ECD(-) forms a strongly associated dimer, possibly preventing the structural rearrangement of the two monomers that is necessary for ANP binding. The primary and tertiary structures of the chloride-binding site in ANPR are highly conserved among receptor-guanylate cyclases and metabotropic glutamate receptors. The chloride-dependent ANP binding, reversible chloride binding, and the highly conserved chloride-binding site motif suggest a regulatory role for the receptor bound chloride. Chloride-dependent regulation of ANPR may operate in the kidney, modulating ANP-induced natriuresis.

  14. Analysis of a cAMP regulated coactivator family reveals an alternative phosphorylation motif for AMPK family members

    PubMed Central

    Moresco, James J.; Vaughan, Joan M.; Matsumura, Shigenobu; Yates, John R.; Montminy, Marc

    2017-01-01

    The second messenger cAMP stimulates cellular gene expression via the PKA-mediated phosphorylation of the transcription factor CREB and through dephosphorylation of the cAMP-responsive transcriptional coactivators (CRTCs). Under basal conditions, CRTCs are phosphorylated by members of the AMPK family of Ser/Thr kinases and sequestered in the cytoplasm via a phosphorylation-dependent association with 14-3-3 proteins. Increases in cAMP promote the dephosphorylation and nuclear translocation of CRTCs, where they bind to CREB and stimulate relevant target genes. Although they share considerable sequence homology, members of the CRTC family exert non-overlapping effects on cellular gene expression through as yet unidentified mechanisms. Here we show that the three CRTCs exhibit distinct patterns of 14-3-3 binding at three conserved sites corresponding to S70, S171, and S275 (in CRTC2). S171 functions as the gatekeeper site for 14-3-3 binding; it acts cooperatively with S275 in stabilizing this interaction following its phosphorylation by the cAMP-responsive SIK and the cAMP-nonresponsive MARK kinases. Although S171 contains a consensus recognition site for phosphorylation by AMPK family members, S70 and S275 carry variant motifs (MNTGGS275LPDL), lacking basic residues that are otherwise critical for SIK/MARK recognition as well as 14-3-3 binding. Correspondingly, the activity of these motifs differs between CRTC family members. As the variant (SLPDL) motif is present and apparently phosphorylated in other mammalian proteins, our studies suggest that the regulation of cellular targets by AMPK family members is more extensive than previously appreciated. PMID:28235073

  15. Characterization of the metal ion binding helix-hairpin-helix motifs in human DNA polymerase beta by X-ray structural analysis.

    PubMed

    Pelletier, H; Sawaya, M R

    1996-10-01

    X-ray crystallographic studies have shown that DNA binding by human polymerase beta (pol beta) occurs primarily through two structurally and sequentially homologous helix-hairpin-helix (HhH) motifs, one in the fingers subdomain and the other in the 8-kDa domain [Pelletier, H., Sawaya, M. R., Wolfle, W., Wilson, S. H., & Kraut, J. (1996a) Biochemistry 35, 12742-12761]. In that DNA binding by each HhH motif is facilitated by a metal ion, we set out to determine the identity of the metal ion that most likely binds to the HhH motif in vivo. Crystal soaking experiments were performed on human pol beta-DNA cocrystals with Mg2+, Ca2+, Na+, and K+, the four most prevalent metal ions in the cell, and in each case a data set was collected and the resulting structure was refined. Under the conditions tested, the HhH motifs of pol beta have an affinity for these biologically prevalent metal ions in the order Mg2+ < Ca2+ < Na+ < K+, with K+ displaying the strongest binding. Crystals soaked in the presence of Tl+, a commonly used spectroscopic probe for K+, were too X-ray-sensitive to establish the binding behavior of Tl+, but soaking experiments with Ba2+ and Cs+ resulted in relatively stable crystals that gave evidence of metal ion binding in both HhH motifs, confirming that larger monovalent and divalent metal ions are capable of binding to the HhH metal sites. Although Mn2+, which has been categorized as a potent polymerase mutagen, binds to the HhH motifs with a greater affinity than Mg2+, Mn2+ does not bind to the HhH motifs in the presence of equimolar concentrations of Na+. These results suggest that in vivo, where Mn2+ is present only in trace amounts, Mn2+ probably does not have a large effect on DNA binding and may instead manifest a mutagenic effect on pol beta primarily by distorting nucleotide binding or by directly affecting the catalytic step [Pelletier, H., Sawaya, M. R., Wolfle, W., Wilson, S. H., & Kraut, J. (1996b) Biochemistry 35, 12762-12777]. Crystal

  16. The impact of RNA binding motif protein 4-regulated splicing cascade on the progression and metabolism of colorectal cancer cells.

    PubMed

    Liang, Yu-Chih; Lin, Wei-Cheng; Lin, Ying-Ju; Lin, Jung-Chun

    2015-11-10

    Dysregulated splicing of pre-messenger (m)RNA is considered a molecular occasion of carcinogenesis. However, the underlying mechanism is complex and remains to be investigated. Herein, we report that the upregulated miR-92a reduced the RNA-binding motif 4 (RBM4) protein expression, leading to the imbalanced expression of the neuronal polypyrimidine tract-binding (nPTB) protein through alternative splicing-coupled nonsense mediated decay (NMD) mechanism. Increase in nPTB protein enhances the relative level of fibroblast growth factor receptor 2 IIIc (FGFR2) and pyruvate kinase M2 (PKM2) transcripts which contribute to the progression and metabolic signature of CRC cells. Expression profiles of RBM4 and downstream alternative splicing events are consistently observed in cancerous tissues compared to adjacent normal tissues. These results constitute a mechanistic understanding of RBM4 on repressing the carcinogenesis of colorectal cells.

  17. A sequence upstream of canonical PDZ-binding motif within CFTR COOH-terminus enhances NHERF1 interaction.

    PubMed

    Sharma, Neeraj; LaRusch, Jessica; Sosnay, Patrick R; Gottschalk, Laura B; Lopez, Andrea P; Pellicore, Matthew J; Evans, Taylor; Davis, Emily; Atalar, Melis; Na, Chan-Hyun; Rosson, Gedge D; Belchis, Deborah; Milewski, Michal; Pandey, Akhilesh; Cutting, Garry R

    2016-12-01

    The development of cystic fibrosis transmembrane conductance regulator (CFTR) targeted therapy for cystic fibrosis has generated interest in maximizing membrane residence of mutant forms of CFTR by manipulating interactions with scaffold proteins, such as sodium/hydrogen exchange regulatory factor-1 (NHERF1). In this study, we explored whether COOH-terminal sequences in CFTR beyond the PDZ-binding motif influence its interaction with NHERF1. NHERF1 displayed minimal self-association in blot overlays (NHERF1, Kd = 1,382 ± 61.1 nM) at concentrations well above physiological levels, estimated at 240 nM from RNA-sequencing and 260 nM by liquid chromatography tandem mass spectrometry in sweat gland, a key site of CFTR function in vivo. However, NHERF1 oligomerized at considerably lower concentrations (10 nM) in the presence of the last 111 amino acids of CFTR (20 nM) in blot overlays and cross-linking assays and in coimmunoprecipitations using differently tagged versions of NHERF1. Deletion and alanine mutagenesis revealed that a six-amino acid sequence (1417)EENKVR(1422) and the terminal (1478)TRL(1480) (PDZ-binding motif) in the COOH-terminus were essential for the enhanced oligomerization of NHERF1. Full-length CFTR stably expressed in Madin-Darby canine kidney epithelial cells fostered NHERF1 oligomerization that was substantially reduced (∼5-fold) on alanine substitution of EEN, KVR, or EENKVR residues or deletion of the TRL motif. Confocal fluorescent microscopy revealed that the EENKVR and TRL sequences contribute to preferential localization of CFTR to the apical membrane. Together, these results indicate that COOH-terminal sequences mediate enhanced NHERF1 interaction and facilitate the localization of CFTR, a property that could be manipulated to stabilize mutant forms of CFTR at the apical surface to maximize the effect of CFTR-targeted therapeutics.

  18. Mutational analysis of putative calcium binding motifs within the skeletal ryanodine receptor isoform, RyR1.

    PubMed

    Fessenden, James D; Feng, Wei; Pessah, Isaac N; Allen, P D

    2004-12-17

    The functional relevance of putative Ca(2+) binding motifs previously identified with Ca(2+) overlay binding analysis within the skeletal muscle ryanodine receptor isoform (RyR1) was examined using mutational analysis. EF hands between amino acid positions 4081 and 4092 (EF1) and 4116 and 4127 (EF2) were scrambled singly or in combination within the full-length rabbit RyR1 cDNA. These cDNAs were expressed in 1B5 RyR-deficient myotubes and channel function assessed using Ca(2+)-imaging techniques, [(3)H]ryanodine binding measurements, and single channel experiments. In intact myotubes, these mutations did not affect functional responses to either depolarization or RyR agonists (caffeine, 4-chloro-m-cresol) compared with wtRyR1. However, in [(3)H]ryanodine binding measurements, both Ca(2+) activation and inhibition of the EF1 mutant was significantly altered compared with wtRyR1. No high affinity [(3)H]ryanodine binding was observed in membranes expressing the EF2 mutation, although in single channel measurements, the EF2-disrupted channel could be activated by micromolar Ca(2+) concentrations. In addition, micromolar levels of ryanodine placed these channels into the classical half-conductance state, thus indicating that occupancy of high affinity ryanodine binding sites is not required for ryanodine-induced subconductance states in RyR1. Disruption of three additional putative RyR1 calcium binding motifs located between amino acid positions 4254 and 4265 (EF3), 4407 and 4418 (EF4), or 4490 and 4502 (EF5) either singly or in combination (EF3-5) did not affect functional responses in 1B5 myotubes except that the EC(50) for caffeine activation for the EF3 construct was significantly increased compared with wtRyR1. However, in [(3)H]ryanodine binding experiments, the Ca(2+)-dependent activation and inactivation of mutated RyRs containing EF3, EF4, or EF5 was unaffected when compared with wtRyR1.

  19. Pathogen recognition of a novel C-type lectin from Marsupenaeus japonicus reveals the divergent sugar-binding specificity of QAP motif

    PubMed Central

    Alenton, Rod Russel R.; Koiwai, Keiichiro; Miyaguchi, Kohei; Kondo, Hidehiro; Hirono, Ikuo

    2017-01-01

    C-type lectins (CTLs) are calcium-dependent carbohydrate-binding proteins known to assist the innate immune system as pattern recognition receptors (PRRs). The binding specificity of CTLs lies in the motif of their carbohydrate recognition domain (CRD), the tripeptide motifs EPN and QPD bind to mannose and galactose, respectively. However, variants of these motifs were discovered including a QAP sequence reported in shrimp believed to have the same carbohydrate specificity as QPD. Here, we characterized a novel C-type lectin (MjGCTL) possessing a CRD with a QAP motif. The recombinant MjGCTL has a calcium-dependent agglutinating capability against both Gram-negative and Gram-positive bacteria, and its sugar specificity did not involve either mannose or galactose. In an encapsulation assay, agarose beads coated with rMjGCTL were immediately encapsulated from 0 h followed by melanization at 4 h post-incubation with hemocytes. These results confirm that MjGCTL functions as a classical CTL. The structure of QAP motif and carbohydrate-specificity of rMjGCTL was found to be different to both EPN and QPD, suggesting that QAP is a new motif. Furthermore, MjGCTL acts as a PRR binding to hemocytes to activate their adherent state and initiate encapsulation. PMID:28374848

  20. Copper-binding tripeptide motif increases potency of the antimicrobial peptide Anoplin via Reactive Oxygen Species generation.

    PubMed

    Libardo, M Daben J; Nagella, Sai; Lugo, Andrea; Pierce, Scott; Angeles-Boza, Alfredo M

    2015-01-02

    Antimicrobial peptides (AMPs) are broad spectrum antimicrobial agents that act through diverse mechanisms, this characteristic makes them suitable starting points for development of novel classes of antibiotics. We have previously reported the increase in activity of AMPs upon addition of the Amino Terminal Copper and Nickel (ATCUN) Binding Unit. Herein we synthesized the membrane active peptide, Anoplin and two ATCUN-Anoplin derivatives and show that the increase in activity is indeed due to the ROS formation by the Cu(II)-ATCUN complex. We found that the ATCUN-Anoplin peptides were up to four times more potent compared to Anoplin alone against standard test bacteria. We studied membrane disruption, and cellular localization and found that addition of the ATCUN motif did not lead to a difference in these properties. When helical content was calculated, we observed that ATCUN-Anoplin had a lower helical composition. We found that ATCUN-Anoplin are able to oxidatively damage lipids in the bacterial membrane and that their activity trails the rate at which ROS is formed by the Cu(II)-ATCUN complexes alone. This study shows that addition of a metal binding tripeptide motif is a simple strategy to increase potency of AMPs by conferring a secondary action.

  1. Link protein hyaluronan-binding motif abrogates CD44-hyaluronan-mediated leukemia-liver cell adhesion.

    PubMed

    Chen, Jing; Li, Na; Li, Gongchu

    2013-05-01

    The liver is a frequent site for the metastasis of cancer cells originating from other sites. Leukemic liver metastasis is associated with poor prognosis. The ligation of CD44 with hyaluronan (HA) has been shown to contribute to the drug resistance of leukemic cells. In this study, a link protein HA-binding motif was genetically fused with enhanced green fluorescence protein (EGFP) to generate an EGFP-L fusion protein. Furthermore, a coculture system was established to investigate the interaction of leukemic cells with liver cells. CD44-positive Kasumi-1, but not CD44-negative HL-60 cells, were observed to adhere to the liver cell line L02. This cell-cell adhesion was significantly blocked by HA, indicating that Kasumi-L02 cell adhesion was mediated by the CD44-HA interaction. Compared to EGFP, EGFP-L fusion protein bound to L02 and BEL7404 liver cells. EGFP-L partially abrogated the Kasumi-L02 adhesion, suggesting that the link protein-binding motif is able to inhibit CD44-HA-mediated leukemia-liver adhesion. These results may help provide insight into novel therapeutic methods for leukemic patients diagnosed with liver metastasis.

  2. Clustered somatic mutations are frequent in transcription factor binding motifs within proximal promoter regions in melanoma and other cutaneous malignancies

    PubMed Central

    Colebatch, Andrew J.; Di Stefano, Leon; Wong, Stephen Q.; Hannan, Ross D.; Waring, Paul M.; Dobrovic, Alexander

    2016-01-01

    Most cancer DNA sequencing studies have prioritized recurrent non-synonymous coding mutations in order to identify novel cancer-related mutations. Although attention is increasingly being paid to mutations in non-coding regions, standard approaches to identifying significant mutations may not be appropriate and there has been limited analysis of mutational clusters in functionally annotated non-coding regions. We sought to identify clustered somatic mutations (hotspot regions across samples) in functionally annotated regions in melanoma and other cutaneous malignancies (cutaneous squamous cell carcinoma, basal cell carcinoma and Merkel cell carcinoma). Sliding window analyses revealed numerous recurrent clustered hotspot mutations in proximal promoters, with some specific clusters present in up to 25% of cases. Mutations in melanoma were clustered within ETS and Sp1 transcription factor binding motifs, had a UV signature and were identified in other cutaneous malignancies. Clinicopathologic correlation and mutation analysis support a causal role for chronic UV irradiation generating somatic mutations in transcription factor binding motifs of proximal promoters. PMID:27611953

  3. Bean yellow dwarf virus RepA, but not rep, binds to maize retinoblastoma protein, and the virus tolerates mutations in the consensus binding motif.

    PubMed

    Liu, L; Saunders, K; Thomas, C L; Davies, J W; Stanley, J

    1999-04-10

    It has previously been reported that complementary-sense gene products of wheat dwarf virus (WDV), a geminivirus of the genus Mastrevirus that infects monocotyledonous plants, bind to human and maize retinoblastoma (Rb) protein. Rb proteins control cell-cycle progression by sequestering transcription factors required for entry into S-phase, suggesting that the virus modifies the cellular environment to produce conditions suitable for viral DNA replication. Using a yeast two-hybrid assay, we have investigated whether the complementary-sense gene products of bean yellow dwarf virus, a mastrevirus that is adapted to dicotyledonous plants, also bind maize Rb protein. We demonstrate that whereas RepA binds to Rb protein, Rep does not, suggesting that RepA alone regulates host gene expression and progression of cells to S-phase. RepA mutants containing L --> I, C --> S, C --> G, and E --> Q mutations within the consensus Rb protein binding motif LXCXE retained the ability to bind to Rb, but with reduced efficiency. Most notably, the E --> Q mutation reduced binding by approximately 95%. Nonetheless, all LXCXE mutants were able to replicate in tobacco protoplasts and to systemically infect Nicotiana benthamiana and bean, in which they produced wild-type symptoms.

  4. miR-137 modulates coelomocyte apoptosis by targeting 14-3-3ζ in the sea cucumber Apostichopus japonicus.

    PubMed

    Lv, Miao; Chen, Huahui; Shao, Yina; Li, Chenghua; Xu, Wei; Zhang, Weiwei; Zhao, Xuelin; Duan, Xuemei

    2017-02-01

    MicroRNAs (miRNAs) have emerged as key regulators in the host immune response and play a pivotal role in host-pathogen interactions by suppressing the transcriptional and post-transcriptional expression of target genes. miR-137, a well-documented tumor repressor, was previously found by high-throughput sequencing to be differentially expressed in diseased specimens of the sea cucumber Apostichopus japonicus. In this study, we identified 14-3-3ζ protein (Aj14-3-3ζ) as a novel target of miR-137 using isobaric tags for relative and absolute quantification (iTRAQ) and transcriptome screening. Expression analysis indicated that consistently depressed expression profiles of miR-137 and Aj14-3-3ζ were detected in both LPS-exposed primary coelomocytes and Vibrio splendidus-challenged sea cucumbers, suggesting a positive regulatory interaction. Consistently, miR-137 overexpression or inhibition in vitro and in vivo showed no effect on Aj14-3-3ζ mRNA levels, but the concentration of Aj14-3-3ζ protein was induced or repressed, respectively. Moreover, siRNA-mediated Aj14-3-3ζ knockdown in vivo decreased both mRNA and protein expression levels of Aj14-3-3ζ and significantly promoted coelomocyte apoptosis as assessed by flow cytometry, consistent with miR-137 inhibition. Overall, these results enhance our understanding of miR-137 regulatory roles in sea cucumber pathogenesis.

  5. Identification and expression analysis of four 14-3-3 genes during fruit ripening in banana (Musa acuminata L. AAA group, cv. Brazilian).

    PubMed

    Li, Mei-Ying; Xu, Bi-Yu; Liu, Ju-Hua; Yang, Xiao-Liang; Zhang, Jian-Bin; Jia, Cai-Hong; Ren, Li-Cheng; Jin, Zhi-Qiang

    2012-02-01

    To investigate the regulation of 14-3-3 proteins in banana (Musa acuminata L. AAA group, cv. Brazilian) fruit postharvest ripening, four cDNAs encoding 14-3-3 proteins were isolated from banana and designated as Ma-14-3-3a, Ma-14-3-3c, Ma-14-3-3e, and Ma-14-3-3i, respectively. Amino acid sequence alignment showed that the four 14-3-3 proteins shared a highly conserved core structure and variable C-terminal as well as N-terminal regions with 14-3-3 proteins from other plant species. Phylogenetic analysis revealed that the four 14-3-3 genes belong to the non-ε groups. They were differentially and specifically expressed in various tissues. Real-time RT-PCR analysis indicated that these four genes function differentially during banana fruit postharvest ripening. Three genes, Ma-14-3-3a, Ma-14-3-3c, and Ma-14-3-3e, were significantly induced by exogenous ethylene treatment. However, gene function differed in naturally ripened fruits. Ethylene could induce Ma-14-3-3c expression during postharvest ripening, but expression patterns of Ma-14-3-3a and Ma-14-3-3e suggest that these two genes appear to be involved in regulating ethylene biosynthesis during fruit ripening. No obvious relationship emerged between Ma-14-3-3i expression in naturally ripened and 1-MCP (1-methylcyclopropene)-treated fruit groups during fruit ripening. These results indicate that the 14-3-3 proteins might be involved in various regulatory processes of banana fruit ripening. Further studies will mainly focus on revealing the detailed biological mechanisms of these four 14-3-3 genes in regulating banana fruit postharvest ripening.

  6. The LIMP-2/SCARB2 Binding Motif on Acid β-Glucosidase

    PubMed Central

    Liou, Benjamin; Haffey, Wendy D.; Greis, Kenneth D.; Grabowski, Gregory A.

    2014-01-01

    The acid β-glucosidase (glucocerbrosidase (GCase)) binding sequence to LIMP-2 (lysosomal integral membrane protein 2), the receptor for intracellular GCase trafficking to the lysosome, has been identified. Heterologous expression of deletion constructs, the available GCase crystal structures, and binding and co-localization of identified peptides or mutant GCases were used to identify and characterize a highly conserved 11-amino acid sequence, DSPIIVDITKD, within human GCase. The binding to LIMP-2 is not dependent upon a single amino acid, but the interactions of GCase with LIMP-2 are heavily influenced by Asp399 and the di-isoleucines, Ile402 and Ile403. A single alanine substitution at any of these decreases GCase binding to LIMP-2 and alters its pH-dependent binding as well as diminishing the trafficking of GCase to the lysosome and significantly increasing GCase secretion. Enterovirus 71 also binds to LIMP-2 (also known as SCARB2) on the external surface of the plasma membrane. However, the LIMP-2/SCARB2 binding sequences for enterovirus 71 and GCase are not similar, indicating that LIMP-2/SCARB2 may have multiple or overlapping binding sites with differing specificities. These findings have therapeutic implications for the production of GCase and the distribution of this enzyme that is delivered to various organs. PMID:25202012

  7. SMN2 exon 7 splicing is inhibited by binding of hnRNP A1 to a common ESS motif that spans the 3' splice site.

    PubMed

    Doktor, Thomas Koed; Schroeder, Lisbeth Dahl; Vested, Anne; Palmfeldt, Johan; Andersen, Henriette Skovgaard; Gregersen, Niels; Andresen, Brage Storstein

    2011-02-01

    Spinal Muscular Atrophy is caused by homozygous loss of SMN1 with phenotypic modulation by SMN2. SMN2 expresses only limited amounts of full-length transcript due to skipping of exon 7 caused by disruption of an SF2/ASF binding ESE. Additionally, hnRNP A1 has been reported to inhibit inclusion of SMN2 exon 7. We previously reported high similarity between the sequence spanning the 3' ss of SMN1 and SMN2 exon 7 and an hnRNP A1 binding ESS, which regulates MCAD exon 5 splicing. We show here that this 3' ss motif indeed functions as a crucial hnRNP A1 binding ESS, which inhibits inclusion of SMN1/2 exon 7 and is antagonized by the SMN1 ESE, but not by the inactive SMN2 sequence. Pull-down experiments revealed a specific interaction between hnRNP A1 and the 3' ss AG-dinucleotide, which could be disrupted by mutations shown to improve splicing in reporter minigenes. Genomic analyses revealed that in the human genome, 3' ss matching the SMN1/2 ESS motif region are much less abundant than 3' ss with a disrupted ESS motif. This indicates that this ESS may be a general splicing inhibitory motif, which binds hnRNP A1 and inhibits exon inclusion by binding to 3' ss harboring this ESS motif.

  8. Neuroprotective Effect of TAT-14-3-3ε Fusion Protein against Cerebral Ischemia/Reperfusion Injury in Rats

    PubMed Central

    Liu, Xiaoyan; Hu, Wenhui; Wang, Yinye

    2014-01-01

    Stroke is the major cause of death and disability worldwide, and the thrombolytic therapy currently available was unsatisfactory. 14-3-3ε is a well characterized member of 14-3-3 family, and has been reported to protect neurons against apoptosis in cerebral ischemia. However, it cannot transverse blood brain barrier (BBB) due to its large size. A protein transduction domain (PTD) of HIV TAT protein, is capable of delivering a large variety of proteins into the brain. In this study, we generated a fusion protein TAT-14-3-3ε, and evaluated its potential neuroprotective effect in rat focal ischemia/reperfusion (I/R) model. Western blot analysis validated the efficient transduction of TAT-14-3-3ε fusion protein into brain via a route of intravenous injection. TAT-14-3-3ε pre-treatment 2 h before ischemia significantly reduced cerebral infarction volume and improved neurologic score, while post-treatment 2 h after ischemia was less effective. Importantly, pre- or post-ischemic treatment with TAT-14-3-3ε significantly increased the number of surviving neurons as determined by Nissl staining, and attenuated I/R-induced neuronal apoptosis as showed by the decrease in apoptotic cell numbers and the inhibition of caspase-3 activity. Moreover, the introduction of 14-3-3ε into brain by TAT-mediated delivering reduced the formation of autophagosome, attenuated LC3B-II upregulation and reversed p62 downregulation induced by ischemic injury. Such inhibition of autophagy was reversed by treatment with an autophagy inducer rapamycin (RAP), which also attenuated the neuroprotective effect of TAT-14-3-3ε. Conversely, autophagy inhibitor 3-methyladenine (3-MA) inhibited I/R-induced the increase in autophagic activity, and attenuated I/R-induced brain infarct. These results suggest that TAT-14-3-3ε can be efficiently transduced into brain and exert significantly protective effect against brain ischemic injury through inhibiting neuronal apoptosis and autophagic activation. PMID

  9. An extended dsRBD with a novel zinc-binding motif mediates nuclear retention of fission yeast Dicer.

    PubMed

    Barraud, Pierre; Emmerth, Stephan; Shimada, Yukiko; Hotz, Hans-Rudolf; Allain, Frédéric H-T; Bühler, Marc

    2011-08-16

    Dicer proteins function in RNA interference (RNAi) pathways by generating small RNAs (sRNAs). Here, we report the solution structure of the C-terminal domain of Schizosaccharomyces pombe Dicer (Dcr1). The structure reveals an unusual double-stranded RNA binding domain (dsRBD) fold embedding a novel zinc-binding motif that is conserved among dicers in yeast. Although the C-terminal domain of Dcr1 still binds nucleic acids, this property is dispensable for proper functioning of Dcr1. In contrast, disruption of zinc coordination renders Dcr1 mainly cytoplasmic and leads to remarkable changes in gene expression and loss of heterochromatin assembly. In summary, our results reveal novel insights into the mechanism of nuclear retention of Dcr1 and raise the possibility that this new class of dsRBDs might generally function in nucleocytoplasmic trafficking and not substrate binding. The C-terminal domain of Dcr1 constitutes a novel regulatory module that might represent a potential target for therapeutic intervention with fungal diseases.

