Science.gov

Sample records for 14-3-3 protein family

  1. The role of the 14-3-3 protein family in health, disease, and drug development.

    PubMed

    Aghazadeh, Yasaman; Papadopoulos, Vassilios

    2016-02-01

    14-3-3 proteins regulate intracellular signaling pathways, such as signal transduction, protein trafficking, cell cycle, and apoptosis. In addition to the ubiquitous roles of 14-3-3 isoforms, unique tissue-specific functions are also described for each isoform. Owing to their role in regulating cell cycle, protein trafficking, and steroidogenesis, 14-3-3 proteins are prevalent in human diseases, such as cancer, neurodegeneration, and reproductive disorders, and, therefore, serve as valuable drug targets. In this review, we summarize the role of 14-3-3 proteins in normal and disease states, with a focus on 14-3-3γ and ɛ. We also discuss drug compounds targeting 14-3-3 proteins and their potential therapeutic uses. PMID:26456530

  2. Evolution of signal multiplexing by 14-3-3-binding 2R-ohnologue protein families in the vertebrates

    PubMed Central

    Tinti, Michele; Johnson, Catherine; Toth, Rachel; Ferrier, David E. K.; MacKintosh, Carol

    2012-01-01

    14-3-3 proteins regulate cellular responses to stimuli by docking onto pairs of phosphorylated residues on target proteins. The present study shows that the human 14-3-3-binding phosphoproteome is highly enriched in 2R-ohnologues, which are proteins in families of two to four members that were generated by two rounds of whole genome duplication at the origin of the vertebrates. We identify 2R-ohnologue families whose members share a ‘lynchpin’, defined as a 14-3-3-binding phosphosite that is conserved across members of a given family, and aligns with a Ser/Thr residue in pro-orthologues from the invertebrate chordates. For example, the human receptor expression enhancing protein (REEP) 1–4 family has the commonest type of lynchpin motif in current datasets, with a phosphorylatable serine in the –2 position relative to the 14-3-3-binding phosphosite. In contrast, the second 14-3-3-binding sites of REEPs 1–4 differ and are phosphorylated by different kinases, and hence the REEPs display different affinities for 14-3-3 dimers. We suggest a conceptual model for intracellular regulation involving protein families whose evolution into signal multiplexing systems was facilitated by 14-3-3 dimer binding to lynchpins, which gave freedom for other regulatory sites to evolve. While increased signalling complexity was needed for vertebrate life, these systems also generate vulnerability to genetic disorders. PMID:22870394

  3. A 14-3-3 Family Protein from Wild Soybean (Glycine Soja) Regulates ABA Sensitivity in Arabidopsis

    PubMed Central

    Sun, Xiaoli; Sun, Mingzhe; Jia, Bowei; Chen, Chao; Qin, Zhiwei; Yang, Kejun; Shen, Yang; Meiping, Zhang; Mingyang, Cong; Zhu, Yanming

    2015-01-01

    It is widely accepted that the 14-3-3 family proteins are key regulators of multiple stress signal transduction cascades. By conducting genome-wide analysis, researchers have identified the soybean 14-3-3 family proteins; however, until now, there is still no direct genetic evidence showing the involvement of soybean 14-3-3s in ABA responses. Hence, in this study, based on the latest Glycine max genome on Phytozome v10.3, we initially analyzed the evolutionary relationship, genome organization, gene structure and duplication, and three-dimensional structure of soybean 14-3-3 family proteins systematically. Our results suggested that soybean 14-3-3 family was highly evolutionary conserved and possessed segmental duplication in evolution. Then, based on our previous functional characterization of a Glycine soja 14-3-3 protein GsGF14o in drought stress responses, we further investigated the expression characteristics of GsGF14o in detail, and demonstrated its positive roles in ABA sensitivity. Quantitative real-time PCR analyses in Glycine soja seedlings and GUS activity assays in PGsGF14O:GUS transgenic Arabidopsis showed that GsGF14o expression was moderately and rapidly induced by ABA treatment. As expected, GsGF14o overexpression in Arabidopsis augmented the ABA inhibition of seed germination and seedling growth, promoted the ABA induced stomata closure, and up-regulated the expression levels of ABA induced genes. Moreover, through yeast two hybrid analyses, we further demonstrated that GsGF14o physically interacted with the AREB/ABF transcription factors in yeast cells. Taken together, results presented in this study strongly suggested that GsGF14o played an important role in regulation of ABA sensitivity in Arabidopsis. PMID:26717241

  4. A 14-3-3 Family Protein from Wild Soybean (Glycine Soja) Regulates ABA Sensitivity in Arabidopsis.

    PubMed

    Sun, Xiaoli; Sun, Mingzhe; Jia, Bowei; Chen, Chao; Qin, Zhiwei; Yang, Kejun; Shen, Yang; Meiping, Zhang; Mingyang, Cong; Zhu, Yanming

    2015-01-01

    It is widely accepted that the 14-3-3 family proteins are key regulators of multiple stress signal transduction cascades. By conducting genome-wide analysis, researchers have identified the soybean 14-3-3 family proteins; however, until now, there is still no direct genetic evidence showing the involvement of soybean 14-3-3s in ABA responses. Hence, in this study, based on the latest Glycine max genome on Phytozome v10.3, we initially analyzed the evolutionary relationship, genome organization, gene structure and duplication, and three-dimensional structure of soybean 14-3-3 family proteins systematically. Our results suggested that soybean 14-3-3 family was highly evolutionary conserved and possessed segmental duplication in evolution. Then, based on our previous functional characterization of a Glycine soja 14-3-3 protein GsGF14o in drought stress responses, we further investigated the expression characteristics of GsGF14o in detail, and demonstrated its positive roles in ABA sensitivity. Quantitative real-time PCR analyses in Glycine soja seedlings and GUS activity assays in PGsGF14O:GUS transgenic Arabidopsis showed that GsGF14o expression was moderately and rapidly induced by ABA treatment. As expected, GsGF14o overexpression in Arabidopsis augmented the ABA inhibition of seed germination and seedling growth, promoted the ABA induced stomata closure, and up-regulated the expression levels of ABA induced genes. Moreover, through yeast two hybrid analyses, we further demonstrated that GsGF14o physically interacted with the AREB/ABF transcription factors in yeast cells. Taken together, results presented in this study strongly suggested that GsGF14o played an important role in regulation of ABA sensitivity in Arabidopsis. PMID:26717241

  5. A 14-3-3 Family Protein from Wild Soybean (Glycine Soja) Regulates ABA Sensitivity in Arabidopsis.

    PubMed

    Sun, Xiaoli; Sun, Mingzhe; Jia, Bowei; Chen, Chao; Qin, Zhiwei; Yang, Kejun; Shen, Yang; Meiping, Zhang; Mingyang, Cong; Zhu, Yanming

    2015-01-01

    It is widely accepted that the 14-3-3 family proteins are key regulators of multiple stress signal transduction cascades. By conducting genome-wide analysis, researchers have identified the soybean 14-3-3 family proteins; however, until now, there is still no direct genetic evidence showing the involvement of soybean 14-3-3s in ABA responses. Hence, in this study, based on the latest Glycine max genome on Phytozome v10.3, we initially analyzed the evolutionary relationship, genome organization, gene structure and duplication, and three-dimensional structure of soybean 14-3-3 family proteins systematically. Our results suggested that soybean 14-3-3 family was highly evolutionary conserved and possessed segmental duplication in evolution. Then, based on our previous functional characterization of a Glycine soja 14-3-3 protein GsGF14o in drought stress responses, we further investigated the expression characteristics of GsGF14o in detail, and demonstrated its positive roles in ABA sensitivity. Quantitative real-time PCR analyses in Glycine soja seedlings and GUS activity assays in PGsGF14O:GUS transgenic Arabidopsis showed that GsGF14o expression was moderately and rapidly induced by ABA treatment. As expected, GsGF14o overexpression in Arabidopsis augmented the ABA inhibition of seed germination and seedling growth, promoted the ABA induced stomata closure, and up-regulated the expression levels of ABA induced genes. Moreover, through yeast two hybrid analyses, we further demonstrated that GsGF14o physically interacted with the AREB/ABF transcription factors in yeast cells. Taken together, results presented in this study strongly suggested that GsGF14o played an important role in regulation of ABA sensitivity in Arabidopsis.

  6. 14-3-3 proteins in plant-pathogen interactions.

    PubMed

    Lozano-Durán, Rosa; Robatzek, Silke

    2015-05-01

    14-3-3 proteins define a eukaryotic-specific protein family with a general role in signal transduction. Primarily, 14-3-3 proteins act as phosphosensors, binding phosphorylated client proteins and modulating their functions. Since phosphorylation regulates a plethora of different physiological responses in plants, 14-3-3 proteins play roles in multiple signaling pathways, including those controlling metabolism, hormone signaling, cell division, and responses to abiotic and biotic stimuli. Increasing evidence supports a prominent role of 14-3-3 proteins in regulating plant immunity against pathogens at various levels. In this review, potential links between 14-3-3 function and the regulation of plant-pathogen interactions are discussed, with a special focus on the regulation of 14-3-3 proteins in response to pathogen perception, interactions between 14-3-3 proteins and defense-related proteins, and 14-3-3 proteins as targets of pathogen effectors.

  7. 14-3-3 proteins and plant development.

    PubMed

    Fulgosi, Hrvoje; Soll, Jürgen; de Faria Maraschin, Simone; Korthout, Henrie A A J; Wang, Mei; Testerink, Christa

    2002-12-01

    The 14-3-3 proteins are a family of ubiquitous regulatory molecules which have been found in virtually every eukaryotic organism and tissue. Discovered 34 years ago, 14-3-3 proteins have first been studied in mammalian nervous tissues, but in the past decade their indispensable role in various plant regulatory and metabolic pathways has been increasingly established. We now know that 14-3-3 members regulate fundamental processes of nitrogen assimilation and carbon assimilation, play an auxiliary role in regulation of starch synthesis, ATP production, peroxide detoxification, and participate in modulation of several other important biochemical pathways. Plant development and seed germination appear also to be under control of factors whose interaction with 14-3-3 molecules is crucial for their activation. Located within the nucleus, 14-3-3 isoforms are constituents of transcription factor complexes and interact with components of abscisic acid (ABA)-induced gene expression machinery. In addition, in animal cells they participate in nucleo-cytoplasmic trafficking and molecular sequestration. Cytoplasmic 14-3-3 members form a guidance complex with chloroplast destined preproteins and facilitate their import into these photosynthetic organelles. Recently, several 14-3-3s have been identified within chloroplasts where they could be involved in targeting and insertion of thylakoid proteins. The identification of 14-3-3 isoform specificity, and in particular the elucidation of the signal transduction mechanisms connecting 14-3-3 members with physiological responses, are central and developing topics of current research in this field.

  8. 14-3-3 proteins as potential therapeutic targets

    PubMed Central

    Zhao, Jing; Meyerkord, Cheryl L.; Du, Yuhong; Khuri, Fadlo R.; Fu, Haian

    2011-01-01

    The 14-3-3 family of phosphoserine/phosphothreonine-binding proteins dynamically regulates the activity of client proteins in various signaling pathways that control diverse physiological and pathological processes. In response to environmental cues, 14-3-3 proteins orchestrate the highly regulated flow of signals through complex networks of molecular interactions to achieve well-controlled physiological outputs, such as cell proliferation or differentiation. Accumulating evidence now supports the concept that either an abnormal state of 14-3-3 protein expression, or dysregulation of 14-3-3/client protein interactions, contributes to the development of a large number of human diseases. In particular, clinical investigations in the field of oncology have demonstrated a correlation between upregulated 14-3-3 levels and poor survival of cancer patients. These studies highlight the rapid emergence of 14-3-3 proteins as a novel class of molecular target for potential therapeutic intervention. The current status of 14-3-3 modulator discovery is discussed. PMID:21983031

  9. Evolution of the 14-3-3 protein family: does the large number of isoforms in multicellular organisms reflect functional specificity?

    PubMed

    Rosenquist, M; Sehnke, P; Ferl, R J; Sommarin, M; Larsson, C

    2000-11-01

    14-3-3 proteins constitute a family of eukaryotic proteins that are key regulators of a large number of processes ranging from mitosis to apoptosis. 14-3-3s function as dimers and bind to particular motifs in their target proteins. To date, 14-3-3s have been implicated in regulation or stabilization of more than 35 different proteins. This number is probably only a fraction of the number of proteins that 14-3-3s bind to, as reports of new target proteins have become more frequent. An examination of 14-3-3 entries in the public databases reveals 153 isoforms, including alleloforms, reported in 48 different species. The number of isoforms range from 2, in the unicellular organism Saccharomyces cerevisiae, to 12 in the multicellular organism Arabidopsis thaliana. A phylogenetic analysis reveals that there are four major evolutionary lineages: Viridiplantae (plants), Fungi, Alveolata, and Metazoa (animals). A close examination of the aligned amino acid sequences identifies conserved amino acid residues and regions of importance for monomer stabilization, dimer formation, target protein binding, and the nuclear export function. Given the fact that 53% of the protein is conserved, including all amino acid residues in the target binding groove of the 14-3-3 monomer, one might expect little to no isoform specificity for target protein binding. However, using surface plasmon resonance we show that there are large differences in affinity between nine 14-3-3 isoforms of A. thaliana and a target peptide representing a novel binding motif present in the C terminus of the plant plasma membrane H(+)ATPase. Thus, our data suggest that one reason for the large number of isoforms found in multicellular organisms is isoform-specific functions. PMID:11080367

  10. Controllability of protein-protein interaction phosphorylation-based networks: Participation of the hub 14-3-3 protein family

    PubMed Central

    Uhart, Marina; Flores, Gabriel; Bustos, Diego M.

    2016-01-01

    Posttranslational regulation of protein function is an ubiquitous mechanism in eukaryotic cells. Here, we analyzed biological properties of nodes and edges of a human protein-protein interaction phosphorylation-based network, especially of those nodes critical for the network controllability. We found that the minimal number of critical nodes needed to control the whole network is 29%, which is considerably lower compared to other real networks. These critical nodes are more regulated by posttranslational modifications and contain more binding domains to these modifications than other kinds of nodes in the network, suggesting an intra-group fast regulation. Also, when we analyzed the edges characteristics that connect critical and non-critical nodes, we found that the former are enriched in domain-to-eukaryotic linear motif interactions, whereas the later are enriched in domain-domain interactions. Our findings suggest a possible structure for protein-protein interaction networks with a densely interconnected and self-regulated central core, composed of critical nodes with a high participation in the controllability of the full network, and less regulated peripheral nodes. Our study offers a deeper understanding of complex network control and bridges the controllability theorems for complex networks and biological protein-protein interaction phosphorylation-based networked systems. PMID:27195976

  11. Controllability of protein-protein interaction phosphorylation-based networks: Participation of the hub 14-3-3 protein family.

    PubMed

    Uhart, Marina; Flores, Gabriel; Bustos, Diego M

    2016-05-19

    Posttranslational regulation of protein function is an ubiquitous mechanism in eukaryotic cells. Here, we analyzed biological properties of nodes and edges of a human protein-protein interaction phosphorylation-based network, especially of those nodes critical for the network controllability. We found that the minimal number of critical nodes needed to control the whole network is 29%, which is considerably lower compared to other real networks. These critical nodes are more regulated by posttranslational modifications and contain more binding domains to these modifications than other kinds of nodes in the network, suggesting an intra-group fast regulation. Also, when we analyzed the edges characteristics that connect critical and non-critical nodes, we found that the former are enriched in domain-to-eukaryotic linear motif interactions, whereas the later are enriched in domain-domain interactions. Our findings suggest a possible structure for protein-protein interaction networks with a densely interconnected and self-regulated central core, composed of critical nodes with a high participation in the controllability of the full network, and less regulated peripheral nodes. Our study offers a deeper understanding of complex network control and bridges the controllability theorems for complex networks and biological protein-protein interaction phosphorylation-based networked systems.

  12. 14-3-3 proteins: a historic overview.

    PubMed

    Aitken, Alastair

    2006-06-01

    This chapter includes a historic overview of 14-3-3 proteins with an emphasis on the differences between potentially cancer-relevant isoforms on the genomic, protein and functional level. The focus will therefore be on mammalian 14-3-3s although many important developments in the field have involved Drosophila 14-3-3 proteins for example and the cross-fertilisation from parallel studies on plant 14-3-3 should not be underestimated. In the major part of this review I will attempt to focus on some novel data and aspects of 14-3-3 structure and function, in particular regulation of 14-3-3 isoforms by oncogene-related protein kinase phosphorylation and aspects of 14-3-3 research with which newcomers to the field may be less familiar.

  13. Up-regulated 14-3-3β and 14-3-3ζ proteins in prefrontal cortex of subjects with schizophrenia: effect of psychotropic treatment.

    PubMed

    Rivero, Guadalupe; Gabilondo, Ane M; García-Sevilla, Jesús A; La Harpe, Romano; Morentín, Benito; Meana, J Javier

    2015-02-01

    14-3-3 is a family of conserved regulatory proteins that bind to a multitude of functionally diverse signalling proteins. Various genetic studies and gene expression and proteomic analyses have involved 14-3-3 proteins in schizophrenia (SZ). On the other hand, studies about the status of these proteins in major depressive disorder (MD) are still missing. Immunoreactivity values of cytosolic 14-3-3β and 14-3-3ζ proteins were evaluated by Western blot in prefrontal cortex (PFC) of subjects with schizophrenia (SZ; n=22), subjects with major depressive disorder (MD; n=21) and age-, gender- and postmortem delay-matched control subjects (n=52). The modulation of 14-3-3β and 14-3-3ζ proteins by psychotropic medication was also assessed. The analysis of both proteins in SZ subjects with respect to matched control subjects showed increased 14-3-3β (Δ=33±10%, p<0.05) and 14-3-3ζ (Δ=29±6%, p<0.05) immunoreactivity in antipsychotic-free but not in antipsychotic-treated SZ subjects. Immunoreactivity values of 14-3-3β and 14-3-3ζ were not altered in MD subjects. These results show the specific up-regulation of 14-3-3β and 14-3-3ζ proteins in PFC of SZ subjects and suggest a possible down-regulation of both proteins by antipsychotic treatment.

  14. Up-regulated 14-3-3β and 14-3-3ζ proteins in prefrontal cortex of subjects with schizophrenia: effect of psychotropic treatment.

    PubMed

    Rivero, Guadalupe; Gabilondo, Ane M; García-Sevilla, Jesús A; La Harpe, Romano; Morentín, Benito; Meana, J Javier

    2015-02-01

    14-3-3 is a family of conserved regulatory proteins that bind to a multitude of functionally diverse signalling proteins. Various genetic studies and gene expression and proteomic analyses have involved 14-3-3 proteins in schizophrenia (SZ). On the other hand, studies about the status of these proteins in major depressive disorder (MD) are still missing. Immunoreactivity values of cytosolic 14-3-3β and 14-3-3ζ proteins were evaluated by Western blot in prefrontal cortex (PFC) of subjects with schizophrenia (SZ; n=22), subjects with major depressive disorder (MD; n=21) and age-, gender- and postmortem delay-matched control subjects (n=52). The modulation of 14-3-3β and 14-3-3ζ proteins by psychotropic medication was also assessed. The analysis of both proteins in SZ subjects with respect to matched control subjects showed increased 14-3-3β (Δ=33±10%, p<0.05) and 14-3-3ζ (Δ=29±6%, p<0.05) immunoreactivity in antipsychotic-free but not in antipsychotic-treated SZ subjects. Immunoreactivity values of 14-3-3β and 14-3-3ζ were not altered in MD subjects. These results show the specific up-regulation of 14-3-3β and 14-3-3ζ proteins in PFC of SZ subjects and suggest a possible down-regulation of both proteins by antipsychotic treatment. PMID:25549848

  15. 14-3-3 Proteins are Regulators of Autophagy

    PubMed Central

    Pozuelo-Rubio, Mercedes

    2012-01-01

    14-3-3 proteins are implicated in the regulation of proteins involved in a variety of signaling pathways. 14-3-3-dependent protein regulation occurs through phosphorylation-dependent binding that results, in many cases, in the release of survival signals in cells. Autophagy is a cell digestion process that contributes to overcoming nutrient deprivation and is initiated under stress conditions. However, whether autophagy is a cell survival or cell death mechanism remains under discussion and may depend on context. Nevertheless, autophagy is a cellular process that determines cell fate and is tightly regulated by different signaling pathways, some of which, for example MAPK, PI3K and mTOR, are tightly regulated by 14-3-3 proteins. It is therefore important to understand the role of 14-3-3 protein in modulating the autophagic process. Within this context, direct binding of 14-3-3 to mTOR regulatory proteins, such as TSC2 and PRAS40, connects 14-3-3 with autophagy regulatory processes. In addition, 14-3-3 binding to human vacuolar protein sorting 34 (hVps34), a class III phosphatidylinositol-3-kinase (PI3KC3), indicates the involvement of 14-3-3 proteins in regulating autophagosome formation. hVps34 is involved in vesicle trafficking processes such as autophagy, and its activation is needed for initiation of autophagy. Chromatography and overlay techniques suggest that hVps34 directly interacts with 14-3-3 proteins under physiological conditions, thereby maintaining hVps34 in an inactive state. In contrast, nutrient starvation promotes dissociation of the 14-3-3–hVps34 complex, thereby enhancing hVps34 lipid kinase activity. Thus, 14-3-3 proteins are regulators of autophagy through regulating key components of the autophagic machinery. This review summarizes the role of 14-3-3 protein in the control of target proteins involved in regulating the master switches of autophagy. PMID:24710529

  16. Molecular characterization of a novel 14-3-3 protein gene (Hb14-3-3c) from Hevea brasiliensis.

    PubMed

    Yang, Zi-Ping; Li, Hui-Liang; Guo, Dong; Tian, Wei-Min; Peng, Shi-Qing

    2012-04-01

    The cDNA encoding a 14-3-3 protein, designated as Hb14-3-3c, was isolated from Hevea brasiliensis. Hb14-3-3c was 1,269 bp long containing a 795 bp open reading frame encoding a putative protein of 264 amino acids, flanked by a 146 bp 5'UTR and a 328 bp 3' UTR. The predicted molecular mass of Hb14-3-3c is 29.67 kDa, with an isoelectric point of 4.52 and the deduced protein showed high similarity to the 14-3-3 protein from other plant species. Expression analysis revealed more significant accumulation of Hb14-3-3c transcripts in latex than in leaves, buds and flowers. The transcription of Hb14-3-3c in latex was induced by jasmonate and ethephon. Overproduction of recombinant Hb14-3-3c protein gave the Escherichia coli cells more tolerance on Co(2+), Cu(2+) and Zn(2+). Through yeast two-hybrid screening, 11 interaction partners of the Hb14-3-3c, which are involved in rubber biosynthesis, stress-related responses, defence etc., were identified in rubber tree latex. Taking these data together, it is proposed that the Hb14-3-3c may participate in regulation of rubber biosynthesis. Thus, the results of this study provide novel insights into the 14-3-3 signaling related to rubber biosynthesis, stress-related responses in rubber tree. PMID:21947841

  17. 14-3-3 proteins regulate Tctp–Rheb interaction for organ growth in Drosophila

    PubMed Central

    Le, Thao Phuong; Vuong, Linh Thuong; Kim, Ah-Ram; Hsu, Ya-Chieh; Choi, Kwang-Wook

    2016-01-01

    14-3-3 family proteins regulate multiple signalling pathways. Understanding biological functions of 14-3-3 proteins has been limited by the functional redundancy of conserved isotypes. Here we provide evidence that 14-3-3 proteins regulate two interacting components of Tor signalling in Drosophila, translationally controlled tumour protein (Tctp) and Rheb GTPase. Single knockdown of 14-3-3ɛ or 14-3-3ζ isoform does not show obvious defects in organ development but causes synergistic genetic interaction with Tctp and Rheb to impair tissue growth. 14-3-3 proteins physically interact with Tctp and Rheb. Knockdown of both 14-3-3 isoforms abolishes the binding between Tctp and Rheb, disrupting organ development. Depletion of 14-3-3s also reduces the level of phosphorylated S6 kinase, phosphorylated Thor/4E-BP and cyclin E (CycE). Growth defects from knockdown of 14-3-3 and Tctp are suppressed by CycE overexpression. This study suggests a novel mechanism of Tor regulation mediated by 14-3-3 interaction with Tctp and Rheb. PMID:27151460

  18. 14-3-3 Proteins in Guard Cell Signaling.

    PubMed

    Cotelle, Valérie; Leonhardt, Nathalie

    2015-01-01

    Guard cells are specialized cells located at the leaf surface delimiting pores which control gas exchanges between the plant and the atmosphere. To optimize the CO2 uptake necessary for photosynthesis while minimizing water loss, guard cells integrate environmental signals to adjust stomatal aperture. The size of the stomatal pore is regulated by movements of the guard cells driven by variations in their volume and turgor. As guard cells perceive and transduce a wide array of environmental cues, they provide an ideal system to elucidate early events of plant signaling. Reversible protein phosphorylation events are known to play a crucial role in the regulation of stomatal movements. However, in some cases, phosphorylation alone is not sufficient to achieve complete protein regulation, but is necessary to mediate the binding of interactors that modulate protein function. Among the phosphopeptide-binding proteins, the 14-3-3 proteins are the best characterized in plants. The 14-3-3s are found as multiple isoforms in eukaryotes and have been shown to be involved in the regulation of stomatal movements. In this review, we describe the current knowledge about 14-3-3 roles in the regulation of their binding partners in guard cells: receptors, ion pumps, channels, protein kinases, and some of their substrates. Regulation of these targets by 14-3-3 proteins is discussed and related to their function in guard cells during stomatal movements in response to abiotic or biotic stresses.

  19. Eimeria tenella: 14-3-3 protein interacts with telomerase.

    PubMed

    Zhao, Na; Gong, Pengtao; Cheng, Baiqi; Li, Jianhua; Yang, Zhengtao; Li, He; Yang, Ju; Zhang, Guocai; Zhang, Xichen

    2014-10-01

    Telomerase, consisting of telomerase RNA and telomerase reverse transcriptase (TERT), is responsible for the maintenance of the end of linear chromosomes. TERT, as the catalytic subunit of telomerase, plays a critical role in telomerase activity. Researches indicate TERT-associated proteins participate in the regulation of telomerase assembly, posttranslational modification, localization, and enzymatic function. Here, the telomerase RNA-binding domain of Eimeria tenella TERT (EtTRBD) was cloned into pGBKT7 and performed as the bait. α-Galactosidase assay showed that the bait plasmid did not activate Gal4 reporter gene. Further, we isolated an EtTRBD-associated protein, 14-3-3, by yeast two-hybrid screening using the constructed bait plasmid. To confirm the interaction, EtTRBD and 14-3-3 were expressed by prokaryotic and eukaryotic expression systems. Pull-down assays by purified proteins demonstrated a direct bind between EtTRBD and 14-3-3. Co-immunoprecipitation techniques successfully validated that 14-3-3 interacted with EtTRBD in 293T cells. The protein-protein interaction provides a starting point for more in-depth studies on telomerase and telomere regulation in E. tenella.

  20. Dynamic imaging of interaction between protein 14-3-3 and Bid in living cells

    NASA Astrophysics Data System (ADS)

    Chen, Tongsheng; Xing, Da; Wang, Jinjun

    2006-02-01

    The 14-3-3 proteins are known to sequester certain pro-apoptotic members of this family. BH3- interacting domain death agonist (Bid) may contribute to tumor necrosis factor α(TNF-α)-induced neuronal death, although regulation by 14-3-3 has not been reported. In this study we examined whether 14-3-3 proteins interact with Bid/tBid during TNF-α-induced cell death. The TNF-αtriggered Bid cleavage and tBid translocated to mitochondria. Human lung adenocarcinoma cells were co-transfected with both CFP-Bid and 14-3-3-YFP plasmids, and the dynamical interaction between the Bid/tBid and 14-3-3 were performed on laser confocal fluorescence microscope in single living cell during TNF-α-induced cell apoptosis. The Bid distribute equally only in the cytoplasm of healthy cells, and the 14-3-3 protein distribute not only in the cytoplasm but also in the nucleus of healthy cells. Our data showed that the tBid aggregate, but the 14-3-3 protein does not aggregate as the tBid, and the 14-3-3 protein separate from the aggregated tBid, implying that the 14-3-3 proteins do not interact with the aggregated tBid after TNF-αtreatment.

  1. Increased 14-3-3 phosphorylation observed in Parkinson's disease reduces neuroprotective potential of 14-3-3 proteins.

    PubMed

    Slone, Sunny Rae; Lavalley, Nicholas; McFerrin, Michael; Wang, Bing; Yacoubian, Talene Alene

    2015-07-01

    14-3-3 proteins are key regulators of cell survival. We have previously demonstrated that 14-3-3 levels are decreased in an alpha-synuclein (αsyn) mouse model of Parkinson's disease (PD), and that overexpression of certain 14-3-3 isoforms is protective in several PD models. Here we examine whether changes in 14-3-3 phosphorylation may contribute to the neurodegenerative process in PD. We examine three key 14-3-3 phosphorylation sites that normally regulate 14-3-3 function, including serine 58 (S58), serine 184 (S184), and serine/threonine 232 (S/T232), in several models of PD and in human PD brain. We observed that an increase in S232 phosphorylation is observed in rotenone-treated neuroblastoma cells, in cells overexpressing αsyn, and in human PD brains. Alterations in S58 phosphorylation were less consistent in these models, and we did not observe any phosphorylation changes at S184. Phosphorylation at S232 induced by rotenone is reduced by casein kinase inhibitors, and is not dependent on αsyn. Mutation of the S232 site affected 14-3-3θ's neuroprotective effects against rotenone and 1-methyl-4-phenylpyridinium (MPP(+)), with the S232D mutant lacking any protective effect compared to wildtype or S232A 14-3-3θ. The S232D mutant partially reduced the ability of 14-3-3θ to inhibit Bax activation in response to rotenone. Based on these findings, we propose that phosphorylation of 14-3-3s at serine 232 contributes to the neurodegenerative process in PD. PMID:25862939

  2. Hyperglycemia decreases expression of 14-3-3 proteins in an animal model of stroke.

    PubMed

    Jeon, Seong-Jun; Sung, Jin-Hee; Koh, Phil-Ok

    2016-07-28

    Diabetes is a severe metabolic disorder and a major risk factor for stroke. Stroke severity is worse in patients with diabetes compared to the non-diabetic population. The 14-3-3 proteins are a family of conserved acidic proteins that are ubiquitously expressed in cells and tissues. These proteins are involved in many cellular processes including metabolic pathways, signal transduction, protein trafficking, protein synthesis, and cell cycle control. This study investigated 14-3-3 proteins expression in the cerebral cortex of animals with diabetes, cerebral ischemic injury and a combination of both diabetes and cerebral ischemic injury. Diabetes was induced by intraperitoneal injection of streptozotocin (40mg/kg) in adult male rats. After 4 weeks of treatment, middle cerebral artery occlusion (MCAO) was performed for the induction of focal cerebral ischemia and cerebral cortex tissue was collected 24h after MCAO. We confirmed that diabetes increases infarct volume following MCAO compared to non-diabetic animals. In diabetic animals with MCAO injury, reduction of 14-3-3 β/α, 14-3-3 ζ/δ, 14-3-3 γ, and 14-3-3 ε isoforms was detected. The expression of these proteins was significantly decreased in diabetic animals with MCAO injury compared to diabetic-only and MCAO-only animals. Moreover, Western blot analysis ascertained the decreased expression of 14-3-3 family proteins in diabetic animals with MCAO injury, including β/α, ζ/δ, γ, ε, τ, and η isoforms. These results show the changes of 14-3-3 proteins expression in streptozotocin-induced diabetic animals with MCAO injury. Thus, these findings suggest that decreases in 14-3-3 proteins might be involved in the regulation of 14-3-3 proteins under the presence of diabetes following MCAO. PMID:27177727

  3. Dual binding of 14-3-3 protein regulates Arabidopsis nitrate reductase activity.

    PubMed

    Chi, Jen-Chih; Roeper, Juliane; Schwarz, Guenter; Fischer-Schrader, Katrin

    2015-03-01

    14-3-3 proteins represent a family of ubiquitous eukaryotic proteins involved in numerous signal transduction processes and metabolic pathways. One important 14-3-3 target in higher plants is nitrate reductase (NR), whose activity is regulated by different physiological conditions. Intra-molecular electron transfer in NR is inhibited following 14-3-3 binding to a conserved phospho-serine motif located in hinge 1, a surface exposed loop between the catalytic molybdenum and central heme domain. Here we describe a novel 14-3-3 binding site within the NR N-terminus, an acidic motif conserved in NRs of higher plants, which significantly contributes to 14-3-3-mediated inhibition of NR. Deletion or mutation of the N-terminal acidic motif resulted in a significant loss of 14-3-3 mediated inhibition of Ser534 phosphorylated NR-Mo-heme (residues 1-625), a previously established model of NR regulation. Co-sedimentation and crosslinking studies with NR peptides comprising each of the two binding motifs demonstrated direct binding of either peptide to 14-3-3. Surface plasmon resonance spectroscopy disclosed high-affinity binding of 14-3-3ω to the well-known phospho-hinge site and low-affinity binding to the N-terminal acidic motif. A binding groove-deficient 14-3-3ω variant retained interaction to the acidic motif, but lost binding to the phospho-hinge motif. To our knowledge, NR is the first enzyme that harbors two independent 14-3-3 binding sites with different affinities, which both need to be occupied by 14-3-3ω to confer full inhibition of NR activity under physiological conditions. PMID:25578809

  4. Suppression of death-associated protein kinase 2 by interaction with 14-3-3 proteins.

    PubMed

    Yuasa, Keizo; Ota, Reina; Matsuda, Shinya; Isshiki, Kinuka; Inoue, Masahiro; Tsuji, Akihiko

    2015-08-14

    Death-associated protein kinase 2 (DAPK2), a Ca(2+)/calmodulin-regulated serine/threonine kinase, induces apoptosis. However, the signaling mechanisms involved in this process are unknown. Using a proteomic approach, we identified 14-3-3 proteins as novel DAPK2-interacting proteins. The 14-3-3 family has the ability to bind to phosphorylated proteins via recognition of three conserved amino acid motifs (mode 1-3 motifs), and DAPK2 contains the mode 3 motif ((pS/pT)X1-2-COOH). The interaction of 14-3-3 proteins with DAPK2 was dependent on the phosphorylation of Thr(369), and effectively suppressed DAPK2 kinase activity and DAPK2-induced apoptosis. Furthermore, we revealed that the 14-3-3 binding site Thr(369) of DAPK2 was phosphorylated by the survival kinase Akt. Our findings suggest that DAPK2-induced apoptosis is negatively regulated by Akt and 14-3-3 proteins.

  5. Proteomic profiling of tandem affinity purified 14-3-3 protein complexes in Arabidopsis thaliana.

    PubMed

    Chang, Ing-Feng; Curran, Amy; Woolsey, Rebekah; Quilici, David; Cushman, John C; Mittler, Ron; Harmon, Alice; Harper, Jeffrey F

    2009-06-01

    In eukaryotes, 14-3-3 dimers regulate hundreds of functionally diverse proteins (clients), typically in phosphorylation-dependent interactions. To uncover new clients, 14-3-3 omega (At1g78300) from Arabidopsis was engineered with a "tandem affinity purification" tag and expressed in transgenic plants. Purified complexes were analyzed by tandem MS. Results indicate that 14-3-3 omega can dimerize with at least 10 of the 12 14-3-3 isoforms expressed in Arabidopsis. The identification here of 121 putative clients provides support for in vivo 14-3-3 interactions with a diverse array of proteins, including those involved in: (i) Ion transport, such as a K(+) channel (GORK), a Cl(-) channel (CLCg), Ca(2+) channels belonging to the glutamate receptor family (1.2, 2.1, 2.9, 3.4, 3.7); (ii) hormone signaling, such as ACC synthase (isoforms ACS-6, -7 and -8 involved in ethylene synthesis) and the brassinolide receptors BRI1 and BAK1; (iii) transcription, such as 7 WRKY family transcription factors; (iv) metabolism, such as phosphoenol pyruvate carboxylase; and (v) lipid signaling, such as phospholipase D (beta and gamma). More than 80% (101) of these putative clients represent previously unidentified 14-3-3 interactors. These results raise the number of putative 14-3-3 clients identified in plants to over 300.

  6. Identification of 14-3-3 Family in Common Bean and Their Response to Abiotic Stress.

    PubMed

    Li, Ruihua; Jiang, Xiaotong; Jin, Donghao; Dhaubhadel, Sangeeta; Bian, Shaomin; Li, Xuyan

    2015-01-01

    14-3-3s are a class of conserved regulatory proteins ubiquitously found in eukaryotes, which play important roles in a variety of cellular processes including response to diverse stresses. Although much has been learned about 14-3-3s in several plant species, it remains unknown in common bean. In this study, 9 common bean 14-3-3s (PvGF14s) were identified by exhaustive data mining against the publicly available common bean genomic database. A phylogenetic analysis revealed that each predicted PvGF14 was clustered with two GmSGF14 paralogs from soybean. Both epsilon-like and non-epsilon classes of PvGF14s were found in common bean, and the PvGF14s belonging to each class exhibited similar gene structure. Among 9 PvGF14s, only 8 are transcribed in common bean. Expression patterns of PvGF14s varied depending on tissue type, developmental stage and exposure of plants to stress. A protein-protein interaction study revealed that PvGF14a forms dimer with itself and with other PvGF14 isoforms. This study provides a first comprehensive look at common bean 14-3-3 proteins, a family of proteins with diverse functions in many cellular processes, especially in response to stresses.

  7. Identification of 14-3-3 Family in Common Bean and Their Response to Abiotic Stress

    PubMed Central

    Dhaubhadel, Sangeeta; Bian, Shaomin; Li, Xuyan

    2015-01-01

    14-3-3s are a class of conserved regulatory proteins ubiquitously found in eukaryotes, which play important roles in a variety of cellular processes including response to diverse stresses. Although much has been learned about 14-3-3s in several plant species, it remains unknown in common bean. In this study, 9 common bean 14-3-3s (PvGF14s) were identified by exhaustive data mining against the publicly available common bean genomic database. A phylogenetic analysis revealed that each predicted PvGF14 was clustered with two GmSGF14 paralogs from soybean. Both epsilon-like and non-epsilon classes of PvGF14s were found in common bean, and the PvGF14s belonging to each class exhibited similar gene structure. Among 9 PvGF14s, only 8 are transcribed in common bean. Expression patterns of PvGF14s varied depending on tissue type, developmental stage and exposure of plants to stress. A protein-protein interaction study revealed that PvGF14a forms dimer with itself and with other PvGF14 isoforms. This study provides a first comprehensive look at common bean 14-3-3 proteins, a family of proteins with diverse functions in many cellular processes, especially in response to stresses. PMID:26599110

  8. Alternations of 14-3-3 θ and β protein levels in brain during experimental sepsis.

    PubMed

    Memos, Nikolaos; Kataki, Agapi; Chatziganni, Emmy; Nikolopoulou, Marilena; Skoulakis, Euthimios; Consoulas, Christos; Zografos, George; Konstadoulakis, Manousos

    2011-09-01

    The 14-3-3 family members play a crucial role in the determination of cell fate, exerting their antiapoptotic activity through directly interfering with the critical function of the mitochondrial core proapoptotic machinery. Dimerization of 14-3-3 is vital for the interaction with many of its client proteins and is regulated by phosphorylation. In a previous study, we observed time-dependent neuronal apoptosis during sepsis. Therefore, in the present study, we sought to evaluate the expression of 14-3-3 θ and β isoforms in septic brain and their association with apoptosis. Sepsis was induced by a CLP model in Wistar rats that were sacrificed at predefined time points. Flow cytometric analysis showed a sepsis-induced, time-dependent alteration of 14-3-3 θ and β isoforms in both Neun(+) and GFAP(+) cells. 14-3-3 θ was linearly correlated with apoptosis, and stratified analysis for alive and apoptotic neuronal cells demonstrated a gradual down-regulation of θ isoform in alive neurons and astrocytes. The phospho-P38 (pP38) MAP kinase levels were altered in a time-dependent manner during sepsis, presenting a peak at 6 hr post-CLP. A significant correlation between the two isoforms of 14-3-3 was observed in septic rats, with the θ isoform predominant at all time points. The hippocampus, Purkinje cells, and glia-like cells showed intense immunohistochemical reactivity for 14-3-3 θ isoform, whereas the choroid plexus showed constantly increased β isoform expression. Our results showed that sepsis alters the expression of both 14-3-3 θ and β isoforms in a time-, cell-, and topography-dependent manner. PMID:21618583

  9. Discovery and structural characterization of a small molecule 14-3-3 protein-protein interaction inhibitor

    PubMed Central

    Zhao, Jing; Du, Yuhong; Horton, John R.; Upadhyay, Anup K.; Lou, Bin; Bai, Yan; Zhang, Xing; Du, Lupei; Li, Minyong; Wang, Binghe; Zhang, Lixin; Barbieri, Joseph T.; Khuri, Fadlo R.; Cheng, Xiaodong; Fu, Haian

    2011-01-01

    The 14-3-3 family of phosphoserine/threonine-recognition proteins engage multiple nodes in signaling networks that control diverse physiological and pathophysiological functions and have emerged as promising therapeutic targets for such diseases as cancer and neurodegenerative disorders. Thus, small molecule modulators of 14-3-3 are much needed agents for chemical biology investigations and therapeutic development. To analyze 14-3-3 function and modulate its activity, we conducted a chemical screen and identified 4-[(2Z)-2-[4-formyl-6-methyl-5-oxo-3-(phosphonatooxymethyl)pyridin-2-ylidene]hydrazinyl]benzoate as a 14-3-3 inhibitor, which we termed FOBISIN (FOurteen-three-three BInding Small molecule INhibitor) 101. FOBISIN101 effectively blocked the binding of 14-3-3 with Raf-1 and proline-rich AKT substrate, 40 kDa and neutralized the ability of 14-3-3 to activate exoenzyme S ADP-ribosyltransferase. To provide a mechanistic basis for 14-3-3 inhibition, the crystal structure of 14-3-3ζ in complex with FOBISIN101 was solved. Unexpectedly, the double bond linking the pyridoxal-phosphate and benzoate moieties was reduced by X-rays to create a covalent linkage of the pyridoxal-phosphate moiety to lysine 120 in the binding groove of 14-3-3, leading to persistent 14-3-3 inactivation. We suggest that FOBISIN101-like molecules could be developed as an entirely unique class of 14-3-3 inhibitors, which may serve as radiation-triggered therapeutic agents for the treatment of 14-3-3-mediated diseases, such as cancer. PMID:21908710

  10. Involvement of 14-3-3 Proteins in Regulating Tumor Progression of Hepatocellular Carcinoma.

    PubMed

    Wu, Yi-Ju; Jan, Yee-Jee; Ko, Bor-Sheng; Liang, Shu-Man; Liou, Jun-Yang

    2015-01-01

    There are seven mammalian isoforms of the 14-3-3 protein, which regulate multiple cellular functions via interactions with phosphorylated partners. Increased expression of 14-3-3 proteins contributes to tumor progression of various malignancies. Several isoforms of 14-3-3 are overexpressed and associate with higher metastatic risks and poorer survival rates of hepatocellular carcinoma (HCC). 14-3-3β and 14-3-3ζ regulate HCC cell proliferation, tumor growth and chemosensitivity via modulating mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK) and p38 signal pathways. Moreover, 14-3-3ε suppresses E-cadherin and induces focal adhesion kinase (FAK) expression, thereby enhancing epithelial-mesenchymal transition (EMT) and HCC cell migration. 14-3-3ζ forms complexes with αB-crystallin, which induces EMT and is the cause of sorafenib resistance in HCC. Finally, a recent study has indicated that 14-3-3σ induces heat shock protein 70 (HSP70) expression, which increases HCC cell migration. These results suggest that selective 14-3-3 isoforms contribute to cell proliferation, EMT and cell migration of HCC by regulating distinct targets and signal pathways. Targeting 14-3-3 proteins together with specific downstream effectors therefore has potential to be therapeutic and prognostic factors of HCC. In this article, we will overview 14-3-3's regulation of its downstream factors and contributions to HCC EMT, cell migration and proliferation. PMID:26083935

  11. Genome-Wide Identification, Classification, and Expression Analysis of 14-3-3 Gene Family in Populus

    PubMed Central

    Tian, Fengxia; Wang, Tan; Xie, Yuli; Zhang, Jin; Hu, Jianjun

    2015-01-01

    Background In plants, 14-3-3 proteins are encoded by a large multigene family and are involved in signaling pathways to regulate plant development and protection from stress. Although twelve Populus 14-3-3s were identified based on the Populus trichocarpa genome V1.1 in a previous study, no systematic analysis including genome organization, gene structure, duplication relationship, evolutionary analysis and expression compendium has been conducted in Populus based on the latest P. trichocarpa genome V3.0. Principal Findings Here, a comprehensive analysis of Populus 14-3-3 family is presented. Two new 14-3-3 genes were identified based on the latest P. trichocarpa genome. In P. trichocarpa, fourteen 14-3-3 genes were grouped into ε and non-ε group. Exon-intron organizations of Populus 14-3-3s are highly conserved within the same group. Genomic organization analysis indicated that purifying selection plays a pivotal role in the retention and maintenance of Populus 14-3-3 family. Protein conformational analysis indicated that Populus 14-3-3 consists of a bundle of nine α-helices (α1-α9); the first four are essential for formation of the dimer, while α3, α5, α7, and α9 form a conserved peptide-binding groove. In addition, α1, α3, α5, α7, and α9 were evolving at a lower rate, while α2, α4, and α6 were evolving at a relatively faster rate. Microarray analyses showed that most Populus 14-3-3s are differentially expressed across tissues and upon exposure to various stresses. Conclusions The gene structures and their coding protein structures of Populus 14-3-3s are highly conserved among group members, suggesting that members of the same group might also have conserved functions. Microarray and qRT-PCR analyses showed that most Populus 14-3-3s were differentially expressed in various tissues and were induced by various stresses. Our investigation provided a better understanding of the complexity of the 14-3-3 gene family in poplars. PMID:25867623

  12. 14-3-3 Protein Masks the DNA Binding Interface of Forkhead Transcription Factor FOXO4*

    PubMed Central

    Silhan, Jan; Vacha, Petr; Strnadova, Pavla; Vecer, Jaroslav; Herman, Petr; Sulc, Miroslav; Teisinger, Jan; Obsilova, Veronika; Obsil, Tomas

    2009-01-01

    The role of 14-3-3 proteins in the regulation of FOXO forkhead transcription factors is at least 2-fold. First, the 14-3-3 binding inhibits the interaction between the FOXO and the target DNA. Second, the 14-3-3 proteins prevent nuclear reimport of FOXO factors by masking their nuclear localization signal. The exact mechanisms of these processes are still unclear, mainly due to the lack of structural data. In this work, we used fluorescence spectroscopy to investigate the mechanism of the 14-3-3 protein-dependent inhibition of FOXO4 DNA-binding properties. Time-resolved fluorescence measurements revealed that the 14-3-3 binding affects fluorescence properties of 5-(((acetylamino)ethyl)amino) naphthalene-1-sulfonic acid moiety attached at four sites within the forkhead domain of FOXO4 that represent important parts of the DNA binding interface. Observed changes in 5-(((acetylamino)ethyl)amino) naphthalene-1-sulfonic acid fluorescence strongly suggest physical contacts between the 14-3-3 protein and labeled parts of the FOXO4 DNA binding interface. The 14-3-3 protein binding, however, does not cause any dramatic conformational change of FOXO4 as documented by the results of tryptophan fluorescence experiments. To build a realistic model of the FOXO4·14-3-3 complex, we measured six distances between 14-3-3 and FOXO4 using Förster resonance energy transfer time-resolved fluorescence experiments. The model of the complex suggests that the forkhead domain of FOXO4 is docked within the central channel of the 14-3-3 protein dimer, consistent with our hypothesis that 14-3-3 masks the DNA binding interface of FOXO4. PMID:19416966

  13. Identification of a redox-modulatory interaction between selenoprotein W and 14-3-3 protein.

    PubMed

    Jeon, Yeong Ha; Ko, Kwan Young; Lee, Jea Hwang; Park, Ki Jun; Jang, Jun Ki; Kim, Ick Young

    2016-01-01

    Selenoprotein W (SelW) contains a selenocysteine (Sec, U) in a conserved CXXU motif corresponding to the CXXC redox motif of thioredoxin, suggesting a putative redox function of SelW. We have previously reported that the binding of 14-3-3 protein to its target proteins, including CDC25B, Rictor and TAZ, is inhibited by the interaction of 14-3-3 protein with SelW. However, the binding mechanism is unclear. In this study, we sought to determine the binding site of SelW to understand the regulatory mechanism of the interaction between SelW and 14-3-3 and its biological effects. Phosphorylated Ser(pS) or Thr(pT) residues in RSXpSXP or RXXXp(S/T)XP motifs are well-known common 14-3-3-binding sites, but Thr41, Ser59, and T69 of SelW, which are computationally predicted to serve are phosphorylation sites, were neither phosphorylation sites nor sites involved in the interaction. A mutant SelW in which Sec13 is changed to Ser (U13S) was unable to interact with 14-3-3 protein and thus did not inhibit the interaction of 14-3-3 to other target proteins. However, other Cys mutants of SelW(C10S, C33S and C37S) normally interacted with 14-3-3 protein. The interaction of SelW to 14-3-3 protein was enhanced by diamide or H2O2 and decreased by dithiothreitol (DTT). Taken together, these findings demonstrate that the Sec of SelW is involved in its interaction with 14-3-3 protein and that this interaction is increased under oxidative stress conditions. Thus, SelW may have a regulatory function in redox cell signaling by interacting with 14-3-3 protein. PMID:26474786

  14. Identification of 14-3-3 Proteins Phosphopeptide-Binding Specificity Using an Affinity-Based Computational Approach.

    PubMed

    Li, Zhao; Tang, Jijun; Guo, Fei

    2016-01-01

    The 14-3-3 proteins are a highly conserved family of homodimeric and heterodimeric molecules, expressed in all eukaryotic cells. In human cells, this family consists of seven distinct but highly homologous 14-3-3 isoforms. 14-3-3σ is the only isoform directly linked to cancer in epithelial cells, which is regulated by major tumor suppressor genes. For each 14-3-3 isoform, we have 1,000 peptide motifs with experimental binding affinity values. In this paper, we present a novel method for identifying peptide motifs binding to 14-3-3σ isoform. First, we propose a sampling criteria to build a predictor for each new peptide sequence. Then, we select nine physicochemical properties of amino acids to describe each peptide motif. We also use auto-cross covariance to extract correlative properties of amino acids in any two positions. Finally, we consider elastic net to predict affinity values of peptide motifs, based on ridge regression and least absolute shrinkage and selection operator (LASSO). Our method tests on the 1,000 known peptide motifs binding to seven 14-3-3 isoforms. On the 14-3-3σ isoform, our method has overall pearson-product-moment correlation coefficient (PCC) and root mean squared error (RMSE) values of 0.84 and 252.31 for N-terminal sublibrary, and 0.77 and 269.13 for C-terminal sublibrary. We predict affinity values of 16,000 peptide sequences and relative binding ability across six permutated positions similar with experimental values. We identify phosphopeptides that preferentially bind to 14-3-3σ over other isoforms. Several positions on peptide motifs are in the same amino acid category with experimental substrate specificity of phosphopeptides binding to 14-3-3σ. Our method is fast and reliable and is a general computational method that can be used in peptide-protein binding identification in proteomics research. PMID:26828594

  15. Interaction network of the 14-3-3 protein in the ancient protozoan parasite Giardia duodenalis.

    PubMed

    Lalle, Marco; Camerini, Serena; Cecchetti, Serena; Sayadi, Ahmed; Crescenzi, Marco; Pozio, Edoardo

    2012-05-01

    14-3-3s are phosphoserine/phosphotreonine binding proteins that play pivotal roles as regulators of multiple cellular processes in eukaryotes. The flagellated protozoan parasite Giardia duodenalis, the causing agent of giardiasis, is a valuable simplified eukaryotic model. A single 14-3-3 isoform (g14-3-3) is expressed in Giardia, and it is directly involved in the differentiation of the parasite into cyst. To define the overall functions of g14-3-3, the protein interactome has been investigated. A transgenic G. duodenalis strain was engineered to express a FLAG-tagged g14-3-3 under its own promoter. Affinity chromatography coupled with tandem mass spectrometry analysis have been used to purify and identify FLAG-g14-3-3-associated proteins from trophozoites and encysting parasites. A total of 314 putative g14-3-3 interaction partners were identified, including proteins involved in several pathways. Some interactions seemed to be peculiar of one specific stage, while others were shared among the different stages. Furthermore, the interaction of g14-3-3 with the giardial homologue of the CDC7 protein kinase (gCDC7) was characterized, leading to the identification of a multiprotein complex containing not only g14-3-3 and gCDC7 but also a newly identified and highly divergent homologue of DBF4, the putative regulatory subunit of gCDC7. The relevance of g14-3-3 interactions in G. duodenalis biology was discussed.

  16. 14-3-3β protein expression in eosinophilic meningitis caused by Angiostrongylus cantonensis infection

    PubMed Central

    2014-01-01

    Background Angiostrongylus cantonensis is a parasite endemic in the Southeast Asian and Pacific regions. Humans are incidentally infected either by eating uncooked intermediate hosts or by consuming vegetables containing the living third-stage larvae. The 14-3-3β protein is a cerebrospinal fluid (CSF) marker of neuronal damage during the development of Creutzfeldt-Jakob disease. In addition, increased 14-3-3β protein is also found in CSF from patients with a variety of neurological disorders. The goal of this study is to determine the roles of serum/CSF14-3-3β protein in patients with eosinophilic meningitis. Methods In a cohort study among nine Thai laborers with eosinophilic meningitis due to eating raw snails (Pomacea canaliculata), we examined the CSF weekly while patients were still hospitalized and followed up the serum for 6 months. The levels of 14-3-3β protein in CSF were analyzed by western blot and an in-house 14-3-3β enzyme-linked immunosorbent assay (ELISA) measurement was established and tested in an animal model of eosinophilic meningitis. Results The elevated 14-3-3β level was detected in the CSF from eight out of nine (81%) patients After 2 weeks of treatment, all patients showed a declined level or cleared of 14-3-3β protein in the CSF. By developing an in-house ELISA for measurement of 14-3-3β protein, it was found that the serum 14-3-3β level was significantly increased in patients during initial visit. . This finding was consistent to the animal experiment result in which there was severe blood brain barrier damage three weeks after infection and increased 14-3-3β protein expression in the CSF and serum by western blot and in house ELISA. After treatment, the serum 14-3-3β level in meningitis patients was rapidly returned to normal threshold. There was a correlation between initial CSF 14-3-3β level with severity of headache (r = 0.692, p = 0.039), CSF pleocytosis (r = 0.807, p = 0.009) and eosinophilia (r = 0

  17. 14-3-3 protein is a regulator of the mitochondrial and chloroplast ATP synthase

    PubMed Central

    Bunney, Tom D.; van Walraven, Hendrika S.; de Boer, Albertus H.

    2001-01-01

    Mitochondrial and chloroplast ATP synthases are key enzymes in plant metabolism, providing cells with ATP, the universal energy currency. ATP synthases use a transmembrane electrochemical proton gradient to drive synthesis of ATP. The enzyme complexes function as miniature rotary engines, ensuring energy coupling with very high efficiency. Although our understanding of the structure and functioning of the synthase has made enormous progress in recent years, our understanding of regulatory mechanisms is still rather preliminary. Here we report a role for 14-3-3 proteins in the regulation of ATP synthases. These 14-3-3 proteins are highly conserved phosphoserine/phosphothreonine-binding proteins that regulate a wide range of enzymes in plants, animals, and yeast. Recently, the presence of 14-3-3 proteins in chloroplasts was illustrated, and we show here that plant mitochondria harbor 14-3-3s within the inner mitochondrial-membrane compartment. There, the 14-3-3 proteins were found to be associated with the ATP synthases, in a phosphorylation-dependent manner, through direct interaction with the F1 β-subunit. The activity of the ATP synthases in both organelles is drastically reduced by recombinant 14-3-3. The rapid reduction in chloroplast ATPase activity during dark adaptation was prevented by a phosphopeptide containing the 14-3-3 interaction motif, demonstrating a role for endogenous 14-3-3 in the down-regulation of the CFoF1 activity. We conclude that regulation of the ATP synthases by 14-3-3 represents a mechanism for plant adaptation to environmental changes such as light/dark transitions, anoxia in roots, and fluctuations in nutrient supply. PMID:11274449

  18. Genome-Wide Identification, Phylogeny, and Expression Analyses of the 14-3-3 Family Reveal Their Involvement in the Development, Ripening, and Abiotic Stress Response in Banana

    PubMed Central

    Li, Meiying; Ren, Licheng; Xu, Biyu; Yang, Xiaoliang; Xia, Qiyu; He, Pingping; Xiao, Susheng; Guo, Anping; Hu, Wei; Jin, Zhiqiang

    2016-01-01

    Plant 14-3-3 proteins act as critical components of various cellular signaling processes and play an important role in regulating multiple physiological processes. However, less information is known about the 14-3-3 gene family in banana. In this study, 25 14-3-3 genes were identified from the banana genome. Based on the evolutionary analysis, banana 14-3-3 proteins were clustered into ε and non-ε groups. Conserved motif analysis showed that all identified banana 14-3-3 genes had the typical 14-3-3 motif. The gene structure of banana 14-3-3 genes showed distinct class-specific divergence between the ε group and the non-ε group. Most banana 14-3-3 genes showed strong transcript accumulation changes during fruit development and postharvest ripening in two banana varieties, indicating that they might be involved in regulating fruit development and ripening. Moreover, some 14-3-3 genes also showed great changes after osmotic, cold, and salt treatments in two banana varieties, suggested their potential role in regulating banana response to abiotic stress. Taken together, this systemic analysis reveals the involvement of banana 14-3-3 genes in fruit development, postharvest ripening, and response to abiotic stress and provides useful information for understanding the functions of 14-3-3 genes in banana. PMID:27713761

  19. Molecular tweezers modulate 14-3-3 protein-protein interactions.

    PubMed

    Bier, David; Rose, Rolf; Bravo-Rodriguez, Kenny; Bartel, Maria; Ramirez-Anguita, Juan Manuel; Dutt, Som; Wilch, Constanze; Klärner, Frank-Gerrit; Sanchez-Garcia, Elsa; Schrader, Thomas; Ottmann, Christian

    2013-03-01

    Supramolecular chemistry has recently emerged as a promising way to modulate protein functions, but devising molecules that will interact with a protein in the desired manner is difficult as many competing interactions exist in a biological environment (with solvents, salts or different sites for the target biomolecule). We now show that lysine-specific molecular tweezers bind to a 14-3-3 adapter protein and modulate its interaction with partner proteins. The tweezers inhibit binding between the 14-3-3 protein and two partner proteins--a phosphorylated (C-Raf) protein and an unphosphorylated one (ExoS)--in a concentration-dependent manner. Protein crystallography shows that this effect arises from the binding of the tweezers to a single surface-exposed lysine (Lys214) of the 14-3-3 protein in the proximity of its central channel, which normally binds the partner proteins. A combination of structural analysis and computer simulations provides rules for the tweezers' binding preferences, thus allowing us to predict their influence on this type of protein-protein interactions. PMID:23422566

  20. Posttranscriptional regulation of 14-3-3ζ by RNA-binding protein HuR modulating intestinal epithelial restitution after wounding.

    PubMed

    Hansraj, Natasha Z; Xiao, Lan; Wu, Jing; Chen, Gang; Turner, Douglas J; Wang, Jian-Ying; Rao, Jaladanki N

    2016-07-01

    The 14-3-3ζ is a member of the family of 14-3-3 proteins and participates in many aspects of cellular processes, but its regulation and involvement in gut mucosal homeostasis remain unknown. Here, we report that 14-3-3ζ expression is tightly regulated at the posttranscription level by RNA-binding protein HuR and plays an important role in early intestinal epithelial restitution after wounding. The 14-3-3ζ was highly expressed in the mucosa of gastrointestinal tract and in cultured intestinal epithelial cells (IECs). The 3' untranslated region (UTR) of the 14-3-3ζ mRNA was bound to HuR, and this association enhanced 14-3-3ζ translation without effect on its mRNA content. Conditional target deletion of HuR in IECs decreased the level of 14-3-3ζ protein in the intestinal mucosa. Silencing 14-3-3ζ by transfection with specific siRNA targeting the 14-3-3ζ mRNA suppressed intestinal epithelial restitution as indicated by a decrease in IEC migration after wounding, whereas ectopic overexpression of the wild-type 14-3-3ζ promoted cell migration. These results indicate that HuR induces 14-3-3ζ translation via interaction with its 3' UTR and that 14-3-3ζ is necessary for stimulation of IEC migration after wounding. PMID:27401462

  1. Posttranscriptional regulation of 14-3-3ζ by RNA-binding protein HuR modulating intestinal epithelial restitution after wounding.

    PubMed

    Hansraj, Natasha Z; Xiao, Lan; Wu, Jing; Chen, Gang; Turner, Douglas J; Wang, Jian-Ying; Rao, Jaladanki N

    2016-07-01

    The 14-3-3ζ is a member of the family of 14-3-3 proteins and participates in many aspects of cellular processes, but its regulation and involvement in gut mucosal homeostasis remain unknown. Here, we report that 14-3-3ζ expression is tightly regulated at the posttranscription level by RNA-binding protein HuR and plays an important role in early intestinal epithelial restitution after wounding. The 14-3-3ζ was highly expressed in the mucosa of gastrointestinal tract and in cultured intestinal epithelial cells (IECs). The 3' untranslated region (UTR) of the 14-3-3ζ mRNA was bound to HuR, and this association enhanced 14-3-3ζ translation without effect on its mRNA content. Conditional target deletion of HuR in IECs decreased the level of 14-3-3ζ protein in the intestinal mucosa. Silencing 14-3-3ζ by transfection with specific siRNA targeting the 14-3-3ζ mRNA suppressed intestinal epithelial restitution as indicated by a decrease in IEC migration after wounding, whereas ectopic overexpression of the wild-type 14-3-3ζ promoted cell migration. These results indicate that HuR induces 14-3-3ζ translation via interaction with its 3' UTR and that 14-3-3ζ is necessary for stimulation of IEC migration after wounding.

  2. Class-Specific Evolution and Transcriptional Differentiation of 14-3-3 Family Members in Mesohexaploid Brassica rapa

    PubMed Central

    Chandna, Ruby; Augustine, Rehna; Kanchupati, Praveena; Kumar, Roshan; Kumar, Pawan; Arya, Gulab C.; Bisht, Naveen C.

    2016-01-01

    14-3-3s are highly conserved, multigene family proteins that have been implicated in modulating various biological processes. The presence of inherent polyploidy and genome complexity has limited the identification and characterization of 14-3-3 proteins from globally important Brassica crops. Through data mining of Brassica rapa, the model Brassica genome, we identified 21 members encoding 14-3-3 proteins namely, BraA.GRF14.a to BraA.GRF14.u. Phylogenetic analysis indicated that B. rapa contains both ε (epsilon) and non-ε 14-3-3 isoforms, having distinct intron-exon structural organization patterns. The non-ε isoforms showed lower divergence rate (Ks < 0.45) compared to ε protein isoforms (Ks > 0.48), suggesting class-specific divergence pattern. Synteny analysis revealed that mesohexaploid B. rapa genome has retained 1–5 orthologs of each Arabidopsis 14-3-3 gene, interspersed across its three fragmented sub-genomes. qRT-PCR analysis showed that 14 of the 21 BraA.GRF14 were expressed, wherein a higher abundance of non-ε transcripts was observed compared to the ε genes, indicating class-specific transcriptional bias. The BraA.GRF14 genes showed distinct expression pattern during plant developmental stages and in response to abiotic stress, phytohormone treatments, and nutrient deprivation conditions. Together, the distinct expression pattern and differential regulation of BraA.GRF14 genes indicated the occurrence of functional divergence of B. rapa 14-3-3 proteins during plant development and stress responses. PMID:26858736

  3. Class-Specific Evolution and Transcriptional Differentiation of 14-3-3 Family Members in Mesohexaploid Brassica rapa.

    PubMed

    Chandna, Ruby; Augustine, Rehna; Kanchupati, Praveena; Kumar, Roshan; Kumar, Pawan; Arya, Gulab C; Bisht, Naveen C

    2016-01-01

    14-3-3s are highly conserved, multigene family proteins that have been implicated in modulating various biological processes. The presence of inherent polyploidy and genome complexity has limited the identification and characterization of 14-3-3 proteins from globally important Brassica crops. Through data mining of Brassica rapa, the model Brassica genome, we identified 21 members encoding 14-3-3 proteins namely, BraA.GRF14.a to BraA.GRF14.u. Phylogenetic analysis indicated that B. rapa contains both ε (epsilon) and non-ε 14-3-3 isoforms, having distinct intron-exon structural organization patterns. The non-ε isoforms showed lower divergence rate (Ks < 0.45) compared to ε protein isoforms (Ks > 0.48), suggesting class-specific divergence pattern. Synteny analysis revealed that mesohexaploid B. rapa genome has retained 1-5 orthologs of each Arabidopsis 14-3-3 gene, interspersed across its three fragmented sub-genomes. qRT-PCR analysis showed that 14 of the 21 BraA.GRF14 were expressed, wherein a higher abundance of non-ε transcripts was observed compared to the ε genes, indicating class-specific transcriptional bias. The BraA.GRF14 genes showed distinct expression pattern during plant developmental stages and in response to abiotic stress, phytohormone treatments, and nutrient deprivation conditions. Together, the distinct expression pattern and differential regulation of BraA.GRF14 genes indicated the occurrence of functional divergence of B. rapa 14-3-3 proteins during plant development and stress responses.

  4. Class-Specific Evolution and Transcriptional Differentiation of 14-3-3 Family Members in Mesohexaploid Brassica rapa.

    PubMed

    Chandna, Ruby; Augustine, Rehna; Kanchupati, Praveena; Kumar, Roshan; Kumar, Pawan; Arya, Gulab C; Bisht, Naveen C

    2016-01-01

    14-3-3s are highly conserved, multigene family proteins that have been implicated in modulating various biological processes. The presence of inherent polyploidy and genome complexity has limited the identification and characterization of 14-3-3 proteins from globally important Brassica crops. Through data mining of Brassica rapa, the model Brassica genome, we identified 21 members encoding 14-3-3 proteins namely, BraA.GRF14.a to BraA.GRF14.u. Phylogenetic analysis indicated that B. rapa contains both ε (epsilon) and non-ε 14-3-3 isoforms, having distinct intron-exon structural organization patterns. The non-ε isoforms showed lower divergence rate (Ks < 0.45) compared to ε protein isoforms (Ks > 0.48), suggesting class-specific divergence pattern. Synteny analysis revealed that mesohexaploid B. rapa genome has retained 1-5 orthologs of each Arabidopsis 14-3-3 gene, interspersed across its three fragmented sub-genomes. qRT-PCR analysis showed that 14 of the 21 BraA.GRF14 were expressed, wherein a higher abundance of non-ε transcripts was observed compared to the ε genes, indicating class-specific transcriptional bias. The BraA.GRF14 genes showed distinct expression pattern during plant developmental stages and in response to abiotic stress, phytohormone treatments, and nutrient deprivation conditions. Together, the distinct expression pattern and differential regulation of BraA.GRF14 genes indicated the occurrence of functional divergence of B. rapa 14-3-3 proteins during plant development and stress responses. PMID:26858736

  5. Phosphorylation-dependent 14-3-3 protein interactions regulate CFTR biogenesis.

    PubMed

    Liang, Xiubin; Da Paula, Ana Carina; Bozóky, Zoltán; Zhang, Hui; Bertrand, Carol A; Peters, Kathryn W; Forman-Kay, Julie D; Frizzell, Raymond A

    2012-03-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP/protein kinase A (PKA)-regulated chloride channel whose phosphorylation controls anion secretion across epithelial cell apical membranes. We examined the hypothesis that cAMP/PKA stimulation regulates CFTR biogenesis posttranslationally, based on predicted 14-3-3 binding motifs within CFTR and forskolin-induced CFTR expression. The 14-3-3β, γ, and ε isoforms were expressed in airway cells and interacted with CFTR in coimmunoprecipitation assays. Forskolin stimulation (15 min) increased 14-3-3β and ε binding to immature and mature CFTR (bands B and C), and 14-3-3 overexpression increased CFTR bands B and C and cell surface band C. In pulse-chase experiments, 14-3-3β increased the synthesis of immature CFTR, reduced its degradation rate, and increased conversion of immature to mature CFTR. Conversely, 14-3-3β knockdown decreased CFTR B and C bands (70 and 55%) and elicited parallel reductions in cell surface CFTR and forskolin-stimulated anion efflux. In vitro, 14-3-3β interacted with the CFTR regulatory region, and by nuclear magnetic resonance analysis, this interaction occurred at known PKA phosphorylated sites. In coimmunoprecipitation assays, forskolin stimulated the CFTR/14-3-3β interaction while reducing CFTR's interaction with coat protein complex 1 (COP1). Thus 14-3-3 binding to phosphorylated CFTR augments its biogenesis by reducing retrograde retrieval of CFTR to the endoplasmic reticulum. This mechanism permits cAMP/PKA stimulation to make more CFTR available for anion secretion.

  6. Structural Modulation of Phosducin by Phosphorylation and 14-3-3 Protein Binding

    PubMed Central

    Rezabkova, Lenka; Kacirova, Miroslava; Sulc, Miroslav; Herman, Petr; Vecer, Jaroslav; Stepanek, Miroslav; Obsilova, Veronika; Obsil, Tomas

    2012-01-01

    Phosducin (Pdc), a highly conserved phosphoprotein, plays an important role in the regulation of G protein signaling, transcriptional control, and modulation of blood pressure. Pdc is negatively regulated by phosphorylation followed by binding to the 14-3-3 protein, whose role is still unclear. To gain insight into the role of 14-3-3 in the regulation of Pdc function, we studied structural changes of Pdc induced by phosphorylation and 14-3-3 protein binding using time-resolved fluorescence spectroscopy. Our data show that the phosphorylation of the N-terminal domain of Pdc at Ser-54 and Ser-73 affects the structure of the whole Pdc molecule. Complex formation with 14-3-3 reduces the flexibility of both the N- and C-terminal domains of phosphorylated Pdc, as determined by time-resolved tryptophan and dansyl fluorescence. Therefore, our data suggest that phosphorylated Pdc undergoes a conformational change when binding to 14-3-3. These changes involve the Gtβγ binding surface within the N-terminal domain of Pdc, and thus could explain the inhibitory effect of 14-3-3 on Pdc function. PMID:23199924

  7. Diagnosing Sporadic Creutzfeldt-Jakob Disease: Accuracy of CSF 14-3-3 Protein Test of the Spinal Fluid

    MedlinePlus

    ... JAKOB DISEASE: ACCURACY OF THE 14-3-3 PROTEIN TEST OF THE SPINAL FLUID This information sheet ... help you understand how the 14-3-3 protein test helps in diagnosing sporadic Creutzfeldt-Jakob disease ( ...

