Science.gov

Sample records for 14-3-3 protein epsilon

  1. The epsilon isoform of 14-3-3 protein is a component of the prion protein amyloid deposits of Gerstmann-Sträussler-Scheinker disease.

    PubMed

    Di Fede, Giuseppe; Giaccone, Giorgio; Limido, Lucia; Mangieri, Michela; Suardi, Silvia; Puoti, Gianfranco; Morbin, Michela; Mazzoleni, Giulia; Ghetti, Bernardino; Tagliavini, Fabrizio

    2007-02-01

    The 14-3-3 proteins are highly conserved, ubiquitous molecules involved in a variety of biologic events, such as transduction pathway modulation, cell cycle control, and apoptosis. Seven isoforms have been identified that are abundant in the brain, preferentially localized in neurons. Remarkable increases in 14-3-3 are seen in the cerebrospinal fluid of patients with Creutzfeldt-Jakob disease (CJD), and it has been found in pathologic inclusions of several neurodegenerative diseases. Moreover, the zeta isoform has been detected in prion protein (PrP) amyloid deposits of CJD patients. To further investigate the cerebral distribution of 14-3-3 in prion-related encephalopathies, we carried out an immunohistochemical and biochemical analysis of brain tissue from patients with Gerstmann-Sträussler-Scheinker disease (GSS) and sporadic, familial and acquired forms of CJD, using specific antibodies against the seven 14-3-3 isoforms. The study showed a strong immunoreactivity of PrP amyloid plaques of GSS patients for the 14-3-3 epsilon isoform, but not for the other isoforms. The epsilon isoform of 14-3-3 was not found in PrP deposits of CJD. These results indicate that the epsilon isoform of 14-3-3 is a component of PrP amyloid deposits of GSS and suggest that this is the sole 14-3-3 isoform specifically involved in the neuropathologic changes associated with this disorder.

  2. Functional identification of a novel 14-3-3 epsilon splicing variant suggests dimerization is not necessary for 14-3-3 epsilon to inhibit UV-induced apoptosis

    SciTech Connect

    Han, Dingding; Ye, Guangming; Liu, Tingting; Chen, Cong; Yang, Xianmei; Wan, Bo; Pan, Yuanwang; Yu, Long

    2010-05-28

    14-3-3 proteins function as a dimer and have been identified to involve in diverse signaling pathways. Here we reported the identification of a novel splicing variant of human 14-3-3 epsilon (14-3-3 epsilon sv), which is derived from a novel exon 1' insertion. The insertion contains a stop codon and leads to a truncated splicing variant of 14-3-3 epsilon. The splicing variant is translated from the exon 2 and results in the deletion of an N-terminal {alpha}-helix which is crucial for the dimerization. Therefore, the 14-3-3 epsilon sv could not form a dimer with 14-3-3 zeta. However, after UV irradiation 14-3-3 epsilon sv could also support cell survival, suggesting monomer of 14-3-3 epsilon is sufficient to protect cell from apoptosis.

  3. Interaction of Ubinuclein-1, a nuclear and adhesion junction protein, with the 14-3-3 epsilon protein in epithelial cells: implication of the PKA pathway.

    PubMed

    Conti, Audrey; Sueur, Charlotte; Lupo, Julien; Brazzolotto, Xavier; Burmeister, Wim P; Manet, Evelyne; Gruffat, Henri; Morand, Patrice; Boyer, Véronique

    2013-03-01

    Ubinuclein-1 is a NACos (Nuclear and Adhesion junction Complex components) protein which shuttles between the nucleus and tight junctions, but its function in the latter is not understood. Here, by co-immunoprecipitation and confocal analysis, we show that Ubinuclein-1 interacts with the 14-3-3ɛ protein both in HT29 colon cells, and AGS gastric cells. This interaction is mediated by an Ubinuclein-1 phosphoserine motif. We show that the arginine residues (R56, R60 and R132) which form the 14-3-3ɛ ligand binding site are responsible for the binding of 14-3-3ɛ to phosphorylated Ubinuclein-1. Furthermore, we demonstrate that in vitro Ubinuclein-1 can be directly phosphorylated by cAMP-dependent protein kinase A. This in vitro phosphorylation allows binding of wildtype 14-3-3ɛ. Moreover, treatment of the cells with inhibitors of the cAMP-dependent protein kinase, KT5720 or H89, modifies the subcellular localization of Ubinuclein-1. Indeed, KT5720 and H89 greatly increase the staining of Ubinuclein-1 at the tight junctions in AGS gastric cells. In the presence of the kinase inhibitor KT5720, the amount of Ubinuclein-1 in the NP40 insoluble fraction is increased, together with actin. Moreover, treatment of the cells with KT5720 or H89 induces the concentration of Ubinuclein-1 at tricellular intersections of MDCK cells. Taken together, our findings demonstrate novel cell signaling trafficking by Ubinuclein-1 via association with 14-3-3ɛ following Ubinuclein-1 phosphorylation by the cAMP-dependent protein kinase-A.

  4. An obligatory heterodimer of 14-3-3beta and 14-3-3epsilon is required for aldosterone regulation of the epithelial sodium channel.

    PubMed

    Liang, Xiubin; Butterworth, Michael B; Peters, Kathryn W; Walker, William H; Frizzell, Raymond A

    2008-10-10

    Increased distal nephron sodium absorption in response to aldosterone involves Nedd4-2 phosphorylation, which blocks its ability to ubiquitylate ENaC and increases apical membrane channel density by reducing its endocytosis. Our prior work (Liang, X., Peters, K. W., Butterworth, M. B., and Frizzell, R. A. (2006) J. Biol. Chem. 281, 16323-16332) showed that aldosterone selectively increased 14-3-3 protein isoform expression and that the association of 14-3-3beta with phospho-Nedd4-2 was required for sodium transport stimulation. The knockdown of 14-3-3beta alone nearly eliminated the response to aldosterone, despite the expression of other 14-3-3 isoforms in cortical collecting duct (CCD) cells. To further examine this marked effect of 14-3-3beta knockdown, we evaluated the hypothesis that phospho-Nedd4-2 binding prefers a heterodimer composed of two different 14-3-3 isoforms. We tested this concept in polarized CCD cells using RNA interference and assays of sodium transport and of the interaction of Nedd4-2 with 14-3-3epsilon, a second aldosterone-induced isoform. As observed previously for 14-3-3beta knockdown, small interfering RNA-induced reduction of 14-3-3epsilon markedly attenuated aldosterone-stimulated ENaC expression and sodium transport and increased the interaction of Nedd4-2 with ENaC toward prealdosterone levels. After aldosterone induction, 14-3-3beta and 14-3-3epsilon were quantitatively co-immunoprecipitated from CCD cell lysates, and the association of both isoforms with Nedd4-2 increased. Finally, the knockdown of either 14-3-3beta or 14-3-3epsilon reduced the association of Nedd4-2 with the other isoform. We conclude that the two aldosterone-induced 14-3-3 isoforms, beta and epsilon, interact with phospho-Nedd4-2 as an obligatory heterodimer, blocking its interaction with ENaC and thereby increasing apical ENaC density and sodium transport. PMID:18687683

  5. 14-3-3 proteins in plant-pathogen interactions.

    PubMed

    Lozano-Durán, Rosa; Robatzek, Silke

    2015-05-01

    14-3-3 proteins define a eukaryotic-specific protein family with a general role in signal transduction. Primarily, 14-3-3 proteins act as phosphosensors, binding phosphorylated client proteins and modulating their functions. Since phosphorylation regulates a plethora of different physiological responses in plants, 14-3-3 proteins play roles in multiple signaling pathways, including those controlling metabolism, hormone signaling, cell division, and responses to abiotic and biotic stimuli. Increasing evidence supports a prominent role of 14-3-3 proteins in regulating plant immunity against pathogens at various levels. In this review, potential links between 14-3-3 function and the regulation of plant-pathogen interactions are discussed, with a special focus on the regulation of 14-3-3 proteins in response to pathogen perception, interactions between 14-3-3 proteins and defense-related proteins, and 14-3-3 proteins as targets of pathogen effectors.

  6. 14-3-3 proteins: a historic overview.

    PubMed

    Aitken, Alastair

    2006-06-01

    This chapter includes a historic overview of 14-3-3 proteins with an emphasis on the differences between potentially cancer-relevant isoforms on the genomic, protein and functional level. The focus will therefore be on mammalian 14-3-3s although many important developments in the field have involved Drosophila 14-3-3 proteins for example and the cross-fertilisation from parallel studies on plant 14-3-3 should not be underestimated. In the major part of this review I will attempt to focus on some novel data and aspects of 14-3-3 structure and function, in particular regulation of 14-3-3 isoforms by oncogene-related protein kinase phosphorylation and aspects of 14-3-3 research with which newcomers to the field may be less familiar.

  7. Transcriptional increase and misexpression of 14-3-3 epsilon in sea urchin embryos exposed to UV-B

    PubMed Central

    Russo, Roberta; Zito, Francesca; Costa, Caterina; Bonaventura, Rosa

    2010-01-01

    Members of the 14-3-3 protein family are involved in many important cellular events, including stress response, survival and apoptosis. Genes of the 14-3-3 family are conserved from plants to humans, and some members are responsive to UV radiation. Here, we report the isolation of the complete cDNA encoding the 14-3-3 epsilon isoform from Paracentrotus lividus sea urchin embryos, referred to as Pl14-3-3ε, and the phylogenetic relationship with other homologues described in different phyla. Pl14-3-3ε mRNA levels were measured by QPCR during development and found to increase from the mesenchyme blastula to the prism stage. In response to UV-B (312 nm) exposure, early stage embryos collected 2 h later showed a 2.3-fold (at 400 J/m2) and a 2.7-fold (at 800 J/m2) increase in Pl14-3-3ε transcript levels compared with controls. The spatial expression of Pl14-3-3ε mRNA, detected by whole mount in situ hybridization in both control and UV-B exposed embryos, harvested at late developmental stages, showed transcripts to be located in the archenteron of gastrula stage and widely distributed in all germ layers, respectively. The Pl14-3-3ε mRNA delocalization parallels the failure in archenteron elongation observed morphologically, as well as the lack of specific endoderm markers, investigated by indirect immuno-fluorescence on whole mount embryos. Results confirm the involvement of 14-3-3ε in the stress response elicited by UV-B and demonstrate, for the first time, its contribution at the transcriptional level in the sea urchin embryo. PMID:20607471

  8. 14-3-3 proteins and plant development.

    PubMed

    Fulgosi, Hrvoje; Soll, Jürgen; de Faria Maraschin, Simone; Korthout, Henrie A A J; Wang, Mei; Testerink, Christa

    2002-12-01

    The 14-3-3 proteins are a family of ubiquitous regulatory molecules which have been found in virtually every eukaryotic organism and tissue. Discovered 34 years ago, 14-3-3 proteins have first been studied in mammalian nervous tissues, but in the past decade their indispensable role in various plant regulatory and metabolic pathways has been increasingly established. We now know that 14-3-3 members regulate fundamental processes of nitrogen assimilation and carbon assimilation, play an auxiliary role in regulation of starch synthesis, ATP production, peroxide detoxification, and participate in modulation of several other important biochemical pathways. Plant development and seed germination appear also to be under control of factors whose interaction with 14-3-3 molecules is crucial for their activation. Located within the nucleus, 14-3-3 isoforms are constituents of transcription factor complexes and interact with components of abscisic acid (ABA)-induced gene expression machinery. In addition, in animal cells they participate in nucleo-cytoplasmic trafficking and molecular sequestration. Cytoplasmic 14-3-3 members form a guidance complex with chloroplast destined preproteins and facilitate their import into these photosynthetic organelles. Recently, several 14-3-3s have been identified within chloroplasts where they could be involved in targeting and insertion of thylakoid proteins. The identification of 14-3-3 isoform specificity, and in particular the elucidation of the signal transduction mechanisms connecting 14-3-3 members with physiological responses, are central and developing topics of current research in this field.

  9. Clinical implication of 14-3-3 epsilon expression in gastric cancer

    PubMed Central

    Leal, Mariana Ferreira; Calcagno, Danielle Queiroz; Demachki, Sâmia; Assumpção, Paulo Pimentel; Chammas, Roger; Burbano, Rommel Rodríguez; Smith, Marília de Arruda Cardoso

    2012-01-01

    AIM: To evaluate for the first time the protein and mRNA expression of 14-3-3ε in gastric carcinogenesis. METHODS: 14-3-3ε protein expression was determined by western blotting, and mRNA expression was examined by real-time quantitative RT-PCR in gastric tumors and their matched non-neoplastic gastric tissue samples. RESULTS: Authors observed a significant reduction of 14-3-3ε protein expression in gastric cancer (GC) samples compared to their matched non-neoplastic tissue. Reduced levels of 14-3-3ε were also associated with diffuse-type GC and early-onset of this pathology. Our data suggest that reduced 14-3-3ε may have a role in gastric carcinogenesis process. CONCLUSION: Our results reveal that the reduced 14-3-3ε expression in GC and investigation of 14-3-3ε interaction partners may help to elucidate the carcinogenesis process. PMID:22509086

  10. 14-3-3 proteins as potential therapeutic targets

    PubMed Central

    Zhao, Jing; Meyerkord, Cheryl L.; Du, Yuhong; Khuri, Fadlo R.; Fu, Haian

    2011-01-01

    The 14-3-3 family of phosphoserine/phosphothreonine-binding proteins dynamically regulates the activity of client proteins in various signaling pathways that control diverse physiological and pathological processes. In response to environmental cues, 14-3-3 proteins orchestrate the highly regulated flow of signals through complex networks of molecular interactions to achieve well-controlled physiological outputs, such as cell proliferation or differentiation. Accumulating evidence now supports the concept that either an abnormal state of 14-3-3 protein expression, or dysregulation of 14-3-3/client protein interactions, contributes to the development of a large number of human diseases. In particular, clinical investigations in the field of oncology have demonstrated a correlation between upregulated 14-3-3 levels and poor survival of cancer patients. These studies highlight the rapid emergence of 14-3-3 proteins as a novel class of molecular target for potential therapeutic intervention. The current status of 14-3-3 modulator discovery is discussed. PMID:21983031

  11. 14-3-3 Proteins are Regulators of Autophagy

    PubMed Central

    Pozuelo-Rubio, Mercedes

    2012-01-01

    14-3-3 proteins are implicated in the regulation of proteins involved in a variety of signaling pathways. 14-3-3-dependent protein regulation occurs through phosphorylation-dependent binding that results, in many cases, in the release of survival signals in cells. Autophagy is a cell digestion process that contributes to overcoming nutrient deprivation and is initiated under stress conditions. However, whether autophagy is a cell survival or cell death mechanism remains under discussion and may depend on context. Nevertheless, autophagy is a cellular process that determines cell fate and is tightly regulated by different signaling pathways, some of which, for example MAPK, PI3K and mTOR, are tightly regulated by 14-3-3 proteins. It is therefore important to understand the role of 14-3-3 protein in modulating the autophagic process. Within this context, direct binding of 14-3-3 to mTOR regulatory proteins, such as TSC2 and PRAS40, connects 14-3-3 with autophagy regulatory processes. In addition, 14-3-3 binding to human vacuolar protein sorting 34 (hVps34), a class III phosphatidylinositol-3-kinase (PI3KC3), indicates the involvement of 14-3-3 proteins in regulating autophagosome formation. hVps34 is involved in vesicle trafficking processes such as autophagy, and its activation is needed for initiation of autophagy. Chromatography and overlay techniques suggest that hVps34 directly interacts with 14-3-3 proteins under physiological conditions, thereby maintaining hVps34 in an inactive state. In contrast, nutrient starvation promotes dissociation of the 14-3-3–hVps34 complex, thereby enhancing hVps34 lipid kinase activity. Thus, 14-3-3 proteins are regulators of autophagy through regulating key components of the autophagic machinery. This review summarizes the role of 14-3-3 protein in the control of target proteins involved in regulating the master switches of autophagy. PMID:24710529

  12. Molecular characterization of a novel 14-3-3 protein gene (Hb14-3-3c) from Hevea brasiliensis.

    PubMed

    Yang, Zi-Ping; Li, Hui-Liang; Guo, Dong; Tian, Wei-Min; Peng, Shi-Qing

    2012-04-01

    The cDNA encoding a 14-3-3 protein, designated as Hb14-3-3c, was isolated from Hevea brasiliensis. Hb14-3-3c was 1,269 bp long containing a 795 bp open reading frame encoding a putative protein of 264 amino acids, flanked by a 146 bp 5'UTR and a 328 bp 3' UTR. The predicted molecular mass of Hb14-3-3c is 29.67 kDa, with an isoelectric point of 4.52 and the deduced protein showed high similarity to the 14-3-3 protein from other plant species. Expression analysis revealed more significant accumulation of Hb14-3-3c transcripts in latex than in leaves, buds and flowers. The transcription of Hb14-3-3c in latex was induced by jasmonate and ethephon. Overproduction of recombinant Hb14-3-3c protein gave the Escherichia coli cells more tolerance on Co(2+), Cu(2+) and Zn(2+). Through yeast two-hybrid screening, 11 interaction partners of the Hb14-3-3c, which are involved in rubber biosynthesis, stress-related responses, defence etc., were identified in rubber tree latex. Taking these data together, it is proposed that the Hb14-3-3c may participate in regulation of rubber biosynthesis. Thus, the results of this study provide novel insights into the 14-3-3 signaling related to rubber biosynthesis, stress-related responses in rubber tree. PMID:21947841

  13. 14-3-3 Proteins in Guard Cell Signaling.

    PubMed

    Cotelle, Valérie; Leonhardt, Nathalie

    2015-01-01

    Guard cells are specialized cells located at the leaf surface delimiting pores which control gas exchanges between the plant and the atmosphere. To optimize the CO2 uptake necessary for photosynthesis while minimizing water loss, guard cells integrate environmental signals to adjust stomatal aperture. The size of the stomatal pore is regulated by movements of the guard cells driven by variations in their volume and turgor. As guard cells perceive and transduce a wide array of environmental cues, they provide an ideal system to elucidate early events of plant signaling. Reversible protein phosphorylation events are known to play a crucial role in the regulation of stomatal movements. However, in some cases, phosphorylation alone is not sufficient to achieve complete protein regulation, but is necessary to mediate the binding of interactors that modulate protein function. Among the phosphopeptide-binding proteins, the 14-3-3 proteins are the best characterized in plants. The 14-3-3s are found as multiple isoforms in eukaryotes and have been shown to be involved in the regulation of stomatal movements. In this review, we describe the current knowledge about 14-3-3 roles in the regulation of their binding partners in guard cells: receptors, ion pumps, channels, protein kinases, and some of their substrates. Regulation of these targets by 14-3-3 proteins is discussed and related to their function in guard cells during stomatal movements in response to abiotic or biotic stresses.

  14. Eimeria tenella: 14-3-3 protein interacts with telomerase.

    PubMed

    Zhao, Na; Gong, Pengtao; Cheng, Baiqi; Li, Jianhua; Yang, Zhengtao; Li, He; Yang, Ju; Zhang, Guocai; Zhang, Xichen

    2014-10-01

    Telomerase, consisting of telomerase RNA and telomerase reverse transcriptase (TERT), is responsible for the maintenance of the end of linear chromosomes. TERT, as the catalytic subunit of telomerase, plays a critical role in telomerase activity. Researches indicate TERT-associated proteins participate in the regulation of telomerase assembly, posttranslational modification, localization, and enzymatic function. Here, the telomerase RNA-binding domain of Eimeria tenella TERT (EtTRBD) was cloned into pGBKT7 and performed as the bait. α-Galactosidase assay showed that the bait plasmid did not activate Gal4 reporter gene. Further, we isolated an EtTRBD-associated protein, 14-3-3, by yeast two-hybrid screening using the constructed bait plasmid. To confirm the interaction, EtTRBD and 14-3-3 were expressed by prokaryotic and eukaryotic expression systems. Pull-down assays by purified proteins demonstrated a direct bind between EtTRBD and 14-3-3. Co-immunoprecipitation techniques successfully validated that 14-3-3 interacted with EtTRBD in 293T cells. The protein-protein interaction provides a starting point for more in-depth studies on telomerase and telomere regulation in E. tenella.

  15. Increased 14-3-3 phosphorylation observed in Parkinson's disease reduces neuroprotective potential of 14-3-3 proteins.

    PubMed

    Slone, Sunny Rae; Lavalley, Nicholas; McFerrin, Michael; Wang, Bing; Yacoubian, Talene Alene

    2015-07-01

    14-3-3 proteins are key regulators of cell survival. We have previously demonstrated that 14-3-3 levels are decreased in an alpha-synuclein (αsyn) mouse model of Parkinson's disease (PD), and that overexpression of certain 14-3-3 isoforms is protective in several PD models. Here we examine whether changes in 14-3-3 phosphorylation may contribute to the neurodegenerative process in PD. We examine three key 14-3-3 phosphorylation sites that normally regulate 14-3-3 function, including serine 58 (S58), serine 184 (S184), and serine/threonine 232 (S/T232), in several models of PD and in human PD brain. We observed that an increase in S232 phosphorylation is observed in rotenone-treated neuroblastoma cells, in cells overexpressing αsyn, and in human PD brains. Alterations in S58 phosphorylation were less consistent in these models, and we did not observe any phosphorylation changes at S184. Phosphorylation at S232 induced by rotenone is reduced by casein kinase inhibitors, and is not dependent on αsyn. Mutation of the S232 site affected 14-3-3θ's neuroprotective effects against rotenone and 1-methyl-4-phenylpyridinium (MPP(+)), with the S232D mutant lacking any protective effect compared to wildtype or S232A 14-3-3θ. The S232D mutant partially reduced the ability of 14-3-3θ to inhibit Bax activation in response to rotenone. Based on these findings, we propose that phosphorylation of 14-3-3s at serine 232 contributes to the neurodegenerative process in PD. PMID:25862939

  16. Up-regulated 14-3-3β and 14-3-3ζ proteins in prefrontal cortex of subjects with schizophrenia: effect of psychotropic treatment.

    PubMed

    Rivero, Guadalupe; Gabilondo, Ane M; García-Sevilla, Jesús A; La Harpe, Romano; Morentín, Benito; Meana, J Javier

    2015-02-01

    14-3-3 is a family of conserved regulatory proteins that bind to a multitude of functionally diverse signalling proteins. Various genetic studies and gene expression and proteomic analyses have involved 14-3-3 proteins in schizophrenia (SZ). On the other hand, studies about the status of these proteins in major depressive disorder (MD) are still missing. Immunoreactivity values of cytosolic 14-3-3β and 14-3-3ζ proteins were evaluated by Western blot in prefrontal cortex (PFC) of subjects with schizophrenia (SZ; n=22), subjects with major depressive disorder (MD; n=21) and age-, gender- and postmortem delay-matched control subjects (n=52). The modulation of 14-3-3β and 14-3-3ζ proteins by psychotropic medication was also assessed. The analysis of both proteins in SZ subjects with respect to matched control subjects showed increased 14-3-3β (Δ=33±10%, p<0.05) and 14-3-3ζ (Δ=29±6%, p<0.05) immunoreactivity in antipsychotic-free but not in antipsychotic-treated SZ subjects. Immunoreactivity values of 14-3-3β and 14-3-3ζ were not altered in MD subjects. These results show the specific up-regulation of 14-3-3β and 14-3-3ζ proteins in PFC of SZ subjects and suggest a possible down-regulation of both proteins by antipsychotic treatment.

  17. Up-regulated 14-3-3β and 14-3-3ζ proteins in prefrontal cortex of subjects with schizophrenia: effect of psychotropic treatment.

    PubMed

    Rivero, Guadalupe; Gabilondo, Ane M; García-Sevilla, Jesús A; La Harpe, Romano; Morentín, Benito; Meana, J Javier

    2015-02-01

    14-3-3 is a family of conserved regulatory proteins that bind to a multitude of functionally diverse signalling proteins. Various genetic studies and gene expression and proteomic analyses have involved 14-3-3 proteins in schizophrenia (SZ). On the other hand, studies about the status of these proteins in major depressive disorder (MD) are still missing. Immunoreactivity values of cytosolic 14-3-3β and 14-3-3ζ proteins were evaluated by Western blot in prefrontal cortex (PFC) of subjects with schizophrenia (SZ; n=22), subjects with major depressive disorder (MD; n=21) and age-, gender- and postmortem delay-matched control subjects (n=52). The modulation of 14-3-3β and 14-3-3ζ proteins by psychotropic medication was also assessed. The analysis of both proteins in SZ subjects with respect to matched control subjects showed increased 14-3-3β (Δ=33±10%, p<0.05) and 14-3-3ζ (Δ=29±6%, p<0.05) immunoreactivity in antipsychotic-free but not in antipsychotic-treated SZ subjects. Immunoreactivity values of 14-3-3β and 14-3-3ζ were not altered in MD subjects. These results show the specific up-regulation of 14-3-3β and 14-3-3ζ proteins in PFC of SZ subjects and suggest a possible down-regulation of both proteins by antipsychotic treatment. PMID:25549848

  18. Involvement of 14-3-3 Proteins in Regulating Tumor Progression of Hepatocellular Carcinoma.

    PubMed

    Wu, Yi-Ju; Jan, Yee-Jee; Ko, Bor-Sheng; Liang, Shu-Man; Liou, Jun-Yang

    2015-01-01

    There are seven mammalian isoforms of the 14-3-3 protein, which regulate multiple cellular functions via interactions with phosphorylated partners. Increased expression of 14-3-3 proteins contributes to tumor progression of various malignancies. Several isoforms of 14-3-3 are overexpressed and associate with higher metastatic risks and poorer survival rates of hepatocellular carcinoma (HCC). 14-3-3β and 14-3-3ζ regulate HCC cell proliferation, tumor growth and chemosensitivity via modulating mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK) and p38 signal pathways. Moreover, 14-3-3ε suppresses E-cadherin and induces focal adhesion kinase (FAK) expression, thereby enhancing epithelial-mesenchymal transition (EMT) and HCC cell migration. 14-3-3ζ forms complexes with αB-crystallin, which induces EMT and is the cause of sorafenib resistance in HCC. Finally, a recent study has indicated that 14-3-3σ induces heat shock protein 70 (HSP70) expression, which increases HCC cell migration. These results suggest that selective 14-3-3 isoforms contribute to cell proliferation, EMT and cell migration of HCC by regulating distinct targets and signal pathways. Targeting 14-3-3 proteins together with specific downstream effectors therefore has potential to be therapeutic and prognostic factors of HCC. In this article, we will overview 14-3-3's regulation of its downstream factors and contributions to HCC EMT, cell migration and proliferation. PMID:26083935

  19. The role of the 14-3-3 protein family in health, disease, and drug development.

    PubMed

    Aghazadeh, Yasaman; Papadopoulos, Vassilios

    2016-02-01

    14-3-3 proteins regulate intracellular signaling pathways, such as signal transduction, protein trafficking, cell cycle, and apoptosis. In addition to the ubiquitous roles of 14-3-3 isoforms, unique tissue-specific functions are also described for each isoform. Owing to their role in regulating cell cycle, protein trafficking, and steroidogenesis, 14-3-3 proteins are prevalent in human diseases, such as cancer, neurodegeneration, and reproductive disorders, and, therefore, serve as valuable drug targets. In this review, we summarize the role of 14-3-3 proteins in normal and disease states, with a focus on 14-3-3γ and ɛ. We also discuss drug compounds targeting 14-3-3 proteins and their potential therapeutic uses. PMID:26456530

  20. 14-3-3 proteins regulate Tctp–Rheb interaction for organ growth in Drosophila

    PubMed Central

    Le, Thao Phuong; Vuong, Linh Thuong; Kim, Ah-Ram; Hsu, Ya-Chieh; Choi, Kwang-Wook

    2016-01-01

    14-3-3 family proteins regulate multiple signalling pathways. Understanding biological functions of 14-3-3 proteins has been limited by the functional redundancy of conserved isotypes. Here we provide evidence that 14-3-3 proteins regulate two interacting components of Tor signalling in Drosophila, translationally controlled tumour protein (Tctp) and Rheb GTPase. Single knockdown of 14-3-3ɛ or 14-3-3ζ isoform does not show obvious defects in organ development but causes synergistic genetic interaction with Tctp and Rheb to impair tissue growth. 14-3-3 proteins physically interact with Tctp and Rheb. Knockdown of both 14-3-3 isoforms abolishes the binding between Tctp and Rheb, disrupting organ development. Depletion of 14-3-3s also reduces the level of phosphorylated S6 kinase, phosphorylated Thor/4E-BP and cyclin E (CycE). Growth defects from knockdown of 14-3-3 and Tctp are suppressed by CycE overexpression. This study suggests a novel mechanism of Tor regulation mediated by 14-3-3 interaction with Tctp and Rheb. PMID:27151460

  1. Dynamic imaging of interaction between protein 14-3-3 and Bid in living cells

    NASA Astrophysics Data System (ADS)

    Chen, Tongsheng; Xing, Da; Wang, Jinjun

    2006-02-01

    The 14-3-3 proteins are known to sequester certain pro-apoptotic members of this family. BH3- interacting domain death agonist (Bid) may contribute to tumor necrosis factor α(TNF-α)-induced neuronal death, although regulation by 14-3-3 has not been reported. In this study we examined whether 14-3-3 proteins interact with Bid/tBid during TNF-α-induced cell death. The TNF-αtriggered Bid cleavage and tBid translocated to mitochondria. Human lung adenocarcinoma cells were co-transfected with both CFP-Bid and 14-3-3-YFP plasmids, and the dynamical interaction between the Bid/tBid and 14-3-3 were performed on laser confocal fluorescence microscope in single living cell during TNF-α-induced cell apoptosis. The Bid distribute equally only in the cytoplasm of healthy cells, and the 14-3-3 protein distribute not only in the cytoplasm but also in the nucleus of healthy cells. Our data showed that the tBid aggregate, but the 14-3-3 protein does not aggregate as the tBid, and the 14-3-3 protein separate from the aggregated tBid, implying that the 14-3-3 proteins do not interact with the aggregated tBid after TNF-αtreatment.

  2. Hyperglycemia decreases expression of 14-3-3 proteins in an animal model of stroke.

    PubMed

    Jeon, Seong-Jun; Sung, Jin-Hee; Koh, Phil-Ok

    2016-07-28

    Diabetes is a severe metabolic disorder and a major risk factor for stroke. Stroke severity is worse in patients with diabetes compared to the non-diabetic population. The 14-3-3 proteins are a family of conserved acidic proteins that are ubiquitously expressed in cells and tissues. These proteins are involved in many cellular processes including metabolic pathways, signal transduction, protein trafficking, protein synthesis, and cell cycle control. This study investigated 14-3-3 proteins expression in the cerebral cortex of animals with diabetes, cerebral ischemic injury and a combination of both diabetes and cerebral ischemic injury. Diabetes was induced by intraperitoneal injection of streptozotocin (40mg/kg) in adult male rats. After 4 weeks of treatment, middle cerebral artery occlusion (MCAO) was performed for the induction of focal cerebral ischemia and cerebral cortex tissue was collected 24h after MCAO. We confirmed that diabetes increases infarct volume following MCAO compared to non-diabetic animals. In diabetic animals with MCAO injury, reduction of 14-3-3 β/α, 14-3-3 ζ/δ, 14-3-3 γ, and 14-3-3 ε isoforms was detected. The expression of these proteins was significantly decreased in diabetic animals with MCAO injury compared to diabetic-only and MCAO-only animals. Moreover, Western blot analysis ascertained the decreased expression of 14-3-3 family proteins in diabetic animals with MCAO injury, including β/α, ζ/δ, γ, ε, τ, and η isoforms. These results show the changes of 14-3-3 proteins expression in streptozotocin-induced diabetic animals with MCAO injury. Thus, these findings suggest that decreases in 14-3-3 proteins might be involved in the regulation of 14-3-3 proteins under the presence of diabetes following MCAO. PMID:27177727

  3. 14-3-3 Protein Masks the DNA Binding Interface of Forkhead Transcription Factor FOXO4*

    PubMed Central

    Silhan, Jan; Vacha, Petr; Strnadova, Pavla; Vecer, Jaroslav; Herman, Petr; Sulc, Miroslav; Teisinger, Jan; Obsilova, Veronika; Obsil, Tomas

    2009-01-01

    The role of 14-3-3 proteins in the regulation of FOXO forkhead transcription factors is at least 2-fold. First, the 14-3-3 binding inhibits the interaction between the FOXO and the target DNA. Second, the 14-3-3 proteins prevent nuclear reimport of FOXO factors by masking their nuclear localization signal. The exact mechanisms of these processes are still unclear, mainly due to the lack of structural data. In this work, we used fluorescence spectroscopy to investigate the mechanism of the 14-3-3 protein-dependent inhibition of FOXO4 DNA-binding properties. Time-resolved fluorescence measurements revealed that the 14-3-3 binding affects fluorescence properties of 5-(((acetylamino)ethyl)amino) naphthalene-1-sulfonic acid moiety attached at four sites within the forkhead domain of FOXO4 that represent important parts of the DNA binding interface. Observed changes in 5-(((acetylamino)ethyl)amino) naphthalene-1-sulfonic acid fluorescence strongly suggest physical contacts between the 14-3-3 protein and labeled parts of the FOXO4 DNA binding interface. The 14-3-3 protein binding, however, does not cause any dramatic conformational change of FOXO4 as documented by the results of tryptophan fluorescence experiments. To build a realistic model of the FOXO4·14-3-3 complex, we measured six distances between 14-3-3 and FOXO4 using Förster resonance energy transfer time-resolved fluorescence experiments. The model of the complex suggests that the forkhead domain of FOXO4 is docked within the central channel of the 14-3-3 protein dimer, consistent with our hypothesis that 14-3-3 masks the DNA binding interface of FOXO4. PMID:19416966

  4. Identification of a redox-modulatory interaction between selenoprotein W and 14-3-3 protein.

    PubMed

    Jeon, Yeong Ha; Ko, Kwan Young; Lee, Jea Hwang; Park, Ki Jun; Jang, Jun Ki; Kim, Ick Young

    2016-01-01

    Selenoprotein W (SelW) contains a selenocysteine (Sec, U) in a conserved CXXU motif corresponding to the CXXC redox motif of thioredoxin, suggesting a putative redox function of SelW. We have previously reported that the binding of 14-3-3 protein to its target proteins, including CDC25B, Rictor and TAZ, is inhibited by the interaction of 14-3-3 protein with SelW. However, the binding mechanism is unclear. In this study, we sought to determine the binding site of SelW to understand the regulatory mechanism of the interaction between SelW and 14-3-3 and its biological effects. Phosphorylated Ser(pS) or Thr(pT) residues in RSXpSXP or RXXXp(S/T)XP motifs are well-known common 14-3-3-binding sites, but Thr41, Ser59, and T69 of SelW, which are computationally predicted to serve are phosphorylation sites, were neither phosphorylation sites nor sites involved in the interaction. A mutant SelW in which Sec13 is changed to Ser (U13S) was unable to interact with 14-3-3 protein and thus did not inhibit the interaction of 14-3-3 to other target proteins. However, other Cys mutants of SelW(C10S, C33S and C37S) normally interacted with 14-3-3 protein. The interaction of SelW to 14-3-3 protein was enhanced by diamide or H2O2 and decreased by dithiothreitol (DTT). Taken together, these findings demonstrate that the Sec of SelW is involved in its interaction with 14-3-3 protein and that this interaction is increased under oxidative stress conditions. Thus, SelW may have a regulatory function in redox cell signaling by interacting with 14-3-3 protein. PMID:26474786

  5. Suppression of death-associated protein kinase 2 by interaction with 14-3-3 proteins.

    PubMed

    Yuasa, Keizo; Ota, Reina; Matsuda, Shinya; Isshiki, Kinuka; Inoue, Masahiro; Tsuji, Akihiko

    2015-08-14

    Death-associated protein kinase 2 (DAPK2), a Ca(2+)/calmodulin-regulated serine/threonine kinase, induces apoptosis. However, the signaling mechanisms involved in this process are unknown. Using a proteomic approach, we identified 14-3-3 proteins as novel DAPK2-interacting proteins. The 14-3-3 family has the ability to bind to phosphorylated proteins via recognition of three conserved amino acid motifs (mode 1-3 motifs), and DAPK2 contains the mode 3 motif ((pS/pT)X1-2-COOH). The interaction of 14-3-3 proteins with DAPK2 was dependent on the phosphorylation of Thr(369), and effectively suppressed DAPK2 kinase activity and DAPK2-induced apoptosis. Furthermore, we revealed that the 14-3-3 binding site Thr(369) of DAPK2 was phosphorylated by the survival kinase Akt. Our findings suggest that DAPK2-induced apoptosis is negatively regulated by Akt and 14-3-3 proteins.

  6. Dual binding of 14-3-3 protein regulates Arabidopsis nitrate reductase activity.

    PubMed

    Chi, Jen-Chih; Roeper, Juliane; Schwarz, Guenter; Fischer-Schrader, Katrin

    2015-03-01

    14-3-3 proteins represent a family of ubiquitous eukaryotic proteins involved in numerous signal transduction processes and metabolic pathways. One important 14-3-3 target in higher plants is nitrate reductase (NR), whose activity is regulated by different physiological conditions. Intra-molecular electron transfer in NR is inhibited following 14-3-3 binding to a conserved phospho-serine motif located in hinge 1, a surface exposed loop between the catalytic molybdenum and central heme domain. Here we describe a novel 14-3-3 binding site within the NR N-terminus, an acidic motif conserved in NRs of higher plants, which significantly contributes to 14-3-3-mediated inhibition of NR. Deletion or mutation of the N-terminal acidic motif resulted in a significant loss of 14-3-3 mediated inhibition of Ser534 phosphorylated NR-Mo-heme (residues 1-625), a previously established model of NR regulation. Co-sedimentation and crosslinking studies with NR peptides comprising each of the two binding motifs demonstrated direct binding of either peptide to 14-3-3. Surface plasmon resonance spectroscopy disclosed high-affinity binding of 14-3-3ω to the well-known phospho-hinge site and low-affinity binding to the N-terminal acidic motif. A binding groove-deficient 14-3-3ω variant retained interaction to the acidic motif, but lost binding to the phospho-hinge motif. To our knowledge, NR is the first enzyme that harbors two independent 14-3-3 binding sites with different affinities, which both need to be occupied by 14-3-3ω to confer full inhibition of NR activity under physiological conditions. PMID:25578809

  7. Interaction network of the 14-3-3 protein in the ancient protozoan parasite Giardia duodenalis.

    PubMed

    Lalle, Marco; Camerini, Serena; Cecchetti, Serena; Sayadi, Ahmed; Crescenzi, Marco; Pozio, Edoardo

    2012-05-01

    14-3-3s are phosphoserine/phosphotreonine binding proteins that play pivotal roles as regulators of multiple cellular processes in eukaryotes. The flagellated protozoan parasite Giardia duodenalis, the causing agent of giardiasis, is a valuable simplified eukaryotic model. A single 14-3-3 isoform (g14-3-3) is expressed in Giardia, and it is directly involved in the differentiation of the parasite into cyst. To define the overall functions of g14-3-3, the protein interactome has been investigated. A transgenic G. duodenalis strain was engineered to express a FLAG-tagged g14-3-3 under its own promoter. Affinity chromatography coupled with tandem mass spectrometry analysis have been used to purify and identify FLAG-g14-3-3-associated proteins from trophozoites and encysting parasites. A total of 314 putative g14-3-3 interaction partners were identified, including proteins involved in several pathways. Some interactions seemed to be peculiar of one specific stage, while others were shared among the different stages. Furthermore, the interaction of g14-3-3 with the giardial homologue of the CDC7 protein kinase (gCDC7) was characterized, leading to the identification of a multiprotein complex containing not only g14-3-3 and gCDC7 but also a newly identified and highly divergent homologue of DBF4, the putative regulatory subunit of gCDC7. The relevance of g14-3-3 interactions in G. duodenalis biology was discussed.

  8. 14-3-3β protein expression in eosinophilic meningitis caused by Angiostrongylus cantonensis infection

    PubMed Central

    2014-01-01

    Background Angiostrongylus cantonensis is a parasite endemic in the Southeast Asian and Pacific regions. Humans are incidentally infected either by eating uncooked intermediate hosts or by consuming vegetables containing the living third-stage larvae. The 14-3-3β protein is a cerebrospinal fluid (CSF) marker of neuronal damage during the development of Creutzfeldt-Jakob disease. In addition, increased 14-3-3β protein is also found in CSF from patients with a variety of neurological disorders. The goal of this study is to determine the roles of serum/CSF14-3-3β protein in patients with eosinophilic meningitis. Methods In a cohort study among nine Thai laborers with eosinophilic meningitis due to eating raw snails (Pomacea canaliculata), we examined the CSF weekly while patients were still hospitalized and followed up the serum for 6 months. The levels of 14-3-3β protein in CSF were analyzed by western blot and an in-house 14-3-3β enzyme-linked immunosorbent assay (ELISA) measurement was established and tested in an animal model of eosinophilic meningitis. Results The elevated 14-3-3β level was detected in the CSF from eight out of nine (81%) patients After 2 weeks of treatment, all patients showed a declined level or cleared of 14-3-3β protein in the CSF. By developing an in-house ELISA for measurement of 14-3-3β protein, it was found that the serum 14-3-3β level was significantly increased in patients during initial visit. . This finding was consistent to the animal experiment result in which there was severe blood brain barrier damage three weeks after infection and increased 14-3-3β protein expression in the CSF and serum by western blot and in house ELISA. After treatment, the serum 14-3-3β level in meningitis patients was rapidly returned to normal threshold. There was a correlation between initial CSF 14-3-3β level with severity of headache (r = 0.692, p = 0.039), CSF pleocytosis (r = 0.807, p = 0.009) and eosinophilia (r = 0

  9. 14-3-3 protein is a regulator of the mitochondrial and chloroplast ATP synthase

    PubMed Central

    Bunney, Tom D.; van Walraven, Hendrika S.; de Boer, Albertus H.

    2001-01-01

    Mitochondrial and chloroplast ATP synthases are key enzymes in plant metabolism, providing cells with ATP, the universal energy currency. ATP synthases use a transmembrane electrochemical proton gradient to drive synthesis of ATP. The enzyme complexes function as miniature rotary engines, ensuring energy coupling with very high efficiency. Although our understanding of the structure and functioning of the synthase has made enormous progress in recent years, our understanding of regulatory mechanisms is still rather preliminary. Here we report a role for 14-3-3 proteins in the regulation of ATP synthases. These 14-3-3 proteins are highly conserved phosphoserine/phosphothreonine-binding proteins that regulate a wide range of enzymes in plants, animals, and yeast. Recently, the presence of 14-3-3 proteins in chloroplasts was illustrated, and we show here that plant mitochondria harbor 14-3-3s within the inner mitochondrial-membrane compartment. There, the 14-3-3 proteins were found to be associated with the ATP synthases, in a phosphorylation-dependent manner, through direct interaction with the F1 β-subunit. The activity of the ATP synthases in both organelles is drastically reduced by recombinant 14-3-3. The rapid reduction in chloroplast ATPase activity during dark adaptation was prevented by a phosphopeptide containing the 14-3-3 interaction motif, demonstrating a role for endogenous 14-3-3 in the down-regulation of the CFoF1 activity. We conclude that regulation of the ATP synthases by 14-3-3 represents a mechanism for plant adaptation to environmental changes such as light/dark transitions, anoxia in roots, and fluctuations in nutrient supply. PMID:11274449

  10. Molecular tweezers modulate 14-3-3 protein-protein interactions.

    PubMed

    Bier, David; Rose, Rolf; Bravo-Rodriguez, Kenny; Bartel, Maria; Ramirez-Anguita, Juan Manuel; Dutt, Som; Wilch, Constanze; Klärner, Frank-Gerrit; Sanchez-Garcia, Elsa; Schrader, Thomas; Ottmann, Christian

    2013-03-01

    Supramolecular chemistry has recently emerged as a promising way to modulate protein functions, but devising molecules that will interact with a protein in the desired manner is difficult as many competing interactions exist in a biological environment (with solvents, salts or different sites for the target biomolecule). We now show that lysine-specific molecular tweezers bind to a 14-3-3 adapter protein and modulate its interaction with partner proteins. The tweezers inhibit binding between the 14-3-3 protein and two partner proteins--a phosphorylated (C-Raf) protein and an unphosphorylated one (ExoS)--in a concentration-dependent manner. Protein crystallography shows that this effect arises from the binding of the tweezers to a single surface-exposed lysine (Lys214) of the 14-3-3 protein in the proximity of its central channel, which normally binds the partner proteins. A combination of structural analysis and computer simulations provides rules for the tweezers' binding preferences, thus allowing us to predict their influence on this type of protein-protein interactions. PMID:23422566

  11. Proteomic profiling of tandem affinity purified 14-3-3 protein complexes in Arabidopsis thaliana.

    PubMed

    Chang, Ing-Feng; Curran, Amy; Woolsey, Rebekah; Quilici, David; Cushman, John C; Mittler, Ron; Harmon, Alice; Harper, Jeffrey F

    2009-06-01

    In eukaryotes, 14-3-3 dimers regulate hundreds of functionally diverse proteins (clients), typically in phosphorylation-dependent interactions. To uncover new clients, 14-3-3 omega (At1g78300) from Arabidopsis was engineered with a "tandem affinity purification" tag and expressed in transgenic plants. Purified complexes were analyzed by tandem MS. Results indicate that 14-3-3 omega can dimerize with at least 10 of the 12 14-3-3 isoforms expressed in Arabidopsis. The identification here of 121 putative clients provides support for in vivo 14-3-3 interactions with a diverse array of proteins, including those involved in: (i) Ion transport, such as a K(+) channel (GORK), a Cl(-) channel (CLCg), Ca(2+) channels belonging to the glutamate receptor family (1.2, 2.1, 2.9, 3.4, 3.7); (ii) hormone signaling, such as ACC synthase (isoforms ACS-6, -7 and -8 involved in ethylene synthesis) and the brassinolide receptors BRI1 and BAK1; (iii) transcription, such as 7 WRKY family transcription factors; (iv) metabolism, such as phosphoenol pyruvate carboxylase; and (v) lipid signaling, such as phospholipase D (beta and gamma). More than 80% (101) of these putative clients represent previously unidentified 14-3-3 interactors. These results raise the number of putative 14-3-3 clients identified in plants to over 300.

  12. Phosphorylation-dependent 14-3-3 protein interactions regulate CFTR biogenesis.

    PubMed

    Liang, Xiubin; Da Paula, Ana Carina; Bozóky, Zoltán; Zhang, Hui; Bertrand, Carol A; Peters, Kathryn W; Forman-Kay, Julie D; Frizzell, Raymond A

    2012-03-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP/protein kinase A (PKA)-regulated chloride channel whose phosphorylation controls anion secretion across epithelial cell apical membranes. We examined the hypothesis that cAMP/PKA stimulation regulates CFTR biogenesis posttranslationally, based on predicted 14-3-3 binding motifs within CFTR and forskolin-induced CFTR expression. The 14-3-3β, γ, and ε isoforms were expressed in airway cells and interacted with CFTR in coimmunoprecipitation assays. Forskolin stimulation (15 min) increased 14-3-3β and ε binding to immature and mature CFTR (bands B and C), and 14-3-3 overexpression increased CFTR bands B and C and cell surface band C. In pulse-chase experiments, 14-3-3β increased the synthesis of immature CFTR, reduced its degradation rate, and increased conversion of immature to mature CFTR. Conversely, 14-3-3β knockdown decreased CFTR B and C bands (70 and 55%) and elicited parallel reductions in cell surface CFTR and forskolin-stimulated anion efflux. In vitro, 14-3-3β interacted with the CFTR regulatory region, and by nuclear magnetic resonance analysis, this interaction occurred at known PKA phosphorylated sites. In coimmunoprecipitation assays, forskolin stimulated the CFTR/14-3-3β interaction while reducing CFTR's interaction with coat protein complex 1 (COP1). Thus 14-3-3 binding to phosphorylated CFTR augments its biogenesis by reducing retrograde retrieval of CFTR to the endoplasmic reticulum. This mechanism permits cAMP/PKA stimulation to make more CFTR available for anion secretion.

  13. Structural Modulation of Phosducin by Phosphorylation and 14-3-3 Protein Binding

    PubMed Central

    Rezabkova, Lenka; Kacirova, Miroslava; Sulc, Miroslav; Herman, Petr; Vecer, Jaroslav; Stepanek, Miroslav; Obsilova, Veronika; Obsil, Tomas

    2012-01-01

    Phosducin (Pdc), a highly conserved phosphoprotein, plays an important role in the regulation of G protein signaling, transcriptional control, and modulation of blood pressure. Pdc is negatively regulated by phosphorylation followed by binding to the 14-3-3 protein, whose role is still unclear. To gain insight into the role of 14-3-3 in the regulation of Pdc function, we studied structural changes of Pdc induced by phosphorylation and 14-3-3 protein binding using time-resolved fluorescence spectroscopy. Our data show that the phosphorylation of the N-terminal domain of Pdc at Ser-54 and Ser-73 affects the structure of the whole Pdc molecule. Complex formation with 14-3-3 reduces the flexibility of both the N- and C-terminal domains of phosphorylated Pdc, as determined by time-resolved tryptophan and dansyl fluorescence. Therefore, our data suggest that phosphorylated Pdc undergoes a conformational change when binding to 14-3-3. These changes involve the Gtβγ binding surface within the N-terminal domain of Pdc, and thus could explain the inhibitory effect of 14-3-3 on Pdc function. PMID:23199924

  14. Alternations of 14-3-3 θ and β protein levels in brain during experimental sepsis.

    PubMed

    Memos, Nikolaos; Kataki, Agapi; Chatziganni, Emmy; Nikolopoulou, Marilena; Skoulakis, Euthimios; Consoulas, Christos; Zografos, George; Konstadoulakis, Manousos

    2011-09-01

    The 14-3-3 family members play a crucial role in the determination of cell fate, exerting their antiapoptotic activity through directly interfering with the critical function of the mitochondrial core proapoptotic machinery. Dimerization of 14-3-3 is vital for the interaction with many of its client proteins and is regulated by phosphorylation. In a previous study, we observed time-dependent neuronal apoptosis during sepsis. Therefore, in the present study, we sought to evaluate the expression of 14-3-3 θ and β isoforms in septic brain and their association with apoptosis. Sepsis was induced by a CLP model in Wistar rats that were sacrificed at predefined time points. Flow cytometric analysis showed a sepsis-induced, time-dependent alteration of 14-3-3 θ and β isoforms in both Neun(+) and GFAP(+) cells. 14-3-3 θ was linearly correlated with apoptosis, and stratified analysis for alive and apoptotic neuronal cells demonstrated a gradual down-regulation of θ isoform in alive neurons and astrocytes. The phospho-P38 (pP38) MAP kinase levels were altered in a time-dependent manner during sepsis, presenting a peak at 6 hr post-CLP. A significant correlation between the two isoforms of 14-3-3 was observed in septic rats, with the θ isoform predominant at all time points. The hippocampus, Purkinje cells, and glia-like cells showed intense immunohistochemical reactivity for 14-3-3 θ isoform, whereas the choroid plexus showed constantly increased β isoform expression. Our results showed that sepsis alters the expression of both 14-3-3 θ and β isoforms in a time-, cell-, and topography-dependent manner. PMID:21618583

  15. Ablation of the 14-3-3gamma Protein Results in Neuronal Migration Delay and Morphological Defects in the Developing Cerebral Cortex.

    PubMed

    Wachi, Tomoka; Cornell, Brett; Marshall, Courtney; Zhukarev, Vladimir; Baas, Peter W; Toyo-oka, Kazuhito

    2016-06-01

    14-3-3 proteins are ubiquitously-expressed and multifunctional proteins. There are seven isoforms in mammals with a high level of homology, suggesting potential functional redundancy. We previously found that two of seven isoforms, 14-3-3epsilon and 14-3-3zeta, are important for brain development, in particular, radial migration of pyramidal neurons in the developing cerebral cortex. In this work, we analyzed the function of another isoform, the protein 14-3-3gamma, with respect to neuronal migration in the developing cortex. We found that in utero 14-3-3gamma-deficiency resulted in delays in neuronal migration as well as morphological defects. Migrating neurons deficient in 14-3-3gamma displayed a thicker leading process stem, and the basal ends of neurons were not able to reach the boundary between the cortical plate and the marginal zone. Consistent with the results obtained from in utero electroporation, time-lapse live imaging of brain slices revealed that the ablation of the 14-3-3gamma proteins in pyramidal neurons slowed down their migration. In addition, the 14-3-3gamma deficient neurons showed morphological abnormalities, including increased multipolar neurons with a thicker leading processes stem during migration. These results indicate that the 14-3-3gamma proteins play an important role in radial migration by regulating the morphology of migrating neurons in the cerebral cortex. The findings underscore the pathological phenotypes of brain development associated with the disruption of different 14-3-3 proteins and will advance the preclinical data regarding disorders caused by neuronal migration defects.

  16. Diagnosing Sporadic Creutzfeldt-Jakob Disease: Accuracy of CSF 14-3-3 Protein Test of the Spinal Fluid

    MedlinePlus

    ... JAKOB DISEASE: ACCURACY OF THE 14-3-3 PROTEIN TEST OF THE SPINAL FLUID This information sheet ... help you understand how the 14-3-3 protein test helps in diagnosing sporadic Creutzfeldt-Jakob disease ( ...

  17. Polycations Globally Enhance Binding of 14-3-3 omega to Target Proteins in Spinach Leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The binding of 14-3-3' to phosphorylated NR (pNR) is stimulated by cations such as Mg2+ or spermine, and decreased by 5'-AMP. In order to determine whether binding to other cellular proteins is affected similarly, Far-Western overlays of extracts prepared from light- or dark-treated spinach (Spinac...

  18. Regulation of the Regulators: Post-Translational Modifications, Subcellular, and Spatiotemporal Distribution of Plant 14-3-3 Proteins

    PubMed Central

    Wilson, Rashaun S.; Swatek, Kirby N.; Thelen, Jay J.

    2016-01-01

    14-3-3 proteins bind to and modulate the activity of phosphorylated proteins that regulate a variety of metabolic processes in eukaryotes. Multiple 14-3-3 isoforms are expressed in most organisms and display redundancy in both sequence and function. Plants contain the largest number of 14-3-3 isoforms. For example, Arabidopsis thaliana contains thirteen 14-3-3 genes, each of which is expressed. Interest in the plant 14-3-3 field has swelled over the past decade, largely due to the vast number of possibilities for 14-3-3 metabolic regulation. As the field progresses, it is essential to understand these proteins' activities at both the spatiotemporal and subcellular levels. This review summarizes current knowledge of 14-3-3 proteins in plants, including 14-3-3 interactions, regulatory functions, isoform specificity, and post-translational modifications. We begin with a historical overview and structural analysis of 14-3-3 proteins, which describes the basic principles of 14-3-3 function, and then discuss interactions and regulatory effects of plant 14-3-3 proteins in specific tissues and subcellular compartments. We conclude with a summary of 14-3-3 phosphorylation and current knowledge of the functional effects of this modification in plants. PMID:27242818

  19. Discovery and structural characterization of a small molecule 14-3-3 protein-protein interaction inhibitor

    PubMed Central

    Zhao, Jing; Du, Yuhong; Horton, John R.; Upadhyay, Anup K.; Lou, Bin; Bai, Yan; Zhang, Xing; Du, Lupei; Li, Minyong; Wang, Binghe; Zhang, Lixin; Barbieri, Joseph T.; Khuri, Fadlo R.; Cheng, Xiaodong; Fu, Haian

    2011-01-01

    The 14-3-3 family of phosphoserine/threonine-recognition proteins engage multiple nodes in signaling networks that control diverse physiological and pathophysiological functions and have emerged as promising therapeutic targets for such diseases as cancer and neurodegenerative disorders. Thus, small molecule modulators of 14-3-3 are much needed agents for chemical biology investigations and therapeutic development. To analyze 14-3-3 function and modulate its activity, we conducted a chemical screen and identified 4-[(2Z)-2-[4-formyl-6-methyl-5-oxo-3-(phosphonatooxymethyl)pyridin-2-ylidene]hydrazinyl]benzoate as a 14-3-3 inhibitor, which we termed FOBISIN (FOurteen-three-three BInding Small molecule INhibitor) 101. FOBISIN101 effectively blocked the binding of 14-3-3 with Raf-1 and proline-rich AKT substrate, 40 kDa and neutralized the ability of 14-3-3 to activate exoenzyme S ADP-ribosyltransferase. To provide a mechanistic basis for 14-3-3 inhibition, the crystal structure of 14-3-3ζ in complex with FOBISIN101 was solved. Unexpectedly, the double bond linking the pyridoxal-phosphate and benzoate moieties was reduced by X-rays to create a covalent linkage of the pyridoxal-phosphate moiety to lysine 120 in the binding groove of 14-3-3, leading to persistent 14-3-3 inactivation. We suggest that FOBISIN101-like molecules could be developed as an entirely unique class of 14-3-3 inhibitors, which may serve as radiation-triggered therapeutic agents for the treatment of 14-3-3-mediated diseases, such as cancer. PMID:21908710

  20. 14-3-3 proteins: Macro-regulators with great potential for improving abiotic stress tolerance in plants.

    PubMed

    Liu, Qing; Zhang, Shaohong; Liu, Bin

    2016-08-12

    14-3-3 proteins (14-3-3s) are highly conserved regulatory proteins that are uniquely eukaryotic, and deeply involved in protein-protein interactions that mediate diverse signaling pathways. In plants, 14-3-3s have been validated to regulate many biological processes, such as metabolism, light and hormone signaling, cell-cycle control and protein trafficking. Recent years we have also witnessed an increasing number of reports describing the functions of 14-3-3s in plant stress responses through interactions with key proteins in both biotic and abiotic stresses. In this review, we highlight the advances that have been made in investigating the roles of 14-3-3s in plant abiotic stress tolerance. These advances provide a framework for our understanding of how signals are integrated to perceive and respond to the abiotic stresses in plants. PMID:27233603

  1. Differential interaction and aggregation of 3-repeat and 4-repeat tau isoforms with 14-3-3{zeta} protein

    SciTech Connect

    Sadik, Golam; Tanaka, Toshihisa; Kato, Kiyoko; Yanagi, Kentaro; Kudo, Takashi; Takeda, Masatoshi

    2009-05-22

    Tau isoforms, 3-repeat (3R) and 4-repeat tau (4R), are differentially involved in neuronal development and in several tauopathies. 14-3-3 protein binds to tau and 14-3-3/tau association has been found both in the development and in tauopathies. To understand the role of 14-3-3 in the differential regulation of tau isoforms, we have performed studies on the interaction and aggregation of 3R-tau and 4R-tau, either phosphorylated or unphosphorylated, with 14-3-3{zeta}. We show by surface plasmon resonance studies that the interaction between unphosphorylated 3R-tau and 14-3-3{zeta} is {approx}3-folds higher than that between unphosphorylated 4R-tau and 14-3-3{zeta}. Phosphorylation of tau by protein kinase A (PKA) increases the affinity of both 3R- and 4R-tau for 14-3-3{zeta} to a similar level. An in vitro aggregation assay employing both transmission electron microscopy and fluorescence spectroscopy revealed the aggregation of unphosphorylated 4R-tau to be significantly higher than that of unphosphorylated 3R-tau following the induction of 14-3-3{zeta}. The filaments formed from 3R- and 4R-tau were almost similar in morphology. In contrast, the aggregation of both 3R- and 4R-tau was reduced to a similar low level after phosphorylation with PKA. Taken together, these results suggest that 14-3-3{zeta} exhibits a similar role for tau isoforms after PKA-phosphorylation, but a differential role for unphosphorylated tau. The significant aggregation of 4R-tau by 14-3-3{zeta} suggests that 14-3-3 may act as an inducer in the generation of 4R-tau-predominant neurofibrillary tangles in tauopathies.

  2. Validation of 14-3-3 Protein as a Marker in Sporadic Creutzfeldt-Jakob Disease Diagnostic.

    PubMed

    Schmitz, Matthias; Ebert, Elisabeth; Stoeck, Katharina; Karch, André; Collins, Steven; Calero, Miguel; Sklaviadis, Theodor; Laplanche, Jean-Louis; Golanska, Ewa; Baldeiras, Ines; Satoh, Katsuya; Sanchez-Valle, Raquel; Ladogana, Anna; Skinningsrud, Anders; Hammarin, Anna-Lena; Mitrova, Eva; Llorens, Franc; Kim, Yong Sun; Green, Alison; Zerr, Inga

    2016-05-01

    At present, the testing of 14-3-3 protein in cerebrospinal fluid (CSF) is a standard biomarker test in suspected sporadic Creutzfeldt-Jakob disease (sCJD) diagnosis. Increasing 14-3-3 test referrals in CJD reference laboratories in the last years have led to an urgent need to improve established 14-3-3 test methods. The main result of our study was the validation of a commercially available 14-3-3 ELISA next to the commonly used Western blot method as a high-throughput screening test. Hereby, 14-3-3 protein expression was quantitatively analyzed in CSF of 231 sCJD and 2035 control patients. We obtained excellent sensitivity/specificity values of 88 and 96% that are comparable to the established Western blot method. Since standard protocols and preanalytical sample handling have become more important in routine diagnostic, we investigated in a further step the reproducibility and stability of 14-3-3 as a biomarker for human prion diseases. Ring trial data from 2009 to 2013 revealed an increase of Fleiss' kappa from 0.51 to 0.68 indicating an improving reliability of 14-3-3 protein detection. The stability of 14-3-3 protein under short-term and long-term storage conditions at various temperatures and after repeated freezing/thawing cycles was confirmed. Contamination of CSF samples with blood appears likely to be an important factor at a concentration of more than 2500 erythrocytes/μL. Hemolysis of erythrocytes with significant release of 14-3-3 protein started after 2 days at room temperature. We first define clear standards for the sample handling, short- and long-term storage of CSF samples as well as the handling of blood- contaminated samples which may result in artificially elevated CSF levels of 14-3-3.

  3. Site-specific regulatory interaction between spinach leaf sucrose-phosphate synthase and 14-3-3 proteins

    NASA Technical Reports Server (NTRS)

    Toroser, D.; Athwal, G. S.; Huber, S. C.; Davies, E. (Principal Investigator)

    1998-01-01

    We report an Mg2+-dependent interaction between spinach leaf sucrose-phosphate synthase (SPS) and endogenous 14-3-3 proteins, as evidenced by co-elution during gel filtration and co-immunoprecipitation. The content of 14-3-3s associated with an SPS immunoprecipitate was inversely related to activity, and was specifically reduced when tissue was pretreated with 5-aminoimidazole-4-carboxamide riboside, suggesting metabolite control in vivo. A synthetic phosphopeptide based on Ser-229 was shown by surface plasmon resonance to bind a recombinant plant 14-3-3, and addition of the phosphorylated SPS-229 peptide was found to stimulate the SPS activity of an SPS:14-3-3 complex. Taken together, the results suggest a regulatory interaction of 14-3-3 proteins with Ser-229 of SPS.

  4. Binding of 14-3-3 reader proteins to phosphorylated DNMT1 facilitates aberrant DNA methylation and gene expression

    PubMed Central

    Estève, Pierre-Olivier; Zhang, Guoqiang; Ponnaluri, V.K. Chaithanya; Deepti, Kanneganti; Chin, Hang Gyeong; Dai, Nan; Sagum, Cari; Black, Karynne; Corrêa, Ivan R.; Bedford, Mark T.; Cheng, Xiaodong; Pradhan, Sriharsa

    2016-01-01

    Mammalian DNA (cytosine-5) methyltransferase 1 (DNMT1) is essential for maintenance methylation. Phosphorylation of Ser143 (pSer143) stabilizes DNMT1 during DNA replication. Here, we show 14-3-3 is a reader protein of DNMT1pSer143. In mammalian cells 14-3-3 colocalizes and binds DNMT1pSer143 post-DNA replication. The level of DNMT1pSer143 increased with overexpression of 14-3-3 and decreased by its depletion. Binding of 14-3-3 proteins with DNMT1pSer143 resulted in inhibition of DNA methylation activity in vitro. In addition, overexpression of 14-3-3 in NIH3T3 cells led to decrease in DNMT1 specific activity resulting in hypomethylation of the genome that was rescued by transfection of DNMT1. Genes representing cell migration, mobility, proliferation and focal adhesion pathway were hypomethylated and overexpressed. Furthermore, overexpression of 14-3-3 also resulted in enhanced cell invasion. Analysis of TCGA breast cancer patient data showed significant correlation for DNA hypomethylation and reduced patient survival with increased 14-3-3 expressions. Therefore, we suggest that 14-3-3 is a crucial reader of DNMT1pSer143 that regulates DNA methylation and altered gene expression that contributes to cell invasion. PMID:26553800

  5. Evolution of signal multiplexing by 14-3-3-binding 2R-ohnologue protein families in the vertebrates

    PubMed Central

    Tinti, Michele; Johnson, Catherine; Toth, Rachel; Ferrier, David E. K.; MacKintosh, Carol

    2012-01-01

    14-3-3 proteins regulate cellular responses to stimuli by docking onto pairs of phosphorylated residues on target proteins. The present study shows that the human 14-3-3-binding phosphoproteome is highly enriched in 2R-ohnologues, which are proteins in families of two to four members that were generated by two rounds of whole genome duplication at the origin of the vertebrates. We identify 2R-ohnologue families whose members share a ‘lynchpin’, defined as a 14-3-3-binding phosphosite that is conserved across members of a given family, and aligns with a Ser/Thr residue in pro-orthologues from the invertebrate chordates. For example, the human receptor expression enhancing protein (REEP) 1–4 family has the commonest type of lynchpin motif in current datasets, with a phosphorylatable serine in the –2 position relative to the 14-3-3-binding phosphosite. In contrast, the second 14-3-3-binding sites of REEPs 1–4 differ and are phosphorylated by different kinases, and hence the REEPs display different affinities for 14-3-3 dimers. We suggest a conceptual model for intracellular regulation involving protein families whose evolution into signal multiplexing systems was facilitated by 14-3-3 dimer binding to lynchpins, which gave freedom for other regulatory sites to evolve. While increased signalling complexity was needed for vertebrate life, these systems also generate vulnerability to genetic disorders. PMID:22870394

  6. Cotton (Gossypium hirsutum) 14-3-3 proteins participate in regulation of fibre initiation and elongation by modulating brassinosteroid signalling.

    PubMed

    Zhou, Ying; Zhang, Ze-Ting; Li, Mo; Wei, Xin-Zheng; Li, Xiao-Jie; Li, Bing-Ying; Li, Xue-Bao

    2015-02-01

    Cotton (Gossypium hirsutum) fibre is an important natural raw material for textile industry in the world. Understanding the molecular mechanism of fibre development is important for the development of future cotton varieties with superior fibre quality. In this study, overexpression of Gh14-3-3L in cotton promoted fibre elongation, leading to an increase in mature fibre length. In contrast, suppression of expression of Gh14-3-3L, Gh14-3-3e and Gh14-3-3h in cotton slowed down fibre initiation and elongation. As a result, the mature fibres of the Gh14-3-3 RNAi transgenic plants were significantly shorter than those of wild type. This 'short fibre' phenotype of the 14-3-3 RNAi cotton could be partially rescued by application of 2,4-epibrassinolide (BL). Expression levels of the BR-related and fibre-related genes were altered in the Gh14-3-3 transgenic fibres. Furthermore, we identified Gh14-3-3 interacting proteins (including GhBZR1) in cotton. Site mutation assay revealed that Ser163 in GhBZR1 and Lys51/56/53 in Gh14-3-3L/e/h were required for Gh14-3-3-GhBZR1 interaction. Nuclear localization of GhBZR1 protein was induced by BR, and phosphorylation of GhBZR1 by GhBIN2 kinase was helpful for its binding to Gh14-3-3 proteins. Additionally, 14-3-3-regulated GhBZR1 protein may directly bind to GhXTH1 and GhEXP promoters to regulate gene expression for responding rapid fibre elongation. These results suggested that Gh14-3-3 proteins may be involved in regulating fibre initiation and elongation through their interacting with GhBZR1 to modulate BR signalling. Thus, our study provides the candidate intrinsic genes for improving fibre yield and quality by genetic manipulation.

  7. Proteomic analysis of media from lung cancer cells reveals role of 14-3-3 proteins in cachexia

    PubMed Central

    McLean, Julie B.; Moylan, Jennifer S.; Horrell, Erin M. W.; Andrade, Francisco H.

    2015-01-01

    Aims: At the time of diagnosis, 60% of lung cancer patients present with cachexia, a severe wasting syndrome that increases morbidity and mortality. Tumors secrete multiple factors that contribute to cachectic muscle wasting, and not all of these factors have been identified. We used Orbitrap electrospray ionization mass spectrometry to identify novel cachexia-inducing candidates in media conditioned with Lewis lung carcinoma cells (LCM). Results: One-hundred and 58 proteins were confirmed in three biological replicates. Thirty-three were identified as secreted proteins, including 14-3-3 proteins, which are highly conserved adaptor proteins known to have over 200 binding partners. We confirmed the presence of extracellular 14-3-3 proteins in LCM via western blot and discovered that LCM contained less 14-3-3 content than media conditioned with C2C12 myotubes. Using a neutralizing antibody, we depleted extracellular 14-3-3 proteins in myotube culture medium, which resulted in diminished myosin content. We identified the proposed receptor for 14-3-3 proteins, CD13, in differentiated C2C12 myotubes and found that inhibiting CD13 via Bestatin also resulted in diminished myosin content. Conclusions: Our novel findings show that extracellular 14-3-3 proteins may act as previously unidentified myokines and may signal via CD13 to help maintain muscle mass. PMID:25972815

  8. Identification of 14-3-3 Proteins Phosphopeptide-Binding Specificity Using an Affinity-Based Computational Approach.

    PubMed

    Li, Zhao; Tang, Jijun; Guo, Fei

    2016-01-01

    The 14-3-3 proteins are a highly conserved family of homodimeric and heterodimeric molecules, expressed in all eukaryotic cells. In human cells, this family consists of seven distinct but highly homologous 14-3-3 isoforms. 14-3-3σ is the only isoform directly linked to cancer in epithelial cells, which is regulated by major tumor suppressor genes. For each 14-3-3 isoform, we have 1,000 peptide motifs with experimental binding affinity values. In this paper, we present a novel method for identifying peptide motifs binding to 14-3-3σ isoform. First, we propose a sampling criteria to build a predictor for each new peptide sequence. Then, we select nine physicochemical properties of amino acids to describe each peptide motif. We also use auto-cross covariance to extract correlative properties of amino acids in any two positions. Finally, we consider elastic net to predict affinity values of peptide motifs, based on ridge regression and least absolute shrinkage and selection operator (LASSO). Our method tests on the 1,000 known peptide motifs binding to seven 14-3-3 isoforms. On the 14-3-3σ isoform, our method has overall pearson-product-moment correlation coefficient (PCC) and root mean squared error (RMSE) values of 0.84 and 252.31 for N-terminal sublibrary, and 0.77 and 269.13 for C-terminal sublibrary. We predict affinity values of 16,000 peptide sequences and relative binding ability across six permutated positions similar with experimental values. We identify phosphopeptides that preferentially bind to 14-3-3σ over other isoforms. Several positions on peptide motifs are in the same amino acid category with experimental substrate specificity of phosphopeptides binding to 14-3-3σ. Our method is fast and reliable and is a general computational method that can be used in peptide-protein binding identification in proteomics research. PMID:26828594

  9. Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice

    PubMed Central

    Bai, Ming-Yi; Zhang, Li-Ying; Gampala, Srinivas S.; Zhu, Sheng-Wei; Song, Wen-Yuan; Chong, Kang; Wang, Zhi-Yong

    2007-01-01

    Brassinosteroids (BR) are essential growth hormones found throughout the plant kingdom. BR bind to the receptor kinase BRI1 on the cell surface to activate a signal transduction pathway that regulates nuclear gene expression and plant growth. To understand the downstream BR signaling mechanism in rice, we studied the function of OsBZR1 using reverse genetic approaches and identified OsBZR1-interacting proteins. Suppressing OsBZR1 expression by RNAi resulted in dwarfism, erect leaves, reduced BR sensitivity, and altered BR-responsive gene expression in transgenic rice plants, demonstrating an essential role of OsBZR1 in BR responses in rice. Moreover, a yeast two-hybrid screen identified 14-3-3 proteins as OsBZR1-interacting proteins. Mutation of a putative 14-3-3-binding site of OsBZR1 abolished its interaction with the 14-3-3 proteins in yeast and in vivo. Such mutant OsBZR1 proteins suppressed the phenotypes of the Arabidopsis bri1–5 mutant and showed an increased nuclear distribution compared with the wild-type protein, suggesting that 14-3-3 proteins directly inhibit OsBZR1 function at least in part by reducing its nuclear localization. These results demonstrate a conserved function of OsBZR1 and an important role of 14-3-3 proteins in brassinosteroid signal transduction in rice. PMID:17699623

  10. CSF Tau proteins reduce misdiagnosis of sporadic Creutzfeldt-Jakob disease suspected cases with inconclusive 14-3-3 result.

    PubMed

    Leitão, M J; Baldeiras, I; Almeida, M R; Ribeiro, M H; Santos, A C; Ribeiro, M; Tomás, J; Rocha, S; Santana, I; Oliveira, C R

    2016-09-01

    Cerebrospinal fluid (CSF) 14-3-3 protein supports sporadic Creutzfeldt-Jakob (sCJD) diagnosis, but often leads to weak-positive results and lacks standardization. In this study, we explored the added diagnostic value of Total Tau (t-Tau) and phosphorylated Tau (p-Tau) in sCJD diagnosis, particularly in the cases with inconclusive 14-3-3 result. 95 definite sCJD and 287 patients without prion disease (non-CJD) were included in this study. CSF samples were collected in routine clinical diagnosis and analysed for 14-3-3 detection by Western blot (WB). CSF t-Tau and p-Tau were quantified by commercial ELISA kits and PRNP and APOE genotyping assessed by PCR-RFLP. In a regression analysis of the whole cohort, 14-3-3 protein revealed an overall accuracy of 82 % (sensitivity = 96.7 %; specificity = 75.6 %) for sCJD. Regarding 14-3-3 clear positive results, we observed no added value either of t-Tau alone or p-Tau/t-Tau ratio in the model. On the other hand, considering 14-3-3 weak-positive cases, t-Tau protein increased the overall accuracy of 14-3-3 alone from 91 to 94 % and specificity from 74 to 93 % (p < 0.05), with no sensitivity improvement. However, inclusion of p-Tau/t-Tau ratio did not significantly improve the first model (p = 0.0595). Globally, t-Tau protein allowed a further discrimination of 65 % within 14-3-3 inconclusive results. Furthermore, PRNP MV genotype showed a trend to decrease 14-3-3 sensitivity (p = 0.051), but such effect was not seen on t-Tau protein. In light of these results, we suggest that t-Tau protein assay is of significant importance as a second marker in identifying 14-3-3 false-positive results among sCJD probable cases.

  11. CSF Tau proteins reduce misdiagnosis of sporadic Creutzfeldt-Jakob disease suspected cases with inconclusive 14-3-3 result.

    PubMed

    Leitão, M J; Baldeiras, I; Almeida, M R; Ribeiro, M H; Santos, A C; Ribeiro, M; Tomás, J; Rocha, S; Santana, I; Oliveira, C R

    2016-09-01

    Cerebrospinal fluid (CSF) 14-3-3 protein supports sporadic Creutzfeldt-Jakob (sCJD) diagnosis, but often leads to weak-positive results and lacks standardization. In this study, we explored the added diagnostic value of Total Tau (t-Tau) and phosphorylated Tau (p-Tau) in sCJD diagnosis, particularly in the cases with inconclusive 14-3-3 result. 95 definite sCJD and 287 patients without prion disease (non-CJD) were included in this study. CSF samples were collected in routine clinical diagnosis and analysed for 14-3-3 detection by Western blot (WB). CSF t-Tau and p-Tau were quantified by commercial ELISA kits and PRNP and APOE genotyping assessed by PCR-RFLP. In a regression analysis of the whole cohort, 14-3-3 protein revealed an overall accuracy of 82 % (sensitivity = 96.7 %; specificity = 75.6 %) for sCJD. Regarding 14-3-3 clear positive results, we observed no added value either of t-Tau alone or p-Tau/t-Tau ratio in the model. On the other hand, considering 14-3-3 weak-positive cases, t-Tau protein increased the overall accuracy of 14-3-3 alone from 91 to 94 % and specificity from 74 to 93 % (p < 0.05), with no sensitivity improvement. However, inclusion of p-Tau/t-Tau ratio did not significantly improve the first model (p = 0.0595). Globally, t-Tau protein allowed a further discrimination of 65 % within 14-3-3 inconclusive results. Furthermore, PRNP MV genotype showed a trend to decrease 14-3-3 sensitivity (p = 0.051), but such effect was not seen on t-Tau protein. In light of these results, we suggest that t-Tau protein assay is of significant importance as a second marker in identifying 14-3-3 false-positive results among sCJD probable cases. PMID:27357003

  12. 14-3-3 protein binds to the low molecular weight neurofilament (NFL) mRNA 3' UTR.

    PubMed

    Ge, Wei-Wen; Volkening, Kathryn; Leystra-Lantz, Cheryl; Jaffe, Howard; Strong, Michael J

    2007-01-01

    We have previously reported that altered stability of low molecular weight neurofilament (NFL) mRNA in lumbar spinal cord homogenates in amyotrophic lateral sclerosis (ALS) is associated with altered expression of trans-acting 3' UTR mRNA binding proteins. We have identified two hexanucleotide motifs as the main cis elements and, using LC/MS/MS of peptide digests of NFL 3' UTR interacting proteins from human spinal cord, observed that 14-3-3 proteins interact with these motifs. 14-3-3 beta, zeta, tau, gamma, and eta isoforms were found to be expressed in human spinal cord. Each isoform was expressed in vitro and shown to interact with NFL 3' UTR mRNA. Mutation of one or both motifs resulted in decreased 14-3-3 interaction, changes in predicted mRNA structure or alteration in stability of the mRNA. These data show a novel interaction for 14-3-3 with NFL mRNA, and suggests that 14-3-3 may play a role in regulating NFL mRNA stability.

  13. Modulation of GluK2a subunit-containing kainate receptors by 14-3-3 proteins.

    PubMed

    Sun, Changcheng; Qiao, Haifa; Zhou, Qin; Wang, Yan; Wu, Yuying; Zhou, Yi; Li, Yong

    2013-08-23

    Kainate receptors (KARs) are one of the ionotropic glutamate receptors that mediate excitatory postsynaptic currents (EPSCs) with characteristically slow kinetics. Although mechanisms for the slow kinetics of KAR-EPSCs are not totally understood, recent evidence has implicated a regulatory role of KAR-associated proteins. Here, we report that decay kinetics of GluK2a-containing receptors is modulated by closely associated 14-3-3 proteins. 14-3-3 binding requires PKC-dependent phosphorylation of serine residues localized in the carboxyl tail of the GluK2a subunit. In transfected cells, 14-3-3 binding to GluK2a slows desensitization kinetics of both homomeric GluK2a and heteromeric GluK2a/GluK5 receptors. Moreover, KAR-EPSCs at mossy fiber-CA3 synapses decay significantly faster in the 14-3-3 functional knock-out mice. Collectively, these results demonstrate that 14-3-3 proteins are an important regulator of GluK2a-containing KARs and may contribute to the slow decay kinetics of native KAR-EPSCs. PMID:23861400

  14. A 14-3-3 Family Protein from Wild Soybean (Glycine Soja) Regulates ABA Sensitivity in Arabidopsis

    PubMed Central

    Sun, Xiaoli; Sun, Mingzhe; Jia, Bowei; Chen, Chao; Qin, Zhiwei; Yang, Kejun; Shen, Yang; Meiping, Zhang; Mingyang, Cong; Zhu, Yanming

    2015-01-01

    It is widely accepted that the 14-3-3 family proteins are key regulators of multiple stress signal transduction cascades. By conducting genome-wide analysis, researchers have identified the soybean 14-3-3 family proteins; however, until now, there is still no direct genetic evidence showing the involvement of soybean 14-3-3s in ABA responses. Hence, in this study, based on the latest Glycine max genome on Phytozome v10.3, we initially analyzed the evolutionary relationship, genome organization, gene structure and duplication, and three-dimensional structure of soybean 14-3-3 family proteins systematically. Our results suggested that soybean 14-3-3 family was highly evolutionary conserved and possessed segmental duplication in evolution. Then, based on our previous functional characterization of a Glycine soja 14-3-3 protein GsGF14o in drought stress responses, we further investigated the expression characteristics of GsGF14o in detail, and demonstrated its positive roles in ABA sensitivity. Quantitative real-time PCR analyses in Glycine soja seedlings and GUS activity assays in PGsGF14O:GUS transgenic Arabidopsis showed that GsGF14o expression was moderately and rapidly induced by ABA treatment. As expected, GsGF14o overexpression in Arabidopsis augmented the ABA inhibition of seed germination and seedling growth, promoted the ABA induced stomata closure, and up-regulated the expression levels of ABA induced genes. Moreover, through yeast two hybrid analyses, we further demonstrated that GsGF14o physically interacted with the AREB/ABF transcription factors in yeast cells. Taken together, results presented in this study strongly suggested that GsGF14o played an important role in regulation of ABA sensitivity in Arabidopsis. PMID:26717241

  15. A 14-3-3 Family Protein from Wild Soybean (Glycine Soja) Regulates ABA Sensitivity in Arabidopsis.

    PubMed

    Sun, Xiaoli; Sun, Mingzhe; Jia, Bowei; Chen, Chao; Qin, Zhiwei; Yang, Kejun; Shen, Yang; Meiping, Zhang; Mingyang, Cong; Zhu, Yanming

    2015-01-01

    It is widely accepted that the 14-3-3 family proteins are key regulators of multiple stress signal transduction cascades. By conducting genome-wide analysis, researchers have identified the soybean 14-3-3 family proteins; however, until now, there is still no direct genetic evidence showing the involvement of soybean 14-3-3s in ABA responses. Hence, in this study, based on the latest Glycine max genome on Phytozome v10.3, we initially analyzed the evolutionary relationship, genome organization, gene structure and duplication, and three-dimensional structure of soybean 14-3-3 family proteins systematically. Our results suggested that soybean 14-3-3 family was highly evolutionary conserved and possessed segmental duplication in evolution. Then, based on our previous functional characterization of a Glycine soja 14-3-3 protein GsGF14o in drought stress responses, we further investigated the expression characteristics of GsGF14o in detail, and demonstrated its positive roles in ABA sensitivity. Quantitative real-time PCR analyses in Glycine soja seedlings and GUS activity assays in PGsGF14O:GUS transgenic Arabidopsis showed that GsGF14o expression was moderately and rapidly induced by ABA treatment. As expected, GsGF14o overexpression in Arabidopsis augmented the ABA inhibition of seed germination and seedling growth, promoted the ABA induced stomata closure, and up-regulated the expression levels of ABA induced genes. Moreover, through yeast two hybrid analyses, we further demonstrated that GsGF14o physically interacted with the AREB/ABF transcription factors in yeast cells. Taken together, results presented in this study strongly suggested that GsGF14o played an important role in regulation of ABA sensitivity in Arabidopsis. PMID:26717241

  16. A 14-3-3 Family Protein from Wild Soybean (Glycine Soja) Regulates ABA Sensitivity in Arabidopsis.

    PubMed

    Sun, Xiaoli; Sun, Mingzhe; Jia, Bowei; Chen, Chao; Qin, Zhiwei; Yang, Kejun; Shen, Yang; Meiping, Zhang; Mingyang, Cong; Zhu, Yanming

    2015-01-01

    It is widely accepted that the 14-3-3 family proteins are key regulators of multiple stress signal transduction cascades. By conducting genome-wide analysis, researchers have identified the soybean 14-3-3 family proteins; however, until now, there is still no direct genetic evidence showing the involvement of soybean 14-3-3s in ABA responses. Hence, in this study, based on the latest Glycine max genome on Phytozome v10.3, we initially analyzed the evolutionary relationship, genome organization, gene structure and duplication, and three-dimensional structure of soybean 14-3-3 family proteins systematically. Our results suggested that soybean 14-3-3 family was highly evolutionary conserved and possessed segmental duplication in evolution. Then, based on our previous functional characterization of a Glycine soja 14-3-3 protein GsGF14o in drought stress responses, we further investigated the expression characteristics of GsGF14o in detail, and demonstrated its positive roles in ABA sensitivity. Quantitative real-time PCR analyses in Glycine soja seedlings and GUS activity assays in PGsGF14O:GUS transgenic Arabidopsis showed that GsGF14o expression was moderately and rapidly induced by ABA treatment. As expected, GsGF14o overexpression in Arabidopsis augmented the ABA inhibition of seed germination and seedling growth, promoted the ABA induced stomata closure, and up-regulated the expression levels of ABA induced genes. Moreover, through yeast two hybrid analyses, we further demonstrated that GsGF14o physically interacted with the AREB/ABF transcription factors in yeast cells. Taken together, results presented in this study strongly suggested that GsGF14o played an important role in regulation of ABA sensitivity in Arabidopsis.