  10. Analysis of immunoreceptor tyrosine-based activation motif (ITAM) binding to ZAP-70 by surface plasmon resonance.

    PubMed

    Vély, F; Nunès, J A; Malissen, B; Hedgecock, C J

    1997-11-01

    The signaling function of the T cell antigen receptor (TCR) is mediated via CD3 polypeptides, the cytoplasmic sequences of which bear conserved immunoreceptor tyrosine-based activation motifs (ITAM). ITAM are defined by two YxxL/I sequences separated by a six-eight amino acid long spacer. Upon antigen recognition, ITAM become phosphorylated on both tyrosine residues, creating a high affinity binding site for the tandem SH2 domains found in the protein tyrosine kinase ZAP-70. Using surface plasmon resonance, we further dissected the sequences required for the binding of ZAP-70 to each TCR-associated ITAM. First, we generated protein tyrosine phosphatase-resistant ITAM peptide analogs, in which difluorophosphonomethyl phenylalanyl (F2p) replaced both phosphotyrosines, and showed that those protein tyrosine phosphatase-resistant analogs bind ZAP-70 with high affinity, establishing a rational strategy for the design of novel pharmacological tools capable of interfering with TCR signaling function. Second, we substituted the five amino acids separating the two YxxL/I sequences of the CD3 zeta 1 ITAM with a non-peptidic linker made up of gamma-amino butyric acid units and demonstrated that the length of this intervening sequence rather than its chemical composition is essential for high affinity binding of phosphorylated ITAM to the ZAP-70 SH2 domains.

  11. Examination of the transcription factor NtcA-binding motif by in vitro selection of DNA sequences from a random library.

    PubMed

    Jiang, F; Wisén, S; Widersten, M; Bergman, B; Mannervik, B

    2000-08-25

    A recursive in vitro selection among random DNA sequences was used for analysis of the cyanobacterial transcription factor NtcA-binding motifs. An eight-base palindromic sequence, TGTA-(N(8))-TACA, was found to be the optimal NtcA-binding sequence. The more divergent the binding sequences, compared to this consensus sequence, the lower the NtcA affinity. The second and third bases in each four-nucleotide half of the consensus sequence were crucial for NtcA binding, and they were in general highly conserved. The most frequently occurring sequence in the middle weakly conserved region was similar to that of the NtcA-binding motif of the Anabaena sp. strain PCC 7120 glnA gene, previously known to have high affinity for NtcA. This indicates that the middle sequences were selected for high NtcA affinity. Analysis of natural NtcA-binding motifs showed that these could be classified into two groups based on differences in recognition consensus sequences. It is suggested that NtcA naturally recognizes different DNA-binding motifs, or has differential affinities to these sequences under different physiological conditions.

  12. An isoform of microtubule-associated protein 2 (MAP2) containing four repeats of the tubulin-binding motif.

    PubMed

    Doll, T; Meichsner, M; Riederer, B M; Honegger, P; Matus, A

    1993-10-01

    Microtubule-associated protein 2 (MAP2) exists in both high- and low-molecular mass isoforms, each of which has a tubulin-binding domain consisting of 3 imperfect tandem repeats of 31 amino acids containing a more highly conserved 18 amino acid 'core' sequence. We describe here a novel form of low molecular mass MAP2 (MAP2c) that contains an additional 4th repeat of this tubulin-binding motif. Like the 3 previously known repeat sequences, this 4th copy is highly conserved between MAP2 and the two other known members of the same gene family, tau and MAP4. In each of these three genes the additional 4th repeat is inserted between the 1st and 2nd repeats of the 3-repeat form of the molecule. Experiments with brain cell cultures, in which the relative proportions of neurons and glia had been manipulated by drug treatment, showed that 4-repeat MAP2c is associated with glial cells whereas 3-repeat MAP2c is expressed in neurons. Whereas 3-repeat MAP2c is expressed early in development and then declines, the level of 4-repeat MAP2c increases later in development, corresponding to the relatively late differentiation of glial cells compared to neurons. When transfected into non-neuronal cells, the 4-repeat version of MAP2c behaved indistinguishably from the 3-repeat form in stabilising and rearranging cellular microtubules. The presence of an additional 4th repeat of the tubulin-binding motif in all three members of the MAP2 gene family suggests that this variant arose prior to their differentiation from an ancestral gene.

  13. Surface binding sites in amylase have distinct roles in recognition of starch structure motifs and degradation.

    PubMed

    Cockburn, Darrell; Nielsen, Morten M; Christiansen, Camilla; Andersen, Joakim M; Rannes, Julie B; Blennow, Andreas; Svensson, Birte

    2015-04-01

    Carbohydrate converting enzymes often possess extra substrate binding regions that enhance their activity. These can be found either on separate domains termed carbohydrate binding modules or as so-called surface binding sites (SBSs) situated on the catalytic domain. SBSs are common in starch degrading enzymes and critically important for their function. The affinity towards a variety of starch granules as well as soluble poly- and oligosaccharides of barley α-amylase 1 (AMY1) wild-type and mutants of two SBSs (SBS1 and SBS2) was investigated using Langmuir binding analysis, confocal laser scanning microscopy, affinity gel electrophoresis and surface plasmon resonance to unravel functional roles of the SBSs. SBS1 was critical for binding to different starch types as Kd increased by 7-62-fold or was not measurable upon mutation. By contrast SBS2 was particularly important for binding to soluble polysaccharides and oligosaccharides with α-1,6 linkages, suggesting that branch points are key structural elements in recognition by SBS2. Mutation at both SBS1 and SBS2 eliminated binding to all starch granule types tested. Taken together, the findings indicate that the two SBSs act in concert to localize AMY1 to the starch granule surface and that SBS2 works synergistically with the active site in the degradation of amylopectin.

  14. SH3 domains of Grb2 adaptor bind to PXpsiPXR motifs within the Sos1 nucleotide exchange factor in a discriminate manner.

    PubMed

    McDonald, Caleb B; Seldeen, Kenneth L; Deegan, Brian J; Farooq, Amjad

    2009-05-19

    Ubiquitously encountered in a wide variety of cellular processes, the Grb2-Sos1 interaction is mediated through the combinatorial binding of nSH3 and cSH3 domains of Grb2 to various sites containing PXpsiPXR motifs within Sos1. Here, using isothermal titration calorimetry, we demonstrate that while the nSH3 domain binds with affinities in the physiological range to all four sites containing PXpsiPXR motifs, designated S1, S2, S3, and S4, the cSH3 domain can only do so at the S1 site. Further scrutiny of these sites yields rationale for the recognition of various PXpsiPXR motifs by the SH3 domains in a discriminate manner. Unlike the PXpsiPXR motifs at S2, S3, and S4 sites, the PXpsiPXR motif at the S1 site is flanked at its C-terminus with two additional arginine residues that are absolutely required for high-affinity binding of the cSH3 domain. In striking contrast, these two additional arginine residues augment the binding of the nSH3 domain to the S1 site, but their role is not critical for the recognition of S2, S3, and S4 sites. Site-directed mutagenesis suggests that the two additional arginine residues flanking the PXpsiPXR motif at the S1 site contribute to free energy of binding via the formation of salt bridges with specific acidic residues in SH3 domains. Molecular modeling is employed to project these novel findings into the 3D structures of SH3 domains in complex with a peptide containing the PXpsiPXR motif and flanking arginine residues at the S1 site. Taken together, this study furthers our understanding of the assembly of a key signaling complex central to cellular machinery.

  15. SH3 Domains of Grb2 Adaptor Bind to PXψPXR Motifs Within the Sos1 Nucleotide Exchange Factor in a Discriminate Manner†

    PubMed Central

    McDonald, Caleb B.; Seldeen, Kenneth L.; Deegan, Brian J.; Farooq, Amjad

    2009-01-01

    Ubiquitously encountered in a wide variety of cellular processes, the Grb2-Sos1 interaction is mediated through the combinatorial binding of nSH3 and cSH3 domains of Grb2 to various sites containing PXψPXR motifs within Sos1. Here, using isothermal titration calorimetry, we demonstrate that while the nSH3 domain binds with affinities in the physiological range to all four sites containing PXψPXR motifs, designated S1, S2, S3 and S4, the cSH3 domain can only do so at S1 site. Further scrutiny of these sites yields rationale for the recognition of various PXψPXR motifs by the SH3 domains in a discriminate manner. Unlike the PXψPXR motifs at S2, S3 and S4 sites, the PXψPXR motif at S1 site is flanked at its C-terminus with two additional arginine residues that are absolutely required for high-affinity binding of cSH3 domain. In striking contrast, these two additional arginine residues augment the binding of nSH3 domain to S1 site but their role is not critical for the recognition of S2, S3 and S4 sites. Site-directed mutagenesis suggests that the two additional arginine residues flanking the PXψPXR motif at S1 site contribute to free energy of binding via the formation of salt bridges with specific acidic residues in SH3 domains. Molecular modeling is employed to project these novel findings into the 3D structures of SH3 domains in complex with a peptide containing the PXψPXR motif and flanking arginine residues at S1 site. Taken together, this study furthers our understanding of the assembly of a key signaling complex central to cellular machinery. PMID:19323566

  16. Thermodynamic characterization of the DmsD binding site for the DmsA twin-arginine motif.

    PubMed

    Winstone, Tara M L; Turner, Raymond J

    2015-03-24

    The system specific chaperone DmsD interacts with the twin-arginine leader peptide of its substrate, DmsA, allowing for proper folding and assembly of the DmsA catalytic subunit of dimethyl sulfoxide reductase prior to translocation by the twin-arginine translocase. DmsD residues important for binding the complete 45-amino acid sequence of the DmsA leader (DmsAL) peptide were previously identified and found to cluster in a pocket of the DmsD structure. In this study, we have utilized isothermal titration calorimetry (ITC) to determine the dissociation constant and thermodynamic parameters of 15 single-substitution DmsD variant proteins and a synthetic DmsAL peptide consisting of 27 amino acids (DmsAL₁₅₋₄₁). The stoichiometry values were determined via ITC, and the multimeric compositions of the DmsD variants in the absence and presence of peptide were characterized via size exclusion chromatography and native polyacrylamide gel electrophoresis. An up to 4-fold change in affinity was observed for DmsD variant proteins relative to that of wild-type DmsD, and variation of the entropic contribution to binding divided the binding site into two clusters: residues with either more or less favorable entropy. Substitution of hydrophobic residues along one helix face (helix 5) or prolines found on adjacent loops caused reduced binding affinity because of the increased entropic cost, which suggests that the twin-arginine motif of the DmsAL peptide binds to a preformed site on DmsD. Most DmsD variants were more than 90% monomeric in solution and bound a single peptide per protein molecule. The DmsD variant with the largest dimer population showed increased affinity and induced the formation of tetramers in the presence of peptide, suggesting that dimeric DmsD or an alternatively folded form of DmsD may play an as yet undefined role in binding.

  17. Selective Targeting of G-Quadruplex Structures by a Benzothiazole-Based Binding Motif.

    PubMed

    Buchholz, Ina; Karg, Beatrice; Dickerhoff, Jonathan; Sievers-Engler, Adrian; Lämmerhofer, Michael; Weisz, Klaus

    2017-03-09

    A benzothiazole derivative was identified as potent ligand for DNA G-quadruplex structures. Fluorescence titrations revealed selective binding to quadruplexes of different topologies including parallel, antiparallel and (3+1) hybrid structures. The parallel c-MYC sequence was found to constitute the preferred target with dissociation constants in the micromolar range. Binding of the benzothiazole-based ligand to c-MYC was structurally and thermodynamically characterized in detail by employing a comprehensive set of spectroscopic and calorimetric techniques. Job plot analyses and mass spectral data indicate non-cooperative ligand binding to form 1:1 and 2:1 complex stoichiometries. Whereas stacking interactions are suggested by optical methods, NMR chemical shift perturbations also indicate significant rearrangements of both 5'- and 3'-flanking sequences upon ligand binding. Additional isothermal calorimetry studies yield a thermodynamic profile of the ligand-quadruplex association and reveal enthalpic contributions to be the major driving force for binding. The structural and thermodynamic information obtained in the present work provides the basis for the rational development of benzothiazole derivatives as promising quadruplex binding agents.

  18. IQCJ-SCHIP1, a novel fusion transcript encoding a calmodulin-binding IQ motif protein

    SciTech Connect

    Kwasnicka-Crawford, Dorota A. . E-mail: dakc@yorku.ca; Carson, Andrew R.; Scherer, Stephen W.

    2006-12-01

    The existence of transcripts that span two adjacent, independent genes is considered rare in the human genome. This study characterizes a novel human fusion gene named IQCJ-SCHIP1. IQCJ-SCHIP1 is the longest isoform of a complex transcriptional unit that bridges two separate genes that encode distinct proteins, IQCJ, a novel IQ motif containing protein and SCHIP1, a schwannomin interacting protein that has been previously shown to interact with the Neurofibromatosis type 2 (NF2) protein. IQCJ-SCHIP1 is located on the chromosome 3q25 and comprises a 1692-bp transcript encompassing 11 exons spanning 828 kb of the genomic DNA. We show that IQCJ-SCHIP1 mRNA is highly expressed in the brain. Protein encoded by the IQCJ-SCHIP1 gene was localized to cytoplasm and actin-rich regions and in differentiated PC12 cells was also seen in neurite extensions.

  19. One motif to bind them: A small-XXX-small motif affects transmembrane domain 1 oligomerization, function, localization, and cross-talk between two yeast GPCRs.

    PubMed

    Lock, Antonia; Forfar, Rachel; Weston, Cathryn; Bowsher, Leo; Upton, Graham J G; Reynolds, Christopher A; Ladds, Graham; Dixon, Ann M

    2014-12-01

    G protein-coupled receptors (GPCRs) are the largest family of cell-surface receptors in mammals and facilitate a range of physiological responses triggered by a variety of ligands. GPCRs were thought to function as monomers, however it is now accepted that GPCR homo- and hetero-oligomers also exist and influence receptor properties. The Schizosaccharomyces pombe GPCR Mam2 is a pheromone-sensing receptor involved in mating and has previously been shown to form oligomers in vivo. The first transmembrane domain (TMD) of Mam2 contains a small-XXX-small motif, overrepresented in membrane proteins and well-known for promoting helix-helix interactions. An ortholog of Mam2 in Saccharomyces cerevisiae, Ste2, contains an analogous small-XXX-small motif which has been shown to contribute to receptor homo-oligomerization, localization and function. Here we have used experimental and computational techniques to characterize the role of the small-XXX-small motif in function and assembly of Mam2 for the first time. We find that disruption of the motif via mutagenesis leads to reduction of Mam2 TMD1 homo-oligomerization and pheromone-responsive cellular signaling of the full-length protein. It also impairs correct targeting to the plasma membrane. Mutation of the analogous motif in Ste2 yielded similar results, suggesting a conserved mechanism for assembly. Using co-expression of the two fungal receptors in conjunction with computational models, we demonstrate a functional change in G protein specificity and propose that this is brought about through hetero-dimeric interactions of Mam2 with Ste2 via the complementary small-XXX-small motifs. This highlights the potential of these motifs to affect a range of properties that can be investigated in other GPCRs.

  20. Hydrogen bonding motifs of protein side chains: descriptions of binding of arginine and amide groups.

    PubMed Central

    Shimoni, L.; Glusker, J. P.

    1995-01-01

    The modes of hydrogen bonding of arginine, asparagine, and glutamine side chains and of urea have been examined in small-molecule crystal structures in the Cambridge Structural Database and in crystal structures of protein-nucleic acid and protein-protein complexes. Analysis of the hydrogen bonding patterns of each by graph-set theory shows three patterns of rings (R) with one or two hydrogen bond acceptors and two donors and with eight, nine, or six atoms in the ring, designated R2(2)(8), R2(2)(9), and R1(2)(6). These three patterns are found for arginine-like groups and for urea, whereas only the first two patterns R2(2)(8) and R2(2)(9) are found for asparagine- and glutamine-like groups. In each case, the entire system is planar within 0.7 A or less. On the other hand, in macromolecular crystal structures, the hydrogen bonding patterns in protein-nucleic acid complexes between the nucleic acid base and the protein are all R2(2)(9), whereas hydrogen bonding between Watson-Crick-like pairs of nucleic acid bases is R2(2)(8). These two hydrogen bonding arrangements [R2(2)(9)] and R2(2)(8)] are predetermined by the nature of the groups available for hydrogen bonding. The third motif identified, R1(2)(6), involves hydrogen bonds that are less linear than in the other two motifs and is found in proteins. PMID:7773178

  1. Defective erythroid differentiation in miR-451 mutant mice mediated by 14-3-3ζ

    PubMed Central

    Patrick, David M.; Zhang, Cheng C.; Tao, Ye; Yao, Huiyu; Qi, Xiaoxia; Schwartz, Robert J.; Jun-Shen Huang, Lily; Olson, Eric N.

    2010-01-01

    Erythrocyte formation occurs throughout life in response to cytokine signaling. We show that microRNA-451 (miR-451) regulates erythropoiesis in vivo. Mice lacking miR-451 display a reduction in hematrocrit, an erythroid differentiation defect, and ineffective erythropoiesis in response to oxidative stress. 14-3-3ζ, an intracellular regulator of cytokine signaling that is repressed by miR-451, is up-regulated in miR-451−/− erythroblasts, and inhibition of 14-3-3ζ rescues their differentiation defect. These findings reveal an essential role of 14-3-3ζ as a mediator of the proerythroid differentiation actions of miR-451, and highlight the therapeutic potential of miR-451 inhibitors. PMID:20679397

  2. The Acid-sensitive, Anesthetic-activated Potassium Leak Channel, KCNK3, Is Regulated by 14-3-3β-dependent, Protein Kinase C (PKC)-mediated Endocytic Trafficking*

    PubMed Central

    Gabriel, Luke; Lvov, Anatoli; Orthodoxou, Demetra; Rittenhouse, Ann R.; Kobertz, William R.; Melikian, Haley E.

    2012-01-01

    The acid-sensitive neuronal potassium leak channel, KCNK3, is vital for setting the resting membrane potential and is the primary target for volatile anesthetics. Recent reports demonstrate that KCNK3 activity is down-regulated by PKC; however, the mechanisms responsible for PKC-induced KCNK3 down-regulation are undefined. Here, we report that endocytic trafficking dynamically regulates KCNK3 activity. Phorbol esters and Group I metabotropic glutamate receptor (mGluR) activation acutely decreased both native and recombinant KCNK3 currents with concomitant KCNK3 surface losses in cerebellar granule neurons and cell lines. PKC-mediated KCNK3 internalization required the presence of both 14-3-3β and a novel potassium channel endocytic motif, because depleting either 14-3-3β protein levels or ablating the endocytic motif completely abrogated PKC-regulated KCNK3 trafficking. These results demonstrate that neuronal potassium leak channels are not static membrane residents but are subject to 14-3-3β-dependent regulated trafficking, providing a straightforward mechanism to modulate neuronal excitability and synaptic plasticity by Group I mGluRs. PMID:22846993

  3. 14-3-3ε Plays a Role in Cardiac Ventricular Compaction by Regulating the Cardiomyocyte Cell Cycle

    PubMed Central

    Kosaka, Yasuhiro; Cieslik, Katarzyna A.; Li, Ling; Lezin, George; Maguire, Colin T.; Saijoh, Yukio; Toyo-oka, Kazuhito; Gambello, Michael J.; Vatta, Matteo; Wynshaw-Boris, Anthony; Baldini, Antonio; Yost, H. Joseph

    2012-01-01

    Trabecular myocardium accounts for the majority of the ventricles during early cardiogenesis, but compact myocardium is the primary component at later developmental stages. Elucidation of the genes regulating compact myocardium development is essential to increase our understanding of left ventricular noncompaction (LVNC), a cardiomyopathy characterized by increased ratios of trabecular to compact myocardium. 14-3-3ε is an adapter protein expressed in the lateral plate mesoderm, but its in vivo cardiac functions remain to be defined. Here we show that 14-3-3ε is expressed in the developing mouse heart as well as in cardiomyocytes. 14-3-3ε deletion did not appear to induce compensation by other 14-3-3 isoforms but led to ventricular noncompaction, with features similar to LVNC, resulting from a selective reduction in compact myocardium thickness. Abnormal compaction derived from a 50% decrease in cardiac proliferation as a result of a reduced number of cardiomyocytes in G2/M and the accumulation of cardiomyocytes in the G0/G1 phase of the cell cycle. These defects originated from downregulation of cyclin E1 and upregulation of p27Kip1, possibly through both transcriptional and posttranslational mechanisms. Our work shows that 14-3-3ε regulates cardiogenesis and growth of the compact ventricular myocardium by modulating the cardiomyocyte cell cycle via both cyclin E1 and p27Kip1. These data are consistent with the long-held view that human LVNC may result from compaction arrest, and they implicate 14-3-3ε as a new candidate gene in congenital human cardiomyopathies. PMID:23071090

  4. A 14-3-3 Family Protein from Wild Soybean (Glycine Soja) Regulates ABA Sensitivity in Arabidopsis.

    PubMed

    Sun, Xiaoli; Sun, Mingzhe; Jia, Bowei; Chen, Chao; Qin, Zhiwei; Yang, Kejun; Shen, Yang; Meiping, Zhang; Mingyang, Cong; Zhu, Yanming

    2015-01-01

    It is widely accepted that the 14-3-3 family proteins are key regulators of multiple stress signal transduction cascades. By conducting genome-wide analysis, researchers have identified the soybean 14-3-3 family proteins; however, until now, there is still no direct genetic evidence showing the involvement of soybean 14-3-3s in ABA responses. Hence, in this study, based on the latest Glycine max genome on Phytozome v10.3, we initially analyzed the evolutionary relationship, genome organization, gene structure and duplication, and three-dimensional structure of soybean 14-3-3 family proteins systematically. Our results suggested that soybean 14-3-3 family was highly evolutionary conserved and possessed segmental duplication in evolution. Then, based on our previous functional characterization of a Glycine soja 14-3-3 protein GsGF14o in drought stress responses, we further investigated the expression characteristics of GsGF14o in detail, and demonstrated its positive roles in ABA sensitivity. Quantitative real-time PCR analyses in Glycine soja seedlings and GUS activity assays in PGsGF14O:GUS transgenic Arabidopsis showed that GsGF14o expression was moderately and rapidly induced by ABA treatment. As expected, GsGF14o overexpression in Arabidopsis augmented the ABA inhibition of seed germination and seedling growth, promoted the ABA induced stomata closure, and up-regulated the expression levels of ABA induced genes. Moreover, through yeast two hybrid analyses, we further demonstrated that GsGF14o physically interacted with the AREB/ABF transcription factors in yeast cells. Taken together, results presented in this study strongly suggested that GsGF14o played an important role in regulation of ABA sensitivity in Arabidopsis.

  5. Binding of the cSH3 domain of Grb2 adaptor to two distinct RXXK motifs within Gab1 docker employs differential mechanisms.

    PubMed

    McDonald, Caleb B; Seldeen, Kenneth L; Deegan, Brian J; Bhat, Vikas; Farooq, Amjad

    2011-01-01

    A ubiquitous component of cellular signaling machinery, Gab1 docker plays a pivotal role in routing extracellular information in the form of growth factors and cytokines to downstream targets such as transcription factors within the nucleus. Here, using isothermal titration calorimetry (ITC) in combination with macromolecular modeling (MM), we show that although Gab1 contains four distinct RXXK motifs, designated G1, G2, G3, and G4, only G1 and G2 motifs bind to the cSH3 domain of Grb2 adaptor and do so with distinct mechanisms. Thus, while the G1 motif strictly requires the PPRPPKP consensus sequence for high-affinity binding to the cSH3 domain, the G2 motif displays preference for the PXVXRXLKPXR consensus. Such sequential differences in the binding of G1 and G2 motifs arise from their ability to adopt distinct polyproline type II (PPII)- and 3(10) -helical conformations upon binding to the cSH3 domain, respectively. Collectively, our study provides detailed biophysical insights into a key protein-protein interaction involved in a diverse array of signaling cascades central to health and disease.

  6. Binding of the cSH3 Domain of Grb2 Adaptor to Two Distinct RXXK Motifs within Gab1 Docker Employs Differential Mechanisms

    PubMed Central

    McDonald, Caleb B.; Seldeen, Kenneth L.; Deegan, Brian J.; Bhat, Vikas; Farooq, Amjad

    2010-01-01

    A ubiquitous component of cellular signaling machinery, Gab1 docker plays a pivotal role in routing extracellular information in the form of growth factors and cytokines to downstream targets such as transcription factors within the nucleus. Here, using isothermal titration calorimetry (ITC) in combination with macromolecular modeling (MM), we show that although Gab1 contains four distinct RXXK motifs, designated G1, G2, G3 and G4, only G1 and G2 motifs bind to the cSH3 domain of Grb2 adaptor and do so with distinct mechanisms. Thus, while the G1 motif strictly requires the PPRPPKP consensus sequence for high-affinity binding to the cSH3 domain, the G2 motif displays preference for the PXVXRXLKPXR consensus. Such sequential differences in the binding of G1 and G2 motifs arise from their ability to adopt distinct polyproline type II (PPII)- and 310-helical conformations upon binding to the cSH3 domain, respectively. Collectively, our study provides detailed biophysical insights into a key protein-protein interaction involved in a diverse array of signaling cascades central to health and disease. PMID:21472810

  7. Identification of a novel microtubule-destabilizing motif in CPAP that binds to tubulin heterodimers and inhibits microtubule assembly.

    PubMed

    Hung, Liang-Yi; Chen, Hua-Ling; Chang, Ching-Wen; Li, Bor-Ran; Tang, Tang K

    2004-06-01

    We have previously identified a new centrosomal protein, centrosomal protein 4.1-associated protein (CPAP), which is associated with the gamma-tubulin complex. Here, we report that CPAP carries a novel microtubule-destabilizing motif that not only inhibits microtubule nucleation from the centrosome but also depolymerizes taxol-stabilized microtubules. Deletion mapping and functional analyses have defined a 112-residue CPAP that is necessary and sufficient for microtubule destabilization. This 112-residue CPAP directly recognizes the plus end of a microtubule and inhibits microtubule nucleation from the centrosome. Biochemical and functional analyses revealed that this 112-residue CPAP also binds to tubulin dimers, resulting in the destabilization of microtubules. Using the tetracycline-controlled system (tet-off), we observed that overexpression of this 112-residue CPAP inhibits cell proliferation and induces apoptosis after G2/M arrest. The possible mechanisms of how this 112-residue motif in CPAP that inhibits microtubule nucleation from the centrosome and disassembles preformed microtubules are discussed.

  8. Ring A of nukacin ISK-1: a lipid II-binding motif for type-A(II) lantibiotic.

    PubMed

    Islam, Mohammad R; Nishie, Mami; Nagao, Jun-ichi; Zendo, Takeshi; Keller, Sandro; Nakayama, Jiro; Kohda, Daisuke; Sahl, Hans-Georg; Sonomoto, Kenji

    2012-02-29

    Ring A of nukacin ISK-1, which is also present in different type-A(II) lantibiotics, resembles a lipid II-binding motif (TxS/TxD/EC, x denotes undefined residues) similar to that present in mersacidin (type-B lantibiotics), which suggests that nukacin ISK-1 binds to lipid II as a docking molecule. Results from our experiments on peptidoglycan precursor (UDP-MurNAc-pp) accumulation and peptide antagonism assays clearly indicated that nukacin ISK-1 inhibits cell-wall biosynthesis, accumulating lipid II precursor inside the cell, and the peptide activity can be repressed by lipid I and lipid II. Interaction analysis of nukacin ISK-1 and different ring A variants with lipid II revealed that nukacin ISK-1 and nukacin D13E (a more active variant) have a high affinity (K(D) = 0.17 and 0.19 μM, respectively) for lipid II, whereas nukacin D13A (a less active variant) showed a lower affinity, and nukacin C14S (a negative variant lacking the ring A structure) exhibited no interaction. Therefore, on the basis of the structural similarity and positional significance of the amino acids in this region, we concluded that nukacin ISK-1 binds lipid II via its ring A region and may lead to the inhibition of cell-wall biosynthesis.