  8. Revealing the binding modes and the unbinding of 14-3-3σ proteins and inhibitors by computational methods.

    PubMed

    Hu, Guodong; Cao, Zanxia; Xu, Shicai; Wang, Wei; Wang, Jihua

    2015-01-01

    The 14-3-3σ proteins are a family of ubiquitous conserved eukaryotic regulatory molecules involved in the regulation of mitogenic signal transduction, apoptotic cell death, and cell cycle control. A lot of small-molecule inhibitors have been identified for 14-3-3 protein-protein interactions (PPIs). In this work, we carried out molecular dynamics (MD) simulations combined with molecular mechanics generalized Born surface area (MM-GBSA) method to study the binding mechanism between a 14-3-3σ protein and its eight inhibitors. The ranking order of our calculated binding free energies is in agreement with the experimental results. We found that the binding free energies are mainly from interactions between the phosphate group of the inhibitors and the hydrophilic residues. To improve the binding free energy of Rx group, we designed the inhibitor R9 with group R9 = 4-hydroxypheny. However, we also found that the binding free energy of inhibitor R9 is smaller than that of inhibitor R1. By further using the steer molecular dynamics (SMD) simulations, we identified a new hydrogen bond between the inhibitor R8 and residue Arg64 in the pulling paths. The information obtained from this study may be valuable for future rational design of novel inhibitors, and provide better structural understanding of inhibitor binding to 14-3-3σ proteins. PMID:26568041

  9. Polycations Globally Enhance Binding of 14-3-3 omega to Target Proteins in Spinach Leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The binding of 14-3-3' to phosphorylated NR (pNR) is stimulated by cations such as Mg2+ or spermine, and decreased by 5'-AMP. In order to determine whether binding to other cellular proteins is affected similarly, Far-Western overlays of extracts prepared from light- or dark-treated spinach (Spinac...

  10. Regulation of the Regulators: Post-Translational Modifications, Subcellular, and Spatiotemporal Distribution of Plant 14-3-3 Proteins

    PubMed Central

    Wilson, Rashaun S.; Swatek, Kirby N.; Thelen, Jay J.

    2016-01-01

    14-3-3 proteins bind to and modulate the activity of phosphorylated proteins that regulate a variety of metabolic processes in eukaryotes. Multiple 14-3-3 isoforms are expressed in most organisms and display redundancy in both sequence and function. Plants contain the largest number of 14-3-3 isoforms. For example, Arabidopsis thaliana contains thirteen 14-3-3 genes, each of which is expressed. Interest in the plant 14-3-3 field has swelled over the past decade, largely due to the vast number of possibilities for 14-3-3 metabolic regulation. As the field progresses, it is essential to understand these proteins' activities at both the spatiotemporal and subcellular levels. This review summarizes current knowledge of 14-3-3 proteins in plants, including 14-3-3 interactions, regulatory functions, isoform specificity, and post-translational modifications. We begin with a historical overview and structural analysis of 14-3-3 proteins, which describes the basic principles of 14-3-3 function, and then discuss interactions and regulatory effects of plant 14-3-3 proteins in specific tissues and subcellular compartments. We conclude with a summary of 14-3-3 phosphorylation and current knowledge of the functional effects of this modification in plants. PMID:27242818

  11. The Crystal Structure of Giardia duodenalis 14-3-3 in the Apo Form: When Protein Post-Translational Modifications Make the Difference

    PubMed Central

    Fiorillo, Annarita; di Marino, Daniele; Bertuccini, Lucia; Via, Allegra; Pozio, Edoardo; Camerini, Serena; Ilari, Andrea; Lalle, Marco

    2014-01-01

    The 14-3-3s are a family of dimeric evolutionary conserved pSer/pThr binding proteins that play a key role in multiple biological processes by interacting with a plethora of client proteins. Giardia duodenalis is a flagellated protozoan that affects millions of people worldwide causing an acute and chronic diarrheal disease. The single giardial 14-3-3 isoform (g14-3-3), unique in the 14-3-3 family, needs the constitutive phosphorylation of Thr214 and the polyglycylation of its C-terminus to be fully functional in vivo. Alteration of the phosphorylation and polyglycylation status affects the parasite differentiation into the cyst stage. To further investigate the role of these post-translational modifications, the crystal structure of the g14-3-3 was solved in the unmodified apo form. Oligomers of g14-3-3 were observed due to domain swapping events at the protein C-terminus. The formation of filaments was supported by TEM. Mutational analysis, in combination with native PAGE and chemical cross-linking, proved that polyglycylation prevents oligomerization. In silico phosphorylation and molecular dynamics simulations supported a structural role for the phosphorylation of Thr214 in promoting target binding. Our findings highlight unique structural features of g14-3-3 opening novel perspectives on the evolutionary history of this protein family and envisaging the possibility to develop anti-giardial drugs targeting g14-3-3. PMID:24658679

  12. The epsilon isoform of 14-3-3 protein is a component of the prion protein amyloid deposits of Gerstmann-Sträussler-Scheinker disease.

    PubMed

    Di Fede, Giuseppe; Giaccone, Giorgio; Limido, Lucia; Mangieri, Michela; Suardi, Silvia; Puoti, Gianfranco; Morbin, Michela; Mazzoleni, Giulia; Ghetti, Bernardino; Tagliavini, Fabrizio

    2007-02-01

    The 14-3-3 proteins are highly conserved, ubiquitous molecules involved in a variety of biologic events, such as transduction pathway modulation, cell cycle control, and apoptosis. Seven isoforms have been identified that are abundant in the brain, preferentially localized in neurons. Remarkable increases in 14-3-3 are seen in the cerebrospinal fluid of patients with Creutzfeldt-Jakob disease (CJD), and it has been found in pathologic inclusions of several neurodegenerative diseases. Moreover, the zeta isoform has been detected in prion protein (PrP) amyloid deposits of CJD patients. To further investigate the cerebral distribution of 14-3-3 in prion-related encephalopathies, we carried out an immunohistochemical and biochemical analysis of brain tissue from patients with Gerstmann-Sträussler-Scheinker disease (GSS) and sporadic, familial and acquired forms of CJD, using specific antibodies against the seven 14-3-3 isoforms. The study showed a strong immunoreactivity of PrP amyloid plaques of GSS patients for the 14-3-3 epsilon isoform, but not for the other isoforms. The epsilon isoform of 14-3-3 was not found in PrP deposits of CJD. These results indicate that the epsilon isoform of 14-3-3 is a component of PrP amyloid deposits of GSS and suggest that this is the sole 14-3-3 isoform specifically involved in the neuropathologic changes associated with this disorder.

  13. Unraveling 14-3-3 proteins in C4 panicoids with emphasis on model plant Setaria italica reveals phosphorylation-dependent subcellular localization of RS splicing factor.

    PubMed

    Kumar, Karunesh; Muthamilarasan, Mehanathan; Bonthala, Venkata Suresh; Roy, Riti; Prasad, Manoj

    2015-01-01

    14-3-3 proteins are a large multigenic family of regulatory proteins ubiquitously found in eukaryotes. In plants, 14-3-3 proteins are reported to play significant role in both development and response to stress stimuli. Therefore, considering their importance, genome-wide analyses have been performed in many plants including Arabidopsis, rice and soybean. But, till date, no comprehensive investigation has been conducted in any C4 panicoid crops. In view of this, the present study was performed to identify 8, 5 and 26 potential 14-3-3 gene family members in foxtail millet (Si14-3-3), sorghum (Sb14-3-3) and maize (Zm14-3-3), respectively. In silico characterization revealed large variations in their gene structures; segmental and tandem duplications have played a major role in expansion of these genes in foxtail millet and maize. Gene ontology annotation showed the participation of 14-3-3 proteins in diverse biological processes and molecular functions, and in silico expression profiling indicated their higher expression in all the investigated tissues. Comparative mapping was performed to derive the orthologous relationships between 14-3-3 genes of foxtail millet and other Poaceae members, which showed a higher, as well as similar percentage of orthology among these crops. Expression profiling of Si14-3-3 genes during different time-points of abiotic stress and hormonal treatments showed a differential expression pattern of these genes, and sub-cellular localization studies revealed the site of action of Si14-3-3 proteins within the cells. Further downstream characterization indicated the interaction of Si14-3-3 with a nucleocytoplasmic shuttling phosphoprotein (SiRSZ21A) in a phosphorylation-dependent manner, and this demonstrates that Si14-3-3 might regulate the splicing events by binding with phosphorylated SiRSZ21A. Taken together, the present study is a comprehensive analysis of 14-3-3 gene family members in foxtail millet, sorghum and maize, which provides

  14. Unraveling 14-3-3 Proteins in C4 Panicoids with Emphasis on Model Plant Setaria italica Reveals Phosphorylation-Dependent Subcellular Localization of RS Splicing Factor

    PubMed Central

    Kumar, Karunesh; Muthamilarasan, Mehanathan; Bonthala, Venkata Suresh; Roy, Riti; Prasad, Manoj

    2015-01-01

    14-3-3 proteins are a large multigenic family of regulatory proteins ubiquitously found in eukaryotes. In plants, 14-3-3 proteins are reported to play significant role in both development and response to stress stimuli. Therefore, considering their importance, genome-wide analyses have been performed in many plants including Arabidopsis, rice and soybean. But, till date, no comprehensive investigation has been conducted in any C4 panicoid crops. In view of this, the present study was performed to identify 8, 5 and 26 potential 14-3-3 gene family members in foxtail millet (Si14-3-3), sorghum (Sb14-3-3) and maize (Zm14-3-3), respectively. In silico characterization revealed large variations in their gene structures; segmental and tandem duplications have played a major role in expansion of these genes in foxtail millet and maize. Gene ontology annotation showed the participation of 14-3-3 proteins in diverse biological processes and molecular functions, and in silico expression profiling indicated their higher expression in all the investigated tissues. Comparative mapping was performed to derive the orthologous relationships between 14-3-3 genes of foxtail millet and other Poaceae members, which showed a higher, as well as similar percentage of orthology among these crops. Expression profiling of Si14-3-3 genes during different time-points of abiotic stress and hormonal treatments showed a differential expression pattern of these genes, and sub-cellular localization studies revealed the site of action of Si14-3-3 proteins within the cells. Further downstream characterization indicated the interaction of Si14-3-3 with a nucleocytoplasmic shuttling phosphoprotein (SiRSZ21A) in a phosphorylation-dependent manner, and this demonstrates that Si14-3-3 might regulate the splicing events by binding with phosphorylated SiRSZ21A. Taken together, the present study is a comprehensive analysis of 14-3-3 gene family members in foxtail millet, sorghum and maize, which provides

  15. Vpr Protein of Human Immunodeficiency Virus Type 1 Binds to 14-3-3 Proteins and Facilitates Complex Formation with Cdc25C: Implications for Cell Cycle Arrest

    PubMed Central

    Kino, Tomoshige; Gragerov, Alexander; Valentin, Antonio; Tsopanomihalou, Maria; Ilyina-Gragerova, Galina; Erwin-Cohen, Rebecca; Chrousos, George P.; Pavlakis, George N.

    2005-01-01

    Vpr and selected mutants were used in a Saccharomyces cerevisiae two-hybrid screen to identify cellular interactors. We found Vpr interacted with 14-3-3 proteins, a family regulating a multitude of proteins in the cell. Vpr mutant R80A, which is inactive in cell cycle arrest, did not interact with 14-3-3. 14-3-3 proteins regulate the G2/M transition by inactivating Cdc25C phosphatase via binding to the phosphorylated serine residue at position 216 of Cdc25C. 14-3-3 overexpression in human cells synergized with Vpr in the arrest of cell cycle. Vpr did not arrest efficiently cells not expressing 14-3-3σ. This indicated that a full complement of 14-3-3 proteins is necessary for optimal Vpr function on the cell cycle. Mutational analysis showed that the C-terminal portion of Vpr, known to harbor its cell cycle-arresting activity, bound directly to the C-terminal part of 14-3-3, outside of its phosphopeptide-binding pocket. Vpr expression shifted localization of the mutant Cdc25C S216A to the cytoplasm, indicating that Vpr promotes the association of 14-3-3 and Cdc25C, independently of the presence of serine 216. Immunoprecipitations of cell extracts indicated the presence of triple complexes (Vpr/14-3-3/Cdc25C). These results indicate that Vpr promotes cell cycle arrest at the G2/M phase by facilitating association of 14-3-3 and Cdc25C independently of the latter's phosphorylation status. PMID:15708996

  16. 14-3-3 gene family in hybrid poplar and its involvement in tree defence against pathogens.

    PubMed

    Lapointe, G; Luckevich, M D; Cloutier, M; Séguin, A

    2001-06-01

    In ongoing investigations of the role of the signal transduction pathway in tree-pathogen interactions, four complete and two partial 14-3-3 cDNAs have been isolated which are members of a gene family. Comparisons of DNA sequences reveal a high degree of identity among the cDNAs, and, in some cases, higher than 75% sequence similarity with previously published sequences. Sequence analysis at the amino acid level uncovered potential phosphorylation sites, some of which were identical among the proteins, and some of which varied. Treatment of trees with chitosan, jasmonates or by wounding of leaves, caused increases in the levels of 14-3-3 mRNA transcripts. Since jasmonates and chitosan are signal transducers of defence reactions in plants, these results suggest a possible role for 14-3-3 proteins in the pathogen defence response of deciduous trees. Effects of elicitors on transcription of the pal gene were also monitored. Pal is a well-characterized, pathogen response-related gene.

  17. Structural Basis for the 14-3-3 Protein-dependent Inhibition of the Regulator of G Protein Signaling 3 (RGS3) Function*

    PubMed Central

    Rezabkova, Lenka; Man, Petr; Novak, Petr; Herman, Petr; Vecer, Jaroslav; Obsilova, Veronika; Obsil, Tomas

    2011-01-01

    Regulator of G protein signaling (RGS) proteins function as GTPase-activating proteins for the α-subunit of heterotrimeric G proteins. The function of certain RGS proteins is negatively regulated by 14-3-3 proteins, a family of highly conserved regulatory molecules expressed in all eukaryotes. In this study, we provide a structural mechanism for 14-3-3-dependent inhibition of RGS3-Gα interaction. We have used small angle x-ray scattering, hydrogen/deuterium exchange kinetics, and Förster resonance energy transfer measurements to determine the low-resolution solution structure of the 14-3-3ζ·RGS3 complex. The structure shows the RGS domain of RGS3 bound to the 14-3-3ζ dimer in an as-yet-unrecognized manner interacting with less conserved regions on the outer surface of the 14-3-3 dimer outside its central channel. Our results suggest that the 14-3-3 protein binding affects the structure of the Gα interaction portion of RGS3 as well as sterically blocks the interaction between the RGS domain and the Gα subunit of heterotrimeric G proteins. PMID:22027839

  18. 14-3-3 proteins: Macro-regulators with great potential for improving abiotic stress tolerance in plants.

    PubMed

    Liu, Qing; Zhang, Shaohong; Liu, Bin

    2016-08-12

    14-3-3 proteins (14-3-3s) are highly conserved regulatory proteins that are uniquely eukaryotic, and deeply involved in protein-protein interactions that mediate diverse signaling pathways. In plants, 14-3-3s have been validated to regulate many biological processes, such as metabolism, light and hormone signaling, cell-cycle control and protein trafficking. Recent years we have also witnessed an increasing number of reports describing the functions of 14-3-3s in plant stress responses through interactions with key proteins in both biotic and abiotic stresses. In this review, we highlight the advances that have been made in investigating the roles of 14-3-3s in plant abiotic stress tolerance. These advances provide a framework for our understanding of how signals are integrated to perceive and respond to the abiotic stresses in plants. PMID:27233603

  19. Differential interaction and aggregation of 3-repeat and 4-repeat tau isoforms with 14-3-3{zeta} protein

    SciTech Connect

    Sadik, Golam; Tanaka, Toshihisa; Kato, Kiyoko; Yanagi, Kentaro; Kudo, Takashi; Takeda, Masatoshi

    2009-05-22

    Tau isoforms, 3-repeat (3R) and 4-repeat tau (4R), are differentially involved in neuronal development and in several tauopathies. 14-3-3 protein binds to tau and 14-3-3/tau association has been found both in the development and in tauopathies. To understand the role of 14-3-3 in the differential regulation of tau isoforms, we have performed studies on the interaction and aggregation of 3R-tau and 4R-tau, either phosphorylated or unphosphorylated, with 14-3-3{zeta}. We show by surface plasmon resonance studies that the interaction between unphosphorylated 3R-tau and 14-3-3{zeta} is {approx}3-folds higher than that between unphosphorylated 4R-tau and 14-3-3{zeta}. Phosphorylation of tau by protein kinase A (PKA) increases the affinity of both 3R- and 4R-tau for 14-3-3{zeta} to a similar level. An in vitro aggregation assay employing both transmission electron microscopy and fluorescence spectroscopy revealed the aggregation of unphosphorylated 4R-tau to be significantly higher than that of unphosphorylated 3R-tau following the induction of 14-3-3{zeta}. The filaments formed from 3R- and 4R-tau were almost similar in morphology. In contrast, the aggregation of both 3R- and 4R-tau was reduced to a similar low level after phosphorylation with PKA. Taken together, these results suggest that 14-3-3{zeta} exhibits a similar role for tau isoforms after PKA-phosphorylation, but a differential role for unphosphorylated tau. The significant aggregation of 4R-tau by 14-3-3{zeta} suggests that 14-3-3 may act as an inducer in the generation of 4R-tau-predominant neurofibrillary tangles in tauopathies.

  20. Validation of 14-3-3 Protein as a Marker in Sporadic Creutzfeldt-Jakob Disease Diagnostic.

    PubMed

    Schmitz, Matthias; Ebert, Elisabeth; Stoeck, Katharina; Karch, André; Collins, Steven; Calero, Miguel; Sklaviadis, Theodor; Laplanche, Jean-Louis; Golanska, Ewa; Baldeiras, Ines; Satoh, Katsuya; Sanchez-Valle, Raquel; Ladogana, Anna; Skinningsrud, Anders; Hammarin, Anna-Lena; Mitrova, Eva; Llorens, Franc; Kim, Yong Sun; Green, Alison; Zerr, Inga

    2016-05-01

    At present, the testing of 14-3-3 protein in cerebrospinal fluid (CSF) is a standard biomarker test in suspected sporadic Creutzfeldt-Jakob disease (sCJD) diagnosis. Increasing 14-3-3 test referrals in CJD reference laboratories in the last years have led to an urgent need to improve established 14-3-3 test methods. The main result of our study was the validation of a commercially available 14-3-3 ELISA next to the commonly used Western blot method as a high-throughput screening test. Hereby, 14-3-3 protein expression was quantitatively analyzed in CSF of 231 sCJD and 2035 control patients. We obtained excellent sensitivity/specificity values of 88 and 96% that are comparable to the established Western blot method. Since standard protocols and preanalytical sample handling have become more important in routine diagnostic, we investigated in a further step the reproducibility and stability of 14-3-3 as a biomarker for human prion diseases. Ring trial data from 2009 to 2013 revealed an increase of Fleiss' kappa from 0.51 to 0.68 indicating an improving reliability of 14-3-3 protein detection. The stability of 14-3-3 protein under short-term and long-term storage conditions at various temperatures and after repeated freezing/thawing cycles was confirmed. Contamination of CSF samples with blood appears likely to be an important factor at a concentration of more than 2500 erythrocytes/μL. Hemolysis of erythrocytes with significant release of 14-3-3 protein started after 2 days at room temperature. We first define clear standards for the sample handling, short- and long-term storage of CSF samples as well as the handling of blood- contaminated samples which may result in artificially elevated CSF levels of 14-3-3.

  1. Site-specific regulatory interaction between spinach leaf sucrose-phosphate synthase and 14-3-3 proteins

    NASA Technical Reports Server (NTRS)

    Toroser, D.; Athwal, G. S.; Huber, S. C.; Davies, E. (Principal Investigator)

    1998-01-01

    We report an Mg2+-dependent interaction between spinach leaf sucrose-phosphate synthase (SPS) and endogenous 14-3-3 proteins, as evidenced by co-elution during gel filtration and co-immunoprecipitation. The content of 14-3-3s associated with an SPS immunoprecipitate was inversely related to activity, and was specifically reduced when tissue was pretreated with 5-aminoimidazole-4-carboxamide riboside, suggesting metabolite control in vivo. A synthetic phosphopeptide based on Ser-229 was shown by surface plasmon resonance to bind a recombinant plant 14-3-3, and addition of the phosphorylated SPS-229 peptide was found to stimulate the SPS activity of an SPS:14-3-3 complex. Taken together, the results suggest a regulatory interaction of 14-3-3 proteins with Ser-229 of SPS.

  2. Binding of 14-3-3 reader proteins to phosphorylated DNMT1 facilitates aberrant DNA methylation and gene expression

    PubMed Central

    Estève, Pierre-Olivier; Zhang, Guoqiang; Ponnaluri, V.K. Chaithanya; Deepti, Kanneganti; Chin, Hang Gyeong; Dai, Nan; Sagum, Cari; Black, Karynne; Corrêa, Ivan R.; Bedford, Mark T.; Cheng, Xiaodong; Pradhan, Sriharsa

    2016-01-01

    Mammalian DNA (cytosine-5) methyltransferase 1 (DNMT1) is essential for maintenance methylation. Phosphorylation of Ser143 (pSer143) stabilizes DNMT1 during DNA replication. Here, we show 14-3-3 is a reader protein of DNMT1pSer143. In mammalian cells 14-3-3 colocalizes and binds DNMT1pSer143 post-DNA replication. The level of DNMT1pSer143 increased with overexpression of 14-3-3 and decreased by its depletion. Binding of 14-3-3 proteins with DNMT1pSer143 resulted in inhibition of DNA methylation activity in vitro. In addition, overexpression of 14-3-3 in NIH3T3 cells led to decrease in DNMT1 specific activity resulting in hypomethylation of the genome that was rescued by transfection of DNMT1. Genes representing cell migration, mobility, proliferation and focal adhesion pathway were hypomethylated and overexpressed. Furthermore, overexpression of 14-3-3 also resulted in enhanced cell invasion. Analysis of TCGA breast cancer patient data showed significant correlation for DNA hypomethylation and reduced patient survival with increased 14-3-3 expressions. Therefore, we suggest that 14-3-3 is a crucial reader of DNMT1pSer143 that regulates DNA methylation and altered gene expression that contributes to cell invasion. PMID:26553800

  3. Cotton (Gossypium hirsutum) 14-3-3 proteins participate in regulation of fibre initiation and elongation by modulating brassinosteroid signalling.

    PubMed

    Zhou, Ying; Zhang, Ze-Ting; Li, Mo; Wei, Xin-Zheng; Li, Xiao-Jie; Li, Bing-Ying; Li, Xue-Bao

    2015-02-01

    Cotton (Gossypium hirsutum) fibre is an important natural raw material for textile industry in the world. Understanding the molecular mechanism of fibre development is important for the development of future cotton varieties with superior fibre quality. In this study, overexpression of Gh14-3-3L in cotton promoted fibre elongation, leading to an increase in mature fibre length. In contrast, suppression of expression of Gh14-3-3L, Gh14-3-3e and Gh14-3-3h in cotton slowed down fibre initiation and elongation. As a result, the mature fibres of the Gh14-3-3 RNAi transgenic plants were significantly shorter than those of wild type. This 'short fibre' phenotype of the 14-3-3 RNAi cotton could be partially rescued by application of 2,4-epibrassinolide (BL). Expression levels of the BR-related and fibre-related genes were altered in the Gh14-3-3 transgenic fibres. Furthermore, we identified Gh14-3-3 interacting proteins (including GhBZR1) in cotton. Site mutation assay revealed that Ser163 in GhBZR1 and Lys51/56/53 in Gh14-3-3L/e/h were required for Gh14-3-3-GhBZR1 interaction. Nuclear localization of GhBZR1 protein was induced by BR, and phosphorylation of GhBZR1 by GhBIN2 kinase was helpful for its binding to Gh14-3-3 proteins. Additionally, 14-3-3-regulated GhBZR1 protein may directly bind to GhXTH1 and GhEXP promoters to regulate gene expression for responding rapid fibre elongation. These results suggested that Gh14-3-3 proteins may be involved in regulating fibre initiation and elongation through their interacting with GhBZR1 to modulate BR signalling. Thus, our study provides the candidate intrinsic genes for improving fibre yield and quality by genetic manipulation.

  4. Proteomic analysis of media from lung cancer cells reveals role of 14-3-3 proteins in cachexia

    PubMed Central

    McLean, Julie B.; Moylan, Jennifer S.; Horrell, Erin M. W.; Andrade, Francisco H.

    2015-01-01

    Aims: At the time of diagnosis, 60% of lung cancer patients present with cachexia, a severe wasting syndrome that increases morbidity and mortality. Tumors secrete multiple factors that contribute to cachectic muscle wasting, and not all of these factors have been identified. We used Orbitrap electrospray ionization mass spectrometry to identify novel cachexia-inducing candidates in media conditioned with Lewis lung carcinoma cells (LCM). Results: One-hundred and 58 proteins were confirmed in three biological replicates. Thirty-three were identified as secreted proteins, including 14-3-3 proteins, which are highly conserved adaptor proteins known to have over 200 binding partners. We confirmed the presence of extracellular 14-3-3 proteins in LCM via western blot and discovered that LCM contained less 14-3-3 content than media conditioned with C2C12 myotubes. Using a neutralizing antibody, we depleted extracellular 14-3-3 proteins in myotube culture medium, which resulted in diminished myosin content. We identified the proposed receptor for 14-3-3 proteins, CD13, in differentiated C2C12 myotubes and found that inhibiting CD13 via Bestatin also resulted in diminished myosin content. Conclusions: Our novel findings show that extracellular 14-3-3 proteins may act as previously unidentified myokines and may signal via CD13 to help maintain muscle mass. PMID:25972815

  5. Dual role for 14-3-3 proteins and ABF transcription factors in gibberellic acid and abscisic acid signalling in barley (Hordeum vulgare) aleurone cells.

    PubMed

    Schoonheim, Peter J; Costa Pereira, Daniel D A; De Boer, Albertus H

    2009-05-01

    The balance of gibberellins [gibberellic acid (GA)] and abscisic acid (ABA) is a determining factor during transition of embryogenesis and seed germination. Recently, we showed that 14-3-3 proteins are important in ABA signalling in barley aleurone cells. Using 14-3-3 RNAi constructs in the barley aleurone transient expression system, we demonstrate here that silencing of each 14-3-3 isoform suppresses GA induction of the alpha-amylase gene. 14-3-3 Proteins interact with ABA-responsive element (ABRE) binding factors HvABF1, 2 and 3, and here we show that these transcription factors also interact with the ABA-responsive kinase PKABA1, a kinase that mediates cross-talk between the GA and ABA pathway. ABF1 and ABF2 have a function in both signalling pathways as: (1) ectopic expression of wild-type ABF1 and mutant ABF2, lacking the 14-3-3 interaction domain, transactivates the ABA inducible HVA1 gene; and (2) GA induction of the alpha-amylase gene is repressed by ectopic expression of wild-type ABF1 and 2. Mutant ABF1 and 2 were still effective repressors of GA signalling. In summary, our data provide evidence that 14-3-3 proteins and members of the ABF transcription factor family have a regulatory function in the GA pathway and suggest that PKABA1 and ABF transcription factors are cross-talk intermediates in ABA and GA signalling.

  6. Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice

    PubMed Central

    Bai, Ming-Yi; Zhang, Li-Ying; Gampala, Srinivas S.; Zhu, Sheng-Wei; Song, Wen-Yuan; Chong, Kang; Wang, Zhi-Yong

    2007-01-01

    Brassinosteroids (BR) are essential growth hormones found throughout the plant kingdom. BR bind to the receptor kinase BRI1 on the cell surface to activate a signal transduction pathway that regulates nuclear gene expression and plant growth. To understand the downstream BR signaling mechanism in rice, we studied the function of OsBZR1 using reverse genetic approaches and identified OsBZR1-interacting proteins. Suppressing OsBZR1 expression by RNAi resulted in dwarfism, erect leaves, reduced BR sensitivity, and altered BR-responsive gene expression in transgenic rice plants, demonstrating an essential role of OsBZR1 in BR responses in rice. Moreover, a yeast two-hybrid screen identified 14-3-3 proteins as OsBZR1-interacting proteins. Mutation of a putative 14-3-3-binding site of OsBZR1 abolished its interaction with the 14-3-3 proteins in yeast and in vivo. Such mutant OsBZR1 proteins suppressed the phenotypes of the Arabidopsis bri1–5 mutant and showed an increased nuclear distribution compared with the wild-type protein, suggesting that 14-3-3 proteins directly inhibit OsBZR1 function at least in part by reducing its nuclear localization. These results demonstrate a conserved function of OsBZR1 and an important role of 14-3-3 proteins in brassinosteroid signal transduction in rice. PMID:17699623

  7. 14-3-3 isoforms bind directly exon B of the 5′-UTR of human surfactant protein A2 mRNA

    PubMed Central

    Noutsios, Georgios T.; Ghattas, Paul; Bennett, Stephanie

    2015-01-01

    Human surfactant protein (SP) A (SP-A), an innate immunity molecule, is encoded by two genes, SFTPA1 and SFTPA2. The 5′-untranslated splice variant of SP-A2 (ABD), but not SP-A1 (AD), contains exon B (eB). eB is an enhancer for transcription and translation and contains cis-regulatory elements. Specific trans-acting factors, including 14-3-3, bind eB. The 14-3-3 protein family contains seven isoforms that have been found by mass spectrometry in eB electromobility shift assays (Noutsios et al. Am J Physiol Lung Cell Mol Physiol 304: L722–L735, 2013). We used four different approaches to investigate whether 14-3-3 isoforms bind directly to eB. 1) eB RNA pulldown assays showed that 14-3-3 isoforms specifically bind eB. 2) RNA electromobility shift assay complexes were formed using purified 14-3-3 isoforms β, γ, ε, η, σ, and τ, but not isoform ζ, with wild-type eB RNA. 3 and 4) RNA affinity chromatography assays and surface plasmon resonance analysis showed that 14-3-3 isoforms β, γ, ε, η, σ, and τ, but not isoform ζ, specifically and directly bind eB. Inhibition of 14-3-3 isoforms γ, ε, η, and τ/θ with shRNAs in NCI-H441 cells resulted in downregulation of SP-A2 levels but did not affect SP-A1 levels. However, inhibition of 14-3-3 isoform σ was correlated with lower levels of SP-A1 and SP-A2. Inhibition of 14-3-3 isoform ζ/δ, which does not bind eB, had no effect on expression levels of SP-A1 and SP-A2. In conclusion, the 14-3-3 protein family affects differential regulation of SP-A1 and SP-A2 by binding directly to SP-A2 5′-UTR mRNA. PMID:26001776

  8. CSF Tau proteins reduce misdiagnosis of sporadic Creutzfeldt-Jakob disease suspected cases with inconclusive 14-3-3 result.

    PubMed

    Leitão, M J; Baldeiras, I; Almeida, M R; Ribeiro, M H; Santos, A C; Ribeiro, M; Tomás, J; Rocha, S; Santana, I; Oliveira, C R

    2016-09-01

    Cerebrospinal fluid (CSF) 14-3-3 protein supports sporadic Creutzfeldt-Jakob (sCJD) diagnosis, but often leads to weak-positive results and lacks standardization. In this study, we explored the added diagnostic value of Total Tau (t-Tau) and phosphorylated Tau (p-Tau) in sCJD diagnosis, particularly in the cases with inconclusive 14-3-3 result. 95 definite sCJD and 287 patients without prion disease (non-CJD) were included in this study. CSF samples were collected in routine clinical diagnosis and analysed for 14-3-3 detection by Western blot (WB). CSF t-Tau and p-Tau were quantified by commercial ELISA kits and PRNP and APOE genotyping assessed by PCR-RFLP. In a regression analysis of the whole cohort, 14-3-3 protein revealed an overall accuracy of 82 % (sensitivity = 96.7 %; specificity = 75.6 %) for sCJD. Regarding 14-3-3 clear positive results, we observed no added value either of t-Tau alone or p-Tau/t-Tau ratio in the model. On the other hand, considering 14-3-3 weak-positive cases, t-Tau protein increased the overall accuracy of 14-3-3 alone from 91 to 94 % and specificity from 74 to 93 % (p < 0.05), with no sensitivity improvement. However, inclusion of p-Tau/t-Tau ratio did not significantly improve the first model (p = 0.0595). Globally, t-Tau protein allowed a further discrimination of 65 % within 14-3-3 inconclusive results. Furthermore, PRNP MV genotype showed a trend to decrease 14-3-3 sensitivity (p = 0.051), but such effect was not seen on t-Tau protein. In light of these results, we suggest that t-Tau protein assay is of significant importance as a second marker in identifying 14-3-3 false-positive results among sCJD probable cases.

  9. CSF Tau proteins reduce misdiagnosis of sporadic Creutzfeldt-Jakob disease suspected cases with inconclusive 14-3-3 result.

    PubMed

    Leitão, M J; Baldeiras, I; Almeida, M R; Ribeiro, M H; Santos, A C; Ribeiro, M; Tomás, J; Rocha, S; Santana, I; Oliveira, C R

    2016-09-01

    Cerebrospinal fluid (CSF) 14-3-3 protein supports sporadic Creutzfeldt-Jakob (sCJD) diagnosis, but often leads to weak-positive results and lacks standardization. In this study, we explored the added diagnostic value of Total Tau (t-Tau) and phosphorylated Tau (p-Tau) in sCJD diagnosis, particularly in the cases with inconclusive 14-3-3 result. 95 definite sCJD and 287 patients without prion disease (non-CJD) were included in this study. CSF samples were collected in routine clinical diagnosis and analysed for 14-3-3 detection by Western blot (WB). CSF t-Tau and p-Tau were quantified by commercial ELISA kits and PRNP and APOE genotyping assessed by PCR-RFLP. In a regression analysis of the whole cohort, 14-3-3 protein revealed an overall accuracy of 82 % (sensitivity = 96.7 %; specificity = 75.6 %) for sCJD. Regarding 14-3-3 clear positive results, we observed no added value either of t-Tau alone or p-Tau/t-Tau ratio in the model. On the other hand, considering 14-3-3 weak-positive cases, t-Tau protein increased the overall accuracy of 14-3-3 alone from 91 to 94 % and specificity from 74 to 93 % (p < 0.05), with no sensitivity improvement. However, inclusion of p-Tau/t-Tau ratio did not significantly improve the first model (p = 0.0595). Globally, t-Tau protein allowed a further discrimination of 65 % within 14-3-3 inconclusive results. Furthermore, PRNP MV genotype showed a trend to decrease 14-3-3 sensitivity (p = 0.051), but such effect was not seen on t-Tau protein. In light of these results, we suggest that t-Tau protein assay is of significant importance as a second marker in identifying 14-3-3 false-positive results among sCJD probable cases. PMID:27357003

  10. Regulation of presynaptic anchoring of the scaffold protein Bassoon by phosphorylation-dependent interaction with 14-3-3 adaptor proteins.

    PubMed

    Schröder, Markus S; Stellmacher, Anne; Romorini, Stefano; Marini, Claudia; Montenegro-Venegas, Carolina; Altrock, Wilko D; Gundelfinger, Eckart D; Fejtova, Anna

    2013-01-01

    The proper organization of the presynaptic cytomatrix at the active zone is essential for reliable neurotransmitter release from neurons. Despite of the virtual stability of this tightly interconnected proteinaceous network it becomes increasingly clear that regulated dynamic changes of its composition play an important role in the processes of synaptic plasticity. Bassoon, a core component of the presynaptic cytomatrix, is a key player in structural organization and functional regulation of presynaptic release sites. It is one of the most highly phosphorylated synaptic proteins. Nevertheless, to date our knowledge about functions mediated by any one of the identified phosphorylation sites of Bassoon is sparse. In this study, we have identified an interaction of Bassoon with the small adaptor protein 14-3-3, which depends on phosphorylation of the 14-3-3 binding motif of Bassoon. In vitro phosphorylation assays indicate that phosphorylation of the critical Ser-2845 residue of Bassoon can be mediated by a member of the 90-kDa ribosomal S6 protein kinase family. Elimination of Ser-2845 from the 14-3-3 binding motif results in a significant decrease of Bassoon's molecular exchange rates at synapses of living rat neurons. We propose that the phosphorylation-induced 14-3-3 binding to Bassoon modulates its anchoring to the presynaptic cytomatrix. This regulation mechanism might participate in molecular and structural presynaptic remodeling during synaptic plasticity.

  11. 14-3-3 protein binds to the low molecular weight neurofilament (NFL) mRNA 3' UTR.

    PubMed

    Ge, Wei-Wen; Volkening, Kathryn; Leystra-Lantz, Cheryl; Jaffe, Howard; Strong, Michael J

    2007-01-01

    We have previously reported that altered stability of low molecular weight neurofilament (NFL) mRNA in lumbar spinal cord homogenates in amyotrophic lateral sclerosis (ALS) is associated with altered expression of trans-acting 3' UTR mRNA binding proteins. We have identified two hexanucleotide motifs as the main cis elements and, using LC/MS/MS of peptide digests of NFL 3' UTR interacting proteins from human spinal cord, observed that 14-3-3 proteins interact with these motifs. 14-3-3 beta, zeta, tau, gamma, and eta isoforms were found to be expressed in human spinal cord. Each isoform was expressed in vitro and shown to interact with NFL 3' UTR mRNA. Mutation of one or both motifs resulted in decreased 14-3-3 interaction, changes in predicted mRNA structure or alteration in stability of the mRNA. These data show a novel interaction for 14-3-3 with NFL mRNA, and suggests that 14-3-3 may play a role in regulating NFL mRNA stability.

  12. Modulation of GluK2a subunit-containing kainate receptors by 14-3-3 proteins.

    PubMed

    Sun, Changcheng; Qiao, Haifa; Zhou, Qin; Wang, Yan; Wu, Yuying; Zhou, Yi; Li, Yong

    2013-08-23

    Kainate receptors (KARs) are one of the ionotropic glutamate receptors that mediate excitatory postsynaptic currents (EPSCs) with characteristically slow kinetics. Although mechanisms for the slow kinetics of KAR-EPSCs are not totally understood, recent evidence has implicated a regulatory role of KAR-associated proteins. Here, we report that decay kinetics of GluK2a-containing receptors is modulated by closely associated 14-3-3 proteins. 14-3-3 binding requires PKC-dependent phosphorylation of serine residues localized in the carboxyl tail of the GluK2a subunit. In transfected cells, 14-3-3 binding to GluK2a slows desensitization kinetics of both homomeric GluK2a and heteromeric GluK2a/GluK5 receptors. Moreover, KAR-EPSCs at mossy fiber-CA3 synapses decay significantly faster in the 14-3-3 functional knock-out mice. Collectively, these results demonstrate that 14-3-3 proteins are an important regulator of GluK2a-containing KARs and may contribute to the slow decay kinetics of native KAR-EPSCs. PMID:23861400

  13. Protein phosphatases 1 and 2A promote Raf-1 activation by regulating 14-3-3 interactions.

    PubMed

    Jaumot, M; Hancock, J F

    2001-07-01

    Raf-1 activation is a complex process which involves plasma membrane recruitment, phosphorylation, protein-protein and lipid-protein interactions. We now show that PP1 and PP2A serine-threonine phosphatases also have a positive role in Ras dependent Raf-1 activation. General serine-threonine phosphatase inhibitors such sodium fluoride, or ss-glycerophosphate and sodium pyrophosphate, or specific PP1 and PP2A inhibitors including microcystin-LR, protein phosphatase 2A inhibitor I(1) or protein phosphatase inhibitor 2 all abrogate H-Ras and K-Ras dependent Raf-1 activation in vitro. A critical Raf-1 target residue for PP1 and PP2A is S259. Serine phosphatase inhibitors block the dephosphorylation of S259, which accompanies Raf-1 activation, and Ras dependent activation of mutant Raf259A is relatively resistant to serine phosphatase inhibitors. Sucrose gradient analysis demonstrates that serine phosphatase inhibition increases the total amount of 14-3-3 and Raf-1 associated with the plasma membrane and significantly alters the distribution of 14-3-3 and Raf-1 across different plasma membrane microdomains. These observations suggest that dephosphorylation of S259 is a critical early step in Ras dependent Raf-1 activation which facilitates 14-3-3 displacement. Inhibition of PP1 and PP2A therefore causes plasma membrane accumulation of Raf-1/14-3-3 complexes which cannot be activated.

  14. Alternative application of Tau protein in Creutzfeldt-Jakob disease diagnosis: Improvement for weakly positive 14-3-3 protein in the laboratory.

    PubMed

    Hyeon, Jae Wook; Kim, Su Yeon; Lee, Jeongmin; Park, Jun Sun; Hwang, Kyu Jam; Lee, Sol Moe; An, SeongSoo A; Lee, Myung Koo; Ju, Young Ran

    2015-01-01

    The 14-3-3 protein has been used as a biomarker for the diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD). However, weakly positive 14-3-3 leads to false positive results and an incorrect diagnosis. We attempted to use quantitative data for tau protein to provide an accurate diagnosis based on weak 14-3-3 protein. Sixty-two patients with sCJD, including pathologically confirmed, clinically definite, and probable cases, and 89 non-CJD patients were investigated based on a Korean population. Among them, 20 sCJD and 14 non-CJD showed weakly positive 14-3-3. The total tau (t-tau) and phosphorylated tau (p-tau) protein levels were measured by ELISA, and the p-tau to t-tau ratio (p/t ratio) was calculated. The combined use of the 14-3-3 protein assay, t-tau levels, and p/t ratio improved the specificity of diagnosis compared with the use of the 14-3-3 protein assay alone (47% for 14-3-3 alone; 85.94% for 14-3-3 combined with t-tau; 90.62% for 14-3-3 combined with the p/t ratio). In addition, 18 of 20 sCJD and 12 of 14 non-CJD who were weakly positive for 14-3-3 were positive for the p/t ratio and negative for the p/t ratio, respectively. When used in combination with the 14-3-3 protein, the tau protein is useful as a biomarker for the precise diagnosis of sCJD. PMID:26507666

  15. Alternative application of Tau protein in Creutzfeldt-Jakob disease diagnosis: Improvement for weakly positive 14-3-3 protein in the laboratory.

    PubMed

    Hyeon, Jae Wook; Kim, Su Yeon; Lee, Jeongmin; Park, Jun Sun; Hwang, Kyu Jam; Lee, Sol Moe; An, SeongSoo A; Lee, Myung Koo; Ju, Young Ran

    2015-10-28

    The 14-3-3 protein has been used as a biomarker for the diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD). However, weakly positive 14-3-3 leads to false positive results and an incorrect diagnosis. We attempted to use quantitative data for tau protein to provide an accurate diagnosis based on weak 14-3-3 protein. Sixty-two patients with sCJD, including pathologically confirmed, clinically definite, and probable cases, and 89 non-CJD patients were investigated based on a Korean population. Among them, 20 sCJD and 14 non-CJD showed weakly positive 14-3-3. The total tau (t-tau) and phosphorylated tau (p-tau) protein levels were measured by ELISA, and the p-tau to t-tau ratio (p/t ratio) was calculated. The combined use of the 14-3-3 protein assay, t-tau levels, and p/t ratio improved the specificity of diagnosis compared with the use of the 14-3-3 protein assay alone (47% for 14-3-3 alone; 85.94% for 14-3-3 combined with t-tau; 90.62% for 14-3-3 combined with the p/t ratio). In addition, 18 of 20 sCJD and 12 of 14 non-CJD who were weakly positive for 14-3-3 were positive for the p/t ratio and negative for the p/t ratio, respectively. When used in combination with the 14-3-3 protein, the tau protein is useful as a biomarker for the precise diagnosis of sCJD.

  16. Protein kinase B (AKT) regulates SYK activity and shuttling through 14-3-3 and importin 7.

    PubMed

    Mohammad, Dara K; Nore, Beston F; Gustafsson, Manuela O; Mohamed, Abdalla J; Smith, C I Edvard

    2016-09-01

    The Protein kinase B (AKT) regulates a plethora of intracellular signaling proteins to fine-tune signaling of multiple pathways. Here, we found that following B-cell receptor (BCR)-induced tyrosine phosphorylation of the cytoplasmic tyrosine kinase SYK and the adaptor BLNK, the AKT/PKB enzyme strongly induced BLNK (>100-fold) and SYK (>100-fold) serine/threonine phosphorylation (pS/pT). Increased phosphorylation promoted 14-3-3 binding to BLNK (37-fold) and SYK (2.5-fold) in a pS/pT-concentration dependent manner. We also demonstrated that the AKT inhibitor MK2206 reduced pS/pT of both BLNK (3-fold) and SYK (2.5-fold). Notably, the AKT phosphatase, PHLPP2 maintained the activating phosphorylation of BLNK at Y84 and increased protein stability (8.5-fold). In addition, 14-3-3 was required for the regulation SYK's interaction with BLNK and attenuated SYK binding to Importin 7 (5-fold), thereby perturbing shuttling to the nucleus. Moreover, 14-3-3 proteins also sustained tyrosine phosphorylation of SYK and BLNK. Furthermore, substitution of S295 or S297 for alanine abrogated SYK's binding to Importin 7. SYK with S295A or S297A replacements showed intense pY525/526 phosphorylation, and BLNK pY84 phosphorylation correlated with the SYK pY525/526 phosphorylation level. Conversely, the corresponding mutations to aspartic acid in SYK reduced pY525/526 phosphorylation. Collectively, these and previous results suggest that AKT and 14-3-3 proteins down-regulate the activity of several BCR-associated components, including BTK, BLNK and SYK and also inhibit SYK's interaction with Importin 7. PMID:27381982

  17. Dexamethasone downregulated the expression of CSF 14-3-3β protein in mice with eosinophilic meningitis caused by Angiostrongylus cantonensis infection.

    PubMed

    Tsai, Hung-Chin; Lee, Bi-Yao; Yen, Chuan-Min; Wann, Shue-Ren; Lee, Susan Shin-Jung; Chen, Yao-Shen; Tai, Ming-Hong

    2014-03-01

    Angiostrongylus cantonensis is the main causative agent of human eosinophilic meningitis in Southeast Asia and the Pacific Islands. A previous study demonstrated that the 14-3-3β protein is a neuropathological marker in monitoring neuronal damage in meningitis. Steroids are commonly used in patients with eosinophilic meningitis caused by A. cantonensis infection. However, the mechanism by which steroids act in eosinophilic meningitis is unknown. We hypothesized that the beneficial effect of steroids on eosinophilic meningitis is partially mediated by the down-regulation of 14-3-3β protein expression in the cerebrospinal fluid (CSF). In this animal study, we determined the dynamic changes of 14-3-3β protein in mice with eosinophilic meningitis. The 14-3-3β protein in serum and CSF was increased in week 2 and 3 after infections. Dexamethasone administration significantly decreased the amounts of CSF 14-3-3β protein. By developing an in-house ELISA to measure 14-3-3β protein, it was found that the amounts of 14-3-3β protein in the CSF and serum increased over a three-week period after infection. There was a remarkable reduction of 14-3-3β protein in the CSF after 2 weeks of dexamethasone treatment. In conclusion, the administration of corticosteroids in mice with eosinophilic meningitis decreased the expression of 14-3-3β protein in the CSF.

  18. 14-3-3-Pred: improved methods to predict 14-3-3-binding phosphopeptides

    PubMed Central

    Madeira, Fábio; Tinti, Michele; Murugesan, Gavuthami; Berrett, Emily; Stafford, Margaret; Toth, Rachel; Cole, Christian; MacKintosh, Carol; Barton, Geoffrey J.

    2015-01-01

    Motivation: The 14-3-3 family of phosphoprotein-binding proteins regulates many cellular processes by docking onto pairs of phosphorylated Ser and Thr residues in a constellation of intracellular targets. Therefore, there is a pressing need to develop new prediction methods that use an updated set of 14-3-3-binding motifs for the identification of new 14-3-3 targets and to prioritize the downstream analysis of >2000 potential interactors identified in high-throughput experiments. Results: Here, a comprehensive set of 14-3-3-binding targets from the literature was used to develop 14-3-3-binding phosphosite predictors. Position-specific scoring matrix, support vector machines (SVM) and artificial neural network (ANN) classification methods were trained to discriminate experimentally determined 14-3-3-binding motifs from non-binding phosphopeptides. ANN, position-specific scoring matrix and SVM methods showed best performance for a motif window spanning from −6 to +4 around the binding phosphosite, achieving Matthews correlation coefficient of up to 0.60. Blind prediction showed that all three methods outperform two popular 14-3-3-binding site predictors, Scansite and ELM. The new methods were used for prediction of 14-3-3-binding phosphosites in the human proteome. Experimental analysis of high-scoring predictions in the FAM122A and FAM122B proteins confirms the predictions and suggests the new 14-3-3-predictors will be generally useful. Availability and implementation: A standalone prediction web server is available at http://www.compbio.dundee.ac.uk/1433pred. Human candidate 14-3-3-binding phosphosites were integrated in ANIA: ANnotation and Integrated Analysis of the 14-3-3 interactome database. Contact: cmackintosh@dundee.ac.uk or gjbarton@dundee.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25735772

  19. 14-3-3 Proteins SGF14c and SGF14l Play Critical Roles during Soybean Nodulation1[W][OA

    PubMed Central

    Radwan, Osman; Wu, Xia; Govindarajulu, Manjula; Libault, Marc; Neece, David J.; Oh, Man-Ho; Berg, R. Howard; Stacey, Gary; Taylor, Christopher G.; Huber, Steven C.; Clough, Steven J.

    2012-01-01

    The soybean (Glycine max) genome contains 18 members of the 14-3-3 protein family, but little is known about their association with specific phenotypes. Here, we report that the Glyma0529080 Soybean G-box Factor 14-3-3c (SGF14c) and Glyma08g12220 (SGF14l) genes, encoding 14-3-3 proteins, appear to play essential roles in soybean nodulation. Quantitative reverse transcription-polymerase chain reaction and western-immunoblot analyses showed that SGF14c mRNA and protein levels were specifically increased in abundance in nodulated soybean roots 10, 12, 16, and 20 d after inoculation with Bradyrhizobium japonicum. To investigate the role of SGF14c during soybean nodulation, RNA interference was employed to silence SGF14c expression in soybean roots using Agrobacterium rhizogenes-mediated root transformation. Due to the paleopolyploid nature of soybean, designing a specific RNA interference sequence that exclusively targeted SGF14c was not possible. Therefore, two highly similar paralogs (SGF14c and SGF14l) that have been shown to function as dimers were silenced. Transcriptomic and proteomic analyses showed that mRNA and protein levels were significantly reduced in the SGF14c/SGF14l-silenced roots, and these roots exhibited reduced numbers of mature nodules. In addition, SGF14c/SGF14l-silenced roots contained large numbers of arrested nodule primordia following B. japonicum inoculation. Transmission electron microscopy further revealed that the host cytoplasm and membranes, except the symbiosome membrane, were severely degraded in the failed nodules. Altogether, transcriptomic, proteomic, and cytological data suggest a critical role of one or both of these 14-3-3 proteins in early development stages of soybean nodules. PMID:23060368

  20. Phosphorylation of Arabidopsis Ubiquitin Ligase ATL31 Is Critical for Plant Carbon/Nitrogen Nutrient Balance Response and Controls the Stability of 14-3-3 Proteins*

    PubMed Central

    Yasuda, Shigetaka; Sato, Takeo; Maekawa, Shugo; Aoyama, Shoki; Fukao, Yoichiro; Yamaguchi, Junji

    2014-01-01

    Ubiquitin ligase plays a fundamental role in regulating multiple cellular events in eukaryotes by fine-tuning the stability and activity of specific target proteins. We have previously shown that ubiquitin ligase ATL31 regulates plant growth in response to nutrient balance between carbon and nitrogen (C/N) in Arabidopsis. Subsequent study demonstrated that ATL31 targets 14-3-3 proteins for ubiquitination and modulates the protein abundance in response to C/N-nutrient status. However, the underlying mechanism for the targeting of ATL31 to 14-3-3 proteins remains unclear. Here, we show that ATL31 interacts with 14-3-3 proteins in a phosphorylation-dependent manner. We identified Thr209, Ser247, Ser270, and Ser303 as putative 14-3-3 binding sites on ATL31 by motif analysis. Mutation of these Ser/Thr residues to Ala in ATL31 inhibited the interaction with 14-3-3 proteins, as demonstrated by yeast two-hybrid and co-immunoprecipitation analyses. Additionally, we identified in vivo phosphorylation of Thr209 and Ser247 on ATL31 by MS analysis. A peptide competition assay showed that the application of synthetic phospho-Thr209 peptide, but not the corresponding unphosphorylated peptide, suppresses the interaction between ATL31 and 14-3-3 proteins. Moreover, Arabidopsis plants overexpressing mutated ATL31, which could not bind to 14-3-3 proteins, showed accumulation of 14-3-3 proteins and growth arrest in disrupted C/N-nutrient conditions similar to wild-type plants, although overexpression of intact ATL31 resulted in repression of 14-3-3 accumulation and tolerance to the conditions. Together, these results demonstrate that the physiological role of phosphorylation at 14-3-3 binding sites on ATL31 is to modulate the binding ability and stability of 14-3-3 proteins to control plant C/N-nutrient response. PMID:24722992

  1. Transcription variants of the prostate-specific PrLZ gene and their interaction with 14-3-3 proteins

    SciTech Connect

    Wang, Ruoxiang; He, Hui; Sun, Xiaojuan; Xu, Jianchun; Marshall, Fray F.; Zhau, Haiyen; Chung, Leland W.K.; Fu, Haian; He, Dalin

    2009-11-20

    We have reported isolation and characterization of the prostate-specific and androgen-regulated PrLZ gene abnormally expressed in prostate cancer. PrLZ is a potential biomarker for prostate cancer and a candidate oncogene promoting cell proliferation and survival in prostate cancer cells. A full delineation of the PrLZ gene and its gene products may provide clues to the mechanisms regulating its expression and function. In this report, we identified three additional exons in the PrLZ gene and recognized five transcript variants from alternative splicing that could be detected by RT-PCR and Western blotting. Structural comparison demonstrated that the PrLZ proteins are highly conserved among species. PrLZ contains multiple potential sites for interaction with other proteins. We used mammalian two-hybrid assays to demonstrate that PrLZ isoforms interact with 14-3-3 proteins, and multiple sites in the PrLZ may be involved in the interaction. Alternative splicing may contribute to abnormally enhanced PrLZ levels in prostate cancer, and interaction with 14-3-3 proteins may be a mechanism by which PrLZ promotes cell proliferation and survival during prostate cancer development and progression. This information is a valuable addition to the investigation of the oncogenic properties of the PrLZ gene.

  2. Specific interactions with TBP and TFIIB in vitro suggest that 14-3-3 proteins may participate in the regulation of transcription when part of a DNA binding complex.

    PubMed

    Pan, S; Sehnke, P C; Ferl, R J; Gurley, W B

    1999-08-01

    The 14-3-3 family of multifunctional proteins is highly conserved among animals, plants, and yeast. Several studies have shown that these proteins are associated with a G-box DNA binding complex and are present in the nucleus in several plant and animal species. In this study, 14-3-3 proteins are shown to bind the TATA box binding protein (TBP), transcription factor IIB (TFIIB), and the human TBP-associated factor hTAF(II)32 in vitro but not hTAF(II)55. The interactions with TBP and TFIIB were highly specific, requiring amino acid residues in the box 1 domain of the 14-3-3 protein. These interactions do not require formation of the 14-3-3 dimer and are not dependent on known 14-3-3 recognition motifs containing phosphoserine. The 14-3-3-TFIIB interaction appears to occur within the same domain of TFIIB that binds the human herpes simplex virus transcriptional activator VP16, because VP16 and 14-3-3 were able to compete for interaction with TFIIB in vitro. In a plant transient expression system, 14-3-3 was able to activate GAL4-dependent beta-glucuronidase reporter gene expression at low levels when translationally fused with the GAL4 DNA binding domain. The in vitro binding with general transcription factors TBP and TFIIB together with its nuclear location provide evidence supporting a role for 14-3-3 proteins as transcriptional activators or coactivators when part of a DNA binding complex. PMID:10449590

  3. Spinach 14-3-3 protein interacts with the plasma membrane H(+)-ATPase and nitrate reductase in response to excess nitrate stress.

    PubMed

    Xu, Huini; Zhao, Xiuling; Guo, Chuanlong; Chen, Limei; Li, Kunzhi

    2016-09-01

    To investigate the function of 14-3-3 protein in response to excess nitrate stress, a 14-3-3 protein, designated as So14-3-3, was isolated from spinach. Phylogenetic analysis demonstrated that So14-3-3 belongs to non-ε group of 14-3-3 superfamily. Real time-quantitative RT-PCR and western blot analysis showed that So14-3-3 was induced by excess nitrate stress in spinach roots and leaves. After nitrate treatment, the phosphorylated H(+)-ATPase and nitrate reductase (NR) increased and decreased respectively. Co-Immunoprecipitation (Co-IP) suggested that the interaction of So14-3-3 with the phosphorylated H(+)-ATPase enhanced, but reduced with phosphorylated NR in spinach roots after nitrate treatment. Besides, 5 proteins interacted with So14-3-3 were found by Co-IP and LC-MS/MS analysis. So14-3-3 overexpressing transgenic tobacco plants showed enhanced tolerance to nitrate treatment at the germination and young seedlings stage. The transgenic plants showed longer root length, lower malondialdehyde (MDA), H2O2, protein carbonyl contents, relatively higher soluble sugar and protein contents, than the WT plants after nitrate treatment. The phosphorylation levels of H(+)-ATPase in transgenic plants were higher than the WT plants after nitrate treatment, whereas NR were lower. Additionally, in transgenic plants, the interaction of So14-3-3 with phosphorylated H(+)-ATPase and NR increased and decreased more than the WT plants under nitrate stress, leading to higher H(+)-ATPase and NR activities in transgenic plants. These data suggested that So14-3-3 might be involved in nitrate stress response by interacting with H(+)-ATPase and NR. PMID:27161584

  4. Ablation of the 14-3-3gamma Protein Results in Neuronal Migration Delay and Morphological Defects in the Developing Cerebral Cortex.

    PubMed

    Wachi, Tomoka; Cornell, Brett; Marshall, Courtney; Zhukarev, Vladimir; Baas, Peter W; Toyo-oka, Kazuhito

    2016-06-01

    14-3-3 proteins are ubiquitously-expressed and multifunctional proteins. There are seven isoforms in mammals with a high level of homology, suggesting potential functional redundancy. We previously found that two of seven isoforms, 14-3-3epsilon and 14-3-3zeta, are important for brain development, in particular, radial migration of pyramidal neurons in the developing cerebral cortex. In this work, we analyzed the function of another isoform, the protein 14-3-3gamma, with respect to neuronal migration in the developing cortex. We found that in utero 14-3-3gamma-deficiency resulted in delays in neuronal migration as well as morphological defects. Migrating neurons deficient in 14-3-3gamma displayed a thicker leading process stem, and the basal ends of neurons were not able to reach the boundary between the cortical plate and the marginal zone. Consistent with the results obtained from in utero electroporation, time-lapse live imaging of brain slices revealed that the ablation of the 14-3-3gamma proteins in pyramidal neurons slowed down their migration. In addition, the 14-3-3gamma deficient neurons showed morphological abnormalities, including increased multipolar neurons with a thicker leading processes stem during migration. These results indicate that the 14-3-3gamma proteins play an important role in radial migration by regulating the morphology of migrating neurons in the cerebral cortex. The findings underscore the pathological phenotypes of brain development associated with the disruption of different 14-3-3 proteins and will advance the preclinical data regarding disorders caused by neuronal migration defects.

  5. The 14-3-3 protein interacts directly with the C-terminal region of the plant plasma membrane H(+)-ATPase.

    PubMed Central

    Jahn, T; Fuglsang, A T; Olsson, A; Brüntrup, I M; Collinge, D B; Volkmann, D; Sommarin, M; Palmgren, M G; Larsson, C

    1997-01-01

    Accumulating evidence suggests that 14-3-3 proteins are involved in the regulation of plant plasma membrane H(+)-ATPase activity. However, it is not known whether the 14-3-3 protein interacts directly or indirectly with the H(+)-ATPase. In this study, detergent-solubilized plasma membrane H(+)-ATPase isolated from fusicoccin-treated maize shoots was copurified with the 14-3-3 protein (as determined by protein gel blotting), and the H(+)-ATPase was recovered in an activated state. In the absence of fusicoccin treatment, H(+)-ATPase and the 14-3-3 protein were well separated, and the H(+)-ATPase was recovered in a nonactivated form. Trypsin treatment removed the 10-kD C-terminal region from the H(+)-ATPase as well as the 14-3-3 protein. Using the yeast two-hybrid system, we could show a direct interaction between Arabidopsis 14-3-3 GF14-phi and the last 98 C-terminal amino acids of the Arabidopsis AHA2 plasma membrane H(+)-ATPase. We propose that the 14-3-3 protein is a natural ligand of the plasma membrane H(+)-ATPase, regulating proton pumping by displacing the C-terminal autoinhibitory domain of the H(+)-ATPase. PMID:9368417

  6. Cofilin regulator 14-3-3zeta is an evolutionarily conserved protein required for phagocytosis and microbial resistance.

    PubMed

    Ulvila, Johanna; Vanha-aho, Leena-Maija; Kleino, Anni; Vähä-Mäkilä, Mari; Vuoksio, Milka; Eskelinen, Sinikka; Hultmark, Dan; Kocks, Christine; Hallman, Mikko; Parikka, Mataleena; Rämet, Mika

    2011-05-01

    Phagocytosis is an ancient cellular process that plays an important role in host defense. In Drosophila melanogaster phagocytic, macrophage-like hemocytes recognize and ingest microbes. We performed an RNAi-based in vitro screen in the Drosophila hemocyte cell line S2 and identified Abi, cpa, cofilin regulator 14-3-3ζ, tlk, CG2765, and CG15609 as mediators of bacterial phagocytosis. Of these identified genes, 14-3-3ζ had an evolutionarily conserved role in phagocytosis: bacterial phagocytosis was compromised when 14-3-3ζ was targeted with RNAi in primary Drosophila hemocytes and when the orthologous genes Ywhab and Ywhaz were silenced in zebrafish and mouse RAW 264.7 cells, respectively. In Drosophila and zebrafish infection models, 14-3-3ζ was required for resistance against Staphylococcus aureus. We conclude that 14-3-3ζ is essential for phagocytosis and microbial resistance in insects and vertebrates. PMID:21208897

  7. Identification of a functional splice variant of 14-3-3E1 in rainbow trout

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 14-3-3 proteins are a family of regulatory proteins involved in diverse cellular processes. The presence of 14-3-3 isoforms and the diversity of cellular processes regulated by 14-3-3 isoforms suggest functional specificity of the isoforms. In this study, we report the identification and charact...

  8. Association of 14-3-3 Proteins to β1-Adrenergic Receptors Modulates Kv11.1 K+ Channel Activity in Recombinant Systems

    PubMed Central

    Tutor, Antonio S.; Delpón, Eva; Caballero, Ricardo; Gómez, Ricardo; Núñez, Lucía; Vaquero, Miguel; Tamargo, Juan; Penela, Petronila

    2006-01-01

    We identify a new mechanism for the β1-adrenergic receptor (β1AR)-mediated regulation of human ether-a-go-go–related gene (HERG) potassium channel (Kv11.1). We find that the previously reported modulatory interaction between Kv11.1 channels and 14-3-3ε proteins is competed by wild type β1AR by means of a novel interaction between this receptor and 14-3-3ε. The association between β1AR and 14-3-3ε is increased by agonist stimulation in both transfected cells and heart tissue and requires cAMP-dependent protein kinase (PKA) activity. The β1AR/14-3-3ε association is direct, since it can be recapitulated using purified 14-3-3ε and β1AR fusion proteins and is abolished in cells expressing β1AR phosphorylation–deficient mutants. Biochemical and electrophysiological studies of the effects of isoproterenol on Kv11.1 currents recorded using the whole-cell patch clamp demonstrated that β1AR phosphorylation–deficient mutants do not recruit 14-3-3ε away from Kv11.1 and display a markedly altered agonist-mediated modulation of Kv11.1 currents compared with wild-type β1AR, increasing instead of inhibiting current amplitudes. Interestingly, such differential modulation is not observed in the presence of 14-3-3 inhibitors. Our results suggest that the dynamic association of 14-3-3 proteins to both β1AR and Kv11.1 channels is involved in the adrenergic modulation of this critical regulator of cardiac repolarization and refractoriness. PMID:16914520

  9. Interaction of Ubinuclein-1, a nuclear and adhesion junction protein, with the 14-3-3 epsilon protein in epithelial cells: implication of the PKA pathway.

    PubMed

    Conti, Audrey; Sueur, Charlotte; Lupo, Julien; Brazzolotto, Xavier; Burmeister, Wim P; Manet, Evelyne; Gruffat, Henri; Morand, Patrice; Boyer, Véronique

    2013-03-01

    Ubinuclein-1 is a NACos (Nuclear and Adhesion junction Complex components) protein which shuttles between the nucleus and tight junctions, but its function in the latter is not understood. Here, by co-immunoprecipitation and confocal analysis, we show that Ubinuclein-1 interacts with the 14-3-3ɛ protein both in HT29 colon cells, and AGS gastric cells. This interaction is mediated by an Ubinuclein-1 phosphoserine motif. We show that the arginine residues (R56, R60 and R132) which form the 14-3-3ɛ ligand binding site are responsible for the binding of 14-3-3ɛ to phosphorylated Ubinuclein-1. Furthermore, we demonstrate that in vitro Ubinuclein-1 can be directly phosphorylated by cAMP-dependent protein kinase A. This in vitro phosphorylation allows binding of wildtype 14-3-3ɛ. Moreover, treatment of the cells with inhibitors of the cAMP-dependent protein kinase, KT5720 or H89, modifies the subcellular localization of Ubinuclein-1. Indeed, KT5720 and H89 greatly increase the staining of Ubinuclein-1 at the tight junctions in AGS gastric cells. In the presence of the kinase inhibitor KT5720, the amount of Ubinuclein-1 in the NP40 insoluble fraction is increased, together with actin. Moreover, treatment of the cells with KT5720 or H89 induces the concentration of Ubinuclein-1 at tricellular intersections of MDCK cells. Taken together, our findings demonstrate novel cell signaling trafficking by Ubinuclein-1 via association with 14-3-3ɛ following Ubinuclein-1 phosphorylation by the cAMP-dependent protein kinase-A.

  10. Nuclear localization and interaction of RolB with plant 14-3-3 proteins correlates with induction of adventitious roots by the oncogene rolB.

    PubMed

    Moriuchi, Hiroshi; Okamoto, Chiho; Nishihama, Ryuichi; Yamashita, Ichiro; Machida, Yasunori; Tanaka, Nobukazu

    2004-04-01

    The rooting-locus gene B (rolB) on the T-DNA of the root-inducing (Ri) plasmid in Agrobacterium rhizogenes is responsible for the induction of transformed adventitious roots, although the root induction mechanism is unknown. We report here that the RolB protein of pRi1724 (1724RolB) is associated with Nicotianatabacum14-3-3-like protein omegaII (Nt14-3-3 omegaII) in tobacco bright yellow (BY)-2 cells. Nt14-3-3 omegaII directly interacts with 1724RolB protein. Green fluorescent protein (GFP)-fused 1724RolB is localized to the nucleus. GFP-fused mutant 1724RolB proteins having a deletion or amino acid substitution are unable to interact with Nt14-3-3 omegaII and also show impaired nuclear localization. Moreover, these 1724RolB mutants show decreased capacity for adventitious root induction. These results suggest that adventitious root induction by 1724RolB protein correlates with its interaction with Nt14-3-3 omegaII and the nuclear localization of 1724RolB protein. PMID:15078329

  11. Phosphorylation of Thr-948 at the C terminus of the plasma membrane H(+)-ATPase creates a binding site for the regulatory 14-3-3 protein.

    PubMed Central

    Svennelid, F; Olsson, A; Piotrowski, M; Rosenquist, M; Ottman, C; Larsson, C; Oecking, C; Sommarin, M

    1999-01-01

    The plant plasma membrane H(+)-ATPase is activated by the binding of 14-3-3 protein to the C-terminal region of the enzyme, thus forming an H(+)-ATPase-14-3-3 complex that can be stabilized by the fungal toxin fusicoccin. A novel 14-3-3 binding motif, QQXYpT(948)V, at the C terminus of the H(+)-ATPase is identified and characterized, and the protein kinase activity in the plasma membrane fraction that phosphorylates this threonine residue in the H(+)-ATPase is identified. A synthetic peptide that corresponds to the C-terminal 16 amino acids of the H(+)-ATPase and that is phosphorylated on Thr-948 prevents the in vitro activation of the H(+)-ATPase that is obtained in the presence of recombinant 14-3-3 and fusicoccin. Furthermore, binding of 14-3-3 to the H(+)-ATPase in the absence of fusicoccin is absolutely dependent on the phosphorylation of Thr-948, whereas binding of 14-3-3 in the presence of fusicoccin occurs independently of phosphorylation but still involves the C-terminal motif YTV. Finally, by complementing yeast that lacks its endogenous H(+)-ATPase with wild-type and mutant forms of the Nicotiana plumbaginifolia H(+)-ATPase isoform PMA2, we provide physiological evidence for the importance of the phosphothreonine motif in 14-3-3 binding and, hence, in the activation of the H(+)-ATPase in vivo. Indeed, replacing Thr-948 in the plant H(+)-ATPase with alanine is lethal because this mutant fails to functionally replace the yeast H(+)-ATPase. Considering the importance of the motif QQXYpTV for 14-3-3 binding and yeast growth, this motif should be of vital importance for regulating H(+)-ATPase activity in the plant and thus for plant growth. PMID:10590165

  12. Genetic variations of 14-3-3E1 isoform in rainbow trout (Oncorhynchus mykiss)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The highly conserved family of 14-3-3 proteins functions in the regulation of a wide variety of cellular processes. The presence of 14-3-3 isoforms and the diversity of cellular processes regulated by 14-3-3 isoforms suggest functional specificity of the isoforms. Several studies have observed diffe...

  13. 14-3-3 proteins play a role in the cell cycle by shielding cdt2 from ubiquitin-mediated degradation.

    PubMed

    Dar, Ashraf; Wu, David; Lee, Nicholas; Shibata, Etsuko; Dutta, Anindya

    2014-11-01

    Cdt2 is the substrate recognition adaptor of CRL4(Cdt2) E3 ubiquitin ligase complex and plays a pivotal role in the cell cycle by mediating the proteasomal degradation of Cdt1 (DNA replication licensing factor), p21 (cyclin-dependent kinase [CDK] inhibitor), and Set8 (histone methyltransferase) in S phase. Cdt2 itself is attenuated by SCF(FbxO11)-mediated proteasomal degradation. Here, we report that 14-3-3 adaptor proteins interact with Cdt2 phosphorylated at threonine 464 (T464) and shield it from polyubiquitination and consequent proteasomal degradation. Depletion of 14-3-3 proteins promotes the interaction of FbxO11 with Cdt2. Overexpressing 14-3-3 proteins shields Cdt2 that has a phospho-mimicking mutation (T464D [change of T to D at position 464]) but not Cdt2(T464A) from ubiquitination. Furthermore, the delay of the cell cycle in the G2/M phase and decrease in cell proliferation seen upon depletion of 14-3-3γ is partly due to the accumulation of the CRL4(Cdt2) substrate, Set8 methyltransferase. Therefore, the stabilization of Cdt2 is an important function of 14-3-3 proteins in cell cycle progression.