  17. Revealing the binding modes and the unbinding of 14-3-3σ proteins and inhibitors by computational methods.

    PubMed

    Hu, Guodong; Cao, Zanxia; Xu, Shicai; Wang, Wei; Wang, Jihua

    2015-01-01

    The 14-3-3σ proteins are a family of ubiquitous conserved eukaryotic regulatory molecules involved in the regulation of mitogenic signal transduction, apoptotic cell death, and cell cycle control. A lot of small-molecule inhibitors have been identified for 14-3-3 protein-protein interactions (PPIs). In this work, we carried out molecular dynamics (MD) simulations combined with molecular mechanics generalized Born surface area (MM-GBSA) method to study the binding mechanism between a 14-3-3σ protein and its eight inhibitors. The ranking order of our calculated binding free energies is in agreement with the experimental results. We found that the binding free energies are mainly from interactions between the phosphate group of the inhibitors and the hydrophilic residues. To improve the binding free energy of Rx group, we designed the inhibitor R9 with group R9 = 4-hydroxypheny. However, we also found that the binding free energy of inhibitor R9 is smaller than that of inhibitor R1. By further using the steer molecular dynamics (SMD) simulations, we identified a new hydrogen bond between the inhibitor R8 and residue Arg64 in the pulling paths. The information obtained from this study may be valuable for future rational design of novel inhibitors, and provide better structural understanding of inhibitor binding to 14-3-3σ proteins. PMID:26568041

  18. Protein phosphatases 1 and 2A promote Raf-1 activation by regulating 14-3-3 interactions.

    PubMed

    Jaumot, M; Hancock, J F

    2001-07-01

    Raf-1 activation is a complex process which involves plasma membrane recruitment, phosphorylation, protein-protein and lipid-protein interactions. We now show that PP1 and PP2A serine-threonine phosphatases also have a positive role in Ras dependent Raf-1 activation. General serine-threonine phosphatase inhibitors such sodium fluoride, or ss-glycerophosphate and sodium pyrophosphate, or specific PP1 and PP2A inhibitors including microcystin-LR, protein phosphatase 2A inhibitor I(1) or protein phosphatase inhibitor 2 all abrogate H-Ras and K-Ras dependent Raf-1 activation in vitro. A critical Raf-1 target residue for PP1 and PP2A is S259. Serine phosphatase inhibitors block the dephosphorylation of S259, which accompanies Raf-1 activation, and Ras dependent activation of mutant Raf259A is relatively resistant to serine phosphatase inhibitors. Sucrose gradient analysis demonstrates that serine phosphatase inhibition increases the total amount of 14-3-3 and Raf-1 associated with the plasma membrane and significantly alters the distribution of 14-3-3 and Raf-1 across different plasma membrane microdomains. These observations suggest that dephosphorylation of S259 is a critical early step in Ras dependent Raf-1 activation which facilitates 14-3-3 displacement. Inhibition of PP1 and PP2A therefore causes plasma membrane accumulation of Raf-1/14-3-3 complexes which cannot be activated.

  19. Posttranscriptional regulation of 14-3-3ζ by RNA-binding protein HuR modulating intestinal epithelial restitution after wounding.

    PubMed

    Hansraj, Natasha Z; Xiao, Lan; Wu, Jing; Chen, Gang; Turner, Douglas J; Wang, Jian-Ying; Rao, Jaladanki N

    2016-07-01

    The 14-3-3ζ is a member of the family of 14-3-3 proteins and participates in many aspects of cellular processes, but its regulation and involvement in gut mucosal homeostasis remain unknown. Here, we report that 14-3-3ζ expression is tightly regulated at the posttranscription level by RNA-binding protein HuR and plays an important role in early intestinal epithelial restitution after wounding. The 14-3-3ζ was highly expressed in the mucosa of gastrointestinal tract and in cultured intestinal epithelial cells (IECs). The 3' untranslated region (UTR) of the 14-3-3ζ mRNA was bound to HuR, and this association enhanced 14-3-3ζ translation without effect on its mRNA content. Conditional target deletion of HuR in IECs decreased the level of 14-3-3ζ protein in the intestinal mucosa. Silencing 14-3-3ζ by transfection with specific siRNA targeting the 14-3-3ζ mRNA suppressed intestinal epithelial restitution as indicated by a decrease in IEC migration after wounding, whereas ectopic overexpression of the wild-type 14-3-3ζ promoted cell migration. These results indicate that HuR induces 14-3-3ζ translation via interaction with its 3' UTR and that 14-3-3ζ is necessary for stimulation of IEC migration after wounding. PMID:27401462

  20. Posttranscriptional regulation of 14-3-3ζ by RNA-binding protein HuR modulating intestinal epithelial restitution after wounding.

    PubMed

    Hansraj, Natasha Z; Xiao, Lan; Wu, Jing; Chen, Gang; Turner, Douglas J; Wang, Jian-Ying; Rao, Jaladanki N

    2016-07-01

    The 14-3-3ζ is a member of the family of 14-3-3 proteins and participates in many aspects of cellular processes, but its regulation and involvement in gut mucosal homeostasis remain unknown. Here, we report that 14-3-3ζ expression is tightly regulated at the posttranscription level by RNA-binding protein HuR and plays an important role in early intestinal epithelial restitution after wounding. The 14-3-3ζ was highly expressed in the mucosa of gastrointestinal tract and in cultured intestinal epithelial cells (IECs). The 3' untranslated region (UTR) of the 14-3-3ζ mRNA was bound to HuR, and this association enhanced 14-3-3ζ translation without effect on its mRNA content. Conditional target deletion of HuR in IECs decreased the level of 14-3-3ζ protein in the intestinal mucosa. Silencing 14-3-3ζ by transfection with specific siRNA targeting the 14-3-3ζ mRNA suppressed intestinal epithelial restitution as indicated by a decrease in IEC migration after wounding, whereas ectopic overexpression of the wild-type 14-3-3ζ promoted cell migration. These results indicate that HuR induces 14-3-3ζ translation via interaction with its 3' UTR and that 14-3-3ζ is necessary for stimulation of IEC migration after wounding.

  1. Alternative application of Tau protein in Creutzfeldt-Jakob disease diagnosis: Improvement for weakly positive 14-3-3 protein in the laboratory.

    PubMed

    Hyeon, Jae Wook; Kim, Su Yeon; Lee, Jeongmin; Park, Jun Sun; Hwang, Kyu Jam; Lee, Sol Moe; An, SeongSoo A; Lee, Myung Koo; Ju, Young Ran

    2015-01-01

    The 14-3-3 protein has been used as a biomarker for the diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD). However, weakly positive 14-3-3 leads to false positive results and an incorrect diagnosis. We attempted to use quantitative data for tau protein to provide an accurate diagnosis based on weak 14-3-3 protein. Sixty-two patients with sCJD, including pathologically confirmed, clinically definite, and probable cases, and 89 non-CJD patients were investigated based on a Korean population. Among them, 20 sCJD and 14 non-CJD showed weakly positive 14-3-3. The total tau (t-tau) and phosphorylated tau (p-tau) protein levels were measured by ELISA, and the p-tau to t-tau ratio (p/t ratio) was calculated. The combined use of the 14-3-3 protein assay, t-tau levels, and p/t ratio improved the specificity of diagnosis compared with the use of the 14-3-3 protein assay alone (47% for 14-3-3 alone; 85.94% for 14-3-3 combined with t-tau; 90.62% for 14-3-3 combined with the p/t ratio). In addition, 18 of 20 sCJD and 12 of 14 non-CJD who were weakly positive for 14-3-3 were positive for the p/t ratio and negative for the p/t ratio, respectively. When used in combination with the 14-3-3 protein, the tau protein is useful as a biomarker for the precise diagnosis of sCJD. PMID:26507666

  2. Alternative application of Tau protein in Creutzfeldt-Jakob disease diagnosis: Improvement for weakly positive 14-3-3 protein in the laboratory.

    PubMed

    Hyeon, Jae Wook; Kim, Su Yeon; Lee, Jeongmin; Park, Jun Sun; Hwang, Kyu Jam; Lee, Sol Moe; An, SeongSoo A; Lee, Myung Koo; Ju, Young Ran

    2015-10-28

    The 14-3-3 protein has been used as a biomarker for the diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD). However, weakly positive 14-3-3 leads to false positive results and an incorrect diagnosis. We attempted to use quantitative data for tau protein to provide an accurate diagnosis based on weak 14-3-3 protein. Sixty-two patients with sCJD, including pathologically confirmed, clinically definite, and probable cases, and 89 non-CJD patients were investigated based on a Korean population. Among them, 20 sCJD and 14 non-CJD showed weakly positive 14-3-3. The total tau (t-tau) and phosphorylated tau (p-tau) protein levels were measured by ELISA, and the p-tau to t-tau ratio (p/t ratio) was calculated. The combined use of the 14-3-3 protein assay, t-tau levels, and p/t ratio improved the specificity of diagnosis compared with the use of the 14-3-3 protein assay alone (47% for 14-3-3 alone; 85.94% for 14-3-3 combined with t-tau; 90.62% for 14-3-3 combined with the p/t ratio). In addition, 18 of 20 sCJD and 12 of 14 non-CJD who were weakly positive for 14-3-3 were positive for the p/t ratio and negative for the p/t ratio, respectively. When used in combination with the 14-3-3 protein, the tau protein is useful as a biomarker for the precise diagnosis of sCJD.

  3. Protein kinase B (AKT) regulates SYK activity and shuttling through 14-3-3 and importin 7.

    PubMed

    Mohammad, Dara K; Nore, Beston F; Gustafsson, Manuela O; Mohamed, Abdalla J; Smith, C I Edvard

    2016-09-01

    The Protein kinase B (AKT) regulates a plethora of intracellular signaling proteins to fine-tune signaling of multiple pathways. Here, we found that following B-cell receptor (BCR)-induced tyrosine phosphorylation of the cytoplasmic tyrosine kinase SYK and the adaptor BLNK, the AKT/PKB enzyme strongly induced BLNK (>100-fold) and SYK (>100-fold) serine/threonine phosphorylation (pS/pT). Increased phosphorylation promoted 14-3-3 binding to BLNK (37-fold) and SYK (2.5-fold) in a pS/pT-concentration dependent manner. We also demonstrated that the AKT inhibitor MK2206 reduced pS/pT of both BLNK (3-fold) and SYK (2.5-fold). Notably, the AKT phosphatase, PHLPP2 maintained the activating phosphorylation of BLNK at Y84 and increased protein stability (8.5-fold). In addition, 14-3-3 was required for the regulation SYK's interaction with BLNK and attenuated SYK binding to Importin 7 (5-fold), thereby perturbing shuttling to the nucleus. Moreover, 14-3-3 proteins also sustained tyrosine phosphorylation of SYK and BLNK. Furthermore, substitution of S295 or S297 for alanine abrogated SYK's binding to Importin 7. SYK with S295A or S297A replacements showed intense pY525/526 phosphorylation, and BLNK pY84 phosphorylation correlated with the SYK pY525/526 phosphorylation level. Conversely, the corresponding mutations to aspartic acid in SYK reduced pY525/526 phosphorylation. Collectively, these and previous results suggest that AKT and 14-3-3 proteins down-regulate the activity of several BCR-associated components, including BTK, BLNK and SYK and also inhibit SYK's interaction with Importin 7. PMID:27381982

  4. Dexamethasone downregulated the expression of CSF 14-3-3β protein in mice with eosinophilic meningitis caused by Angiostrongylus cantonensis infection.

    PubMed

    Tsai, Hung-Chin; Lee, Bi-Yao; Yen, Chuan-Min; Wann, Shue-Ren; Lee, Susan Shin-Jung; Chen, Yao-Shen; Tai, Ming-Hong

    2014-03-01

    Angiostrongylus cantonensis is the main causative agent of human eosinophilic meningitis in Southeast Asia and the Pacific Islands. A previous study demonstrated that the 14-3-3β protein is a neuropathological marker in monitoring neuronal damage in meningitis. Steroids are commonly used in patients with eosinophilic meningitis caused by A. cantonensis infection. However, the mechanism by which steroids act in eosinophilic meningitis is unknown. We hypothesized that the beneficial effect of steroids on eosinophilic meningitis is partially mediated by the down-regulation of 14-3-3β protein expression in the cerebrospinal fluid (CSF). In this animal study, we determined the dynamic changes of 14-3-3β protein in mice with eosinophilic meningitis. The 14-3-3β protein in serum and CSF was increased in week 2 and 3 after infections. Dexamethasone administration significantly decreased the amounts of CSF 14-3-3β protein. By developing an in-house ELISA to measure 14-3-3β protein, it was found that the amounts of 14-3-3β protein in the CSF and serum increased over a three-week period after infection. There was a remarkable reduction of 14-3-3β protein in the CSF after 2 weeks of dexamethasone treatment. In conclusion, the administration of corticosteroids in mice with eosinophilic meningitis decreased the expression of 14-3-3β protein in the CSF.

  5. Vpr Protein of Human Immunodeficiency Virus Type 1 Binds to 14-3-3 Proteins and Facilitates Complex Formation with Cdc25C: Implications for Cell Cycle Arrest

    PubMed Central

    Kino, Tomoshige; Gragerov, Alexander; Valentin, Antonio; Tsopanomihalou, Maria; Ilyina-Gragerova, Galina; Erwin-Cohen, Rebecca; Chrousos, George P.; Pavlakis, George N.

    2005-01-01

    Vpr and selected mutants were used in a Saccharomyces cerevisiae two-hybrid screen to identify cellular interactors. We found Vpr interacted with 14-3-3 proteins, a family regulating a multitude of proteins in the cell. Vpr mutant R80A, which is inactive in cell cycle arrest, did not interact with 14-3-3. 14-3-3 proteins regulate the G2/M transition by inactivating Cdc25C phosphatase via binding to the phosphorylated serine residue at position 216 of Cdc25C. 14-3-3 overexpression in human cells synergized with Vpr in the arrest of cell cycle. Vpr did not arrest efficiently cells not expressing 14-3-3σ. This indicated that a full complement of 14-3-3 proteins is necessary for optimal Vpr function on the cell cycle. Mutational analysis showed that the C-terminal portion of Vpr, known to harbor its cell cycle-arresting activity, bound directly to the C-terminal part of 14-3-3, outside of its phosphopeptide-binding pocket. Vpr expression shifted localization of the mutant Cdc25C S216A to the cytoplasm, indicating that Vpr promotes the association of 14-3-3 and Cdc25C, independently of the presence of serine 216. Immunoprecipitations of cell extracts indicated the presence of triple complexes (Vpr/14-3-3/Cdc25C). These results indicate that Vpr promotes cell cycle arrest at the G2/M phase by facilitating association of 14-3-3 and Cdc25C independently of the latter's phosphorylation status. PMID:15708996

  6. Phosphorylation of Arabidopsis Ubiquitin Ligase ATL31 Is Critical for Plant Carbon/Nitrogen Nutrient Balance Response and Controls the Stability of 14-3-3 Proteins*

    PubMed Central

    Yasuda, Shigetaka; Sato, Takeo; Maekawa, Shugo; Aoyama, Shoki; Fukao, Yoichiro; Yamaguchi, Junji

    2014-01-01

    Ubiquitin ligase plays a fundamental role in regulating multiple cellular events in eukaryotes by fine-tuning the stability and activity of specific target proteins. We have previously shown that ubiquitin ligase ATL31 regulates plant growth in response to nutrient balance between carbon and nitrogen (C/N) in Arabidopsis. Subsequent study demonstrated that ATL31 targets 14-3-3 proteins for ubiquitination and modulates the protein abundance in response to C/N-nutrient status. However, the underlying mechanism for the targeting of ATL31 to 14-3-3 proteins remains unclear. Here, we show that ATL31 interacts with 14-3-3 proteins in a phosphorylation-dependent manner. We identified Thr209, Ser247, Ser270, and Ser303 as putative 14-3-3 binding sites on ATL31 by motif analysis. Mutation of these Ser/Thr residues to Ala in ATL31 inhibited the interaction with 14-3-3 proteins, as demonstrated by yeast two-hybrid and co-immunoprecipitation analyses. Additionally, we identified in vivo phosphorylation of Thr209 and Ser247 on ATL31 by MS analysis. A peptide competition assay showed that the application of synthetic phospho-Thr209 peptide, but not the corresponding unphosphorylated peptide, suppresses the interaction between ATL31 and 14-3-3 proteins. Moreover, Arabidopsis plants overexpressing mutated ATL31, which could not bind to 14-3-3 proteins, showed accumulation of 14-3-3 proteins and growth arrest in disrupted C/N-nutrient conditions similar to wild-type plants, although overexpression of intact ATL31 resulted in repression of 14-3-3 accumulation and tolerance to the conditions. Together, these results demonstrate that the physiological role of phosphorylation at 14-3-3 binding sites on ATL31 is to modulate the binding ability and stability of 14-3-3 proteins to control plant C/N-nutrient response. PMID:24722992

  7. Structural Basis for the 14-3-3 Protein-dependent Inhibition of the Regulator of G Protein Signaling 3 (RGS3) Function*

    PubMed Central

    Rezabkova, Lenka; Man, Petr; Novak, Petr; Herman, Petr; Vecer, Jaroslav; Obsilova, Veronika; Obsil, Tomas

    2011-01-01

    Regulator of G protein signaling (RGS) proteins function as GTPase-activating proteins for the α-subunit of heterotrimeric G proteins. The function of certain RGS proteins is negatively regulated by 14-3-3 proteins, a family of highly conserved regulatory molecules expressed in all eukaryotes. In this study, we provide a structural mechanism for 14-3-3-dependent inhibition of RGS3-Gα interaction. We have used small angle x-ray scattering, hydrogen/deuterium exchange kinetics, and Förster resonance energy transfer measurements to determine the low-resolution solution structure of the 14-3-3ζ·RGS3 complex. The structure shows the RGS domain of RGS3 bound to the 14-3-3ζ dimer in an as-yet-unrecognized manner interacting with less conserved regions on the outer surface of the 14-3-3 dimer outside its central channel. Our results suggest that the 14-3-3 protein binding affects the structure of the Gα interaction portion of RGS3 as well as sterically blocks the interaction between the RGS domain and the Gα subunit of heterotrimeric G proteins. PMID:22027839

  8. Transcription variants of the prostate-specific PrLZ gene and their interaction with 14-3-3 proteins

    SciTech Connect

    Wang, Ruoxiang; He, Hui; Sun, Xiaojuan; Xu, Jianchun; Marshall, Fray F.; Zhau, Haiyen; Chung, Leland W.K.; Fu, Haian; He, Dalin

    2009-11-20

    We have reported isolation and characterization of the prostate-specific and androgen-regulated PrLZ gene abnormally expressed in prostate cancer. PrLZ is a potential biomarker for prostate cancer and a candidate oncogene promoting cell proliferation and survival in prostate cancer cells. A full delineation of the PrLZ gene and its gene products may provide clues to the mechanisms regulating its expression and function. In this report, we identified three additional exons in the PrLZ gene and recognized five transcript variants from alternative splicing that could be detected by RT-PCR and Western blotting. Structural comparison demonstrated that the PrLZ proteins are highly conserved among species. PrLZ contains multiple potential sites for interaction with other proteins. We used mammalian two-hybrid assays to demonstrate that PrLZ isoforms interact with 14-3-3 proteins, and multiple sites in the PrLZ may be involved in the interaction. Alternative splicing may contribute to abnormally enhanced PrLZ levels in prostate cancer, and interaction with 14-3-3 proteins may be a mechanism by which PrLZ promotes cell proliferation and survival during prostate cancer development and progression. This information is a valuable addition to the investigation of the oncogenic properties of the PrLZ gene.

  9. Unraveling 14-3-3 proteins in C4 panicoids with emphasis on model plant Setaria italica reveals phosphorylation-dependent subcellular localization of RS splicing factor.

    PubMed

    Kumar, Karunesh; Muthamilarasan, Mehanathan; Bonthala, Venkata Suresh; Roy, Riti; Prasad, Manoj

    2015-01-01

    14-3-3 proteins are a large multigenic family of regulatory proteins ubiquitously found in eukaryotes. In plants, 14-3-3 proteins are reported to play significant role in both development and response to stress stimuli. Therefore, considering their importance, genome-wide analyses have been performed in many plants including Arabidopsis, rice and soybean. But, till date, no comprehensive investigation has been conducted in any C4 panicoid crops. In view of this, the present study was performed to identify 8, 5 and 26 potential 14-3-3 gene family members in foxtail millet (Si14-3-3), sorghum (Sb14-3-3) and maize (Zm14-3-3), respectively. In silico characterization revealed large variations in their gene structures; segmental and tandem duplications have played a major role in expansion of these genes in foxtail millet and maize. Gene ontology annotation showed the participation of 14-3-3 proteins in diverse biological processes and molecular functions, and in silico expression profiling indicated their higher expression in all the investigated tissues. Comparative mapping was performed to derive the orthologous relationships between 14-3-3 genes of foxtail millet and other Poaceae members, which showed a higher, as well as similar percentage of orthology among these crops. Expression profiling of Si14-3-3 genes during different time-points of abiotic stress and hormonal treatments showed a differential expression pattern of these genes, and sub-cellular localization studies revealed the site of action of Si14-3-3 proteins within the cells. Further downstream characterization indicated the interaction of Si14-3-3 with a nucleocytoplasmic shuttling phosphoprotein (SiRSZ21A) in a phosphorylation-dependent manner, and this demonstrates that Si14-3-3 might regulate the splicing events by binding with phosphorylated SiRSZ21A. Taken together, the present study is a comprehensive analysis of 14-3-3 gene family members in foxtail millet, sorghum and maize, which provides

  10. Unraveling 14-3-3 Proteins in C4 Panicoids with Emphasis on Model Plant Setaria italica Reveals Phosphorylation-Dependent Subcellular Localization of RS Splicing Factor

    PubMed Central

    Kumar, Karunesh; Muthamilarasan, Mehanathan; Bonthala, Venkata Suresh; Roy, Riti; Prasad, Manoj

    2015-01-01

    14-3-3 proteins are a large multigenic family of regulatory proteins ubiquitously found in eukaryotes. In plants, 14-3-3 proteins are reported to play significant role in both development and response to stress stimuli. Therefore, considering their importance, genome-wide analyses have been performed in many plants including Arabidopsis, rice and soybean. But, till date, no comprehensive investigation has been conducted in any C4 panicoid crops. In view of this, the present study was performed to identify 8, 5 and 26 potential 14-3-3 gene family members in foxtail millet (Si14-3-3), sorghum (Sb14-3-3) and maize (Zm14-3-3), respectively. In silico characterization revealed large variations in their gene structures; segmental and tandem duplications have played a major role in expansion of these genes in foxtail millet and maize. Gene ontology annotation showed the participation of 14-3-3 proteins in diverse biological processes and molecular functions, and in silico expression profiling indicated their higher expression in all the investigated tissues. Comparative mapping was performed to derive the orthologous relationships between 14-3-3 genes of foxtail millet and other Poaceae members, which showed a higher, as well as similar percentage of orthology among these crops. Expression profiling of Si14-3-3 genes during different time-points of abiotic stress and hormonal treatments showed a differential expression pattern of these genes, and sub-cellular localization studies revealed the site of action of Si14-3-3 proteins within the cells. Further downstream characterization indicated the interaction of Si14-3-3 with a nucleocytoplasmic shuttling phosphoprotein (SiRSZ21A) in a phosphorylation-dependent manner, and this demonstrates that Si14-3-3 might regulate the splicing events by binding with phosphorylated SiRSZ21A. Taken together, the present study is a comprehensive analysis of 14-3-3 gene family members in foxtail millet, sorghum and maize, which provides

  11. Spinach 14-3-3 protein interacts with the plasma membrane H(+)-ATPase and nitrate reductase in response to excess nitrate stress.

    PubMed

    Xu, Huini; Zhao, Xiuling; Guo, Chuanlong; Chen, Limei; Li, Kunzhi

    2016-09-01

    To investigate the function of 14-3-3 protein in response to excess nitrate stress, a 14-3-3 protein, designated as So14-3-3, was isolated from spinach. Phylogenetic analysis demonstrated that So14-3-3 belongs to non-ε group of 14-3-3 superfamily. Real time-quantitative RT-PCR and western blot analysis showed that So14-3-3 was induced by excess nitrate stress in spinach roots and leaves. After nitrate treatment, the phosphorylated H(+)-ATPase and nitrate reductase (NR) increased and decreased respectively. Co-Immunoprecipitation (Co-IP) suggested that the interaction of So14-3-3 with the phosphorylated H(+)-ATPase enhanced, but reduced with phosphorylated NR in spinach roots after nitrate treatment. Besides, 5 proteins interacted with So14-3-3 were found by Co-IP and LC-MS/MS analysis. So14-3-3 overexpressing transgenic tobacco plants showed enhanced tolerance to nitrate treatment at the germination and young seedlings stage. The transgenic plants showed longer root length, lower malondialdehyde (MDA), H2O2, protein carbonyl contents, relatively higher soluble sugar and protein contents, than the WT plants after nitrate treatment. The phosphorylation levels of H(+)-ATPase in transgenic plants were higher than the WT plants after nitrate treatment, whereas NR were lower. Additionally, in transgenic plants, the interaction of So14-3-3 with phosphorylated H(+)-ATPase and NR increased and decreased more than the WT plants under nitrate stress, leading to higher H(+)-ATPase and NR activities in transgenic plants. These data suggested that So14-3-3 might be involved in nitrate stress response by interacting with H(+)-ATPase and NR. PMID:27161584

  12. The Crystal Structure of Giardia duodenalis 14-3-3 in the Apo Form: When Protein Post-Translational Modifications Make the Difference

    PubMed Central

    Fiorillo, Annarita; di Marino, Daniele; Bertuccini, Lucia; Via, Allegra; Pozio, Edoardo; Camerini, Serena; Ilari, Andrea; Lalle, Marco

    2014-01-01

    The 14-3-3s are a family of dimeric evolutionary conserved pSer/pThr binding proteins that play a key role in multiple biological processes by interacting with a plethora of client proteins. Giardia duodenalis is a flagellated protozoan that affects millions of people worldwide causing an acute and chronic diarrheal disease. The single giardial 14-3-3 isoform (g14-3-3), unique in the 14-3-3 family, needs the constitutive phosphorylation of Thr214 and the polyglycylation of its C-terminus to be fully functional in vivo. Alteration of the phosphorylation and polyglycylation status affects the parasite differentiation into the cyst stage. To further investigate the role of these post-translational modifications, the crystal structure of the g14-3-3 was solved in the unmodified apo form. Oligomers of g14-3-3 were observed due to domain swapping events at the protein C-terminus. The formation of filaments was supported by TEM. Mutational analysis, in combination with native PAGE and chemical cross-linking, proved that polyglycylation prevents oligomerization. In silico phosphorylation and molecular dynamics simulations supported a structural role for the phosphorylation of Thr214 in promoting target binding. Our findings highlight unique structural features of g14-3-3 opening novel perspectives on the evolutionary history of this protein family and envisaging the possibility to develop anti-giardial drugs targeting g14-3-3. PMID:24658679

  13. The 14-3-3 protein interacts directly with the C-terminal region of the plant plasma membrane H(+)-ATPase.

    PubMed Central

    Jahn, T; Fuglsang, A T; Olsson, A; Brüntrup, I M; Collinge, D B; Volkmann, D; Sommarin, M; Palmgren, M G; Larsson, C

    1997-01-01

    Accumulating evidence suggests that 14-3-3 proteins are involved in the regulation of plant plasma membrane H(+)-ATPase activity. However, it is not known whether the 14-3-3 protein interacts directly or indirectly with the H(+)-ATPase. In this study, detergent-solubilized plasma membrane H(+)-ATPase isolated from fusicoccin-treated maize shoots was copurified with the 14-3-3 protein (as determined by protein gel blotting), and the H(+)-ATPase was recovered in an activated state. In the absence of fusicoccin treatment, H(+)-ATPase and the 14-3-3 protein were well separated, and the H(+)-ATPase was recovered in a nonactivated form. Trypsin treatment removed the 10-kD C-terminal region from the H(+)-ATPase as well as the 14-3-3 protein. Using the yeast two-hybrid system, we could show a direct interaction between Arabidopsis 14-3-3 GF14-phi and the last 98 C-terminal amino acids of the Arabidopsis AHA2 plasma membrane H(+)-ATPase. We propose that the 14-3-3 protein is a natural ligand of the plasma membrane H(+)-ATPase, regulating proton pumping by displacing the C-terminal autoinhibitory domain of the H(+)-ATPase. PMID:9368417

  14. Cofilin regulator 14-3-3zeta is an evolutionarily conserved protein required for phagocytosis and microbial resistance.

    PubMed

    Ulvila, Johanna; Vanha-aho, Leena-Maija; Kleino, Anni; Vähä-Mäkilä, Mari; Vuoksio, Milka; Eskelinen, Sinikka; Hultmark, Dan; Kocks, Christine; Hallman, Mikko; Parikka, Mataleena; Rämet, Mika

    2011-05-01

    Phagocytosis is an ancient cellular process that plays an important role in host defense. In Drosophila melanogaster phagocytic, macrophage-like hemocytes recognize and ingest microbes. We performed an RNAi-based in vitro screen in the Drosophila hemocyte cell line S2 and identified Abi, cpa, cofilin regulator 14-3-3ζ, tlk, CG2765, and CG15609 as mediators of bacterial phagocytosis. Of these identified genes, 14-3-3ζ had an evolutionarily conserved role in phagocytosis: bacterial phagocytosis was compromised when 14-3-3ζ was targeted with RNAi in primary Drosophila hemocytes and when the orthologous genes Ywhab and Ywhaz were silenced in zebrafish and mouse RAW 264.7 cells, respectively. In Drosophila and zebrafish infection models, 14-3-3ζ was required for resistance against Staphylococcus aureus. We conclude that 14-3-3ζ is essential for phagocytosis and microbial resistance in insects and vertebrates. PMID:21208897

  15. Association of 14-3-3 Proteins to β1-Adrenergic Receptors Modulates Kv11.1 K+ Channel Activity in Recombinant Systems

    PubMed Central

    Tutor, Antonio S.; Delpón, Eva; Caballero, Ricardo; Gómez, Ricardo; Núñez, Lucía; Vaquero, Miguel; Tamargo, Juan; Penela, Petronila

    2006-01-01

    We identify a new mechanism for the β1-adrenergic receptor (β1AR)-mediated regulation of human ether-a-go-go–related gene (HERG) potassium channel (Kv11.1). We find that the previously reported modulatory interaction between Kv11.1 channels and 14-3-3ε proteins is competed by wild type β1AR by means of a novel interaction between this receptor and 14-3-3ε. The association between β1AR and 14-3-3ε is increased by agonist stimulation in both transfected cells and heart tissue and requires cAMP-dependent protein kinase (PKA) activity. The β1AR/14-3-3ε association is direct, since it can be recapitulated using purified 14-3-3ε and β1AR fusion proteins and is abolished in cells expressing β1AR phosphorylation–deficient mutants. Biochemical and electrophysiological studies of the effects of isoproterenol on Kv11.1 currents recorded using the whole-cell patch clamp demonstrated that β1AR phosphorylation–deficient mutants do not recruit 14-3-3ε away from Kv11.1 and display a markedly altered agonist-mediated modulation of Kv11.1 currents compared with wild-type β1AR, increasing instead of inhibiting current amplitudes. Interestingly, such differential modulation is not observed in the presence of 14-3-3 inhibitors. Our results suggest that the dynamic association of 14-3-3 proteins to both β1AR and Kv11.1 channels is involved in the adrenergic modulation of this critical regulator of cardiac repolarization and refractoriness. PMID:16914520

  16. Evolution of the 14-3-3 protein family: does the large number of isoforms in multicellular organisms reflect functional specificity?

    PubMed

    Rosenquist, M; Sehnke, P; Ferl, R J; Sommarin, M; Larsson, C

    2000-11-01

    14-3-3 proteins constitute a family of eukaryotic proteins that are key regulators of a large number of processes ranging from mitosis to apoptosis. 14-3-3s function as dimers and bind to particular motifs in their target proteins. To date, 14-3-3s have been implicated in regulation or stabilization of more than 35 different proteins. This number is probably only a fraction of the number of proteins that 14-3-3s bind to, as reports of new target proteins have become more frequent. An examination of 14-3-3 entries in the public databases reveals 153 isoforms, including alleloforms, reported in 48 different species. The number of isoforms range from 2, in the unicellular organism Saccharomyces cerevisiae, to 12 in the multicellular organism Arabidopsis thaliana. A phylogenetic analysis reveals that there are four major evolutionary lineages: Viridiplantae (plants), Fungi, Alveolata, and Metazoa (animals). A close examination of the aligned amino acid sequences identifies conserved amino acid residues and regions of importance for monomer stabilization, dimer formation, target protein binding, and the nuclear export function. Given the fact that 53% of the protein is conserved, including all amino acid residues in the target binding groove of the 14-3-3 monomer, one might expect little to no isoform specificity for target protein binding. However, using surface plasmon resonance we show that there are large differences in affinity between nine 14-3-3 isoforms of A. thaliana and a target peptide representing a novel binding motif present in the C terminus of the plant plasma membrane H(+)ATPase. Thus, our data suggest that one reason for the large number of isoforms found in multicellular organisms is isoform-specific functions. PMID:11080367

  17. Dual role for 14-3-3 proteins and ABF transcription factors in gibberellic acid and abscisic acid signalling in barley (Hordeum vulgare) aleurone cells.

    PubMed

    Schoonheim, Peter J; Costa Pereira, Daniel D A; De Boer, Albertus H

    2009-05-01

    The balance of gibberellins [gibberellic acid (GA)] and abscisic acid (ABA) is a determining factor during transition of embryogenesis and seed germination. Recently, we showed that 14-3-3 proteins are important in ABA signalling in barley aleurone cells. Using 14-3-3 RNAi constructs in the barley aleurone transient expression system, we demonstrate here that silencing of each 14-3-3 isoform suppresses GA induction of the alpha-amylase gene. 14-3-3 Proteins interact with ABA-responsive element (ABRE) binding factors HvABF1, 2 and 3, and here we show that these transcription factors also interact with the ABA-responsive kinase PKABA1, a kinase that mediates cross-talk between the GA and ABA pathway. ABF1 and ABF2 have a function in both signalling pathways as: (1) ectopic expression of wild-type ABF1 and mutant ABF2, lacking the 14-3-3 interaction domain, transactivates the ABA inducible HVA1 gene; and (2) GA induction of the alpha-amylase gene is repressed by ectopic expression of wild-type ABF1 and 2. Mutant ABF1 and 2 were still effective repressors of GA signalling. In summary, our data provide evidence that 14-3-3 proteins and members of the ABF transcription factor family have a regulatory function in the GA pathway and suggest that PKABA1 and ABF transcription factors are cross-talk intermediates in ABA and GA signalling.

  18. Regulation of presynaptic anchoring of the scaffold protein Bassoon by phosphorylation-dependent interaction with 14-3-3 adaptor proteins.

    PubMed

    Schröder, Markus S; Stellmacher, Anne; Romorini, Stefano; Marini, Claudia; Montenegro-Venegas, Carolina; Altrock, Wilko D; Gundelfinger, Eckart D; Fejtova, Anna

    2013-01-01

    The proper organization of the presynaptic cytomatrix at the active zone is essential for reliable neurotransmitter release from neurons. Despite of the virtual stability of this tightly interconnected proteinaceous network it becomes increasingly clear that regulated dynamic changes of its composition play an important role in the processes of synaptic plasticity. Bassoon, a core component of the presynaptic cytomatrix, is a key player in structural organization and functional regulation of presynaptic release sites. It is one of the most highly phosphorylated synaptic proteins. Nevertheless, to date our knowledge about functions mediated by any one of the identified phosphorylation sites of Bassoon is sparse. In this study, we have identified an interaction of Bassoon with the small adaptor protein 14-3-3, which depends on phosphorylation of the 14-3-3 binding motif of Bassoon. In vitro phosphorylation assays indicate that phosphorylation of the critical Ser-2845 residue of Bassoon can be mediated by a member of the 90-kDa ribosomal S6 protein kinase family. Elimination of Ser-2845 from the 14-3-3 binding motif results in a significant decrease of Bassoon's molecular exchange rates at synapses of living rat neurons. We propose that the phosphorylation-induced 14-3-3 binding to Bassoon modulates its anchoring to the presynaptic cytomatrix. This regulation mechanism might participate in molecular and structural presynaptic remodeling during synaptic plasticity.

  19. Nuclear localization and interaction of RolB with plant 14-3-3 proteins correlates with induction of adventitious roots by the oncogene rolB.

    PubMed

    Moriuchi, Hiroshi; Okamoto, Chiho; Nishihama, Ryuichi; Yamashita, Ichiro; Machida, Yasunori; Tanaka, Nobukazu

    2004-04-01

    The rooting-locus gene B (rolB) on the T-DNA of the root-inducing (Ri) plasmid in Agrobacterium rhizogenes is responsible for the induction of transformed adventitious roots, although the root induction mechanism is unknown. We report here that the RolB protein of pRi1724 (1724RolB) is associated with Nicotianatabacum14-3-3-like protein omegaII (Nt14-3-3 omegaII) in tobacco bright yellow (BY)-2 cells. Nt14-3-3 omegaII directly interacts with 1724RolB protein. Green fluorescent protein (GFP)-fused 1724RolB is localized to the nucleus. GFP-fused mutant 1724RolB proteins having a deletion or amino acid substitution are unable to interact with Nt14-3-3 omegaII and also show impaired nuclear localization. Moreover, these 1724RolB mutants show decreased capacity for adventitious root induction. These results suggest that adventitious root induction by 1724RolB protein correlates with its interaction with Nt14-3-3 omegaII and the nuclear localization of 1724RolB protein. PMID:15078329

  20. Phosphorylation of Thr-948 at the C terminus of the plasma membrane H(+)-ATPase creates a binding site for the regulatory 14-3-3 protein.

    PubMed Central

    Svennelid, F; Olsson, A; Piotrowski, M; Rosenquist, M; Ottman, C; Larsson, C; Oecking, C; Sommarin, M

    1999-01-01

    The plant plasma membrane H(+)-ATPase is activated by the binding of 14-3-3 protein to the C-terminal region of the enzyme, thus forming an H(+)-ATPase-14-3-3 complex that can be stabilized by the fungal toxin fusicoccin. A novel 14-3-3 binding motif, QQXYpT(948)V, at the C terminus of the H(+)-ATPase is identified and characterized, and the protein kinase activity in the plasma membrane fraction that phosphorylates this threonine residue in the H(+)-ATPase is identified. A synthetic peptide that corresponds to the C-terminal 16 amino acids of the H(+)-ATPase and that is phosphorylated on Thr-948 prevents the in vitro activation of the H(+)-ATPase that is obtained in the presence of recombinant 14-3-3 and fusicoccin. Furthermore, binding of 14-3-3 to the H(+)-ATPase in the absence of fusicoccin is absolutely dependent on the phosphorylation of Thr-948, whereas binding of 14-3-3 in the presence of fusicoccin occurs independently of phosphorylation but still involves the C-terminal motif YTV. Finally, by complementing yeast that lacks its endogenous H(+)-ATPase with wild-type and mutant forms of the Nicotiana plumbaginifolia H(+)-ATPase isoform PMA2, we provide physiological evidence for the importance of the phosphothreonine motif in 14-3-3 binding and, hence, in the activation of the H(+)-ATPase in vivo. Indeed, replacing Thr-948 in the plant H(+)-ATPase with alanine is lethal because this mutant fails to functionally replace the yeast H(+)-ATPase. Considering the importance of the motif QQXYpTV for 14-3-3 binding and yeast growth, this motif should be of vital importance for regulating H(+)-ATPase activity in the plant and thus for plant growth. PMID:10590165

  1. Controllability of protein-protein interaction phosphorylation-based networks: Participation of the hub 14-3-3 protein family

    PubMed Central

    Uhart, Marina; Flores, Gabriel; Bustos, Diego M.

    2016-01-01

    Posttranslational regulation of protein function is an ubiquitous mechanism in eukaryotic cells. Here, we analyzed biological properties of nodes and edges of a human protein-protein interaction phosphorylation-based network, especially of those nodes critical for the network controllability. We found that the minimal number of critical nodes needed to control the whole network is 29%, which is considerably lower compared to other real networks. These critical nodes are more regulated by posttranslational modifications and contain more binding domains to these modifications than other kinds of nodes in the network, suggesting an intra-group fast regulation. Also, when we analyzed the edges characteristics that connect critical and non-critical nodes, we found that the former are enriched in domain-to-eukaryotic linear motif interactions, whereas the later are enriched in domain-domain interactions. Our findings suggest a possible structure for protein-protein interaction networks with a densely interconnected and self-regulated central core, composed of critical nodes with a high participation in the controllability of the full network, and less regulated peripheral nodes. Our study offers a deeper understanding of complex network control and bridges the controllability theorems for complex networks and biological protein-protein interaction phosphorylation-based networked systems. PMID:27195976

  2. Controllability of protein-protein interaction phosphorylation-based networks: Participation of the hub 14-3-3 protein family.

    PubMed

    Uhart, Marina; Flores, Gabriel; Bustos, Diego M

    2016-05-19

    Posttranslational regulation of protein function is an ubiquitous mechanism in eukaryotic cells. Here, we analyzed biological properties of nodes and edges of a human protein-protein interaction phosphorylation-based network, especially of those nodes critical for the network controllability. We found that the minimal number of critical nodes needed to control the whole network is 29%, which is considerably lower compared to other real networks. These critical nodes are more regulated by posttranslational modifications and contain more binding domains to these modifications than other kinds of nodes in the network, suggesting an intra-group fast regulation. Also, when we analyzed the edges characteristics that connect critical and non-critical nodes, we found that the former are enriched in domain-to-eukaryotic linear motif interactions, whereas the later are enriched in domain-domain interactions. Our findings suggest a possible structure for protein-protein interaction networks with a densely interconnected and self-regulated central core, composed of critical nodes with a high participation in the controllability of the full network, and less regulated peripheral nodes. Our study offers a deeper understanding of complex network control and bridges the controllability theorems for complex networks and biological protein-protein interaction phosphorylation-based networked systems.

  3. 14-3-3 isoforms bind directly exon B of the 5′-UTR of human surfactant protein A2 mRNA

    PubMed Central

    Noutsios, Georgios T.; Ghattas, Paul; Bennett, Stephanie

    2015-01-01

    Human surfactant protein (SP) A (SP-A), an innate immunity molecule, is encoded by two genes, SFTPA1 and SFTPA2. The 5′-untranslated splice variant of SP-A2 (ABD), but not SP-A1 (AD), contains exon B (eB). eB is an enhancer for transcription and translation and contains cis-regulatory elements. Specific trans-acting factors, including 14-3-3, bind eB. The 14-3-3 protein family contains seven isoforms that have been found by mass spectrometry in eB electromobility shift assays (Noutsios et al. Am J Physiol Lung Cell Mol Physiol 304: L722–L735, 2013). We used four different approaches to investigate whether 14-3-3 isoforms bind directly to eB. 1) eB RNA pulldown assays showed that 14-3-3 isoforms specifically bind eB. 2) RNA electromobility shift assay complexes were formed using purified 14-3-3 isoforms β, γ, ε, η, σ, and τ, but not isoform ζ, with wild-type eB RNA. 3 and 4) RNA affinity chromatography assays and surface plasmon resonance analysis showed that 14-3-3 isoforms β, γ, ε, η, σ, and τ, but not isoform ζ, specifically and directly bind eB. Inhibition of 14-3-3 isoforms γ, ε, η, and τ/θ with shRNAs in NCI-H441 cells resulted in downregulation of SP-A2 levels but did not affect SP-A1 levels. However, inhibition of 14-3-3 isoform σ was correlated with lower levels of SP-A1 and SP-A2. Inhibition of 14-3-3 isoform ζ/δ, which does not bind eB, had no effect on expression levels of SP-A1 and SP-A2. In conclusion, the 14-3-3 protein family affects differential regulation of SP-A1 and SP-A2 by binding directly to SP-A2 5′-UTR mRNA. PMID:26001776

  4. 14-3-3 proteins play a role in the cell cycle by shielding cdt2 from ubiquitin-mediated degradation.

    PubMed

    Dar, Ashraf; Wu, David; Lee, Nicholas; Shibata, Etsuko; Dutta, Anindya

    2014-11-01

    Cdt2 is the substrate recognition adaptor of CRL4(Cdt2) E3 ubiquitin ligase complex and plays a pivotal role in the cell cycle by mediating the proteasomal degradation of Cdt1 (DNA replication licensing factor), p21 (cyclin-dependent kinase [CDK] inhibitor), and Set8 (histone methyltransferase) in S phase. Cdt2 itself is attenuated by SCF(FbxO11)-mediated proteasomal degradation. Here, we report that 14-3-3 adaptor proteins interact with Cdt2 phosphorylated at threonine 464 (T464) and shield it from polyubiquitination and consequent proteasomal degradation. Depletion of 14-3-3 proteins promotes the interaction of FbxO11 with Cdt2. Overexpressing 14-3-3 proteins shields Cdt2 that has a phospho-mimicking mutation (T464D [change of T to D at position 464]) but not Cdt2(T464A) from ubiquitination. Furthermore, the delay of the cell cycle in the G2/M phase and decrease in cell proliferation seen upon depletion of 14-3-3γ is partly due to the accumulation of the CRL4(Cdt2) substrate, Set8 methyltransferase. Therefore, the stabilization of Cdt2 is an important function of 14-3-3 proteins in cell cycle progression.

  5. 14-3-3 Proteins Play a Role in the Cell Cycle by Shielding Cdt2 from Ubiquitin-Mediated Degradation

    PubMed Central

    Dar, Ashraf; Wu, David; Lee, Nicholas; Shibata, Etsuko

    2014-01-01

    Cdt2 is the substrate recognition adaptor of CRL4Cdt2 E3 ubiquitin ligase complex and plays a pivotal role in the cell cycle by mediating the proteasomal degradation of Cdt1 (DNA replication licensing factor), p21 (cyclin-dependent kinase [CDK] inhibitor), and Set8 (histone methyltransferase) in S phase. Cdt2 itself is attenuated by SCFFbxO11-mediated proteasomal degradation. Here, we report that 14-3-3 adaptor proteins interact with Cdt2 phosphorylated at threonine 464 (T464) and shield it from polyubiquitination and consequent proteasomal degradation. Depletion of 14-3-3 proteins promotes the interaction of FbxO11 with Cdt2. Overexpressing 14-3-3 proteins shields Cdt2 that has a phospho-mimicking mutation (T464D [change of T to D at position 464]) but not Cdt2(T464A) from ubiquitination. Furthermore, the delay of the cell cycle in the G2/M phase and decrease in cell proliferation seen upon depletion of 14-3-3γ is partly due to the accumulation of the CRL4Cdt2 substrate, Set8 methyltransferase. Therefore, the stabilization of Cdt2 is an important function of 14-3-3 proteins in cell cycle progression. PMID:25154416

  6. Tomato 14-3-3 protein TFT7 interacts with a MAP kinase kinase to regulate immunity-associated programmed cell death mediated by diverse disease resistance proteins.

    PubMed

    Oh, Chang-Sik; Martin, Gregory B

    2011-04-22

    Programmed cell death (PCD) associated with immunity is triggered when a plant disease resistance (R) protein recognizes a corresponding pathogen virulence protein. In tomato, detection by the host Pto kinase of the Pseudomonas syringae proteins AvrPto or AvrPtoB causes localized PCD. Previously, we reported that both MAPKKKα (mitogen-activated protein kinase kinase kinase) and the tomato 14-3-3 protein 7 (TFT7) positively regulate Pto-mediated PCD in tomato and Nicotiana benthamiana. In addition, in contrast to MAPKKKα, TFT7 is required for PCD mediated by four other R proteins. Here we investigate why TFT7 is required for PCD induced by diverse R proteins in plants. We discovered that a MAPKK, SlMKK2, which acts downstream of SlMAPKKKα, also interacts with TFT7 in plant cells. Gene silencing experiments revealed that the orthologous genes of both SlMKK2 and TFT7 in N. benthamiana are required for PCD mediated by the same set of R proteins. SlMKK2 and its orthologs contain a 14-3-3 binding site in their N terminus, and Thr(33) in this site is required for interaction with TFT7 in vivo. Like the structurally similar human 14-3-3ε protein, TFT7 forms a homodimer in vivo. Because TFT7 interacts with both SlMAPKKKα and SlMKK2 and also forms a homodimer, we propose that TFT7 may coordinately recruit these client proteins for efficient signal transfer, leading to PCD induction. PMID:21378171

  7. Induction of androgen formation in the male by a TAT-VDAC1 fusion peptide blocking 14-3-3ɛ protein adaptor and mitochondrial VDAC1 interactions.

    PubMed

    Aghazadeh, Yasaman; Martinez-Arguelles, Daniel B; Fan, Jinjiang; Culty, Martine; Papadopoulos, Vassilios

    2014-10-01

    Low testosterone (T), a major cause of male hypogonadism and infertility, is linked to mood changes, fatigue, osteoporosis, reduced bone-mass index, and aging. The treatment of choice, T replacement therapy, has been linked with increased risk for prostate cancer and luteinizing hormone (LH) suppression, and shown to lead to infertility, cardiovascular diseases, and obesity. Alternate methods to induce T with lower side effects are desirable. In search of the mechanisms regulating T synthesis in the testes, we identified the 14-3-3ɛ protein adaptor as a negative regulator of steroidogenesis. Steroidogenesis begins in mitochondria. 14-3-3ɛ interacts with the outer mitochondrial membrane voltage-dependent anion channel (VDAC1) protein, forming a scaffold that limits the availability of cholesterol for steroidogenesis. We report the development of a tool able to induce endogenous T formation. Peptides able to penetrate testes conjugated to 14-3-3ɛ site of interaction with VDAC1 blocked 14-3-3ɛ-VDAC1 interactions while at the same time increased VDAC1-translocator protein (18 kDa) interactions that induced steroid formation in rat testes, leading to increased serum T levels. These peptides rescued intratesticular and serum T formation in adult male rats treated with gonadotropin-releasing hormone antagonist, which dampened LH and T production.

  8. Higher order Arabidopsis 14-3-3 mutants show 14-3-3 involvement in primary root growth both under control and abiotic stress conditions

    PubMed Central

    van Kleeff, P. J. M.; Jaspert, N.; Li, K. W.; Rauch, S.; Oecking, C.; de Boer, A. H.

    2014-01-01

    Arabidopsis 14-3-3 proteins are a family of conserved proteins that interact with numerous partner proteins in a phospho-specific manner, and can affect the target proteins in a number of ways; e.g. modification of enzymatic activity. We isolated T-DNA insertion lines in six 14-3-3 genes within the non-epsilon group that phylogenetically group in three closely related gene pairs. In total, 6 single, 3 double, 12 triple, and 3 quadruple mutants were generated. The mutants were phenotyped for primary root growth on control plates: single and double mutants were indistinguishable from WT, whereas six triples and all quadruples showed a shorter primary root. In addition, length of the first epidermal cell with a visible root hair bulge (LEH) was used to determine primary root elongation on medium containing mannitol and 1-aminocyclopropane-1-carboxylic acid (ACC). This analysis showed clear differences depending on the stress and 14-3-3 gene combinations. Next to the phenotypic growth analyses, a 14-3-3 pull-down assay on roots treated with and without mannitol showed that mannitol stress strongly affects the 14-3-3 interactome. In conclusion, we show gene specificity and functional redundancy among 14-3-3 proteins in primary root elongation under control and under abiotic stress conditions and changes in the 14-3-3 interactome during the onset of stress adaptation. PMID:25189593

  9. Protein Kinase CK2 Interacts at the Neuromuscular Synapse with Rapsyn, Rac1, 14-3-3γ, and Dok-7 Proteins and Phosphorylates the Latter Two*

    PubMed Central

    Herrmann, Dustin; Straubinger, Marion; Hashemolhosseini, Said

    2015-01-01

    Previously, we demonstrated that the protein kinase CK2 associates with and phosphorylates the receptor tyrosine kinase MuSK (muscle specific receptor tyrosine kinase) at the neuromuscular junction (NMJ), thereby preventing fragmentation of the NMJs (Cheusova, T., Khan, M. A., Schubert, S. W., Gavin, A. C., Buchou, T., Jacob, G., Sticht, H., Allende, J., Boldyreff, B., Brenner, H. R., and Hashemolhosseini, S. (2006) Genes Dev. 20, 1800–1816). Here, we asked whether CK2 interacts with other proteins involved in processes at the NMJ, which would be consistent with the previous observation that CK2 appears enriched at the NMJ. We identified the following proteins to interact with protein kinase CK2: (a) the α and β subunits of the nicotinic acetylcholine receptors with weak interaction, (b) dishevelled (Dsh), and (c) another four proteins, Rapsyn, Rac1, 14-3-3γ, and Dok-7, with strong interaction. CK2 phosphorylated 14-3-3γ at serine residue 235 and Dok-7 at several serine residues but does not phosphorylate Rapsyn or Rac1. Furthermore, phosphomimetic Dok-7 mutants aggregated nicotinic acetylcholine receptors in C2C12 myotubes with significantly higher frequency than wild type Dok-7. Additionally, we mapped the interacting epitopes of all four binding partners to CK2 and thereby gained insights into the potential role of the CK2/Rapsyn interaction. PMID:26198629

  10. Protein kinase CK2 interacts at the neuromuscular synapse with Rapsyn, Rac1, 14-3-3γ, and Dok-7 proteins and phosphorylates the latter two.

    PubMed

    Herrmann, Dustin; Straubinger, Marion; Hashemolhosseini, Said

    2015-09-11

    Previously, we demonstrated that the protein kinase CK2 associates with and phosphorylates the receptor tyrosine kinase MuSK (muscle specific receptor tyrosine kinase) at the neuromuscular junction (NMJ), thereby preventing fragmentation of the NMJs (Cheusova, T., Khan, M. A., Schubert, S. W., Gavin, A. C., Buchou, T., Jacob, G., Sticht, H., Allende, J., Boldyreff, B., Brenner, H. R., and Hashemolhosseini, S. (2006) Genes Dev. 20, 1800-1816). Here, we asked whether CK2 interacts with other proteins involved in processes at the NMJ, which would be consistent with the previous observation that CK2 appears enriched at the NMJ. We identified the following proteins to interact with protein kinase CK2: (a) the α and β subunits of the nicotinic acetylcholine receptors with weak interaction, (b) dishevelled (Dsh), and (c) another four proteins, Rapsyn, Rac1, 14-3-3γ, and Dok-7, with strong interaction. CK2 phosphorylated 14-3-3γ at serine residue 235 and Dok-7 at several serine residues but does not phosphorylate Rapsyn or Rac1. Furthermore, phosphomimetic Dok-7 mutants aggregated nicotinic acetylcholine receptors in C2C12 myotubes with significantly higher frequency than wild type Dok-7. Additionally, we mapped the interacting epitopes of all four binding partners to CK2 and thereby gained insights into the potential role of the CK2/Rapsyn interaction.

  11. Proteomic analysis of human norepinephrine transporter complexes reveals associations with protein phosphatase 2A anchoring subunit and 14-3-3 proteins

    SciTech Connect

    Sung, Uhna; Jennings, Jennifer L.; Link, Andrew J.; Blakely, Randy D.; E-mail: andy.blakely@vanderbilt.edu

    2005-08-05

    The norepinephrine transporter (NET) terminates noradrenergic signals by clearing released NE at synapses. NET regulation by receptors and intracellular signaling pathways is supported by a growing list of associated proteins including syntaxin1A, protein phosphatase 2A (PP2A) catalytic subunit (PP2A-C), PICK1, and Hic-5. In the present study, we sought evidence for additional partnerships by mass spectrometry-based analysis of proteins co-immunoprecipitated with human NET (hNET) stably expressed in a mouse noradrenergic neuroblastoma cell line. Our initial proteomic analyses reveal multiple peptides derived from hNET, peptides arising from the mouse PP2A anchoring subunit (PP2A-Ar) and peptides derived from 14-3-3 proteins. We verified physical association of NET with PP2A-Ar via co-immunoprecipitation studies using mouse vas deferens extracts and with 14-3-3 via a fusion pull-down approach, implicating specifically the hNET NH{sub 2}-terminus for interactions. The transporter complexes described likely support mechanisms regulating transporter activity, localization, and trafficking.

  12. Proteomics Profiling Reveals Carbohydrate Metabolic Enzymes and 14-3-3 Proteins Play Important Roles for Starch Accumulation during Cassava Root Tuberization

    PubMed Central

    Wang, Xuchu; Chang, Lili; Tong, Zheng; Wang, Dongyang; Yin, Qi; Wang, Dan; Jin, Xiang; Yang, Qian; Wang, Liming; Sun, Yong; Huang, Qixing; Guo, Anping; Peng, Ming

    2016-01-01

    Cassava is one of the most important root crops as a reliable source of food and carbohydrates. Carbohydrate metabolism and starch accumulation in cassava storage root is a cascade process that includes large amounts of proteins and cofactors. Here, comparative proteomics were conducted in cassava root at nine developmental stages. A total of 154 identified proteins were found to be differentially expressed during starch accumulation and root tuberization. Many enzymes involved in starch and sucrose metabolism were significantly up-regulated, and functional classification of the differentially expressed proteins demonstrated that the majority were binding-related enzymes. Many proteins were took part in carbohydrate metabolism to produce energy. Among them, three 14-3-3 isoforms were induced to be clearly phosphorylated during storage root enlargement. Overexpression of a cassava 14-3-3 gene in Arabidopsis thaliana confirmed that the older leaves of these transgenic plants contained higher sugar and starch contents than the wild-type leaves. The 14-3-3 proteins and their binding enzymes may play important roles in carbohydrate metabolism and starch accumulation during cassava root tuberization. These results not only deepened our understanding of the tuberous root proteome, but also uncovered new insights into carbohydrate metabolism and starch accumulation during cassava root enlargement. PMID:26791570

  13. Proteomics Profiling Reveals Carbohydrate Metabolic Enzymes and 14-3-3 Proteins Play Important Roles for Starch Accumulation during Cassava Root Tuberization.

    PubMed

    Wang, Xuchu; Chang, Lili; Tong, Zheng; Wang, Dongyang; Yin, Qi; Wang, Dan; Jin, Xiang; Yang, Qian; Wang, Liming; Sun, Yong; Huang, Qixing; Guo, Anping; Peng, Ming

    2016-01-21

    Cassava is one of the most important root crops as a reliable source of food and carbohydrates. Carbohydrate metabolism and starch accumulation in cassava storage root is a cascade process that includes large amounts of proteins and cofactors. Here, comparative proteomics were conducted in cassava root at nine developmental stages. A total of 154 identified proteins were found to be differentially expressed during starch accumulation and root tuberization. Many enzymes involved in starch and sucrose metabolism were significantly up-regulated, and functional classification of the differentially expressed proteins demonstrated that the majority were binding-related enzymes. Many proteins were took part in carbohydrate metabolism to produce energy. Among them, three 14-3-3 isoforms were induced to be clearly phosphorylated during storage root enlargement. Overexpression of a cassava 14-3-3 gene in Arabidopsis thaliana confirmed that the older leaves of these transgenic plants contained higher sugar and starch contents than the wild-type leaves. The 14-3-3 proteins and their binding enzymes may play important roles in carbohydrate metabolism and starch accumulation during cassava root tuberization. These results not only deepened our understanding of the tuberous root proteome, but also uncovered new insights into carbohydrate metabolism and starch accumulation during cassava root enlargement.

  14. 14-3-3 Proteins SGF14c and SGF14l Play Critical Roles during Soybean Nodulation1[W][OA

    PubMed Central

    Radwan, Osman; Wu, Xia; Govindarajulu, Manjula; Libault, Marc; Neece, David J.; Oh, Man-Ho; Berg, R. Howard; Stacey, Gary; Taylor, Christopher G.; Huber, Steven C.; Clough, Steven J.

    2012-01-01

    The soybean (Glycine max) genome contains 18 members of the 14-3-3 protein family, but little is known about their association with specific phenotypes. Here, we report that the Glyma0529080 Soybean G-box Factor 14-3-3c (SGF14c) and Glyma08g12220 (SGF14l) genes, encoding 14-3-3 proteins, appear to play essential roles in soybean nodulation. Quantitative reverse transcription-polymerase chain reaction and western-immunoblot analyses showed that SGF14c mRNA and protein levels were specifically increased in abundance in nodulated soybean roots 10, 12, 16, and 20 d after inoculation with Bradyrhizobium japonicum. To investigate the role of SGF14c during soybean nodulation, RNA interference was employed to silence SGF14c expression in soybean roots using Agrobacterium rhizogenes-mediated root transformation. Due to the paleopolyploid nature of soybean, designing a specific RNA interference sequence that exclusively targeted SGF14c was not possible. Therefore, two highly similar paralogs (SGF14c and SGF14l) that have been shown to function as dimers were silenced. Transcriptomic and proteomic analyses showed that mRNA and protein levels were significantly reduced in the SGF14c/SGF14l-silenced roots, and these roots exhibited reduced numbers of mature nodules. In addition, SGF14c/SGF14l-silenced roots contained large numbers of arrested nodule primordia following B. japonicum inoculation. Transmission electron microscopy further revealed that the host cytoplasm and membranes, except the symbiosome membrane, were severely degraded in the failed nodules. Altogether, transcriptomic, proteomic, and cytological data suggest a critical role of one or both of these 14-3-3 proteins in early development stages of soybean nodules. PMID:23060368

  15. A rare case of rapidly progressive dementia with elevated RT-QuIC and negative 14-3-3 and tau proteins.

    PubMed

    Trikamji, Bhavesh; Hamlin, Clive; Baldwin, Kelly J

    2016-05-01

    Creutzfeldt-Jakob disease (CJD) is characterized by rapidly progressing dementia with death usually occurring within 6 months. There is no verified disease-specific pre-mortem diagnostic test besides brain biopsy. We describe a 66 y old previously high functioning male who presented with a 5 month history of rapidly progressive dementia. Neurological examination revealed a score of 19/30 on MOCA testing. An extensive workup into various causes of dementia including electroencephalography and imaging studies was unremarkable. The cerebrospinal fluid was sent to National Prion Disease Center and it revealed elevated RT-QuIC levels with negative 14-3-3 and T tau proteins. Based on literature review, our case is one of few living subjects with elevated RT-QuIC levels and negative 14-3-3 and tau proteins. PMID:27249661

  16. 14-3-3 proteins regulate a cell-intrinsic switch from sonic hedgehog-mediated commissural axon attraction to repulsion after midline crossing.

    PubMed

    Yam, Patricia T; Kent, Christopher B; Morin, Steves; Farmer, W Todd; Alchini, Ricardo; Lepelletier, Léa; Colman, David R; Tessier-Lavigne, Marc; Fournier, Alyson E; Charron, Frédéric

    2012-11-21

    Axons must switch responsiveness to guidance cues during development for correct pathfinding. Sonic Hedgehog (Shh) attracts spinal cord commissural axons ventrally toward the floorplate. We show that after crossing the floorplate, commissural axons switch their response to Shh from attraction to repulsion, so that they are repelled anteriorly by a posterior-high/anterior-low Shh gradient along the longitudinal axis. This switch is recapitulated in vitro with dissociated commissural neurons as they age, indicating that the switch is intrinsic and time dependent. 14-3-3 protein inhibition converted Shh-mediated repulsion of aged dissociated neurons to attraction and prevented the correct anterior turn of postcrossing commissural axons in vivo, an effect mediated through PKA. Conversely, overexpression of 14-3-3 proteins was sufficient to drive the switch from Shh-mediated attraction to repulsion both in vitro and in vivo. Therefore, we identify a 14-3-3 protein-dependent mechanism for a cell-intrinsic temporal switch in the polarity of axon turning responses.

  17. The EFF-1A Cytoplasmic Domain Influences Hypodermal Cell Fusions in C. elegans But Is Not Dependent on 14-3-3 Proteins

    PubMed Central

    Shinn-Thomas, Jessica H.; del Campo, Jacob J.; Wang, Jianjun; Mohler, William A.

    2016-01-01

    Background Regulatory and biophysical mechanisms of cell-cell fusion are largely unknown despite the fundamental requirement for fused cells in eukaryotic development. Only two cellular fusogens that are not of clear recent viral origin have been identified to date, both in nematodes. One of these, EFF-1, is necessary for most cell fusions in Caenorhabditis elegans. Unregulated EFF-1 expression causes lethality due to ectopic fusion between cells not developmentally programmed to fuse, highlighting the necessity of tight fusogen regulation for proper development. Identifying factors that regulate EFF-1 and its paralog AFF-1 could lead to discovery of molecular mechanisms that control cell fusion upstream of the action of a membrane fusogen. Bioinformatic analysis of the EFF-1A isoform’s predicted cytoplasmic domain (endodomain) previously revealed two motifs that have high probabilities of interacting with 14-3-3 proteins when phosphorylated. Mutation of predicted phosphorylation sites within these motifs caused measurable loss of eff-1 gene function in cell fusion in vivo. Moreover, a human 14-3-3 isoform bound to EFF-1::GFP in vitro. We hypothesized that the two 14-3-3 proteins in C. elegans, PAR-5 and FTT-2, may regulate either localization or fusion-inducing activity of EFF-1. Methodology/Principal Findings Timing of fusion events was slightly but significantly delayed in animals unable to produce full-length EFF-1A. Yet, mutagenesis and live imaging showed that phosphoserines in putative 14-3-3 binding sites are not essential for EFF-1::GFP accumulation at the membrane contact between fusion partner cells. Moreover, although the EFF-1A endodomain was required for normal rates of eff-1-dependent epidermal cell fusions, reduced levels of FTT-2 and PAR-5 did not visibly affect the function of wild-type EFF-1 in the hypodermis. Conclusions/Significance Deletion of the EFF-1A endodomain noticeably affects the timing of hypodermal cell fusions in vivo. However

  18. An Analysis of CAF-1-interacting Proteins Reveals Dynamic and Direct Interactions with the KU Complex and 14-3-3 Proteins*

    PubMed Central

    Hoek, Maarten; Myers, Michael P.; Stillman, Bruce

    2011-01-01

    CAF-1 is essential in human cells for the de novo deposition of histones H3 and H4 at the DNA replication fork. Depletion of CAF-1 from various cell lines causes replication fork arrest, activation of the intra-S phase checkpoint, and global defects in chromatin structure. CAF-1 is also involved in coordinating inheritance of states of gene expression and in chromatin assembly following DNA repair. In this study, we generated cell lines expressing RNAi-resistant versions of CAF-1 and showed that the N-terminal 296 amino acids are dispensable for essential CAF-1 function in vivo. N-terminally truncated CAF-1 p150 was deficient in proliferating cell nuclear antigen (PCNA) binding, reinforcing the existence of two PCNA binding sites in human CAF-1, but the defect in PCNA binding had no effect on the recruitment of CAF-1 to chromatin after DNA damage or to resistance to DNA-damaging agents. Tandem affinity purification of CAF-1-interacting proteins under mild conditions revealed that CAF-1 was directly associated with the KU70/80 complex, part of the DNA-dependent protein kinase, and the phosphoserine/threonine-binding protein 14-3-3 ζ. CAF-1 was a substrate for DNA-dependent protein kinase, and the 14-3-3 interaction in vitro is dependent on DNA-dependent protein kinase phosphorylation. These results highlight that CAF-1 has prominent interactions with the DNA repair machinery but that the N terminus is dispensable for the role of CAF-1 in DNA replication- and repair-coupled chromatin assembly. PMID:21209461

  19. A Glycine soja 14-3-3 protein GsGF14o participates in stomatal and root hair development and drought tolerance in Arabidopsis thaliana.

    PubMed

    Sun, Xiaoli; Luo, Xiao; Sun, Mingzhe; Chen, Chao; Ding, Xiaodong; Wang, Xuedong; Yang, Shanshan; Yu, Qingyue; Jia, Bowei; Ji, Wei; Cai, Hua; Zhu, Yanming

    2014-01-01

    It is well established that 14-3-3 proteins are key regulators of multiple stress signal transduction cascades. However, the biological functions of soybean 14-3-3 proteins, especially in plant drought response, are not yet known. In this study, we characterized a Glycine soja 14-3-3 gene, GsGF14o, which is involved in plant development and drought response. GsGF14o expression was greatly induced by drought stress, as evidenced by the quantitative real-time PCR and β-glucuronidase (GUS) activity analysis. GsGF14o overexpression in Arabidopsis thaliana resulted in decreased drought tolerance during seed germination and seedling growth. Furthermore, silencing of AtGF14µ, the most homologous 14-3-3 gene of GsGF14o, led to enhanced drought tolerance at both the seed germination and seedling stage. Unexpectedly, GsGF14o transgenic lines showed reduced water loss and transpiration rates compared with wild-type plants, which was demonstrated to be the consequence of the decreased stomatal size. At the same time, the smaller stomata due to GsGF14o overexpression led to a relatively slow net photosynthesis rate, which led to a growth penalty under drought stress. We further demonstrated that GsGF14o overexpression caused deficits in root hair formation and development, and thereby reduced the water intake capacity of the transgenic root system. In addition, GsGF14o overexpression down-regulated the transcript levels of drought-responsive marker genes. Finally, we also investigated the tissue-specific accumulation of GsGF14o by using a GUS activity assay. Collectively, the results presented here confirm that GsGF14o plays a dual role in drought stress responses through its involvement in the regulation of stomatal size and root hair development.

  20. Involvement of 14-3-3 protein GRF9 in root growth and response under polyethylene glycol-induced water stress.

    PubMed

    He, Yuchi; Wu, Jingjing; Lv, Bing; Li, Jia; Gao, Zhiping; Xu, Weifeng; Baluška, František; Shi, Weiming; Shaw, Pang Chui; Zhang, Jianhua

    2015-04-01

    Plant 14-3-3 proteins are phosphoserine-binding proteins that regulate a wide array of targets via direct protein-protein interactions. In this study, the role of a 14-3-3 protein, GRF9, in plant response to water stress was investigated. Arabidopsis wild-type, GRF9-deficient mutant (grf9), and GRF9-overexpressing (OE) plants were treated with polyethylene glycol (PEG) to induce mild water stress. OE plant showed better whole-plant growth and root growth than the wild type under normal or water stress conditions while the grf9 mutant showed worse growth. In OE plants, GRF9 favours the allocation of shoot carbon to roots. In addition, GRF9 enhanced proton extrusion, mainly in the root elongation zone and root hair zone, and maintained root growth under mild water stress. Grafting among the wild type, OE, and grf9 plants showed that when OE plants were used as the scion and GRF9 was overexpressed in the shoot, it enhanced sucrose transport into the root, and when OE plants were used as rootstock and GRF9 was overexpressed in the root, it caused more release of protons into the root surface under water stress. Taken together, the results suggest that under PEG-induced water stress, GRF9 is involved in allocating more carbon from the shoot to the root and enhancing proton secretion in the root growing zone, and this process is important for root response to mild water stress.

  1. Involvement of 14-3-3 protein GRF9 in root growth and response under polyethylene glycol-induced water stress

    PubMed Central

    He, Yuchi; Wu, Jingjing; Lv, Bing; Li, Jia; Gao, Zhiping; Xu, Weifeng; Baluška, František; Shi, Weiming; Shaw, Pang Chui; Zhang, Jianhua

    2015-01-01

    Plant 14-3-3 proteins are phosphoserine-binding proteins that regulate a wide array of targets via direct protein–protein interactions. In this study, the role of a 14-3-3 protein, GRF9, in plant response to water stress was investigated. Arabidopsis wild-type, GRF9-deficient mutant (grf9), and GRF9-overexpressing (OE) plants were treated with polyethylene glycol (PEG) to induce mild water stress. OE plant showed better whole-plant growth and root growth than the wild type under normal or water stress conditions while the grf9 mutant showed worse growth. In OE plants, GRF9 favours the allocation of shoot carbon to roots. In addition, GRF9 enhanced proton extrusion, mainly in the root elongation zone and root hair zone, and maintained root growth under mild water stress. Grafting among the wild type, OE, and grf9 plants showed that when OE plants were used as the scion and GRF9 was overexpressed in the shoot, it enhanced sucrose transport into the root, and when OE plants were used as rootstock and GRF9 was overexpressed in the root, it caused more release of protons into the root surface under water stress. Taken together, the results suggest that under PEG-induced water stress, GRF9 is involved in allocating more carbon from the shoot to the root and enhancing proton secretion in the root growing zone, and this process is important for root response to mild water stress. PMID:25873671

  2. Positive 14-3-3 and tau proteins in a sporadic Creutzfeldt-Jakob disease case and a brief perspective of prion diseases in Colombia.

    PubMed

    Escandón-Vargas, Kevin; Zorrilla-Vaca, Andrés; Corral-Prado, Raúl Heli

    2016-01-01

    Prion diseases are rare neurodegenerative disorders occurring worldwide and affecting both humans and animals. Herein, we present the case of a patient diagnosed with definite sporadic Creutzfeldt-Jakob disease in Cali, Colombia. Besides neurological examination, 14-3-3 and tau proteins were valuable tools supporting the diagnosis. We also present a brief perspective of the prion diseases reported in Colombia to date. Although the incidence of prion diseases is unknown in Colombia, our literature review revealed that one case of scrapie in 1981 and 29 human sporadic cases of Creutzfeldt-Jakob disease have been documented and published in our country. PMID:27622622

  3. Positive 14-3-3 and tau proteins in a sporadic Creutzfeldt-Jakob disease case and a brief perspective of prion diseases in Colombia.

    PubMed

    Escandón-Vargas, Kevin; Zorrilla-Vaca, Andrés; Corral-Prado, Raúl Heli

    2016-02-24

    Prion diseases are rare neurodegenerative disorders occurring worldwide and affecting both humans and animals. Herein, we present the case of a patient diagnosed with definite sporadic Creutzfeldt-Jakob disease in Cali, Colombia. Besides neurological examination, 14-3-3 and tau proteins were valuable tools supporting the diagnosis. We also present a brief perspective of the prion diseases reported in Colombia to date. Although the incidence of prion diseases is unknown in Colombia, our literature review revealed that one case of scrapie in 1981 and 29 human sporadic cases of Creutzfeldt-Jakob disease have been documented and published in our country.

  4. Echinococcus multilocularis laminated-layer components and the E14t 14-3-3 recombinant protein decrease NO production by activated rat macrophages in vitro.

    PubMed

    Andrade, M Amparo; Siles-Lucas, Mar; Espinoza, Elsa; Pérez Arellano, José Luis; Gottstein, Bruno; Muro, Antonio

    2004-05-01

    Echinococcus multilocularis and Echinococcus granulosus cause alveolar and cystic (unilocular) echinococcosis, respectively, in humans and animals. It is known that these parasites can affect, among other molecules, nitric oxide (NO) production by periparasitic host cells. Nevertheless, detailed dissection of parasite components specifically affecting cell NO production has not been done to date. We compare the effect of E. granulosus and E. multilocularis defined metacestode structural (laminated-layer associated) and metabolic (14-3-3 protein, potentially related with E. multilocularis metacestode tumor-like growth) components on the NO production by rat alveolar macrophages in vitro. Our results showed that none of these antigens could stimulate macrophage NO production in vitro. However, a reversed effect of some Echinococcus antigens on NO in vitro production was found when cells were previously exposed to LPS stimulation. This inhibitory effect was found when E. multilocularis laminated-layer (LL) or cyst wall (CW) soluble components from both species were used. Pre-stimulation of cells with LPS also resulted in a strong, dose-dependent reduction of NO and iNOS mRNA production after incubation of cells with the E14t protein. Thus, the E. multilocularis 14-3-3 protein appears to be one of the components accounting for the suppressive effect of the CW and LL metacestode extracts.

  5. A calcium and free fatty acid-modulated protein kinase as putative effector of the fusicoccin 14-3-3 receptor.

    PubMed Central

    van der Hoeven, P C; Siderius, M; Korthout, H A; Drabkin, A V; de Boer, A H

    1996-01-01

    A protein kinase that is activated by calcium and cis-unsaturated fatty acids has been characterized from oat (Avena sativa L.) root plasma membranes. The kinase phosphorylates a synthetic peptide with a motif (-R-T-L-S-) that can be phosphorylated by both protein kinase C (PKC) and calcium-dependent protein kinase (CDPK)-type kinases. Calphostin C and chelerythrine, two PKC inhibitors, completely inhibited the kinase activity with values of inhibitor concentration for 50% inhibition of 0.7 and 30 microns, respectively. At low Ca2+ concentrations cis-unsaturated fatty acids (linolenic acid, linoleic acid, arachidonic acid, and oleic acid) stimulated the kinase activity almost 10-fold. The two inhibitors of the kinase, calphostin C and chelerythrin, strongly reduced the fusicoccin (FC)-induced H+ extrusion, and the activators of the kinase, the cis-unsaturated fatty acids, prevented [3H]FC binding to the FC 14-3-3 receptor. CDPK antibodies cross-reacted with a 43-kD band in the plasma membrane and in a purified FC receptor fraction. A polypeptide with the same apparent molecular mass was recognized by a synthetic peptide that has a sequence homologous to the annexin-like domain from barely 14-3-3. The possibility of the involvement of a kinase, with properties from both CDPK and PKC, and a phospholipase A2 in the FC Signal transduction pathway is discussed. PMID:8754686

  6. 14-3-3-Pred: improved methods to predict 14-3-3-binding phosphopeptides

    PubMed Central

    Madeira, Fábio; Tinti, Michele; Murugesan, Gavuthami; Berrett, Emily; Stafford, Margaret; Toth, Rachel; Cole, Christian; MacKintosh, Carol; Barton, Geoffrey J.

    2015-01-01

    Motivation: The 14-3-3 family of phosphoprotein-binding proteins regulates many cellular processes by docking onto pairs of phosphorylated Ser and Thr residues in a constellation of intracellular targets. Therefore, there is a pressing need to develop new prediction methods that use an updated set of 14-3-3-binding motifs for the identification of new 14-3-3 targets and to prioritize the downstream analysis of >2000 potential interactors identified in high-throughput experiments. Results: Here, a comprehensive set of 14-3-3-binding targets from the literature was used to develop 14-3-3-binding phosphosite predictors. Position-specific scoring matrix, support vector machines (SVM) and artificial neural network (ANN) classification methods were trained to discriminate experimentally determined 14-3-3-binding motifs from non-binding phosphopeptides. ANN, position-specific scoring matrix and SVM methods showed best performance for a motif window spanning from −6 to +4 around the binding phosphosite, achieving Matthews correlation coefficient of up to 0.60. Blind prediction showed that all three methods outperform two popular 14-3-3-binding site predictors, Scansite and ELM. The new methods were used for prediction of 14-3-3-binding phosphosites in the human proteome. Experimental analysis of high-scoring predictions in the FAM122A and FAM122B proteins confirms the predictions and suggests the new 14-3-3-predictors will be generally useful. Availability and implementation: A standalone prediction web server is available at http://www.compbio.dundee.ac.uk/1433pred. Human candidate 14-3-3-binding phosphosites were integrated in ANIA: ANnotation and Integrated Analysis of the 14-3-3 interactome database. Contact: cmackintosh@dundee.ac.uk or gjbarton@dundee.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25735772

  7. 14-3-3σ Gene Loss Leads to Activation of the Epithelial to Mesenchymal Transition Due to the Stabilization of c-Jun Protein.

    PubMed

    Raychaudhuri, Kumarkrishna; Chaudhary, Neelam; Gurjar, Mansa; D'Souza, Roseline; Limzerwala, Jazeel; Maddika, Subbareddy; Dalal, Sorab N

    2016-07-29

    Loss of 14-3-3σ has been observed in multiple tumor types; however, the mechanisms by which 14-3-3σ loss leads to tumor progression are not understood. The experiments in this report demonstrate that loss of 14-3-3σ leads to a decrease in the expression of epithelial markers and an increase in the expression of mesenchymal markers, which is indicative of an induction of the epithelial to mesenchymal transition (EMT). The EMT was accompanied by an increase in migration and invasion in the 14-3-3σ(-/-) cells. 14-3-3σ(-/-) cells show increased stabilization of c-Jun, resulting in an increase in the expression of the EMT transcription factor slug. 14-3-3σ induces the ubiquitination and degradation of c-Jun in an FBW7-dependent manner. c-Jun ubiquitination is dependent on the presence of an intact nuclear export pathway as c-Jun is stabilized and localized to the nucleus in the presence of a nuclear export inhibitor. Furthermore, the absence of 14-3-3σ leads to the nuclear accumulation and stabilization of c-Jun, suggesting that 14-3-3σ regulates the subcellular localization of c-Jun. Our results have identified a novel mechanism by which 14-3-3σ maintains the epithelial phenotype by inhibiting EMT and suggest that this property of 14-3-3σ might contribute to its function as a tumor suppressor gene.

  8. 14-3-3σ Gene Loss Leads to Activation of the Epithelial to Mesenchymal Transition Due to the Stabilization of c-Jun Protein.

    PubMed

    Raychaudhuri, Kumarkrishna; Chaudhary, Neelam; Gurjar, Mansa; D'Souza, Roseline; Limzerwala, Jazeel; Maddika, Subbareddy; Dalal, Sorab N

    2016-07-29

    Loss of 14-3-3σ has been observed in multiple tumor types; however, the mechanisms by which 14-3-3σ loss leads to tumor progression are not understood. The experiments in this report demonstrate that loss of 14-3-3σ leads to a decrease in the expression of epithelial markers and an increase in the expression of mesenchymal markers, which is indicative of an induction of the epithelial to mesenchymal transition (EMT). The EMT was accompanied by an increase in migration and invasion in the 14-3-3σ(-/-) cells. 14-3-3σ(-/-) cells show increased stabilization of c-Jun, resulting in an increase in the expression of the EMT transcription factor slug. 14-3-3σ induces the ubiquitination and degradation of c-Jun in an FBW7-dependent manner. c-Jun ubiquitination is dependent on the presence of an intact nuclear export pathway as c-Jun is stabilized and localized to the nucleus in the presence of a nuclear export inhibitor. Furthermore, the absence of 14-3-3σ leads to the nuclear accumulation and stabilization of c-Jun, suggesting that 14-3-3σ regulates the subcellular localization of c-Jun. Our results have identified a novel mechanism by which 14-3-3σ maintains the epithelial phenotype by inhibiting EMT and suggest that this property of 14-3-3σ might contribute to its function as a tumor suppressor gene. PMID:27261462

  9. Specific interactions with TBP and TFIIB in vitro suggest that 14-3-3 proteins may participate in the regulation of transcription when part of a DNA binding complex.