  9. Identification of novel binding partners (annexins) for the cell death signal phosphatidylserine and definition of their recognition motif.

    PubMed

    Rosenbaum, Sabrina; Kreft, Sandra; Etich, Julia; Frie, Christian; Stermann, Jacek; Grskovic, Ivan; Frey, Benjamin; Mielenz, Dirk; Pöschl, Ernst; Gaipl, Udo; Paulsson, Mats; Brachvogel, Bent

    2011-02-18

    Identification and clearance of apoptotic cells prevents the release of harmful cell contents thereby suppressing inflammation and autoimmune reactions. Highly conserved annexins may modulate the phagocytic cell removal by acting as bridging molecules to phosphatidylserine, a characteristic phagocytosis signal of dying cells. In this study five members of the structurally and functionally related annexin family were characterized for their capacity to interact with phosphatidylserine and dying cells. The results showed that AnxA3, AnxA4, AnxA13, and the already described interaction partner AnxA5 can bind to phosphatidylserine and apoptotic cells, whereas AnxA8 lacks this ability. Sequence alignment experiments located the essential amino residues for the recognition of surface exposed phosphatidylserine within the calcium binding motifs common to all annexins. These amino acid residues were missing in the evolutionary young AnxA8 and when they were reintroduced by site directed mutagenesis AnxA8 gains the capability to interact with phosphatidylserine containing liposomes and apoptotic cells. By defining the evolutionary conserved amino acid residues mediating phosphatidylserine binding of annexins we show that the recognition of dying cells represent a common feature of most annexins. Hence, the individual annexin repertoire bound to the cell surface of dying cells may fulfil opsonin-like function in cell death recognition.

  10. Point mutation of adenosine triphosphate-binding motif generated rigor kinesin that selectively blocks anterograde lysosome membrane transport

    PubMed Central

    1995-01-01

    In the study of motor proteins, the molecular mechanism of mechanochemical coupling, as well as the cellular role of these proteins, is an important issue. To assess these questions we introduced cDNA of wild-type and site-directed mutant kinesin heavy chains into fibroblasts, and analyzed the behavior of the recombinant proteins and the mechanisms involved in organelle transports. Overexpression of wild-type kinesin significantly promoted elongation of cellular processes. Wild-type kinesin accumulated at the tips of the long processes, whereas the kinesin mutants, which contained either a T93N- or T93I mutation in the ATP-binding motif, tightly bound to microtubules in the center of the cells. These mutant kinesins could bind to microtubules in vitro, but could not dissociate from them even in the presence of ATP, and did not support microtubule motility in vitro, thereby indicating rigor-type mutations. Retrograde transport from the Golgi apparatus to the endoplasmic reticulum, as well as lysosome dispersion, was shown to be a microtubule-dependent, plus-end- directed movement. The latter was selectively blocked in the rigor- mutant cells, although the microtubule minus-end-directed motion of lysosomes was not affected. We found the point mutations that make kinesin motor in strong binding state with microtubules in vitro and showed that this mutant causes a dominant effect that selectively blocks anterograde lysosome membrane transports in vivo. PMID:7490281

  11. Specific binding of the replication protein of plasmid pPS10 to direct and inverted repeats is mediated by an HTH motif.

    PubMed Central

    García de Viedma, D; Serrano-López, A; Díaz-Orejas, R

    1995-01-01

    The initiator protein of the plasmid pPS10, RepA, has a putative helix-turn-helix (HTH) motif at its C-terminal end. RepA dimers bind to an inverted repeat at the repA promoter (repAP) to autoregulate RepA synthesis. [D. García de Viedma, et al. (1996) EMBO J. in press]. RepA monomers bind to four direct repeats at the origin of replication (oriV) to initiate pPS10 replication This report shows that randomly generated mutations in RepA, associated with defficiencies in autoregulation, map either at the putative HTH motif or in its vicinity. These mutant proteins do not promote pPS10 replication and are severely affected in binding to both the repAP and oriV regions in vitro. Revertants of a mutant that map in the vicinity of the HTH motif have been obtained and correspond to a second amino acid substitution far upstream of the motif. However, reversion of mutants that map in the helices of the motif occurs less frequently, at least by an order of magnitude. All these data indicate that the helices of the HTH motif play an essential role in specific RepA-DNA interactions, although additional regions also seem to be involved in DNA binding activity. Some mutations have slightly different effects in replication and autoregulation, suggesting that the role of the HTH motif in the interaction of RepA dimers or monomers with their respective DNA targets (IR or DR) is not the same. Images PMID:8559664

  12. Identification of the Catalytic Ubiquinone-binding Site of Vibrio cholerae Sodium-dependent NADH Dehydrogenase: A NOVEL UBIQUINONE-BINDING MOTIF.

    PubMed

    Tuz, Karina; Li, Chen; Fang, Xuan; Raba, Daniel A; Liang, Pingdong; Minh, David D L; Juárez, Oscar

    2017-02-17

    The sodium-dependent NADH dehydrogenase (Na(+)-NQR) is a key component of the respiratory chain of diverse prokaryotic species, including pathogenic bacteria. Na(+)-NQR uses the energy released by electron transfer between NADH and ubiquinone (UQ) to pump sodium, producing a gradient that sustains many essential homeostatic processes as well as virulence factor secretion and the elimination of drugs. The location of the UQ binding site has been controversial, with two main hypotheses that suggest that this site could be located in the cytosolic subunit A or in the membrane-bound subunit B. In this work, we performed alanine scanning mutagenesis of aromatic residues located in transmembrane helices II, IV, and V of subunit B, near glycine residues 140 and 141. These two critical glycine residues form part of the structures that regulate the site's accessibility. Our results indicate that the elimination of phenylalanine residue 211 or 213 abolishes the UQ-dependent activity, produces a leak of electrons to oxygen, and completely blocks the binding of UQ and the inhibitor HQNO. Molecular docking calculations predict that UQ interacts with phenylalanine 211 and pinpoints the location of the binding site in the interface of subunits B and D. The mutagenesis and structural analysis allow us to propose a novel UQ-binding motif, which is completely different compared with the sites of other respiratory photosynthetic complexes. These results are essential to understanding the electron transfer pathways and mechanism of Na(+)-NQR catalysis.

  13. Identification of the bioactive and consensus peptide motif from Momordica charantia insulin receptor-binding protein.

    PubMed

    Lo, Hsin-Yi; Li, Chia-Cheng; Ho, Tin-Yun; Hsiang, Chien-Yun

    2016-08-01

    Many food bioactive peptides with diverse functions have been discovered by studying plant proteins. We have previously identified a 68-residue insulin receptor (IR)-binding protein (mcIRBP) from Momordica charantia that exhibits hypoglycemic effects in mice via interaction with IR. By in vitro digestion, we found that mcIRBP-19, spanning residues 50-68 of mcIRBP, enhanced the binding of insulin to IR, stimulated the phosphorylation of PDK1 and Akt, induced the expression of glucose transporter 4, and stimulated both the uptake of glucose in cells and the clearance of glucose in diabetic mice. Furthermore, mcIRBP-19 homologs were present in various plants and shared similar β-hairpin structures and IR kinase-activating abilities to mcIRBP-19. In conclusion, our findings suggested that mcIRBP-19 is a blood glucose-lowering bioactive peptide that exhibits IR-binding potentials. Moreover, we newly identified novel IR-binding bioactive peptides in various plants which belonged to different taxonomic families.

  14. Isolation of a gene encoding a developmentally regulated T cell-specific protein with a guanine nucleotide triphosphate-binding motif

    SciTech Connect

    Carlow, D.A.; Teh, H.S.; Marth, J.

    1995-02-15

    In this study, we describe a novel full length cDNA clone designated Tgtp that encodes a predicted 415-amino acid a T cell-specific guanine nucleotide triphosphate-binding protein (TGTP) bearing the characteristic motifs of a guanine nucleotide triphosphate (GTP) binding protein. Tgtp is expressed preferentially, if not exclusively, in T cells, and is up-regulated in both unfractionated and in purified CD4{sup +}8{sup +} thymocytes upon TCR cross-linking. In contrast, expression of Tgtp in peripheral T cells is maintained at relatively high levels and is not grossly affected by TCR cross-linking. Antiserum generated against synthetic peptides from the predicted TGTP amino acid sequence recognized a single protein with a molecular mass of {approx}50 kDa, corresponding well with the computed molecular mass of 47 kDa. The only known relative of Tgtp is MUSGTP, which is reportedly expressed in B cells and bears a GTP binding motif. Thus, the discovery of Tgtp resolves a subfamily of molecules with GTP binding motifs and apparent lymphoid lineage-restricted expression. Given the restricted expression pattern in T cells, the up-regulated expression observed in response to TCR signaling in immature thymocytes, and the presence of the motifs characteristic of GTP binding proteins, we suggest that TGTP may have an important function in T cell development and/or T cell activation. 51 refs., 6 figs.

  15. IFNγ-induced suppression of β-catenin signaling: evidence for roles of Akt and 14.3.3ζ

    PubMed Central

    Nava, Porfirio; Kamekura, Ryuta; Quirós, Miguel; Medina-Contreras, Oscar; Hamilton, Ross W.; Kolegraff, Keli N.; Koch, Stefan; Candelario, Aurora; Romo-Parra, Hector; Laur, Oskar; Hilgarth, Roland S.; Denning, Timothy L.; Parkos, Charles A.; Nusrat, Asma

    2014-01-01

    The proinflammatory cytokine interferon γ (IFNγ ) influences intestinal epithelial cell (IEC) homeostasis in a biphasic manner by acutely stimulating proliferation that is followed by sustained inhibition of proliferation despite continued mucosal injury. β-Catenin activation has been classically associated with increased IEC proliferation. However, we observed that IFNγ inhibits IEC proliferation despite sustained activation of Akt/β-catenin signaling. Here we show that inhibition of Akt/β-catenin–mediated cell proliferation by IFNγ is associated with the formation of a protein complex containing phosphorylated β-catenin 552 (pβ-cat552) and 14.3.3ζ. Akt1 served as a bimodal switch that promotes or inhibits β-catenin transactivation in response to IFNγ stimulation. IFNγ initially promotes β-catenin transactivation through Akt-dependent C-terminal phosphorylation of β-catenin to promote its association with 14.3.3ζ. Augmented β-catenin transactivation leads to increased Akt1 protein levels, and active Akt1 accumulates in the nucleus, where it phosphorylates 14.3.3ζ to translocate 14.3.3ζ/β-catenin from the nucleus, thereby inhibiting β-catenin transactivation and IEC proliferation. These results outline a dual function of Akt1 that suppresses IEC proliferation during intestinal inflammation. PMID:25079689

  16. A Plasmodium falciparum copper-binding membrane protein with copper transport motifs

    PubMed Central

    2012-01-01

    Background Copper is an essential catalytic co-factor for metabolically important cellular enzymes, such as cytochrome-c oxidase. Eukaryotic cells acquire copper through a copper transport protein and distribute intracellular copper using molecular chaperones. The copper chelator, neocuproine, inhibits Plasmodium falciparum ring-to-trophozoite transition in vitro, indicating a copper requirement for malaria parasite development. How the malaria parasite acquires or secretes copper still remains to be fully elucidated. Methods PlasmoDB was searched for sequences corresponding to candidate P. falciparum copper-requiring proteins. The amino terminal domain of a putative P. falciparum copper transport protein was cloned and expressed as a maltose binding fusion protein. The copper binding ability of this protein was examined. Copper transport protein-specific anti-peptide antibodies were generated in chickens and used to establish native protein localization in P. falciparum parasites by immunofluorescence microscopy. Results Six P. falciparum copper-requiring protein orthologs and a candidate P. falciparum copper transport protein (PF14_0369), containing characteristic copper transport protein features, were identified in PlasmoDB. The recombinant amino terminal domain of the transport protein bound reduced copper in vitro and within Escherichia coli cells during recombinant expression. Immunolocalization studies tracked the copper binding protein translocating from the erythrocyte plasma membrane in early ring stage to a parasite membrane as the parasites developed to schizonts. The protein appears to be a PEXEL-negative membrane protein. Conclusion Plasmodium falciparum parasites express a native protein with copper transporter characteristics that binds copper in vitro. Localization of the protein to the erythrocyte and parasite plasma membranes could provide a mechanism for the delivery of novel anti-malarial compounds. PMID:23190769

  17. Supramolecular Polymers with Multiple Types of Binding Motifs: From Fundamental Studies to Multifunctional Materials

    DTIC Science & Technology

    2015-07-10

    the goal of preparing multi-responsive polymer actuators, we have incorporated liquid crystalline metal-binding Bip monomers into polymeric networks...SECURITY CLASSIFICATION OF: This research project is focused on the development and investigation of a new class of multi-stimuli-responsive polymers ...studies metallo and hydrogen bonded supramolecular polymers that exhibit defect healing characteristics and multi- 1. REPORT DATE (DD-MM-YYYY) 4

  18. Unique motifs and hydrophobic interactions shape the binding of modified DNA ligands to protein targets

    PubMed Central

    Davies, Douglas R.; Gelinas, Amy D.; Zhang, Chi; Rohloff, John C.; Carter, Jeffrey D.; O’Connell, Daniel; Waugh, Sheela M.; Wolk, Steven K.; Mayfield, Wesley S.; Burgin, Alex B.; Edwards, Thomas E.; Stewart, Lance J.; Gold, Larry; Janjic, Nebojsa; Jarvis, Thale C.

    2012-01-01

    Selection of aptamers from nucleic acid libraries by in vitro evolution represents a powerful method of identifying high-affinity ligands for a broad range of molecular targets. Nevertheless, a sizeable fraction of proteins remain difficult targets due to inherently limited chemical diversity of nucleic acids. We have exploited synthetic nucleotide modifications that confer protein-like diversity on a nucleic acid scaffold, resulting in a new generation of binding reagents called SOMAmers (Slow Off-rate Modified Aptamers). Here we report a unique crystal structure of a SOMAmer bound to its target, platelet-derived growth factor B (PDGF-BB). The SOMAmer folds into a compact structure and exhibits a hydrophobic binding surface that mimics the interface between PDGF-BB and its receptor, contrasting sharply with mainly polar interactions seen in traditional protein-binding aptamers. The modified nucleotides circumvent the intrinsic diversity constraints of natural nucleic acids, thereby greatly expanding the structural vocabulary of nucleic acid ligands and considerably broadening the range of accessible protein targets. PMID:23139410

  19. Binding motifs of CBP2 a potential cell surface target for carcinoma cells.

    PubMed

    Sauk, J J; Coletta, R D; Norris, K; Hebert, C

    2000-05-01

    Previously we have shown (Hebert et al. [1999] J. Cell Biochem. 73:248-258) that among many cell lines the CBP2 gene product, Hsp47, eludes its retention receptor, erd2P, resulting in the appearance of Hsp47 on the cell surface associated with the tetraspanin protein CD9. Since Hsp47 possesses a highly restricted binding cleft, random peptide display libraries were used to characterize peptides binding to Hsp47 and then to target this protein on carcinoma cell lines in vitro. Comparison of the clones obtained from panning revealed little specific homology based on sequence alone. To determine whether carcinoma cells expressing Hsp47 could selectively take up the selected bacteriophages, traditional immunofluorescence and confocal microscopy were employed. These studies revealed that phage-displaying Hsp47 binding peptides bound to cell lines expressing Hsp47 and that the peptides were rapidly taken up to a location coincident with Hsp47 staining. These observations were confirmed by cytometric analyses. These data indicate that CBP2 product may provide a molecular target for chemotherapy and/or imaging of malignancies.

  20. LIN28 binds messenger RNAs at GGAGA motifs and regulates splicing factor abundance.

    PubMed

    Wilbert, Melissa L; Huelga, Stephanie C; Kapeli, Katannya; Stark, Thomas J; Liang, Tiffany Y; Chen, Stella X; Yan, Bernice Y; Nathanson, Jason L; Hutt, Kasey R; Lovci, Michael T; Kazan, Hilal; Vu, Anthony Q; Massirer, Katlin B; Morris, Quaid; Hoon, Shawn; Yeo, Gene W

    2012-10-26

    LIN28 is a conserved RNA-binding protein implicated in pluripotency, reprogramming, and oncogenesis. It was previously shown to act primarily by blocking let-7 microRNA (miRNA) biogenesis, but here we elucidate distinct roles of LIN28 regulation via its direct messenger RNA (mRNA) targets. Through crosslinking and immunoprecipitation coupled with high-throughput sequencing (CLIP-seq) in human embryonic stem cells and somatic cells expressing exogenous LIN28, we have defined discrete LIN28-binding sites in a quarter of human transcripts. These sites revealed that LIN28 binds to GGAGA sequences enriched within loop structures in mRNAs, reminiscent of its interaction with let-7 miRNA precursors. Among LIN28 mRNA targets, we found evidence for LIN28 autoregulation and also direct but differing effects on the protein abundance of splicing regulators in somatic and pluripotent stem cells. Splicing-sensitive microarrays demonstrated that exogenous LIN28 expression causes widespread downstream alternative splicing changes. These findings identify important regulatory functions of LIN28 via direct mRNA interactions.

  1. LIN28 binds messenger RNAs at GGAGA motifs and regulates splicing factor abundance

    PubMed Central

    Wilbert, Melissa L.; Huelga, Stephanie C.; Kapeli, Katannya; Stark, Thomas J.; Liang, Tiffany Y.; Chen, Stella X.; Yan, Bernice Y.; Nathanson, Jason L.; Hutt, Kasey R.; Lovci, Michael T.; Kazan, Hilal; Vu, Anthony Q; Massirer, Katlin B.; Morris, Quaid; Hoon, Shawn; Yeo, Gene W.

    2012-01-01

    SUMMARY LIN28 is a conserved RNA binding protein implicated in pluripotency, reprogramming and oncogenesis. Previously shown to act primarily by blocking let-7 microRNA (miRNA) biogenesis, here we elucidate distinct roles of LIN28 regulation via its direct messenger RNA (mRNA) targets. Through cross-linking and immunoprecipitation coupled with high-throughput sequencing (CLIP-seq) in human embryonic stem cells and somatic cells expressing exogenous LIN28, we have defined discrete LIN28 binding sites in a quarter of human transcripts. These sites revealed that LIN28 binds to GGAGA sequences enriched within loop structures in mRNAs, reminiscent of its interaction with let-7 miRNA precursors. Among LIN28 mRNA targets, we found evidence for LIN28 autoregulation and also direct but differing effects on the protein abundance of splicing regulators in somatic and pluripotent stem cells. Splicing-sensitive microarrays demonstrated that exogenous LIN28 expression causes widespread downstream alternative splicing changes. These findings identify important regulatory functions of LIN28 via direct mRNA interactions. PMID:22959275

  2. Structure prediction of LDLR-HNP1 complex based on docking enhanced by LDLR binding 3D motif.

    PubMed

    Esmaielbeiki, Reyhaneh; Naughton, Declan P; Nebel, Jean-Christophe

    2012-04-01

    Human antimicrobial peptides (AMPs), including defensins, have come under intense scrutiny owing to their key multiple roles as antimicrobial agents. Not only do they display direct action on microbes, but also recently they have been shown to interact with the immune system to increase antimicrobial activity. Unfortunately, since mechanisms involved in the binding of AMPs to mammalian cells are largely unknown, their potential as novel anti-infective agents cannot be exploited yet. Following the reported interaction of Human Neutrophil Peptide 1 dimer (HNP1) with a low density lipoprotein receptor (LDLR), a computational study was conducted to discover their putative mode of interaction. State-of-the-art docking software produced a set of LDLR-HNP1 complex 3D models. Creation of a 3D motif capturing atomic interactions of the LDLR binding interface allowed selection of the most plausible configurations. Eventually, only two models were in agreement with the literature. Binding energy estimations revealed that only one of them is particularly stable, but also interaction with LDLR weakens significantly bonds within the HNP1 dimer. This may be significant since it suggests a mechanism for internalisation of HNP1 in mammalian cells. In addition to a novel approach for complex structure prediction, this study proposes a 3D model of the LDLR-HNP1 complex which highlights the key residues which are involved in the interactions. The putative identification of the receptor binding mechanism should inform the future design of synthetic HNPs to afford maximum internalisation, which could lead to novel anti-infective drugs.

  3. Involvement of 14-3-3 protein GRF9 in root growth and response under polyethylene glycol-induced water stress.

    PubMed

    He, Yuchi; Wu, Jingjing; Lv, Bing; Li, Jia; Gao, Zhiping; Xu, Weifeng; Baluška, František; Shi, Weiming; Shaw, Pang Chui; Zhang, Jianhua

    2015-04-01

    Plant 14-3-3 proteins are phosphoserine-binding proteins that regulate a wide array of targets via direct protein-protein interactions. In this study, the role of a 14-3-3 protein, GRF9, in plant response to water stress was investigated. Arabidopsis wild-type, GRF9-deficient mutant (grf9), and GRF9-overexpressing (OE) plants were treated with polyethylene glycol (PEG) to induce mild water stress. OE plant showed better whole-plant growth and root growth than the wild type under normal or water stress conditions while the grf9 mutant showed worse growth. In OE plants, GRF9 favours the allocation of shoot carbon to roots. In addition, GRF9 enhanced proton extrusion, mainly in the root elongation zone and root hair zone, and maintained root growth under mild water stress. Grafting among the wild type, OE, and grf9 plants showed that when OE plants were used as the scion and GRF9 was overexpressed in the shoot, it enhanced sucrose transport into the root, and when OE plants were used as rootstock and GRF9 was overexpressed in the root, it caused more release of protons into the root surface under water stress. Taken together, the results suggest that under PEG-induced water stress, GRF9 is involved in allocating more carbon from the shoot to the root and enhancing proton secretion in the root growing zone, and this process is important for root response to mild water stress.

  4. Protein kinase CK2 interacts at the neuromuscular synapse with Rapsyn, Rac1, 14-3-3γ, and Dok-7 proteins and phosphorylates the latter two.

    PubMed

    Herrmann, Dustin; Straubinger, Marion; Hashemolhosseini, Said

    2015-09-11

    Previously, we demonstrated that the protein kinase CK2 associates with and phosphorylates the receptor tyrosine kinase MuSK (muscle specific receptor tyrosine kinase) at the neuromuscular junction (NMJ), thereby preventing fragmentation of the NMJs (Cheusova, T., Khan, M. A., Schubert, S. W., Gavin, A. C., Buchou, T., Jacob, G., Sticht, H., Allende, J., Boldyreff, B., Brenner, H. R., and Hashemolhosseini, S. (2006) Genes Dev. 20, 1800-1816). Here, we asked whether CK2 interacts with other proteins involved in processes at the NMJ, which would be consistent with the previous observation that CK2 appears enriched at the NMJ. We identified the following proteins to interact with protein kinase CK2: (a) the α and β subunits of the nicotinic acetylcholine receptors with weak interaction, (b) dishevelled (Dsh), and (c) another four proteins, Rapsyn, Rac1, 14-3-3γ, and Dok-7, with strong interaction. CK2 phosphorylated 14-3-3γ at serine residue 235 and Dok-7 at several serine residues but does not phosphorylate Rapsyn or Rac1. Furthermore, phosphomimetic Dok-7 mutants aggregated nicotinic acetylcholine receptors in C2C12 myotubes with significantly higher frequency than wild type Dok-7. Additionally, we mapped the interacting epitopes of all four binding partners to CK2 and thereby gained insights into the potential role of the CK2/Rapsyn interaction.

  5. IκB kinase-induced interaction of TPL-2 kinase with 14-3-3 is essential for Toll-like receptor activation of ERK-1 and -2 MAP kinases

    PubMed Central

    Ben-Addi, Abduelhakem; Mambole-Dema, Agnes; Brender, Christine; Martin, Stephen R.; Janzen, Julia; Kjaer, Sven; Smerdon, Stephen J.; Ley, Steven C.

    2014-01-01

    The MEK-1/2 kinase TPL-2 is critical for Toll-like receptor activation of the ERK-1/2 MAP kinase pathway during inflammatory responses, but it can transform cells following C-terminal truncation. IκB kinase (IKK) complex phosphorylation of the TPL-2 C terminus regulates full-length TPL-2 activation of ERK-1/2 by a mechanism that has remained obscure. Here, we show that TPL-2 Ser-400 phosphorylation by IKK and TPL-2 Ser-443 autophosphorylation cooperated to trigger TPL-2 association with 14-3-3. Recruitment of 14-3-3 to the phosphorylated C terminus stimulated TPL-2 MEK-1 kinase activity, which was essential for TPL-2 activation of ERK-1/2. The binding of 14-3-3 to TPL-2 was also indispensible for lipopolysaccharide-induced production of tumor necrosis factor by macrophages, which is regulated by TPL-2 independently of ERK-1/2 activation. Our data identify a key step in the activation of TPL-2 signaling and provide a mechanistic insight into how C-terminal deletion triggers the oncogenic potential of TPL-2 by rendering its kinase activity independent of 14-3-3 binding. PMID:24912162

  6. Inhibition of CIN85-Mediated Invasion by a Novel SH3 Domain Binding Motif in the Lysyl Oxidase Propeptide

    PubMed Central

    Sato, Seiichi; Zhao, Yingshe; Imai, Misa; Simister, Philip C.; Feller, Stephan M.; Trackman, Philip C.; Kirsch, Kathrin H.; Sonenshein, Gail E.