  14. 14-3-3 Proteins Play a Role in the Cell Cycle by Shielding Cdt2 from Ubiquitin-Mediated Degradation

    PubMed Central

    Dar, Ashraf; Wu, David; Lee, Nicholas; Shibata, Etsuko

    2014-01-01

    Cdt2 is the substrate recognition adaptor of CRL4Cdt2 E3 ubiquitin ligase complex and plays a pivotal role in the cell cycle by mediating the proteasomal degradation of Cdt1 (DNA replication licensing factor), p21 (cyclin-dependent kinase [CDK] inhibitor), and Set8 (histone methyltransferase) in S phase. Cdt2 itself is attenuated by SCFFbxO11-mediated proteasomal degradation. Here, we report that 14-3-3 adaptor proteins interact with Cdt2 phosphorylated at threonine 464 (T464) and shield it from polyubiquitination and consequent proteasomal degradation. Depletion of 14-3-3 proteins promotes the interaction of FbxO11 with Cdt2. Overexpressing 14-3-3 proteins shields Cdt2 that has a phospho-mimicking mutation (T464D [change of T to D at position 464]) but not Cdt2(T464A) from ubiquitination. Furthermore, the delay of the cell cycle in the G2/M phase and decrease in cell proliferation seen upon depletion of 14-3-3γ is partly due to the accumulation of the CRL4Cdt2 substrate, Set8 methyltransferase. Therefore, the stabilization of Cdt2 is an important function of 14-3-3 proteins in cell cycle progression. PMID:25154416

  15. Molecular Characterization of the 14-3-3 Gene Family in Brachypodium distachyon L. Reveals High Evolutionary Conservation and Diverse Responses to Abiotic Stresses.

    PubMed

    Cao, Hui; Xu, Yuxing; Yuan, Linlin; Bian, Yanwei; Wang, Lihui; Zhen, Shoumin; Hu, Yingkao; Yan, Yueming

    2016-01-01

    The 14-3-3 gene family identified in all eukaryotic organisms is involved in a wide range of biological processes, particularly in resistance to various abiotic stresses. Here, we performed the first comprehensive study on the molecular characterization, phylogenetics, and responses to various abiotic stresses of the 14-3-3 gene family in Brachypodium distachyon L. A total of seven 14-3-3 genes from B. distachyon and 120 from five main lineages among 12 species were identified, which were divided into five well-conserved subfamilies. The molecular structure analysis showed that the plant 14-3-3 gene family is highly evolutionarily conserved, although certain divergence had occurred in different subfamilies. The duplication event investigation revealed that segmental duplication seemed to be the predominant form by which the 14-3-3 gene family had expanded. Moreover, seven critical amino acids were detected, which may contribute to functional divergence. Expression profiling analysis showed that BdGF14 genes were abundantly expressed in the roots, but showed low expression in the meristems. All seven BdGF14 genes showed significant expression changes under various abiotic stresses, including heavy metal, phytohormone, osmotic, and temperature stresses, which might play important roles in responses to multiple abiotic stresses mainly through participating in ABA-dependent signaling and reactive oxygen species-mediated MAPK cascade signaling pathways. In particular, BdGF14 genes generally showed upregulated expression in response to multiple stresses of high temperature, heavy metal, abscisic acid (ABA), and salicylic acid (SA), but downregulated expression under H2O2, NaCl, and polyethylene glycol (PEG) stresses. Meanwhile, dynamic transcriptional expression analysis of BdGF14 genes under longer treatments with heavy metals (Cd(2+), Cr(3+), Cu(2+), and Zn(2+)) and phytohormone (ABA) and recovery revealed two main expression trends in both roots and leaves: up

  16. Molecular Characterization of the 14-3-3 Gene Family in Brachypodium distachyon L. Reveals High Evolutionary Conservation and Diverse Responses to Abiotic Stresses

    PubMed Central

    Cao, Hui; Xu, Yuxing; Yuan, Linlin; Bian, Yanwei; Wang, Lihui; Zhen, Shoumin; Hu, Yingkao; Yan, Yueming

    2016-01-01

    The 14-3-3 gene family identified in all eukaryotic organisms is involved in a wide range of biological processes, particularly in resistance to various abiotic stresses. Here, we performed the first comprehensive study on the molecular characterization, phylogenetics, and responses to various abiotic stresses of the 14-3-3 gene family in Brachypodium distachyon L. A total of seven 14-3-3 genes from B. distachyon and 120 from five main lineages among 12 species were identified, which were divided into five well-conserved subfamilies. The molecular structure analysis showed that the plant 14-3-3 gene family is highly evolutionarily conserved, although certain divergence had occurred in different subfamilies. The duplication event investigation revealed that segmental duplication seemed to be the predominant form by which the 14-3-3 gene family had expanded. Moreover, seven critical amino acids were detected, which may contribute to functional divergence. Expression profiling analysis showed that BdGF14 genes were abundantly expressed in the roots, but showed low expression in the meristems. All seven BdGF14 genes showed significant expression changes under various abiotic stresses, including heavy metal, phytohormone, osmotic, and temperature stresses, which might play important roles in responses to multiple abiotic stresses mainly through participating in ABA-dependent signaling and reactive oxygen species-mediated MAPK cascade signaling pathways. In particular, BdGF14 genes generally showed upregulated expression in response to multiple stresses of high temperature, heavy metal, abscisic acid (ABA), and salicylic acid (SA), but downregulated expression under H2O2, NaCl, and polyethylene glycol (PEG) stresses. Meanwhile, dynamic transcriptional expression analysis of BdGF14 genes under longer treatments with heavy metals (Cd2+, Cr3+, Cu2+, and Zn2+) and phytohormone (ABA) and recovery revealed two main expression trends in both roots and leaves: up-down and up

  17. Characterization of 14-3-3 isoforms expressed in the Echinococcus granulosus pathogenic larval stage.

    PubMed

    Teichmann, Aline; Vargas, Daiani M; Monteiro, Karina M; Meneghetti, Bruna V; Dutra, Cristine S; Paredes, Rodolfo; Galanti, Norbel; Zaha, Arnaldo; Ferreira, Henrique B

    2015-04-01

    The 14-3-3 protein family of eukaryotic regulators was studied in Echinococcus granulosus, the causative agent of cystic hydatid disease. These proteins mediate important cellular processes in eukaryotes and are expected to play important roles in parasite biology. Six isoforms of E. granulosus 14-3-3 genes and proteins (Eg14-3-3.1-6) were analyzed, and their phylogenetic relationships were established with bona fide 14-3-3 orthologous proteins from eukaryotic species. Eg14-3-3 isoforms with previous evidence of expression (Eg14-3-3.1-4) in E. granulosus pathogenic larval stage (metacestode) were cloned, and recombinant proteins were used for functional studies. These protein isoforms were detected in different components of E. granulosus metacestode, including interface components with the host. The roles that are played by Eg14-3-3 proteins in parasite biology were inferred from the repertoires of interacting proteins with each isoform, as assessed by gel overlay, cross-linking, and affinity chromatography assays. A total of 95 Eg14-3-3 protein ligands were identified by mass spectrometry. Eg14-3-3 isoforms have shared partners (44 proteins), indicating some overlapping functions; however, they also bind exclusive partners (51 proteins), suggesting Eg14-3-3 functional specialization. These ligand repertoires indicate the involvement of Eg14-3-3 proteins in multiple biochemical pathways in the E. granulosus metacestode and note some degree of isoform specialization. PMID:25748451

  18. Characterization of 14-3-3 isoforms expressed in the Echinococcus granulosus pathogenic larval stage.

    PubMed

    Teichmann, Aline; Vargas, Daiani M; Monteiro, Karina M; Meneghetti, Bruna V; Dutra, Cristine S; Paredes, Rodolfo; Galanti, Norbel; Zaha, Arnaldo; Ferreira, Henrique B

    2015-04-01

    The 14-3-3 protein family of eukaryotic regulators was studied in Echinococcus granulosus, the causative agent of cystic hydatid disease. These proteins mediate important cellular processes in eukaryotes and are expected to play important roles in parasite biology. Six isoforms of E. granulosus 14-3-3 genes and proteins (Eg14-3-3.1-6) were analyzed, and their phylogenetic relationships were established with bona fide 14-3-3 orthologous proteins from eukaryotic species. Eg14-3-3 isoforms with previous evidence of expression (Eg14-3-3.1-4) in E. granulosus pathogenic larval stage (metacestode) were cloned, and recombinant proteins were used for functional studies. These protein isoforms were detected in different components of E. granulosus metacestode, including interface components with the host. The roles that are played by Eg14-3-3 proteins in parasite biology were inferred from the repertoires of interacting proteins with each isoform, as assessed by gel overlay, cross-linking, and affinity chromatography assays. A total of 95 Eg14-3-3 protein ligands were identified by mass spectrometry. Eg14-3-3 isoforms have shared partners (44 proteins), indicating some overlapping functions; however, they also bind exclusive partners (51 proteins), suggesting Eg14-3-3 functional specialization. These ligand repertoires indicate the involvement of Eg14-3-3 proteins in multiple biochemical pathways in the E. granulosus metacestode and note some degree of isoform specialization.

  19. Tomato 14-3-3 protein TFT7 interacts with a MAP kinase kinase to regulate immunity-associated programmed cell death mediated by diverse disease resistance proteins.

    PubMed

    Oh, Chang-Sik; Martin, Gregory B

    2011-04-22

    Programmed cell death (PCD) associated with immunity is triggered when a plant disease resistance (R) protein recognizes a corresponding pathogen virulence protein. In tomato, detection by the host Pto kinase of the Pseudomonas syringae proteins AvrPto or AvrPtoB causes localized PCD. Previously, we reported that both MAPKKKα (mitogen-activated protein kinase kinase kinase) and the tomato 14-3-3 protein 7 (TFT7) positively regulate Pto-mediated PCD in tomato and Nicotiana benthamiana. In addition, in contrast to MAPKKKα, TFT7 is required for PCD mediated by four other R proteins. Here we investigate why TFT7 is required for PCD induced by diverse R proteins in plants. We discovered that a MAPKK, SlMKK2, which acts downstream of SlMAPKKKα, also interacts with TFT7 in plant cells. Gene silencing experiments revealed that the orthologous genes of both SlMKK2 and TFT7 in N. benthamiana are required for PCD mediated by the same set of R proteins. SlMKK2 and its orthologs contain a 14-3-3 binding site in their N terminus, and Thr(33) in this site is required for interaction with TFT7 in vivo. Like the structurally similar human 14-3-3ε protein, TFT7 forms a homodimer in vivo. Because TFT7 interacts with both SlMAPKKKα and SlMKK2 and also forms a homodimer, we propose that TFT7 may coordinately recruit these client proteins for efficient signal transfer, leading to PCD induction. PMID:21378171

  20. Induction of androgen formation in the male by a TAT-VDAC1 fusion peptide blocking 14-3-3ɛ protein adaptor and mitochondrial VDAC1 interactions.

    PubMed

    Aghazadeh, Yasaman; Martinez-Arguelles, Daniel B; Fan, Jinjiang; Culty, Martine; Papadopoulos, Vassilios

    2014-10-01

    Low testosterone (T), a major cause of male hypogonadism and infertility, is linked to mood changes, fatigue, osteoporosis, reduced bone-mass index, and aging. The treatment of choice, T replacement therapy, has been linked with increased risk for prostate cancer and luteinizing hormone (LH) suppression, and shown to lead to infertility, cardiovascular diseases, and obesity. Alternate methods to induce T with lower side effects are desirable. In search of the mechanisms regulating T synthesis in the testes, we identified the 14-3-3ɛ protein adaptor as a negative regulator of steroidogenesis. Steroidogenesis begins in mitochondria. 14-3-3ɛ interacts with the outer mitochondrial membrane voltage-dependent anion channel (VDAC1) protein, forming a scaffold that limits the availability of cholesterol for steroidogenesis. We report the development of a tool able to induce endogenous T formation. Peptides able to penetrate testes conjugated to 14-3-3ɛ site of interaction with VDAC1 blocked 14-3-3ɛ-VDAC1 interactions while at the same time increased VDAC1-translocator protein (18 kDa) interactions that induced steroid formation in rat testes, leading to increased serum T levels. These peptides rescued intratesticular and serum T formation in adult male rats treated with gonadotropin-releasing hormone antagonist, which dampened LH and T production.

  1. Protein Kinase CK2 Interacts at the Neuromuscular Synapse with Rapsyn, Rac1, 14-3-3γ, and Dok-7 Proteins and Phosphorylates the Latter Two*

    PubMed Central

    Herrmann, Dustin; Straubinger, Marion; Hashemolhosseini, Said

    2015-01-01

    Previously, we demonstrated that the protein kinase CK2 associates with and phosphorylates the receptor tyrosine kinase MuSK (muscle specific receptor tyrosine kinase) at the neuromuscular junction (NMJ), thereby preventing fragmentation of the NMJs (Cheusova, T., Khan, M. A., Schubert, S. W., Gavin, A. C., Buchou, T., Jacob, G., Sticht, H., Allende, J., Boldyreff, B., Brenner, H. R., and Hashemolhosseini, S. (2006) Genes Dev. 20, 1800–1816). Here, we asked whether CK2 interacts with other proteins involved in processes at the NMJ, which would be consistent with the previous observation that CK2 appears enriched at the NMJ. We identified the following proteins to interact with protein kinase CK2: (a) the α and β subunits of the nicotinic acetylcholine receptors with weak interaction, (b) dishevelled (Dsh), and (c) another four proteins, Rapsyn, Rac1, 14-3-3γ, and Dok-7, with strong interaction. CK2 phosphorylated 14-3-3γ at serine residue 235 and Dok-7 at several serine residues but does not phosphorylate Rapsyn or Rac1. Furthermore, phosphomimetic Dok-7 mutants aggregated nicotinic acetylcholine receptors in C2C12 myotubes with significantly higher frequency than wild type Dok-7. Additionally, we mapped the interacting epitopes of all four binding partners to CK2 and thereby gained insights into the potential role of the CK2/Rapsyn interaction. PMID:26198629

  2. Protein kinase CK2 interacts at the neuromuscular synapse with Rapsyn, Rac1, 14-3-3γ, and Dok-7 proteins and phosphorylates the latter two.

    PubMed

    Herrmann, Dustin; Straubinger, Marion; Hashemolhosseini, Said

    2015-09-11

    Previously, we demonstrated that the protein kinase CK2 associates with and phosphorylates the receptor tyrosine kinase MuSK (muscle specific receptor tyrosine kinase) at the neuromuscular junction (NMJ), thereby preventing fragmentation of the NMJs (Cheusova, T., Khan, M. A., Schubert, S. W., Gavin, A. C., Buchou, T., Jacob, G., Sticht, H., Allende, J., Boldyreff, B., Brenner, H. R., and Hashemolhosseini, S. (2006) Genes Dev. 20, 1800-1816). Here, we asked whether CK2 interacts with other proteins involved in processes at the NMJ, which would be consistent with the previous observation that CK2 appears enriched at the NMJ. We identified the following proteins to interact with protein kinase CK2: (a) the α and β subunits of the nicotinic acetylcholine receptors with weak interaction, (b) dishevelled (Dsh), and (c) another four proteins, Rapsyn, Rac1, 14-3-3γ, and Dok-7, with strong interaction. CK2 phosphorylated 14-3-3γ at serine residue 235 and Dok-7 at several serine residues but does not phosphorylate Rapsyn or Rac1. Furthermore, phosphomimetic Dok-7 mutants aggregated nicotinic acetylcholine receptors in C2C12 myotubes with significantly higher frequency than wild type Dok-7. Additionally, we mapped the interacting epitopes of all four binding partners to CK2 and thereby gained insights into the potential role of the CK2/Rapsyn interaction.

  3. Proteomic analysis of human norepinephrine transporter complexes reveals associations with protein phosphatase 2A anchoring subunit and 14-3-3 proteins

    SciTech Connect

    Sung, Uhna; Jennings, Jennifer L.; Link, Andrew J.; Blakely, Randy D.; E-mail: andy.blakely@vanderbilt.edu

    2005-08-05

    The norepinephrine transporter (NET) terminates noradrenergic signals by clearing released NE at synapses. NET regulation by receptors and intracellular signaling pathways is supported by a growing list of associated proteins including syntaxin1A, protein phosphatase 2A (PP2A) catalytic subunit (PP2A-C), PICK1, and Hic-5. In the present study, we sought evidence for additional partnerships by mass spectrometry-based analysis of proteins co-immunoprecipitated with human NET (hNET) stably expressed in a mouse noradrenergic neuroblastoma cell line. Our initial proteomic analyses reveal multiple peptides derived from hNET, peptides arising from the mouse PP2A anchoring subunit (PP2A-Ar) and peptides derived from 14-3-3 proteins. We verified physical association of NET with PP2A-Ar via co-immunoprecipitation studies using mouse vas deferens extracts and with 14-3-3 via a fusion pull-down approach, implicating specifically the hNET NH{sub 2}-terminus for interactions. The transporter complexes described likely support mechanisms regulating transporter activity, localization, and trafficking.

  4. Proteomics Profiling Reveals Carbohydrate Metabolic Enzymes and 14-3-3 Proteins Play Important Roles for Starch Accumulation during Cassava Root Tuberization

    PubMed Central

    Wang, Xuchu; Chang, Lili; Tong, Zheng; Wang, Dongyang; Yin, Qi; Wang, Dan; Jin, Xiang; Yang, Qian; Wang, Liming; Sun, Yong; Huang, Qixing; Guo, Anping; Peng, Ming

    2016-01-01

    Cassava is one of the most important root crops as a reliable source of food and carbohydrates. Carbohydrate metabolism and starch accumulation in cassava storage root is a cascade process that includes large amounts of proteins and cofactors. Here, comparative proteomics were conducted in cassava root at nine developmental stages. A total of 154 identified proteins were found to be differentially expressed during starch accumulation and root tuberization. Many enzymes involved in starch and sucrose metabolism were significantly up-regulated, and functional classification of the differentially expressed proteins demonstrated that the majority were binding-related enzymes. Many proteins were took part in carbohydrate metabolism to produce energy. Among them, three 14-3-3 isoforms were induced to be clearly phosphorylated during storage root enlargement. Overexpression of a cassava 14-3-3 gene in Arabidopsis thaliana confirmed that the older leaves of these transgenic plants contained higher sugar and starch contents than the wild-type leaves. The 14-3-3 proteins and their binding enzymes may play important roles in carbohydrate metabolism and starch accumulation during cassava root tuberization. These results not only deepened our understanding of the tuberous root proteome, but also uncovered new insights into carbohydrate metabolism and starch accumulation during cassava root enlargement. PMID:26791570

  5. Proteomics Profiling Reveals Carbohydrate Metabolic Enzymes and 14-3-3 Proteins Play Important Roles for Starch Accumulation during Cassava Root Tuberization.

    PubMed

    Wang, Xuchu; Chang, Lili; Tong, Zheng; Wang, Dongyang; Yin, Qi; Wang, Dan; Jin, Xiang; Yang, Qian; Wang, Liming; Sun, Yong; Huang, Qixing; Guo, Anping; Peng, Ming

    2016-01-21

    Cassava is one of the most important root crops as a reliable source of food and carbohydrates. Carbohydrate metabolism and starch accumulation in cassava storage root is a cascade process that includes large amounts of proteins and cofactors. Here, comparative proteomics were conducted in cassava root at nine developmental stages. A total of 154 identified proteins were found to be differentially expressed during starch accumulation and root tuberization. Many enzymes involved in starch and sucrose metabolism were significantly up-regulated, and functional classification of the differentially expressed proteins demonstrated that the majority were binding-related enzymes. Many proteins were took part in carbohydrate metabolism to produce energy. Among them, three 14-3-3 isoforms were induced to be clearly phosphorylated during storage root enlargement. Overexpression of a cassava 14-3-3 gene in Arabidopsis thaliana confirmed that the older leaves of these transgenic plants contained higher sugar and starch contents than the wild-type leaves. The 14-3-3 proteins and their binding enzymes may play important roles in carbohydrate metabolism and starch accumulation during cassava root tuberization. These results not only deepened our understanding of the tuberous root proteome, but also uncovered new insights into carbohydrate metabolism and starch accumulation during cassava root enlargement.

  6. A rare case of rapidly progressive dementia with elevated RT-QuIC and negative 14-3-3 and tau proteins.

    PubMed

    Trikamji, Bhavesh; Hamlin, Clive; Baldwin, Kelly J

    2016-05-01

    Creutzfeldt-Jakob disease (CJD) is characterized by rapidly progressing dementia with death usually occurring within 6 months. There is no verified disease-specific pre-mortem diagnostic test besides brain biopsy. We describe a 66 y old previously high functioning male who presented with a 5 month history of rapidly progressive dementia. Neurological examination revealed a score of 19/30 on MOCA testing. An extensive workup into various causes of dementia including electroencephalography and imaging studies was unremarkable. The cerebrospinal fluid was sent to National Prion Disease Center and it revealed elevated RT-QuIC levels with negative 14-3-3 and T tau proteins. Based on literature review, our case is one of few living subjects with elevated RT-QuIC levels and negative 14-3-3 and tau proteins. PMID:27249661

  7. 14-3-3 proteins regulate a cell-intrinsic switch from sonic hedgehog-mediated commissural axon attraction to repulsion after midline crossing.

    PubMed

    Yam, Patricia T; Kent, Christopher B; Morin, Steves; Farmer, W Todd; Alchini, Ricardo; Lepelletier, Léa; Colman, David R; Tessier-Lavigne, Marc; Fournier, Alyson E; Charron, Frédéric

    2012-11-21

    Axons must switch responsiveness to guidance cues during development for correct pathfinding. Sonic Hedgehog (Shh) attracts spinal cord commissural axons ventrally toward the floorplate. We show that after crossing the floorplate, commissural axons switch their response to Shh from attraction to repulsion, so that they are repelled anteriorly by a posterior-high/anterior-low Shh gradient along the longitudinal axis. This switch is recapitulated in vitro with dissociated commissural neurons as they age, indicating that the switch is intrinsic and time dependent. 14-3-3 protein inhibition converted Shh-mediated repulsion of aged dissociated neurons to attraction and prevented the correct anterior turn of postcrossing commissural axons in vivo, an effect mediated through PKA. Conversely, overexpression of 14-3-3 proteins was sufficient to drive the switch from Shh-mediated attraction to repulsion both in vitro and in vivo. Therefore, we identify a 14-3-3 protein-dependent mechanism for a cell-intrinsic temporal switch in the polarity of axon turning responses.

  8. The EFF-1A Cytoplasmic Domain Influences Hypodermal Cell Fusions in C. elegans But Is Not Dependent on 14-3-3 Proteins

    PubMed Central

    Shinn-Thomas, Jessica H.; del Campo, Jacob J.; Wang, Jianjun; Mohler, William A.

    2016-01-01

    Background Regulatory and biophysical mechanisms of cell-cell fusion are largely unknown despite the fundamental requirement for fused cells in eukaryotic development. Only two cellular fusogens that are not of clear recent viral origin have been identified to date, both in nematodes. One of these, EFF-1, is necessary for most cell fusions in Caenorhabditis elegans. Unregulated EFF-1 expression causes lethality due to ectopic fusion between cells not developmentally programmed to fuse, highlighting the necessity of tight fusogen regulation for proper development. Identifying factors that regulate EFF-1 and its paralog AFF-1 could lead to discovery of molecular mechanisms that control cell fusion upstream of the action of a membrane fusogen. Bioinformatic analysis of the EFF-1A isoform’s predicted cytoplasmic domain (endodomain) previously revealed two motifs that have high probabilities of interacting with 14-3-3 proteins when phosphorylated. Mutation of predicted phosphorylation sites within these motifs caused measurable loss of eff-1 gene function in cell fusion in vivo. Moreover, a human 14-3-3 isoform bound to EFF-1::GFP in vitro. We hypothesized that the two 14-3-3 proteins in C. elegans, PAR-5 and FTT-2, may regulate either localization or fusion-inducing activity of EFF-1. Methodology/Principal Findings Timing of fusion events was slightly but significantly delayed in animals unable to produce full-length EFF-1A. Yet, mutagenesis and live imaging showed that phosphoserines in putative 14-3-3 binding sites are not essential for EFF-1::GFP accumulation at the membrane contact between fusion partner cells. Moreover, although the EFF-1A endodomain was required for normal rates of eff-1-dependent epidermal cell fusions, reduced levels of FTT-2 and PAR-5 did not visibly affect the function of wild-type EFF-1 in the hypodermis. Conclusions/Significance Deletion of the EFF-1A endodomain noticeably affects the timing of hypodermal cell fusions in vivo. However

  9. An Analysis of CAF-1-interacting Proteins Reveals Dynamic and Direct Interactions with the KU Complex and 14-3-3 Proteins*

    PubMed Central

    Hoek, Maarten; Myers, Michael P.; Stillman, Bruce

    2011-01-01

    CAF-1 is essential in human cells for the de novo deposition of histones H3 and H4 at the DNA replication fork. Depletion of CAF-1 from various cell lines causes replication fork arrest, activation of the intra-S phase checkpoint, and global defects in chromatin structure. CAF-1 is also involved in coordinating inheritance of states of gene expression and in chromatin assembly following DNA repair. In this study, we generated cell lines expressing RNAi-resistant versions of CAF-1 and showed that the N-terminal 296 amino acids are dispensable for essential CAF-1 function in vivo. N-terminally truncated CAF-1 p150 was deficient in proliferating cell nuclear antigen (PCNA) binding, reinforcing the existence of two PCNA binding sites in human CAF-1, but the defect in PCNA binding had no effect on the recruitment of CAF-1 to chromatin after DNA damage or to resistance to DNA-damaging agents. Tandem affinity purification of CAF-1-interacting proteins under mild conditions revealed that CAF-1 was directly associated with the KU70/80 complex, part of the DNA-dependent protein kinase, and the phosphoserine/threonine-binding protein 14-3-3 ζ. CAF-1 was a substrate for DNA-dependent protein kinase, and the 14-3-3 interaction in vitro is dependent on DNA-dependent protein kinase phosphorylation. These results highlight that CAF-1 has prominent interactions with the DNA repair machinery but that the N terminus is dispensable for the role of CAF-1 in DNA replication- and repair-coupled chromatin assembly. PMID:21209461

  10. A Glycine soja 14-3-3 protein GsGF14o participates in stomatal and root hair development and drought tolerance in Arabidopsis thaliana.

    PubMed

    Sun, Xiaoli; Luo, Xiao; Sun, Mingzhe; Chen, Chao; Ding, Xiaodong; Wang, Xuedong; Yang, Shanshan; Yu, Qingyue; Jia, Bowei; Ji, Wei; Cai, Hua; Zhu, Yanming

    2014-01-01

    It is well established that 14-3-3 proteins are key regulators of multiple stress signal transduction cascades. However, the biological functions of soybean 14-3-3 proteins, especially in plant drought response, are not yet known. In this study, we characterized a Glycine soja 14-3-3 gene, GsGF14o, which is involved in plant development and drought response. GsGF14o expression was greatly induced by drought stress, as evidenced by the quantitative real-time PCR and β-glucuronidase (GUS) activity analysis. GsGF14o overexpression in Arabidopsis thaliana resulted in decreased drought tolerance during seed germination and seedling growth. Furthermore, silencing of AtGF14µ, the most homologous 14-3-3 gene of GsGF14o, led to enhanced drought tolerance at both the seed germination and seedling stage. Unexpectedly, GsGF14o transgenic lines showed reduced water loss and transpiration rates compared with wild-type plants, which was demonstrated to be the consequence of the decreased stomatal size. At the same time, the smaller stomata due to GsGF14o overexpression led to a relatively slow net photosynthesis rate, which led to a growth penalty under drought stress. We further demonstrated that GsGF14o overexpression caused deficits in root hair formation and development, and thereby reduced the water intake capacity of the transgenic root system. In addition, GsGF14o overexpression down-regulated the transcript levels of drought-responsive marker genes. Finally, we also investigated the tissue-specific accumulation of GsGF14o by using a GUS activity assay. Collectively, the results presented here confirm that GsGF14o plays a dual role in drought stress responses through its involvement in the regulation of stomatal size and root hair development.

  11. Involvement of 14-3-3 protein GRF9 in root growth and response under polyethylene glycol-induced water stress.

    PubMed

    He, Yuchi; Wu, Jingjing; Lv, Bing; Li, Jia; Gao, Zhiping; Xu, Weifeng; Baluška, František; Shi, Weiming; Shaw, Pang Chui; Zhang, Jianhua

    2015-04-01

    Plant 14-3-3 proteins are phosphoserine-binding proteins that regulate a wide array of targets via direct protein-protein interactions. In this study, the role of a 14-3-3 protein, GRF9, in plant response to water stress was investigated. Arabidopsis wild-type, GRF9-deficient mutant (grf9), and GRF9-overexpressing (OE) plants were treated with polyethylene glycol (PEG) to induce mild water stress. OE plant showed better whole-plant growth and root growth than the wild type under normal or water stress conditions while the grf9 mutant showed worse growth. In OE plants, GRF9 favours the allocation of shoot carbon to roots. In addition, GRF9 enhanced proton extrusion, mainly in the root elongation zone and root hair zone, and maintained root growth under mild water stress. Grafting among the wild type, OE, and grf9 plants showed that when OE plants were used as the scion and GRF9 was overexpressed in the shoot, it enhanced sucrose transport into the root, and when OE plants were used as rootstock and GRF9 was overexpressed in the root, it caused more release of protons into the root surface under water stress. Taken together, the results suggest that under PEG-induced water stress, GRF9 is involved in allocating more carbon from the shoot to the root and enhancing proton secretion in the root growing zone, and this process is important for root response to mild water stress.

  12. 14-3-3 phosphoprotein interaction networks - does isoform diversity present functional interaction specification?

    PubMed

    Paul, Anna-Lisa; Denison, Fiona C; Schultz, Eric R; Zupanska, Agata K; Ferl, Robert J

    2012-01-01

    The 14-3-3 proteins have emerged as major phosphoprotein interaction proteins and thereby constitute a key node in the Arabidopsis Interactome Map, a node through which a large number of important signals pass. Throughout their history of discovery and description, the 14-3-3s have been described as protein families and there has been some evidence that the different 14-3-3 family members within any organism might carry isoform-specific functions. However, there has also been evidence for redundancy of 14-3-3 function, suggesting that the perceived 14-3-3 diversity may be the accumulation of neutral mutations over evolutionary time and as some 14-3-3 genes develop tissue or organ-specific expression. This situation has led to a currently unresolved question - does 14-3-3 isoform sequence diversity indicate functional diversity at the biochemical or cellular level? We discuss here some of the key observations on both sides of the resulting debate, and present a set of contrastable observations to address the theory functional diversity does exist among 14-3-3 isoforms. The resulting model suggests strongly that there are indeed functional specificities in the 14-3-3s of Arabidopsis. The model further suggests that 14-3-3 diversity and specificity should enter into the discussion of 14-3-3 roles in signal transduction and be directly approached in 14-3-3 experimentation. It is hoped that future studies involving 14-3-3s will continue to address specificity in experimental design and analysis. PMID:22934100

  13. Involvement of 14-3-3 protein GRF9 in root growth and response under polyethylene glycol-induced water stress

    PubMed Central

    He, Yuchi; Wu, Jingjing; Lv, Bing; Li, Jia; Gao, Zhiping; Xu, Weifeng; Baluška, František; Shi, Weiming; Shaw, Pang Chui; Zhang, Jianhua

    2015-01-01

    Plant 14-3-3 proteins are phosphoserine-binding proteins that regulate a wide array of targets via direct protein–protein interactions. In this study, the role of a 14-3-3 protein, GRF9, in plant response to water stress was investigated. Arabidopsis wild-type, GRF9-deficient mutant (grf9), and GRF9-overexpressing (OE) plants were treated with polyethylene glycol (PEG) to induce mild water stress. OE plant showed better whole-plant growth and root growth than the wild type under normal or water stress conditions while the grf9 mutant showed worse growth. In OE plants, GRF9 favours the allocation of shoot carbon to roots. In addition, GRF9 enhanced proton extrusion, mainly in the root elongation zone and root hair zone, and maintained root growth under mild water stress. Grafting among the wild type, OE, and grf9 plants showed that when OE plants were used as the scion and GRF9 was overexpressed in the shoot, it enhanced sucrose transport into the root, and when OE plants were used as rootstock and GRF9 was overexpressed in the root, it caused more release of protons into the root surface under water stress. Taken together, the results suggest that under PEG-induced water stress, GRF9 is involved in allocating more carbon from the shoot to the root and enhancing proton secretion in the root growing zone, and this process is important for root response to mild water stress. PMID:25873671

  14. Positive 14-3-3 and tau proteins in a sporadic Creutzfeldt-Jakob disease case and a brief perspective of prion diseases in Colombia.

    PubMed

    Escandón-Vargas, Kevin; Zorrilla-Vaca, Andrés; Corral-Prado, Raúl Heli

    2016-01-01

    Prion diseases are rare neurodegenerative disorders occurring worldwide and affecting both humans and animals. Herein, we present the case of a patient diagnosed with definite sporadic Creutzfeldt-Jakob disease in Cali, Colombia. Besides neurological examination, 14-3-3 and tau proteins were valuable tools supporting the diagnosis. We also present a brief perspective of the prion diseases reported in Colombia to date. Although the incidence of prion diseases is unknown in Colombia, our literature review revealed that one case of scrapie in 1981 and 29 human sporadic cases of Creutzfeldt-Jakob disease have been documented and published in our country. PMID:27622622

  15. Positive 14-3-3 and tau proteins in a sporadic Creutzfeldt-Jakob disease case and a brief perspective of prion diseases in Colombia.

    PubMed

    Escandón-Vargas, Kevin; Zorrilla-Vaca, Andrés; Corral-Prado, Raúl Heli

    2016-02-24

    Prion diseases are rare neurodegenerative disorders occurring worldwide and affecting both humans and animals. Herein, we present the case of a patient diagnosed with definite sporadic Creutzfeldt-Jakob disease in Cali, Colombia. Besides neurological examination, 14-3-3 and tau proteins were valuable tools supporting the diagnosis. We also present a brief perspective of the prion diseases reported in Colombia to date. Although the incidence of prion diseases is unknown in Colombia, our literature review revealed that one case of scrapie in 1981 and 29 human sporadic cases of Creutzfeldt-Jakob disease have been documented and published in our country.

  16. Echinococcus multilocularis laminated-layer components and the E14t 14-3-3 recombinant protein decrease NO production by activated rat macrophages in vitro.

    PubMed

    Andrade, M Amparo; Siles-Lucas, Mar; Espinoza, Elsa; Pérez Arellano, José Luis; Gottstein, Bruno; Muro, Antonio

    2004-05-01

    Echinococcus multilocularis and Echinococcus granulosus cause alveolar and cystic (unilocular) echinococcosis, respectively, in humans and animals. It is known that these parasites can affect, among other molecules, nitric oxide (NO) production by periparasitic host cells. Nevertheless, detailed dissection of parasite components specifically affecting cell NO production has not been done to date. We compare the effect of E. granulosus and E. multilocularis defined metacestode structural (laminated-layer associated) and metabolic (14-3-3 protein, potentially related with E. multilocularis metacestode tumor-like growth) components on the NO production by rat alveolar macrophages in vitro. Our results showed that none of these antigens could stimulate macrophage NO production in vitro. However, a reversed effect of some Echinococcus antigens on NO in vitro production was found when cells were previously exposed to LPS stimulation. This inhibitory effect was found when E. multilocularis laminated-layer (LL) or cyst wall (CW) soluble components from both species were used. Pre-stimulation of cells with LPS also resulted in a strong, dose-dependent reduction of NO and iNOS mRNA production after incubation of cells with the E14t protein. Thus, the E. multilocularis 14-3-3 protein appears to be one of the components accounting for the suppressive effect of the CW and LL metacestode extracts.

  17. A calcium and free fatty acid-modulated protein kinase as putative effector of the fusicoccin 14-3-3 receptor.

    PubMed Central

    van der Hoeven, P C; Siderius, M; Korthout, H A; Drabkin, A V; de Boer, A H

    1996-01-01

    A protein kinase that is activated by calcium and cis-unsaturated fatty acids has been characterized from oat (Avena sativa L.) root plasma membranes. The kinase phosphorylates a synthetic peptide with a motif (-R-T-L-S-) that can be phosphorylated by both protein kinase C (PKC) and calcium-dependent protein kinase (CDPK)-type kinases. Calphostin C and chelerythrine, two PKC inhibitors, completely inhibited the kinase activity with values of inhibitor concentration for 50% inhibition of 0.7 and 30 microns, respectively. At low Ca2+ concentrations cis-unsaturated fatty acids (linolenic acid, linoleic acid, arachidonic acid, and oleic acid) stimulated the kinase activity almost 10-fold. The two inhibitors of the kinase, calphostin C and chelerythrin, strongly reduced the fusicoccin (FC)-induced H+ extrusion, and the activators of the kinase, the cis-unsaturated fatty acids, prevented [3H]FC binding to the FC 14-3-3 receptor. CDPK antibodies cross-reacted with a 43-kD band in the plasma membrane and in a purified FC receptor fraction. A polypeptide with the same apparent molecular mass was recognized by a synthetic peptide that has a sequence homologous to the annexin-like domain from barely 14-3-3. The possibility of the involvement of a kinase, with properties from both CDPK and PKC, and a phospholipase A2 in the FC Signal transduction pathway is discussed. PMID:8754686

  18. Exon B of human surfactant protein A2 mRNA, alone or within its surrounding sequences, interacts with 14-3-3; role of cis-elements and secondary structure

    PubMed Central

    Noutsios, Georgios T.; Silveyra, Patricia; Bhatti, Faizah

    2013-01-01

    Human surfactant protein A, an innate immunity molecule, is encoded by two genes: SFTPA1 (SP-A1) and SFTPA2 (SP-A2). The 5′ untranslated (5′UTR) splice variant of SP-A2 (ABD), but not of SP-A1 (AD), contains exon B (eB), which is an enhancer for transcription and translation. We investigated whether eB contains cis-regulatory elements that bind trans-acting factors in a sequence-specific manner as well as the role of the eB mRNA secondary structure. Binding of cytoplasmic NCI-H441 proteins to wild-type eB, eB mutant, AD, and ABD 5′UTR mRNAs were studied by RNA electromobility shift assays (REMSAs). The bound proteins were identified by mass spectroscopy and specific antibodies (Abs). We found that 1) proteins bind eB mRNA in a sequence-specific manner, with two cis-elements identified within eB to be important; 2) eB secondary structure is necessary for binding; 3) mass spectroscopy and specific Abs in REMSAs identified 14-3-3 proteins to bind (directly or indirectly) eB and the natural SP-A2 (ABD) splice variant but not the SP-A1 (AD) splice variant; 4) other ribosomal and cytoskeletal proteins, and translation factors, are also present in the eB mRNA-protein complex; 5) knockdown of 14-3-3 β/α isoform resulted in a downregulation of SP-A2 expression. In conclusion, proteins including the 14-3-3 family bind two cis-elements within eB of hSP-A2 mRNA in a sequence- and secondary structure-specific manner. Differential regulation of SP-A1 and SP-A2 is mediated by the 14-3-3 protein family as well as by a number of other proteins that bind UTRs with or without eB mRNA. PMID:23525782

  19. 14-3-3σ Gene Loss Leads to Activation of the Epithelial to Mesenchymal Transition Due to the Stabilization of c-Jun Protein.

    PubMed

    Raychaudhuri, Kumarkrishna; Chaudhary, Neelam; Gurjar, Mansa; D'Souza, Roseline; Limzerwala, Jazeel; Maddika, Subbareddy; Dalal, Sorab N

    2016-07-29

    Loss of 14-3-3σ has been observed in multiple tumor types; however, the mechanisms by which 14-3-3σ loss leads to tumor progression are not understood. The experiments in this report demonstrate that loss of 14-3-3σ leads to a decrease in the expression of epithelial markers and an increase in the expression of mesenchymal markers, which is indicative of an induction of the epithelial to mesenchymal transition (EMT). The EMT was accompanied by an increase in migration and invasion in the 14-3-3σ(-/-) cells. 14-3-3σ(-/-) cells show increased stabilization of c-Jun, resulting in an increase in the expression of the EMT transcription factor slug. 14-3-3σ induces the ubiquitination and degradation of c-Jun in an FBW7-dependent manner. c-Jun ubiquitination is dependent on the presence of an intact nuclear export pathway as c-Jun is stabilized and localized to the nucleus in the presence of a nuclear export inhibitor. Furthermore, the absence of 14-3-3σ leads to the nuclear accumulation and stabilization of c-Jun, suggesting that 14-3-3σ regulates the subcellular localization of c-Jun. Our results have identified a novel mechanism by which 14-3-3σ maintains the epithelial phenotype by inhibiting EMT and suggest that this property of 14-3-3σ might contribute to its function as a tumor suppressor gene.

  20. 14-3-3σ Gene Loss Leads to Activation of the Epithelial to Mesenchymal Transition Due to the Stabilization of c-Jun Protein.

    PubMed

    Raychaudhuri, Kumarkrishna; Chaudhary, Neelam; Gurjar, Mansa; D'Souza, Roseline; Limzerwala, Jazeel; Maddika, Subbareddy; Dalal, Sorab N

    2016-07-29

    Loss of 14-3-3σ has been observed in multiple tumor types; however, the mechanisms by which 14-3-3σ loss leads to tumor progression are not understood. The experiments in this report demonstrate that loss of 14-3-3σ leads to a decrease in the expression of epithelial markers and an increase in the expression of mesenchymal markers, which is indicative of an induction of the epithelial to mesenchymal transition (EMT). The EMT was accompanied by an increase in migration and invasion in the 14-3-3σ(-/-) cells. 14-3-3σ(-/-) cells show increased stabilization of c-Jun, resulting in an increase in the expression of the EMT transcription factor slug. 14-3-3σ induces the ubiquitination and degradation of c-Jun in an FBW7-dependent manner. c-Jun ubiquitination is dependent on the presence of an intact nuclear export pathway as c-Jun is stabilized and localized to the nucleus in the presence of a nuclear export inhibitor. Furthermore, the absence of 14-3-3σ leads to the nuclear accumulation and stabilization of c-Jun, suggesting that 14-3-3σ regulates the subcellular localization of c-Jun. Our results have identified a novel mechanism by which 14-3-3σ maintains the epithelial phenotype by inhibiting EMT and suggest that this property of 14-3-3σ might contribute to its function as a tumor suppressor gene. PMID:27261462

  1. Higher order Arabidopsis 14-3-3 mutants show 14-3-3 involvement in primary root growth both under control and abiotic stress conditions

    PubMed Central

    van Kleeff, P. J. M.; Jaspert, N.; Li, K. W.; Rauch, S.; Oecking, C.; de Boer, A. H.

    2014-01-01

    Arabidopsis 14-3-3 proteins are a family of conserved proteins that interact with numerous partner proteins in a phospho-specific manner, and can affect the target proteins in a number of ways; e.g. modification of enzymatic activity. We isolated T-DNA insertion lines in six 14-3-3 genes within the non-epsilon group that phylogenetically group in three closely related gene pairs. In total, 6 single, 3 double, 12 triple, and 3 quadruple mutants were generated. The mutants were phenotyped for primary root growth on control plates: single and double mutants were indistinguishable from WT, whereas six triples and all quadruples showed a shorter primary root. In addition, length of the first epidermal cell with a visible root hair bulge (LEH) was used to determine primary root elongation on medium containing mannitol and 1-aminocyclopropane-1-carboxylic acid (ACC). This analysis showed clear differences depending on the stress and 14-3-3 gene combinations. Next to the phenotypic growth analyses, a 14-3-3 pull-down assay on roots treated with and without mannitol showed that mannitol stress strongly affects the 14-3-3 interactome. In conclusion, we show gene specificity and functional redundancy among 14-3-3 proteins in primary root elongation under control and under abiotic stress conditions and changes in the 14-3-3 interactome during the onset of stress adaptation. PMID:25189593

  2. 14-3-3ζ Interacts with Stat3 and Regulates Its Constitutive Activation in Multiple Myeloma Cells

    PubMed Central

    Li, Wenliang; Xiong, Qian; Yang, Mingkun; Zheng, Peng; Li, Chongyang; Pei, Jianfeng; Ge, Feng

    2012-01-01

    The 14-3-3 proteins are a family of regulatory signaling molecules that interact with other proteins in a phosphorylation-dependent manner and function as adapter or scaffold proteins in signal transduction pathways. One family member, 14-3-3ζ, is believed to function in cell signaling, cycle control, and apoptotic death. A systematic proteomic analysis done in our laboratory has identified signal transducers and activators of transcription 3 (Stat3) as a novel 14-3-3ζ interacting protein. Following our initial finding, in this study, we provide evidence that 14-3-3ζ interacts physically with Stat3. We further demonstrate that phosphorylation of Stat3 at Ser727 is vital for 14-3-3ζ interaction and mutation of Ser727 to Alanine abolished 14-3-3ζ/Stat3 association. Inhibition of 14-3-3ζ protein expression in U266 cells inhibited Stat3 Ser727 phosphorylation and nuclear translocation, and decreased both Stat3 DNA binding and transcriptional activity. Moreover, 14-3-3ζ is involved in the regulation of protein kinase C (PKC) activity and 14-3-3ζ binding to Stat3 protects Ser727 dephosphorylation from protein phosphatase 2A (PP2A). Taken together, our findings support the model that multiple signaling events impinge on Stat3 and that 14-3-3ζ serves as an essential coordinator for different pathways to regulate Stat3 activation and function in MM cells. PMID:22279540

  3. The Tomato 14-3-3 protein TFT4 modulates H+ efflux, basipetal auxin transport, and the PKS5-J3 pathway in the root growth response to alkaline stress.

    PubMed

    Xu, Weifeng; Jia, Liguo; Shi, Weiming; Baluska, Frantisek; Kronzucker, Herbert J; Liang, Jiansheng; Zhang, Jianhua

    2013-12-01

    Alkaline stress is a common environmental stress, in particular in salinized soils. Plant roots respond to a variety of soil stresses by regulating their growth, but the nature of the regulatory pathways engaged in the alkaline stress response (ASR) is not yet understood. Previous studies show that PIN-FORMED2, an auxin (indole-3-acetic acid [IAA]) efflux transporter, PKS5, a protein kinase, and DNAJ HOMOLOG3 (J3), a chaperone, play key roles in root H(+) secretion by regulating plasma membrane (PM) H(+)-ATPases directly or by targeting 14-3-3 proteins. Here, we investigated the expression of all 14-3-3 gene family members (TOMATO 14-3-3 PROTEIN1 [TFT1]-TFT12) in tomato (Solanum lycopersicum) under ASR, showing the involvement of four of them, TFT1, TFT4, TFT6, and TFT7. When these genes were separately introduced into Arabidopsis (Arabidopsis thaliana) and overexpressed, only the growth of TFT4 overexpressors was significantly enhanced when compared with the wild type under stress. H(+) efflux and the activity of PM H(+)-ATPase were significantly enhanced in the root tips of TFT4 overexpressors. Microarray analysis and pharmacological examination of the overexpressor and mutant plants revealed that overexpression of TFT4 maintains primary root elongation by modulating PM H(+)-ATPase-mediated H(+) efflux and basipetal IAA transport in root tips under alkaline stress. TFT4 further plays important roles in the PKS5-J3 signaling pathway. Our study demonstrates that TFT4 acts as a regulator in the integration of H(+) efflux, basipetal IAA transport, and the PKS5-J3 pathway in the ASR of roots and coordinates root apex responses to alkaline stress for the maintenance of primary root elongation. PMID:24134886

  4. Spatial coordination of chloroplast and plasma membrane activities in Chara cells and its disruption through inactivation of 14-3-3 proteins.

    PubMed

    Bulychev, A A; van den Wijngaard, P W J; de Boer, A H

    2005-01-01

    In Chara corallina cells exposed to continuous light, external pH (pH(o)) and photosystem II (PSII) photochemical yield show correlated banding patterns. Photosynthetic activity is low in cell regions producing alkaline zones and high in the acid regions. We addressed the question whether (and how) photosynthetic activity and plasma membrane (PM) H+-pumping and H+-conductance are coupled in the different bands. First, PM H+-pump activity was stimulated with fusicoccin. This resulted in a more acidic pH in the acid bands without disturbing the correlation of photosynthetic electron transport and H+ fluxes across the PM. Next, H+-pump activity was reduced through microinjection of a phosphorylated peptide matching the canonical 14-3-3 binding motif RSTpSTP in the acid cell region. Microinjection induced a rapid (~5 min) rise in pH(o) by ca. 1.0 unit near the injection site, whereas the injection of the non-phosphorylated peptide had no effect. This pH rise confirms the supposed inhibition of the H+-pump upon the detachment of 14-3-3 proteins from the H+-ATPase. However, the PSII yield in the cell regions corresponding to the new alkaline peak remained high, which violated the normal inverse relations between the pH(o) and PSII photochemical yield. We conclude that the injection of the competitive inhibitor of the H+-ATPase disrupts the balanced operation of PM H+-transport and photosynthetic electron flow and promotes electron flow through alternative pathways.

  5. ANIA: ANnotation and Integrated Analysis of the 14-3-3 interactome

    PubMed Central

    Tinti, Michele; Madeira, Fábio; Murugesan, Gavuthami; Hoxhaj, Gerta; Toth, Rachel; MacKintosh, Carol

    2014-01-01

    The dimeric 14-3-3 proteins dock onto pairs of phosphorylated Ser and Thr residues on hundreds of proteins, and thereby regulate many events in mammalian cells. To facilitate global analyses of these interactions, we developed a web resource named ANIA: ANnotation and Integrated Analysis of the 14-3-3 interactome, which integrates multiple data sets on 14-3-3-binding phosphoproteins. ANIA also pinpoints candidate 14-3-3-binding phosphosites using predictor algorithms, assisted by our recent discovery that the human 14-3-3-interactome is highly enriched in 2R-ohnologues. 2R-ohnologues are proteins in families of two to four, generated by two rounds of whole genome duplication at the origin of the vertebrate animals. ANIA identifies candidate ‘lynchpins’, which are 14-3-3-binding phosphosites that are conserved across members of a given 2R-ohnologue protein family. Other features of ANIA include a link to the catalogue of somatic mutations in cancer database to find cancer polymorphisms that map to 14-3-3-binding phosphosites, which would be expected to interfere with 14-3-3 interactions. We used ANIA to map known and candidate 14-3-3-binding enzymes within the 2R-ohnologue complement of the human kinome. Our projections indicate that 14-3-3s dock onto many more human kinases than has been realized. Guided by ANIA, PAK4, 6 and 7 (p21-activated kinases 4, 6 and 7) were experimentally validated as a 2R-ohnologue family of 14-3-3-binding phosphoproteins. PAK4 binding to 14-3-3 is stimulated by phorbol ester, and involves the ‘lynchpin’ site phosphoSer99 and a major contribution from Ser181. In contrast, PAK6 and PAK7 display strong phorbol ester-independent binding to 14-3-3, with Ser113 critical for the interaction with PAK6. These data point to differential 14-3-3 regulation of PAKs in control of cell morphology. Database URL: https://ania-1433.lifesci.dundee.ac.uk/prediction/webserver/index.py PMID:24501395

  6. ANIA: ANnotation and Integrated Analysis of the 14-3-3 interactome.

    PubMed

    Tinti, Michele; Madeira, Fábio; Murugesan, Gavuthami; Hoxhaj, Gerta; Toth, Rachel; Mackintosh, Carol

    2014-01-01

    The dimeric 14-3-3 proteins dock onto pairs of phosphorylated Ser and Thr residues on hundreds of proteins, and thereby regulate many events in mammalian cells. To facilitate global analyses of these interactions, we developed a web resource named ANIA: ANnotation and Integrated Analysis of the 14-3-3 interactome, which integrates multiple data sets on 14-3-3-binding phosphoproteins. ANIA also pinpoints candidate 14-3-3-binding phosphosites using predictor algorithms, assisted by our recent discovery that the human 14-3-3-interactome is highly enriched in 2R-ohnologues. 2R-ohnologues are proteins in families of two to four, generated by two rounds of whole genome duplication at the origin of the vertebrate animals. ANIA identifies candidate 'lynchpins', which are 14-3-3-binding phosphosites that are conserved across members of a given 2R-ohnologue protein family. Other features of ANIA include a link to the catalogue of somatic mutations in cancer database to find cancer polymorphisms that map to 14-3-3-binding phosphosites, which would be expected to interfere with 14-3-3 interactions. We used ANIA to map known and candidate 14-3-3-binding enzymes within the 2R-ohnologue complement of the human kinome. Our projections indicate that 14-3-3s dock onto many more human kinases than has been realized. Guided by ANIA, PAK4, 6 and 7 (p21-activated kinases 4, 6 and 7) were experimentally validated as a 2R-ohnologue family of 14-3-3-binding phosphoproteins. PAK4 binding to 14-3-3 is stimulated by phorbol ester, and involves the 'lynchpin' site phosphoSer99 and a major contribution from Ser181. In contrast, PAK6 and PAK7 display strong phorbol ester-independent binding to 14-3-3, with Ser113 critical for the interaction with PAK6. These data point to differential 14-3-3 regulation of PAKs in control of cell morphology. Database URL: https://ania-1433.lifesci.dundee.ac.uk/prediction/webserver/index.py.

  7. Influence of the Paracoccidioides brasiliensis 14-3-3 and gp43 proteins on the induction of apoptosis in A549 epithelial cells.

    PubMed

    Silva, Julhiany de Fátima da; Vicentim, Juliana; Oliveira, Haroldo Cesar de; Marcos, Caroline Maria; Assato, Patricia Akemi; Andreotti, Patrícia Ferrari; Silva, Juliana Leal Monteiro da; Soares, Christiane Pienna; Benard, Gil; Almeida, Ana Marisa Fusco; Mendes-Giannini, Maria José Soares

    2015-06-01

    The fungal strain Paracoccidioides brasiliensis remains viable inside of epithelial cells and can induce apoptosis in this population. However, until now, the molecules that participate in this process remained unknown. Thus, this study evaluated the contribution of two P. brasiliensis molecules, the 14-3-3 and glycoprotein of 43 kDa proteins, which had been previously described as extracellular matrix adhesins and apoptosis inductors in human pneumocytes. Accordingly, epithelial cells were treated with these molecules for different periods of time and the expression of the apoptosis regulating-proteins Bak, Bax, Bcl-2, p53 and caspases were evaluated by terminal deoxynucleotidyl transferase dUTP nick end labelling, flow cytometry and real-time polymerase chain reaction analysis. Our results demonstrated that treatment with these molecules induces apoptosis signalling in pulmonary epithelial cells, showing the same pattern of programmed cell-death as that observed during infection with P. brasiliensis. Thus, we could conclude that P. brasiliensis uses these molecules as virulence factors that participate not only in the fungal adhesion process to host cells, but also in other important cellular mechanisms such as apoptosis. PMID:26038961

  8. Influence of the Paracoccidioides brasiliensis 14-3-3 and gp43 proteins on the induction of apoptosis in A549 epithelial cells

    PubMed Central

    da Silva, Julhiany de Fátima; Vicentim, Juliana; de Oliveira, Haroldo Cesar; Marcos, Caroline Maria; Assato, Patricia Akemi; Andreotti, Patrícia Ferrari; da Silva, Juliana Leal Monteiro; Soares, Christiane Pienna; Benard, Gil; Almeida, Ana Marisa Fusco; Mendes-Giannini, Maria José Soares

    2015-01-01

    The fungal strain Paracoccidioides brasiliensis remains viable inside of epithelial cells and can induce apoptosis in this population. However, until now, the molecules that participate in this process remained unknown. Thus, this study evaluated the contribution of two P. brasiliensis molecules, the 14-3-3 and glycoprotein of 43 kDa proteins, which had been previously described as extracellular matrix adhesins and apoptosis inductors in human pneumocytes. Accordingly, epithelial cells were treated with these molecules for different periods of time and the expression of the apoptosis regulating-proteins Bak, Bax, Bcl-2, p53 and caspases were evaluated by terminal deoxynucleotidyl transferase dUTP nick end labelling, flow cytometry and real-time polymerase chain reaction analysis. Our results demonstrated that treatment with these molecules induces apoptosis signalling in pulmonary epithelial cells, showing the same pattern of programmed cell-death as that observed during infection with P. brasiliensis. Thus, we could conclude that P. brasiliensis uses these molecules as virulence factors that participate not only in the fungal adhesion process to host cells, but also in other important cellular mechanisms such as apoptosis. PMID:26038961

  9. Up-regulation and interaction of the plasma membrane H(+)-ATPase and the 14-3-3 protein are involved in the regulation of citrate exudation from the broad bean (Vicia faba L.) under Al stress.

    PubMed

    Chen, Qi; Guo, Chuan-Long; Wang, Ping; Chen, Xuan-Qin; Wu, Kong-Huan; Li, Kui-Zhi; Yu, Yong-Xiong; Chen, Li-Mei

    2013-09-01

    Our previous study showed that citrate excretion coupled with a concomitant release of protons was involved in aluminum (Al) resistance in the broad bean. Furthermore, genes encoding plasma membrane (PM) H(+)-ATPase (vha2) and the 14-3-3 protein (vf14-3-3b) were up-regulated by Al in Al-resistant (YD) broad bean roots. In this study, the roles of PM H(+)-ATPase (E.C. 3.6.3.6) and the 14-3-3 protein in the regulation of citrate secretion were further investigated in Al-resistant (YD) and Al-sensitive (AD) broad bean cultivars under Al stress. The results showed that greater citrate exudation was positively correlated with higher activities of PM H(+)-ATPase in roots of YD than AD. Real-time RT-PCR analysis revealed that vha2 was clearly up-regulated by Al in YD but not in AD roots, whereas the transcription levels of vf14-3-3b were elevated in a time-dependent manner in both YD and AD roots. Immunoprecipitation and Western analysis suggested that phosphorylation and interaction with the vf14-3-3b protein of the VHA2 were enhanced in YD roots but not in AD roots with increasing Al treatment time. Fusicoccin or adenosine 5'-monophosphate increased or decreased the interaction between the phosphorylated VHA2 and the vf14-3-3b protein, followed by an enhancement or reduction of the PM H(+)-ATPase activity and citrate exudation in both cultivars under Al stress conditions, respectively. Taken together, these results suggested that Al enhanced the expression and interaction of the PM H(+)-ATPase and the 14-3-3 protein, which thereby led to higher activity of the PM H(+)-ATPase and more citrate exudation from YD plants.

  10. Interactome analysis of the six cotton 14-3-3s that are preferentially expressed in fibres and involved in cell elongation

    PubMed Central

    Zhang, Ze-Ting; Zhou, Ying; Li, Yang; Shao, Su-Qiang; Li, Bing-Ying; Shi, Hai-Yan; Li, Xue-Bao

    2010-01-01

    Proteins of the 14-3-3 family regulate a divergent set of signalling pathways in all eukaryotic organisms. In this study, several cDNAs encoding 14-3-3 proteins were isolated from a cotton fibre cDNA library. The Gh14-3-3 genes share high sequence homology at the nucleotide level in the coding region and at the amino acid level. Real-time quantitative RT-PCR analysis indicated that the expression of these Gh14-3-3 genes is developmentally regulated in fibres, and reached their peak at the stage of rapid cell elongation of fibre development. Furthermore, overexpression of Gh14-3-3a, Gh14-3-3e, and Gh14-3-3L in fission yeast promoted atypical longitudinal growth of the host cells. Yeast two-hybrid analysis revealed that the interaction between cotton 14-3-3 proteins is isoform selective. Through yeast two-hybrid screening, 38 novel interaction partners of the six 14-3-3 proteins (Gh14-3-3a, Gh14-3-3e, Gh14-3-3f, Gh14-3-3g, Gh14-3-3h, and Gh14-3-3L), which are involved in plant development, metabolism, signalling transduction, and other cellular processes, were identified in cotton fibres. Taking these data together, it is proposed that the Gh14-3-3 proteins may participate in regulation of fibre cell elongation. Thus, the results of this study provide novel insights into the 14-3-3 signalling related to fibre development of cotton. PMID:20519337

  11. Dual phosphorylation of Btk by Akt/protein kinase b provides docking for 14-3-3ζ, regulates shuttling, and attenuates both tonic and induced signaling in B cells.

    PubMed

    Mohammad, Dara K; Nore, Beston F; Hussain, Alamdar; Gustafsson, Manuela O; Mohamed, Abdalla J; Smith, C I Edvard

    2013-08-01

    Bruton's tyrosine kinase (Btk) is crucial for B-lymphocyte activation and development. Mutations in the Btk gene cause X-linked agammaglobulinemia (XLA) in humans and X-linked immunodeficiency (Xid) in mice. Using tandem mass spectrometry, 14-3-3ζ was identified as a new binding partner and negative regulator of Btk in both B-cell lines and primary B lymphocytes. The activated serine/threonine kinase Akt/protein kinase B (PKB) phosphorylated Btk on two sites prior to 14-3-3ζ binding. The interaction sites were mapped to phosphoserine pS51 in the pleckstrin homology domain and phosphothreonine pT495 in the kinase domain. The double-alanine, S51A/T495A, replacement mutant failed to bind 14-3-3ζ, while phosphomimetic aspartate substitutions, S51D/T495D, caused enhanced interaction. The phosphatidylinositol 3-kinase (PI3-kinase) inhibitor LY294002 abrogated S51/T495 phosphorylation and binding. A newly characterized 14-3-3 inhibitor, BV02, reduced binding, as did the Btk inhibitor PCI-32765 (ibrutinib). Interestingly, in the presence of BV02, phosphorylation of Btk, phospholipase Cγ2, and NF-κB increased strongly, suggesting that 14-3-3 also regulates B-cell receptor (BCR)-mediated tonic signaling. Furthermore, downregulation of 14-3-3ζ elevated nuclear translocation of Btk. The loss-of-function mutant S51A/T495A showed reduced tyrosine phosphorylation and ubiquitination. Conversely, the gain-of-function mutant S51D/T495D exhibited intense tyrosine phosphorylation, associated with Btk ubiquitination and degradation, likely contributing to the termination of BCR signaling. Collectively, this suggests that Btk could become an important new candidate for the general study of 14-3-3-mediated regulation.

  12. 14-3-3ζ coordinates adipogenesis of visceral fat

    PubMed Central

    Lim, Gareth E.; Albrecht, Tobias; Piske, Micah; Sarai, Karnjit; Lee, Jason T. C; Ramshaw, Hayley S.; Sinha, Sunita; Guthridge, Mark A.; Acker-Palmer, Amparo; Lopez, Angel F.; Clee, Susanne M.; Nislow, Corey; Johnson, James D.

    2015-01-01

    The proteins that coordinate complex adipogenic transcriptional networks are poorly understood. 14-3-3ζ is a molecular adaptor protein that regulates insulin signalling and transcription factor networks. Here we report that 14-3-3ζ-knockout mice are strikingly lean from birth with specific reductions in visceral fat depots. Conversely, transgenic 14-3-3ζ overexpression potentiates obesity, without exacerbating metabolic complications. Only the 14-3-3ζ isoform is essential for adipogenesis based on isoform-specific RNAi. Mechanistic studies show that 14-3-3ζ depletion promotes autophagy-dependent degradation of C/EBP-δ, preventing induction of the master adipogenic factors, Pparγ and C/EBP-α. Transcriptomic data indicate that 14-3-3ζ acts upstream of hedgehog signalling-dependent upregulation of Cdkn1b/p27Kip1. Indeed, concomitant knockdown of p27Kip1 or Gli3 rescues the early block in adipogenesis induced by 14-3-3ζ knockdown in vitro. Adipocyte precursors in 14-3-3ζKO embryos also appear to have greater Gli3 and p27Kip1 abundance. Together, our in vivo and in vitro findings demonstrate that 14-3-3ζ is a critical upstream driver of adipogenesis. PMID:26220403

  13. Structure-Function Analysis of PPP1R3D, a Protein Phosphatase 1 Targeting Subunit, Reveals a Binding Motif for 14-3-3 Proteins which Regulates its Glycogenic Properties.

    PubMed

    Rubio-Villena, Carla; Sanz, Pascual; Garcia-Gimeno, Maria Adelaida

    2015-01-01

    Protein phosphatase 1 (PP1) is one of the major protein phosphatases in eukaryotic cells. It plays a key role in regulating glycogen synthesis, by dephosphorylating crucial enzymes involved in glycogen homeostasis such as glycogen synthase (GS) and glycogen phosphorylase (GP). To play this role, PP1 binds to specific glycogen targeting subunits that, on one hand recognize the substrates to be dephosphorylated and on the other hand recruit PP1 to glycogen particles. In this work we have analyzed the functionality of the different protein binding domains of one of these glycogen targeting subunits, namely PPP1R3D (R6) and studied how binding properties of different domains affect its glycogenic properties. We have found that the PP1 binding domain of R6 comprises a conserved RVXF motif (R102VRF) located at the N-terminus of the protein. We have also identified a region located at the C-terminus of R6 (W267DNND) that is involved in binding to the PP1 glycogenic substrates. Our results indicate that although binding to PP1 and glycogenic substrates are independent processes, impairment of any of them results in lack of glycogenic activity of R6. In addition, we have characterized a novel site of regulation in R6 that is involved in binding to 14-3-3 proteins (RARS74LP). We present evidence indicating that when binding of R6 to 14-3-3 proteins is prevented, R6 displays hyper-glycogenic activity although is rapidly degraded by the lysosomal pathway. These results define binding to 14-3-3 proteins as an additional pathway in the control of the glycogenic properties of R6.

  14. Decreased expression of 14-3-3 in Paracoccidioides brasiliensis confirms its involvement in fungal pathogenesis.

    PubMed

    Marcos, Caroline Maria; Silva, Julhiany de Fátima ds; Oliveira, Haroldo Cesar de; Assato, Patrícia Akemi; Singulani, Junya de Lacorte; Lopez, Angela Maria; Tamayo, Diana Patricia; Hernandez-Ruiz, Orville; McEwen, Juan G; Mendes-Giannini, Maria José Soares; Fusco-Almeida, Ana Marisa

    2016-01-01

    The interaction between the fungal pathogen Paracoccidioides brasiliensis and host cells is usually mediated by specific binding events between adhesins on the fungal surface and receptors on the host extracellular matrix or cell surface. One molecule implicated in the P. brasiliensis-host interaction is the 14-3-3 protein. The 14-3-3 protein belongs to a family of conserved regulatory molecules that are expressed in all eukaryotic cells and are involved in diverse cellular functions. Here, we investigated the relevance of the 14-3-3 protein to the virulence of P. brasiliensis. Using antisense RNA technology and Agrobacterium tumefaciens-mediated transformation, we generated a 14-3-3-silenced strain (expression reduced by ˜55%). This strain allowed us to investigate the interaction between 14-3-3 and the host and to correlate the functions of P. brasiliensis 14-3-3 with cellular features, such as morphological characteristics and virulence, that are important for pathogenesis. PMID:26646480

  15. Regulation of the Yeast Hxt6 Hexose Transporter by the Rod1 α-Arrestin, the Snf1 Protein Kinase, and the Bmh2 14-3-3 Protein.

    PubMed

    Llopis-Torregrosa, Vicent; Ferri-Blázquez, Alba; Adam-Artigues, Anna; Deffontaines, Emilie; van Heusden, G Paul H; Yenush, Lynne

    2016-07-15

    Cell viability requires adaptation to changing environmental conditions. Ubiquitin-mediated endocytosis plays a crucial role in this process, because it provides a mechanism to remove transport proteins from the membrane. Arrestin-related trafficking proteins are important regulators of the endocytic pathway in yeast, facilitating selective ubiquitylation of target proteins by the E3 ubiquitin ligase, Rsp5. Specifically, Rod1 (Art4) has been reported to regulate the endocytosis of both the Hxt1, Hxt3, and Hxt6 glucose transporters and the Jen1 lactate transporter. Also, the AMP kinase homologue, Snf1, and 14-3-3 proteins have been shown to regulate Jen1 via Rod1. Here, we further characterized the role of Rod1, Snf1, and 14-3-3 in the signal transduction route involved in the endocytic regulation of the Hxt6 high affinity glucose transporter by showing that Snf1 interacts specifically with Rod1 and Rog3 (Art7), that the interaction between the Bmh2 and several arrestin-related trafficking proteins may be modulated by carbon source, and that both the 14-3-3 protein Bmh2 and the Snf1 regulatory domain interact with the arrestin-like domain containing the N-terminal half of Rod1 (amino acids 1-395). Finally, using both co-immunoprecipitation and bimolecular fluorescence complementation, we demonstrated the interaction of Rod1 with Hxt6 and showed that the localization of the Rod1-Hxt6 complex at the plasma membrane is affected by carbon source and is reduced upon overexpression of SNF1 and BMH2. PMID:27261460

  16. Dynamic interaction between 14-3-3zeta and bax during TNF-α-induced apoptosis in living cells

    NASA Astrophysics Data System (ADS)

    Gao, Xuejuan; Xing, Da; Chen, Tongsheng

    2006-09-01

    Bax, a proapoptotic member of the Bcl-2 family, localizes largely in the cytoplasm but redistributes to mitochondria and undergoes oligomerization to induce the release of apoptogenic factors such as cytochrome c in response to apoptotic stimuli. Cytoplasmic protein 14-3-3zeta binds to Bax and, upon apoptotic stimulation, releases Bax by a caspase-independent mechanism. However, the direct interaction of the cytoplasmic 14-3-3zeta and Bax in living cells has not been observed. In present study, to monitor the dynamic interaction between 14-3-3zeta and Bax in living cells in real time during apoptosis induced by tumor necrosis factor (TNF-α), DsRed-14-3-3zeta plasmid is constructed. By cotransfecting DsRed- 14-3-3zeta and GFP-Bax plasmids into human lung adenocarcinoma cells (ASTC-a-1), we observe the dynamic interaction between Bax and 14-3-3zeta using fluorescence resonance energy transfer (FRET) technique on laser scanning confocal microscope. The results show that 14-3-3zeta remains in the cytoplasm but GFP-Bax translocates to mitochondria completely after TNF-α stimulation. These results reveal that 14-3-3zeta binds directly to Bax in healthy cells, and that 14-3-3zeta negatively regulates Bax translocation to mitochondria during TNF-α-induced apoptosis.

  17. Characterization of the Interactome of the Porcine Reproductive and Respiratory Syndrome Virus Nonstructural Protein 2 Reveals the Hyper Variable Region as a Binding Platform for Association with 14-3-3 Proteins.

    PubMed

    Xiao, Yihong; Wu, Weining; Gao, Jiming; Smith, Nikki; Burkard, Christine; Xia, Dong; Zhang, Minxia; Wang, Chengbao; Archibald, Alan; Digard, Paul; Zhou, En-Min; Hiscox, Julian A

    2016-05-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is a major threat to the swine industry worldwide and hence global food security, exacerbated by a newly emerged highly pathogenic (HP-PRRSV) strain from China. PRRSV nonstructural protein 2 (nsp2) is a multifunctional polypeptide with strain-dependent influences on pathogenicity. A number of discrete functional regions have been identified on the protein. Quantitative label free proteomics was used to identify cellular binding partners of nsp2 expressed by HP-PRRSV. This allowed the identification of potential cellular interacting partners and the discrimination of nonspecific interactions. The interactome data were further investigated and validated using biological replicates and also compared with nsp2 from a low pathogenic (LP) strain of PRRSV. Validation included both forward and reverse pulldowns and confocal microscopy. The data indicated that nsp2 interacted with a number of cellular proteins including 14-3-3, CD2AP, and other components of cellular aggresomes. The hyper-variable region of nsp2 protein was identified as a binding platform for association with 14-3-3 proteins. PMID:26709850

  18. Characteristics of Korean patients with suspected Creutzfeldt-Jakob disease with 14-3-3 protein in cerebrospinal fluid: Preliminary study of the Korean Creutzfeldt-Jakob disease active surveillance program.