    PubMed

    Pan, S; Sehnke, P C; Ferl, R J; Gurley, W B

    1999-08-01

    The 14-3-3 family of multifunctional proteins is highly conserved among animals, plants, and yeast. Several studies have shown that these proteins are associated with a G-box DNA binding complex and are present in the nucleus in several plant and animal species. In this study, 14-3-3 proteins are shown to bind the TATA box binding protein (TBP), transcription factor IIB (TFIIB), and the human TBP-associated factor hTAF(II)32 in vitro but not hTAF(II)55. The interactions with TBP and TFIIB were highly specific, requiring amino acid residues in the box 1 domain of the 14-3-3 protein. These interactions do not require formation of the 14-3-3 dimer and are not dependent on known 14-3-3 recognition motifs containing phosphoserine. The 14-3-3-TFIIB interaction appears to occur within the same domain of TFIIB that binds the human herpes simplex virus transcriptional activator VP16, because VP16 and 14-3-3 were able to compete for interaction with TFIIB in vitro. In a plant transient expression system, 14-3-3 was able to activate GAL4-dependent beta-glucuronidase reporter gene expression at low levels when translationally fused with the GAL4 DNA binding domain. The in vitro binding with general transcription factors TBP and TFIIB together with its nuclear location provide evidence supporting a role for 14-3-3 proteins as transcriptional activators or coactivators when part of a DNA binding complex. PMID:10449590

  10. Identification of 14-3-3 Family in Common Bean and Their Response to Abiotic Stress.

    PubMed

    Li, Ruihua; Jiang, Xiaotong; Jin, Donghao; Dhaubhadel, Sangeeta; Bian, Shaomin; Li, Xuyan

    2015-01-01

    14-3-3s are a class of conserved regulatory proteins ubiquitously found in eukaryotes, which play important roles in a variety of cellular processes including response to diverse stresses. Although much has been learned about 14-3-3s in several plant species, it remains unknown in common bean. In this study, 9 common bean 14-3-3s (PvGF14s) were identified by exhaustive data mining against the publicly available common bean genomic database. A phylogenetic analysis revealed that each predicted PvGF14 was clustered with two GmSGF14 paralogs from soybean. Both epsilon-like and non-epsilon classes of PvGF14s were found in common bean, and the PvGF14s belonging to each class exhibited similar gene structure. Among 9 PvGF14s, only 8 are transcribed in common bean. Expression patterns of PvGF14s varied depending on tissue type, developmental stage and exposure of plants to stress. A protein-protein interaction study revealed that PvGF14a forms dimer with itself and with other PvGF14 isoforms. This study provides a first comprehensive look at common bean 14-3-3 proteins, a family of proteins with diverse functions in many cellular processes, especially in response to stresses.

  11. Identification of 14-3-3 Family in Common Bean and Their Response to Abiotic Stress

    PubMed Central

    Dhaubhadel, Sangeeta; Bian, Shaomin; Li, Xuyan

    2015-01-01

    14-3-3s are a class of conserved regulatory proteins ubiquitously found in eukaryotes, which play important roles in a variety of cellular processes including response to diverse stresses. Although much has been learned about 14-3-3s in several plant species, it remains unknown in common bean. In this study, 9 common bean 14-3-3s (PvGF14s) were identified by exhaustive data mining against the publicly available common bean genomic database. A phylogenetic analysis revealed that each predicted PvGF14 was clustered with two GmSGF14 paralogs from soybean. Both epsilon-like and non-epsilon classes of PvGF14s were found in common bean, and the PvGF14s belonging to each class exhibited similar gene structure. Among 9 PvGF14s, only 8 are transcribed in common bean. Expression patterns of PvGF14s varied depending on tissue type, developmental stage and exposure of plants to stress. A protein-protein interaction study revealed that PvGF14a forms dimer with itself and with other PvGF14 isoforms. This study provides a first comprehensive look at common bean 14-3-3 proteins, a family of proteins with diverse functions in many cellular processes, especially in response to stresses. PMID:26599110

  12. Spatial coordination of chloroplast and plasma membrane activities in Chara cells and its disruption through inactivation of 14-3-3 proteins.

    PubMed

    Bulychev, A A; van den Wijngaard, P W J; de Boer, A H

    2005-01-01

    In Chara corallina cells exposed to continuous light, external pH (pH(o)) and photosystem II (PSII) photochemical yield show correlated banding patterns. Photosynthetic activity is low in cell regions producing alkaline zones and high in the acid regions. We addressed the question whether (and how) photosynthetic activity and plasma membrane (PM) H+-pumping and H+-conductance are coupled in the different bands. First, PM H+-pump activity was stimulated with fusicoccin. This resulted in a more acidic pH in the acid bands without disturbing the correlation of photosynthetic electron transport and H+ fluxes across the PM. Next, H+-pump activity was reduced through microinjection of a phosphorylated peptide matching the canonical 14-3-3 binding motif RSTpSTP in the acid cell region. Microinjection induced a rapid (~5 min) rise in pH(o) by ca. 1.0 unit near the injection site, whereas the injection of the non-phosphorylated peptide had no effect. This pH rise confirms the supposed inhibition of the H+-pump upon the detachment of 14-3-3 proteins from the H+-ATPase. However, the PSII yield in the cell regions corresponding to the new alkaline peak remained high, which violated the normal inverse relations between the pH(o) and PSII photochemical yield. We conclude that the injection of the competitive inhibitor of the H+-ATPase disrupts the balanced operation of PM H+-transport and photosynthetic electron flow and promotes electron flow through alternative pathways.

  13. Influence of the Paracoccidioides brasiliensis 14-3-3 and gp43 proteins on the induction of apoptosis in A549 epithelial cells.

    PubMed

    Silva, Julhiany de Fátima da; Vicentim, Juliana; Oliveira, Haroldo Cesar de; Marcos, Caroline Maria; Assato, Patricia Akemi; Andreotti, Patrícia Ferrari; Silva, Juliana Leal Monteiro da; Soares, Christiane Pienna; Benard, Gil; Almeida, Ana Marisa Fusco; Mendes-Giannini, Maria José Soares

    2015-06-01

    The fungal strain Paracoccidioides brasiliensis remains viable inside of epithelial cells and can induce apoptosis in this population. However, until now, the molecules that participate in this process remained unknown. Thus, this study evaluated the contribution of two P. brasiliensis molecules, the 14-3-3 and glycoprotein of 43 kDa proteins, which had been previously described as extracellular matrix adhesins and apoptosis inductors in human pneumocytes. Accordingly, epithelial cells were treated with these molecules for different periods of time and the expression of the apoptosis regulating-proteins Bak, Bax, Bcl-2, p53 and caspases were evaluated by terminal deoxynucleotidyl transferase dUTP nick end labelling, flow cytometry and real-time polymerase chain reaction analysis. Our results demonstrated that treatment with these molecules induces apoptosis signalling in pulmonary epithelial cells, showing the same pattern of programmed cell-death as that observed during infection with P. brasiliensis. Thus, we could conclude that P. brasiliensis uses these molecules as virulence factors that participate not only in the fungal adhesion process to host cells, but also in other important cellular mechanisms such as apoptosis. PMID:26038961

  14. Influence of the Paracoccidioides brasiliensis 14-3-3 and gp43 proteins on the induction of apoptosis in A549 epithelial cells

    PubMed Central

    da Silva, Julhiany de Fátima; Vicentim, Juliana; de Oliveira, Haroldo Cesar; Marcos, Caroline Maria; Assato, Patricia Akemi; Andreotti, Patrícia Ferrari; da Silva, Juliana Leal Monteiro; Soares, Christiane Pienna; Benard, Gil; Almeida, Ana Marisa Fusco; Mendes-Giannini, Maria José Soares

    2015-01-01

    The fungal strain Paracoccidioides brasiliensis remains viable inside of epithelial cells and can induce apoptosis in this population. However, until now, the molecules that participate in this process remained unknown. Thus, this study evaluated the contribution of two P. brasiliensis molecules, the 14-3-3 and glycoprotein of 43 kDa proteins, which had been previously described as extracellular matrix adhesins and apoptosis inductors in human pneumocytes. Accordingly, epithelial cells were treated with these molecules for different periods of time and the expression of the apoptosis regulating-proteins Bak, Bax, Bcl-2, p53 and caspases were evaluated by terminal deoxynucleotidyl transferase dUTP nick end labelling, flow cytometry and real-time polymerase chain reaction analysis. Our results demonstrated that treatment with these molecules induces apoptosis signalling in pulmonary epithelial cells, showing the same pattern of programmed cell-death as that observed during infection with P. brasiliensis. Thus, we could conclude that P. brasiliensis uses these molecules as virulence factors that participate not only in the fungal adhesion process to host cells, but also in other important cellular mechanisms such as apoptosis. PMID:26038961

  15. Up-regulation and interaction of the plasma membrane H(+)-ATPase and the 14-3-3 protein are involved in the regulation of citrate exudation from the broad bean (Vicia faba L.) under Al stress.

    PubMed

    Chen, Qi; Guo, Chuan-Long; Wang, Ping; Chen, Xuan-Qin; Wu, Kong-Huan; Li, Kui-Zhi; Yu, Yong-Xiong; Chen, Li-Mei

    2013-09-01

    Our previous study showed that citrate excretion coupled with a concomitant release of protons was involved in aluminum (Al) resistance in the broad bean. Furthermore, genes encoding plasma membrane (PM) H(+)-ATPase (vha2) and the 14-3-3 protein (vf14-3-3b) were up-regulated by Al in Al-resistant (YD) broad bean roots. In this study, the roles of PM H(+)-ATPase (E.C. 3.6.3.6) and the 14-3-3 protein in the regulation of citrate secretion were further investigated in Al-resistant (YD) and Al-sensitive (AD) broad bean cultivars under Al stress. The results showed that greater citrate exudation was positively correlated with higher activities of PM H(+)-ATPase in roots of YD than AD. Real-time RT-PCR analysis revealed that vha2 was clearly up-regulated by Al in YD but not in AD roots, whereas the transcription levels of vf14-3-3b were elevated in a time-dependent manner in both YD and AD roots. Immunoprecipitation and Western analysis suggested that phosphorylation and interaction with the vf14-3-3b protein of the VHA2 were enhanced in YD roots but not in AD roots with increasing Al treatment time. Fusicoccin or adenosine 5'-monophosphate increased or decreased the interaction between the phosphorylated VHA2 and the vf14-3-3b protein, followed by an enhancement or reduction of the PM H(+)-ATPase activity and citrate exudation in both cultivars under Al stress conditions, respectively. Taken together, these results suggested that Al enhanced the expression and interaction of the PM H(+)-ATPase and the 14-3-3 protein, which thereby led to higher activity of the PM H(+)-ATPase and more citrate exudation from YD plants.

  16. Dual phosphorylation of Btk by Akt/protein kinase b provides docking for 14-3-3ζ, regulates shuttling, and attenuates both tonic and induced signaling in B cells.

    PubMed

    Mohammad, Dara K; Nore, Beston F; Hussain, Alamdar; Gustafsson, Manuela O; Mohamed, Abdalla J; Smith, C I Edvard

    2013-08-01

    Bruton's tyrosine kinase (Btk) is crucial for B-lymphocyte activation and development. Mutations in the Btk gene cause X-linked agammaglobulinemia (XLA) in humans and X-linked immunodeficiency (Xid) in mice. Using tandem mass spectrometry, 14-3-3ζ was identified as a new binding partner and negative regulator of Btk in both B-cell lines and primary B lymphocytes. The activated serine/threonine kinase Akt/protein kinase B (PKB) phosphorylated Btk on two sites prior to 14-3-3ζ binding. The interaction sites were mapped to phosphoserine pS51 in the pleckstrin homology domain and phosphothreonine pT495 in the kinase domain. The double-alanine, S51A/T495A, replacement mutant failed to bind 14-3-3ζ, while phosphomimetic aspartate substitutions, S51D/T495D, caused enhanced interaction. The phosphatidylinositol 3-kinase (PI3-kinase) inhibitor LY294002 abrogated S51/T495 phosphorylation and binding. A newly characterized 14-3-3 inhibitor, BV02, reduced binding, as did the Btk inhibitor PCI-32765 (ibrutinib). Interestingly, in the presence of BV02, phosphorylation of Btk, phospholipase Cγ2, and NF-κB increased strongly, suggesting that 14-3-3 also regulates B-cell receptor (BCR)-mediated tonic signaling. Furthermore, downregulation of 14-3-3ζ elevated nuclear translocation of Btk. The loss-of-function mutant S51A/T495A showed reduced tyrosine phosphorylation and ubiquitination. Conversely, the gain-of-function mutant S51D/T495D exhibited intense tyrosine phosphorylation, associated with Btk ubiquitination and degradation, likely contributing to the termination of BCR signaling. Collectively, this suggests that Btk could become an important new candidate for the general study of 14-3-3-mediated regulation.

  17. 14-3-3-dependent inhibition of the deubiquitinating activity of UBPY and its cancellation in the M phase

    SciTech Connect

    Mizuno, Emi; Kitamura, Naomi; Komada, Masayuki

    2007-10-01

    The deubiquitinating enzyme UBPY, also known as USP8, regulates cargo sorting and membrane traffic at early endosomes. Here we demonstrate the regulatory mechanism of the UBPY catalytic activity. We identified 14-3-3 {epsilon}, {gamma}, and {zeta} as UBPY-binding proteins using co-immunoprecipitation followed by mass spectrometric analysis. The 14-3-3 binding of UBPY was inhibited by mutating the consensus 14-3-3-binding motif RSYS{sup 680}SP, by phosphatase treatment, and by competition with the Ser{sup 680}-phosphorylated RSYS{sup 680}SP peptide. Metabolic labeling with [{sup 32}P]orthophosphate and immunoblotting using antibody against the phosphorylated 14-3-3-binding motif showed that Ser{sup 680} is a major phosphorylation site in UBPY. These results indicated that 14-3-3s bind to the region surrounding Ser{sup 680} in a phosphorylation-dependent manner. The mutation at Ser{sup 680} led to enhanced ubiquitin isopeptidase activity of UBPY toward poly-ubiquitin chains and a cellular substrate, epidermal growth factor receptor, in vitro and in vivo. Moreover, addition of 14-3-3{epsilon} inhibited the UBPY activity in vitro. Finally, UBPY was dephosphorylated at Ser{sup 680} and dissociated from 14-3-3s in the M phase, resulting in enhanced activity of UBPY during cell division. We conclude that UBPY is catalytically inhibited in a phosphorylation-dependent manner by 14-3-3s during the interphase, and this regulation is cancelled in the M phase.

  18. 14-3-3ζ coordinates adipogenesis of visceral fat

    PubMed Central

    Lim, Gareth E.; Albrecht, Tobias; Piske, Micah; Sarai, Karnjit; Lee, Jason T. C; Ramshaw, Hayley S.; Sinha, Sunita; Guthridge, Mark A.; Acker-Palmer, Amparo; Lopez, Angel F.; Clee, Susanne M.; Nislow, Corey; Johnson, James D.

    2015-01-01

    The proteins that coordinate complex adipogenic transcriptional networks are poorly understood. 14-3-3ζ is a molecular adaptor protein that regulates insulin signalling and transcription factor networks. Here we report that 14-3-3ζ-knockout mice are strikingly lean from birth with specific reductions in visceral fat depots. Conversely, transgenic 14-3-3ζ overexpression potentiates obesity, without exacerbating metabolic complications. Only the 14-3-3ζ isoform is essential for adipogenesis based on isoform-specific RNAi. Mechanistic studies show that 14-3-3ζ depletion promotes autophagy-dependent degradation of C/EBP-δ, preventing induction of the master adipogenic factors, Pparγ and C/EBP-α. Transcriptomic data indicate that 14-3-3ζ acts upstream of hedgehog signalling-dependent upregulation of Cdkn1b/p27Kip1. Indeed, concomitant knockdown of p27Kip1 or Gli3 rescues the early block in adipogenesis induced by 14-3-3ζ knockdown in vitro. Adipocyte precursors in 14-3-3ζKO embryos also appear to have greater Gli3 and p27Kip1 abundance. Together, our in vivo and in vitro findings demonstrate that 14-3-3ζ is a critical upstream driver of adipogenesis. PMID:26220403

  19. Structure-Function Analysis of PPP1R3D, a Protein Phosphatase 1 Targeting Subunit, Reveals a Binding Motif for 14-3-3 Proteins which Regulates its Glycogenic Properties.

    PubMed

    Rubio-Villena, Carla; Sanz, Pascual; Garcia-Gimeno, Maria Adelaida

    2015-01-01

    Protein phosphatase 1 (PP1) is one of the major protein phosphatases in eukaryotic cells. It plays a key role in regulating glycogen synthesis, by dephosphorylating crucial enzymes involved in glycogen homeostasis such as glycogen synthase (GS) and glycogen phosphorylase (GP). To play this role, PP1 binds to specific glycogen targeting subunits that, on one hand recognize the substrates to be dephosphorylated and on the other hand recruit PP1 to glycogen particles. In this work we have analyzed the functionality of the different protein binding domains of one of these glycogen targeting subunits, namely PPP1R3D (R6) and studied how binding properties of different domains affect its glycogenic properties. We have found that the PP1 binding domain of R6 comprises a conserved RVXF motif (R102VRF) located at the N-terminus of the protein. We have also identified a region located at the C-terminus of R6 (W267DNND) that is involved in binding to the PP1 glycogenic substrates. Our results indicate that although binding to PP1 and glycogenic substrates are independent processes, impairment of any of them results in lack of glycogenic activity of R6. In addition, we have characterized a novel site of regulation in R6 that is involved in binding to 14-3-3 proteins (RARS74LP). We present evidence indicating that when binding of R6 to 14-3-3 proteins is prevented, R6 displays hyper-glycogenic activity although is rapidly degraded by the lysosomal pathway. These results define binding to 14-3-3 proteins as an additional pathway in the control of the glycogenic properties of R6.

  20. Regulation of the Yeast Hxt6 Hexose Transporter by the Rod1 α-Arrestin, the Snf1 Protein Kinase, and the Bmh2 14-3-3 Protein.

    PubMed

    Llopis-Torregrosa, Vicent; Ferri-Blázquez, Alba; Adam-Artigues, Anna; Deffontaines, Emilie; van Heusden, G Paul H; Yenush, Lynne

    2016-07-15

    Cell viability requires adaptation to changing environmental conditions. Ubiquitin-mediated endocytosis plays a crucial role in this process, because it provides a mechanism to remove transport proteins from the membrane. Arrestin-related trafficking proteins are important regulators of the endocytic pathway in yeast, facilitating selective ubiquitylation of target proteins by the E3 ubiquitin ligase, Rsp5. Specifically, Rod1 (Art4) has been reported to regulate the endocytosis of both the Hxt1, Hxt3, and Hxt6 glucose transporters and the Jen1 lactate transporter. Also, the AMP kinase homologue, Snf1, and 14-3-3 proteins have been shown to regulate Jen1 via Rod1. Here, we further characterized the role of Rod1, Snf1, and 14-3-3 in the signal transduction route involved in the endocytic regulation of the Hxt6 high affinity glucose transporter by showing that Snf1 interacts specifically with Rod1 and Rog3 (Art7), that the interaction between the Bmh2 and several arrestin-related trafficking proteins may be modulated by carbon source, and that both the 14-3-3 protein Bmh2 and the Snf1 regulatory domain interact with the arrestin-like domain containing the N-terminal half of Rod1 (amino acids 1-395). Finally, using both co-immunoprecipitation and bimolecular fluorescence complementation, we demonstrated the interaction of Rod1 with Hxt6 and showed that the localization of the Rod1-Hxt6 complex at the plasma membrane is affected by carbon source and is reduced upon overexpression of SNF1 and BMH2. PMID:27261460

  1. Characterization of the Interactome of the Porcine Reproductive and Respiratory Syndrome Virus Nonstructural Protein 2 Reveals the Hyper Variable Region as a Binding Platform for Association with 14-3-3 Proteins.

    PubMed

    Xiao, Yihong; Wu, Weining; Gao, Jiming; Smith, Nikki; Burkard, Christine; Xia, Dong; Zhang, Minxia; Wang, Chengbao; Archibald, Alan; Digard, Paul; Zhou, En-Min; Hiscox, Julian A

    2016-05-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is a major threat to the swine industry worldwide and hence global food security, exacerbated by a newly emerged highly pathogenic (HP-PRRSV) strain from China. PRRSV nonstructural protein 2 (nsp2) is a multifunctional polypeptide with strain-dependent influences on pathogenicity. A number of discrete functional regions have been identified on the protein. Quantitative label free proteomics was used to identify cellular binding partners of nsp2 expressed by HP-PRRSV. This allowed the identification of potential cellular interacting partners and the discrimination of nonspecific interactions. The interactome data were further investigated and validated using biological replicates and also compared with nsp2 from a low pathogenic (LP) strain of PRRSV. Validation included both forward and reverse pulldowns and confocal microscopy. The data indicated that nsp2 interacted with a number of cellular proteins including 14-3-3, CD2AP, and other components of cellular aggresomes. The hyper-variable region of nsp2 protein was identified as a binding platform for association with 14-3-3 proteins. PMID:26709850

  2. Characteristics of Korean patients with suspected Creutzfeldt-Jakob disease with 14-3-3 protein in cerebrospinal fluid: Preliminary study of the Korean Creutzfeldt-Jakob disease active surveillance program.

    PubMed

    Lim, Jae-Sung; Kwon, Hyung-Min; Jang, Jae-Won; Ju, Young-Ran; Kim, SuYeon; Park, Young Ho; Park, So Young; Kim, SangYun

    2015-01-01

    Although Korea had a national surveillance system for Creutzfeldt-Jakob disease (CJD), it was mainly dependent on attending physician's reports. Thus, little prospective data about the epidemiology, characteristics, and final diagnoses of suspected patients were available. We have established a nationwide network for the active surveillance of patients with suspected CJD. When the requested cerebrospinal fluid (CSF) samples tested positive for 14-3-3 protein, we investigated the clinical characteristics of the corresponding patients and followed them until their final diagnoses were confirmed. A total of 218 samples were requested for CSF assays from May 2010 to August 2012, and 106 (48.6%) were positive for 14-3-3 protein. In 89 patients with complete clinical data, 38 (42.7%) were diagnosed with probable CJD and the estimated annual occurrence of CJD was 16.3 persons-per-year. The most common diagnoses of the remainder were central nervous system infection and any-cause encephalopathy. Non-CJD subjects showed worse initial consciousness levels than CJD patients. This preliminary study showed that the number of reported cases of CJD and the true positivity rates of CSF 14-3-3 protein assays were both low in Korea. An active surveillance system is urgently needed to provide the latest nationwide epidemiological data of CJD.

  3. Characteristics of Korean patients with suspected Creutzfeldt-Jakob disease with 14-3-3 protein in cerebrospinal fluid: Preliminary study of the Korean Creutzfeldt-Jakob disease active surveillance program

    PubMed Central

    Lim, Jae-Sung; Kwon, Hyung-Min; Jang, Jae-Won; Ju, Young-Ran; Kim, SuYeon; Park, Young Ho; Park, So Young; Kim, SangYun

    2015-01-01

    Abstract Although Korea had a national surveillance system for Creutzfeldt-Jakob disease (CJD), it was mainly dependent on attending physician's reports. Thus, little prospective data about the epidemiology, characteristics, and final diagnoses of suspected patients were available. We have established a nationwide network for the active surveillance of patients with suspected CJD. When the requested cerebrospinal fluid (CSF) samples tested positive for 14-3-3 protein, we investigated the clinical characteristics of the corresponding patients and followed them until their final diagnoses were confirmed. A total of 218 samples were requested for CSF assays from May 2010 to August 2012, and 106 (48.6%) were positive for 14-3-3 protein. In 89 patients with complete clinical data, 38 (42.7%) were diagnosed with probable CJD and the estimated annual occurrence of CJD was 16.3 persons-per-year. The most common diagnoses of the remainder were central nervous system infection and any-cause encephalopathy. Non-CJD subjects showed worse initial consciousness levels than CJD patients. This preliminary study showed that the number of reported cases of CJD and the true positivity rates of CSF 14-3-3 protein assays were both low in Korea. An active surveillance system is urgently needed to provide the latest nationwide epidemiological data of CJD. PMID:25996401

  4. Exon B of human surfactant protein A2 mRNA, alone or within its surrounding sequences, interacts with 14-3-3; role of cis-elements and secondary structure

    PubMed Central

    Noutsios, Georgios T.; Silveyra, Patricia; Bhatti, Faizah

    2013-01-01

    Human surfactant protein A, an innate immunity molecule, is encoded by two genes: SFTPA1 (SP-A1) and SFTPA2 (SP-A2). The 5′ untranslated (5′UTR) splice variant of SP-A2 (ABD), but not of SP-A1 (AD), contains exon B (eB), which is an enhancer for transcription and translation. We investigated whether eB contains cis-regulatory elements that bind trans-acting factors in a sequence-specific manner as well as the role of the eB mRNA secondary structure. Binding of cytoplasmic NCI-H441 proteins to wild-type eB, eB mutant, AD, and ABD 5′UTR mRNAs were studied by RNA electromobility shift assays (REMSAs). The bound proteins were identified by mass spectroscopy and specific antibodies (Abs). We found that 1) proteins bind eB mRNA in a sequence-specific manner, with two cis-elements identified within eB to be important; 2) eB secondary structure is necessary for binding; 3) mass spectroscopy and specific Abs in REMSAs identified 14-3-3 proteins to bind (directly or indirectly) eB and the natural SP-A2 (ABD) splice variant but not the SP-A1 (AD) splice variant; 4) other ribosomal and cytoskeletal proteins, and translation factors, are also present in the eB mRNA-protein complex; 5) knockdown of 14-3-3 β/α isoform resulted in a downregulation of SP-A2 expression. In conclusion, proteins including the 14-3-3 family bind two cis-elements within eB of hSP-A2 mRNA in a sequence- and secondary structure-specific manner. Differential regulation of SP-A1 and SP-A2 is mediated by the 14-3-3 protein family as well as by a number of other proteins that bind UTRs with or without eB mRNA. PMID:23525782

  5. The Arabidopsis 14-3-3 Protein RARE COLD INDUCIBLE 1A Links Low-Temperature Response and Ethylene Biosynthesis to Regulate Freezing Tolerance and Cold Acclimation[C][W

    PubMed Central

    Catalá, Rafael; López-Cobollo, Rosa; Mar Castellano, M.; Angosto, Trinidad; Alonso, José M.; Ecker, Joseph R.; Salinas, Julio

    2014-01-01

    In plants, the expression of 14-3-3 genes reacts to various adverse environmental conditions, including cold, high salt, and drought. Although these results suggest that 14-3-3 proteins have the potential to regulate plant responses to abiotic stresses, their role in such responses remains poorly understood. Previously, we showed that the RARE COLD INDUCIBLE 1A (RCI1A) gene encodes the 14-3-3 psi isoform. Here, we present genetic and molecular evidence implicating RCI1A in the response to low temperature. Our results demonstrate that RCI1A functions as a negative regulator of constitutive freezing tolerance and cold acclimation in Arabidopsis thaliana by controlling cold-induced gene expression. Interestingly, this control is partially performed through an ethylene (ET)-dependent pathway involving physical interaction with different ACC SYNTHASE (ACS) isoforms and a decreased ACS stability. We show that, consequently, RCI1A restrains ET biosynthesis, contributing to establish adequate levels of this hormone in Arabidopsis under both standard and low-temperature conditions. We further show that these levels are required to promote proper cold-induced gene expression and freezing tolerance before and after cold acclimation. All these data indicate that RCI1A connects the low-temperature response with ET biosynthesis to modulate constitutive freezing tolerance and cold acclimation in Arabidopsis. PMID:25122152

  6. Class-Specific Evolution and Transcriptional Differentiation of 14-3-3 Family Members in Mesohexaploid Brassica rapa

    PubMed Central

    Chandna, Ruby; Augustine, Rehna; Kanchupati, Praveena; Kumar, Roshan; Kumar, Pawan; Arya, Gulab C.; Bisht, Naveen C.

    2016-01-01

    14-3-3s are highly conserved, multigene family proteins that have been implicated in modulating various biological processes. The presence of inherent polyploidy and genome complexity has limited the identification and characterization of 14-3-3 proteins from globally important Brassica crops. Through data mining of Brassica rapa, the model Brassica genome, we identified 21 members encoding 14-3-3 proteins namely, BraA.GRF14.a to BraA.GRF14.u. Phylogenetic analysis indicated that B. rapa contains both ε (epsilon) and non-ε 14-3-3 isoforms, having distinct intron-exon structural organization patterns. The non-ε isoforms showed lower divergence rate (Ks < 0.45) compared to ε protein isoforms (Ks > 0.48), suggesting class-specific divergence pattern. Synteny analysis revealed that mesohexaploid B. rapa genome has retained 1–5 orthologs of each Arabidopsis 14-3-3 gene, interspersed across its three fragmented sub-genomes. qRT-PCR analysis showed that 14 of the 21 BraA.GRF14 were expressed, wherein a higher abundance of non-ε transcripts was observed compared to the ε genes, indicating class-specific transcriptional bias. The BraA.GRF14 genes showed distinct expression pattern during plant developmental stages and in response to abiotic stress, phytohormone treatments, and nutrient deprivation conditions. Together, the distinct expression pattern and differential regulation of BraA.GRF14 genes indicated the occurrence of functional divergence of B. rapa 14-3-3 proteins during plant development and stress responses. PMID:26858736

  7. Class-Specific Evolution and Transcriptional Differentiation of 14-3-3 Family Members in Mesohexaploid Brassica rapa.

    PubMed

    Chandna, Ruby; Augustine, Rehna; Kanchupati, Praveena; Kumar, Roshan; Kumar, Pawan; Arya, Gulab C; Bisht, Naveen C

    2016-01-01

    14-3-3s are highly conserved, multigene family proteins that have been implicated in modulating various biological processes. The presence of inherent polyploidy and genome complexity has limited the identification and characterization of 14-3-3 proteins from globally important Brassica crops. Through data mining of Brassica rapa, the model Brassica genome, we identified 21 members encoding 14-3-3 proteins namely, BraA.GRF14.a to BraA.GRF14.u. Phylogenetic analysis indicated that B. rapa contains both ε (epsilon) and non-ε 14-3-3 isoforms, having distinct intron-exon structural organization patterns. The non-ε isoforms showed lower divergence rate (Ks < 0.45) compared to ε protein isoforms (Ks > 0.48), suggesting class-specific divergence pattern. Synteny analysis revealed that mesohexaploid B. rapa genome has retained 1-5 orthologs of each Arabidopsis 14-3-3 gene, interspersed across its three fragmented sub-genomes. qRT-PCR analysis showed that 14 of the 21 BraA.GRF14 were expressed, wherein a higher abundance of non-ε transcripts was observed compared to the ε genes, indicating class-specific transcriptional bias. The BraA.GRF14 genes showed distinct expression pattern during plant developmental stages and in response to abiotic stress, phytohormone treatments, and nutrient deprivation conditions. Together, the distinct expression pattern and differential regulation of BraA.GRF14 genes indicated the occurrence of functional divergence of B. rapa 14-3-3 proteins during plant development and stress responses.

  8. Class-Specific Evolution and Transcriptional Differentiation of 14-3-3 Family Members in Mesohexaploid Brassica rapa.

    PubMed

    Chandna, Ruby; Augustine, Rehna; Kanchupati, Praveena; Kumar, Roshan; Kumar, Pawan; Arya, Gulab C; Bisht, Naveen C

    2016-01-01

    14-3-3s are highly conserved, multigene family proteins that have been implicated in modulating various biological processes. The presence of inherent polyploidy and genome complexity has limited the identification and characterization of 14-3-3 proteins from globally important Brassica crops. Through data mining of Brassica rapa, the model Brassica genome, we identified 21 members encoding 14-3-3 proteins namely, BraA.GRF14.a to BraA.GRF14.u. Phylogenetic analysis indicated that B. rapa contains both ε (epsilon) and non-ε 14-3-3 isoforms, having distinct intron-exon structural organization patterns. The non-ε isoforms showed lower divergence rate (Ks < 0.45) compared to ε protein isoforms (Ks > 0.48), suggesting class-specific divergence pattern. Synteny analysis revealed that mesohexaploid B. rapa genome has retained 1-5 orthologs of each Arabidopsis 14-3-3 gene, interspersed across its three fragmented sub-genomes. qRT-PCR analysis showed that 14 of the 21 BraA.GRF14 were expressed, wherein a higher abundance of non-ε transcripts was observed compared to the ε genes, indicating class-specific transcriptional bias. The BraA.GRF14 genes showed distinct expression pattern during plant developmental stages and in response to abiotic stress, phytohormone treatments, and nutrient deprivation conditions. Together, the distinct expression pattern and differential regulation of BraA.GRF14 genes indicated the occurrence of functional divergence of B. rapa 14-3-3 proteins during plant development and stress responses. PMID:26858736

  9. Phosphorylation-dependent inhibition of Cdc42 GEF Gef1 by 14-3-3 protein Rad24 spatially regulates Cdc42 GTPase activity and oscillatory dynamics during cell morphogenesis

    PubMed Central

    Das, Maitreyi; Nuñez, Illyce; Rodriguez, Marbelys; Wiley, David J.; Rodriguez, Juan; Sarkeshik, Ali; Yates, John R.; Buchwald, Peter; Verde, Fulvia

    2015-01-01

    Active Cdc42 GTPase, a key regulator of cell polarity, displays oscillatory dynamics that are anticorrelated at the two cell tips in fission yeast. Anticorrelation suggests competition for active Cdc42 or for its effectors. Here we show how 14-3-3 protein Rad24 associates with Cdc42 guanine exchange factor (GEF) Gef1, limiting Gef1 availability to promote Cdc42 activation. Phosphorylation of Gef1 by conserved NDR kinase Orb6 promotes Gef1 binding to Rad24. Loss of Rad24–Gef1 interaction increases Gef1 protein localization and Cdc42 activation at the cell tips and reduces the anticorrelation of active Cdc42 oscillations. Increased Cdc42 activation promotes precocious bipolar growth activation, bypassing the normal requirement for an intact microtubule cytoskeleton and for microtubule-dependent polarity landmark Tea4-PP1. Further, increased Cdc42 activation by Gef1 widens cell diameter and alters tip curvature, countering the effects of Cdc42 GTPase-activating protein Rga4. The respective levels of Gef1 and Rga4 proteins at the membrane define dynamically the growing area at each cell tip. Our findings show how the 14-3-3 protein Rad24 modulates the availability of Cdc42 GEF Gef1, a homologue of mammalian Cdc42 GEF DNMBP/TUBA, to spatially control Cdc42 GTPase activity and promote cell polarization and cell shape emergence. PMID:26246599

  10. The Tomato 14-3-3 protein TFT4 modulates H+ efflux, basipetal auxin transport, and the PKS5-J3 pathway in the root growth response to alkaline stress.

    PubMed

    Xu, Weifeng; Jia, Liguo; Shi, Weiming; Baluska, Frantisek; Kronzucker, Herbert J; Liang, Jiansheng; Zhang, Jianhua

    2013-12-01

    Alkaline stress is a common environmental stress, in particular in salinized soils. Plant roots respond to a variety of soil stresses by regulating their growth, but the nature of the regulatory pathways engaged in the alkaline stress response (ASR) is not yet understood. Previous studies show that PIN-FORMED2, an auxin (indole-3-acetic acid [IAA]) efflux transporter, PKS5, a protein kinase, and DNAJ HOMOLOG3 (J3), a chaperone, play key roles in root H(+) secretion by regulating plasma membrane (PM) H(+)-ATPases directly or by targeting 14-3-3 proteins. Here, we investigated the expression of all 14-3-3 gene family members (TOMATO 14-3-3 PROTEIN1 [TFT1]-TFT12) in tomato (Solanum lycopersicum) under ASR, showing the involvement of four of them, TFT1, TFT4, TFT6, and TFT7. When these genes were separately introduced into Arabidopsis (Arabidopsis thaliana) and overexpressed, only the growth of TFT4 overexpressors was significantly enhanced when compared with the wild type under stress. H(+) efflux and the activity of PM H(+)-ATPase were significantly enhanced in the root tips of TFT4 overexpressors. Microarray analysis and pharmacological examination of the overexpressor and mutant plants revealed that overexpression of TFT4 maintains primary root elongation by modulating PM H(+)-ATPase-mediated H(+) efflux and basipetal IAA transport in root tips under alkaline stress. TFT4 further plays important roles in the PKS5-J3 signaling pathway. Our study demonstrates that TFT4 acts as a regulator in the integration of H(+) efflux, basipetal IAA transport, and the PKS5-J3 pathway in the ASR of roots and coordinates root apex responses to alkaline stress for the maintenance of primary root elongation. PMID:24134886

  11. Tomato 14-3-3 protein 7 (TFT7) positively regulates immunity-associated programmed cell death by enhancing accumulation and signaling ability of MAPKKKalpha

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Programmed cell death (PCD) is triggered when Pto, a serine-threonine protein kinase recognizes either the AvrPto or AvrPtoB effector from Pseudomonas syringae pv. tomato. This PCD requires MAPKKKalpha as a positive regulator in tomato and Nicotiana benthamiana. To examine how PCD-eliciting activi...

  12. Identification of a functional splice variant of 14-3-3E1 in rainbow trout

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 14-3-3 proteins are a family of regulatory proteins involved in diverse cellular processes. The presence of 14-3-3 isoforms and the diversity of cellular processes regulated by 14-3-3 isoforms suggest functional specificity of the isoforms. In this study, we report the identification and charact...

  13. Characterization of 14-3-3 isoforms expressed in the Echinococcus granulosus pathogenic larval stage.

    PubMed

    Teichmann, Aline; Vargas, Daiani M; Monteiro, Karina M; Meneghetti, Bruna V; Dutra, Cristine S; Paredes, Rodolfo; Galanti, Norbel; Zaha, Arnaldo; Ferreira, Henrique B

    2015-04-01

    The 14-3-3 protein family of eukaryotic regulators was studied in Echinococcus granulosus, the causative agent of cystic hydatid disease. These proteins mediate important cellular processes in eukaryotes and are expected to play important roles in parasite biology. Six isoforms of E. granulosus 14-3-3 genes and proteins (Eg14-3-3.1-6) were analyzed, and their phylogenetic relationships were established with bona fide 14-3-3 orthologous proteins from eukaryotic species. Eg14-3-3 isoforms with previous evidence of expression (Eg14-3-3.1-4) in E. granulosus pathogenic larval stage (metacestode) were cloned, and recombinant proteins were used for functional studies. These protein isoforms were detected in different components of E. granulosus metacestode, including interface components with the host. The roles that are played by Eg14-3-3 proteins in parasite biology were inferred from the repertoires of interacting proteins with each isoform, as assessed by gel overlay, cross-linking, and affinity chromatography assays. A total of 95 Eg14-3-3 protein ligands were identified by mass spectrometry. Eg14-3-3 isoforms have shared partners (44 proteins), indicating some overlapping functions; however, they also bind exclusive partners (51 proteins), suggesting Eg14-3-3 functional specialization. These ligand repertoires indicate the involvement of Eg14-3-3 proteins in multiple biochemical pathways in the E. granulosus metacestode and note some degree of isoform specialization. PMID:25748451

  14. Characterization of 14-3-3 isoforms expressed in the Echinococcus granulosus pathogenic larval stage.

    PubMed

    Teichmann, Aline; Vargas, Daiani M; Monteiro, Karina M; Meneghetti, Bruna V; Dutra, Cristine S; Paredes, Rodolfo; Galanti, Norbel; Zaha, Arnaldo; Ferreira, Henrique B

    2015-04-01

    The 14-3-3 protein family of eukaryotic regulators was studied in Echinococcus granulosus, the causative agent of cystic hydatid disease. These proteins mediate important cellular processes in eukaryotes and are expected to play important roles in parasite biology. Six isoforms of E. granulosus 14-3-3 genes and proteins (Eg14-3-3.1-6) were analyzed, and their phylogenetic relationships were established with bona fide 14-3-3 orthologous proteins from eukaryotic species. Eg14-3-3 isoforms with previous evidence of expression (Eg14-3-3.1-4) in E. granulosus pathogenic larval stage (metacestode) were cloned, and recombinant proteins were used for functional studies. These protein isoforms were detected in different components of E. granulosus metacestode, including interface components with the host. The roles that are played by Eg14-3-3 proteins in parasite biology were inferred from the repertoires of interacting proteins with each isoform, as assessed by gel overlay, cross-linking, and affinity chromatography assays. A total of 95 Eg14-3-3 protein ligands were identified by mass spectrometry. Eg14-3-3 isoforms have shared partners (44 proteins), indicating some overlapping functions; however, they also bind exclusive partners (51 proteins), suggesting Eg14-3-3 functional specialization. These ligand repertoires indicate the involvement of Eg14-3-3 proteins in multiple biochemical pathways in the E. granulosus metacestode and note some degree of isoform specialization.

  15. Royal Jelly-Mediated Prolongevity and Stress Resistance in Caenorhabditis elegans Is Possibly Modulated by the Interplays of DAF-16, SIR-2.1, HCF-1, and 14-3-3 Proteins.

    PubMed

    Wang, Xiaoxia; Cook, Lauren F; Grasso, Lindsay M; Cao, Min; Dong, Yuqing

    2015-07-01

    Recent studies suggest that royal jelly (RJ) and its related substances may have antiaging properties. However, the molecular mechanisms underlying the beneficial effects remain elusive. We report that the effects of RJ and enzyme-treated RJ (eRJ) on life span and health span in Caenorhabditis elegans (C elegans) are modulated by the sophisticated interplays of DAF-16, SIR-2.1, HCF-1, and 14-3-3 proteins. Dietary supplementation with RJ or eRJ increased C. elegans life span in a dose-dependent manner. The RJ and eRJ consumption increased the tolerance of C elegans to oxidative stress, ultraviolet irradiation, and heat shock stress. Our genetic analyses showed that RJ/eRJ-mediated life-span extension requires insulin/IGF-1 signaling and the activities of DAF-16, SIR-2.1, HCF-1, and FTT-2, a 14-3-3 protein. Earlier studies reported that DAF-16/FOXO, SIR-2.1/SIRT1, FTT-2, and HCF-1 have extensive interplays in worms and mammals. Our present findings suggest that RJ/eRJ-mediated promotion of longevity and stress resistance in C elegans is dependent on these conserved interplays. From an evolutionary point of view, this study not only provides new insights into the molecular mechanisms of RJ's action on health span promotion in C elegans, but also has imperative implications in using RJ/eRJ as nutraceuticals to delay aging and age-related disorders.

  16. Genetic variations of 14-3-3E1 isoform in rainbow trout (Oncorhynchus mykiss)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The highly conserved family of 14-3-3 proteins functions in the regulation of a wide variety of cellular processes. The presence of 14-3-3 isoforms and the diversity of cellular processes regulated by 14-3-3 isoforms suggest functional specificity of the isoforms. Several studies have observed diffe...

  17. Molecular and biochemical mining of heat-shock and 14-3-3 proteins in drug-induced protoscolices of Echinococcus granulosus and the detection of a candidate gene for anthelmintic resistance.

    PubMed

    Pan, D; Das, S; Bera, A K; Bandyopadhyay, S; Bandyopadhyay, S; De, S; Rana, T; Das, S K; Suryanaryana, V V; Deb, J; Bhattacharya, D

    2011-06-01

    Cystic echinococcosis (CE) caused by the larval stage of Echinococcus granulosus is a disease that affects both humans and animals. In humans the disease is treated by surgery with a supplementary option of chemotherapy with a benzimidazole compound. During the present study heat-shock protein 60 (HSP 60) was identified as one of the most frequently expressed biomolecules by E. granulosus after albendazole treatment. Data were correlated with 14-3-3 protein signature, and overexpression of this molecule after albendazole induction was an indicator of cell survival and signal transduction during in vitro maintenance of E. granulosus for up to 72 h. This observation was further correlated with a uniform expression pattern of a housekeeping gene (actin II). Out of three β-tubulin gene isoforms of E. granulosus, β-tubulin gene isoform 2 showed a conserved point mutation indicative of benzimidazole resistance.

  18. 14-3-3 in Thoracic Aortic Aneurysms

    PubMed Central

    Chakravarti, Ritu; Gupta, Karishma; Swain, Mamuni; Willard, Belinda; Scholtz, Jaclyn; Svensson, Lars G.; Roselli, Eric E.; Pettersson, Gosta; Johnston, Douglas R.; Soltesz, Edward G.; Yamashita, Michifumi; Stuehr, Dennis; Daly, Thomas M.; Hoffman, Gary S.

    2015-01-01

    Objective Large vessel vasculitides (LVV) are a group of autoimmune diseases characterized by injury to and anatomic modifications of large vessels, including the aorta and its branch vessels. Disease etiology is unknown. This study was undertaken to identify antigen targets within affected vessel walls in aortic root, ascending aorta, and aortic arch surgical specimens from patients with LVV, including giant cell arteritis, Takayasu arteritis, and isolated focal aortitis. Methods Thoracic aortic aneurysm specimens and autologous blood were acquired from consenting patients who underwent aorta reconstruction procedures. Aorta proteins were extracted from both patients with LVV and age-, race-, and sex-matched disease controls with noninflammatory aneurysms. A total of 108 serum samples from patients with LVV, matched controls, and controls with antinuclear antibodies, different forms of vasculitis, or sepsis were tested. Results Evaluation of 108 serum samples and 22 aortic tissue specimens showed that 78% of patients with LVV produced antibodies to 14-3-3 proteins in the aortic wall (93.7% specificity), whereas controls were less likely to do so (6.7% produced antibodies). LVV patient sera contained autoantibody sufficient to immunoprecipitate 14-3-3 protein(s) from aortic lysates. Three of 7 isoforms of 14-3-3 were found to be up-regulated in aorta specimens from patients with LVV, and 2 isoforms (ε and ζ) were found to be antigenic in LVV. Conclusion This is the first study to use sterile, snap-frozen thoracic aorta biopsy specimens to identify autoantigens in LVV. Our findings indicate that 78% of patients with LVV have antibody reactivity to 14-3-3 protein(s). The precise role of these antibodies and 14-3-3 proteins in LVV pathogenesis deserves further study. PMID:25917817

  19. Phosphorylation and Interaction with the 14-3-3 Protein of the Plasma Membrane H+-ATPase are Involved in the Regulation of Magnesium-Mediated Increases in Aluminum-Induced Citrate Exudation in Broad Bean (Vicia faba. L).

    PubMed

    Chen, Qi; Kan, Qi; Wang, Ping; Yu, Wenqian; Yu, Yuzhen; Zhao, Yan; Yu, Yongxiong; Li, Kunzhi; Chen, Limei

    2015-06-01

    Several studies have shown that external application of micromolar magnesium (Mg) can increase the resistance of legumes to aluminum (Al) stress by enhancing Al-induced citrate exudation. However, the exact mechanism underlying this regulation remains unknown. In this study, the physiological and molecular mechanisms by which Mg enhances Al-induced citrate exudation to alleviate Al toxicity were investigated in broad bean. Micromolar concentrations of Mg that alleviated Al toxicity paralleled the stimulation of Al-induced citrate exudation and increased the activity of the plasma membrane (PM) H(+)-ATPase. Northern blot analysis shows that a putative MATE-like gene (multidrug and toxic compound extrusion) was induced after treatment with Al for 4, 8 and 12 h, whereas the mRNA abundance of the MATE-like gene showed no significant difference between Al plus Mg and Al-only treatments during the entire treatment period. Real-time reverse transcription-PCR (RT-PCR) and Western blot analyses suggest that the transcription and translation of the PM H(+)-ATPase were induced by Al but not by Mg. In contrast, immunoprecipitation suggests that Mg enhanced the phosphorylation levels of VHA2 and its interaction with the vf14-3-3b protein under Al stress. Taken together, our results suggest that micromolar concentrations of Mg can alleviate the Al rhizotoxicity by increasing PM H(+)-ATPase activity and Al-induced citrate exudation in YD roots. This enhancement is likely to be attributable to Al-induced increases in the expression of the MATE-like gene and vha2 and Mg-induced changes in the phosphorylation levels of VHA2, thus changing its interaction with the vf14-3-3b protein.

  20. 14-3-3 phosphoprotein interaction networks - does isoform diversity present functional interaction specification?

    PubMed

    Paul, Anna-Lisa; Denison, Fiona C; Schultz, Eric R; Zupanska, Agata K; Ferl, Robert J

    2012-01-01

    The 14-3-3 proteins have emerged as major phosphoprotein interaction proteins and thereby constitute a key node in the Arabidopsis Interactome Map, a node through which a large number of important signals pass. Throughout their history of discovery and description, the 14-3-3s have been described as protein families and there has been some evidence that the different 14-3-3 family members within any organism might carry isoform-specific functions. However, there has also been evidence for redundancy of 14-3-3 function, suggesting that the perceived 14-3-3 diversity may be the accumulation of neutral mutations over evolutionary time and as some 14-3-3 genes develop tissue or organ-specific expression. This situation has led to a currently unresolved question - does 14-3-3 isoform sequence diversity indicate functional diversity at the biochemical or cellular level? We discuss here some of the key observations on both sides of the resulting debate, and present a set of contrastable observations to address the theory functional diversity does exist among 14-3-3 isoforms. The resulting model suggests strongly that there are indeed functional specificities in the 14-3-3s of Arabidopsis. The model further suggests that 14-3-3 diversity and specificity should enter into the discussion of 14-3-3 roles in signal transduction and be directly approached in 14-3-3 experimentation. It is hoped that future studies involving 14-3-3s will continue to address specificity in experimental design and analysis. PMID:22934100

  1. Scaffold functions of 14-3-3 adaptors in B cell immunoglobulin class switch DNA recombination.

    PubMed

    Lam, Tonika; Thomas, Lisa M; White, Clayton A; Li, Guideng; Pone, Egest J; Xu, Zhenming; Casali, Paolo

    2013-01-01

    Class switch DNA recombination (CSR) of the immunoglobulin heavy chain (IgH) locus crucially diversifies antibody biological effector functions. CSR involves the induction of activation-induced cytidine deaminase (AID) expression and AID targeting to switch (S) regions by 14-3-3 adaptors. 14-3-3 adaptors specifically bind to 5'-AGCT-3' repeats, which make up for the core of all IgH locus S regions. They selectively target the upstream and downstream S regions that are set to undergo S-S DNA recombination. We hypothesized that 14-3-3 adaptors function as scaffolds to stabilize CSR enzymatic elements on S regions. Here we demonstrate that all seven 14-3-3β, 14-3-3ε, 14-3-3γ, 14-3-3η, 14-3-3σ, 14-3-3τ and 14-3-3ζ adaptors directly interacted with AID, PKA-Cα (catalytic subunit) and PKA-RIα (regulatory inhibitory subunit) and uracil DNA glycosylase (Ung). 14-3-3 adaptors, however, did not interact with AID C-terminal truncation mutant AIDΔ(180-198) or AIDF193A and AIDL196A point-mutants (which have been shown not to bind to S region DNA and fail to mediate CSR). 14-3-3 adaptors colocalized with AID and replication protein A (RPA) in B cells undergoing CSR. 14-3-3 and AID binding to S region DNA was disrupted by viral protein R (Vpr), an accessory protein of human immunodeficiency virus type-1 (HIV-1), which inhibited CSR without altering AID expression or germline IH-CH transcription. Accordingly, we demonstrated that 14-3-3 directly interact with Vpr, which in turn, also interact with AID, PKA-Cα and Ung. Altogether, our findings suggest that 14-3-3 adaptors play important scaffold functions and nucleate the assembly of multiple CSR factors on S regions. They also show that such assembly can be disrupted by a viral protein, thereby allowing us to hypothesize that small molecule compounds that specifically block 14-3-3 interactions with AID, PKA and/or Ung can be used to inhibit unwanted CSR.

  2. 14-3-3s are Potential Biomarkers for HIV-related Neurodegeneration

    PubMed Central

    Morales, Diana; Skoulakis, Efthimios M.; Acevedo, Summer F.

    2013-01-01

    Over the last decade, it has become evident that 14-3-3 proteins are essential for primary cell functions. These proteins are abundant throughout the body, including the central nervous system (CNS) and interact with other proteins in both cell cycle and apoptotic pathways. Examination of cerebral spinal fluid (CSF) in humans, suggest that 14-3-3s including 14-3-3ε (YWHAE), are upregulated in several neurological diseases and loss or duplication of the YWHAE gene leads to Miller-Dieker Syndrome (MDS). The goal of this review is to examine the utility of 14-3-3s as a marker of Human Immune deficiency virus (HIV)-dependent neurodegeneration, and also as a tool to track disease progression. To that end we describe mechanisms implicating 14-3-3s in neurological diseases and summarize evidence of its interactions with HIV accessory and co-receptor proteins. PMID:22811265

  3. Ustilago maydis Rho1 and 14-3-3 homologues participate in pathways controlling cell separation and cell polarity.

    PubMed

    Pham, Cau D; Yu, Zhanyang; Sandrock, Björn; Bölker, Michael; Gold, Scott E; Perlin, Michael H

    2009-07-01

    Proteins of the 14-3-3 and Rho-GTPase families are functionally conserved eukaryotic proteins that participate in many important cellular processes such as signal transduction, cell cycle regulation, malignant transformation, stress response, and apoptosis. However, the exact role(s) of these proteins in these processes is not entirely understood. Using the fungal maize pathogen, Ustilago maydis, we were able to demonstrate a functional connection between Pdc1 and Rho1, the U. maydis homologues of 14-3-3epsilon and Rho1, respectively. Our experiments suggest that Pdc1 regulates viability, cytokinesis, chromosome condensation, and vacuole formation. Similarly, U. maydis Rho1 is also involved in these three essential processes and exerts an additional function during mating and filamentation. Intriguingly, yeast two-hybrid and epistasis experiments suggest that both Pdc1 and Rho1 could be constituents of the same regulatory cascade(s) controlling cell growth and filamentation in U. maydis. Overexpression of rho1 ameliorated the defects of cells depleted for Pdc1. Furthermore, we found that another small G protein, Rac1, was a suppressor of lethality for both Pdc1 and Rho1. In addition, deletion of cla4, encoding a Rac1 effector kinase, could also rescue cells with Pdc1 depleted. Inferring from these data, we propose a model for Rho1 and Pdc1 functions in U. maydis.

  4. ANIA: ANnotation and Integrated Analysis of the 14-3-3 interactome

    PubMed Central

    Tinti, Michele; Madeira, Fábio; Murugesan, Gavuthami; Hoxhaj, Gerta; Toth, Rachel; MacKintosh, Carol

    2014-01-01

    The dimeric 14-3-3 proteins dock onto pairs of phosphorylated Ser and Thr residues on hundreds of proteins, and thereby regulate many events in mammalian cells. To facilitate global analyses of these interactions, we developed a web resource named ANIA: ANnotation and Integrated Analysis of the 14-3-3 interactome, which integrates multiple data sets on 14-3-3-binding phosphoproteins. ANIA also pinpoints candidate 14-3-3-binding phosphosites using predictor algorithms, assisted by our recent discovery that the human 14-3-3-interactome is highly enriched in 2R-ohnologues. 2R-ohnologues are proteins in families of two to four, generated by two rounds of whole genome duplication at the origin of the vertebrate animals. ANIA identifies candidate ‘lynchpins’, which are 14-3-3-binding phosphosites that are conserved across members of a given 2R-ohnologue protein family. Other features of ANIA include a link to the catalogue of somatic mutations in cancer database to find cancer polymorphisms that map to 14-3-3-binding phosphosites, which would be expected to interfere with 14-3-3 interactions. We used ANIA to map known and candidate 14-3-3-binding enzymes within the 2R-ohnologue complement of the human kinome. Our projections indicate that 14-3-3s dock onto many more human kinases than has been realized. Guided by ANIA, PAK4, 6 and 7 (p21-activated kinases 4, 6 and 7) were experimentally validated as a 2R-ohnologue family of 14-3-3-binding phosphoproteins. PAK4 binding to 14-3-3 is stimulated by phorbol ester, and involves the ‘lynchpin’ site phosphoSer99 and a major contribution from Ser181. In contrast, PAK6 and PAK7 display strong phorbol ester-independent binding to 14-3-3, with Ser113 critical for the interaction with PAK6. These data point to differential 14-3-3 regulation of PAKs in control of cell morphology. Database URL: https://ania-1433.lifesci.dundee.ac.uk/prediction/webserver/index.py PMID:24501395

  5. ANIA: ANnotation and Integrated Analysis of the 14-3-3 interactome.

    PubMed

    Tinti, Michele; Madeira, Fábio; Murugesan, Gavuthami; Hoxhaj, Gerta; Toth, Rachel; Mackintosh, Carol

    2014-01-01

    The dimeric 14-3-3 proteins dock onto pairs of phosphorylated Ser and Thr residues on hundreds of proteins, and thereby regulate many events in mammalian cells. To facilitate global analyses of these interactions, we developed a web resource named ANIA: ANnotation and Integrated Analysis of the 14-3-3 interactome, which integrates multiple data sets on 14-3-3-binding phosphoproteins. ANIA also pinpoints candidate 14-3-3-binding phosphosites using predictor algorithms, assisted by our recent discovery that the human 14-3-3-interactome is highly enriched in 2R-ohnologues. 2R-ohnologues are proteins in families of two to four, generated by two rounds of whole genome duplication at the origin of the vertebrate animals. ANIA identifies candidate 'lynchpins', which are 14-3-3-binding phosphosites that are conserved across members of a given 2R-ohnologue protein family. Other features of ANIA include a link to the catalogue of somatic mutations in cancer database to find cancer polymorphisms that map to 14-3-3-binding phosphosites, which would be expected to interfere with 14-3-3 interactions. We used ANIA to map known and candidate 14-3-3-binding enzymes within the 2R-ohnologue complement of the human kinome. Our projections indicate that 14-3-3s dock onto many more human kinases than has been realized. Guided by ANIA, PAK4, 6 and 7 (p21-activated kinases 4, 6 and 7) were experimentally validated as a 2R-ohnologue family of 14-3-3-binding phosphoproteins. PAK4 binding to 14-3-3 is stimulated by phorbol ester, and involves the 'lynchpin' site phosphoSer99 and a major contribution from Ser181. In contrast, PAK6 and PAK7 display strong phorbol ester-independent binding to 14-3-3, with Ser113 critical for the interaction with PAK6. These data point to differential 14-3-3 regulation of PAKs in control of cell morphology. Database URL: https://ania-1433.lifesci.dundee.ac.uk/prediction/webserver/index.py.

  6. 14-3-3ζ Interacts with Stat3 and Regulates Its Constitutive Activation in Multiple Myeloma Cells

    PubMed Central

    Li, Wenliang; Xiong, Qian; Yang, Mingkun; Zheng, Peng; Li, Chongyang; Pei, Jianfeng; Ge, Feng

    2012-01-01

    The 14-3-3 proteins are a family of regulatory signaling molecules that interact with other proteins in a phosphorylation-dependent manner and function as adapter or scaffold proteins in signal transduction pathways. One family member, 14-3-3ζ, is believed to function in cell signaling, cycle control, and apoptotic death. A systematic proteomic analysis done in our laboratory has identified signal transducers and activators of transcription 3 (Stat3) as a novel 14-3-3ζ interacting protein. Following our initial finding, in this study, we provide evidence that 14-3-3ζ interacts physically with Stat3. We further demonstrate that phosphorylation of Stat3 at Ser727 is vital for 14-3-3ζ interaction and mutation of Ser727 to Alanine abolished 14-3-3ζ/Stat3 association. Inhibition of 14-3-3ζ protein expression in U266 cells inhibited Stat3 Ser727 phosphorylation and nuclear translocation, and decreased both Stat3 DNA binding and transcriptional activity. Moreover, 14-3-3ζ is involved in the regulation of protein kinase C (PKC) activity and 14-3-3ζ binding to Stat3 protects Ser727 dephosphorylation from protein phosphatase 2A (PP2A). Taken together, our findings support the model that multiple signaling events impinge on Stat3 and that 14-3-3ζ serves as an essential coordinator for different pathways to regulate Stat3 activation and function in MM cells. PMID:22279540

  7. Decreased expression of 14-3-3 in Paracoccidioides brasiliensis confirms its involvement in fungal pathogenesis.

    PubMed

    Marcos, Caroline Maria; Silva, Julhiany de Fátima ds; Oliveira, Haroldo Cesar de; Assato, Patrícia Akemi; Singulani, Junya de Lacorte; Lopez, Angela Maria; Tamayo, Diana Patricia; Hernandez-Ruiz, Orville; McEwen, Juan G; Mendes-Giannini, Maria José Soares; Fusco-Almeida, Ana Marisa

    2016-01-01

    The interaction between the fungal pathogen Paracoccidioides brasiliensis and host cells is usually mediated by specific binding events between adhesins on the fungal surface and receptors on the host extracellular matrix or cell surface. One molecule implicated in the P. brasiliensis-host interaction is the 14-3-3 protein. The 14-3-3 protein belongs to a family of conserved regulatory molecules that are expressed in all eukaryotic cells and are involved in diverse cellular functions. Here, we investigated the relevance of the 14-3-3 protein to the virulence of P. brasiliensis. Using antisense RNA technology and Agrobacterium tumefaciens-mediated transformation, we generated a 14-3-3-silenced strain (expression reduced by ˜55%). This strain allowed us to investigate the interaction between 14-3-3 and the host and to correlate the functions of P. brasiliensis 14-3-3 with cellular features, such as morphological characteristics and virulence, that are important for pathogenesis. PMID:26646480

  8. Identification and expression analysis of four 14-3-3 genes during fruit ripening in banana (Musa acuminata L. AAA group, cv. Brazilian).

    PubMed

    Li, Mei-Ying; Xu, Bi-Yu; Liu, Ju-Hua; Yang, Xiao-Liang; Zhang, Jian-Bin; Jia, Cai-Hong; Ren, Li-Cheng; Jin, Zhi-Qiang

    2012-02-01

    To investigate the regulation of 14-3-3 proteins in banana (Musa acuminata L. AAA group, cv. Brazilian) fruit postharvest ripening, four cDNAs encoding 14-3-3 proteins were isolated from banana and designated as Ma-14-3-3a, Ma-14-3-3c, Ma-14-3-3e, and Ma-14-3-3i, respectively. Amino acid sequence alignment showed that the four 14-3-3 proteins shared a highly conserved core structure and variable C-terminal as well as N-terminal regions with 14-3-3 proteins from other plant species. Phylogenetic analysis revealed that the four 14-3-3 genes belong to the non-ε groups. They were differentially and specifically expressed in various tissues. Real-time RT-PCR analysis indicated that these four genes function differentially during banana fruit postharvest ripening. Three genes, Ma-14-3-3a, Ma-14-3-3c, and Ma-14-3-3e, were significantly induced by exogenous ethylene treatment. However, gene function differed in naturally ripened fruits. Ethylene could induce Ma-14-3-3c expression during postharvest ripening, but expression patterns of Ma-14-3-3a and Ma-14-3-3e suggest that these two genes appear to be involved in regulating ethylene biosynthesis during fruit ripening. No obvious relationship emerged between Ma-14-3-3i expression in naturally ripened and 1-MCP (1-methylcyclopropene)-treated fruit groups during fruit ripening. These results indicate that the 14-3-3 proteins might be involved in various regulatory processes of banana fruit ripening. Further studies will mainly focus on revealing the detailed biological mechanisms of these four 14-3-3 genes in regulating banana fruit postharvest ripening. PMID:22009053

  9. The pro-inflammatory cytokine 14-3-3ε is a ligand of CD13 in cartilage

    PubMed Central

    Nefla, Meriam; Sudre, Laure; Denat, Guillaume; Priam, Sabrina; Andre-Leroux, Gwenaëlle; Berenbaum, Francis; Jacques, Claire

    2015-01-01

    ABSTRACT Osteoarthritis is a whole-joint disease characterized by the progressive destruction of articular cartilage involving abnormal communication between subchondral bone and cartilage. Our team previously identified 14-3-3ε protein as a subchondral bone soluble mediator altering cartilage homeostasis. The aim of this study was to investigate the involvement of CD13 (also known as aminopeptidase N, APN) in the chondrocyte response to 14-3-3ε. After identifying CD13 in chondrocytes, we knocked down CD13 with small interfering RNA (siRNA) and blocking antibodies in articular chondrocytes. 14-3-3ε-induced MMP-3 and MMP-13 was significantly reduced with CD13 knockdown, which suggests that it has a crucial role in 14-3-3ε signal transduction. Aminopeptidase N activity was identified in chondrocytes, but the activity was unchanged after stimulation with 14-3-3ε. Direct interaction between CD13 and 14-3-3ε was then demonstrated by surface plasmon resonance. Using labeled 14-3-3ε, we also found that 14-3-3ε binds to the surface of chondrocytes in a manner that is dependent on CD13. Taken together, these results suggest that 14-3-3ε might directly bind to CD13, which transmits its signal in chondrocytes to induce a catabolic phenotype similar to that observed in osteoarthritis. The 14-3-3ε–CD13 interaction could be a new therapeutic target in osteoarthritis. PMID:26208633

  10. Visualization and Biochemical Analyses of the Emerging Mammalian 14-3-3-Phosphoproteome*

    PubMed Central

    Johnson, Catherine; Tinti, Michele; Wood, Nicola T.; Campbell, David G.; Toth, Rachel; Dubois, Fanny; Geraghty, Kathryn M.; Wong, Barry H. C.; Brown, Laura J.; Tyler, Jennifer; Gernez, Aurélie; Chen, Shuai; Synowsky, Silvia; MacKintosh, Carol

    2011-01-01

    Hundreds of candidate 14-3-3-binding (phospho)proteins have been reported in publications that describe one interaction at a time, as well as high-throughput 14-3-3-affinity and mass spectrometry-based studies. Here, we transcribed these data into a common format, deposited the collated data from low-throughput studies in MINT (http://mint.bio.uniroma2.it/mint), and compared the low- and high-throughput data in VisANT graphs that are easy to analyze and extend. Exploring the graphs prompted questions about technical and biological specificity, which were addressed experimentally, resulting in identification of phosphorylated 14-3-3-binding sites in the mitochondrial import sequence of the iron-sulfur cluster assembly enzyme (ISCU), cytoplasmic domains of the mitochondrial fission factor (MFF), and endoplasmic reticulum-tethered receptor expression-enhancing protein 4 (REEP4), RNA regulator SMAUG2, and cytoskeletal regulatory proteins, namely debrin-like protein (DBNL) and kinesin light chain (KLC) isoforms. Therefore, 14-3-3s undergo physiological interactions with proteins that are destined for diverse subcellular locations. Graphing and validating interactions underpins efforts to use 14-3-3-phosphoproteomics to identify mechanisms and biomarkers for signaling pathways in health and disease. PMID:21725060

  11. 14-3-3σ regulates keratinocyte proliferation and differentiation by modulating Yap1 cellular localization

    PubMed Central

    Sambandam, Sumitha A.T.; Kasetti, Ramesh Babu; Xue, Lei; Dean, Douglas C.; Lu, Qingxian; Li, Qiutang

    2015-01-01

    The homozygous repeated epilation (Er/Er) mouse mutant of the gene encoding 14-3-3σ displays an epidermal phenotype characterized by hyperproliferative keratinocytes and undifferentiated epidermis. Heterozygous Er/+ mice develop spontaneous skin tumors and are highly sensitive to tumor-promoting DMBA/TPA induction. The molecular mechanisms underlying 14-3-3σ regulation of epidermal proliferation, differentiation, and tumor formation have not been well elucidated. In the present study, we found that Er/Er keratinocytes failed to sequester Yap1 in the cytoplasm, leading to its nuclear localization during epidermal development in vivo and under differentiation-inducing culture conditions in vitro. In addition, enhanced Yap1 nuclear localization was also evident in DMBA/TPA-induced tumors from Er/+ skin. Furthermore, shRNA knockdown of Yap1 expression in Er/Er keratinocytes inhibited their proliferation, suggesting that YAP1 functions as a downstream effector of 14-3-3σ controlling epidermal proliferation. We then demonstrated that keratinocytes express all seven 14-3-3 protein isoforms, some of which form heterodimers with 14-3-3σ, either full-length WT or the mutant form found in Er/Er mice. However Er 14-3-3σ does not interact with Yap1, as demonstrated by co-immunoprecipitation. We conclude that Er 14-3-3σ disrupts the interaction between 14-3-3 and Yap1, thus fails to block Yap1 nuclear transcriptional function, causing continued progenitor expansion and inhibition of differentiation in Er/Er epidermis. PMID:25668240

  12. 14-3-3 fusion oncogenes in high-grade endometrial stromal sarcoma

    PubMed Central

    Lee, Cheng-Han; Ou, Wen-Bin; Mariño-Enriquez, Adrian; Zhu, Meijun; Mayeda, Mark; Wang, Yuexiang; Guo, Xiangqian; Brunner, Alayne L.; Amant, Frédéric; French, Christopher A.; West, Robert B.; McAlpine, Jessica N.; Gilks, C. Blake; Yaffe, Michael B.; Prentice, Leah M.; McPherson, Andrew; Jones, Steven J. M.; Marra, Marco A.; Shah, Sohrab P.; van de Rijn, Matt; Huntsman, David G.; Dal Cin, Paola; Debiec-Rychter, Maria; Nucci, Marisa R.; Fletcher, Jonathan A.

    2012-01-01

    14-3-3 proteins are ubiquitously expressed regulators of various cellular functions, including proliferation, metabolism, and differentiation, and altered 14-3-3 expression is associated with development and progression of cancer. We report a transforming 14-3-3 oncoprotein, which we identified through conventional cytogenetics and whole-transcriptome sequencing analysis as a highly recurrent genetic mechanism in a clinically aggressive form of uterine sarcoma: high-grade endometrial stromal sarcoma (ESS). The 14-3-3 oncoprotein results from a t(10;17) genomic rearrangement, leading to fusion between 14-3-3ε (YWHAE) and either of two nearly identical FAM22 family members (FAM22A or FAM22B). Expression of YWHAE–FAM22 fusion oncoproteins was demonstrated by immunoblot in t(10;17)-bearing frozen tumor and cell line samples. YWHAE–FAM22 fusion gene knockdowns were performed with shRNAs and siRNAs targeting various FAM22A exons in an t(10;17)-bearing ESS cell line (ESS1): Fusion protein expression was inhibited, with corresponding reduction in cell growth and migration. YWHAE–FAM22 maintains a structurally and functionally intact 14-3-3ε (YWHAE) protein-binding domain, which is directed to the nucleus by a FAM22 nuclear localization sequence. In contrast to classic ESS, harboring JAZF1 genetic fusions, YWHAE–FAM22 ESS display high-grade histologic features, a distinct gene-expression profile, and a more aggressive clinical course. Fluorescence in situ hybridization analysis demonstrated absolute specificity of YWHAE–FAM22A/B genetic rearrangement for high-grade ESS, with no fusions detected in other uterine and nonuterine mesenchymal tumors (55 tumor types, n = 827). These discoveries reveal diagnostically and therapeutically relevant models for characterizing aberrant 14-3-3 oncogenic functions. PMID:22223660

  13. Interactome analysis of the six cotton 14-3-3s that are preferentially expressed in fibres and involved in cell elongation

    PubMed Central

    Zhang, Ze-Ting; Zhou, Ying; Li, Yang; Shao, Su-Qiang; Li, Bing-Ying; Shi, Hai-Yan; Li, Xue-Bao

    2010-01-01

    Proteins of the 14-3-3 family regulate a divergent set of signalling pathways in all eukaryotic organisms. In this study, several cDNAs encoding 14-3-3 proteins were isolated from a cotton fibre cDNA library. The Gh14-3-3 genes share high sequence homology at the nucleotide level in the coding region and at the amino acid level. Real-time quantitative RT-PCR analysis indicated that the expression of these Gh14-3-3 genes is developmentally regulated in fibres, and reached their peak at the stage of rapid cell elongation of fibre development. Furthermore, overexpression of Gh14-3-3a, Gh14-3-3e, and Gh14-3-3L in fission yeast promoted atypical longitudinal growth of the host cells. Yeast two-hybrid analysis revealed that the interaction between cotton 14-3-3 proteins is isoform selective. Through yeast two-hybrid screening, 38 novel interaction partners of the six 14-3-3 proteins (Gh14-3-3a, Gh14-3-3e, Gh14-3-3f, Gh14-3-3g, Gh14-3-3h, and Gh14-3-3L), which are involved in plant development, metabolism, signalling transduction, and other cellular processes, were identified in cotton fibres. Taking these data together, it is proposed that the Gh14-3-3 proteins may participate in regulation of fibre cell elongation. Thus, the results of this study provide novel insights into the 14-3-3 signalling related to fibre development of cotton. PMID:20519337

  14. 14-3-3, an integrator of cell mechanics and cytokinesis.

    PubMed

    Robinson, Douglas N

    2010-11-01

    One of the goals of understanding cytokinesis is to uncover the molecular regulation of the cellular mechanical properties that drive cell shape change. Such regulatory pathways are likely to be used at multiple stages of a cell's life, but are highly featured during cell division. Recently, we demonstrated that 14-3-3 (encoded by a single gene in the social amoeba Dictyostelium discoideum) serves to integrate key cytoskeletal components-microtubules, Rac and myosin II-to control cell mechanics and cytokinesis. As 14-3-3 proteins are frequently altered in a variety of human tumors, we extend these observations to suggest possible additional roles for how 14-3-3 proteins may contribute to tumorigenesis. PMID:21686271

  15. Dynamic interaction between 14-3-3zeta and bax during TNF-α-induced apoptosis in living cells

    NASA Astrophysics Data System (ADS)

    Gao, Xuejuan; Xing, Da; Chen, Tongsheng

    2006-09-01

    Bax, a proapoptotic member of the Bcl-2 family, localizes largely in the cytoplasm but redistributes to mitochondria and undergoes oligomerization to induce the release of apoptogenic factors such as cytochrome c in response to apoptotic stimuli. Cytoplasmic protein 14-3-3zeta binds to Bax and, upon apoptotic stimulation, releases Bax by a caspase-independent mechanism. However, the direct interaction of the cytoplasmic 14-3-3zeta and Bax in living cells has not been observed. In present study, to monitor the dynamic interaction between 14-3-3zeta and Bax in living cells in real time during apoptosis induced by tumor necrosis factor (TNF-α), DsRed-14-3-3zeta plasmid is constructed. By cotransfecting DsRed- 14-3-3zeta and GFP-Bax plasmids into human lung adenocarcinoma cells (ASTC-a-1), we observe the dynamic interaction between Bax and 14-3-3zeta using fluorescence resonance energy transfer (FRET) technique on laser scanning confocal microscope. The results show that 14-3-3zeta remains in the cytoplasm but GFP-Bax translocates to mitochondria completely after TNF-α stimulation. These results reveal that 14-3-3zeta binds directly to Bax in healthy cells, and that 14-3-3zeta negatively regulates Bax translocation to mitochondria during TNF-α-induced apoptosis.

  16. 14-3-3ζ Mediates Tau Aggregation in Human Neuroblastoma M17 Cells.

    PubMed

    Li, Tong; Paudel, Hemant K

    2016-01-01

    Microtubule-associated protein tau is the major component of paired helical filaments (PHFs) associated with the neuropathology of Alzheimer's disease (AD). Tau in the normal brain binds and stabilizes microtubules. Tau isolated from PHFs is hyperphosphorylated, which prevents it from binding to microtubules. Tau phosphorylation has been suggested to be involved in the development of NFT pathology in the AD brain. Recently, we showed that 14-3-3ζ is bound to tau in the PHFs and when incubated in vitro with 14-3-3ζ, tau formed amorphous aggregates, single-stranded straight filaments, double stranded ribbon-like filaments and PHF-like filaments that displayed close resemblance with corresponding ultrastructures of AD brain. Surprisingly however, phosphorylated and non-phosphorylated tau aggregated in a similar manner, indicating that tau phosphorylation does not affect in vitro tau aggregation (Qureshi et al (2013) Biochemistry 52, 6445-6455). In this study, we have examined the role of tau phosphorylation in tau aggregation in cellular level. We have found that in human M17 neuroblastoma cells, tau phosphorylation by GSK3β or PKA does not cause tau aggregation, but promotes 14-3-3ζ-induced tau aggregation by destabilizing microtubules. Microtubule disrupting drugs also promoted 14-3-3ζ-induced tau aggregation without changing tau phosphorylation in M17 cell. In vitro, when incubated with 14-3-3ζ and microtubules, nonphosphorylated tau bound to microtubules and did not aggregate. Phosphorylated tau on the other hand did not bind to microtubules and aggregated. Our data indicate that microtubule-bound tau is resistant to 14-3-3ζ-induced tau aggregation and suggest that tau phosphorylation promotes tau aggregation in the brain by detaching tau from microtubules and thus making it accessible to 14-3-3ζ. PMID:27548710

  17. 14-3-3ζ Mediates Tau Aggregation in Human Neuroblastoma M17 Cells

    PubMed Central

    Li, Tong; Paudel, Hemant K.

    2016-01-01

    Microtubule-associated protein tau is the major component of paired helical filaments (PHFs) associated with the neuropathology of Alzheimer’s disease (AD). Tau in the normal brain binds and stabilizes microtubules. Tau isolated from PHFs is hyperphosphorylated, which prevents it from binding to microtubules. Tau phosphorylation has been suggested to be involved in the development of NFT pathology in the AD brain. Recently, we showed that 14-3-3ζ is bound to tau in the PHFs and when incubated in vitro with 14-3-3ζ, tau formed amorphous aggregates, single-stranded straight filaments, double stranded ribbon-like filaments and PHF-like filaments that displayed close resemblance with corresponding ultrastructures of AD brain. Surprisingly however, phosphorylated and non-phosphorylated tau aggregated in a similar manner, indicating that tau phosphorylation does not affect in vitro tau aggregation (Qureshi et al (2013) Biochemistry 52, 6445–6455). In this study, we have examined the role of tau phosphorylation in tau aggregation in cellular level. We have found that in human M17 neuroblastoma cells, tau phosphorylation by GSK3β or PKA does not cause tau aggregation, but promotes 14-3-3ζ-induced tau aggregation by destabilizing microtubules. Microtubule disrupting drugs also promoted 14-3-3ζ-induced tau aggregation without changing tau phosphorylation in M17 cell. In vitro, when incubated with 14-3-3ζ and microtubules, nonphosphorylated tau bound to microtubules and did not aggregate. Phosphorylated tau on the other hand did not bind to microtubules and aggregated. Our data indicate that microtubule-bound tau is resistant to 14-3-3ζ-induced tau aggregation and suggest that tau phosphorylation promotes tau aggregation in the brain by detaching tau from microtubules and thus making it accessible to 14-3-3ζ. PMID:27548710

  18. Isolation of Escherichia coli synthesized recombinant eukaryotic proteins that contain epsilon-N-acetyllysine.

    PubMed Central

    Violand, B. N.; Schlittler, M. R.; Lawson, C. Q.; Kane, J. F.; Siegel, N. R.; Smith, C. E.; Kolodziej, E. W.; Duffin, K. L.

    1994-01-01

    Recombinant porcine (rpST) and bovine somatotropins (rbST) synthesized in Escherichia coli contain the amino acid, epsilon-N-acetyllysine. This amino acid was initially discovered in place of the normal lysine144 in a modified reversed-phase HPLC (RP-HPLC) species of rpST. Mass spectrometry and amino acid sequencing of a tryptic peptide isolated from this RP-HPLC purified protein were used to identify this altered residue as epsilon-N-acetyllysine. Ion-exchange chromatography was utilized to prepare low isoelectric point (pI) forms of rpST and rbST, which are enriched in epsilon-N-acetyllysine. Electrospray mass spectrometry demonstrated that the majority of the protein in these low pI fractions contained species 42 Da larger than normal. Immobilized pH gradient electrophoresis (IPG) of the ion-exchange purified low pI proteins was used to isolate several monoacetylated species of rpST and rbST. The location of the acetylated lysine in each IPG-purified protein was determined by tryptic peptide mapping and amino acid sequencing of the altered tryptic peptides. Amino acid analyses of enzymatic digests of rpST and rbST were also used to confirm the presence of epsilon-N-acetyllysine in these recombinant proteins. These data demonstrate that a significant portion of rpST and rbST produced in E. coli contain this unusual amino acid. PMID:7920255

  19. Tar DNA binding protein of 43 kDa (TDP-43), 14-3-3 proteins and copper/zinc superoxide dismutase (SOD1) interact to modulate NFL mRNA stability. Implications for altered RNA processing in amyotrophic lateral sclerosis (ALS).

    PubMed

    Volkening, Kathryn; Leystra-Lantz, Cheryl; Yang, Wenchang; Jaffee, Howard; Strong, Michael J

    2009-12-11

    Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease characterized by progressive motor neuron degeneration in association with neurofilament (NF) aggregate formation. This process is accompanied by an alteration in the stoichiometry of NF subunit protein expression such that the steady state levels of the low molecular weight NF (NFL) mRNA levels are selectively suppressed. We have previously shown that each of TDP-43, 14-3-3 and mutant SOD1 can function as NFL mRNA 3'UTR binding proteins that directly affect the stability of NFL transcripts. In this study, we demonstrate that the interaction of TDP-43 with the NFL mRNA 3' UTR involves ribonucleotide (UG) motifs present on stem loops of the 3'UTR as well as the RRM1 and RRM2 motifs of TDP-43. Ex vivo, TDP-43, 14-3-3 and SOD1 proteins interact to modulate NFL mRNA stability, although in vivo, only TDP-43 and either mutant or wild-type SOD1 co-localize in ALS motor neurons. TDP-43 was observed to co-localize to RNA transport granules (Staufen immunoreactive) in both control and ALS spinal motor neurons. In contrast, both stress granules (TIA-1 immunoreactive) and processing bodies (P-bodies; XRN-1 immunoreactive) were more prevalent in ALS motor neurons than in controls and demonstrated strong co-localization with TDP-43. Using RNA-IP-PCR, we further demonstrate that NFL mRNA is preferentially sequestered to both stress granules and P-bodies in ALS. These data suggest that NFL mRNA processing is fundamentally altered in ALS spinal motor neurons to favour compartmentalization within both stress granules and P-bodies, and that TDP-43 plays a fundamental role in this process.

  20. Comparative analysis of the 14-3-3 gene and its expression in Echinococcus granulosus and Echinococcus multilocularis metacestodes.

    PubMed

    Siles-Lucas, M; Nunes, C P; Zaha, A

    2001-03-01

    It was suggested that the unlimited proliferative capacity of the Echinococcus multilocularis metacestode may be related to overproduction of the 14-3-3 protein. As is known, the proliferative capacities of E. granulosus and E. multilocularis metacestodes are very different. By comparing the expression levels of the 14-3-3 gene between in vitro-obtained E. granulosus and E. multilocularis metacestodes, we were able to provide experimental evidence of the potential relation between 14-3-3 over-expression and tumour-like growth in E. multilocularis metacestodes. RT-PCR and Northern blot experiments indicated that 14-3-3 expression level is about 4-fold higher in the E. multilocularis metacestode. This differential expression was confirmed both by immunoblotting and immunocytochemistry experiments, which allowed detection of the protein in the cyst wall from E. multilocularis but not in the cyst wall from E. granulosus. The alignment of the Echinococcus 14-3-3 cDNA sequence with known 14-3-3 isoforms from other organisms, grouped the parasite sequence into the tumour growth-related isoforms. The known relation between over-expression of some 14-3-3 isoforms and tumour-related processes, together with the present results, suggest that the Echinococcus 14-3-3 protein could be one of the molecules responsible for the differences between E. granulosus and E. multilocularis metacestode growth behaviour.

  1. Expression of 14-3-3 transcript isoforms in response to ethanol exposure and their regulation by miRNAs.

    PubMed

    Mathew, Divya Elizabeth; Larsen, Kaitlyn; Janeczek, Paulina; Lewohl, Joanne M

    2016-09-01

    The 14-3-3 proteins are a family of highly conserved molecular chaperones involved in the regulation of a number of key cellular functions including metabolism, stress response, protein trafficking, cell-cycle control, signal transduction, transcription, apoptosis and neurotransmission. 14-3-3 proteins have also been implicated in the pathophysiology of neurodegenerative disorders including Alzheimer disease and Parkinson disease. Recent studies have also shown that 14-3-3s are differentially expressed in the frontal cortex of human alcoholics suggesting a potential role in the pathophysiology of alcohol use disorders. Here we measured the expression of 14-3-3 transcripts in HEK293T cells in response to chronic ethanol treatment. Five of the seven transcripts (14-3-3β, 14-3-3γ, 14-3-3ζ, 14-3-3ε and 14-3-3θ) were significantly down-regulated following chronic exposure to ethanol for a five day period with these changes persisting even after withdrawal from ethanol treatment. One transcript, 14-3-3σ, was significantly up-regulated following chronic ethanol exposure and 14-3-3η showed no differences in expression in the same treatment model. The pattern of expression changes is similar to those seen in the frontal cortex of human alcoholics. To investigate the role of miRNAs in mediating the expression changes we measured the expression of the 14-3-3 transcripts following transfection with miR-203, miR-144 and miR-7 mimics. Although these miRNAs had predicted target sites in the 3'untranslated region of each 14-3-3 isoform, only miR-203 resulted in a down-regulation of 14-3-3θ transcript. In addition, the expression of 14-3-3γ was upregulated following transfection with miR-7 and miR-144 mimics. MiRNA regulation of these isoforms following alcohol exposure may lead to alterations in neurotransmission, the balance between cell survival and cell death, as well as changing the rewarding effects of alcohol. PMID:27370936

  2. Histone Deacetylase 6 (HDAC6) Promotes the Pro-survival Activity of 14-3-3ζ via Deacetylation of Lysines within the 14-3-3ζ Binding Pocket*

    PubMed Central

    Mortenson, Jeffrey B.; Heppler, Lisa N.; Banks, Courtney J.; Weerasekara, Vajira K.; Whited, Matthew D.; Piccolo, Stephen R.; Johnson, William E.; Thompson, J. Will; Andersen, Joshua L.