    2013-01-01

    The lysyl oxidase gene inhibits Ras signaling in transformed fibroblasts and breast cancer cells. Its activity was mapped to the 162 amino acid propeptide domain (LOX-PP) of the lysyl oxidase precursor protein. LOX-PP inhibited the Her-2/Ras signaling axis in breast cancer cells, and reduced the Her-2-driven breast tumor burden in a xenograft model. Since its mechanism of action is largely unknown, co-affinity-purification/mass spectrometry was performed and the “Cbl-interacting protein of 85-kDa” (CIN85) identified as an associating protein. CIN85 is an SH3-containing adapter protein that is overexpressed in invasive breast cancers. The CIN85 SH3 domains interact with c-Cbl, an E3 ubiquitin ligase, via an unconventional PxxxPR ligand sequence, with the highest affinity displayed by the SH3-B domain. Interaction with CIN85 recruits c-Cbl to the AMAP1 complex where its ubiquitination activity is necessary for cancer cells to develop an invasive phenotype and to degrade the matrix. Direct interaction of LOX-PP with CIN85 was confirmed using co-immunoprecipitation analysis of lysates from breast cancer cells and of purified expressed proteins. CIN85 interaction with c-Cbl was reduced by LOX-PP. Domain specific CIN85 regions and deletion mutants of LOX-PP were prepared and used to map the sites of interaction to the SH3-B domain of CIN85 and to an epitope encompassing amino acids 111 to 116 of LOX-PP. Specific LOX-PP point mutant proteins P111A and R116A failed to interact with CIN85 or to compete for CIN85 binding with c-Cbl. Structural modeling identified a new atypical PxpxxRh SH3-binding motif in this region of LOX-PP. The LOX-PP interaction with CIN85 was shown to reduce the invasive phenotype of breast cancer cells, including their ability to degrade the surrounding extracellular matrix and for Matrigel outgrowth. Thus, LOX-PP interacts with CIN85 via a novel SH3-binding motif and this association reduces CIN85-promoted invasion by breast cancer cells. PMID

  7. The structure of the translational initiation factor IF1 from E.coli contains an oligomer-binding motif.

    PubMed Central

    Sette, M; van Tilborg, P; Spurio, R; Kaptein, R; Paci, M; Gualerzi, C O; Boelens, R

    1997-01-01

    The structure of the translational initiation factor IF1 from Escherichia coli has been determined with multidimensional NMR spectroscopy. Using 1041 distance and 78 dihedral constraints, 40 distance geometry structures were calculated, which were refined by restrained molecular dynamics. From this set, 19 structures were selected, having low constraint energy and few constraint violations. The ensemble of 19 structures displays a root-mean-square deviation versus the average of 0.49 A for the backbone atoms and 1.12 A for all atoms for residues 6-36 and 46-67. The structure of IF1 is characterized by a five-stranded beta-barrel. The loop connecting strands three and four contains a short 3(10) helix but this region shows considerably higher flexibility than the beta-barrel. The fold of IF1 is very similar to that found in the bacterial cold shock proteins CspA and CspB, the N-terminal domain of aspartyl-tRNA synthetase and the staphylococcal nuclease, and can be identified as the oligomer-binding motif. Several proteins of this family are nucleic acid-binding proteins. This suggests that IF1 plays its role in the initiation of protein synthesis by nucleic acid interactions. Specific changes of NMR signals of IF1 upon titration with 30S ribosomal subunit identifies several residues that are involved in the interaction with ribosomes. PMID:9135158

  8. Identification of a positively evolving putative binding region with increased variability in posttranslational motifs in zonadhesin MAM domain 2.

    PubMed

    Herlyn, Holger; Zischler, Hans

    2005-10-01

    Positive selection has been shown to be pervasive in sex-related proteins of many metazoan taxa. However, we are only beginning to understand molecular evolutionary processes on the lineage to humans. To elucidate the evolution of proteins involved in human reproduction, we studied the sequence evolution of MAM domains of the sperm-ligand zonadhesin in respect to single amino acid sites, solvent accessibility, and posttranslational modification. GenBank-data were supplemented by new cDNA-sequences of a representative non-human primate panel. Solvent accessibility predictions identified a probably exposed fragment of 30 amino acids belonging to MAM domain 2 (i.e., MAM domain 3 in mouse). The fragment is characterized by significantly increased rate of positively selected amino acid sites and exhibits high variability in predicted posttranslational modification, and, thus, might represent a binding region in the mature protein. At the same time, there is a significant coincidence of positively selected amino acid sites and non-conserved posttranslational motifs. We conclude that the binding specificity of zonadhesin MAM domains, especially of the presumed epitope, is achieved by positive selection at the level of single amino acid sites and posttranslational modifications, respectively.

  9. The SH3 regulatory domain of the hematopoietic cell kinase Hck binds ELMO via its polyproline motif

    PubMed Central

    Awad, Rida; Marion, Sévajol; Isabel, Ayala; Anne, Chouquet; Philippe, Frachet; Pierre, Gans; Jean-Baptiste, Reiser; Jean-Philippe, Kleman

    2015-01-01

    Eukaryotic EnguLfment and cell MOtility (ELMO) proteins form an evolutionary conserved family of regulators involved in small GTPase dependent actin remodeling processes that regulates the guanine exchange factor activity of some of the Downstream Of CrK (DOCK) family members. Gathered data strongly suggest that DOCK activation by ELMO and the subsequent signaling result from a subtle balance in the binding of partners to ELMO. Among its putative upward modulators, the Hematopoietic cell kinase (Hck), a member of the Src kinase superfamily, has been identified as a binding partner and a specific tyrosine kinase for ELMO1. Indeed, Hck is implicated in distinct molecular signaling pathways governing phagocytosis, cell adhesion, and migration of hematopoietic cells. Although ELMO1 has been shown to interact with the regulatory Src Homology 3 (SH3) domain of Hck, no direct evidence indicating the mode of interaction between Hck and ELMO1 have been provided in the literature. In the present study, we report convergent pieces of evidence that demonstrate the specific interaction between the SH3 domain of Hck and the polyproline motif of ELMO1. Our results also suggest that the tyrosine-phosphorylation state of ELMO1 tail might act as a putative modulator of Hck kinase activity towards ELMO1 that in turn participates in DOCK180 activation and further triggers subsequent signaling towards actin remodeling. PMID:25737835

  10. Recruitment of RNA molecules by connexin RNA-binding motifs: Implication in RNA and DNA transport through microvesicles and exosomes.

    PubMed

    Varela-Eirin, Marta; Varela-Vazquez, Adrian; Rodríguez-Candela Mateos, Marina; Vila-Sanjurjo, Anton; Fonseca, Eduardo; Mascareñas, José L; Eugenio Vázquez, M; Mayan, Maria D

    2017-04-01

    Connexins (Cxs) are integral membrane proteins that form high-conductance plasma membrane channels, allowing communication from cell to cell (via gap junctions) and from cells to the extracellular environment (via hemichannels). Initially described for their role in joining excitable cells (nerve and muscle), gap junctions (GJs) are found between virtually all cells in solid tissues and are essential for functional coordination by enabling the direct transfer of small signalling molecules, metabolites, ions, and electrical signals from cell to cell. Several studies have revealed diverse channel-independent functions of Cxs, which include the control of cell growth and tumourigenicity. Connexin43 (Cx43) is the most widespread Cx in the human body. The myriad roles of Cx43 and its implication in the development of disorders such as cancer, inflammation, osteoarthritis and Alzheimer's disease have given rise to many novel questions. Several RNA- and DNA-binding motifs were predicted in the Cx43 and Cx26 sequences using different computational methods. This review provides insights into new, ground-breaking functions of Cxs, highlighting important areas for future work such as transfer of genetic information through extracellular vesicles. We discuss the implication of potential RNA- and DNA-binding domains in the Cx43 and Cx26 sequences in the cellular communication and control of signalling pathways.

  11. Despite a Conserved Cystine Knot Motif, Different Cyclotides Have Different Membrane Binding Modes

    PubMed Central

    Wang, Conan K.; Colgrave, Michelle L.; Ireland, David C.; Kaas, Quentin; Craik, David J.

    2009-01-01

    Abstract Cyclotides are cyclic proteins produced by plants for defense against pests. Because of their remarkable stability and diverse bioactivities, they have a range of potential therapeutic applications. The bioactivities of cyclotides are believed to be mediated through membrane interactions. To determine the structural basis for the biological activity of the two major subfamilies of cyclotides, we determined the conformation and orientation of kalata B2 (kB2), a Möbius cyclotide, and cycloviolacin O2 (cO2), a bracelet cyclotide, bound to dodecylphosphocholine micelles, using NMR spectroscopy in the presence and absence of 5- and 16-doxylstearate relaxation probes. Analysis of binding curves using the Langmuir isotherm indicated that cO2 and kB2 have association constants of 7.0 × 103 M−1 and 6.0 × 103 M−1, respectively, consistent with the notion that they are bound near the surface, rather than buried deeply within the micelle. This suggestion is supported by the selective broadening of micelle-bound cyclotide NMR signals upon addition of paramagnetic Mn ions. The cyclotides from the different subfamilies exhibited clearly different binding orientations at the micelle surface. Structural analysis of cO2 confirmed that the main element of the secondary structure is a β-hairpin centered in loop 5. A small helical turn is present in loop 3. Analysis of the surface profile of cO2 shows that a hydrophobic patch stretches over loops 2 and 3, in contrast to the hydrophobic patch of kB2, which predominantly involves loops 2 and 5. The different location of the hydrophobic patches in the two cyclotides explains their different binding orientations and provides an insight into the biological activities of cyclotides. PMID:19720036

  12. A Conserved Phenylalanine of Motif IV in Superfamily 2 Helicases Is Required for Cooperative, ATP-Dependent Binding of RNA Substrates in DEAD-Box Proteins▿ †

    PubMed Central

    Banroques, Josette; Cordin, Olivier; Doère, Monique; Linder, Patrick; Tanner, N. Kyle

    2008-01-01

    We have identified a highly conserved phenylalanine in motif IV of the DEAD-box helicases that is important for their enzymatic activities. In vivo analyses of essential proteins in yeast showed that mutants of this residue had severe growth phenotypes. Most of the mutants also were temperature sensitive, which suggested that the mutations altered the conformational stability. Intragenic suppressors of the F405L mutation in yeast Ded1 mapped close to regions of the protein involved in ATP or RNA binding in DEAD-box crystal structures, which implicated a defect at this level. In vitro experiments showed that these mutations affected ATP binding and hydrolysis as well as strand displacement activity. However, the most pronounced effect was the loss of the ATP-dependent cooperative binding of the RNA substrates. Sequence analyses and an examination of the Protein Data Bank showed that the motif IV phenylalanine is conserved among superfamily 2 helicases. The phenylalanine appears to be an anchor that maintains the rigidity of the RecA-like domain. For DEAD-box proteins, the phenylalanine also aligns a highly conserved arginine of motif VI through van der Waals and cation-π interactions, thereby helping to maintain the network of interactions that exist between the different motifs involved in ATP and RNA binding. PMID:18332124

  13. A large displacement of the SXN motif of Cys115-modified penicillin-binding protein 5 from Escherichia coli

    PubMed Central

    2005-01-01

    Penicillin-binding proteins (PBPs), which are the lethal targets of β-lactam antibiotics, catalyse the final stages of peptidoglycan biosynthesis of the bacterial cell wall. PBP 5 of Escherichia coli is a D-alanine CPase (carboxypeptidase) that has served as a useful model to elucidate the catalytic mechanism of low-molecular-mass PBPs. Previous studies have shown that modification of Cys115 with a variety of reagents results in a loss of CPase activity and a large decrease in the rate of deacylation of the penicilloyl–PBP 5 complex [Tamura, Imae and Strominger (1976) J. Biol. Chem. 251, 414–423; Curtis and Strominger (1978) J. Biol. Chem. 253, 2584–2588]. The crystal structure of wild-type PBP 5 in which Cys115 fortuitously had formed a covalent adduct with 2-mercaptoethanol was solved at 2.0 Å (0.2 nm) resolution, and these results provide a structural rationale for how thiol-directed reagents lower the rate of deacylation. When compared with the structure of the unmodified wild-type enzyme, a major change in the architecture of the active site is observed. The two largest differences are the disordering of a loop comprising residues 74–90 and a shift in residues 106–111, which results in the displacement of Ser110 of the SXN active-site motif. These results support the developing hypothesis that the SXN motif of PBP 5, and especially Ser110, is intimately involved in the catalytic mechanism of deacylation. PMID:16038617

  14. Guidelines for choosing molecular "alligator clip" binding motifs in electron transport devices

    NASA Astrophysics Data System (ADS)

    Reuter, Matthew G.; Seideman, Tamar; Ratner, Mark A.

    2011-04-01

    We employ a one-electron, tight-binding model of an electrode-molecule-electrode junction to explore the fundamental relationship between adsorption geometry and electron transport, producing exact results (within this model). By varying the chemisorption location (e.g., atop a surface atom or in a hollow site between surface atoms) and the molecule-electrode coupling, we find that the largest currents are realized when the molecule (i) is highly coordinated by the surface and (ii) has favorable overlap with electrode states near the Fermi level. We also show the importance of electrode-induced molecular level shifting for certain adsorption geometries, which can cause molecular levels far from the Fermi level to conduct better than those near the Fermi level. Since all of these factors are greatly influenced by the chemical moiety used to link the molecule to an electrode, these results present a set of guidelines to help choose "alligator clips" for molecular electronic devices.

  15. A conserved motif in S-layer proteins is involved in peptidoglycan binding in Thermus thermophilus.

    PubMed Central

    Olabarría, G; Carrascosa, J L; de Pedro, M A; Berenguer, J

    1996-01-01

    There is experimental evidence to suggest that the 100-kDa S-layer protein from Thermus thermophilus HB8 binds to the peptidoglycan cell wall. This property could be related to the presence of a region (SLH) of homology with other S-layer proteins and extracellular enzymes (A. Lupas, H. Engelhardt, J. Peters, U. Santarius, S. Volker, and W. Baumeister, J. Bacteriol. 176:1224-1233, 1994). By using specific monoclonal antibodies, we show that similar regions are present in different members of the Deinococcus-Thermus phylogenetic group. To analyze the role that the SLH domain plays in vivo and in vitro in T. thermophilus, we have obtained a mutant form (slpA.X) of the S-layer gene (slpA) in which the SLH domain was deleted. The slpA.X gene was inserted into the chromosome of the thermophile by gene replacement, resulting in a mutant which expressed a major membrane protein with the size expected from the construction (90 kDa). This protein was identified as the product of slpA.X by its differential reaction with monoclonal antibodies. Mutants expressing the SlpA.X protein grow as groups of cells, surrounded by a common external envelope of trigonal symmetry that contains the SlpA.X protein as a main component, thus showing the inability of the SLH-defective protein to attach to the underlying material in vivo. In addition, averaged images of SlpA.X-rich fractions showed a regular arrangement, identical to that built up by the wild-type (SlpA) protein in the absence of peptidoglycan. Finally, we demonstrate by Western blotting (immunoblotting) the direct role of the SLH domain in the binding of the S-layer of T. thermophilus HB8 to the peptidoglycan layer. PMID:8759836

  16. Identification of a novel calcium binding motif based on the detection of sequence insertions in the animal peroxidase domain of bacterial proteins.

    PubMed

    Santamaría-Hernando, Saray; Krell, Tino; Ramos-González, María-Isabel

    2012-01-01

    Proteins of the animal heme peroxidase (ANP) superfamily differ greatly in size since they have either one or two catalytic domains that match profile PS50292. The orf PP_2561 of Pseudomonas putida KT2440 that we have called PepA encodes a two-domain ANP. The alignment of these domains with those of PepA homologues revealed a variable number of insertions with the consensus G-x-D-G-x-x-[GN]-[TN]-x-D-D. This motif has also been detected in the structure of pseudopilin (pdb 3G20), where it was found to be involved in Ca(2+) coordination although a sequence analysis did not reveal the presence of any known calcium binding motifs in this protein. Isothermal titration calorimetry revealed that a peptide containing this consensus motif bound specifically calcium ions with affinities ranging between 33-79 µM depending on the pH. Microcalorimetric titrations of the purified N-terminal ANP-like domain of PepA revealed Ca(2+) binding with a K(D) of 12 µM and stoichiometry of 1.25 calcium ions per protein monomer. This domain exhibited peroxidase activity after its reconstitution with heme. These data led to the definition of a novel calcium binding motif that we have termed PERCAL and which was abundantly present in animal peroxidase-like domains of bacterial proteins. Bacterial heme peroxidases thus possess two different types of calcium binding motifs, namely PERCAL and the related hemolysin type calcium binding motif, with the latter being located outside the catalytic domains and in their C-terminal end. A phylogenetic tree of ANP-like catalytic domains of bacterial proteins with PERCAL motifs, including single domain peroxidases, was divided into two major clusters, representing domains with and without PERCAL motif containing insertions. We have verified that the recently reported classification of bacterial heme peroxidases in two families (cd09819 and cd09821) is unrelated to these insertions. Sequences matching PERCAL were detected in all kingdoms of life.

  17. The Ku-binding motif is a conserved module for recruitment and stimulation of non-homologous end-joining proteins

    PubMed Central

    Grundy, Gabrielle J.; Rulten, Stuart L.; Arribas-Bosacoma, Raquel; Davidson, Kathryn; Kozik, Zuzanna; Oliver, Antony W.; Pearl, Laurence H.; Caldecott, Keith W.

    2016-01-01

    The Ku-binding motif (KBM) is a short peptide module first identified in APLF that we now show is also present in Werner syndrome protein (WRN) and in Modulator of retrovirus infection homologue (MRI). We also identify a related but functionally distinct motif in XLF, WRN, MRI and PAXX, which we denote the XLF-like motif. We show that WRN possesses two KBMs; one at the N terminus next to the exonuclease domain and one at the C terminus next to an XLF-like motif. We reveal that the WRN C-terminal KBM and XLF-like motif function cooperatively to bind Ku complexes and that the N-terminal KBM mediates Ku-dependent stimulation of WRN exonuclease activity. We also show that WRN accelerates DSB repair by a mechanism requiring both KBMs, demonstrating the importance of WRN interaction with Ku. These data define a conserved family of KBMs that function as molecular tethers to recruit and/or stimulate enzymes during NHEJ. PMID:27063109

  18. ChIP-exo signal associated with DNA-binding motifs provides insight into the genomic binding of the glucocorticoid receptor and cooperating transcription factors

    PubMed Central

    Starick, Stephan R.; Ibn-Salem, Jonas; Jurk, Marcel; Hernandez, Céline; Love, Michael I.; Chung, Ho-Ryun; Vingron, Martin; Thomas-Chollier, Morgane; Meijsing, Sebastiaan H.

    2015-01-01

    The classical DNA recognition sequence of the glucocorticoid receptor (GR) appears to be present at only a fraction of bound genomic regions. To identify sequences responsible for recruitment of this transcription factor (TF) to individual loci, we turned to the high-resolution ChIP-exo approach. We exploited this signal by determining footprint profiles of TF binding at single-base-pair resolution using ExoProfiler, a computational pipeline based on DNA binding motifs. When applied to our GR and the few available public ChIP-exo data sets, we find that ChIP-exo footprints are protein- and recognition sequence-specific signatures of genomic TF association. Furthermore, we show that ChIP-exo captures information about TFs other than the one directly targeted by the antibody in the ChIP procedure. Consequently, the shape of the ChIP-exo footprint can be used to discriminate between direct and indirect (tethering to other DNA-bound proteins) DNA association of GR. Together, our findings indicate that the absence of classical recognition sequences can be explained by direct GR binding to a broader spectrum of sequences than previously known, either as a homodimer or as a heterodimer binding together with a member of the ETS or TEAD families of TFs, or alternatively by indirect recruitment via FOX or STAT proteins. ChIP-exo footprints also bring structural insights and locate DNA:protein cross-link points that are compatible with crystal structures of the studied TFs. Overall, our generically applicable footprint-based approach uncovers new structural and functional insights into the diverse ways of genomic cooperation and association of TFs. PMID:25720775

  19. Insights into the Activity and Substrate Binding of Xylella fastidiosa Polygalacturonase by Modification of a Unique QMK Amino Acid Motif Using Protein Chimeras

    PubMed Central

    Warren, Jeremy G.; Lincoln, James E.; Kirkpatrick, Bruce C.

    2015-01-01

    Polygalacturonases (EC 3.2.1.15) catalyze the random hydrolysis of 1, 4-alpha-D-galactosiduronic linkages in pectate and other galacturonans. Xylella fastidiosa possesses a single polygalacturonase gene, pglA (PD1485), and X. fastidiosa mutants deficient in the production of polygalacturonase are non-pathogenic and show a compromised ability to systemically infect grapevines. These results suggested that grapevines expressing sufficient amounts of an inhibitor of X. fastidiosa polygalacturonase might be protected from disease. Previous work in our laboratory and others have tried without success to produce soluble active X. fastidiosa polygalacturonase for use in inhibition assays. In this study, we created two enzymatically active X. fastidiosa / A. vitis polygalacturonase chimeras, AX1A and AX2A to explore the functionality of X. fastidiosa polygalacturonase in vitro. The AX1A chimera was constructed to specifically test if recombinant chimeric protein, produced in Escherichia coli, is soluble and if the X. fastidiosa polygalacturonase catalytic amino acids are able to hydrolyze polygalacturonic acid. The AX2A chimera was constructed to evaluate the ability of a unique QMK motif of X. fastidiosa polygalacturonase, most polygalacturonases have a R(I/L)K motif, to bind to and allow the hydrolysis of polygalacturonic acid. Furthermore, the AX2A chimera was also used to explore what effect modification of the QMK motif of X. fastidiosa polygalacturonase to a conserved RIK motif has on enzymatic activity. These experiments showed that both the AX1A and AX2A polygalacturonase chimeras were soluble and able to hydrolyze the polygalacturonic acid substrate. Additionally, the modification of the QMK motif to the conserved RIK motif eliminated hydrolytic activity, suggesting that the QMK motif is important for the activity of X. fastidiosa polygalacturonase. This result suggests X. fastidiosa polygalacturonase may preferentially hydrolyze a different pectic substrate or

  20. Insights into the Activity and Substrate Binding of Xylella fastidiosa Polygalacturonase by Modification of a Unique QMK Amino Acid Motif Using Protein Chimeras.

    PubMed

    Warren, Jeremy G; Lincoln, James E; Kirkpatrick, Bruce C

    2015-01-01

    Polygalacturonases (EC 3.2.1.15) catalyze the random hydrolysis of 1, 4-alpha-D-galactosiduronic linkages in pectate and other galacturonans. Xylella fastidiosa possesses a single polygalacturonase gene, pglA (PD1485), and X. fastidiosa mutants deficient in the production of polygalacturonase are non-pathogenic and show a compromised ability to systemically infect grapevines. These results suggested that grapevines expressing sufficient amounts of an inhibitor of X. fastidiosa polygalacturonase might be protected from disease. Previous work in our laboratory and others have tried without success to produce soluble active X. fastidiosa polygalacturonase for use in inhibition assays. In this study, we created two enzymatically active X. fastidiosa / A. vitis polygalacturonase chimeras, AX1A and AX2A to explore the functionality of X. fastidiosa polygalacturonase in vitro. The AX1A chimera was constructed to specifically test if recombinant chimeric protein, produced in Escherichia coli, is soluble and if the X. fastidiosa polygalacturonase catalytic amino acids are able to hydrolyze polygalacturonic acid. The AX2A chimera was constructed to evaluate the ability of a unique QMK motif of X. fastidiosa polygalacturonase, most polygalacturonases have a R(I/L)K motif, to bind to and allow the hydrolysis of polygalacturonic acid. Furthermore, the AX2A chimera was also used to explore what effect modification of the QMK motif of X. fastidiosa polygalacturonase to a conserved RIK motif has on enzymatic activity. These experiments showed that both the AX1A and AX2A polygalacturonase chimeras were soluble and able to hydrolyze the polygalacturonic acid substrate. Additionally, the modification of the QMK motif to the conserved RIK motif eliminated hydrolytic activity, suggesting that the QMK motif is important for the activity of X. fastidiosa polygalacturonase. This result suggests X. fastidiosa polygalacturonase may preferentially hydrolyze a different pectic substrate or

  1. Adhesive and Migratory Effects of Phosphophoryn Are Modulated by Flanking Peptides of the Integrin Binding Motif

    PubMed Central

    Suzuki, Shigeki; Kobuke, Seiji; Haruyama, Naoto; Hoshino, Hiroaki; Kulkarni, Ashok B.; Nishimura, Fusanori

    2014-01-01

    Phosphophoryn (PP) is generated from the proteolytic cleavage of dentin sialophosphoprotein (DSPP). Gene duplications in the ancestor dentin matrix protein-1 (DMP-1) genomic sequence created the DSPP gene in toothed animals. PP and DMP-1 are phosphorylated extracellular matrix proteins that belong to the family of small integrin-binding ligand N-linked glycoproteins (SIBLINGs). Many SIBLING members have been shown to evoke various cell responses through the integrin-binding Arg-Gly-Asp (RGD) domain; however, the RGD-dependent function of PP is not yet fully understood. We demonstrated that recombinant PP did not exhibit any obvious cell adhesion ability, whereas the simultaneously purified recombinant DMP-1 did. A cell adhesion inhibitory analysis was performed by pre-incubating human osteosarcoma MG63 cells with various PP peptides before seeding onto vitronectin. The results obtained revealed that the incorporation of more than one amino acid on both sides of the PP-RGD domain was unable to inhibit the adhesion of MG63 cells onto vitronectin. Furthermore, the inhibitory activity of a peptide containing the PP-RGD domain with an open carboxyl-terminal side (H-463SDESDTNSESANESGSRGDA482-OH) was more potent than that of a peptide containing the RGD domain with an open amino-terminal side (H-478SRGDASYTSDESSDDDNDSDSH499-OH). This phenomenon was supported by the potent cell adhesion and migration abilities of the recombinant truncated PP, which terminated with Ala482. Furthermore, various point mutations in Ala482 and/or Ser483 converted recombinant PP into cell-adhesive proteins. Therefore, we concluded that the Ala482-Ser483 flanking sequence, which was detected in primates and mice, was the key peptide bond that allowed the PP-RGD domain to be sequestered. The differential abilities of PP and DMP-1 to act on integrin imply that DSPP was duplicated from DMP-1 to serve as a crucial extracellular protein for tooth development rather than as an integrin

  2. Origin and evolution of a new exon of 14-3-3ξ in bees and phylogenetic analysis.

    PubMed

    Zhan, Leilei; Jiang, Chao

    2013-04-01

    Mutually exclusive splicing, one type of alternative splicing, involves selection of alternatively spliced exons arranged in tandem and creates protein products with substitution of one segment of the amino acid sequence for another. Previous studies revealed that exon 5 of 14-3-3ξ from Apis mellifera (western honeybee) had three mutually exclusive exons, while orthologous exon of Nasonia vitripennis (parasitic wasp) had only two, suggesting that cases of exon gain or loss might have happened during the evolution of hymenopteran species. In the current study, we annotated and analyzed the 14-3-3ξ genes from 20 hymenopteran species successfully, and the results of phylogenetic analysis revealed the presence of a new mutually exclusive exon in corbiculate bees. In addition, we found that duplication via staggered homologous recombination was responsible for the origin of the new exon.

  3. Self-association of the spindle pole body-related intermediate filament protein Fin1p and its phosphorylation-dependent interaction with 14-3-3 proteins in yeast.

    PubMed

    van Hemert, Martijn J; Deelder, André M; Molenaar, Chris; Steensma, H Yde; van Heusden, G Paul H

    2003-04-25

    The Fin1 protein of the yeast Saccharomyces cerevisiae forms filaments between the spindle pole bodies of dividing cells. In the two-hybrid system it binds to 14-3-3 proteins, which are highly conserved proteins involved in many cellular processes and which are capable of binding to more than 120 different proteins. Here, we describe the interaction of the Fin1 protein with the 14-3-3 proteins Bmh1p and Bmh2p in more detail. Purified Fin1p interacts with recombinant yeast 14-3-3 proteins. This interaction is strongly reduced after dephosphorylation of Fin1p. Surface plasmon resonance analysis showed that Fin1p has a higher affinity for Bmh2p than for Bmh1p (K(D) 289 versus 585 nm). Sequences in both the central and C-terminal part of Fin1p are required for the interaction with Bmh2p in the two-hybrid system. In yeast strains lacking 14-3-3 proteins Fin1 filament formation was observed, indicating that the 14-3-3 proteins are not required for this process. Fin1 also interacts with itself in the two-hybrid system. For this interaction sequences at the C terminus, containing one of two putative coiled-coil regions, are sufficient. Fin1p-Fin1p interactions were demonstrated in vivo by fluorescent resonance energy transfer between cyan fluorescent protein-labeled Fin1p and yellow fluorescent protein-labeled Fin1p.