    PubMed

    Lim, Jae-Sung; Kwon, Hyung-Min; Jang, Jae-Won; Ju, Young-Ran; Kim, SuYeon; Park, Young Ho; Park, So Young; Kim, SangYun

    2015-01-01

    Although Korea had a national surveillance system for Creutzfeldt-Jakob disease (CJD), it was mainly dependent on attending physician's reports. Thus, little prospective data about the epidemiology, characteristics, and final diagnoses of suspected patients were available. We have established a nationwide network for the active surveillance of patients with suspected CJD. When the requested cerebrospinal fluid (CSF) samples tested positive for 14-3-3 protein, we investigated the clinical characteristics of the corresponding patients and followed them until their final diagnoses were confirmed. A total of 218 samples were requested for CSF assays from May 2010 to August 2012, and 106 (48.6%) were positive for 14-3-3 protein. In 89 patients with complete clinical data, 38 (42.7%) were diagnosed with probable CJD and the estimated annual occurrence of CJD was 16.3 persons-per-year. The most common diagnoses of the remainder were central nervous system infection and any-cause encephalopathy. Non-CJD subjects showed worse initial consciousness levels than CJD patients. This preliminary study showed that the number of reported cases of CJD and the true positivity rates of CSF 14-3-3 protein assays were both low in Korea. An active surveillance system is urgently needed to provide the latest nationwide epidemiological data of CJD.

  19. Characteristics of Korean patients with suspected Creutzfeldt-Jakob disease with 14-3-3 protein in cerebrospinal fluid: Preliminary study of the Korean Creutzfeldt-Jakob disease active surveillance program

    PubMed Central

    Lim, Jae-Sung; Kwon, Hyung-Min; Jang, Jae-Won; Ju, Young-Ran; Kim, SuYeon; Park, Young Ho; Park, So Young; Kim, SangYun

    2015-01-01

    Abstract Although Korea had a national surveillance system for Creutzfeldt-Jakob disease (CJD), it was mainly dependent on attending physician's reports. Thus, little prospective data about the epidemiology, characteristics, and final diagnoses of suspected patients were available. We have established a nationwide network for the active surveillance of patients with suspected CJD. When the requested cerebrospinal fluid (CSF) samples tested positive for 14-3-3 protein, we investigated the clinical characteristics of the corresponding patients and followed them until their final diagnoses were confirmed. A total of 218 samples were requested for CSF assays from May 2010 to August 2012, and 106 (48.6%) were positive for 14-3-3 protein. In 89 patients with complete clinical data, 38 (42.7%) were diagnosed with probable CJD and the estimated annual occurrence of CJD was 16.3 persons-per-year. The most common diagnoses of the remainder were central nervous system infection and any-cause encephalopathy. Non-CJD subjects showed worse initial consciousness levels than CJD patients. This preliminary study showed that the number of reported cases of CJD and the true positivity rates of CSF 14-3-3 protein assays were both low in Korea. An active surveillance system is urgently needed to provide the latest nationwide epidemiological data of CJD. PMID:25996401

  20. Expression of 14-3-3 transcript isoforms in response to ethanol exposure and their regulation by miRNAs.

    PubMed

    Mathew, Divya Elizabeth; Larsen, Kaitlyn; Janeczek, Paulina; Lewohl, Joanne M

    2016-09-01

    The 14-3-3 proteins are a family of highly conserved molecular chaperones involved in the regulation of a number of key cellular functions including metabolism, stress response, protein trafficking, cell-cycle control, signal transduction, transcription, apoptosis and neurotransmission. 14-3-3 proteins have also been implicated in the pathophysiology of neurodegenerative disorders including Alzheimer disease and Parkinson disease. Recent studies have also shown that 14-3-3s are differentially expressed in the frontal cortex of human alcoholics suggesting a potential role in the pathophysiology of alcohol use disorders. Here we measured the expression of 14-3-3 transcripts in HEK293T cells in response to chronic ethanol treatment. Five of the seven transcripts (14-3-3β, 14-3-3γ, 14-3-3ζ, 14-3-3ε and 14-3-3θ) were significantly down-regulated following chronic exposure to ethanol for a five day period with these changes persisting even after withdrawal from ethanol treatment. One transcript, 14-3-3σ, was significantly up-regulated following chronic ethanol exposure and 14-3-3η showed no differences in expression in the same treatment model. The pattern of expression changes is similar to those seen in the frontal cortex of human alcoholics. To investigate the role of miRNAs in mediating the expression changes we measured the expression of the 14-3-3 transcripts following transfection with miR-203, miR-144 and miR-7 mimics. Although these miRNAs had predicted target sites in the 3'untranslated region of each 14-3-3 isoform, only miR-203 resulted in a down-regulation of 14-3-3θ transcript. In addition, the expression of 14-3-3γ was upregulated following transfection with miR-7 and miR-144 mimics. MiRNA regulation of these isoforms following alcohol exposure may lead to alterations in neurotransmission, the balance between cell survival and cell death, as well as changing the rewarding effects of alcohol. PMID:27370936

  1. 14-3-3 fusion oncogenes in high-grade endometrial stromal sarcoma

    PubMed Central

    Lee, Cheng-Han; Ou, Wen-Bin; Mariño-Enriquez, Adrian; Zhu, Meijun; Mayeda, Mark; Wang, Yuexiang; Guo, Xiangqian; Brunner, Alayne L.; Amant, Frédéric; French, Christopher A.; West, Robert B.; McAlpine, Jessica N.; Gilks, C. Blake; Yaffe, Michael B.; Prentice, Leah M.; McPherson, Andrew; Jones, Steven J. M.; Marra, Marco A.; Shah, Sohrab P.; van de Rijn, Matt; Huntsman, David G.; Dal Cin, Paola; Debiec-Rychter, Maria; Nucci, Marisa R.; Fletcher, Jonathan A.

    2012-01-01

    14-3-3 proteins are ubiquitously expressed regulators of various cellular functions, including proliferation, metabolism, and differentiation, and altered 14-3-3 expression is associated with development and progression of cancer. We report a transforming 14-3-3 oncoprotein, which we identified through conventional cytogenetics and whole-transcriptome sequencing analysis as a highly recurrent genetic mechanism in a clinically aggressive form of uterine sarcoma: high-grade endometrial stromal sarcoma (ESS). The 14-3-3 oncoprotein results from a t(10;17) genomic rearrangement, leading to fusion between 14-3-3ε (YWHAE) and either of two nearly identical FAM22 family members (FAM22A or FAM22B). Expression of YWHAE–FAM22 fusion oncoproteins was demonstrated by immunoblot in t(10;17)-bearing frozen tumor and cell line samples. YWHAE–FAM22 fusion gene knockdowns were performed with shRNAs and siRNAs targeting various FAM22A exons in an t(10;17)-bearing ESS cell line (ESS1): Fusion protein expression was inhibited, with corresponding reduction in cell growth and migration. YWHAE–FAM22 maintains a structurally and functionally intact 14-3-3ε (YWHAE) protein-binding domain, which is directed to the nucleus by a FAM22 nuclear localization sequence. In contrast to classic ESS, harboring JAZF1 genetic fusions, YWHAE–FAM22 ESS display high-grade histologic features, a distinct gene-expression profile, and a more aggressive clinical course. Fluorescence in situ hybridization analysis demonstrated absolute specificity of YWHAE–FAM22A/B genetic rearrangement for high-grade ESS, with no fusions detected in other uterine and nonuterine mesenchymal tumors (55 tumor types, n = 827). These discoveries reveal diagnostically and therapeutically relevant models for characterizing aberrant 14-3-3 oncogenic functions. PMID:22223660

  2. The Arabidopsis 14-3-3 Protein RARE COLD INDUCIBLE 1A Links Low-Temperature Response and Ethylene Biosynthesis to Regulate Freezing Tolerance and Cold Acclimation[C][W

    PubMed Central

    Catalá, Rafael; López-Cobollo, Rosa; Mar Castellano, M.; Angosto, Trinidad; Alonso, José M.; Ecker, Joseph R.; Salinas, Julio

    2014-01-01

    In plants, the expression of 14-3-3 genes reacts to various adverse environmental conditions, including cold, high salt, and drought. Although these results suggest that 14-3-3 proteins have the potential to regulate plant responses to abiotic stresses, their role in such responses remains poorly understood. Previously, we showed that the RARE COLD INDUCIBLE 1A (RCI1A) gene encodes the 14-3-3 psi isoform. Here, we present genetic and molecular evidence implicating RCI1A in the response to low temperature. Our results demonstrate that RCI1A functions as a negative regulator of constitutive freezing tolerance and cold acclimation in Arabidopsis thaliana by controlling cold-induced gene expression. Interestingly, this control is partially performed through an ethylene (ET)-dependent pathway involving physical interaction with different ACC SYNTHASE (ACS) isoforms and a decreased ACS stability. We show that, consequently, RCI1A restrains ET biosynthesis, contributing to establish adequate levels of this hormone in Arabidopsis under both standard and low-temperature conditions. We further show that these levels are required to promote proper cold-induced gene expression and freezing tolerance before and after cold acclimation. All these data indicate that RCI1A connects the low-temperature response with ET biosynthesis to modulate constitutive freezing tolerance and cold acclimation in Arabidopsis. PMID:25122152

  3. The Silencing of a 14-3-3ɛ Homolog in Tenebrio molitor Leads to Increased Antimicrobial Activity in Hemocyte and Reduces Larval Survivability

    PubMed Central

    Seo, Gi Won; Jo, Yong Hun; Seong, Jeong Hwan; Park, Ki Beom; Patnaik, Bharat Bhusan; Tindwa, Hamisi; Kim, Sun-Am; Lee, Yong Seok; Kim, Yu Jung; Han, Yeon Soo

    2016-01-01

    The 14-3-3 family of phosphorylated serine-binding proteins acts as signaling molecules in biological processes such as metabolism, division, differentiation, autophagy, and apoptosis. Herein, we report the requirement of 14-3-3ɛ isoform from Tenebrio molitor (Tm14-3-3ɛ) in the hemocyte antimicrobial activity. The Tm14-3-3ɛ transcript is 771 nucleotides in length and encodes a polypeptide of 256 amino acid residues. The protein has the typical 14-3-3 domain, the nuclear export signal (NES) sequence, and the peptide binding residues. The Tm14-3-3ɛ transcript shows a significant three-fold expression in the hemocyte of T. molitor larvae when infected with Escherichia coli Tm14-3-3ɛ silenced larvae show significantly lower survival rates when infected with E. coli. Under Tm14-3-3ɛ silenced condition, a strong antimicrobial activity is elicited in the hemocyte of the host inoculated with E. coli. This suggests impaired secretion of antimicrobial peptides (AMP) into the hemolymph. Furthermore, a reduction in AMP secretion under Tm14-3-3ɛ silenced condition would be responsible for loss in the capacity to kill bacteria and might explain the reduced survivability of the larvae upon E. coli challenge. This shows that Tm14-3-3ɛ is required to maintain innate immunity in T. molitor by enabling antimicrobial secretion into the hemolymph and explains the functional specialization of the isoform. PMID:27556493

  4. The Silencing of a 14-3-3ɛ Homolog in Tenebrio molitor Leads to Increased Antimicrobial Activity in Hemocyte and Reduces Larval Survivability.

    PubMed

    Seo, Gi Won; Jo, Yong Hun; Seong, Jeong Hwan; Park, Ki Beom; Patnaik, Bharat Bhusan; Tindwa, Hamisi; Kim, Sun-Am; Lee, Yong Seok; Kim, Yu Jung; Han, Yeon Soo

    2016-01-01

    The 14-3-3 family of phosphorylated serine-binding proteins acts as signaling molecules in biological processes such as metabolism, division, differentiation, autophagy, and apoptosis. Herein, we report the requirement of 14-3-3ɛ isoform from Tenebrio molitor (Tm14-3-3ɛ) in the hemocyte antimicrobial activity. The Tm14-3-3ɛ transcript is 771 nucleotides in length and encodes a polypeptide of 256 amino acid residues. The protein has the typical 14-3-3 domain, the nuclear export signal (NES) sequence, and the peptide binding residues. The Tm14-3-3ɛ transcript shows a significant three-fold expression in the hemocyte of T. molitor larvae when infected with Escherichia coli Tm14-3-3ɛ silenced larvae show significantly lower survival rates when infected with E. coli. Under Tm14-3-3ɛ silenced condition, a strong antimicrobial activity is elicited in the hemocyte of the host inoculated with E. coli. This suggests impaired secretion of antimicrobial peptides (AMP) into the hemolymph. Furthermore, a reduction in AMP secretion under Tm14-3-3ɛ silenced condition would be responsible for loss in the capacity to kill bacteria and might explain the reduced survivability of the larvae upon E. coli challenge. This shows that Tm14-3-3ɛ is required to maintain innate immunity in T. molitor by enabling antimicrobial secretion into the hemolymph and explains the functional specialization of the isoform. PMID:27556493

  5. Phosphorylation-dependent inhibition of Cdc42 GEF Gef1 by 14-3-3 protein Rad24 spatially regulates Cdc42 GTPase activity and oscillatory dynamics during cell morphogenesis

    PubMed Central

    Das, Maitreyi; Nuñez, Illyce; Rodriguez, Marbelys; Wiley, David J.; Rodriguez, Juan; Sarkeshik, Ali; Yates, John R.; Buchwald, Peter; Verde, Fulvia

    2015-01-01

    Active Cdc42 GTPase, a key regulator of cell polarity, displays oscillatory dynamics that are anticorrelated at the two cell tips in fission yeast. Anticorrelation suggests competition for active Cdc42 or for its effectors. Here we show how 14-3-3 protein Rad24 associates with Cdc42 guanine exchange factor (GEF) Gef1, limiting Gef1 availability to promote Cdc42 activation. Phosphorylation of Gef1 by conserved NDR kinase Orb6 promotes Gef1 binding to Rad24. Loss of Rad24–Gef1 interaction increases Gef1 protein localization and Cdc42 activation at the cell tips and reduces the anticorrelation of active Cdc42 oscillations. Increased Cdc42 activation promotes precocious bipolar growth activation, bypassing the normal requirement for an intact microtubule cytoskeleton and for microtubule-dependent polarity landmark Tea4-PP1. Further, increased Cdc42 activation by Gef1 widens cell diameter and alters tip curvature, countering the effects of Cdc42 GTPase-activating protein Rga4. The respective levels of Gef1 and Rga4 proteins at the membrane define dynamically the growing area at each cell tip. Our findings show how the 14-3-3 protein Rad24 modulates the availability of Cdc42 GEF Gef1, a homologue of mammalian Cdc42 GEF DNMBP/TUBA, to spatially control Cdc42 GTPase activity and promote cell polarization and cell shape emergence. PMID:26246599

  6. Tomato 14-3-3 protein 7 (TFT7) positively regulates immunity-associated programmed cell death by enhancing accumulation and signaling ability of MAPKKKalpha

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Programmed cell death (PCD) is triggered when Pto, a serine-threonine protein kinase recognizes either the AvrPto or AvrPtoB effector from Pseudomonas syringae pv. tomato. This PCD requires MAPKKKalpha as a positive regulator in tomato and Nicotiana benthamiana. To examine how PCD-eliciting activi...

  7. Transcriptional increase and misexpression of 14-3-3 epsilon in sea urchin embryos exposed to UV-B

    PubMed Central

    Russo, Roberta; Zito, Francesca; Costa, Caterina; Bonaventura, Rosa

    2010-01-01

    Members of the 14-3-3 protein family are involved in many important cellular events, including stress response, survival and apoptosis. Genes of the 14-3-3 family are conserved from plants to humans, and some members are responsive to UV radiation. Here, we report the isolation of the complete cDNA encoding the 14-3-3 epsilon isoform from Paracentrotus lividus sea urchin embryos, referred to as Pl14-3-3ε, and the phylogenetic relationship with other homologues described in different phyla. Pl14-3-3ε mRNA levels were measured by QPCR during development and found to increase from the mesenchyme blastula to the prism stage. In response to UV-B (312 nm) exposure, early stage embryos collected 2 h later showed a 2.3-fold (at 400 J/m2) and a 2.7-fold (at 800 J/m2) increase in Pl14-3-3ε transcript levels compared with controls. The spatial expression of Pl14-3-3ε mRNA, detected by whole mount in situ hybridization in both control and UV-B exposed embryos, harvested at late developmental stages, showed transcripts to be located in the archenteron of gastrula stage and widely distributed in all germ layers, respectively. The Pl14-3-3ε mRNA delocalization parallels the failure in archenteron elongation observed morphologically, as well as the lack of specific endoderm markers, investigated by indirect immuno-fluorescence on whole mount embryos. Results confirm the involvement of 14-3-3ε in the stress response elicited by UV-B and demonstrate, for the first time, its contribution at the transcriptional level in the sea urchin embryo. PMID:20607471

  8. Royal Jelly-Mediated Prolongevity and Stress Resistance in Caenorhabditis elegans Is Possibly Modulated by the Interplays of DAF-16, SIR-2.1, HCF-1, and 14-3-3 Proteins.

    PubMed

    Wang, Xiaoxia; Cook, Lauren F; Grasso, Lindsay M; Cao, Min; Dong, Yuqing

    2015-07-01

    Recent studies suggest that royal jelly (RJ) and its related substances may have antiaging properties. However, the molecular mechanisms underlying the beneficial effects remain elusive. We report that the effects of RJ and enzyme-treated RJ (eRJ) on life span and health span in Caenorhabditis elegans (C elegans) are modulated by the sophisticated interplays of DAF-16, SIR-2.1, HCF-1, and 14-3-3 proteins. Dietary supplementation with RJ or eRJ increased C. elegans life span in a dose-dependent manner. The RJ and eRJ consumption increased the tolerance of C elegans to oxidative stress, ultraviolet irradiation, and heat shock stress. Our genetic analyses showed that RJ/eRJ-mediated life-span extension requires insulin/IGF-1 signaling and the activities of DAF-16, SIR-2.1, HCF-1, and FTT-2, a 14-3-3 protein. Earlier studies reported that DAF-16/FOXO, SIR-2.1/SIRT1, FTT-2, and HCF-1 have extensive interplays in worms and mammals. Our present findings suggest that RJ/eRJ-mediated promotion of longevity and stress resistance in C elegans is dependent on these conserved interplays. From an evolutionary point of view, this study not only provides new insights into the molecular mechanisms of RJ's action on health span promotion in C elegans, but also has imperative implications in using RJ/eRJ as nutraceuticals to delay aging and age-related disorders.

  9. 14-3-3ζ regulates the mitochondrial respiratory reserve linked to platelet phosphatidylserine exposure and procoagulant function

    PubMed Central

    Schoenwaelder, Simone M.; Darbousset, Roxane; Cranmer, Susan L.; Ramshaw, Hayley S.; Orive, Stephanie L.; Sturgeon, Sharelle; Yuan, Yuping; Yao, Yu; Krycer, James R.; Woodcock, Joanna; Maclean, Jessica; Pitson, Stuart; Zheng, Zhaohua; Henstridge, Darren C.; van der Wal, Dianne; Gardiner, Elizabeth E.; Berndt, Michael C.; Andrews, Robert K.; James, David E.; Lopez, Angel F.; Jackson, Shaun P.

    2016-01-01

    The 14-3-3 family of adaptor proteins regulate diverse cellular functions including cell proliferation, metabolism, adhesion and apoptosis. Platelets express numerous 14-3-3 isoforms, including 14-3-3ζ, which has previously been implicated in regulating GPIbα function. Here we show an important role for 14-3-3ζ in regulating arterial thrombosis. Interestingly, this thrombosis defect is not related to alterations in von Willebrand factor (VWF)–GPIb adhesive function or platelet activation, but instead associated with reduced platelet phosphatidylserine (PS) exposure and procoagulant function. Decreased PS exposure in 14-3-3ζ-deficient platelets is associated with more sustained levels of metabolic ATP and increased mitochondrial respiratory reserve, independent of alterations in cytosolic calcium flux. Reduced platelet PS exposure in 14-3-3ζ-deficient mice does not increase bleeding risk, but results in decreased thrombin generation and protection from pulmonary embolism, leading to prolonged survival. Our studies define an important role for 14-3-3ζ in regulating platelet bioenergetics, leading to decreased platelet PS exposure and procoagulant function. PMID:27670677

  10. Molecular and biochemical mining of heat-shock and 14-3-3 proteins in drug-induced protoscolices of Echinococcus granulosus and the detection of a candidate gene for anthelmintic resistance.

    PubMed

    Pan, D; Das, S; Bera, A K; Bandyopadhyay, S; Bandyopadhyay, S; De, S; Rana, T; Das, S K; Suryanaryana, V V; Deb, J; Bhattacharya, D

    2011-06-01

    Cystic echinococcosis (CE) caused by the larval stage of Echinococcus granulosus is a disease that affects both humans and animals. In humans the disease is treated by surgery with a supplementary option of chemotherapy with a benzimidazole compound. During the present study heat-shock protein 60 (HSP 60) was identified as one of the most frequently expressed biomolecules by E. granulosus after albendazole treatment. Data were correlated with 14-3-3 protein signature, and overexpression of this molecule after albendazole induction was an indicator of cell survival and signal transduction during in vitro maintenance of E. granulosus for up to 72 h. This observation was further correlated with a uniform expression pattern of a housekeeping gene (actin II). Out of three β-tubulin gene isoforms of E. granulosus, β-tubulin gene isoform 2 showed a conserved point mutation indicative of benzimidazole resistance.

  11. 14-3-3 in Thoracic Aortic Aneurysms

    PubMed Central

    Chakravarti, Ritu; Gupta, Karishma; Swain, Mamuni; Willard, Belinda; Scholtz, Jaclyn; Svensson, Lars G.; Roselli, Eric E.; Pettersson, Gosta; Johnston, Douglas R.; Soltesz, Edward G.; Yamashita, Michifumi; Stuehr, Dennis; Daly, Thomas M.; Hoffman, Gary S.

    2015-01-01

    Objective Large vessel vasculitides (LVV) are a group of autoimmune diseases characterized by injury to and anatomic modifications of large vessels, including the aorta and its branch vessels. Disease etiology is unknown. This study was undertaken to identify antigen targets within affected vessel walls in aortic root, ascending aorta, and aortic arch surgical specimens from patients with LVV, including giant cell arteritis, Takayasu arteritis, and isolated focal aortitis. Methods Thoracic aortic aneurysm specimens and autologous blood were acquired from consenting patients who underwent aorta reconstruction procedures. Aorta proteins were extracted from both patients with LVV and age-, race-, and sex-matched disease controls with noninflammatory aneurysms. A total of 108 serum samples from patients with LVV, matched controls, and controls with antinuclear antibodies, different forms of vasculitis, or sepsis were tested. Results Evaluation of 108 serum samples and 22 aortic tissue specimens showed that 78% of patients with LVV produced antibodies to 14-3-3 proteins in the aortic wall (93.7% specificity), whereas controls were less likely to do so (6.7% produced antibodies). LVV patient sera contained autoantibody sufficient to immunoprecipitate 14-3-3 protein(s) from aortic lysates. Three of 7 isoforms of 14-3-3 were found to be up-regulated in aorta specimens from patients with LVV, and 2 isoforms (ε and ζ) were found to be antigenic in LVV. Conclusion This is the first study to use sterile, snap-frozen thoracic aorta biopsy specimens to identify autoantigens in LVV. Our findings indicate that 78% of patients with LVV have antibody reactivity to 14-3-3 protein(s). The precise role of these antibodies and 14-3-3 proteins in LVV pathogenesis deserves further study. PMID:25917817

  12. Phosphorylation and Interaction with the 14-3-3 Protein of the Plasma Membrane H+-ATPase are Involved in the Regulation of Magnesium-Mediated Increases in Aluminum-Induced Citrate Exudation in Broad Bean (Vicia faba. L).

    PubMed

    Chen, Qi; Kan, Qi; Wang, Ping; Yu, Wenqian; Yu, Yuzhen; Zhao, Yan; Yu, Yongxiong; Li, Kunzhi; Chen, Limei

    2015-06-01

    Several studies have shown that external application of micromolar magnesium (Mg) can increase the resistance of legumes to aluminum (Al) stress by enhancing Al-induced citrate exudation. However, the exact mechanism underlying this regulation remains unknown. In this study, the physiological and molecular mechanisms by which Mg enhances Al-induced citrate exudation to alleviate Al toxicity were investigated in broad bean. Micromolar concentrations of Mg that alleviated Al toxicity paralleled the stimulation of Al-induced citrate exudation and increased the activity of the plasma membrane (PM) H(+)-ATPase. Northern blot analysis shows that a putative MATE-like gene (multidrug and toxic compound extrusion) was induced after treatment with Al for 4, 8 and 12 h, whereas the mRNA abundance of the MATE-like gene showed no significant difference between Al plus Mg and Al-only treatments during the entire treatment period. Real-time reverse transcription-PCR (RT-PCR) and Western blot analyses suggest that the transcription and translation of the PM H(+)-ATPase were induced by Al but not by Mg. In contrast, immunoprecipitation suggests that Mg enhanced the phosphorylation levels of VHA2 and its interaction with the vf14-3-3b protein under Al stress. Taken together, our results suggest that micromolar concentrations of Mg can alleviate the Al rhizotoxicity by increasing PM H(+)-ATPase activity and Al-induced citrate exudation in YD roots. This enhancement is likely to be attributable to Al-induced increases in the expression of the MATE-like gene and vha2 and Mg-induced changes in the phosphorylation levels of VHA2, thus changing its interaction with the vf14-3-3b protein.

  13. An obligatory heterodimer of 14-3-3beta and 14-3-3epsilon is required for aldosterone regulation of the epithelial sodium channel.

    PubMed

    Liang, Xiubin; Butterworth, Michael B; Peters, Kathryn W; Walker, William H; Frizzell, Raymond A

    2008-10-10

    Increased distal nephron sodium absorption in response to aldosterone involves Nedd4-2 phosphorylation, which blocks its ability to ubiquitylate ENaC and increases apical membrane channel density by reducing its endocytosis. Our prior work (Liang, X., Peters, K. W., Butterworth, M. B., and Frizzell, R. A. (2006) J. Biol. Chem. 281, 16323-16332) showed that aldosterone selectively increased 14-3-3 protein isoform expression and that the association of 14-3-3beta with phospho-Nedd4-2 was required for sodium transport stimulation. The knockdown of 14-3-3beta alone nearly eliminated the response to aldosterone, despite the expression of other 14-3-3 isoforms in cortical collecting duct (CCD) cells. To further examine this marked effect of 14-3-3beta knockdown, we evaluated the hypothesis that phospho-Nedd4-2 binding prefers a heterodimer composed of two different 14-3-3 isoforms. We tested this concept in polarized CCD cells using RNA interference and assays of sodium transport and of the interaction of Nedd4-2 with 14-3-3epsilon, a second aldosterone-induced isoform. As observed previously for 14-3-3beta knockdown, small interfering RNA-induced reduction of 14-3-3epsilon markedly attenuated aldosterone-stimulated ENaC expression and sodium transport and increased the interaction of Nedd4-2 with ENaC toward prealdosterone levels. After aldosterone induction, 14-3-3beta and 14-3-3epsilon were quantitatively co-immunoprecipitated from CCD cell lysates, and the association of both isoforms with Nedd4-2 increased. Finally, the knockdown of either 14-3-3beta or 14-3-3epsilon reduced the association of Nedd4-2 with the other isoform. We conclude that the two aldosterone-induced 14-3-3 isoforms, beta and epsilon, interact with phospho-Nedd4-2 as an obligatory heterodimer, blocking its interaction with ENaC and thereby increasing apical ENaC density and sodium transport. PMID:18687683

  14. Scaffold functions of 14-3-3 adaptors in B cell immunoglobulin class switch DNA recombination.

    PubMed

    Lam, Tonika; Thomas, Lisa M; White, Clayton A; Li, Guideng; Pone, Egest J; Xu, Zhenming; Casali, Paolo

    2013-01-01

    Class switch DNA recombination (CSR) of the immunoglobulin heavy chain (IgH) locus crucially diversifies antibody biological effector functions. CSR involves the induction of activation-induced cytidine deaminase (AID) expression and AID targeting to switch (S) regions by 14-3-3 adaptors. 14-3-3 adaptors specifically bind to 5'-AGCT-3' repeats, which make up for the core of all IgH locus S regions. They selectively target the upstream and downstream S regions that are set to undergo S-S DNA recombination. We hypothesized that 14-3-3 adaptors function as scaffolds to stabilize CSR enzymatic elements on S regions. Here we demonstrate that all seven 14-3-3β, 14-3-3ε, 14-3-3γ, 14-3-3η, 14-3-3σ, 14-3-3τ and 14-3-3ζ adaptors directly interacted with AID, PKA-Cα (catalytic subunit) and PKA-RIα (regulatory inhibitory subunit) and uracil DNA glycosylase (Ung). 14-3-3 adaptors, however, did not interact with AID C-terminal truncation mutant AIDΔ(180-198) or AIDF193A and AIDL196A point-mutants (which have been shown not to bind to S region DNA and fail to mediate CSR). 14-3-3 adaptors colocalized with AID and replication protein A (RPA) in B cells undergoing CSR. 14-3-3 and AID binding to S region DNA was disrupted by viral protein R (Vpr), an accessory protein of human immunodeficiency virus type-1 (HIV-1), which inhibited CSR without altering AID expression or germline IH-CH transcription. Accordingly, we demonstrated that 14-3-3 directly interact with Vpr, which in turn, also interact with AID, PKA-Cα and Ung. Altogether, our findings suggest that 14-3-3 adaptors play important scaffold functions and nucleate the assembly of multiple CSR factors on S regions. They also show that such assembly can be disrupted by a viral protein, thereby allowing us to hypothesize that small molecule compounds that specifically block 14-3-3 interactions with AID, PKA and/or Ung can be used to inhibit unwanted CSR.

  15. 14-3-3s are Potential Biomarkers for HIV-related Neurodegeneration

    PubMed Central

    Morales, Diana; Skoulakis, Efthimios M.; Acevedo, Summer F.

    2013-01-01

    Over the last decade, it has become evident that 14-3-3 proteins are essential for primary cell functions. These proteins are abundant throughout the body, including the central nervous system (CNS) and interact with other proteins in both cell cycle and apoptotic pathways. Examination of cerebral spinal fluid (CSF) in humans, suggest that 14-3-3s including 14-3-3ε (YWHAE), are upregulated in several neurological diseases and loss or duplication of the YWHAE gene leads to Miller-Dieker Syndrome (MDS). The goal of this review is to examine the utility of 14-3-3s as a marker of Human Immune deficiency virus (HIV)-dependent neurodegeneration, and also as a tool to track disease progression. To that end we describe mechanisms implicating 14-3-3s in neurological diseases and summarize evidence of its interactions with HIV accessory and co-receptor proteins. PMID:22811265

  16. Functional identification of a novel 14-3-3 epsilon splicing variant suggests dimerization is not necessary for 14-3-3 epsilon to inhibit UV-induced apoptosis

    SciTech Connect

    Han, Dingding; Ye, Guangming; Liu, Tingting; Chen, Cong; Yang, Xianmei; Wan, Bo; Pan, Yuanwang; Yu, Long

    2010-05-28

    14-3-3 proteins function as a dimer and have been identified to involve in diverse signaling pathways. Here we reported the identification of a novel splicing variant of human 14-3-3 epsilon (14-3-3 epsilon sv), which is derived from a novel exon 1' insertion. The insertion contains a stop codon and leads to a truncated splicing variant of 14-3-3 epsilon. The splicing variant is translated from the exon 2 and results in the deletion of an N-terminal {alpha}-helix which is crucial for the dimerization. Therefore, the 14-3-3 epsilon sv could not form a dimer with 14-3-3 zeta. However, after UV irradiation 14-3-3 epsilon sv could also support cell survival, suggesting monomer of 14-3-3 epsilon is sufficient to protect cell from apoptosis.

  17. Clinical implication of 14-3-3 epsilon expression in gastric cancer

    PubMed Central

    Leal, Mariana Ferreira; Calcagno, Danielle Queiroz; Demachki, Sâmia; Assumpção, Paulo Pimentel; Chammas, Roger; Burbano, Rommel Rodríguez; Smith, Marília de Arruda Cardoso

    2012-01-01

    AIM: To evaluate for the first time the protein and mRNA expression of 14-3-3ε in gastric carcinogenesis. METHODS: 14-3-3ε protein expression was determined by western blotting, and mRNA expression was examined by real-time quantitative RT-PCR in gastric tumors and their matched non-neoplastic gastric tissue samples. RESULTS: Authors observed a significant reduction of 14-3-3ε protein expression in gastric cancer (GC) samples compared to their matched non-neoplastic tissue. Reduced levels of 14-3-3ε were also associated with diffuse-type GC and early-onset of this pathology. Our data suggest that reduced 14-3-3ε may have a role in gastric carcinogenesis process. CONCLUSION: Our results reveal that the reduced 14-3-3ε expression in GC and investigation of 14-3-3ε interaction partners may help to elucidate the carcinogenesis process. PMID:22509086

  18. Identification and expression analysis of four 14-3-3 genes during fruit ripening in banana (Musa acuminata L. AAA group, cv. Brazilian).

    PubMed

    Li, Mei-Ying; Xu, Bi-Yu; Liu, Ju-Hua; Yang, Xiao-Liang; Zhang, Jian-Bin; Jia, Cai-Hong; Ren, Li-Cheng; Jin, Zhi-Qiang

    2012-02-01

    To investigate the regulation of 14-3-3 proteins in banana (Musa acuminata L. AAA group, cv. Brazilian) fruit postharvest ripening, four cDNAs encoding 14-3-3 proteins were isolated from banana and designated as Ma-14-3-3a, Ma-14-3-3c, Ma-14-3-3e, and Ma-14-3-3i, respectively. Amino acid sequence alignment showed that the four 14-3-3 proteins shared a highly conserved core structure and variable C-terminal as well as N-terminal regions with 14-3-3 proteins from other plant species. Phylogenetic analysis revealed that the four 14-3-3 genes belong to the non-ε groups. They were differentially and specifically expressed in various tissues. Real-time RT-PCR analysis indicated that these four genes function differentially during banana fruit postharvest ripening. Three genes, Ma-14-3-3a, Ma-14-3-3c, and Ma-14-3-3e, were significantly induced by exogenous ethylene treatment. However, gene function differed in naturally ripened fruits. Ethylene could induce Ma-14-3-3c expression during postharvest ripening, but expression patterns of Ma-14-3-3a and Ma-14-3-3e suggest that these two genes appear to be involved in regulating ethylene biosynthesis during fruit ripening. No obvious relationship emerged between Ma-14-3-3i expression in naturally ripened and 1-MCP (1-methylcyclopropene)-treated fruit groups during fruit ripening. These results indicate that the 14-3-3 proteins might be involved in various regulatory processes of banana fruit ripening. Further studies will mainly focus on revealing the detailed biological mechanisms of these four 14-3-3 genes in regulating banana fruit postharvest ripening. PMID:22009053

  19. The pro-inflammatory cytokine 14-3-3ε is a ligand of CD13 in cartilage

    PubMed Central

    Nefla, Meriam; Sudre, Laure; Denat, Guillaume; Priam, Sabrina; Andre-Leroux, Gwenaëlle; Berenbaum, Francis; Jacques, Claire

    2015-01-01

    ABSTRACT Osteoarthritis is a whole-joint disease characterized by the progressive destruction of articular cartilage involving abnormal communication between subchondral bone and cartilage. Our team previously identified 14-3-3ε protein as a subchondral bone soluble mediator altering cartilage homeostasis. The aim of this study was to investigate the involvement of CD13 (also known as aminopeptidase N, APN) in the chondrocyte response to 14-3-3ε. After identifying CD13 in chondrocytes, we knocked down CD13 with small interfering RNA (siRNA) and blocking antibodies in articular chondrocytes. 14-3-3ε-induced MMP-3 and MMP-13 was significantly reduced with CD13 knockdown, which suggests that it has a crucial role in 14-3-3ε signal transduction. Aminopeptidase N activity was identified in chondrocytes, but the activity was unchanged after stimulation with 14-3-3ε. Direct interaction between CD13 and 14-3-3ε was then demonstrated by surface plasmon resonance. Using labeled 14-3-3ε, we also found that 14-3-3ε binds to the surface of chondrocytes in a manner that is dependent on CD13. Taken together, these results suggest that 14-3-3ε might directly bind to CD13, which transmits its signal in chondrocytes to induce a catabolic phenotype similar to that observed in osteoarthritis. The 14-3-3ε–CD13 interaction could be a new therapeutic target in osteoarthritis. PMID:26208633

  20. Visualization and Biochemical Analyses of the Emerging Mammalian 14-3-3-Phosphoproteome*

    PubMed Central

    Johnson, Catherine; Tinti, Michele; Wood, Nicola T.; Campbell, David G.; Toth, Rachel; Dubois, Fanny; Geraghty, Kathryn M.; Wong, Barry H. C.; Brown, Laura J.; Tyler, Jennifer; Gernez, Aurélie; Chen, Shuai; Synowsky, Silvia; MacKintosh, Carol

    2011-01-01

    Hundreds of candidate 14-3-3-binding (phospho)proteins have been reported in publications that describe one interaction at a time, as well as high-throughput 14-3-3-affinity and mass spectrometry-based studies. Here, we transcribed these data into a common format, deposited the collated data from low-throughput studies in MINT (http://mint.bio.uniroma2.it/mint), and compared the low- and high-throughput data in VisANT graphs that are easy to analyze and extend. Exploring the graphs prompted questions about technical and biological specificity, which were addressed experimentally, resulting in identification of phosphorylated 14-3-3-binding sites in the mitochondrial import sequence of the iron-sulfur cluster assembly enzyme (ISCU), cytoplasmic domains of the mitochondrial fission factor (MFF), and endoplasmic reticulum-tethered receptor expression-enhancing protein 4 (REEP4), RNA regulator SMAUG2, and cytoskeletal regulatory proteins, namely debrin-like protein (DBNL) and kinesin light chain (KLC) isoforms. Therefore, 14-3-3s undergo physiological interactions with proteins that are destined for diverse subcellular locations. Graphing and validating interactions underpins efforts to use 14-3-3-phosphoproteomics to identify mechanisms and biomarkers for signaling pathways in health and disease. PMID:21725060

  1. 14-3-3σ regulates keratinocyte proliferation and differentiation by modulating Yap1 cellular localization

    PubMed Central

    Sambandam, Sumitha A.T.; Kasetti, Ramesh Babu; Xue, Lei; Dean, Douglas C.; Lu, Qingxian; Li, Qiutang

    2015-01-01

    The homozygous repeated epilation (Er/Er) mouse mutant of the gene encoding 14-3-3σ displays an epidermal phenotype characterized by hyperproliferative keratinocytes and undifferentiated epidermis. Heterozygous Er/+ mice develop spontaneous skin tumors and are highly sensitive to tumor-promoting DMBA/TPA induction. The molecular mechanisms underlying 14-3-3σ regulation of epidermal proliferation, differentiation, and tumor formation have not been well elucidated. In the present study, we found that Er/Er keratinocytes failed to sequester Yap1 in the cytoplasm, leading to its nuclear localization during epidermal development in vivo and under differentiation-inducing culture conditions in vitro. In addition, enhanced Yap1 nuclear localization was also evident in DMBA/TPA-induced tumors from Er/+ skin. Furthermore, shRNA knockdown of Yap1 expression in Er/Er keratinocytes inhibited their proliferation, suggesting that YAP1 functions as a downstream effector of 14-3-3σ controlling epidermal proliferation. We then demonstrated that keratinocytes express all seven 14-3-3 protein isoforms, some of which form heterodimers with 14-3-3σ, either full-length WT or the mutant form found in Er/Er mice. However Er 14-3-3σ does not interact with Yap1, as demonstrated by co-immunoprecipitation. We conclude that Er 14-3-3σ disrupts the interaction between 14-3-3 and Yap1, thus fails to block Yap1 nuclear transcriptional function, causing continued progenitor expansion and inhibition of differentiation in Er/Er epidermis. PMID:25668240

  2. 14-3-3, an integrator of cell mechanics and cytokinesis.

    PubMed

    Robinson, Douglas N

    2010-11-01

    One of the goals of understanding cytokinesis is to uncover the molecular regulation of the cellular mechanical properties that drive cell shape change. Such regulatory pathways are likely to be used at multiple stages of a cell's life, but are highly featured during cell division. Recently, we demonstrated that 14-3-3 (encoded by a single gene in the social amoeba Dictyostelium discoideum) serves to integrate key cytoskeletal components-microtubules, Rac and myosin II-to control cell mechanics and cytokinesis. As 14-3-3 proteins are frequently altered in a variety of human tumors, we extend these observations to suggest possible additional roles for how 14-3-3 proteins may contribute to tumorigenesis. PMID:21686271

  3. 14-3-3ζ Mediates Tau Aggregation in Human Neuroblastoma M17 Cells.

    PubMed

    Li, Tong; Paudel, Hemant K

    2016-01-01

    Microtubule-associated protein tau is the major component of paired helical filaments (PHFs) associated with the neuropathology of Alzheimer's disease (AD). Tau in the normal brain binds and stabilizes microtubules. Tau isolated from PHFs is hyperphosphorylated, which prevents it from binding to microtubules. Tau phosphorylation has been suggested to be involved in the development of NFT pathology in the AD brain. Recently, we showed that 14-3-3ζ is bound to tau in the PHFs and when incubated in vitro with 14-3-3ζ, tau formed amorphous aggregates, single-stranded straight filaments, double stranded ribbon-like filaments and PHF-like filaments that displayed close resemblance with corresponding ultrastructures of AD brain. Surprisingly however, phosphorylated and non-phosphorylated tau aggregated in a similar manner, indicating that tau phosphorylation does not affect in vitro tau aggregation (Qureshi et al (2013) Biochemistry 52, 6445-6455). In this study, we have examined the role of tau phosphorylation in tau aggregation in cellular level. We have found that in human M17 neuroblastoma cells, tau phosphorylation by GSK3β or PKA does not cause tau aggregation, but promotes 14-3-3ζ-induced tau aggregation by destabilizing microtubules. Microtubule disrupting drugs also promoted 14-3-3ζ-induced tau aggregation without changing tau phosphorylation in M17 cell. In vitro, when incubated with 14-3-3ζ and microtubules, nonphosphorylated tau bound to microtubules and did not aggregate. Phosphorylated tau on the other hand did not bind to microtubules and aggregated. Our data indicate that microtubule-bound tau is resistant to 14-3-3ζ-induced tau aggregation and suggest that tau phosphorylation promotes tau aggregation in the brain by detaching tau from microtubules and thus making it accessible to 14-3-3ζ. PMID:27548710

  4. 14-3-3ζ Mediates Tau Aggregation in Human Neuroblastoma M17 Cells

    PubMed Central

    Li, Tong; Paudel, Hemant K.

    2016-01-01

    Microtubule-associated protein tau is the major component of paired helical filaments (PHFs) associated with the neuropathology of Alzheimer’s disease (AD). Tau in the normal brain binds and stabilizes microtubules. Tau isolated from PHFs is hyperphosphorylated, which prevents it from binding to microtubules. Tau phosphorylation has been suggested to be involved in the development of NFT pathology in the AD brain. Recently, we showed that 14-3-3ζ is bound to tau in the PHFs and when incubated in vitro with 14-3-3ζ, tau formed amorphous aggregates, single-stranded straight filaments, double stranded ribbon-like filaments and PHF-like filaments that displayed close resemblance with corresponding ultrastructures of AD brain. Surprisingly however, phosphorylated and non-phosphorylated tau aggregated in a similar manner, indicating that tau phosphorylation does not affect in vitro tau aggregation (Qureshi et al (2013) Biochemistry 52, 6445–6455). In this study, we have examined the role of tau phosphorylation in tau aggregation in cellular level. We have found that in human M17 neuroblastoma cells, tau phosphorylation by GSK3β or PKA does not cause tau aggregation, but promotes 14-3-3ζ-induced tau aggregation by destabilizing microtubules. Microtubule disrupting drugs also promoted 14-3-3ζ-induced tau aggregation without changing tau phosphorylation in M17 cell. In vitro, when incubated with 14-3-3ζ and microtubules, nonphosphorylated tau bound to microtubules and did not aggregate. Phosphorylated tau on the other hand did not bind to microtubules and aggregated. Our data indicate that microtubule-bound tau is resistant to 14-3-3ζ-induced tau aggregation and suggest that tau phosphorylation promotes tau aggregation in the brain by detaching tau from microtubules and thus making it accessible to 14-3-3ζ. PMID:27548710

  5. Tar DNA binding protein of 43 kDa (TDP-43), 14-3-3 proteins and copper/zinc superoxide dismutase (SOD1) interact to modulate NFL mRNA stability. Implications for altered RNA processing in amyotrophic lateral sclerosis (ALS).

    PubMed

    Volkening, Kathryn; Leystra-Lantz, Cheryl; Yang, Wenchang; Jaffee, Howard; Strong, Michael J

    2009-12-11

    Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease characterized by progressive motor neuron degeneration in association with neurofilament (NF) aggregate formation. This process is accompanied by an alteration in the stoichiometry of NF subunit protein expression such that the steady state levels of the low molecular weight NF (NFL) mRNA levels are selectively suppressed. We have previously shown that each of TDP-43, 14-3-3 and mutant SOD1 can function as NFL mRNA 3'UTR binding proteins that directly affect the stability of NFL transcripts. In this study, we demonstrate that the interaction of TDP-43 with the NFL mRNA 3' UTR involves ribonucleotide (UG) motifs present on stem loops of the 3'UTR as well as the RRM1 and RRM2 motifs of TDP-43. Ex vivo, TDP-43, 14-3-3 and SOD1 proteins interact to modulate NFL mRNA stability, although in vivo, only TDP-43 and either mutant or wild-type SOD1 co-localize in ALS motor neurons. TDP-43 was observed to co-localize to RNA transport granules (Staufen immunoreactive) in both control and ALS spinal motor neurons. In contrast, both stress granules (TIA-1 immunoreactive) and processing bodies (P-bodies; XRN-1 immunoreactive) were more prevalent in ALS motor neurons than in controls and demonstrated strong co-localization with TDP-43. Using RNA-IP-PCR, we further demonstrate that NFL mRNA is preferentially sequestered to both stress granules and P-bodies in ALS. These data suggest that NFL mRNA processing is fundamentally altered in ALS spinal motor neurons to favour compartmentalization within both stress granules and P-bodies, and that TDP-43 plays a fundamental role in this process.

  6. Comparative analysis of the 14-3-3 gene and its expression in Echinococcus granulosus and Echinococcus multilocularis metacestodes.

    PubMed

    Siles-Lucas, M; Nunes, C P; Zaha, A

    2001-03-01

    It was suggested that the unlimited proliferative capacity of the Echinococcus multilocularis metacestode may be related to overproduction of the 14-3-3 protein. As is known, the proliferative capacities of E. granulosus and E. multilocularis metacestodes are very different. By comparing the expression levels of the 14-3-3 gene between in vitro-obtained E. granulosus and E. multilocularis metacestodes, we were able to provide experimental evidence of the potential relation between 14-3-3 over-expression and tumour-like growth in E. multilocularis metacestodes. RT-PCR and Northern blot experiments indicated that 14-3-3 expression level is about 4-fold higher in the E. multilocularis metacestode. This differential expression was confirmed both by immunoblotting and immunocytochemistry experiments, which allowed detection of the protein in the cyst wall from E. multilocularis but not in the cyst wall from E. granulosus. The alignment of the Echinococcus 14-3-3 cDNA sequence with known 14-3-3 isoforms from other organisms, grouped the parasite sequence into the tumour growth-related isoforms. The known relation between over-expression of some 14-3-3 isoforms and tumour-related processes, together with the present results, suggest that the Echinococcus 14-3-3 protein could be one of the molecules responsible for the differences between E. granulosus and E. multilocularis metacestode growth behaviour.

  7. Ustilago maydis Rho1 and 14-3-3 homologues participate in pathways controlling cell separation and cell polarity.

    PubMed

    Pham, Cau D; Yu, Zhanyang; Sandrock, Björn; Bölker, Michael; Gold, Scott E; Perlin, Michael H

    2009-07-01

    Proteins of the 14-3-3 and Rho-GTPase families are functionally conserved eukaryotic proteins that participate in many important cellular processes such as signal transduction, cell cycle regulation, malignant transformation, stress response, and apoptosis. However, the exact role(s) of these proteins in these processes is not entirely understood. Using the fungal maize pathogen, Ustilago maydis, we were able to demonstrate a functional connection between Pdc1 and Rho1, the U. maydis homologues of 14-3-3epsilon and Rho1, respectively. Our experiments suggest that Pdc1 regulates viability, cytokinesis, chromosome condensation, and vacuole formation. Similarly, U. maydis Rho1 is also involved in these three essential processes and exerts an additional function during mating and filamentation. Intriguingly, yeast two-hybrid and epistasis experiments suggest that both Pdc1 and Rho1 could be constituents of the same regulatory cascade(s) controlling cell growth and filamentation in U. maydis. Overexpression of rho1 ameliorated the defects of cells depleted for Pdc1. Furthermore, we found that another small G protein, Rac1, was a suppressor of lethality for both Pdc1 and Rho1. In addition, deletion of cla4, encoding a Rac1 effector kinase, could also rescue cells with Pdc1 depleted. Inferring from these data, we propose a model for Rho1 and Pdc1 functions in U. maydis.

  8. Histone Deacetylase 6 (HDAC6) Promotes the Pro-survival Activity of 14-3-3ζ via Deacetylation of Lysines within the 14-3-3ζ Binding Pocket*

    PubMed Central

    Mortenson, Jeffrey B.; Heppler, Lisa N.; Banks, Courtney J.; Weerasekara, Vajira K.; Whited, Matthew D.; Piccolo, Stephen R.; Johnson, William E.; Thompson, J. Will; Andersen, Joshua L.

    2015-01-01

    The phospho-binding protein 14-3-3ζ acts as a signaling hub controlling a network of interacting partners and oncogenic pathways. We show here that lysines within the 14-3-3ζ binding pocket and protein-protein interface can be modified by acetylation. The positive charge on two of these lysines, Lys49 and Lys120, is critical for coordinating 14-3-3ζ-phosphoprotein interactions. Through screening, we identified HDAC6 as the Lys49/Lys120 deacetylase. Inhibition of HDAC6 blocks 14-3-3ζ interactions with two well described interacting partners, Bad and AS160, which triggers their dephosphorylation at Ser112 and Thr642, respectively. Expression of an acetylation-refractory K49R/K120R mutant of 14-3-3ζ rescues both the HDAC6 inhibitor-induced loss of interaction and Ser112/Thr642 phosphorylation. Furthermore, expression of the K49R/K120R mutant of 14-3-3ζ inhibits the cytotoxicity of HDAC6 inhibition. These data demonstrate a novel role for HDAC6 in controlling 14-3-3ζ binding activity. PMID:25770209

  9. Phosphorylation-related modification at the dimer interface of 14-3-3ω dramatically alters monomer interaction dynamics.

    PubMed

    Denison, Fiona C; Gökirmak, Tufan; Ferl, Robert J

    2014-01-01

    14-3-3 proteins are generally believed to function as dimers in a broad range of eukaryotic signaling pathways. The consequences of altering dimer stability are not fully understood. Phosphorylation at Ser58 in the dimer interface of mammalian 14-3-3 isoforms has been reported to destabilise dimers. An equivalent residue, Ser62, is present across most Arabidopsis isoforms but the effects of phosphorylation have not been studied in plants. Here, we assessed the effects of phosphorylation at the dimer interface of Arabidopsis 14-3-3ω. Protein kinase A phosphorylated 14-3-3ω at Ser62 and also at a previously unreported residue, Ser67, resulting in a monomer-sized band on native-PAGE. Phosphorylation at Ser62 alone, or with additional Ser67 phosphorylation, was investigated using phosphomimetic versions of 14-3-3ω. In electrophoretic and chromatographic analyses, these mutants showed mobilities intermediate between dimers and monomers. Mobility was increased by detergents, by reducing protein concentration, or by increasing pH or temperature. Urea gradient gels showed complex structural transitions associated with alterations of dimer stability, including a previously unreported 14-3-3 aggregation phenomenon. Overall, our analyses showed that dimer interface modifications such as phosphorylation reduce dimer stability, dramatically affecting the monomer-dimer equilibrium and denaturation trajectory. These findings may have dramatic implications for 14-3-3 structure and function in vivo.

  10. Sporadic Creutzfeldt-Jakob disease diagnostic accuracy is improved by a new CSF ELISA 14-3-3γ assay.

    PubMed

    Leitão, M J; Baldeiras, I; Almeida, M R; Ribeiro, M H; Santos, A C; Ribeiro, M; Tomás, J; Rocha, S; Santana, I; Oliveira, C R

    2016-05-13

    Protein 14-3-3 is a reliable marker of rapid neuronal damage, specifically increased in cerebrospinal fluid (CSF) of sporadic Creutzfeldt-Jakob disease (sCJD) patients. Its detection is usually performed by Western Blot (WB), prone to methodological issues. Our aim was to evaluate the diagnostic performance of a recently developed quantitative enzyme-linked immunosorbent (ELISA) assay for 14-3-3γ, in comparison with WB and other neurodegeneration markers. CSF samples from 145 patients with suspicion of prion disease, later classified as definite sCJD (n=72) or Non-prion diseases (Non-CJD; n=73) comprised our population. 14-3-3 protein was determined by WB and ELISA. Total Tau (t-Tau) and phosphorylated Tau (p-Tau) were also evaluated. Apolipoprotein E gene (ApoE) and prionic protein gene (PRNP) genotyping was assessed. ELISA 14-3-3γ levels were significantly increased in sCJD compared to Non-CJD patients (p<0.001), showing very good accuracy (AUC=0.982; sensitivity=97%; specificity=94%), and matching WB results in 81% of all cases. It strongly correlated with t-Tau and p-Tau (p<0.0001), showing slightly higher specificity (14-3-3 WB - 63%; Tau - 90%; p-Tau/t-Tau ratio - 88%). From WB inconclusive results (n=44), ELISA 14-3-3γ correctly classified 41 patients. Additionally, logistic regression analysis selected ELISA 14-3-3γ as the best single predictive marker for sCJD (overall accuracy=93%). ApoE and PRNP genotypes did not influence ELISA 14-3-3γ levels. Despite specificity for 14-3-3γ isoform, ELISA results not only match WB evaluation but also help discrimination of inconclusive results. Our results therefore reinforce this assay as a single screening test, allowing higher sample throughput and unequivocal results. PMID:26940479

  11. Akt Phosphorylates Connexin43 on Ser373, a “Mode-1” Binding Site for 14-3-3

    PubMed Central

    PARK, DARREN J.; WALLICK, CHRISTOPHER J.; MARTYN, KENDRA D.; LAU, ALAN F.; JIN, CHENGSHI; WARN-CRAMER, BONNIE J.

    2009-01-01

    Connexin43 (Cx43) is a membrane-spanning protein that forms channels that bridge the gap between adjacent cells and this allows for the intercellular exchange of information. Cx43 is regulated by phosphorylation and by interacting proteins. “Mode-1” interaction with 14-3-3 requires phosphorylation of Ser373 on Cx43 (Park et al. 2006). Akt phosphorylates and targets a number of proteins to interactions with 14-3-3. Here we demonstrate that Akt phosphorylates Cx43 on Ser373 and Ser369; antibodies recognizing Akt-phosphorylated sites or phospho-Ser “mode-1” 14-3-3-binding sites recognize a protein from EGF-treated cells that migrates as Cx43, and GST-14-3-3 binds to Cx43 phosphorylated endogenously in EGF-treated cells. Confocal microscopy supports the co-localization of Cx43 with Akt and with 14-3-3 at the outer edges of gap junctional plaques. These data suggest that Akt could target Cx43 to an interaction with 14-3-3 that may play a role in the forward trafficking of Cx43 multimers and/or their incorporation into existing gap junctional plaques. PMID:18163231

  12. 14-3-3ε and ζ Regulate Neurogenesis and Differentiation of Neuronal Progenitor Cells in the Developing Brain

    PubMed Central

    Wachi, Tomoka; Hunt, Robert F.; Baraban, Scott C.; Taya, Shinichiro; Ramshaw, Hayley; Kaibuchi, Kozo; Schwarz, Quenten P.; Lopez, Angel F.

    2014-01-01

    During brain development, neural progenitor cells proliferate and differentiate into neural precursors. These neural precursors migrate along the radial glial processes and localize at their final destination in the cortex. Numerous reports have revealed that 14-3-3 proteins are involved in many neuronal activities, although their functions in neurogenesis remain unclear. Here, using 14-3-3ε/ζ double knock-out mice, we found that 14-3-3 proteins are important for proliferation and differentiation of neural progenitor cells in the cortex, resulting in neuronal migration defects and seizures. 14-3-3 deficiency resulted in the increase of δ-catenin and the decrease of β-catenin and αN-catenin. 14-3-3 proteins regulated neuronal differentiation into neurons via direct interactions with phosphorylated δ-catenin to promote F-actin formation through a catenin/Rho GTPase/Limk1/cofilin signaling pathway. Conversely, neuronal migration defects seen in the double knock-out mice were restored by phosphomimic Ndel1 mutants, but not δ-catenin. Our findings provide new evidence that 14-3-3 proteins play important roles in neurogenesis and neuronal migration via the regulation of distinct signaling cascades. PMID:25186760

  13. 14-3-3ζ up-regulates hypoxia-inducible factor-1α in hepatocellular carcinoma via activation of PI3K/Akt/NF-кB signal transduction pathway

    PubMed Central

    Tang, Yufu; Lv, Pengfei; Sun, Zhongyi; Han, Lei; Luo, Bichao; Zhou, Wenping

    2015-01-01

    14-3-3ζ protein, a member of 14-3-3 family, plays important roles in multiple cellular processes. Our previous study showed that 14-3-3ζ could bind to regulate the expression of hypoxia-inducible factor-1α (HIF-1α), which is induced by hypoxia and a crucial factor for induction of tumor metastasis. Moreover, we also have confirmed the response of 14-3-3ζ to hypoxia in our unpublished data as well. Thus, in the present study, we attempted to reveal that whether the regulation effect of 14-3-3ζ on HIF-1α functioned in a similar pattern as hypoxia. Stable regulation of 14-3-3ζ in human HCC cell line SMMC-772 and HCC-LM3 was achieved. The regulation of 14-3-3ζ on HIF-1α mRNA transcription was evaluated by luciferase activity assay and quantitative real-time PCR (qPCR). The effect of 14-3-3ζ on the production of HIF-1α and pathways determining HIF-1α’s response to hypoxia was assessed using western blotting assay. Our results showed that regulation of 14-3-3ζ expression influenced the activity of HIF-1α, phosphatidyl inositol 3-kinase (PI3K), Akt, extracellular signal-regulated kinase 1/2 (ERK1/2), and nuclear factor kappa B (NF-кB). Blocking of these pathways using indicated inhibitors revealed that 14-3-3ζ enhanced the production of HIF-1α via the activation of PI3K/Akt/NF-кB pathway, which was identical to hypoxia induced HIF-1α expression. For the first time, our study described the key role of 14-3-3ζ in the HIF-1α production in HCC cells. And the molecule exerted its function on HIF-1α both by directly binding to it and via PI3K/Akt/NF-кB signal transduction pathway. PMID:26884855

  14. Brainstem deficiency of the 14-3-3 regulator of serotonin synthesis: a proteomics analysis in the sudden infant death syndrome.

    PubMed

    Broadbelt, Kevin G; Rivera, Keith D; Paterson, David S; Duncan, Jhodie R; Trachtenberg, Felicia L; Paulo, Joao A; Stapels, Martha D; Borenstein, Natalia S; Belliveau, Richard A; Haas, Elisabeth A; Stanley, Christina; Krous, Henry F; Steen, Hanno; Kinney, Hannah C

    2012-01-01

    Impaired brainstem responses to homeostatic challenges during sleep may result in the sudden infant death syndrome (SIDS). Previously we reported a deficiency of serotonin (5-HT) and its key biosynthetic enzyme, tryptophan hydroxylase (TPH2), in SIDS infants in the medullary 5-HT system that modulates homeostatic responses during sleep. Yet, the underlying basis of the TPH2 and 5-HT deficiency is unknown. In this study, we tested the hypothesis that proteomics would uncover previously unrecognized abnormal levels of proteins related to TPH2 and 5-HT regulation in SIDS cases compared with controls, which could provide novel insight into the basis of their deficiency. We first performed a discovery proteomic analysis of the gigantocellularis of the medullary 5-HT system in the same data set with deficiencies of TPH2 and 5-HT levels. Analysis in 6 SIDS cases and 4 controls revealed a 42-75% reduction in abundance in 5 of the 6 isoforms identified of the 14-3-3 signal transduction family, which is known to influence TPH2 activity (p < 0.07). These findings were corroborated in an additional SIDS and control sample using an orthogonal MS(E)-based quantitative proteomic strategy. To confirm these proteomics results in a larger data set (38 SIDS, 11 controls), we applied Western blot analysis in the gigantocellularis and found that 4/7 14-3-3 isoforms identified were significantly reduced in SIDS cases (p ≤ 0.02), with a 43% reduction in all 14-3-3 isoforms combined (p < 0.001). Abnormalities in 5-HT and TPH2 levels and 5-HT(1A) receptor binding were associated with the 14-3-3 deficits in the same SIDS cases. These data suggest a potential molecular defect in SIDS related to TPH2 regulation, as 14-3-3 is critical in this process. PMID:21976671

  15. Brainstem Deficiency of the 14-3-3 Regulator of Serotonin Synthesis: A Proteomics Analysis in the Sudden Infant Death Syndrome*

    PubMed Central

    Broadbelt, Kevin G.; Rivera, Keith D.; Paterson, David S.; Duncan, Jhodie R.; Trachtenberg, Felicia L.; Paulo, Joao A.; Stapels, Martha D.; Borenstein, Natalia S.; Belliveau, Richard A.; Haas, Elisabeth A.; Stanley, Christina; Krous, Henry F.; Steen, Hanno; Kinney, Hannah C.

    2012-01-01

    Impaired brainstem responses to homeostatic challenges during sleep may result in the sudden infant death syndrome (SIDS). Previously we reported a deficiency of serotonin (5-HT) and its key biosynthetic enzyme, tryptophan hydroxylase (TPH2), in SIDS infants in the medullary 5-HT system that modulates homeostatic responses during sleep. Yet, the underlying basis of the TPH2 and 5-HT deficiency is unknown. In this study, we tested the hypothesis that proteomics would uncover previously unrecognized abnormal levels of proteins related to TPH2 and 5-HT regulation in SIDS cases compared with controls, which could provide novel insight into the basis of their deficiency. We first performed a discovery proteomic analysis of the gigantocellularis of the medullary 5-HT system in the same data set with deficiencies of TPH2 and 5-HT levels. Analysis in 6 SIDS cases and 4 controls revealed a 42–75% reduction in abundance in 5 of the 6 isoforms identified of the 14-3-3 signal transduction family, which is known to influence TPH2 activity (p < 0.07). These findings were corroborated in an additional SIDS and control sample using an orthogonal MSE-based quantitative proteomic strategy. To confirm these proteomics results in a larger data set (38 SIDS, 11 controls), we applied Western blot analysis in the gigantocellularis and found that 4/7 14-3-3 isoforms identified were significantly reduced in SIDS cases (p ≤ 0.02), with a 43% reduction in all 14-3-3 isoforms combined (p < 0.001). Abnormalities in 5-HT and TPH2 levels and 5-HT1A receptor binding were associated with the 14-3-3 deficits in the same SIDS cases. These data suggest a potential molecular defect in SIDS related to TPH2 regulation, as 14-3-3 is critical in this process. PMID:21976671

  16. Intracellular Generation of a Diterpene-Peptide Conjugate that Inhibits 14-3-3-Mediated Interactions.

    PubMed

    Parvatkar, Prakash; Kato, Nobuo; Uesugi, Motonari; Sato, Shin-Ichi; Ohkanda, Junko

    2015-12-23

    Synthetic agents that disrupt intracellular protein-protein interactions (PPIs) are highly desirable for elucidating signaling networks and developing new therapeutics. However, designing cell-penetrating large molecules equipped with the many functional groups necessary for binding to large interfaces remains challenging. Here, we describe a rational strategy for the intracellular oxime ligation-mediated generation of an amphipathic bivalent inhibitor composed of a peptide and diterpene natural product, fusicoccin, which binds 14-3-3 protein with submicromolar affinity. Our results demonstrate that co-treatment of cells with small module molecules, the aldehyde-containing fusicoccin 1 and the aminooxy-containing peptide 2, generates the corresponding conjugate 3 in cells, resulting in significant cytotoxicity. In contrast, chemically synthesized 3 is not cytotoxic, likely due to its inability to penetrate cells. Compound 3, but not 1 or 2, disrupts endogenous 14-3-3/cRaf interactions, suggesting that cell death is caused by inhibition of 14-3-3 activity. These results suggest that intracellular generation of large-sized molecules may serve as a new approach for modulating PPIs.

  17. 14-3-3{sigma} controls corneal epithelial cell proliferation and differentiation through the Notch signaling pathway

    SciTech Connect

    Xin, Ying; Lu, Qingxian; Li, Qiutang

    2010-02-19

    14-3-3{sigma} (also called stratifin) is specifically expressed in the stratified squamous epithelium and its function was recently shown to be linked to epidermal stratification and differentiation in the skin. In this study, we investigated its role in corneal epithelium cell proliferation and differentiation. We showed that the 14-3-3{sigma} mutation in repeated epilation (Er) mutant mice results in a dominant negative truncated protein. Primary corneal epithelial cells expressing the dominant negative protein failed to undergo high calcium-induced cell cycle arrest and differentiation. We further demonstrated that blocking endogenous 14-3-3{sigma} activity in corneal epithelial cells by overexpressing dominative negative 14-3-3{sigma} led to reduced Notch activity and Notch1/2 transcription. Significantly, expression of the active Notch intracellular domain overcame the block in epithelial cell differentiation in 14-3-3{sigma} mutant-expressing corneal epithelial cells. We conclude that 14-3-3{sigma} is critical for regulating corneal epithelial proliferation and differentiation by regulating Notch signaling activity.

  18. 14-3-3-dependent inhibition of the deubiquitinating activity of UBPY and its cancellation in the M phase

    SciTech Connect

    Mizuno, Emi; Kitamura, Naomi; Komada, Masayuki

    2007-10-01

    The deubiquitinating enzyme UBPY, also known as USP8, regulates cargo sorting and membrane traffic at early endosomes. Here we demonstrate the regulatory mechanism of the UBPY catalytic activity. We identified 14-3-3 {epsilon}, {gamma}, and {zeta} as UBPY-binding proteins using co-immunoprecipitation followed by mass spectrometric analysis. The 14-3-3 binding of UBPY was inhibited by mutating the consensus 14-3-3-binding motif RSYS{sup 680}SP, by phosphatase treatment, and by competition with the Ser{sup 680}-phosphorylated RSYS{sup 680}SP peptide. Metabolic labeling with [{sup 32}P]orthophosphate and immunoblotting using antibody against the phosphorylated 14-3-3-binding motif showed that Ser{sup 680} is a major phosphorylation site in UBPY. These results indicated that 14-3-3s bind to the region surrounding Ser{sup 680} in a phosphorylation-dependent manner. The mutation at Ser{sup 680} led to enhanced ubiquitin isopeptidase activity of UBPY toward poly-ubiquitin chains and a cellular substrate, epidermal growth factor receptor, in vitro and in vivo. Moreover, addition of 14-3-3{epsilon} inhibited the UBPY activity in vitro. Finally, UBPY was dephosphorylated at Ser{sup 680} and dissociated from 14-3-3s in the M phase, resulting in enhanced activity of UBPY during cell division. We conclude that UBPY is catalytically inhibited in a phosphorylation-dependent manner by 14-3-3s during the interphase, and this regulation is cancelled in the M phase.

  19. The Peripheral Binding of 14-3-3γ to Membranes Involves Isoform-Specific Histidine Residues

    PubMed Central

    Ying, Ming; Halskau, Øyvind; Baumann, Anne; Rodriguez-Larrea, David; Costas, Miguel; Underhaug, Jarl; Sanchez-Ruiz, Jose M.; Martinez, Aurora

    2012-01-01

    Mammalian 14-3-3 protein scaffolds include seven conserved isoforms that bind numerous phosphorylated protein partners and regulate many cellular processes. Some 14-3-3-isoforms, notably γ, have elevated affinity for membranes, which might contribute to modulate the subcellular localization of the partners and substantiate the importance of investigating molecular mechanisms of membrane interaction. By applying surface plasmon resonance we here show that the binding to phospholipid bilayers is stimulated when 14-3-3γ is complexed with its partner, a peptide corresponding to the Ser19-phosphorylated N-terminal region of tyrosine hydroxylase. Moreover, membrane interaction is dependent on salts of kosmotropic ions, which also stabilize 14-3-3γ. Electrostatic analysis of available crystal structures of γ and of the non-membrane-binding ζ-isoform, complemented with molecular dynamics simulations, indicate that the electrostatic potential distribution of phosphopeptide-bound 14-3-3γ is optimal for interaction with the membrane through amphipathic helices at the N-terminal dimerization region. In addition, His158, and especially His195, both specific to 14-3-3γ and located at the convex lateral side, appeared to be pivotal for the ligand induced membrane interaction, as corroborated by site-directed mutagenesis. The participation of these histidine residues might be associated to their increased protonation upon membrane binding. Overall, these results reveal membrane-targeting motifs and give insights on mechanisms that furnish the 14-3-3γ scaffold with the capacity for tuned shuffling from soluble to membrane-bound states. PMID:23189152

  20. Melatonin synthesis: 14-3-3-dependent activation and inhibition of arylalkylamine N-acetyltransferase mediated by phosphoserine-205.

    PubMed

    Ganguly, Surajit; Weller, Joan L; Ho, Anthony; Chemineau, Philippe; Malpaux, Benoit; Klein, David C

    2005-01-25

    The nocturnal increase in circulating melatonin in vertebrates is regulated by the activity of arylalkylamine N-acetyltransferase (AANAT), the penultimate enzyme in the melatonin pathway (serotonin --> N-acetylserotonin --> melatonin). Large changes in activity are linked to cyclic AMP-dependent protein kinase-mediated phosphorylation of AANAT T31. Phosphorylation of T31 promotes binding of AANAT to the dimeric 14-3-3 protein, which activates AANAT by increasing arylalkylamine affinity. In the current study, a putative second AANAT cyclic AMP-dependent protein kinase phosphorylation site, S205, was found to be approximately 55% phosphorylated at night, when T31 is approximately 40% phosphorylated. These findings indicate that ovine AANAT is dual-phosphorylated. Moreover, light exposure at night decreases T31 and S205 phosphorylation, consistent with a regulatory role of both sites. AANAT peptides containing either T31 or S205 associate with 14-3-3zeta in a phosphorylation-dependent manner; binding through phosphorylated (p)T31 is stronger than that through pS205, consistent with the location of only pT31 in a mode I binding motif, one of two recognized high-affinity 14-3-3-binding motifs AANAT protein binds to 14-3-3zeta through pT31 or pS205. Two-site binding lowers the Km for arylalkylamine substrate to approximately 30 microM. In contrast, single-site pS205 binding increases the Km to approximately 1,200 microM. Accordingly, the switch from dual to single pS205 binding of AANAT to 14-3-3 changes the Km for substrates by approximately 40-fold. pS205 seems to be part of a previously unrecognized 14-3-3-binding motif-pS/pT (X1-2)-COOH, referred to here as mode III.