    2015-01-01

    The phospho-binding protein 14-3-3ζ acts as a signaling hub controlling a network of interacting partners and oncogenic pathways. We show here that lysines within the 14-3-3ζ binding pocket and protein-protein interface can be modified by acetylation. The positive charge on two of these lysines, Lys49 and Lys120, is critical for coordinating 14-3-3ζ-phosphoprotein interactions. Through screening, we identified HDAC6 as the Lys49/Lys120 deacetylase. Inhibition of HDAC6 blocks 14-3-3ζ interactions with two well described interacting partners, Bad and AS160, which triggers their dephosphorylation at Ser112 and Thr642, respectively. Expression of an acetylation-refractory K49R/K120R mutant of 14-3-3ζ rescues both the HDAC6 inhibitor-induced loss of interaction and Ser112/Thr642 phosphorylation. Furthermore, expression of the K49R/K120R mutant of 14-3-3ζ inhibits the cytotoxicity of HDAC6 inhibition. These data demonstrate a novel role for HDAC6 in controlling 14-3-3ζ binding activity. PMID:25770209

  3. Phosphorylation-related modification at the dimer interface of 14-3-3ω dramatically alters monomer interaction dynamics.

    PubMed

    Denison, Fiona C; Gökirmak, Tufan; Ferl, Robert J

    2014-01-01

    14-3-3 proteins are generally believed to function as dimers in a broad range of eukaryotic signaling pathways. The consequences of altering dimer stability are not fully understood. Phosphorylation at Ser58 in the dimer interface of mammalian 14-3-3 isoforms has been reported to destabilise dimers. An equivalent residue, Ser62, is present across most Arabidopsis isoforms but the effects of phosphorylation have not been studied in plants. Here, we assessed the effects of phosphorylation at the dimer interface of Arabidopsis 14-3-3ω. Protein kinase A phosphorylated 14-3-3ω at Ser62 and also at a previously unreported residue, Ser67, resulting in a monomer-sized band on native-PAGE. Phosphorylation at Ser62 alone, or with additional Ser67 phosphorylation, was investigated using phosphomimetic versions of 14-3-3ω. In electrophoretic and chromatographic analyses, these mutants showed mobilities intermediate between dimers and monomers. Mobility was increased by detergents, by reducing protein concentration, or by increasing pH or temperature. Urea gradient gels showed complex structural transitions associated with alterations of dimer stability, including a previously unreported 14-3-3 aggregation phenomenon. Overall, our analyses showed that dimer interface modifications such as phosphorylation reduce dimer stability, dramatically affecting the monomer-dimer equilibrium and denaturation trajectory. These findings may have dramatic implications for 14-3-3 structure and function in vivo.

  4. Sporadic Creutzfeldt-Jakob disease diagnostic accuracy is improved by a new CSF ELISA 14-3-3γ assay.

    PubMed

    Leitão, M J; Baldeiras, I; Almeida, M R; Ribeiro, M H; Santos, A C; Ribeiro, M; Tomás, J; Rocha, S; Santana, I; Oliveira, C R

    2016-05-13

    Protein 14-3-3 is a reliable marker of rapid neuronal damage, specifically increased in cerebrospinal fluid (CSF) of sporadic Creutzfeldt-Jakob disease (sCJD) patients. Its detection is usually performed by Western Blot (WB), prone to methodological issues. Our aim was to evaluate the diagnostic performance of a recently developed quantitative enzyme-linked immunosorbent (ELISA) assay for 14-3-3γ, in comparison with WB and other neurodegeneration markers. CSF samples from 145 patients with suspicion of prion disease, later classified as definite sCJD (n=72) or Non-prion diseases (Non-CJD; n=73) comprised our population. 14-3-3 protein was determined by WB and ELISA. Total Tau (t-Tau) and phosphorylated Tau (p-Tau) were also evaluated. Apolipoprotein E gene (ApoE) and prionic protein gene (PRNP) genotyping was assessed. ELISA 14-3-3γ levels were significantly increased in sCJD compared to Non-CJD patients (p<0.001), showing very good accuracy (AUC=0.982; sensitivity=97%; specificity=94%), and matching WB results in 81% of all cases. It strongly correlated with t-Tau and p-Tau (p<0.0001), showing slightly higher specificity (14-3-3 WB - 63%; Tau - 90%; p-Tau/t-Tau ratio - 88%). From WB inconclusive results (n=44), ELISA 14-3-3γ correctly classified 41 patients. Additionally, logistic regression analysis selected ELISA 14-3-3γ as the best single predictive marker for sCJD (overall accuracy=93%). ApoE and PRNP genotypes did not influence ELISA 14-3-3γ levels. Despite specificity for 14-3-3γ isoform, ELISA results not only match WB evaluation but also help discrimination of inconclusive results. Our results therefore reinforce this assay as a single screening test, allowing higher sample throughput and unequivocal results. PMID:26940479

  5. Genome-Wide Identification, Phylogeny, and Expression Analyses of the 14-3-3 Family Reveal Their Involvement in the Development, Ripening, and Abiotic Stress Response in Banana

    PubMed Central

    Li, Meiying; Ren, Licheng; Xu, Biyu; Yang, Xiaoliang; Xia, Qiyu; He, Pingping; Xiao, Susheng; Guo, Anping; Hu, Wei; Jin, Zhiqiang

    2016-01-01

    Plant 14-3-3 proteins act as critical components of various cellular signaling processes and play an important role in regulating multiple physiological processes. However, less information is known about the 14-3-3 gene family in banana. In this study, 25 14-3-3 genes were identified from the banana genome. Based on the evolutionary analysis, banana 14-3-3 proteins were clustered into ε and non-ε groups. Conserved motif analysis showed that all identified banana 14-3-3 genes had the typical 14-3-3 motif. The gene structure of banana 14-3-3 genes showed distinct class-specific divergence between the ε group and the non-ε group. Most banana 14-3-3 genes showed strong transcript accumulation changes during fruit development and postharvest ripening in two banana varieties, indicating that they might be involved in regulating fruit development and ripening. Moreover, some 14-3-3 genes also showed great changes after osmotic, cold, and salt treatments in two banana varieties, suggested their potential role in regulating banana response to abiotic stress. Taken together, this systemic analysis reveals the involvement of banana 14-3-3 genes in fruit development, postharvest ripening, and response to abiotic stress and provides useful information for understanding the functions of 14-3-3 genes in banana. PMID:27713761

  6. Genome-Wide Identification, Classification, and Expression Analysis of 14-3-3 Gene Family in Populus

    PubMed Central

    Tian, Fengxia; Wang, Tan; Xie, Yuli; Zhang, Jin; Hu, Jianjun

    2015-01-01

    Background In plants, 14-3-3 proteins are encoded by a large multigene family and are involved in signaling pathways to regulate plant development and protection from stress. Although twelve Populus 14-3-3s were identified based on the Populus trichocarpa genome V1.1 in a previous study, no systematic analysis including genome organization, gene structure, duplication relationship, evolutionary analysis and expression compendium has been conducted in Populus based on the latest P. trichocarpa genome V3.0. Principal Findings Here, a comprehensive analysis of Populus 14-3-3 family is presented. Two new 14-3-3 genes were identified based on the latest P. trichocarpa genome. In P. trichocarpa, fourteen 14-3-3 genes were grouped into ε and non-ε group. Exon-intron organizations of Populus 14-3-3s are highly conserved within the same group. Genomic organization analysis indicated that purifying selection plays a pivotal role in the retention and maintenance of Populus 14-3-3 family. Protein conformational analysis indicated that Populus 14-3-3 consists of a bundle of nine α-helices (α1-α9); the first four are essential for formation of the dimer, while α3, α5, α7, and α9 form a conserved peptide-binding groove. In addition, α1, α3, α5, α7, and α9 were evolving at a lower rate, while α2, α4, and α6 were evolving at a relatively faster rate. Microarray analyses showed that most Populus 14-3-3s are differentially expressed across tissues and upon exposure to various stresses. Conclusions The gene structures and their coding protein structures of Populus 14-3-3s are highly conserved among group members, suggesting that members of the same group might also have conserved functions. Microarray and qRT-PCR analyses showed that most Populus 14-3-3s were differentially expressed in various tissues and were induced by various stresses. Our investigation provided a better understanding of the complexity of the 14-3-3 gene family in poplars. PMID:25867623

  7. 14-3-3ζ regulates the mitochondrial respiratory reserve linked to platelet phosphatidylserine exposure and procoagulant function

    PubMed Central

    Schoenwaelder, Simone M.; Darbousset, Roxane; Cranmer, Susan L.; Ramshaw, Hayley S.; Orive, Stephanie L.; Sturgeon, Sharelle; Yuan, Yuping; Yao, Yu; Krycer, James R.; Woodcock, Joanna; Maclean, Jessica; Pitson, Stuart; Zheng, Zhaohua; Henstridge, Darren C.; van der Wal, Dianne; Gardiner, Elizabeth E.; Berndt, Michael C.; Andrews, Robert K.; James, David E.; Lopez, Angel F.; Jackson, Shaun P.

    2016-01-01

    The 14-3-3 family of adaptor proteins regulate diverse cellular functions including cell proliferation, metabolism, adhesion and apoptosis. Platelets express numerous 14-3-3 isoforms, including 14-3-3ζ, which has previously been implicated in regulating GPIbα function. Here we show an important role for 14-3-3ζ in regulating arterial thrombosis. Interestingly, this thrombosis defect is not related to alterations in von Willebrand factor (VWF)–GPIb adhesive function or platelet activation, but instead associated with reduced platelet phosphatidylserine (PS) exposure and procoagulant function. Decreased PS exposure in 14-3-3ζ-deficient platelets is associated with more sustained levels of metabolic ATP and increased mitochondrial respiratory reserve, independent of alterations in cytosolic calcium flux. Reduced platelet PS exposure in 14-3-3ζ-deficient mice does not increase bleeding risk, but results in decreased thrombin generation and protection from pulmonary embolism, leading to prolonged survival. Our studies define an important role for 14-3-3ζ in regulating platelet bioenergetics, leading to decreased platelet PS exposure and procoagulant function. PMID:27670677

  8. Akt Phosphorylates Connexin43 on Ser373, a “Mode-1” Binding Site for 14-3-3

    PubMed Central

    PARK, DARREN J.; WALLICK, CHRISTOPHER J.; MARTYN, KENDRA D.; LAU, ALAN F.; JIN, CHENGSHI; WARN-CRAMER, BONNIE J.

    2009-01-01

    Connexin43 (Cx43) is a membrane-spanning protein that forms channels that bridge the gap between adjacent cells and this allows for the intercellular exchange of information. Cx43 is regulated by phosphorylation and by interacting proteins. “Mode-1” interaction with 14-3-3 requires phosphorylation of Ser373 on Cx43 (Park et al. 2006). Akt phosphorylates and targets a number of proteins to interactions with 14-3-3. Here we demonstrate that Akt phosphorylates Cx43 on Ser373 and Ser369; antibodies recognizing Akt-phosphorylated sites or phospho-Ser “mode-1” 14-3-3-binding sites recognize a protein from EGF-treated cells that migrates as Cx43, and GST-14-3-3 binds to Cx43 phosphorylated endogenously in EGF-treated cells. Confocal microscopy supports the co-localization of Cx43 with Akt and with 14-3-3 at the outer edges of gap junctional plaques. These data suggest that Akt could target Cx43 to an interaction with 14-3-3 that may play a role in the forward trafficking of Cx43 multimers and/or their incorporation into existing gap junctional plaques. PMID:18163231

  9. 14-3-3ε and ζ Regulate Neurogenesis and Differentiation of Neuronal Progenitor Cells in the Developing Brain

    PubMed Central

    Wachi, Tomoka; Hunt, Robert F.; Baraban, Scott C.; Taya, Shinichiro; Ramshaw, Hayley; Kaibuchi, Kozo; Schwarz, Quenten P.; Lopez, Angel F.

    2014-01-01

    During brain development, neural progenitor cells proliferate and differentiate into neural precursors. These neural precursors migrate along the radial glial processes and localize at their final destination in the cortex. Numerous reports have revealed that 14-3-3 proteins are involved in many neuronal activities, although their functions in neurogenesis remain unclear. Here, using 14-3-3ε/ζ double knock-out mice, we found that 14-3-3 proteins are important for proliferation and differentiation of neural progenitor cells in the cortex, resulting in neuronal migration defects and seizures. 14-3-3 deficiency resulted in the increase of δ-catenin and the decrease of β-catenin and αN-catenin. 14-3-3 proteins regulated neuronal differentiation into neurons via direct interactions with phosphorylated δ-catenin to promote F-actin formation through a catenin/Rho GTPase/Limk1/cofilin signaling pathway. Conversely, neuronal migration defects seen in the double knock-out mice were restored by phosphomimic Ndel1 mutants, but not δ-catenin. Our findings provide new evidence that 14-3-3 proteins play important roles in neurogenesis and neuronal migration via the regulation of distinct signaling cascades. PMID:25186760

  10. Intracellular Generation of a Diterpene-Peptide Conjugate that Inhibits 14-3-3-Mediated Interactions.

    PubMed

    Parvatkar, Prakash; Kato, Nobuo; Uesugi, Motonari; Sato, Shin-Ichi; Ohkanda, Junko

    2015-12-23

    Synthetic agents that disrupt intracellular protein-protein interactions (PPIs) are highly desirable for elucidating signaling networks and developing new therapeutics. However, designing cell-penetrating large molecules equipped with the many functional groups necessary for binding to large interfaces remains challenging. Here, we describe a rational strategy for the intracellular oxime ligation-mediated generation of an amphipathic bivalent inhibitor composed of a peptide and diterpene natural product, fusicoccin, which binds 14-3-3 protein with submicromolar affinity. Our results demonstrate that co-treatment of cells with small module molecules, the aldehyde-containing fusicoccin 1 and the aminooxy-containing peptide 2, generates the corresponding conjugate 3 in cells, resulting in significant cytotoxicity. In contrast, chemically synthesized 3 is not cytotoxic, likely due to its inability to penetrate cells. Compound 3, but not 1 or 2, disrupts endogenous 14-3-3/cRaf interactions, suggesting that cell death is caused by inhibition of 14-3-3 activity. These results suggest that intracellular generation of large-sized molecules may serve as a new approach for modulating PPIs.

  11. The Silencing of a 14-3-3ɛ Homolog in Tenebrio molitor Leads to Increased Antimicrobial Activity in Hemocyte and Reduces Larval Survivability

    PubMed Central

    Seo, Gi Won; Jo, Yong Hun; Seong, Jeong Hwan; Park, Ki Beom; Patnaik, Bharat Bhusan; Tindwa, Hamisi; Kim, Sun-Am; Lee, Yong Seok; Kim, Yu Jung; Han, Yeon Soo

    2016-01-01

    The 14-3-3 family of phosphorylated serine-binding proteins acts as signaling molecules in biological processes such as metabolism, division, differentiation, autophagy, and apoptosis. Herein, we report the requirement of 14-3-3ɛ isoform from Tenebrio molitor (Tm14-3-3ɛ) in the hemocyte antimicrobial activity. The Tm14-3-3ɛ transcript is 771 nucleotides in length and encodes a polypeptide of 256 amino acid residues. The protein has the typical 14-3-3 domain, the nuclear export signal (NES) sequence, and the peptide binding residues. The Tm14-3-3ɛ transcript shows a significant three-fold expression in the hemocyte of T. molitor larvae when infected with Escherichia coli Tm14-3-3ɛ silenced larvae show significantly lower survival rates when infected with E. coli. Under Tm14-3-3ɛ silenced condition, a strong antimicrobial activity is elicited in the hemocyte of the host inoculated with E. coli. This suggests impaired secretion of antimicrobial peptides (AMP) into the hemolymph. Furthermore, a reduction in AMP secretion under Tm14-3-3ɛ silenced condition would be responsible for loss in the capacity to kill bacteria and might explain the reduced survivability of the larvae upon E. coli challenge. This shows that Tm14-3-3ɛ is required to maintain innate immunity in T. molitor by enabling antimicrobial secretion into the hemolymph and explains the functional specialization of the isoform. PMID:27556493

  12. The Silencing of a 14-3-3ɛ Homolog in Tenebrio molitor Leads to Increased Antimicrobial Activity in Hemocyte and Reduces Larval Survivability.

    PubMed

    Seo, Gi Won; Jo, Yong Hun; Seong, Jeong Hwan; Park, Ki Beom; Patnaik, Bharat Bhusan; Tindwa, Hamisi; Kim, Sun-Am; Lee, Yong Seok; Kim, Yu Jung; Han, Yeon Soo

    2016-01-01

    The 14-3-3 family of phosphorylated serine-binding proteins acts as signaling molecules in biological processes such as metabolism, division, differentiation, autophagy, and apoptosis. Herein, we report the requirement of 14-3-3ɛ isoform from Tenebrio molitor (Tm14-3-3ɛ) in the hemocyte antimicrobial activity. The Tm14-3-3ɛ transcript is 771 nucleotides in length and encodes a polypeptide of 256 amino acid residues. The protein has the typical 14-3-3 domain, the nuclear export signal (NES) sequence, and the peptide binding residues. The Tm14-3-3ɛ transcript shows a significant three-fold expression in the hemocyte of T. molitor larvae when infected with Escherichia coli Tm14-3-3ɛ silenced larvae show significantly lower survival rates when infected with E. coli. Under Tm14-3-3ɛ silenced condition, a strong antimicrobial activity is elicited in the hemocyte of the host inoculated with E. coli. This suggests impaired secretion of antimicrobial peptides (AMP) into the hemolymph. Furthermore, a reduction in AMP secretion under Tm14-3-3ɛ silenced condition would be responsible for loss in the capacity to kill bacteria and might explain the reduced survivability of the larvae upon E. coli challenge. This shows that Tm14-3-3ɛ is required to maintain innate immunity in T. molitor by enabling antimicrobial secretion into the hemolymph and explains the functional specialization of the isoform. PMID:27556493

  13. 14-3-3{sigma} controls corneal epithelial cell proliferation and differentiation through the Notch signaling pathway

    SciTech Connect

    Xin, Ying; Lu, Qingxian; Li, Qiutang

    2010-02-19

    14-3-3{sigma} (also called stratifin) is specifically expressed in the stratified squamous epithelium and its function was recently shown to be linked to epidermal stratification and differentiation in the skin. In this study, we investigated its role in corneal epithelium cell proliferation and differentiation. We showed that the 14-3-3{sigma} mutation in repeated epilation (Er) mutant mice results in a dominant negative truncated protein. Primary corneal epithelial cells expressing the dominant negative protein failed to undergo high calcium-induced cell cycle arrest and differentiation. We further demonstrated that blocking endogenous 14-3-3{sigma} activity in corneal epithelial cells by overexpressing dominative negative 14-3-3{sigma} led to reduced Notch activity and Notch1/2 transcription. Significantly, expression of the active Notch intracellular domain overcame the block in epithelial cell differentiation in 14-3-3{sigma} mutant-expressing corneal epithelial cells. We conclude that 14-3-3{sigma} is critical for regulating corneal epithelial proliferation and differentiation by regulating Notch signaling activity.

  14. Protein kinase C epsilon activation delays neuronal depolarization during cardiac arrest in the euthermic arctic ground squirrel.

    PubMed

    Dave, Kunjan R; Anthony Defazio, Richard; Raval, Ami P; Dashkin, Oleksandr; Saul, Isabel; Iceman, Kimberly E; Perez-Pinzon, Miguel A; Drew, Kelly L

    2009-08-01

    During the pre-hibernation season, arctic ground squirrels (AGS) can tolerate 8 min of asphyxial cardiac arrest (CA) without detectable brain pathology. Better understanding of the mechanisms regulating innate ischemia tolerance in AGS has the potential to facilitate the development of novel prophylactic agents to induce ischemic tolerance in patients at risk of stroke or CA. We hypothesized that neuroprotection in AGS involves robust maintenance of ion homeostasis similar to anoxia-tolerant turtles. Ion homeostasis was assessed by monitoring ischemic depolarization (ID) in cerebral cortex during CA in vivo and during oxygen glucose deprivation in vitro in acutely prepared hippocampal slices. In both models, the onset of ID was significantly delayed in AGS compared with rats. The epsilon protein kinase C (epsilonPKC) is a key mediator of neuroprotection and inhibits both Na+/K+-ATPase and voltage-gated sodium channels, primary mediators of the collapse of ion homeostasis during ischemia. The selective peptide inhibitor of epsilonPKC (epsilonV1-2) shortened the time to ID in brain slices from AGS but not in rats despite evidence that epsilonV1-2 decreased activation of epsilonPKC in brain slices from both rats and AGS. These results support the hypothesis that epsilonPKC activation delays the collapse of ion homeostasis during ischemia in AGS.

  15. The Peripheral Binding of 14-3-3γ to Membranes Involves Isoform-Specific Histidine Residues

    PubMed Central

    Ying, Ming; Halskau, Øyvind; Baumann, Anne; Rodriguez-Larrea, David; Costas, Miguel; Underhaug, Jarl; Sanchez-Ruiz, Jose M.; Martinez, Aurora

    2012-01-01

    Mammalian 14-3-3 protein scaffolds include seven conserved isoforms that bind numerous phosphorylated protein partners and regulate many cellular processes. Some 14-3-3-isoforms, notably γ, have elevated affinity for membranes, which might contribute to modulate the subcellular localization of the partners and substantiate the importance of investigating molecular mechanisms of membrane interaction. By applying surface plasmon resonance we here show that the binding to phospholipid bilayers is stimulated when 14-3-3γ is complexed with its partner, a peptide corresponding to the Ser19-phosphorylated N-terminal region of tyrosine hydroxylase. Moreover, membrane interaction is dependent on salts of kosmotropic ions, which also stabilize 14-3-3γ. Electrostatic analysis of available crystal structures of γ and of the non-membrane-binding ζ-isoform, complemented with molecular dynamics simulations, indicate that the electrostatic potential distribution of phosphopeptide-bound 14-3-3γ is optimal for interaction with the membrane through amphipathic helices at the N-terminal dimerization region. In addition, His158, and especially His195, both specific to 14-3-3γ and located at the convex lateral side, appeared to be pivotal for the ligand induced membrane interaction, as corroborated by site-directed mutagenesis. The participation of these histidine residues might be associated to their increased protonation upon membrane binding. Overall, these results reveal membrane-targeting motifs and give insights on mechanisms that furnish the 14-3-3γ scaffold with the capacity for tuned shuffling from soluble to membrane-bound states. PMID:23189152

  16. Transmural differences in rat ventricular protein kinase C epsilon correlate with its functional regulation of a transient cardiac K+ current.

    PubMed

    Thorneloe, K S; Liu, X F; Walsh, M P; Shimoni, Y

    2001-05-15

    The effects of PKC activation on a transient (It) and a sustained (Iss) cardiac K+ current and the subcellular distribution of the epsilon isoform of PKC (PKC(epsilon)) were compared in epicardial and endocardial regions of the rat ventricle. Activation of PKC(epsilon) with a diacylglycerol analogue (di-octanoyl-glycerol (DiC8), 20 (mu)M) leads to differential effects in epicardial and endocardial cells. In epicardial cells (n = 20) It and Iss are attenuated by 17.7 +/- 2.1 % and 11.9 +/- 3.1 %, respectively (means +/- S.E.M.). In endocardial cells It attenuation was significantly smaller (4.6 +/- 1.6 %, n = 14, P < 0.0005). Iss attenuation was similar to that in epicardial cells (10.5 +/- 3.8 %). PKC[epsilon] expression was measured by Western blotting. Calculated endocardial/epicardial ratios showed no regional differences in total protein extracts (1.04 +/- 0.11, mean +/- S.E.M, n = 4), but PKC[epsilon] distribution in the cytosolic fraction showed a marked difference, with significantly (P < 0.05) higher levels in endocardial extracts. The cytosolic endocardial/epicardial PKC[epsilon] ratio was 2.64 +/- 0.24 (n = 4), indicating a reduced amount of PKC[epsilon] in the membrane fraction of the endocardium. This could account for the reduced effect of DiC8 on It in endocardial myocytes. Under both hypothyroid and streptozotocin-induced diabetic conditions the difference in endocardial and epicardial cytosolic PKC[epsilon] levels was absent (ratios of 0.86 +/- 0.21 (n = 4) and 1.09 +/- 0.16 (n = 3), respectively; means +/- S.E.M.). Ratios in the total protein extracts were not significantly different from those in control conditions. The results show transmural differences in the functional effects of PKC(epsilon) activation on a cardiac K+ current, and in the subcellular distribution of PKC(epsilon). These differences are absent in diabetic and hypothyroid conditions.

  17. Protein kinase Calpha and epsilon small-molecule targeted therapeutics: a new roadmap to two Holy Grails in drug discovery?

    PubMed

    O'Brian, Catherine A; Chu, Feng; Bornmann, William G; Maxwell, David S

    2006-02-01

    Protein kinase (PK)Calpha and epsilon are rational targets for cancer therapy. However, targeted experimental therapeutics that inhibit PKCalpha or epsilon are unavailable. The authors established recently that covalent modification of an active-site cysteine in human PKCepsilon, Cys452, by small molecules, for example 2-mercaptoethanolamine, is necessary and sufficient to render PKCepsilon kinase-dead. Cys452 is conserved in only eleven human protein kinase genes, including PKCalpha. Therefore, the design of small molecules that bind PKC active sites with an electrophile substituent positioned proximal to the Cys452 side chain may lead to targeted therapeutics that selectively inhibit PKCepsilon, PKCalpha or other PKC isozymes.

  18. Melatonin synthesis: 14-3-3-dependent activation and inhibition of arylalkylamine N-acetyltransferase mediated by phosphoserine-205.

    PubMed

    Ganguly, Surajit; Weller, Joan L; Ho, Anthony; Chemineau, Philippe; Malpaux, Benoit; Klein, David C

    2005-01-25

    The nocturnal increase in circulating melatonin in vertebrates is regulated by the activity of arylalkylamine N-acetyltransferase (AANAT), the penultimate enzyme in the melatonin pathway (serotonin --> N-acetylserotonin --> melatonin). Large changes in activity are linked to cyclic AMP-dependent protein kinase-mediated phosphorylation of AANAT T31. Phosphorylation of T31 promotes binding of AANAT to the dimeric 14-3-3 protein, which activates AANAT by increasing arylalkylamine affinity. In the current study, a putative second AANAT cyclic AMP-dependent protein kinase phosphorylation site, S205, was found to be approximately 55% phosphorylated at night, when T31 is approximately 40% phosphorylated. These findings indicate that ovine AANAT is dual-phosphorylated. Moreover, light exposure at night decreases T31 and S205 phosphorylation, consistent with a regulatory role of both sites. AANAT peptides containing either T31 or S205 associate with 14-3-3zeta in a phosphorylation-dependent manner; binding through phosphorylated (p)T31 is stronger than that through pS205, consistent with the location of only pT31 in a mode I binding motif, one of two recognized high-affinity 14-3-3-binding motifs AANAT protein binds to 14-3-3zeta through pT31 or pS205. Two-site binding lowers the Km for arylalkylamine substrate to approximately 30 microM. In contrast, single-site pS205 binding increases the Km to approximately 1,200 microM. Accordingly, the switch from dual to single pS205 binding of AANAT to 14-3-3 changes the Km for substrates by approximately 40-fold. pS205 seems to be part of a previously unrecognized 14-3-3-binding motif-pS/pT (X1-2)-COOH, referred to here as mode III.

  19. 14-3-3 isoforms are induced by aldosterone and participate in its regulation of epithelial sodium channels.

    PubMed

    Liang, Xiubin; Peters, Kathryn W; Butterworth, Michael B; Frizzell, Raymond A

    2006-06-16

    Aldosterone increases sodium absorption across renal collecting duct cells primarily by increasing the apical membrane expression of ENaC, the sodium entry channel. Nedd4-2, a ubiquitin-protein isopeptide ligase, tags ENaC with ubiquitin for internalization and degradation, but when it is phosphorylated by the aldosterone-induced kinase, SGK1, Nedd4-2 is inhibited and apical ENaC density and sodium absorption increase. We evaluated the hypothesis that 14-3-3 proteins participate in the aldosterone-mediated regulation of ENaC by associating with phosphorylated Nedd4-2. Mouse cortical collecting duct (mCCD) epithelia cultured on filters expressed several 14-3-3 isoforms; this study focused on an isoform whose expression was induced 3-fold by aldosterone, 14-3-3beta. In polarized mCCD epithelia, aldosterone elicited significant, time-dependent increases in the expression of alpha-ENaC, SGK1, phospho-Nedd4-2, and 14-3-3beta without altering total Nedd4-2. Aldosterone decreased the interaction of alpha-ENaC with Nedd4-2, and with similar kinetics increased the association of 14-3-3beta with phospho-Nedd4-2. Short interfering RNA-induced knockdown of 14-3-3beta blunted the aldosterone-induced increase in alpha-ENaC expression, returned alpha-ENaC-Nedd4-2 binding toward prealdosterone levels, and blocked the aldosterone-stimulated increase in transepithelial sodium transport. Incubation of cell extracts with a selective phospho-Nedd4-2 antibody blocked the aldosterone-induced association of 14-3-3beta with Nedd4-2, implicating SGK1 phosphorylation at Ser-328 as the primary site of 14-3-3beta binding. Our studies show that aldosterone increases the expression of 14-3-3beta, which interacts with phospho-Nedd4-2 to block its interaction with ENaC, thus enhancing sodium absorption by increasing apical membrane ENaC density. PMID:16613846

  20. Keratin 23, a novel DPC4/Smad4 target gene which binds 14-3-3ε

    PubMed Central

    2011-01-01

    Background Inactivating mutations of SMAD4 are frequent in metastatic colorectal carcinomas. In previous analyses, we were able to show that restoration of Smad4 expression in Smad4-deficient SW480 human colon carcinoma cells was adequate to suppress tumorigenicity and invasive potential, whereas in vitro cell growth was not affected. Using this cellular model system, we searched for new Smad4 targets comparing nuclear subproteomes derived from Smad4 re-expressing and Smad4 negative SW480 cells. Methods High resolution two-dimensional (2D) gel electrophoresis was applied to identify novel Smad4 targets in the nuclear subproteome of Smad4 re-expressing SW480 cells. The identified candidate protein Keratin 23 was further characterized by tandem affinity purification. Immunoprecipitation, subfractionation and immunolocalization studies in combination with RNAi were used to validate the Keratin 23-14-3-3ε interaction. Results We identified keratins 8 and 18, heat shock proteins 60 and 70, plectin 1, as well as 14-3-3ε and γ as novel proteins present in the KRT23-interacting complex. Co-immunoprecipitation and subfractionation analyses as well as immunolocalization studies in our Smad4-SW480 model cells provided further evidence that KRT23 associates with 14-3-3ε and that Smad4 dependent KRT23 up-regulation induces a shift of the 14-3-3ε protein from a nuclear to a cytoplasmic localization. Conclusion Based on our findings we propose a new regulatory circuitry involving Smad4 dependent up-regulation of KRT23 (directly or indirectly) which in turn modulates the interaction between KRT23 and 14-3-3ε leading to a cytoplasmic sequestration of 14-3-3ε. This cytoplasmic KRT23-14-3-3 interaction may alter the functional status of the well described 14-3-3 scaffold protein, known to regulate key cellular processes, such as signal transduction, cell cycle control, and apoptosis and may thus be a previously unappreciated facet of the Smad4 tumor suppressive circuitry. PMID

  1. The role of 14-3-3{beta} in transcriptional activation of estrogen receptor {alpha} and its involvement in proliferation of breast cancer cells

    SciTech Connect

    Kim, Yoonseo; Kim, Hyungjin; Jang, Sung-Wuk; Ko, Jesang

    2011-10-14

    Highlights: {yields} 14-3-3{beta} interacts with ER{alpha} and the interaction is Akt-dependent. {yields} 14-3-3{beta} regulates the transcriptional activity of ER{alpha} in a ligand-dependent manner. {yields} 14-3-3{beta} increases expressions of ER{alpha} target genes. {yields} 14-3-3{beta} increases breast cancer cell proliferation. -- Abstract: The estrogen receptor (ER) functions as a transcription factor that mediates the effects of estrogen. ER{alpha}, which plays a crucial role in the development and progression of breast cancer, is activated by estrogen binding, leading to receptor phosphorylation, dimerization, and recruitment of co-activators and chaperons to the estrogen-bound receptor complex. The 14-3-3 proteins bind to target proteins via phosphorylation and influence many cellular events by altering their subcellular localization or acting as a chaperone. However, regulation of ER{alpha} expression and transactivation by the 14-3-3 proteins has not been reported. We demonstrate that 14-3-3{beta} functions as a positive regulator of ER{alpha} through a direct protein-protein interaction in an estrogen-dependent manner. Ectopic expression of 14-3-3{beta} stimulated ER{alpha}-mediated transcriptional activity in MCF-7 breast cancer cells. Enhanced ER{alpha} transcriptional activity due to 14-3-3{beta} increased the expressions of the endogenous ER{alpha} target genes, leading to proliferation of breast cancer cells. We suggest that 14-3-3{beta} has oncogenic potential in breast cancer via binding to ER{alpha} and activation of the transcriptional activity of ER{alpha}.

  2. Characterization and small-molecule stabilization of the multisite tandem binding between 14-3-3 and the R domain of CFTR.

    PubMed

    Stevers, Loes M; Lam, Chan V; Leysen, Seppe F R; Meijer, Femke A; van Scheppingen, Daphne S; de Vries, Rens M J M; Carlile, Graeme W; Milroy, Lech G; Thomas, David Y; Brunsveld, Luc; Ottmann, Christian

    2016-03-01

    Cystic fibrosis is a fatal genetic disease, most frequently caused by the retention of the CFTR (cystic fibrosis transmembrane conductance regulator) mutant protein in the endoplasmic reticulum (ER). The binding of the 14-3-3 protein to the CFTR regulatory (R) domain has been found to enhance CFTR trafficking to the plasma membrane. To define the mechanism of action of this protein-protein interaction, we have examined the interaction in vitro. The disordered multiphosphorylated R domain contains nine different 14-3-3 binding motifs. Furthermore, the 14-3-3 protein forms a dimer containing two amphipathic grooves that can potentially bind these phosphorylated motifs. This results in a number of possible binding mechanisms between these two proteins. Using multiple biochemical assays and crystal structures, we show that the interaction between them is governed by two binding sites: The key binding site of CFTR (pS768) occupies one groove of the 14-3-3 dimer, and a weaker, secondary binding site occupies the other binding groove. We show that fusicoccin-A, a natural-product tool compound used in studies of 14-3-3 biology, can stabilize the interaction between 14-3-3 and CFTR by selectively interacting with a secondary binding motif of CFTR (pS753). The stabilization of this interaction stimulates the trafficking of mutant CFTR to the plasma membrane. This definition of the druggability of the 14-3-3-CFTR interface might offer an approach for cystic fibrosis therapeutics. PMID:26888287

  3. Characterization and small-molecule stabilization of the multisite tandem binding between 14-3-3 and the R domain of CFTR.

    PubMed

    Stevers, Loes M; Lam, Chan V; Leysen, Seppe F R; Meijer, Femke A; van Scheppingen, Daphne S; de Vries, Rens M J M; Carlile, Graeme W; Milroy, Lech G; Thomas, David Y; Brunsveld, Luc; Ottmann, Christian

    2016-03-01

    Cystic fibrosis is a fatal genetic disease, most frequently caused by the retention of the CFTR (cystic fibrosis transmembrane conductance regulator) mutant protein in the endoplasmic reticulum (ER). The binding of the 14-3-3 protein to the CFTR regulatory (R) domain has been found to enhance CFTR trafficking to the plasma membrane. To define the mechanism of action of this protein-protein interaction, we have examined the interaction in vitro. The disordered multiphosphorylated R domain contains nine different 14-3-3 binding motifs. Furthermore, the 14-3-3 protein forms a dimer containing two amphipathic grooves that can potentially bind these phosphorylated motifs. This results in a number of possible binding mechanisms between these two proteins. Using multiple biochemical assays and crystal structures, we show that the interaction between them is governed by two binding sites: The key binding site of CFTR (pS768) occupies one groove of the 14-3-3 dimer, and a weaker, secondary binding site occupies the other binding groove. We show that fusicoccin-A, a natural-product tool compound used in studies of 14-3-3 biology, can stabilize the interaction between 14-3-3 and CFTR by selectively interacting with a secondary binding motif of CFTR (pS753). The stabilization of this interaction stimulates the trafficking of mutant CFTR to the plasma membrane. This definition of the druggability of the 14-3-3-CFTR interface might offer an approach for cystic fibrosis therapeutics.

  4. Transcriptional Regulation of YWHAZ, the Gene Encoding 14-3-3ζ

    PubMed Central

    Kasinski, Andrea; Dong, Xueyuan; Khuri, Fadlo R.; Boss, Jeremy; Fu, Haian

    2014-01-01

    Aberrant expression of oncogenic 14-3-3 proteins is correlated with poor survival of cancer patients. While the underlying mechanism of the abnormal expression in tumors remains elusive for the six oncogenic 14-3-3 isoforms; the potential involvement of a transcriptional component has been suggested. Unfortunately, little experimental data has been reported to support this hypothesis. In this study we describe the genetic structure of YWHAZ, the gene encoding 14-3-3ζ, including the identification of previously unreported transcript variants. In total, five transcript variants were revealed and their expressions confirmed in a panel of cell lines. Expressed sequence tag (EST) database mining and in vitro rapid-amplification of cDNA ends (RACE) confirmed that one variant, 1c, represents >80% of the expressed transcripts, which is also the most efficiently translated. An analysis of the proximal promoter of this variant revealed a functional Cyclic-AMP Response Element (CRE). Factors that bound to the CRE element were recognized through fractionation and subsequent EMSAs. This analysis identified CREB and ATF-1 as the trans-interacting factors. Cell-based assays confirm that ATF-1, and to a lesser extent CREB, bind the endogenous YWHAZ promoter especially under TNF-α stimulating conditions. In support of a role of ATF-1 in the regulation of YWHAZ, silencing of ATF-1 resulted in a marked reduction in two of the five YWHAZ transcripts. These data suggest a novel mechanism for the transcriptional regulation of a major pro-survival gene, YWHAZ, by ATF-1. PMID:24690670

  5. Drosophila 14-3-3ε has a crucial role in anti-microbial peptide secretion and innate immunity.

    PubMed

    Shandala, Tetyana; Woodcock, Joanna M; Ng, Yeap; Biggs, Lisa; Skoulakis, Efthimios M C; Brooks, Doug A; Lopez, Angel F

    2011-07-01

    The secretion of anti-microbial peptides is recognised as an essential step in innate immunity, but there is limited knowledge of the molecular mechanism controlling the release of these effectors from immune response cells. Here, we report that Drosophila 14-3-3ε mutants exhibit reduced survival when infected with either Gram-positive or Gram-negative bacteria, indicating a functional role for 14-3-3ε in innate immunity. In 14-3-3ε mutants, there was a reduced release of the anti-microbial peptide Drosomycin into the haemolymph, which correlated with an accumulation of Drosomycin-containing vesicles near the plasma membrane of cells isolated from immune response tissues. Drosomycin appeared to be delivered towards the plasma membrane in Rab4- and Rab11-positive vesicles and smaller Rab11-positive vesicles. RNAi silencing of Rab11 and Rab4 significantly blocked the anterograde delivery of Drosomycin from the perinuclear region to the plasma membrane. However, in 14-3-3ε mutants there was an accumulation of small Rab11-positive vesicles near the plasma membrane. This vesicular phenotype was similar to that observed in response to the depletion of the vesicular Syntaxin protein Syx1a. In wild-type Drosophila immune tissue, 14-3-3ε was detected adjacent to Rab11, and partially overlapping with Syx1a, on vesicles near the plasma membrane. We conclude that 14-3-3ε is required for Rab11-positive vesicle function, which in turn enables antimicrobial peptide secretion during an innate immune response.

  6. Lagging strand DNA synthesis by calf thymus DNA polymerases alpha, beta, delta and epsilon in the presence of auxiliary proteins.

    PubMed Central

    Podust, V N; Hübscher, U

    1993-01-01

    By using a defined gapped DNA substrate that mimics a lagging strand of 230 nucleotides and that contains a defined pause site, we have analyzed calf thymus DNA polymerases (pol) alpha, beta, delta, and epsilon in the presence of the three auxiliary proteins proliferating cell nuclear antigen (PCNA), replication factor C (RF-C) and replication protein A (RP-A) for their ability to complete an Okazaki fragment. Pol alpha alone could fill the gap to near completion, but was strongly stopped by the pause site. Addition of low amounts of RP-A resulted in an increased synthesis by pol alpha past the pause site. In contrast, high amounts of RP-A strongly inhibited gap filling by pol alpha. Further inhibition was evident when the two other auxiliary proteins, PCNA and RF-C, were added in addition to RP-A. Pol beta could completely fill the gap without specific pausing and also was strongly inhibited by RP-A. PCNA and RF-C had no detectable effect on pol beta. Pol delta, relied as expected, on all three auxiliary proteins for complete gap filling synthesis and could, upon longer incubation, perform a limited amount of strand displacement synthesis. Pol epsilon core enzyme was able to fill the gap completely, but like pol alpha, essentially stopped at the pause site. This pausing could only be overcome upon addition of PCNA, RF-C and E. coli single-stranded DNA binding protein. Thus pol epsilon holoenzyme preferentially synthesized to the end of the gap without pausing. Ligation of the DNA products indicated that pol beta core enzyme, pol delta and pol epsilon holoenzymes (but not pol alpha and pol epsilon core enzyme) synthesized products that were easily ligatable. Our results indicate that pol epsilon holoenzyme fills a defined lagging strand gapped template to exact completion and is able to pass a pause site. The data favour the hypothesis of Burgers (Burgers, P.M.J. (1991) J. Biol. Chem. 266, 22698-22706) that pol epsilon might be a candidate for the second

  7. IFNγ-induced suppression of β-catenin signaling: evidence for roles of Akt and 14.3.3ζ

    PubMed Central

    Nava, Porfirio; Kamekura, Ryuta; Quirós, Miguel; Medina-Contreras, Oscar; Hamilton, Ross W.; Kolegraff, Keli N.; Koch, Stefan; Candelario, Aurora; Romo-Parra, Hector; Laur, Oskar; Hilgarth, Roland S.; Denning, Timothy L.; Parkos, Charles A.; Nusrat, Asma

    2014-01-01

    The proinflammatory cytokine interferon γ (IFNγ ) influences intestinal epithelial cell (IEC) homeostasis in a biphasic manner by acutely stimulating proliferation that is followed by sustained inhibition of proliferation despite continued mucosal injury. β-Catenin activation has been classically associated with increased IEC proliferation. However, we observed that IFNγ inhibits IEC proliferation despite sustained activation of Akt/β-catenin signaling. Here we show that inhibition of Akt/β-catenin–mediated cell proliferation by IFNγ is associated with the formation of a protein complex containing phosphorylated β-catenin 552 (pβ-cat552) and 14.3.3ζ. Akt1 served as a bimodal switch that promotes or inhibits β-catenin transactivation in response to IFNγ stimulation. IFNγ initially promotes β-catenin transactivation through Akt-dependent C-terminal phosphorylation of β-catenin to promote its association with 14.3.3ζ. Augmented β-catenin transactivation leads to increased Akt1 protein levels, and active Akt1 accumulates in the nucleus, where it phosphorylates 14.3.3ζ to translocate 14.3.3ζ/β-catenin from the nucleus, thereby inhibiting β-catenin transactivation and IEC proliferation. These results outline a dual function of Akt1 that suppresses IEC proliferation during intestinal inflammation. PMID:25079689

  8. Whey protein concentrate doped electrospun poly(epsilon-caprolactone) fibers for antibiotic release improvement.

    PubMed

    Ahmed, Said Mahmoud; Ahmed, Hanaa; Tian, Chang; Tu, Qin; Guo, Yadan; Wang, Jinyi

    2016-07-01

    Design and fabrication of scaffolds using appropriate biomaterials are a key step for the creation of functionally engineered tissues and their clinical applications. Poly(epsilon-caprolactone) (PCL), a biodegradable and biocompatible material with negligible cytotoxicity, is widely used to fabricate nanofiber scaffolds by electrospinning for the applications of pharmaceutical products and wound dressings. However, the use of PCL as such in tissue engineering is limited due to its poor bioregulatory activity, high hydrophobicity, lack of functional groups and neutral charge. With the attempt to found nanofiber scaffolds with antibacterial activity for skin tissue engineering, in this study, whey protein concentrate (WPC) was used to modify the PCL nanofibers by doping it in the PCL electrospun solution. By adding proteins into PCL nanofibers, the degradability of the fibers may be increased, and this further allows an antibiotic incorporated in the fibers to be efficiently released. The morphology, wettability and degradation of the as-prepared PCL/WPC nanofibers were carefully characterized. The results showed that the PCL/WPC nanofibers possessed good morphology and wettability, as well as high degradation ability to compare with the pristine PCL fibers. Afterwords, tetracycline hydrochloride as a model antibiotic drug was doped in the PCL/WPC nanofibers. In vitro drug release assays demonstrated that PCL/WPC nanofibers had higher antibiotic release capability than the PCL nanofibers. Also, antibacterial activity evaluation against various bacteria showed that the drug-doped PCL/WPC fibers possessed more efficient antibacterial activity than the PCL nanofibers. PMID:27022878

  9. Interactions of c-Raf-1 with phosphatidylserine and 14-3-3.

    PubMed

    McPherson, R A; Harding, A; Roy, S; Lane, A; Hancock, J F

    1999-07-01

    Activation of Raf-1 occurs at the plasma membrane. We recently showed that 14-3-3 must be complexed with Raf-1 for efficient recruitment to the plasma membrane and activation by Ras, but that 14-3-3 is completely displaced from Raf-1 following plasma membrane binding. We show here that the Raf-1 zinc finger is not absolutely required for 14-3-3 binding but is required to stabilize the interaction between Raf-1 and 14-3-3. Incubation of Raf-1 with phosphatidylserine, an inner plasma membrane phospholipid, results in removal of 14-3-3 and an increase in Raf-1 kinase activity, whereas removal of 14-3-3 from Raf-1 using specific phosphopeptides substantially reduces Raf-1 basal kinase activity. Displacement of 14-3-3 from activated Raf-1 by phosphopeptides has no effect on kinase activity if Raf-1 is first removed from solution, but completely eradicates kinase activity of soluble activated Raf-1. These results suggest a mechanism for the removal of 14-3-3 from Raf-1 at the plasma membrane and show that removal of 14-3-3 from Raf-1 has markedly different effects depending on experimental conditions.

  10. Selective chemical genetic inhibition of protein kinase C epsilon reduces ethanol consumption in mice.

    PubMed

    Maiya, Rajani; McMahon, Thomas; Wang, Dan; Kanter, Benjamin; Gandhi, Dev; Chapman, Holly L; Miller, Jacklyn; Messing, Robert O

    2016-08-01

    Reducing expression or inhibiting translocation of protein kinase C epsilon (PKCε) prolongs ethanol intoxication and decreases ethanol consumption in mice. However, we do not know if this phenotype is due to reduced PKCε kinase activity or to impairment of kinase-independent functions. In this study, we used a chemical-genetic strategy to determine whether a potent and highly selective inhibitor of PKCε catalytic activity reduces ethanol consumption. We generated ATP analog-specific PKCε (AS-PKCε) knock-in mice harboring a point mutation in the ATP binding site of PKCε that renders the mutant kinase highly sensitive to inhibition by 1-tert-butyl-3-naphthalen-1-ylpyrazolo[3,4-d]pyrimidin-4-amine (1-NA-PP1). Systemically administered 1-NA-PP1 readily crossed the blood brain barrier and inhibited PKCε-mediated phosphorylation. 1-NA-PP1 reversibly reduced ethanol consumption by AS-PKCε mice but not by wild type mice lacking the AS-PKCε mutation. These results support the development of inhibitors of PKCε catalytic activity as a strategy to reduce ethanol consumption, and they demonstrate that the AS- PKCε mouse is a useful tool to study the role of PKCε in behavior. PMID:26947945

  11. Protein Kinase C Epsilon Promotes Cerebral Ischemic Tolerance Via Modulation of Mitochondrial Sirt5

    PubMed Central

    Morris-Blanco, Kahlilia C.; Dave, Kunjan R.; Saul, Isabel; Koronowski, Kevin B.; Stradecki, Holly M.; Perez-Pinzon, Miguel A.

    2016-01-01

    Sirtuin 5 (SIRT5) is a mitochondrial-localized NAD+-dependent lysine desuccinylase and a major regulator of the mitochondrial succinylome. We wanted to determine whether SIRT5 is activated by protein kinase C epsilon (PKCε)-mediated increases in mitochondrial Nampt and whether SIRT5 regulates mitochondrial bioenergetics and neuroprotection against cerebral ischemia. In isolated mitochondria from rat cortical cultures, PKCε activation increased SIRT5 levels and desuccinylation activity in a Nampt-dependent manner. PKCε activation did not lead to significant modifications in SIRT3 activity, the major mitochondrial lysine deacetylase. Assessments of mitochondrial bioenergetics in the cortex of wild type (WT) and SIRT5−/− mice revealed that SIRT5 regulates oxygen consumption in the presence of complex I, complex II, and complex IV substrates. To explore the potential role of SIRT5 in PKCε-mediated protection, we compared WT and SIRT5−/− mice by employing both in vitro and in vivo ischemia paradigms. PKCε-mediated decreases in cell death following oxygen-glucose deprivation were abolished in cortical cultures harvested from SIRT5−/− mice. Furthermore, PKCε failed to prevent cortical degeneration following MCAO in SIRT5−/− mice. Collectively this demonstrates that SIRT5 is an important mitochondrial enzyme for protection against metabolic and ischemic stress following PKCε activation in the brain. PMID:27435822

  12. 14-3-3γ Prevents Centrosome Amplification and Neoplastic Progression

    PubMed Central

    Mukhopadhyay, Amitabha; Sehgal, Lalit; Bose, Arunabha; Gulvady, Anushree; Senapati, Parijat; Thorat, Rahul; Basu, Srikanta; Bhatt, Khyati; Hosing, Amol S.; Balyan, Renu; Borde, Lalit; Kundu, Tapas K.; Dalal, Sorab N.

    2016-01-01

    More than 80% of malignant tumors show centrosome amplification and clustering. Centrosome amplification results from aberrations in the centrosome duplication cycle, which is strictly coordinated with DNA-replication-cycle. However, the relationship between cell-cycle regulators and centrosome duplicating factors is not well understood. This report demonstrates that 14-3-3γ localizes to the centrosome and 14-3-3γ loss leads to centrosome amplification. Loss of 14-3-3γ results in the phosphorylation of NPM1 at Thr-199, causing early centriole disjunction and centrosome hyper-duplication. The centrosome amplification led to aneuploidy and increased tumor formation in mice. Importantly, an increase in passage of the 14-3-3γ-knockdown cells led to an increase in the number of cells containing clustered centrosomes leading to the generation of pseudo-bipolar spindles. The increase in pseudo-bipolar spindles was reversed and an increase in the number of multi-polar spindles was observed upon expression of a constitutively active 14-3-3-binding-defective-mutant of cdc25C (S216A) in the 14-3-3γ knockdown cells. The increase in multi-polar spindle formation was associated with decreased cell viability and a decrease in tumor growth. Our findings uncover the molecular basis of regulation of centrosome duplication by 14-3-3γ and inhibition of tumor growth by premature activation of the mitotic program and the disruption of centrosome clustering. PMID:27253419

  13. The cell cycle regulator 14-3-3σ opposes and reverses cancer metabolic reprogramming.

    PubMed

    Phan, Liem; Chou, Ping-Chieh; Velazquez-Torres, Guermarie; Samudio, Ismael; Parreno, Kenneth; Huang, Yaling; Tseng, Chieh; Vu, Thuy; Gully, Chris; Su, Chun-Hui; Wang, Edward; Chen, Jian; Choi, Hyun-Ho; Fuentes-Mattei, Enrique; Shin, Ji-Hyun; Shiang, Christine; Grabiner, Brian; Blonska, Marzenna; Skerl, Stephen; Shao, Yiping; Cody, Dianna; Delacerda, Jorge; Kingsley, Charles; Webb, Douglas; Carlock, Colin; Zhou, Zhongguo; Hsieh, Yun-Chih; Lee, Jaehyuk; Elliott, Andrew; Ramirez, Marc; Bankson, Jim; Hazle, John; Wang, Yongxing; Li, Lei; Weng, Shaofan; Rizk, Nibal; Wen, Yu Ye; Lin, Xin; Wang, Hua; Wang, Huamin; Zhang, Aijun; Xia, Xuefeng; Wu, Yun; Habra, Mouhammed; Yang, Wei; Pusztai, Lajos; Yeung, Sai-Ching; Lee, Mong-Hong

    2015-01-01

    Extensive reprogramming of cellular energy metabolism is a hallmark of cancer. Despite its importance, the molecular mechanism controlling this tumour metabolic shift remains not fully understood. Here we show that 14-3-3σ regulates cancer metabolic reprogramming and protects cells from tumorigenic transformation. 14-3-3σ opposes tumour-promoting metabolic programmes by enhancing c-Myc poly-ubiquitination and subsequent degradation. 14-3-3σ demonstrates the suppressive impact on cancer glycolysis, glutaminolysis, mitochondrial biogenesis and other major metabolic processes of tumours. Importantly, 14-3-3σ expression levels predict overall and recurrence-free survival rates, tumour glucose uptake and metabolic gene expression in breast cancer patients. Thus, these results highlight that 14-3-3σ is an important regulator of tumour metabolism, and loss of 14-3-3σ expression is critical for cancer metabolic reprogramming. We anticipate that pharmacologically elevating the function of 14-3-3σ in tumours could be a promising direction for targeted anticancer metabolism therapy development in future. PMID:26179207

  14. The cell cycle regulator 14-3-3σ opposes and reverses cancer metabolic reprogramming

    PubMed Central

    Phan, Liem; Chou, Ping-Chieh; Velazquez-Torres, Guermarie; Samudio, Ismael; Parreno, Kenneth; Huang, Yaling; Tseng, Chieh; Vu, Thuy; Gully, Chris; Su, Chun-Hui; Wang, Edward; Chen, Jian; Choi, Hyun-Ho; Fuentes-Mattei, Enrique; Shin, Ji-Hyun; Shiang, Christine; Grabiner, Brian; Blonska, Marzenna; Skerl, Stephen; Shao, Yiping; Cody, Dianna; Delacerda, Jorge; Kingsley, Charles; Webb, Douglas; Carlock, Colin; Zhou, Zhongguo; Hsieh, Yun-Chih; Lee, Jaehyuk; Elliott, Andrew; Ramirez, Marc; Bankson, Jim; Hazle, John; Wang, Yongxing; Li, Lei; Weng, Shaofan; Rizk, Nibal; Wen, Yu Ye; Lin, Xin; Wang, Hua; Wang, Huamin; Zhang, Aijun; Xia, Xuefeng; Wu, Yun; Habra, Mouhammed; Yang, Wei; Pusztai, Lajos; Yeung, Sai-Ching; Lee, Mong-Hong

    2015-01-01

    Summary Extensive reprogramming of cellular energy metabolism is a hallmark of cancer. Despite its importance, the molecular mechanism controlling this tumour metabolic shift remains not fully understood. Here we show that 14-3-3σ regulates cancer metabolic reprogramming and protects cells from tumourigenic transformation. 14-3-3σ opposes tumour-promoting metabolic programs by enhancing c-Myc poly-ubiquitination and subsequent degradation. 14-3-3σ demonstrates the suppressive impact on cancer glycolysis, glutaminolysis, mitochondrial biogenesis and other major metabolic processes of tumours. Importantly, 14-3-3σ expression levels predict overall and recurrence-free survival rates, tumour glucose uptake and metabolic gene expression in breast cancer patients. Thus, these results highlight that 14-3-3σ is an important regulator of tumour metabolism, and loss of 14-3-3σ expression is critical for cancer metabolic reprogramming. We anticipate that pharmacologically elevating the function of 14-3-3σ in tumours could be a promising direction for targeted anti-cancer metabolism therapy development in future. PMID:26179207

  15. 14-3-3 gene family in hybrid poplar and its involvement in tree defence against pathogens.

    PubMed

    Lapointe, G; Luckevich, M D; Cloutier, M; Séguin, A

    2001-06-01

    In ongoing investigations of the role of the signal transduction pathway in tree-pathogen interactions, four complete and two partial 14-3-3 cDNAs have been isolated which are members of a gene family. Comparisons of DNA sequences reveal a high degree of identity among the cDNAs, and, in some cases, higher than 75% sequence similarity with previously published sequences. Sequence analysis at the amino acid level uncovered potential phosphorylation sites, some of which were identical among the proteins, and some of which varied. Treatment of trees with chitosan, jasmonates or by wounding of leaves, caused increases in the levels of 14-3-3 mRNA transcripts. Since jasmonates and chitosan are signal transducers of defence reactions in plants, these results suggest a possible role for 14-3-3 proteins in the pathogen defence response of deciduous trees. Effects of elicitors on transcription of the pal gene were also monitored. Pal is a well-characterized, pathogen response-related gene.

  16. Impaired Binding of 14-3-3 to C-RAF in Noonan Syndrome Suggests New Approaches in Diseases with Increased Ras Signaling▿

    PubMed Central

    Molzan, Manuela; Schumacher, Benjamin; Ottmann, Corinna; Baljuls, Angela; Polzien, Lisa; Weyand, Michael; Thiel, Philipp; Rose, Rolf; Rose, Micheline; Kuhenne, Philipp; Kaiser, Markus; Rapp, Ulf R.; Kuhlmann, Jürgen; Ottmann, Christian

    2010-01-01

    The Ras-RAF-mitogen-activated protein kinase (Ras-RAF-MAPK) pathway is overactive in many cancers and in some developmental disorders. In one of those disorders, namely, Noonan syndrome, nine activating C-RAF mutations cluster around Ser259, a regulatory site for inhibition by 14-3-3 proteins. We show that these mutations impair binding of 14-3-3 proteins to C-RAF and alter its subcellular localization by promoting Ras-mediated plasma membrane recruitment of C-RAF. By presenting biophysical binding data, the 14-3-3/C-RAFpS259 crystal structure, and cellular analyses, we indicate a mechanistic link between a well-described human developmental disorder and the impairment of a 14-3-3/target protein interaction. As a broader implication of these findings, modulating the C-RAFSer259/14-3-3 protein-protein interaction with a stabilizing small molecule may yield a novel potential approach for treatment of diseases resulting from an overactive Ras-RAF-MAPK pathway. PMID:20679480

  17. Characterization and small-molecule stabilization of the multisite tandem binding between 14-3-3 and the R domain of CFTR

    PubMed Central

    Stevers, Loes M.; Lam, Chan V.; Leysen, Seppe F. R.; Meijer, Femke A.; van Scheppingen, Daphne S.; de Vries, Rens M. J. M.; Carlile, Graeme W.; Milroy, Lech G.; Thomas, David Y.; Brunsveld, Luc; Ottmann, Christian

    2016-01-01

    Cystic fibrosis is a fatal genetic disease, most frequently caused by the retention of the CFTR (cystic fibrosis transmembrane conductance regulator) mutant protein in the endoplasmic reticulum (ER). The binding of the 14-3-3 protein to the CFTR regulatory (R) domain has been found to enhance CFTR trafficking to the plasma membrane. To define the mechanism of action of this protein–protein interaction, we have examined the interaction in vitro. The disordered multiphosphorylated R domain contains nine different 14-3-3 binding motifs. Furthermore, the 14-3-3 protein forms a dimer containing two amphipathic grooves that can potentially bind these phosphorylated motifs. This results in a number of possible binding mechanisms between these two proteins. Using multiple biochemical assays and crystal structures, we show that the interaction between them is governed by two binding sites: The key binding site of CFTR (pS768) occupies one groove of the 14-3-3 dimer, and a weaker, secondary binding site occupies the other binding groove. We show that fusicoccin-A, a natural-product tool compound used in studies of 14-3-3 biology, can stabilize the interaction between 14-3-3 and CFTR by selectively interacting with a secondary binding motif of CFTR (pS753). The stabilization of this interaction stimulates the trafficking of mutant CFTR to the plasma membrane. This definition of the druggability of the 14-3-3–CFTR interface might offer an approach for cystic fibrosis therapeutics. PMID:26888287

  18. 14-3-3γ regulates cell viability and milk fat synthesis in lipopolysaccharide-induced dairy cow mammary epithelial cells

    PubMed Central

    LIU, LIXIN; ZHANG, LI; LIN, YE; BIAN, YANJIE; GAO, XUEJUN; QU, BO; LI, QINGZHANG

    2016-01-01

    Our previous study demonstrated that 14-3-3γ overexpression was able to inhibit the production of lipopolysaccharide (LPS)-induced cytokines in dairy cow mammary epithelial cells (DCMECs) by inhibiting the activation of nuclear factor-κB (NF-κB) signaling pathways. However, the association between 14-3-3γ overexpression and milk fat synthesis in LPS-induced DCMECs remains unclear. Therefore, the present study investigated the effect of 14-3-3γ on cell viability and milk fat synthesis in LPS-induced DCMECs. The results of the MTT assay and lactate dehydrogenase activity assay demonstrated that 14-3-3γ overexpression was able to attenuate LPS-induced cytotoxicity in DCMECs, and increase the viability of the cells. In addition, the results of reverse transcription-quantitative polymerase chain reaction suggested that mRNA expression levels of genes associated with milk fat synthesis, including sterol regulatory element binding protein (SREBP1), peroxisome proliferator-activated receptor-γ (PPARG), cluster of differentiation 36, acetyl-coA carboxylase (ACC), fatty acid synthase (FAS) and fatty acid binding protein-3, were significantly upregulated in cells overexpressing the 14-3-3γ protein. In addition, as compared with the LPS-treated group, the activities of FAS and ACC were significantly increased. Furthermore, western blotting demonstrated that 14-3-3γ overexpression enhanced the protein expression levels of phosphorylated SREBP1 and PPARG. These results suggested that high levels of 14-3-3γ protein were able to attenuate LPS-induced cell damage and promote milk fat synthesis in LPS-induced DCMECs by increasing the cell viability and upregulating the expression levels of transcription factors associated with milk fat synthesis. PMID:27073437

  19. Overexpression of 14-3-3z promotes tau phosphorylation at Ser262 and accelerates proteosomal degradation of synaptophysin in rat primary hippocampal neurons.

    PubMed

    Qureshi, Hamid Y; Han, Dong; MacDonald, Ryen; Paudel, Hemant K

    2013-01-01

    b-Amyloid peptide accumulation, tau hyperphosphorylation, and synapse loss are characteristic neuropathological symptoms of Alzheimer's disease (AD). Tau hyperphosphorylation is suggested to inhibit the association of tau with microtubules, making microtubules unstable and causing neurodegeneration. The mechanism of tau phosphorylation in AD brain, therefore, is of considerable significance. Although PHF-tau is phosphorylated at over 40 Ser/Thr sites, Ser(262) phosphorylation was shown to mediate b-amyloid neurotoxicity and formation of toxic tau lesions in the brain. In vitro, PKA is one of the kinases that phosphorylates tau at Ser(262), but the mechanism by which it phosphorylates tau in AD brain is not very clear. 14-3-3z is associated with neurofibrillary tangles and is upregulated in AD brain. In this study, we show that 14-3-3z promotes tau phosphorylation at Ser(262) by PKA in differentiating neurons. When overexpressed in rat hippocampal primary neurons, 14-3-3z causes an increase in Ser(262) phosphorylation, a decrease in the amount of microtubule-bound tau, a reduction in the amount of polymerized microtubules, as well as microtubule instability. More importantly, the level of pre-synaptic protein synaptophysin was significantly reduced. Downregulation of synaptophysin in 14-3-3z overexpressing neurons was mitigated by inhibiting the proteosome, indicating that 14-3-3z promotes proteosomal degradation of synaptophysin. When 14-3-3z overexpressing neurons were treated with the microtubule stabilizing drug taxol, tau Ser(262) phosphorylation decreased and synaptophysin level was restored. Our data demonstrate that overexpression of 14-3-3z accelerates proteosomal turnover of synaptophysin by promoting the destabilization of microtubules. Synaptophysin is involved in synapse formation and neurotransmitter release. Our results suggest that 14-3-3z may cause synaptic pathology by reducing synaptophysin levels in the brains of patients suffering from AD. PMID

  20. Oxidative damage of 14-3-3 zeta and gamma isoforms in Alzheimer's disease and cerebral amyloid angiopathy.

    PubMed

    Santpere, G; Puig, B; Ferrer, I

    2007-06-01

    Previous studies have shown oxidative damage resulting from amyloid Abeta exposure to cultured cells and in murine models. A target of oxidation is 14-3-3 which comprises a group of proteins involved in kinase activation and chaperone activity. The present study shows glycoxidative damage, as revealed with mono and bi-dimensional gel electrophoresis and Western blotting, followed by in-gel digestion and mass spectrometry, in the frontal cortex in Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA), a neurodegenerative disease with deposition of Abeta in cerebral blood vessels and in diffuse plaques unaccompanied by intraneuronal hyper-phosphorylated tau deposition. malondialdehyde-lysine (MDA-Lys)-, but not 4-hydroxy-2-nonenal (HNE)-immunoreactive adducts, and N-carboxyethyl-lysine (CEL), but not N-carboxymethyl-lysine (CML)-products, were present in 14-3-3 involving zeta and gamma isoforms in both AD and CAA. These findings demonstrate that 14-3-3 glyco- and lipoxidation occurs in AD and CAA, probably as a direct consequence of Abeta deposition.

  1. N epsilon,N epsilon-dimethyl-lysine cytochrome c as an NMR probe for lysine involvement in protein-protein complex formation.

    PubMed Central

    Moore, G R; Cox, M C; Crowe, D; Osborne, M J; Rosell, F I; Bujons, J; Barker, P D; Mauk, M R; Mauk, A G

    1998-01-01

    The reductively dimethylated derivatives of horse and yeast iso-1-ferricytochromes c have been prepared and characterized for use as NMR probes of the complexes formed by cytochrome c with bovine liver cytochrome b5 and yeast cytochrome c peroxidase. The electrostatic properties and structures of the derivatized cytochromes are not significantly perturbed by the modifications; neither are the electrostatics of protein-protein complex formation or rates of interprotein electron transfer. Two-dimensional 1H-13C NMR spectroscopy of the complexes formed by the derivatized cytochromes with cytochrome b5 and cytochrome c peroxidase has been used to investigate the number and identity of lysine residues of cytochrome c that are involved in interprotein interactions of cytochrome c. The NMR data are incompatible with simple static models proposed previously for the complexes formed by these proteins, but are consistent with the presence of multiple, interconverting complexes of comparable stability, consistent with studies employing Brownian dynamics to model the complexes. The NMR characteristics of the Nepsilon,Nepsilon-dimethyl-lysine groups, their chemical shift dispersion, oxidation state and temperature dependences and the possibility of chemical exchange phenomena are discussed with relevance to the utility of Nepsilon, Nepsilon-dimethyl-lysine's being a generally useful derivative for characterizing protein-protein complexes. PMID:9601073

  2. 14-3-3 regulates the nuclear import of class IIa histone deacetylases

    SciTech Connect

    Nishino, Tomonori G.; Miyazaki, Masaya; Hoshino, Hideto; Miwa, Yoshihiro; Horinouchi, Sueharu; Yoshida, Minoru

    2008-12-19

    Class IIa histone deacetylases (HDACs) form complexes with a class of transcriptional repressors in the nucleus. While screening for compounds that could block the association of HDAC4 with the BTB domain-containing transcriptional repressor Bach2, we discovered that phorbol 12-myristate 13-acetate (PMA) induced the cytoplasmic retention of HDAC4 mutants lacking a nuclear export signal (NES). Although PMA treatment and PKD overexpression has been proposed to facilitate the nuclear export of class IIa HDACs by creating 14-3-3 binding sites containing phosphoserines, our experiments using HDAC mutants demonstrated that PMA greatly reduces nuclear import. PMA treatment repressed the NLS activity in a manner dependent on 14-3-3 binding. These results suggest that nuclear HDAC4 is not tethered in the nucleus, but instead shuttles between the nucleus and the cytoplasm. Phosphorylation-induced 14-3-3 binding biases the balance of nucleo-cytoplasmic shuttling toward the cytoplasm by inhibiting nuclear import.

  3. Identification of 14-3-3β Gene as a Novel miR-152 Target Using a Proteome-based Approach*

    PubMed Central

    Jasinski-Bergner, Simon; Stehle, Franziska; Gonschorek, Evamaria; Kalich, Jana; Schulz, Kristin; Huettelmaier, Stefan; Braun, Juliane; Seliger, Barbara

    2014-01-01

    Recent studies demonstrated that miR-152 overexpression down-regulates the nonclassical human leukocyte antigen (HLA) class I molecule HLA-G in human tumors thereby contributing to their immune surveillance. Using two-dimensional gel electrophoresis followed by MALDI-TOF mass spectrometry, the protein expression profile of HLA-G+, miR-152low cells, and their miR-152-overexpressing (miRhigh) counterparts was compared leading to the identification of 24 differentially expressed proteins. These were categorized according to their function and localization demonstrating for most of them an important role in the initiation and progression of tumors. The novel miR-152 target 14-3-3 protein β/α/YWHAB (14-3-3β) is down-regulated upon miR-152 overexpression, although its overexpression was often found in tumors of distinct origin. The miR-152-mediated reduction of the 14-3-3β expression was accompanied by an up-regulation of BAX protein expression resulting in a pro-apoptotic phenotype. In contrast, the reconstitution of 14-3-3β expression in miR-152high cells increased the expression of the anti-apoptotic BCL2 gene, enhances the proliferative activity in the presence of the cytostatic drug paclitaxel, and causes resistance to apoptosis induced by this drug. By correlating clinical microarray data with the patients' outcome, a link between 14-3-3β and HLA-G expression was found, which could be associated with poor prognosis and overall survival of patients with tumors. Because miR-152 controls both the expression of 14-3-3β and HLA-G, it exerts a dual role in tumor cells by both altering the immunogenicity and the tumorigenicity. PMID:25228695

  4. 14-3-3 zeta down-regulates p53 in mammary epithelial cells and confers luminal filling.

    PubMed

    Danes, Christopher G; Wyszomierski, Shannon L; Lu, Jing; Neal, Christopher L; Yang, Wentao; Yu, Dihua

    2008-03-15

    Recent progress in diagnostic tools allows many breast cancers to be detected at an early preinvasive stage. Thus, a better understanding of the molecular basis of early breast cancer progression is essential. Previously, we discovered that 14-3-3 zeta is overexpressed in >40% of advanced breast cancers, and this overexpression predicts poor patient survival. Here, we examined at what stage of breast disease 14-3-3 zeta overexpression occurs, and we found that increased expression of 14-3-3 zeta begins at atypical ductal hyperplasia, an early stage of breast disease. To determine whether 14-3-3 zeta overexpression is a decisive early event in breast cancer, we overexpressed 14-3-3 zeta in MCF10A cells and examined its effect in a three-dimensional culture model. We discovered that 14-3-3 zeta overexpression severely disrupted the acini architecture resulting in luminal filling. Proper lumen formation is a result of anoikis, apoptosis due to detachment from the basement membrane. We found that 14-3-3 zeta overexpression conferred resistance to anoikis. Additionally, 14-3-3 zeta overexpression in MCF10A cells and in mammary epithelial cells (MEC) from 14-3-3 zeta transgenic mice reduced expression of p53, which is known to mediate anoikis. Mechanistically, 14-3-3 zeta induced hyperactivation of the phosphoinositide 3-kinase/Akt pathway which led to phosphorylation and translocation of the MDM2 E3 ligase resulting in increased p53 degradation. Ectopic expression of p53 restored luminal apoptosis in 14-3-3 zeta-overexpressing MCF10A acini in three-dimensional cultures. These data suggest that 14-3-3 zeta overexpression is a critical event in early breast disease, and down-regulation of p53 is one of the mechanisms by which 14-3-3 zeta alters MEC acini structure and increases the risk of breast cancer.

  5. Down-regulation of 14-3-3β exerts anti-cancer effects through inducing ER stress in human glioma U87 cells: Involvement of CHOP–Wnt pathway

    SciTech Connect

    Cao, Lei; Lei, Hui; Chang, Ming-Ze; Liu, Zhi-Qin; Bie, Xiao-Hua

    2015-07-10

    We previously identified 14-3-3β as a tumor-specific isoform of 14-3-3 protein in astrocytoma, but its functional role in glioma cells and underlying mechanisms are poorly understood. In the present study, we investigated the effects of 14-3-3β inhibition in human glioma U87 cells using specific targeted small interfering RNA (siRNA). The results showed that 14-3-3β is highly expressed in U87 cells but not in normal astrocyte SVGp12 cells. Knockdown of 14-3-3β by Si-14-3-3β transfection significantly decreased the cell viability but increased the LDH release in a time-dependent fashion in U87 cells, and these effects were accompanied with G0/G1 cell cycle arrest and apoptosis. In addition, 14-3-3β knockdown induced ER stress in U87 cells, as evidenced by ER calcium release, increased expression of XBP1S mRNA and induction of ER related pro-apoptotic factors. Down-regulation of 14-3-3β significantly decreased the nuclear localization of β-catenin and inhibited Topflash activity, which was shown to be reversely correlated with CHOP. Furthermore, Si-CHOP and sFRP were used to inhibit CHOP and Wnt, respectively. The results showed that the anti-cancer effects of 14-3-3β knockdown in U87 cells were mediated by increased expression of CHOP and followed inhibition of Wnt/β-catenin pathway. In summary, the remarkable efficiency of 14-3-3β knockdown to induce apoptotic cell death in U87 cells may find therapeutic application for the treatment of glioma patients. - Highlights: • Knockdown of 14-3-3β leads to cytotoxicity in human glioma U87 cells. • Knockdown of 14-3-3β induces cell cycle arrest and apoptosis in U87 cells. • Knockdown of 14-3-3β results in ER stress in U87 cells. • Knockdown of 14-3-3β inhibits Wnt/β-catenin pathway via CHOP activation.

  6. Increased BDNF protein expression after ischemic or PKC epsilon preconditioning promotes electrophysiologic changes that lead to neuroprotection

    PubMed Central

    Neumann, Jake T; Thompson, John W; Raval, Ami P; Cohan, Charles H; Koronowski, Kevin B; Perez-Pinzon, Miguel A

    2015-01-01

    Ischemic preconditioning (IPC) via protein kinase C epsilon (PKCɛ) activation induces neuroprotection against lethal ischemia. Brain-derived neurotrophic factor (BDNF) is a pro-survival signaling molecule that modulates synaptic plasticity and neurogenesis. Interestingly, BDNF mRNA expression increases after IPC. In this study, we investigated whether IPC or pharmacological preconditioning (PKCɛ activation) promoted BDNF-induced neuroprotection, if neuroprotection by IPC or PKCɛ activation altered neuronal excitability, and whether these changes were BDNF-mediated. We used both in vitro (hippocampal organotypic cultures and cortical neuronal-glial cocultures) and in vivo (acute hippocampal slices 48 hours after preconditioning) models of IPC or PKCɛ activation. BDNF protein expression increased 24 to 48 hours after preconditioning, where inhibition of the BDNF Trk receptors abolished neuroprotection against oxygen and glucose deprivation (OGD) in vitro. In addition, there was a significant decrease in neuronal firing frequency and increase in threshold potential 48 hours after preconditioning in vivo, where this threshold modulation was dependent on BDNF activation of Trk receptors in excitatory cortical neurons. In addition, 48 hours after PKCɛ activation in vivo, the onset of anoxic depolarization during OGD was significantly delayed in hippocampal slices. Overall, these results suggest that after IPC or PKCɛ activation, there are BDNF-dependent electrophysiologic modifications that lead to neuroprotection. PMID:25370861

  7. Interaction of Clostridium perfringens epsilon-toxin with biological and model membranes: A putative protein receptor in cells.

    PubMed

    Manni, Marco M; Sot, Jesús; Goñi, Félix M

    2015-03-01

    Epsilon-toxin (ETX) is a powerful toxin produced by some strains of Clostridium perfringens (classified as types B and D) that is responsible for enterotoxemia in animals. ETX forms pores through the plasma membrane of eukaryotic cells, consisting of a β-barrel of 14 amphipathic β-strands. ETX shows a high specificity for certain cell lines, of which Madin-Darby canine kidney (MDCK) is the first sensitive cell line identified and the most studied one. The aim of this study was to establish the role of lipids in the toxicity caused by ETX and the correlation of its activity in model and biological membranes. In MDCK cells, using cell counting and confocal microscopy, we have observed that the toxin causes cell death mediated by toxin binding to plasma membrane. Moreover, ETX binds and permeabilizes the membranes of giant plasma membrane vesicles (GPMV). However, little effect is observed on protein-free vesicles. The data suggest the essential role of a protein receptor for the toxin in cell membranes.

  8. ARF1-regulated coatomer directs the steady-state localization of protein kinase C epsilon at the Golgi apparatus.

    PubMed

    Peterson, Tabitha A; Stamnes, Mark

    2013-03-01

    Protein kinase C epsilon (PKCε) contributes to multiple signaling pathways affecting human disease. The function of PKCε requires it to undergo changes in subcellular distribution in response to signaling events. While the mechanisms underlying this translocation are incompletely understood, it involves the receptor for activated C kinase protein (RACK2/β'-COP). This receptor also functions as a vesicle coat protein in the secretory pathway where it is regulated by the small GTP-binding protein ADP-ribosylation factor, ARF1. We inhibited ARF1 activation to test the requirement for RACK2/β'-COP in PKCε localization in NIH3T3 fibroblasts. We found that steady-state localization of PKCε at the Golgi complex requires ARF1-regulated RACK2/β'-COP function. By contrast, we did not observe any defects in phorbol ester-induced translocation when ARF1 was inhibited. We also found that PKCε bound to isolated membranes through two distinct mechanisms. One mechanism was dependent upon RACK2/β'-COP while a second was RACK2/β'-COP-independent and stimulated by phorbol esters. Finally, we show that RACK2/β'-COP affects the subcellular distribution of a constitutively active form of PKCε, in a manner similar to what we observed for wild-type PKCε. Together, our data support a role for RACK2/β'-COP in the steady-state localization of PKCε at the Golgi apparatus, which may be independent of its role during PKCε translocation to the cell surface.

  9. Brainstem deficiency of the 14-3-3 regulator of serotonin synthesis: a proteomics analysis in the sudden infant death syndrome.

    PubMed

    Broadbelt, Kevin G; Rivera, Keith D; Paterson, David S; Duncan, Jhodie R; Trachtenberg, Felicia L; Paulo, Joao A; Stapels, Martha D; Borenstein, Natalia S; Belliveau, Richard A; Haas, Elisabeth A; Stanley, Christina; Krous, Henry F; Steen, Hanno; Kinney, Hannah C

    2012-01-01

    Impaired brainstem responses to homeostatic challenges during sleep may result in the sudden infant death syndrome (SIDS). Previously we reported a deficiency of serotonin (5-HT) and its key biosynthetic enzyme, tryptophan hydroxylase (TPH2), in SIDS infants in the medullary 5-HT system that modulates homeostatic responses during sleep. Yet, the underlying basis of the TPH2 and 5-HT deficiency is unknown. In this study, we tested the hypothesis that proteomics would uncover previously unrecognized abnormal levels of proteins related to TPH2 and 5-HT regulation in SIDS cases compared with controls, which could provide novel insight into the basis of their deficiency. We first performed a discovery proteomic analysis of the gigantocellularis of the medullary 5-HT system in the same data set with deficiencies of TPH2 and 5-HT levels. Analysis in 6 SIDS cases and 4 controls revealed a 42-75% reduction in abundance in 5 of the 6 isoforms identified of the 14-3-3 signal transduction family, which is known to influence TPH2 activity (p < 0.07). These findings were corroborated in an additional SIDS and control sample using an orthogonal MS(E)-based quantitative proteomic strategy. To confirm these proteomics results in a larger data set (38 SIDS, 11 controls), we applied Western blot analysis in the gigantocellularis and found that 4/7 14-3-3 isoforms identified were significantly reduced in SIDS cases (p ≤ 0.02), with a 43% reduction in all 14-3-3 isoforms combined (p < 0.001). Abnormalities in 5-HT and TPH2 levels and 5-HT(1A) receptor binding were associated with the 14-3-3 deficits in the same SIDS cases. These data suggest a potential molecular defect in SIDS related to TPH2 regulation, as 14-3-3 is critical in this process. PMID:21976671

  10. Brainstem Deficiency of the 14-3-3 Regulator of Serotonin Synthesis: A Proteomics Analysis in the Sudden Infant Death Syndrome*

    PubMed Central

    Broadbelt, Kevin G.; Rivera, Keith D.; Paterson, David S.; Duncan, Jhodie R.; Trachtenberg, Felicia L.; Paulo, Joao A.; Stapels, Martha D.; Borenstein, Natalia S.; Belliveau, Richard A.; Haas, Elisabeth A.; Stanley, Christina; Krous, Henry F.; Steen, Hanno; Kinney, Hannah C.

    2012-01-01

    Impaired brainstem responses to homeostatic challenges during sleep may result in the sudden infant death syndrome (SIDS). Previously we reported a deficiency of serotonin (5-HT) and its key biosynthetic enzyme, tryptophan hydroxylase (TPH2), in SIDS infants in the medullary 5-HT system that modulates homeostatic responses during sleep. Yet, the underlying basis of the TPH2 and 5-HT deficiency is unknown. In this study, we tested the hypothesis that proteomics would uncover previously unrecognized abnormal levels of proteins related to TPH2 and 5-HT regulation in SIDS cases compared with controls, which could provide novel insight into the basis of their deficiency. We first performed a discovery proteomic analysis of the gigantocellularis of the medullary 5-HT system in the same data set with deficiencies of TPH2 and 5-HT levels. Analysis in 6 SIDS cases and 4 controls revealed a 42–75% reduction in abundance in 5 of the 6 isoforms identified of the 14-3-3 signal transduction family, which is known to influence TPH2 activity (p < 0.07). These findings were corroborated in an additional SIDS and control sample using an orthogonal MSE-based quantitative proteomic strategy. To confirm these proteomics results in a larger data set (38 SIDS, 11 controls), we applied Western blot analysis in the gigantocellularis and found that 4/7 14-3-3 isoforms identified were significantly reduced in SIDS cases (p ≤ 0.02), with a 43% reduction in all 14-3-3 isoforms combined (p < 0.001). Abnormalities in 5-HT and TPH2 levels and 5-HT1A receptor binding were associated with the 14-3-3 deficits in the same SIDS cases. These data suggest a potential molecular defect in SIDS related to TPH2 regulation, as 14-3-3 is critical in this process. PMID:21976671

  11. Fatty acid represses insulin receptor gene expression by impairing HMGA1 through protein kinase C{epsilon}

    SciTech Connect

    Dey, Debleena; Bhattacharya, Anirban; Roy, SibSankar; Bhattacharya, Samir . E-mail: smrbhattacharya@gmail.com

    2007-06-01

    It is known that free fatty acid (FFA) contributes to the development of insulin resistance and type2 diabetes. However, the underlying mechanism in FFA-induced insulin resistance is still unclear. In the present investigation we have demonstrated that palmitate significantly (p < 0.001) inhibited insulin-stimulated phosphorylation of PDK1, the key insulin signaling molecule. Consequently, PDK1 phosphorylation of plasma membrane bound PKC{epsilon} was also inhibited. Surprisingly, phosphorylation of cytosolic PKC{epsilon} was greatly stimulated by palmitate; this was then translocated to the nuclear region and associated with the inhibition of insulin receptor (IR) gene transcription. A PKC{epsilon} translocation inhibitor peptide, {epsilon}V1, suppressed this inhibitory effect of palmitate, suggesting requirement of phospho-PKC{epsilon} migration to implement palmitate effect. Experimental evidences indicate that phospho-PKC{epsilon} adversely affected HMGA1. Since HMGA1 regulates IR promoter activity, expression of IR gene was impaired causing reduction of IR on cell surface and that compromises with insulin sensitivity.