  4. A CAF40-binding motif facilitates recruitment of the CCR4-NOT complex to mRNAs targeted by Drosophila Roquin

    PubMed Central

    Sgromo, Annamaria; Raisch, Tobias; Bawankar, Praveen; Bhandari, Dipankar; Chen, Ying; Kuzuoğlu-Öztürk, Duygu; Weichenrieder, Oliver; Izaurralde, Elisa

    2017-01-01

    Human (Hs) Roquin1 and Roquin2 are RNA-binding proteins that promote mRNA target degradation through the recruitment of the CCR4-NOT deadenylase complex and are implicated in the prevention of autoimmunity. Roquin1 recruits CCR4-NOT via a C-terminal region that is not conserved in Roquin2 or in invertebrate Roquin. Here we show that Roquin2 and Drosophila melanogaster (Dm) Roquin also interact with the CCR4-NOT complex through their C-terminal regions. The C-terminal region of Dm Roquin contains multiple motifs that mediate CCR4-NOT binding. One motif binds to the CAF40 subunit of the CCR4-NOT complex. The crystal structure of the Dm Roquin CAF40-binding motif (CBM) bound to CAF40 reveals that the CBM adopts an α-helical conformation upon binding to a conserved surface of CAF40. Thus, despite the lack of sequence conservation, the C-terminal regions of Roquin proteins act as an effector domain that represses the expression of mRNA targets via recruitment of the CCR4-NOT complex. PMID:28165457

  5. Identification of the Rps28 binding motif from yeast Edc3 involved in the autoregulatory feedback loop controlling RPS28B mRNA decay.

    PubMed

    Kolesnikova, Olga; Back, Régis; Graille, Marc; Séraphin, Bertrand

    2013-11-01

    In the yeast Saccharomyces cerevisiae, the Edc3 protein was previously reported to participate in the auto-regulatory feedback loop controlling the level of the RPS28B messenger RNA (mRNA). We show here that Edc3 binds directly and tightly to the globular core of Rps28 ribosomal protein. This binding occurs through a motif that is present exclusively in Edc3 proteins from yeast belonging to the Saccharomycetaceae phylum. Functional analyses indicate that the ability of Edc3 to interact with Rps28 is not required for its general function and for its role in the regulation of the YRA1 pre-mRNA decay. In contrast, this interaction appears to be exclusively required for the auto-regulatory mechanism controlling the RPS28B mRNA decay. These observations suggest a plausible model for the evolutionary appearance of a Rps28 binding motif in Edc3.

  6. 5-Hydroxymethylcytosine in E-box motifs ACAT|GTG and ACAC|GTG increases DNA-binding of the B-HLH transcription factor TCF4.

    PubMed

    Khund-Sayeed, Syed; He, Ximiao; Holzberg, Timothy; Wang, Jun; Rajagopal, Divya; Upadhyay, Shriyash; Durell, Stewart R; Mukherjee, Sanjit; Weirauch, Matthew T; Rose, Robert; Vinson, Charles

    2016-09-12

    We evaluated DNA binding of the B-HLH family members TCF4 and USF1 using protein binding microarrays (PBMs) containing double-stranded DNA probes with cytosine on both strands or 5-methylcytosine (5mC) or 5-hydroxymethylcytosine (5hmC) on one DNA strand and cytosine on the second strand. TCF4 preferentially bound the E-box motif (CAN|NTG) with strongest binding to the 8-mer CAG|GTGGT. 5mC uniformly decreases DNA binding of both TCF4 and USF1. The bulkier 5hmC also inhibited USF1 binding to DNA. In contrast, 5hmC dramatically enhanced TCF4 binding to E-box motifs ACAT|GTG and ACAC|GTG, being better bound than any 8-mer containing cytosine. Examination of X-ray structures of the closely related TCF3 and USF1 bound to DNA suggests TCF3 can undergo a conformational shift to preferentially bind to 5hmC while the USF1 basic region is bulkier and rigid precluding a conformation shift to bind 5hmC. These results greatly expand the regulatory DNA sequence landscape bound by TCF4.

  7. Mga, a dual-specificity transcription factor that interacts with Max and contains a T-domain DNA-binding motif.

    PubMed Central

    Hurlin, P J; Steingrìmsson, E; Copeland, N G; Jenkins, N A; Eisenman, R N

    1999-01-01

    The basic-helix-loop-helix-leucine zipper (bHLHZip) proteins Myc, Mad and Mnt are part of a transcription activation/repression system involved in the regulation of cell proliferation. The function of these proteins as transcription factors is mediated by heterodimerization with the small bHLHZip protein Max, which is required for their specific DNA binding to E-box sequences. We have identified a novel Max-interacting protein, Mga, which contains a Myc-like bHLHZip motif, but otherwise shows no relationship with Myc or other Max-interacting proteins. Like Myc, Mad and Mnt proteins, Mga requires heterodimerization with Max for binding to the preferred Myc-Max-binding site CACGTG. In addition to the bHLHZip domain, Mga contains a second DNA-binding domain: the T-box or T-domain. The T-domain is a highly conserved DNA-binding motif originally defined in Brachyury and characteristic of the Tbx family of transcription factors. Mga binds the preferred Brachyury-binding sequence and represses transcription of reporter genes containing promoter-proximal Brachyury-binding sites. Surprisingly, Mga is converted to a transcription activator of both Myc-Max and Brachyury site-containing reporters in a Max-dependent manner. Our results suggest that Mga functions as a dual-specificity transcription factor that regulates the expression of both Max-network and T-box family target genes. PMID:10601024

  8. The histidine of the c-type cytochrome CXXCH haem-binding motif is essential for haem attachment by the Escherichia coli cytochrome c maturation (Ccm) apparatus.

    PubMed

    Allen, James W A; Leach, Nicholas; Ferguson, Stuart J

    2005-07-15

    c-type cytochromes are characterized by covalent attachment of haem to the protein by two thioether bonds formed between the haem vinyl groups and the cysteine sulphurs in a CXXCH peptide motif. In Escherichia coli and many other Gram-negative bacteria, this post-translational haem attachment is catalysed by the Ccm (cytochrome c maturation) system. The features of the apocytochrome substrate required and recognized by the Ccm apparatus are uncertain. In the present study, we report investigations of maturation of cytochrome b562 variants containing CXXCR, CXXCK or CXXCM haem-binding motifs. None of them showed any evidence for correct maturation by the Ccm system. However, we have determined, for each variant, that the proteins (i) were expressed in large amounts, (ii) could bind haem in vivo and/or in vitro and (iii) were not degraded in the cell. Together with previous observations, these results strongly suggest that the apocytochrome substrate feature recognized by the Ccm system is simply the two cysteine residues and the histidine of the CXXCH haem-binding motif. Using the same experimental approach, we have also investigated a cytochrome b562 variant containing the special CWSCK motif that binds the active-site haem of E. coli nitrite reductase NrfA. Whereas a CWSCH analogue was matured by the Ccm apparatus in large amounts, the CWSCK form was not detectably matured either by the Ccm system or by the dedicated Nrf biogenesis proteins, implying that the substrate recognition features for haem attachment in NrfA may be more extensive than the CWSCK motif.

  9. Presence of calcium-binding motifs in PilY1 homologs correlates with Ca-mediated twitching motility and evolutionary history across diverse bacteria.

    PubMed

    Parker, Jennifer K; Cruz, Luisa F; Evans, Michael R; De La Fuente, Leonardo

    2015-02-01

    Twitching motility, involving type IV pili, is essential for host colonization and virulence of many pathogenic bacteria. Studies of PilY1, a tip-associated type IV pili protein, indicate that PilY1 functions as a switch between pilus extension and retraction, resulting in twitching motility. Recent work detected a calcium-binding motif in PilY1 of some animal bacterial pathogens and demonstrated that binding of calcium to PilY1 with this motif regulates twitching. Though studies of PilY1 in non-animal pathogens are limited, our group demonstrated that twitching motility in the plant pathogen Xylella fastidiosa, which contains three PilY1 homologs, is increased by calcium supplementation. A study was conducted to investigate the phylogenetic relationship between multiple PilY1 homologs, the presence of calcium-binding motifs therein, and calcium-mediated twitching motility across diverse bacteria. Strains analyzed contained one to three PilY1 homologs, but phylogenetic analyses indicated that PilY1 homologs containing the calcium-binding motif Dx[DN]xDGxxD are phylogenetically divergent from other PilY1 homologs. Plant-associated bacteria included in these analyses were then examined for a calcium-mediated twitching response. Results indicate that bacteria must have at least one PilY1 homolog containing the Dx[DN]xDGxxD motif to display a calcium-mediated increase in twitching motility, which likely reflects an adaption to environmental calcium concentrations.

  10. Modification of Titanium Substrates with Chimeric Peptides Comprising Antimicrobial and Titanium-Binding Motifs Connected by Linkers To Inhibit Biofilm Formation.

    PubMed

    Liu, Zihao; Ma, Shiqing; Duan, Shun; Xuliang, Deng; Sun, Yingchun; Zhang, Xi; Xu, Xinhua; Guan, Binbin; Wang, Chao; Hu, Meilin; Qi, Xingying; Zhang, Xu; Gao, Ping

    2016-03-02

    Bacterial adhesion and biofilm formation are the primary causes of implant-associated infection, which is difficult to eliminate and may induce failure in dental implants. Chimeric peptides with both binding and antimicrobial motifs may provide a promising alternative to inhibit biofilm formation on titanium surfaces. In this study, chimeric peptides were designed by connecting an antimicrobial motif (JH8194: KRLFRRWQWRMKKY) with a binding motif (minTBP-1: RKLPDA) directly or via flexible/rigid linkers to modify Ti surfaces. We evaluated the binding behavior of peptides using quartz crystal microbalance (QCM) and atomic force microscopy (AFM) techniques and investigated the effect of the modification of titanium surfaces with these peptides on the bioactivity of Streptococcus gordonii (S. gordonii) and Streptococcus sanguis (S. sanguis). Compared with the flexible linker (GGGGS), the rigid linker (PAPAP) significantly increased the adsorption of the chimeric peptide on titanium surfaces (p < 0.05). Concentration-dependent adsorption is consistent with a single Langmuir model, whereas time-dependent adsorption is in line with a two-domain Langmuir model. Additionally, the chimeric peptide with the rigid linker exhibited more effective antimicrobial ability than the peptide with the flexible linker. This finding was ascribed to the ability of the rigid linker to separate functional domains and reduce their interference to the maximum extent. Consequently, the performance of chimeric peptides with specific titanium-binding motifs and antimicrobial motifs against bacteria can be optimized by the proper selection of linkers. This rational design of chimeric peptides provides a promising alternative to inhibit the formation of biofilms on titanium surfaces with the potential to prevent peri-implantitis and peri-implant mucositis.

  11. In silico identification of enhancers on the basis of a combination of transcription factor binding motif occurrences

    PubMed Central

    Fang, Yaping; Wang, Yunlong; Zhu, Qin; Wang, Jia; Li, Guoliang

    2016-01-01

    Enhancers interact with gene promoters and form chromatin looping structures that serve important functions in various biological processes, such as the regulation of gene transcription and cell differentiation. However, enhancers are difficult to identify because they generally do not have fixed positions or consensus sequence features, and biological experiments for enhancer identification are costly in terms of labor and expense. In this work, several models were built by using various sequence-based feature sets and their combinations for enhancer prediction. The selected features derived from a recursive feature elimination method showed that the model using a combination of 141 transcription factor binding motif occurrences from 1,422 transcription factor position weight matrices achieved a favorably high prediction accuracy superior to that of other reported methods. The models demonstrated good prediction accuracy for different enhancer datasets obtained from different cell lines/tissues. In addition, prediction accuracy was further improved by integration of chromatin state features. Our method is complementary to wet-lab experimental methods and provides an additional method to identify enhancers. PMID:27582178

  12. Identification of the Raptor-binding motif on Arabidopsis S6 kinase and its use as a TOR signaling suppressor.

    PubMed

    Son, Ora; Kim, Sunghan; Hur, Yoon-Sun; Cheon, Choong-Ill

    2016-03-25

    TOR (target of rapamycin) kinase signaling plays central role as a regulator of growth and proliferation in all eukaryotic cells and its key signaling components and effectors are also conserved in plants. Unlike the mammalian and yeast counterparts, however, we found through yeast two-hybrid analysis that multiple regions of the Arabidopsis Raptor (regulatory associated protein of TOR) are required for binding to its substrate. We also identified that a 44-amino acid region at the N-terminal end of Arabidopsis ribosomal S6 kinase 1 (AtS6K1) specifically interacted with AtRaptor1, indicating that this region may contain a functional equivalent of the TOS (TOR-Signaling) motif present in the mammalian TOR substrates. Transient over-expression of this 44-amino acid fragment in Arabidopsis protoplasts resulted in significant decrease in rDNA transcription, demonstrating a feasibility of developing a new plant-specific TOR signaling inhibitor based upon perturbation of the Raptor-substrate interaction.

  13. Novel Catalytically-Inactive PII Metalloproteinases from a Viperid Snake Venom with Substitutions in the Canonical Zinc-Binding Motif

    PubMed Central

    Camacho, Erika; Sanz, Libia; Escalante, Teresa; Pérez, Alicia; Villalta, Fabián; Lomonte, Bruno; Neves-Ferreira, Ana Gisele C.; Feoli, Andrés; Calvete, Juan J.; Gutiérrez, José María; Rucavado, Alexandra

    2016-01-01

    Snake venom metalloproteinases (SVMPs) play key biological roles in prey immobilization and digestion. The majority of these activities depend on the hydrolysis of relevant protein substrates in the tissues. Hereby, we describe several isoforms and a cDNA clone sequence, corresponding to PII SVMP homologues from the venom of the Central American pit viper Bothriechis lateralis, which have modifications in the residues of the canonical sequence of the zinc-binding motif HEXXHXXGXXH. As a consequence, the proteolytic activity of the isolated proteins was undetectable when tested on azocasein and gelatin. These PII isoforms comprise metalloproteinase and disintegrin domains in the mature protein, thus belonging to the subclass PIIb of SVMPs. PII SVMP homologues were devoid of hemorrhagic and in vitro coagulant activities, effects attributed to the enzymatic activity of SVMPs, but induced a mild edema. One of the isoforms presents the characteristic RGD sequence in the disintegrin domain and inhibits ADP- and collagen-induced platelet aggregation. Catalytically-inactive SVMP homologues may have been hitherto missed in the characterization of snake venoms. The presence of such enzymatically-inactive homologues in snake venoms and their possible toxic and adaptive roles deserve further investigation. PMID:27754342

  14. New molecular motif for recognizing sialic acid using emissive lanthanide-macrocyclic polyazacarboxylate complexes: deprotonation of a coordinated water molecule controls specific binding.

    PubMed

    Ouchi, Kazuki; Saito, Shingo; Shibukawa, Masami

    2013-06-03

    A new molecular motif--lanthanide-macrocyclic polyazacarboxylate hexadentate complexes, Ln(3+)-ABNOTA--was found to specifically bind to sialic acid with strong emission enhancement and high affinity. The selectivity toward sialic acid over other monosaccharides was one of the highest among artificial receptors. Also, the novel binding mechanism was investigated in detail; binding selectivity is controlled by interactions between sialic acid and both the central metal and a hydroxyl group produced by deprotonation of a coordinated water molecule in the Ln(3+) complex.

  15. Flotillins bind to the dileucine sorting motif of β-site amyloid precursor protein-cleaving enzyme 1 and influence its endosomal sorting.

    PubMed

    John, Bincy A; Meister, Melanie; Banning, Antje; Tikkanen, Ritva

    2014-04-01

    The β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) is a protease that participates in the amyloidogenic cleavage of the Alzheimer amyloid precursor protein. Trafficking of BACE1 has been shown to be largely mediated by an acidic cluster dileucine motif in its cytoplasmic tail. This sorting signal functions both in endocytosis and endosomal sorting/recycling of BACE1 by providing a binding site for various sorting factors, such as the Golgi-localizing γ-ear containing ADP ribosylation factor binding (GGA) proteins that mediate BACE1 sorting within endosomes. Because flotillin-1 has been suggested to bind to BACE1 cytoplasmic tail, we analyzed the role of flotillins in BACE1 sorting. We show that flotillin-1 directly binds to the dileucine motif in the cytoplasmic tail of BACE1, whereas flotillin-2 binding is mainly mediated by its interaction with flotillin-1. Depletion of flotillins results in altered subcellular localization of BACE1 in endosomes and stabilization of BACE1 protein. Furthermore, amyloidogenic processing of Alzheimer amyloid precursor protein is increased. Flotillins compete with GGA proteins for binding to the dileucine motif in the BACE1 tail, suggesting that they play an important role in endosomal sorting of BACE1. The present study shows for the first time that flotillins are involved in endosomal sorting of BACE1. Because the endosomal localization of BACE1 affects its function as the β-secretase by increasing amyloidogenic processing of the amyloid precursor protein, flotillins may play a novel role in Alzheimer's disease. The present study is the first to show that flotillins bind to a canonical sorting signal and influence the binding of endosomal sorting factors onto cargo tails.

  16. Identification of Streptococcus mutans PAc peptide motif binding with human MHC class II molecules (DRB1*0802, *1101, *1401 and *1405).

    PubMed Central

    Senpuku, H; Yanagi, K; Nisizawa, T

    1998-01-01

    A surface protein antigen (PAc) of Streptococcus mutans, in particular the A-region of this PAc molecule, has been noted as a possible target in research for an effective dental caries vaccine. To identify the antigenic peptide binding to major histocompatibility complex (MHC) class II (HLA-DR) molecules in the A-region, we prepared a panel of overlapping synthetic peptides in the second unit of the A-region, and established that a simple enzyme-linked immunosorbent assay (ELISA) binding assay could be achieved by incubating the DR-crude. Binding to DR molecules of these peptides from nine donors was investigated by using the ELISA binding assay. It was revealed that the PAc(316-334) peptide bound more strongly to the HLA-DR molecule in seven out of nine subjects. In particular, DR8 (DRB1*0802), DR5 (DRB1*1101) and DR6 (DRB1*1402 and *1405), which bound strongly to PAc(316-334) peptide, were identified. Moreover, we synthesized glycine-substituted peptide analogues of the peptide and examined the binding motif of the binding region. As a result, the multiple binding motif in DR8, DR5 and DR6 was found in L-RV-K-A. It is suggested that a peptide vaccine for dental caries that is more effective for humans, with fewer adverse side-effects, could be designed by combining the multiple binding motif with the B-cell epitope to produce only the inhibiting antibody against dental caries. The peptide could therefore be useful for peptide vaccine development in the general human population. PMID:9824493

  17. Identification of Streptococcus mutans PAc peptide motif binding with human MHC class II molecules (DRB1*0802, *1101, *1401 and *1405).

    PubMed

    Senpuku, H; Yanagi, K; Nisizawa, T

    1998-11-01

    A surface protein antigen (PAc) of Streptococcus mutans, in particular the A-region of this PAc molecule, has been noted as a possible target in research for an effective dental caries vaccine. To identify the antigenic peptide binding to major histocompatibility complex (MHC) class II (HLA-DR) molecules in the A-region, we prepared a panel of overlapping synthetic peptides in the second unit of the A-region, and established that a simple enzyme-linked immunosorbent assay (ELISA) binding assay could be achieved by incubating the DR-crude. Binding to DR molecules of these peptides from nine donors was investigated by using the ELISA binding assay. It was revealed that the PAc(316-334) peptide bound more strongly to the HLA-DR molecule in seven out of nine subjects. In particular, DR8 (DRB1*0802), DR5 (DRB1*1101) and DR6 (DRB1*1402 and *1405), which bound strongly to PAc(316-334) peptide, were identified. Moreover, we synthesized glycine-substituted peptide analogues of the peptide and examined the binding motif of the binding region. As a result, the multiple binding motif in DR8, DR5 and DR6 was found in L-RV-K-A. It is suggested that a peptide vaccine for dental caries that is more effective for humans, with fewer adverse side-effects, could be designed by combining the multiple binding motif with the B-cell epitope to produce only the inhibiting antibody against dental caries. The peptide could therefore be useful for peptide vaccine development in the general human population.

  18. Paxillin LD4 motif binds PAK and PIX through a novel 95-kD ankyrin repeat, ARF-GAP protein: A role in cytoskeletal remodeling.

    PubMed

    Turner, C E; Brown, M C; Perrotta, J A; Riedy, M C; Nikolopoulos, S N; McDonald, A R; Bagrodia, S; Thomas, S; Leventhal, P S

    1999-05-17

    Paxillin is a focal adhesion adaptor protein involved in the integration of growth factor- and adhesion-mediated signal transduction pathways. Repeats of a leucine-rich sequence named paxillin LD motifs (Brown M.C., M.S. Curtis, and C.E. Turner. 1998. Nature Struct. Biol. 5:677-678) have been implicated in paxillin binding to focal adhesion kinase (FAK) and vinculin. Here we demonstrate that the individual paxillin LD motifs function as discrete and selective protein binding interfaces. A novel scaffolding function is described for paxillin LD4 in the binding of a complex of proteins containing active p21 GTPase-activated kinase (PAK), Nck, and the guanine nucleotide exchange factor, PIX. The association of this complex with paxillin is mediated by a new 95-kD protein, p95PKL (paxillin-kinase linker), which binds directly to paxillin LD4 and PIX. This protein complex also binds to Hic-5, suggesting a conservation of LD function across the paxillin superfamily. Cloning of p95PKL revealed a multidomain protein containing an NH2-terminal ARF-GAP domain, three ankyrin-like repeats, a potential calcium-binding EF hand, calmodulin-binding IQ motifs, a myosin homology domain, and two paxillin-binding subdomains (PBS). Green fluorescent protein- (GFP-) tagged p95PKL localized to focal adhesions/complexes in CHO.K1 cells. Overexpression in neuroblastoma cells of a paxillin LD4 deletion mutant inhibited lamellipodia formation in response to insulin-like growth fac- tor-1. Microinjection of GST-LD4 into NIH3T3 cells significantly decreased cell migration into a wound. These data implicate paxillin as a mediator of p21 GTPase-regulated actin cytoskeletal reorganization through the recruitment to nascent focal adhesion structures of an active PAK/PIX complex potentially via interactions with p95PKL.

  19. Controllability of protein-protein interaction phosphorylation-based networks: Participation of the hub 14-3-3 protein family

    PubMed Central

    Uhart, Marina; Flores, Gabriel; Bustos, Diego M.

    2016-01-01

    Posttranslational regulation of protein function is an ubiquitous mechanism in eukaryotic cells. Here, we analyzed biological properties of nodes and edges of a human protein-protein interaction phosphorylation-based network, especially of those nodes critical for the network controllability. We found that the minimal number of critical nodes needed to control the whole network is 29%, which is considerably lower compared to other real networks. These critical nodes are more regulated by posttranslational modifications and contain more binding domains to these modifications than other kinds of nodes in the network, suggesting an intra-group fast regulation. Also, when we analyzed the edges characteristics that connect critical and non-critical nodes, we found that the former are enriched in domain-to-eukaryotic linear motif interactions, whereas the later are enriched in domain-domain interactions. Our findings suggest a possible structure for protein-protein interaction networks with a densely interconnected and self-regulated central core, composed of critical nodes with a high participation in the controllability of the full network, and less regulated peripheral nodes. Our study offers a deeper understanding of complex network control and bridges the controllability theorems for complex networks and biological protein-protein interaction phosphorylation-based networked systems. PMID:27195976

  20. Controllability of protein-protein interaction phosphorylation-based networks: Participation of the hub 14-3-3 protein family.

    PubMed

    Uhart, Marina; Flores, Gabriel; Bustos, Diego M

    2016-05-19

    Posttranslational regulation of protein function is an ubiquitous mechanism in eukaryotic cells. Here, we analyzed biological properties of nodes and edges of a human protein-protein interaction phosphorylation-based network, especially of those nodes critical for the network controllability. We found that the minimal number of critical nodes needed to control the whole network is 29%, which is considerably lower compared to other real networks. These critical nodes are more regulated by posttranslational modifications and contain more binding domains to these modifications than other kinds of nodes in the network, suggesting an intra-group fast regulation. Also, when we analyzed the edges characteristics that connect critical and non-critical nodes, we found that the former are enriched in domain-to-eukaryotic linear motif interactions, whereas the later are enriched in domain-domain interactions. Our findings suggest a possible structure for protein-protein interaction networks with a densely interconnected and self-regulated central core, composed of critical nodes with a high participation in the controllability of the full network, and less regulated peripheral nodes. Our study offers a deeper understanding of complex network control and bridges the controllability theorems for complex networks and biological protein-protein interaction phosphorylation-based networked systems.

  1. Validation of chemical compound library screening for transcriptional co-activator with PDZ-binding motif inhibitors using GFP-fused transcriptional co-activator with PDZ-binding motif.

    PubMed

    Nagashima, Shunta; Maruyama, Junichi; Kawano, Shodai; Iwasa, Hiroaki; Nakagawa, Kentaro; Ishigami-Yuasa, Mari; Kagechika, Hiroyuki; Nishina, Hiroshi; Hata, Yutaka

    2016-06-01

    Transcriptional co-activator with PDZ-binding motif (TAZ) plays versatile roles in cell proliferation and differentiation. It is phosphorylated by large tumor suppressor kinases, the core kinases of the tumor-suppressive Hippo pathway. Phosphorylation induces the cytoplasmic accumulation of TAZ and its degradation. In human cancers, the deregulation of the Hippo pathway and gene amplification enhance TAZ activity. TAZ interacts with TEA domain family members (TEAD), and upregulates genes implicated in epithelial-mesenchymal transition. It also confers stemness to cancer cells. Thus, TAZ activation provides cancer cells with malignant properties and worsens the clinical prognosis. Therefore, TAZ attracts attention as a therapeutic target in cancer therapy. We applied 18 606 small chemical compounds to human osteosarcoma U2OS cells expressing GFP-fused TAZ (GFP-TAZ), monitored the subcellular localization of GFP-TAZ, and selected 33 compounds that shifted GFP-TAZ to the cytoplasm. Unexpectedly, only a limited number of compounds suppressed TAZ-mediated enhancement of TEAD-responsive reporter activity. Moreover, the compounds that weakened TEAD reporter activity did not necessarily decrease the unphosphorylated TAZ. In this study, we focused on three compounds that decreased both TEAD reporter activity and unphosphorylated TAZ, and treated several human cancer cells with these compounds. One compound did not show a remarkable effect, whereas the other two compounds compromised the cell viability in certain cancer cells. In conclusion, the GFP-TAZ-based assay can be used as the first screening for compounds that inhibit TAZ and show anticancer properties. To develop anticancer drugs, we need additional assays to select the compounds.