  1. 14-3-3 isoforms are induced by aldosterone and participate in its regulation of epithelial sodium channels.

    PubMed

    Liang, Xiubin; Peters, Kathryn W; Butterworth, Michael B; Frizzell, Raymond A

    2006-06-16

    Aldosterone increases sodium absorption across renal collecting duct cells primarily by increasing the apical membrane expression of ENaC, the sodium entry channel. Nedd4-2, a ubiquitin-protein isopeptide ligase, tags ENaC with ubiquitin for internalization and degradation, but when it is phosphorylated by the aldosterone-induced kinase, SGK1, Nedd4-2 is inhibited and apical ENaC density and sodium absorption increase. We evaluated the hypothesis that 14-3-3 proteins participate in the aldosterone-mediated regulation of ENaC by associating with phosphorylated Nedd4-2. Mouse cortical collecting duct (mCCD) epithelia cultured on filters expressed several 14-3-3 isoforms; this study focused on an isoform whose expression was induced 3-fold by aldosterone, 14-3-3beta. In polarized mCCD epithelia, aldosterone elicited significant, time-dependent increases in the expression of alpha-ENaC, SGK1, phospho-Nedd4-2, and 14-3-3beta without altering total Nedd4-2. Aldosterone decreased the interaction of alpha-ENaC with Nedd4-2, and with similar kinetics increased the association of 14-3-3beta with phospho-Nedd4-2. Short interfering RNA-induced knockdown of 14-3-3beta blunted the aldosterone-induced increase in alpha-ENaC expression, returned alpha-ENaC-Nedd4-2 binding toward prealdosterone levels, and blocked the aldosterone-stimulated increase in transepithelial sodium transport. Incubation of cell extracts with a selective phospho-Nedd4-2 antibody blocked the aldosterone-induced association of 14-3-3beta with Nedd4-2, implicating SGK1 phosphorylation at Ser-328 as the primary site of 14-3-3beta binding. Our studies show that aldosterone increases the expression of 14-3-3beta, which interacts with phospho-Nedd4-2 to block its interaction with ENaC, thus enhancing sodium absorption by increasing apical membrane ENaC density. PMID:16613846

  2. Keratin 23, a novel DPC4/Smad4 target gene which binds 14-3-3ε

    PubMed Central

    2011-01-01

    Background Inactivating mutations of SMAD4 are frequent in metastatic colorectal carcinomas. In previous analyses, we were able to show that restoration of Smad4 expression in Smad4-deficient SW480 human colon carcinoma cells was adequate to suppress tumorigenicity and invasive potential, whereas in vitro cell growth was not affected. Using this cellular model system, we searched for new Smad4 targets comparing nuclear subproteomes derived from Smad4 re-expressing and Smad4 negative SW480 cells. Methods High resolution two-dimensional (2D) gel electrophoresis was applied to identify novel Smad4 targets in the nuclear subproteome of Smad4 re-expressing SW480 cells. The identified candidate protein Keratin 23 was further characterized by tandem affinity purification. Immunoprecipitation, subfractionation and immunolocalization studies in combination with RNAi were used to validate the Keratin 23-14-3-3ε interaction. Results We identified keratins 8 and 18, heat shock proteins 60 and 70, plectin 1, as well as 14-3-3ε and γ as novel proteins present in the KRT23-interacting complex. Co-immunoprecipitation and subfractionation analyses as well as immunolocalization studies in our Smad4-SW480 model cells provided further evidence that KRT23 associates with 14-3-3ε and that Smad4 dependent KRT23 up-regulation induces a shift of the 14-3-3ε protein from a nuclear to a cytoplasmic localization. Conclusion Based on our findings we propose a new regulatory circuitry involving Smad4 dependent up-regulation of KRT23 (directly or indirectly) which in turn modulates the interaction between KRT23 and 14-3-3ε leading to a cytoplasmic sequestration of 14-3-3ε. This cytoplasmic KRT23-14-3-3 interaction may alter the functional status of the well described 14-3-3 scaffold protein, known to regulate key cellular processes, such as signal transduction, cell cycle control, and apoptosis and may thus be a previously unappreciated facet of the Smad4 tumor suppressive circuitry. PMID

  3. The role of 14-3-3{beta} in transcriptional activation of estrogen receptor {alpha} and its involvement in proliferation of breast cancer cells

    SciTech Connect

    Kim, Yoonseo; Kim, Hyungjin; Jang, Sung-Wuk; Ko, Jesang

    2011-10-14

    Highlights: {yields} 14-3-3{beta} interacts with ER{alpha} and the interaction is Akt-dependent. {yields} 14-3-3{beta} regulates the transcriptional activity of ER{alpha} in a ligand-dependent manner. {yields} 14-3-3{beta} increases expressions of ER{alpha} target genes. {yields} 14-3-3{beta} increases breast cancer cell proliferation. -- Abstract: The estrogen receptor (ER) functions as a transcription factor that mediates the effects of estrogen. ER{alpha}, which plays a crucial role in the development and progression of breast cancer, is activated by estrogen binding, leading to receptor phosphorylation, dimerization, and recruitment of co-activators and chaperons to the estrogen-bound receptor complex. The 14-3-3 proteins bind to target proteins via phosphorylation and influence many cellular events by altering their subcellular localization or acting as a chaperone. However, regulation of ER{alpha} expression and transactivation by the 14-3-3 proteins has not been reported. We demonstrate that 14-3-3{beta} functions as a positive regulator of ER{alpha} through a direct protein-protein interaction in an estrogen-dependent manner. Ectopic expression of 14-3-3{beta} stimulated ER{alpha}-mediated transcriptional activity in MCF-7 breast cancer cells. Enhanced ER{alpha} transcriptional activity due to 14-3-3{beta} increased the expressions of the endogenous ER{alpha} target genes, leading to proliferation of breast cancer cells. We suggest that 14-3-3{beta} has oncogenic potential in breast cancer via binding to ER{alpha} and activation of the transcriptional activity of ER{alpha}.

  4. Characterization and small-molecule stabilization of the multisite tandem binding between 14-3-3 and the R domain of CFTR.

    PubMed

    Stevers, Loes M; Lam, Chan V; Leysen, Seppe F R; Meijer, Femke A; van Scheppingen, Daphne S; de Vries, Rens M J M; Carlile, Graeme W; Milroy, Lech G; Thomas, David Y; Brunsveld, Luc; Ottmann, Christian

    2016-03-01

    Cystic fibrosis is a fatal genetic disease, most frequently caused by the retention of the CFTR (cystic fibrosis transmembrane conductance regulator) mutant protein in the endoplasmic reticulum (ER). The binding of the 14-3-3 protein to the CFTR regulatory (R) domain has been found to enhance CFTR trafficking to the plasma membrane. To define the mechanism of action of this protein-protein interaction, we have examined the interaction in vitro. The disordered multiphosphorylated R domain contains nine different 14-3-3 binding motifs. Furthermore, the 14-3-3 protein forms a dimer containing two amphipathic grooves that can potentially bind these phosphorylated motifs. This results in a number of possible binding mechanisms between these two proteins. Using multiple biochemical assays and crystal structures, we show that the interaction between them is governed by two binding sites: The key binding site of CFTR (pS768) occupies one groove of the 14-3-3 dimer, and a weaker, secondary binding site occupies the other binding groove. We show that fusicoccin-A, a natural-product tool compound used in studies of 14-3-3 biology, can stabilize the interaction between 14-3-3 and CFTR by selectively interacting with a secondary binding motif of CFTR (pS753). The stabilization of this interaction stimulates the trafficking of mutant CFTR to the plasma membrane. This definition of the druggability of the 14-3-3-CFTR interface might offer an approach for cystic fibrosis therapeutics. PMID:26888287

  5. Characterization and small-molecule stabilization of the multisite tandem binding between 14-3-3 and the R domain of CFTR.

    PubMed

    Stevers, Loes M; Lam, Chan V; Leysen, Seppe F R; Meijer, Femke A; van Scheppingen, Daphne S; de Vries, Rens M J M; Carlile, Graeme W; Milroy, Lech G; Thomas, David Y; Brunsveld, Luc; Ottmann, Christian

    2016-03-01

    Cystic fibrosis is a fatal genetic disease, most frequently caused by the retention of the CFTR (cystic fibrosis transmembrane conductance regulator) mutant protein in the endoplasmic reticulum (ER). The binding of the 14-3-3 protein to the CFTR regulatory (R) domain has been found to enhance CFTR trafficking to the plasma membrane. To define the mechanism of action of this protein-protein interaction, we have examined the interaction in vitro. The disordered multiphosphorylated R domain contains nine different 14-3-3 binding motifs. Furthermore, the 14-3-3 protein forms a dimer containing two amphipathic grooves that can potentially bind these phosphorylated motifs. This results in a number of possible binding mechanisms between these two proteins. Using multiple biochemical assays and crystal structures, we show that the interaction between them is governed by two binding sites: The key binding site of CFTR (pS768) occupies one groove of the 14-3-3 dimer, and a weaker, secondary binding site occupies the other binding groove. We show that fusicoccin-A, a natural-product tool compound used in studies of 14-3-3 biology, can stabilize the interaction between 14-3-3 and CFTR by selectively interacting with a secondary binding motif of CFTR (pS753). The stabilization of this interaction stimulates the trafficking of mutant CFTR to the plasma membrane. This definition of the druggability of the 14-3-3-CFTR interface might offer an approach for cystic fibrosis therapeutics.

  6. Transcriptional Regulation of YWHAZ, the Gene Encoding 14-3-3ζ

    PubMed Central

    Kasinski, Andrea; Dong, Xueyuan; Khuri, Fadlo R.; Boss, Jeremy; Fu, Haian

    2014-01-01

    Aberrant expression of oncogenic 14-3-3 proteins is correlated with poor survival of cancer patients. While the underlying mechanism of the abnormal expression in tumors remains elusive for the six oncogenic 14-3-3 isoforms; the potential involvement of a transcriptional component has been suggested. Unfortunately, little experimental data has been reported to support this hypothesis. In this study we describe the genetic structure of YWHAZ, the gene encoding 14-3-3ζ, including the identification of previously unreported transcript variants. In total, five transcript variants were revealed and their expressions confirmed in a panel of cell lines. Expressed sequence tag (EST) database mining and in vitro rapid-amplification of cDNA ends (RACE) confirmed that one variant, 1c, represents >80% of the expressed transcripts, which is also the most efficiently translated. An analysis of the proximal promoter of this variant revealed a functional Cyclic-AMP Response Element (CRE). Factors that bound to the CRE element were recognized through fractionation and subsequent EMSAs. This analysis identified CREB and ATF-1 as the trans-interacting factors. Cell-based assays confirm that ATF-1, and to a lesser extent CREB, bind the endogenous YWHAZ promoter especially under TNF-α stimulating conditions. In support of a role of ATF-1 in the regulation of YWHAZ, silencing of ATF-1 resulted in a marked reduction in two of the five YWHAZ transcripts. These data suggest a novel mechanism for the transcriptional regulation of a major pro-survival gene, YWHAZ, by ATF-1. PMID:24690670

  7. Drosophila 14-3-3ε has a crucial role in anti-microbial peptide secretion and innate immunity.

    PubMed

    Shandala, Tetyana; Woodcock, Joanna M; Ng, Yeap; Biggs, Lisa; Skoulakis, Efthimios M C; Brooks, Doug A; Lopez, Angel F

    2011-07-01

    The secretion of anti-microbial peptides is recognised as an essential step in innate immunity, but there is limited knowledge of the molecular mechanism controlling the release of these effectors from immune response cells. Here, we report that Drosophila 14-3-3ε mutants exhibit reduced survival when infected with either Gram-positive or Gram-negative bacteria, indicating a functional role for 14-3-3ε in innate immunity. In 14-3-3ε mutants, there was a reduced release of the anti-microbial peptide Drosomycin into the haemolymph, which correlated with an accumulation of Drosomycin-containing vesicles near the plasma membrane of cells isolated from immune response tissues. Drosomycin appeared to be delivered towards the plasma membrane in Rab4- and Rab11-positive vesicles and smaller Rab11-positive vesicles. RNAi silencing of Rab11 and Rab4 significantly blocked the anterograde delivery of Drosomycin from the perinuclear region to the plasma membrane. However, in 14-3-3ε mutants there was an accumulation of small Rab11-positive vesicles near the plasma membrane. This vesicular phenotype was similar to that observed in response to the depletion of the vesicular Syntaxin protein Syx1a. In wild-type Drosophila immune tissue, 14-3-3ε was detected adjacent to Rab11, and partially overlapping with Syx1a, on vesicles near the plasma membrane. We conclude that 14-3-3ε is required for Rab11-positive vesicle function, which in turn enables antimicrobial peptide secretion during an innate immune response.

  8. IFNγ-induced suppression of β-catenin signaling: evidence for roles of Akt and 14.3.3ζ

    PubMed Central

    Nava, Porfirio; Kamekura, Ryuta; Quirós, Miguel; Medina-Contreras, Oscar; Hamilton, Ross W.; Kolegraff, Keli N.; Koch, Stefan; Candelario, Aurora; Romo-Parra, Hector; Laur, Oskar; Hilgarth, Roland S.; Denning, Timothy L.; Parkos, Charles A.; Nusrat, Asma

    2014-01-01

    The proinflammatory cytokine interferon γ (IFNγ ) influences intestinal epithelial cell (IEC) homeostasis in a biphasic manner by acutely stimulating proliferation that is followed by sustained inhibition of proliferation despite continued mucosal injury. β-Catenin activation has been classically associated with increased IEC proliferation. However, we observed that IFNγ inhibits IEC proliferation despite sustained activation of Akt/β-catenin signaling. Here we show that inhibition of Akt/β-catenin–mediated cell proliferation by IFNγ is associated with the formation of a protein complex containing phosphorylated β-catenin 552 (pβ-cat552) and 14.3.3ζ. Akt1 served as a bimodal switch that promotes or inhibits β-catenin transactivation in response to IFNγ stimulation. IFNγ initially promotes β-catenin transactivation through Akt-dependent C-terminal phosphorylation of β-catenin to promote its association with 14.3.3ζ. Augmented β-catenin transactivation leads to increased Akt1 protein levels, and active Akt1 accumulates in the nucleus, where it phosphorylates 14.3.3ζ to translocate 14.3.3ζ/β-catenin from the nucleus, thereby inhibiting β-catenin transactivation and IEC proliferation. These results outline a dual function of Akt1 that suppresses IEC proliferation during intestinal inflammation. PMID:25079689

  9. Interactions of c-Raf-1 with phosphatidylserine and 14-3-3.

    PubMed

    McPherson, R A; Harding, A; Roy, S; Lane, A; Hancock, J F

    1999-07-01

    Activation of Raf-1 occurs at the plasma membrane. We recently showed that 14-3-3 must be complexed with Raf-1 for efficient recruitment to the plasma membrane and activation by Ras, but that 14-3-3 is completely displaced from Raf-1 following plasma membrane binding. We show here that the Raf-1 zinc finger is not absolutely required for 14-3-3 binding but is required to stabilize the interaction between Raf-1 and 14-3-3. Incubation of Raf-1 with phosphatidylserine, an inner plasma membrane phospholipid, results in removal of 14-3-3 and an increase in Raf-1 kinase activity, whereas removal of 14-3-3 from Raf-1 using specific phosphopeptides substantially reduces Raf-1 basal kinase activity. Displacement of 14-3-3 from activated Raf-1 by phosphopeptides has no effect on kinase activity if Raf-1 is first removed from solution, but completely eradicates kinase activity of soluble activated Raf-1. These results suggest a mechanism for the removal of 14-3-3 from Raf-1 at the plasma membrane and show that removal of 14-3-3 from Raf-1 has markedly different effects depending on experimental conditions.

  10. The Hedgehog protein family.

    PubMed

    Bürglin, Thomas R

    2008-01-01

    The Hedgehog (Hh) pathway is one of the fundamental signal transduction pathways in animal development and is also involved in stem-cell maintenance and carcinogenesis. The hedgehog (hh) gene was first discovered in Drosophila, and members of the family have since been found in most metazoa. Hh proteins are composed of two domains, an amino-terminal domain HhN, which has the biological signal activity, and a carboxy-terminal autocatalytic domain HhC, which cleaves Hh into two parts in an intramolecular reaction and adds a cholesterol moiety to HhN. HhC has sequence similarity to the self-splicing inteins, and the shared region is termed Hint. New classes of proteins containing the Hint domain have been discovered recently in bacteria and eukaryotes, and the Hog class, of which Hh proteins comprise one family, is widespread throughout eukaryotes. The non-Hh Hog proteins have carboxy-terminal domains (the Hog domain) highly similar to HhC, although they lack the HhN domain, and instead have other amino-terminal domains. Hog proteins are found in many protists, but the Hh family emerged only in early metazoan evolution. HhN is modified by cholesterol at its carboxyl terminus and by palmitate at its amino terminus in both flies and mammals. The modified HhN is released from the cell and travels through the extracellular space. On binding its receptor Patched, it relieves the inhibition that Patched exerts on Smoothened, a G-protein-coupled receptor. The resulting signaling cascade converges on the transcription factor Cubitus interruptus (Ci), or its mammalian counterparts, the Gli proteins, which activate or repress target genes.

  11. 14-3-3γ Prevents Centrosome Amplification and Neoplastic Progression

    PubMed Central

    Mukhopadhyay, Amitabha; Sehgal, Lalit; Bose, Arunabha; Gulvady, Anushree; Senapati, Parijat; Thorat, Rahul; Basu, Srikanta; Bhatt, Khyati; Hosing, Amol S.; Balyan, Renu; Borde, Lalit; Kundu, Tapas K.; Dalal, Sorab N.

    2016-01-01

    More than 80% of malignant tumors show centrosome amplification and clustering. Centrosome amplification results from aberrations in the centrosome duplication cycle, which is strictly coordinated with DNA-replication-cycle. However, the relationship between cell-cycle regulators and centrosome duplicating factors is not well understood. This report demonstrates that 14-3-3γ localizes to the centrosome and 14-3-3γ loss leads to centrosome amplification. Loss of 14-3-3γ results in the phosphorylation of NPM1 at Thr-199, causing early centriole disjunction and centrosome hyper-duplication. The centrosome amplification led to aneuploidy and increased tumor formation in mice. Importantly, an increase in passage of the 14-3-3γ-knockdown cells led to an increase in the number of cells containing clustered centrosomes leading to the generation of pseudo-bipolar spindles. The increase in pseudo-bipolar spindles was reversed and an increase in the number of multi-polar spindles was observed upon expression of a constitutively active 14-3-3-binding-defective-mutant of cdc25C (S216A) in the 14-3-3γ knockdown cells. The increase in multi-polar spindle formation was associated with decreased cell viability and a decrease in tumor growth. Our findings uncover the molecular basis of regulation of centrosome duplication by 14-3-3γ and inhibition of tumor growth by premature activation of the mitotic program and the disruption of centrosome clustering. PMID:27253419

  12. The cell cycle regulator 14-3-3σ opposes and reverses cancer metabolic reprogramming.

    PubMed

    Phan, Liem; Chou, Ping-Chieh; Velazquez-Torres, Guermarie; Samudio, Ismael; Parreno, Kenneth; Huang, Yaling; Tseng, Chieh; Vu, Thuy; Gully, Chris; Su, Chun-Hui; Wang, Edward; Chen, Jian; Choi, Hyun-Ho; Fuentes-Mattei, Enrique; Shin, Ji-Hyun; Shiang, Christine; Grabiner, Brian; Blonska, Marzenna; Skerl, Stephen; Shao, Yiping; Cody, Dianna; Delacerda, Jorge; Kingsley, Charles; Webb, Douglas; Carlock, Colin; Zhou, Zhongguo; Hsieh, Yun-Chih; Lee, Jaehyuk; Elliott, Andrew; Ramirez, Marc; Bankson, Jim; Hazle, John; Wang, Yongxing; Li, Lei; Weng, Shaofan; Rizk, Nibal; Wen, Yu Ye; Lin, Xin; Wang, Hua; Wang, Huamin; Zhang, Aijun; Xia, Xuefeng; Wu, Yun; Habra, Mouhammed; Yang, Wei; Pusztai, Lajos; Yeung, Sai-Ching; Lee, Mong-Hong

    2015-01-01

    Extensive reprogramming of cellular energy metabolism is a hallmark of cancer. Despite its importance, the molecular mechanism controlling this tumour metabolic shift remains not fully understood. Here we show that 14-3-3σ regulates cancer metabolic reprogramming and protects cells from tumorigenic transformation. 14-3-3σ opposes tumour-promoting metabolic programmes by enhancing c-Myc poly-ubiquitination and subsequent degradation. 14-3-3σ demonstrates the suppressive impact on cancer glycolysis, glutaminolysis, mitochondrial biogenesis and other major metabolic processes of tumours. Importantly, 14-3-3σ expression levels predict overall and recurrence-free survival rates, tumour glucose uptake and metabolic gene expression in breast cancer patients. Thus, these results highlight that 14-3-3σ is an important regulator of tumour metabolism, and loss of 14-3-3σ expression is critical for cancer metabolic reprogramming. We anticipate that pharmacologically elevating the function of 14-3-3σ in tumours could be a promising direction for targeted anticancer metabolism therapy development in future. PMID:26179207

  13. The cell cycle regulator 14-3-3σ opposes and reverses cancer metabolic reprogramming

    PubMed Central

    Phan, Liem; Chou, Ping-Chieh; Velazquez-Torres, Guermarie; Samudio, Ismael; Parreno, Kenneth; Huang, Yaling; Tseng, Chieh; Vu, Thuy; Gully, Chris; Su, Chun-Hui; Wang, Edward; Chen, Jian; Choi, Hyun-Ho; Fuentes-Mattei, Enrique; Shin, Ji-Hyun; Shiang, Christine; Grabiner, Brian; Blonska, Marzenna; Skerl, Stephen; Shao, Yiping; Cody, Dianna; Delacerda, Jorge; Kingsley, Charles; Webb, Douglas; Carlock, Colin; Zhou, Zhongguo; Hsieh, Yun-Chih; Lee, Jaehyuk; Elliott, Andrew; Ramirez, Marc; Bankson, Jim; Hazle, John; Wang, Yongxing; Li, Lei; Weng, Shaofan; Rizk, Nibal; Wen, Yu Ye; Lin, Xin; Wang, Hua; Wang, Huamin; Zhang, Aijun; Xia, Xuefeng; Wu, Yun; Habra, Mouhammed; Yang, Wei; Pusztai, Lajos; Yeung, Sai-Ching; Lee, Mong-Hong

    2015-01-01

    Summary Extensive reprogramming of cellular energy metabolism is a hallmark of cancer. Despite its importance, the molecular mechanism controlling this tumour metabolic shift remains not fully understood. Here we show that 14-3-3σ regulates cancer metabolic reprogramming and protects cells from tumourigenic transformation. 14-3-3σ opposes tumour-promoting metabolic programs by enhancing c-Myc poly-ubiquitination and subsequent degradation. 14-3-3σ demonstrates the suppressive impact on cancer glycolysis, glutaminolysis, mitochondrial biogenesis and other major metabolic processes of tumours. Importantly, 14-3-3σ expression levels predict overall and recurrence-free survival rates, tumour glucose uptake and metabolic gene expression in breast cancer patients. Thus, these results highlight that 14-3-3σ is an important regulator of tumour metabolism, and loss of 14-3-3σ expression is critical for cancer metabolic reprogramming. We anticipate that pharmacologically elevating the function of 14-3-3σ in tumours could be a promising direction for targeted anti-cancer metabolism therapy development in future. PMID:26179207

  14. Impaired Binding of 14-3-3 to C-RAF in Noonan Syndrome Suggests New Approaches in Diseases with Increased Ras Signaling▿

    PubMed Central

    Molzan, Manuela; Schumacher, Benjamin; Ottmann, Corinna; Baljuls, Angela; Polzien, Lisa; Weyand, Michael; Thiel, Philipp; Rose, Rolf; Rose, Micheline; Kuhenne, Philipp; Kaiser, Markus; Rapp, Ulf R.; Kuhlmann, Jürgen; Ottmann, Christian

    2010-01-01

    The Ras-RAF-mitogen-activated protein kinase (Ras-RAF-MAPK) pathway is overactive in many cancers and in some developmental disorders. In one of those disorders, namely, Noonan syndrome, nine activating C-RAF mutations cluster around Ser259, a regulatory site for inhibition by 14-3-3 proteins. We show that these mutations impair binding of 14-3-3 proteins to C-RAF and alter its subcellular localization by promoting Ras-mediated plasma membrane recruitment of C-RAF. By presenting biophysical binding data, the 14-3-3/C-RAFpS259 crystal structure, and cellular analyses, we indicate a mechanistic link between a well-described human developmental disorder and the impairment of a 14-3-3/target protein interaction. As a broader implication of these findings, modulating the C-RAFSer259/14-3-3 protein-protein interaction with a stabilizing small molecule may yield a novel potential approach for treatment of diseases resulting from an overactive Ras-RAF-MAPK pathway. PMID:20679480

  15. Characterization and small-molecule stabilization of the multisite tandem binding between 14-3-3 and the R domain of CFTR

    PubMed Central

    Stevers, Loes M.; Lam, Chan V.; Leysen, Seppe F. R.; Meijer, Femke A.; van Scheppingen, Daphne S.; de Vries, Rens M. J. M.; Carlile, Graeme W.; Milroy, Lech G.; Thomas, David Y.; Brunsveld, Luc; Ottmann, Christian

    2016-01-01

    Cystic fibrosis is a fatal genetic disease, most frequently caused by the retention of the CFTR (cystic fibrosis transmembrane conductance regulator) mutant protein in the endoplasmic reticulum (ER). The binding of the 14-3-3 protein to the CFTR regulatory (R) domain has been found to enhance CFTR trafficking to the plasma membrane. To define the mechanism of action of this protein–protein interaction, we have examined the interaction in vitro. The disordered multiphosphorylated R domain contains nine different 14-3-3 binding motifs. Furthermore, the 14-3-3 protein forms a dimer containing two amphipathic grooves that can potentially bind these phosphorylated motifs. This results in a number of possible binding mechanisms between these two proteins. Using multiple biochemical assays and crystal structures, we show that the interaction between them is governed by two binding sites: The key binding site of CFTR (pS768) occupies one groove of the 14-3-3 dimer, and a weaker, secondary binding site occupies the other binding groove. We show that fusicoccin-A, a natural-product tool compound used in studies of 14-3-3 biology, can stabilize the interaction between 14-3-3 and CFTR by selectively interacting with a secondary binding motif of CFTR (pS753). The stabilization of this interaction stimulates the trafficking of mutant CFTR to the plasma membrane. This definition of the druggability of the 14-3-3–CFTR interface might offer an approach for cystic fibrosis therapeutics. PMID:26888287

  16. 14-3-3γ regulates cell viability and milk fat synthesis in lipopolysaccharide-induced dairy cow mammary epithelial cells

    PubMed Central

    LIU, LIXIN; ZHANG, LI; LIN, YE; BIAN, YANJIE; GAO, XUEJUN; QU, BO; LI, QINGZHANG

    2016-01-01

    Our previous study demonstrated that 14-3-3γ overexpression was able to inhibit the production of lipopolysaccharide (LPS)-induced cytokines in dairy cow mammary epithelial cells (DCMECs) by inhibiting the activation of nuclear factor-κB (NF-κB) signaling pathways. However, the association between 14-3-3γ overexpression and milk fat synthesis in LPS-induced DCMECs remains unclear. Therefore, the present study investigated the effect of 14-3-3γ on cell viability and milk fat synthesis in LPS-induced DCMECs. The results of the MTT assay and lactate dehydrogenase activity assay demonstrated that 14-3-3γ overexpression was able to attenuate LPS-induced cytotoxicity in DCMECs, and increase the viability of the cells. In addition, the results of reverse transcription-quantitative polymerase chain reaction suggested that mRNA expression levels of genes associated with milk fat synthesis, including sterol regulatory element binding protein (SREBP1), peroxisome proliferator-activated receptor-γ (PPARG), cluster of differentiation 36, acetyl-coA carboxylase (ACC), fatty acid synthase (FAS) and fatty acid binding protein-3, were significantly upregulated in cells overexpressing the 14-3-3γ protein. In addition, as compared with the LPS-treated group, the activities of FAS and ACC were significantly increased. Furthermore, western blotting demonstrated that 14-3-3γ overexpression enhanced the protein expression levels of phosphorylated SREBP1 and PPARG. These results suggested that high levels of 14-3-3γ protein were able to attenuate LPS-induced cell damage and promote milk fat synthesis in LPS-induced DCMECs by increasing the cell viability and upregulating the expression levels of transcription factors associated with milk fat synthesis. PMID:27073437

  17. Overexpression of 14-3-3z promotes tau phosphorylation at Ser262 and accelerates proteosomal degradation of synaptophysin in rat primary hippocampal neurons.

    PubMed

    Qureshi, Hamid Y; Han, Dong; MacDonald, Ryen; Paudel, Hemant K

    2013-01-01

    b-Amyloid peptide accumulation, tau hyperphosphorylation, and synapse loss are characteristic neuropathological symptoms of Alzheimer's disease (AD). Tau hyperphosphorylation is suggested to inhibit the association of tau with microtubules, making microtubules unstable and causing neurodegeneration. The mechanism of tau phosphorylation in AD brain, therefore, is of considerable significance. Although PHF-tau is phosphorylated at over 40 Ser/Thr sites, Ser(262) phosphorylation was shown to mediate b-amyloid neurotoxicity and formation of toxic tau lesions in the brain. In vitro, PKA is one of the kinases that phosphorylates tau at Ser(262), but the mechanism by which it phosphorylates tau in AD brain is not very clear. 14-3-3z is associated with neurofibrillary tangles and is upregulated in AD brain. In this study, we show that 14-3-3z promotes tau phosphorylation at Ser(262) by PKA in differentiating neurons. When overexpressed in rat hippocampal primary neurons, 14-3-3z causes an increase in Ser(262) phosphorylation, a decrease in the amount of microtubule-bound tau, a reduction in the amount of polymerized microtubules, as well as microtubule instability. More importantly, the level of pre-synaptic protein synaptophysin was significantly reduced. Downregulation of synaptophysin in 14-3-3z overexpressing neurons was mitigated by inhibiting the proteosome, indicating that 14-3-3z promotes proteosomal degradation of synaptophysin. When 14-3-3z overexpressing neurons were treated with the microtubule stabilizing drug taxol, tau Ser(262) phosphorylation decreased and synaptophysin level was restored. Our data demonstrate that overexpression of 14-3-3z accelerates proteosomal turnover of synaptophysin by promoting the destabilization of microtubules. Synaptophysin is involved in synapse formation and neurotransmitter release. Our results suggest that 14-3-3z may cause synaptic pathology by reducing synaptophysin levels in the brains of patients suffering from AD. PMID

  18. Oxidative damage of 14-3-3 zeta and gamma isoforms in Alzheimer's disease and cerebral amyloid angiopathy.

    PubMed

    Santpere, G; Puig, B; Ferrer, I

    2007-06-01

    Previous studies have shown oxidative damage resulting from amyloid Abeta exposure to cultured cells and in murine models. A target of oxidation is 14-3-3 which comprises a group of proteins involved in kinase activation and chaperone activity. The present study shows glycoxidative damage, as revealed with mono and bi-dimensional gel electrophoresis and Western blotting, followed by in-gel digestion and mass spectrometry, in the frontal cortex in Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA), a neurodegenerative disease with deposition of Abeta in cerebral blood vessels and in diffuse plaques unaccompanied by intraneuronal hyper-phosphorylated tau deposition. malondialdehyde-lysine (MDA-Lys)-, but not 4-hydroxy-2-nonenal (HNE)-immunoreactive adducts, and N-carboxyethyl-lysine (CEL), but not N-carboxymethyl-lysine (CML)-products, were present in 14-3-3 involving zeta and gamma isoforms in both AD and CAA. These findings demonstrate that 14-3-3 glyco- and lipoxidation occurs in AD and CAA, probably as a direct consequence of Abeta deposition.

  19. 14-3-3 regulates the nuclear import of class IIa histone deacetylases

    SciTech Connect

    Nishino, Tomonori G.; Miyazaki, Masaya; Hoshino, Hideto; Miwa, Yoshihiro; Horinouchi, Sueharu; Yoshida, Minoru

    2008-12-19

    Class IIa histone deacetylases (HDACs) form complexes with a class of transcriptional repressors in the nucleus. While screening for compounds that could block the association of HDAC4 with the BTB domain-containing transcriptional repressor Bach2, we discovered that phorbol 12-myristate 13-acetate (PMA) induced the cytoplasmic retention of HDAC4 mutants lacking a nuclear export signal (NES). Although PMA treatment and PKD overexpression has been proposed to facilitate the nuclear export of class IIa HDACs by creating 14-3-3 binding sites containing phosphoserines, our experiments using HDAC mutants demonstrated that PMA greatly reduces nuclear import. PMA treatment repressed the NLS activity in a manner dependent on 14-3-3 binding. These results suggest that nuclear HDAC4 is not tethered in the nucleus, but instead shuttles between the nucleus and the cytoplasm. Phosphorylation-induced 14-3-3 binding biases the balance of nucleo-cytoplasmic shuttling toward the cytoplasm by inhibiting nuclear import.

  20. Identification of 14-3-3β Gene as a Novel miR-152 Target Using a Proteome-based Approach*

    PubMed Central

    Jasinski-Bergner, Simon; Stehle, Franziska; Gonschorek, Evamaria; Kalich, Jana; Schulz, Kristin; Huettelmaier, Stefan; Braun, Juliane; Seliger, Barbara

    2014-01-01

    Recent studies demonstrated that miR-152 overexpression down-regulates the nonclassical human leukocyte antigen (HLA) class I molecule HLA-G in human tumors thereby contributing to their immune surveillance. Using two-dimensional gel electrophoresis followed by MALDI-TOF mass spectrometry, the protein expression profile of HLA-G+, miR-152low cells, and their miR-152-overexpressing (miRhigh) counterparts was compared leading to the identification of 24 differentially expressed proteins. These were categorized according to their function and localization demonstrating for most of them an important role in the initiation and progression of tumors. The novel miR-152 target 14-3-3 protein β/α/YWHAB (14-3-3β) is down-regulated upon miR-152 overexpression, although its overexpression was often found in tumors of distinct origin. The miR-152-mediated reduction of the 14-3-3β expression was accompanied by an up-regulation of BAX protein expression resulting in a pro-apoptotic phenotype. In contrast, the reconstitution of 14-3-3β expression in miR-152high cells increased the expression of the anti-apoptotic BCL2 gene, enhances the proliferative activity in the presence of the cytostatic drug paclitaxel, and causes resistance to apoptosis induced by this drug. By correlating clinical microarray data with the patients' outcome, a link between 14-3-3β and HLA-G expression was found, which could be associated with poor prognosis and overall survival of patients with tumors. Because miR-152 controls both the expression of 14-3-3β and HLA-G, it exerts a dual role in tumor cells by both altering the immunogenicity and the tumorigenicity. PMID:25228695

  1. Identification of candidate genes for psychosis in rat models, and possible association between schizophrenia and the 14-3-3eta gene.

    PubMed

    Wong, A H C; Macciardi, F; Klempan, T; Kawczynski, W; Barr, C L; Lakatoo, S; Wong, M; Buckle, C; Trakalo, J; Boffa, E; Oak, J; Azevedo, M-H; Dourado, A; Coelho, I; Macedo, A; Vicente, A; Valente, J; Ferreira, C P; Pato, M T; Pato, C N; Kennedy, J L; Van Tol, H H M

    2003-02-01

    Although the genetic contribution to schizophrenia is substantial, positive findings in whole-genome linkage scans have not been consistently replicated. We analyzed gene expression in various rat conditions to identify novel candidate genes for schizophrenia. Suppression subtraction hybridization (SSH), with polyA mRNA from temporal and frontal cortex of rats, was used to identify differentially expressed genes. Expression of mRNA was compared between adult Lewis and Fischer 344 (F344) rats, adult and postnatal day 6 (d6) F344, and adult F344 treated with haloperidol or control vehicle. These groups were chosen because each highlights a particular aspect of schizophrenia: differences in strain vulnerability to behavioral analogs of psychosis; factors that may relate to disease onset in relation to CNS development; and improvement of symptoms by haloperidol. The 14-3-3 gene family, as represented by 14-3-3gamma and 14-3-3zeta isoforms in the SSH study, and SNAP-25 were among the candidate genes. Genetic association between schizophrenia and the 14-3-3eta gene, positioned close to a genomic locus implicated in schizophrenia, and SNAP-25 genes was analyzed in 168 schizophrenia probands and their families. These findings address three different genes in the 14-3-3 family. We find a significant association with schizophrenia for two polymorphisms in the 14-3-3eta gene: a 7 bp variable number of tandem repeats in the 5' noncoding region (P=0.036, 1 df), and a 3' untranslated region SNP (753G/A) that is an RFLP visualized with Ava II (P=0.028). There was no significant genetic association with SNAP-25. The candidate genes identified may be of functional importance in the etiology, pathophysiology or treatment response of schizophrenia or psychotic symptoms. This is to our knowledge the first report of a significant association between the 14-3-3eta-chain gene and schizophrenia in a family-based sample, strengthening prior association reports in case-control studies and

  2. 14-3-3 zeta down-regulates p53 in mammary epithelial cells and confers luminal filling.

    PubMed

    Danes, Christopher G; Wyszomierski, Shannon L; Lu, Jing; Neal, Christopher L; Yang, Wentao; Yu, Dihua

    2008-03-15

    Recent progress in diagnostic tools allows many breast cancers to be detected at an early preinvasive stage. Thus, a better understanding of the molecular basis of early breast cancer progression is essential. Previously, we discovered that 14-3-3 zeta is overexpressed in >40% of advanced breast cancers, and this overexpression predicts poor patient survival. Here, we examined at what stage of breast disease 14-3-3 zeta overexpression occurs, and we found that increased expression of 14-3-3 zeta begins at atypical ductal hyperplasia, an early stage of breast disease. To determine whether 14-3-3 zeta overexpression is a decisive early event in breast cancer, we overexpressed 14-3-3 zeta in MCF10A cells and examined its effect in a three-dimensional culture model. We discovered that 14-3-3 zeta overexpression severely disrupted the acini architecture resulting in luminal filling. Proper lumen formation is a result of anoikis, apoptosis due to detachment from the basement membrane. We found that 14-3-3 zeta overexpression conferred resistance to anoikis. Additionally, 14-3-3 zeta overexpression in MCF10A cells and in mammary epithelial cells (MEC) from 14-3-3 zeta transgenic mice reduced expression of p53, which is known to mediate anoikis. Mechanistically, 14-3-3 zeta induced hyperactivation of the phosphoinositide 3-kinase/Akt pathway which led to phosphorylation and translocation of the MDM2 E3 ligase resulting in increased p53 degradation. Ectopic expression of p53 restored luminal apoptosis in 14-3-3 zeta-overexpressing MCF10A acini in three-dimensional cultures. These data suggest that 14-3-3 zeta overexpression is a critical event in early breast disease, and down-regulation of p53 is one of the mechanisms by which 14-3-3 zeta alters MEC acini structure and increases the risk of breast cancer.

  3. The coronin family of proteins.

    PubMed

    Clemen, Christoph S; Rybakin, Vasily; Eichinger, Ludwig

    2008-01-01

    The coronins, first described in Dictyostelium discoideum in 1991, have meanwhile been detected in all eukaryotes except plants. They belong to the superfamily of WD40-repeat proteins and represent a large family of proteins, which are often involved in cytoskeletal functions. Phylogenetic studies clearly distinguish 12 subfamilies of which six exclusively occur in vertebrates. In the present book we have made a sincere attempt to provide a comprehensive overview on all aspects of coronin proteins including history, structure, subcellular localization and function in different organisms. In addition, we also included a general overview on the WD40 family of proteins and the structurally related Kelch family. The book should be of interest for scientists outside the field, but is more importantly intended as a fast and competent guide for newcomers as well as doctoral and postdoctoral scientists to coronin research in all its facets.

  4. Down-regulation of 14-3-3β exerts anti-cancer effects through inducing ER stress in human glioma U87 cells: Involvement of CHOP–Wnt pathway

    SciTech Connect

    Cao, Lei; Lei, Hui; Chang, Ming-Ze; Liu, Zhi-Qin; Bie, Xiao-Hua

    2015-07-10

    We previously identified 14-3-3β as a tumor-specific isoform of 14-3-3 protein in astrocytoma, but its functional role in glioma cells and underlying mechanisms are poorly understood. In the present study, we investigated the effects of 14-3-3β inhibition in human glioma U87 cells using specific targeted small interfering RNA (siRNA). The results showed that 14-3-3β is highly expressed in U87 cells but not in normal astrocyte SVGp12 cells. Knockdown of 14-3-3β by Si-14-3-3β transfection significantly decreased the cell viability but increased the LDH release in a time-dependent fashion in U87 cells, and these effects were accompanied with G0/G1 cell cycle arrest and apoptosis. In addition, 14-3-3β knockdown induced ER stress in U87 cells, as evidenced by ER calcium release, increased expression of XBP1S mRNA and induction of ER related pro-apoptotic factors. Down-regulation of 14-3-3β significantly decreased the nuclear localization of β-catenin and inhibited Topflash activity, which was shown to be reversely correlated with CHOP. Furthermore, Si-CHOP and sFRP were used to inhibit CHOP and Wnt, respectively. The results showed that the anti-cancer effects of 14-3-3β knockdown in U87 cells were mediated by increased expression of CHOP and followed inhibition of Wnt/β-catenin pathway. In summary, the remarkable efficiency of 14-3-3β knockdown to induce apoptotic cell death in U87 cells may find therapeutic application for the treatment of glioma patients. - Highlights: • Knockdown of 14-3-3β leads to cytotoxicity in human glioma U87 cells. • Knockdown of 14-3-3β induces cell cycle arrest and apoptosis in U87 cells. • Knockdown of 14-3-3β results in ER stress in U87 cells. • Knockdown of 14-3-3β inhibits Wnt/β-catenin pathway via CHOP activation.

  5. Protein families in multicellular organisms.

    PubMed

    Copley, R R; Schultz, J; Ponting, C P; Bork, P

    1999-06-01

    The complete sequence of the nematode worm Caenorhabditis elegans contains the genetic machinery that is required to undertake the core biological processes of single cells. However, the genome also encodes proteins that are associated with multicellularity, as well as others that are lineage-specific expansions of phylogenetically widespread families and yet more that are absent in non-nematodes. Ongoing analysis is beginning to illuminate the similarities and differences among human proteins and proteins that are encoded by the genomes of the multicellular worm and the unicellular yeast, and will be essential in determining the reliability of transferring experimental data among phylogenetically distant species. PMID:10361098

  6. The Pfam protein families database.

    PubMed

    Bateman, Alex; Birney, Ewan; Cerruti, Lorenzo; Durbin, Richard; Etwiller, Laurence; Eddy, Sean R; Griffiths-Jones, Sam; Howe, Kevin L; Marshall, Mhairi; Sonnhammer, Erik L L

    2002-01-01

    Pfam is a large collection of protein multiple sequence alignments and profile hidden Markov models. Pfam is available on the World Wide Web in the UK at http://www.sanger.ac.uk/Software/Pfam/, in Sweden at http://www.cgb.ki.se/Pfam/, in France at http://pfam.jouy.inra.fr/ and in the US at http://pfam.wustl.edu/. The latest version (6.6) of Pfam contains 3071 families, which match 69% of proteins in SWISS-PROT 39 and TrEMBL 14. Structural data, where available, have been utilised to ensure that Pfam families correspond with structural domains, and to improve domain-based annotation. Predictions of non-domain regions are now also included. In addition to secondary structure, Pfam multiple sequence alignments now contain active site residue mark-up. New search tools, including taxonomy search and domain query, greatly add to the functionality and usability of the Pfam resource.

  7. Proteomic Identification of 14-3-3ζ as an Adapter for IGF-1 and Akt/GSK-3β Signaling and Survival of Renal Mesangial Cells

    PubMed Central

    Singh, Lalit P.; Jiang, Yan; Cheng, Davis W.

    2007-01-01

    Recently we demonstrated that IGF-1 expression is increased in the diabetic kidney and that it may involve in renal hypertrophy and extracellular matrix protein (ECM) accumulation in mesangial cells as seen in diabetic glomerulopathy. The present study investigates the molecular mechanism(s) of IGF-1 and Akt/glycogen synthase kinase-3beta (GSK-3β) signaling pathway in the regulation of fibronectin and cyclin D1 expression and survival of renal mesangial cells. A proteomic approach is also employed to identify protein targets of IGF-1 signaling via GSK-3β inhibition in mesangial cells. We show that IGF-1 (100 ng/ml) significantly increases the protein kinase Akt/PKB activity (1.5-2-fold, p<0.05) within 1-5 minutes, which is completely blocked by the presence of 100 nM Wortmannin (phosphatidyl-inositol 3-kinase inhibitor). Akt activation is coupled with Ser9 phosphorylation and inactivation of its down-stream target GSK-3β. IGF-1 increases the cyclic AMP-responsive element (CRE) binding transcription factor CREB phosphorylation at Ser 133 and CRE-binding activity in mesangial cells, which parallels cyclin D1 and fibronectin expressions. Both proteins are known to have CRE-sequences in their promoter regions upstream of the transcription start site. Suppression of GSK-3β by SB216763 (100 nM) increases CREB phosphorylation, cyclin D1 and fibronectin levels. Two dimensional gel electrophoresis followed by MALDI-TOF mass spectrometric analysis of mesangial proteins reveals that IGF-1 treatment or an inhibition of GSK-3β increases the expression of the phosphorylated Ser/Thr binding signal adapter protein 14-3-3ζ. Immuno-precipitation of 14-3-3ζ followed by Western blotting validates the association of phosphorylated GSK-3β with 14-3-3ζ in renal mesangial cells. Stable expression of a constitutively active GSK-3β(Ser9Ala) induces cell death while overexpression of HA-tagged 14-3-3ζ increases cell viability as measured by MTT assays. These results indicate that

  8. 14-3-3γ Regulates Lipopolysaccharide-Induced Inflammatory Responses and Lactation in Dairy Cow Mammary Epithelial Cells by Inhibiting NF-κB and MAPKs and Up-Regulating mTOR Signaling

    PubMed Central

    Liu, Lixin; Lin, Ye; Liu, Lili; Bian, Yanjie; Zhang, Li; Gao, Xuejun; Li, Qingzhang

    2015-01-01

    As a protective factor for lipopolysaccharide (LPS)-induced injury, 14-3-3γ has been the subject of recent research. Nevertheless, whether 14-3-3γ can regulate lactation in dairy cow mammary epithelial cells (DCMECs) induced by LPS remains unknown. Here, the anti-inflammatory effect and lactation regulating ability of 14-3-3γ in LPS-induced DCMECs are investigated for the first time, and the molecular mechanisms responsible for their effects are explored. The results of qRT-PCR showed that 14-3-3γ overexpression significantly inhibited the mRNA expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β) and inducible nitric oxide synthase (iNOS). Enzyme-linked immunosorbent assay (ELISA) analysis revealed that 14-3-3γ overexpression also suppressed the production of TNF-α and IL-6 in cell culture supernatants. Meanwhile, CASY-TT Analyser System showed that 14-3-3γ overexpression clearly increased the viability and proliferation of cells. The results of kit methods and western blot analysis showed that 14-3-3γ overexpression promoted the secretion of triglycerides and lactose and the synthesis of β-casein. Furthermore, the expression of genes relevant to nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPKs) and lactation-associated proteins were assessed by western blot, and the results suggested that 14-3-3γ overexpression inactivated the NF-κB and MAPK signaling pathways by down-regulating extracellular signal regulated protein kinase (ERK), p38 mitogen-activated protein kinase (p38MAPK) and inhibitor of NF-κB (IκB) phosphorylation levels, as well as by inhibiting NF-κB translocation. Meanwhile, 14-3-3γ overexpression enhanced the expression levels of β-casein, mammalian target of rapamycin (mTOR), ribosomal protein S6 kinase 1 (S6K1), serine/threonine protein kinase Akt 1 (AKT1), sterol regulatory element binding protein 1 (SREBP1) and peroxisome proliferator-activated receptor gamma (PPAR

  9. Pfam: the protein families database

    PubMed Central

    Finn, Robert D.; Bateman, Alex; Clements, Jody; Coggill, Penelope; Eberhardt, Ruth Y.; Eddy, Sean R.; Heger, Andreas; Hetherington, Kirstie; Holm, Liisa; Mistry, Jaina; Sonnhammer, Erik L. L.; Tate, John; Punta, Marco

    2014-01-01

    Pfam, available via servers in the UK (http://pfam.sanger.ac.uk/) and the USA (http://pfam.janelia.org/), is a widely used database of protein families, containing 14 831 manually curated entries in the current release, version 27.0. Since the last update article 2 years ago, we have generated 1182 new families and maintained sequence coverage of the UniProt Knowledgebase (UniProtKB) at nearly 80%, despite a 50% increase in the size of the underlying sequence database. Since our 2012 article describing Pfam, we have also undertaken a comprehensive review of the features that are provided by Pfam over and above the basic family data. For each feature, we determined the relevance, computational burden, usage statistics and the functionality of the feature in a website context. As a consequence of this review, we have removed some features, enhanced others and developed new ones to meet the changing demands of computational biology. Here, we describe the changes to Pfam content. Notably, we now provide family alignments based on four different representative proteome sequence data sets and a new interactive DNA search interface. We also discuss the mapping between Pfam and known 3D structures. PMID:24288371

  10. The Pfam protein families database

    PubMed Central

    Finn, Robert D.; Mistry, Jaina; Tate, John; Coggill, Penny; Heger, Andreas; Pollington, Joanne E.; Gavin, O. Luke; Gunasekaran, Prasad; Ceric, Goran; Forslund, Kristoffer; Holm, Liisa; Sonnhammer, Erik L. L.; Eddy, Sean R.; Bateman, Alex

    2010-01-01

    Pfam is a widely used database of protein families and domains. This article describes a set of major updates that we have implemented in the latest release (version 24.0). The most important change is that we now use HMMER3, the latest version of the popular profile hidden Markov model package. This software is ∼100 times faster than HMMER2 and is more sensitive due to the routine use of the forward algorithm. The move to HMMER3 has necessitated numerous changes to Pfam that are described in detail. Pfam release 24.0 contains 11 912 families, of which a large number have been significantly updated during the past two years. Pfam is available via servers in the UK (http://pfam.sanger.ac.uk/), the USA (http://pfam.janelia.org/) and Sweden (http://pfam.sbc.su.se/). PMID:19920124

  11. In-vivo administration of clozapine affects behaviour but does not reverse dendritic spine deficits in the 14-3-3ζ KO mouse model of schizophrenia-like disorders.

    PubMed

    Jaehne, Emily J; Ramshaw, Hayley; Xu, Xiangjun; Saleh, Eiman; Clark, Scott R; Schubert, Klaus Oliver; Lopez, Angel; Schwarz, Quenten; Baune, Bernhard T

    2015-11-01

    Clozapine is an atypical antipsychotic drug used in the treatment of schizophrenia, which has been shown to reverse behavioural and dendritic spine deficits in mice. It has recently been shown that deficiency of 14-3-3ζ has an association with schizophrenia, and that a mouse model lacking this protein displays several schizophrenia-like behavioural deficits. To test the effect of clozapine in this mouse model, 14-3-3ζ KO mice were administered clozapine (5mg/kg) for two weeks prior to being analysed in a test battery of cognition, anxiety, and despair (depression-like) behaviours. Following behavioural testing brain samples were collected for analysis of specific anatomical defects and dendritic spine formation. We found that clozapine reduced despair behaviour of 14-3-3ζ KO mice in the forced swim test (FST) and altered the behaviour of wild types and 14-3-3ζ KO mice in the Y-maze task. In contrast, clozapine had no effects on hippocampal laminar defects or decreased dendritic spine density observed in 14-3-3ζ KO mice. Our results suggest that clozapine may have beneficial effects on clinical behaviours associated with deficiencies in the 14-3-3ζ molecular pathway, despite having no effects on morphological defects. These findings may provide mechanistic insight to the action of this drug.

  12. p38- and MK2-dependent signalling promotes stress-induced centriolar satellite remodelling via 14-3-3-dependent sequestration of CEP131/AZI1

    PubMed Central

    Tollenaere, Maxim A. X.; Villumsen, Bine H.; Blasius, Melanie; Nielsen, Julie C.; Wagner, Sebastian A.; Bartek, Jiri; Beli, Petra; Mailand, Niels; Bekker-Jensen, Simon

    2015-01-01

    Centriolar satellites (CS) are small granular structures that cluster in the vicinity of centrosomes. CS are highly susceptible to stress stimuli, triggering abrupt displacement of key CS factors. Here we discover a linear p38-MK2-14-3-3 signalling pathway that specifically targets CEP131 to trigger CS remodelling after cell stress. We identify CEP131 as a substrate of the p38 effector kinase MK2 and pinpoint S47 and S78 as critical MK2 phosphorylation sites in CEP131. Ultraviolet-induced phosphorylation of these residues generates direct binding sites for 14-3-3 proteins, which sequester CEP131 in the cytoplasm to block formation of new CS, thereby leading to rapid depletion of these structures. Mutating S47 and S78 in CEP131 is sufficient to abolish stress-induced CS reorganization, demonstrating that CEP131 is the key regulatory target of MK2 and 14-3-3 in these structures. Our findings reveal the molecular mechanism underlying dynamic CS remodelling to modulate centrosome functions on cell stress. PMID:26616734

  13. 14-3-3σ confers cisplatin resistance in esophageal squamous cell carcinoma cells via regulating DNA repair molecules.

    PubMed

    Lai, Kenneth K Y; Chan, Kin Tak; Choi, Mei Yuk; Wang, Hector K; Fung, Eva Y M; Lam, Ho Yu; Tan, Winnie; Tung, Lai Nar; Tong, Daniel K H; Sun, Raymond W Y; Lee, Nikki P; Law, Simon

    2016-02-01

    Esophageal squamous cell carcinoma (ESCC) is the predominant type of esophageal cancer in Asia. Cisplatin is commonly used in chemoradiation for unresectable ESCC patients. However, the treatment efficacy is diminished in patients with established cisplatin resistance. To understand the mechanism leading to the development of cisplatin resistance in ESCC, we compared the proteomes from a cisplatin-resistant HKESC-2R cell line with its parental-sensitive counterpart HKESC-2 to identify key molecule involved in this process. Mass spectrometry analysis detected 14-3-3σ as the most abundant molecule expressed exclusively in HKESC-2R cells, while western blot result further validated it to be highly expressed in HKESC-2R cells when compared to HKESC-2 cells. Ectopic expression of 14-3-3σ increased cisplatin resistance in HKESC-2 cells, while its suppression sensitized SLMT-1 cells to cisplatin. Among the molecules involved in drug detoxification, drug transportation, and DNA repair, the examined DNA repair molecules HMGB1 and XPA were found to be highly expressed in HKESC-2R cells with high 14-3-3σ expression. Subsequent manipulation of 14-3-3σ by both overexpression and knockdown approaches concurrently altered the expression of HMGB1 and XPA. 14-3-3σ, HMGB1, and XPA were preferentially expressed in cisplatin-resistant SLMT-1 cells when compared to those more sensitive to cisplatin. In ESCC patients with poor response to cisplatin-based chemoradiation, their pre-treatment tumors expressed higher expression of HMGB1 than those with response to such treatment. In summary, our results demonstrate that 14-3-3σ induces cisplatin resistance in ESCC cells and that 14-3-3σ-mediated cisplatin resistance involves DNA repair molecules HMGB1 and XPA. Results from this study provide evidences for further work in researching the potential use of 14-3-3σ and DNA repair molecules HMGB1 and XPA as biomarkers and therapeutic targets for ESCC.

  14. Suppression of 14-3-3γ-mediated surface expression of ANO1 inhibits cancer progression of glioblastoma cells

    PubMed Central

    Lee, Young-Sun; Lee, Jae Kwang; Bae, Yeonju; Lee, Bok-Soon; Kim, Eunju; Cho, Chang-Hoon; Ryoo, Kanghyun; Yoo, Jiyun; Kim, Chul-Ho; Yi, Gwan-Su; Lee, Seok-Geun; Lee, C. Justin; Kang, Sang Soo; Hwang, Eun Mi; Park, Jae-Yong

    2016-01-01

    Anoctamin-1 (ANO1) acts as a Ca2+-activated Cl− channel in various normal tissues, and its expression is increased in several different types of cancer. Therefore, understanding the regulation of ANO1 surface expression is important for determining its physiological and pathophysiological functions. However, the trafficking mechanism of ANO1 remains elusive. Here, we report that segment a (N-terminal 116 amino acids) of ANO1 is crucial for its surface expression, and we identified 14-3-3γ as a binding partner for anterograde trafficking using yeast two-hybrid screening. The surface expression of ANO1 was enhanced by 14-3-3γ, and the Thr9 residue of ANO1 was critical for its interaction with 14-3-3γ. Gene silencing of 14-3-3γ and/or ANO1 demonstrated that suppression of ANO1 surface expression inhibited migration and invasion of glioblastoma cells. These findings provide novel therapeutic implications for glioblastomas, which are associated with poor prognosis. PMID:27212225

  15. Wig-1 regulates cell cycle arrest and cell death through the p53 targets FAS and 14-3-3σ

    PubMed Central

    Bersani, C; Xu, L-D; Vilborg, A; Lui, W-O; Wiman, K G

    2014-01-01

    Wig-1, also known as ZMAT3, is a p53 target gene that encodes an RNA-binding zinc-finger protein involved in the regulation of mRNA stability through binding to AU-rich elements (AREs). We have used microarray analysis to identify novel Wig-1 target mRNAs. We identified 2447 transcripts with >fourfold differential expression between Wig-1 and control small interfering (si)RNA-treated HCT116 cells. Several p53 target genes were among the deregulated transcripts. We found that Wig-1 regulates FAS and 14-3-3σ mRNA independently of p53. We show that Wig-1 binds to FAS mRNA 3′-UTR and decreases its stability through an ARE in the 3′-UTR. Depletion of Wig-1 was associated with increased cell death and reduced cell cycle arrest upon DNA damage. Our results suggest a role of Wig-1 as a survival factor that directs the p53 stress response toward cell cycle arrest rather than apoptosis through the regulation of FAS and 14-3-3σ mRNA levels. PMID:24469038

  16. Computational Study on Hemoglobin Protein Family

    NASA Astrophysics Data System (ADS)

    Craciun, Dana; Isvoran, Adriana; Avram, Nicolae M.

    2009-05-01

    We have analyzed 19 proteins belonging to hemoglobin protein family: 3 for plants, 4 for invertebrates and the others for vertebrates. For every protein we have determined the following parameters: the fractal dimension of its backbone, the fractal dimension of its surface, the radius of gyration, the area of its molecular surface and the area of the surface of its cavities. At global level, we did not notice significant differences for the fractal parameters for proteins belonging to different organisms and it underlines that all these proteins perform the same biological function. We have obtained different values of the local and global surface fractal dimensions reflecting distinct roughness of protein pockets in comparison to the entire surface, also in good correlation with the biological function. The geometric characteristics are distinct for the three investigated families of proteins.

  17. Proteomic screening for Rho-kinase substrates by combining kinase and phosphatase inhibitors with 14-3-3ζ affinity chromatography.

    PubMed

    Nishioka, Tomoki; Nakayama, Masanori; Amano, Mutsuki; Kaibuchi, Kozo

    2012-01-01

    The small GTPase RhoA is a molecular switch in various extracellular signals. Rho-kinase/ROCK/ROK, a major effector of RhoA, regulates diverse cellular functions by phosphorylating cytoskeletal proteins, endocytic proteins, and polarity proteins. More than twenty Rho-kinase substrates have been reported, but the known substrates do not fully explain the Rho-kinase functions. Herein, we describe the comprehensive screening for Rho-kinase substrates by treating HeLa cells with Rho-kinase and phosphatase inhibitors. The cell lysates containing the phosphorylated substrates were then subjected to affinity chromatography using beads coated with 14-3-3 protein, which interacts with proteins containing phosphorylated serine or threonine residues, to enrich the phosphorylated proteins. The identities of the molecules and phosphorylation sites were determined by liquid chromatography tandem mass spectrometry (LC/MS/MS) after tryptic digestion and phosphopeptide enrichment. The phosphorylated proteins whose phosphopeptide ion peaks were suppressed by treatment with the Rho-kinase inhibitor were regarded as candidate substrates. We identified 121 proteins as candidate substrates. We also identified phosphorylation sites in Partitioning defective 3 homolog (Par-3) at Ser143 and Ser144. We found that Rho-kinase phosphorylated Par-3 at Ser144 both in vitro and in vivo. The method used in this study would be applicable and useful to identify novel substrates of other kinases.

  18. The lipocalin protein family: structure and function.

    PubMed Central

    Flower, D R

    1996-01-01

    The lipocalin protein family is a large group of small extracellular proteins. The family demonstrates great diversity at the sequence level; however, most lipocalins share three characteristic conserved sequence motifs, the kernel lipocalins, while a group of more divergent family members, the outlier lipocalins, share only one. Belying this sequence dissimilarity, lipocalin crystal structures are highly conserved and comprise a single eight-stranded continuously hydrogen-bonded antiparallel beta-barrel, which encloses an internal ligand-binding site. Together with two other families of ligand-binding proteins, the fatty-acid-binding proteins (FABPs) and the avidins, the lipocalins form part of an overall structural superfamily: the calycins. Members of the lipocalin family are characterized by several common molecular-recognition properties: the ability to bind a range of small hydrophobic molecules, binding to specific cell-surface receptors and the formation of complexes with soluble macromolecules. The varied biological functions of the lipocalins are mediated by one or more of these properties. In the past, the lipocalins have been classified as transport proteins; however, it is now clear that the lipocalins exhibit great functional diversity, with roles in retinol transport, invertebrate cryptic coloration, olfaction and pheromone transport, and prostaglandin synthesis. The lipocalins have also been implicated in the regulation of cell homoeostasis and the modulation of the immune response, and, as carrier proteins, to act in the general clearance of endogenous and exogenous compounds. PMID:8761444

  19. The SYSTERS Protein Family Database in 2005.

    PubMed

    Meinel, Thomas; Krause, Antje; Luz, Hannes; Vingron, Martin; Staub, Eike

    2005-01-01

    The SYSTERS project aims to provide a meaningful partitioning of the whole protein sequence space by a fully automatic procedure. A refined two-step algorithm assigns each protein to a family and a superfamily. The sequence data underlying SYSTERS release 4 now comprise several protein sequence databases derived from completely sequenced genomes (ENSEMBL, TAIR, SGD and GeneDB), in addition to the comprehensive Swiss-Prot/TrEMBL databases. The SYSTERS web server (http://systers.molgen.mpg.de) provides access to 158 153 SYSTERS protein families. To augment the automatically derived results, information from external databases like Pfam and Gene Ontology are added to the web server. Furthermore, users can retrieve pre-processed analyses of families like multiple alignments and phylogenetic trees. New query options comprise a batch retrieval tool for functional inference about families based on automatic keyword extraction from sequence annotations. A new access point, PhyloMatrix, allows the retrieval of phylogenetic profiles of SYSTERS families across organisms with completely sequenced genomes.

  20. Selective 14-3-3γ induction quenches p-β-catenin Ser37/Bax-enhanced cell death in cerebral cortical neurons during ischemia.

    PubMed

    Lai, X J; Ye, S Q; Zheng, L; Li, L; Liu, Q R; Yu, S B; Pang, Y; Jin, S; Li, Q; Yu, A C H; Chen, X Q

    2014-01-01

    Ischemia-induced cell death is a major cause of disability or death after stroke. Identifying the key intrinsic protective mechanisms induced by ischemia is critical for the development of effective stroke treatment. Here, we reported that 14-3-3γ was a selective ischemia-inducible survival factor in cerebral cortical neurons reducing cell death by downregulating Bax depend direct 14-3-3γ/p-β-catenin Ser37 interactions in the nucleus. 14-3-3γ, but not other 14-3-3 isoforms, was upregulated in primary cerebral cortical neurons upon oxygen-glucose deprivation (OGD) as measured by quantitative PCR, western blot and fluorescent immunostaining. The selective induction of 14-3-3γ in cortical neurons by OGD was verified by the in vivo ischemic stroke model. Knocking down 14-3-3γ alone or inhibiting 14-3-3/client interactions was sufficient to induce cell death in normal cultured neurons and exacerbate OGD-induced neuronal death. Ectopic overexpression of 14-3-3γ significantly reduced OGD-induced cell death in cultured neurons. Co-immunoprecipitation and fluorescence resonance energy transfer demonstrated that endogenous 14-3-3γ bound directly to more p-β-catenin Ser37 but not p-Bad, p-Ask-1, p-p53 and Bax. During OGD, p-β-catenin Ser37 but not p-β-catenin Ser45 was increased prominently, which correlated with Bax elevation in cortical neurons. OGD promoted the entry of 14-3-3γ into the nuclei, in correlation with the increase of nuclear p-β-catenin Ser37 in neurons. Overexpression of 14-3-3γ significantly reduced Bax expression, whereas knockdown of 14-3-3γ increased Bax in cortical neurons. Abolishing β-catenin phosphorylation at Ser37 (S37A) significantly reduced Bax and cell death in neurons upon OGD. Finally, 14-3-3γ overexpression completely suppressed β-catenin-enhanced Bax and cell death in neurons upon OGD. Based on these data, we propose that the 14-3-3γ/p-β-catenin Ser37/Bax axis determines cell survival or death of neurons during ischemia

  1. FIGfams : yet another set of protein families.

    SciTech Connect

    Meyer, F.; Overbeek, R.; Rodriguez, A.; Mathematics and Computer Science; Univ. of Chicago; Fellowship for the Interpretation of Genomes

    2009-11-01

    We present FIGfams, a new collection of over 100,000 protein families that are the product of manual curation and close strain comparison. Using the Subsystem approach the manual curation is carried out, ensuring a previously unattained degree of throughput and consistency. FIGfams are based on over 950,000 manually annotated proteins and across many hundred Bacteria and Archaea. Associated with each FIGfam is a two-tiered, rapid, accurate decision procedure to determine family membership for new proteins. FIGfams are freely available under an open source license. These can be downloaded at ftp://ftp.theseed.org/FIGfams/. The web site for FIGfams is http://www.theseed.org/wiki/FIGfams/.

  2. A Negative Regulatory Mechanism Involving 14-3-3ζ Limits Signaling Downstream of ROCK to Regulate Tissue Stiffness in Epidermal Homeostasis.

    PubMed

    Kular, Jasreen; Scheer, Kaitlin G; Pyne, Natasha T; Allam, Amr H; Pollard, Anthony N; Magenau, Astrid; Wright, Rebecca L; Kolesnikoff, Natasha; Moretti, Paul A; Wullkopf, Lena; Stomski, Frank C; Cowin, Allison J; Woodcock, Joanna M; Grimbaldeston, Michele A; Pitson, Stuart M; Timpson, Paul; Ramshaw, Hayley S; Lopez, Angel F; Samuel, Michael S

    2015-12-21

    ROCK signaling causes epidermal hyper-proliferation by increasing ECM production, elevating dermal stiffness, and enhancing Fak-mediated mechano-transduction signaling. Elevated dermal stiffness in turn causes ROCK activation, establishing mechano-reciprocity, a positive feedback loop that can promote tumors. We have identified a negative feedback mechanism that limits excessive ROCK signaling during wound healing and is lost in squamous cell carcinomas (SCCs). Signal flux through ROCK was selectively tuned down by increased levels of 14-3-3ζ, which interacted with Mypt1, a ROCK signaling antagonist. In 14-3-3ζ(-/-) mice, unrestrained ROCK signaling at wound margins elevated ECM production and reduced ECM remodeling, increasing dermal stiffness and causing rapid wound healing. Conversely, 14-3-3ζ deficiency enhanced cutaneous SCC size. Significantly, inhibiting 14-3-3ζ with a novel pharmacological agent accelerated wound healing 2-fold. Patient samples of chronic non-healing wounds overexpressed 14-3-3ζ, while cutaneous SCCs had reduced 14-3-3ζ. These results reveal a novel 14-3-3ζ-dependent mechanism that negatively regulates mechano-reciprocity, suggesting new therapeutic opportunities.

  3. A Negative Regulatory Mechanism Involving 14-3-3ζ Limits Signaling Downstream of ROCK to Regulate Tissue Stiffness in Epidermal Homeostasis.

    PubMed

    Kular, Jasreen; Scheer, Kaitlin G; Pyne, Natasha T; Allam, Amr H; Pollard, Anthony N; Magenau, Astrid; Wright, Rebecca L; Kolesnikoff, Natasha; Moretti, Paul A; Wullkopf, Lena; Stomski, Frank C; Cowin, Allison J; Woodcock, Joanna M; Grimbaldeston, Michele A; Pitson, Stuart M; Timpson, Paul; Ramshaw, Hayley S; Lopez, Angel F; Samuel, Michael S

    2015-12-21

    ROCK signaling causes epidermal hyper-proliferation by increasing ECM production, elevating dermal stiffness, and enhancing Fak-mediated mechano-transduction signaling. Elevated dermal stiffness in turn causes ROCK activation, establishing mechano-reciprocity, a positive feedback loop that can promote tumors. We have identified a negative feedback mechanism that limits excessive ROCK signaling during wound healing and is lost in squamous cell carcinomas (SCCs). Signal flux through ROCK was selectively tuned down by increased levels of 14-3-3ζ, which interacted with Mypt1, a ROCK signaling antagonist. In 14-3-3ζ(-/-) mice, unrestrained ROCK signaling at wound margins elevated ECM production and reduced ECM remodeling, increasing dermal stiffness and causing rapid wound healing. Conversely, 14-3-3ζ deficiency enhanced cutaneous SCC size. Significantly, inhibiting 14-3-3ζ with a novel pharmacological agent accelerated wound healing 2-fold. Patient samples of chronic non-healing wounds overexpressed 14-3-3ζ, while cutaneous SCCs had reduced 14-3-3ζ. These results reveal a novel 14-3-3ζ-dependent mechanism that negatively regulates mechano-reciprocity, suggesting new therapeutic opportunities. PMID:26702834

  4. 14-3-3ζ deficient mice in the BALB/c background display behavioural and anatomical defects associated with neurodevelopmental disorders

    PubMed Central

    Xu, Xiangjun; Jaehne, Emily J.; Greenberg, Zarina; McCarthy, Peter; Saleh, Eiman; Parish, Clare L.; Camera, Daria; Heng, Julian; Haas, Matilda; Baune, Bernhard T.; Ratnayake, Udani; Buuse, Maarten van den; Lopez, Angel F.; Ramshaw, Hayley S.; Schwarz, Quenten

    2015-01-01

    Sequencing and expression analyses implicate 14-3-3ζ as a genetic risk factor for neurodevelopmental disorders such as schizophrenia and autism. In support of this notion, we recently found that 14-3-3ζ−/− mice in the Sv/129 background display schizophrenia-like defects. As epistatic interactions play a significant role in disease pathogenesis we generated a new congenic strain in the BALB/c background to determine the impact of genetic interactions on the 14-3-3ζ−/− phenotype. In addition to replicating defects such as aberrant mossy fibre connectivity and impaired spatial memory, our analysis of 14-3-3ζ−/− BALB/c mice identified enlarged lateral ventricles, reduced synaptic density and ectopically positioned pyramidal neurons in all subfields of the hippocampus. In contrast to our previous analyses, 14-3-3ζ−/− BALB/c mice lacked locomotor hyperactivity that was underscored by normal levels of the dopamine transporter (DAT) and dopamine signalling. Taken together, our results demonstrate that dysfunction of 14-3-3ζ gives rise to many of the pathological hallmarks associated with the human condition. 14-3-3ζ-deficient BALB/c mice therefore provide a novel model to address the underlying biology of structural defects affecting the hippocampus and ventricle, and cognitive defects such as hippocampal-dependent learning and memory. PMID:26207352

  5. On the Entropy of Protein Families

    NASA Astrophysics Data System (ADS)

    Barton, John P.; Chakraborty, Arup K.; Cocco, Simona; Jacquin, Hugo; Monasson, Rémi

    2016-03-01

    Proteins are essential components of living systems, capable of performing a huge variety of tasks at the molecular level, such as recognition, signalling, copy, transport, ... The protein sequences realizing a given function may largely vary across organisms, giving rise to a protein family. Here, we estimate the entropy of those families based on different approaches, including Hidden Markov Models used for protein databases and inferred statistical models reproducing the low-order (1- and 2-point) statistics of multi-sequence alignments. We also compute the entropic cost, that is, the loss in entropy resulting from a constraint acting on the protein, such as the mutation of one particular amino-acid on a specific site, and relate this notion to the escape probability of the HIV virus. The case of lattice proteins, for which the entropy can be computed exactly, allows us to provide another illustration of the concept of cost, due to the competition of different folds. The relevance of the entropy in relation to directed evolution experiments is stressed.