  12. Proteomic Identification of 14-3-3ζ as an Adapter for IGF-1 and Akt/GSK-3β Signaling and Survival of Renal Mesangial Cells

    PubMed Central

    Singh, Lalit P.; Jiang, Yan; Cheng, Davis W.

    2007-01-01

    Recently we demonstrated that IGF-1 expression is increased in the diabetic kidney and that it may involve in renal hypertrophy and extracellular matrix protein (ECM) accumulation in mesangial cells as seen in diabetic glomerulopathy. The present study investigates the molecular mechanism(s) of IGF-1 and Akt/glycogen synthase kinase-3beta (GSK-3β) signaling pathway in the regulation of fibronectin and cyclin D1 expression and survival of renal mesangial cells. A proteomic approach is also employed to identify protein targets of IGF-1 signaling via GSK-3β inhibition in mesangial cells. We show that IGF-1 (100 ng/ml) significantly increases the protein kinase Akt/PKB activity (1.5-2-fold, p<0.05) within 1-5 minutes, which is completely blocked by the presence of 100 nM Wortmannin (phosphatidyl-inositol 3-kinase inhibitor). Akt activation is coupled with Ser9 phosphorylation and inactivation of its down-stream target GSK-3β. IGF-1 increases the cyclic AMP-responsive element (CRE) binding transcription factor CREB phosphorylation at Ser 133 and CRE-binding activity in mesangial cells, which parallels cyclin D1 and fibronectin expressions. Both proteins are known to have CRE-sequences in their promoter regions upstream of the transcription start site. Suppression of GSK-3β by SB216763 (100 nM) increases CREB phosphorylation, cyclin D1 and fibronectin levels. Two dimensional gel electrophoresis followed by MALDI-TOF mass spectrometric analysis of mesangial proteins reveals that IGF-1 treatment or an inhibition of GSK-3β increases the expression of the phosphorylated Ser/Thr binding signal adapter protein 14-3-3ζ. Immuno-precipitation of 14-3-3ζ followed by Western blotting validates the association of phosphorylated GSK-3β with 14-3-3ζ in renal mesangial cells. Stable expression of a constitutively active GSK-3β(Ser9Ala) induces cell death while overexpression of HA-tagged 14-3-3ζ increases cell viability as measured by MTT assays. These results indicate that

  13. 14-3-3γ Regulates Lipopolysaccharide-Induced Inflammatory Responses and Lactation in Dairy Cow Mammary Epithelial Cells by Inhibiting NF-κB and MAPKs and Up-Regulating mTOR Signaling

    PubMed Central

    Liu, Lixin; Lin, Ye; Liu, Lili; Bian, Yanjie; Zhang, Li; Gao, Xuejun; Li, Qingzhang

    2015-01-01

    As a protective factor for lipopolysaccharide (LPS)-induced injury, 14-3-3γ has been the subject of recent research. Nevertheless, whether 14-3-3γ can regulate lactation in dairy cow mammary epithelial cells (DCMECs) induced by LPS remains unknown. Here, the anti-inflammatory effect and lactation regulating ability of 14-3-3γ in LPS-induced DCMECs are investigated for the first time, and the molecular mechanisms responsible for their effects are explored. The results of qRT-PCR showed that 14-3-3γ overexpression significantly inhibited the mRNA expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β) and inducible nitric oxide synthase (iNOS). Enzyme-linked immunosorbent assay (ELISA) analysis revealed that 14-3-3γ overexpression also suppressed the production of TNF-α and IL-6 in cell culture supernatants. Meanwhile, CASY-TT Analyser System showed that 14-3-3γ overexpression clearly increased the viability and proliferation of cells. The results of kit methods and western blot analysis showed that 14-3-3γ overexpression promoted the secretion of triglycerides and lactose and the synthesis of β-casein. Furthermore, the expression of genes relevant to nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPKs) and lactation-associated proteins were assessed by western blot, and the results suggested that 14-3-3γ overexpression inactivated the NF-κB and MAPK signaling pathways by down-regulating extracellular signal regulated protein kinase (ERK), p38 mitogen-activated protein kinase (p38MAPK) and inhibitor of NF-κB (IκB) phosphorylation levels, as well as by inhibiting NF-κB translocation. Meanwhile, 14-3-3γ overexpression enhanced the expression levels of β-casein, mammalian target of rapamycin (mTOR), ribosomal protein S6 kinase 1 (S6K1), serine/threonine protein kinase Akt 1 (AKT1), sterol regulatory element binding protein 1 (SREBP1) and peroxisome proliferator-activated receptor gamma (PPAR

  14. epsilon-Hexachlorocyclohexane (epsilon-HC)

    Integrated Risk Information System (IRIS)

    epsilon - Hexachlorocyclohexane ( epsilon - HC ) ; CASRN 6108 - 10 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard

  15. In-vivo administration of clozapine affects behaviour but does not reverse dendritic spine deficits in the 14-3-3ζ KO mouse model of schizophrenia-like disorders.

    PubMed

    Jaehne, Emily J; Ramshaw, Hayley; Xu, Xiangjun; Saleh, Eiman; Clark, Scott R; Schubert, Klaus Oliver; Lopez, Angel; Schwarz, Quenten; Baune, Bernhard T

    2015-11-01

    Clozapine is an atypical antipsychotic drug used in the treatment of schizophrenia, which has been shown to reverse behavioural and dendritic spine deficits in mice. It has recently been shown that deficiency of 14-3-3ζ has an association with schizophrenia, and that a mouse model lacking this protein displays several schizophrenia-like behavioural deficits. To test the effect of clozapine in this mouse model, 14-3-3ζ KO mice were administered clozapine (5mg/kg) for two weeks prior to being analysed in a test battery of cognition, anxiety, and despair (depression-like) behaviours. Following behavioural testing brain samples were collected for analysis of specific anatomical defects and dendritic spine formation. We found that clozapine reduced despair behaviour of 14-3-3ζ KO mice in the forced swim test (FST) and altered the behaviour of wild types and 14-3-3ζ KO mice in the Y-maze task. In contrast, clozapine had no effects on hippocampal laminar defects or decreased dendritic spine density observed in 14-3-3ζ KO mice. Our results suggest that clozapine may have beneficial effects on clinical behaviours associated with deficiencies in the 14-3-3ζ molecular pathway, despite having no effects on morphological defects. These findings may provide mechanistic insight to the action of this drug.

  16. 14-3-3ζ up-regulates hypoxia-inducible factor-1α in hepatocellular carcinoma via activation of PI3K/Akt/NF-кB signal transduction pathway

    PubMed Central

    Tang, Yufu; Lv, Pengfei; Sun, Zhongyi; Han, Lei; Luo, Bichao; Zhou, Wenping

    2015-01-01

    14-3-3ζ protein, a member of 14-3-3 family, plays important roles in multiple cellular processes. Our previous study showed that 14-3-3ζ could bind to regulate the expression of hypoxia-inducible factor-1α (HIF-1α), which is induced by hypoxia and a crucial factor for induction of tumor metastasis. Moreover, we also have confirmed the response of 14-3-3ζ to hypoxia in our unpublished data as well. Thus, in the present study, we attempted to reveal that whether the regulation effect of 14-3-3ζ on HIF-1α functioned in a similar pattern as hypoxia. Stable regulation of 14-3-3ζ in human HCC cell line SMMC-772 and HCC-LM3 was achieved. The regulation of 14-3-3ζ on HIF-1α mRNA transcription was evaluated by luciferase activity assay and quantitative real-time PCR (qPCR). The effect of 14-3-3ζ on the production of HIF-1α and pathways determining HIF-1α’s response to hypoxia was assessed using western blotting assay. Our results showed that regulation of 14-3-3ζ expression influenced the activity of HIF-1α, phosphatidyl inositol 3-kinase (PI3K), Akt, extracellular signal-regulated kinase 1/2 (ERK1/2), and nuclear factor kappa B (NF-кB). Blocking of these pathways using indicated inhibitors revealed that 14-3-3ζ enhanced the production of HIF-1α via the activation of PI3K/Akt/NF-кB pathway, which was identical to hypoxia induced HIF-1α expression. For the first time, our study described the key role of 14-3-3ζ in the HIF-1α production in HCC cells. And the molecule exerted its function on HIF-1α both by directly binding to it and via PI3K/Akt/NF-кB signal transduction pathway. PMID:26884855

  17. p38- and MK2-dependent signalling promotes stress-induced centriolar satellite remodelling via 14-3-3-dependent sequestration of CEP131/AZI1

    PubMed Central

    Tollenaere, Maxim A. X.; Villumsen, Bine H.; Blasius, Melanie; Nielsen, Julie C.; Wagner, Sebastian A.; Bartek, Jiri; Beli, Petra; Mailand, Niels; Bekker-Jensen, Simon

    2015-01-01

    Centriolar satellites (CS) are small granular structures that cluster in the vicinity of centrosomes. CS are highly susceptible to stress stimuli, triggering abrupt displacement of key CS factors. Here we discover a linear p38-MK2-14-3-3 signalling pathway that specifically targets CEP131 to trigger CS remodelling after cell stress. We identify CEP131 as a substrate of the p38 effector kinase MK2 and pinpoint S47 and S78 as critical MK2 phosphorylation sites in CEP131. Ultraviolet-induced phosphorylation of these residues generates direct binding sites for 14-3-3 proteins, which sequester CEP131 in the cytoplasm to block formation of new CS, thereby leading to rapid depletion of these structures. Mutating S47 and S78 in CEP131 is sufficient to abolish stress-induced CS reorganization, demonstrating that CEP131 is the key regulatory target of MK2 and 14-3-3 in these structures. Our findings reveal the molecular mechanism underlying dynamic CS remodelling to modulate centrosome functions on cell stress. PMID:26616734

  18. Determination of lysine modification product epsilon-N-pyrrolylnorleucine in hydrolyzed proteins and trout muscle microsomes by micellar electrokinetic capillary chromatography.

    PubMed

    Zamora, R; Navarro, J L; Hidalgo, F J

    1995-06-01

    epsilon-N-Pyrrolylnorleucine (Pnl) is a product of the reaction between the lipid peroxidation product 4,5(E)-epoxy-2(E)-heptenal (EH) and the epsilon-amino group of lysine. Because Pnl might also be produced in proteins, a specific method to determine this compound in protein hydrolysates has been developed. Homoarginine, added as the internal standard, and Pnl are derivatized with diethyl ethoxymethylenemalonate and analyzed by micellar electrokinetic capillary chromatography. The method also analyzes lysine and arginine, and these analyses were useful in determining losses of these amino acids after treatment with EH. The lowest concentration of Pnl detected with acceptable reproducibility is 5 nmol/mL, and the coefficient of variation was determined from four standard curves assayed on separate days. Detector response was linear for samples containing 1.6 to 74 nmol/mL of Pnl. The assay was applied in investigations of Pnl production in bovine serum albumin (BSA) and trout muscle microsomes treated with EH. When BSA was incubated overnight with 30 mM EH, 76% of lysine residues were modified, and a part of these residues were detected as Pnl (12%). Pnl formation was also detected when trout muscle microsomes were incubated for three hours with 1 or 10 mM EH. These results show that Pnl is produced in vitro in proteins treated with the lipid peroxidation product EH, and suggest that Pnl might also be constituent of in vivo damaged proteins by their reaction with oxidized lipids.

  19. 14-3-3σ confers cisplatin resistance in esophageal squamous cell carcinoma cells via regulating DNA repair molecules.

    PubMed

    Lai, Kenneth K Y; Chan, Kin Tak; Choi, Mei Yuk; Wang, Hector K; Fung, Eva Y M; Lam, Ho Yu; Tan, Winnie; Tung, Lai Nar; Tong, Daniel K H; Sun, Raymond W Y; Lee, Nikki P; Law, Simon

    2016-02-01

    Esophageal squamous cell carcinoma (ESCC) is the predominant type of esophageal cancer in Asia. Cisplatin is commonly used in chemoradiation for unresectable ESCC patients. However, the treatment efficacy is diminished in patients with established cisplatin resistance. To understand the mechanism leading to the development of cisplatin resistance in ESCC, we compared the proteomes from a cisplatin-resistant HKESC-2R cell line with its parental-sensitive counterpart HKESC-2 to identify key molecule involved in this process. Mass spectrometry analysis detected 14-3-3σ as the most abundant molecule expressed exclusively in HKESC-2R cells, while western blot result further validated it to be highly expressed in HKESC-2R cells when compared to HKESC-2 cells. Ectopic expression of 14-3-3σ increased cisplatin resistance in HKESC-2 cells, while its suppression sensitized SLMT-1 cells to cisplatin. Among the molecules involved in drug detoxification, drug transportation, and DNA repair, the examined DNA repair molecules HMGB1 and XPA were found to be highly expressed in HKESC-2R cells with high 14-3-3σ expression. Subsequent manipulation of 14-3-3σ by both overexpression and knockdown approaches concurrently altered the expression of HMGB1 and XPA. 14-3-3σ, HMGB1, and XPA were preferentially expressed in cisplatin-resistant SLMT-1 cells when compared to those more sensitive to cisplatin. In ESCC patients with poor response to cisplatin-based chemoradiation, their pre-treatment tumors expressed higher expression of HMGB1 than those with response to such treatment. In summary, our results demonstrate that 14-3-3σ induces cisplatin resistance in ESCC cells and that 14-3-3σ-mediated cisplatin resistance involves DNA repair molecules HMGB1 and XPA. Results from this study provide evidences for further work in researching the potential use of 14-3-3σ and DNA repair molecules HMGB1 and XPA as biomarkers and therapeutic targets for ESCC.

  20. Suppression of 14-3-3γ-mediated surface expression of ANO1 inhibits cancer progression of glioblastoma cells

    PubMed Central

    Lee, Young-Sun; Lee, Jae Kwang; Bae, Yeonju; Lee, Bok-Soon; Kim, Eunju; Cho, Chang-Hoon; Ryoo, Kanghyun; Yoo, Jiyun; Kim, Chul-Ho; Yi, Gwan-Su; Lee, Seok-Geun; Lee, C. Justin; Kang, Sang Soo; Hwang, Eun Mi; Park, Jae-Yong

    2016-01-01

    Anoctamin-1 (ANO1) acts as a Ca2+-activated Cl− channel in various normal tissues, and its expression is increased in several different types of cancer. Therefore, understanding the regulation of ANO1 surface expression is important for determining its physiological and pathophysiological functions. However, the trafficking mechanism of ANO1 remains elusive. Here, we report that segment a (N-terminal 116 amino acids) of ANO1 is crucial for its surface expression, and we identified 14-3-3γ as a binding partner for anterograde trafficking using yeast two-hybrid screening. The surface expression of ANO1 was enhanced by 14-3-3γ, and the Thr9 residue of ANO1 was critical for its interaction with 14-3-3γ. Gene silencing of 14-3-3γ and/or ANO1 demonstrated that suppression of ANO1 surface expression inhibited migration and invasion of glioblastoma cells. These findings provide novel therapeutic implications for glioblastomas, which are associated with poor prognosis. PMID:27212225

  1. How to measure epsilon'/epsilon with lattice QCD

    SciTech Connect

    Sharpe, S.R.

    1987-04-01

    A pedagogical discussion is given of a lattice calculation of epsilon'. The method is outlined, and preliminary results are presented. They suggest that epsilon'/epsilon may be reduced from previous estimates by 60-70%.

  2. Dietary long-chain n-3 fatty acids modify blood and cardiac phospholipids and reduce protein kinase-C-delta and protein kinase-C-epsilon translocation.

    PubMed

    Judé, Sébastien; Martel, Eric; Vincent, Fanny; Besson, Pierre; Couet, Charles; Ogilvie, Gregory K; Pinault, Michelle; De Chalendar, Catherine; Bougnoux, Philippe; Richard, Serge; Champeroux, Pascal; Crozatier, Bertrand; Le Guennec, Jean-Yves

    2007-12-01

    The effects of an n-3 PUFA-enriched diet on cardiac cell membrane phospholipid fraction compositions and associated protein kinase-C (PKC) translocation modification have never been studied in higher mammals. This is of importance since membrane fatty acid composition has been shown to influence PKC signalling pathways. In the present study, we have tested whether the incorporation of n-3 PUFA in cardiac membrane phospholipids correlated with changes in the fatty acid composition of diacylglycerols (DAG) and led to a differential translocation of PKC isoforms. Two groups of five dogs were fed the standard diet supplemented with palm oil or fish oil for 8 weeks. Dogs fed a fish oil-enriched diet showed a preferential incorporation of EPA and, to a lesser extent, of DHA, at the expense of arachidonic acid, in the circulating TAG, plasma phospholipids, erythrocyte phospholipids and cardiomyocyte phospholipid fractions. Analysis of 1,2-DAG fatty acid composition also indicated a preferential enrichment of EPA compared with DHA. Associated with these results, a reduction in the expression of PKC-delta and PKC-epsilon isoforms in the particulate fractions was observed whereas no effect was seen for PKC-alpha and PKC-zeta. We conclude that a fish oil-enriched diet induces a modification in fatty acid composition of cardiac membrane phospholipids, associated with a differential translocation of PKC isoforms. These results can be explained by the production of structurally different DAG that may participate in some of the protective effects of n-3 PUFA against various chronic diseases.

  3. Distortion of homeostatic signaling proteins by simulated microgravity in rat hypothalamus: A(16) O/(18) O-labeled comparative integrated proteomic approach.

    PubMed

    Iqbal, Javed; Li, Wang; Hasan, Murtaza; Juan Li, Yu; Ullah, Kaleem; Yun, Wang; Awan, Umer; Qing, Hong; Deng, Yulin

    2014-02-01

    Microgravity generates oxidative stress in central nervous system, causing distortion of various vital signaling cascades involved in many homeostatic functions. Here, we performed comparative (16) O/(18) O labeled integrated proteomic strategy to observe the differential expression of signaling proteins involved in homeostasis. In this study, rat-tail suspension model is employed to induce simulated microgravity in CNS. By wide proteomic analysis, total of 35 and 97 significantly differentially expressed proteins were found by HPLC/ESI-TOF and HPLC-Q-TOF analysis, respectively. Among the total of 132 proteins quantified, 25 proteins were found related to various signaling cascades. Protein Thy-1, 14-3-3 gamma, 14-3-3 epsilon, 14-3-3 theta, 14-3-3 eta, and 14-3-3 beta/alpha proteins, calmodulin and calcium/calmodulin-dependent protein kinase type-II subunit beta were found upregulated under the influence of simulated microgravity. These proteins are found involved in disrupting homeostatic pathways like sleep/wake cycle, drinking behavior, hypothalamic-pituitary-adrenocortical regulation and fight and/or flee actions under stress. Furthermore, MS results for protein Thy-1 were verified by Western blot analysis showing the quantification accuracy of MS instruments. Results presented here will serve as means to understand the mechanism of action of microgravity and further reference for future detailed study of consequences of microgravity on astronauts and their possible countermeasures.

  4. Wig-1 regulates cell cycle arrest and cell death through the p53 targets FAS and 14-3-3σ

    PubMed Central

    Bersani, C; Xu, L-D; Vilborg, A; Lui, W-O; Wiman, K G

    2014-01-01

    Wig-1, also known as ZMAT3, is a p53 target gene that encodes an RNA-binding zinc-finger protein involved in the regulation of mRNA stability through binding to AU-rich elements (AREs). We have used microarray analysis to identify novel Wig-1 target mRNAs. We identified 2447 transcripts with >fourfold differential expression between Wig-1 and control small interfering (si)RNA-treated HCT116 cells. Several p53 target genes were among the deregulated transcripts. We found that Wig-1 regulates FAS and 14-3-3σ mRNA independently of p53. We show that Wig-1 binds to FAS mRNA 3′-UTR and decreases its stability through an ARE in the 3′-UTR. Depletion of Wig-1 was associated with increased cell death and reduced cell cycle arrest upon DNA damage. Our results suggest a role of Wig-1 as a survival factor that directs the p53 stress response toward cell cycle arrest rather than apoptosis through the regulation of FAS and 14-3-3σ mRNA levels. PMID:24469038

  5. Activation of protein kinase C subtypes alpha, gamma, delta, epsilon, zeta, and eta by tumor-promoting and nontumor-promoting agents.

    PubMed

    Geiges, D; Meyer, T; Marte, B; Vanek, M; Weissgerber, G; Stabel, S; Pfeilschifter, J; Fabbro, D; Huwiler, A

    1997-03-21

    Protein kinase C (PKC) subtypes alpha, gamma, delta, epsilon, zeta, and eta have been expressed using the baculovirus expression system. The partially purified PKC subtypes have been studied for their substrate specificities and phospholipid-independent activation by various chemically different nontumor- and tumor-promoting agents, as well as their inhibition of kinase activity by staurosporine and two related compounds. An endogenous PKC-like kinase activity of Sf9 cells was detected and analyzed for cofactor requirements and inhibition. Protamine sulfate was most efficiently phosphorylated by all of the PKC subtypes tested, although this phosphorylation was independent of phosphatidylserine (PS) and diacylglycerol (DAG) or 12-O-tetradecanoylphorbol 13-acetate (TPA). Except for PKC-zeta, all subtypes tested phosphorylated myelin basic protein (MBP), histone, or a peptide derived from the pseudosubstrate region of PKC-alpha in a PS/DAG-dependent manner but to varying extents. Among the various agents tested, TPA most efficiently stimulated the kinase activities of the PKC subtypes in a phospholipid-dependent manner. Phorbol 12,13-dibutyrate (PDBu) was less effective than TPA but displayed no major difference among the subtypes. Activation of PKC-alpha by bryostatin-1 reached only half of the TPA response whereas the other subtypes were activated more effectively. The weak tumor promoter resiniferonol 9,13,14-orthophenyl acetate (ROPA) mainly stimulated PKC-alpha and PKC-gamma at 1 microM concentration, whereas PKC-epsilon and PKC-eta were much less activated. Sapintoxin D, mezerein, indolactam V, and resiniferatoxin at concentrations of 1-100 nM preferentially activated PKC-alpha in a DAG-like manner, whereas at 1 microM other subtypes were activated as well. Preferential activation of PKC-alpha was also noted for tinyatoxin and thapsigargin, but their mode of activation is unclear because these two compounds did not compete for the phorbol ester binding of the

  6. Activation of protein tyrosine kinase p72syk by Fc epsilon RI aggregation in rat basophilic leukemia cells. p72syk is a minor component but the major protein tyrosine kinase of pp72.

    PubMed

    Minoguchi, K; Benhamou, M; Swaim, W D; Kawakami, Y; Kawakami, T; Siraganian, R P

    1994-06-17

    Aggregation of the high affinity IgE receptors (Fc epsilon RI) on rat basophilic leukemia RBL-2H3 cells results in protein tyrosine phosphorylations. Previously we reported that there is prominent tyrosine phosphorylation of approximately 72-kDa proteins (pp72) and that the tyrosine kinase p72syk is one component of pp72. Here we studied further the relationship of p72syk to pp72. The aggregation of Fc epsilon RI induced the activation of p72syk which was parallel to its tyrosine phosphorylation. By in vitro kinase assay of immune complexes purified with anti-phosphotyrosine antibodies, p72syk was the major pp72 tyrosine kinase. However, by immunoblotting with anti-phosphotyrosine antibodies, p72syk was a minor component of pp72. The heterogeneous nature of pp72 was indicated by different studies. Under optimum conditions of one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis, pp72 consisted of a heterogeneous group of 69-, 71-, and 72-kDa tyrosine-phosphorylated proteins. There were differences in the tyrosine phosphorylation of these proteins in cells activated in the absence of extracellular calcium or when stimulation was with the calcium ionophore A23187 or with phorbol myristate acetate. One of the proteins migrating at 69 kDa was p72syk. By two-dimensional gel electrophoresis pp72 was found to consist of multiple tyrosine-phosphorylated protens including 71-80-kDa proteins that associate with p53/56lyn. A 75-kDa tyrosine-phosphorylated protein, different from pp72, was identified as p75HS1 (SPY75). These results demonstrate the heterogeneous nature of the pp72 and that p72syk is activated after Fc epsilon RI aggregation. PMID:7515887

  7. Mechanism of the degradation of non-enzymatically glycated proteins under physiological conditions. Studies with the model fructosamine, N epsilon-(1-deoxy-D-fructos-1-yl)hippuryl-lysine.

    PubMed

    Smith, P R; Thornalley, P J

    1992-12-15

    The degradation of fructosamines, formed from the non-enzymic glycation of proteins under physiological conditions, to advanced glycation end products was investigated by studying the model peptide fructosamine N epsilon-(1-deoxy-D-fructos-1-yl)hippuryl-lysine (DHL). At pH 7.4 and 37 degrees C in aerobic phosphate buffer, DHL degraded to form N epsilon-carboxymethyl-hippuryl-lysine, and hippuryl-lysine over a 29-day incubation period. The expected N epsilon-(3-lactato)hippuryl-lysine and 'hippuryl-lysylpyrraline' derivatives were not found. Superoxide radicals and hydrogen peroxide were formed during the degradation of DHL but were also both consumed during the degradation reaction. Reversal of the Amadori rearrangement was not a major fate of the fructosamine. The formation of N epsilon-carboxymethyl-hippuryl-lysine was decreased by desferrioxamine, catalase, superoxide dismutase, catalase with superoxide dismutase, anaerobic conditions and aminoguanidine. The formation of hippuryl-lysine was decreased by desferrioxamine, catalase and catalase with superoxide dismutase, but was increased by the addition of aminoguanidine. N epsilon-Carboxymethyl-serine and unmodified lysine residues are major peptide-based end products in the degradation of lysyl-fructosamine under physiological conditions. Oxygen, redox-active metal ions, catalase, superoxide dismutase and the pharmacological agent aminoguanidine are expected to be influential on the rate and fate of fructosamine degradation.

  8. Proteomic screening for Rho-kinase substrates by combining kinase and phosphatase inhibitors with 14-3-3ζ affinity chromatography.

    PubMed

    Nishioka, Tomoki; Nakayama, Masanori; Amano, Mutsuki; Kaibuchi, Kozo

    2012-01-01

    The small GTPase RhoA is a molecular switch in various extracellular signals. Rho-kinase/ROCK/ROK, a major effector of RhoA, regulates diverse cellular functions by phosphorylating cytoskeletal proteins, endocytic proteins, and polarity proteins. More than twenty Rho-kinase substrates have been reported, but the known substrates do not fully explain the Rho-kinase functions. Herein, we describe the comprehensive screening for Rho-kinase substrates by treating HeLa cells with Rho-kinase and phosphatase inhibitors. The cell lysates containing the phosphorylated substrates were then subjected to affinity chromatography using beads coated with 14-3-3 protein, which interacts with proteins containing phosphorylated serine or threonine residues, to enrich the phosphorylated proteins. The identities of the molecules and phosphorylation sites were determined by liquid chromatography tandem mass spectrometry (LC/MS/MS) after tryptic digestion and phosphopeptide enrichment. The phosphorylated proteins whose phosphopeptide ion peaks were suppressed by treatment with the Rho-kinase inhibitor were regarded as candidate substrates. We identified 121 proteins as candidate substrates. We also identified phosphorylation sites in Partitioning defective 3 homolog (Par-3) at Ser143 and Ser144. We found that Rho-kinase phosphorylated Par-3 at Ser144 both in vitro and in vivo. The method used in this study would be applicable and useful to identify novel substrates of other kinases.

  9. Selective 14-3-3γ induction quenches p-β-catenin Ser37/Bax-enhanced cell death in cerebral cortical neurons during ischemia.

    PubMed

    Lai, X J; Ye, S Q; Zheng, L; Li, L; Liu, Q R; Yu, S B; Pang, Y; Jin, S; Li, Q; Yu, A C H; Chen, X Q

    2014-01-01

    Ischemia-induced cell death is a major cause of disability or death after stroke. Identifying the key intrinsic protective mechanisms induced by ischemia is critical for the development of effective stroke treatment. Here, we reported that 14-3-3γ was a selective ischemia-inducible survival factor in cerebral cortical neurons reducing cell death by downregulating Bax depend direct 14-3-3γ/p-β-catenin Ser37 interactions in the nucleus. 14-3-3γ, but not other 14-3-3 isoforms, was upregulated in primary cerebral cortical neurons upon oxygen-glucose deprivation (OGD) as measured by quantitative PCR, western blot and fluorescent immunostaining. The selective induction of 14-3-3γ in cortical neurons by OGD was verified by the in vivo ischemic stroke model. Knocking down 14-3-3γ alone or inhibiting 14-3-3/client interactions was sufficient to induce cell death in normal cultured neurons and exacerbate OGD-induced neuronal death. Ectopic overexpression of 14-3-3γ significantly reduced OGD-induced cell death in cultured neurons. Co-immunoprecipitation and fluorescence resonance energy transfer demonstrated that endogenous 14-3-3γ bound directly to more p-β-catenin Ser37 but not p-Bad, p-Ask-1, p-p53 and Bax. During OGD, p-β-catenin Ser37 but not p-β-catenin Ser45 was increased prominently, which correlated with Bax elevation in cortical neurons. OGD promoted the entry of 14-3-3γ into the nuclei, in correlation with the increase of nuclear p-β-catenin Ser37 in neurons. Overexpression of 14-3-3γ significantly reduced Bax expression, whereas knockdown of 14-3-3γ increased Bax in cortical neurons. Abolishing β-catenin phosphorylation at Ser37 (S37A) significantly reduced Bax and cell death in neurons upon OGD. Finally, 14-3-3γ overexpression completely suppressed β-catenin-enhanced Bax and cell death in neurons upon OGD. Based on these data, we propose that the 14-3-3γ/p-β-catenin Ser37/Bax axis determines cell survival or death of neurons during ischemia

  10. Serotonin via 5-HT7 receptors activates p38 mitogen-activated protein kinase and protein kinase C epsilon resulting in interleukin-6 synthesis in human U373 MG astrocytoma cells.

    PubMed

    Lieb, Klaus; Biersack, Lisa; Waschbisch, Anne; Orlikowski, Sonja; Akundi, Ravi Shankar; Candelario-Jalil, Eduardo; Hüll, Michael; Fiebich, Bernd L

    2005-05-01

    Serotonin [5-hydroxytryptamine (5-HT)] is a widely distributed neurotransmitter which is involved in neuroimmunomodulatory processes. Previously, it has been demonstrated that 5-HT may induce interleukin (IL)-6 expression in primary rat hippocampal astrocytes. The present study was undertaken to investigate the molecular pathways underlying this induction of IL-6 synthesis. As a model system, we used the human astrocytoma cell line U373 MG, which synthesizes IL-6 upon stimulation with various inducers. 5-HT dose- and time-dependently induced IL-6 protein synthesis. We identified several 5-HT receptors to be expressed on U373 MG cells, including the 5-HT1D, 5-HT2A, 5-HT3 and 5-HT7 receptors. In this report, we show that the 5-HT-induced IL-6 release is mediated by the 5-HT7 receptor based on several agonist/antagonists that were used. 5-HT-induced IL-6 synthesis is inhibited by the partially selective 5-HT7 receptor antagonist, pimozide, and the selective antagonist SB269970. Furthermore, IL-6 synthesis was induced by the 5-HT7 receptor agonist carboxamidotryptamin. In addition, we found p38 MAPKs and protein kinase C (PKC) epsilon to be involved in 5-HT-induced IL-6 synthesis as specific inhibitors of these enzymes (SB202190 and RO-31-8425, respectively) blocked 5-HT-induced IL-6 synthesis. Furthermore, 5-HT mediated the phosphorylation of both p38 MAPK as well as the PKC epsilon isoform. The p42/44 MAPKs, however, were not involved in 5-HT-induced IL-6 synthesis. This study shows, for the first time, a central role of 5-HT7 receptor linked to p38 MAPK and PKC epsilon for the induction of cytokine synthesis in astrocytic cells. PMID:15836614

  11. A Negative Regulatory Mechanism Involving 14-3-3ζ Limits Signaling Downstream of ROCK to Regulate Tissue Stiffness in Epidermal Homeostasis.

    PubMed

    Kular, Jasreen; Scheer, Kaitlin G; Pyne, Natasha T; Allam, Amr H; Pollard, Anthony N; Magenau, Astrid; Wright, Rebecca L; Kolesnikoff, Natasha; Moretti, Paul A; Wullkopf, Lena; Stomski, Frank C; Cowin, Allison J; Woodcock, Joanna M; Grimbaldeston, Michele A; Pitson, Stuart M; Timpson, Paul; Ramshaw, Hayley S; Lopez, Angel F; Samuel, Michael S

    2015-12-21

    ROCK signaling causes epidermal hyper-proliferation by increasing ECM production, elevating dermal stiffness, and enhancing Fak-mediated mechano-transduction signaling. Elevated dermal stiffness in turn causes ROCK activation, establishing mechano-reciprocity, a positive feedback loop that can promote tumors. We have identified a negative feedback mechanism that limits excessive ROCK signaling during wound healing and is lost in squamous cell carcinomas (SCCs). Signal flux through ROCK was selectively tuned down by increased levels of 14-3-3ζ, which interacted with Mypt1, a ROCK signaling antagonist. In 14-3-3ζ(-/-) mice, unrestrained ROCK signaling at wound margins elevated ECM production and reduced ECM remodeling, increasing dermal stiffness and causing rapid wound healing. Conversely, 14-3-3ζ deficiency enhanced cutaneous SCC size. Significantly, inhibiting 14-3-3ζ with a novel pharmacological agent accelerated wound healing 2-fold. Patient samples of chronic non-healing wounds overexpressed 14-3-3ζ, while cutaneous SCCs had reduced 14-3-3ζ. These results reveal a novel 14-3-3ζ-dependent mechanism that negatively regulates mechano-reciprocity, suggesting new therapeutic opportunities.

  12. A Negative Regulatory Mechanism Involving 14-3-3ζ Limits Signaling Downstream of ROCK to Regulate Tissue Stiffness in Epidermal Homeostasis.

    PubMed

    Kular, Jasreen; Scheer, Kaitlin G; Pyne, Natasha T; Allam, Amr H; Pollard, Anthony N; Magenau, Astrid; Wright, Rebecca L; Kolesnikoff, Natasha; Moretti, Paul A; Wullkopf, Lena; Stomski, Frank C; Cowin, Allison J; Woodcock, Joanna M; Grimbaldeston, Michele A; Pitson, Stuart M; Timpson, Paul; Ramshaw, Hayley S; Lopez, Angel F; Samuel, Michael S

    2015-12-21

    ROCK signaling causes epidermal hyper-proliferation by increasing ECM production, elevating dermal stiffness, and enhancing Fak-mediated mechano-transduction signaling. Elevated dermal stiffness in turn causes ROCK activation, establishing mechano-reciprocity, a positive feedback loop that can promote tumors. We have identified a negative feedback mechanism that limits excessive ROCK signaling during wound healing and is lost in squamous cell carcinomas (SCCs). Signal flux through ROCK was selectively tuned down by increased levels of 14-3-3ζ, which interacted with Mypt1, a ROCK signaling antagonist. In 14-3-3ζ(-/-) mice, unrestrained ROCK signaling at wound margins elevated ECM production and reduced ECM remodeling, increasing dermal stiffness and causing rapid wound healing. Conversely, 14-3-3ζ deficiency enhanced cutaneous SCC size. Significantly, inhibiting 14-3-3ζ with a novel pharmacological agent accelerated wound healing 2-fold. Patient samples of chronic non-healing wounds overexpressed 14-3-3ζ, while cutaneous SCCs had reduced 14-3-3ζ. These results reveal a novel 14-3-3ζ-dependent mechanism that negatively regulates mechano-reciprocity, suggesting new therapeutic opportunities. PMID:26702834

  13. 14-3-3ζ deficient mice in the BALB/c background display behavioural and anatomical defects associated with neurodevelopmental disorders

    PubMed Central

    Xu, Xiangjun; Jaehne, Emily J.; Greenberg, Zarina; McCarthy, Peter; Saleh, Eiman; Parish, Clare L.; Camera, Daria; Heng, Julian; Haas, Matilda; Baune, Bernhard T.; Ratnayake, Udani; Buuse, Maarten van den; Lopez, Angel F.; Ramshaw, Hayley S.; Schwarz, Quenten

    2015-01-01

    Sequencing and expression analyses implicate 14-3-3ζ as a genetic risk factor for neurodevelopmental disorders such as schizophrenia and autism. In support of this notion, we recently found that 14-3-3ζ−/− mice in the Sv/129 background display schizophrenia-like defects. As epistatic interactions play a significant role in disease pathogenesis we generated a new congenic strain in the BALB/c background to determine the impact of genetic interactions on the 14-3-3ζ−/− phenotype. In addition to replicating defects such as aberrant mossy fibre connectivity and impaired spatial memory, our analysis of 14-3-3ζ−/− BALB/c mice identified enlarged lateral ventricles, reduced synaptic density and ectopically positioned pyramidal neurons in all subfields of the hippocampus. In contrast to our previous analyses, 14-3-3ζ−/− BALB/c mice lacked locomotor hyperactivity that was underscored by normal levels of the dopamine transporter (DAT) and dopamine signalling. Taken together, our results demonstrate that dysfunction of 14-3-3ζ gives rise to many of the pathological hallmarks associated with the human condition. 14-3-3ζ-deficient BALB/c mice therefore provide a novel model to address the underlying biology of structural defects affecting the hippocampus and ventricle, and cognitive defects such as hippocampal-dependent learning and memory. PMID:26207352

  14. PI 3-kinase-dependent phosphorylation of Plk1–Ser99 promotes association with 14-3-3γ and is required for metaphase–anaphase transition

    PubMed Central

    Kasahara, Kousuke; Goto, Hidemasa; Izawa, Ichiro; Kiyono, Tohru; Watanabe, Nobumoto; Elowe, Sabine; Nigg, Erich A; Inagaki, Masaki

    2013-01-01

    Polo-like kinase 1 (Plk1) controls multiple aspects of mitosis and is activated through its phosphorylation at Thr210. Here we identify Ser99 on Plk1 as a novel mitosis-specific phosphorylation site, which operates independently of Plk1–Thr210 phosphorylation. Plk1–Ser99 phosphorylation creates a docking site for 14-3-3γ, and this interaction stimulates the catalytic activity of Plk1. Knockdown of 14-3-3γ or replacement of wild-type (WT) Plk1 by a Ser99-phospho-blocking mutant leads to a prometaphase/metaphase-like arrest due to the activation of the spindle assembly checkpoint. Inhibition of phosphatidylinositol 3-kinase (PI3K) and Akt significantly reduces the level of Plk1–Ser99 phosphorylation and delays metaphase to anaphase transition. Plk1–Ser99 phosphorylation requires not only Akt activity but also protein(s) associated with Plk1 in a mitosis-specific manner. Therefore, mitotic Plk1 activity is regulated not only by Plk1–Thr210 phosphorylation, but also by Plk1 binding to 14-3-3γ following Plk1–Ser99 phosphorylation downstream of the PI3K–Akt signalling pathway. This novel Plk1 activation pathway controls proper progression from metaphase to anaphase. PMID:23695676

  15. Epstein-Barr virus Rta-mediated transactivation of p21 and 14-3-3σ arrests cells at the G1/S transition by reducing cyclin E/CDK2 activity.

    PubMed

    Huang, Sheng-Yen; Hsieh, Min-Jie; Chen, Chu-Ying; Chen, Yen-Ju; Chen, Jen-Yang; Chen, Mei-Ru; Tsai, Ching-Hwa; Lin, Su-Fang; Hsu, Tsuey-Ying

    2012-01-01

    Many herpesviral immediate-early proteins promote their robust lytic phase replications by hijacking the cell cycle machinery. Previously, lytic replication of Epstein-Barr virus (EBV) was found to be concurrent with host cell cycle arrest. In this study, we showed that ectopic expression of EBV immediate-early protein Rta in HEp-2 cells resulted in increased G1/S population, hypophosphorylation of pRb and decreased incorporation of 5-bromo-2'-deoxyuridine. In addition, EBV Rta transcriptionally upregulates the expressions of p21 and 14-3-3σ in HEp-2 cells, 293 cells and nasopharyngeal carcinoma TW01 cells. Although p21 and 14-3-3σ are known targets for p53, Rta-mediated p21 and 14-3-3σ transactivation can be detected in the absence of p53. In addition, results from luciferase reporter assays indicated that direct binding of Rta to either promoter sequences is not required for activation. On the other hand, a special class of Sp1-responsive elements was involved in Rta-mediated transcriptional activation on both promoters. Finally, Rta-induced p21 expression diminished the activity of CDK2/cyclin E complex, and, Rta-induced 14-3-3σ expression sequestered CDK1 and CDK2 in the cytoplasm. Based on these results, we hypothesize that through the disruption of CDK1 and CDK2 activities, EBV Rta might contribute to cell cycle arrest in EBV-infected epithelial cells during viral reactivation. PMID:21918011

  16. A Biotin Switch-Based Proteomics Approach Identifies 14-3-3ζ as a Target of Sirt1 in the Metabolic Regulation of Caspase-2

    PubMed Central

    Andersen, Joshua L.; Thompson, J. Will; Lindblom, Kelly R.; Johnson, Erika S.; Yang, Chih-Sheng; Lilley, Lauren R.; Freel, Christopher D.; Moseley, M. Arthur; Kornbluth, Sally

    2011-01-01

    While lysine acetylation in the nucleus is well characterized, comparatively little is known about its significance in cytoplasmic signaling. Here we show that inhibition of the Sirt1 deacetylase, which is primarily cytoplasmic in cancer cell lines, sensitizes these cells to caspase-2-dependent death. To identify relevant Sirt1 substrates, we developed a novel proteomics strategy, enabling the identification of a range of putative substrates, including 14-3-3ζ, a known direct regulator of caspase-2. We show here that inhibition of Sirtuin activity accelerates caspase activation and overrides caspase-2 suppression by nutrient abundance. Furthermore, 14-3-3ζ is acetylated prior to caspase activation, and supplementation of Xenopus egg extract with glucose-6-phosphate, which promotes caspase-2/14-3-3ζ binding, enhances 14-3-3ζ-directed Sirtuin activity. Conversely, inhibiting Sirtuin activity promotes 14-3-3ζ dissociation from caspase-2 in both egg extract and human cell lines. These data reveal a role for Sirt1 in modulating apoptotic sensitivity, in response to metabolic changes, by antagonizing 14-3-3ζ acetylation. PMID:21884983

  17. An autoantibody against N{sup {epsilon}}-(carboxyethyl)lysine (CEL): Possible involvement in the removal of CEL-modified proteins by macrophages

    SciTech Connect

    Mera, Katsumi; Nagai, Ryoji; Takeo, Kazuhiro; Izumi, Miyoko; Maruyama, Toru; Otagiri, Masaki

    2011-04-08

    Highlights: {yields} A higher amount of autoantibody against CEL than that of other AGEs was observed in human plasma. {yields} The purified human anti-CEL autoantibody specifically reacted with CEL. {yields} Anti-CEL antibody accelerated the uptake of {sup 125}I-CEL-HSA by macrophage in vitro. {yields} Endocytic uptake of {sup 125}I-CEL-HSA by mice liver was accelerated in the presence of anti-CEL antibody. -- Abstract: Advanced glycation end products (AGEs) are believed to play a significant role in the development of diabetic complications. In this study, we measured the levels of autoantibodies against several AGE structures in healthy human plasma and investigated the physiological role of the autoantibodies. A high titer of the autoantibody against N{sup {epsilon}}-(carboxyethyl)lysine (CEL) was detected in human plasma compared with other AGE structures such as CML and pentosidine. The purified human anti-CEL autoantibody reacted with CEL-modified human serum albumin (CEL-HSA), but not CML-HSA. A rabbit polyclonal anti-CEL antibody, used as a model autoantibody against CEL, accelerated the uptake of CEL-HSA by macrophages, but did not enhance the uptake of native HSA. Furthermore, when {sup 125}I-labeled CEL-HSA was injected into the tail vein of mice, accumulation of {sup 125}I-CEL-HSA in the liver was accelerated by co-injection of the rabbit anti-CEL antibody. These results demonstrate that the autoantibody against CEL in plasma may play a role in the macrophage uptake of CEL-modified proteins.

  18. The tetramethoxyflavone zapotin selectively activates protein kinase C epsilon, leading to its down-modulation accompanied by Bcl-2, c-Jun and c-Fos decrease.

    PubMed

    Toton, Ewa; Lisiak, Natalia; Rubis, Blazej; Budzianowski, Jaromir; Gruber, Peter; Hofmann, Johann; Rybczynska, Maria

    2012-05-01

    Zapotin, a tetramethoxyflavone, is a natural compound with a wide spectrum of activities in neoplastic cells. Protein kinase C epsilon (PKCε) has been shown to be oncogenic, with the ability to increase cell migration, invasion and survival of tumor cells. Here we report that zapotin inhibits cell proliferation. In wild-type HeLa cells with basal endogenous expression of PKCε, the IC(50) was found to be 17.9 ± 1.6 μM. In HeLa cells overexpressing doxycycline-inducible constitutively active PKCε (HeLaPKCεA/E), the IC(50) was 7.6 ± 1.3 μM, suggesting that PKCε enhances the anti-proliferative effect of zapotin. Moreover, we found that zapotin selectively activated PKCε in comparison with other PKC family members, but attenuated doxycycline-induced PKCε expression. As a result of zapotin treatment for 6, 12 and 24h, the doxycycline-induced levels of the two differently phosphorylated PKCε forms (87 kDa and 95 kDa) were decreased. Migration assays revealed that increasing concentrations of zapotin (from 3.5 to 15 μM) decreased migration of HeLaPKCεA/E cells. Furthermore, zapotin significantly increased the fraction of apoptotic cells in doxycycline-induced (HeLaPKCεA/E) cells after 24h and decreased the levels of Bcl-2, c-Jun, c-Fos. This was accompanied by a degradation of PARP-1. In summary, activation of PKCε and down-modulation of the induced PKCε level by zapotin were associated with decreased migration and increased apoptosis. These observations are consistent with the previously reported chemopreventive and chemotherapeutic action of zapotin.

  19. The tetramethoxyflavone zapotin selectively activates protein kinase C epsilon, leading to its down-modulation accompanied by Bcl-2, c-Jun and c-Fos decrease

    PubMed Central

    Toton, Ewa; Lisiak, Natalia; Rubis, Blazej; Budzianowski, Jaromir; Gruber, Peter; Hofmann, Johann; Rybczynska, Maria

    2012-01-01

    Zapotin, a tetramethoxyflavone, is a natural compound with a wide spectrum of activities in neoplastic cells. Protein kinase C epsilon (PKCε) has been shown to be oncogenic, with the ability to increase cell migration, invasion and survival of tumor cells. Here we report that zapotin inhibits cell proliferation. In wild-type HeLa cells with basal endogenous expression of PKCε, the IC50 was found to be 17.9 ± 1.6 μM. In HeLa cells overexpressing doxycycline-inducible constitutively active PKCε (HeLaPKCεA/E), the IC50 was 7.6 ± 1.3 μM, suggesting that PKCε enhances the anti-proliferative effect of zapotin. Moreover, we found that zapotin selectively activated PKCε in comparison with other PKC family members, but attenuated doxycycline-induced PKCε expression. As a result of zapotin treatment for 6, 12 and 24 h, the doxycycline-induced levels of the two differently phosphorylated PKCε forms (87 kDa and 95 kDa) were decreased. Migration assays revealed that increasing concentrations of zapotin (from 3.5 to 15 μM) decreased migration of HeLaPKCεA/E cells. Furthermore, zapotin significantly increased the fraction of apoptotic cells in doxycycline-induced (HeLaPKCεA/E) cells after 24 h and decreased the levels of Bcl-2, c-Jun, c-Fos. This was accompanied by a degradation of PARP-1. In summary, activation of PKCε and down-modulation of the induced PKCε level by zapotin were associated with decreased migration and increased apoptosis. These observations are consistent with the previously reported chemopreventive and chemotherapeutic action of zapotin. PMID:22381066

  20. Bone Tissue Engineering Using High Permeability Poly-epsilon-caprolactone Scaffolds Conjugated with Bone Morphogenetic Protein-2

    NASA Astrophysics Data System (ADS)

    Mitsak, Anna Guyer

    Bone is the second most commonly transplanted tissue in the United States. Limitations of current bone defect treatment options include morbidity at the autograft harvest site, mechanical failure, and poorly controlled growth factor delivery. Combining synthetic scaffolds with biologics may address these issues and reduce dependency on autografts. The ideal scaffolding system should promote tissue in-growth and nutrient diffusion, control delivery of biologics and maintain mechanical integrity during bone formation. This dissertation evaluates how scaffold permeability, conjugated bone morphogenetic protein-2 (BMP-2) and differentiation medium affect osteogenesis in vitro and bone growth in vivo.. "High" and "low" permeability polycaprolactone (PCL) scaffolds with regular architectures were manufactured using solid free form fabrication. Bone growth in vivo was evaluated in an ectopic mouse model. High permeability scaffolds promoted better 8 week bone growth, supported tissue penetration into the scaffold core, and demonstrated increased mechanical properties due to newly formed bone. Next, the effects of differentiation medium and conjugated BMP-2 on osteogenesis were compared. Conjugation may improve BMP-2 loading efficiency, help localize bone growth and control release. High permeability scaffolds were conjugated with BMP-2 using the crosslinker, sulfo-SMCC. When adipose-derived and bone marrow stromal cells were seeded onto constructs (with or without BMP-2), BMSC expressed more differentiation markers, and differentiation medium affected differentiation more than BMP-2. In vivo, scaffolds with ADSC pre-differentiated in osteogenic medium (with and without BMP-2) and scaffolds with only BMP-2 grew the most bone. Bone volume did not differ among these groups, but constructs with ADSC had evenly distributed, scaffold-guided bone growth. Analysis of two additional BMP-2 attachment methods (heparin and adsorption) showed highest conjugation efficiency for the

  1. Upregulation of lactate dehydrogenase a by 14-3-3ζ leads to increased glycolysis critical for breast cancer initiation and progression

    PubMed Central

    Chang, Chia-Chi; Zhang, Chenyu; Zhang, Qingling; Sahin, Ozgur; Wang, Hai; Xu, Jia; Xiao, Yi; Zhang, Jian; Rehman, Sumaiyah K.; Li, Ping; Hung, Mien-Chie; Behbod, Fariba; Yu, Dihua

    2016-01-01

    Metabolic reprogramming is a hallmark of cancer. Elevated glycolysis in cancer cells switches the cellular metabolic flux to produce more biological building blocks, thereby sustaining rapid proliferation. Recently, new evidence has emerged that metabolic dysregulation may occur at early-stages of neoplasia and critically contribute to cancer initiation. Here, our bioinformatics analysis of microarray data from early-stages breast neoplastic lesions revealed that 14-3-3ζ expression is strongly correlated with the expression of canonical glycolytic genes, particularly lactate dehydrogenase A (LDHA). Experimentally, increasing 14-3-3ζ expression in human mammary epithelial cells (hMECs) up-regulated LDHA expression, elevated glycolytic activity, and promoted early transformation. Knockdown of LDHA in the 14-3-3ζ-overexpressing hMECs significantly reduced glycolytic activity and inhibited transformation. Mechanistically, 14-3-3ζ overexpression activates the MEK-ERK-CREB axis, which subsequently up-regulates LDHA. In vivo, inhibiting the activated the MEK/ERK pathway in 14-3-3ζ-overexpressing hMEC-derived MCF10DCIS.COM lesions led to effective inhibition of tumor growth. Therefore, targeting the MEK/ERK pathway could be an effective strategy for intervention of 14-3-3ζ-overexpressing early breast lesions. Together, our data demonstrate that overexpression of 14-3-3ζ in early stage pre-cancerous breast epithelial cells may trigger an elevated glycolysis and transcriptionally up-regulating LDHA, thereby contributes to human breast cancer initiation. PMID:27150057

  2. Molecular Modeling of Differentially Phosphorylated Serine 10 and Acetylated lysine 9/14 of Histone H3 Regulates their Interactions with 14-3-3ζ, MSK1, and MKP1

    PubMed Central

    Sharma, Ajit K.; Mansukh, Abhilasha; Varma, Ashok; Gadewal, Nikhil; Gupta, Sanjay

    2013-01-01

    Histone modifications occur in precise patterns, with several modifications known to affect the binding of proteins. These interactions affect the chromatin structure, gene regulation, and cell cycle events. The dual modifications on the H3 tail, serine10 phosphorylation, and lysine14 acetylation (H3Ser10PLys14Ac) are reported to be crucial for interaction with 14-3-3ζ. However, the mechanism by which H3Ser10P along with neighboring site-specific acetylation(s) is targeted by its regulatory proteins, including kinase and phosphatase, is not fully understood. We carried out molecular modeling studies to understand the interaction of 14-3-3ζ, and its regulatory proteins, mitogen-activated protein kinase phosphatase-1 (MKP1), and mitogen- and stress-activated protein kinase-1 (MSK1) with phosphorylated H3Ser10 alone or in combination with acetylated H3Lys9 and Lys14. In silico molecular association studies suggested that acetylated Lys14 and phosphorylated Ser10 of H3 shows the highest binding affinity towards 14-3-3ζ. In addition, acetylation of H3Lys9 along with Ser10PLys14Ac favors the interaction of the phosphatase, MKP1, for dephosphorylation of H3Ser10P. Further, MAP kinase, MSK1 phosphorylates the unmodified H3Ser10 containing N-terminal tail with maximum affinity compared to the N-terminal tail with H3Lys9AcLys14Ac. The data clearly suggest that opposing enzymatic activity of MSK1 and MKP1 corroborates with non-acetylated and acetylated, H3Lys9Lys14, respectively. Our in silico data highlights that site-specific phosphorylation (H3Ser10P) and acetylation (H3Lys9 and H3Lys14) of H3 are essential for the interaction with their regulatory proteins (MKP1, MSK1, and 14-3-3ζ) and plays a major role in the regulation of chromatin structure. PMID:24027420

  3. Adjudin disrupts spermatogenesis via the action of some unlikely partners: Eps8, Arp2/3 complex, drebrin E, PAR6 and 14-3-3.

    PubMed

    Cheng, C Yan; Lie, Pearl Py; Wong, Elissa Wp; Mruk, Dolores D; Silvestrini, Bruno

    2011-10-01

    expression of PAR6 (partitioning defective protein 6) and 14-3-3 (also known as PAR5) considerably at the apical ES, disrupting the homeostasis of endocytic vesicle-mediated protein trafficking, which in turn leads to an increase in protein endocytosis. The net result of these changes destabilizes cell adhesion and induces degeneration of the apical ES, causing premature release of spermatids, mimicking spermiation.

  4. Eclipse of epsilon Aurigae

    NASA Astrophysics Data System (ADS)

    Templeton, Matthew R.

    2009-07-01

    The bright, long-period, eclipsing binary star epsilon Aurigae is predicted to begin its next eclipse late July or early August of 2009. Epsilon Aurigae is now past solar conjunction and has reappeared as a morning object. All observers -- both visual and instrumental -- are encouraged to contribute observations of the eclipse during the next two years, beginning immediately for morning observers. Observations are urgently requested right now because it is less likely to be observed in the morning, and the eclipse will begin within the next month. The AAVSO is participating in a global campaign to record this eclipse as part of the International Year of Astronomy 2009 celebrations, organized by the Citizen Sky project (http://www.citizensky.org). For experienced visual observers, please observe this star on a weekly basis, using charts available via VSP from the AAVSO website. For novice visual observers, we recommend participating in this observing program by following the Citizen Sky 10-Star tutorial program, which provides a simple training experience in variable star observing. Photoelectric observers belonging to the AAVSO PEP-V program may submit data as usual via the WebObs feature of the AAVSO website Blue&Gold section. Photoelectric observers may also contribute reduced observations in all filters (including infrared J- and H-bands) directly to the AAVSO via WebObs. Observers using wide-field CCD and DSLR systems are also encouraged to participate; avoid saturating the star. For those with narrower-field systems (D < 2 degrees), we recommend taking a large number (10-100) of very short exposures and then stacking the resulting images. Observations should be submitted to the AAVSO International Database. Aaron Price is coordinating Citizen Sky for the AAVSO, and Dr. Robert Stencel and Jeffrey Hopkins are co-leading the precision photometry efforts.

  5. N-epsilon-(carboxyethyl)lysine, a product of the chemical modification of proteins by methylglyoxal, increases with age in human lens proteins.

    PubMed Central

    Ahmed, M U; Brinkmann Frye, E; Degenhardt, T P; Thorpe, S R; Baynes, J W

    1997-01-01

    Advanced glycation end-products and glycoxidation products, such as Nepsilon-(carboxymethyl)lysine (CML) and pentosidine, accumulate in long-lived tissue proteins with age and are implicated in the aging of tissue proteins and in the development of pathology in diabetes, atherosclerosis and other diseases. In this paper we describe a new advanced glycation end-product, Nepsilon-(carboxyethyl)lysine (CEL), which is formed during the reaction of methylglyoxal with lysine residues in model compounds and in the proteins RNase and collagen. CEL was also detected in human lens proteins at a concentration similar to that of CML, and increased with age in parallel with the concentration of CML. Although CEL was formed in highest yields during the reaction of methylglyoxal and triose phosphates with lysine and protein, it was also formed in reactions of pentoses, ascorbate and other sugars with lysine and RNase. We propose that levels of CML and CEL and their ratio to one another in tissue proteins and in urine will provide an index of glyoxal and methylglyoxal concentrations in tissues, alterations in glutathione homoeostasis and dicarbonyl metabolism in disease, and sources of advanced glycation end-products in tissue proteins in aging and disease. PMID:9182719

  6. Induction of AID-targeting adaptor 14-3-3γ is mediated by NF-κB-dependent recruitment of CFP1 to the 5′-CpG-3′-rich 14-3-3γ promoter and is sustained by E2A

    PubMed Central

    Mai, Thach; Pone, Egest J.; Li, Guideng; Lam, Tonika S.; Moehlman, J’aime; Xu, Zhenming; Casali, Paolo

    2013-01-01

    Class switch DNA recombination (CSR) crucially diversifies antibody biological effectors functions. 14-3-3γ specifically binds to the 5′-AGCT-3′ repeats in the IgH locus switch (S) regions. By directly interacting with the C-terminal region of activation-induced cytidine deaminase (AID), 14-3-3γ targets this enzyme to S regions to mediate CSR. Here, we showed that 14-3-3γ was expressed in germinal center B cells in vivo and induced in B cells by T-dependent and T-independent primary CSR-inducing stimuli in vitro in humans and mice. Induction of 14-3-3γ was rapid, peaking within 3 h of stimulation by lipopolysaccharides (LPS), and sustained over the course of AID and CSR induction. It was dependent on recruitment of NF-κB to the 14-3-3γ gene promoter. The NF-κB recruitment enhanced the occupancy of the CpG island within the 14-3-3γ promoter by CFP1, a component of the COMPASS histone methyltransferase complex, and promoter-specific enrichment of histone 3 lysine 4 trimethylation (H3K4me3), which is indicative of open chromatin state and marks transcription-competent promoters. NF-κB also potentiated the binding of B cell lineage-specific factor E2A to an E-box motif located immediately downstream of the two closely-spaced transcription start sites (TSSs) for sustained 14-3-3γ expression and CSR induction. Thus, 14-3-3γ induction in CSR is enabled by the CFP1-mediated H3K4me3 enrichment in the promoter, dependent on NF-κB and sustained by E2A. PMID:23851690

  7. Induction of activation-induced cytidine deaminase-targeting adaptor 14-3-3γ is mediated by NF-κB-dependent recruitment of CFP1 to the 5'-CpG-3'-rich 14-3-3γ promoter and is sustained by E2A.

    PubMed

    Mai, Thach; Pone, Egest J; Li, Guideng; Lam, Tonika S; Moehlman, J'aime; Xu, Zhenming; Casali, Paolo

    2013-08-15

    Class switch DNA recombination (CSR) crucially diversifies Ab biologic effector functions. 14-3-3γ specifically binds to the 5'-AGCT-3' repeats in the IgH locus switch (S) regions. By interacting directly with the C-terminal region of activation-induced cytidine deaminase (AID), 14-3-3γ targets this enzyme to S regions to mediate CSR. In this study, we showed that 14-3-3γ was expressed in germinal center B cells in vivo and induced in B cells by T-dependent and T-independent primary CSR-inducing stimuli in vitro in humans and mice. Induction of 14-3-3γ was rapid, peaking within 3 h of stimulation by LPSs, and sustained over the course of AID and CSR induction. It was dependent on recruitment of NF-κB to the 14-3-3γ gene promoter. The NF-κB recruitment enhanced the occupancy of the CpG island within the 14-3-3γ promoter by CFP1, a component of the COMPASS histone methyltransferase complex, and promoter-specific enrichment of histone 3 lysine 4 trimethylation (H3K4me3), which is indicative of open chromatin state and marks transcription-competent promoters. NF-κB also potentiated the binding of B cell lineage-specific factor E2A to an E-box motif located immediately downstream of the two closely-spaced transcription start sites for sustained 14-3-3γ expression and CSR induction. Thus, 14-3-3γ induction in CSR is enabled by the CFP1-mediated H3K4me3 enrichment in the promoter, dependent on NF-κB and sustained by E2A.

  8. Identification of candidate genes for psychosis in rat models, and possible association between schizophrenia and the 14-3-3eta gene.

    PubMed

    Wong, A H C; Macciardi, F; Klempan, T; Kawczynski, W; Barr, C L; Lakatoo, S; Wong, M; Buckle, C; Trakalo, J; Boffa, E; Oak, J; Azevedo, M-H; Dourado, A; Coelho, I; Macedo, A; Vicente, A; Valente, J; Ferreira, C P; Pato, M T; Pato, C N; Kennedy, J L; Van Tol, H H M

    2003-02-01

    Although the genetic contribution to schizophrenia is substantial, positive findings in whole-genome linkage scans have not been consistently replicated. We analyzed gene expression in various rat conditions to identify novel candidate genes for schizophrenia. Suppression subtraction hybridization (SSH), with polyA mRNA from temporal and frontal cortex of rats, was used to identify differentially expressed genes. Expression of mRNA was compared between adult Lewis and Fischer 344 (F344) rats, adult and postnatal day 6 (d6) F344, and adult F344 treated with haloperidol or control vehicle. These groups were chosen because each highlights a particular aspect of schizophrenia: differences in strain vulnerability to behavioral analogs of psychosis; factors that may relate to disease onset in relation to CNS development; and improvement of symptoms by haloperidol. The 14-3-3 gene family, as represented by 14-3-3gamma and 14-3-3zeta isoforms in the SSH study, and SNAP-25 were among the candidate genes. Genetic association between schizophrenia and the 14-3-3eta gene, positioned close to a genomic locus implicated in schizophrenia, and SNAP-25 genes was analyzed in 168 schizophrenia probands and their families. These findings address three different genes in the 14-3-3 family. We find a significant association with schizophrenia for two polymorphisms in the 14-3-3eta gene: a 7 bp variable number of tandem repeats in the 5' noncoding region (P=0.036, 1 df), and a 3' untranslated region SNP (753G/A) that is an RFLP visualized with Ava II (P=0.028). There was no significant genetic association with SNAP-25. The candidate genes identified may be of functional importance in the etiology, pathophysiology or treatment response of schizophrenia or psychotic symptoms. This is to our knowledge the first report of a significant association between the 14-3-3eta-chain gene and schizophrenia in a family-based sample, strengthening prior association reports in case-control studies and

  9. Molecular dissection of the epsilon subunit of the chloroplast ATP synthase of spinach.

    PubMed Central

    Cruz, J A; Harfe, B; Radkowski, C A; Dann, M S; McCarty, R E

    1995-01-01

    The gene encoding the epsilon subunit (atpE) of the chloroplast ATP synthase of Spinacia oleracea has been overexpressed in Escherichia coli. The recombinant protein can be solubilized in 8 M urea and directly diluted into buffer containing ethanol and glycerol to obtain epsilon that is as biologically active as epsilon purified from chloroplast-coupling factor 1 (CF1). Recombinant epsilon folded in this manner inhibits the ATPase activity of soluble and membrane-bound CF1 deficient in epsilon and restores proton impermeability to thylakoid membranes reconstituted with CF1 deficient in epsilon. Site-directed mutagenesis was used to generate truncations and single amino acid substitutions in the primary structure of epsilon. In the five mutants tested, alterations that weaken ATPase inhibition by recombinant epsilon affect its ability to restore proton impermeability to a similar extent, with one exception. Substitution of histidine-37 with arginine appears to uncouple ATPase inhibition and the restoration of proton impermeability. As in the case of E. coli, it appears that N-terminal truncations of the epsilon subunit have more profound effects than C-terminal deletions on the function of epsilon. Recombinant epsilon with six amino acids deleted from the C terminus, which is the only region of significant mismatch between the epsilon of spinach and the epsilon of Pisum sativum, inhibits ATPase activity with a reduced potency similar to that of purified pea epsilon. Four of the six amino acids are serine or threonine. These hydroxylated amino acids may be important in epsilon-CF1 interactions. PMID:8539297

  10. Molecular Characterization of the 14-3-3 Gene Family in Brachypodium distachyon L. Reveals High Evolutionary Conservation and Diverse Responses to Abiotic Stresses.

    PubMed

    Cao, Hui; Xu, Yuxing; Yuan, Linlin; Bian, Yanwei; Wang, Lihui; Zhen, Shoumin; Hu, Yingkao; Yan, Yueming

    2016-01-01

    The 14-3-3 gene family identified in all eukaryotic organisms is involved in a wide range of biological processes, particularly in resistance to various abiotic stresses. Here, we performed the first comprehensive study on the molecular characterization, phylogenetics, and responses to various abiotic stresses of the 14-3-3 gene family in Brachypodium distachyon L. A total of seven 14-3-3 genes from B. distachyon and 120 from five main lineages among 12 species were identified, which were divided into five well-conserved subfamilies. The molecular structure analysis showed that the plant 14-3-3 gene family is highly evolutionarily conserved, although certain divergence had occurred in different subfamilies. The duplication event investigation revealed that segmental duplication seemed to be the predominant form by which the 14-3-3 gene family had expanded. Moreover, seven critical amino acids were detected, which may contribute to functional divergence. Expression profiling analysis showed that BdGF14 genes were abundantly expressed in the roots, but showed low expression in the meristems. All seven BdGF14 genes showed significant expression changes under various abiotic stresses, including heavy metal, phytohormone, osmotic, and temperature stresses, which might play important roles in responses to multiple abiotic stresses mainly through participating in ABA-dependent signaling and reactive oxygen species-mediated MAPK cascade signaling pathways. In particular, BdGF14 genes generally showed upregulated expression in response to multiple stresses of high temperature, heavy metal, abscisic acid (ABA), and salicylic acid (SA), but downregulated expression under H2O2, NaCl, and polyethylene glycol (PEG) stresses. Meanwhile, dynamic transcriptional expression analysis of BdGF14 genes under longer treatments with heavy metals (Cd(2+), Cr(3+), Cu(2+), and Zn(2+)) and phytohormone (ABA) and recovery revealed two main expression trends in both roots and leaves: up

  11. Molecular Characterization of the 14-3-3 Gene Family in Brachypodium distachyon L. Reveals High Evolutionary Conservation and Diverse Responses to Abiotic Stresses

    PubMed Central

    Cao, Hui; Xu, Yuxing; Yuan, Linlin; Bian, Yanwei; Wang, Lihui; Zhen, Shoumin; Hu, Yingkao; Yan, Yueming

    2016-01-01

    The 14-3-3 gene family identified in all eukaryotic organisms is involved in a wide range of biological processes, particularly in resistance to various abiotic stresses. Here, we performed the first comprehensive study on the molecular characterization, phylogenetics, and responses to various abiotic stresses of the 14-3-3 gene family in Brachypodium distachyon L. A total of seven 14-3-3 genes from B. distachyon and 120 from five main lineages among 12 species were identified, which were divided into five well-conserved subfamilies. The molecular structure analysis showed that the plant 14-3-3 gene family is highly evolutionarily conserved, although certain divergence had occurred in different subfamilies. The duplication event investigation revealed that segmental duplication seemed to be the predominant form by which the 14-3-3 gene family had expanded. Moreover, seven critical amino acids were detected, which may contribute to functional divergence. Expression profiling analysis showed that BdGF14 genes were abundantly expressed in the roots, but showed low expression in the meristems. All seven BdGF14 genes showed significant expression changes under various abiotic stresses, including heavy metal, phytohormone, osmotic, and temperature stresses, which might play important roles in responses to multiple abiotic stresses mainly through participating in ABA-dependent signaling and reactive oxygen species-mediated MAPK cascade signaling pathways. In particular, BdGF14 genes generally showed upregulated expression in response to multiple stresses of high temperature, heavy metal, abscisic acid (ABA), and salicylic acid (SA), but downregulated expression under H2O2, NaCl, and polyethylene glycol (PEG) stresses. Meanwhile, dynamic transcriptional expression analysis of BdGF14 genes under longer treatments with heavy metals (Cd2+, Cr3+, Cu2+, and Zn2+) and phytohormone (ABA) and recovery revealed two main expression trends in both roots and leaves: up-down and up

  12. Mapping Protein–Protein Interactions of the Resistance-Related Bacterial Zeta Toxin–Epsilon Antitoxin Complex (ε2ζ2) with High Affinity Peptide Ligands Using Fluorescence Polarization

    PubMed Central

    Fernández-Bachiller, María Isabel; Brzozowska, Iwona; Odolczyk, Norbert; Zielenkiewicz, Urszula; Zielenkiewicz, Piotr; Rademann, Jörg

    2016-01-01

    Toxin–antitoxin systems constitute a native survival strategy of pathogenic bacteria and thus are potential targets of antibiotic drugs. Here, we target the Zeta–Epsilon toxin–antitoxin system, which is responsible for the stable maintenance of certain multiresistance plasmids in Gram-positive bacteria. Peptide ligands were designed on the basis of the ε2ζ2 complex. Three α helices of Zeta forming the protein–protein interaction (PPI) site were selected and peptides were designed conserving the residues interacting with Epsilon antitoxin while substituting residues binding intramolecularly to other parts of Zeta. Designed peptides were synthesized with an N-terminal fluoresceinyl-carboxy-residue for binding assays and provided active ligands, which were used to define the hot spots of the ε2ζ2 complex. Further shortening and modification of the binding peptides provided ligands with affinities <100 nM, allowing us to determine the most relevant PPIs and implement a robust competition binding assay. PMID:27438853

  13. The peripheral pro-nociceptive state induced by repetitive inflammatory stimuli involves continuous activation of protein kinase A and protein kinase C epsilon and its Na(V)1.8 sodium channel functional regulation in the primary sensory neuron.

    PubMed

    Villarreal, Cristiane Flora; Sachs, Daniela; Funez, Mani Indiana; Parada, Carlos Amílcar; de Queiroz Cunha, Fernando; Ferreira, Sérgio Henrique

    2009-03-01

    In the present study, the participation of the Na(V)1.8 sodium channel was investigated in the development of the peripheral pro-nociceptive state induced by daily intraplantar injections of PGE(2) in rats and its regulation in vivo by protein kinase A (PKA) and protein kinase C epsilon (PKCvarepsilon) as well. In the prostaglandin E(2) (PGE(2))-induced persistent hypernociception, the Na(V)1.8 mRNA in the dorsal root ganglia (DRG) was up-regulated. The local treatment with dipyrone abolished this persistent hypernociception but did not alter the Na(V)1.8 mRNA level in the DRG. Daily intrathecal administrations of antisense Na(V)1.8 decreased the Na(V)1.8 mRNA in the DRG and reduced ongoing persistent hypernociception. Once the persistent hypernociception had been abolished by dipyrone, but not by Na(V)1.8 antisense treatment, a small dose of PGE(2) restored the hypernociceptive plateau. These data show that, after a period of recurring inflammatory stimuli, an intense and prolonged nociceptive response is elicited by a minimum inflammatory stimulus and that this pro-nociceptive state depends on Na(V)1.8 mRNA up-regulation in the DRG. In addition, during the persistent hypernociceptive state, the PKA and PKCvarepsilon expression and activity in the DRG are up-regulated and the administration of the PKA and PKCvarepsilon inhibitors reduce the hypernociception as well as the Na(V)1.8 mRNA level. In the present study, we demonstrated that the functional regulation of the Na(V)1.8 mRNA by PKA and PKCvarepsilon in the primary sensory neuron is important for the development of the peripheral pro-nociceptive state induced by repetitive inflammatory stimuli and for the maintenance of the behavioral persistent hypernociception. PMID:19073148

  14. Proteomic pathway analysis of the hippocampus in schizophrenia and bipolar affective disorder implicates 14-3-3 signaling, aryl hydrocarbon receptor signaling, and glucose metabolism: potential roles in GABAergic interneuron pathology.

    PubMed

    Schubert, Klaus Oliver; Föcking, Melanie; Cotter, David R

    2015-09-01

    Neuropathological changes of the hippocampus have been associated with psychotic disorders such as schizophrenia and bipolar disorder. Recent work has particularly implicated hippocampal GABAergic interneurons in the pathophysiology of these diseases. However, the molecular mechanisms underlying structural and cellular hippocampal pathology remain poorly understood. We used data from comprehensive difference-in-gel electrophoresis (2-D DIGE) investigations of postmortem human hippocampus of people with schizophrenia and bipolar disorder, covering the acidic (isoelectric point (pI) between pH4 and 7) and, separately, the basic (pI between pH6 and 11) sub-proteome, for Ingenuity Pathway Analysis (IPA) of implicated protein networks and pathways. Comparing disease and control cases, we identified 58 unique differentially expressed proteins in schizophrenia, and 70 differentially expressed proteins in bipolar disorder, using mass spectrometry. IPA implicated, most prominently, 14-3-3 and aryl hydrocarbon receptor signaling in schizophrenia, and gluconeogenesis/glycolysis in bipolar disorder. Both disorders were characterized by alterations of proteins involved in the oxidative stress response, mitochondrial function, and protein-endocytosis, -trafficking, -degradation, and -ubiquitination. These findings are interpreted with a focus on GABAergic interneuron pathology in the hippocampus.

  15. The FAD-dependent glycerol-3-phosphate dehydrogenase of Giardia duodenalis: an unconventional enzyme that interacts with the g14-3-3 and it is a target of the antitumoral compound NBDHEX

    PubMed Central

    Lalle, Marco; Camerini, Serena; Cecchetti, Serena; Finelli, Renata; Sferra, Gabriella; Müller, Joachim; Ricci, Giorgio; Pozio, Edoardo

    2015-01-01

    The flagellated protozoan Giardia duodenalis is a worldwide parasite causing giardiasis, an acute and chronic diarrheal disease. Metabolism in G. duodenalis has a limited complexity thus making metabolic enzymes ideal targets for drug development. However, only few metabolic pathways (i.e., carbohydrates) have been described so far. Recently, the parasite homolog of the mitochondrial-like glycerol-3-phosphate dehydrogenase (gG3PD) has been identified among the interactors of the g14-3-3 protein. G3PD is involved in glycolysis, electron transport, glycerophospholipids metabolism, and hyperosmotic stress response, and is emerging as promising target in tumor treatment. In this work, we demonstrate that gG3PD is a functional flavoenzyme able to convert glycerol-3-phosphate into dihydroxyacetone phosphate and that its activity and the intracellular glycerol level increase during encystation. Taking advantage of co-immunoprecipitation assays and deletion mutants, we provide evidence that gG3PD and g14-3-3 interact at the trophozoite stage, the intracellular localization of gG3PD is stage dependent and it partially co-localizes with mitosomes during cyst development. Finally, we demonstrate that the gG3PD activity is affected by the antitumoral compound 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol, that results more effective in vitro at killing G. duodenalis trophozoites than the reference drug metronidazole. Overall, our results highlight the involvement of gG3PD in processes crucial for the parasite survival thus proposing this enzyme as target for novel antigiardial interventions. PMID:26082764

  16. epsilon-N-trimethyllysine availability regulates the rate of carnitine biosynthesis in the growing rat

    SciTech Connect

    Rebouche, C.J.; Lehman, L.J.; Olson, L.

    1986-05-01

    Rates of carnitine biosynthesis in mammals depend on the availability of substrates and the activity of enzymes subserving the pathway. This study was undertaken to test the hypothesis that the availability of epsilon-N-trimethyllysine is rate-limiting for synthesis of carnitine in the growing rat and to evaluate diet as a source of this precursor for carnitine biosynthesis. Rats apparently absorbed greater than 90% of a tracer dose of (methyl-/sup 3/H)epsilon-N-trimethyllysine, and approximately 30% of that was incorporated into tissues as (/sup 3/H)carnitine. Rats given oral supplements of epsilon-N-trimethyllysine (0.5-20 mg/d), but no dietary carnitine, excreted more carnitine than control animals receiving no dietary epsilon-N-trimethyllysine or carnitine. Rates of carnitine excretion increased in a dose-dependent manner. Tissue and serum levels of carnitine also increased with dietary epsilon-N-trimethyllysine supplementation. There was no evidence that the capacity for carnitine biosynthesis was saturated even at the highest level of oral epsilon-N-trimethyllysine supplementation. Common dietary proteins (casein, soy protein and wheat gluten) were found to be poor sources of epsilon-N-trimethyllysine for carnitine biosynthesis. The results of this study indicate that the availability of epsilon-N-trimethyllysine limits the rate of carnitine biosynthesis in the growing rat.

  17. Differential regulation of alternative 3{prime} splicing of {epsilon} messenger RNA variants

    SciTech Connect

    Diaz-Sanchez, D.; Zhang, K.; Saxon, A.

    1995-08-15

    Alternative 3{prime} splicing of the one active human {epsilon} heavy chain gene results in variants of {epsilon} mRNA encoding distinct IgE proteins. The same relative amounts of these {epsilon} mRNA variants were produced by non-atopic donor B cells when driven in a variety of T-dependent or T-independent systems. The most abundant variants were those for classic secreted {epsilon} and a novel secreted form (CH4-M2{double_prime}). In contrast, cells from subjects with high levels of serum IgE secondary to parasitic infection or atopy spontaneously produced higher relative levels of the CH4-M2{prime} {epsilon} mRNA variant, lower relative amounts of both the membrane and CH4-M2{double_prime} secreted variants, and very low levels of the CH4{prime}-CH5 variant. The existence of and corresponding changes in levels of the CH4-M2{prime}-enclosed secreted protein were demonstrated. IL-10 induced this same differential expression of {epsilon} splice variants in vitro when used to costimulate IL-4 plus CD40-driven B cells and could differentially enhance the production of CH4-M2{prime} protein by established IgE-secreting cell lines. Inhibition of IgE by cross-linking the low affinity IgE receptor (CD23) decreased the levels of {epsilon} mRNA and resulted in a distinct pattern of {epsilon} mRNA characterized by a dramatic decrease in CH4-M2{prime} splice variant. IL-6, IL-2, or IFN-{gamma} did not change the {epsilon} mRNA pattern. Overall, the absolute and relative amounts of the different {epsilon} mRNA splice variants produced appear to be controlled in a differentiation-related fashion.

  18. Motility in the epsilon-proteobacteria.

    PubMed

    Beeby, Morgan

    2015-12-01

    The epsilon-proteobacteria are a widespread group of flagellated bacteria frequently associated with either animal digestive tracts or hydrothermal vents, with well-studied examples in the human pathogens of Helicobacter and Campylobacter genera. Flagellated motility is important to both pathogens and hydrothermal vent members, and a number of curious differences between the epsilon-proteobacterial and enteric bacterial motility paradigms make them worthy of further study. The epsilon-proteobacteria have evolved to swim at high speed and through viscous media that immobilize enterics, a phenotype that may be accounted for by the molecular architecture of the unusually large epsilon-proteobacterial flagellar motor. This review summarizes what is known about epsilon-proteobacterial motility and focuses on a number of recent discoveries that rationalize the differences with enteric flagellar motility. PMID:26590774

  19. The search for companions to Epsilon Eridani.

    PubMed

    Lawton, A T; Wright, P

    1990-12-01

    The authors review efforts to examine the star Epsilon Eridani and determine the possibility for the existence of an Earth-like planet. Early data indicated that there must be a habitable ecosphere about 82.5 million Km from the primary. Research into the existence of another planetary system determined that Epsilon Eridani was a binary star with an Oort cloud system, indicating the possibility of planet formation. A review of the evidence suggests that the presence of the small red Dwarf companion star precludes the existence of a planetary system surrounding Epsilon Eridani. It is suggested that observations continue to provide further data about the formation of binary systems.

  20. The search for companions to Epsilon Eridani.

    PubMed

    Lawton, A T; Wright, P

    1990-12-01

    The authors review efforts to examine the star Epsilon Eridani and determine the possibility for the existence of an Earth-like planet. Early data indicated that there must be a habitable ecosphere about 82.5 million Km from the primary. Research into the existence of another planetary system determined that Epsilon Eridani was a binary star with an Oort cloud system, indicating the possibility of planet formation. A review of the evidence suggests that the presence of the small red Dwarf companion star precludes the existence of a planetary system surrounding Epsilon Eridani. It is suggested that observations continue to provide further data about the formation of binary systems. PMID:11540498

  1. Properties of epsilon-caprolactone/DL-lactide (epsilon-CL/DL-LA) copolymers with a minor epsilon-CL content.

    PubMed

    Hiljanen-Vainio, M P; Orava, P A; Seppälä, J V

    1997-01-01

    In this study the properties of DL-lactide (DL-LA) copolymers with 5, 10, 15, 20, and 30 wt % (in feed) of epsilon-caprolactone (epsilon-CL) polymerized with stannous(II)octoate (SnOct) as catalyst and glycerol, laurylalcohol, or pentaerythritol as initiator were investigated. Thermal studies showed that the addition of 5 wt % (in feed) of epsilon-CL to the P(CL/DL-LA) copolymer decreased the Tg by about 5 degrees C. Hydrolysis tests were carried out for copolymers with 20 and 30 wt % (in feed) of epsilon-CL to study the degradation rate. Molecular weights decreased dramatically during the first week of hydrolysis, with mass losses occuring a few weeks later. The influence of glycerol and pentaerythritol as initiators, and the influence of epsilon-CL content on stress-strain behavior, tension set, and rheologic properties of the P(CL/DL-LA) copolymers were also investigated. The tensile testing of P(CL/DL-LA) copolymers containing 5, 10, 15, 20 wt % (in feed) of epsilon-CL showed that the properties of copolymers varied from hard and brittle to rubbery. The permanence of elastic properties was investigated with tension set measurements. These studies showed that copolymers crept remarkably under stress. The viscosity and elasticity of P(CL/DL-LA) copolymers at 120 degrees C were investigated using rheology studies.

  2. EUVE Observations of Epsilon CMa

    NASA Astrophysics Data System (ADS)

    Cassinelli, J. P.

    1993-05-01

    The brightest EUV source in the sky in the long wavelength spectrometer band of EUVE is the B2 II star Epsilon CMa. The star is also detected in the short and medium wavelength spectral bands and several emission lines from Fe and from He II are present. These provide exciting new information regarding the shocked wind of the star. A strong stellar continuum flux is present throughout the long wavelength band from about 400 to 700 Angstroms, with a continuum jump due to the ionization of He I near 504 Angstroms. The jump contains information about the very small interstellar attenuation that is present along the 187 parsecs towards this star, as well as about the confluence of lines just longward of the jump. The observations are used in conjunction with angular diameter and UV data on this star to derive Teff and other fundamental atmospheric parameters. Basic results from fits of the observations to model atmospheres and stellar winds are presented in the talk, and reference is made to the related posters by members of our group of investigators: J. MacFarlane, D. Cohen at U. Wisc; J. Vallerga, B. Welsh, P. Vedder at CEA; and J. Drew and M. Hoare at the U. of Oxford.