  2. Role of NH{sub 2}-terminal hydrophobic motif in the subcellular localization of ATP-binding cassette protein subfamily D: Common features in eukaryotic organisms

    SciTech Connect

    Lee, Asaka; Asahina, Kota; Okamoto, Takumi; Kawaguchi, Kosuke; Kostsin, Dzmitry G.; Kashiwayama, Yoshinori; Takanashi, Kojiro; Yazaki, Kazufumi; Imanaka, Tsuneo; Morita, Masashi

    2014-10-24

    Highlights: • ABCD proteins classifies based on with or without NH{sub 2}-terminal hydrophobic segment. • The ABCD proteins with the segment are targeted peroxisomes. • The ABCD proteins without the segment are targeted to the endoplasmic reticulum. • The role of the segment in organelle targeting is conserved in eukaryotic organisms. - Abstract: In mammals, four ATP-binding cassette (ABC) proteins belonging to subfamily D have been identified. ABCD1–3 possesses the NH{sub 2}-terminal hydrophobic region and are targeted to peroxisomes, while ABCD4 lacking the region is targeted to the endoplasmic reticulum (ER). Based on hydropathy plot analysis, we found that several eukaryotes have ABCD protein homologs lacking the NH{sub 2}-terminal hydrophobic segment (H0 motif). To investigate whether the role of the NH{sub 2}-terminal H0 motif in subcellular localization is conserved across species, we expressed ABCD proteins from several species (metazoan, plant and fungi) in fusion with GFP in CHO cells and examined their subcellular localization. ABCD proteins possessing the NH{sub 2}-terminal H0 motif were localized to peroxisomes, while ABCD proteins lacking this region lost this capacity. In addition, the deletion of the NH{sub 2}-terminal H0 motif of ABCD protein resulted in their localization to the ER. These results suggest that the role of the NH{sub 2}-terminal H0 motif in organelle targeting is widely conserved in living organisms.

  3. Developmentally Regulated RNA-binding Protein 1 (Drb1)/RNA-binding Motif Protein 45 (RBM45), a Nuclear-Cytoplasmic Trafficking Protein, Forms TAR DNA-binding Protein 43 (TDP-43)-mediated Cytoplasmic Aggregates.

    PubMed

    Mashiko, Takafumi; Sakashita, Eiji; Kasashima, Katsumi; Tominaga, Kaoru; Kuroiwa, Kenji; Nozaki, Yasuyuki; Matsuura, Tohru; Hamamoto, Toshiro; Endo, Hitoshi

    2016-07-15

    Cytoplasmic protein aggregates are one of the pathological hallmarks of neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Several RNA-binding proteins have been identified as components of inclusion bodies. Developmentally regulated RNA-binding protein 1 (Drb1)/RNA-binding motif protein 45 is an RNA-binding protein that was recently described as a component in ALS- and FTLD-related inclusion bodies. However, the molecular mechanism underlying cytoplasmic Drb1 aggregation remains unclear. Here, using an in vitro cellular model, we demonstrated that Drb1 co-localizes with cytoplasmic aggregates mediated by TAR DNA-binding protein 43, a major component of ALS and FTLD-related inclusion bodies. We also defined the domains involved in the subcellular localization of Drb1 to clarify the role of Drb1 in the formation of cytoplasmic aggregates in ALS and FTLD. Drb1 predominantly localized in the nucleus via a classical nuclear localization signal in its carboxyl terminus and is a shuttling protein between the nucleus and cytoplasm. Furthermore, we identify a double leucine motif serving as a nuclear export signal. The Drb1 mutant, presenting mutations in both nuclear localization signal and nuclear export signal, is prone to aggregate in the cytoplasm. The mutant Drb1-induced cytoplasmic aggregates not only recruit TAR DNA-binding protein 43 but also decrease the mitochondrial membrane potential. Taken together, these results indicate that perturbation of Drb1 nuclear-cytoplasmic trafficking induces toxic cytoplasmic aggregates, suggesting that mislocalization of Drb1 is involved in the cause of cytotoxicity in neuronal cells.

  4. Dexamethasone downregulated the expression of CSF 14-3-3β protein in mice with eosinophilic meningitis caused by Angiostrongylus cantonensis infection.

    PubMed

    Tsai, Hung-Chin; Lee, Bi-Yao; Yen, Chuan-Min; Wann, Shue-Ren; Lee, Susan Shin-Jung; Chen, Yao-Shen; Tai, Ming-Hong

    2014-03-01

    Angiostrongylus cantonensis is the main causative agent of human eosinophilic meningitis in Southeast Asia and the Pacific Islands. A previous study demonstrated that the 14-3-3β protein is a neuropathological marker in monitoring neuronal damage in meningitis. Steroids are commonly used in patients with eosinophilic meningitis caused by A. cantonensis infection. However, the mechanism by which steroids act in eosinophilic meningitis is unknown. We hypothesized that the beneficial effect of steroids on eosinophilic meningitis is partially mediated by the down-regulation of 14-3-3β protein expression in the cerebrospinal fluid (CSF). In this animal study, we determined the dynamic changes of 14-3-3β protein in mice with eosinophilic meningitis. The 14-3-3β protein in serum and CSF was increased in week 2 and 3 after infections. Dexamethasone administration significantly decreased the amounts of CSF 14-3-3β protein. By developing an in-house ELISA to measure 14-3-3β protein, it was found that the amounts of 14-3-3β protein in the CSF and serum increased over a three-week period after infection. There was a remarkable reduction of 14-3-3β protein in the CSF after 2 weeks of dexamethasone treatment. In conclusion, the administration of corticosteroids in mice with eosinophilic meningitis decreased the expression of 14-3-3β protein in the CSF.

  5. Biophysical analysis of binding of WW domains of the YAP2 transcriptional regulator to PPXY motifs within WBP1 and WBP2 adaptors.

    PubMed

    McDonald, Caleb B; McIntosh, Samantha K N; Mikles, David C; Bhat, Vikas; Deegan, Brian J; Seldeen, Kenneth L; Saeed, Ali M; Buffa, Laura; Sudol, Marius; Nawaz, Zafar; Farooq, Amjad

    2011-11-08

    The YAP2 transcriptional regulator mediates a plethora of cellular functions, including the newly discovered Hippo tumor suppressor pathway, by virtue of its ability to recognize WBP1 and WBP2 signaling adaptors among a wide variety of other ligands. Herein, using isothermal titration calorimery and circular dichroism in combination with molecular modeling and molecular dynamics, we provide evidence that the WW1 and WW2 domains of YAP2 recognize various PPXY motifs within WBP1 and WBP2 in a highly promiscuous and subtle manner. Thus, although both WW domains strictly require the integrity of the consensus PPXY sequence, nonconsensus residues within and flanking this motif are not critical for high-affinity binding, implying that they most likely play a role in stabilizing the polyproline type II helical conformation of the PPXY ligands. Of particular interest is the observation that both WW domains bind to a PPXYXG motif with highest affinity, implicating a preference for a nonbulky and flexible glycine one residue to the C-terminal side of the consensus tyrosine. Importantly, a large set of residues within both WW domains and the PPXY motifs appear to undergo rapid fluctuations on a nanosecond time scale, suggesting that WW-ligand interactions are highly dynamic and that such conformational entropy may be an integral part of the reversible and temporal nature of cellular signaling cascades. Collectively, our study sheds light on the molecular determinants of a key WW-ligand interaction pertinent to cellular functions in health and disease.

  6. Microfluidic affinity and ChIP-seq analyses converge on a conserved FOXP2-binding motif in chimp and human, which enables the detection of evolutionarily novel targets.

    PubMed

    Nelson, Christopher S; Fuller, Chris K; Fordyce, Polly M; Greninger, Alexander L; Li, Hao; DeRisi, Joseph L

    2013-07-01

    The transcription factor forkhead box P2 (FOXP2) is believed to be important in the evolution of human speech. A mutation in its DNA-binding domain causes severe speech impairment. Humans have acquired two coding changes relative to the conserved mammalian sequence. Despite intense interest in FOXP2, it has remained an open question whether the human protein's DNA-binding specificity and chromatin localization are conserved. Previous in vitro and ChIP-chip studies have provided conflicting consensus sequences for the FOXP2-binding site. Using MITOMI 2.0 microfluidic affinity assays, we describe the binding site of FOXP2 and its affinity profile in base-specific detail for all substitutions of the strongest binding site. We find that human and chimp FOXP2 have similar binding sites that are distinct from previously suggested consensus binding sites. Additionally, through analysis of FOXP2 ChIP-seq data from cultured neurons, we find strong overrepresentation of a motif that matches our in vitro results and identifies a set of genes with FOXP2 binding sites. The FOXP2-binding sites tend to be conserved, yet we identified 38 instances of evolutionarily novel sites in humans. Combined, these data present a comprehensive portrait of FOXP2's-binding properties and imply that although its sequence specificity has been conserved, some of its genomic binding sites are newly evolved.

  7. Xanthomonas euvesicatoria type III effector XopQ interacts with tomato and pepper 14-3-3 isoforms to suppress effector-triggered immunity.

    PubMed

    Teper, Doron; Salomon, Dor; Sunitha, Sukumaran; Kim, Jung-Gun; Mudgett, Mary Beth; Sessa, Guido

    2014-01-01

    Effector-triggered immunity (ETI) to host-adapted pathogens is associated with rapid cell death at the infection site. The plant-pathogenic bacterium Xanthomonas euvesicatoria (Xcv) interferes with plant cellular processes by injecting effector proteins into host cells through the type III secretion system. Here, we show that the Xcv effector XopQ suppresses cell death induced by components of the ETI-associated MAP kinase cascade MAPKKKα MEK2/SIPK and by several R/avr gene pairs. Inactivation of xopQ by insertional mutagenesis revealed that this effector inhibits ETI-associated cell death induced by avirulent Xcv in resistant pepper (Capsicum annuum), and enhances bacterial growth in resistant pepper and tomato (Solanum lycopersicum). Using protein-protein interaction studies in yeast (Saccharomyces cerevisiae) and in planta, we identified the tomato 14-3-3 isoform SlTFT4 and homologs from other plant species as XopQ interactors. A mutation in the putative 14-3-3 binding site of XopQ impaired interaction of the effector with CaTFT4 in yeast and its virulence function in planta. Consistent with a role in ETI, TFT4 mRNA abundance increased during the incompatible interaction of tomato and pepper with Xcv. Silencing of NbTFT4 in Nicotiana benthamiana significantly reduced cell death induced by MAPKKKα. In addition, silencing of CaTFT4 in pepper delayed the appearance of ETI-associated cell death and enhanced growth of virulent and avirulent Xcv, demonstrating the requirement of TFT4 for plant immunity to Xcv. Our results suggest that the XopQ virulence function is to suppress ETI and immunity-associated cell death by interacting with TFT4, which is an important component of ETI and a bona fide target of XopQ.

  8. Specificity in substrate binding by protein folding catalysts: tyrosine and tryptophan residues are the recognition motifs for the binding of peptides to the pancreas-specific protein disulfide isomerase PDIp.

    PubMed Central

    Ruddock, L. W.; Freedman, R. B.; Klappa, P.

    2000-01-01

    Using a cross-linking approach, we recently demonstrated that radiolabeled peptides or misfolded proteins specifically interact in vitro with two luminal proteins in crude extracts from pancreas microsomes. The proteins were the folding catalysts protein disulfide isomerase (PDI) and PDIp, a glycosylated, PDI-related protein, expressed exclusively in the pancreas. In this study, we explore the specificity of these proteins in binding peptides and related ligands and show that tyrosine and tryptophan residues in peptides are the recognition motifs for their binding by PDIp. This peptide-binding specificity may reflect the selectivity of PDIp in binding regions of unfolded polypeptide during catalysis of protein folding. PMID:10794419

  9. Alternative application of Tau protein in Creutzfeldt-Jakob disease diagnosis: Improvement for weakly positive 14-3-3 protein in the laboratory

    PubMed Central

    Hyeon, Jae Wook; Kim, Su Yeon; Lee, Jeongmin; Park, Jun Sun; Hwang, Kyu Jam; Lee, Sol Moe; An, SeongSoo A.; Lee, Myung Koo; Ju, Young Ran

    2015-01-01

    The 14-3-3 protein has been used as a biomarker for the diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD). However, weakly positive 14-3-3 leads to false positive results and an incorrect diagnosis. We attempted to use quantitative data for tau protein to provide an accurate diagnosis based on weak 14-3-3 protein. Sixty-two patients with sCJD, including pathologically confirmed, clinically definite, and probable cases, and 89 non-CJD patients were investigated based on a Korean population. Among them, 20 sCJD and 14 non-CJD showed weakly positive 14-3-3. The total tau (t-tau) and phosphorylated tau (p-tau) protein levels were measured by ELISA, and the p-tau to t-tau ratio (p/t ratio) was calculated. The combined use of the 14-3-3 protein assay, t-tau levels, and p/t ratio improved the specificity of diagnosis compared with the use of the 14-3-3 protein assay alone (47% for 14-3-3 alone; 85.94% for 14-3-3 combined with t-tau; 90.62% for 14-3-3 combined with the p/t ratio). In addition, 18 of 20 sCJD and 12 of 14 non-CJD who were weakly positive for 14-3-3 were positive for the p/t ratio and negative for the p/t ratio, respectively. When used in combination with the 14-3-3 protein, the tau protein is useful as a biomarker for the precise diagnosis of sCJD. PMID:26507666

  10. Alternative application of Tau protein in Creutzfeldt-Jakob disease diagnosis: Improvement for weakly positive 14-3-3 protein in the laboratory.

    PubMed

    Hyeon, Jae Wook; Kim, Su Yeon; Lee, Jeongmin; Park, Jun Sun; Hwang, Kyu Jam; Lee, Sol Moe; An, SeongSoo A; Lee, Myung Koo; Ju, Young Ran

    2015-10-28

    The 14-3-3 protein has been used as a biomarker for the diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD). However, weakly positive 14-3-3 leads to false positive results and an incorrect diagnosis. We attempted to use quantitative data for tau protein to provide an accurate diagnosis based on weak 14-3-3 protein. Sixty-two patients with sCJD, including pathologically confirmed, clinically definite, and probable cases, and 89 non-CJD patients were investigated based on a Korean population. Among them, 20 sCJD and 14 non-CJD showed weakly positive 14-3-3. The total tau (t-tau) and phosphorylated tau (p-tau) protein levels were measured by ELISA, and the p-tau to t-tau ratio (p/t ratio) was calculated. The combined use of the 14-3-3 protein assay, t-tau levels, and p/t ratio improved the specificity of diagnosis compared with the use of the 14-3-3 protein assay alone (47% for 14-3-3 alone; 85.94% for 14-3-3 combined with t-tau; 90.62% for 14-3-3 combined with the p/t ratio). In addition, 18 of 20 sCJD and 12 of 14 non-CJD who were weakly positive for 14-3-3 were positive for the p/t ratio and negative for the p/t ratio, respectively. When used in combination with the 14-3-3 protein, the tau protein is useful as a biomarker for the precise diagnosis of sCJD.

  11. Spinach 14-3-3 protein interacts with the plasma membrane H(+)-ATPase and nitrate reductase in response to excess nitrate stress.

    PubMed

    Xu, Huini; Zhao, Xiuling; Guo, Chuanlong; Chen, Limei; Li, Kunzhi

    2016-09-01

    To investigate the function of 14-3-3 protein in response to excess nitrate stress, a 14-3-3 protein, designated as So14-3-3, was isolated from spinach. Phylogenetic analysis demonstrated that So14-3-3 belongs to non-ε group of 14-3-3 superfamily. Real time-quantitative RT-PCR and western blot analysis showed that So14-3-3 was induced by excess nitrate stress in spinach roots and leaves. After nitrate treatment, the phosphorylated H(+)-ATPase and nitrate reductase (NR) increased and decreased respectively. Co-Immunoprecipitation (Co-IP) suggested that the interaction of So14-3-3 with the phosphorylated H(+)-ATPase enhanced, but reduced with phosphorylated NR in spinach roots after nitrate treatment. Besides, 5 proteins interacted with So14-3-3 were found by Co-IP and LC-MS/MS analysis. So14-3-3 overexpressing transgenic tobacco plants showed enhanced tolerance to nitrate treatment at the germination and young seedlings stage. The transgenic plants showed longer root length, lower malondialdehyde (MDA), H2O2, protein carbonyl contents, relatively higher soluble sugar and protein contents, than the WT plants after nitrate treatment. The phosphorylation levels of H(+)-ATPase in transgenic plants were higher than the WT plants after nitrate treatment, whereas NR were lower. Additionally, in transgenic plants, the interaction of So14-3-3 with phosphorylated H(+)-ATPase and NR increased and decreased more than the WT plants under nitrate stress, leading to higher H(+)-ATPase and NR activities in transgenic plants. These data suggested that So14-3-3 might be involved in nitrate stress response by interacting with H(+)-ATPase and NR.

  12. The histone chaperone sNASP binds a conserved peptide motif within the globular core of histone H3 through its TPR repeats

    PubMed Central

    Bowman, Andrew; Lercher, Lukas; Singh, Hari R.; Zinne, Daria; Timinszky, Gyula; Carlomagno, Teresa; Ladurner, Andreas G.

    2016-01-01

    Eukaryotic chromatin is a complex yet dynamic structure, which is regulated in part by the assembly and disassembly of nucleosomes. Key to this process is a group of proteins termed histone chaperones that guide the thermodynamic assembly of nucleosomes by interacting with soluble histones. Here we investigate the interaction between the histone chaperone sNASP and its histone H3 substrate. We find that sNASP binds with nanomolar affinity to a conserved heptapeptide motif in the globular domain of H3, close to the C-terminus. Through functional analysis of sNASP homologues we identified point mutations in surface residues within the TPR domain of sNASP that disrupt H3 peptide interaction, but do not completely disrupt binding to full length H3 in cells, suggesting that sNASP interacts with H3 through additional contacts. Furthermore, chemical shift perturbations from 1H-15N HSQC experiments show that H3 peptide binding maps to the helical groove formed by the stacked TPR motifs of sNASP. Our findings reveal a new mode of interaction between a TPR repeat domain and an evolutionarily conserved peptide motif found in canonical H3 and in all histone H3 variants, including CenpA and have implications for the mechanism of histone chaperoning within the cell. PMID:26673727

  13. The MotA transcription factor from bacteriophage T4 contains a novel DNA-binding domain : the 'double wing' motif.

    SciTech Connect

    Li, N.; Sickmier, E. A.; Zhang, R.; Joachimiak, A.; White, S. W.; Biosciences Division; St. Jude Children's Research Hospital; Univ. of Tennessee Health Science Center; Corixa Inc.

    2002-01-01

    MotA is a transcription factor from bacteriophage T4 that helps adapt the host Escherichia coli transcription apparatus to T4 middle promoters. We have determined the crystal structure of the C-terminal DNA-binding domain of MotA (MotCF) to 1.6 A resolution using multiwavelength, anomalous diffraction methods. The structure reveals a novel DNA-binding alpha/beta motif that contains an exposed beta-sheet surface that mediates interactions with the DNA. Independent biochemical experiments have shown that MotCF binds to one surface of a single turn of DNA through interactions in adjacent major and minor grooves. We present a model of the interaction in which beta-ribbons at opposite corners of the six-stranded beta-sheet penetrate the DNA grooves, and call the motif a 'double wing' to emphasize similarities to the 'winged-helix' motif. The model is consistent with data on how MotA functions at middle promoters, and provides an explanation for why MotA can form non-specific multimers on DNA.

  14. The dual role of LSD1 and HDAC3 in STAT5-dependent transcription is determined by protein interactions, binding affinities, motifs and genomic positions

    PubMed Central

    Nanou, Aikaterini; Toumpeki, Chrisavgi; Lavigne, Matthieu D.; Lazou, Vassiliki; Demmers, Jeroen; Paparountas, Triantafillos; Thanos, Dimitris; Katsantoni, Eleni

    2017-01-01

    STAT5 interacts with other factors to control transcription, and the mechanism of regulation is of interest as constitutive active STAT5 has been reported in malignancies. Here, LSD1 and HDAC3 were identified as novel STAT5a interacting partners in pro-B cells. Characterization of STAT5a, LSD1 and HDAC3 target genes by ChIP-seq and RNA-seq revealed gene subsets regulated by independent or combined action of the factors and LSD1/HDAC3 to play dual role in their activation or repression. Genes bound by STAT5a alone or in combination with weakly associated LSD1 or HDAC3 were enriched for the canonical STAT5a GAS motif, and such binding induced activation or repression. Strong STAT5 binding was seen more frequently in intergenic regions, which might function as distal enhancer elements. Groups of genes bound weaker by STAT5a and stronger by LSD1/HDAC3 showed an absence of the GAS motif, and were differentially regulated based on their genomic binding localization and binding affinities. These genes exhibited increased binding frequency in promoters, and in conjunction with the absence of GAS sites, the data indicate a requirement for stabilization by additional factors, which might recruit LSD1/HDAC3. Our study describes an interaction network of STAT5a/LSD1/HDAC3 and a dual function of LSD1/HDAC3 on STAT5-dependent transcription, defined by protein–protein interactions, genomic binding localization/affinity and motifs. PMID:27651463

  15. Transcription variants of the prostate-specific PrLZ gene and their interaction with 14-3-3 proteins

    SciTech Connect

    Wang, Ruoxiang; He, Hui; Sun, Xiaojuan; Xu, Jianchun; Marshall, Fray F.; Zhau, Haiyen; Chung, Leland W.K.; Fu, Haian; He, Dalin

    2009-11-20

    We have reported isolation and characterization of the prostate-specific and androgen-regulated PrLZ gene abnormally expressed in prostate cancer. PrLZ is a potential biomarker for prostate cancer and a candidate oncogene promoting cell proliferation and survival in prostate cancer cells. A full delineation of the PrLZ gene and its gene products may provide clues to the mechanisms regulating its expression and function. In this report, we identified three additional exons in the PrLZ gene and recognized five transcript variants from alternative splicing that could be detected by RT-PCR and Western blotting. Structural comparison demonstrated that the PrLZ proteins are highly conserved among species. PrLZ contains multiple potential sites for interaction with other proteins. We used mammalian two-hybrid assays to demonstrate that PrLZ isoforms interact with 14-3-3 proteins, and multiple sites in the PrLZ may be involved in the interaction. Alternative splicing may contribute to abnormally enhanced PrLZ levels in prostate cancer, and interaction with 14-3-3 proteins may be a mechanism by which PrLZ promotes cell proliferation and survival during prostate cancer development and progression. This information is a valuable addition to the investigation of the oncogenic properties of the PrLZ gene.

  16. GARNL1, a major RalGAP α subunit in skeletal muscle, regulates insulin-stimulated RalA activation and GLUT4 trafficking via interaction with 14-3-3 proteins.

    PubMed

    Chen, Qiaoli; Quan, Chao; Xie, Bingxian; Chen, Liang; Zhou, Shuilian; Toth, Rachel; Campbell, David G; Lu, Shuangshuang; Shirakawa, Ryutaro; Horiuchi, Hisanori; Li, Chaojun; Yang, Zhongzhou; MacKintosh, Carol; Wang, Hong Yu; Chen, Shuai

    2014-08-01

    Insulin and muscle contraction each stimulate translocation of the glucose transporter GLUT4 to the plasma membrane in skeletal muscle, an important process regulating whole-body glucose homeostasis. RalA mediates insulin-stimulated GLUT4 translocation; however, it is unclear how this small GTPase is regulated in skeletal muscle in response to insulin. Here, we identified GARNL1/RalGAPα1, a major α subunit of the Ral-GTPase activating protein in skeletal muscle, as a protein whose phosphorylation and binding to the regulatory 14-3-3 proteins is stimulated by insulin and also by muscle contraction. The insulin-stimulated interaction with 14-3-3 involved PKB/Akt-mediated phosphorylation of Thr(735) on GARNL1/RalGAPα1. Knockdown of GARNL1/RalGAPα1 increased, while overexpression of GARNL1/RalGAPα1(Thr735Ala) mutant protein decreased, the RalA activation and the RalA-dependent GLUT4 translocation in response to insulin in muscle cells. These findings show that GARNL1/RalGAPα1 is the missing link that connects the insulin-PKB/Akt signaling pathway with the activation of the RalA small GTPase in muscle cells. GARNL1/RalGAPα1 and its phosphorylation and/or binding to 14-3-3s are critical for GLUT4 trafficking through RalA in muscle cells.

  17. Selective 14-3-3γ induction quenches p-β-catenin Ser37/Bax-enhanced cell death in cerebral cortical neurons during ischemia

    PubMed Central

    Lai, X J; Ye, S Q; Zheng, L; Li, L; Liu, Q R; Yu, S B; Pang, Y; Jin, S; Li, Q; Yu, A C H; Chen, X Q

    2014-01-01

    Ischemia-induced cell death is a major cause of disability or death after stroke. Identifying the key intrinsic protective mechanisms induced by ischemia is critical for the development of effective stroke treatment. Here, we reported that 14-3-3γ was a selective ischemia-inducible survival factor in cerebral cortical neurons reducing cell death by downregulating Bax depend direct 14-3-3γ/p-β-catenin Ser37 interactions in the nucleus. 14-3-3γ, but not other 14-3-3 isoforms, was upregulated in primary cerebral cortical neurons upon oxygen–glucose deprivation (OGD) as measured by quantitative PCR, western blot and fluorescent immunostaining. The selective induction of 14-3-3γ in cortical neurons by OGD was verified by the in vivo ischemic stroke model. Knocking down 14-3-3γ alone or inhibiting 14-3-3/client interactions was sufficient to induce cell death in normal cultured neurons and exacerbate OGD-induced neuronal death. Ectopic overexpression of 14-3-3γ significantly reduced OGD-induced cell death in cultured neurons. Co-immunoprecipitation and fluorescence resonance energy transfer demonstrated that endogenous 14-3-3γ bound directly to more p-β-catenin Ser37 but not p-Bad, p-Ask-1, p-p53 and Bax. During OGD, p-β-catenin Ser37 but not p-β-catenin Ser45 was increased prominently, which correlated with Bax elevation in cortical neurons. OGD promoted the entry of 14-3-3γ into the nuclei, in correlation with the increase of nuclear p-β-catenin Ser37 in neurons. Overexpression of 14-3-3γ significantly reduced Bax expression, whereas knockdown of 14-3-3γ increased Bax in cortical neurons. Abolishing β-catenin phosphorylation at Ser37 (S37A) significantly reduced Bax and cell death in neurons upon OGD. Finally, 14-3-3γ overexpression completely suppressed β-catenin-enhanced Bax and cell death in neurons upon OGD. Based on these data, we propose that the 14-3-3γ/p-β-catenin Ser37/Bax axis determines cell survival or death of neurons during ischemia

  18. Differential 14-3-3 sigma DNA methylation and expression in c-myc- and activated H-ras-transformed cells under r- and K-selection.