  6. TIGRFAMS: The TIGRFAMs database of protein families

    DOE Data Explorer

    TIGRFAMs are protein families based on Hidden Markov Models or HMMs. Use this page to see the curated seed alignmet for each TIGRFam, the full alignment of all family members and the cutoff scores for inclusion in each of the TIGRFAMs. Also use this page to search through the TIGRFAMs and HMMs for text in the TIGRFAMs Text Search or search for specific sequences in the TIGRFAMs Sequence Search.[Copied from the Overview at http://www.jcvi.org/cms/research/projects/tigrfams/overview/] See also TIGRFAMs ordered by the roles they play at http://cmr.jcvi.org/tigr-scripts/CMR/shared/EvidenceList.cgi?ev_type=TIGRFAM&order_type=role.

  7. The Extended Family of Protein Tyrosine Phosphatases.

    PubMed

    Alonso, Andrés; Nunes-Xavier, Caroline E; Bayón, Yolanda; Pulido, Rafael

    2016-01-01

    In higher eukaryotes, the Tyr phosphorylation status of cellular proteins results from the coordinated action of Protein Tyrosine Kinases (PTKs) and Protein Tyrosine Phosphatases (PTPs). PTPs have emerged as highly regulated enzymes with diverse substrate specificity, and proteins with Tyr-dephosphorylation or Tyr-dephosphorylation-like properties can be clustered as the PTPome. This includes proteins from the PTP superfamily, which display a Cys-based catalytic mechanism, as well as enzymes from other gene families (Asp-based phosphatases, His-based phosphatases) that have converged in protein Tyr-dephosphorylation-related functions by using non-Cys-based catalytic mechanisms. Within the Cys-based members of the PTPome, classical PTPs dephosphorylate specific phosphoTyr (pTyr) residues from protein substrates, whereas VH1-like dual-specificity PTPs dephosphorylate pTyr, pSer, and pThr residues, as well as nonproteinaceous substrates, including phosphoinositides and phosphorylated carbohydrates. In addition, several PTPs have impaired catalytic activity as a result of amino acid substitutions at their active sites, but retain regulatory functions related with pTyr signaling. As a result of their relevant biological activity, many PTPs are linked to human disease, including cancer, neurodevelopmental, and metabolic diseases, making these proteins important drug targets and molecular markers in the clinic. Here, a brief overview on the biochemistry and physiology of the different groups of proteins that belong to the mammalian PTPome is presented. PMID:27514797

  8. PI 3-kinase-dependent phosphorylation of Plk1–Ser99 promotes association with 14-3-3γ and is required for metaphase–anaphase transition

    PubMed Central

    Kasahara, Kousuke; Goto, Hidemasa; Izawa, Ichiro; Kiyono, Tohru; Watanabe, Nobumoto; Elowe, Sabine; Nigg, Erich A; Inagaki, Masaki

    2013-01-01

    Polo-like kinase 1 (Plk1) controls multiple aspects of mitosis and is activated through its phosphorylation at Thr210. Here we identify Ser99 on Plk1 as a novel mitosis-specific phosphorylation site, which operates independently of Plk1–Thr210 phosphorylation. Plk1–Ser99 phosphorylation creates a docking site for 14-3-3γ, and this interaction stimulates the catalytic activity of Plk1. Knockdown of 14-3-3γ or replacement of wild-type (WT) Plk1 by a Ser99-phospho-blocking mutant leads to a prometaphase/metaphase-like arrest due to the activation of the spindle assembly checkpoint. Inhibition of phosphatidylinositol 3-kinase (PI3K) and Akt significantly reduces the level of Plk1–Ser99 phosphorylation and delays metaphase to anaphase transition. Plk1–Ser99 phosphorylation requires not only Akt activity but also protein(s) associated with Plk1 in a mitosis-specific manner. Therefore, mitotic Plk1 activity is regulated not only by Plk1–Thr210 phosphorylation, but also by Plk1 binding to 14-3-3γ following Plk1–Ser99 phosphorylation downstream of the PI3K–Akt signalling pathway. This novel Plk1 activation pathway controls proper progression from metaphase to anaphase. PMID:23695676

  9. Epstein-Barr virus Rta-mediated transactivation of p21 and 14-3-3σ arrests cells at the G1/S transition by reducing cyclin E/CDK2 activity.

    PubMed

    Huang, Sheng-Yen; Hsieh, Min-Jie; Chen, Chu-Ying; Chen, Yen-Ju; Chen, Jen-Yang; Chen, Mei-Ru; Tsai, Ching-Hwa; Lin, Su-Fang; Hsu, Tsuey-Ying

    2012-01-01

    Many herpesviral immediate-early proteins promote their robust lytic phase replications by hijacking the cell cycle machinery. Previously, lytic replication of Epstein-Barr virus (EBV) was found to be concurrent with host cell cycle arrest. In this study, we showed that ectopic expression of EBV immediate-early protein Rta in HEp-2 cells resulted in increased G1/S population, hypophosphorylation of pRb and decreased incorporation of 5-bromo-2'-deoxyuridine. In addition, EBV Rta transcriptionally upregulates the expressions of p21 and 14-3-3σ in HEp-2 cells, 293 cells and nasopharyngeal carcinoma TW01 cells. Although p21 and 14-3-3σ are known targets for p53, Rta-mediated p21 and 14-3-3σ transactivation can be detected in the absence of p53. In addition, results from luciferase reporter assays indicated that direct binding of Rta to either promoter sequences is not required for activation. On the other hand, a special class of Sp1-responsive elements was involved in Rta-mediated transcriptional activation on both promoters. Finally, Rta-induced p21 expression diminished the activity of CDK2/cyclin E complex, and, Rta-induced 14-3-3σ expression sequestered CDK1 and CDK2 in the cytoplasm. Based on these results, we hypothesize that through the disruption of CDK1 and CDK2 activities, EBV Rta might contribute to cell cycle arrest in EBV-infected epithelial cells during viral reactivation. PMID:21918011

  10. A Biotin Switch-Based Proteomics Approach Identifies 14-3-3ζ as a Target of Sirt1 in the Metabolic Regulation of Caspase-2

    PubMed Central

    Andersen, Joshua L.; Thompson, J. Will; Lindblom, Kelly R.; Johnson, Erika S.; Yang, Chih-Sheng; Lilley, Lauren R.; Freel, Christopher D.; Moseley, M. Arthur; Kornbluth, Sally

    2011-01-01

    While lysine acetylation in the nucleus is well characterized, comparatively little is known about its significance in cytoplasmic signaling. Here we show that inhibition of the Sirt1 deacetylase, which is primarily cytoplasmic in cancer cell lines, sensitizes these cells to caspase-2-dependent death. To identify relevant Sirt1 substrates, we developed a novel proteomics strategy, enabling the identification of a range of putative substrates, including 14-3-3ζ, a known direct regulator of caspase-2. We show here that inhibition of Sirtuin activity accelerates caspase activation and overrides caspase-2 suppression by nutrient abundance. Furthermore, 14-3-3ζ is acetylated prior to caspase activation, and supplementation of Xenopus egg extract with glucose-6-phosphate, which promotes caspase-2/14-3-3ζ binding, enhances 14-3-3ζ-directed Sirtuin activity. Conversely, inhibiting Sirtuin activity promotes 14-3-3ζ dissociation from caspase-2 in both egg extract and human cell lines. These data reveal a role for Sirt1 in modulating apoptotic sensitivity, in response to metabolic changes, by antagonizing 14-3-3ζ acetylation. PMID:21884983

  11. Targeting functional motifs of a protein family

    NASA Astrophysics Data System (ADS)

    Bhadola, Pradeep; Deo, Nivedita

    2016-10-01

    The structural organization of a protein family is investigated by devising a method based on the random matrix theory (RMT), which uses the physiochemical properties of the amino acid with multiple sequence alignment. A graphical method to represent protein sequences using physiochemical properties is devised that gives a fast, easy, and informative way of comparing the evolutionary distances between protein sequences. A correlation matrix associated with each property is calculated, where the noise reduction and information filtering is done using RMT involving an ensemble of Wishart matrices. The analysis of the eigenvalue statistics of the correlation matrix for the β -lactamase family shows the universal features as observed in the Gaussian orthogonal ensemble (GOE). The property-based approach captures the short- as well as the long-range correlation (approximately following GOE) between the eigenvalues, whereas the previous approach (treating amino acids as characters) gives the usual short-range correlations, while the long-range correlations are the same as that of an uncorrelated series. The distribution of the eigenvector components for the eigenvalues outside the bulk (RMT bound) deviates significantly from RMT observations and contains important information about the system. The information content of each eigenvector of the correlation matrix is quantified by introducing an entropic estimate, which shows that for the β -lactamase family the smallest eigenvectors (low eigenmodes) are highly localized as well as informative. These small eigenvectors when processed gives clusters involving positions that have well-defined biological and structural importance matching with experiments. The approach is crucial for the recognition of structural motifs as shown in β -lactamase (and other families) and selectively identifies the important positions for targets to deactivate (activate) the enzymatic actions.

  12. Correlated rigid modes in protein families

    NASA Astrophysics Data System (ADS)

    Striegel, D. A.; Wojtowicz, D.; Przytycka, T. M.; Periwal, V.

    2016-04-01

    A great deal of evolutionarily conserved information is contained in genomes and proteins. Enormous effort has been put into understanding protein structure and developing computational tools for protein folding, and many sophisticated approaches take structure and sequence homology into account. Several groups have applied statistical physics approaches to extracting information about proteins from sequences alone. Here, we develop a new method for sequence analysis based on first principles, in information theory, in statistical physics and in Bayesian analysis. We provide a complete derivation of our approach and we apply it to a variety of systems, to demonstrate its utility and its limitations. We show in some examples that phylogenetic alignments of amino-acid sequences of families of proteins imply the existence of a small number of modes that appear to be associated with correlated global variation. These modes are uncovered efficiently in our approach by computing a non-perturbative effective potential directly from the alignment. We show that this effective potential approaches a limiting form inversely with the logarithm of the number of sequences. Mapping symbol entropy flows along modes to underlying physical structures shows that these modes arise due to correlated compensatory adjustments. In the protein examples, these occur around functional binding pockets.

  13. Upregulation of lactate dehydrogenase a by 14-3-3ζ leads to increased glycolysis critical for breast cancer initiation and progression

    PubMed Central

    Chang, Chia-Chi; Zhang, Chenyu; Zhang, Qingling; Sahin, Ozgur; Wang, Hai; Xu, Jia; Xiao, Yi; Zhang, Jian; Rehman, Sumaiyah K.; Li, Ping; Hung, Mien-Chie; Behbod, Fariba; Yu, Dihua

    2016-01-01

    Metabolic reprogramming is a hallmark of cancer. Elevated glycolysis in cancer cells switches the cellular metabolic flux to produce more biological building blocks, thereby sustaining rapid proliferation. Recently, new evidence has emerged that metabolic dysregulation may occur at early-stages of neoplasia and critically contribute to cancer initiation. Here, our bioinformatics analysis of microarray data from early-stages breast neoplastic lesions revealed that 14-3-3ζ expression is strongly correlated with the expression of canonical glycolytic genes, particularly lactate dehydrogenase A (LDHA). Experimentally, increasing 14-3-3ζ expression in human mammary epithelial cells (hMECs) up-regulated LDHA expression, elevated glycolytic activity, and promoted early transformation. Knockdown of LDHA in the 14-3-3ζ-overexpressing hMECs significantly reduced glycolytic activity and inhibited transformation. Mechanistically, 14-3-3ζ overexpression activates the MEK-ERK-CREB axis, which subsequently up-regulates LDHA. In vivo, inhibiting the activated the MEK/ERK pathway in 14-3-3ζ-overexpressing hMEC-derived MCF10DCIS.COM lesions led to effective inhibition of tumor growth. Therefore, targeting the MEK/ERK pathway could be an effective strategy for intervention of 14-3-3ζ-overexpressing early breast lesions. Together, our data demonstrate that overexpression of 14-3-3ζ in early stage pre-cancerous breast epithelial cells may trigger an elevated glycolysis and transcriptionally up-regulating LDHA, thereby contributes to human breast cancer initiation. PMID:27150057

  14. Molecular Modeling of Differentially Phosphorylated Serine 10 and Acetylated lysine 9/14 of Histone H3 Regulates their Interactions with 14-3-3ζ, MSK1, and MKP1

    PubMed Central

    Sharma, Ajit K.; Mansukh, Abhilasha; Varma, Ashok; Gadewal, Nikhil; Gupta, Sanjay

    2013-01-01

    Histone modifications occur in precise patterns, with several modifications known to affect the binding of proteins. These interactions affect the chromatin structure, gene regulation, and cell cycle events. The dual modifications on the H3 tail, serine10 phosphorylation, and lysine14 acetylation (H3Ser10PLys14Ac) are reported to be crucial for interaction with 14-3-3ζ. However, the mechanism by which H3Ser10P along with neighboring site-specific acetylation(s) is targeted by its regulatory proteins, including kinase and phosphatase, is not fully understood. We carried out molecular modeling studies to understand the interaction of 14-3-3ζ, and its regulatory proteins, mitogen-activated protein kinase phosphatase-1 (MKP1), and mitogen- and stress-activated protein kinase-1 (MSK1) with phosphorylated H3Ser10 alone or in combination with acetylated H3Lys9 and Lys14. In silico molecular association studies suggested that acetylated Lys14 and phosphorylated Ser10 of H3 shows the highest binding affinity towards 14-3-3ζ. In addition, acetylation of H3Lys9 along with Ser10PLys14Ac favors the interaction of the phosphatase, MKP1, for dephosphorylation of H3Ser10P. Further, MAP kinase, MSK1 phosphorylates the unmodified H3Ser10 containing N-terminal tail with maximum affinity compared to the N-terminal tail with H3Lys9AcLys14Ac. The data clearly suggest that opposing enzymatic activity of MSK1 and MKP1 corroborates with non-acetylated and acetylated, H3Lys9Lys14, respectively. Our in silico data highlights that site-specific phosphorylation (H3Ser10P) and acetylation (H3Lys9 and H3Lys14) of H3 are essential for the interaction with their regulatory proteins (MKP1, MSK1, and 14-3-3ζ) and plays a major role in the regulation of chromatin structure. PMID:24027420

  15. Sequence analysis of the AAA protein family.

    PubMed Central

    Beyer, A.

    1997-01-01

    The AAA protein family, a recently recognized group of Walker-type ATPases, has been subjected to an extensive sequence analysis. Multiple sequence alignments revealed the existence of a region of sequence similarity, the so-called AAA cassette. The borders of this cassette were localized and within it, three boxes of a high degree of conservation were identified. Two of these boxes could be assigned to substantial parts of the ATP binding site (namely, to Walker motifs A and B); the third may be a portion of the catalytic center. Phylogenetic trees were calculated to obtain insights into the evolutionary history of the family. Subfamilies with varying degrees of intra-relatedness could be discriminated; these relationships are also supported by analysis of sequences outside the canonical AAA boxes: within the cassette are regions that are strongly conserved within each subfamily, whereas little or even no similarity between different subfamilies can be observed. These regions are well suited to define fingerprints for subfamilies. A secondary structure prediction utilizing all available sequence information was performed and the result was fitted to the general 3D structure of a Walker A/GTPase. The agreement was unexpectedly high and strongly supports the conclusion that the AAA family belongs to the Walker superfamily of A/GTPases. PMID:9336829

  16. Adjudin disrupts spermatogenesis via the action of some unlikely partners: Eps8, Arp2/3 complex, drebrin E, PAR6 and 14-3-3.

    PubMed

    Cheng, C Yan; Lie, Pearl Py; Wong, Elissa Wp; Mruk, Dolores D; Silvestrini, Bruno

    2011-10-01

    expression of PAR6 (partitioning defective protein 6) and 14-3-3 (also known as PAR5) considerably at the apical ES, disrupting the homeostasis of endocytic vesicle-mediated protein trafficking, which in turn leads to an increase in protein endocytosis. The net result of these changes destabilizes cell adhesion and induces degeneration of the apical ES, causing premature release of spermatids, mimicking spermiation.

  17. Induction of AID-targeting adaptor 14-3-3γ is mediated by NF-κB-dependent recruitment of CFP1 to the 5′-CpG-3′-rich 14-3-3γ promoter and is sustained by E2A

    PubMed Central

    Mai, Thach; Pone, Egest J.; Li, Guideng; Lam, Tonika S.; Moehlman, J’aime; Xu, Zhenming; Casali, Paolo

    2013-01-01

    Class switch DNA recombination (CSR) crucially diversifies antibody biological effectors functions. 14-3-3γ specifically binds to the 5′-AGCT-3′ repeats in the IgH locus switch (S) regions. By directly interacting with the C-terminal region of activation-induced cytidine deaminase (AID), 14-3-3γ targets this enzyme to S regions to mediate CSR. Here, we showed that 14-3-3γ was expressed in germinal center B cells in vivo and induced in B cells by T-dependent and T-independent primary CSR-inducing stimuli in vitro in humans and mice. Induction of 14-3-3γ was rapid, peaking within 3 h of stimulation by lipopolysaccharides (LPS), and sustained over the course of AID and CSR induction. It was dependent on recruitment of NF-κB to the 14-3-3γ gene promoter. The NF-κB recruitment enhanced the occupancy of the CpG island within the 14-3-3γ promoter by CFP1, a component of the COMPASS histone methyltransferase complex, and promoter-specific enrichment of histone 3 lysine 4 trimethylation (H3K4me3), which is indicative of open chromatin state and marks transcription-competent promoters. NF-κB also potentiated the binding of B cell lineage-specific factor E2A to an E-box motif located immediately downstream of the two closely-spaced transcription start sites (TSSs) for sustained 14-3-3γ expression and CSR induction. Thus, 14-3-3γ induction in CSR is enabled by the CFP1-mediated H3K4me3 enrichment in the promoter, dependent on NF-κB and sustained by E2A. PMID:23851690

  18. Induction of activation-induced cytidine deaminase-targeting adaptor 14-3-3γ is mediated by NF-κB-dependent recruitment of CFP1 to the 5'-CpG-3'-rich 14-3-3γ promoter and is sustained by E2A.

    PubMed

    Mai, Thach; Pone, Egest J; Li, Guideng; Lam, Tonika S; Moehlman, J'aime; Xu, Zhenming; Casali, Paolo

    2013-08-15

    Class switch DNA recombination (CSR) crucially diversifies Ab biologic effector functions. 14-3-3γ specifically binds to the 5'-AGCT-3' repeats in the IgH locus switch (S) regions. By interacting directly with the C-terminal region of activation-induced cytidine deaminase (AID), 14-3-3γ targets this enzyme to S regions to mediate CSR. In this study, we showed that 14-3-3γ was expressed in germinal center B cells in vivo and induced in B cells by T-dependent and T-independent primary CSR-inducing stimuli in vitro in humans and mice. Induction of 14-3-3γ was rapid, peaking within 3 h of stimulation by LPSs, and sustained over the course of AID and CSR induction. It was dependent on recruitment of NF-κB to the 14-3-3γ gene promoter. The NF-κB recruitment enhanced the occupancy of the CpG island within the 14-3-3γ promoter by CFP1, a component of the COMPASS histone methyltransferase complex, and promoter-specific enrichment of histone 3 lysine 4 trimethylation (H3K4me3), which is indicative of open chromatin state and marks transcription-competent promoters. NF-κB also potentiated the binding of B cell lineage-specific factor E2A to an E-box motif located immediately downstream of the two closely-spaced transcription start sites for sustained 14-3-3γ expression and CSR induction. Thus, 14-3-3γ induction in CSR is enabled by the CFP1-mediated H3K4me3 enrichment in the promoter, dependent on NF-κB and sustained by E2A.

  19. The peripheral myelin protein 22 and epithelial membrane protein family.

    PubMed

    Jetten, A M; Suter, U

    2000-01-01

    The peripheral myelin protein 22 (PMP22) and the epithelial membrane proteins (EMP-1, -2, and -3) comprise a subfamily of small hydrophobic membrane proteins. The putative four-transmembrane domain structure as well as the genomic structure are highly conserved among family members. PMP22 and EMPs are expressed in many tissues, and functions in cell growth, differentiation, and apoptosis have been reported. EMP-1 is highly up-regulated during squamous differentiation and in certain tumors, and a role in tumorigenesis has been proposed. PMP22 is most highly expressed in peripheral nerves, where it is localized in the compact portion of myelin. It plays a crucial role in normal physiological and pathological processes in the peripheral nervous system. Progress in molecular genetics has revealed that genetic alterations in the PMP22 gene, including duplications, deletions, and point mutations, are responsible for several forms of hereditary peripheral neuropathies, including Charcot-Marie-Tooth disease type 1A (CMT1A), Dejerine-Sottas syndrome (DDS), and hereditary neuropathy with liability to pressure palsies (HNPP). The natural mouse mutants Trembler and Trembler-J contain a missense mutation in different hydrophobic domains of PMP22, resulting in demyelination and Schwann cell proliferation. Transgenic mice carrying many copies of the PMP22 gene and PMP22-null mice display a variety of defects in the initial steps of myelination and/or maintenance of myelination, whereas no pathological alterations are detected in other tissues normally expressing PMP22. Further characterization of the interactions of PMP22 and EMPs with other proteins as well as their regulation will provide additional insight into their normal physiological function and their roles in disease and possibly will result in the development of therapeutic tools. PMID:10697408

  20. New dimension in therapeutic targeting of BCL-2 family proteins

    PubMed Central

    Besbes, Samaher; Mirshahi, Massoud; Pocard, Marc; Billard, Christian

    2015-01-01

    Proteins of the BCL-2 family control the mitochondrial pathway of apoptosis. Targeting these proteins proves to be an attractive strategy for anticancer therapy. The biological context is based on the fact that BH3-only members of the family are specific antagonists of prosurvival members. This prompted the identification of “BH3 mimetic” compounds. These small peptides or organic molecules indeed mimic the BH3 domain of BH3-only proteins: by selectively binding and antagonizing prosurvival proteins, they can induce apoptosis in malignant cells. Some small-molecule inhibitors of prosurvival proteins have already entered clinical trials in cancer patients and two of them have shown significant therapeutic effects. The latest developments in the field of targeting BCL-2 family proteins highlight several new antagonists of prosurvival proteins as well as direct activators of proapoptotic proteins. These compounds open up novel prospects for the development of BH3 mimetic anticancer drugs. PMID:25970783

  1. PIRSF family classification system for protein functional and evolutionary analysis.

    PubMed

    Nikolskaya, Anastasia N; Arighi, Cecilia N; Huang, Hongzhan; Barker, Winona C; Wu, Cathy H

    2006-01-01

    The PIRSF protein classification system (http://pir.georgetown.edu/pirsf/) reflects evolutionary relationships of full-length proteins and domains. The primary PIRSF classification unit is the homeomorphic family, whose members are both homologous (evolved from a common ancestor) and homeomorphic (sharing full-length sequence similarity and a common domain architecture). PIRSF families are curated systematically based on literature review and integrative sequence and functional analysis, including sequence and structure similarity, domain architecture, functional association, genome context, and phyletic pattern. The results of classification and expert annotation are summarized in PIRSF family reports with graphical viewers for taxonomic distribution, domain architecture, family hierarchy, and multiple alignment and phylogenetic tree. The PIRSF system provides a comprehensive resource for bioinformatics analysis and comparative studies of protein function and evolution. Domain or fold-based searches allow identification of evolutionarily related protein families sharing domains or structural folds. Functional convergence and functional divergence are revealed by the relationships between protein classification and curated family functions. The taxonomic distribution allows the identification of lineage-specific or broadly conserved protein families and can reveal horizontal gene transfer. Here we demonstrate, with illustrative examples, how to use the web-based PIRSF system as a tool for functional and evolutionary studies of protein families.

  2. Defining the Protein-Protein Interaction Network of the Human Protein Tyrosine Phosphatase Family.

    PubMed

    Li, Xu; Tran, Kim My; Aziz, Kathryn E; Sorokin, Alexey V; Chen, Junjie; Wang, Wenqi

    2016-09-01

    Protein tyrosine phosphorylation, which plays a vital role in a variety of human cellular processes, is coordinated by protein tyrosine kinases and protein tyrosine phosphatases (PTPs). Genomic studies provide compelling evidence that PTPs are frequently mutated in various human cancers, suggesting that they have important roles in tumor suppression. However, the cellular functions and regulatory machineries of most PTPs are still largely unknown. To gain a comprehensive understanding of the protein-protein interaction network of the human PTP family, we performed a global proteomic study. Using a Minkowski distance-based unified scoring environment (MUSE) for the data analysis, we identified 940 high confidence candidate-interacting proteins that comprise the interaction landscape of the human PTP family. Through a gene ontology analysis and functional validations, we connected the PTP family with several key signaling pathways or cellular functions whose associations were previously unclear, such as the RAS-RAF-MEK pathway, the Hippo-YAP pathway, and cytokinesis. Our study provides the first glimpse of a protein interaction network for the human PTP family, linking it to a number of crucial signaling events, and generating a useful resource for future studies of PTPs.

  3. Annotation extension through protein family annotation coherence metrics

    PubMed Central

    Bastos, Hugo P.; Clarke, Luka A.; Couto, Francisco M.

    2013-01-01

    Protein functional annotation consists in associating proteins with textual descriptors elucidating their biological roles. The bulk of annotation is done via automated procedures that ultimately rely on annotation transfer. Despite a large number of existing protein annotation procedures the ever growing protein space is never completely annotated. One of the facets of annotation incompleteness derives from annotation uncertainty. Often when protein function cannot be predicted with enough specificity it is instead conservatively annotated with more generic terms. In a scenario of protein families or functionally related (or even dissimilar) sets this leads to a more difficult task of using annotations to compare the extent of functional relatedness among all family or set members. However, we postulate that identifying sub-sets of functionally coherent proteins annotated at a very specific level, can help the annotation extension of other incompletely annotated proteins within the same family or functionally related set. As an example we analyse the status of annotation of a set of CAZy families belonging to the Polysaccharide Lyase class. We show that through the use of visualization methods and semantic similarity based metrics it is possible to identify families and respective annotation terms within them that are suitable for possible annotation extension. Based on our analysis we then propose a semi-automatic methodology leading to the extension of single annotation terms within these partially annotated protein sets or families. PMID:24130572

  4. The family of major royal jelly proteins and its evolution.

    PubMed

    Albert, S; Bhattacharya, D; Klaudiny, J; Schmitzová, J; Simúth, J

    1999-08-01

    A cDNA encoding a new member of the gene family of major royal jelly proteins (MRJPs) from the honeybee, Apis mellifera, was isolated and sequenced. Royal jelly (RJ) is a secretion of the cephalic glands of nurse bees. The origin and biological function of the protein component (12.5%, w/w) of RJ is unknown. We show that the MRJP gene family encodes a group of closely related proteins that share a common evolutionary origin with the yellow protein of Drosophila melanogaster. Yellow protein functions in cuticle pigmentation in D. melanogaster. The MRJPs appear to have evolved a novel nutritional function in the honeybee.

  5. Bcl-2 family proteins: master regulators of cell survival.

    PubMed

    Hatok, Jozef; Racay, Peter

    2016-08-01

    The most prominent function of proteins of the Bcl-2 family is regulation of the initiation of intrinsic (mitochondrial) pathways of apoptosis. However, recent research has revealed that in addition to regulation of mitochondrial apoptosis, proteins of the Bcl-2 family play important roles in regulating other cellular pathways with a strong impact on cell survival like autophagy, endoplasmic reticulum (ER) stress response, intracellular calcium dynamics, cell cycle progression, mitochondrial dynamics and energy metabolism. This review summarizes the recent knowledge about functions of Bcl-2 family proteins that are related to cell survival. PMID:27505095

  6. Genome Pool Strategy for Structural Coverage of Protein Families

    SciTech Connect

    Jaroszewski, L.; Slabinski, L.; Wooley, J.; Deacon, A.M.; Lesley, S.A.; Wilson, I.A.; Godzik, A.

    2009-05-18

    Even closely homologous proteins often have different crystallization properties and propensities. This observation can be used to introduce an additional dimension into crystallization trials by simultaneous targeting multiple homologs in what we call a 'genome pool' strategy. We show that this strategy works because protein physicochemical properties correlated with crystallization success have a surprisingly broad distribution within most protein families. There are also easy and difficult families where this distribution is tilted in one direction. This leads to uneven structural coverage of protein families, with more easy ones solved. Increasing the size of the genome pool can improve chances of solving the difficult ones. In contrast, our analysis does not indicate that any specific genomes are easy or difficult. Finally, we show that the group of proteins with known 3D structures is systematically different from the general pool of known proteins and we assess the structural consequences of these differences.

  7. Comparison of the Folding Mechanism of Highly Homologous Proteins in the Lipid-binding Protein Family

    EPA Science Inventory

    The folding mechanism of two closely related proteins in the intracellular lipid binding protein family, human bile acid binding protein (hBABP) and rat bile acid binding protein (rBABP) were examined. These proteins are 77% identical (93% similar) in sequence Both of these singl...

  8. The KP4 killer protein gene family

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Killer protein 4 (KP4) is a well studied toxin secreted by the maize smut fungus Ustilago maydis that kills sensitive Ustilago strains as well as inhibits Fusarium and plant root growth. This small, cysteine rich protein is encoded by a virus that depends on host survival for replication. KP4 functi...

  9. TSEMA: interactive prediction of protein pairings between interacting families.

    PubMed

    Izarzugaza, José M G; Juan, David; Pons, Carles; Ranea, Juan A G; Valencia, Alfonso; Pazos, Florencio

    2006-07-01

    An entire family of methodologies for predicting protein interactions is based on the observed fact that families of interacting proteins tend to have similar phylogenetic trees due to co-evolution. One application of this concept is the prediction of the mapping between the members of two interacting protein families (which protein within one family interacts with which protein within the other). The idea is that the real mapping would be the one maximizing the similarity between the trees. Since the exhaustive exploration of all possible mappings is not feasible for large families, current approaches use heuristic techniques which do not ensure the best solution to be found. This is why it is important to check the results proposed by heuristic techniques and to manually explore other solutions. Here we present TSEMA, the server for efficient mapping assessment. This system calculates an initial mapping between two families of proteins based on a Monte Carlo approach and allows the user to interactively modify it based on performance figures and/or specific biological knowledge. All the explored mappings are graphically shown over a representation of the phylogenetic trees. The system is freely available at http://pdg.cnb.uam.es/TSEMA. Standalone versions of the software behind the interface are available upon request from the authors.

  10. Metagenome and Metatranscriptome Analyses Using Protein Family Profiles

    PubMed Central

    Zhong, Cuncong; Yooseph, Shibu

    2016-01-01

    Analyses of metagenome data (MG) and metatranscriptome data (MT) are often challenged by a paucity of complete reference genome sequences and the uneven/low sequencing depth of the constituent organisms in the microbial community, which respectively limit the power of reference-based alignment and de novo sequence assembly. These limitations make accurate protein family classification and abundance estimation challenging, which in turn hamper downstream analyses such as abundance profiling of metabolic pathways, identification of differentially encoded/expressed genes, and de novo reconstruction of complete gene and protein sequences from the protein family of interest. The profile hidden Markov model (HMM) framework enables the construction of very useful probabilistic models for protein families that allow for accurate modeling of position specific matches, insertions, and deletions. We present a novel homology detection algorithm that integrates banded Viterbi algorithm for profile HMM parsing with an iterative simultaneous alignment and assembly computational framework. The algorithm searches a given profile HMM of a protein family against a database of fragmentary MG/MT sequencing data and simultaneously assembles complete or near-complete gene and protein sequences of the protein family. The resulting program, HMM-GRASPx, demonstrates superior performance in aligning and assembling homologs when benchmarked on both simulated marine MG and real human saliva MG datasets. On real supragingival plaque and stool MG datasets that were generated from healthy individuals, HMM-GRASPx accurately estimates the abundances of the antimicrobial resistance (AMR) gene families and enables accurate characterization of the resistome profiles of these microbial communities. For real human oral microbiome MT datasets, using the HMM-GRASPx estimated transcript abundances significantly improves detection of differentially expressed (DE) genes. Finally, HMM-GRASPx was used to

  11. Metagenome and Metatranscriptome Analyses Using Protein Family Profiles.

    PubMed

    Zhong, Cuncong; Edlund, Anna; Yang, Youngik; McLean, Jeffrey S; Yooseph, Shibu

    2016-07-01

    Analyses of metagenome data (MG) and metatranscriptome data (MT) are often challenged by a paucity of complete reference genome sequences and the uneven/low sequencing depth of the constituent organisms in the microbial community, which respectively limit the power of reference-based alignment and de novo sequence assembly. These limitations make accurate protein family classification and abundance estimation challenging, which in turn hamper downstream analyses such as abundance profiling of metabolic pathways, identification of differentially encoded/expressed genes, and de novo reconstruction of complete gene and protein sequences from the protein family of interest. The profile hidden Markov model (HMM) framework enables the construction of very useful probabilistic models for protein families that allow for accurate modeling of position specific matches, insertions, and deletions. We present a novel homology detection algorithm that integrates banded Viterbi algorithm for profile HMM parsing with an iterative simultaneous alignment and assembly computational framework. The algorithm searches a given profile HMM of a protein family against a database of fragmentary MG/MT sequencing data and simultaneously assembles complete or near-complete gene and protein sequences of the protein family. The resulting program, HMM-GRASPx, demonstrates superior performance in aligning and assembling homologs when benchmarked on both simulated marine MG and real human saliva MG datasets. On real supragingival plaque and stool MG datasets that were generated from healthy individuals, HMM-GRASPx accurately estimates the abundances of the antimicrobial resistance (AMR) gene families and enables accurate characterization of the resistome profiles of these microbial communities. For real human oral microbiome MT datasets, using the HMM-GRASPx estimated transcript abundances significantly improves detection of differentially expressed (DE) genes. Finally, HMM-GRASPx was used to

  12. Structural and Energetic Characterization of the Ankyrin Repeat Protein Family

    PubMed Central

    Parra, R. Gonzalo; Espada, Rocío; Verstraete, Nina; Ferreiro, Diego U.

    2015-01-01

    Ankyrin repeat containing proteins are one of the most abundant solenoid folds. Usually implicated in specific protein-protein interactions, these proteins are readily amenable for design, with promising biotechnological and biomedical applications. Studying repeat protein families presents technical challenges due to the high sequence divergence among the repeating units. We developed and applied a systematic method to consistently identify and annotate the structural repetitions over the members of the complete Ankyrin Repeat Protein Family, with increased sensitivity over previous studies. We statistically characterized the number of repeats, the folding of the repeat-arrays, their structural variations, insertions and deletions. An energetic analysis of the local frustration patterns reveal the basic features underlying fold stability and its relation to the functional binding regions. We found a strong linear correlation between the conservation of the energetic features in the repeat arrays and their sequence variations, and discuss new insights into the organization and function of these ubiquitous proteins. PMID:26691182

  13. Protein folds and families: sequence and structure alignments.

    PubMed

    Holm, L; Sander, C

    1999-01-01

    Dali and HSSP are derived databases organizing protein space in the structurally known regions. We use an automatic structure alignment program (Dali) for the classification of all known 3D structures based on all-against-all comparison of 3D structures in the Protein Data Bank. The HSSP database associates 1D sequences with known 3D structures using a position-weighted dynamic programming method for sequence profile alignment (MaxHom). As a result, the HSSP database not only provides aligned sequence families, but also implies secondary and tertiary structures covering 36% of all sequences in Swiss-Prot. The structure classification by Dali and the sequence families in HSSP can be browsed jointly from a web interface providing a rich network of links between neighbours in fold space, between domains and proteins, and between structures and sequences. In particular, this results in a database of explicit multiple alignments of protein families in the twilight zone of sequence similarity. The organization of protein structures and families provides a map of the currently known regions of the protein universe that is useful for the analysis of folding principles, for the evolutionary unification of protein families and for maximizing the information return from experimental structure determination. The databases are available from http://www.embl-ebi.ac.uk/dali/

  14. Protein families: implications for allergen nomenclature, standardisation and specific immunotherapy.

    PubMed

    Breiteneder, Heimo

    2009-01-01

    Allergens are embedded into the protein universe as members of large families and superfamilies of related proteins which is a direct consequence of their shared evolution. The classification of allergens by protein families offers a valuable frame of reference that allows the design of experiments to study cross-reactivity and allergenic potency of proteins. Information on protein family membership also complements the current official IUIS allergen nomenclature. All presently known allergens belong to one of 140 (1.4%) of the 10,340 protein families currently described by version 23.0 of the Pfam database. This is indicative of a strong bias among allergens towards certain protein architectures that are able to induce an IgE response in an atopic immune system. However, even small variations in the structure of a protein alter its immunological characteristics. Various isoforms of the major birch pollen allergen Bet v 1 were shown to possess highly variant immunogenic and allergenic properties. Ber e 1 and SFA8, two 2S albumins, were revealed to display differential capacities to polarise an immune response. Such data will be exploited in the future for the design of allergy vaccines.

  15. Increased coverage of protein families with the blocks database servers.

    PubMed

    Henikoff, J G; Greene, E A; Pietrokovski, S; Henikoff, S

    2000-01-01

    The Blocks Database WWW (http://blocks.fhcrc.org ) and Email (blocks@blocks.fhcrc.org ) servers provide tools to search DNA and protein queries against the Blocks+ Database of multiple alignments, which represent conserved protein regions. Blocks+ nearly doubles the number of protein families included in the database by adding families from the Pfam-A, ProDom and Domo databases to those from PROSITE and PRINTS. Other new features include improved Block Searcher statistics, searching with NCBI's IMPALA program and 3D display of blocks on PDB structures.

  16. Proteomic pathway analysis of the hippocampus in schizophrenia and bipolar affective disorder implicates 14-3-3 signaling, aryl hydrocarbon receptor signaling, and glucose metabolism: potential roles in GABAergic interneuron pathology.

    PubMed

    Schubert, Klaus Oliver; Föcking, Melanie; Cotter, David R

    2015-09-01

    Neuropathological changes of the hippocampus have been associated with psychotic disorders such as schizophrenia and bipolar disorder. Recent work has particularly implicated hippocampal GABAergic interneurons in the pathophysiology of these diseases. However, the molecular mechanisms underlying structural and cellular hippocampal pathology remain poorly understood. We used data from comprehensive difference-in-gel electrophoresis (2-D DIGE) investigations of postmortem human hippocampus of people with schizophrenia and bipolar disorder, covering the acidic (isoelectric point (pI) between pH4 and 7) and, separately, the basic (pI between pH6 and 11) sub-proteome, for Ingenuity Pathway Analysis (IPA) of implicated protein networks and pathways. Comparing disease and control cases, we identified 58 unique differentially expressed proteins in schizophrenia, and 70 differentially expressed proteins in bipolar disorder, using mass spectrometry. IPA implicated, most prominently, 14-3-3 and aryl hydrocarbon receptor signaling in schizophrenia, and gluconeogenesis/glycolysis in bipolar disorder. Both disorders were characterized by alterations of proteins involved in the oxidative stress response, mitochondrial function, and protein-endocytosis, -trafficking, -degradation, and -ubiquitination. These findings are interpreted with a focus on GABAergic interneuron pathology in the hippocampus.

  17. The FAD-dependent glycerol-3-phosphate dehydrogenase of Giardia duodenalis: an unconventional enzyme that interacts with the g14-3-3 and it is a target of the antitumoral compound NBDHEX

    PubMed Central

    Lalle, Marco; Camerini, Serena; Cecchetti, Serena; Finelli, Renata; Sferra, Gabriella; Müller, Joachim; Ricci, Giorgio; Pozio, Edoardo

    2015-01-01

    The flagellated protozoan Giardia duodenalis is a worldwide parasite causing giardiasis, an acute and chronic diarrheal disease. Metabolism in G. duodenalis has a limited complexity thus making metabolic enzymes ideal targets for drug development. However, only few metabolic pathways (i.e., carbohydrates) have been described so far. Recently, the parasite homolog of the mitochondrial-like glycerol-3-phosphate dehydrogenase (gG3PD) has been identified among the interactors of the g14-3-3 protein. G3PD is involved in glycolysis, electron transport, glycerophospholipids metabolism, and hyperosmotic stress response, and is emerging as promising target in tumor treatment. In this work, we demonstrate that gG3PD is a functional flavoenzyme able to convert glycerol-3-phosphate into dihydroxyacetone phosphate and that its activity and the intracellular glycerol level increase during encystation. Taking advantage of co-immunoprecipitation assays and deletion mutants, we provide evidence that gG3PD and g14-3-3 interact at the trophozoite stage, the intracellular localization of gG3PD is stage dependent and it partially co-localizes with mitosomes during cyst development. Finally, we demonstrate that the gG3PD activity is affected by the antitumoral compound 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol, that results more effective in vitro at killing G. duodenalis trophozoites than the reference drug metronidazole. Overall, our results highlight the involvement of gG3PD in processes crucial for the parasite survival thus proposing this enzyme as target for novel antigiardial interventions. PMID:26082764

  18. Multiple degradation pathways for Fos family proteins.

    PubMed

    Acquaviva, Claire; Bossis, Guillaume; Ferrara, Patrizia; Brockly, Frederique; Jariel-Encontre, Isabelle; Piechaczyk, Marc

    2002-11-01

    c-Fos protooncoprotein is a short-lived transcription factor with oncogenic potential. It is massively degraded by the proteasome in vivo under various experimental conditions. Those include consititutive expression in exponentially growing cells and transient induction in cells undergoing the G0/G1 phase transition upon stimulation by serum. Though there is evidence that c-Fos can be ubiquitinylated in vitro, the unambigous demonstration that prior ubiquitinylation is necessary for degradation by the proteasome in vivo is still lacking. c-Jun, one of the main dimerization partners of c-Fos within the AP-1 transcription complex, is also an unstable protein. Its degradation is clearly proteasome dependent. However, several lines of evidence indicate that the mechanisms by which it addresses the proteasome are different from those operating on c-Fos. Moreover, genetic analysis has indicated that c-Fos is addressed to the proteasome via pathways that differ depending on the conditions of expression. c-Fos has been transduced by two murine osteosarcomatogenic retroviruses in mutated forms, which are more stable and more oncogenic. The stabilization is not simply accounted for by simple deletion of one of the main c-Fos destabilizers but, rather, by a complex balance between opposing destabilizing and stabilizing mutations. However, although viral Fos proteins have acquired full resistance to proteasomal degradation, stabilization is limited because the mutations they have accumulated, during or after c-fos gene transduction, confer sensitivity to an unidentified proteolytic system(s). This observation is consistent with the idea that fos-expressing viruses have evolved expression machineries to ensure controlled protein levels in order to maintain an optimal balance between prooncogenic and proapoptotic activities of v-Fos proteins.

  19. Functions and Regulation of the APOBEC Family of Proteins

    PubMed Central

    Smith, Harold C.; Bennett, Ryan P.; Kizilyer, Ayse; McDougall, William M.; Prohaska, Kimberly M.

    2012-01-01

    APOBEC1 is a cytidine deaminase that edits messenger RNAs and was the first enzyme in the APOBEC family to be functionally characterized. Under appropriate conditions APOBEC1 also deaminates deoxycytidine in single-stranded DNA (ssDNA). The other ten members of the APOBEC family have not been fully characterized however several have deoxycytidine deaminase activity on ssDNAs. Despite the nucleic acid substrate preferences of different APOBEC proteins, a common feature appears to be their intrinsic ability to bind to RNA as well as to ssDNA. RNA binding to APOBEC proteins together with protein-protein interactions, post-translation modifications and subcellular localization serve as biological modulators controlling the DNA mutagenic activity of these potentially genotoxic proteins. PMID:22001110

  20. The neuronal calcium sensor family of Ca2+-binding proteins.

    PubMed Central

    Burgoyne, R D; Weiss, J L

    2001-01-01

    Ca(2+) plays a central role in the function of neurons as the trigger for neurotransmitter release, and many aspects of neuronal activity, from rapid modulation to changes in gene expression, are controlled by Ca(2+). These actions of Ca(2+) must be mediated by Ca(2+)-binding proteins, including calmodulin, which is involved in Ca(2+) regulation, not only in neurons, but in most other cell types. A large number of other EF-hand-containing Ca(2+)-binding proteins are known. One family of these, the neuronal calcium sensor (NCS) proteins, has a restricted expression in retinal photoreceptors or neurons and neuroendocrine cells, suggesting that they have specialized roles in these cell types. Two members of the family (recoverin and guanylate cyclase-activating protein) have established roles in the regulation of phototransduction. Despite close sequence similarities, the NCS proteins have distinct neuronal distributions, suggesting that they have different functions. Recent work has begun to demonstrate the physiological roles of members of this protein family. These include roles in the modulation of neurotransmitter release, control of cyclic nucleotide metabolism, biosynthesis of polyphosphoinositides, regulation of gene expression and in the direct regulation of ion channels. In the present review we describe the known sequences and structures of the NCS proteins, information on their interactions with target proteins and current knowledge about their cellular and physiological functions. PMID:11115393

  1. BCL-2 family proteins as regulators of mitochondria metabolism.

    PubMed

    Gross, Atan

    2016-08-01

    The BCL-2 family proteins are major regulators of apoptosis, and one of their major sites of action are the mitochondria. Mitochondria are the cellular hubs for metabolism and indeed selected BCL-2 family proteins also possess roles related to mitochondria metabolism and dynamics. Here we discuss the link between mitochondrial metabolism/dynamics and the fate of stem cells, with an emphasis on the role of the BID-MTCH2 pair in regulating this link. We also discuss the possibility that BCL-2 family proteins act as metabolic sensors/messengers coming on and off of mitochondria to "sample" the cytosol and provide the mitochondria with up-to-date metabolic information. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.

  2. Expression and localization of X11 family proteins in neurons.

    PubMed

    Motodate, Rika; Saito, Yuhki; Hata, Saori; Suzuki, Toshiharu

    2016-09-01

    The X11/Mint family of proteins comprises X11/X11α/Mint1, X11L/X11β/Mint2, and X11L2/X11γ/Mint3. Each of these molecules is an adaptor protein that contains a phosphotyrosine interaction/binding (PI/PTB) and two PDZ domains in its carboxy-terminal region. X11/Mint family members associate with a broad spectrum of membrane proteins, including Alzheimer's β-amyloid precursor protein (APP), alcadeins, and low density lipoprotein receptor proteins, as well as various cytoplasmic proteins including Arf, kalirin-7, and Munc18. In particular, X11 and X11L are thought to play various roles in the regulation of neural functions in brain. Nevertheless, the protein levels and respective localization of individual family members remain controversial. We analyzed the protein levels of X11 and X11L in the corresponding single- and double-knockout mice. X11 and X11L did not exhibit obvious changes of their protein levels when the other was absent, especially in cerebrum in which they were widely co-expressed. In cerebellum, X11 and X11L localized in characteristic patterns in various types of neurons, and X11 protein level increased without an obvious ectopic localization in X11L-knockout mice. Interestingly, only X11L protein existed specifically in brain, whereas, contrary to the accepted view, X11 protein was detected at the highest levels in brain but was also strongly detected in pancreas, testis, and paranephros. Together, our results indicate that both X11 and X11L exert largely in brain neurons, but X11 may also function in peripheral tissues. PMID:27268412

  3. Disorder and function: a review of the dehydrin protein family

    PubMed Central

    Graether, Steffen P.; Boddington, Kelly F.

    2014-01-01

    Dehydration proteins (dehydrins) are group 2 members of the late embryogenesis abundant (LEA) protein family. The protein architecture of dehydrins can be described by the presence of three types of conserved sequence motifs that have been named the K-, Y-, and S-segments. By definition, a dehydrin must contain at least one copy of the lysine-rich K-segment. Abiotic stresses such as drought, cold, and salinity cause the upregulation of dehydrin mRNA and protein levels. Despite the large body of genetic and protein evidence of the importance of these proteins in stress response, the in vivo protective mechanism is not fully known. In vitro experimental evidence from biochemical assays and localization experiments suggests multiple roles for dehydrins, including membrane protection, cryoprotection of enzymes, and protection from reactive oxygen species. Membrane binding by dehydrins is likely to be as a peripheral membrane protein, since the protein sequences are highly hydrophilic and contain many charged amino acids. Because of this, dehydrins in solution are intrinsically disordered proteins, that is, they have no well-defined secondary or tertiary structure. Despite their disorder, dehydrins have been shown to gain structure when bound to ligands such as membranes, and to possibly change their oligomeric state when bound to ions. We review what is currently known about dehydrin sequences and their structures, and examine the various ligands that have been shown to bind to this family of proteins. PMID:25400646

  4. Disorder and function: a review of the dehydrin protein family.

    PubMed

    Graether, Steffen P; Boddington, Kelly F

    2014-01-01

    Dehydration proteins (dehydrins) are group 2 members of the late embryogenesis abundant (LEA) protein family. The protein architecture of dehydrins can be described by the presence of three types of conserved sequence motifs that have been named the K-, Y-, and S-segments. By definition, a dehydrin must contain at least one copy of the lysine-rich K-segment. Abiotic stresses such as drought, cold, and salinity cause the upregulation of dehydrin mRNA and protein levels. Despite the large body of genetic and protein evidence of the importance of these proteins in stress response, the in vivo protective mechanism is not fully known. In vitro experimental evidence from biochemical assays and localization experiments suggests multiple roles for dehydrins, including membrane protection, cryoprotection of enzymes, and protection from reactive oxygen species. Membrane binding by dehydrins is likely to be as a peripheral membrane protein, since the protein sequences are highly hydrophilic and contain many charged amino acids. Because of this, dehydrins in solution are intrinsically disordered proteins, that is, they have no well-defined secondary or tertiary structure. Despite their disorder, dehydrins have been shown to gain structure when bound to ligands such as membranes, and to possibly change their oligomeric state when bound to ions. We review what is currently known about dehydrin sequences and their structures, and examine the various ligands that have been shown to bind to this family of proteins. PMID:25400646

  5. DAZ Family Proteins, Key Players for Germ Cell Development

    PubMed Central

    Fu, Xia-Fei; Cheng, Shun-Feng; Wang, Lin-Qing; Yin, Shen; De Felici, Massimo; Shen, Wei

    2015-01-01

    DAZ family proteins are found almost exclusively in germ cells in distant animal species. Deletion or mutations of their encoding genes usually severely impair either oogenesis or spermatogenesis or both. The family includes Boule (or Boll), Dazl (or Dazla) and DAZ genes. Boule and Dazl are situated on autosomes while DAZ, exclusive of higher primates, is located on the Y chromosome. Deletion of DAZ gene is the most common causes of infertility in humans. These genes, encoding for RNA binding proteins, contain a highly conserved RNA recognition motif and at least one DAZ repeat encoding for a 24 amino acids sequence able to bind other mRNA binding proteins. Basically, Daz family proteins function as adaptors for target mRNA transport and activators of their translation. In some invertebrate species, BOULE protein play a pivotal role in germline specification and a conserved regulatory role in meiosis. Depending on the species, DAZL is expressed in primordial germ cells (PGCs) and/or pre-meiotic and meiotic germ cells of both sexes. Daz is found in fetal gonocytes, spermatogonia and spermatocytes of adult testes. Here we discuss DAZ family genes in a phylogenic perspective, focusing on the common and distinct features of these genes, and their pivotal roles during gametogenesis evolved during evolution. PMID:26327816

  6. Current Overview of Allergens of Plant Pathogenesis Related Protein Families

    PubMed Central

    Sinha, Mau; Singh, Rashmi Prabha; Kushwaha, Gajraj Singh; Iqbal, Naseer; Singh, Avinash; Kaushik, Sanket; Sharma, Sujata; Singh, Tej P.

    2014-01-01

    Pathogenesis related (PR) proteins are one of the major sources of plant derived allergens. These proteins are induced by the plants as a defense response system in stress conditions like microbial and insect infections, wounding, exposure to harsh chemicals, and atmospheric conditions. However, some plant tissues that are more exposed to environmental conditions like UV irradiation and insect or fungal attacks express these proteins constitutively. These proteins are mostly resistant to proteases and most of them show considerable stability at low pH. Many of these plant pathogenesis related proteins are found to act as food allergens, latex allergens, and pollen allergens. Proteins having similar amino acid sequences among the members of PR proteins may be responsible for cross-reactivity among allergens from diverse plants. This review analyzes the different pathogenesis related protein families that have been reported as allergens. Proteins of these families have been characterized in regard to their biological functions, amino acid sequence, and cross-reactivity. The three-dimensional structures of some of these allergens have also been evaluated to elucidate the antigenic determinants of these molecules and to explain the cross-reactivity among the various allergens. PMID:24696647

  7. Key residues approach to the definition of protein families and analysis of sparse family signatures.

    PubMed

    Ison, J C; Blades, M J; Bleasby, A J; Daniel, S C; Parish, J H; Findlay, J B

    2000-08-01

    We extend the concept of the motif as a tool for characterizing protein families and explore the feasibility of a sparse "motif" that is the length of the protein sequence itself. The type of motif discussed is a sparse family signature consisting of a set of N key residue positions (A1, A2...AN) preceded by gaps (G) thus G1A1G2A2. ...GNAN. Both a residue and gap can be variable. A signature is matched to a protein sequence and scored using a dynamic programming algorithm which permits variability in gap distance and residue type. Generating a signature involves identifying residues associated with points of contact in interactions between secondary structure elements. A raw signature consists of a set of positions with potential key structural roles sampled from a sequence alignment constructed with reference to this contact data. Raw signatures are refined by sampling different gap-residue pairs until the specificity of a signature for the family cannot be further improved. We summarize signatures for nine families of protein of diverse fold and function and present results of scans against the OWL protein sequence database. The implications of such signatures are discussed.

  8. HOMSTRAD: a database of protein structure alignments for homologous families.

    PubMed

    Mizuguchi, K; Deane, C M; Blundell, T L; Overington, J P

    1998-11-01

    We describe a database of protein structure alignments for homologous families. The database HOMSTRAD presently contains 130 protein families and 590 aligned structures, which have been selected on the basis of quality of the X-ray analysis and accuracy of the structure. For each family, the database provides a structure-based alignment derived using COMPARER and annotated with JOY in a special format that represents the local structural environment of each amino acid residue. HOMSTRAD also provides a set of superposed atomic coordinates obtained using MNYFIT, which can be viewed with a graphical user interface or used for comparative modeling studies. The database is freely available on the World Wide Web at: http://www-cryst.bioc.cam. ac.uk/-homstrad/, with search facilities and links to other databases.

  9. Tet family proteins and 5-hydroxymethylcytosine in development and disease

    PubMed Central

    Tan, Li; Shi, Yujiang Geno

    2012-01-01

    Over the past few decades, DNA methylation at the 5-position of cytosine (5-methylcytosine, 5mC) has emerged as an important epigenetic modification that plays essential roles in development, aging and disease. However, the mechanisms controlling 5mC dynamics remain elusive. Recent studies have shown that ten-eleven translocation (Tet) proteins can catalyze 5mC oxidation and generate 5mC derivatives, including 5-hydroxymethylcytosine (5hmC). The exciting discovery of these novel 5mC derivatives has begun to shed light on the dynamic nature of 5mC, and emerging evidence has shown that Tet family proteins and 5hmC are involved in normal development as well as in many diseases. In this Primer we provide an overview of the role of Tet family proteins and 5hmC in development and cancer. PMID:22569552

  10. Ferritin family proteins and their use in bionanotechnology

    PubMed Central

    He, Didi; Marles-Wright, Jon

    2015-01-01

    Ferritin family proteins are found in all kingdoms of life and act to store iron within a protein cage and to protect the cell from oxidative damage caused by the Fenton reaction. The structural and biochemical features of the ferritins have been widely exploited in bionanotechnology applications: from the production of metal nanoparticles; as templates for semi-conductor production; and as scaffolds for vaccine design and drug delivery. In this review we first discuss the structural properties of the main ferritin family proteins, and describe how their organisation specifies their functions. Second, we describe materials science applications of ferritins that rely on their ability to sequester metal within their cavities. Finally, we explore the use of ferritin as a container for drug delivery and as a scaffold for the production of vaccines. PMID:25573765

  11. Molecular modeling of pathogenesis-related proteins of family 5.

    PubMed

    Thompson, Claudia E; Fernandes, Cláudia L; de Souza, Osmar N; Salzano, Francisco M; Bonatto, Sandro L; Freitas, Loreta B

    2006-01-01

    The family of pathogenesis-related (PR) 5 proteins have diverse functions, and some of them are classified as thaumatins, osmotins, and inhibitors of alpha-amylase or trypsin. Although the specific function of many PR5 in plants is unknown, they are involved in the acquired systemic resistance and response to biotic stress, causing the inhibition of hyphal growth and reduction of spore germination, probably by a membrane permeabilization mechanism or by interaction with pathogen receptors. We have constructed three-dimensional models of four proteins belonging to the Rosaceae and Fagaceae botanical families by using the technique of comparative molecular modelling by homology. There are four main structural differences between all the PR5, corresponding to regions with replacements of amino acids. Folding and the secondary structures are very similar for all of them. However, the isoelectric point and charge distributions differ for each protein.

  12. Sensory properties of the PII signalling protein family.

    PubMed

    Forchhammer, Karl; Lüddecke, Jan

    2016-02-01

    PII signalling proteins constitute one of the largest families of signalling proteins in nature. An even larger superfamily of trimeric sensory proteins with the same architectural principle as PII proteins appears in protein structure databases. Large surface-exposed flexible loops protrude from the intersubunit faces, where effector molecules are bound that tune the conformation of the loops. Via this mechanism, PII proteins control target proteins in response to cellular ATP/ADP levels and the 2-oxoglutarate status, thereby coordinating the cellular carbon/nitrogen balance. The antagonistic (ATP versus ADP) and synergistic (2-oxoglutarate and ATP) mode of effector molecule binding is further affected by PII -receptor interaction, leading to a highly sophisticated signalling network organized by PII . Altogether, it appears that PII is a multitasking information processor that, depending on its interaction environment, differentially transmits information on the energy status and the cellular 2-oxoglutarate level. In addition to the basic mode of PII function, several bacterial PII proteins may transmit a signal of the cellular glutamine status via covalent modification. Remarkably, during the evolution of plant chloroplasts, glutamine signalling by PII proteins was re-established by acquisition of a short sequence extension at the C-terminus. This plant-specific C-terminus makes the interaction of plant PII proteins with one of its targets, the arginine biosynthetic enzyme N-acetyl-glutamate kinase, glutamine-dependent.

  13. The APOBEC Protein Family: United by Structure, Divergent in Function.

    PubMed

    Salter, Jason D; Bennett, Ryan P; Smith, Harold C

    2016-07-01

    The APOBEC (apolipoprotein B mRNA editing catalytic polypeptide-like) family of proteins have diverse and important functions in human health and disease. These proteins have an intrinsic ability to bind to both RNA and single-stranded (ss) DNA. Both function and tissue-specific expression varies widely for each APOBEC protein. We are beginning to understand that the activity of APOBEC proteins is regulated through genetic alterations, changes in their transcription and mRNA processing, and through their interactions with other macromolecules in the cell. Loss of cellular control of APOBEC activities leads to DNA hypermutation and promiscuous RNA editing associated with the development of cancer or viral drug resistance, underscoring the importance of understanding how APOBEC proteins are regulated. PMID:27283515

  14. A novel family of small proteins that affect plant development

    SciTech Connect

    John Charles Walker

    2011-04-29

    The DVL genes represent a new group of plant proteins that influence plant growth and development. Overexpression of DVL1, and other members of the DVL family, causes striking phenotypic changes. The DVL proteins share sequence homology in their C-terminal half. Point mutations in the C-terminal domain show it is necessary and deletion studies demonstrate the C-terminal domain is sufficient to confer the overexpression phenotypes. The phenotypes observed, and the conservation of the protein sequence in the plant kingdom, does suggest the DVL proteins have a role in modulating plant growth and development. Our working hypothesis is the DVL proteins function as regulators of cellular signaling pathways that control growth and development.

  15. The APOBEC Protein Family: United by Structure, Divergent in Function.

    PubMed

    Salter, Jason D; Bennett, Ryan P; Smith, Harold C

    2016-07-01

    The APOBEC (apolipoprotein B mRNA editing catalytic polypeptide-like) family of proteins have diverse and important functions in human health and disease. These proteins have an intrinsic ability to bind to both RNA and single-stranded (ss) DNA. Both function and tissue-specific expression varies widely for each APOBEC protein. We are beginning to understand that the activity of APOBEC proteins is regulated through genetic alterations, changes in their transcription and mRNA processing, and through their interactions with other macromolecules in the cell. Loss of cellular control of APOBEC activities leads to DNA hypermutation and promiscuous RNA editing associated with the development of cancer or viral drug resistance, underscoring the importance of understanding how APOBEC proteins are regulated.

  16. Fatal familial insomnia: Clinical features and early identification.

    PubMed

    Krasnianski, Anna; Bartl, Mario; Sanchez Juan, Pascual J; Heinemann, Uta; Meissner, Bettina; Varges, Daniela; Schulze-Sturm, Ulf; Kretzschmar, Haus A; Schulz-Schaeffer, Walter J; Zerr, Inga

    2008-05-01

    Our aim was to develop a detailed clinical description of fatal familial insomnia in a large patient group with respect to the M129V genotype. Data on 41 German fatal familial insomnia patients were analyzed. Clinical features, 14-3-3 proteins in the cerebrospinal fluid, magnetic resonance imaging, positron emission tomography, single-photon emission computed tomography, polysomnography, and electroencephalography were studied. Age at disease onset, disease duration, and clinical syndrome varied depending on the codon 129 genotype. Because the sensitivity of the most diagnostic tests is low in fatal familial insomnia, detailed clinical investigation is extremely important. Polysomnography may help to support the diagnosis.

  17. Evolutionary hierarchy of vertebrate-like heterotrimeric G protein families.

    PubMed

    Krishnan, Arunkumar; Mustafa, Arshi; Almén, Markus Sällman; Fredriksson, Robert; Williams, Michael J; Schiöth, Helgi B

    2015-10-01

    Heterotrimeric G proteins perform a crucial role as molecular switches controlling various cellular responses mediated by G protein-coupled receptor (GPCR) signaling pathway. Recent data have shown that the vertebrate-like G protein families are found across metazoans and their closest unicellular relatives. However, an overall evolutionary hierarchy of vertebrate-like G proteins, including gene family annotations and in particular mapping individual gene gain/loss events across diverse holozoan lineages is still incomplete. Here, with more expanded invertebrate taxon sampling, we have reconstructed phylogenetic trees for each of the G protein classes/families and provide a robust classification and hierarchy of vertebrate-like heterotrimeric G proteins. Our results further extend the evidence that the common ancestor (CA) of holozoans had at least five ancestral Gα genes corresponding to all major vertebrate Gα classes and contain a total of eight genes including two Gβ and one Gγ. Our results also indicate that the GNAI/O-like gene likely duplicated in the last CA of metazoans to give rise to GNAI- and GNAO-like genes, which are conserved across invertebrates. Moreover, homologs of GNB1-4 paralogon- and GNB5 family-like genes are found in most metazoans and that the unicellular holozoans encode two ancestral Gβ genes. Similarly, most bilaterian invertebrates encode two Gγ genes which include a representative of the GNG gene cluster and a putative homolog of GNG13. Interestingly, our results also revealed key evolutionary events such as the Drosophila melanogaster eye specific Gβ subunit that is found conserved in most arthropods and several previously unidentified species specific expansions within Gαi/o, Gαs, Gαq, Gα12/13 classes and the GNB1-4 paralogon. Also, we provide an overall proposed evolutionary scenario on the expansions of all G protein families in vertebrate tetraploidizations. Our robust classification/hierarchy is essential to further

  18. In-silico characterization of Formin Binding Protein 4 Family of proteins.

    PubMed

    Das, Amit; Bhattacharya, Simanti; Bagchi, Angshuman; Dasgupta, Rakhi

    2015-03-01

    Members of the Formin Binding Protein 4 Family or the FNBP4 were indirectly reported to be associated with many of the biological processes. These proteins possess two WW domains. So far there are practically no reports regarding the characterization and classification of the protein by any means. Keeping in mind the importance of the proteins from this FNBP4 family, we have tried an in silico approach to come up with a comprehensive analysis of the proteins. We have analyzed the proteins by considering their sequence conservation, their phylogenetic distributions among the different organisms. We have also investigated the functional properties of the WW domains in the proteins. Finally, we have made an attempt to elucidate the structural details of the domains and predicted the possible modes of their interactions. Our findings show that FNBP4 is eukaryotic in its distribution and follows a trend of evolution where animal and plant homologues have evolved in an independent manner. While the WW domain is the only common motif present across the FNBP4 family of proteins, there are different classes (mainly two) of WW domains that are found among different FNBP4 proteins. Structure function predictions indicate a possible role of FNBP4 in either protein stabilization control or transcript processing. Our study on FNBP4 may therefore open up new avenues to generate new interest in this highly important but largely unexplored class of proteins. Future studies with proteins from this family may answer many important questions of protein-protein interactions in different biologically important processes.

  19. Specificity of botulinum protease for human VAMP family proteins.

    PubMed

    Yamamoto, Hideyuki; Ida, Tomoaki; Tsutsuki, Hiroyasu; Mori, Masatoshi; Matsumoto, Tomoko; Kohda, Tomoko; Mukamoto, Masafumi; Goshima, Naoki; Kozaki, Shunji; Ihara, Hideshi

    2012-04-01

    The botulinum neurotoxin light chain (BoNT-LC) is a zinc-dependent metalloprotease that cleaves neuronal SNARE proteins such as SNAP-25, VAMP2, and Syntaxin1. This cleavage interferes with the neurotransmitter release of peripheral neurons and results in flaccid paralysis. SNAP, VAMP, and Syntaxin are representative of large families of proteins that mediate most membrane fusion reactions, as well as both neuronal and non-neuronal exocytotic events in eukaryotic cells. Neuron-specific SNARE proteins, which are target substrates of BoNT, have been well studied; however, it is unclear whether other SNARE proteins are also proteolyzed by BoNT. Herein, we define the substrate specificity of BoNT-LC/B, /D, and /F towards recombinant human VAMP family proteins. We demonstrate that LC/B, /D, and /F are able to cleave VAMP1, 2, and 3, but no other VAMP family proteins. Kinetic analysis revealed that all LC have higher affinity and catalytic activity for the non-neuronal SNARE isoform VAMP3 than for the neuronal VAMP1 and 2 isoforms. LC/D in particular exhibited extremely low catalytic activity towards VAMP1 relative to other interactions, which we determined through point mutation analysis to be a result of the Ile present at residue 48 of VAMP1. We also identified the VAMP3 cleavage sites to be at the Gln 59-Phe 60 (LC/B), Lys 42-Leu 43 (LC/D), and Gln 41-Lys 42 (LC/F) peptide bonds, which correspond to those of VAMP1 or 2. Understanding the substrate specificity and kinetic characteristics of BoNT towards human SNARE proteins may aid in the development of novel therapeutic uses for BoNT.

  20. The APSES family proteins in fungi: Characterizations, evolution and functions.

    PubMed

    Zhao, Yong; Su, Hao; Zhou, Jing; Feng, Huihua; Zhang, Ke-Qin; Yang, Jinkui

    2015-08-01

    The APSES protein family belongs to transcriptional factors of the basic helix-loop-helix (bHLH) class, the originally described members (APSES: Asm1p, Phd1p, Sok2p, Efg1p and StuAp) are used to designate this group of proteins, and they have been identified as key regulators of fungal development and other biological processes. APSES proteins share a highly conserved DNA-binding domain (APSES domain) of about 100 amino acids, whose central domain is predicted to form a typical bHLH structure. Besides APSES domain, several APSES proteins also contain additional domains, such as KilA-N and ankyrin repeats. In recent years, an increasing number of APSES proteins have been identified from diverse fungi, and they involve in numerous biological processes, such as sporulation, cellular differentiation, mycelial growth, secondary metabolism and virulence. Most fungi, including Aspergillus fumigatus, Aspergillus nidulans, Candida albicans, Fusarium graminearum, and Neurospora crassa, contain five APSES proteins. However, Cryptococcus neoformans only contains two APSES proteins, and Saccharomyces cerevisiae contains six APSES proteins. The phylogenetic analysis showed the APSES domains from different fungi were grouped into four clades (A, B, C and D), which is consistent with the result of homologous alignment of APSES domains using DNAman. The roles of APSES proteins in clade C have been studied in detail, while little is known about the roles of other APSES proteins in clades A, B and D. In this review, the biochemical properties and functional domains of APSES proteins are predicted and compared, and the phylogenetic relationship among APSES proteins from various fungi are analyzed based on the APSES domains. Moreover, the functions of APSES proteins in different fungi are summarized and discussed.