  3. Epsilon Aurigae Eclipse 2009 - Ingress

    NASA Astrophysics Data System (ADS)

    Hopkins, Jeffrey L.; Stencel, Robert E.; Leadbeater, Robin; Beckmann, Paul J.; Buil, Christian; Collins, Donald; Colombo, Tiziano; Garrel, Thierry; Gorodenski, Stanley; Gudmundsson, Snaevarr; Karlsson, Mukund Kurtadikar; Lindberg, Hans-Goran; Loughney, Des; Mauclaire, Benji; McCandless, Brian E.; Melillo, Frank J.; Miles, Richard; Pearson, Robert T.; Samolyk, Gerard; Schanne, Lothar; Strikis, Iakovos Marios; Teyssier, François; Thizy, Olivier

    The mysterious star system epsilon Aurigae undergoes an eclipse every 27.1 years that lasts nearly two years. The most recent eclipse started during the late summer of 2009. An international campaign for observing this eclipse was created in 2006, with a web site for information and, to-date, 17 periodic newsletters for details, as well as a Yahoo forum List for immediate announcements and comments. Photometric data in the UBVRIJH bands have been submitted. Ingress occurred with first contact in the V band estimated at the second week of 2009 August and second contact estimated at 2010 mid-January. Spectroscopic data were also obtained during ingress. Spectroscopic data have been provided in the potassium I region, hydrogen alpha and beta regions and sodium D line region of the star system's spectrum. In this paper we describe details of observations and preliminary analysis during ingress and second contact. We introduce the observers and discuss plans for observing throughout totality and the end of the eclipse in 2011.

  4. Systematic effects of the quenched approximation on the strong penguin contribution to epsilon-prime / epsilon

    SciTech Connect

    Aubin, C.; Christ, N.H.; Dawson, C.; Laiho, J.W.; Noaki, J.; Li, S.; Soni, A.; /Brookhaven

    2006-03-01

    We discuss the implementation and properties of the quenched approximation in the calculation of the left-right, strong penguin contributions (i.e. Q{sub 6}) to {epsilon}{prime}/{epsilon}. The coefficient of the new chiral logarithm, discovered by Golterman and Pallante, which appears at leading order in quenched chiral perturbation theory is evaluated using both the method proposed by those authors and by an improved approach which is free of power divergent corrections. The result implies a large quenching artifact in the contribution of Q{sub 6} to {epsilon}{prime}/{epsilon}. This failure of the quenched approximation affects only the strong penguin operators and so does not affect the Q8 contribution to {epsilon}{prime}/{epsilon} nor ReA{sub 0}, ReAP{sub 2} and thus, the {Delta}I = 1/2 rule at tree level in chiral perturbation theory.

  5. Systematic effects of the quenched approximation on the strong penguin contribution to {epsilon}{sup '}/{epsilon}

    SciTech Connect

    Aubin, C.; Christ, N. H.; Li, S.; Dawson, C.; Noaki, J.; Laiho, J. W.; Soni, A.

    2006-08-01

    We discuss the implementation and properties of the quenched approximation in the calculation of the left-right, strong penguin contributions (i.e. Q{sub 6}) to {epsilon}{sup '}/{epsilon}. The coefficient of the new chiral logarithm, discovered by Golterman and Pallante, which appears at leading order in quenched chiral perturbation theory is evaluated using both the method proposed by those authors and by an improved approach which is free of power divergent corrections. The result implies a large quenching artifact in the contribution of Q{sub 6} to {epsilon}{sup '}/{epsilon}. This failure of the quenched approximation affects only the strong penguin operators and so does not affect the Q{sub 8} contribution to {epsilon}{sup '}/{epsilon} nor ReA{sub 0}, ReA{sub 2} and thus, the {delta}I=1/2 rule at tree level in chiral perturbation theory.

  6. IκB kinase-induced interaction of TPL-2 kinase with 14-3-3 is essential for Toll-like receptor activation of ERK-1 and -2 MAP kinases.

    PubMed

    Ben-Addi, Abduelhakem; Mambole-Dema, Agnes; Brender, Christine; Martin, Stephen R; Janzen, Julia; Kjaer, Sven; Smerdon, Stephen J; Ley, Steven C

    2014-06-10

    The MEK-1/2 kinase TPL-2 is critical for Toll-like receptor activation of the ERK-1/2 MAP kinase pathway during inflammatory responses, but it can transform cells following C-terminal truncation. IκB kinase (IKK) complex phosphorylation of the TPL-2 C terminus regulates full-length TPL-2 activation of ERK-1/2 by a mechanism that has remained obscure. Here, we show that TPL-2 Ser-400 phosphorylation by IKK and TPL-2 Ser-443 autophosphorylation cooperated to trigger TPL-2 association with 14-3-3. Recruitment of 14-3-3 to the phosphorylated C terminus stimulated TPL-2 MEK-1 kinase activity, which was essential for TPL-2 activation of ERK-1/2. The binding of 14-3-3 to TPL-2 was also indispensible for lipopolysaccharide-induced production of tumor necrosis factor by macrophages, which is regulated by TPL-2 independently of ERK-1/2 activation. Our data identify a key step in the activation of TPL-2 signaling and provide a mechanistic insight into how C-terminal deletion triggers the oncogenic potential of TPL-2 by rendering its kinase activity independent of 14-3-3 binding.

  7. Molecular dynamics simulations for pure epsilon-CL-20 and epsilon-CL-20-based PBXs.

    PubMed

    Xu, Xiao-Juan; Xiao, He-Ming; Xiao, Ji-Jun; Zhu, Wei; Huang, Hui; Li, Jin-Shan

    2006-04-13

    Molecular dynamics has been employed to simulate the well-known high energy density compound epsilon-CL-20 (hexanitrohexaazaisowurtzitane) crystal and 12 epsilon-CL-20-based PBXs (polymer bonded explosives) with four kinds of typical fluorine polymers, i.e., polyvinylidenedifluoride, polychlorotrifluoroethylene, fluorine rubber (F(2311)), and fluorine resin (F(2314)) individually. The elastic coefficients, isotropic mechanical properties (tensile moduli, bulk moduli, shear moduli, and poission's ratios), and bonding energy are first reported for epsilon-CL-20 crystal and epsilon-CL-20-based polymer bonded explosives (PBXs). The mechanical properties of epsilon-CL-20 can be effectively improved by blending with a small amount of fluorine polymers, and the whole effect of the adding fluorine polymers to improve mechanical properties of PBXs along the three crystalline surfaces of epsilon-CL-20 is found to be (100) approximately (001) > (010). The interaction between each of the crystalline surfaces and each of the fluorine polymers is different, and the ordering of binding energy for the three surfaces is (001) > (100) > (010); F(2314) always has the strongest binding ability with the three different surfaces. F(2314) can best improve the ductibility and tenacity of PBX when it is positioned on epsilon-CL-20 (001) crystal surface. The calculations on detonation performances for pure epsilon-CL-20 crystal and the four epsilon-CL-20-based PBXs show that adding a small amount of fluorine polymer into pure epsilon-CL-20 will lower detonation performance, but each detonation parameter of the obtained PBXs is still excellent.

  8. Molecular dynamics simulations for pure epsilon-CL-20 and epsilon-CL-20-based PBXs.

    PubMed

    Xu, Xiao-Juan; Xiao, He-Ming; Xiao, Ji-Jun; Zhu, Wei; Huang, Hui; Li, Jin-Shan

    2006-04-13

    Molecular dynamics has been employed to simulate the well-known high energy density compound epsilon-CL-20 (hexanitrohexaazaisowurtzitane) crystal and 12 epsilon-CL-20-based PBXs (polymer bonded explosives) with four kinds of typical fluorine polymers, i.e., polyvinylidenedifluoride, polychlorotrifluoroethylene, fluorine rubber (F(2311)), and fluorine resin (F(2314)) individually. The elastic coefficients, isotropic mechanical properties (tensile moduli, bulk moduli, shear moduli, and poission's ratios), and bonding energy are first reported for epsilon-CL-20 crystal and epsilon-CL-20-based polymer bonded explosives (PBXs). The mechanical properties of epsilon-CL-20 can be effectively improved by blending with a small amount of fluorine polymers, and the whole effect of the adding fluorine polymers to improve mechanical properties of PBXs along the three crystalline surfaces of epsilon-CL-20 is found to be (100) approximately (001) > (010). The interaction between each of the crystalline surfaces and each of the fluorine polymers is different, and the ordering of binding energy for the three surfaces is (001) > (100) > (010); F(2314) always has the strongest binding ability with the three different surfaces. F(2314) can best improve the ductibility and tenacity of PBX when it is positioned on epsilon-CL-20 (001) crystal surface. The calculations on detonation performances for pure epsilon-CL-20 crystal and the four epsilon-CL-20-based PBXs show that adding a small amount of fluorine polymer into pure epsilon-CL-20 will lower detonation performance, but each detonation parameter of the obtained PBXs is still excellent. PMID:16599487

  9. Pareto-adaptive epsilon-dominance.

    PubMed

    Hernández-Díaz, Alfredo G; Santana-Quintero, Luis V; Coello Coello, Carlos A; Molina, Julián

    2007-01-01

    Efficiency has become one of the main concerns in evolutionary multiobjective optimization during recent years. One of the possible alternatives to achieve a faster convergence is to use a relaxed form of Pareto dominance that allows us to regulate the granularity of the approximation of the Pareto front that we wish to achieve. One such relaxed forms of Pareto dominance that has become popular in the last few years is epsilon-dominance, which has been mainly used as an archiving strategy in some multiobjective evolutionary algorithms. Despite its advantages, epsilon-dominance has some limitations. In this paper, we propose a mechanism that can be seen as a variant of epsilon-dominance, which we call Pareto-adaptive epsilon-dominance (paepsilon-dominance). Our proposed approach tries to overcome the main limitation of epsilon-dominance: the loss of several nondominated solutions from the hypergrid adopted in the archive because of the way in which solutions are selected within each box.

  10. Request for additional epsilon Aurigae observations

    NASA Astrophysics Data System (ADS)

    Templeton, Matthew R.

    2009-10-01

    Dr. Robert Stencel (Denver U.) requests enhanced coverage of the bright, long-period eclipsing binary star epsilon Aurigae through Wednesday. Observations are requested beginning immediately (October 29, 2009; JD 2455134) and continuing through November 5, 2009 (JD 2455141). This request is in conjunction with scheduled observations with the CHARA optical interferometer at Mount Wilson in California. Optical photometry by a number of observers will provide a continuous photometric baseline of epsilon Aurigae during the course of the interferometry, enabling Stencel and collaborators to more easily interpret the interferometric images. These interferometric observations are being made to image the system as it enters eclipse; the optical interferometric observations being made by CHARA are completely analogous to those made with radio interferometers like the Very Large Array, and allow ground based observers to obtain images with far higher resolution than a single optical telescope is capable of. The CHARA observations are scheduled for the nights of November 1, 2, and 3 (through mid-day UT on November 4, 2009). All observations, including visual estimates, DSLR and CCD photometry, and photoelectric photometry, are encouraged. The observations are part of a larger, long-term collaborative effort to study epsilon Aurigae. For more information on epsilon Aurigae, see the Citizen Sky website http://www.citizensky.org/. Epsilon Aurigae is currently in the ingress phase of the eclipse, which likely began in August of 2009. The star is now near V ~ 3.4 and declining. The nature of the eclipsing object is not known, but is likely to be an opaque disk surrounding an unseen, massive secondary star or binary pair. Interferometric images of epsilon Aurigae may yield strong constraints on the shape of the eclipsing! disk and size of the system. Observations should be reported to the AAVSO International Database as EPS AUR.

  11. Computerized video time lapse study of cell cycle delay and arrest, mitotic catastrophe, apoptosis and clonogenic survival in irradiated 14-3-3sigma and CDKN1A (p21) knockout cell lines.

    PubMed

    Chu, Kenneth; Teele, Noella; Dewey, Michael W; Albright, Norman; Dewey, William C

    2004-09-01

    Computerized video time lapse (CVTL) microscopy was used to observe cellular events induced by ionizing radiation (10-12 Gy) in nonclonogenic cells of the wild-type HCT116 colorectal carcinoma cell line and its three isogenic derivative lines in which p21 (CDKN1A), 14-3-3sigma or both checkpoint genes (double-knockout) had been knocked out. Cells that fused after mitosis or failed to complete mitosis were classified together as cells that underwent mitotic catastrophe. Seventeen percent of the wild-type cells and 34-47% of the knockout cells underwent mitotic catastrophe to enter generation 1 with a 4N content of DNA, i.e., the same DNA content as irradiated cells arrested in G(2) at the end of generation 0. Radiation caused a transient division delay in generation 0 before the cells divided or underwent mitotic catastrophe. Compared with the division delay for wild-type cells that express CDKN1A and 14-3-3sigma, knocking out CDKN1A reduced the delay the most for cells irradiated in G(1) (from approximately 15 h to approximately 3- 5 h), while knocking out 14-3-3sigma reduced the delay the most for cells irradiated in late S and G(2) (from approximately 18 h to approximately 3-4 h). However, 27% of wild-type cells and 17% of 14-3-3sigma(-/-) cells were arrested at 96 h in generation 0 compared with less than 1% for CDKN1A(-/-) and double-knockout cells. Thus expression of CDKN1A is necessary for the prolonged delay or arrest in generation 0. Furthermore, CDKN1A plays a crucial role in generation 1, greatly inhibiting progression into subsequent generations of both diploid cells and polyploid cells produced by mitotic catastrophe. Thus, in CDKN1A-deficient cell lines, a series of mitotic catastrophe events occurred to produce highly polyploid progeny during generations 3 and 4. Most importantly, the polyploid progeny produced by mitotic catastrophe events did not die sooner than the progeny of dividing cells. Death was identified as loss of cell movement, i

  12. Apparatus and method to measure dielectric properties (epsilon(') and epsilon(")) of ionic liquids.

    PubMed

    Göllei, Attila; Vass, András; Pallai, Elisabeth; Gerzson, Miklós; Ludányi, Lajos; Mink, János

    2009-04-01

    Conventional techniques for measurement of dielectric properties of ionic liquids or electrolyte solutions fail because the samples are largely short circuited by the high electrical conductance. The object of the author's research activity was to elaborate an apparatus (microwave dielectrometer) and method suitable to measure the dielectric constant (epsilon(')) and loss factor (epsilon(")) of well conducting ionic liquids and other solvents. This process is based on a revised waveguide method completed with an automatic calibration possibility. Contrary to conventional measuring methods this technique uses about 20 W/g power density. The measurements were carried out at 2.45 GHz frequency in the temperature range from 10 up to 100 degrees C. The obtained (epsilon(')) and (epsilon(")) values of different solvents were compared with several published (calculated and measured) data. Statistical analysis was used to determine the error of measurements and distilled water was chosen as a standard for study of data dispersion. To accomplish statistical analysis, namely, the dielectric characteristics have to be determined at the same temperature. The values of variances were less or equal 1 in case of epsilon(') and decrease with increasing temperature. In case of epsilon(") the variance data were much smaller. PMID:19405682

  13. Fc epsilon RI-mediated association of 6-micron beads with RBL-2H3 mast cells results in exclusion of signaling proteins from the forming phagosome and abrogation of normal downstream signaling

    PubMed Central

    1996-01-01

    Cells of the mucosal mast cell line, RBL-2H3, are normally stimulated to degranulate after aggregation of high affinity receptors for IgE (Fc epsilon RI) by soluble cross-linking ligands. This cellular degranulation process requires sustained elevation of cytoplasmic Ca2+. In this study, we investigated the response of RBL-2H3 cells to 6- micron beads coated with IgE-specific ligands. These ligand-coated beads cause only small, transient Ca2+ responses, even though the same ligands added in soluble form cause larger, more sustained Ca2+ responses. The ligand-coated 6-micron beads also fail to stimulate significant degranulation of RBL-2H3 cells, whereas much larger ligand- coated Sepharose beads stimulate ample degranulation. Confocal fluorescence microscopy shows that the 6-micron beads (but not the Sepharose beads) are phagocytosed by RBL-2H3 cells and that, beginning with the initial stages of bead engulfment, there is exclusion of many plasma membrane components from the 6-micron bead/cell interface, including p53/56lyn and several other markers for detergent-resistant membrane domains, as well as an integrin and unliganded IgE-Fc epsilon RI. The fluorescent lipid probe DiIC16 is a marker for the membrane domains that is excluded from the cell/bead interface, whereas a structural analogue, fast DiI, which differs from DiIC16 by the presence of unsaturated acyl chains, is not substantially excluded from the interface. None of these components are excluded from the interface of RBL-2H3 cells and the large Sepharose beads. Additional confocal microscopy analysis indicates that microfilaments are involved in the exclusion of plasma membrane components from the cell/bead interface. These results suggest that initiation of phagocytosis diverts normal signaling pathways in a cytoskeleton-driven membrane clearance process that alters the physiological response of the cells. PMID:8830772

  14. Potency against enterotoxemia of a recombinant Clostridium perfringens type D epsilon toxoid in ruminants.

    PubMed

    Lobato, Francisco C F; Lima, Catarina G R D; Assis, Ronnie A; Pires, Prhiscylla S; Silva, Rodrigo O S; Salvarani, Felipe M; Carmo, Anderson O; Contigli, Christiane; Kalapothakis, Evanguedes

    2010-08-31

    Enterotoxemia, a disease that affects domestic ruminants, is caused mainly by the epsilon toxin from Clostridium perfringens type D. Its eradication is virtually impossible, control and prophylaxis are based on systematic vaccination of herds with epsilon toxoids that are efficient in inducing protective antibody production. The use of recombinant toxins is one of the most promising of these strategies. This work evaluates the potency of a Cl. perfringens type D epsilon toxoid expressed by Escherichia coli administered to goats, sheep, and cattle. The etx gene was cloned into the pET-11a plasmid of E. coli strain BL21 to produce the recombinant toxin. Rabbits (n=8), goats, sheep, and cattle (n=5 for each species) were immunized with 0.2mg of the insoluble recombinant protein fraction to evaluate vaccine potency of the epsilon toxoid studied. Antibody titers were 40, 14.3, 26, and 13.1 IU/mL in the rabbit, goat, sheep, and cattle serum pools, respectively. The epsilon toxoid produced and tested in this work is adequate for immunization of ruminants against enterotoxemia. PMID:20670910

  15. Galpha12/13- and rho-dependent activation of phospholipase C-epsilon by lysophosphatidic acid and thrombin receptors.

    PubMed

    Hains, Melinda D; Wing, Michele R; Maddileti, Savitri; Siderovski, David P; Harden, T Kendall

    2006-06-01

    Because phospholipase C epsilon (PLC-epsilon) is activated by Galpha(12/13) and Rho family GTPases, we investigated whether these G proteins contribute to the increased inositol lipid hydrolysis observed in COS-7 cells after activation of certain G protein-coupled receptors. Stimulation of inositol lipid hydrolysis by endogenous lysophosphatidic acid (LPA) or thrombin receptors was markedly enhanced by the expression of PLC-epsilon. Expression of the LPA(1) or PAR1 receptor increased inositol phosphate production in response to LPA or SFLLRN, respectively, and these agonist-stimulated responses were markedly enhanced by coexpression of PLC-epsilon. Both LPA(1) and PAR1 receptor-mediated activation of PLC-epsilon was inhibited by coexpression of the regulator of G protein signaling (RGS) domain of p115RhoGEF, a GTPase-activating protein for Galpha(12/13) but not by expression of the RGS domain of GRK2, which inhibits Galpha(q) signaling. In contrast, activation of the G(q)-coupled M1 muscarinic or P2Y(2) purinergic receptor was neither enhanced by coexpression with PLC-epsilon nor inhibited by the RGS domain of p115RhoGEF but was blocked by expression of the RGS domain of GRK2. Expression of the Rho inhibitor C3 botulinum toxin did not affect LPA- or SFLLRN-stimulated inositol lipid hydrolysis in the absence of PLC-epsilon but completely prevented the PLC-epsilon-dependent increase in inositol phosphate accumulation. Likewise, C3 toxin blocked the PLC-epsilon-dependent stimulatory effects of the LPA(1), LPA(2), LPA(3), or PAR1 receptor but had no effect on the agonist-promoted inositol phosphate response of the M1 or P2Y(2) receptor. Moreover, PLC-epsilon-dependent stimulation of inositol phosphate accumulation by activation of the epidermal growth factor receptor, which involves Ras- but not Rho-mediated activation of the phospholipase, was unaffected by C3 toxin. These studies illustrate that specific LPA and thrombin receptors promote inositol lipid signaling via

  16. Epsilon Aur monitoring during predicted pulsation phase

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.; Templeton, Matthew R.

    2014-09-01

    Dr. Robert Stencel (University of Denver Astronomy Program) has requested that AAVSO observers monitor epsilon Aurigae from now through the end of the observing season. "Studies of the long-term, out-of-eclipse photometry of this enigmatic binary suggest that intervals of coherent pulsation occur at roughly 1/3 of the 27.1-year orbital period. Kloppenborg, et al. noted that stable variation patterns develop at 3,200-day intervals' implying that 'the next span of dates when such events might happen are circa JD ~2457000 (2014 December)'. "These out-of-eclipse light variations often have amplitudes of ~0.1 magnitude in U, and ~0.05 in V, with characteristic timescales of 60-100 days. The AAVSO light curve data to the present may indicate that this coherent phenomenon has begun, but we encourage renewed efforts by observers...to help deduce whether these events are internal to the F star, or externally-driven by tidal interaction with the companion star." Nightly observations or one observation every few days (CCD/PEP/DSLR, VUBR (amplitude too small for visual)) are requested. Finder charts with sequence may be created using the AAVSO Variable Star Plotter (http://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. Epsilon Aur was the subject of major international campaigns and the AAVSO's Citizen Sky project as it went through its 27.1-year eclipse in 2009-2011. Over 700 observers worldwide submitted over 20,000 multicolor observations to the AAVSO International Database for this project. Much information on eps Aur is available from the AAVSO, including material on the Citizen Sky website (http://www.aavso.org/epsilon-aurigae and http://www.citizensky.org/content/star-our-project). The Journal of the AAVSO, Volume 40, No. 2 (2012) was devoted to discussion of and research results from this event. See full Alert Notice for more details and observations.

  17. Epsilon Aurigae at the End of Eclipse

    NASA Astrophysics Data System (ADS)

    Hoard, Donald; Stencel, R.; Howell, S.

    2011-05-01

    We request a small investment of 24 minutes of Spitzer time, to obtain four IRAC observations of epsilon Aurigae. A naked eye object located near Capella, epsilon Aurigae is the eclipsing binary star with the longest known orbital period, showing a single long duration (~2 yr) eclipse every 27.1 yr. For much of the last 150 years, the nature of the eclipsing object defied explanation. We recently demonstrated that epsilon Aurigae consists of a high luminosity F0 post-AGB star in orbit with a B5 V star surrounded by a solar system sized (~8 AU diameter) disk of cool, dust-dominated material. The eclipse of epsilon Aurigae is a rare event; moreover, it is a unique astrophysical opportunity, since the backlighting of the disk by the high luminosity eclipsed star reveals details that cannot be detected in similar dusty disks around single stars. The current eclipse started in August 2009 and is expected to reach its photometric conclusion in May 2011 (with the spectroscopic conclusion as late as December 2011). The goals for these observations include: (1) extend our ongoing IRAC monitoring campaign covering the current eclipse to late-phase and post-eclipse visits; (2) provide a consistent, well-calibrated space-based set of IR photometry for comparison with ongoing ground-based work; and (3) use the composite results to constrain the thermal profile of the disk. A key expectation of these particular observations is to reveal the irradiation-heated portion of the disk, which will be visible on its trailing side following eclipse. Observations of this side of the disk will be crucial to test and constrain new models of disk structure. As part of our overall monitoring campaign with Spitzer, Hubble, Herschel, and numerous ground-based facilities, these proposed observations will make an important contribution to the understanding of stellar evolution in binary stars, including mass transfer and evolution studies, along with new insights into astrophysical disks and post

  18. Revealing the Hot Side of Epsilon Aurigae

    NASA Astrophysics Data System (ADS)

    Hoard, Donald; Stencel, Robert; Howell, Steve

    2012-12-01

    We request a small investment of 24 minutes of Spitzer time, to obtain four IRAC observations of epsilon Aurigae. A naked eye object located near Capella, epsilon Aurigae is the eclipsing binary star with the longest known orbital period, showing a single long duration (~2 yr) eclipse every 27.1 yr. For much of the last 200 years, the nature of the eclipsing object defied explanation. We recently demonstrated that epsilon Aurigae consists of a high luminosity F0 post-AGB star in orbit with a B5 V star surrounded by a solar system sized (~8 AU diameter) disk of cool, dust-dominated material. The eclipse of epsilon Aurigae is a rare event; moreover, it is a unique astrophysical opportunity, since the backlighting of the disk by the high luminosity eclipsed star reveals details that cannot be detected in similar dusty disks around single stars. The current eclipse started in August 2009 and ended in July 2011; we are now in the post-eclipse phase, when the irradiation-heated side of the disk will begin rotating into view. The goals for these observations include: (1) extend our ongoing IRAC monitoring campaign covering the current eclipse to post-eclipse visits; (2) provide a consistent, well-calibrated space-based set of IR photometry for comparison with ongoing ground-based work; and (3) use the composite results to constrain the thermal profile of the disk. A key expectation of these particular observations is to reveal the irradiation-heated portion of the disk, which will be visible on its trailing side following eclipse. Observations of this side of the disk will be crucial to test and constrain new models of disk structure. As part of our overall monitoring campaign with Spitzer, Hubble, Herschel, and numerous ground-based facilities, these proposed observations will make an important contribution to the understanding of stellar evolution in binary stars, including mass transfer and evolution studies, along with new insights into astrophysical disks and post

  19. New atmospheric model of Epsilon Eridani

    NASA Astrophysics Data System (ADS)

    Vieytes, Mariela; Fontenla, Juan; Buccino, Andrea; Mauas, Pablo

    2016-05-01

    We present a new semi-empirical model of the atmosphere of the widely studied K-dwarf Epsilon Eridani (HD 22049). The model is build to reproduce the visible spectral observations from 3800 to 6800 Angstrom and the h and k Mg II lines profiles. The computations were carried out using the Solar-Stellar Radiation Physical Modeling (SSRPM) tools, which calculate non-LTE population for the most important species in the stellar atmosphere. We show a comparison between the synthetic and observed spectrum, obtaining a good agreement in all the studied spectral range.

  20. Nonlinear models in 2 + epsilon dimensions

    SciTech Connect

    Friedan, D.H.

    1980-08-01

    The general nonlinear scalar model is studied at asymptotically low temperature near two dimensions. The low-temperature expansion is renormalized, and effective algorithms are derived for calculation to all orders in the renormalized expansion. The renormalization group coefficients are calculated in the two-loop approximation, and topological properties of the renormalization group equations are investigated. Special attention is paid to the infrared instabilities of the fixed points, since they provide the continuum limits of the model. The model consists of a scalar field phi on Euclidean 2 + epsilon space whose values phi(x) lie in a finite-dimensional differentiable manifold. 4 figures.

  1. Classical closure theory and Lam's interpretation of epsilon-RNG

    NASA Technical Reports Server (NTRS)

    Zhou, YE

    1995-01-01

    Lam's phenomenological epsilon-renormalization group (RNG) model is quite different from the other members of that group. It does not make use of the correspondence principle and the epsilon-expansion procedure. We demonstrate that Lam's epsilon-RNG model is essentially the physical space version of the classical closure theory in spectral space and consider the corresponding treatment of the eddy viscosity and energy backscatter.

  2. The Final Measurement of Epsilon'/Epsilon from KTeV

    SciTech Connect

    Worcester, E.T.

    2009-10-01

    The authors present precise measurements of CP and CPT symmetry based on the full dataset of K {yields} {pi}{pi} decays collected by the KTeV experiment at Fermi National Accelerator Laboratory during 1996, 1997, and 1999. This dataset contains about 15 million K {yields} {pi}{sup 0}{pi}{sup 0} and 70 million K {yields} {pi}{sup +}{pi}{sup -} decays. They measure the direct CP violation parameter Re({epsilon}'/{epsilon}) = (19.2 {+-} 2.1) x 10{sup -4}. they find the K{sub L}-K{sub S} mass difference {Delta}m = (5265 {+-} 10) x 10{sup 6} {bar h}s{sup -1} and the K{sub S} lifetime {tau}{sub S} = (89.62 {+-} 0.05) x 10{sup -12} s. They test CPT symmetry by finding the phase of the indirect CP violation parameter {epsilon}, {phi}{sub {epsilon}} = (44.09 {+-} 1.00){sup o}, and the difference of the relative phases between the CP violating and CP conserving decay amplitudes for K {yields} {pi}{sup +}{pi}{sup -} ({phi}{sub +-}) and for K {yields} {pi}{sup 0}{pi}{sup 0} ({phi}{sub 00}), {Delta}{phi} = (0.29 {+-} 0.31){sup o}. these results are consistent with other experimental results and with CPT symmetry.

  3. Clostridium perfringens Epsilon Toxin: A Malevolent Molecule for Animals and Man?

    PubMed Central

    Stiles, Bradley G.; Barth, Gillian; Barth, Holger; Popoff, Michel R.

    2013-01-01

    Clostridium perfringens is a prolific, toxin-producing anaerobe causing multiple diseases in humans and animals. One of these toxins is epsilon, a 33 kDa protein produced by Clostridium perfringens (types B and D) that induces fatal enteric disease of goats, sheep and cattle. Epsilon toxin (Etx) belongs to the aerolysin-like toxin family. It contains three distinct domains, is proteolytically-activated and forms oligomeric pores on cell surfaces via a lipid raft-associated protein(s). Vaccination controls Etx-induced disease in the field. However, therapeutic measures are currently lacking. This review initially introduces C. perfringens toxins, subsequently focusing upon the Etx and its biochemistry, disease characteristics in various animals that include laboratory models (in vitro and in vivo), and finally control mechanisms (vaccines and therapeutics). PMID:24284826

  4. Clostridium perfringens epsilon toxin: a malevolent molecule for animals and man?

    PubMed

    Stiles, Bradley G; Barth, Gillian; Barth, Holger; Popoff, Michel R

    2013-11-12

    Clostridium perfringens is a prolific, toxin-producing anaerobe causing multiple diseases in humans and animals. One of these toxins is epsilon, a 33 kDa protein produced by Clostridium perfringens (types B and D) that induces fatal enteric disease of goats, sheep and cattle. Epsilon toxin (Etx) belongs to the aerolysin-like toxin family. It contains three distinct domains, is proteolytically-activated and forms oligomeric pores on cell surfaces via a lipid raft-associated protein(s). Vaccination controls Etx-induced disease in the field. However, therapeutic measures are currently lacking. This review initially introduces C. perfringens toxins, subsequently focusing upon the Etx and its biochemistry, disease characteristics in various animals that include laboratory models (in vitro and in vivo), and finally control mechanisms (vaccines and therapeutics).

  5. Epsilon Metal Summary Report FY 2011

    SciTech Connect

    Strachan, Denis M.; Crum, Jarrod V.; Zumhoff, Mac R.; Bovaird, Chase C.; Windisch, Charles F.; Riley, Brian J.

    2011-09-30

    The Epsilon-metal ({var_epsilon}-metal) phase was selected in FY 2009 as a potential waste form to for immobilizing the noble metals found in the undissolved solids + aqueous stream, and the soluble Tc from ion-exchange process, each resulting from proposed aqueous reprocessing. {var_epsilon}-metal phase is observed in used nuclear fuel and the natural reactors of Oklobono in Gabon, where the long-term corrosion behavior was demonstrated. This makes {var_epsilon}-metal a very attractive waste form. Last fiscal year, {var_epsilon}-metal was successfully fabricated by combining the five-metals, Mo, Ru, Rh, Pd and Re (surrogate for Tc), into pellets followed by consolidation with an arc melter. The arc melter produced fully dense samples with the epsilon structure. However, some chemistry differences were observed in the microstructure that resulted in regions rich in Re and Mo, and others rich in Pd, while Ru and Rh remained fairly constant throughout. This year, thermal stability (air), and corrosion testing of the samples fabricated by arc melting were the main focus for experimental work. Thermal stability was measured with a differential scanning calorimeter - thermogravimetric analyzer, by both ramp heating as well as step heating. There is clear evidence during the ramp heating experiment of an exothermic event + a weight loss peak both beginning at {approx}700 C. Step heating showed an oxidation event at {approx}690 C with minimal weight gain that occurs just before the weight loss event at 700 C. The conclusion being that the e-metal begins to oxidize and then become volatile. These findings are useful for considering the effects of voloxidation process. Three different pellets were subjected to electrochemical testing to study the corrosion behavior of the epsilon-metal phase in various conditions, namely acidic, basic, saline, and inert. Test was done according to an interim procedure developed for the alloy metal waste form. First an open circuit potential

  6. Human tryptase epsilon (PRSS22), a new member of the chromosome 16p13.3 family of human serine proteases expressed in airway epithelial cells.

    PubMed

    Wong, G W; Yasuda, S; Madhusudhan, M S; Li, L; Yang, Y; Krilis, S A; Sali, A; Stevens, R L

    2001-12-28

    Probing of the GenBank expressed sequence tag (EST) data base with varied human tryptase cDNAs identified two truncated ESTs that subsequently were found to encode overlapping portions of a novel human serine protease (designated tryptase epsilon or protease, serine S1 family member 22 (PRSS22)). The tryptase epsilon gene resides on chromosome 16p13.3 within a 2.5-Mb complex of serine protease genes. Although at least 7 of the 14 genes in this complex encode enzymatically active proteases, only one tryptase epsilon-like gene was identified. The trachea and esophagus were found to contain the highest steady-state levels of the tryptase epsilon transcript in adult humans. Although the tryptase epsilon transcript was scarce in adult human lung, it was present in abundance in fetal lung. Thus, the tryptase epsilon gene is expressed in the airways in a developmentally regulated manner that is different from that of other human tryptase genes. At the cellular level, tryptase epsilon is a major product of normal pulmonary epithelial cells, as well as varied transformed epithelial cell lines. Enzymatically active tryptase epsilon is also constitutively secreted from these cells. The amino acid sequence of human tryptase epsilon is 38-44% identical to those of human tryptase alpha, tryptase beta I, tryptase beta II, tryptase beta III, transmembrane tryptase/tryptase gamma, marapsin, and Esp-1/testisin. Nevertheless, comparative protein structure modeling and functional studies using recombinant material revealed that tryptase epsilon has a substrate preference distinct from that of its other family members. These data indicate that the products of the chromosome 16p13.3 complex of tryptase genes evolved to carry out varied functions in humans.

  7. Nesprin-2 epsilon: A novel nesprin isoform expressed in human ovary and Ntera-2 cells

    SciTech Connect

    Lam, Le Thanh; Boehm, Sabrina V.; Roberts, Roland G.; Morris, Glenn E.

    2011-08-26

    Highlights: {yields} A novel epsilon isoform of nesprin-2 has been discovered. {yields} This 120 kDa protein was predicted by bioinformatic analysis, but has not previously been observed. {yields} It is the main isoform expressed in a teratocarcinoma cell line and is also found in ovary. {yields} Like other nesprins, it is located at the nuclear envelope. {yields} We suggest it may have a role in very early development or in some ovary-specific function. -- Abstract: The nuclear envelope-associated cytoskeletal protein, nesprin-2, is encoded by a large gene containing several internal promoters that produce shorter isoforms. In a study of Ntera-2 teratocarcinoma cells, a novel isoform, nesprin-2-epsilon, was found to be the major mRNA and protein product of the nesprin-2 gene. Its existence was predicted by bioinformatic analysis, but this is the first direct demonstration of both the mRNA and the 120 kDa protein which is located at the nuclear envelope. In a panel of 21 adult and foetal human tissues, the nesprin-2-epsilon mRNA was strongly expressed in ovary but was a minor isoform elsewhere. The expression pattern suggests a possible link with very early development and a likely physiological role in ovary.

  8. Epsilon glutathione transferases possess a unique class-conserved subunit interface motif that directly interacts with glutathione in the active site.

    PubMed

    Wongsantichon, Jantana; Robinson, Robert C; Ketterman, Albert J

    2015-10-20

    Epsilon class glutathione transferases (GSTs) have been shown to contribute significantly to insecticide resistance. We report a new Epsilon class protein crystal structure from Drosophila melanogaster for the glutathione transferase DmGSTE6. The structure reveals a novel Epsilon clasp motif that is conserved across hundreds of millions of years of evolution of the insect Diptera order. This histidine-serine motif lies in the subunit interface and appears to contribute to quaternary stability as well as directly connecting the two glutathiones in the active sites of this dimeric enzyme.

  9. Epsilon glutathione transferases possess a unique class-conserved subunit interface motif that directly interacts with glutathione in the active site

    PubMed Central

    Wongsantichon, Jantana; Robinson, Robert C.; Ketterman, Albert J.

    2015-01-01

    Epsilon class glutathione transferases (GSTs) have been shown to contribute significantly to insecticide resistance. We report a new Epsilon class protein crystal structure from Drosophila melanogaster for the glutathione transferase DmGSTE6. The structure reveals a novel Epsilon clasp motif that is conserved across hundreds of millions of years of evolution of the insect Diptera order. This histidine-serine motif lies in the subunit interface and appears to contribute to quaternary stability as well as directly connecting the two glutathiones in the active sites of this dimeric enzyme. PMID:26487708

  10. T*{sub {epsilon}} integral analysis of fracture specimens

    SciTech Connect

    Omori, Y.; Ma, L.; Kobayashi, A.S.

    1996-12-31

    T*{sub {epsilon}} integral values associated with stable crack growth in thin 2024-T3 aluminum compact (CT) specimens and A606 HSLA steel single edge notched (SEN) specimens were determined directly from the crack tip displacement field obtained by moire interferometry. Stable crack growth in the SEN specimen was also simulated by an elastic-plastic finite element (FE) model which was driven by the experimentally determined boundary conditions. T*{sub {epsilon}} obtained experimentally and by FE were in reasonable agreements with each other. Unlike the vanishing J integrals with crack extension, T*{sub {epsilon}} reached steady state values with stable crack growth. Thus, for a given integration contour, {Gamma}{sub {epsilon}}, near the crack tip, T*{sub {epsilon}} can be used as a stable crack growth as well as a ductile fracture criteria.

  11. Biologic activity of epsilon-caprolactam.

    PubMed

    Gross, P

    1984-01-01

    In general, this literature review indicates that epsilon-caprolactam has a relatively low toxicity to humans. This low-degree of toxicity is attributable in part to its rapid elimination as demonstrated by experimental studies on animals. Human studies are mostly those based on workers in Russian factories. Although reporting physicians attributed such symptoms as general weakness, irritability, headaches, and insomnia, and such diagnoses as neurosis, neurasthenia, rapid mood shifts as well as others to excessive caprolactam exposures, the widely recognized Russian national scourge of alcoholism, particularly among working populations was not considered as a possible factor. Some of the reports recognized the complicating existence of multiple exposures in the factories such as excessively high temperatures and humidity, high noise levels, and other chemicals - including mixtures of diphenyl and diphenyl oxide, cyclohexane, benzene, and others, but most reports gave scant or no consideration to them.

  12. Perturbative matching of the staggered four-fermion operators for {epsilon}'/{epsilon}

    SciTech Connect

    Lee, Weonjong

    2001-09-01

    Using staggered fermions, we calculate the perturbative corrections to the bilinear and four-fermion operators that are used in the numerical study of weak matrix elements for {epsilon}'/{epsilon}. We present results for one-loop matching coefficients between continuum operators, calculated in the naive dimensional regularization (NDR) scheme, and gauge invariant staggered fermion operators. In particular, we concentrate on Feynman diagrams of the current-current insertion type. We also present results for the tadpole improved operators. These results, combined with existing results for penguin diagrams, provide a complete one-loop renormalization of the staggered four-fermion operators. Therefore, using our results, it is possible to match a lattice calculation of K{sup 0}-{bar K}{sup 0} mixing and K{yields}{pi}{pi} decays to the continuum NDR results with all corrections of O(g{sup 2}) included.

  13. Fyn kinase controls Fc{epsilon}RI receptor-operated calcium entry necessary for full degranulation in mast cells

    SciTech Connect

    Sanchez-Miranda, Elizabeth; Ibarra-Sanchez, Alfredo; Gonzalez-Espinosa, Claudia

    2010-01-22

    IgE-antigen-dependent crosslinking of the high affinity IgE receptor (Fc{epsilon}RI) on mast cells leads to degranulation, leukotriene synthesis and cytokine production. Calcium (Ca{sup 2+}) mobilization is a sine qua non requisite for degranulation, allowing the rapid secretion of stored pro-inflammatory mediators responsible for allergy symptoms. Fyn is a Src-family kinase that positively controls Fc{epsilon}RI-induced mast cell degranulation. However, our understanding of the mechanism connecting Fyn activation to secretion of pre-synthesized mediators is very limited. We analyzed Fc{epsilon}RI-dependent Ca{sup 2+} mobilization in bone marrow-derived mast cells (BMMCs) differentiated from WT and Fyn -/- knock out mice. Fyn -/- BMMCs showed a marked defect in extracellular Ca{sup 2+} influx after Fc{epsilon}RI crosslinking but not after thapsigargin addition. High concentrations of Gadolinium (Gd{sup 3+}) partially blocked Fc{epsilon}RI-induced Ca{sup 2+} influx in WT cells but, in contrast, completely inhibited Ca{sup 2+} mobilization in Fyn -/- cells. Low concentrations of an inhibitor of the canonical transient receptor potential (TRPC) Ca{sup 2+} channels (2-aminoethoxyphenyl-borane, 2-APB) blocked Fc{epsilon}RI-induced maximal Ca{sup 2+} rise in WT but not in Fyn -/- cells. Ca{sup 2+} entry through Fyn-controlled, 2-APB sensitive channels was found to be important for full degranulation and IL-2 mRNA accumulation in WT cells. Immunoprecipitation assays showed that Fyn kinase interacts with TRPC 3/6/7 channels after IgE-antigen stimulation, but its association is not related to protein tyrosine phosphorylation. Results indicate Fyn kinase mediates the receptor-dependent activation of TRPC channels that contribute to degranulation in Fc{epsilon}RI-stimulated mast cells.

  14. The linoleic acid derivative DCP-LA selectively activates PKC-epsilon, possibly binding to the phosphatidylserine binding site.

    PubMed

    Kanno, Takeshi; Yamamoto, Hideyuki; Yaguchi, Takahiro; Hi, Rika; Mukasa, Takeshi; Fujikawa, Hirokazu; Nagata, Tetsu; Yamamoto, Satoshi; Tanaka, Akito; Nishizaki, Tomoyuki

    2006-06-01

    This study examined the effect of 8-[2-(2-pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid (DCP-LA), a newly synthesized linoleic acid derivative with cyclopropane rings instead of cis-double bonds, on protein kinase C (PKC) activity. In the in situ PKC assay with reverse-phase high-performance liquid chromatography, DCP-LA significantly activated PKC in PC-12 cells in a concentration-dependent (10 nM-100 microM) manner, with the maximal effect at 100 nM, and the DCP-LA effect was blocked by GF109203X, a PKC inhibitor, or a selective inhibitor peptide of the novel PKC isozyme PKC-epsilon. Furthermore, DCP-LA activated PKC in HEK-293 cells that was inhibited by the small, interfering RNA against PKC-epsilon. In the cell-free PKC assay, of the nine isozymes examined here, DCP-LA most strongly activated PKC-epsilon, with >7-fold potency over other PKC isozymes, in the absence of dioleoyl-phosphatidylserine and 1,2-dioleoyl-sn-glycerol; instead, the DCP-LA action was inhibited by dioleoyl-phosphatidylserine. DCP-LA also activated PKC-gamma, a conventional PKC, but to a much lesser extent compared with that for PKC-epsilon, by a mechanism distinct from PKC-epsilon activation. Thus, DCP-LA serves as a selective activator of PKC-epsilon, possibly by binding to the phosphatidylserine binding site on PKC-epsilon. These results may provide fresh insight into lipid signaling in PKC activation.

  15. The NH2-terminal php domain of the alpha subunit of the Escherichia coli replicase binds the epsilon proofreading subunit.

    PubMed

    Wieczorek, Anna; McHenry, Charles S

    2006-05-01

    The alpha subunit of the replicase of all bacteria contains a php domain, initially identified by its similarity to histidinol phosphatase but of otherwise unknown function (Aravind, L., and Koonin, E. V. (1998) Nucleic Acids Res. 26, 3746-3752). Deletion of 60 residues from the NH2 terminus of the alpha php domain destroys epsilon binding. The minimal 255-residue php domain, estimated by sequence alignment with homolog YcdX, is insufficient for epsilon binding. However, a 320-residue segment including sequences that immediately precede the polymerase domain binds epsilon with the same affinity as the 1160-residue full-length alpha subunit. A subset of mutations of a conserved acidic residue (Asp43 in Escherichia coli alpha) present in the php domain of all bacterial replicases resulted in defects in epsilon binding. Using sequence alignments, we show that the prototypical gram+ Pol C, which contains the polymerase and proofreading activities within the same polypeptide chain, has an epsilon-like sequence inserted in a surface loop near the center of the homologous YcdX protein. These findings suggest that the php domain serves as a platform to enable coordination of proofreading and polymerase activities during chromosomal replication.

  16. Distinct families of cis-acting RNA replication elements epsilon from hepatitis B viruses

    PubMed Central

    Chen, Augustine; Brown, Chris

    2012-01-01

    The hepadnavirus encapsidation signal, epsilon (ε), is an RNA structure located at the 5′ end of the viral pregenomic RNA. It is essential for viral replication and functions in polymerase protein binding and priming. This structure could also have potential regulatory roles in controlling the expression of viral replicative proteins. In addition to its structure, the primary sequence of this RNA element has crucial functional roles in the viral lifecycle. Although the ε elements in hepadnaviruses share common critical functions, there are some significant differences in mammalian and avian hepadnaviruses, which include both sequence and structural variations.   Here we present several covariance models for ε elements from the Hepadnaviridae. The model building included experimentally determined data from previous studies using chemical probing and NMR analysis. These models have sufficient similarity to comprise a clan. The clan has in common a highly conserved overall structure consisting of a lower-stem, bulge, upper-stem and apical-loop. The models differ in functionally critical regions—notably the two types of avian ε elements have a tetra-loop (UGUU) including a non-canonical UU base pair, while the hepatitis B virus (HBV) epsilon has a tri-loop (UGU). The avian epsilon elements have a less stable dynamic structure in the upper stem. Comparisons between these models and all other Rfam models, and searches of genomes, showed these structures are specific to the Hepadnaviridae. Two family models and the clan are available from the Rfam database. PMID:22418844

  17. Brain lesions associated with clostridium perfringens type D epsilon toxin in a Holstein heifer calf.

    PubMed

    Mete, A; Garcia, J; Ortega, J; Lane, M; Scholes, S; Uzal, F A

    2013-09-01

    A 6-month-old dairy heifer calf with no premonitory signs was acutely down after the morning feeding and could not rise. On presentation, the heifer was in right lateral recumbency and moribund with opisthotonus and left hind limb paddling. Following euthanasia, gross examination of the brain revealed multifocal loss of gray-white matter distinction and extensive petechiae throughout the brainstem. On histopathological examination, there was striking white matter edema and marked perivascular proteinaceous edema surrounding many arterioles and venules (microangiopathy), mainly in the white matter of the internal capsule, thalamus, midbrain, cerebellum, and cerebellar peduncles. The perivascular neuropil was strongly positive for Alzheimer precursor protein A4. Clostridium perfringens epsilon toxin was detected in the intestinal contents. This is the first report of microangiopathy in postneonatal cattle associated with the detection of epsilon toxin in the intestinal contents.

  18. EPSILON AURIGAE: AN IMPROVED SPECTROSCOPIC ORBITAL SOLUTION

    SciTech Connect

    Stefanik, Robert P.; Torres, Guillermo; Lovegrove, Justin; Latham, David W.; Zajac, Joseph; Pera, Vivian E.; Mazeh, Tsevi

    2010-03-15

    A rare eclipse of the mysterious object {epsilon} Aurigae will occur in 2009-2011. We report an updated single-lined spectroscopic solution for the orbit of the primary star based on 20 years of monitoring at the CfA, combined with historical velocity observations dating back to 1897. There are 518 new CfA observations obtained between 1989 and 2009. Two solutions are presented. One uses the velocities outside the eclipse phases together with mid-times of previous eclipses, from photometry dating back to 1842, which provide the strongest constraint on the ephemeris. This yields a period of 9896.0 {+-} 1.6 days (27.0938 {+-} 0.0044 years) with a velocity semi-amplitude of 13.84 {+-} 0.23 km s{sup -1} and an eccentricity of 0.227 {+-} 0.011. The middle of the current ongoing eclipse predicted by this combined fit is JD 2,455,413.8 {+-} 4.8, corresponding to 2010 August 5. If we use only the radial velocities, we find that the predicted middle of the current eclipse is nine months earlier. This would imply that the gravitating companion is not the same as the eclipsing object. Alternatively, the purely spectroscopic solution may be biased by perturbations in the velocities due to the short-period oscillations of the supergiant.

  19. VARIABILITY IN OPTICAL SPECTRA OF {epsilon} ORIONIS

    SciTech Connect

    Thompson, Gregory B.; Morrison, Nancy D. E-mail: nmorris@utnet.utoledo.edu

    2013-04-15

    We present the results of a time series analysis of 130 echelle spectra of {epsilon} Ori (B0 Ia), acquired over seven observing seasons between 1998 and 2006 at Ritter Observatory. The equivalent widths of H{alpha} (net) and He I {lambda}5876 were measured and radial velocities were obtained from the central absorption of He I {lambda}5876. Temporal variance spectra (TVS) revealed significant wind variability in both H{alpha} and He I {lambda}5876. The He I TVS have a double-peaked profile consistent with radial velocity oscillations. A periodicity search was carried out on the equivalent width and radial velocity data, as well as on wavelength-binned spectra. This analysis has revealed several periods in the variability with timescales of two to seven days. Many of these periods exhibit sinusoidal modulation in the associated phase diagrams. Several of these periods were present in both H{alpha} and He I, indicating a possible connection between the wind and the photosphere. Due to the harmonic nature of these periods, stellar pulsations may be the origin of some of the observed variability. Periods on the order of the rotational period were also detected in the He I line in the 1998-1999 season and in both lines during the 2004-2005 season. These periods may indicate rotational modulation due to structure in the wind.

  20. Assays for the measurement of tissue transglutaminase (type II) mediated protein crosslinking via epsilon-(gamma-glutamyl) lysine and N',N'-bis (gamma-glutamyl) polyamine linkages using biotin labelled casein.

    PubMed

    Lilley, G R; Griffin, M; Bonner, P L

    1997-02-01

    Two colorimetric assays for tissue transglutaminase (type II) activity involving the crosslinking of proteins have been developed. In one assay, biotin labelled casein is crosslinked into chemically modified casein bound to a microtiter plate by tissue transglutaminase and the biotin labelled reaction product is detected by conjugation to Extravidin peroxidase. The assay can detect activity in 10 ng of commercially available purified guinea pig liver transglutaminase and in the crude homogenate derived from 400 human endothelial cells (cell line ECV 304). A correlation (r2 = 0.977) was shown between this assay and the radiolabeled putrescine incorporation assay for the detection of transglutaminase activity. This assay measures the protein crosslinking activity of tissue transglutaminase as opposed to polyamine incorporation and offers a rapid, non-radiometric method for screening large sample numbers. Typical inter-assay variability is 13.9 +/- 1.5% (n = 8). In a second assay, the ability of tissue transglutaminase to catalyze the formation of N',N'-bis (gamma-glutamyl) polyamine bridges is measured. N',N'-dimethylcasein is bound to a microtiter plate and modified enzymatically using commercially available purified guinea pig liver transglutaminase to incorporate polyamines into glutamine residues. Biotin labelled casein is then crosslinked into the immobilized polyamines by tissue transglutaminase resulting in the formation of N',N'-bis (gamma-glutamyl) polyamine linkages. PMID:9089382

  1. A sulphoquinovosyl diacylglycerol is a DNA polymerase epsilon inhibitor.

    PubMed Central

    Mizushina, Yoshiyuki; Xu, Xianai; Asahara, Hitomi; Takeuchi, Ryo; Oshige, Masahiko; Shimazaki, Noriko; Takemura, Masaharu; Yamaguchi, Toyofumi; Kuroda, Kazufumi; Linn, Stuart; Yoshida, Hiromi; Koiwai, Osamu; Saneyoshi, Mineo; Sugawara, Fumio; Sakaguchi, Kengo

    2003-01-01

    Sulphoquinovosyl diacylglycerol (SQDG) was reported as a selective inhibitor of eukaryotic DNA polymerases alpha and beta [Hanashima, Mizushina, Ohta, Yamazaki, Sugawara and Sakaguchi (2000) Jpn. J. Cancer Res. 91, 1073-1083] and an immunosuppressive agent [Matsumoto, Sahara, Fujita, Shimozawa, Takenouchi, Torigoe, Hanashima, Yamazaki, Takahashi, Sugawara et al. (2002) Transplantation 74, 261-267]. The purpose of this paper is to elucidate the biochemical properties of the inhibition more precisely. As expected, SQDG could inhibit the activities of mammalian DNA polymerases such as alpha, delta, eta and kappa in vitro in the range of 2-5 micro M, and beta and lambda in vitro in the range of 20-45 micro M. However, SQDG could inhibit only mammalian DNA polymerases epsilon (pol epsilon) activity at less than 0.04 micro M. SQDG bound more tightly to mammalian pol epsilon than the other mammalian polymerases tested. Moreover, SQDG could inhibit the activities of all the polymerases from animals such as fish and insect, but not of the polymerases from plant and prokaryotes. SQDG should, therefore, be called a mammalian pol epsilon-specific inhibitor or animal polymerase-specific inhibitor. To our knowledge, this represents the first report about an inhibitor specific to mammalian pol epsilon. PMID:12435270

  2. The Challenge of Observing the Recent Eclipse of Epsilon Aurigae

    NASA Astrophysics Data System (ADS)

    Melillo, Frank J.

    2013-07-01

    This author participated in the 'International Epsilon Aurigae Campaign' in 2009. A total of 100 V-band observations were made in Holtsville, New York for the 2009-2011 eclipse of Epsilon Aurigae. A lightcurve has been plotted using data from these observations, which cover the phase before, during and after the eclipse. The lightcurve shows precise timing during the first, second, third and fourth contacts and possibly mid-eclipse brightening. The magnitude and the duration of the eclipse in photometric V band are discussed. This poster represents the work by Frank J Melillo and the observations were close enough to generate the true shape of the lightcurve.

  3. Mapping of murine IgE epitopes involved in IgE-Fc epsilon receptor interactions.

    PubMed

    Schwarzbaum, S; Nissim, A; Alkalay, I; Ghozi, M C; Schindler, D G; Bergman, Y; Eshhar, Z

    1989-06-01

    The generation of anti-IgE monoclonal antibodies has permitted the identification of various serological epitopes on the IgE molecule. The relationship of the sites on IgE recognized by such antibodies to the Fc epsilon receptor (Fc epsilon R) interaction site has been determined using cross-inhibition studies. However, interpretation of this type of experiment is limited by problems of steric hindrance. Thus, to accomplish precise mapping on the IgE molecule of the Fc epsilon R interaction site and the binding sites of various anti-IgE mAb, we employed site-directed mutagenesis of the IgE heavy chain gene. To this end we have constructed and expressed a recombinant murine constant epsilon heavy chain (C epsilon) gene bearing a (4-hydroxy-3-nitrophenyl)acetic acid (NP)-binding VH region. Several site-specific mutants in the C epsilon 3 and C epsilon 4 domains of this recombinant C epsilon gene were prepared and expressed by transfection into the light chain-producing J558L myeloma cell line. The resulting IgE antibodies were tested for binding to mast cells and to various anti-IgE mAb. The mutants produced include a proline to histidine point mutant at amino acid residue 404 in the C epsilon 3 domain, a mutant with a truncated C epsilon 4 domain, a mutant with a 45 amino acid deletion in the carboxy end of C epsilon 3, and a chimeric human C epsilon in which the human C epsilon 3 was replaced by the homologous mouse C epsilon 3 domain. These mutants have permitted the localization, to the C epsilon 3 domain, of the epitopes recognized by the 84.1C and 95.3 anti-IgE mAb. The 84.1C mAb recognizes a site on IgE which is identical or very close to the Fc epsilon R binding site, and 95.3 recognizes a site on IgE which is related, but not identical to the Fc epsilon R binding site. The antigenic determinant recognized by the 51.3 mAb, which is inefficient at blocking the IgE-Fc epsilon R interaction, has been mapped to the C epsilon 4 domain. When tested for binding to

  4. Association of apolipoprotein E allele {epsilon}4 with late-onset sporadic Alzheimer`s disease

    SciTech Connect

    Lucotte, G.; David, F.; Berriche, S.

    1994-09-15

    Apolipoprotein E, type {epsilon}4 allele (ApoE {epsilon}4), is associated with late-onset sporadic Alzheimer`s disease (AD) in French patients. The association is highly significant (0.45 AD versus 0.12 controls for {epsilon}4 allele frequencies). These data support the involvement of ApoE {epsilon}4 allele as a very important risk factor for the clinical expression of AD. 22 refs., 1 fig., 3 tabs.

  5. Regulation of rat basophilic leukemia-2H3 mast cell secretion by a constitutive Lyn kinase interaction with the high affinity IgE receptor (Fc epsilon RI).

    PubMed

    Vonakis, Becky M; Gibbons, Scott P; Rotté, Masashi J; Brothers, Elizabeth A; Kim, Seok C; Chichester, Kristin; MacDonald, Susan M

    2005-10-01

    Signaling through the high affinity IgE receptor is initiated by noncovalently associated Lyn kinase, resulting in the secretion of inflammatory mediators from mast cells. A fraction of the total cellular Lyn is associated via its N-terminal unique domain with the cytoplasmic domain of the Fc epsilonRI beta subunit before receptor aggregation. In the current study, we stably transfected the unique domain of Lyn into rat basophilic leukemia-2H3 mast cells and examined the consequences on Fc epsilonRI-induced signal transduction and mediator secretion to further define the role of the unique domain of Lyn in mast cell secretion. Tyrosine phosphorylation of Fc epsilonRI beta and gamma subunits was partially inhibited in the Lyn unique domain transfectants after Ag stimulation. Ag stimulation of Lyn unique domain transfectants was accompanied by enhanced phosphorylation of MEK and ERK-2, which are required for leukotriene C4 (LTC4) release, and production of LTC4 was increased 3- to 5-fold, compared with cells transfected with vector alone. Conversely, tyrosine phosphorylation of the adaptor protein Gab2, which is essential for mast cell degranulation, was inhibited after Ag stimulation of Lyn unique domain transfectants, and Ag-induced release of histamine was inhibited up to 48%. In rat basophilic leukemia-2H3 cells, Lyn thus plays a dual role by positively regulating Fc epsilonRI phosphorylation and degranulation while negatively regulating LTC4 production. This study provides further evidence that the constitutive interaction between the unique domain of Lyn and the Fc epsilonRI beta subunit is a crucial step in the initiation of Fc epsilonRI signaling and that Lyn is limiting for Fc epsilonRI-induced secretion of inflammatory mediators.

  6. Characterization of thymus-derived lymphocytes expressing Ti alpha-beta CD3 gamma delta epsilon zeta-zeta, Ti alpha-beta CD3 gamma delta epsilon eta-eta or Ti alpha-beta CD3 gamma delta epsilon zeta-zeta/zeta- eta antigen receptor isoforms: analysis by gene transfection

    PubMed Central

    1990-01-01

    To characterize the function of the CD3 eta subunit of the T cell receptor (TCR), we have used cDNAs encoding CD3 zeta, CD3 eta, or both to reconstitute a variant of a cytochrome c-specific, I-Ek-restricted murine T cell hybridoma, termed MA5.8, which lacks CD3 zeta and CD3 eta proteins. We provide direct evidence that assembly and surface expression of TCRs can be mediated by either of these subunits separately or together. However, the level of TCR expression on zeta transfectants is up to one order of magnitude greater than that on eta transfectants, implying that CD3 eta is weakly associated with the pentameric Ti alpha-beta CD3 gamma delta epsilon complex and/or inefficient at salvaging the incomplete TCR from lysosomal degradation. As a component of the TCR, the CD3 eta subunit preferentially forms a heterodimer with CD3 zeta, but is also able to form a CD3 eta-eta homodimer. Crosslinking of Ti alpha-beta CD3 gamma delta epsilon zeta- zeta, Ti alpha-beta CD3 gamma delta epsilon eta-eta, or Ti alpha-beta CD3 gamma delta epsilon zeta-zeta/zeta-eta TCR isotypes with anti-CD3 epsilon monoclonal antibody or a cytochrome c peptide epitope on I-Ek antigen-presenting cells mediates signal transduction resulting in reversible cell-cycle arrest of transfected clones. Given the potential for diversity of signals generated by these functional TCR isotypes and the expression of the CD3 eta gene product in the thymus, CD3 eta is likely to play a role in selection and/or activation of thymocytes during development. PMID:2145389

  7. Cloning and developmental expression of pea ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit epsilon N-methyltransferase

    DOEpatents

    Houtz, R.L.

    1999-02-02

    The gene sequence for ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) large subunit (LS){sup {epsilon}}N-methyltransferase (protein methylase III or Rubisco LSMT) is disclosed. This enzyme catalyzes methylation of the {epsilon}-amine of lysine-14 in the large subunit of Rubisco. In addition, a full-length cDNA clone for Rubisco LSMT is disclosed. Transgenic plants and methods of producing same which (1) have the Rubisco LSMT gene inserted into the DNA, and (2) have the Rubisco LSMT gene product or the action of the gene product deleted from the DNA are also provided. Further, methods of using the gene to selectively deliver desired agents to a plant are also disclosed. 8 figs.

  8. Cloning and developmental expression of pea ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit epsilon N-methyltransferase

    DOEpatents

    Houtz, Robert L.

    1999-01-01

    The gene sequence for ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) large subunit (LS) .sup..epsilon. N-methyltransferase (protein methylase III or Rubisco LSMT) is disclosed. This enzyme catalyzes methylation of the .epsilon.-amine of lysine-14 in the large subunit of Rubisco. In addition, a full-length cDNA clone for Rubisco LSMT is disclosed. Transgenic plants and methods of producing same which (1) have the Rubisco LSMT gene inserted into the DNA, and (2) have the Rubisco LSMT gene product or the action of the gene product deleted from the DNA are also provided. Further, methods of using the gene to selectively deliver desired agents to a plant are also disclosed.

  9. Recombination of the Epsilon Determinant and Corneal Tropism: Human Adenovirus Species D Types 15, 29, 56, and 69

    PubMed Central

    Singh, Gurdeep; Zhou, Xiaohong; Lee, Jeong Yoon; Yousuf, Mohammad A.; Ramke, Mirja; Ismail, Mohamed A.; Lee, Ji Sun; Robinson, Christopher M.; Seto, Donald; Dyer, David W.; Jones, Morris S.; Rajaiya, Jaya; Chodosh, James

    2015-01-01

    Viruses within human adenovirus species D (HAdV-D) infect epithelia at essentially every mucosal site. Hypervariable loops 1 and 2 of the hexon capsid protein contain epitopes that together form the epsilon determinant for serum neutralization. We report our analyses comparing HAdV-D15, 29, 56, and the recently identified type 69, each with highly similar hexons and the same serum neutralization profile, but otherwise disparate genomes. Of these, only HAdV-D type 56 is associated with epidemic keratoconjunctivitis (EKC), a severe infection of ocular surface epithelium and underlying corneal stroma. In the mouse adenovirus keratitis model, all four viruses induced inflammation. However, HAdV-D56 entry into human corneal epithelial cells and fibroblasts in vitro dramatically exceeded that of the other three viruses. We conclude that the hexon epsilon determinant is not a prime contributor to corneal tropism. PMID:26343864

  10. Crystal structure of [alpha]-COP in complex with [epsilon]-COP provides insight into the architecture of the COPI vesicular coat

    SciTech Connect

    Hsia, Kuo-Chiang; Hoelz, André

    2010-07-23

    The heptameric coatomer complex forms the protein shell of membrane-bound vesicles that are involved in transport from the Golgi to the endoplasmatic reticulum and in intraGolgi trafficking. The heptamer can be dissected into a heterotetrameric F-subcomplex, which displays similarities to the adapter complex of the 'inner' coat in clathrin-coated vesicles, and a heterotrimeric B-subcomplex, which is believed to form an 'outer' coat with a morphology distinct from that of clathrin-coated vesicles. We have determined the crystal structure of the complex between the C-terminal domain (CTD) of {alpha}-COP and full-length {epsilon}-COP, two components of the B-subcomplex, at a 2.9 {angstrom} resolution. The {alpha}-COP{sup CTD} {center_dot} {epsilon}-COP heterodimer forms a rod-shaped structure, in which {epsilon}-COP adopts a tetratricopeptide repeat (TPR) fold that deviates substantially from the canonical superhelical conformation. The {alpha}-COP CTD adopts a U-shaped architecture that complements the TPR fold of {epsilon}-COP. The {epsilon}-COP TPRs form a circular bracelet that wraps around a protruding {beta}-hairpin of the {alpha}-COP CTD, thus interlocking the two proteins. The {alpha}-COPCTD {center_dot} {epsilon}-COP complex forms heterodimers in solution, and we demonstrate biochemically that the heterodimer directly interacts with the Dsl1 tethering complex. These data suggest that the heterodimer is exposed on COPI vesicles, while the remaining part of the B-subcomplex oligomerizes underneath into a cage.

  11. The embedded objects in epsilon Cha I cloud

    NASA Technical Reports Server (NTRS)

    Prusti, Timo; Assendorp, R.; Wesselius, P. R.

    1989-01-01

    A study was made of the embedded objects in the epsilon Cha I cloud. General shapes of the spectra were constructed for the members in the cloud. The near infrared data were compiled from the literature and combined with the IRAS Point Source Catalog information. Pointed observations by the IRAS were used in the regions of high source density where the Point Source Catalog is confused. Member objects near the late B star HD 97300 were measured recently in the 3 to 10 micron bands using the ESO 2.2 m telescope in order to study the effects of disks seen in other young stellar objects. A picture is presented of the complete initial luminosity function in the epsilon Cha I cloud. The observations were compared with the theoretical views on low mass star formation.

  12. Affinity labeling of eukaryotic elongation factors using N epsilon-bromoacetyl-Lys-tRNA.

    PubMed Central

    Johnson, A E; Slobin, L I

    1980-01-01

    eEF-T and eEF-Tu from rabbit reticulocyte and from Artemia were affinity labeled using N epsilon-bromoacetyl-Lys-tRNA prepared with either yeast or E. coli tRNA. Only the eEF-Tu polypeptide was crosslinked when eEF-T was incubated with the reactive aminoacyl-tRNA analogue, which indicates that at least part of the aminoacyl-tRNA binding site is the same in both eEF-Tu and the multisubunit eEF-T. Complex formation (eEF-Tu x aa-tRNA x GTP) was required for crosslinking, since no covalent reaction with eEF-Tu occurred in the absence of GTP. The yield of crosslinked product was greatly reduced by adding either unmodified rabbit liver aminoacyl-tRNA or unmodified E. coli Lys-tRNA to the incubation to compete for the aminoacyl-tRNA binding site on eEF-T or eEF-Tu, indicating that the covalent reaction occurs while the N epsilon-bromoacetyl-Lys-tRNA is bound in this site. The affinity labeling of a prokaryotic and two different eukaryotic elongation factors by the same reagent suggests that there may be conservation of structure in the region of the proteins which binds the aminoacyl end of the aminoacyl-tRNA. PMID:7001363

  13. MAGNETIC ACTIVITY CYCLES IN THE EXOPLANET HOST STAR {epsilon} ERIDANI

    SciTech Connect

    Metcalfe, T. S.; Mathur, S.; Buccino, A. P.; Mauas, P. J. D.; Petrucci, R.; Brown, B. P.; Soderblom, D. R.; Henry, T. J.; Hall, J. C.; Basu, S.

    2013-02-01

    The active K2 dwarf {epsilon} Eri has been extensively characterized both as a young solar analog and more recently as an exoplanet host star. As one of the nearest and brightest stars in the sky, it provides an unparalleled opportunity to constrain stellar dynamo theory beyond the Sun. We confirm and document the 3-year magnetic activity cycle in {epsilon} Eri originally reported by Hatzes and coworkers, and we examine the archival data from previous observations spanning 45 years. The data show coexisting 3-year and 13-year periods leading into a broad activity minimum that resembles a Maunder minimum-like state, followed by the resurgence of a coherent 3-year cycle. The nearly continuous activity record suggests the simultaneous operation of two stellar dynamos with cycle periods of 2.95 {+-} 0.03 years and 12.7 {+-} 0.3 years, which, by analogy with the solar case, suggests a revised identification of the dynamo mechanisms that are responsible for the so-called 'active' and 'inactive' sequences as proposed by Boehm-Vitense. Finally, based on the observed properties of {epsilon} Eri, we argue that the rotational history of the Sun is what makes it an outlier in the context of magnetic cycles observed in other stars (as also suggested by its Li depletion), and that a Jovian-mass companion cannot be the universal explanation for the solar peculiarities.

  14. Advanced k-epsilon modeling of heat transfer

    NASA Technical Reports Server (NTRS)

    Kwon, Okey; Ames, Forrest E.

    1995-01-01

    This report describes two approaches to low Reynolds-number k-epsilon turbulence modeling which formulate the eddy viscosity on the wall-normal component of turbulence and a length scale. The wall-normal component of turbulence is computed via integration of the energy spectrum based on the local dissipation rate and is bounded by the isotropic condition. The models account for the anisotropy of the dissipation and the reduced mixing length due to the high strain rates present in the near-wall region. The turbulent kinetic energy and its dissipation rate were computed from the k and epsilon transport equations of Durbin. The models were tested for a wide range of turbulent flows and proved to be superior to other k-epsilon models, especially for nonequilibrium anisotropic flows. For the prediction of airfoil heat transfer, the models included a set of empirical correlations for predicting laminar-turbulent transition and laminar heat transfer augmentation due to the presence of freestream turbulence. The predictions of surface heat transfer were generally satisfactory.

  15. An Attempt to Derive the epsilon Equation from a Two-Point Closure

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Cheng, Y.; Howard, A. M.

    2010-01-01

    The goal of this paper is to derive the equation for the turbulence dissipation rate epsilon for a shear-driven flow. In 1961, Davydov used a one-point closure model to derive the epsilon equation from first principles but the final result contained undetermined terms and thus lacked predictive power. Both in 1987 and in 2001, attempts were made to derive the epsilon equation from first principles using a two-point closure, but their methods relied on a phenomenological assumption. The standard practice has thus been to employ a heuristic form of the equation that contains three empirical ingredients: two constants, c(sub 1 epsilon), and c(sub 2 epsilon), and a diffusion term D(sub epsilon) In this work, a two-point closure is employed, yielding the following results: 1) the empirical constants get replaced by c(sub 1), c(sub 2), which are now functions of Kappa and epsilon; 2) c(sub 1) and c(sub 2) are not independent because a general relation between the two that are valid for any Kappa and epsilon are derived; 3) c(sub 1), c(sub 2) become constant with values close to the empirical values c(sub 1 epsilon), c(sub epsilon 2), (i.e., homogenous flows); and 4) the empirical form of the diffusion term D(sub epsilon) is no longer needed because it gets substituted by the Kappa-epsilon dependence of c(sub 1), c(sub 2), which plays the role of the diffusion, together with the diffusion of the turbulent kinetic energy D(sub Kappa), which now enters the new equation (i.e., inhomogeneous flows). Thus, the three empirical ingredients c(sub 1 epsilon), c(sub epsilon 2), D (sub epsilon)are replaced by a single function c(sub 1)(Kappa, epsilon ) or c(sub 2)(Kappa, epsilon ), plus a D(sub Kappa)term. Three tests of the new equation for epsilon are presented: one concerning channel flow and two concerning the shear-driven planetary boundary layer (PBL).

  16. Identification of epsilon martensite in a Fe-based shape memory alloy by means of EBSD.

    PubMed

    Verbeken, K; Van Caenegem, N; Raabe, D

    2009-01-01

    Ferrous shape memory alloys (SMAs) are often thought to become a new, important group of SMAs. The shape memory effect in these alloys is based on the reversible, stress-induced martensitic transformation of austenite to epsilon martensite. The identification and quantification of epsilon martensite is crucial when evaluating the shape memory behaviour of this material. Previous work displayed that promising results were obtained when studying the evolution of the amount of epsilon martensite after different processing steps with Electron BackScatter Diffraction (EBSD). The present work will discuss in detail, on the one hand, the challenges and opportunities arising during the identification of epsilon martensite by means of EBSD and, on the other hand, the possible interpretations that might be given to these findings. It will be illustrated that although the specific nature of the austenite to epsilon martensite transformation can still cause some points of discussion, EBSD has a high potential for identifying epsilon martensite.

  17. Real and Imaginary Properties of Epsilon-Near-Zero Materials

    NASA Astrophysics Data System (ADS)

    Javani, Mohammad H.; Stockman, Mark I.

    2016-09-01

    From the fundamental principle of causality we show that epsilon-near-zero (ENZ) materials with a very low (asymptotically zero) intrinsic dielectric loss do necessarily possess a very low (asymptotically zero) group velocity of electromagnetic wave propagation. This leads to the loss function being singular and causes high nonradiative damping of the optical resonators and emitters (plasmonic nanoparticles, quantum dots, chromophore molecules) embedded into them or placed at their surfaces. Rough ENZ surfaces do not exhibit hot spots of local fields suggesting that surface modes are overdamped. Reflectors and waveguides also show very large losses both for realistic and idealized ENZ materials.

  18. Light focusing using epsilon-near-zero metamaterials

    SciTech Connect

    Zhu, Weiren Premaratne, Malin; Si, Li-Ming

    2013-11-15

    We present a strategy of focusing light using epsilon-near-zero metamaterials with embedded dielectric cylinder. The focusing mechanism is analytically investigated, and its accuracy is substantiated by rigorous full-wave simulations. It is found that the focusing intensity is highly depend on the embedded medium and its size, and the magnetic field amplitude of the focused beam itself can reach as high as 98.2 times the incident field. Owing to its versatility, the proposed light focusing system is sure to find applications in fields such as bio-sensing and in nonlinear optics.

  19. Real and Imaginary Properties of Epsilon-Near-Zero Materials.

    PubMed

    Javani, Mohammad H; Stockman, Mark I

    2016-09-01

    From the fundamental principle of causality we show that epsilon-near-zero (ENZ) materials with a very low (asymptotically zero) intrinsic dielectric loss do necessarily possess a very low (asymptotically zero) group velocity of electromagnetic wave propagation. This leads to the loss function being singular and causes high nonradiative damping of the optical resonators and emitters (plasmonic nanoparticles, quantum dots, chromophore molecules) embedded into them or placed at their surfaces. Rough ENZ surfaces do not exhibit hot spots of local fields suggesting that surface modes are overdamped. Reflectors and waveguides also show very large losses both for realistic and idealized ENZ materials. PMID:27636495

  20. The 1982-1984 Eclipse of Epsilon Aurigae

    NASA Technical Reports Server (NTRS)

    Stencel, R. E. (Editor)

    1985-01-01

    A workshop proceedings concerned with the new data collected during the 1982-1984 eclipse period of the 27-year system Epsilon Aurigae is presented. This binary star has been a classic problem in astrophysics because the opaque eclipsing object is nonstellar, and probably disk shaped. Invited papers concerning the history of the system, optical, infrared and ultraviolet photometry, optical polarimetry and ultraviolet spectroscopy are included. An invited paper concerning comprehensive theoretical interpretation in the context of stellar evolution also is included. The information collected herein is unparalleled in scope and will remain a standard reference until the next eclipse cycle in the year 2009 A.D., in all probability.

  1. Epsilon Canis Majoris and the ionization of the local cloud

    NASA Technical Reports Server (NTRS)

    Vallerga, J. V.; Welsh, B. Y.

    1995-01-01

    The Lyman continuum radiation from the brightest extreme ultraviolet (EUV) source, the B2 II star epsilon Canis Majoris (Adara), is so intense that it dominates the local stellar EUV radiation field at wavelengths longer than 450 A and therefore sets a lower limit to the ionization of hydrogen in the Local Cloud. Using the EUV (70-730 A) spectrum of epsilon CMa taken with the Extreme Ultraviolet Explorer Satellite (EUVE) and simple models that extrapolate this spectrum to the Lyman edge at 912 A, we have determined the local interstellar hydrogen photionizatin parameter Gamma solely from epsilon CMa to be 1.1 x 10(exp -15)/s. This fiugre is a factor of 7 greater than previous estimates of Gamma calculated for all nearby stars combined (Bruhweiler & Cheng 1988). Using measured values of the density and temperature of neutral interstellar hydrogen gas in the Local Cloud, we derive a particle density of ionized hydrogen n(H(+)) and electrons n(sub e) of 0.015-0.019/cu cm assuming ionization equilibrium and a helium ionization fraction of less than 20%. These values correspond to a hydrogen ionizatin fraction, chi(sub H) from 19% to 15%, respectively. The range of these derived quantities is due to the uncertainties in the local values of the neutral hydrogen and helium interstellar densities derived from both (1) solar backscatter measurements of Ly alpha lines of hydrogen and helium (1216 and 584 A), and (2) the average neutral densities along the line of sight to nearby stars. The local proton density produced by epsilon CMa is enough to allow the ionization mechanism of Ripken & Fahr (1983) to work at the heliopause and explain the discrepancy between the neutral hydrogen density derived from solar backscatter measurements and line-of-sight averages to nearby stars. A large value of electron density in the Local Cloud of n(sub e) is approximately 0.3-0.7/cu cm (T = 7000 K) has recently been reported by Lallement et al. (1994) using observations of Mg II and Mg I

  2. Apolipoprotein E-epsilon 4 allele and familial risk in Alzheimer's disease.

    PubMed

    Li, G; Silverman, J M; Altstiel, L D; Haroutunian, V; Perl, D P; Purohit, D; Birstein, S; Lantz, M; Mohs, R C; Davis, K L

    1996-01-01

    Recent studies have found an association between presence of apolipoprotein E (APOE) epsilon 4 allele and Alzheimer's disease (AD). The present study compared the cumulative risk of primary progressive dementia (PPD) in relatives of AD probands carrying at least one copy of the epsilon 4 allele with the relatives of AD probands not carrying epsilon 4 and with relatives of non-demented controls. Our aim was to determine whether the familial aggregation of PPD in relatives of AD probands is primarily due to those carrying epsilon 4. Seventy-seven neuropathologically diagnosed AD patients were obtained as probands through our Alzheimer's Disease Research Center Brain Bank. AD probands were genotyped for APOE. As a comparison group, 198 non-demented probands were also included. Through family informants, demographic and diagnostic data were collected on 382 first-degree relatives (age > or = 45 years) of AD probands and 848 relatives of the controls. We found that the cumulative risk of PPD in both relatives of AD probands with and without the epsilon 4 allele was significantly higher than that in the relatives of non-demented controls. However, the increased risk in the relatives of AD probands with the epsilon 4 allele was marginally, but not significantly, lower than the risk in the relatives of probands without epsilon 4. A greater likelihood of death by heart diseases over developing PPD in relatives of AD probands with epsilon 4 (3.1-fold increase) was found compared to relatives of probands without epsilon 4 (1.7-fold increase), especially prior to age 70, although the difference was not statistically significant. The increased familial risk for PPD in the relatives of AD probands with the APOE-epsilon 4 allele relative to controls suggests that familial factors in addition to APOE-epsilon 4 are risk factors for AD. Differential censorship from increased mortality of heart diseases may have prevented a higher incidence of PPD among the relatives of probands with

  3. Isolated spinach ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit .sup..epsilon. N-methyltransferase and method of inactivating ribulose-1,5-bisphosphatase carboxylase/oxygenase large subunit .sup..epsilon. N-methyltransferase activity

    DOEpatents

    Houtz, Robert L.

    1999-01-01

    The gene sequence for ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) large subunit (LS) .sup..epsilon. N-methyltransferase (protein methylase III or Rubisco LSMT) from a plant which has a des(methyl) lysyl residue in the LS is disclosed. In addition, the full-length cDNA clones for Rubisco LSMT are disclosed. Transgenic plants and methods of producing same which have the Rubisco LSMT gene inserted into the DNA are also provided. Further, methods of inactivating the enzymatic activity of Rubisco LSMT are also disclosed.

  4. Isolated spinach ribulose-1,5-bisphosphate carboxylase/oxgenase large subunit .epsilon. n-methyltransferase and method of inactivating ribulose-1,5-bishosphatase .epsilon. n-methyltransferase activity

    DOEpatents

    Houtz, Robert L.

    2001-01-01

    The gene sequence for ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) large subunit (LS) .sup..epsilon. N-methyltansferase (protein methylase III or Rubisco LSMT) from a plant which has a des(methyl) lysyl residue in the LS is disclosed. In addition, the full-length cDNA clones for Rubisco LSMT are disclosed. Transgenic plants and methods of producing same which have the Rubisco LSMT gene inserted into the DNA are also provided. Further, methods of inactivating the enzymatic activity of Rubisco LSMT are also disclosed.

  5. High Precision Polarimetry of the Epsilon Aurigae Eclipse

    NASA Astrophysics Data System (ADS)

    Wiktorowicz, Sloane

    2013-07-01

    Polarimetry of the epsilon Aurigae eclipse has the potential to discern the stellar latitude occulted by the companion's dusty disk, which may directly test interferometric results. In addition, the limb polarization of the primary star may be measured, which is an effect predicted by S. Chandrasekhar and verified by spatially resolved observations of the Sun. I will present B band, polarimetric observations of epsilon Aurigae taken over six nights in September and October 2009 using the POLISH high precision polarimeter at the Lick 3-m telescope. Polarimetric precision achieved during each night is of order 1 part in 10^5. Extensive post-eclipse observations have been taken with the significantly upgraded POLISH2 polarimeter at Lick Observatory. This instrument simultaneously measures all four Stokes parameters (I, Q, U, and V) and achieves precision within 2.0 times the photon shot noise limit over an entire observing run. This work is supported by a NExScI Sagan Fellowship, UC Lab Fees Research Grant, and UCO/Lick Observatory.

  6. epsilon-Aminocaproic acid esters as transdermal penetration enhancing agents.

    PubMed

    Dolezal, P; Hrabálek, A; Semecký, V

    1993-07-01

    The synthesis of epsilon-aminocaproic acid esters is described. Two representative members from a group of five of the 1-alkyl homologues synthetized as flexible analogues of 1-alkylazacyclohepatanone derivatives were evaluated in vitro for their effectiveness on the transport of theophylline through the excised human cadaver skin in comparison with Azone. The 1-octyl- and 1-dodecyl-epsilon-aminocaproic acid esters (OCEAC and DDEAC) show excellent penetration enhancement. Donor samples contained 2.5% theophylline and 1% enhancers tested in three different vehicles. Fluxes of theophylline were increased with OCEAC about 19 times from olive oil, 45 times from water, and about 38 times from water-propylene glycol (3:2) vehicle toward controls (with DDEAC about 17, 39, and 35 times, respectively) and they were markedly higher than Azone under the given conditions. Acute LD50's (i.p. in mice) of OCEAC (DDEAC) were 245 mg/kg (352 mg/kg), with a slightly lower toxicity than Azone. OCEAC and DDEAC did not exhibit acute dermal irritation in vivo on rabbits at a 5% concentration in white petrolatum.