    PubMed

    Sato, Hiroyuki; Nakamura, Yukari; Motokura, Toru

    2006-05-08

    We cloned rat 14-3-3 sigma, a mediator of p53 tumor suppressor, as a target of K-selection. 14-3-3 sigma expression is suppressed with DNA methylation in breast cancers while its overexpression with hypomethylation is frequent in pancreatic cancers. These opposite findings were recapitulated through r- and K-selection of transformed rat embryo fibroblasts. 14-3-3 sigma expression was suppressed with DNA methylation after r-selection and the gene was overexpressed and demethylated in K-selected cells. 5-aza-2'-deoxycytidine recovered 14-3-3 sigma expression in r-selected cells. The presence of heterogeneous methylation patterns and expression levels before selection suggests that different 14-3-3 sigma expression levels play a role as a prerequisite for selection and clonal evolution.

  19. Identification of second arginine-glycine-aspartic acid motif of ovine vitronectin as the complement C9 binding site and its implication in bacterial infection.

    PubMed

    T, Prasada Rao; T, Lakshmi Prasanth; R, Parvathy; S, Murugavel; Devi, Karuna; Joshi, Paritosh

    2017-02-02

    Vitronectin (Vn), a multifunctional protein of blood and extracellular matrix interacts with complement C9. This interaction may modulate innate immunity. Details of Vn-C9 interaction are limited. An assessment of Vn-C9 interaction was made employing goat homologous system. Vn binding to C9 was observed in three different assays. Using recombinant fragments, the C9 binding was mapped to the N-terminus of Vn. Site directed mutagenesis was performed to alter the second RGD sequence (RGD-2) of Vn. Change of R to G or D to A in RGD-2 caused significant decrease in Vn binding to C9 whereas change of R to G in the first RGD motif (RGD-1) had no effect on Vn binding to C9. These results imply that the RGD-2 of goat Vn is involved in C9 binding. In competitive binding assay, the presence of soluble RGD peptide inhibited Vn binding to C9 whereas heparin had no effect. Vn binding to C9 in terms of bacterial pathogenesis was also evaluated. Serum dependent inhibition of E. coli growth was significantly reverted when Vn or its N-fragment were included in the assay. The C-fragment, which did not support C9 binding, also partly nullified serum dependent inhibition of bacterial growth probably through other serum component(s).

  20. Ablation of the 14-3-3gamma Protein Results in Neuronal Migration Delay and Morphological Defects in the Developing Cerebral Cortex.

    PubMed

    Wachi, Tomoka; Cornell, Brett; Marshall, Courtney; Zhukarev, Vladimir; Baas, Peter W; Toyo-oka, Kazuhito

    2016-06-01

    14-3-3 proteins are ubiquitously-expressed and multifunctional proteins. There are seven isoforms in mammals with a high level of homology, suggesting potential functional redundancy. We previously found that two of seven isoforms, 14-3-3epsilon and 14-3-3zeta, are important for brain development, in particular, radial migration of pyramidal neurons in the developing cerebral cortex. In this work, we analyzed the function of another isoform, the protein 14-3-3gamma, with respect to neuronal migration in the developing cortex. We found that in utero 14-3-3gamma-deficiency resulted in delays in neuronal migration as well as morphological defects. Migrating neurons deficient in 14-3-3gamma displayed a thicker leading process stem, and the basal ends of neurons were not able to reach the boundary between the cortical plate and the marginal zone. Consistent with the results obtained from in utero electroporation, time-lapse live imaging of brain slices revealed that the ablation of the 14-3-3gamma proteins in pyramidal neurons slowed down their migration. In addition, the 14-3-3gamma deficient neurons showed morphological abnormalities, including increased multipolar neurons with a thicker leading processes stem during migration. These results indicate that the 14-3-3gamma proteins play an important role in radial migration by regulating the morphology of migrating neurons in the cerebral cortex. The findings underscore the pathological phenotypes of brain development associated with the disruption of different 14-3-3 proteins and will advance the preclinical data regarding disorders caused by neuronal migration defects.

  1. Ehrlichia chaffeensis TRP120 binds a G+C-rich motif in host cell DNA and exhibits eukaryotic transcriptional activator function.

    PubMed

    Zhu, Bing; Kuriakose, Jeeba A; Luo, Tian; Ballesteros, Efren; Gupta, Sharu; Fofanov, Yuriy; McBride, Jere W

    2011-11-01

    Ehrlichia chaffeensis is an obligately intracellular bacterium that modulates host cell gene transcription in the mononuclear phagocyte, but the host gene targets and mechanisms involved in transcriptional modulation are not well-defined. In this study, we identified a novel tandem repeat DNA-binding domain in the E. chaffeensis 120-kDa tandem repeat protein (TRP120) that directly binds host cell DNA. TRP120 was observed by immunofluorescent microscopy in the nucleus of E. chaffeensis-infected host cells and was detected in nuclear extracts by Western immunoblotting with TRP120-specific antibody. The TRP120 binding sites and associated host cell target genes were identified using high-throughput deep sequencing (Illumina) of immunoprecipitated DNA (chromatin immunoprecipitation and high-throughput DNA sequencing). Multiple em motif elicitation (MEME) analysis of the most highly enriched TRP120-bound sequences revealed a G+C-rich DNA motif, and recombinant TRP120 specifically bound synthetic oligonucleotides containing the motif. TRP120 target gene binding sites were mapped most frequently to intersecting regions (intron/exon; 49%) but were also identified in upstream regulatory regions (25%) and downstream locations (26%). Genes targeted by TRP120 were most frequently associated with transcriptional regulation, signal transduction, and apoptosis. TRP120 targeted inflammatory chemokine genes, CCL2, CCL20, and CXCL11, which were strongly upregulated during E. chaffeensis infection and were also upregulated by direct transfection with recombinant TRP120. This study reveals that TRP120 is a novel DNA-binding protein that is involved in a host gene transcriptional regulation strategy.

  2. Characterization of the Canine MHC Class I DLA-88*50101 Peptide Binding Motif as a Prerequisite for Canine T Cell Immunotherapy

    PubMed Central

    Barth, Sharon M.; Schreitmüller, Christian M.; Proehl, Franziska; Oehl, Kathrin; Lumpp, Leonie M.; Kowalewski, Daniel J.; Di Marco, Moreno; Sturm, Theo; Backert, Linus; Schuster, Heiko; Stevanović, Stefan; Rammensee, Hans-Georg; Planz, Oliver

    2016-01-01

    There are limitations in pre-clinical settings using mice as a basis for clinical development in humans. In cancer, similarities exist between humans and dogs; thus, the dog patient can be a link in the transition from laboratory research on mouse models to clinical trials in humans. Knowledge of the peptides presented on MHC molecules is fundamental for the development of highly specific T cell-based immunotherapies. This information is available for human MHC molecules but is absent for the canine MHC. In the present study, we characterized the binding motif of dog leukocyte antigen (DLA) class I allele DLA-88*50101, using human C1R and K562 transfected cells expressing the DLA-88*50101 heavy chain. MHC class I immunoaffinity-purification revealed 3720 DLA-88*50101 derived peptides, which enabled the determination of major anchor positions. The characterized binding motif of DLA-88*50101 was similar to HLA-A*02:01. Peptide binding analyses on HLA-A*02:01 and DLA-88*50101 via flow cytometry showed weak binding of DLA-88*50101 derived peptides to HLA-A*02:01, and vice versa. Our results present for the first time a detailed peptide binding motif of the canine MHC class I allelic product DLA-88*50101. These data support the goal of establishing dogs as a suitable animal model for the evaluation and development of T cell-based cancer immunotherapies, benefiting both dog and human patients. PMID:27893789

  3. PDZ Domain Dependent Regulation of NHE3 Occurs by Both Internal Class II and C-terminal Class I PDZ Binding Motifs.

    PubMed

    Cha, Boyoung; Yang, Jianbo; Singh, Varsha; Zachos, Nicholas C; Sarker, Rafiquel I; Chen, Tian-E; Chakraborty, Molee; Tse, Chung-Ming; Donowitz, Mark

    2017-03-10

    NHE3 directly binds NHERF family scaffolding proteins that are required for many aspects of NHE3 regulation. The NHERFs bind both to an internal region (aa. 586-660) of the NHE3 C-terminus and to the NHE3 C-terminal four amino acids. The internal NHERF binding region contains both putative Class I (-592SAV-) and Class II (-595CLDM-) PDZ binding motifs (PBM). Point mutagenesis showed that only the Class II motif contributes to NHERF binding. In this study, the roles in regulation of NHE3 activity of these two PBMs were investigated, revealing: 1) Interaction between these binding sites since mutation of either removed nearly all NHERF binding. 2) Mutations in either significantly reduced basal NHE3 activity. Total and percent plasma membrane (PM) NHE3 protein expression were reduced in the C-terminal but not in the internal PBD mutation. 3) cGMP and Ca2+-mediated inhibition of NHE3 were impaired both in the internal and in the C-terminal PBM mutations. 4) A significant reduction in half-life of the PM pool of NHE3 in only the internal PBM mutation but no change in total NHE3 half-life in either. 5) Some difference in NHE3 associating proteins in the two PBM mutations. In conclusion, NHE3 binds to NHERF proteins via both an internal Class II and C-terminal Class I PBM, which interact. The former appears to determine NHE3 stability of a pool in the PM and the letter determines total expression and percent PM expression.

  4. Exploratory Study on the RNA-Binding Structural Motifs by Library Screening Targeting pre-miRNA-29 a.

    PubMed

    Fukuzumi, Takeo; Murata, Asako; Aikawa, Haruo; Harada, Yasue; Nakatani, Kazuhiko

    2015-11-16

    The metabolic stream of microRNA (miRNA) production, the so-called maturation process of miRNAs, became one of important metabolic paths for drug-targeting to modulate the expression of genes related to a number of diseases. We carried out discovery studies on small molecules binding to the precursor of miR-29a (pre-miR-29a) from a chemical library containing 41,119 compounds (AQ library) by the fluorescent indicator displacement (FID) assay using the xanthone derivative X2SdiMe as a fluorescent indicator. The FID assay provided 1075 compounds, which showed an increase of fluorescence. These compounds were subsequently submitted to a binding analysis in a surface plasmon resonance (SPR) assay on a pre-miR-29a immobilized surface. 21 hit compounds were identified with a good reproducibility in the binding. These compounds have not been reported to bind to RNA until now and can be classified into two groups on the basis of the kinetics in the binding. To gain more information on the motif structures that could be necessary for the binding to pre-miR-29a, 19 substructures were selected from the hit compounds. The substructure library (SS library) which consisted of 362 compounds was prepared from the AQ library. An SPR assay of the SS library on pre-miR-29a-immobilized surface suggested that five substructures could potentially be important structural motifs to bind to pre-miR-29a. These studies demonstrate that the combination of FID-based screening of chemical library and subsequent SPR assay would be one way for obtaining practical solutions for the discovery of molecules which bind to the target pre-miRNAs.

  5. Using Weeder, Pscan, and PscanChIP for the Discovery of Enriched Transcription Factor Binding Site Motifs in Nucleotide Sequences.

    PubMed

    Zambelli, Federico; Pesole, Graziano; Pavesi, Giulio

    2014-09-08

    One of the greatest challenges facing modern molecular biology is understanding the complex mechanisms regulating gene expression. A fundamental step in this process requires the characterization of sequence motifs involved in the regulation of gene expression at transcriptional and post-transcriptional levels. In particular, transcription is modulated by the interaction of transcription factors (TFs) with their corresponding binding sites. Weeder, Pscan, and PscanChIP are software tools freely available for noncommercial users as a stand-alone or Web-based applications for the automatic discovery of conserved motifs in a set of DNA sequences likely to be bound by the same TFs. Input for the tools can be promoter sequences from co-expressed or co-regulated genes (for which Weeder and Pscan are suitable), or regions identified through genome wide ChIP-seq or similar experiments (Weeder and PscanChIP). The motifs are either found by a de novo approach (Weeder) or by using descriptors of the binding specificity of TFs (Pscan and PscanChIP).

  6. Downstream signaling molecules bind to different phosphorylated immunoreceptor tyrosine-based activation motif (ITAM) peptides of the high affinity IgE receptor.

    PubMed

    Kimura, T; Kihara, H; Bhattacharyya, S; Sakamoto, H; Appella, E; Siraganian, R P

    1996-11-01

    The cytoplasmic tails of both the beta and gamma subunits of the high affinity IgE receptor (FcepsilonRI) contain a consensus sequence termed the immunoreceptor tyrosine-based activation motif (ITAM). This motif plays a critical role in receptor-mediated signal transduction. Synthetic peptides based on the ITAM sequences of the beta and gamma subunits of FcepsilonRI were used to investigate which proteins associate with these motifs. Tyrosine-phosphorylated beta and gamma ITAM peptides immobilized on beads precipitated Syk, Lyn, Shc, Grb2, and phospholipase C-gamma1 from lysates of rat basophilic leukemia RBL-2H3 cells. Syk was precipitated predominantly by the tyrosine-diphosphorylated gamma ITAM peptide, but much less by the diphosphorylated beta ITAM peptide or by the monophosphorylated peptides. Phospholipase C-gamma1, Shc, and Grb2 were precipitated only by the diphosphorylated beta ITAM peptide. Non-phosphorylated ITAM peptides did not precipitate these proteins. In membrane binding assays, fusion proteins containing the Src homology 2 domains of phospholipase C-gamma1, Shc, Syk, and Lyn directly bound the tyrosine-phosphorylated ITAM peptides. Although the ITAM sequences of the beta and gamma subunits of FcepsilonRI are similar, once they are tyrosine-phosphorylated they preferentially bind different downstream signaling molecules. Tyrosine phosphorylation of the ITAM of the gamma subunit recruits and activates Syk, whereas the beta subunit may be important for the Ras signaling pathway.

  7. Nonclathrin coat protein gamma, a subunit of coatomer, binds to the cytoplasmic dilysine motif of membrane proteins of the early secretory pathway.

    PubMed Central

    Harter, C; Pavel, J; Coccia, F; Draken, E; Wegehingel, S; Tschochner, H; Wieland, F

    1996-01-01

    Coatomer, a cytosolic heterooligomeric protein complex that consists of seven subunits [alpha-, beta-, beta'-, gamma-, delta-, epsilon-, and zeta-COP (nonclathrin coat protein)], has been shown to interact with dilysine motifs typically found in the cytoplasmic domains of various endoplasmic-reticulum-resident membrane proteins [Cosson, P. & Letourneur, F. (1994) Science 263, 1629-1631]. We have used a photo-cross-linking approach to identify the site of coatomer that is involved in binding to the dilysine motifs. An octapeptide corresponding to the C-terminal tail of Wbp1p, a component of the yeast N-oligosaccharyltransferase complex, has been synthesized with a photoreactive phenylalanine at position -5 and was radioactively labeled with [125I]iodine at a tyrosine residue introduced at the N terminus of the peptide. Photolysis of isolated coatomer in the presence of this peptide and immunoprecipitation of coatomer from photo-cross-linked cell lysates reveal that gamma-COP is the predominantly labeled protein. From these results, we conclude that coatomer is able to bind to the cytoplasmic dilysine motifs of membrane proteins of the early secretory pathway via its gamma-COP subunit, whose complete cDNA-derived amino acid sequence is also presented. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8700856

  8. ATG4B contains a C-terminal LIR motif important for binding and efficient cleavage of mammalian orthologs of yeast Atg8.

    PubMed

    Skytte Rasmussen, Mads; Mouilleron, Stéphane; Kumar Shrestha, Birendra; Wirth, Martina; Lee, Rebecca; Bowitz Larsen, Kenneth; Abudu Princely, Yakubu; O'Reilly, Nicola; Sjøttem, Eva; Tooze, Sharon A; Lamark, Trond; Johansen, Terje

    2017-02-15

    The cysteine protease ATG4B cleaves off one or more C-terminal residues of the inactive proform of proteins of the ortholog and paralog LC3 and GABARAP subfamilies of yeast Atg8 to expose a C-terminal glycine that is conjugated to phosphatidylethanolamine during autophagosome formation. We show that ATG4B contains a C-terminal LC3-interacting region (LIR) motif important for efficient binding to and cleavage of LC3 and GABARAP proteins. We solved the crystal structures of the GABARAPL1-ATG4B C-terminal LIR complex. Analyses of the structures and in vitro binding assays, using specific point mutants, clearly showed that the ATG4B LIR binds via electrostatic-, aromatic HP1 and hydrophobic HP2 pocket interactions. Both these interactions and the catalytic site-substrate interaction contribute to binding between LC3s or GABARAPs and ATG4B. We also reveal an unexpected role for ATG4B in stabilizing the unlipidated forms of GABARAP and GABARAPL1. In mouse embryonic fibroblast (MEF) atg4b knockout cells, GABARAP and GABARAPL1 were unstable and degraded by the proteasome. Strikingly, the LIR motif of ATG4B was required for stabilization of the unlipidated forms of GABARAP and GABARAPL1 in cells.

  9. SarA, a global regulator of virulence determinants in Staphylococcus aureus, binds to a conserved motif essential for sar-dependent gene regulation.

    PubMed

    Chien, Y; Manna, A C; Projan, S J; Cheung, A L

    1999-12-24

    The expression of many virulence determinants in Staphylococcus aureus including alpha-hemolysin-, protein A-, and fibronectin-binding proteins is controlled by global regulatory loci such as sar and agr. In addition to controlling target gene expression via agr (e.g. alpha-hemolysin), the sar locus can also regulate target gene transcription via agr-independent mechanisms. In particular, we have found that SarA, the major regulatory protein encoded within sar, binds to a conserved sequence, homologous to the SarA-binding site on the agr promoter, upstream of the -35 promoter boxes of several target genes including hla (alpha-hemolysin gene), spa (protein A gene), fnb (fibronectin-binding protein genes), and sec (enterotoxin C gene). Deletion of the SarA recognition motif in the promoter regions of agr and hla in shuttle plasmids rendered the transcription of these genes undetectable in agr and hla mutants, respectively. Likewise, the transcription activity of spa (a gene normally repressed by sar), as measured by a XylE reporter fusion assay, became derepressed in a wild type strain containing a shuttle plasmid in which the SarA recognition site had been deleted from the spa promoter region. However, DNase I footprinting assays demonstrated that the SarA-binding region on the spa and hla promoter is more extensive than the predicted consensus sequence, thus raising the possibility that the consensus sequence is an activation site within a larger binding region. Because the sar and agr regulate an assortment of virulence factors in S. aureus, we propose, based on our data, a unifying hypothesis for virulence gene activation in S. aureus whereby SarA is a regulatory protein that binds to its consensus SarA recognition motif to activate (e.g. hla) or repress (e.g. spa) the transcription of sar target genes, thus accounting for both agr-dependent and agr-independent mode of regulation.

  10. Different motif requirements for the localization zipcode element of β-actin mRNA binding by HuD and ZBP1

    PubMed Central

    Kim, Hak Hee; Lee, Seung Joon; Gardiner, Amy S.; Perrone-Bizzozero, Nora I.; Yoo, Soonmoon

    2015-01-01

    Interactions of RNA-binding proteins (RBPs) with their target transcripts are essential for regulating gene expression at the posttranscriptional level including mRNA export/localization, stability, and translation. ZBP1 and HuD are RBPs that play pivotal roles in mRNA transport and local translational control in neuronal processes. While HuD possesses three RNA recognition motifs (RRMs), ZBP1 contains two RRMs and four K homology (KH) domains that either increase target specificity or provide a multi-target binding capability. Here we used isolated cis-element sequences of the target mRNA to examine directly protein-RNA interactions in cell-free systems. We found that both ZBP1 and HuD bind the zipcode element in rat β-actin mRNA's 3′ UTR. Differences between HuD and ZBP1 were observed in their binding preference to the element. HuD showed a binding preference for U-rich sequence. In contrast, ZBP1 binding to the zipcode RNA depended more on the structural level, as it required the proper spatial organization of a stem-loop that is mainly determined by the U-rich element juxtaposed to the 3′ end of a 5′-ACACCC-3′ motif. On the basis of this work, we propose that ZBP1 and HuD bind to overlapping sites in the β-actin zipcode, but they recognize different features of this target sequence. PMID:26152301

  11. Deleting the 14-3-3 protein Bmh1 extends life span in Saccharomyces cerevisiae by increasing stress response.

    PubMed

    Wang, Chen; Skinner, Craig; Easlon, Erin; Lin, Su-Ju

    2009-12-01

    Enhanced stress response has been suggested to promote longevity in many species. Calorie restriction (CR) and conserved nutrient-sensing target of rapamycin (TOR) and protein kinase A (PKA) pathways have also been suggested to extend life span by increasing stress response, which protects cells from age-dependent accumulation of oxidative damages. Here we show that deleting the yeast 14-3-3 protein, Bmh1, extends chronological life span (CLS) by activating the stress response. 14-3-3 proteins are highly conserved chaperone-like proteins that play important roles in many cellular processes. bmh1Delta-induced heat resistance and CLS extension require the general stress-response transcription factors Msn2, Msn4, and Rim15. The bmh1Delta mutant also displays a decreased reactive oxygen species level and increased heat-shock-element-driven transcription activity. We also show that BMH1 genetically interacts with CR and conserved nutrient-sensing TOR- and PKA-signaling pathways to regulate life span. Interestingly, the level of phosphorylated Ser238 on Bmh1 increases during chronological aging, which is delayed by CR or by reduced TOR activities. In addition, we demonstrate that PKA can directly phosphorylate Ser238 on Bmh1. The status of Bmh1 phosphorylation is therefore likely to play important roles in life-span regulation. Together, our studies suggest that phosphorylated Bmh1 may cause inhibitory effects on downstream longevity factors, including stress-response proteins. Deleting Bmh1 may eliminate the inhibitory effects of Bmh1 on these longevity factors and therefore extends life span.

  12. Cyclic diguanosine monophosphate represses bacterial flagella synthesis by interacting with the Walker A motif of the enhancer-binding protein FleQ.

    PubMed

    Baraquet, Claudine; Harwood, Caroline S

    2013-11-12

    The transcription factor FleQ is a bacterial AAA+ ATPase enhancer-binding protein that is the master activator of flagella gene expression in the opportunistic bacterial pathogen Pseudomonas aeruginosa. Homologs of FleQ are present in all Pseudomonas species and in many polarly flagellated gamma proteobacteria. Cyclic diguanosine monophosphate (c-di-GMP) is a second messenger that controls the transition between planktonic and biofilm modes of growth in bacteria in response to diverse environmental signals. C-di-GMP binds to FleQ to dampen its activity, causing down-regulation of flagella gene expression. This action is potentiated in the simultaneous presence of another protein, FleN. We explored the effect of c-di-GMP and FleN on the ATPase activity of FleQ and found that a relatively low concentration of c-di-GMP competitively inhibited FleQ ATPase activity, suggesting that c-di-GMP competes with ATP for binding to the Walker A motif of FleQ. Confirming this, a FleQ Walker A motif mutant failed to bind c-di-GMP. FleN, whose gene is regulated by FleQ, also inhibited FleQ ATPase activity, and FleQ ATPase activity was much more inhibited by c-di-GMP in the presence of FleN than in its absence. These results indicate that FleN and c-di-GMP cooperate to inhibit FleQ activity and, by extension, flagella synthesis in P. aeruginosa. The Walker A motif of FleQ is perfectly conserved, opening up the possibility that other AAA+ ATPases may respond to c-di-GMP.

  13. Inhibition of NF-kappaB by ZAS3, a zinc-finger protein that also binds to the kappaB motif.

    PubMed

    Hong, Joung-Woo; Allen, Carl E; Wu, Lai-Chu

    2003-10-14

    The ZAS proteins are large zinc-finger transcriptional proteins implicated in growth, signal transduction, and lymphoid development. Recombinant ZAS fusion proteins containing one of the two DNA-binding domains have been shown to bind specifically to the kappaB motif, but the endogenous ZAS proteins or their physiological functions are largely unknown. The kappaB motif, GGGACTTTCC, is a gene regulatory element found in promoters and enhancers of genes involved in immunity, inflammation, and growth. The Rel family of NF-kappaB, predominantly p65.p50 and p50.p50, are transcription factors well known for inducing gene expression by means of interaction with the kappaB motif during acute-phase responses. A functional link between ZAS and NF-kappaB, two distinct families of kappaB-binding proteins, stems from our previous in vitro studies that show that a representative member, ZAS3, associates with TRAF2, an adaptor molecule in tumor necrosis factor signaling, to inhibit NF-kappaB activation. Biochemical and genetic evidence presented herein shows that ZAS3 encodes major kappaB-binding proteins in B lymphocytes, and that NF-kappaB is constitutively activated in ZAS3-deficient B cells. The data suggest that ZAS3 plays crucial functions in maintaining cellular homeostasis, at least in part by inhibiting NF-kappaB by means of three mechanisms: inhibition of nuclear translocation of p65, competition for kappaB gene regulatory elements, and repression of target gene transcription.

  14. A Negative Regulatory Mechanism Involving 14-3-3ζ Limits Signaling Downstream of ROCK to Regulate Tissue Stiffness in Epidermal Homeostasis.

    PubMed

    Kular, Jasreen; Scheer, Kaitlin G; Pyne, Natasha T; Allam, Amr H; Pollard, Anthony N; Magenau, Astrid; Wright, Rebecca L; Kolesnikoff, Natasha; Moretti, Paul A; Wullkopf, Lena; Stomski, Frank C; Cowin, Allison J; Woodcock, Joanna M; Grimbaldeston, Michele A; Pitson, Stuart M; Timpson, Paul; Ramshaw, Hayley S; Lopez, Angel F; Samuel, Michael S

    2015-12-21

    ROCK signaling causes epidermal hyper-proliferation by increasing ECM production, elevating dermal stiffness, and enhancing Fak-mediated mechano-transduction signaling. Elevated dermal stiffness in turn causes ROCK activation, establishing mechano-reciprocity, a positive feedback loop that can promote tumors. We have identified a negative feedback mechanism that limits excessive ROCK signaling during wound healing and is lost in squamous cell carcinomas (SCCs). Signal flux through ROCK was selectively tuned down by increased levels of 14-3-3ζ, which interacted with Mypt1, a ROCK signaling antagonist. In 14-3-3ζ(-/-) mice, unrestrained ROCK signaling at wound margins elevated ECM production and reduced ECM remodeling, increasing dermal stiffness and causing rapid wound healing. Conversely, 14-3-3ζ deficiency enhanced cutaneous SCC size. Significantly, inhibiting 14-3-3ζ with a novel pharmacological agent accelerated wound healing 2-fold. Patient samples of chronic non-healing wounds overexpressed 14-3-3ζ, while cutaneous SCCs had reduced 14-3-3ζ. These results reveal a novel 14-3-3ζ-dependent mechanism that negatively regulates mechano-reciprocity, suggesting new therapeutic opportunities.

  15. 14-3-3ζ deficient mice in the BALB/c background display behavioural and anatomical defects associated with neurodevelopmental disorders.