  1. A widespread family of bacterial cell wall assembly proteins

    PubMed Central

    Kawai, Yoshikazu; Marles-Wright, Jon; Cleverley, Robert M; Emmins, Robyn; Ishikawa, Shu; Kuwano, Masayoshi; Heinz, Nadja; Bui, Nhat Khai; Hoyland, Christopher N; Ogasawara, Naotake; Lewis, Richard J; Vollmer, Waldemar; Daniel, Richard A; Errington, Jeff

    2011-01-01

    Teichoic acids and acidic capsular polysaccharides are major anionic cell wall polymers (APs) in many bacteria, with various critical cell functions, including maintenance of cell shape and structural integrity, charge and cation homeostasis, and multiple aspects of pathogenesis. We have identified the widespread LytR–Cps2A–Psr (LCP) protein family, of previously unknown function, as novel enzymes required for AP synthesis. Structural and biochemical analysis of several LCP proteins suggest that they carry out the final step of transferring APs from their lipid-linked precursor to cell wall peptidoglycan (PG). In Bacillus subtilis, LCP proteins are found in association with the MreB cytoskeleton, suggesting that MreB proteins coordinate the insertion of the major polymers, PG and AP, into the cell wall. PMID:21964069

  2. Vaccinia Virus N1l Protein Resembles a B Cell Lymphoma-2 (Bcl-2) Family Protein

    SciTech Connect

    Aoyagi, M.; Zhai, D.; Jin, C.; Aleshin, A.E.; Stec, B.; Reed, J.C.; Liddington, R.C.; /Burnham Inst.

    2007-07-03

    Poxviruses encode immuno-modulatory proteins capable of subverting host defenses. The poxvirus vaccinia expresses a small 14-kDa protein, N1L, that is critical for virulence. We report the crystal structure of N1L, which reveals an unexpected but striking resemblance to host apoptotic regulators of the B cell lymphoma-2 (Bcl-2) family. Although N1L lacks detectable Bcl-2 homology (BH) motifs at the sequence level, we show that N1L binds with high affinity to the BH3 peptides of pro-apoptotic Bcl-2 family proteins in vitro, consistent with a role for N1L in modulating host antiviral defenses.

  3. Argonaute Family Protein Expression in Normal Tissue and Cancer Entities

    PubMed Central

    Bruckmann, Astrid; Hauptmann, Judith; Deutzmann, Rainer; Meister, Gunter; Bosserhoff, Anja Katrin

    2016-01-01

    The members of the Argonaute (AGO) protein family are key players in miRNA-guided gene silencing. They enable the interaction between small RNAs and their respective target mRNA(s) and support the catalytic destruction of the gene transcript or recruit additional proteins for downstream gene silencing. The human AGO family consists of four AGO proteins (AGO1-AGO4), but only AGO2 harbors nuclease activity. In this study, we characterized the expression of the four AGO proteins in cancer cell lines and normal tissues with a new mass spectrometry approach called AGO-APP (AGO Affinity Purification by Peptides). In all analyzed normal tissues, AGO1 and AGO2 were most prominent, but marked tissue-specific differences were identified. Furthermore, considerable changes during development were observed by comparing fetal and adult tissues. We also identified decreased overall AGO expression in melanoma derived cell lines compared to other tumor cell lines and normal tissues, with the largest differences in AGO2 expression. The experiments described in this study suggest that reduced amounts of AGO proteins, as key players in miRNA processing, have impact on several cellular processes. Deregulated miRNA expression has been attributed to chromosomal aberrations, promoter regulation and it is known to have a major impact on tumor development and progression. Our findings will further increase our basic understanding of the molecular basis of miRNA processing and its relevance for disease. PMID:27518285

  4. Characterization of the Roco protein family in Dictyostelium discoideum.

    PubMed

    van Egmond, Wouter N; van Haastert, Peter J M

    2010-05-01

    The Roco family consists of multidomain Ras-GTPases that include LRRK2, a protein mutated in familial Parkinson's disease. The genome of the cellular slime mold Dictyostelium discoideum encodes 11 Roco proteins. To study the functions of these proteins, we systematically knocked out the roco genes. Previously described functions for GbpC, Pats1, and QkgA (Roco1 to Roco3) were confirmed, while novel developmental defects were identified in roco4- and roco11-null cells. Cells lacking Roco11 form larger fruiting bodies than wild-type cells, while roco4-null cells show strong developmental defects during the transition from mound to fruiting body; prestalk cells produce reduced levels of cellulose, leading to unstable stalks that are unable to properly lift the spore head. Detailed phylogenetic analysis of four slime mold species reveals that QkgA and Roco11 evolved relatively late by duplication of an ancestor roco4 gene (later than approximately 300 million years ago), contrary to the situation with other roco genes, which were already present before the split of the common ancestor of D. discoideum and Polysphondylium pallidum (before approximately 600 million years ago). Together, our data show that the Dictyostelium Roco proteins serve a surprisingly diverse set of functions and highlight Roco4 as a key protein for proper stalk cell formation. PMID:20348387

  5. Nonagonal cadherins: A new protein family found within the Stramenopiles.

    PubMed

    Fletcher, Kyle I G; van West, Pieter; Gachon, Claire M M

    2016-11-15

    Cadherins, a group of molecules typically associated with planar cell polarity and Wnt signalling, have been little reported outside of the animal kingdom. Here, we identify a new family of cadherins in the Stramenopiles, termed Nonagonal after their 9 transmembrane passes, which contrast to the one or seven passes found in other known cadherin families. Manual curation and experimental validation reveal two subclasses of nonagonal cadherins, depending on the number of uninterrupted extracellular cadherin (EC) modules presented. Firstly, shorter mono-exonic, unimodular, protein models, with 3 to 12 EC domains occur as duplicate paralogs in the saprotrophic Labyrinthulomycetes Aurantiochytrium limanicum and Schizochytrium aggregatum, the gastrointestinal Blastocystis hominis (Blastocystae) and as a single copy gene in the autotrophic Pelagophyte Aureococcus anophagefferens. Larger, single copy, multi-exonal, tri-modular protein models, with up to 72 EC domain in total, are found in the Oomycete genera Albugo, Phytophthora, Pythium and Eurychasma. No homolog was found in the closely related autotrophic Phaeophyceae (brown algae) or Bacillariophyceae (diatoms), nor in several genera of plant and animal pathogenic oomycetes (Aphanomyces, Saprolegnia and Hyaloperonospora). This potential absence was further investigated by synteny analysis of the genome regions flanking the cadherin gene models, which are found to be highly variable. Novel to this new cadherin family is the presence of intercalated laminin and putative carbohydrate binding in tri-modular oomycete cadherins and at the N-terminus of thraustochytrid proteins. As we were unable to detect any homologs of proteins involved in signalling pathways where other cadherin families are involved, we present a conceptual hypothesis on the function of nonagonal cadherin based around the presence of putative carbohydrate binding domains. PMID:27498181

  6. The latent transforming growth factor beta binding protein (LTBP) family.

    PubMed Central

    Oklü, R; Hesketh, R

    2000-01-01

    The transforming growth factor beta (TGFbeta) cytokines are a multi-functional family that exert a wide variety of effects on both normal and transformed mammalian cells. The secretion and activation of TGFbetas is regulated by their association with latency-associated proteins and latent TGFbeta binding proteins (LTBPs). Over the past few years, three members of the LTBP family have been identified, in addition to the protoype LTBP1 first sequenced in 1990. Three of the LTBP family are expressed in a variety of isoforms as a consequence of alternative splicing. This review summarizes the differences between the isoforms in terms of the effects on domain structure and hence possible function. The close identity between LTBPs and members of the fibrillin family, mutations in which have been linked directly to Marfan's syndrome, suggests that anomalous expression of LTBPs may be associated with disease. Recent data indicating that differential expression of LTBP1 isoforms occurs during the development of coronary heart disease is considered, together with evidence that modulation of LTBP function, and hence of TGFbeta activity, is associated with a variety of cancers. PMID:11104663

  7. Role of the prion protein family in the gonads

    PubMed Central

    Allais-Bonnet, Aurélie; Pailhoux, Eric

    2014-01-01

    The prion-gene family comprises four members named PRNP (PRPc), PRND (Doppel), PRNT (PRT), and SPRN (Shadoo). According to species, PRND is located 16–52 kb downstream from the PRNP locus, whereas SPRN is located on another chromosome. The fourth prion-family gene, PRNT, belongs to the same genomic cluster as PRNP and PRND in humans and bovidae. PRNT and PRND possibly resulted from a duplication event of PRND and PRNP, respectively, that occurred early during eutherian species divergence. Although most of the studies concerning the prion-family has been done on PRPc and its involvement in transmissible neurodegenerative disorders, different works report some potential roles of these proteins in the reproductive function of both sexes. Among them, a clear role of PRND, that encodes for the Doppel protein, in male fertility has been demonstrated through gene targeting studies in mice. In other species, Doppel seems to play a role in testis and ovary development but its cellular localization is variable according to the gonadal developmental stage and to the mammalian species considered. For the other three genes, their roles in reproductive function appear ill-defined and/or controversial. The present review aimed to synthesize all the available data on these prion-family members and their relations with reproductive processes, mainly in the gonad of both sexes. PMID:25364761

  8. Characterization of Aryl Hydrocarbon Receptor Interacting Protein (AIP) Mutations in Familial Isolated Pituitary Adenoma Families

    PubMed Central

    Igreja, Susana; Chahal, Harvinder S; King, Peter; Bolger, Graeme B; Srirangalingam, Umasuthan; Guasti, Leonardo; Chapple, J Paul; Trivellin, Giampaolo; Gueorguiev, Maria; Guegan, Katie; Stals, Karen; Khoo, Bernard; Kumar, Ajith V; Ellard, Sian; Grossman, Ashley B; Korbonits, Márta

    2010-01-01

    Familial isolated pituitary adenoma (FIPA) is an autosomal dominant condition with variable genetic background and incomplete penetrance. Germline mutations of the aryl hydrocarbon receptor interacting protein (AIP) gene have been reported in 15–40% of FIPA patients. Limited data are available on the functional consequences of the mutations or regarding the regulation of the AIP gene. We describe a large cohort of FIPA families and characterize missense and silent mutations using minigene constructs, luciferase and β-galactosidase assays, as well as in silico predictions. Patients with AIP mutations had a lower mean age at diagnosis (23.6±11.2 years) than AIP mutation-negative patients (40.4±14.5 years). A promoter mutation showed reduced in vitro activity corresponding to lower mRNA expression in patient samples. Stimulation of the protein kinase A-pathway positively regulates the AIP promoter. Silent mutations led to abnormal splicing resulting in truncated protein or reduced AIP expression. A two-hybrid assay of protein–protein interaction of all missense variants showed variable disruption of AIP-phosphodiesterase-4A5 binding. In summary, exonic, promoter, splice-site, and large deletion mutations in AIP are implicated in 31% of families in our FIPA cohort. Functional characterization of AIP changes is important to identify the functional impact of gene sequence variants. Hum Mutat 31:1–11, 2010. © 2010 Wiley-Liss, Inc. PMID:20506337

  9. An oxysterol-binding protein family identified in the mouse.

    PubMed

    Anniss, Angela M; Apostolopoulos, Jim; Dworkin, Sebastian; Purton, Louise E; Sparrow, Rosemary L

    2002-08-01

    Oxysterols are oxygenated derivatives of cholesterol. They have been shown to influence a variety of biological functions including sterol metabolism, lipid trafficking, and apoptosis. Recently, 12 human OSBP-related genes have been identified. In this study, we have identified a family of 12 oxysterol-binding protein (OSBP)-related proteins (ORPs) in the mouse. A high level of amino acid identity (88-97%) was determined between mouse and human ORPs, indicating a very high degree of evolutionary conservation. All proteins identified contained the conserved OSBP amino acid sequence signature motif "EQVSHHPP," and most contained a pleckstrin homology (PH) domain. Using RT-PCR, each mouse ORP gene was found to exhibit a unique tissue distribution with many showing high expression in testicular, brain, and heart tissues. Interestingly, the tissue distribution of ORP-4 and ORP-10 were the most selective within the family. Expression of the various ORP genes was also investigated, specifically in highly purified populations of hemopoietic precursor cells defined by the lin(-) c-kit(+) Sca-1(+) (LKS(+)) and lin(-) c-kit(+) Sca-1(-) (LKS(-)) immunophenotype. Most ORP genes were expressed in both LKS(+) and LKS(-) populations, although ORP-4 appeared to be more highly expressed in the primitive, stem-cell enriched LKS(+) population, whereas ORP-10 was more highly expressed by maturing LKS(-) cells. The identification of a family of ORP proteins in the mouse, the frequently preferred animal model for in vivo studies, should further our understanding of the function of these proteins and their interactions with each other.

  10. The PIN-FORMED (PIN) protein family of auxin transporters

    PubMed Central

    2009-01-01

    Summary The PIN-FORMED (PIN) proteins are secondary transporters acting in the efflux of the plant signal molecule auxin from cells. They are asymmetrically localized within cells and their polarity determines the directionality of intercellular auxin flow. PIN genes are found exclusively in the genomes of multicellular plants and play an important role in regulating asymmetric auxin distribution in multiple developmental processes, including embryogenesis, organogenesis, tissue differentiation and tropic responses. All PIN proteins have a similar structure with amino- and carboxy-terminal hydrophobic, membrane-spanning domains separated by a central hydrophilic domain. The structure of the hydrophobic domains is well conserved. The hydrophilic domain is more divergent and it determines eight groups within the protein family. The activity of PIN proteins is regulated at multiple levels, including transcription, protein stability, subcellular localization and transport activity. Different endogenous and environmental signals can modulate PIN activity and thus modulate auxin-distribution-dependent development. A large group of PIN proteins, including the most ancient members known from mosses, localize to the endoplasmic reticulum and they regulate the subcellular compartmentalization of auxin and thus auxin metabolism. Further work is needed to establish the physiological importance of this unexpected mode of auxin homeostasis regulation. Furthermore, the evolution of PIN-based transport, PIN protein structure and more detailed biochemical characterization of the transport function are important topics for further studies. PMID:20053306

  11. UBXD Proteins: A Family of Proteins with Diverse Functions in Cancer

    PubMed Central

    Rezvani, Khosrow

    2016-01-01

    The UBXD family is a diverse group of UBX (ubiquitin-regulatory X) domain-containing proteins in mammalian cells. Members of this family contain a UBX domain typically located at the carboxyl-terminal of the protein. In contrast to the UBX domain shared by all members of UBXD family, the amino-terminal domains are diverse and appear to carry out different roles in a subcellular localization-dependent manner. UBXD proteins are principally associated with the endoplasmic reticulum (ER), where they positively or negatively regulate the ER-associated degradation machinery (ERAD). The distinct protein interaction networks of UBXD proteins allow them to have specific functions independent of the ERAD pathway in a cell type- and tissue context-dependent manner. Recent reports have illustrated that a number of mammalian members of the UBXD family play critical roles in several proliferation and apoptosis pathways dysregulated in selected types of cancer. This review covers recent advances that elucidate the therapeutic potential of selected members of the UBXD family that can contribute to tumor growth. PMID:27754413

  12. Regulation of intestinal microbiota by the NLR protein family

    PubMed Central

    2013-01-01

    The human intestine harbors a diverse microbial community consisting of a large number of bacteria and other micro-organisms that have co-evolved with the host intestinal immune system. During this process, microbiota and the host immune system shape one another by various mechanisms to achieve a successful symbiotic relationship. An increasing amount of evidence suggests that dysbiosis—the breakdown of such harmonized colonization—may result in infectious and inflammatory disorders, and recent advances in our studies indicate that receptors such as Toll-like receptors and NLR (nucleotide-binding oligomerization domain-like receptor; or nucleotide-binding domain- and leucine-rich repeat-containing receptor) proteins that detect micro-organisms and their products play a critical role in maintaining intestinal homeostasis. In this review, we summarize the role of NLR proteins in the regulation of intestinal microbiota. NLR proteins belong to a diverse family of cytoplasmic microbial sensors, mutations of which are involved in various disorders, including inflammatory bowel diseases. Understanding of the different roles of NLR family proteins in the intestine is, therefore, an important step towards the development of therapeutics against digestive diseases. PMID:23325116

  13. Bcl-2 family proteins as regulators of oxidative stress.

    PubMed

    Susnow, Nathan; Zeng, Liyun; Margineantu, Daciana; Hockenbery, David M

    2009-02-01

    The Bcl-2 family of proteins includes pro- and anti-apoptotic factors acting at mitochondrial and microsomal membranes. An impressive body of published studies, using genetic and physical reconstitution experiments in model organisms and cell lines, supports a view of Bcl-2 proteins as the critical arbiters of apoptotic cell death decisions in most circumstances (excepting CD95 death receptor signaling in Type I cells). Evasion of apoptosis is one of the hallmarks of cancer [Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100:57-70], relevant to tumorigenesis as well as resistance to cytotoxic drugs, and deregulation of Bcl-2 proteins is observed in many cancers [Manion MK, Hockenbery DM. Targeting BCL-2-related proteins in cancer therapy. Cancer Biol Ther. 2003;2:S105-14; Olejniczak ET, Van Sant C, Anderson MG, Wang G, Tahir SK, Sauter G, et al. Integrative genomic analysis of small-cell lung carcinoma reveals correlates of sensitivity to bcl-2 antagonists and uncovers novel chromosomal gains. Mol Cancer Res. 2007;5:331-9]. The rekindled interest in aerobic glycolysis as a cancer trait raises interesting questions as to how metabolic changes in cancer cells are integrated with other essential alterations in cancer, e.g. promotion of angiogenesis and unbridled growth signals. Apoptosis induced by multiple different signals involves loss of mitochondrial homeostasis, in particular, outer mitochondrial membrane integrity, releasing cytochrome c and other proteins from the intermembrane space. This integrative process, controlled by Bcl-2 family proteins, is also influenced by the metabolic state of the cell. In this review, we consider the role of reactive oxygen species, a metabolic by-product, in the mitochondrial pathway of apoptosis, and the relationships between Bcl-2 functions and oxidative stress. PMID:19138742

  14. PipeAlign: A new toolkit for protein family analysis.

    PubMed

    Plewniak, Frédéric; Bianchetti, Laurent; Brelivet, Yann; Carles, Annaick; Chalmel, Frédéric; Lecompte, Odile; Mochel, Thiebaut; Moulinier, Luc; Muller, Arnaud; Muller, Jean; Prigent, Veronique; Ripp, Raymond; Thierry, Jean-Claude; Thompson, Julie D; Wicker, Nicolas; Poch, Olivier

    2003-07-01

    PipeAlign is a protein family analysis tool integrating a five step process ranging from the search for sequence homologues in protein and 3D structure databases to the definition of the hierarchical relationships within and between subfamilies. The complete, automatic pipeline takes a single sequence or a set of sequences as input and constructs a high-quality, validated MACS (multiple alignment of complete sequences) in which sequences are clustered into potential functional subgroups. For the more experienced user, the PipeAlign server also provides numerous options to run only a part of the analysis, with the possibility to modify the default parameters of each software module. For example, the user can choose to enter an existing multiple sequence alignment for refinement, validation and subsequent clustering of the sequences. The aim is to provide an interactive workbench for the validation, integration and presentation of a protein family, not only at the sequence level, but also at the structural and functional levels. PipeAlign is available at http://igbmc.u-strasbg.fr/PipeAlign/.

  15. NMR studies of a new family of DNA binding proteins: the THAP proteins.

    PubMed

    Gervais, Virginie; Campagne, Sébastien; Durand, Jade; Muller, Isabelle; Milon, Alain

    2013-05-01

    The THAP (THanatos-Associated Protein) domain is an evolutionary conserved C2CH zinc-coordinating domain shared with a large family of cellular factors (THAP proteins). Many members of the THAP family act as transcription factors that control cell proliferation, cell cycle progression, angiogenesis, apoptosis and epigenetic gene silencing. They recognize specific DNA sequences in the promoters of target genes and subsequently recruit effector proteins. Recent structural and functional studies have allowed getting better insight into the nuclear and cellular functions of some THAP members and the molecular mechanisms by which they recognize DNA. The present article reviews recent advances in the knowledge of the THAP domains structures and their interaction with DNA, with a particular focus on NMR. It provides the solution structure of the THAP domain of THAP11, a recently characterized human THAP protein with important functions in transcription and cell growth in colon cancer. PMID:23306615

  16. Classification epitopes in groups based on their protein family

    PubMed Central

    2015-01-01

    Background The humoral immune system response is based on the interaction between antibodies and antigens for the clearance of pathogens and foreign molecules. The interaction between these proteins occurs at specific positions known as antigenic determinants or B-cell epitopes. The experimental identification of epitopes is costly and time consuming. Therefore the use of in silico methods, to help discover new epitopes, is an appealing alternative due the importance of biomedical applications such as vaccine design, disease diagnostic, anti-venoms and immune-therapeutics. However, the performance of predictions is not optimal been around 70% of accuracy. Further research could increase our understanding of the biochemical and structural properties that characterize a B-cell epitope. Results We investigated the possibility of linear epitopes from the same protein family to share common properties. This hypothesis led us to analyze physico-chemical (PCP) and predicted secondary structure (PSS) features of a curated dataset of epitope sequences available in the literature belonging to two different groups of antigens (metalloproteinases and neurotoxins). We discovered statistically significant parameters with data mining techniques which allow us to distinguish neurotoxin from metalloproteinase and these two from random sequences. After a five cross fold validation we found that PCP based models obtained area under the curve values (AUC) and accuracy above 0.9 for regression, decision tree and support vector machine. Conclusions We demonstrated that antigen's family can be inferred from properties within a single group of linear epitopes (metalloproteinases or neurotoxins). Also we discovered the characteristics that represent these two epitope groups including their similarities and differences with random peptides and their respective amino acid sequence. These findings open new perspectives to improve epitope prediction by considering the specific antigen

  17. Diversity and evolution of the small multidrug resistance protein family

    PubMed Central

    Bay, Denice C; Turner, Raymond J

    2009-01-01

    Background Members of the small multidrug resistance (SMR) protein family are integral membrane proteins characterized by four α-helical transmembrane strands that confer resistance to a broad range of antiseptics and lipophilic quaternary ammonium compounds (QAC) in bacteria. Due to their short length and broad substrate profile, SMR proteins are suggested to be the progenitors for larger α-helical transporters such as the major facilitator superfamily (MFS) and drug/metabolite transporter (DMT) superfamily. To explore their evolutionary association with larger multidrug transporters, an extensive bioinformatics analysis of SMR sequences (> 300 Bacteria taxa) was performed to expand upon previous evolutionary studies of the SMR protein family and its origins. Results A thorough annotation of unidentified/putative SMR sequences was performed placing sequences into each of the three SMR protein subclass designations, namely small multidrug proteins (SMP), suppressor of groEL mutations (SUG), and paired small multidrug resistance (PSMR) using protein alignments and phylogenetic analysis. Examination of SMR subclass distribution within Bacteria and Archaea taxa identified specific Bacterial classes that uniquely encode for particular SMR subclass members. The extent of selective pressure acting upon each SMR subclass was determined by calculating the rate of synonymous to non-synonymous nucleotide substitutions using Syn-SCAN analysis. SUG and SMP subclasses are maintained under moderate selection pressure in comparison to integron and plasmid encoded SMR homologues. Conversely, PSMR sequences are maintained under lower levels of selection pressure, where one of the two PSMR pairs diverges in sequence more rapidly than the other. SMR genomic loci surveys identified potential SMR efflux substrates based on its gene association to putative operons that encode for genes regulating amino acid biogenesis and QAC-like metabolites. SMR subclass protein transmembrane domain

  18. Quantification of protein copy number in single mitochondria: The Bcl-2 family proteins.

    PubMed

    Chen, Chaoxiang; Zhang, Xiang; Zhang, Shuyue; Zhu, Shaobin; Xu, Jingyi; Zheng, Yan; Han, Jinyan; Zeng, Jin-Zhang; Yan, Xiaomei

    2015-12-15

    Bcl-2 family proteins, represented by antiapoptotic protein Bcl-2 and proapoptotic protein Bax, are key regulators of mitochondria-mediated apoptosis pathway. To build a quantitative model of how Bcl-2 family protein interactions control mitochondrial outer membrane permeabilization and subsequent cytochrome c release, it is essential to know the number of proteins in individual mitochondria. Here, we report an effective method to quantify the copy number and distribution of proteins in single mitochondria via immunofluorescent labeling and sensitive detection by a laboratory-built high sensitivity flow cytometer (HSFCM). Mitochondria isolated from HeLa cells were stained with Alexa Fluor 488 (AF488)-labeled monoclonal antibodies specifically targeting Bcl-2 or Bax and with nucleic acid dye. A series of fluorescent nanospheres with fluorescence intensity calibrated in the unit of molecules of equivalent soluble fluorochrome (MESF)-AF488 were used to construct a calibration curve for converting the immunofluorescence of a single mitochondrion to the number of antibodies bound to it and then to the number of proteins per mitochondrion. Under the normal condition, the measured mean copy numbers were 1300 and 220 per mitochondrion for Bcl-2 and Bax, respectively. A significant variation in protein copy number was identified, which ranged from 130 to 6000 (2.5-97.5%) for Bcl-2 and from 65 to 700 (2.5-97.5%) for Bax, respectively. We observed an approximately 4.4 fold increase of Bax copy number per mitochondrion upon 9h of apoptosis stimulation while the abundance of Bcl-2 remained almost unchanged. To the best of our knowledge, this is the first report of Bcl-2 family protein copy number and variance in single mitochondria. Collectively, we demonstrate that the HSFCM-based immunoassay provides a rapid and sensitive method for determining protein copy number distribution in single mitochondria.

  19. Expression and characterization of maize ZBP14, a member of a new family of zinc-binding proteins.

    PubMed Central

    Robinson, K; Jones, D; Howell, S; Soneji, Y; Martin, S; Aitken, A

    1995-01-01

    A maize gene (Mz2-12), with a deduced amino acid sequence similar to that of a protein kinase C (PKC) inhibitor from bovine brain, has been expressed in Escherichia coli and the protein (ZBP14) purified to homogeneity. The bovine protein was originally identified by Walsh's group and named PKC inhibitor-1 (PKCI-1). The recombinant maize protein (ZBP14) shares characteristics of bovine PKCI-1: it has similar secondary structure, is dimeric, and has a similar affinity for zinc. However, the maize ZBP14 had very little activity as an inhibitor of mammalian brain PKC, thus precluding zinc sequestration as the mechanism of inhibition. The biological role for the maize protein in plant kinase regulation is therefore unclear. In the presence of both maize ZBP14 and 14-3-3 protein (which inhibits PKC in the absence of diacylglycerol), the effects on PKC appeared to be synergistic. Images Figure 1 PMID:7717986

  20. PAT proteins, an ancient family of lipid droplet proteins that regulate cellular lipid stores

    PubMed Central

    Bickel, Perry E.; Tansey, John T.; Welte, Michael A.

    2009-01-01

    Summary The PAT family of lipid droplet proteins includes 5 members in mammals: perilipin, adipose differentiation-related protein (ADRP), tail-interacting protein of 47 kiloDaltons (TIP47), S3-12, and OXPAT. Members of this family are also present in evolutionarily distant organisms, including insects, slime molds and fungi. All PAT proteins share sequence similarity and the ability to bind intracellular lipid droplets, either constitutively or in response to metabolic stimuli, such as increased lipid flux into or out of lipid droplets. Positioned at the lipid droplet surface, PAT proteins manage access of other proteins (lipases) to the lipid esters within the lipid droplet core and can interact with cellular machinery important for lipid droplet biogenesis. Genetic variations in the gene for the best characterized of the mammalian PAT proteins, perilipin, have been associated with metabolic phenotypes, including type 2 diabetes mellitus and obesity. In this review, we discuss how the PAT proteins regulate cellular lipid metabolism both in mammals and in model organisms. PMID:19375517

  1. PAT proteins, an ancient family of lipid droplet proteins that regulate cellular lipid stores.

    PubMed

    Bickel, Perry E; Tansey, John T; Welte, Michael A

    2009-06-01

    The PAT family of lipid droplet proteins includes 5 members in mammals: perilipin, adipose differentiation-related protein (ADRP), tail-interacting protein of 47 kDa (TIP47), S3-12, and OXPAT. Members of this family are also present in evolutionarily distant organisms, including insects, slime molds and fungi. All PAT proteins share sequence similarity and the ability to bind intracellular lipid droplets, either constitutively or in response to metabolic stimuli, such as increased lipid flux into or out of lipid droplets. Positioned at the lipid droplet surface, PAT proteins manage access of other proteins (lipases) to the lipid esters within the lipid droplet core and can interact with cellular machinery important for lipid droplet biogenesis. Genetic variations in the gene for the best-characterized of the mammalian PAT proteins, perilipin, have been associated with metabolic phenotypes, including type 2 diabetes mellitus and obesity. In this review, we discuss how the PAT proteins regulate cellular lipid metabolism both in mammals and in model organisms. PMID:19375517

  2. The Golgin Family of Coiled-Coil Tethering Proteins

    PubMed Central

    Witkos, Tomasz M.; Lowe, Martin

    2016-01-01

    The golgins are a family of predominantly coiled-coil proteins that are localized to the Golgi apparatus. Golgins are present in all eukaryotes, suggesting an evolutionary conserved function. Golgins are anchored to the Golgi membrane by their carboxy terminus and are predicted to adopt an extended conformation that projects into the surrounding cytoplasm. This arrangement is ideal for the capture or tethering of nearby membranes or cytoskeletal elements. Golgin-mediated tethering is thought to be important for vesicular traffic at the Golgi apparatus, the maintenance of Golgi architecture, as well as the positioning of the Golgi apparatus within cells. In addition to acting as tethers, some golgins can also sequester various factors at the Golgi membrane, allowing for the spatiotemporal regulation of downstream cellular functions. Although it is now established that golgins are membrane and cytoskeleton tethers, the mechanisms underlying tethering remain poorly defined. Moreover, the importance of golgin-mediated tethering in a physiological context remains to be fully explored. This review will describe our current understanding of golgin function, highlighting recent progress that has been made, and goes on to discuss outstanding questions and potential avenues for future research with regard to this family of conserved Golgi-associated proteins. PMID:26793708

  3. Docking validation resources: protein family and ligand flexibility experiments.

    PubMed

    Mukherjee, Sudipto; Balius, Trent E; Rizzo, Robert C

    2010-11-22

    A database consisting of 780 ligand-receptor complexes, termed SB2010, has been derived from the Protein Databank to evaluate the accuracy of docking protocols for regenerating bound ligand conformations. The goal is to provide easily accessible community resources for development of improved procedures to aid virtual screening for ligands with a wide range of flexibilities. Three core experiments using the program DOCK, which employ rigid (RGD), fixed anchor (FAD), and flexible (FLX) protocols, were used to gauge performance by several different metrics: (1) global results, (2) ligand flexibility, (3) protein family, and (4) cross-docking. Global spectrum plots of successes and failures vs rmsd reveal well-defined inflection regions, which suggest the commonly used 2 Å criteria is a reasonable choice for defining success. Across all 780 systems, success tracks with the relative difficulty of the calculations: RGD (82.3%) > FAD (78.1%) > FLX (63.8%). In general, failures due to scoring strongly outweigh those due to sampling. Subsets of SB2010 grouped by ligand flexibility (7-or-less, 8-to-15, and 15-plus rotatable bonds) reveal that success degrades linearly for FAD and FLX protocols, in contrast to RGD, which remains constant. Despite the challenges associated with FLX anchor orientation and on-the-fly flexible growth, success rates for the 7-or-less (74.5%) and, in particular, the 8-to-15 (55.2%) subset are encouraging. Poorer results for the very flexible 15-plus set (39.3%) indicate substantial room for improvement. Family-based success appears largely independent of ligand flexibility, suggesting a strong dependence on the binding site environment. For example, zinc-containing proteins are generally problematic, despite moderately flexible ligands. Finally, representative cross-docking examples, for carbonic anhydrase, thermolysin, and neuraminidase families, show the utility of family-based analysis for rapid identification of particularly good or bad

  4. Analysis of membrane proteins in metagenomics: networks of correlated environmental features and protein families.

    PubMed

    Patel, Prianka V; Gianoulis, Tara A; Bjornson, Robert D; Yip, Kevin Y; Engelman, Donald M; Gerstein, Mark B

    2010-07-01

    Recent metagenomics studies have begun to sample the genomic diversity among disparate habitats and relate this variation to features of the environment. Membrane proteins are an intuitive, but thus far overlooked, choice in this type of analysis as they directly interact with the environment, receiving signals from the outside and transporting nutrients. Using global ocean sampling (GOS) data, we found nearly approximately 900,000 membrane proteins in large-scale metagenomic sequence, approximately a fifth of which are completely novel, suggesting a large space of hitherto unexplored protein diversity. Using GPS coordinates for the GOS sites, we extracted additional environmental features via interpolation from the World Ocean Database, the National Center for Ecological Analysis and Synthesis, and empirical models of dust occurrence. This allowed us to study membrane protein variation in terms of natural features, such as phosphate and nitrate concentrations, and also in terms of human impacts, such as pollution and climate change. We show that there is widespread variation in membrane protein content across marine sites, which is correlated with changes in both oceanographic variables and human factors. Furthermore, using these data, we developed an approach, protein families and environment features network (PEN), to quantify and visualize the correlations. PEN identifies small groups of covarying environmental features and membrane protein families, which we call "bimodules." Using this approach, we find that the affinity of phosphate transporters is related to the concentration of phosphate and that the occurrence of iron transporters is connected to the amount of shipping, pollution, and iron-containing dust.

  5. Single-molecule studies of kinesin family motor proteins

    NASA Astrophysics Data System (ADS)

    Fordyce, Polly

    Kinesin family motor proteins drive many essential cellular processes, including cargo transport and mitotic spindle assembly and regulation. They accomplish these tasks by converting the chemical energy released from the hydrolysis of adenosine triphosphate (ATP) directly into mechanical motion along microtubules in cells. Optical traps allow us to track and apply force to individual motor proteins, and have already revealed many details of the movement of conventional kinesin, although the precise mechanism by which chemical energy is converted into mechanical motion is unclear. Other kinesin family members remain largely uncharacterized. This dissertation details the use of a novel optical-trapping assay to study Eg5, a Kinesin-5 family member involved in both spindle assembly and pole separation during mitosis. We demonstrate that individual Eg5 dimers are relatively slow and force-insensitive motors that take about 8 steps, on average, before detaching from the microtubule. Key differences in processivity and force-response between Eg5 and conventional kinesin suggest ways in which the two motors might have evolved to perform very different tasks in cells. This dissertation also details efforts to unravel how chemical energy is converted into mechanical motion by simultaneously measuring mechanical transitions (with an optical trap) and nucleotide binding and release (with single-molecule fluorescence) for individual conventional kinesin motors. We constructed a combined instrument, demonstrated its capabilities by unzipping fluorescently-labeled DNA duplexes, and used this instrument to record the motion of individual conventional kinesin motors powered by the hydrolysis of fluorescent nucleotides. Preliminary data reveal the challenges inherent in such measurements and guide proposals for future experimental approaches. Finally, this dissertation includes several chapters intended to serve as practical guides to understanding, constructing, and maintaining

  6. Correlation of gene and protein structures in the FXYD family proteins.

    PubMed

    Franzin, Carla M; Yu, Jinghua; Thai, Khang; Choi, Jungyuen; Marassi, Francesca M

    2005-12-01

    The FXYD family proteins are auxiliary subunits of the Na,K-ATPase, expressed primarily in tissues that specialize in fluid or solute transport, or that are electrically excitable. These proteins range in size from about 60 to 160 amino acid residues, and share a core homology of 35 amino acid residues in and around a single transmembrane segment. Despite their relatively small sizes, they are all encoded by genes with six to nine small exons. We show that the helical secondary structures of three FXYD family members, FXYD1, FXYD3, and FXYD4, determined in micelles by NMR spectroscopy, reflect the structures of their corresponding genes. The coincidence of helical regions, and connecting segments, with the positions of intron-exon junctions in the genes, support the hypothesis that the FXYD proteins may have been assembled from discrete structural modules through exon shuffling. PMID:16288923

  7. A protein relational database and protein family knowledge bases to facilitate structure-based design analyses.

    PubMed

    Mobilio, Dominick; Walker, Gary; Brooijmans, Natasja; Nilakantan, Ramaswamy; Denny, R Aldrin; Dejoannis, Jason; Feyfant, Eric; Kowticwar, Rupesh K; Mankala, Jyoti; Palli, Satish; Punyamantula, Sairam; Tatipally, Maneesh; John, Reji K; Humblet, Christine

    2010-08-01

    The Protein Data Bank is the most comprehensive source of experimental macromolecular structures. It can, however, be difficult at times to locate relevant structures with the Protein Data Bank search interface. This is particularly true when searching for complexes containing specific interactions between protein and ligand atoms. Moreover, searching within a family of proteins can be tedious. For example, one cannot search for some conserved residue as residue numbers vary across structures. We describe herein three databases, Protein Relational Database, Kinase Knowledge Base, and Matrix Metalloproteinase Knowledge Base, containing protein structures from the Protein Data Bank. In Protein Relational Database, atom-atom distances between protein and ligand have been precalculated allowing for millisecond retrieval based on atom identity and distance constraints. Ring centroids, centroid-centroid and centroid-atom distances and angles have also been included permitting queries for pi-stacking interactions and other structural motifs involving rings. Other geometric features can be searched through the inclusion of residue pair and triplet distances. In Kinase Knowledge Base and Matrix Metalloproteinase Knowledge Base, the catalytic domains have been aligned into common residue numbering schemes. Thus, by searching across Protein Relational Database and Kinase Knowledge Base, one can easily retrieve structures wherein, for example, a ligand of interest is making contact with the gatekeeper residue.

  8. IκB kinase-induced interaction of TPL-2 kinase with 14-3-3 is essential for Toll-like receptor activation of ERK-1 and -2 MAP kinases.

    PubMed

    Ben-Addi, Abduelhakem; Mambole-Dema, Agnes; Brender, Christine; Martin, Stephen R; Janzen, Julia; Kjaer, Sven; Smerdon, Stephen J; Ley, Steven C

    2014-06-10

    The MEK-1/2 kinase TPL-2 is critical for Toll-like receptor activation of the ERK-1/2 MAP kinase pathway during inflammatory responses, but it can transform cells following C-terminal truncation. IκB kinase (IKK) complex phosphorylation of the TPL-2 C terminus regulates full-length TPL-2 activation of ERK-1/2 by a mechanism that has remained obscure. Here, we show that TPL-2 Ser-400 phosphorylation by IKK and TPL-2 Ser-443 autophosphorylation cooperated to trigger TPL-2 association with 14-3-3. Recruitment of 14-3-3 to the phosphorylated C terminus stimulated TPL-2 MEK-1 kinase activity, which was essential for TPL-2 activation of ERK-1/2. The binding of 14-3-3 to TPL-2 was also indispensible for lipopolysaccharide-induced production of tumor necrosis factor by macrophages, which is regulated by TPL-2 independently of ERK-1/2 activation. Our data identify a key step in the activation of TPL-2 signaling and provide a mechanistic insight into how C-terminal deletion triggers the oncogenic potential of TPL-2 by rendering its kinase activity independent of 14-3-3 binding.

  9. [Interconnection between architecture of protein globule and disposition of conformational conservative oligopeptides in proteins from one protein family].

    PubMed

    Batianovskiĭ, A V; Filatov, I V; Namiot, V A; Esipova, N G; Volotovskiĭ, I D

    2012-01-01

    It was shown that selective interactions between helical segments of macromolecules can realize in globular proteins in the segments characterized by the same periodicities of charge distribution i.e. between conformationally conservative oligopeptides. It was found that in the macromolecules of alpha-helical proteins conformationally conservative oligopeptides are disposed at a distance being characteristic of direct interactions. For representatives of many structural families of alpha-type proteins specific disposition of conformationally conservative segments is observed. This disposition is inherent to a particular structural family. Disposition of conformationally conservative segments is not related to homology of the amino acid sequence but reflects peculiarities of native 3D-architectures of protein globules.

  10. Structural and Functional Characterization of the VQ Protein Family and VQ Protein Variants from Soybean

    PubMed Central

    Zhou, Yuan; Yang, Yan; Zhou, Xinjian; Chi, Yingjun; Fan, Baofang; Chen, Zhixiang

    2016-01-01

    Proteins containing the FxxxVQxhTG or VQ motif interact with WRKY transcription factors. Although VQ proteins have been reported in several plants, knowledge about their structures, functions and evolution is still very limited. Here, we report structural and functional analysis of the VQ protein family from soybean. Like Arabidopsis homologues, soybean VQ proteins bind only Group I and IIc WRKY proteins and a substantial number of their genes are responsive to stress-associated phytohormones. Overexpression of some soybean VQ genes in Arabidopsis had strong effects on plant growth, development, disease resistance and heat tolerance. Phylogenetic analysis, sequence alignment and site-directed mutagenesis revealed that the region immediately upstream of the FxxxVQxhTG motif also affects binding to WRKY proteins. Consistent with a larger WRKY-binding VQ domain, soybean VQ22 protein from cultivated soybean contains a 4-amino acid deletion in the region preceding its VQ motif that completely abolishes its binding to WRKY proteins. By contrast, the 4-amino acid deletion is absent in the VQ22 protein from wild soybean species (Glycine soja). Overexpression of wild soybean VQ22 in cultivated soybean inhibited growth, particularly after cold treatment. Thus, the mutation of soybean VQ22 is associated with advantageous phenotypes and may have been positively selected during evolution. PMID:27708406

  11. Dentin noncollagenous matrix proteins in familial hypophosphatemic rickets.

    PubMed

    Gaucher, Céline; Boukpessi, Tchilalo; Septier, Dominique; Jehan, Frédéric; Rowe, Peter S; Garabédian, Michèle; Goldberg, Michel; Chaussain-Miller, Catherine

    2009-01-01

    Familial hypophosphatemic rickets is transmitted in most cases as an X-linked dominant trait and results from the mutation of the PHEX gene predominantly expressed in osteoblast and odontoblast. Patients with rickets have been reported to display important dentin defects. Our purpose was to explore the structure, composition and distribution of noncollagenous proteins (NCPs) of hypophosphatemic dentin. We collected teeth from 10 hypophosphatemic patients whose mineralization occurred either in a hypophosphatemic environment or in a corrected phosphate and vitamin environment. Teeth were examined by scanning electron microscopy, immunohistochemistry and Western blot analysis. An abnormal distribution (accumulation in interglobular spaces) and cleavage of the NCPs and particularly of matrix extracellular phosphoglycoprotein were observed in deciduous dentin. In contrast, it was close to normal in permanent dentin mineralized under corrected conditions. In conclusion, dentin mineralization in a corrected phosphate and vitamin D environment compensates the adverse effect of PHEX mutation.

  12. A Network Synthesis Model for Generating Protein Interaction Network Families

    PubMed Central

    Sahraeian, Sayed Mohammad Ebrahim; Yoon, Byung-Jun

    2012-01-01

    In this work, we introduce a novel network synthesis model that can generate families of evolutionarily related synthetic protein–protein interaction (PPI) networks. Given an ancestral network, the proposed model generates the network family according to a hypothetical phylogenetic tree, where the descendant networks are obtained through duplication and divergence of their ancestors, followed by network growth using network evolution models. We demonstrate that this network synthesis model can effectively create synthetic networks whose internal and cross-network properties closely resemble those of real PPI networks. The proposed model can serve as an effective framework for generating comprehensive benchmark datasets that can be used for reliable performance assessment of comparative network analysis algorithms. Using this model, we constructed a large-scale network alignment benchmark, called NAPAbench, and evaluated the performance of several representative network alignment algorithms. Our analysis clearly shows the relative performance of the leading network algorithms, with their respective advantages and disadvantages. The algorithm and source code of the network synthesis model and the network alignment benchmark NAPAbench are publicly available at http://www.ece.tamu.edu/bjyoon/NAPAbench/. PMID:22912671

  13. New Functions for the Ancient DedA Membrane Protein Family

    PubMed Central

    Sikdar, Rakesh; Kumar, Sujeet; Boughner, Lisa A.

    2013-01-01

    The DedA protein family is a highly conserved and ancient family of membrane proteins with representatives in most sequenced genomes, including those of bacteria, archaea, and eukarya. The functions of the DedA family proteins remain obscure. However, recent genetic approaches have revealed important roles for certain bacterial DedA family members in membrane homeostasis. Bacterial DedA family mutants display such intriguing phenotypes as cell division defects, temperature sensitivity, altered membrane lipid composition, elevated envelope-related stress responses, and loss of proton motive force. The DedA family is also essential in at least two species of bacteria: Borrelia burgdorferi and Escherichia coli. Here, we describe the phylogenetic distribution of the family and summarize recent progress toward understanding the functions of the DedA membrane protein family. PMID:23086209

  14. PATtyFams: Protein Families for the Microbial Genomes in the PATRIC Database

    PubMed Central

    Davis, James J.; Gerdes, Svetlana; Olsen, Gary J.; Olson, Robert; Pusch, Gordon D.; Shukla, Maulik; Vonstein, Veronika; Wattam, Alice R.; Yoo, Hyunseung

    2016-01-01

    The ability to build accurate protein families is a fundamental operation in bioinformatics that influences comparative analyses, genome annotation, and metabolic modeling. For several years we have been maintaining protein families for all microbial genomes in the PATRIC database (Pathosystems Resource Integration Center, patricbrc.org) in order to drive many of the comparative analysis tools that are available through the PATRIC website. However, due to the burgeoning number of genomes, traditional approaches for generating protein families are becoming prohibitive. In this report, we describe a new approach for generating protein families, which we call PATtyFams. This method uses the k-mer-based function assignments available through RAST (Rapid Annotation using Subsystem Technology) to rapidly guide family formation, and then differentiates the function-based groups into families using a Markov Cluster algorithm (MCL). This new approach for generating protein families is rapid, scalable and has properties that are consistent with alignment-based methods. PMID:26903996

  15. Nme family of proteins--clues from simple animals.

    PubMed

    Ćetković, Helena; Perina, Dragutin; Harcet, Matija; Mikoč, Andreja; Herak Bosnar, Maja

    2015-02-01

    Nucleoside-diphosphate kinases (Nme/Nm23/NDPK) are evolutionarily conserved enzymes involved in many biological processes in vertebrates. The biochemical mechanisms of these processes are still largely unknown. The Nme family consists of ten members in humans of which Nme1/2 have been extensively studied in the context of carcinogenesis, especially metastasis formation. Lately, it has been proven that the majority of genes linked to human diseases were already present in species distantly related to humans. Most of cancer-related protein domains appeared during the two main evolutionary transitions-the emergence of unicellular eukaryotes and the transition to multicellular metazoans. In spite of these recent insights, current knowledge about cancer and status of cancer-related genes in simple animals is limited. One possible way of studying human diseases relies on analyzing genes/proteins that cause a certain disease by using model organism that represent the evolutionary level at which these genes have emerged. Therefore, basal metazoans are ideal model organisms for gaining a clearer picture how characteristics and functions of Nme genes changed in the transition to multicellularity and increasing complexity in animals, giving us exciting new evidence of their possible functions in potential pathological conditions in humans. PMID:25042404

  16. Phylogenetic analysis of the Argonaute protein family in platyhelminths.

    PubMed

    Zheng, Yadong

    2013-03-01

    Argonaute proteins (AGOs) are mediators of gene silencing via recruitment of small regulatory RNAs to induce translational regression or degradation of targeted molecules. Platyhelminths have been reported to express microRNAs but the diversity of AGOs in the phylum has not been explored. Phylogenetic relationships of members of this protein family were studied using data from six platyhelminth genomes. Phylogenetic analysis showed that all cestode and trematode AGOs, along with some triclad planarian AGOs, were grouped into the Ago subfamily and its novel sister clade, here referred to as Cluster 1. These were very distant from Piwi and Class 3 subfamilies. By contrast, a number of planarian Piwi-like AGOs formed a novel sister clade to the Piwi subfamily. Extensive sequence searching revealed the presence of an additional locus for AGO2 in the cestode Echinococcus granulosus and exon expansion in this species and E. multilocularis. The current study suggests the absence of the Piwi subfamily and Class 3 AGOs in cestodes and trematodes and the Piwi-like AGO expansion in a free-living triclad planarian and the occurrence of exon expansion prior to or during the evolution of the most-recent common ancestor of the Echinococcus species studied.

  17. A large family of anti‐activators accompanying XylS/AraC family regulatory proteins

    PubMed Central

    Yan, Michael B.; Tran, Minh; Wright, Nathan; Luzader, Deborah H.; Kendall, Melissa M.; Ruiz‐Perez, Fernando; Nataro, James P.

    2016-01-01

    Summary AraC Negative Regulators (ANR) suppress virulence genes by directly down‐regulating AraC/XylS members in Gram‐negative bacteria. In this study, we sought to investigate the distribution and molecular mechanisms of regulatory function for ANRs among different bacterial pathogens. We identified more than 200 ANRs distributed in diverse clinically important gram negative pathogens, including Vibrio spp., Salmonella spp., Shigella spp., Yersinia spp., Citrobacter spp., enterotoxigenic (ETEC) and enteroaggregative E. coli (EAEC), and members of the Pasteurellaceae. By employing a bacterial two hybrid system, pull down assays and surface plasmon resonance (SPR) analysis, we demonstrate that Aar (AggR‐activated regulator), a prototype member of the ANR family in EAEC, binds with high affinity to the central linker domain of AraC‐like member AggR. ANR‐AggR binding disrupted AggR dimerization and prevented AggR‐DNA binding. ANR homologs of Vibrio cholerae, Citrobacter rodentium, Salmonella enterica and ETEC were capable of complementing Aar activity by repressing aggR expression in EAEC strain 042. ANR homologs of ETEC and Vibrio cholerae bound to AggR as well as to other members of the AraC family, including Rns and ToxT. The predicted proteins of all ANR members exhibit three highly conserved predicted α‐helices. Site‐directed mutagenesis studies suggest that at least predicted α‐helices 2 and 3 are required for Aar activity. In sum, our data strongly suggest that members of the novel ANR family act by directly binding to their cognate AraC partners. PMID:27038276

  18. Computerized video time lapse study of cell cycle delay and arrest, mitotic catastrophe, apoptosis and clonogenic survival in irradiated 14-3-3sigma and CDKN1A (p21) knockout cell lines.

    PubMed

    Chu, Kenneth; Teele, Noella; Dewey, Michael W; Albright, Norman; Dewey, William C

    2004-09-01

    Computerized video time lapse (CVTL) microscopy was used to observe cellular events induced by ionizing radiation (10-12 Gy) in nonclonogenic cells of the wild-type HCT116 colorectal carcinoma cell line and its three isogenic derivative lines in which p21 (CDKN1A), 14-3-3sigma or both checkpoint genes (double-knockout) had been knocked out. Cells that fused after mitosis or failed to complete mitosis were classified together as cells that underwent mitotic catastrophe. Seventeen percent of the wild-type cells and 34-47% of the knockout cells underwent mitotic catastrophe to enter generation 1 with a 4N content of DNA, i.e., the same DNA content as irradiated cells arrested in G(2) at the end of generation 0. Radiation caused a transient division delay in generation 0 before the cells divided or underwent mitotic catastrophe. Compared with the division delay for wild-type cells that express CDKN1A and 14-3-3sigma, knocking out CDKN1A reduced the delay the most for cells irradiated in G(1) (from approximately 15 h to approximately 3- 5 h), while knocking out 14-3-3sigma reduced the delay the most for cells irradiated in late S and G(2) (from approximately 18 h to approximately 3-4 h). However, 27% of wild-type cells and 17% of 14-3-3sigma(-/-) cells were arrested at 96 h in generation 0 compared with less than 1% for CDKN1A(-/-) and double-knockout cells. Thus expression of CDKN1A is necessary for the prolonged delay or arrest in generation 0. Furthermore, CDKN1A plays a crucial role in generation 1, greatly inhibiting progression into subsequent generations of both diploid cells and polyploid cells produced by mitotic catastrophe. Thus, in CDKN1A-deficient cell lines, a series of mitotic catastrophe events occurred to produce highly polyploid progeny during generations 3 and 4. Most importantly, the polyploid progeny produced by mitotic catastrophe events did not die sooner than the progeny of dividing cells. Death was identified as loss of cell movement, i

  19. Uncoupling proteins--a new family of proteins with unknown function.

    PubMed

    Erlanson-Albertsson, Charlotte

    2002-02-01

    Uncoupling proteins are inner mitochondrial membrane proteins, which dissipate the proton gradient, releasing the stored energy as heat. Five proteins have been cloned, named UCP1, UCP2, UCP3, UCP4 and UCP5/BMCP1. These proteins are structurally related but differ in tissue expression. UCP1 is expressed uniquely in the brown adipose tissue, while UCP2 is widely distributed, UCP3 is mainly restricted to skeletal muscle and UCP4 and UCP5/BMCP1 expressed in the brain. The properties and regulation of the uncoupling proteins and their exact function has been the focus of an intense research during recent years. This review briefly summarizes the actual knowledge of the properties and function of this new family of proteins. While UCP1 has a clear role in energy homeostasis, the newcomers UCP2-UCP5 may have more delicate physiological importance acting as free radical oxygen scavengers and in the regulation of ATP-dependent processes, such as secretion.

  20. Actions of Rho family small G proteins and p21-activated protein kinases on mitogen-activated protein kinase family members.

    PubMed Central

    Frost, J A; Xu, S; Hutchison, M R; Marcus, S; Cobb, M H

    1996-01-01

    The mitogen-activated protein (MAP) kinases are a family of serine/threonine kinases that are regulated by distinct extracellular stimuli. The currently known members include extracellular signal-regulated protein kinase 1 (ERK1), ERK2, the c-Jun N-terminal kinase/stress-activated protein kinases (JNK/SAPKs), and p38 MAP kinases. We find that overexpression of the Ste20-related enzymes p21-activated kinase 1 (PAK1) and PAK2 in 293 cells is sufficient to activate JNK/SAPK and to a lesser extent p38 MAP kinase but not ERK2. Rat MAP/ERK kinase kinase 1 can stimulate the activity of each of these MAP kinases. Although neither activated Rac nor the PAKs stimulate ERK2 activity, overexpression of either dominant negative Rac2 or the N-terminal regulatory domain of PAK1 inhibits Ras-mediated activation of ERK2, suggesting a permissive role for Rac in the control of the ERK pathway. Furthermore, constitutively active Rac2, Cdc42hs, and RhoA synergize with an activated form of Raf to increase ERK2 activity. These findings reveal a previously unrecognized connection between Rho family small G proteins and the ERK pathway. PMID:8668187

  1. Human cytoplasmic actin proteins are encoded by a multigene family

    SciTech Connect

    Engel, J.; Gunning, P.; Kedes, L.

    1982-06-01

    The authors characterized nine human actin genes that they isolated from a library of cloned human DNA. Measurements of the thermal stability of hybrids formed between each cloned actin gene and ..cap alpha..-, ..beta..-, and ..gamma..-actin mRNA demonstrated that only one of the clones is most homologous to sarcomeric actin mRNA, whereas the remaining eight clones are most homologous to cytoplasmic actin mRNA. By the following criteria they show that these nine clones represent nine different actin gene loci rather than different alleles or different parts of a single gene: (i) the restriction enzyme maps of the coding regions are dissimilar; (ii) each clone contains sufficient coding region to encode all or most of an entire actin gene; and (iii) each clone contains sequences homologous to both the 5' and 3' ends of the coding region of a cloned chicken ..beta..-actin cDNA. They conclude, therefore, that the human cytoplasmic actin proteins are encoded by a multigene family.

  2. The prion protein family: a view from the placenta

    PubMed Central

    Makzhami, Samira; Passet, Bruno; Halliez, Sophie; Castille, Johan; Moazami-Goudarzi, Katayoun; Duchesne, Amandine; Vilotte, Marthe; Laude, Hubert; Mouillet-Richard, Sophie; Béringue, Vincent; Vaiman, Daniel; Vilotte, Jean-Luc

    2014-01-01

    Based on its developmental pattern of expression, early studies suggested the implication of the mammalian Prion protein PrP, a glycosylphosphatidylinositol-anchored ubiquitously expressed and evolutionary conserved glycoprotein encoded by the Prnp gene, in early embryogenesis. However, gene invalidation in several species did not result in obvious developmental abnormalities and it was only recently that it was associated in mice with intra-uterine growth retardation and placental dysfunction. A proposed explanation for this lack of easily detectable developmental-related phenotype is the existence in the genome of one or more gene (s) able to compensate for the absence of PrP. Indeed, two other members of the Prnp gene family have been recently described, Doppel and Shadoo, and the consequences of their invalidation alongside that of PrP tested in mice. No embryonic defect was observed in mice depleted for Doppel and PrP. Interestingly, the co-invalidation of PrP and Shadoo in two independent studies led to apparently conflicting observations, with no apparent consequences in one report and the observation of a developmental defect of the ectoplacental cone that leads to early embryonic lethality in the other. This short review aims at summarizing these recent, apparently conflicting data highlighting the related biological questions and associated implications in terms of animal and human health. PMID:25364742

  3. Food proteins from different allergen families sensitize Balb/c mice to family-specific immune responses.

    PubMed

    Wang, Jing; Sun, Na; Zhou, Cui; Zhou, Xin; Lu, Jing; Wang, Cuiyan; Che, Huilian

    2014-01-01

    The classification of food allergens based on the structure and function of proteins contributes to the study of the relationship between bioinformatics and potential allergenicity of allergens. Food allergens always share sequence similarity with the allergens in the same allergen families. For that reason, food proteins from different allergen families may induce different patterns of immune responses in animal models. Female Balb/c mice (3-4-weeks-old) were sensitized with food proteins once per week for 4 weeks, and then challenged 2 weeks later (on Day 42 of study). Blood was collected (to obtain serum levels of histamine and protein-specific IgG1 and IgE antibodies) and measures of vascular permeability were performed 20 min after the challenge. Five food proteins (11S globulin, OVA [ovalbumin], HAS [human serum albumin] and LRP [lysine-responsive storage protein] of different allergen families, and Cry 1Ab/Ac [crystal protein]) were used to assess patterns of immune responses for each allergen family and then bioinformatics and digestive stability in simulated gastric fluid were employed to assess the overall utility of the Balb/c. The assay results indicated that, in this model, histamine and protein-specific IgE antibody levels and vascular permeability could be used to identify allergenicity of 11S globulin, OVA, and PAP (potato acid phosphatase) only. However, the results of the protein-specific IgG1 measures could only distinguish allergic food proteins with negative control. Based on bioinformatic analyses, the five different food proteins clearly induced distinct patterns of immune responses in the Balb/c model.

  4. Internal organization of large protein families: relationship between the sequence, structure and function based clustering

    PubMed Central

    Cai, Xiao-hui; Jaroszewski, Lukasz; Wooley, John; Godzik, Adam

    2011-01-01

    The protein universe can be organized in families that group proteins sharing common ancestry. Such families display variable levels of structural and functional divergence, from homogenous families, where all members have the same function and very similar structure, to very divergent families, where large variations in function and structure are observed. For practical purposes of structure and function prediction, it would be beneficial to identify sub-groups of proteins with highly similar structures (iso-structural) and/or functions (iso-functional) within divergent protein families. We compared three algorithms in their ability to cluster large protein families and discuss whether any of these methods could reliably identify such iso-structural or iso-functional groups. We show that clustering using profile-sequence and profile-profile comparison methods closely reproduces clusters based on similarities between 3D structures or clusters of proteins with similar biological functions. In contrast, the still commonly used sequence-based methods with fixed thresholds result in vast overestimates of structural and functional diversity in protein families. As a result, these methods also overestimate the number of protein structures that have to be determined to fully characterize structural space of such families. The fact that one can build reliable models based on apparently distantly related templates is crucial for extracting maximal amount of information from new sequencing projects. PMID:21671455

  5. Familial prion protein mutants inhibit Hrd1-mediated retrotranslocation of misfolded proteins by depleting misfolded protein sensor BiP.

    PubMed

    Peters, Sarah L; Déry, Marc-André; LeBlanc, Andrea C

    2016-03-01

    Similar to many proteins trafficking through the secretory pathway, cellular prion protein (PrP) partly retrotranslocates from the endoplasmic reticulum to the cytosol through the endoplasmic reticulum-associated degradation (ERAD) pathway in an attempt to alleviate accumulation of cellular misfolded PrP. Surprisingly, familial PrP mutants fail to retrotranslocate and simultaneously block normal cellular PrP retrotranslocation. That impairments in retrotranslocation of misfolded proteins could lead to global disruptions in cellular homeostasis prompted further investigations into PrP mutant retrotranslocation defects. A gain- and loss-of-function approach identified human E3 ubiquitin ligase, Hrd1, as a critical regulator of PrP retrotranslocation in mammalian cells. Expression of familial human PrP mutants, V210I(129V) and M232R(129V), not only abolished PrP retrotranslocation, but also that of Hrd1-dependent ERAD substrates, transthyretin TTR(D18G) and α1-anti-trypsin A1AT(NHK). Mutant PrP expression decreased binding immunoglobulin protein (BiP) levels by 50% and attenuated ER stress-induced BiP by increasing BiP turnover 6-fold. Overexpression of BiP with PrP mutants rescued retrotranslocation of PrP, TTR(D18G) and A1AT(NHK). PrP mutants-induced cell death was also rescued by co-expression of BiP. These results show that PrP mutants highjack the Hrd1-dependent ERAD pathway, an action that would result in misfolded protein accumulation especially in terminally differentiated neurons. This could explain the age-dependent neuronal degeneration in familial prion diseases. PMID:26740554

  6. Monoubiquitination of Tob/BTG family proteins competes with degradation-targeting polyubiquitination

    SciTech Connect

    Suzuki, Toru; Kim, Minsoo; Kozuka-Hata, Hiroko; Watanabe, Masato; Oyama, Masaaki; Tsumoto, Kouhei; Yamamoto, Tadashi

    2011-05-27

    Highlights: {yields} Tob/BTG family proteins are monoubiquitinated in the absence of E3s in vitro. {yields} Monoubiquitination sites of Tob are identified by mass spectrometry. {yields} The monoubiquitination event correlates with lower levels of polyubiquitination. -- Abstract: Tob belongs to the anti-proliferative Tob/BTG protein family. The expression level of Tob family proteins is strictly regulated both transcriptionally and through post-translational modification. Ubiquitin (Ub)/proteosome-dependent degradation of Tob family proteins is critical in controlling cell cycle progression and DNA damage responses. Various Ub ligases (E3s) are responsible for degradation of Tob protein. Here, we show that Tob family proteins undergo monoubiquitination even in the absence of E3s in vitro. Determination of the ubiquitination site(s) in Tob by mass spectrometric analysis revealed that two lysine residues (Lys48 and Lys63) located in Tob/BTG homology domain are ubiquitinated. A mutant Tob, in which both Lys48 and Lys63 are substituted with alanine, is more strongly polyubiquitinated than wild-type Tob in vivo. These data suggest that monoubiquitination of Tob family proteins confers resistance against polyubiquitination, which targets proteins for degradation. The strategy for regulating the stability of Tob family proteins suggests a novel role for monoubiquitination.

  7. Targeting Protein-Protein Interactions with Trimeric Ligands: High Affinity Inhibitors of the MAGUK Protein Family

    PubMed Central

    Nissen, Klaus B.; Haugaard-Kedström, Linda M.; Wilbek, Theis S.; Nielsen, Line S.; Åberg, Emma; Kristensen, Anders S.; Bach, Anders; Jemth, Per; Strømgaard, Kristian

    2015-01-01

    PDZ domains in general, and those of PSD-95 in particular, are emerging as promising drug targets for diseases such as ischemic stroke. We have previously shown that dimeric ligands that simultaneously target PDZ1 and PDZ2 of PSD-95 are highly potent inhibitors of PSD-95. However, PSD-95 and the related MAGUK proteins contain three consecutive PDZ domains, hence we envisioned that targeting all three PDZ domains simultaneously would lead to more potent and potentially more specific interactions with the MAGUK proteins. Here we describe the design, synthesis and characterization of a series of trimeric ligands targeting all three PDZ domains of PSD-95 and the related MAGUK proteins, PSD-93, SAP-97 and SAP-102. Using our dimeric ligands targeting the PDZ1-2 tandem as starting point, we designed novel trimeric ligands by introducing a PDZ3-binding peptide moiety via a cysteine-derivatized NPEG linker. The trimeric ligands generally displayed increased affinities compared to the dimeric ligands in fluorescence polarization binding experiments and optimized trimeric ligands showed low nanomolar inhibition towards the four MAGUK proteins, thus being the most potent inhibitors described. Kinetic experiments using stopped-flow spectrometry showed that the increase in affinity is caused by a decrease in the dissociation rate of the trimeric ligand as compared to the dimeric ligands, likely reflecting the lower probability of simultaneous dissociation of all three PDZ ligands. Thus, we have provided novel inhibitors of the MAGUK proteins with exceptionally high affinity, which can be used to further elucidate the therapeutic potential of these proteins. PMID:25658767

  8. Targeting protein-protein interactions with trimeric ligands: high affinity inhibitors of the MAGUK protein family.

    PubMed

    Nissen, Klaus B; Haugaard-Kedström, Linda M; Wilbek, Theis S; Nielsen, Line S; Åberg, Emma; Kristensen, Anders S; Bach, Anders; Jemth, Per; Strømgaard, Kristian

    2015-01-01

    PDZ domains in general, and those of PSD-95 in particular, are emerging as promising drug targets for diseases such as ischemic stroke. We have previously shown that dimeric ligands that simultaneously target PDZ1 and PDZ2 of PSD-95 are highly potent inhibitors of PSD-95. However, PSD-95 and the related MAGUK proteins contain three consecutive PDZ domains, hence we envisioned that targeting all three PDZ domains simultaneously would lead to more potent and potentially more specific interactions with the MAGUK proteins. Here we describe the design, synthesis and characterization of a series of trimeric ligands targeting all three PDZ domains of PSD-95 and the related MAGUK proteins, PSD-93, SAP-97 and SAP-102. Using our dimeric ligands targeting the PDZ1-2 tandem as starting point, we designed novel trimeric ligands by introducing a PDZ3-binding peptide moiety via a cysteine-derivatized NPEG linker. The trimeric ligands generally displayed increased affinities compared to the dimeric ligands in fluorescence polarization binding experiments and optimized trimeric ligands showed low nanomolar inhibition towards the four MAGUK proteins, thus being the most potent inhibitors described. Kinetic experiments using stopped-flow spectrometry showed that the increase in affinity is caused by a decrease in the dissociation rate of the trimeric ligand as compared to the dimeric ligands, likely reflecting the lower probability of simultaneous dissociation of all three PDZ ligands. Thus, we have provided novel inhibitors of the MAGUK proteins with exceptionally high affinity, which can be used to further elucidate the therapeutic potential of these proteins.

  9. Protein families, natural history and biotechnological aspects of spider silk.

    PubMed

    Bittencourt, D; Oliveira, P F; Prosdocimi, F; Rech, E L

    2012-01-01

    Spiders are exceptionally diverse and abundant organisms in terrestrial ecosystems and their evolutionary success is certainly related to their capacity to produce different types of silks during their life cycle, making a specialized use on each of them. Presenting particularly tandemly arranged amino acid repeats, silk proteins (spidroins) have mechanical properties superior to most synthetic or natural high-performance fibers, which makes them very promising for biotechnology industry, with putative applications in the production of new biomaterials. During the evolution of spider species, complex behaviors of web production and usage have been coupled with anatomical specialization of spinning glands. Spiders retaining ancestral characters, such as the ones belonging to the Mygalomorph group, present simpler sorts of webs used mainly to build burrows and egg sacs, and their silks are produced by globular undifferentiated spinning glands. In contrast, Araneomorphae spiders have a complex spinning apparatus, presenting up to seven morphologically distinct glands, capable to produce a more complex set of silk polymers with different degrees of rigidness and elasticity associated with distinct behaviors. Aiming to provide a discussion involving a number of spider silks' biological aspects, in this review we present descriptions of members from each family of spidroin identified from five spider species of the Brazilian biodiversity, and an evolutionary study of them in correlation with the anatomical specialization of glands and spider's spinning behaviors. Due to the biotechnological importance of spider silks for the production of new biomaterials, we also discuss about the new possible technical and biomedical applications of spider silks and the current status of it. PMID:22911606

  10. Protein families, natural history and biotechnological aspects of spider silk.

    PubMed

    Bittencourt, D; Oliveira, P F; Prosdocimi, F; Rech, E L

    2012-01-01

    Spiders are exceptionally diverse and abundant organisms in terrestrial ecosystems and their evolutionary success is certainly related to their capacity to produce different types of silks during their life cycle, making a specialized use on each of them. Presenting particularly tandemly arranged amino acid repeats, silk proteins (spidroins) have mechanical properties superior to most synthetic or natural high-performance fibers, which makes them very promising for biotechnology industry, with putative applications in the production of new biomaterials. During the evolution of spider species, complex behaviors of web production and usage have been coupled with anatomical specialization of spinning glands. Spiders retaining ancestral characters, such as the ones belonging to the Mygalomorph group, present simpler sorts of webs used mainly to build burrows and egg sacs, and their silks are produced by globular undifferentiated spinning glands. In contrast, Araneomorphae spiders have a complex spinning apparatus, presenting up to seven morphologically distinct glands, capable to produce a more complex set of silk polymers with different degrees of rigidness and elasticity associated with distinct behaviors. Aiming to provide a discussion involving a number of spider silks' biological aspects, in this review we present descriptions of members from each family of spidroin identified from five spider species of the Brazilian biodiversity, and an evolutionary study of them in correlation with the anatomical specialization of glands and spider's spinning behaviors. Due to the biotechnological importance of spider silks for the production of new biomaterials, we also discuss about the new possible technical and biomedical applications of spider silks and the current status of it.

  11. The Sorcerer II Global Ocean Sampling Expedition: Expanding theUniverse of Protein Families

    SciTech Connect

    Yooseph, Shibu; Sutton, Granger; Rusch, Douglas B.; Halpern,Aaron L.; Williamson, Shannon J.; Remington, Karin; Eisen, Jonathan A.; Heidelberg, Karla B.; Manning, Gerard; Li, Weizhong; Jaroszewski, Lukasz; Cieplak, Piotr; Miller, Christopher S.; Li, Huiying; Mashiyama, Susan T.; Joachimiak, Marcin P.; van Belle, Christopher; Chandonia, John-Marc; Soergel, David A.; Zhai, Yufeng; Natarajan, Kannan; Lee, Shaun; Raphael,Benjamin J.; Bafna, Vineet; Friedman, Robert; Brenner, Steven E.; Godzik,Adam; Eisenberg, David; Dixon, Jack E.; Taylor, Susan S.; Strausberg,Robert L.; Frazier, Marvin; Venter, J.Craig

    2006-03-23

    Metagenomics projects based on shotgun sequencing of populations of micro-organisms yield insight into protein families. We used sequence similarity clustering to explore proteins with a comprehensive dataset consisting of sequences from available databases together with 6.12 million proteins predicted from an assembly of 7.7 million Global Ocean Sampling (GOS) sequences. The GOS dataset covers nearly all known prokaryotic protein families. A total of 3,995 medium- and large-sized clusters consisting of only GOS sequences are identified, out of which 1,700 have no detectable homology to known families. The GOS-only clusters contain a higher than expected proportion of sequences of viral origin, thus reflecting a poor sampling of viral diversity until now. Protein domain distributions in the GOS dataset and current protein databases show distinct biases. Several protein domains that were previously categorized as kingdom specific are shown to have GOS examples in other kingdoms. About 6,000 sequences (ORFans) from the literature that heretofore lacked similarity to known proteins have matches in the GOS data. The GOS dataset is also used to improve remote homology detection. Overall, besides nearly doubling the number of current proteins, the predicted GOS proteins also add a great deal of diversity to known protein families and shed light on their evolution. These observations are illustrated using several protein families, including phosphatases, proteases, ultraviolet-irradiation DNA damage repair enzymes, glutamine synthetase, and RuBisCO. The diversity added by GOS data has implications for choosing targets for experimental structure characterization as part of structural genomics efforts. Our analysis indicates that new families are being discovered at a rate that is linear or almost linear with the addition of new sequences, implying that we are still far from discovering all protein families in nature.