  7. Basis of the 1:1 stoichiometry of the high affinity receptor Fc epsilon RI-IgE complex.

    PubMed

    Keown, M B; Ghirlando, R; Mackay, G A; Sutton, B J; Gould, H J

    1997-01-01

    A soluble fragment of the high-affinity IgE receptor Fc epsilon RI alpha-chain (sFc epsilon RI alpha) binds to the Fc fragment of IgE (IgE-Fc) as a 1:1 complex. IgE-Fc consists of a dimer of the C epsilon 2, C epsilon 3 and C epsilon 4 domains of the epsilon-heavy chain of IgE. This region of IgE has been modelled on the crystal structure of the Fc region of IgG1, which exhibits twofold rotational symmetry. This implies that IgE should be divalent with respect to its ligands. X-ray scattering studies reveal however that the twofold rotational symmetry of IgE-Fc is perturbed by a bend in the linker region between the C epsilon 2 and C epsilon 3 domains. The 1:1 stoichiometry could then arise from the conformational asymmetry or from steric occlusion of one of the sites by the overhanging C epsilon 2 domains. To test this hypothesis we have expressed a recombinant epsilon-chain fragment containing C epsilon 3 and C epsilon 4. This product, Fc epsilon 3-4, is secreted from cells as a disulphide linked dimer and binds with higher affinity than either IgE or IgE-Fc to cell surface Fc epsilon RI. Titration experiments, together with molecular mass measurements of the Fc epsilon 3-4/sFc epsilon RI alpha complex, reveal that Fc epsilon 3-4 binds only a single receptor molecule. This excludes the possibility that steric hindrance by C epsilon 2 accounts for the unexpected stoichiometry.

  8. Clostridium Perfringens Epsilon Toxin Binds to Membrane Lipids and Its Cytotoxic Action Depends on Sulfatide.

    PubMed

    Gil, Carles; Dorca-Arévalo, Jonatan; Blasi, Juan

    2015-01-01

    Epsilon toxin (Etx) is one of the major lethal toxins produced by Clostridium perfringens types B and D, being the causal agent of fatal enterotoxemia in animals, mainly sheep and goats. Etx is synthesized as a non-active prototoxin form (proEtx) that becomes active upon proteolytic activation. Etx exhibits a cytotoxic effect through the formation of a pore in the plasma membrane of selected cell targets where Etx specifically binds due to the presence of specific receptors. However, the identity and nature of host receptors of Etx remain a matter of controversy. In the present study, the interactions between Etx and membrane lipids from the synaptosome-enriched fraction from rat brain (P2 fraction) and MDCK cell plasma membrane preparations were analyzed. Our findings show that both Etx and proEtx bind to lipids extracted from lipid rafts from the two different models as assessed by protein-lipid overlay assay. Lipid rafts are membrane microdomains enriched in cholesterol and sphingolipids. Binding of proEtx to sulfatide, phosphatidylserine, phosphatidylinositol (3)-phosphate and phosphatidylinositol (5)-phosphate was detected. Removal of the sulphate groups via sulfatase treatment led to a dramatic decrease in Etx-induced cytotoxicity, but not in proEtx-GFP binding to MDCK cells or a significant shift in oligomer formation, pointing to a role of sulfatide in pore formation in rafts but not in toxin binding to the target cell membrane. These results show for the first time the interaction between Etx and membrane lipids from host tissue and point to a major role for sulfatides in C. perfringens epsilon toxin pathophysiology.

  9. Ultraviolet observations of cool stars. IV - Intensities of Lyman-alpha and Mg II in epsilon Pegasi and epsilon Eridani, and line width-luminosity correlations

    NASA Technical Reports Server (NTRS)

    Mcclintock, W.; Linsky, J. L.; Henry, R. C.; Moos, H. W.

    1975-01-01

    A spectrometer on the Copernicus satellite has been used to confirm the existence of a line width-luminosity relation for the Ly-alpha and Mg II 2800-A chromospheric emission lines in K-type stars by observation of a K2 dwarf (epsilon Eri) and a K2 supergiant (epsilon Peg). Combined with previously reported observations of lines in three K giants (alpha Boo, alpha Tau, and beta Gem), the data are consistent with an identical dependence of line width on absolute visual magnitude for the Ca II K, Ly-alpha, and Mg II 2795-A lines. Surface fluxes of Ly-alpha, Mg II 2800-A, and O V 1218-A (upper limit) for epsilon Eri, and of Mg II 2800-A for epsilon Peg are also compared with values reported previously for the three giant stars.

  10. The strong isospin-breaking correction for the gluonic penguin contribution to {epsilon}{prime}/{epsilon} at next-to-leading order in the chiral expansion

    SciTech Connect

    Wolfe, Carl E.; Maltman, Kim

    2001-01-01

    The strong isospin-breaking correction {Omega}{sub st}, which appears in estimates of the standard model value for the direct CP-violating ratio {epsilon}{prime}/{epsilon}, is evaluated to next-to-leading order (NLO) in the chiral expansion using chiral perturbation theory. The relevant linear combinations of the unknown NLO CP-odd weak low-energy constants (LEC's) which, in combination with one-loop and strong LEC contributions, are required for a complete determination at this order, are estimated using two different models. It is found that, to NLO, {Omega}{sub st}=0.08{+-}0.05, significantly reduced from the ''standard'' value, 0.25{+-}0.08, employed in recent analyses. The potentially significant numerical impact of this decrease on standard model predictions for {epsilon}{prime}/{epsilon}, associated with the decreased cancellation between gluonic penguin and electroweak penguin contributions, is also discussed.

  11. Molecular properties of diacylglycerol kinase-epsilon in relation to function.

    PubMed

    Jennings, William; Doshi, Sejal; D'Souza, Kenneth; Epand, Richard M

    2015-11-01

    The epsilon isoform of mammalian diacylglycerol kinase (DGKϵ) is an enzyme that associates strongly with membranes and acts on a lipid substrate, diacylglycerol. The protein has one segment that is predicted to be a transmembrane helix, but appears to interconvert between a transmembrane helix and a re-entrant helix. Despite the hydrophobicity of this segment and the fact that the lipid substrate is also hydrophobic, removal of this hydrophobic segment by truncating the protein at the amino terminus has no effect on its enzymatic activity. The amino acid sequence of the catalytic segment of DGKϵ is highly homologous to that of a bacterial DGK, DgkB. This has allowed us to predict a conformation of DGKϵ based on the known crystal structure of DgkB. An important property of DGKϵ is that it is specific for diacylglycerol species containing an arachidonoyl group. The region of DGKϵ that interacts with this group is found within the accessory domain of the protein and not in the active site nor in the hydrophobic amino terminus. The nature of the acyl chain specificity of the enzyme indicates that DGKϵ is associated with the synthesis of phosphatidylinositol. Defects or deletion of the enzyme give rise to several disease states.

  12. The International epsilon Aurigae Campaign 2009 Photometry Report

    NASA Astrophysics Data System (ADS)

    Hopkins, J. L.

    2012-07-01

    An International Campaign and Web site were started in May of 2006 for the 2009-2011 eclipse of the mysterious star system epsilon Aurigae. Photometric and spectroscopic observations of the eclipse were coordinated and reported. The eclipse started in the summer of 2009 and lasted until the spring of 2011. During the campaign twenty-four newsletters were published on the web site and made available free as .pdf files to read and download. Twenty-six observers from fourteen different countries submitted photometric data in the UBVRI bands. Over 3,600 high-quality photometric observations were submitted with nearly 2,000 observations in just the V band. This paper discusses the Campaign and reports the results.

  13. Preferential emission into epsilon-near-zero metamaterial [Invited

    SciTech Connect

    Galfsky, Tal; Sun, Zheng; Jacob, Zubin; Menon, Vinod M.

    2015-11-23

    We report the use of epsilon near zero (ENZ) metamaterial to control spontaneous emission from Zinc-Oxide (ZnO) excitons. The ENZ material consists of alternating layers of silver and alumina with subwavelength thicknesses, resulting in an effective medium where one of the components of the dielectric constant approach zero between 370nm-440nm wavelength range. Bulk ZnO with photoluminescence maximum in the ENZ regime was deposited via atomic layer deposition to obtain a smooth film with near field coupling to the ENZ metamaterial. Preferential emission from the ZnO layer into the metamaterial with suppression of forward emission by 90% in comparison to ZnO on silicon is observed. We attribute this observation to the presence of dispersionless plasmonic modes in the ENZ regime as shown by the results of theoretical modeling presented here. Integration of ENZ metamaterials with light emitters is an attractive platform for realizing a low threshold subwavelength laser.

  14. Terahertz epsilon-near-zero graded-index lens.

    PubMed

    Torres, Víctor; Pacheco-Peña, Víctor; Rodríguez-Ulibarri, Pablo; Navarro-Cía, Miguel; Beruete, Miguel; Sorolla, Mario; Engheta, Nader

    2013-04-01

    An epsilon-near-zero graded-index converging lens with planar faces is proposed and analyzed. Each perfectly-electric conducting (PEC) waveguide comprising the lens operates slightly above its cut-off frequency and has the same length but different cross-sectional dimensions. This allows controlling individually the propagation constant and the normalized characteristic impedance of each waveguide for the desired phase front at the lens output while Fresnel reflection losses are minimized. A complete theoretical analysis based on the waveguide theory and Fermat's principle is provided. This is complemented with numerical simulation results of two-dimensional and three-dimensional lenses, made of PEC and aluminum, respectively, and working in the terahertz regime, which show good agreement with the analytical work. PMID:23572004

  15. Shock initiation of an {epsilon}-CL-20-estane formulation

    SciTech Connect

    Tarver, C.M.; Simpson, R.L.; Urtiew, P.A.

    1996-05-01

    The shock sensitivity of a pressed solid explosive formulation, LX-19, containing 95.2{percent} by weight epsilon phase 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (HNIW) and 4.8{percent} Estane binder, was determined using the wedge test and embedded manganin pressure gauge techniques. This formulation was shown to be slightly more sensitive than LX-14, which contains 95.5{percent} HMX and 4.5{percent} Estane binder. The measured pressure histories for LX-19 were very similar to those obtained using several HMX-inert binder formulations. An Ignition and Growth reactive flow model for LX-19 was developed which differed from those for HMX-inert binder formulations only by a 25{percent} higher hot spot growth rate. {copyright} {ital 1996 American Institute of Physics.}

  16. Shock initiation of an {epsilon}-CL-20-estane formulation

    SciTech Connect

    Tarver, C.M.; Simpson, R.L.; Urtiew, P.A.

    1995-07-19

    The shock sensitivity of a pressed solid explosive formulation, LX-19, containing 95.2% by weight epsilon phase 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (HNIW) and 4.8% Estane binder, was determined using the wedge test and embedded manganin pressure gauge techniques. This formulation was shown to be slightly more sensitive than LX-14, which contains 95.5% HMX and 4.5% Estane binder. The measured pressure histories for LX-19 were very similar to those obtained using several HMX-inert binder formulations. An Ignition and Growth reactive model for LX-19 was developed which differed from those for HMX-inert binder formulations only by a 25% higher hot spot growth rate.

  17. Improved solution for system identification equations by Epsilon-Decomposition

    NASA Technical Reports Server (NTRS)

    Ojalvo, Irving U.

    1990-01-01

    Matrix eigenvalue theory is used to examine the source of ill-conditioning in linear algebraic equations. This approach highlights the crucial role played by the zero and near-zero eigenvalues and corresponding eigenvectors of poorly conditioned systems. Insight gained from this approach is used to significantly improve a recently developed solution procedure called Epsilon-Decomposition (E-D). E-D is an efficient alternative to Singular Value Decomposition (SVD) for ill-conditioned systems arising in parameter estimation and system identification studies. The efficiency of the improved E-D over SVD resides in the need to only obtain the zero and near-zero eigenvalues of the coefficient matrix as opposed to all of its eigenvalues and vectors (as required by SVD). Thus, the efficiency of E-D is significant for large matrices with small rank deficiency.

  18. Scattered light in the IUE spectra of Epsilon Aurigae

    NASA Technical Reports Server (NTRS)

    Altner, B.; Chapman, R. D.; Kondo, Y.; Stencel, R. E.

    1986-01-01

    Recent infrared photometry indicates that the alleged disk of particulate matter surrounding the mysterious secondary object in the Epsilon Aur system is cold, around 500 K. IUE spectra, on the other hand, contain significant flux in excess of that expected from an F0 Ia star in the far UV, which if interpreted as a hot secondary star leads to a possible contradiction with the IR data. Other models of the UV excess have been proposed, including the idea that the bulk of the short-wavelength flux is light scattered into the SWP camera from longer wavelengths. With the recent availability of a detailed generalized IUE descattering algorithm it is possible to thoroughly investigate the scattered-light contribution to the short-wavelength continuum. It is found that the IUE spectra are indeed partially contaminated by scattered light, but that even after correction for this instrumental effect a significant time-dependent UV excess is still present.

  19. High-Pressure Structural Study of Epsilon HNIW (CL-20)

    NASA Astrophysics Data System (ADS)

    Gump, Jared C.; Wong, Chak P.; Zerilli, Frank J.; Peiris, Suhithi M.

    2004-07-01

    The structure of epsilon CL-20 at room temperature was investigated using synchrotron angle-dispersive x-ray diffraction experiments and Raman spectroscopy. For x-ray diffraction, the samples were compressed up to 6.3 GPa using a Merrill-Bassett diamond anvil cell (DAC) under both hydrostatic and non-hydrostatic conditions. Pressure — volume data were then fit to the Birch-Murnaghan equation of state to obtain an isothermal equation of state. No phase transition was observed within this pressure range. Raman spectroscopy was performed in the range of 50-1650 cm-1. The samples were compressed non-hydrostatically to 7.1 GPa. Changes in peak positions with increasing pressure were observed. Vibrational spectra were calculated using Hartree-Fock and density functional theory and a comparison was made with the experimental spectrum.

  20. Some natural compounds enhance N epsilon-(carboxymethyl)lysine formation.

    PubMed

    Fujiwara, Yukio; Kiyota, Naoko; Motomura, Keita; Mera, Katsumi; Takeya, Motohiro; Ikeda, Tsuyoshi; Nagai, Ryoji

    2008-04-01

    Since pyridoxamine, which traps intermediates in the Maillard reaction and lipid peroxidation reaction, significantly inhibits the development of retinopathy and neuropathy in the streptozotocin-induced diabetic rat, treatment with advanced glycation end product inhibitors and antioxidants may be a potential strategy for the prevention of clinical diabetic complications. However, the paradoxical effect of green tea has been reported; although plasma hydroperoxide levels were ameliorated, the level of N epsilon-(carboxyethyl)lysine (CML) in tendon and plasma was increased by the oral administration of green tea to diabetic rats. In the present study, we measured the effect of natural compounds on CML formation by enzyme-linked immunosorbent assay. A significant amount of CML was observed when bovine serum albumin was incubated with ribose for 7 days. Under the same conditions, natural compounds, such as desgalactotigonin, showed inhibitory effects, whereas quercetin and acteoside enhanced CML formation, indicating that natural compounds contain both inhibitors and enhancers for CML formation. PMID:18079486

  1. Spectrophotometry of Epsilon Aur, 3295-8880 A

    NASA Technical Reports Server (NTRS)

    Lockwood, G. W.; Thompson, D. T.; Lutz, B. L.; Sowell, J.

    1985-01-01

    Spectrophotometric scans were obtained at 8 A resolution from 3295 to 8880 A on twenty nights before, during, and after the recent eclipse of epsilon Aurigae, beginning with a pre-eclipse observation on 5 March 1982 U.T. The observations were reduced to absolute flux using the standard stars 109 Vir or xi(2) Ceti. The data confirm that the eclipse is essentially gray over the entire visible spectrum, as others have noted from broadband photometry. High resolution echellograms (450 to 6700 A) made through mid-eclipse and the scans show changes in the equivalent widths of H alpha, Na D, and O I as large as a factor of two.

  2. Campaign Photometry During The 2010 Eclipse Of Epsilon Aurigae

    NASA Astrophysics Data System (ADS)

    Hopkins, Jeff; Stencel, R. E.

    2011-01-01

    Epsilon Aurigae is a long period (27.1 years) eclipsing binary star system with an eclipse that lasts nearly 2 years, but with severe ambiguities about component masses and shape. The current eclipse began on schedule in August of 2009. During the previous, 1982-1984 eclipse, an International Campaign was formed to coordinate a detailed study of the system. While that Campaign was deemed successful, the evolutionary status of the star system remained unclear. Epsilon Aurigae has been observed nearly continuously since the 1982 eclipse. The current Campaign was officially started in 2006. In addition to a Yahoo forum we have a dedicated web site and more than 18 online newsletters reporting photometry, spectroscopy, interferometry and polarimetry data. High quality UBVRIJH band photometric data since before the start of the current eclipse has been submitted. We explore the color differences among the light curves in terms of eclipse phases and archival data. At least one new model of the star system has been proposed since the current Campaign began: a low mass but very high luminosity F star plus a B star surrounded by a debris disk. The current eclipse and in particular the interferometry and spectroscopic data have caused new thoughts on defining eclipsing variable star contact points and phases of an eclipse. Second contact may not be the same point as start of totality and third contact may not be the same point as the start of egress and end of totality. In addition, the much awaited mid-eclipse brightening may or may not have appeared. This paper identifies the current Campaign contributors and the photometric data. This work was supported in part by the bequest of William Herschel Womble in support of astronomy at the University of Denver, by NSF grant 1016678 to the University of Denver.

  3. Expression of biologically active recombinant rat IgE-binding protein in Escherichia coli.

    PubMed

    Frigeri, L G; Robertson, M W; Liu, F T

    1990-12-01

    IgE-binding protein (epsilon BP) is a protein which has affinity for IgE and was originally identified in rat basophilic leukemia (RBL) cells. Subsequently, it was found to be the rat homolog of CBP35, a murine beta-galactoside-specific lectin. This protein is also designated as L-34 and RL-29 and studied independently by several laboratories. More recently, CBP35 (epsilon BP) was found to be equivalent to Mac-2, a surface marker on activated macrophages. Using rat epsilon BP cDNA, we have succeeded in expressing recombinant epsilon BP in Escherichia coli. Milligram quantities of homogeneous epsilon BP could be obtained from bacterial lysate in a one-step affinity purification procedure utilizing lactosyl-Sepharose 4B and elution with a lactose gradient. The recombinant epsilon BP (r epsilon BP) binds mouse IgE and retains reactivity to anti-peptide antibodies specific for a sequence within rat epsilon BP. The purified r epsilon BP exhibits binding activity to various saccharides, with affinity for N-acetyllactosamine greater than thiodigalactoside greater than lactose much greater than D-galactose greater than L-arabinose, an order identical to that exhibited by native epsilon BP isolated from RBL cells. The recombinant lectin displayed hemagglutination activity when tested with rabbit erythrocytes. Although epsilon BP shares sequence homology to other lectins containing S-type (thiol-dependent) carbohydrate-recognition domains, r epsilon BP is resistant to air oxidation and does not require reducing agents for maintaining its activity. Furthermore, the single cysteine residue appears to be unexposed and can be alkylated only when the protein is denatured in 5.6 M guanidinium hydrochloride. The availability of a source for a large quantity of epsilon BP should facilitate the analysis of biological function(s) and structure-activity relationships of this lectin.

  4. High-affinity immunoglobulin E receptor (Fc epsilon RI)-bearing eosinophils, mast cells, macrophages and Langerhans' cells in allergen-induced late-phase cutaneous reactions in atopic subjects.

    PubMed Central

    Ying, S; Barata, L T; Meng, Q; Grant, J A; Barkans, J; Durham, S R; Kay, A B

    1998-01-01

    We have used in situ hybridization (ISH) and immunohistochemistry (IHC) to investigate the kinetics of the expression for Fc epsilon RI mRNA (alpha-, beta- and gamma-chains), the alpha-chain protein product, as well as the phenotype of the mRNA- or protein-positive cells in allergen-induced late-phase skin reactions in atopic subjects. Compared with diluent controls, there were significant increases in the total number of mRNA+ cells for the alpha-, beta- and gamma-chains for Fc epsilon RI at all time-points (6, 24 and 48 hr) after allergen challenge (P < 0.01). By double IHC/ISH significant increases in alpha-, beta- and gamma-chain mRNA+ macrophages, eosinophils, mast cells and CD1a+ cells were also observed after allergen challenge (P < 0.05). The distribution of Fc epsilon RI subunit (alpha-, beta-, or gamma-chain) mRNA+ co-localization was CD68+ macrophages (42-47%), EG2+ eosinophils (33-39%), tryptase+ mast cells (5-11%) and CD1a+ Langerhans' cells (2-4%). Using single IHC, significant increases in the total number of Fc epsilon RI protein+ cells (P < 0.01) were observed 24 and 48 hr after allergen challenge. Double IHC showed that the distribution of Fc epsilon RI+ cells was tryptase+ mast cells (33%), CD68+ macrophages (36%), EG2+ eosinophils (20%), CD1a+ Langerhans' cells (4%) and unidentified cells (7%), at the 24-hr allergen-challenged sites. These observations suggest that the cutaneous late-phase reaction in man is associated with up-regulation of Fc epsilon RI on eosinophils, macrophages, mast cells and Langerhans' cells. Images Figure 6 PMID:9616380

  5. Visualizing the structural changes of bacteriophage Epsilon15 and its Salmonella host during infection.

    PubMed

    Chang, Juan T; Schmid, Michael F; Haase-Pettingell, Cameron; Weigele, Peter R; King, Jonathan A; Chiu, Wah

    2010-10-01

    The efficient mechanism by which double-stranded DNA bacteriophages deliver their chromosome across the outer membrane, cell wall, and inner membrane of Gram-negative bacteria remains obscure. Advances in single-particle electron cryomicroscopy have recently revealed details of the organization of the DNA injection apparatus within the mature virion for various bacteriophages, including epsilon15 (ɛ15) and P-SSP7. We have used electron cryotomography and three-dimensional subvolume averaging to capture snapshots of ɛ15 infecting its host Salmonella anatum. These structures suggest the following stages of infection. In the first stage, the tailspikes of ɛ15 attach to the surface of the host cell. Next, ɛ15's tail hub attaches to a putative cell receptor and establishes a tunnel through which the injection core proteins behind the portal exit the virion. A tube spanning the periplasmic space is formed for viral DNA passage, presumably from the rearrangement of core proteins or from cellular components. This tube would direct the DNA into the cytoplasm and protect it from periplasmic nucleases. Once the DNA has been injected into the cell, the tube and portal seals, and the empty bacteriophage remains at the cell surface.

  6. Effects of the ApoE epsilon4 allele on olfactory function in Down syndrome.

    PubMed

    Sliger, Melissa; Lander, Timothy; Murphy, Claire

    2004-08-01

    The present study investigated the effects of the apolipoprotein E (ApoE) epsilon4 allele, a risk factor for Alzheimer's disease (AD), on olfactory function in Down syndrome (DS). Brain areas critical to olfactory processing, particularly the entorhinal cortex, show the earliest neuropathological changes in AD. Functionally, odor identification has been shown to be impaired in AD and in persons with the epsilon4 allele. DS is also a risk factor for AD. Thus, we hypothesized greater impairment in epsilon4 positive DS participants. Olfactory function was assessed with the San Diego Odor Identification Test in 34 participants with DS and 34 normal controls. Genomic DNA was prepared from blood samples to obtain ApoE status for the DS participants. Results indicate (1) that participants with DS had significant deficits in olfactory functioning; and (2) that among DS participants, those with an epsilon4 allele had poorer odor identification than those without an epsilon4 allele. The results support the hypothesis that individuals with DS who have an additional genetic risk factor for AD, the ApoE epsilon4 allele, exhibit greater deficits in odor identification. Areas of the brain involved in odor identification may be particularly affected in individuals with DS who carry the epsilon4 allele.

  7. Design and biophysical characterization of novel polycationic epsilon-peptides for DNA compaction and delivery.

    PubMed

    Huang, Dandan; Korolev, Nikolay; Eom, Khee Dong; Tam, James P; Nordenskiöld, Lars

    2008-01-01

    Design and solid-phase synthesis of novel and chemically defined linear and branched -oligo( l-lysines) (denoted -K n, where n is the number of lysine residues) and their alpha-substituted homologues (epsilon-(R)K10, epsilon-(Y)K10, epsilon-(L)K10, epsilon-(YR)K10, and epsilon-(LYR)K10) for DNA compaction and delivery are reported. The ability to condense viral (T2 and T4) and plasmid DNA as well as the size of -peptide DNA complexes under different conditions was investigated with static and dynamic light scattering, isothermal titration calorimetry, and fluorescence microscopy. Nanoparticle diameters varied from 100 to 150 and 375 to 550 nm for plasmid and T4 DNA peptide complexes, respectively. Smaller sizes were observed for oligo(L-lysines) compared to alpha-poly( L-lysine). The linear -oligo-lysines are less toxic and epsilon-(LYR)K10 showed higher transfection efficiency in HeLa cells than corresponding controls. The results also demonstrate that with a branched design having pendent groups of short alpha-oligopeptides, improved transfection can be achieved. This study supports the hypothesis that available alpha-oligolysine derived systems would potentially have more favorable delivery properties if they are based instead on epsilon-oligo( L-lysines). The flexible design and unambiguous synthesis that enables variation of pendent groups holds promise for optimization of such -peptides to achieve improved DNA compaction and delivery.

  8. Noise reduction combining time-frequency epsilon-filter and M-transform.

    PubMed

    Abe, Tomomi; Matsumoto, Mitsuharu; Hashimoto, Shuji

    2008-08-01

    This paper introduces noise reduction combining time-frequency epsilon-filter (TF epsilon-filter) and time-frequency M-transform (TF M-transform). Musical noise is an offensive noise generated due to noise reduction in the time-frequency domain such as spectral subtraction and TF epsilon-filter. It has a deleterious effect on speech recognition. To solve the problem, M-transform is introduced. M-transform is a linear transform based on M-sequence. The method combining the time-domain epsilon-filter (TD epsilon-filter) and time-domain M-transform (TD M-transform) can reduce not only white noise but also impulse noise. Musical noise is isolated in the time-frequency domain, which is similar to impulse noise in the time domain. On these prospects, this paper aims to reduce musical noise by improving M-transform for the time-frequency domain. Noise reduction by using TD M-transform and the TD epsilon-filter is first explained to clarify its features. Then, an improved method applying M-transform to the time-frequency domain, namely TF M-transform, is described. Noise reduction combining the TF epsilon-filter and TF M-transform is also proposed. The proposed method can reduce not only high-level nonstationary noise but also musical noise. Experimental results are also given to demonstrate the performance of the proposed method.

  9. Regulator of G-protein signaling 18 integrates activating and inhibitory signaling in platelets.

    PubMed

    Gegenbauer, Kristina; Elia, Giuliano; Blanco-Fernandez, Alfonso; Smolenski, Albert

    2012-04-19

    Regulator of G-protein signaling 18 (RGS18) is a GTPase-activating protein for the G-α-q and G-α-i subunits of heterotrimeric G-proteins that turns off signaling by G-protein coupled receptors. RGS18 is highly expressed in platelets. In the present study, we show that the 14-3-3γ protein binds to phosphorylated serines 49 and 218 of RGS18. Platelet activation by thrombin, thromboxane A2, or ADP stimulates the association of 14-3-3 and RGS18, probably by increasing the phosphorylation of serine 49. In contrast, treatment of platelets with prostacyclin and nitric oxide, which trigger inhibitory cyclic nucleotide signaling involving cyclic AMP-dependent protein kinase A (PKA) and cyclic GMP-dependent protein kinase I (PKGI), induces the phosphorylation of serine 216 of RGS18 and the detachment of 14-3-3. Serine 216 phosphorylation is able to block 14-3-3 binding to RGS18 even in the presence of thrombin, thromboxane A2, or ADP. 14-3-3-deficient RGS18 is more active compared with 14-3-3-bound RGS18, leading to a more pronounced inhibition of thrombin-induced release of calcium ions from intracellular stores. Therefore, PKA- and PKGI-mediated detachment of 14-3-3 activates RGS18 to block Gq-dependent calcium signaling. These findings indicate cross-talk between platelet activation and inhibition pathways at the level of RGS18 and Gq. PMID:22234696

  10. Nanospheres of silica with an epsilon-Fe2O3 single crystal nucleus.

    PubMed

    Taboada, Elena; Gich, Martí; Roig, Anna

    2009-11-24

    A route to produce single crystals of epsilon-Fe(2)O(3) individually wrapped in a silica shell is presented. Formation of epsilon-Fe(2)O(3)/silica nanospheres was achieved by controlled recrystallization of maghemite particles confined in silica shells via calcination in air. Phase transition was monitored by X-ray diffraction, magnetometry, and transmission electron microscopy. Core-shell nanocomposite particles can be dispersed as a colloidal suspension in several polar liquids enlarging the processability spectrum of the material and thus facilitating the use of epsilon-Fe(2)O(3) in technological applications and its integration in devices.

  11. Cloning, expression and biochemical characterization of one Epsilon-class (GST-3) and ten Delta-class (GST-1) glutathione S-transferases from Drosophila melanogaster, and identification of additional nine members of the Epsilon class.

    PubMed

    Sawicki, Rafał; Singh, Sharda P; Mondal, Ashis K; Benes, Helen; Zimniak, Piotr

    2003-03-01

    From the fruitfly, Drosophila melanogaster, ten members of the cluster of Delta-class glutathione S-transferases (GSTs; formerly denoted as Class I GSTs) and one member of the Epsilon-class cluster (formerly GST-3) have been cloned, expressed in Escherichia coli, and their catalytic properties have been determined. In addition, nine more members of the Epsilon cluster have been identified through bioinformatic analysis but not further characterized. Of the 11 expressed enzymes, seven accepted the lipid peroxidation product 4-hydroxynonenal as substrate, and nine were active in glutathione conjugation of 1-chloro-2,4-dinitrobenzene. Since the enzymically active proteins included the gene products of DmGSTD3 and DmGSTD7 which were previously deemed to be pseudogenes, we investigated them further and determined that both genes are transcribed in Drosophila. Thus our present results indicate that DmGSTD3 and DmGSTD7 are probably functional genes. The existence and multiplicity of insect GSTs capable of conjugating 4-hydroxynonenal, in some cases with catalytic efficiencies approaching those of mammalian GSTs highly specialized for this function, indicates that metabolism of products of lipid peroxidation is a highly conserved biochemical pathway with probable detoxification as well as regulatory functions.

  12. Electrically Tunable Epsilon-Near-Zero (ENZ) Metafilm Absorbers

    PubMed Central

    Park, Junghyun; Kang, Ju-Hyung; Liu, Xiaoge; Brongersma, Mark L.

    2015-01-01

    Enhancing and spectrally controlling light absorption is of great practical and fundamental importance. In optoelectronic devices consisting of layered semiconductors and metals, absorption has traditionally been manipulated with the help of Fabry-Pérot resonances. Even further control over the spectral light absorption properties of thin films has been achieved by patterning them into dense arrays of subwavelength resonant structures to form metafilms. As the next logical step, we demonstrate electrical control over light absorption in metafilms constructed from dense arrays of actively tunable plasmonic cavities. This control is achieved by embedding indium tin oxide (ITO) into these cavities. ITO affords significant tuning of its optical properties by means of electrically-induced carrier depletion and accumulation. We demonstrate that particularly large changes in the reflectance from such metafilms (up to 15% P) can be achieved by operating the ITO in the epsilon-near-zero (ENZ) frequency regime where its electrical permittivity changes sign from negative to positive values. PMID:26549615

  13. Preferential emission into epsilon-near-zero metamaterial [Invited

    DOE PAGES

    Galfsky, Tal; Sun, Zheng; Jacob, Zubin; Menon, Vinod M.

    2015-11-23

    We report the use of epsilon near zero (ENZ) metamaterial to control spontaneous emission from Zinc-Oxide (ZnO) excitons. The ENZ material consists of alternating layers of silver and alumina with subwavelength thicknesses, resulting in an effective medium where one of the components of the dielectric constant approach zero between 370nm-440nm wavelength range. Bulk ZnO with photoluminescence maximum in the ENZ regime was deposited via atomic layer deposition to obtain a smooth film with near field coupling to the ENZ metamaterial. Preferential emission from the ZnO layer into the metamaterial with suppression of forward emission by 90% in comparison to ZnOmore » on silicon is observed. We attribute this observation to the presence of dispersionless plasmonic modes in the ENZ regime as shown by the results of theoretical modeling presented here. Integration of ENZ metamaterials with light emitters is an attractive platform for realizing a low threshold subwavelength laser.« less

  14. Improved staggered eigenvalues and epsilon regime universality in SU(2)

    NASA Astrophysics Data System (ADS)

    Hart, Alistair

    2006-12-01

    We study the low-lying modes of staggered Dirac operators for quenched SU(2) and show that improvement changes the distribution from lattice-like to continuum-like at lattice spacings rep- resentative of current dynamical SU(3) simulations. Epsilon regime universality predicts different distributions for the low-lying eigenvalues of the continuum and lattice staggered Dirac operators. At lattice spacings around 0.07 fm we show that improved staggered eigenvalues have the continuum distribution (as predicted by the chiral Orthogonal Ensemble of random matrices), whilst unimproved fall on the discrete distribution (as per the chiral Symplectic Ensemble). The crossover is much more rapid than for SU(3). In addition, improved staggered fermions give a good approximation to the Atiyah-Singer index theorem, appear to satisfy the Banks-Casher relation and show clear taste-degeneracy for the non- zero modes. All this indicates that taste-changing interactions are well under control at lattice spacings 0.07 - 0.13 fm, matching our findings for SU(3).

  15. Electrically Tunable Epsilon-Near-Zero (ENZ) Metafilm Absorbers.

    PubMed

    Park, Junghyun; Kang, Ju-Hyung; Liu, Xiaoge; Brongersma, Mark L

    2015-01-01

    Enhancing and spectrally controlling light absorption is of great practical and fundamental importance. In optoelectronic devices consisting of layered semiconductors and metals, absorption has traditionally been manipulated with the help of Fabry-Pérot resonances. Even further control over the spectral light absorption properties of thin films has been achieved by patterning them into dense arrays of subwavelength resonant structures to form metafilms. As the next logical step, we demonstrate electrical control over light absorption in metafilms constructed from dense arrays of actively tunable plasmonic cavities. This control is achieved by embedding indium tin oxide (ITO) into these cavities. ITO affords significant tuning of its optical properties by means of electrically-induced carrier depletion and accumulation. We demonstrate that particularly large changes in the reflectance from such metafilms (up to 15% P) can be achieved by operating the ITO in the epsilon-near-zero (ENZ) frequency regime where its electrical permittivity changes sign from negative to positive values. PMID:26549615

  16. Copernicus observations of the Ap star Epsilon Ursae Majoris

    NASA Technical Reports Server (NTRS)

    Mallama, A. D.; Molnar, M. R.

    1977-01-01

    Spectral scans of the Ap star Epsilon UMa made with the Copernicus satellite show strong line blanketing from profuse Cr II and Fe II lines. In the spectral region covering 1900 to 3000 A, about 500 lines are present which suppress the apparent continuum by at least 15-30%. An accurate line-identification list is compiled showing Eu II present in addition to Mn II and Ni II. The identification of Eu II, however, rests on very stringent identification limits for Fe II. If these are relaxed, the existence of Eu II is dubious. There are no broad features in this spectral region which would suggest strong photoionization discontinuities by metals, but one feature near 2137 A might contain the photoionization edge due to Cr I 5S lying 0.94 eV above the ground level. However, a significant correlation between the line-blanketing strength and the amplitude of the OAO-2 ultraviolet light curves was found such that both monotonically increase in the same proportion toward shorter wavelengths. This gives additional strength to the suggestion that variations in the metal line-blanketing cause the observed photometric variations.

  17. Polarimetry of Epsilon Aurigae from Mid Eclipse to Third Contact

    NASA Astrophysics Data System (ADS)

    Cole, Gary M.; Stencel, Robert E.

    2011-05-01

    In a previous paper, the author discussed the construction of an automated dual beam imaging polarimeter and of observations made in the November 2009 to February 2010 period. Here, we discuss observations and instrumental improvements that span the period from late August 2010 through third and into fourth contacts in Spring 2011. Approximately 930 linear polarization measurements of the target star in BVR bands were obtained during 99 nights of observation. Additional measurements were made of both known polarization standards and zero polarization stars to verify instrument calibration. The polarization of Epsilon Aurigae was observed to vary by nearly 0.4% peak to valley during this period. These variations occurred in several major cycles of varying duration. Measurement error is estimated to be on the order of +/-0.05%. The observed variations resemble excess polarization seen during the 1984 eclipse egress, but may show some differences in detail. During this project, a new optical rotator was developed in conjunction with Optec, Inc., and used for the last two months of observations. This project was initiated at the suggestion of Dr. Robert Stencel at the May 2009 SAS meeting to extend measurements done during the 1984 eclipse by Dr. Jack Kemp and followed up by his student, Dr. Gary Henson thereafter.

  18. Preclinical memory profile in Alzheimer patients with and without allele APOE-epsilon4.

    PubMed

    Estévez-González, Armando; García-Sánchez, Carmen; Boltes, Anunciación; Otermín, Pilar; Baiget, Montserrat; Escartín, Antonio; del Rio, Elisabeth; Gironell, Alex; Kulisevsky, Jaime

    2004-01-01

    To investigate the association between APOE-epsilon4 allele and memory phenotype in the preclinical stage of Alzheimer's disease (AD). We compared an extensive preclinical memory profile at the baseline evaluation of 2 AD genotype groups: APOE-epsilon4 allele carriers and patients with APOE-epsilon3 homozygosity. Baseline memory performance was carried out at least 2 years (interval of 27.7 +/- 4 months) before AD diagnosis was established, and analysis included different modalities of working memory (visuoperceptive, visuospatial, digit span and processing speed), of declarative memory (recent, verbal learning, prospective and semantic) and of nondeclarative memory (procedural, incidental and priming). We found no significant differences: memory performance was similar in both genotype groups. The presence of the APOE-epsilon4 allele does not seem to be sufficient to cause a distinctive preclinical memory phenotype in AD patients. PMID:15159600

  19. Calculations of Diffuser Flows with an Anisotropic K-Epsilon Model

    NASA Technical Reports Server (NTRS)

    Zhu, J.; Shih, T.-H.

    1995-01-01

    A newly developed anisotropic K-epsilon model is applied to calculate three axisymmetric diffuser flows with or without separation. The new model uses a quadratic stress-strain relation and satisfies the realizability conditions, i.e., it ensures both the positivity of the turbulent normal stresses and the Schwarz' inequality between any fluctuating velocities. Calculations are carried out with a finite-element method. A second-order accurate, bounded convection scheme and sufficiently fine grids are used to ensure numerical credibility of the solutions. The standard K-epsilon model is also used in order to highlight the performance of the new model. Comparison with the experimental data shows that the anisotropic K-epsilon model performs consistently better than does the standard K-epsilon model in all of the three test cases.

  20. Calculation of plane-of-symmetry boundary layers with a modified k-epsilon model

    NASA Astrophysics Data System (ADS)

    Choi, D. H.; Chung, M. K.; Sohn, C. H.

    1991-03-01

    The effects of vortex stretching and normal stresses on the development of turbulent boundary layers are numerically investigated by adopting both the vortex stretching invariant and the preferential normal stress concept in the dissipation equation of the standard k-epsilon model. An application of the proposed k-epsilon equation to a plane-of-symmetry boundary-layer flow reveals that the preferential normal stress terms under the flow convergence reduces the turbulent kinetic energy k and the eddy viscosity, whereas the squeezing of vorticity augments them, consistent with experimental observation. Comparison of predicted profiles of various flow variables by the proposed model with those by other k-epsilon and mixing length models demonstrates that the present epsilon equation improves markedly the computational accuracy of the relatively complex flow in a plane of symmetry.

  1. Electron-phonon interaction in two dimensions: Variation of Im[Sigma]([epsilon][sub [ital p

    SciTech Connect

    Kostur, V.N.; Mitrovic, B. )

    1993-12-01

    The interaction between phonons and a two-dimensional (2D) electron gas is studied beyond the Migdal approximation. The analysis of the vertex function leads to the relative correction of [vert bar]Im[Sigma]([epsilon][sub [ital p

  2. Low Reynolds number k-epsilon modelling with the aid of direct simulation data

    NASA Technical Reports Server (NTRS)

    Rodi, W.; Mansour, N. N.

    1993-01-01

    The constant C sub mu and the near-wall damping function f sub mu in the eddy-viscosity relation of the k-epsilon model are evaluated from direct numerical simulation (DNS) data for developed channel and boundary layer flow at two Reynolds numbers each. Various existing f sub mu model functions are compared with the DNS data, and a new function is fitted to the high-Reynolds-number channel flow data. The epsilon-budget is computed for the fully developed channel flow. The relative magnitude of the terms in the epsilon-equation is analyzed with the aid of scaling arguments, and the parameter governing this magnitude is established. Models for the sum of all source and sink terms in the epsilon-equation are tested against the DNS data, and an improved model is proposed.

  3. Low Reynolds number kappa-epsilon modeling with the aid of direct simulation data

    NASA Technical Reports Server (NTRS)

    Rodi, W.; Mansour, N. N.

    1990-01-01

    The constant C(sub mu) and the near-wall damping function f(sub mu) in the eddy-viscosity relation of the kappa-epsilon model are evaluated from direct numerical simulation (DNS) data for developed channel and boundary layer flow at two Reynolds numbers each. Various existing f(sub mu) model functions are compared with the DNS data, and a new function is fitted to the high-Reynolds-number channel flow data. The epsilon-budget is computed for the fully developed channel flow. The relative magnitude of the terms in the epsilon-equation is analyzed with the aid of scaling arguments, and the parameter governing this magnitude is established. Models for the sum of all source and sink terms in the epsilon-equation are tested against the DNS data, and an improved model is proposed.

  4. Attenuation of epsilon(sub eff) of coplanar waveguide transmission lines on silicon substrates

    NASA Technical Reports Server (NTRS)

    Taub, Susan R.; Young, Paul G.

    1993-01-01

    Attenuation and epsilon(sub eff) of Coplanar Waveguide (CPW) transmission lines were measured on Silicon substrates with resistivities ranging from 400 to greater than 30,000 ohm-cm, that have a 1000 angstrom coating of SiO2. Both attenuation and epsilon(sub eff) are given over the frequency range 5 to 40 GHz for various strip and slot widths. These measured values are also compared to the theoretical values.

  5. Low cytoplasmic casein kinase 1 epsilon expression predicts poor prognosis in patients with hepatocellular carcinoma.

    PubMed

    Lin, Shu-Hui; Yeh, Chung-Min; Hsieh, Ming-Ju; Lin, Yueh-Min; Chen, Mei-Wen; Chen, Chih-Jung; Lin, Cheng-Yu; Hung, Hsiao-Fang; Yeh, Kun-Tu; Yang, Shun-Fa

    2016-03-01

    Casein kinase 1 epsilon (CK1ε) is a member of the casein kinase 1 (CK1) family, which comprises highly conserved and ubiquitous serine/threonine protein kinases. Recent studies have demonstrated that CK1ε plays a role in human cancers; however, the role of CK1ε in hepatocellular carcinoma (HCC) remains unclear. The study used immunohistochemistry to examine CK1ε expression in 230 HCC specimens by tissue microarray (TMA) and assessed the effect of CK1ε knockdown on migration of human hepatoma cells in vitro. The immunohistochemical analyses showed that low CK1ε expression was significantly correlated with tumor differentiation (p = 0.008), T classification (p = 0.016), tumor vascular invasion (p = 0.002), and cancer stage (p = 0.010). The univariate and multivariate analyses showed that patients with low CK1ε expression had a considerably lower OS rate than that of the patients with high CK1ε expression (p = 0.041, hazard ratio = 1.4; p = 0.039, hazard ratio = 1.4). Moreover, CK1ε small interfering RNA (siRNA) treatment exerted an invasion-promoting effect in human hepatoma cells. In conclusion, our data indicated that low CK1ε expression is correlated with a low survival rate and CK1ε may play a role as a tumor suppressor in hepatocarcinogenesis. PMID:26482619

  6. Computational evidence for the detoxifying mechanism of epsilon class glutathione transferase toward the insecticide DDT.

    PubMed

    Li, Yanwei; Shi, Xiangli; Zhang, Qingzhu; Hu, Jingtian; Chen, Jianmin; Wang, Wenxing

    2014-05-01

    A combined quantum mechanics/molecular mechanics (QM/MM) computation of the detoxifying mechanism of an epsilon class glutathione transferases (GSTs) toward organochlorine insecticide DDT, 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane, has been carried out. The exponential average barrier of the proton transfer mechanism is 15.2 kcal/mol, which is 27.6 kcal/mol lower than that of the GS-DDT conjugant mechanism. It suggests that the detoxifying reaction proceeds via a proton transfer mechanism where GSH acts as a cofactor rather than a conjugate. The study reveals that the protein environment has a strong effect on the reaction barrier. The experimentally proposed residues Arg112, Glu116 and Phe120 were found to have a strong influence on the detoxifying reaction. The influence of residues Pro13, Cys15, His53, Ile55, Glu67, Ser68, Phe115, and Leu119 was detected as well. It is worth noticing that Ile55 facilitates the detoxifying reaction most. On the basis of the structure of DDT, structure 2, (BrC6H4)2CHCCl3, is the best candidate among all the tested structures in resisting the detoxification of enzyme agGSTe2.

  7. Phase stability of {epsilon} and {gamma} HNIW (CL-20) at high-pressure and temperature

    SciTech Connect

    Gump, Jared C.; Stoltz, Chad A.; Peiris, Suhithi M.

    2007-12-12

    Hexanitrohexaazaisowurtzitane (CL-20) is one of the few ingredients developed since World War II to be considered for transition to military use. Five polymorphs have been identified for CL-20 by FTIR measurements ({alpha}, {beta}, {gamma}, {epsilon}, {zeta}). As CL-20 is transitioned into munitions it will become necessary to predict its response under conditions of detonation, for performance evaluation. Such predictive modeling requires a phase diagram and basic thermodynamic properties of the various phases at high pressure and temperature. Therefore, the epsilon and gamma phases of CL-20 at static high-pressure and temperature were investigated using synchrotron angle-dispersive x-ray diffraction experiments. The samples were compressed and heated using diamond anvil cells (DAC). Pressures and temperatures achieved were around 5 GPa and 240 deg. C, respectively. The epsilon phase was stable to 6.3 GPa at ambient temperature. When heated at ambient pressure the epsilon phase was sustained to a temperature of 120 deg. C then underwent a transition to the gamma phase above 125 deg. C and then thermal decomposition occurred above 150 deg. C. Upon compression, the gamma phase underwent a phase transition at both ambient temperature and 140 deg. C. Pressure--volume data for the epsilon and gamma phase at ambient temperature and the epsilon phase at 75 deg. C were fit to the Birch-Murnaghan formalism to obtain isothermal equations of state.

  8. Switch circles from IL-4-directed epsilon class switching from human B lymphocytes. Evidence for direct, sequential, and multiple step sequential switch from mu to epsilon Ig heavy chain gene.

    PubMed

    Zhang, K; Mills, F C; Saxon, A

    1994-04-01

    Ig isotype switch via deletional recombination is accompanied by excision of the intervening DNA between the two switch regions. The excised DNA is looped out as extrachromosomal circular DNA or switch circle. Such switch circles have been isolated and characterized in mice. We investigated deletional recombination in human B cells undergoing Ig isotype switching to demonstrate whether switch circles are also excised, and to thereby gain insight into the processes involved in human isotype switching. We characterized the deleted switch circular DNA from IL-4 directed mu to epsilon switching in polyclonal human B lymphocytes. By using two sets of specially designed PCR primers, we amplified switch circle fragments representing switch circles resulting from mu to epsilon direct switching and mu-gamma-epsilon sequential switching. The PCR-amplified products were subcloned by a TA cloning strategy and resulting clones were screened by hybridization with a 5'S epsilon probe. Sequence analysis of the positive clones revealed that all clones representing mu to epsilon direct switching indeed had 5'S epsilon directly joined to 3' S mu. Most clones representing mu-gamma-epsilon sequential switching showed 5'S epsilon joined to 3' S gamma as expected. However, two clones contained S mu and S alpha 1 sequences interposed between 5'S epsilon and 3'S gamma, respectively. These data demonstrate that switch circles are excised during human B cell isotype switching, and that IL-4 directed epsilon class switching is accomplished by 1) direct mu to epsilon switching, 2) sequential mu-gamma-epsilon switching, and 3) double sequential mu-alpha-gamma-epsilon switching.

  9. Epsilon waves detected by various electrocardiographic recording methods: in patients with arrhythmogenic right ventricular cardiomyopathy.

    PubMed

    Wang, Jing; Yang, Bing; Chen, Hongwu; Ju, Weizhu; Chen, Kai; Zhang, Fengxiang; Cao, Kejiang; Chen, Minglong

    2010-01-01

    We analyzed the shape and distribution of epsilon waves by 3 various methods of electrocardiographic recording in patients with arrhythmogenic right ventricular cardiomyopathy.Thirty-two patients who met recognized diagnostic criteria for arrhythmogenic right ventricular cardiomyopathy were included in this study (24 men and 8 women; mean age, 42.3 ± 12.9 yr). Epsilon waves were detected by standard 12-lead electrocardiography (S-ECG), right-sided precordial lead electrocardiography (R-ECG), and Fontaine bipolar precordial lead electrocardiography (F-ECG). We found 3 types of epsilon waves: wiggle waves, small spike waves, and smooth potential waves that formed an atypical prolonged R' wave. The most common configuration was small spiked waves. In some circumstances, epsilon waves were evident in some leads (especially in leads V(1) through V(3)), but notches were recorded in the other leads during the corresponding phase. These waves could be detected only by S-ECG in 1 patient, R-ECG in 3 patients, and F-ECG in 5 patients; the rates of epsilon-wave detection by these 3 methods were 38% (12/32), 38% (12/32), and 50% (16/32), respectively. However, the detection rate using combined methods was significantly higher than that by S-ECG alone (SF-ECG 56% vs S-ECG 38%, P = 0.0312; and SRF-ECG 66% vs S-ECG 38%, P = 0.0039). In addition, the rate of widespread T-wave inversion (exceeding V(3)) was significantly higher in patients with epsilon waves than in those without (48% vs 9%, P = 0.029), as was ventricular tachycardia (95% vs 64%, P = 0.019).These 3 electrocardiographic recording methods should be used in combination to improve the detection rate of epsilon waves. PMID:20844612

  10. Interpretation of the neutron electric dipole moment: Possible relationship to t bar. epsilon. prime t bar

    SciTech Connect

    Booth, M.J.; Briere, R.A.; Sachs, R.G. )

    1990-01-01

    Recent measurements of {ital D}{sub {ital n}} indicate that it {ital may} be of order {ital G}{sub {ital F}} (milliweak), which is much larger than predicted by the Kobayashi-Maskawa (KM) model. The predicted KM moment is shown to be small because it is of second order in {ital G}{sub {ital F}} (superweak) {ital and} suppressed by the Glashow-Iliopoulos-Maiani (GIM) mechanism. GIM cancellations have their largest effect on the calculation of the moment of a single quark so that {ital W}-exchange contributions between pairs of quarks dominate {ital D}{sub {ital n}} in the KM model. Experimental confirmation that {ital D}{sub {ital n}} is of order {ital G}{sub {ital F}} (in the range 10{sup {minus}27}--10{sup {minus}25} e cm) would require a {ital T}-violating phase between the {ital P}-conserving and {ital P}-violating first-order weak interactions, as occurs in the Weinberg model. Any such {ital T} violation would lead to a relationship between {epsilon}{prime} and {ital D}{sub {ital n}} of the form {vert bar}{ital D}{sub {ital n}}{vert bar}{similar to}{vert bar}{epsilon}{prime}{vert bar}. We estimate the ratio {vert bar}{ital D}{sub {ital n}}/{epsilon}{prime}{vert bar} for the Weinberg model, and show that it is consistent with current data on {ital D}{sub {ital n}}, {vert bar}{epsilon}{prime}/{epsilon}{vert bar}, and {vert bar}{epsilon}{vert bar}. However, the current data are also consistent with {ital D}{sub {ital n}}={epsilon}{prime}=0, so that a firm conclusion cannot be drawn now.

  11. Cyclic Nucleotide Dependent Dephosphorylation of Regulator of G-Protein Signaling 18 in Human Platelets

    PubMed Central

    Gegenbauer, Kristina; Nagy, Zoltan; Smolenski, Albert

    2013-01-01

    Regulator of G-protein signaling 18 (RGS18) is a GTPase-activating protein that turns off Gq signaling in platelets. RGS18 is regulated by binding to the adaptor protein 14-3-3 via phosphorylated serine residues S49 and S218 on RGS18. In this study we confirm that thrombin, thromboxane A2, or ADP stimulate the interaction of RGS18 and 14-3-3 by increasing the phosphorylation of S49. Cyclic AMP- and cyclic GMP-dependent kinases (PKA, PKG) inhibit the interaction of RGS18 and 14-3-3 by phosphorylating S216. To understand the effect of S216 phosphorylation we studied the phosphorylation kinetics of S49, S216, and S218 using Phos-tag gels and phosphorylation site-specific antibodies in transfected cells and in platelets. Cyclic nucleotide-induced detachment of 14-3-3 from RGS18 coincides initially with double phosphorylation of S216 and S218. This is followed by dephosphorylation of S49 and S218. Dephosphorylation of S49 and S218 might be mediated by protein phosphatase 1 (PP1) which is linked to RGS18 by the regulatory subunit PPP1R9B (spinophilin). We conclude that PKA and PKG induced S216 phosphorylation triggers the dephosphorylation of the 14-3-3 binding sites of RGS18 in platelets. PMID:24244663

  12. Cyclic nucleotide dependent dephosphorylation of regulator of G-protein signaling 18 in human platelets.

    PubMed

    Gegenbauer, Kristina; Nagy, Zoltan; Smolenski, Albert

    2013-01-01

    Regulator of G-protein signaling 18 (RGS18) is a GTPase-activating protein that turns off Gq signaling in platelets. RGS18 is regulated by binding to the adaptor protein 14-3-3 via phosphorylated serine residues S49 and S218 on RGS18. In this study we confirm that thrombin, thromboxane A2, or ADP stimulate the interaction of RGS18 and 14-3-3 by increasing the phosphorylation of S49. Cyclic AMP- and cyclic GMP-dependent kinases (PKA, PKG) inhibit the interaction of RGS18 and 14-3-3 by phosphorylating S216. To understand the effect of S216 phosphorylation we studied the phosphorylation kinetics of S49, S216, and S218 using Phos-tag gels and phosphorylation site-specific antibodies in transfected cells and in platelets. Cyclic nucleotide-induced detachment of 14-3-3 from RGS18 coincides initially with double phosphorylation of S216 and S218. This is followed by dephosphorylation of S49 and S218. Dephosphorylation of S49 and S218 might be mediated by protein phosphatase 1 (PP1) which is linked to RGS18 by the regulatory subunit PPP1R9B (spinophilin). We conclude that PKA and PKG induced S216 phosphorylation triggers the dephosphorylation of the 14-3-3 binding sites of RGS18 in platelets. PMID:24244663

  13. Allele doses of apolipoprotein E type {epsilon}4 in sporadic late-onset Alzheimer`s disease

    SciTech Connect

    Lucotte, G.; Aouizerate, A.; Gerard, N.

    1995-12-18

    Apoliprotein E, type {epsilon}4 allele (ApoE-{epsilon}4) is associated with late-onset sporadic Alzheimer`s disease (AD). We have found that the cumulative probability of remaining unaffected over time decreases for each dose of ApoE-{epsilon}4 in sporadic, late-onset French AD. The effect of genotypes on age at onset of AD was analyzed using the product limit method, to compare unaffected groups during aging. 26 refs., 2 figs., 1 tab.

  14. Phase Stability of Epsilon and Gamma Hniw (CL-20) at High-Pressure and Temperature

    NASA Astrophysics Data System (ADS)

    Gump, Jared C.; Stoltz, Chad A.; Peiris, Suhithi M.

    2007-12-01

    Hexanitrohexaazaisowurtzitane (CL-20) is one of the few ingredients developed since World War II to be considered for transition to military use. Five polymorphs have been identified for CL-20 by FTIR measurements (α, β, γ, ɛ, ζ). As CL-20 is transitioned into munitions it will become necessary to predict its response under conditions of detonation, for performance evaluation. Such predictive modeling requires a phase diagram and basic thermodynamic properties of the various phases at high pressure and temperature. Therefore, the epsilon and gamma phases of CL-20 at static high-pressure and temperature were investigated using synchrotron angle-dispersive x-ray diffraction experiments. The samples were compressed and heated using diamond anvil cells (DAC). Pressures and temperatures achieved were around 5 GPa and 240 °C, respectively. The epsilon phase was stable to 6.3 GPa at ambient temperature. When heated at ambient pressure the epsilon phase was sustained to a temperature of 120 °C then underwent a transition to the gamma phase above 125 °C and then thermal decomposition occurred above 150 °C. Upon compression, the gamma phase underwent a phase transition at both ambient temperature and 140 °C. Pressure—volume data for the epsilon and gamma phase at ambient temperature and the epsilon phase at 75 °C were fit to the Birch-Murnaghan formalism to obtain isothermal equations of state.

  15. Microscopic characterization of {epsilon}-Cu interphase precipitation in hypereutectoid Fe-C-Cu alloys

    SciTech Connect

    Fourlaris, G.; Baker, A.J.; Papadimitriou, G.D.

    1995-07-01

    During isothermal pearlitic transformation in medium or high carbon copper steels the decomposition of austenite leads, apart from the formation of proeutectoid phases and pearlite, to the precipitation of the {epsilon}-Cu phase. At temperatures close to that of the eutectoid of the system interphase precipitation of {epsilon}-Cu occurs within proeutectoid ferrite (medium carbon steels), within grain boundary proeutectoid cementite (high carbon steels) and within both pearlitic ferrite and cementite. As the temperature of the isothermal pearlitic transformation is lowered the formation of copper supersaturated pearlitic ferrite occurs while within proeutectoid cementite (grain boundary or Widmanstatten) and pearlitic cementite interphase precipitation of {epsilon}-Cu continues. This study of the isothermal pearlitic transformation in the Fe-Cu-C system revealed that interphase precipitation of {epsilon}-Cu always occurs on moving cementite/austenite interphase boundaries but {epsilon}-Cu interphase precipitation only occurs on moving ferrite/austenite boundaries at temperatures close to the eutectoid temperature range of the system.

  16. The fundamental parameters of the chromospherically active K2 dwarf Epsilon Eridani

    NASA Technical Reports Server (NTRS)

    Drake, Jeremy J.; Smith, Geoffrey

    1993-01-01

    A silicon array detector was used to record regions exhibiting calcium and iron lines in the spectrum of the chromospherically active K2 dwarf Epsilon Eri at a resolution of 120,000 and with an SNR of not less than 200. The effective temperature, surface gravity, logarithmic iron and calcium abundances, and microturbulence are determined. Three high-excitation lines of Fe I were found to yield anomalously low iron abundances; it is postulated that the origin of the anomaly lies in the nonthermal excitation of the upper photosphere caused by chromospheric emission. It is shown that Epsilon Eri is in an evolutionary stage consistent with an M/solar mass of 0.85 theoretical zero-age main-sequence model. It is suggested that Epsilon Eri is almost certainly a young star of slightly less than one solar mass.

  17. Lattice study of meson correlators in the {epsilon}-regime of two-flavor QCD

    SciTech Connect

    Fukaya, H.; Aoki, S.; Hashimoto, S.; Kaneko, T.; Yamada, N.; Matsufuru, H.; Noaki, J.; Ogawa, K.; Onogi, T.

    2008-04-01

    We calculate mesonic two-point functions in the {epsilon}-regime of two-flavor QCD on the lattice with exact chiral symmetry. We use gauge configurations of size 16{sup 3}x32 at a{approx}0.11 fm generated with dynamical overlap fermions. The sea quark mass is fixed at around 3 MeV and the valence quark mass is varied in the range 1-4 MeV, both of which are in the {epsilon}-regime. We find a good consistency with the expectations from the next-to-leading order calculation in the {epsilon}-expansion of (partially quenched) chiral perturbation theory. From a fit we obtain the pion decay constant F=87.3(5.6) MeV and the chiral condensate {sigma}{sup MS}=[239.8(4.0) MeV]{sup 3} up to next-to-next-to-leading order contributions.

  18. Phase transitions and isothermal equations of state of epsilon hexanitrohexaazaisowurtzitane (CL-20)

    NASA Astrophysics Data System (ADS)

    Gump, Jared C.; Peiris, Suhithi M.

    2008-10-01

    The phase stability of epsilon hexanitrohexaazaisowurtzitane at high pressure and temperature was investigated using synchrotron angle-dispersive x-ray diffraction experiments. The samples were compressed at room temperature using a Merrill-Bassett diamond anvil cell. For high-temperature compression experiments a hydrothermal diamond anvil cell developed by Bassett was used. Pressures and temperatures of around 5 GPa and 175 °C, respectively, were achieved. The epsilon phase was determined to be stable under ambient pressure to a temperature of 120 °C. A phase transition to the gamma phase was seen at 125 °C and the gamma phase remained stable until thermal decomposition above 150 °C. Pressure-volume data for the epsilon phase at ambient and 75 °C were fitted to the Birch-Murnaghan formalism to obtain isothermal equations of state.

  19. Node-avoiding Levy flight - A numerical test of the epsilon expansion. [random walk

    NASA Technical Reports Server (NTRS)

    Halley, J. W.; Nakanishi, H.

    1985-01-01

    A study is conducted of an extension of Levy flight to include self-repulsion in the path of the walk. The extension is called node-avoiding Levy flight and its equivalence to the n approaches 0 limit of a statistical mechanical model for a magnetic system with long-range interactions between the spins is shown. By use of this equivalence it is possible to make a detailed comparison beween the results of the epsilon expansion for the magnetic model, a Monte Carlo simulation of the Levy flight model, and the results of a Flory-type argument. This is the first comparison of the epsilon expansion for epsilon much less than 1 with a numerical simulation for any model. Some speculations are made on applications of the model of node-avoiding Levy flight.

  20. Characterization of the high affinity binding of epsilon toxin from Clostridium perfringens to the renal system.

    PubMed

    Dorca-Arévalo, Jonatan; Martín-Satué, Mireia; Blasi, Juan

    2012-05-25

    Epsilon toxin (ε-toxin), produced by Clostridium perfringens types B and D, causes fatal enterotoxaemia in livestock. In the renal system, the toxin binds to target cells before oligomerization, pore formation and cell death. Still, there is little information about the cellular and molecular mechanism involved in the initial steps of the cytotoxic action of ε-toxin, including the specific binding to the target sensitive cells. In the present report, the binding step of ε-toxin to the MDCK cell line is characterized by means of an ELISA-based binding assay with recombinant ε-toxin-green fluorescence protein (ε-toxin-GFP) and ε-prototoxin-GFP. In addition, different treatments with Pronase E, detergents, N-glycosidase F and beta-elimination on MDCK cells and renal cryosections have been performed to further characterize the ε-toxin binding. The ELISA assays revealed a single binding site with a similar dissociation constant (K(d)) for ε-toxin-GFP and ε-prototoxin-GFP, but a three-fold increase in B(max) levels in the case of ε-toxin-GFP. Double staining on kidney cryoslices with lectins and ε-prototoxin-GFP revealed specific binding to distal and collecting tubule cells. In addition, experiments on kidney and bladder cryoslices demonstrated the specific binding to distal tubule of a range of mammalian renal systems. Pronase E and beta-elimination treatments on kidney cryoslices and MDCK cells revealed that the binding of ε-toxin in renal system is mediated by a O-glycoprotein. Detergent treatments revealed that the integrity of the plasma membrane is required for the binding of ε-toxin to its receptor.

  1. Evidence on primate phylogeny from epsilon-globin gene sequences and flanking regions.

    PubMed

    Porter, C A; Sampaio, I; Schneider, H; Schneider, M P; Czelusniak, J; Goodman, M

    1995-01-01

    Phylogenetic relationships among various primate groups were examined based on sequences of epsilon-globin genes. epsilon-globin genes were sequenced from five species of strepsirhine primates. These sequences were aligned and compared with other known primate epsilon-globin sequences, including data from two additional strepsirhine species, one species of tarsier, 19 species of New World monkeys (representing all extant genera), and five species of catarrhines. In addition, a 2-kb segment upstream of the epsilon-globin gene was sequenced in two of the five strepsirhines examined. This upstream sequence was aligned with five other species of primates for which data are available in this segment. Domestic rabbit and goat were used as outgroups. This analysis supports the monophyly of order Primates but does not support the traditional prosimian grouping of tarsiers, lorisoids, and lemuroids; rather it supports the sister grouping of tarsiers and anthropoids into Haplorhini and the sister grouping of lorisoids and lemuroids into Strepsirhini. The mouse lemur (Microcebus murinus) and dwarf lemur (Cheirogaleus medius) appear to be most closely related to each other, forming a clade with the lemuroids, and are probably not closely related to the lorisoids, as suggested by some morphological studies. Analysis of the epsilon-globin data supports the hypothesis that the aye-aye (Daubentonia madagascariensis) shares a sister-group relationship with other Malagasy strepsirhines (all being classified as lemuroids). Relationships among ceboids agree with findings from a previous epsilon-globin study in which fewer outgroup taxa were employed. Rates of molecular evolution were higher in lorisoids than in lemuroids. PMID:7714911

  2. Enhanced gene delivery using biodegradable poly(ester amine)s (PEAs) based on low-molecular-weight polyethylenimine and poly(epsilon-caprolactone)-pluronic-poly(epsilon-caprolactone).

    PubMed

    Liu, Tingting; Yu, Xiujun; Kan, Bing; Guo, Qingfa; Wang, Xiuhong; Shi, Shuai; Guo, Gang; Luo, Feng; Zhao, Xia; Wei, Yuquan; Qian, Zhiyong

    2010-08-01

    In this paper, the poly(ester amine)s (PEAs) were successfully prepared from low-molecular-weight PEI (Mn = 2000) and Poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(propylene glycol)-poly(ethylene glycol)-poly(epsilon-caprolactone) (PCFC) copolymers using isophorone diisocyanate (IPDI) as cross-linker. The obtained PEAs copolymers are biodegradable and water-soluble. The PEAs/DNA complexes showed effective and stable DNA condensation with the particle size < or = 200 nm and zeta potential > or =10 mV, indicating its potential for intracellular delivery. Compared to the unmodified low-molecular-weight PEI, PEAs displayed similarly low cytotoxicity in all two cell lines (293T: Human kidney carcinoma, HUVEC: Human umbilical vein Endothelial cell) and revealed much higher transfection efficiency in 293T cell lines. Therefore these PEAs might be a novel safe and efficient polymeric gene delivery vectors.

  3. Directional and monochromatic thermal emitter from epsilon-near-zero conditions in semiconductor hyperbolic metamaterials

    NASA Astrophysics Data System (ADS)

    Campione, Salvatore; Marquier, Francois; Hugonin, Jean-Paul; Ellis, A. Robert; Klem, John F.; Sinclair, Michael B.; Luk, Ting S.

    2016-10-01

    The development of novel thermal sources that control the emission spectrum and the angular emission pattern is of fundamental importance. In this paper, we investigate the thermal emission properties of semiconductor hyperbolic metamaterials (SHMs). Our structure does not require the use of any periodic corrugation to provide monochromatic and directional emission properties. We show that these properties arise because of epsilon-near-zero conditions in SHMs. The thermal emission is dominated by the epsilon-near-zero effect in the doped quantum wells composing the SHM. Furthermore, different properties are observed for s and p polarizations, following the characteristics of the strong anisotropy of hyperbolic metamaterials.

  4. Anomalous nonlinear absorption in epsilon-near-zero materials: optical limiting and all-optical control.

    PubMed

    Vincenti, M A; de Ceglia, D; Scalora, Michael

    2016-08-01

    We investigate nonlinear absorption in films of epsilon-near-zero materials. The combination of large local electric fields at the fundamental frequency and material losses at the harmonic frequencies induce unusual intensity-dependent phenomena. We predict that the second-order nonlinearity of a low-damping, epsilon-near-zero slab produces an optical limiting effect that mimics a two-photon absorption process. Anomalous absorption profiles that depend on low permittivity values at the pump frequency are also predicted for third-order nonlinearities. These findings suggest new opportunities for all-optical light control and novel ways to design reconfigurable and tunable nonlinear devices.

  5. Directional and monochromatic thermal emitter from epsilon-near-zero conditions in semiconductor hyperbolic metamaterials

    PubMed Central

    Campione, Salvatore; Marquier, Francois; Hugonin, Jean-Paul; Ellis, A. Robert; Klem, John F.; Sinclair, Michael B.; Luk, Ting S.

    2016-01-01

    The development of novel thermal sources that control the emission spectrum and the angular emission pattern is of fundamental importance. In this paper, we investigate the thermal emission properties of semiconductor hyperbolic metamaterials (SHMs). Our structure does not require the use of any periodic corrugation to provide monochromatic and directional emission properties. We show that these properties arise because of epsilon-near-zero conditions in SHMs. The thermal emission is dominated by the epsilon-near-zero effect in the doped quantum wells composing the SHM. Furthermore, different properties are observed for s and p polarizations, following the characteristics of the strong anisotropy of hyperbolic metamaterials. PMID:27703223

  6. Structural similarity of bovine lung prostaglandin F synthase to lens epsilon-crystallin of the European common frog.

    PubMed Central

    Watanabe, K; Fujii, Y; Nakayama, K; Ohkubo, H; Kuramitsu, S; Kagamiyama, H; Nakanishi, S; Hayaishi, O

    1988-01-01

    Cloned cDNA sequences specific for prostaglandin F (PGF) synthase have been isolated from a cDNA library of bovine lung mRNA sequences. Nucleotide-sequence analyses of cloned cDNA inserts have revealed that PGF synthase consists of a 969-base pair open reading frame coding for a 323-amino acid polypeptide with a Mr of 36,666. The sequence analysis indicates that bovine lung PGF synthase shows 62% identical plus conservative substitutions compared with human liver aldehyde reductase [Wermuth, B., Omar, A., Forster, A., Francesco, C., Wolf, M., Wartburg, J.P., Bullock, B. & Gabbay, K.H. (1987) in Enzymology and Molecular Biology of Carbonyl Metabolism: Aldehyde Dehydrogenase, Aldo-Keto Reductase, and Alcohol Dehydrogenase, eds. Weiner, H. & Flynn, T.G. (Liss, New York), pp. 297-307], which is similar to PGF synthase in molecular weight and substrate specificity. However, comparison of the amino acid sequence of PGF synthase with the National Biomedical Research Foundation protein data base reveals that the sequences of 225 amino acids from C termini of epsilon-crystallin of the European common frog (Rana temporaria) [Tomarev, S.I., Zinovieva, R.D., Dolgilevich, S.M., Luchin, S.V., Krayev, A.S., Skryabin, K.G. & Gause, G.G. (1984) FEBS Lett. 171, 297-302] and of PGF synthase show 77% identical and conservative substitutions without deletions/additions. The result suggests that European common frog lens epsilon-crystallin is identical to bovine lung PGF synthase. Images PMID:2829166

  7. The epsilon glutathione S-transferases contribute to the malathion resistance in the oriental fruit fly, Bactrocera dorsalis (Hendel).

    PubMed

    Lu, Xue-Ping; Wang, Luo-Luo; Huang, Yong; Dou, Wei; Chen, Chang-Tong; Wei, Dong; Wang, Jin-Jun

    2016-02-01

    Epsilon glutathione S-transferases (eGSTs) play important roles in xenobiotics detoxification and insecticides resistance in insects. However, the molecular mechanisms of eGSTs-mediated insecticide resistance remain largely unknown in the Bactrocera dorsalis (Hendel), one of the most notorious pests in the world. Here, we investigated the roles of eight GST genes which belonged to epsilon class (BdGSTe1, BdGSTe2, BdGSTe3, BdGSTe4, BdGSTe5, BdGSTe6, BdGSTe7 and BdGSTe9) in conferring malathion resistance in B. dorsalis. Adult developmental stage-, sex- and tissue-specific expression patterns of the eight eGST genes were analyzed via quantitative reverse transcription PCR. The results showed that BdGSTe2, BdGSTe3, BdGSTe4 and BdGSTe9 were abundant in the midgut, fat body and Malpighian tubules. Notably, BdGSTe2, BdGSTe4 and BdGSTe9 were significantly overexpressed in a malathion-resistant (MR) strain of B. dorsalis compared to the malathion-susceptible (MS) strain. Functional expression and cytotoxicity assays showed significantly higher malathion detoxification capabilities in BdGSTe2-, BdGSTe3-, BdGSTe4- and BdGSTe9-expressing Sf9 cells compared to the parental and green fluorescent protein (GFP)-expressing Sf9 cells. Moreover, malathion susceptibility in MS adults was increased 30%, 14%, and 33% when BdGSTe2, BdGSTe3 and BdGSTe4 mRNA levels were repressed by RNA interference (RNAi)-mediated knockdown, respectively. Taken together, overexpression of the isoforms of eGSTs, including BdGSTe2, BdGSTe4, and particularly, BdGSTe9 plays an important role in the malathion resistant development in B. dorsalis. PMID:26610787

  8. Modification of the Two-equation Turbulence Model in NPARC to a Chien Low Reynolds Number K-epsilon Formulation

    NASA Technical Reports Server (NTRS)

    Georgiadis, Nicholas J.; Chitsomboon, Tawit; Zhu, Jiang

    1994-01-01

    This report documents the changes that were made to the two-equation k-epsilon turbulence model in the NPARC (National-PARC) code. The previous model based on the low Reynolds number model of Speziale, was replaced with the low Reynolds number k-epsilon model of Chien. The most significant difference was in the turbulent Prandtl numbers appearing in the diffusion terms of the k and epsilon transport equations. A new inflow boundary condition and stability enhancements were also implemented into the turbulence model within NPARC. The report provides the rationale for making the change to the Chien model, code modifications required, and comparisons of the performances of the new model with the previous k-epsilon model and algebraic models used most often in PARC/NPARC. The comparisons show that the Chien k-epsilon model installed here improves the capability of NPARC to calculate turbulent flows.

  9. Numerical solution of turbulent flow past a backward facing step using a nonlinear K-epsilon model

    NASA Technical Reports Server (NTRS)

    Speziale, C. G.; Ngo, Tuan

    1987-01-01

    The problem of turbulent flow past a backward facing step is important in many technological applications and has been used as a standard test case to evaluate the performance of turbulence models in the prediction of separated flows. It is well known that the commonly used kappa-epsilon (and K-l) models of turbulence yield inaccurate predictions for the reattachment points in this problem. By an analysis of the mean vorticity transport equation, it will be argued that the intrinsically inaccurate prediction of normal Reynolds stress differences by the Kappa-epsilon and K-l models is a major contributor to this problem. Computations using a new nonlinear kappa-epsilon model (which alleviates this deficiency) are made with the TEACH program. Comparisons are made between the improved results predicted by this nonlinear kappa-epsilon model and those obtained from the linear kappa-epsilon model as well as from second-order closure models.

  10. Numerical solution of turbulent flow past a backward facing step using a nonlinear K-epsilon model

    NASA Technical Reports Server (NTRS)

    Speziale, C. G.; Ngo, Tuan

    1988-01-01

    The problem of turbulent flow past a backward facing step is important in many technological applications and has been used as a standard test case to evaluate the performance of turbulence models in the prediction of separated flows. It is well known that the commonly used kappa-epsilon (and K-l) models of turbulence yield inaccurate predictions for the reattachment points in this problem. By an analysis of the mean vorticity transport equation, it will be argued that the intrinsically inaccurate prediction of normal Reynolds stress differences by the kappa-epsilon and K-l models is a major contributor to this problem. Computations using a new nonlinear Kappa-epsilon model (which alleviates this deficiency) are made with the TEACH program. Comparisons are made between the improved results predicted by this nonlinear kappa-epsilon model and those obtained from the linear kappa-epsilon model as well as from second-order closure models.

  11. Applications of Wynn's epsilon-algorithm to transonic flow-calculations

    NASA Technical Reports Server (NTRS)

    Hafez, M.; Palaniswamy, S.; Kuruvila, G.; Salas, M. D.

    1987-01-01

    Convergence acceleration of iterative solutions of potential and Euler equations, based on Wynn's epsilon-algorithm, is demonstrated. The extra computational work, to apply the technique, is negligible, while the storage requirement is definitely affordable with the present computers, at least, for two-dimensional inviscid flow problems.

  12. IKK{epsilon} modulates RSV-induced NF-{kappa}B-dependent gene transcription

    SciTech Connect

    Bao Xiaoyong; Indukuri, Hemalatha; Liu Tianshuang; Liao Suiling; Tian, Bing; Brasier, Allan R.; Garofalo, Roberto P.; Casola, Antonella

    2010-12-20

    Respiratory syncytial virus (RSV), a negative-strand RNA virus, is the most common cause of epidemic respiratory disease in infants and young children. RSV infection of airway epithelial cells induces the expression of immune/inflammatory genes through the activation of a subset of transcription factors, including Nuclear Factor-{kappa}B (NF-{kappa}B). In this study we have investigated the role of the non canonical I{kappa}B kinase (IKK){epsilon} in modulating RSV-induced NF-{kappa}B activation. Our results show that inhibition of IKK{epsilon} activation results in significant impairment of viral-induced NF-{kappa}B-dependent gene expression, through a reduction in NF-{kappa}B transcriptional activity, without changes in nuclear translocation or DNA-binding activity. Absence of IKK{epsilon} results in a significant decrease of RSV-induced NF-{kappa}B phosphorylation on serine 536, a post-translational modification important for RSV-induced NF-{kappa}B-dependent gene expression, known to regulate NF-{kappa}B transcriptional activity without affecting nuclear translocation. This study identifies a novel mechanism by which IKK{epsilon} regulates viral-induced cellular signaling.

  13. Perfect electromagnetic absorption using graphene and epsilon-near-zero metamaterials

    NASA Astrophysics Data System (ADS)

    Lobet, Michaël; Majerus, Bruno; Henrard, Luc; Lambin, Philippe

    2016-06-01

    The ability of graphene/polymer heterostructures to absorb GHz electromagnetic radiation was recently evidenced both theoretically and experimentally [Batrakov et al., Sci. Rep. 4, 7191 (2014), 10.1038/srep07191 and Lobet et al., Nanotechnology 26, 285702 (2015), 10.1088/0957-4484/26/28/285702]. Maximum absorption was shown to depend solely on refractive indices of incident and emergence media once impedance matching conditions are fulfilled. In this paper, analytical models and numerical simulations are performed for both semi-infinite and finite slab substrate. We evidenced that only three graphene layers separated by a dielectric spacer and an epsilon-near-zero metamaterial as emergence medium allow a perfect absorption for normal incidence. The use of lossless epsilon-near-zero metamaterial prevents radiations to go through the device, because of infinite impedance, and forces them to be totally absorbed in the dissipative medium (graphene). The device is proved to be robust regarding angular incidence up to 45 deg for a semi-infinite epsilon-near-zero metamaterial. The proposed strategy is universal and can be applied to any kind of two-dimensional dissipative materials lying on epsilon-near-zero metamaterial. The proposed absorber does not rely on surface patterning or texturing and hence is more appealing for device applications.

  14. DNA polymerases delta and epsilon are required for chromosomal replication in Saccharomyces cerevisiae.

    PubMed Central

    Budd, M E; Campbell, J L

    1993-01-01

    Three DNA polymerases, alpha, delta, and epsilon are required for viability in Saccharomyces cerevisiae. We have investigated whether DNA polymerases epsilon and delta are required for DNA replication. Two temperature-sensitive mutations in the POL2 gene, encoding DNA polymerase epsilon, have been identified by using the plasmid shuffle technique. Alkaline sucrose gradient analysis of DNA synthesis products in the mutant strains shows that no chromosomal-size DNA is formed after shift of an asynchronous culture to the nonpermissive temperature. The only DNA synthesis observed is a reduced quantity of short DNA fragments. The DNA profiles of replication intermediates from these mutants are similar to those observed with DNA synthesized in mutants deficient in DNA polymerase alpha under the same conditions. The finding that DNA replication stops upon shift to the nonpermissive temperature in both DNA polymerase alpha- and DNA polymerase epsilon- deficient strains shows that both DNA polymerases are involved in elongation. By contrast, previous studies on pol3 mutants, deficient in DNA polymerase delta, suggested that there was considerable residual DNA synthesis at the nonpermissive temperature. We have reinvestigated the nature of DNA synthesis in pol3 mutants. We find that pol3 strains are defective in the synthesis of chromosomal-size DNA at the restrictive temperature after release from a hydroxyurea block. These results demonstrate that yeast DNA polymerase delta is also required at the replication fork. PMID:8417347

  15. Two-flavor lattice QCD in the {epsilon} regime and chiral random matrix theory

    SciTech Connect

    Fukaya, H.; Aoki, S.; Chiu, T. W.; Ogawa, K.; Hashimoto, S.; Kaneko, T.; Yamada, N.; Matsufuru, H.; Noaki, J.; Onogi, T.

    2007-09-01

    The low-lying eigenvalue spectrum of the QCD Dirac operator in the {epsilon} regime is expected to match with that of chiral random matrix theory (ChRMT). We study this correspondence for the case including sea quarks by performing two-flavor QCD simulations on the lattice. Using the overlap fermion formulation, which preserves exact chiral symmetry at finite lattice spacings, we push the sea quark mass down to {approx}3 MeV on a 16{sup 3}x32 lattice at a lattice spacing a{approx_equal}0.11 fm. We compare the low-lying eigenvalue distributions and find a good agreement with the analytical predictions of ChRMT. By matching the lowest-lying eigenvalue we extract the chiral condensate, {sigma}{sup MS}(2 GeV)=(251{+-}7{+-}11 MeV){sup 3}, where errors represent statistical and higher order effects in the {epsilon} expansion. We also calculate the eigenvalue distributions on the lattices with heavier sea quarks at two lattice spacings. Although the {epsilon} expansion is not applied for those sea quarks, we find a reasonable agreement of the Dirac operator spectrum with ChRMT. The value of {sigma}, after extrapolating to the chiral limit, is consistent with the estimate in the {epsilon} regime.

  16. Epsilon Metal Waste Form for Immobilization of Noble Metals from Used Nuclear Fuel

    SciTech Connect

    Crum, Jarrod V.; Strachan, Denis M.; Rohatgi, Aashish; Zumhoff, Mac R.

    2013-10-01

    Epsilon metal (ε-metal), an alloy of Mo, Pd, Rh, Ru, and Tc, is being developed as a waste form to treat and immobilize the undissolved solids and dissolved noble metals from aqueous reprocessing of commercial used nuclear fuel. Epsilon metal is an attractive waste form for several reasons: increased durability relative to borosilicate glass, it can be fabricated without additives (100% waste loading), and in addition it also benefits borosilicate glass waste loading by eliminating noble metals from the glass and thus the processing problems related there insolubility in glass. This work focused on the processing aspects of the epsilon metal waste form development. Epsilon metal is comprised of refractory metals resulting in high reaction temperatures to form the alloy, expected to be 1500 - 2000°C making it a non-trivial phase to fabricate by traditional methods. Three commercially available advanced technologies were identified: spark-plasma sintering, microwave sintering, and hot isostatic pressing, and investigated as potential methods to fabricate this waste form. Results of these investigations are reported and compared in terms of bulk density, phase assemblage (X-ray diffraction and elemental analysis), and microstructure (scanning electron microscopy).

  17. Using contour plots in elecgroproduction to examine regions in {epsilon}, Q{sup 2}, W space

    SciTech Connect

    Funsten, H.

    1994-04-01

    In determining incident CEBAF beam energies for CLAS electroproduction experiments that separate the longitudinal and transverse cross section components, contour plots of {epsilon} defined over a 2 dimensional Q{sup 2}, W space can be useful. This note describes an approximate method of constructing such plots.

  18. The Use of Visual Approach in Teaching and Learning the Epsilon-Delta Definition of Continuity

    ERIC Educational Resources Information Center

    Pešic, Duška; Pešic, Aleksandar

    2015-01-01

    In this paper we introduce a new collaborative technique in teaching and learning the epsilon-delta definition of a continuous function at the point from its domain, which connects mathematical logic, combinatorics and calculus. This collaborative approach provides an opportunity for mathematical high school students to engage in mathematical…

  19. An Optimality Theoretic Account of Hungarian ESL Learners' Acquisition of /[epsilon]/ and /[ash]/

    ERIC Educational Resources Information Center

    Bunta, Ferenc; Major, Roy C.