    PubMed

    Xu, Xiangjun; Jaehne, Emily J; Greenberg, Zarina; McCarthy, Peter; Saleh, Eiman; Parish, Clare L; Camera, Daria; Heng, Julian; Haas, Matilda; Baune, Bernhard T; Ratnayake, Udani; van den Buuse, Maarten; Lopez, Angel F; Ramshaw, Hayley S; Schwarz, Quenten

    2015-07-24

    Sequencing and expression analyses implicate 14-3-3ζ as a genetic risk factor for neurodevelopmental disorders such as schizophrenia and autism. In support of this notion, we recently found that 14-3-3ζ(-/-) mice in the Sv/129 background display schizophrenia-like defects. As epistatic interactions play a significant role in disease pathogenesis we generated a new congenic strain in the BALB/c background to determine the impact of genetic interactions on the 14-3-3ζ(-/-) phenotype. In addition to replicating defects such as aberrant mossy fibre connectivity and impaired spatial memory, our analysis of 14-3-3ζ(-/-) BALB/c mice identified enlarged lateral ventricles, reduced synaptic density and ectopically positioned pyramidal neurons in all subfields of the hippocampus. In contrast to our previous analyses, 14-3-3ζ(-/-) BALB/c mice lacked locomotor hyperactivity that was underscored by normal levels of the dopamine transporter (DAT) and dopamine signalling. Taken together, our results demonstrate that dysfunction of 14-3-3ζ gives rise to many of the pathological hallmarks associated with the human condition. 14-3-3ζ-deficient BALB/c mice therefore provide a novel model to address the underlying biology of structural defects affecting the hippocampus and ventricle, and cognitive defects such as hippocampal-dependent learning and memory.

  16. Unusual conformation of the SxN motif in the crystal structure of penicillin-binding protein A from Mycobacterium tuberculosis.

    SciTech Connect

    Fedarovich, Alena; Nicholas, Robert A.; Davies, Christopher

    2010-07-19

    PBPA from Mycobacterium tuberculosis is a class B-like penicillin-binding protein (PBP) that is not essential for cell growth in M. tuberculosis, but is important for proper cell division in Mycobacterium smegmatis. We have determined the crystal structure of PBPA at 2.05 {angstrom} resolution, the first published structure of a PBP from this important pathogen. Compared to other PBPs, PBPA has a relatively small N-terminal domain, and conservation of a cluster of charged residues within this domain suggests that PBPA is more related to class B PBPs than previously inferred from sequence analysis. The C-terminal domain is a typical transpeptidase fold and contains the three conserved active-site motifs characterisitic of penicillin-interacting enzymes. While the arrangement of the SxxK and KTG motifs is similar to that observed in other PBPs, the SxN motif is markedly displaced away from the active site, such that its serine (Ser281) is not involved in hydrogen bonding with residues of the other two motifs. A disulfide bridge between Cys282 (the 'x' of the SxN motif) and Cys266, which resides on an adjacent loop, may be responsible for this unusual conformation. Another interesting feature of the structure is a relatively long connection between {beta}5 and {alpha}11, which restricts the space available in the active site of PBPA and suggests that conformational changes would be required to accommodate peptide substrate or {beta}-lactam antibiotics during acylation. Finally, the structure shows that one of the two threonines postulated to be targets for phosphorylation is inaccessible (Thr362), whereas the other (Thr437) is well placed on a surface loop near the active site.

  17. Identification of a 14-3-3 protein from Lentinus edodes that interacts with CAP (adenylyl cyclase-associated protein), and conservation of this interaction in fission yeast.

    PubMed

    Zhou, G L; Yamamoto, T; Ozoe, F; Yano, D; Tanaka, K; Matsuda, H; Kawamukai, M

    2000-01-01

    We previously identified a gene encoding a CAP (adenylyl cyclase-associated protein) homologue from the edible Basidiomycete Lentinus edodes. To further discover the cellular functions of the CAP protein, we searched for CAP-interacting proteins using a yeast two-hybrid system. Among the candidates thus obtained, many clones encoded the C-terminal half of an L. edodes 14-3-3 homologue (designated cip3). Southern blot analysis indicated that L. edodes contains only one 14-3-3 gene. Overexpression of the L. edodes 14-3-3 protein in the fission yeast Schizosaccharomyces pombe rad24 null cells complemented the loss of endogenous 14-3-3 protein functions in cell morphology and UV sensitivity, suggesting functional conservation of 14-3-3 proteins between L. edodes and S. pombe. The interaction between L. edodes CAP and 14-3-3 protein was restricted to the N-terminal domain of CAP and was confirmed by in vitro co-precipitation. Results from both the two-hybrid system and in vivo co-precipitation experiments showed the conservation of this interaction in S. pombe. The observation that a 14-3-3 protein interacts with the N-terminal portion of CAP but not with full-length CAP in L. edodes and S. pombe suggests that the C-terminal region of CAP may have a negative effect on the interaction between CAP and 14-3-3 proteins, and 14-3-3 proteins may play a role in regulation of CAP function.

  18. Molecular sensing of bacteria in plants. The highly conserved RNA-binding motif RNP-1 of bacterial cold shock proteins is recognized as an elicitor signal in tobacco.

    PubMed

    Felix, Georg; Boller, Thomas

    2003-02-21

    To detect microbial infection multicellular organisms have evolved sensing systems for pathogen-associated molecular patterns (PAMPs). Here, we identify bacterial cold shock protein (CSP) as a new such PAMP that acts as a highly active elicitor of defense responses in tobacco. Tobacco cells perceive a conserved domain of CSP and synthetic peptides representing 15 amino acids of this domain-induced responses at subnanomolar concentrations. Central to the elicitor-active domain is the RNP-1 motif KGFGFITP, a motif conserved also in many RNA- and DNA-binding proteins of eukaryotes. Csp15-Nsyl, a peptide representing the domain with highest homology to csp15 in a protein of Nicotiana sylvestris exhibited only weak activity in tobacco cells. Crystallographic and genetic data from the literature show that the RNP-1 domain of bacterial CSPs resides on a protruding loop and exposes a series of aromatic and basic side chains to the surface that are essential for the nucleotide-binding activity of CSPs. Similarly, these side chains were also essential for elicitor activity and replacement of single residues in csp15 with Ala strongly reduced or abolished activity. Most strikingly, csp15-Ala10, a peptide with the RNP-1 motif modified to KGAGFITP, lacked elicitor activity but acted as a competitive antagonist for CSP-related elicitors. Bacteria commonly have a small family of CSP-like proteins including both cold-inducible and noninducible members, and Csp-related elicitor activity was detected in extracts from all bacteria tested. Thus, the CSP domain containing the RNP-1 motif provides a structure characteristic for bacteria in general, and tobacco plants have evolved a highly sensitive chemoperception system to detect this bacterial PAMP.

  19. Key Importance of Small RNA Binding for the Activity of a Glycine-Tryptophan (GW) Motif-containing Viral Suppressor of RNA Silencing*

    PubMed Central

    Pérez-Cañamás, Miryam; Hernández, Carmen

    2015-01-01

    Viruses express viral suppressors of RNA silencing (VSRs) to counteract RNA silencing-based host defenses. Although virtually all stages of the antiviral silencing pathway can be inhibited by VSRs, small RNAs (sRNAs) and Argonaute (AGO) proteins seem to be the most frequent targets. Recently, GW/WG motifs of some VSRs have been proposed to dictate their suppressor function by mediating interaction with AGO(s). Here we have studied the VSR encoded by Pelargonium line pattern virus (family Tombusviridae). The results show that p37, the viral coat protein, blocks RNA silencing. Site-directed mutagenesis of some p37 sequence traits, including a conserved GW motif, allowed generation of suppressor-competent and -incompetent molecules and uncoupling of the VSR and particle assembly capacities. The engineered mutants were used to assess the importance of p37 functions for viral infection and the relative contribution of diverse molecular interactions to suppressor activity. Two main conclusions can be drawn: (i) the silencing suppression and encapsidation functions of p37 are both required for systemic Pelargonium line pattern virus infection, and (ii) the suppressor activity of p37 relies on the ability to bind sRNAs rather than on interaction with AGOs. The data also caution against potential misinterpretations of results due to overlap of sequence signals related to distinct protein properties. This is well illustrated by mutation of the GW motif in p37 that concurrently affects nucleolar localization, efficient interaction with AGO1, and sRNA binding capability. These concomitant effects could have been overlooked in other GW motif-containing suppressors, as we exemplify with the orthologous p38 of turnip crinkle virus. PMID:25505185

  20. PI 3-kinase-dependent phosphorylation of Plk1–Ser99 promotes association with 14-3-3γ and is required for metaphase–anaphase transition

    PubMed Central

    Kasahara, Kousuke; Goto, Hidemasa; Izawa, Ichiro; Kiyono, Tohru; Watanabe, Nobumoto; Elowe, Sabine; Nigg, Erich A; Inagaki, Masaki

    2013-01-01

    Polo-like kinase 1 (Plk1) controls multiple aspects of mitosis and is activated through its phosphorylation at Thr210. Here we identify Ser99 on Plk1 as a novel mitosis-specific phosphorylation site, which operates independently of Plk1–Thr210 phosphorylation. Plk1–Ser99 phosphorylation creates a docking site for 14-3-3γ, and this interaction stimulates the catalytic activity of Plk1. Knockdown of 14-3-3γ or replacement of wild-type (WT) Plk1 by a Ser99-phospho-blocking mutant leads to a prometaphase/metaphase-like arrest due to the activation of the spindle assembly checkpoint. Inhibition of phosphatidylinositol 3-kinase (PI3K) and Akt significantly reduces the level of Plk1–Ser99 phosphorylation and delays metaphase to anaphase transition. Plk1–Ser99 phosphorylation requires not only Akt activity but also protein(s) associated with Plk1 in a mitosis-specific manner. Therefore, mitotic Plk1 activity is regulated not only by Plk1–Thr210 phosphorylation, but also by Plk1 binding to 14-3-3γ following Plk1–Ser99 phosphorylation downstream of the PI3K–Akt signalling pathway. This novel Plk1 activation pathway controls proper progression from metaphase to anaphase. PMID:23695676

  1. Crystal structure of the N-terminal region of human Ash2L shows a winged-helix motif involved in DNA binding

    SciTech Connect

    Chen, Yong; Wan, Bingbing; Wang, Kevin C.; Cao, Fang; Yang, Yuting; Protacio, Angeline; Dou, Yali; Chang, Howard Y.; Lei, Ming

    2011-09-06

    Ash2L is a core component of the MLL family histone methyltransferases and has an important role in regulating the methylation of histone H3 on lysine 4. Here, we report the crystal structure of the N-terminal domain of Ash2L and reveal a new function of Ash2L. The structure shows that Ash2L contains an atypical PHD finger that does not have histone tail-binding activity. Unexpectedly, the structure shows a previously unrecognized winged-helix motif that directly binds to DNA. The DNA-binding-deficient mutants of Ash2L reduced Ash2L localization to the HOX locus. Strikingly, a single mutation in Ash2L{sub WH} (K131A) breaks the chromatin domain boundary, suggesting that Ash2L also has a role in chromosome demarcation.

  2. Gas-phase complexes of Ni2+ and Ca2+ with deprotonated histidylhistidine (HisHis): A model case for polyhistidyl-metal binding motifs

    NASA Astrophysics Data System (ADS)

    Peckelsen, Katrin; Martens, Jonathan; Berden, Giel; Oomens, Jos; Dunbar, Robert C.; Meijer, Anthony J. H. M.; Schäfer, Mathias

    2017-02-01

    In the complex formed between the calcium cation (Ca2+) and a deprotonated HisHis dipeptide, the complex adopts a charge solvation (CS) structure. Ca2+, a weak binding main group metal cation, interacts with the oxygens of the peptide carbonyl moiety and the deprotonated C-terminus. In contrast, the much stronger binding Ni2+ cation deprotonates the peptide nitrogen and induces an iminolate (Im) ligand structure in the [Ni(HisHis-H)]+ complex ion. The combination of infrared multiple-photon dissociation (IRMPD) spectroscopy and quantum chemistry evidence these two representative binding motifs. The iminolate coordination pattern identified and characterized in the [Ni(HisHis-H)]+ complex serves as a model case for nickel complexes of poly-histidyl-domains and is thereby also of interest to better understand the fundamentals of immobilized metal ion affinity chromatography as well as of Ni co-factor chemistry in enzymology.

  3. Nicotine induced CpG methylation of Pax6 binding motif in StAR promoter reduces the gene expression and cortisol production

    SciTech Connect

    Wang, Tingting; Chen, Man; Liu, Lian; Cheng, Huaiyan; Yan, You-E; Feng, Ying-Hong; Wang, Hui

    2011-12-15

    Steroidogenic acute regulatory protein (StAR) mediates the rate-limiting step in the synthesis of steroid hormones, essential to fetal development. We have reported that the StAR expression in fetal adrenal is inhibited in a rat model of nicotine-induced intrauterine growth retardation (IUGR). Here using primary human fetal adrenal cortex (pHFAC) cells and a human fetal adrenal cell line NCI-H295A, we show that nicotine inhibits StAR expression and cortisol production in a dose- and time-dependent manner, and prolongs the inhibitory effect on cells proliferating over 5 passages after termination of nicotine treatment. Methylation detection within the StAR promoter region uncovers a single site CpG methylation at nt -377 that is sensitive to nicotine treatment. Nicotine-induced alterations in frequency of this point methylation correlates well with the levels of StAR expression, suggesting an important role of the single site in regulating StAR expression. Further studies using bioinformatics analysis and siRNA approach reveal that the single CpG site is part of the Pax6 binding motif (CGCCTGA) in the StAR promoter. The luciferase activity assays validate that Pax6 increases StAR gene expression by binding to the glucagon G3-like motif (CGCCTGA) and methylation of this site blocks Pax6 binding and thus suppresses StAR expression. These data identify a nicotine-sensitive CpG site at the Pax6 binding motif in the StAR promoter that may play a central role in regulating StAR expression. The results suggest an epigenetic mechanism that may explain how nicotine contributes to onset of adult diseases or disorders such as metabolic syndrome via fetal programming. -- Highlights: Black-Right-Pointing-Pointer Nicotine-induced StAR inhibition in two human adrenal cell models. Black-Right-Pointing-Pointer Nicotine-induced single CpG site methylation in StAR promoter. Black-Right-Pointing-Pointer Persistent StAR inhibition and single CpG methylation after nicotine termination

  4. The Role of Glutamic or Aspartic Acid in Position Four of the Epitope Binding Motif and Thyrotropin Receptor-Extracellular Domain Epitope Selection in Graves' Disease

    PubMed Central

    Inaba, Hidefumi; Martin, William; Ardito, Matt; De Groot, Anne Searls; De Groot, Leslie J.

    2010-01-01

    Context: Development of Graves' disease (GD) is related to HLA-DRB1*0301 (DR3),and more specifically to arginine at position 74 of the DRB1 molecule. The extracellular domain (ECD) of human TSH receptor (hTSH-R) contains the target antigen. Objective and Design: We analyzed the relation between hTSH-R-ECD peptides and DR molecules to determine whether aspartic acid (D) or glutamic acid (E) at position four in the binding motif influenced selection of functional epitopes. Results: Peptide epitopes from TSH-R-ECD with D or E in position four (D/E+) had higher affinity for binding to DR3 than peptides without D/E (D/E−) (IC50 29.3 vs. 61.4, P = 0.0024). HLA-DR7, negatively correlated with GD, and DRB1*0302 (HLA-DR18), not associated with GD, had different profiles of epitope binding. Toxic GD patients who are DR3+ had higher responses to D/E+ peptides than D/E− peptides (stimulation index 1.42 vs. 1.22, P = 0.028). All DR3+ GD patients (toxic + euthyroid) had higher responses, with borderline significance (Sl; 1.32 vs. 1.18, P = 0.051). Splenocytes of DR3 transgenic mice immunized to TSH-R-ECD responded to D/E+ peptides more than D/E− peptides (stimulation index 1.95 vs. 1.69, P = 0.036). Seven of nine hTSH-R-ECD peptide epitopes reported to be reactive with GD patients' peripheral blood mononuclear cells contain binding motifs with D/E at position four. Conclusions: TSH-R-ECD epitopes with D/E in position four of the binding motif bind more strongly to DRB1*0301 than epitopes that are D/E− and are more stimulatory to GD patients' peripheral blood mononuclear cells and to splenocytes from mice immunized to hTSH-R. These epitopes appear important in immunogenicity to TSH-R due to their favored binding to HLA-DR3, thus increasing presentation to T cells. PMID:20392871

  5. The Arabidopsis GAGA-Binding Factor BASIC PENTACYSTEINE6 Recruits the POLYCOMB-REPRESSIVE COMPLEX1 Component LIKE HETEROCHROMATIN PROTEIN1 to GAGA DNA Motifs1

    PubMed Central

    Hecker, Andreas; Brand, Luise H.; Peter, Sébastien; Simoncello, Nathalie; Kilian, Joachim; Gaudin, Valérie

    2015-01-01

    Polycomb-repressive complexes (PRCs) play key roles in development by repressing a large number of genes involved in various functions. Much, however, remains to be discovered about PRC-silencing mechanisms as well as their targeting to specific genomic regions. Besides other mechanisms, GAGA-binding factors in animals can guide PRC members in a sequence-specific manner to Polycomb-responsive DNA elements. Here, we show that the Arabidopsis (Arabidopsis thaliana) GAGA-motif binding factor protein BASIC PENTACYSTEINE6 (BPC6) interacts with LIKE HETEROCHROMATIN PROTEIN1 (LHP1), a PRC1 component, and associates with VERNALIZATION2 (VRN2), a PRC2 component, in vivo. By using a modified DNA-protein interaction enzyme-linked immunosorbant assay, we could show that BPC6 was required and sufficient to recruit LHP1 to GAGA motif-containing DNA probes in vitro. We also found that LHP1 interacts with VRN2 and, therefore, can function as a possible scaffold between BPC6 and VRN2. The lhp1-4 bpc4 bpc6 triple mutant displayed a pleiotropic phenotype, extreme dwarfism and early flowering, which disclosed synergistic functions of LHP1 and group II plant BPC members. Transcriptome analyses supported this synergy and suggested a possible function in the concerted repression of homeotic genes, probably through histone H3 lysine-27 trimethylation. Hence, our findings suggest striking similarities between animal and plant GAGA-binding factors in the recruitment of PRC1 and PRC2 components to Polycomb-responsive DNA element-like GAGA motifs, which must have evolved through convergent evolution. PMID:26025051

  6. Evidence for a Structural Motif in Toxins and Interleukin-2 That May Be Responsible for Binding to Endothelial Cells and Initiating Vascular Leak Syndrome

    NASA Astrophysics Data System (ADS)

    Baluna, Roxana; Rizo, Josep; Gordon, Brian E.; Ghetie, Victor; Vitetta, Ellen S.

    1999-03-01

    The dose-limiting toxicity of interleukin-2 (IL-2) and immunotoxin (IT) therapy in humans is vascular leak syndrome (VLS). VLS has a complex etiology involving damage to vascular endothelial cells (ECs), extravasation of fluids and proteins, interstitial edema, and organ failure. IL-2 and ITs prepared with the catalytic A chain of the plant toxin, ricin (RTA), and other toxins, damage human ECs in vitro and in vivo. Damage to ECs may initiate VLS; if this damage could be avoided without losing the efficacy of ITs or IL-2, larger doses could be administered. In this paper, we provide evidence that a three amino acid sequence motif, (x)D(y), in toxins and IL-2 damages ECs. Thus, when peptides from RTA or IL-2 containing this sequence motif are coupled to mouse IgG, they bind to and damage ECs both in vitro and, in the case of RTA, in vivo. In contrast, the same peptides with a deleted or mutated sequence do not. Furthermore, the peptide from RTA attached to mouse IgG can block the binding of intact RTA to ECs in vitro and vice versa. In addition, RTA, a fragment of Pseudomonas exotoxin A (PE38-lys), and fibronectin also block the binding of the mouse IgG-RTA peptide to ECs, suggesting that an (x)D(y) motif is exposed on all three molecules. Our results suggest that deletions or mutations in this sequence or the use of nondamaging blocking peptides may increase the therapeutic index of both IL-2, as well as ITs prepared with a variety of plant or bacterial toxins.

  7. Redundant ERF-VII Transcription Factors Bind to an Evolutionarily Conserved cis-Motif to Regulate Hypoxia-Responsive Gene Expression in Arabidopsis

    PubMed Central

    Gasch, Philipp; Fundinger, Moritz; Müller, Jana T.; Lee, Travis; Mustroph, Angelika

    2016-01-01

    The response of Arabidopsis thaliana to low-oxygen stress (hypoxia), such as during shoot submergence or root waterlogging, includes increasing the levels of ∼50 hypoxia-responsive gene transcripts, many of which encode enzymes associated with anaerobic metabolism. Upregulation of over half of these mRNAs involves stabilization of five group VII ethylene response factor (ERF-VII) transcription factors, which are routinely degraded via the N-end rule pathway of proteolysis in an oxygen- and nitric oxide-dependent manner. Despite their importance, neither the quantitative contribution of individual ERF-VIIs nor the cis-regulatory elements they govern are well understood. Here, using single- and double-null mutants, the constitutively synthesized ERF-VIIs RELATED TO APETALA2.2 (RAP2.2) and RAP2.12 are shown to act redundantly as principle activators of hypoxia-responsive genes; constitutively expressed RAP2.3 contributes to this redundancy, whereas the hypoxia-induced HYPOXIA RESPONSIVE ERF1 (HRE1) and HRE2 play minor roles. An evolutionarily conserved 12-bp cis-regulatory motif that binds to and is sufficient for activation by RAP2.2 and RAP2.12 is identified through a comparative phylogenetic motif search, promoter dissection, yeast one-hybrid assays, and chromatin immunopurification. This motif, designated the hypoxia-responsive promoter element, is enriched in promoters of hypoxia-responsive genes in multiple species. PMID:26668304

  8. Central Role of the Copper-Binding Motif in the Complex Mechanism of Action of Ixosin: Enhancing Oxidative Damage and Promoting Synergy with Ixosin B.

    PubMed

    Libardo, M Daben J; Gorbatyuk, Vitaliy Y; Angeles-Boza, Alfredo M

    2016-01-08

    Ticks transmit multiple pathogens to different hosts without compromising their health. Their ability to evade microbial infections is largely a result of their effective innate immune response including various antimicrobial peptides. Therefore, a deep understanding of how ticks (and other arthropod vectors) control microbial loads could lead to the design of broad-spectrum antimicrobial agents. In this paper we study the role of the amino-terminal copper and nickel (ATCUN)-binding sequence in the peptide ixosin, isolated from the salivary glands of the hard tick Ixodes sinensis. Our results indicate that the ATCUN motif is not essential to the potency of ixosin, but is indispensable to its oxidative mechanism of action. Specifically, the ATCUN motif promotes dioxygen- and copper-dependent lipid (per)oxidation of bacterial membranes in a temporal fashion coinciding with the onset of bacterial death. Microscopy and studies on model membranes indicate that the oxidized phospholipids are utilized as potential targets of ixosin B (another tick salivary gland peptide) involving its delocalization to the bacterial membrane, thus resulting in a synergistic effect. Our proposed mechanism of action highlights the centrality of the ATCUN motif to ixosin's mechanism of action and demonstrates a novel way in which (tick) antimicrobial peptides (AMPs) utilize metal ions in its activity. This study suggests that ticks employ a variety of effectors to generate an amplified immune response, possibly justifying its vector competence.

  9. A polybasic motif in ErbB3-binding protein 1 (EBP1) has key functions in nucleolar localization and polyphosphoinositide interaction

    PubMed Central

    Karlsson, Thomas; Altankhuyag, Altanchimeg; Dobrovolska, Olena; Turcu, Diana C.; Lewis, Aurélia E.

    2016-01-01

    Polyphosphoinositides (PPIns) are present in the nucleus where they participate in crucial nuclear processes, such as chromatin remodelling, transcription and mRNA processing. In a previous interactomics study, aimed to gain further insight into nuclear PPIns functions, we identified ErbB3 binding protein 1 (EBP1) as a potential nuclear PPIn-binding protein in a lipid pull-down screen. EBP1 is a ubiquitous and conserved protein, located in both the cytoplasm and nucleolus, and associated with cell proliferation and survival. In the present study, we show that EBP1 binds directly to several PPIns via two distinct PPIn-binding sites consisting of clusters of lysine residues and positioned at the N- and C-termini of the protein. Using interaction mutants, we show that the C-terminal PPIn-binding motif contributes the most to the localization of EBP1 in the nucleolus. Importantly, a K372N point mutation, located within the C-terminal motif and found in endometrial tumours, is sufficient to alter the nucleolar targeting of EBP1. Our study reveals also the presence of the class I phosphoinositide 3-kinase (PI3K) catalytic subunit p110β and its product PtdIns(3,4,5)P3 together with EBP1 in the nucleolus. Using NMR, we further demonstrate an association between EBP1 and PtdIns(3,4,5)P3 via both electrostatic and hydrophobic interactions. Taken together, these results show that EBP1 interacts directly with PPIns and associate with PtdIns(3,4,5)P3 in the nucleolus. The presence of p110β and PtdIns(3,4,5)P3 in the nucleolus indicates their potential role in regulating nucleolar processes, at least via EBP1. PMID:27118868

  10. Specific recognition of the collagen triple helix by chaperone HSP47. II. The HSP47-binding structural motif in collagens and related proteins.

    PubMed

    Koide, Takaki; Nishikawa, Yoshimi; Asada, Shinichi; Yamazaki, Chisato M; Takahara, Yoshifumi; Homma, Daisuke L; Otaka, Akira; Ohtani, Katsuki; Wakamiya, Nobutaka; Nagata, Kazuhiro; Kitagawa, Kouki

    2006-04-21

    The endoplasmic reticulum-resident chaperone heat-shock protein 47 (HSP47) plays an essential role in procollagen biosynthesis. The function of HSP47 relies on its specific interaction with correctly folded triple-helical regions comprised of Gly-Xaa-Yaa repeats, and Arg residues at Yaa positions have been shown to be important for this interaction. The amino acid at the Yaa position (Yaa(-3)) in the N-terminal-adjoining triplet containing the critical Arg (defined as Arg(0)) was also suggested to be directly recognized by HSP47 (Koide, T., Asada, S., Takahara, Y., Nishikawa, Y., Nagata, K., and Kitagawa, K. (2006) J. Biol. Chem. 281, 3432-3438). Based on this finding, we examined the relationship between the structure of Yaa(-3) and HSP47 binding using synthetic collagenous peptides. The results obtained indicated that the structure of Yaa(-3) determined the binding affinity for HSP47. Maximal binding was observed when Yaa(-3) was Thr. Moreover, the required relative spatial arrangement of these key residues in the triple helix was analyzed by taking advantage of heterotrimeric collagen-model peptides, each of which contains one Thr(-3) and one Arg(0). The results revealed that HSP47 recognizes the Yaa(-3) and Arg(0) residues only when they are on the same peptide strand. Taken together, the data obtained led us to define the HSP47-binding structural epitope in the collagen triple helix and also define the HSP47-binding motif in the primary structure. A motif search against human protein database predicted candidate clients for this molecular chaperone. The search result indicated that not all collagen family proteins require the chaperoning by HSP47.