    2004-01-01

    This paper provides an Optimality Theoretic account of how Hungarian learners of English acquire /[epsilon]/ and /[ash]/. It is hypothesized that as the learners' pronunciation becomes more nativelike, L1 transfer substitutions will diminish; non-transfer substitutions will be especially prevalent in the intermediate stages, and that all learners…

  20. Epsilon metal waste form for immobilization of noble metals from used nuclear fuel

    NASA Astrophysics Data System (ADS)

    Crum, Jarrod V.; Strachan, Denis; Rohatgi, Aashish; Zumhoff, Mac

    2013-10-01

    Epsilon metal (ɛ-metal), an alloy of Mo, Pd, Rh, Ru, and Tc, is being developed as a waste form to treat and immobilize the undissolved solids and dissolved noble metals from aqueous reprocessing of commercial used nuclear fuel. Epsilon metal is an attractive waste form for several reasons: increased durability relative to borosilicate glass, it can be fabricated without additives (100% waste loading), and in addition it also benefits borosilicate glass waste loading by eliminating noble metals from the glass, thus the processing problems related to their insolubility in glass. This work focused on the processing aspects of the epsilon metal waste form development. Epsilon metal is comprised of refractory metals resulting in high alloying temperatures, expected to be 1500-2000 °C, making it a non-trivial phase to fabricate by traditional methods. Three commercially available advanced technologies were identified: spark-plasma sintering, microwave sintering, and hot isostatic pressing, and investigated as potential methods to fabricate this waste form. Results of these investigations are reported and compared in terms of bulk density, phase assemblage (X-ray diffraction and elemental analysis), and microstructure (scanning electron microscopy).

  1. The pharmacology of spontaneously open alpha 1 beta 3 epsilon GABA A receptor-ionophores.

    PubMed

    Maksay, Gábor; Thompson, Sally A; Wafford, Keith A

    2003-06-01

    Human alpha(1)beta(3) epsilon GABA(A) receptors were expressed in Xenopus oocytes and examined using the conventional two-electrode voltage-clamp technique and compared to alpha(1)beta(3)gamma(2) receptors. The effects of several GABA(A) agonists were studied, and the allosteric modulation of the channel by a number of GABAergic modulators investigated. The presence of the epsilon subunit increased the potency and efficacy of direct activation by partial GABA(A) agonists (piperidine-4-sulphonic acid and thio-4-PIOL), pentobarbital and neuro-steroids. Direct activation by 3-hydroxylated neurosteroids was restricted to 3alpha epimers, while chirality at C5 was indifferent. The 3beta-sulfate esters of pregnenolone and dehydroepiandrosterone inhibited the spontaneous currents with efficacies higher, while bicuculline methiodide and SR 95531 did so lower than picrotoxin and TBPS. Furosemide, fipronil, triphenylcyanoborate and Zn(2+) blocked the spontaneous currents of alpha(1)beta(3) epsilon receptors with different efficacies. Flunitrazepam and 4'-chlorodiazepam inhibited the spontaneous currents with micromolar potencies. In conclusion, spontaneously active alpha(1)beta(3) epsilon GABA(A) receptors can be potentiated and blocked by GABAergic agents within a broad range of efficacy.

  2. Phosphorescence maxima and triplet state lifetimes of NAD+ and epsilon-NAD+ in ternary complexes with horse liver alcohol dehydrogenase.

    PubMed

    Rousslang, K; Allen, L; Ross, J B

    1989-02-01

    This paper describes the phosphorescence emission and decay times of NAD+ and its fluorescent etheno derivative, epsilon-NAD+, in the pyrazole ternary complex with horse liver alcohol dehydrogenase (ADH). We show that the epsilon-NAD+ triplet state, as well as the tryptophan triplet state, can be utilized to monitor the coenzyme-enzyme interaction. The decays of NAD+ and AMP are single exponential, and the lifetimes are the same within experimental error. The phosphorescence lifetimes, evaluated as single exponentials, are slightly shorter in epsilon-NAD+ than they are in epsilon-AMP. Whereas the decay of epsilon-AMP was adequately fit by a single exponential with a time constant of very close to 0.5 s, it was necessary to fit the decay of epsilon-NAD+ to a double exponential. Ternary complexes with NAD+ excited at 297 nm exhibit decay kinetics nearly identical to those of ADH by itself. On the other hand, when excitation of the epsilon-NAD+ ternary complex is provided at 313 nm, where there is very little absorption by either tryptophan residue, the decay law of the ternary complex is similar to that of epsilon-NAD+ in solution. Our results demonstrate that NAD+ and epsilon-NAD+ quench tryptophan phosphorescence in ADH. Normalizing the phosphorescence intensity to the 0-0 vibronic band assigned to Trp-15 (blue-edge), we calculate a 21% decrease in the phosphorescence associated with Trp-314 at stoichiometric saturation of the coenzyme binding sites with NAD+ in the ternary complex. When the active sites are saturated with epsilon-NAD+, the relative phosphorescence due to Trp-314 decreases by 63%.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Phase Stability of Epsilon and Gamma HNIW (CL-20) at High-Pressure and Temperature

    NASA Astrophysics Data System (ADS)

    Gump, Jared

    2007-06-01

    Hexanitrohexaazaisowurtzitane (CL-20) is one of the few ingredients developed since World War II to be considered for transition to military use. Five polymorphs have been identified for CL-20 by FTIR measurements (α, β, γ, ɛ, and ζ). As CL-20 is transitioned into munitions it will become necessary to predict its response under conditions of detonation, for performance evaluation. Such predictive modeling requires a phase diagram and basic thermodynamic properties of the various phases at high pressure and temperature. Theoretical calculations have been performed for a variety of explosive ingredients including CL-20, but it was noted that no experimental measurements existed for comparison with the theoretical bulk modulus calculated for CL-20. Therefore, the phase stabilities of epsilon and gamma CL-20 at static high-pressure and temperature were investigated using synchrotron angle-dispersive x-ray diffraction experiments. The samples were compressed and heated using diamond anvil cells (DAC). Pressures and temperatures achieved were around 5GPa and 175^oC, respectively. No phase change (from the starting epsilon phase) was observed under hydrostatic compression up to 6.3 GPa at ambient temperature. Under ambient pressure the epsilon phase was determined to be stable to a temperature of 120^oC. When heating above 125^oC the gamma phase appeared and it remained stable until thermal decomposition occurred above 150^oC. The gamma phase exhibits a phase change upon compression at both ambient temperature and 140^oC. Pressure -- volume data for the epsilon and gamma phase at ambient temperature and the epsilon phase at 75^oC were fit to the Birch-Murnaghan formalism to obtain isothermal equations of state.

  4. Denitrification with epsilon-caprolactam by acclimated mixed culture and by pure culture of bacteria isolated from polyacrylonitrile fibre manufactured wastewater treatment system.

    PubMed

    Lee, C M; Wang, C C

    2004-01-01

    The aim of this study is to isolate denitrifying bacteria utilizing epsilon-caprolactam as the substrate, from a polyacrylonitrile fibre manufactured wastewater treatment system. The aim is also to compare the performance of PAN (polyacrylonitrile) mixed bacteria cultures acclimated to epsilon-caprolactam and isolated pure strain for treating different initial epsilon-caprolactam concentrations from synthetic wastewater under anoxic conditions. The result showed that the PAN mixed bacteria cultures acclimated to epsilon-caprolactam could utilize 1538.5 mg/l of epsilon-caprolactam as a substrate for denitrification. Sufficient time and about 2200 mg/l of nitrate were necessary for the complete epsilon-caprolactam removal. Paracoccus thiophilus was isolated from the polyacrylonitrile fibre manufactured wastewater treatment system and it could utilize 1722.5 mg/l of epsilon-caprolactam as a substrate for denitrification. About 3500 mg/l of nitrate was necessary for the complete removal of epsilon-caprolactam. When the initial epsilon-caprolactam concentration was below 784.3 mg/l, the removal efficiency of epsilon-caprolactam by Paracoccus thiophilus was better than that for the PAN mixed bacteria cultures. The growth of Paracoccus thiophilus was better. However, when the initial epsilon-caprolactam concentration was as high as 1445.8 mg/l, both the epsilon-caprolactam removal efficiency by Paracoccus thiophilus and Paracoccus thiophilus specific growth rate were similar to the PAN mixed bacteria cultures. PMID:15137443

  5. Distribution, phylogenetic diversity and physiological characteristics of epsilon-Proteobacteria in a deep-sea hydrothermal field.

    PubMed

    Nakagawa, Satoshi; Takai, Ken; Inagaki, Fumio; Hirayama, Hisako; Nunoura, Takuro; Horikoshi, Koki; Sako, Yoshihiko

    2005-10-01

    Epsilon-Proteobacteria is increasingly recognized as an ecologically significant group of bacteria, particularly in deep-sea hydrothermal environments. In this study, we studied the spatial distribution, diversity and physiological characteristics of the epsilon-Proteobacteria in various microbial habitats in the vicinity of a deep-sea hydrothermal vent occurring in the Iheya North field in the Mid-Okinawa Trough, by using culture-dependent and -independent approaches. The habitats studied were inside and outside hydrothermal plume, and annelid polychaete tubes. In addition, we deployed colonization devices near the vent emission. The polychaete tubes harboured physiologically and phylogenetically diverse microbial community. The in situ samplers were predominantly colonized by epsilon-Proteobacteria. Energy metabolism of epsilon-Proteobacteria isolates was highly versatile. Tree topology generated from the metabolic traits was significantly different (P = 0.000) from that of 16S rRNA tree, indicating current 16S rRNA gene-based analyses do not provide sufficient information to infer the physiological characteristics of epsilon-Proteobacteria. Nevertheless, culturability of epsilon-Proteobacteria in various microbial habitats differed among the phylogenetic subgroups. Members of Sulfurimonas were characterized by the robust culturability, and the other phylogenetic subgroups appeared to lose culturability in seawater, probably because of the sensitivity to oxygen. These results provide new insight into the ecophysiological characteristics of the deep-sea hydrothermal vent epsilon-Proteobacteria, which has never been assessed by comparative analysis of the 16S rRNA genes.

  6. Diacylglycerol kinase epsilon in bovine and rat photoreceptor cells. Light-dependent distribution in photoreceptor cells.

    PubMed

    Natalini, Paola M; Zulian, Sandra E; Ilincheta de Boschero, Mónica G; Giusto, Norma M

    2013-07-01

    The present study shows the selective light-dependent distribution of 1,2-diacylglycerol kinase epsilon (DAGKɛ) in photoreceptor cells from bovine and albino rat retina. Immunofluorescence microscopy in isolated rod outer segments from bleached bovine retinas (BBROS) revealed a higher DAGKɛ signal than that found in rod outer segments from dark-adapted bovine retinas (BDROS). The light-dependent outer segment localization of DAGKɛ was also observed by immunohistochemistry in retinas from albino rats. DAGK activity, measured in terms of phosphatidic acid formation from a) [(3)H]DAG and ATP in the presence of EGTA and R59022, a type I DAGK inhibitor, or b) [γ-(32)P]ATP and 1-stearoyl, 2-arachidonoylglycerol (SAG), was found to be significantly higher in BBROS than in BDROS. Higher light-dependent DAGK activity (condition b) was also found when ROS were isolated from dark-adapted rat retinas exposed to light. Western blot analysis of isolated ROS proteins from bovine and rat retinas confirmed that illumination increases DAGKɛ content in the outer segments of these two species. Light-dependent DAGKɛ localization in the outer segment was not observed when U73122, a phospholipase C inhibitor, was present prior to the exposure of rat eyecups (in situ model) to light. Furthermore, no increased PA synthesis from [(3)H]DAG and ATP was observed in the presence of neomycin prior to the exposure of bovine eyecups to light. Interestingly, when BBROS were pre-phosphorylated with ATP in the presence of 1,2-dioctanoyl sn-glycerol (di-C8) or phorbol dibutyrate (PDBu) as PKC activation conditions, higher DAGK activity was observed than in dephosphorylated controls. Taken together, our findings suggest that the selective distribution of DAGKɛ in photoreceptor cells is a light-dependent mechanism that promotes increased SAG removal and synthesis of 1-stearoyl, 2-arachidonoyl phosphatidic acid in the sensorial portion of this cell, thus demonstrating a novel mechanism of light

  7. Association of the apolipoprotein E {epsilon}4 allele with clinical subtypes of autopsy-confirmed Alzheimer`s Disease

    SciTech Connect

    Zubenko, G.S.; Stiffler, S.; Kopp, U.

    1994-09-15

    Consistent with previous reports, we observed a significant association of the APOE {epsilon}4 allele with Alzheimer`s Disease (AD) in a series of 91 autopsy-confirmed cases. The {epsilon}4 allele frequency was higher in cases with a family history of AD-like dementia (0.54 {+-} 0.07), although the {epsilon}4 allele frequency in the AD cases with a negative family history (0.38 {+-} 0.05) remained significantly greater than that for the non-AD control group (0.13 {+-} 0.03). A similar increase in {epsilon}4 allele frequency (0.54 {+-} 0.07) was observed in the AD cases with amyloid angiopathy, compared to those who did not have amyloid angiopathy (0.35 {+-} 0.04). Contrary to previous reports, no effect of the dosage of the {epsilon}4 allele was found on the age of onset of dementia among the AD cases and, contrary to reports suggesting an association of {epsilon}4 and atherosclerosis, the {epsilon}4 allele frequency was similar in cases with or without concurrent brain infarcts. Modest but consistent correlations were observed between the dosage of {epsilon}4 alleles and the cortical density of senile plaques, but not neurofibrillary tangles. The last finding suggests that the pathogenic events mediated by the {epsilon}4 allele may be more directly involved in the formation of senile plaques, the identifying lesions in AD, than neurofibrillary tangles. A robust association of both the presence of an {epsilon}4 allele and a family history of AD-like dementia with concurrent amyloid angiopathy occurred within our sample of AD cases. This association arose from an interaction of the {epsilon}4 allele with a separate familial factor for which a family history of dementia served as a surrogate. These results suggest that amyloid angiopathy may be a common or central feature of a form of familial AD that is associated with the transmission of the APOE {epsilon}4 allele. 22 refs., 2 figs., 5 tabs.

  8. T cell receptor complexes containing Fc epsilon RI gamma homodimers in lieu of CD3 zeta and CD3 eta components: a novel isoform expressed on large granular lymphocytes

    PubMed Central

    1992-01-01

    CD3 zeta and CD3 eta form disulfide-linked homo- or heterodimers important in targeting partially assembled Ti alpha-beta/CD3 gamma delta epsilon T cell receptor (TCR) complexes to the cell surface and transducing stimulatory signals after antigen recognition. Here we identify a new TCR isoform expressed on splenic CD2+, CD3/Ti alpha- beta+, CD4-, CD8-, CD16+, NK1.1+ mouse large granular lymphocytes (LGL), which are devoid of CD3 zeta and CD3 eta proteins. The TCRs of this subset contain homodimers of the gamma subunit of the high affinity receptor for IgE (Fc epsilon RI gamma) in lieu of CD3 zeta and/or CD3 eta proteins. The LGL display natural killer-like activity and are cytotoxic for B cell hybridomas producing anti-CD3 epsilon and anti-CD16 monoclonal antibodies, demonstrating the signaling capacity of both TCR and CD16 in this cell type. These findings provide evidence for an additional level of complexity of TCR signal transduction isoforms in naturally occurring T cell subsets. PMID:1530959

  9. Precipitation of proeutectoid cementite, pearlite, and epsilon-Cu in Fe-C-Cu alloys

    SciTech Connect

    Wasynczuk, J.A.

    1985-12-01

    Time-temperature-transformation diagrams showed that the kinetics of proeutectoid cementite precipitation were not significantly affected by copper. The morphology of the proeutectoid cementite was also substantially the same in both alloys. However, transmission electron microscopy revealed the presence of small epsilon-Cu precipitates within the proeutectoid cementite of the copper-containing steel. It was concluded that this precipitation of epsilon-Cu took place on the moving cementite:austenite interphase boundaries, and that the transport of copper to the precipitates was accomplished by boundary diffusion. The small influence of copper on the kinetics of proeutectoid cementite precipitation is explained in terms of diffusional growth theories, and the structure of the cementite:austenite interphase boundaries. Unlike the proeutectoid cementite reaction, copper did significantly retard the start of pearlite precipitation. 123 refs., 35 figs.

  10. Implementation of a kappa-epsilon turbulence model to RPLUS3D code

    NASA Technical Reports Server (NTRS)

    Chitsomboon, Tawit

    1992-01-01

    The RPLUS3D code has been developed at the NASA Lewis Research Center to support the National Aerospace Plane (NASP) project. The code has the ability to solve three dimensional flowfields with finite rate combustion of hydrogen and air. The combustion process of the hydrogen-air system are simulated by an 18 reaction path, 8 species chemical kinetic mechanism. The code uses a Lower-Upper (LU) decomposition numerical algorithm as its basis, making it a very efficient and robust code. Except for the Jacobian matrix for the implicit chemistry source terms, there is no inversion of a matrix even though a fully implicit numerical algorithm is used. A k-epsilon turbulence model has recently been incorporated into the code. Initial validations have been conducted for a flow over a flat plate. Results of the validation studies are shown. Some difficulties in implementing the k-epsilon equations to the code are also discussed.

  11. The Invisible Monster Has Two Faces: Observations of epsilon Aurigae with the Herschel Space Observatory

    NASA Astrophysics Data System (ADS)

    Hoard, D. W.; Ladjal, D.; Stencel, R. E.; Howell, S. B.

    2012-04-01

    We present Herschel Space Observatory photometric observations of the unique, long-period eclipsing binary star epsilon Aurigae. Its extended spectral energy distribution is consistent with our previously published cool (550 K) dust disk model. We also present an archival infrared spectral energy distribution of the side of the disk facing the bright F-type star in the binary, which is consistent with a warmer (1150 K) disk model. The lack of strong molecular emission features in the Herschel bands suggests that the disk has a low gas-to-dust ratio. The spectral energy distribution and Herschel images imply that the 250 GHz radio detection reported by Altenhoff et al. is likely contaminated by infrared-bright, extended background emission associated with a nearby nebular region and should be considered an upper limit to the true flux density of epsilon Aur.

  12. Infrared photometry of the 1982-4 eclipse of Epsilon Aurigae

    NASA Technical Reports Server (NTRS)

    Backman, D. E.

    1985-01-01

    The infrared photometry of epsilon Aur performed prior to and during the ingress phase of the recent eclipse allowed the first solid determination of the temperature of the secondary object. The eclipse depth was significantly less at lambda 5 micrometers than in the near-infrared. This is explained by a model of the secondary as an opaque and very cool object with a temperature of approx. 500 K. During eclipse, the secondary blocks approximately 45% of the near infrared radiation from the primary star. At the same time, the radiation from the secondary remains completely unobscured, resulting in a shallower light curve at longer wavelengths. This phenomenon is well known in the study of eclipsing binary stars; if the two stars have different colors, then the net color of the system changes during eclipse. In the case of epsilon Aur, the eclipsing object has a color deep in the infrared, so the effect is only noticeable there.

  13. EARLY IN SHORT DAYS 7 (ESD7) encodes the catalytic subunit of DNA polymerase epsilon and is required for flowering repression through a mechanism involving epigenetic gene silencing.

    PubMed

    del Olmo, Iván; López-González, Leticia; Martín-Trillo, Maria M; Martínez-Zapater, José M; Piñeiro, Manuel; Jarillo, Jose A

    2010-02-01

    We have characterized a mutation affecting the Arabidopsis EARLY IN SHORT DAYS 7 (ESD7) gene encoding the catalytic subunit of DNA polymerase epsilon (epsilon), AtPOL2a. The esd7-1 mutation causes early flowering independently of photoperiod, shortened inflorescence internodes and altered leaf and root development. esd7-1 is a hypomorphic allele whereas knockout alleles displayed an embryo-lethal phenotype. The esd7 early flowering phenotype requires functional FT and SOC1 proteins and might also be related to the misregulation of AG and AG-like gene expression found in esd7. Genes involved in the modulation of chromatin structural dynamics, such as LHP1/TFL2 and EBS, which negatively regulate FT expression, were found to interact genetically with ESD7. In fact a molecular interaction between the carboxy terminus of ESD7 and TFL2 was demonstrated in vitro. Besides, fas2 mutations suppressed the esd7 early flowering phenotype and ICU2 was found to interact with ESD7. Discrete regions of the chromatin of FT and AG loci were enriched in activating epigenetic marks in the esd7-1 mutant. We concluded that ESD7 might be participating in processes involved in chromatin-mediated cellular memory.

  14. Application of the k-epsilon-v(exp 2) model to multi-component airfoils

    NASA Technical Reports Server (NTRS)

    Iaccarino, G.; Durbin, P. A.

    1996-01-01

    Flow computations around two-element and three-element configurations are presented and compared to detailed experimental measurements. The k-epsilon-v(exp 2)(bar) model has been applied and the ability of the model to capture streamline curvature effects, wake-boundary layer confluence, and laminar/turbulent transition is discussed. The numerical results are compared to experimental datasets that include mean quantities (velocity and pressure coefficient) and turbulent quantities (Reynolds normal and shear stresses).

  15. Martian occultation of epsilon Gem as observed from the C. E. Kenneth Mees Observatory

    NASA Technical Reports Server (NTRS)

    French, R. G.; Goguen, J. D.; Duthie, J. G.

    1978-01-01

    Ground-based observations of the occultation of epsilon Gem by Mars on April 8, 1976 have been reduced to yield the scale height and temperature profiles of the Martian atmosphere for number densities between 10 to the 13th and 10 to the 15th per cu cm. The deduced variations in temperature are remarkably similar to the in situ measurements from the Viking landers.

  16. Sequence of the dog immunoglobulin alpha and epsilon constant region genes

    SciTech Connect

    Patel, M.; Selinger, D.; Mark, G.E.; Hollis, G.F.; Hickey, G.J.

    1995-03-01

    The immunoglobulin alpha (IGHAC) and epsilon (IGHEC) germline constant region genes were isolated from a dog liver genomic DNA library. Sequence analysis indicates that the dog IGHEC gene is encoded by four exons spread out over 1.7 kilobases (kb). The IGHAC sequence encompasses 1.5 kb and includes all three constant region coding exons. The complete exon/intron sequence of these genes is described. 28 refs., 2 figs., 2 tabs.

  17. Sulfur Metabolisms in Epsilon- and Gamma-Proteobacteria in Deep-Sea Hydrothermal Fields

    PubMed Central

    Yamamoto, Masahiro; Takai, Ken

    2011-01-01

    In deep-sea hydrothermal systems, super hot and reduced vent fluids from the subseafloor blend with cold and oxidized seawater. Very unique and dense ecosystems are formed within these environments. Many molecular ecological studies showed that chemoautotrophic epsilon- and gamma-Proteobacteria are predominant primary producers in both free-living and symbiotic microbial communities in global deep-sea hydrothermal fields. Inorganic sulfur compounds are important substrates for the energy conservative metabolic pathways in these microorganisms. Recent genomic and metagenomic analyses and biochemical studies have contributed to the understanding of potential sulfur metabolic pathways for these chemoautotrophs. Epsilon-Proteobacteria use sulfur compounds for both electron-donors and -acceptors. On the other hand, gamma-Proteobacteria utilize two different sulfur-oxidizing pathways. It is hypothesized that differences between the metabolic pathways used by these two predominant proteobacterial phyla are associated with different ecophysiological strategies; extending the energetically feasible habitats with versatile energy metabolisms in the epsilon-Proteobacteria and optimizing energy production rate and yield for relatively narrow habitable zones in the gamma-Proteobacteria. PMID:21960986

  18. Modeling of lipase catalyzed ring-opening polymerization of epsilon-caprolactone.

    PubMed

    Sivalingam, G; Madras, Giridhar

    2004-01-01

    Enzymatic ring-opening polymerization of epsilon-caprolactone by various lipases was investigated in toluene at various temperatures. The determination of molecular weight and structural identification was carried out with gel permeation chromatography and proton NMR, respectively. Among the various lipases employed, an immobilized lipase from Candida antartica B (Novozym 435) showed the highest catalytic activity. The polymerization of epsilon-caprolactone by Novozym 435 showed an optimal temperature of 65 degrees C and an optimum toluene content of 50/50 v/v of toluene and epsilon-caprolactone. As lipases can degrade polyesters, a maximum in the molecular weight with time was obtained due to the competition of ring opening polymerization and degradation by specific chain end scission. The optimum temperature, toluene content, and the variation of molecular weight with time are consistent with earlier observations. A comprehensive model based on continuous distribution kinetics was developed to model these phenomena. The model accounts for simultaneous polymerization, degradation and enzyme deactivation and provides a technique to determine the rate coefficients for these processes. The dependence of these rate coefficients with temperature and monomer concentration is also discussed. PMID:15003027

  19. The structure and ordering of {epsilon}-MnO{sub 2}

    SciTech Connect

    Kim, Chang-Hoon; Akase, Zentaro; Zhang Lichun; Heuer, Arthur H. . E-mail: heuer@case.edu; Newman, Aron E.; Hughes, Paula J.

    2006-03-15

    The presence of {epsilon}-MnO{sub 2} as a major component of electrolytic manganese dioxide (EMD) has been demonstrated by a combined X-ray diffraction/transmission electron microscopy (TEM) study. {epsilon}-MnO{sub 2} usually has a partially ordered defect NiAs structure containing 50% cation vacancies; these vacancies can be fully ordered by a low temperature (200 deg. C) heat treatment to form a pseudohexagonal but monoclinic superlattice. Numerous fine-scale anti-phase domain boundaries are present in ordered {epsilon}-MnO{sub 2} and cause extensive peak broadening and a massive shift of a very intense, 0.37 nm superlattice peak. This suggests a radically different explanation of the ubiquitous, very broad {approx}0.42 nm peak ({approx}21-22 deg. 2{theta}, CuK{alpha} radiation) in EMDs, which heretofore has been attributed to Ramsdellite containing numerous planar defects. This work confirms the multi-phase model of equiaxed EMDs proposed by Heuer et al. [ITE Lett. 1(6) (2000) B50; Proc. Seventh Int. Symp. Adv. Phys. Fields 92 (2001)], rather than the defective single-phase model of Chabre and Pannetier [Prog. Solid State Chem. 23 (1995) 1] and Bowden et al. [ITE Lett. 4(1) (2003) B1].

  20. Direct measurement of the alpha-epsilon transition stress and kinetics for shocked iron

    SciTech Connect

    Jensen, Brian J; Gray, Ill, George T; Hixson, Robert S

    2009-01-01

    Iron undergoes a polymorphic phase transformation from alpha phase (bcc) to the epsilon phase (hcp) when compressed to stresses exceeding 13 CPa. Bccause the epsilon phase is denser than the alpha phase, a single shock wave is unstable and breaks up into an elastic wave, a plastic wave, and a phase transition wave. Examination of this structured wave coupled with various phase transformation models has been used to indirectly examine the transition kinetics. Recently, multimillion atom simulations (molecular dynamics) have been used to examine the shock-induced transition in single crystal iron illustrating an orientation dependence of the transition stress, mechanisms, and kinetics. The objective of the current work was to perform plate impact experiments to examine the shock-response of polycrystalline and single crystal iron with nanosecond resolution for impact stresses spanning the {alpha} - {epsilon} transition. The current data reveal an orientation dependence of the transition stress coupled with a transition time that is nonlinearly dependent on the impact stress with a duration ranging from picoseconds to hundreds of nanoseconds. The higher transition stress for iron[100] is in agreement with the predictions from MD calculations that describe an orientation dependence of the transition stress. However, MD calculations do not capture the complexity of the continuum states achieved or the transition kinetics. Further results and implications are discussed in this paper.

  1. Modeling of lipase catalyzed ring-opening polymerization of epsilon-caprolactone.

    PubMed

    Sivalingam, G; Madras, Giridhar

    2004-01-01

    Enzymatic ring-opening polymerization of epsilon-caprolactone by various lipases was investigated in toluene at various temperatures. The determination of molecular weight and structural identification was carried out with gel permeation chromatography and proton NMR, respectively. Among the various lipases employed, an immobilized lipase from Candida antartica B (Novozym 435) showed the highest catalytic activity. The polymerization of epsilon-caprolactone by Novozym 435 showed an optimal temperature of 65 degrees C and an optimum toluene content of 50/50 v/v of toluene and epsilon-caprolactone. As lipases can degrade polyesters, a maximum in the molecular weight with time was obtained due to the competition of ring opening polymerization and degradation by specific chain end scission. The optimum temperature, toluene content, and the variation of molecular weight with time are consistent with earlier observations. A comprehensive model based on continuous distribution kinetics was developed to model these phenomena. The model accounts for simultaneous polymerization, degradation and enzyme deactivation and provides a technique to determine the rate coefficients for these processes. The dependence of these rate coefficients with temperature and monomer concentration is also discussed.

  2. Origin of the eccentricity gradient and the apse alignment of the epsilon ring of Uranus

    NASA Astrophysics Data System (ADS)

    Dermott, S. F.; Murray, C. D.

    1980-09-01

    The origin of the eccentricity gradient which gives rise to the marked variation in the width of the epsilon ring of Uranus and of the apse alignment of the eccentric epsilon ring is discussed. The geometry of the epsilon ring is considered, and it is shown that the observation that the width of the ring at any one point increases linearly with the radial distance of the point from the center of the planet places severe constraints on the apse alignment of the ring. The horseshoe orbit model proposed by Dermott et al. (1979, 1980) and the self-gravitation model of Goldreich and Tremaine (1979) intended to account for the precise apse alignment and the variation in width are examined, and deficiencies in these models are pointed out. A theory of apse alignment resulting from precessional pinch and the close packing of the particles at pericenter is proposed and used to predict the structure of the newly discovered narrow F ring of Saturn.

  3. Pyridoxal 5'-phosphate is a selective inhibitor in vivo of DNA polymerase alpha and epsilon.

    PubMed

    Mizushina, Yoshiyuki; Xu, Xianai; Matsubara, Kiminori; Murakami, Chikako; Kuriyama, Isoko; Oshige, Masahiko; Takemura, Masaharu; Kato, Norihisa; Yoshida, Hiromi; Sakaguchi, Kengo

    2003-12-26

    Vitamin B(6) compounds such as pyridoxal 5(')-phosphate (PLP), pyridoxal (PL), pyridoxine (PN), and pyridoxamine (PM), which reportedly have anti-angiogenic and anti-cancer effects, were thought to be inhibitors of some types of eukaryotic DNA polymerases. PL moderately inhibited only the activities of calf DNA polymerase alpha (pol alpha), while PN and PM had no inhibitory effects on any of the polymerases tested. On the other hand, PLP, a phosphated form of PL, was potentially a strong inhibitor of pol alpha and epsilon from phylogenetic-wide organisms including mammals, fish, insects, plants, and protists. PLP did not suppress the activities of prokaryotic DNA polymerases such as Escherichia coli DNA polymerase I and Taq DNA polymerase, or DNA-metabolic enzymes such as deoxyribonuclease I. For pol alpha and epsilon, PLP acted non-competitively with the DNA template-primer and competitively with the nucleotide substrate. Since PL was converted to PLP in vivo after being incorporated into human cancer cells, the anti-angiogenic and anti-cancer effects caused by PL must have been caused by the inhibition of pol alpha and epsilon activities after conversion to PLP.

  4. Implementation and Validation of the Chien k-epsilon Turbulence Model in the Wind Navier-Stokes Code

    NASA Technical Reports Server (NTRS)

    Yoder, Dennis A.; Georgiadis, Nicholas J.

    1999-01-01

    The two equation k-epsilon turbulence model of Chien has been implemented in the WIND Navier-Stokes flow solver. Details of the numerical solution algorithm, initialization procedure, and stability enhancements are described. Results obtained with this version of the model are compared with those from the Chien k-epsilon model in the NPARC Navier-Stokes code and from the WIND SST model for three validation cases: the incompressible flow over a smooth flat plate, the incompressible flow over a backward facing step, and the shock-induced flow separation inside a transonic diffuser. The k-epsilon model results indicate that the WIND model functions very similarly to that in NPARC, though the WIND code appears to he slightly more accurate in the treatment of the near-wall region. Comparisons of the k-epsilon model results with those from the SST model were less definitive, as each model exhibited strengths and weaknesses for each particular case.

  5. The elastic constants and related properties of the epsilon polymorph of the energetic material CL-20 determined by Brillouin scattering.

    PubMed

    Haycraft, James J

    2009-12-01

    The acoustic phonons of the epsilon polymorph of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazatetracyclo [5.5.0.0(5,9).0(3,11)] dodecane (epsilon-CL-20) have been studied using Brillouin scattering spectroscopy. Analysis of the acoustic phonon velocities allowed determination of the complete stiffness tensor for this energetic material. The results are compared to a theoretical determination of the epsilon-CL-20 elastic constants, bulk moduli, and shear moduli. The observed ordering of elastic constants, C(22)>C(33)>C(11), is noted to be different from other nitramine energetic materials. Finally, the elasticity of epsilon-CL-20 is compared to recently published reports on cyclotrimethylene trinitramine's (RDX) elasticity and the beta polymorph of cyclotetramethylene tetranitramine's (beta-HMX) elasticity. PMID:19968345

  6. Frequency of the apolipoprotein E epsilon 4 allele in a case-control study of early onset Parkinson's disease.

    PubMed Central

    Whitehead, A S; Bertrandy, S; Finnan, F; Butler, A; Smith, G D; Ben-Shlomo, Y

    1996-01-01

    OBJECTIVES: It has been suggested that Parkinson's disease and Alzheimer's disease may share a common or at least overlapping aetiology. The prevalence of dementia among cases of Parkinson's disease is known to be greater than expected in the general population. The frequency of the apolipoprotein epsilon 4 allele in a large case-control study of early onset Parkinson's disease has been examined. METHODS: 215 patients and 212 population based controls were recruited from the Republic of Ireland between 1992 and 1994. Cases had to have disease onset at 55 years or younger and be born after 1925. RESULTS: The frequency of the epsilon 4 allele was almost identical between cases of Parkinson's disease (14.6%) and healthy controls (13.3%). There was no relation between epsilon 4 status and disease onset, disease duration, Hoehn and Yahr score, and disease progression. The frequency of the epsilon 4 allele was not increased among 10 patients with Parkinson's disease with dementia (10.0%) compared with the other patients without dementia (14.8%). There was no association between epsilon 4 allele status and either a history of smoking, family history of dementia, or Parkinson's disease, or being born in a rural area. The odds ratio for the ApoE epsilon 4 allele associated with Parkinson's disease was 1.10 (95% confidence interval (95% CI) 0.68-1.79), adjusting for age group, sex, and residential status. The pooled odds ratio from a meta-analysis of six studies of ApoE epsilon 4 status and Parkinson's disease was 0.94 (95% CI 0.69-1.27). CONCLUSIONS: The results from our study as well as the pooled meta-analysis exclude any important role for ApoE epsilon 4 status in the development of Parkinson's disease. Our results similarly do not support its role either in dementia associated with Parkinson's disease or disease prognosis. PMID:8890771

  7. A quantitative model of the generation of N(epsilon)-(carboxymethyl)lysine in the Maillard reaction between collagen and glucose.

    PubMed Central

    Ferreira, António E N; Ponces Freire, Ana M J; Voit, Eberhard O

    2003-01-01

    The Maillard reaction between reducing sugars and amino groups of biomolecules generates complex structures known as AGEs (advanced glycation endproducts). These have been linked to protein modifications found during aging, diabetes and various amyloidoses. To investigate the contribution of alternative routes to the formation of AGEs, we developed a mathematical model that describes the generation of CML [ N(epsilon)-(carboxymethyl)lysine] in the Maillard reaction between glucose and collagen. Parameter values were obtained by fitting published data from kinetic experiments of Amadori compound decomposition and glycoxidation of collagen by glucose. These raw parameter values were subsequently fine-tuned with adjustment factors that were deduced from dynamic experiments taking into account the glucose and phosphate buffer concentrations. The fine-tuned model was used to assess the relative contributions of the reaction between glyoxal and lysine, the Namiki pathway, and Amadori compound degradation to the generation of CML. The model suggests that the glyoxal route dominates, except at low phosphate and high glucose concentrations. The contribution of Amadori oxidation is generally the least significant at low glucose concentrations. Simulations of the inhibition of CML generation by aminoguanidine show that this compound effectively blocks the glyoxal route at low glucose concentrations (5 mM). Model results are compared with literature estimates of the contributions to CML generation by the three pathways. The significance of the dominance of the glyoxal route is discussed in the context of possible natural defensive mechanisms and pharmacological interventions with the goal of inhibiting the Maillard reaction in vivo. PMID:12911334

  8. A 10-bp deletion in the apolipoprotein {epsilon} gene causing apolipoprotein E deficiency and severe type III hyperlipoproteinemia

    SciTech Connect

    Feussner, G.; Dobmeyer, J.

    1996-02-01

    Type III hyperlipoproteinemia (HLP) is usually associated with homozygosity for apolipoprotein (apo) E2. We identified a 30-year-old male German of Hungarian ancestry with severe type III HLP and apo E deficiency. The disease was expressed in an extreme phenotype with multiple cutaneous xanthomas. Apo E was detectable only in trace amounts in plasma but not in the different lipoprotein fractions. Direct sequencing of PCR-amplified segments of the apo {epsilon} gene identified a 10-bp deletion in exon 4 (bp 4037-4046 coding for amino acids 209-212 of the mature protein). The mutation is predictive for a reading frameshift introducing a premature stop codon (TGA) at amino acid 229. By western blot analysis, we found small amounts of a truncated apo E in the patient`s plasma. Family analysis revealed that the proband was homozygous - and 10 of 24 relatives were heterozygous - for the mutation. Heterozygotes had, as compared to unaffected family members, significantly higher triglycerides (TG), very low-density lipoprotein (VLDL) cholesterol and a significantly higher VLDL cholesterol-to-serum TG ratio, which is indicative of a delayed remnant catabolism. We propose that the absence of a functionally active apo E is the cause of the severe type III HLP in the patient and that the mutation, even in a single dose in heterozygotes, predisposes in variable severity to the phenotypic expression of the disease. 37 refs., 8 figs., 2 tab.

  9. Identification of genetic variations associated with epsilon-poly-lysine biosynthesis in Streptomyces albulus ZPM by genome sequencing

    PubMed Central

    Wang, Lin; Gao, Chunhui; Tang, Nan; Hu, Songnian; Wu, Qingfa

    2015-01-01

    The biosynthesis of the antibiotic epsilon-poly-lysine (ε-PL) in Streptomyces albulus is performed by polylysine synthase (pls); however, the regulatory mechanism of this process is still unknown. Here, we first obtained the complete genome sequence of S. albulus ZPM, which consists of 9,784,577 bp and has a GC content of 72.2%. The genome houses 44 gene clusters for secondary metabolite biosynthesis, in which 20 gene clusters are involved in the biosynthesis of polyketides and nonribosomally synthesized peptides. High-throughput sequencing was further performed, and genetic variants were identified from pooled libraries consisting of the 30 highest-yield mutants or 30 lowest-yield mutants. More than 350 genetic variants associated with ε-PL yield have been identified. One hundred sixty-two affected proteins, from important metabolic enzymes to novel transcriptional regulators, were identified as being related to ε-PL synthesis. HrdD, one of the affected genes, is a sigma factor that shows the most sensitive response to pH change and contains a non-synonymous mutation (A132V) in mutant strains with lower ε-PL yields. Electrophoretic mobility shift assays showed that the pls gene is likely regulated by transcriptional activator HrdD. The data obtained in this study will facilitate future studies on ε-PL yield improvement and industrial bioprocess optimization. PMID:25776564

  10. The maize chloroplast genes for the beta and epsilon subunits of the photosynthetic coupling factor CF1 are fused.

    PubMed Central

    Krebbers, E T; Larrinua, I M; McIntosh, L; Bogorad, L

    1982-01-01

    We have cloned and sequenced the maize chloroplast genome fragment Eco RI e which contains the 2.2 kb transcript previously reported (Link, G. and Bogorad, L. (1980) Proc. Nat. Acad. Sci. 77 6821-6825) to lie next to the maize gene for the large subunit of ribulose bisphosphate carboxylase (LS) and to be transcribed divergently. Immunochemical and sequencing data show that the gene codes for the beta subunit of the maize chloroplast coupling factor complex (CF1). The derived amino acid sequence is highly homologous to that of the corresponding E. coli protein (Saraste et al. (1981) Nucleic Acids Res. 9 5287-5296). The last base of the codon for the terminal lysine residue of the beta subunit of CF1 is the first base of the codon for the initiating methionine of an open reading frame whose derived amino acid composition and size closely match that reported for the epsilon subunit (Binder et al. (1978) J. Biol. Chem. 253 3094-3100). The close coupling of the two genes may serve to in sure their stoichiometric production. Images PMID:6290998

  11. Role of diacylglycerol-regulated protein kinase C isotypes in growth factor activation of the Raf-1 protein kinase.

    PubMed

    Cai, H; Smola, U; Wixler, V; Eisenmann-Tappe, I; Diaz-Meco, M T; Moscat, J; Rapp, U; Cooper, G M

    1997-02-01

    The Raf protein kinases function downstream of Ras guanine nucleotide-binding proteins to transduce intracellular signals from growth factor receptors. Interaction with Ras recruits Raf to the plasma membrane, but the subsequent mechanism of Raf activation has not been established. Previous studies implicated hydrolysis of phosphatidylcholine (PC) in Raf activation; therefore, we investigated the role of the epsilon isotype of protein kinase C (PKC), which is stimulated by PC-derived diacylglycerol, as a Raf activator. A dominant negative mutant of PKC epsilon inhibited both proliferation of NIH 3T3 cells and activation of Raf in COS cells. Conversely, overexpression of active PKC epsilon stimulated Raf kinase activity in COS cells and overcame the inhibitory effects of dominant negative Ras in NIH 3T3 cells. PKC epsilon also stimulated Raf kinase in baculovirus-infected Spodoptera frugiperda Sf9 cells and was able to directly activate Raf in vitro. Consistent with its previously reported activity as a Raf activator in vitro, PKC alpha functioned similarly to PKC epsilon in both NIH 3T3 and COS cell assays. In addition, constitutively active mutants of both PKC alpha and PKC epsilon overcame the inhibitory effects of dominant negative mutants of the other PKC isotype, indicating that these diacylglycerol-regulated PKCs function as redundant activators of Raf-1 in vivo.

  12. Molecular cloning and expression of epsilon toxin from Clostridium perfringens type D and tests of animal immunization.

    PubMed

    Souza, A M; Reis, J K P; Assis, R A; Horta, C C; Siqueira, F F; Facchin, S; Alvarenga, E R; Castro, C S; Salvarani, F M; Silva, R O S; Pires, P S; Contigli, C; Lobato, F C F; Kalapothakis, E

    2010-02-18

    Epsilon toxin produced by Clostridium perfringens types B and D causes enterotoxemia in sheep, goats and calves. Enterotoxemia can cause acute or superacute disease, with sudden death of the affected animal. It provokes huge economic losses when large numbers of livestock are affected. Therapeutic intervention is challenging, because the disease progresses very rapidly. However, it can be prevented by immunization with specific immunogenic vaccines. We cloned the etx gene, encoding epsilon toxin, into vector pET-11a; recombinant epsilon toxin (rec-epsilon) was expressed in inclusion bodies and was used for animal immunization. Serum protection was evaluated and cross-serum neutralization tests were used to characterize the recombinant toxin. To analyze the potency of the toxin (as an antigen), rabbits were immunized with 50, 100 or 200 microg recombinant toxin, using aluminum hydroxide gel as an adjuvant. Titers of 10, 30 and 40 IU/mL were obtained, respectively. These titers were higher than the minimum level required by the European Pharmacopoeia (5 IU/mL) and by the USA Code of Federal Regulation (2 IU/mL). This rec-epsilon is a good candidate for vaccine production against enterotoxemia caused by epsilon toxin of C. perfringens type D.

  13. Bioremediation of epsilon-caprolactam from nylon-6 waste water by use of Pseudomonas aeruginosa MCM B-407.

    PubMed

    Kulkarni, R S; Kanekar, P P

    1998-09-01

    Nylon-6, a man-made polymer that finds its application in the manufacture of car tires, ropes, fabrics, automobile parts etc., is manufactured with epsilon-caprolactam. Waste water generated during production of nylon-6 contains the unreacted monomer. Owing to the polluting and toxic nature of epsilon-caprolactam, its removal from waste streams is necessary. Pseudomonas aeruginosa MCM B-407 was isolated from activated sludge used to treat waste from a factory producing nylon-6. This organism was able to remove epsilon-caprolactam with simultaneous reduction in chemical oxygen demand (COD). The degradation of epsilon-caprolactam in waste water was found to be optimal over a wide range of pH from 5.0 to 9.0, temperature of 30 degrees C, and under shake or aerated conditions, with an inoculum density of 10(5) cells/ml and with an incubation period of 24 - 48 h. Thus, Pseudomonas aeruginosa MCM B-407 isolated from the activated sludge exposed to epsilon-caprolactam may play an important role in the bioremediation of epsilon-caprolactam from the waste waters of industries manufacturing nylon-6.

  14. Initial Evaluation of Processing Methods for an Epsilon Metal Waste Form

    SciTech Connect

    Crum, Jarrod V.; Strachan, Denis M.; Zumhoff, Mac R.

    2012-06-11

    During irradiation of nuclear fuel in a reactor, the five metals, Mo, Pd, Rh, Ru, and Tc, migrate to the fuel grain boundaries and form small metal particles of an alloy known as epsilon metal ({var_epsilon}-metal). When the fuel is dissolved in a reprocessing plant, these metal particles remain behind with a residue - the undissolved solids (UDS). Some of these same metals that comprise this alloy that have not formed the alloy are dissolved into the aqueous stream. These metals limit the waste loading for a borosilicate glass that is being developed for the reprocessing wastes. Epsilon metal is being developed as a waste form for the noble metals from a number of waste streams in the aqueous reprocessing of used nuclear fuel (UNF) - (1) the {var_epsilon}-metal from the UDS, (2) soluble Tc (ion-exchanged), and (3) soluble noble metals (TRUEX raffinate). Separate immobilization of these metals has benefits other than allowing an increase in the glass waste loading. These materials are quite resistant to dissolution (corrosion) as evidenced by the fact that they survive the chemically aggressive conditions in the fuel dissolver. Remnants of {var_epsilon}-metal particles have survived in the geologically natural reactors found in Gabon, Africa, indicating that they have sufficient durability to survive for {approx} 2.5 billion years in a reducing geologic environment. Additionally, the {var_epsilon}-metal can be made without additives and incorporate sufficient foreign material (oxides) that are also present in the UDS. Although {var_epsilon}-metal is found in fuel and Gabon as small particles ({approx}10 {micro}m in diameter) and has survived intact, an ideal waste form is one in which the surface area is minimized. Therefore, the main effort in developing {var_epsilon}-metal as a waste form is to develop a process to consolidate the particles into a monolith. Individually, these metals have high melting points (2617 C for Mo to 1552 C for Pd) and the alloy is

  15. Novel role for cyclin-dependent kinase 2 in neuregulin-induced acetylcholine receptor epsilon subunit expression in differentiated myotubes.

    PubMed

    Lu, Gang; Seta, Karen A; Millhorn, David E

    2005-06-10

    Cyclin-dependent kinases (CDKs) are a family of evolutionarily conserved serine/threonine kinases. CDK2 acts as a checkpoint for the G(1)/S transition in the cell cycle. Despite a down-regulation of CDK2 activity in postmitotic cells, many cell types, including muscle cells, maintain abundant levels of CDK2 protein. This led us to hypothesize that CDK2 may have a function in postmitotic cells. We show here for the first time that CDK2 can be activated by neuregulin (NRG) in differentiated C2C12 myotubes. In addition, this activity is required for expression of the acetylcholine receptor (AChR) epsilon subunit. The switch from the fetal AChRgamma subunit to the adult-type AChRepsilon is required for synapse maturation and the neuromuscular junction. Inhibition of CDK2 activity with either the specific CDK2 inhibitory peptide Tat-LFG or by RNA interference abolished neuregulin-induced AChRepsilon expression. Neuregulin-induced activation of CDK2 also depended on the ErbB receptor, MAPK, and PI3K, all of which have previously been shown to be required for AChRepsilon expression. Neuregulin regulated CDK2 activity through coordinating phosphorylation of CDK2 on Thr-160, accumulation of CDK2 in the nucleus, and down-regulation of the CDK2 inhibitory protein p27 in the nucleus. In addition, we also observed a novel mechanism of regulation of CDK2 activity by a low molecular weight variant of cyclin E in response to NRG. These findings establish CDK2 as an intermediate molecule that integrates NRG-activated signals from both the MAPK and PI3K pathways to AChRepsilon expression and reveal an undiscovered physiological role for CDK2 in postmitotic cells. PMID:15824106

  16. Binary star systems with asymmetrically heated disks: Thermal phase curves for the disk in epsilon Aurigae

    NASA Astrophysics Data System (ADS)

    Pearson, Richard L., III

    Epsilon Aurigae is a long-period eclipsing binary that contains a warm F-star (~7750 K) and a circumstellar disk enshrouding a hidden companion, likely to be a hot B-star (≥15,000 K). The eclipse itself lasts just over two years---thanks, in part, to the size of the disk---and occurs every 27.1-years. Its evolutionary status is still debated, along with the true nature of each stellar component, due to the high uncertainty in its parallax. The disk is similarly debated from the near absence of solid state infrared spectral features indicating its composition, particle size distribution, and density. An investigation of a wide parameter space by means of analytic, Monte Carlo radiative transfer (MCRT), and thermal inertia-dependent methods are presented here in order to minimize the current parameter space. The first MCRT models including all of the epsilon Aurigae components (F-star, B-star, and disk) are included here. Additional parameter constraints are found by melding MCRT outputs (e.g. dust temperatures) with a thermal inertia-based extrapolation. The so-called MCRT-TI models investigate the effects of various parameters on the disk-edge temperatures; these include two distances, three particle size distributions, three compositions, and two disk masses, resulting in thirty-six independent models. Adding in the MCRT temperatures as possible solutions doubles the number of models to seventy-two. Additionally, infrared observations at 7 epochs, spanning nearly 1/3 of the orbit of epsilon Aurigae, are evaluated in order to extract phase-dependent disk temperatures. The resulting temperatures create a thermal phase curve, or TPC, for the system. The TPC correlates the observed disk temperature with orbital phase or date of observation. Then, the best-case MCRT and MCRT-TI models are compared against two different mid-eclipse temperatures. If one considers the evolutionary constraints on the models---where a smaller distance denotes an older system with a disk

  17. Wall functions for the kappa-epsilon turbulence model in generalized nonorthogonal curvilinear coordinates

    NASA Astrophysics Data System (ADS)

    Sondak, D. L.; Pletcher, R. H.; Vandalsem, W. R.

    1992-05-01

    A k-epsilon turbulence model suitable for compressible flow, including the new wall function formulation, has been incorporated into an existing compressible Reynolds-averaged Navier-Stokes code, F3D. The low Reynolds number k-epsilon model of Chien (1982) was added for comparison with the present method. A number of features were added to the F3D code including improved far-field boundary conditions and viscous terms in the streamwise direction. A series of computations of increasing complexity was run to test the effectiveness of the new formulation. Flow over a flat plate was computed by using both orthogonal and nonorthogonal grids, and the friction coefficients and velocity profiles compared with a semi-empirical equation. Flow over a body of revolution at zero angle of attack was then computed to test the method's ability to handle flow over a curved surface. Friction coefficients and velocity profiles were compared to test data. All models gave good results on a relatively fine grid, but only the wall function formulation was effective with coarser grids. Finally, in order to demonstrate the method's ability to handle complex flow fields, separated flow over a prolate spheroid at angle of attack was computed, and results were compared to test data. The results were also compared to a k-epsilon model by Kim and Patel (1991), in which one equation model patched in at the wall was employed. Both models gave reasonable solutions, but improvement is required for accurate prediction of friction coefficients in the separated regions.

  18. Wall functions for the kappa-epsilon turbulence model in generalized nonorthogonal curvilinear coordinates. Final Report

    SciTech Connect

    Sondak, D.L.; Pletcher, R.H.; Vandalsem, W.R.

    1992-05-01

    A k-epsilon turbulence model suitable for compressible flow, including the new wall function formulation, has been incorporated into an existing compressible Reynolds-averaged Navier-Stokes code, F3D. The low Reynolds number k-epsilon model of Chien (1982) was added for comparison with the present method. A number of features were added to the F3D code including improved far-field boundary conditions and viscous terms in the streamwise direction. A series of computations of increasing complexity was run to test the effectiveness of the new formulation. Flow over a flat plate was computed by using both orthogonal and nonorthogonal grids, and the friction coefficients and velocity profiles compared with a semi-empirical equation. Flow over a body of revolution at zero angle of attack was then computed to test the method's ability to handle flow over a curved surface. Friction coefficients and velocity profiles were compared to test data. All models gave good results on a relatively fine grid, but only the wall function formulation was effective with coarser grids. Finally, in order to demonstrate the method's ability to handle complex flow fields, separated flow over a prolate spheroid at angle of attack was computed, and results were compared to test data. The results were also compared to a k-epsilon model by Kim and Patel (1991), in which one equation model patched in at the wall was employed. Both models gave reasonable solutions, but improvement is required for accurate prediction of friction coefficients in the separated regions.

  19. Wall functions for the kappa-epsilon turbulence model in generalized nonorthogonal curvilinear coordinates

    NASA Technical Reports Server (NTRS)

    Sondak, D. L.; Pletcher, R. H.; Vandalsem, W. R.

    1992-01-01

    A k-epsilon turbulence model suitable for compressible flow, including the new wall function formulation, has been incorporated into an existing compressible Reynolds-averaged Navier-Stokes code, F3D. The low Reynolds number k-epsilon model of Chien (1982) was added for comparison with the present method. A number of features were added to the F3D code including improved far-field boundary conditions and viscous terms in the streamwise direction. A series of computations of increasing complexity was run to test the effectiveness of the new formulation. Flow over a flat plate was computed by using both orthogonal and nonorthogonal grids, and the friction coefficients and velocity profiles compared with a semi-empirical equation. Flow over a body of revolution at zero angle of attack was then computed to test the method's ability to handle flow over a curved surface. Friction coefficients and velocity profiles were compared to test data. All models gave good results on a relatively fine grid, but only the wall function formulation was effective with coarser grids. Finally, in order to demonstrate the method's ability to handle complex flow fields, separated flow over a prolate spheroid at angle of attack was computed, and results were compared to test data. The results were also compared to a k-epsilon model by Kim and Patel (1991), in which one equation model patched in at the wall was employed. Both models gave reasonable solutions, but improvement is required for accurate prediction of friction coefficients in the separated regions.

  20. The apolipoprotein epsilon4 allele confers additional risk in children with familial hypercholesterolemia.

    PubMed

    Wiegman, Albert; Sijbrands, Eric J G; Rodenburg, Jessica; Defesche, Joep C; de Jongh, Saskia; Bakker, Henk D; Kastelein, John J P

    2003-06-01

    Children with familial hypercholesterolemia (FH) exhibit substantial variance of LDL cholesterol. In previous studies, family members of children with FH were included, which may have influenced results. To avoid such bias, we studied phenotype in 450 unrelated children with FH and in 154 affected sib-pairs. In known families with classical FH, diagnosis was based on plasma LDL cholesterol above the age- and gender-specific 95th percentile. Girls had 0.47 +/- 0.15 mmol/L higher LDL cholesterol, compared with boys (p = 0.002). Also in girls, HDL cholesterol increased by 0.07 +/- 0.03 mmol/L per 5 y (pfor trend = 0.005); this age effect was not observed in boys. The distribution of apolipoprotein (apo) E genotypes was not significantly different between probands, their paired affected siblings, or a Dutch control population. Carriers with or without one epsilon4 allele had similar LDL and HDL cholesterol levels. Within the affected sib-pairs, the epsilon4 allele explained 72.4% of the variance of HDL cholesterol levels (-0.15 mmol/L, 95% confidence interval -0.24 to -0.05, p = 0.003). The effect of apoE4 on HDL cholesterol differed with an analysis based on probands or on affected sib-pairs. The affected sib-pair model used adjustment for shared environment, type of LDL receptor gene mutation, and a proportion of additional genetic factors and may, therefore, be more accurate in estimating effects of risk factors on complex traits. We conclude that the epsilon4 allele was associated with lower HDL cholesterol levels in an affected sib-pair analysis, which strongly suggests that apoE4 influences HDL cholesterol levels in FH children. Moreover, the strong association suggests that apoE4 carries an additional disadvantage for FH children. PMID:12646733

  1. EUVE spectroscopy of epsilon Canis Majoris (B2 II) from 70 to 730 A

    NASA Technical Reports Server (NTRS)

    Cassinelli, J. P.; Cohen, D. H.; Macfarlane, J. J.; Drew, J. E.; Lynas-Gray, A. E.; Hoare, M. G.; Vallerga, J. V.; Welsh, B. Y.; Vedder, P. W.; Hubeny, I.

    1995-01-01

    We present spectra of the brightest stellar source of extreme ultraviolet (EUV) radiation longward of 400 A, the B2 II star, epsilon CMa. These data were taken with the three spectrometers aboard the NASA Extreme Ultraviolet Explorer satellite (EUVE) during the first cycle of pointed observations. We report on our initial studies of the continuum and line spectrum of the stellar photosphere in the 320 to 730 A region, and on the wind emission lines observed in the 170-375 A region. This is the first EUV spectrum of an early-type star, and thus makes epsilon CMa the most comprehensively observed B star from the X-ray to infrared regimes. The radiation in both the H Lyman continuum and He I continuum (shortward of 504 A) are found to be significantly greater than predicted by both Local Thermodynamic Equilibrium (LTE) and non-LTE model atmospheres. Since epsilon CMa also exhibits a mid-infrared excess, this points to the outer layers being warmer than the models indicate. The anomalously large Lyman continuum flux, combined with the very low column density measured in the direction toward this star implies that it is the dominant source of hydrogen ionization of the local interstellar medium in the immediate vicinity of the sun. All of the lines predicted to be strong from model atmospheres are present and several wind absorption features are also identified. We have detected emission lines from highly ionized iron that are consistent with the ROSAT Position Sensitive Proportional Counter (PSPC) observations if a multi-temperature emission model is used, and the assumption is made that there is significant absorption beyond that of the neutral phase of the ISM. The spectrum shows strong O III 374 A line emission produced by the Bowen flourescence mechanism, which has not previously been observed in the spectra of hot stars.

  2. Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films

    SciTech Connect

    Luk, Ting S. Liu, Sheng; Campione, Salvatore; Ceglia, Domenico de; Vincenti, Maria A.; Keeler, Gordon A.; Sinclair, Michael B.; Prasankumar, Rohit P.; Scalora, Michael

    2015-04-13

    We experimentally demonstrate efficient third harmonic generation from an indium tin oxide nanofilm (λ/42 thick) on a glass substrate for a pump wavelength of 1.4 μm. A conversion efficiency of 3.3 × 10{sup −6} is achieved by exploiting the field enhancement properties of the epsilon-near-zero mode with an enhancement factor of 200. This nanoscale frequency conversion method is applicable to other plasmonic materials and reststrahlen materials in proximity of the longitudinal optical phonon frequencies.

  3. Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films

    SciTech Connect

    Luk, Ting S.; De Ceglia, Domenico; Liu, Sheng; Keeler, Gordon Arthur; Prasankumar, Rohit; Los Alamos National Lab. , Los Alamos, NM ; Vincenti, Maria A; Scalora, Michael; Sinclair, Michael B.; campione, salvatore

    2015-04-13

    We demonstrate, through our experimentation, efficient third harmonic generation from an indium tin oxide nanofilm (λ/42 thick) on a glass substrate for a pump wavelength of 1.4 μm. A conversion efficiency of 3.3 × 10-6 is achieved by exploiting the field enhancement properties of the epsilon-near-zero mode with an enhancement factor of 200. Furthermore, this nanoscale frequency conversion method is applicable to other plasmonic materials and reststrahlen materials in proximity of the longitudinal optical phonon frequencies.

  4. Goos-Hänchen shift of partially coherent light fields in epsilon-near-zero metamaterials.

    PubMed

    Ziauddin; Chuang, You-Lin; Qamar, Sajid; Lee, Ray-Kuang

    2016-05-23

    The Goos-Hänchen (GH) shifts in the reflected light are investigated both for p and s polarized partial coherent light beams incident on epsilon-near-zero (ENZ) metamaterials. In contrary to the coherent counterparts, the magnitude of GH shift becomes non-zero for p polarized partial coherent light beam; while GH shift can be relatively large with a small degree of spatial coherence for s polarized partial coherent beam. Dependence on the beam width and the permittivity of ENZ metamaterials is also revealed for partial coherent light fields. Our results on the GH shifts provide a direction on the applications for partial coherent light sources in ENZ metamaterials.

  5. Magneto-optical characteristics of layered Epsilon-Near-Zero metamaterials

    NASA Astrophysics Data System (ADS)

    Abdi-Ghaleh, Reza; Suldozi, Reza

    2016-09-01

    The transmittance magneto-optical (MO) characteristics of Epsilon-Near-Zero (ENZ) metamaterials are studied, using 4 by 4 transfer matrix method. The considered structures are a free standing ENZ-MO slab, and a microcavity type multi-layer structure containing an ENZ-MO layer. The transmittance coefficients of the right- and left-handed circular polarizations for the slab are analytically obtained and numerically investigated. Furthermore, these characteristics are numerically studied for the multi-layer structure. In addition, the Faraday rotations of both structures are investigated. The results reveal the circular polarization filtering effects.

  6. Optical photometry of the 1982-1984 eclipse of Epsilon Aurigae

    NASA Technical Reports Server (NTRS)

    Hopkins, J. L.

    1985-01-01

    From slightly before the 1982-1984 eclipse of Epsilon Aurigae to the present observers from around the world have been making photoelectric photometry observations of this star system. Over 2000 UBV observations have been reported as well as observations in the R, I, J, H, K, L, M, N, and Q bandpasses plus the y, b, v, and u bandpasses. Twenty nine observers from 9 countries submitted photometry data to the campaign. The data have shown many interesting features of the star system including a Cepheid-like pulsation, flare activity, mid-eclipse brightening, post egress brightening, plus other strange activity.

  7. Wall functions for the kappa-epsilon turbulence model in generalized nonorthogonal curvilinear coordinates

    NASA Astrophysics Data System (ADS)

    Sondak, Douglas L.

    1992-09-01

    Wall functions are often employed to model turbulent flow near solid walls. A method has not been available, however, for the application of wall functions to generalized curvilinear coordinate systems, particularly those with nonorthogonal grids. A general method for this application is developed herein. A kappa-epsilon turbulence model suitable for compressible flow, including the new wall function formulation, was incorporated into an existing compressible Reynolds-averaged Navier-Stokes code, F3D. The low-Reynolds-number kappa-epsilon model of Chien (1982) was added for comparison with the present method. A number of features were also added to F3D, including improved far-field boundary conditions and viscous terms in the streamwise direction. A series of computations of increasing complexity was run to test the effectiveness of the new formulation. Flow over a flat plate was computed using both orthogonal and nonorthogonal grids, and the friction coefficients and velocity profiles were compared with a semi-empirical equation. Flow over a body of revolution at zero angle of attack was then computed to test the method's ability to handle flow over a curved surface. Friction coefficients and velocity profiles were compared to test data. The same case was also computed using the Chien (1982) low-Reynolds-number kappa-epsilon model and the Baldwin-Lomax (1978) algebraic model for comparison. All three models gave good results on a relatively fine grid, but only the wall function formulation was effective with coarser grids. Finally, in order to demonstrate the method's ability to handle complex flow fields, separated flow over a prolate spheroid at angle of attack was computed, and results were compared to test data. The results were also compared to the computation of Kim and Patel (1991), in which a kappa-epsilon model with a one-equation model patched in at the wall was employed. Both models gave reasonable solutions, but they require improvement for accurate

  8. CONFIRMING FUNDAMENTAL PROPERTIES OF THE EXOPLANET HOST STAR {epsilon} ERIDANI USING THE NAVY OPTICAL INTERFEROMETER

    SciTech Connect

    Baines, Ellyn K.; Armstrong, J. Thomas E-mail: tarmstr@crater.nrl.navy.mil

    2012-01-10

    We measured the angular diameter of the exoplanet host star {epsilon} Eridani using the Navy Optical Interferometer. We determined its physical radius, effective temperature, and mass by combining our measurement with the star's parallax, photometry from the literature, and the Yonsei-Yale isochrones, respectively. We used the resulting stellar mass of 0.82 {+-} 0.05 M{sub Sun} plus the mass function from Benedict et al. to calculate the planet's mass, which is 1.53 {+-} 0.22 M{sub Jupiter}. Using our new effective temperature, we also estimated the extent of the habitable zone for the system.

  9. Goos-Hänchen shift of partially coherent light fields in epsilon-near-zero metamaterials

    NASA Astrophysics Data System (ADS)

    Ziauddin; Chuang, You-Lin; Qamar, Sajid; Lee, Ray-Kuang

    2016-05-01

    The Goos-Hänchen (GH) shifts in the reflected light are investigated both for p and s polarized partial coherent light beams incident on epsilon-near-zero (ENZ) metamaterials. In contrary to the coherent counterparts, the magnitude of GH shift becomes non-zero for p polarized partial coherent light beam; while GH shift can be relatively large with a small degree of spatial coherence for s polarized partial coherent beam. Dependence on the beam width and the permittivity of ENZ metamaterials is also revealed for partial coherent light fields. Our results on the GH shifts provide a direction on the applications for partial coherent light sources in ENZ metamaterials.

  10. Interferometric, astrometric, and photometric studies of Epsilon Aurigae: Seeing the disk around a distant star

    NASA Astrophysics Data System (ADS)

    Kloppenborg, Brian

    2012-05-01

    Epsilon (epsilon) Aurigae is a binary star system that has baffled astronomers for 170 years. In 1821 it was first noticed that the star system had dimmed by nearly 50%. After many decades of photometric monitoring, the 27.1 year period was finally established in 1903. A few years later, in 1912, Henry Norris Russell published the first analytic methods for binary star analysis. Later application of these formulae came to an interesting conclusion; the system was composed of two stars: the visible F-type supergiant, and an equally massive, but yet photometrically and spectroscopically invisible, companion. Several theories were advanced to explain this low-light to high-mass conundrum, eventually settling on the notion that the companion object is obscured from view by a disk of opaque material. With this topic solved, the debate shifted the evolutionary state of the system. Two scenarios became dominant: the system is either relativity young, and composed of a massive, 15 Mo (solar mass), F-type supergiant and a nearly equally massive main sequence companion inside of the disk; or a much older and significantly less massive, 4 Mo, F-type post-asymptotic giant branch object with a more massive, 6 Mo, companion surrounded by a debris disk. In this dissertation I disentangle the two evolutionary states by comparing the photometric behavior of the F-type star to known supergiant and post-asymptotic giant branch objects; and deriving a dynamical mass for the two components using astrometric, radial velocity, and interferometric data. Along with this, I provide the first interferometric images during the eclipse which prove the 50% dimming is indeed caused by an opaque disk. The first chapter presents the reader with the status quo of epsilon Aurigae research and the topics I wish to address in this dissertation. Chapter two presents an analysis of nearly 30 years of photometry on the system, concluding the star periodically exhibits stable pulsation on 1/3 orbital

  11. Isolation of the epsilon-caprolactam denitrifying bacteria from a wastewater treatment system manufactured with acrylonitrile-butadiene-styrene resin.

    PubMed

    Wang, Chun-Chin; Lee, Chi-Mei

    2007-06-25

    epsilon-Caprolactam has high COD and toxicity, so its discharge to natural water and soil systems may lead to an adverse environmental effect on water quality, endangering public health and welfare. This investigation attempts to isolate epsilon-caprolactam denitrifying bacteria from a wastewater treatment system manufactured with acrylonitrile-butadiene-styrene (ABS) resin. The goal is to elucidate the effectiveness of isolated pure strain and ABS mixed strains in treating epsilon-caprolactam from synthetic wastewater. The results reveal that Paracoccus versutus MDC-3 was isolated from the wastewater treatment system manufactured with ABS resin. The ABS mixed strains and P. versutus MDC-3 can consume up to 1539mg/l epsilon-caprolactam to denitrify from synthetic wastewater. Complete epsilon-caprolactam removal depended on the supply of sufficient electron acceptors (nitrate). Strain P. versutus MDC-3, Hyphomicrobium sp. HM, Methylosinus pucelana and Magnetospirillum sp. CC-26 are related closely, according to the phylogenetic analyses of 16S rDNA sequences. PMID:17161908

  12. Coherent diffraction reactions p + C {r_arrow} ({Epsilon}(1385){sup O}K{sup +}) + C and p + C {r_arrow} ({Epsilon}{sup O}K{sup +}) + C: The search for exotic baryons

    SciTech Connect

    Vavilov, D.V.; Viktorov, V.A.; Golovkin, S.V.

    1995-08-01

    The coherent diffractive reactions p + C {r_arrow} ({Epsilon}(1385){sup O}K{sup +}) + C and p + C {r_arrow} ({Epsilon}{sup O}K{sup +}) + C are investigated in experiments with the SPHINX detector irradiated by 70-GeV protons. A structure X(2050) with M = 2052 {plus_minus} 6 MeV and {Gamma} = 91 {plus_minus} 17MeV in the {Epsilon}{sup O}K{sup +} mass spectrum are observed in the former and latter processes, respectively. The small decay widths of these states and the anomalously large branching ratios of their decays that involve the emission of strange particles make them serious candidates for cryptoexotic varyons with hidden strangeness. 18 refs., 6 figs., 2 tabs.

  13. Proteins.

    ERIC Educational Resources Information Center

    Doolittle, Russell F.

    1985-01-01

    Examines proteins which give rise to structure and, by virtue of selective binding to other molecules, make genes. Binding sites, amino acids, protein evolution, and molecular paleontology are discussed. Work with encoding segments of deoxyribonucleic acid (exons) and noncoding stretches (introns) provides new information for hypotheses. (DH)

  14. Protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteins are the major structural and functional components of all cells in the body. They are macromolecules that comprise 1 or more chains of amino acids that vary in their sequence and length and are folded into specific 3-dimensional structures. The sizes and conformations of proteins, therefor...

  15. Wave-matter interactions in epsilon-and-mu-near-zero structures

    NASA Astrophysics Data System (ADS)

    Mahmoud, Ahmed M.; Engheta, Nader

    2014-12-01

    In recent years, the concept of metamaterials has offered platforms for unconventional tailoring and manipulation of the light-matter interaction. Here we explore the notion of ‘static optics’, in which the electricity and magnetism are decoupled, while the fields are temporally dynamic. This occurs when both the relative effective permittivity and permeability attain near-zero values at a given operating frequency. We theoretically investigate some of the resulting wave features in bounded scenarios, such as unusual radiation characteristics of an emitter embedded in such epsilon-and-mu-near-zero media in bounded environments. Using such media, one might in principle ‘open up’ and ‘stretch’ the space, and have regions behaving electromagnetically as ‘single points’ despite being electrically large. We suggest a possible design for implementation of such structures using a single dielectric rod inserted in a waveguide operating near its cutoff frequency, providing the possibility of having electrically large ‘empty’ volumes to behave as epsilon-and-mu-near-zero media.

  16. Asymptotic behavior of solutions of the renormalization group K-epsilon turbulence model

    NASA Technical Reports Server (NTRS)

    Yakhot, A.; Staroselsky, I.; Orszag, S. A.

    1994-01-01

    Presently, the only efficient way to calculate turbulent flows in complex geometries of engineering interest is to use Reynolds-average Navier-Stokes (RANS) equations. As compared to the original Navier-Stokes problem, these RANS equations posses much more complicated nonlinear structure and may exhibit far more complex nonlinear behavior. In certain cases, the asymptotic behavior of such models can be studied analytically which, aside from being an interesting fundamental problem, is important for better understanding of the internal structure of the models as well as to improve their performances. The renormalization group (RNG) K-epsilon turbulence model, derived directly from the incompresible Navier-Stokes equations, is analyzed. It has already been used to calculate a variety of turbulent and transitional flows in complex geometries. For large values of the RNG viscosity parameter, the model may exhibit singular behavior. In the form of the RNG K-epsilon model that avoids the use of explicit wall functions, a = 1, so the RNG viscosity parameter must be smaller than 23.62 to avoid singularities.

  17. Stellar model chromospheres. VIII - 70 Ophiuchi A /K0 V/ and Epsilon Eridani /K2 V/

    NASA Technical Reports Server (NTRS)

    Kelch, W. L.

    1978-01-01

    Model atmospheres for the late-type active-chromosphere dwarf stars 70 Oph A and Epsilon Eri are computed from high-resolution Ca II K line profiles as well as Mg II h and k line fluxes. A method is used which determines a plane-parallel homogeneous hydrostatic-equilibrium model of the upper photosphere and chromosphere which differs from theoretical models by lacking the constraint of radiative equilibrium (RE). The determinations of surface gravities, metallicities, and effective temperatures are discussed, and the computational methods, model atoms, atomic data, and observations are described. Temperature distributions for the two stars are plotted and compared with RE models for the adopted effective temperatures and gravities. The previously investigated T min/T eff vs. T eff relation is extended to Epsilon Eri and 70 Oph A, observed and computed Ca II K and Mg II h and k integrated emission fluxes are compared, and full tabulations are given for the proposed models. It is suggested that if less than half the observed Mg II flux for the two stars is lost in noise, the difference between an active-chromosphere star and a quiet-chromosphere star lies in the lower-chromospheric temperature gradient.

  18. Wave-matter interactions in epsilon-and-mu-near-zero structures.

    PubMed

    Mahmoud, Ahmed M; Engheta, Nader

    2014-01-01

    In recent years, the concept of metamaterials has offered platforms for unconventional tailoring and manipulation of the light-matter interaction. Here we explore the notion of 'static optics', in which the electricity and magnetism are decoupled, while the fields are temporally dynamic. This occurs when both the relative effective permittivity and permeability attain near-zero values at a given operating frequency. We theoretically investigate some of the resulting wave features in bounded scenarios, such as unusual radiation characteristics of an emitter embedded in such epsilon-and-mu-near-zero media in bounded environments. Using such media, one might in principle 'open up' and 'stretch' the space, and have regions behaving electromagnetically as 'single points' despite being electrically large. We suggest a possible design for implementation of such structures using a single dielectric rod inserted in a waveguide operating near its cutoff frequency, providing the possibility of having electrically large 'empty' volumes to behave as epsilon-and-mu-near-zero media. PMID:25476550

  19. Low-Reynolds-number k-epsilon model for unsteady turbulent boundary-layer flows

    NASA Technical Reports Server (NTRS)

    Fan, Sixin; Lakshminarayana, Budugur; Barnett, Mark

    1993-01-01

    An assessment of the near-wall and low-Reynolds-number functions used in low-Reynolds-number k-epsilon models suggests that they are not suitable for the near-wall region of unsteady turbulent boundary layers, where the flow is characterized by rapid changes in phase. An improved low-Reynolds-number k-epsilon model is developed in this paper. The near-wall and low-Reynolds-number functions in this model are formulated as functions of the local turbulent Reynolds numbers instead of the inner variable y(+). The present model also has the correct asymptotic behavior in the near-wall region. The turbulence model has been incorporated in an unsteady boundary-layer code and validated for unsteady turbulent boundary layers with and without adverse pressure gradients. The predictions agree well with the experimental data and the theoretical analysis. For the cases tested, the present model correctly predicts the unsteady near-wall flow and the unsteady shin friction at various frequencies.

  20. AB-polymer networks based on oligo(epsilon-caprolactone) segments showing shape-memory properties.

    PubMed

    Lendlein, A; Schmidt, A M; Langer, R

    2001-01-30

    Although shape-memory metal alloys have wide use in medicine and other areas, improved properties, particularly easy shaping, high shape stability, and adjustable transition temperature, are realizable only by polymer systems. In this paper, a polymer system of shape-memory polymer networks based on oligo(epsilon-caprolactone) dimethacrylate as crosslinker and n-butyl acrylate as comonomer was introduced. The influence of two structural parameters, the molecular weight of oligo(epsilon-caprolactone) dimethacrylate and the weight content of n-butyl acrylate, on macroscopic properties of polymer networks such as thermal and mechanical properties has been investigated. Tensile tests above and below melting temperature showed a decrease in the elastic modulus with increasing comonomer weight content. The crystallization behavior of the new materials has been investigated, and key parameters for the programming procedure of the temporary shape have been evaluated. Shape-memory properties have been quantified by thermocyclic experiments. All samples reached uniform deformation properties with recovery rates above 99% after 3 cycles. Whereas strain recovery increased with increasing n-butyl acrylate content, strain fixity decreased, reflecting the decreasing degree of crystallinity of the material. PMID:11158558

  1. AB-polymer networks based on oligo(epsilon-caprolactone) segments showing shape-memory properties.

    PubMed

    Lendlein, A; Schmidt, A M; Langer, R

    2001-01-30

    Although shape-memory metal alloys have wide use in medicine and other areas, improved properties, particularly easy shaping, high shape stability, and adjustable transition temperature, are realizable only by polymer systems. In this paper, a polymer system of shape-memory polymer networks based on oligo(epsilon-caprolactone) dimethacrylate as crosslinker and n-butyl acrylate as comonomer was introduced. The influence of two structural parameters, the molecular weight of oligo(epsilon-caprolactone) dimethacrylate and the weight content of n-butyl acrylate, on macroscopic properties of polymer networks such as thermal and mechanical properties has been investigated. Tensile tests above and below melting temperature showed a decrease in the elastic modulus with increasing comonomer weight content. The crystallization behavior of the new materials has been investigated, and key parameters for the programming procedure of the temporary shape have been evaluated. Shape-memory properties have been quantified by thermocyclic experiments. All samples reached uniform deformation properties with recovery rates above 99% after 3 cycles. Whereas strain recovery increased with increasing n-butyl acrylate content, strain fixity decreased, reflecting the decreasing degree of crystallinity of the material.

  2. Optically induced metal-to-dielectric transition in Epsilon-Near-Zero metamaterials

    PubMed Central

    Kaipurath, R. M.; Pietrzyk, M.; Caspani, L.; Roger, T.; Clerici, M.; Rizza, C.; Ciattoni, A.; Di Falco, A.; Faccio, D.

    2016-01-01

    Epsilon-Near-Zero materials exhibit a transition in the real part of the dielectric permittivity from positive to negative value as a function of wavelength. Here we study metal-dielectric layered metamaterials in the homogenised regime (each layer has strongly subwavelength thickness) with zero real part of the permittivity in the near-infrared region. By optically pumping the metamaterial we experimentally show that close to the Epsilon-Near-Zero (ENZ) wavelength the permittivity exhibits a marked transition from metallic (negative permittivity) to dielectric (positive permittivity) as a function of the optical power. Remarkably, this transition is linear as a function of pump power and occurs on time scales of the order of the 100 fs pump pulse that need not be tuned to a specific wavelength. The linearity of the permittivity increase allows us to express the response of the metamaterial in terms of a standard third order optical nonlinearity: this shows a clear inversion of the roles of the real and imaginary parts in crossing the ENZ wavelength, further supporting an optically induced change in the physical behaviour of the metamaterial. PMID:27292270

  3. Optically induced metal-to-dielectric transition in Epsilon-Near-Zero metamaterials

    NASA Astrophysics Data System (ADS)

    Kaipurath, R. M.; Pietrzyk, M.; Caspani, L.; Roger, T.; Clerici, M.; Rizza, C.; Ciattoni, A.; di Falco, A.; Faccio, D.

    2016-06-01

    Epsilon-Near-Zero materials exhibit a transition in the real part of the dielectric permittivity from positive to negative value as a function of wavelength. Here we study metal-dielectric layered metamaterials in the homogenised regime (each layer has strongly subwavelength thickness) with zero real part of the permittivity in the near-infrared region. By optically pumping the metamaterial we experimentally show that close to the Epsilon-Near-Zero (ENZ) wavelength the permittivity exhibits a marked transition from metallic (negative permittivity) to dielectric (positive permittivity) as a function of the optical power. Remarkably, this transition is linear as a function of pump power and occurs on time scales of the order of the 100 fs pump pulse that need not be tuned to a specific wavelength. The linearity of the permittivity increase allows us to express the response of the metamaterial in terms of a standard third order optical nonlinearity: this shows a clear inversion of the roles of the real and imaginary parts in crossing the ENZ wavelength, further supporting an optically induced change in the physical behaviour of the metamaterial.

  4. Optically induced metal-to-dielectric transition in Epsilon-Near-Zero metamaterials.

    PubMed

    Kaipurath, R M; Pietrzyk, M; Caspani, L; Roger, T; Clerici, M; Rizza, C; Ciattoni, A; Di Falco, A; Faccio, D

    2016-01-01

    Epsilon-Near-Zero materials exhibit a transition in the real part of the dielectric permittivity from positive to negative value as a function of wavelength. Here we study metal-dielectric layered metamaterials in the homogenised regime (each layer has strongly subwavelength thickness) with zero real part of the permittivity in the near-infrared region. By optically pumping the metamaterial we experimentally show that close to the Epsilon-Near-Zero (ENZ) wavelength the permittivity exhibits a marked transition from metallic (negative permittivity) to dielectric (positive permittivity) as a function of the optical power. Remarkably, this transition is linear as a function of pump power and occurs on time scales of the order of the 100 fs pump pulse that need not be tuned to a specific wavelength. The linearity of the permittivity increase allows us to express the response of the metamaterial in terms of a standard third order optical nonlinearity: this shows a clear inversion of the roles of the real and imaginary parts in crossing the ENZ wavelength, further supporting an optically induced change in the physical behaviour of the metamaterial. PMID:27292270

  5. RAYLEIGH-TAYLOR STRENGTH EXPERIMENTS OF THE PRESSURE-INDUCED alpha->epsilon->alpha' PHASE TRANSITION IN IRON

    SciTech Connect

    Belof, J L; Cavallo, R M; Olson, R T; King, R S; Gray, G T; Holtkamp, D B; Chen, S R; Rudd, R E; Barton, N R; Arsenlis, A; Remington, B A; Park, H; Prisbrey, S T; Vitello, P A; Bazan, G; Mikaelian, K O; Comley, A J; Maddox, B R; May, M J

    2011-08-10

    We present here the first dynamic Rayleigh-Taylor (RT) strength measurement of a material undergoing solid-solid phase transition. Iron is quasi-isentropically driven across the pressure-induced bcc ({alpha}-Fe) {yields} hcp ({var_epsilon}-Fe) phase transition and the dynamic strength of the {alpha}, {var_epsilon} and reverted {alpha}{prime} phases have been determined via proton radiography of the resulting Rayleigh-Taylor unstable interface between the iron target and high-explosive products. Simultaneous velocimetry measurements of the iron free surface yield the phase transition dynamics and, in conjunction with detailed hydrodynamic simulations, allow for determination of the strength of the distinct phases of iron. Forward analysis of the experiment via hydrodynamic simulations reveals significant strength enhancement of the dynamically-generated {var_epsilon}-Fe and reverted {alpha}{prime}-Fe, comparable in magnitude to the strength of austenitic stainless steels.

  6. Evidence for apolipoprotein E {epsilon}4 association in early-onset Alzheimer`s patients with late-onset relatives

    SciTech Connect

    Perez-Tur, J.; Delacourte, A.; Chartier-Harlin, M.C.

    1995-12-18

    Recently several reports have extended the apolipoprotein E (APOE) {epsilon}4 association found in late-onset Alzheimer`s disease (LOAD) patients to early-onset (EO) AD patients. We have studied this question in a large population of 119 EOAD patients (onset {<=}60 years) in which family history was carefully assessed and in 109 controls. We show that the APOE {epsilon}A allele frequency is increased only in the subset of patients who belong to families where LOAD secondary cases are present. Our sampling scheme permits us to demonstrate that, for an individual, bearing at least one {epsilon}4 allele increases both the risk of AD before age 60 and the probability of belonging to a family with late-onset affected subjects. Our results suggest that a subset of EOAD cases shares a