  12. The Sorcerer II Global Ocean Sampling expedition: expanding the universe of protein families.

    PubMed

    Yooseph, Shibu; Sutton, Granger; Rusch, Douglas B; Halpern, Aaron L; Williamson, Shannon J; Remington, Karin; Eisen, Jonathan A; Heidelberg, Karla B; Manning, Gerard; Li, Weizhong; Jaroszewski, Lukasz; Cieplak, Piotr; Miller, Christopher S; Li, Huiying; Mashiyama, Susan T; Joachimiak, Marcin P; van Belle, Christopher; Chandonia, John-Marc; Soergel, David A; Zhai, Yufeng; Natarajan, Kannan; Lee, Shaun; Raphael, Benjamin J; Bafna, Vineet; Friedman, Robert; Brenner, Steven E; Godzik, Adam; Eisenberg, David; Dixon, Jack E; Taylor, Susan S; Strausberg, Robert L; Frazier, Marvin; Venter, J Craig

    2007-03-01

    Metagenomics projects based on shotgun sequencing of populations of micro-organisms yield insight into protein families. We used sequence similarity clustering to explore proteins with a comprehensive dataset consisting of sequences from available databases together with 6.12 million proteins predicted from an assembly of 7.7 million Global Ocean Sampling (GOS) sequences. The GOS dataset covers nearly all known prokaryotic protein families. A total of 3,995 medium- and large-sized clusters consisting of only GOS sequences are identified, out of which 1,700 have no detectable homology to known families. The GOS-only clusters contain a higher than expected proportion of sequences of viral origin, thus reflecting a poor sampling of viral diversity until now. Protein domain distributions in the GOS dataset and current protein databases show distinct biases. Several protein domains that were previously categorized as kingdom specific are shown to have GOS examples in other kingdoms. About 6,000 sequences (ORFans) from the literature that heretofore lacked similarity to known proteins have matches in the GOS data. The GOS dataset is also used to improve remote homology detection. Overall, besides nearly doubling the number of current proteins, the predicted GOS proteins also add a great deal of diversity to known protein families and shed light on their evolution. These observations are illustrated using several protein families, including phosphatases, proteases, ultraviolet-irradiation DNA damage repair enzymes, glutamine synthetase, and RuBisCO. The diversity added by GOS data has implications for choosing targets for experimental structure characterization as part of structural genomics efforts. Our analysis indicates that new families are being discovered at a rate that is linear or almost linear with the addition of new sequences, implying that we are still far from discovering all protein families in nature.

  13. Two Novel Heat-Soluble Protein Families Abundantly Expressed in an Anhydrobiotic Tardigrade

    PubMed Central

    Yamaguchi, Ayami; Tanaka, Sae; Yamaguchi, Shiho; Kuwahara, Hirokazu; Takamura, Chizuko; Imajoh-Ohmi, Shinobu; Horikawa, Daiki D.; Toyoda, Atsushi; Katayama, Toshiaki; Arakawa, Kazuharu; Fujiyama, Asao; Kubo, Takeo; Kunieda, Takekazu

    2012-01-01

    Tardigrades are able to tolerate almost complete dehydration by reversibly switching to an ametabolic state. This ability is called anhydrobiosis. In the anhydrobiotic state, tardigrades can withstand various extreme environments including space, but their molecular basis remains largely unknown. Late embryogenesis abundant (LEA) proteins are heat-soluble proteins and can prevent protein-aggregation in dehydrated conditions in other anhydrobiotic organisms, but their relevance to tardigrade anhydrobiosis is not clarified. In this study, we focused on the heat-soluble property characteristic of LEA proteins and conducted heat-soluble proteomics using an anhydrobiotic tardigrade. Our heat-soluble proteomics identified five abundant heat-soluble proteins. All of them showed no sequence similarity with LEA proteins and formed two novel protein families with distinct subcellular localizations. We named them Cytoplasmic Abundant Heat Soluble (CAHS) and Secretory Abundant Heat Soluble (SAHS) protein families, according to their localization. Both protein families were conserved among tardigrades, but not found in other phyla. Although CAHS protein was intrinsically unstructured and SAHS protein was rich in β-structure in the hydrated condition, proteins in both families changed their conformation to an α-helical structure in water-deficient conditions as LEA proteins do. Two conserved repeats of 19-mer motifs in CAHS proteins were capable to form amphiphilic stripes in α-helices, suggesting their roles as molecular shield in water-deficient condition, though charge distribution pattern in α-helices were different between CAHS and LEA proteins. Tardigrades might have evolved novel protein families with a heat-soluble property and this study revealed a novel repertoire of major heat-soluble proteins in these anhydrobiotic animals. PMID:22937162

  14. Two novel heat-soluble protein families abundantly expressed in an anhydrobiotic tardigrade.

    PubMed

    Yamaguchi, Ayami; Tanaka, Sae; Yamaguchi, Shiho; Kuwahara, Hirokazu; Takamura, Chizuko; Imajoh-Ohmi, Shinobu; Horikawa, Daiki D; Toyoda, Atsushi; Katayama, Toshiaki; Arakawa, Kazuharu; Fujiyama, Asao; Kubo, Takeo; Kunieda, Takekazu

    2012-01-01

    Tardigrades are able to tolerate almost complete dehydration by reversibly switching to an ametabolic state. This ability is called anhydrobiosis. In the anhydrobiotic state, tardigrades can withstand various extreme environments including space, but their molecular basis remains largely unknown. Late embryogenesis abundant (LEA) proteins are heat-soluble proteins and can prevent protein-aggregation in dehydrated conditions in other anhydrobiotic organisms, but their relevance to tardigrade anhydrobiosis is not clarified. In this study, we focused on the heat-soluble property characteristic of LEA proteins and conducted heat-soluble proteomics using an anhydrobiotic tardigrade. Our heat-soluble proteomics identified five abundant heat-soluble proteins. All of them showed no sequence similarity with LEA proteins and formed two novel protein families with distinct subcellular localizations. We named them Cytoplasmic Abundant Heat Soluble (CAHS) and Secretory Abundant Heat Soluble (SAHS) protein families, according to their localization. Both protein families were conserved among tardigrades, but not found in other phyla. Although CAHS protein was intrinsically unstructured and SAHS protein was rich in β-structure in the hydrated condition, proteins in both families changed their conformation to an α-helical structure in water-deficient conditions as LEA proteins do. Two conserved repeats of 19-mer motifs in CAHS proteins were capable to form amphiphilic stripes in α-helices, suggesting their roles as molecular shield in water-deficient condition, though charge distribution pattern in α-helices were different between CAHS and LEA proteins. Tardigrades might have evolved novel protein families with a heat-soluble property and this study revealed a novel repertoire of major heat-soluble proteins in these anhydrobiotic animals.

  15. Two novel heat-soluble protein families abundantly expressed in an anhydrobiotic tardigrade.

    PubMed

    Yamaguchi, Ayami; Tanaka, Sae; Yamaguchi, Shiho; Kuwahara, Hirokazu; Takamura, Chizuko; Imajoh-Ohmi, Shinobu; Horikawa, Daiki D; Toyoda, Atsushi; Katayama, Toshiaki; Arakawa, Kazuharu; Fujiyama, Asao; Kubo, Takeo; Kunieda, Takekazu

    2012-01-01

    Tardigrades are able to tolerate almost complete dehydration by reversibly switching to an ametabolic state. This ability is called anhydrobiosis. In the anhydrobiotic state, tardigrades can withstand various extreme environments including space, but their molecular basis remains largely unknown. Late embryogenesis abundant (LEA) proteins are heat-soluble proteins and can prevent protein-aggregation in dehydrated conditions in other anhydrobiotic organisms, but their relevance to tardigrade anhydrobiosis is not clarified. In this study, we focused on the heat-soluble property characteristic of LEA proteins and conducted heat-soluble proteomics using an anhydrobiotic tardigrade. Our heat-soluble proteomics identified five abundant heat-soluble proteins. All of them showed no sequence similarity with LEA proteins and formed two novel protein families with distinct subcellular localizations. We named them Cytoplasmic Abundant Heat Soluble (CAHS) and Secretory Abundant Heat Soluble (SAHS) protein families, according to their localization. Both protein families were conserved among tardigrades, but not found in other phyla. Although CAHS protein was intrinsically unstructured and SAHS protein was rich in β-structure in the hydrated condition, proteins in both families changed their conformation to an α-helical structure in water-deficient conditions as LEA proteins do. Two conserved repeats of 19-mer motifs in CAHS proteins were capable to form amphiphilic stripes in α-helices, suggesting their roles as molecular shield in water-deficient condition, though charge distribution pattern in α-helices were different between CAHS and LEA proteins. Tardigrades might have evolved novel protein families with a heat-soluble property and this study revealed a novel repertoire of major heat-soluble proteins in these anhydrobiotic animals. PMID:22937162

  16. Interaction of Ca(2+)-dependent activator protein for secretion 1 (CAPS1) with septin family proteins in mouse brain.

    PubMed

    Hosono, Mayu; Shinoda, Yo; Hirano, Touko; Ishizaki, Yasuki; Furuichi, Teiichi; Sadakata, Tetsushi

    2016-03-23

    The Ca(2+)-dependent activator protein for secretion 1 (CAPS1) protein plays a regulatory role in the dense-core vesicle exocytosis pathway. To clarify the functions of this protein in the brain, we searched for novel interaction partners of CAPS1 by mass spectrometry. We identified a specific interaction of CAPS1 with septin family proteins. We also demonstrated that the C-terminal region of the CAPS1 protein binds to part of the deduced GTP-binding domain of septin proteins. It is possible that a tertiary complex of septin, CAPS, and syntaxin contributes to dense-core vesicle trafficking and exocytosis in neurons.

  17. A family of major royal jelly proteins of the honeybee Apis mellifera L.

    PubMed

    Schmitzová, J; Klaudiny, J; Albert, S; Schröder, W; Schreckengost, W; Hanes, J; Júdová, J; Simúth, J

    1998-09-01

    The characterization of major proteins of honeybee larval jelly (49-87 kDa) was performed by the sequencing of new complementary DNAs (cDNAs) obtained from a honeybee head cDNA library, by the determination of N-terminal sequences of the proteins, and by analyses of the newly obtained and known sequence data concerning the proteins. It was found that royal jelly (RJ) and worker jelly (WJ) contain identical major proteins and that all the proteins belong to one protein family designated MRJP (from Major Royal Jelly Proteins). The family consists of five main members (MRJP1, MRJP2, MRJP3, MRJP4, MRJP5). The proteins MRJP3 and MRJP5 are polymorphic. MRJPs account for 82 to 90% of total larval jelly protein, and they contain a relatively high amount of essential amino acids. These findings support the idea that MRJPs play an important role in honeybee nutrition.

  18. Avidin related protein 2 shows unique structural and functional features among the avidin protein family

    PubMed Central

    Hytönen, Vesa P; Määttä, Juha AE; Kidron, Heidi; Halling, Katrin K; Hörhä, Jarno; Kulomaa, Tuomas; Nyholm, Thomas KM; Johnson, Mark S; Salminen, Tiina A; Kulomaa, Markku S; Airenne, Tomi T

    2005-01-01

    Background The chicken avidin gene family consists of avidin and several avidin related genes (AVRs). Of these gene products, avidin is the best characterized and is known for its extremely high affinity for D-biotin, a property that is utilized in numerous modern life science applications. Recently, the AVR genes have been expressed as recombinant proteins, which have shown different biotin-binding properties as compared to avidin. Results In the present study, we have employed multiple biochemical methods to better understand the structure-function relationship of AVR proteins focusing on AVR2. Firstly, we have solved the high-resolution crystal structure of AVR2 in complex with a bound ligand, D-biotin. The AVR2 structure reveals an overall fold similar to the previously determined structures of avidin and AVR4. Major differences are seen, especially at the 1–3 subunit interface, which is stabilized mainly by polar interactions in the case of AVR2 but by hydrophobic interactions in the case of AVR4 and avidin, and in the vicinity of the biotin binding pocket. Secondly, mutagenesis, competitive dissociation analysis and differential scanning calorimetry were used to compare and study the biotin-binding properties as well as the thermal stability of AVRs and avidin. These analyses pinpointed the importance of residue 109 for biotin binding and stability of AVRs. The I109K mutation increased the biotin-binding affinity of AVR2, whereas the K109I mutation decreased the biotin-binding affinity of AVR4. Furthermore, the thermal stability of AVR2(I109K) increased in comparison to the wild-type protein and the K109I mutation led to a decrease in the thermal stability of AVR4. Conclusion Altogether, this study broadens our understanding of the structural features determining the ligand-binding affinities and stability as well as the molecular evolution within the protein family. This novel information can be applied to further develop and improve the tools already

  19. A tomato xylem sap protein represents a new family of small cysteine-rich proteins with structural similarity to lipid transfer proteins.

    PubMed

    Rep, Martijn; Dekker, Henk L; Vossen, Jack H; de Boer, Albert D; Houterman, Petra M; de Koster, Chris G; Cornelissen, Ben J C

    2003-01-16

    The coding sequence of a major xylem sap protein of tomato was identified with the aid of mass spectrometry. The protein, XSP10, represents a novel family of extracellular plant proteins with structural similarity to plant lipid transfer proteins. The XSP10 gene is constitutively expressed in roots and lower stems. The decline of XSP10 protein levels in tomato infected with a fungal vascular pathogen may reflect breakdown or modification by the pathogen.

  20. Structure and evolutionary history of a large family of NLR proteins in the zebrafish

    PubMed Central

    Zielinski, Julia; Kondrashov, Fyodor

    2016-01-01

    Multicellular eukaryotes have evolved a range of mechanisms for immune recognition. A widespread family involved in innate immunity are the NACHT-domain and leucine-rich-repeat-containing (NLR) proteins. Mammals have small numbers of NLR proteins, whereas in some species, mostly those without adaptive immune systems, NLRs have expanded into very large families. We describe a family of nearly 400 NLR proteins encoded in the zebrafish genome. The proteins share a defining overall structure, which arose in fishes after a fusion of the core NLR domains with a B30.2 domain, but can be subdivided into four groups based on their NACHT domains. Gene conversion acting differentially on the NACHT and B30.2 domains has shaped the family and created the groups. Evidence of positive selection in the B30.2 domain indicates that this domain rather than the leucine-rich repeats acts as the pathogen recognition module. In an unusual chromosomal organization, the majority of the genes are located on one chromosome arm, interspersed with other large multigene families, including a new family encoding zinc-finger proteins. The NLR-B30.2 proteins represent a new family with diversity in the specific recognition module that is present in fishes in spite of the parallel existence of an adaptive immune system. PMID:27248802

  1. The mystery of BCL2 family: Bcl-2 proteins and apoptosis: an update.

    PubMed

    Siddiqui, Waseem Ahmad; Ahad, Amjid; Ahsan, Haseeb

    2015-03-01

    Apoptosis is a critically important biological process that plays an essential role in cell fate and homeostasis. An important component of the apoptotic pathway is the family of proteins commonly known as the B cell lymphoma-2 (Bcl-2). The primary role of Bcl-2 family members is the regulation of apoptosis. Although the structure of Bcl-2 family of proteins was reported nearly 10 years ago, however, it still surprises us with its structural and functional complexity and diversity. A number of studies have demonstrated that Bcl-2 family influences many other cellular processes beyond apoptosis which are generally independent of the regulation of apoptosis, suggesting additional roles for Bcl-2. The disruption of the regulation of apoptosis is a causative event in many diseases. Since the Bcl-2 family of proteins is the key regulator of apoptosis, the abnormalities in its function have been implicated in many diseases including cancer, neurodegenerative disorders, ischemia and autoimmune diseases. In the past few years, our understanding of the mechanism of action of Bcl-2 family of proteins and its implications in various pathological conditions has enhanced significantly. The focus of this review is to summarize the current knowledge on the structure and function of Bcl-2 family of proteins in apoptotic cellular processes. A number of drugs have been developed in the past few years that target different Bcl-2 members. The role of Bcl-2 proteins in the pathogenesis of various diseases and their pharmacological significance as effective molecular therapeutic targets is also discussed.

  2. Poxvirus protein evolution: Family-wide assessment of possible horizontal gene transfer events

    PubMed Central

    Odom, Mary R.; Hendrickson, R. Curtis; Lefkowitz, Elliot J.

    2009-01-01

    To investigate the evolutionary origins of proteins encoded by the Poxviridae family of viruses, we examined all poxvirus protein coding genes using a method of characterizing and visualizing the similarity between these proteins and taxonomic subsets of proteins in GenBank. Our analysis divides poxvirus proteins into categories based on their relative degree of similarity to two different taxonomic subsets of proteins such as all eukaryote vs. all virus (except poxvirus) proteins. As an example, this allows us to identify, based on high similarity to only eukaryote proteins, poxvirus proteins that may have been obtained by horizontal transfer from their hosts. Although this method alone does not definitively prove horizontal gene transfer, it allows us to provide an assessment of the possibility of horizontal gene transfer for every poxvirus protein. Potential candidates can then be individually studied in more detail during subsequent investigation. Results of our analysis demonstrate that in general, proteins encoded by members of the subfamily Chordopoxvirinae exhibit greater similarity to eukaryote proteins than to proteins of other virus families. In addition, our results reiterate the important role played by host gene capture in poxvirus evolution; highlight the functions of many genes poxviruses share with their hosts; and illustrate which host-like genes are present uniquely in poxviruses and which are also present in other virus families. PMID:19464330

  3. Vaccinia virus protein A49 is an unexpected member of the B-cell Lymphoma (Bcl)-2 protein family.

    PubMed

    Neidel, Sarah; Maluquer de Motes, Carlos; Mansur, Daniel S; Strnadova, Pavla; Smith, Geoffrey L; Graham, Stephen C

    2015-03-01

    Vaccinia virus (VACV) encodes several proteins that inhibit activation of the proinflammatory transcription factor nuclear factor κB (NF-κB). VACV protein A49 prevents translocation of NF-κB to the nucleus by sequestering cellular β-TrCP, a protein required for the degradation of the inhibitor of κB. A49 does not share overall sequence similarity with any protein of known structure or function. We solved the crystal structure of A49 from VACV Western Reserve to 1.8 Å resolution and showed, surprisingly, that A49 has the same three-dimensional fold as Bcl-2 family proteins despite lacking identifiable sequence similarity. Whereas Bcl-2 family members characteristically modulate cellular apoptosis, A49 lacks a surface groove suitable for binding BH3 peptides and does not bind proapoptotic Bcl-2 family proteins Bax or Bak. The N-terminal 17 residues of A49 do not adopt a single well ordered conformation, consistent with their proposed role in binding β-TrCP. Whereas pairs of A49 molecules interact symmetrically via a large hydrophobic surface in crystallo, A49 does not dimerize in solution or in cells, and we propose that this hydrophobic interaction surface may mediate binding to a yet undefined cellular partner. A49 represents the eleventh VACV Bcl-2 family protein and, despite these proteins sharing very low sequence identity, structure-based phylogenetic analysis shows that all poxvirus Bcl-2 proteins are structurally more similar to each other than they are to any cellular or herpesvirus Bcl-2 proteins. This is consistent with duplication and diversification of a single BCL2 family gene acquired by an ancestral poxvirus.

  4. The triterpene cyclase protein family: a systematic analysis.

    PubMed

    Racolta, Silvia; Juhl, P Benjamin; Sirim, Demet; Pleiss, Jürgen

    2012-08-01

    Triterpene cyclases catalyze a broad range of cyclization reactions to form polycyclic triterpenes. Triterpene cyclases that convert squalene to hopene are named squalene-hopene cyclases (SHC) and triterpene cyclases that convert oxidosqualene are named oxidosqualene cyclases (OSC). Many sequences have been published, but there is only one structure available for each of SHCs and OSCs. Although they catalyze a similar reaction, the sequence similarity between SHCs and OSCs is low. A family classification based on phylogenetic analysis revealed 20 homologous families which are grouped into two superfamilies, SHCs and OSCs. Based on this family assignment, the Triterpene Cyclase Engineering Database (TTCED) was established. It integrates available information on sequence and structure of 639 triterpene cyclases as well as on structurally and functionally relevant amino acids. Family specific multiple sequence alignments were generated to identify the functionally relevant residues. Based on sequence alignments, conserved residues in SHCs and OSCs were analyzed and compared to experimentally confirmed mutational data. Functional schematic models of the central cavities of OSCs and SHCs were derived from structure comparison and sequence conservation analysis. These models demonstrate the high similarity of the substrate binding cavity of SHCs and OSCs and the equivalences of the respective residues. The TTCED is a novel source for comprehensive information on the triterpene cyclase family, including a compilation of previously described mutational data. The schematic models present the conservation analysis in a readily available fashion and facilitate the correlation of residues to a specific function or substrate interaction.

  5. Functional divergence outlines the evolution of novel protein function in NifH/BchL protein family.

    PubMed

    Thakur, Subarna; Bothra, Asim K; Sen, Arnab

    2013-11-01

    Biological nitrogen fixation is accomplished by prokaryotes through the catalytic action of complex metalloenzyme, nitrogenase. Nitrogenase is a two-protein component system comprising MoFe protein (NifD and K) and Fe protein (NifH). NifH shares structural and mechanistic similarities as well as evolutionary relationships with light-independent protochlorophyllide reductase (BchL), a photosynthesis-related metalloenzyme belonging to the same protein family. We performed a comprehensive bioinformatics analysis of the NifH/BchL family in order to elucidate the intrinsic functional diversity and the underlying evolutionary mechanism among the members. To analyse functional divergence in the NifH/ BchL family, we have conducted pair-wise estimation in altered evolutionary rates between the member proteins. We identified a number of vital amino acid sites which contribute to predicted functional diversity. We have also made use of the maximum likelihood tests for detection of positive selection at the amino acid level followed by the structure-based phylogenetic approach to draw conclusion on the ancient lineage and novel characterization of the NifH/BchL protein family. Our investigation provides ample support to the fact that NifH protein and BchL share robust structural similarities and have probably deviated from a common ancestor followed by divergence in functional properties possibly due to gene duplication. PMID:24287653

  6. Bromodomain and extra-terminal (BET) family proteins: New therapeutic targets in major diseases.

    PubMed

    Padmanabhan, Balasundaram; Mathur, Shruti; Manjula, Ramu; Tripathi, Shailesh

    2016-06-01

    The bromodomains and extra-terminal domain (BET) family proteins recognize acetylated chromatin through their bromodomains (BDs) and help in regulating gene expression. BDs are chromatin 'readers': by interacting with acetylated lysines on the histone tails, they recruit chromatin-regulating proteins on the promoter region to regulate gene expression and repression. Extensive efforts have been employed by scientific communities worldwide to identify and develop potential inhibitors of BET family BDs to regulate protein expression by inhibiting acetylated histone (H3/H4) interactions. Several small molecule inhibitors have been reported, which not only have high affinity but also have high specificity to BET BDs. These developments make BET family proteins an important therapeutic targets for major diseases such as cancer, neurological disorders, obesity and inflammation. Here, we review and discuss the structural biology of BET family BDs and their applications in major diseases. PMID:27240990

  7. PATtyFams: Protein families for the microbial genomes in the PATRIC database

    DOE PAGES

    Davis, James J.; Gerdes, Svetlana; Olsen, Gary J.; Olson, Robert; Pusch, Gordon D.; Shukla, Maulik; Vonstein, Veronika; Wattam, Alice R.; Yoo, Hyunseung

    2016-02-08

    The ability to build accurate protein families is a fundamental operation in bioinformatics that influences comparative analyses, genome annotation, and metabolic modeling. For several years we have been maintaining protein families for all microbial genomes in the PATRIC database (Pathosystems Resource Integration Center, patricbrc.org) in order to drive many of the comparative analysis tools that are available through the PATRIC website. However, due to the burgeoning number of genomes, traditional approaches for generating protein families are becoming prohibitive. In this report, we describe a new approach for generating protein families, which we call PATtyFams. This method uses the k-mer-based functionmore » assignments available through RAST (Rapid Annotation using Subsystem Technology) to rapidly guide family formation, and then differentiates the function-based groups into families using a Markov Cluster algorithm (MCL). In conclusion, this new approach for generating protein families is rapid, scalable and has properties that are consistent with alignment-based methods.« less

  8. Bap: a family of surface proteins involved in biofilm formation.

    PubMed

    Lasa, Iñigo; Penadés, José R

    2006-03-01

    A group of surface proteins sharing several structural and functional features is emerging as an important element in the biofilm formation process of diverse bacterial species. The first member of this group of proteins was identified in a Staphylococcus aureus mastitis isolate and was named Bap (biofilm-associated protein). As common structural features, Bap-related proteins: (i) are present on the bacterial surface; (ii) show a high molecular weight; (iii) contain a core domain of tandem repeats; (iv) confer upon bacteria the capacity to form a biofilm; (v) play a relevant role in bacterial infectious processes; and (vi) can occasionally be contained in mobile elements. This review summarizes recent studies that have identified and assigned roles to Bap-related proteins in biofilm biology and virulence.

  9. Effects of prodigiosin family compounds from Pseudoalteromonas sp. 1020R on the activities of protein phosphatases and protein kinases.

    PubMed

    Soliev, Azamjon B; Hosokawa, Kakushi; Enomoto, Keiichi

    2015-01-01

    Pseudoalteromonas sp. strain 1020R produces prodigiosin and its closely related congeners, which differ in the length of their alkyl side chains. These red-pigmented compounds were found to exhibit cytotoxicity against human leukemia cell lines. The compounds also showed dose-dependent inhibitory effects on protein phosphatase 2A and protein tyrosine phosphatase 1B (PTP1B), while remaining relatively inactive against protein kinases, including protein tyrosine kinase, Ca(2+)/calmodulin-dependent protein kinase and protein kinases A and C. Comparative studies of the individual pigmented compounds on PTP1B inhibition showed that as the chain length of the alkyl group at the C-3 position of the compound increased, the inhibitory effect on PTP1B decreased. These results suggest that protein phosphatases but not protein kinases might be involved in the cytotoxicity of the prodigiosin family of compounds against malignant cells.

  10. Molecular evolution and expression of the CRAL_TRIO protein family in insects.

    PubMed

    Smith, Gilbert; Briscoe, Adriana D

    2015-07-01

    CRAL_TRIO domain proteins are known to bind small lipophilic molecules such as retinal, inositol and Vitamin E and include such gene family members as PINTA, α-tocopherol transfer (ATT) proteins, retinoid binding proteins, and clavesins. In insects, very little is known about either the molecular evolution of this family of proteins or their ligand specificity. Here we characterize insect CRAL_TRIO domain proteins and present the first insect CRAL_TRIO protein phylogeny constructed by performing reciprocal BLAST searches of the reference genomes of Drosophila melanogaster, Anopheles gambiae, Apis mellifera, Tribolium castaneum, Bombyx mori, Manduca sexta and Danaus plexippus. We find several highly conserved amino acid residues in the CRAL_TRIO domain-containing genes across insects and a gene expansion resulting in more than twice as many gene family members in lepidopterans than in other surveyed insect species, but no lepidopteran homolog of the PINTA gene in Drosophila. In addition, we examined the expression pattern of CRAL_TRIO domain genes in Manduca sexta heads using RNA-Seq data. Of the 42 gene family members found in the M. sexta reference genome, we found 30 expressed in the head tissue with similar expression profiles between males and females. Our results suggest this gene family underwent a large expansion in lepidopteran, making the lepidopteran CRAL_TRIO domain family distinct from other holometabolous insect lineages. PMID:25684408

  11. An estimated 5% of new protein structures solved today represent a new Pfam family

    SciTech Connect

    Mistry, Jaina; Kloppmann, Edda; Rost, Burkhard; Punta, Marco

    2013-11-01

    This study uses the Pfam database to show that the sequence redundancy of protein structures deposited in the PDB is increasing. The possible reasons behind this trend are discussed. High-resolution structural knowledge is key to understanding how proteins function at the molecular level. The number of entries in the Protein Data Bank (PDB), the repository of all publicly available protein structures, continues to increase, with more than 8000 structures released in 2012 alone. The authors of this article have studied how structural coverage of the protein-sequence space has changed over time by monitoring the number of Pfam families that acquired their first representative structure each year from 1976 to 2012. Twenty years ago, for every 100 new PDB entries released, an estimated 20 Pfam families acquired their first structure. By 2012, this decreased to only about five families per 100 structures. The reasons behind the slower pace at which previously uncharacterized families are being structurally covered were investigated. It was found that although more than 50% of current Pfam families are still without a structural representative, this set is enriched in families that are small, functionally uncharacterized or rich in problem features such as intrinsically disordered and transmembrane regions. While these are important constraints, the reasons why it may not yet be time to give up the pursuit of a targeted but more comprehensive structural coverage of the protein-sequence space are discussed.

  12. Molecular evolution and expression of the CRAL_TRIO protein family in insects.

    PubMed

    Smith, Gilbert; Briscoe, Adriana D

    2015-07-01

    CRAL_TRIO domain proteins are known to bind small lipophilic molecules such as retinal, inositol and Vitamin E and include such gene family members as PINTA, α-tocopherol transfer (ATT) proteins, retinoid binding proteins, and clavesins. In insects, very little is known about either the molecular evolution of this family of proteins or their ligand specificity. Here we characterize insect CRAL_TRIO domain proteins and present the first insect CRAL_TRIO protein phylogeny constructed by performing reciprocal BLAST searches of the reference genomes of Drosophila melanogaster, Anopheles gambiae, Apis mellifera, Tribolium castaneum, Bombyx mori, Manduca sexta and Danaus plexippus. We find several highly conserved amino acid residues in the CRAL_TRIO domain-containing genes across insects and a gene expansion resulting in more than twice as many gene family members in lepidopterans than in other surveyed insect species, but no lepidopteran homolog of the PINTA gene in Drosophila. In addition, we examined the expression pattern of CRAL_TRIO domain genes in Manduca sexta heads using RNA-Seq data. Of the 42 gene family members found in the M. sexta reference genome, we found 30 expressed in the head tissue with similar expression profiles between males and females. Our results suggest this gene family underwent a large expansion in lepidopteran, making the lepidopteran CRAL_TRIO domain family distinct from other holometabolous insect lineages.

  13. The retinoblastoma family of proteins and their regulatory functions in the mammalian cell division cycle

    PubMed Central

    2012-01-01

    The retinoblastoma (RB) family of proteins are found in organisms as distantly related as humans, plants, and insects. These proteins play a key role in regulating advancement of the cell division cycle from the G1 to S-phases. This is achieved through negative regulation of two important positive regulators of cell cycle entry, E2F transcription factors and cyclin dependent kinases. In growth arrested cells transcriptional activity by E2Fs is repressed by RB proteins. Stimulation of cell cycle entry by growth factor signaling leads to activation of cyclin dependent kinases. They in turn phosphorylate and inactivate the RB family proteins, leading to E2F activation and additional cyclin dependent kinase activity. This propels the cell cycle irreversibly forward leading to DNA synthesis. This review will focus on the basic biochemistry and cell biology governing the regulation and activity of mammalian RB family proteins in cell cycle control. PMID:22417103

  14. Structural propensities of kinase family proteins from a Potts model of residue co-variation.

    PubMed

    Haldane, Allan; Flynn, William F; He, Peng; Vijayan, R S K; Levy, Ronald M

    2016-08-01

    Understanding the conformational propensities of proteins is key to solving many problems in structural biology and biophysics. The co-variation of pairs of mutations contained in multiple sequence alignments of protein families can be used to build a Potts Hamiltonian model of the sequence patterns which accurately predicts structural contacts. This observation paves the way to develop deeper connections between evolutionary fitness landscapes of entire protein families and the corresponding free energy landscapes which determine the conformational propensities of individual proteins. Using statistical energies determined from the Potts model and an alignment of 2896 PDB structures, we predict the propensity for particular kinase family proteins to assume a "DFG-out" conformation implicated in the susceptibility of some kinases to type-II inhibitors, and validate the predictions by comparison with the observed structural propensities of the corresponding proteins and experimental binding affinity data. We decompose the statistical energies to investigate which interactions contribute the most to the conformational preference for particular sequences and the corresponding proteins. We find that interactions involving the activation loop and the C-helix and HRD motif are primarily responsible for stabilizing the DFG-in state. This work illustrates how structural free energy landscapes and fitness landscapes of proteins can be used in an integrated way, and in the context of kinase family proteins, can potentially impact therapeutic design strategies. PMID:27241634

  15. Role of endometrial cancer abnormal MMR protein in screening Lynch-syndrome families

    PubMed Central

    Long, Qiongxian; Peng, Yong; Tang, Zhirong; Wu, Cailiang

    2014-01-01

    Objective: To identify patients with endometrial cancer with potential Lynch-related DNA mismatch repair (MMR) protein expression defects and to explore the role of these defects in screening for LS. Methods: Endometrial cancers from 173 patients recruited to the Nanchong Central Hospital were tested for MMR (MLH1, MSH2, PMS2, and MSH6) protein expression using immunohistochemistry (IHC). Results: In the 173 tumor tissue samples, the expression loss rates of MSH6, MSH2, PMS2 and MLH1 protein were 16.18% (28/173), 12.14% (21/173), 7.51% (13/173) and 5.78% (10/173), respectively. The total loss rate of MMR protein was 29.89% (27/87). There were 19 patients with a family history of cancer, of which 18 patients demonstrated loss of expression of MMR protein. In the 22 abnormal MMR patients without family history, five families were found to have Lynch-associated cancer (colorectal cancer, endometrial cancer, ovarian cancer, stomach cancer) after follow-up for two years. Conclusion: MMR proteins play an important role in the progress of endometrial cancer. The routine testing of MMR proteins in endometrial cancer can contribute to the screening of LS families, especially small families. PMID:25400828

  16. Clustering of protein families into functional subtypes using Relative Complexity Measure with reduced amino acid alphabets

    PubMed Central

    2010-01-01

    Background Phylogenetic analysis can be used to divide a protein family into subfamilies in the absence of experimental information. Most phylogenetic analysis methods utilize multiple alignment of sequences and are based on an evolutionary model. However, multiple alignment is not an automated procedure and requires human intervention to maintain alignment integrity and to produce phylogenies consistent with the functional splits in underlying sequences. To address this problem, we propose to use the alignment-free Relative Complexity Measure (RCM) combined with reduced amino acid alphabets to cluster protein families into functional subtypes purely on sequence criteria. Comparison with an alignment-based approach was also carried out to test the quality of the clustering. Results We demonstrate the robustness of RCM with reduced alphabets in clustering of protein sequences into families in a simulated dataset and seven well-characterized protein datasets. On protein datasets, crotonases, mandelate racemases, nucleotidyl cyclases and glycoside hydrolase family 2 were clustered into subfamilies with 100% accuracy whereas acyl transferase domains, haloacid dehalogenases, and vicinal oxygen chelates could be assigned to subfamilies with 97.2%, 96.9% and 92.2% accuracies, respectively. Conclusions The overall combination of methods in this paper is useful for clustering protein families into subtypes based on solely protein sequence information. The method is also flexible and computationally fast because it does not require multiple alignment of sequences. PMID:20718947

  17. Adeno-associated virus protects the retinoblastoma family of proteins from adenoviral-induced functional inactivation.

    PubMed

    Batchu, Ramesh B; Shammas, Masood A; Wang, Jing Yi; Freeman, John; Rosen, Nancy; Munshi, Nikhil C

    2002-05-15

    Adeno-associated virus type 2 (AAV) is known to inhibit virally mediated oncogenic transformation. One of the early events of adenovirus (Ad) infection is the functional inactivation of cell cycle regulatory retinoblastoma (RB) family of proteins, which consists of retinoblastoma protein (pRB), p107, and p130. In an effort to understand the molecular basis of anti-oncogenic properties of AAV, we studied the effects of AAV expression on these proteins in cells infected with Ad. Western blot analysis showed that AAV interferes with the adenoviral-induced degradation and hyperphosphorylation of the pRB family of proteins in normal human fibroblasts as well as in HeLa and 293 cell lines. RNase protection assay showed enhanced expression of pocket protein gene by AAV expression. We also demonstrate that Rep proteins, the major AAV regulatory proteins, bind to E1A, the immediate early gene of Ad responsible for hyperphosphorylation and dissociation of pRB-E2F complex. This binding of AAV Rep proteins to E1A leads to decreased association between E1A and pRB leading to protection of pocket proteins from degradation, decreased expression of S phase genes and inhibition of cell cycle progression. These results suggest that the antiproliferative activity of AAV against Ad is mediated, at least in part, by effects of AAV Rep proteins on the Rb family of proteins.

  18. Matricellular proteins of the Cyr61/CTGF/NOV (CCN) family and the nervous system

    PubMed Central

    Malik, Anna R.; Liszewska, Ewa; Jaworski, Jacek

    2015-01-01

    Matricellular proteins are secreted proteins that exist at the border of cells and the extracellular matrix (ECM). However, instead of playing a role in structural integrity of the ECM, these proteins, that act as modulators of various surface receptors, have a regulatory function and instruct a multitude of cellular responses. Among matricellular proteins are members of the Cyr61/CTGF/NOV (CCN) protein family. These proteins exert their activity by binding directly to integrins and heparan sulfate proteoglycans and activating multiple intracellular signaling pathways. CCN proteins also influence the activity of growth factors and cytokines and integrate their activity with integrin signaling. At the cellular level, CCN proteins regulate gene expression and cell survival, proliferation, differentiation, senescence, adhesion, and migration. To date, CCN proteins have been extensively studied in the context of osteo- and chondrogenesis, angiogenesis, and carcinogenesis, but the expression of these proteins is also observed in a variety of tissues. The role of CCN proteins in the nervous system has not been systematically studied or described. Thus, the major aim of this review is to introduce the CCN protein family to the neuroscience community. We first discuss the structure, interactions, and cellular functions of CCN proteins and then provide a detailed review of the available data on the neuronal expression and contribution of CCN proteins to nervous system development, function, and pathology. PMID:26157362

  19. Matricellular proteins of the Cyr61/CTGF/NOV (CCN) family and the nervous system.

    PubMed

    Malik, Anna R; Liszewska, Ewa; Jaworski, Jacek

    2015-01-01

    Matricellular proteins are secreted proteins that exist at the border of cells and the extracellular matrix (ECM). However, instead of playing a role in structural integrity of the ECM, these proteins, that act as modulators of various surface receptors, have a regulatory function and instruct a multitude of cellular responses. Among matricellular proteins are members of the Cyr61/CTGF/NOV (CCN) protein family. These proteins exert their activity by binding directly to integrins and heparan sulfate proteoglycans and activating multiple intracellular signaling pathways. CCN proteins also influence the activity of growth factors and cytokines and integrate their activity with integrin signaling. At the cellular level, CCN proteins regulate gene expression and cell survival, proliferation, differentiation, senescence, adhesion, and migration. To date, CCN proteins have been extensively studied in the context of osteo- and chondrogenesis, angiogenesis, and carcinogenesis, but the expression of these proteins is also observed in a variety of tissues. The role of CCN proteins in the nervous system has not been systematically studied or described. Thus, the major aim of this review is to introduce the CCN protein family to the neuroscience community. We first discuss the structure, interactions, and cellular functions of CCN proteins and then provide a detailed review of the available data on the neuronal expression and contribution of CCN proteins to nervous system development, function, and pathology.

  20. Fundamental Characteristics of AAA+ Protein Family Structure and Function

    PubMed Central

    2016-01-01

    Many complex cellular events depend on multiprotein complexes known as molecular machines to efficiently couple the energy derived from adenosine triphosphate hydrolysis to the generation of mechanical force. Members of the AAA+ ATPase superfamily (ATPases Associated with various cellular Activities) are critical components of many molecular machines. AAA+ proteins are defined by conserved modules that precisely position the active site elements of two adjacent subunits to catalyze ATP hydrolysis. In many cases, AAA+ proteins form a ring structure that translocates a polymeric substrate through the central channel using specialized loops that project into the central channel. We discuss the major features of AAA+ protein structure and function with an emphasis on pivotal aspects elucidated with archaeal proteins. PMID:27703410

  1. Molecular Evidence of RNA Editing in Bombyx Chemosensory Protein Family

    PubMed Central

    Xuan, Ning; Bu, Xun; Liu, Yan Yan; Yang, Xue; Liu, Guo Xia; Fan, Zhong Xue; Bi, Yu Ping; Yang, Lian Qun; Lou, Qi Nian; Rajashekar, Balaji; Leppik, Getter; Kasvandik, Sergo; Picimbon, Jean-François

    2014-01-01

    Chemosensory proteins (CSPs) are small scavenger proteins that are mainly known as transporters of pheromone/odor molecules at the periphery of sensory neurons in the insect antennae and in the producing cells from the moth female pheromone gland. Sequencing cDNAs of RNA encoding CSPs in the antennae, legs, head, pheromone gland and wings from five single individual adult females of the silkworm moth Bombyx mori showed that they differed from genomic sequences by subtle nucleotide replacement (RDD). Both intronless and intronic CSP genes expressed RDDs, although in different rates. Most interestingly, in our study the degree of RDDs in CSP genes were found to be tissue-specific. The proportion of CSP-RDDs was found to be significantly much higher in the pheromone gland. In addition, Western blot analysis of proteins in different tissues showed existence of multiple CSP protein variant chains particularly found in the pheromone gland. Peptide sequencing demonstrated the occurrence of a pleiad of protein variants for most of all BmorCSPs from the pheromone gland. Our findings show that RNA editing is an important feature in the expression of CSPs and that a high variety of RDDs is found to expand drastically thus altering the repertoire of CSP proteins in a tissue-specific manner. PMID:24551045

  2. Automatic annotation of protein function based on family identification.

    PubMed

    Abascal, Federico; Valencia, Alfonso

    2003-11-15

    Although genomes are being sequenced at an impressive rate, the information generated tells us little about protein function, which is slow to characterize by traditional methods. Automatic protein function annotation based on computational methods has alleviated this imbalance. The most powerful current approach for inferring the function of new proteins is by studying the annotations of their homologues, since their common origin is assumed to be reflected in their structure and function. Unfortunately, as proteins evolve they acquire new functions, so annotation based on homology must be carried out in the context of orthologues or subfamilies. Evolution adds new complications through domain shuffling: homology (or orthology) frequently corresponds to domains rather than complete proteins. Moreover, the function of a protein may be seen as the result of combining the functions of its domains. Additionally, automatic annotation has to deal with problems related to the annotations in the databases: errors (which are likely to be propagated), inconsistencies, or different degrees of function specification. We describe a method that addresses these difficulties for the annotation of protein function. Sequence relationships are detected and measured to obtain a map of the sequence space, which is searched for differentiated groups of proteins (similar to islands on the map), which are expected to have a common function and correspond to groups of orthologues or subfamilies. This mapmaking is done by applying a clustering algorithm based on Normalized cuts in graphs. The domain problem is addressed in a simple way: pairwise local alignments are analyzed to determine the extent to which they cover the entire sequence lengths of the two proteins. This analysis determines both what homologues are preferred for functional inheritance and the level of confidence of the annotation. To alleviate the problems associated with database annotations, the information on all the

  3. Characterization of a New Family of Metal Transport Proteins

    SciTech Connect

    Guerinot, Mary Lou; Eide, David

    1999-06-01

    Soils at many DOE sites are contaminated with metals and radionuclides. Such soils obviously pose a risk to human and animal health. Unlike organic wastes, which can be metabolized, metals are immutable and cannot be degraded into harmless constituents. Phytoremediation, the use of plants to remove toxic materials from soil and water, may prove to be an environmentally friendly and cost effective solution for cleaning up metal contaminated sites. The success of phytoremediation will rely on the availability of plants that absorb, translocate, and tolerate the contaminating metals. However, before we can engineer such plants, we need more basic information on how plants acquire metals. An important long term goal of our research program is to understand how metals such as zinc, cadmium and iron are transported across membranes. Our research is focused on a new family of metal transporters, which we have identified through combined studies in the yeast Saccharomyces cerevisiae and in the model plant Arabidopsis thaliana. We have identified a family of 24 presumptive metal transport genes in a variety of organisms including yeast, trypanosomes, plants, nematodes, and humans. This family, which we have designated the ''ZIP'' genes, provides a rich source of material with which to undertake studies on metal transport in eukar

  4. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy.

    PubMed

    Czabotar, Peter E; Lessene, Guillaume; Strasser, Andreas; Adams, Jerry M

    2014-01-01

    The BCL-2 protein family determines the commitment of cells to apoptosis, an ancient cell suicide programme that is essential for development, tissue homeostasis and immunity. Too little apoptosis can promote cancer and autoimmune diseases; too much apoptosis can augment ischaemic conditions and drive neurodegeneration. We discuss the biochemical, structural and genetic studies that have clarified how the interplay between members of the BCL-2 family on mitochondria sets the apoptotic threshold. These mechanistic insights into the functions of the BCL-2 family are illuminating the physiological control of apoptosis, the pathological consequences of its dysregulation and the promising search for novel cancer therapies that target the BCL-2 family.

  5. Evolutionary bases of carbohydrate recognition and substrate discrimination in the ROK protein family.

    PubMed

    Conejo, Maria S; Thompson, Steven M; Miller, Brian G

    2010-06-01

    The ROK (repressor, open reading frame, kinase) protein family (Pfam 00480) is a large collection of bacterial polypeptides that includes sugar kinases, carbohydrate responsive transcriptional repressors, and many functionally uncharacterized gene products. ROK family sugar kinases phosphorylate a range of structurally distinct hexoses including the key carbon source D: -glucose, various glucose epimers, and several acetylated hexosamines. The primary sequence elements responsible for carbohydrate recognition within different functional categories of ROK polypeptides are largely unknown due to a limited structural characterization of this protein family. In order to identify the structural bases for substrate discrimination in individual ROK proteins, and to better understand the evolutionary processes that led to the divergent evolution of function in this family, we constructed an inclusive alignment of 227 representative ROK polypeptides. Phylogenetic analyses and ancestral sequence reconstructions of the resulting tree reveal a discrete collection of active site residues that dictate substrate specificity. The results also suggest a series of mutational events within the carbohydrate-binding sites of ROK proteins that facilitated the expansion of substrate specificity within this family. This study provides new insight into the evolutionary relationship of ROK glucokinases and non-ROK glucokinases (Pfam 02685), revealing the primary sequence elements shared between these two protein families, which diverged from a common ancestor in ancient times. PMID:20512568

  6. The BCL-2 protein family: opposing activities that mediate cell death.

    PubMed

    Youle, Richard J; Strasser, Andreas

    2008-01-01

    BCL-2 family proteins, which have either pro- or anti-apoptotic activities, have been studied intensively for the past decade owing to their importance in the regulation of apoptosis, tumorigenesis and cellular responses to anti-cancer therapy. They control the point of no return for clonogenic cell survival and thereby affect tumorigenesis and host-pathogen interactions and regulate animal development. Recent structural, phylogenetic and biological analyses, however, suggest the need for some reconsideration of the accepted organizational principles of the family and how the family members interact with one another during programmed cell death. Although these insights into interactions among BCL-2 family proteins reveal how these proteins are regulated, a unifying hypothesis for the mechanisms they use to activate caspases remains elusive.

  7. Exploring metazoan evolution through dynamic and holistic changes in protein families and domains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding proteome evolution is important for deciphering processes that drive species diversity and adaptation. Herein, the dynamics of change in protein families and protein domains over the course of metazoan evolution was explored. Change, as defined by birth/death and duplication/deletion ...

  8. A diverse family of proteins containing tumor necrosis factor receptor-associated factor domains.

    PubMed

    Zapata, J M; Pawlowski, K; Haas, E; Ware, C F; Godzik, A; Reed, J C

    2001-06-29

    We have identified three new tumor necrosis factor-receptor associated factor (TRAF) domain-containing proteins in humans using bioinformatics approaches, including: MUL, the product of the causative gene in Mulibrey Nanism syndrome; USP7 (HAUSP), an ubiquitin protease; and SPOP, a POZ domain-containing protein. Unlike classical TRAF family proteins involved in TNF family receptor (TNFR) signaling, the TRAF domains (TDs) of MUL, USP7, and SPOP are located near the NH(2) termini or central region of these proteins, rather than carboxyl end. MUL and USP7 are capable of binding in vitro via their TDs to all of the previously identified TRAF family proteins (TRAF1, TRAF2, TRAF3, TRAF4, TRAF5, and TRAF6), whereas the TD of SPOP interacts weakly with TRAF1 and TRAF6 only. The TD of MUL also interacted with itself, whereas the TDs of USP7 and SPOP did not self-associate. Analysis of various MUL and USP7 mutants by transient transfection assays indicated that the TDs of these proteins are necessary and sufficient for suppressing NF-kappaB induction by TRAF2 and TRAF6 as well as certain TRAF-binding TNF family receptors. In contrast, the TD of SPOP did not inhibit NF-kappaB induction. Immunofluorescence confocal microscopy indicated that MUL localizes to cytosolic bodies, with targeting to these structures mediated by a RBCC tripartite domain within the MUL protein. USP7 localized predominantly to the nucleus, in a TD-dependent manner. Data base searches revealed multiple proteins containing TDs homologous to those found in MUL, USP7, and SPOP throughout eukaryotes, including yeast, protists, plants, invertebrates, and mammals, suggesting that this branch of the TD family arose from an ancient gene. We propose the moniker TEFs (TD-encompassing factors) for this large family of proteins.

  9. iProClass: an integrated database of protein family, function and structure information.

    PubMed

    Huang, Hongzhan; Barker, Winona C; Chen, Yongxing; Wu, Cathy H

    2003-01-01

    The iProClass database provides comprehensive, value-added descriptions of proteins and serves as a framework for data integration in a distributed networking environment. The protein information in iProClass includes family relationships as well as structural and functional classifications and features. The current version consists of about 830 000 non-redundant PIR-PSD, SWISS-PROT, and TrEMBL proteins organized with more than 36 000 PIR superfamilies, 145 000 families, 4000 domains, 1300 motifs and 550 000 FASTA similarity clusters. It provides rich links to over 50 database of protein sequences, families, functions and pathways, protein-protein interactions, post-translational modifications, protein expressions, structures and structural classifications, genes and genomes, ontologies, literature and taxonomy. Protein and superfamily summary reports present extensive annotation information and include membership statistics and graphical display of domains and motifs. iProClass employs an open and modular architecture for interoperability and scalability. It is implemented in the Oracle object-relational database system and is updated biweekly. The database is freely accessible from the web site at http://pir.georgetown.edu/iproclass/ and searchable by sequence or text string. The data integration in iProClass supports exploration of protein relationships. Such knowledge is fundamental to the understanding of protein evolution, structure and function and crucial to functional genomic and proteomic research.

  10. Structural Features and Chaperone Activity of the NudC Protein Family

    SciTech Connect

    Zheng, Meiying; Cierpicki, Tomasz; Burdette, Alexander J.; Utepbergenov, Darkhan; Janczyk, Pawe; #322; #321; .; Derewenda, Urszula; Stukenberg, P. Todd; Caldwell, Kim A.; Derewenda, Zygmunt S.

    2012-05-25

    The NudC family consists of four conserved proteins with representatives in all eukaryotes. The archetypal nudC gene from Aspergillus nidulans is a member of the nud gene family that is involved in the maintenance of nuclear migration. This family also includes nudF, whose human orthologue, Lis1, codes for a protein essential for brain cortex development. Three paralogues of NudC are known in vertebrates: NudC, NudC-like (NudCL), and NudC-like 2 (NudCL2). The fourth distantly related member of the family, CML66, contains a NudC-like domain. The three principal NudC proteins have no catalytic activity but appear to play as yet poorly defined roles in proliferating and dividing cells. We present crystallographic and NMR studies of the human NudC protein and discuss the results in the context of structures recently deposited by structural genomics centers (i.e., NudCL and mouse NudCL2). All proteins share the same core CS domain characteristic of proteins acting either as cochaperones of Hsp90 or as independent small heat shock proteins. However, while NudC and NudCL dimerize via an N-terminally located coiled coil, the smaller NudCL2 lacks this motif and instead dimerizes as a result of unique domain swapping. We show that NudC and NudCL, but not NudCL2, inhibit the aggregation of several target proteins, consistent with an Hsp90-independent heat shock protein function. Importantly, and in contrast to several previous reports, none of the three proteins is able to form binary complexes with Lis1. The availability of structural information will be of help in further studies on the cellular functions of the NudC family.

  11. The Pfam protein families database: towards a more sustainable future.

    PubMed

    Finn, Robert D; Coggill, Penelope; Eberhardt, Ruth Y; Eddy, Sean R; Mistry, Jaina; Mitchell, Alex L; Potter, Simon C; Punta, Marco; Qureshi, Matloob; Sangrador-Vegas, Amaia; Salazar, Gustavo A; Tate, John; Bateman, Alex

    2016-01-01

    In the last two years the Pfam database (http://pfam.xfam.org) has undergone a substantial reorganisation to reduce the effort involved in making a release, thereby permitting more frequent releases. Arguably the most significant of these changes is that Pfam is now primarily based on the UniProtKB reference proteomes, with the counts of matched sequences and species reported on the website restricted to this smaller set. Building families on reference proteomes sequences brings greater stability, which decreases the amount of manual curation required to maintain them. It also reduces the number of sequences displayed on the website, whilst still providing access to many important model organisms. Matches to the full UniProtKB database are, however, still available and Pfam annotations for individual UniProtKB sequences can still be retrieved. Some Pfam entries (1.6%) which have no matches to reference proteomes remain; we are working with UniProt to see if sequences from them can be incorporated into reference proteomes. Pfam-B, the automatically-generated supplement to Pfam, has been removed. The current release (Pfam 29.0) includes 16 295 entries and 559 clans. The facility to view the relationship between families within a clan has been improved by the introduction of a new tool.

  12. Interactions of the p53 protein family in cellular stress response in gastrointestinal tumors

    PubMed Central

    Vilgelm, Anna E.; Washington, Mary K.; Wei, Jinxiong; Chen, Heidi; Prassolov, Vladimir S.; Zaika, Alexander I.

    2010-01-01

    p53, p63 and p73 are members of the p53 protein family involved in regulation of cell cycle, apoptosis, differentiation and other critical cellular processes. Here we investigated the contribution of the entire p53 family in chemotherapeutic drug response in gastrointestinal tumors. Real-time PCR and immunohistochemistry revealed complexity and variability of expression profiles of the p53 protein family. Using colon and esophageal cancer cells, we found that the integral transcription activity of the entire p53 family, as measured by the reporter analysis, associated with response to drug treatment in studied cells. We also found that p53 and p73, as well as p63 and p73, bind simultaneously to the promoters of p53 target genes. Taken together, our results support the view that the p53 protein family functions as an interacting network of proteins and show that cellular responses to chemotherapeutic drug treatment are determined by the total activity of the entire p53 family, rather than p53 alone. PMID:20197393

  13. Interactions of the p53 protein family in cellular stress response in gastrointestinal tumors.

    PubMed

    Vilgelm, Anna E; Washington, Mary K; Wei, Jinxiong; Chen, Heidi; Prassolov, Vladimir S; Zaika, Alexander I

    2010-03-01

    p53, p63, and p73 are members of the p53 protein family involved in regulation of cell cycle, apoptosis, differentiation, and other critical cellular processes. Here, we investigated the contribution of the entire p53 family in chemotherapeutic drug response in gastrointestinal tumors. Real-time PCR and immunohistochemistry revealed complexity and variability of expression profiles of the p53 protein family. Using colon and esophageal cancer cells, we found that the integral transcription activity of the entire p53 family, as measured by the reporter analysis, associated with response to drug treatment in studied cells. We also found that p53 and p73, as well as p63 and p73, bind simultaneously to the promoters of p53 target genes. Taken together, our results support the view that the p53 protein family functions as an interacting network of proteins and show that cellular responses to chemotherapeutic drug treatment are determined by the total activity of the entire p53 family rather than p53 alone.

  14. Molecular evolution of miraculin-like proteins in soybean Kunitz super-family.

    PubMed

    Selvakumar, Purushotham; Gahloth, Deepankar; Tomar, Prabhat Pratap Singh; Sharma, Nidhi; Sharma, Ashwani Kumar

    2011-12-01

    Miraculin-like proteins (MLPs) belong to soybean Kunitz super-family and have been characterized from many plant families like Rutaceae, Solanaceae, Rubiaceae, etc. Many of them possess trypsin inhibitory activity and are involved in plant defense. MLPs exhibit significant sequence identity (~30-95%) to native miraculin protein, also belonging to Kunitz super-family compared with a typical Kunitz family member (~30%). The sequence and structure-function comparison of MLPs with that of a classical Kunitz inhibitor have demonstrated that MLPs have evolved to form a distinct group within Kunitz super-family. Sequence analysis of new genes along with available MLP sequences in the literature revealed three major groups for these proteins. A significant feature of Rutaceae MLP type 2 sequences is the presence of phosphorylation motif. Subtle changes are seen in putative reactive loop residues among different MLPs suggesting altered specificities to specific proteases. In phylogenetic analysis, Rutaceae MLP type 1 and type 2 proteins clustered together on separate branches, whereas native miraculin along with other MLPs formed distinct clusters. Site-specific positive Darwinian selection was observed at many sites in both the groups of Rutaceae MLP sequences with most of the residues undergoing positive selection located in loop regions. The results demonstrate the sequence and thereby the structure-function divergence of MLPs as a distinct group within soybean Kunitz super-family due to biotic and abiotic stresses of local environment. PMID:22274614

  15. Chlorophyll-binding proteins revisited - a multigenic family of light-harvesting and stress proteins from a brown algal perspective

    PubMed Central

    2010-01-01

    Background Chlorophyll-binding proteins (CBPs) constitute a large family of proteins with diverse functions in both light-harvesting and photoprotection. The evolution of CBPs has been debated, especially with respect to the origin of the LI818 subfamily, members of which function in non-photochemical quenching and have been found in chlorophyll a/c-containing algae and several organisms of the green lineage, but not in red algae so far. The recent publication of the Ectocarpus siliculosus genome represents an opportunity to expand on previous work carried out on the origin and function of CBPs. Results The Ectocarpus genome codes for 53 CBPs falling into all major families except the exclusively green family of chlorophyll a/b binding proteins. Most stress-induced CBPs belong to the LI818 family. However, we highlight a few stress-induced CBPs from Phaeodactylum tricornutum and Chondrus crispus that belong to different sub-families and are promising targets for future functional studies. Three-dimensional modeling of two LI818 proteins revealed features common to all LI818 proteins that are likely to interfere with their capacity to bind chlorophyll b and lutein, but may enable binding of chlorophyll c and fucoxanthin. In the light of this finding, we examined the possibility that LI818 proteins may have originated in a chlorophyll c/fucoxanthin containing organism and compared this scenario to three alternatives: an independent evolution of LI818 proteins in different lineages, an ancient origin together with the first CBPs, before the separation of the red and the green lineage, or an origin in the green lineage and a transfer to an ancestor of haptophytes and heterokonts during a cryptic endosymbiosis event. Conclusions Our findings reinforce the idea that the LI818 family of CBPs has a role in stress response. In addition, statistical analyses of phylogenetic trees show an independent origin in different eukaryotic lineages or a green algal origin of LI818

  16. Conservation of side-chain dynamics within a protein family.

    PubMed

    Law, Anthony B; Fuentes, Ernesto J; Lee, Andrew L

    2009-05-13

    The question of protein dynamics and its relevance to function is currently a topic of great interest. Proteins are particularly dynamic at the side-chain level on the time scale of picoseconds to nanoseconds. Here, we present a comparison of NMR-monitored side-chain motion between three PDZ domains of approximately 30% sequence identity and show that the side-chain dynamics display nontrivial conservation. Methyl (2)H relaxation was carried out to determine side-chain order parameters (S(2)), which were found to be more similar than naively expected from sequence, local packing, or a combination of the two. Thus, the dynamics of a rather distant homologue appears to be an excellent predictor of a protein's side-chain dynamics and, on average, better than current structure-based methods. Fast side-chain dynamics therefore display a high level of organization associated with global fold. Beyond simple conservation, the analysis herein suggests that the pattern of side-chain flexibility has significant contributions from nonlocal elements of the PDZ fold, such as correlated motions, and that the conserved dynamics may directly support function.

  17. The VQ Motif-Containing Protein Family of Plant-Specific Transcriptional Regulators1

    PubMed Central

    Jing, Yanjun; Lin, Rongcheng

    2015-01-01

    The VQ motif-containing proteins (designated as VQ proteins) are a class of plant-specific proteins with a conserved and single short FxxhVQxhTG amino acid sequence motif. VQ proteins regulate diverse developmental processes, including responses to biotic and abiotic stresses, seed development, and photomorphogenesis. In this Update, we summarize and discuss recent advances in our understanding of the regulation and function of VQ proteins and the role of the VQ motif in mediating transcriptional regulation and protein-protein interactions in signaling pathways. Based on the accumulated evidence, we propose a general mechanism of action for the VQ protein family, which likely defines a novel class of transcriptional regulators specific to plants. PMID:26220951

  18. p204, a p200 family protein, as a multifunctional regulator of cell proliferation and differentiation

    PubMed Central

    Luan, Yi; Lengyel, Peter; Liu, Chuan-Ju

    2015-01-01

    The interferon-inducible p200 family comprises a group of homologous mouse and human proteins. Most of these have an N-terminal DAPIN domain and one or two partially conserved, 200 amino acid long C-terminal domains (designated as 200X domain). These proteins play important roles in the regulation of cell proliferation, tissue differentiation, apoptosis and senescence. p200 family proteins are involved also in autoimmunity and the control of tumor growth. These proteins function by binding to various target proteins (e.g. transcription factors, signaling proteins, oncoproteins and tumor suppressor proteins) and modulating target activity. This review concentrates on p204, a murine member of the family and its roles in regulating cell proliferation, cell and tissue differentiation (e.g. of skeletal muscle myotubes, beating cardiac myocytes, osteoblasts, chondrocytes and macrophages) and signaling by Ras proteins. The expression of p204 in various tissues as promoted by tissue-specific transcription factors, its distribution among subcellular compartments, and the controls of these features are also discussed. PMID:19027346

  19. A practical guide for the computational selection of residues to be experimentally characterized in protein families.

    PubMed

    Benítez-Páez, Alfonso; Cárdenas-Brito, Sonia; Gutiérrez, Andrés J

    2012-05-01

    In recent years, numerous biocomputational tools have been designed to extract functional and evolutionary information from multiple sequence alignments (MSAs) of proteins and genes. Most biologists working actively on the characterization of proteins from a single or family perspective use the MSA analysis to retrieve valuable information about amino acid conservation and the functional role of residues in query protein(s). In MSAs, adjustment of alignment parameters is a key point to improve the quality of MSA output. However, this issue is frequently underestimated and/or misunderstood by scientists and there is no in-depth knowledge available in this field. This brief review focuses on biocomputational approaches complementary to MSA to help distinguish functional residues in protein families. These additional analyses involve issues ranging from phylogenetic to statistical, which address the detection of amino acids pivotal for protein function at any level. In recent years, a large number of tools has been designed for this very purpose. Using some of these relevant, useful tools, we have designed a practical pipeline to perform in silico studies with a view to improving the characterization of family proteins and their functional residues. This review-guide aims to present biologists a set of specially designed tools to study proteins. These tools are user-friendly as they use web servers or easy-to-handle applications. Such criteria are essential for this review as most of the biologists (experimentalists) working in this field are unfamiliar with these biocomputational analysis approaches.

  20. Comparative genomic and proteomic anatomy of Mycobacterium ubiquitous Esx family proteins: implications in pathogenicity and virulence.

    PubMed

    Deng, Wanyan; Xiang, Xiaohong; Xie, Jianping

    2014-04-01

    Secreted proteins are among the most important molecules involved in host-pathogen interaction of Mycobacterium tuberculosis, the etiological agent of human tuberculosis (TB). M. tuberculosis encodes five types of VII secretion systems (ESX-1 to ESX-5) responsible for the exportation of many proteins. This system mediated substrates including members of the Esx family implicated in tuberculosis pathogenesis and survival within host cells. However, the distribution and evolution of this family remain elusive. To explore the evolution and distribution of Esx family proteins, we analyzed all available Mycobacteria genomes. Interestingly, amino mutations among M. tuberculosis esx family proteins may relate to their functions. We further analyzed the differences between pathogenic Mycobacteria, the attenuated Mycobacteria and non-pathogenic Mycobacteria. The stability, the globular domains and the phosphorylation of serine/threonine residues of M. tuberculosis esx proteins with their homologies among other Mycoabcteria were analyzed. Our comparative genomic and proteomic analysis found that the change of stability, gain or loss of globular domains and phosphorylation of serine/threonine might be responsible for the difference between the pathogenesis and virulence of the esx proteins and its homolog widespread among Mycobacteria and related species, which may provide clues for novel anti-tuberculosis drug targets.

  1. Arabidopsis Ovate Family Proteins, a Novel Transcriptional Repressor Family, Control Multiple Aspects of Plant Growth and Development

    SciTech Connect

    Wang, Shucai; Chang, Ying; Guo, Jianjun; Zeng, Qingning; Ellis, Brian; Chen, Jay

    2011-01-01

    BACKGROUND: The Arabidopsis genome contains 18 genes that are predicted to encode Ovate Family Proteins (AtOFPs), a protein family characterized by a conserved OVATE domain, an approximately 70-amino acid domain that was originally found in tomato OVATE protein. Among AtOFP family members, AtOFP1 has been shown to suppress cell elongation, in part, by suppressing the expression of AtGA20ox1, AtOFP4 has been shown to regulate secondary cell wall formation by interact with KNOTTED1-LIKE HOMEODOMAIN PROTEIN 7 (KNAT7), and AtOFP5 has been shown to regulate the activity of a BEL1-LIKEHOMEODOMAIN 1(BLH1)-KNAT3 complex during early embryo sac development, but little is known about the function of other AtOFPs. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrated here that AtOFP proteins could function as effective transcriptional repressors in the Arabidopsis protoplast transient expression system. The analysis of loss-of-function alleles of AtOFPs suggested AtOFP genes may have overlapping function in regulating plant growth and development, because none of the single mutants identified, including T-DNA insertion mutants in AtOFP1, AtOFP4, AtOFP8, AtOFP10, AtOFP15 and AtOFP16, displayed any apparent morphological defects. Further, Atofp1 Atofp4 and Atofp15 Atofp16 double mutants still did not differ significantly from wild-type. On the other hand, plants overexpressing AtOFP genes displayed a number of abnormal phenotypes, which could be categorized into three distinct classes, suggesting that AtOFP genes may also have diverse functions in regulating plant growth and development. Further analysis suggested that AtOFP1 regulates cotyledon development in a postembryonic manner, and global transcript profiling revealed that it suppress the expression of many other genes. CONCLUSIONS/SIGNIFICANCE: Our results showed that AtOFPs function as transcriptional repressors and they regulate multiple aspects of plant growth and development. These results provided the first overview of a

  2. Exons 16 and 17 of the amyloid precursor protein gene in familial inclusion body myopathy.

    PubMed

    Sivakumar, K; Cervenáková, L; Dalakas, M C; Leon-Monzon, M; Isaacson, S H; Nagle, J W; Vasconcelos, O; Goldfarb, L G

    1995-08-01

    Accumulation of beta-amyloid protein (A beta) occurs in some muscle fibers of patients with inclusion body myopathy and resembles the type of amyloid deposits seen in the affected tissues of patients with Alzheimer's disease and cerebrovascular amyloidosis. Because mutations in exons 16 and 17 of the beta-amyloid precursor protein (beta APP) gene on chromosome 21 have been identified in patients with early-onset familial Alzheimer's disease and Dutch-type cerebrovascular amyloidosis, we searched for mutations of the same region in patients with familial inclusion body myopathy. Sequencing of both alleles in 8 patients from four unrelated families did not reveal any mutations in these exons. The amyloid deposition in familial forms of inclusion body myopathy may be either due to errors in other gene loci, or it is secondary reflecting altered beta APP metabolism or myocyte degeneration and cell membrane degradation.

  3. The Rh protein family: gene evolution, membrane biology, and disease association.

    PubMed

    Huang, Cheng-Han; Ye, Mao

    2010-04-01

    The Rh (Rhesus) genes encode a family of conserved proteins that share a structural fold of 12 transmembrane helices with members of the major facilitator superfamily. Interest in this family has arisen from the discovery of Rh factor's involvement in hemolytic disease in the fetus and newborn, and of its homologs widely expressed in epithelial tissues. The Rh factor and Rh-associated glycoprotein (RhAG), with epithelial cousins RhBG and RhCG, form four subgroups conferring upon vertebrates a genealogical commonality. The past decade has heralded significant advances in understanding the phylogenetics, allelic diversity, crystal structure, and biological function of Rh proteins. This review describes recent progress on this family and the molecular insights gleaned from its gene evolution, membrane biology, and disease association. The focus is on its long evolutionary history and surprising structural conservation from prokaryotes to humans, pointing to the importance of its functional role, related to but distinct from ammonium transport proteins.

  4. Recent improvements of the ProDom database of protein domain families.

    PubMed

    Corpet, F; Gouzy, J; Kahn, D

    1999-01-01

    The ProDom database contains protein domain families generated from the SWISS-PROT database by automated sequence comparisons. The current version was built with a new improved procedure based on recursive PSI-BLAST homology searches. ProDom can be searched on the World Wide Web to study domain arrangements within either known families or new proteins, with the help of a user-friendly graphical interface (http://www.toulouse.inra.fr/prodom.html). Recent improvements to the ProDom server include: ProDom queries under the SRS Sequence Retrieval System; links to the PredictProtein server; phylogenetic trees and condensed multiple alignments for a better representation of large domain families, with zooming in and out capabilities. In addition, a similar server was set up to display the outcome of whole genome domain analysis as applied to 17 completed microbial genomes (http://www.toulouse.inra.fr/prodomCG.html ).

  5. The Dishevelled Protein Family: Still Rather a Mystery After Over 20 Years of Molecular Studies

    PubMed Central

    Mlodzik, Marek

    2016-01-01

    Dishevelled (Dsh) is a key component of Wnt-signaling pathways and possibly also has other functional requirements. Dsh appears to be a key factor to interpret Wnt signals coming via the Wnt-receptor family, the Frizzled proteins, from the plasma membrane and route them into the correct intracellular pathways. However, how Dsh is regulated to relay signal flow to specific and distinct cellular responses upon interaction with the same Wnt-receptor family remains very poorly understood. PMID:26969973

  6. Identification and in silico analysis of helical lipid binding regions in proteins belonging to the amphitropic protein family.

    PubMed

    Keller, Rob C A

    2014-12-01

    The role of protein-lipid interactions is increasingly recognized to be of importance in numerous biological processes. Bioinformatics is being increasingly used as a helpful tool in studying protein-lipid interactions. Especially recently developed approaches recognizing lipid binding regions in proteins can be implemented. In this study one of those bioinformatics approaches specialized in identifying lipid binding helical regions in proteins is expanded. The approach is explored further by features which can be easily obtained manually. Some interesting examples of members of the amphitropic protein family have been investigated in order to demonstrate the additional features of this bioinformatics approach. The results in this study seem to indicate interesting characteristics of amphitropic proteins and provide insight into the mechanistic functioning and overall understanding of this intriguing class of proteins. Additionally, the results demonstrate that the presented bioinformatics approach might be either an interesting starting point in protein-lipid interactions studies or a good tool for selecting new focus points for more detailed experimental research of proteins with known overall protein-lipid binding abilities. PMID:25431407

  7. Identification and in silico analysis of helical lipid binding regions in proteins belonging to the amphitropic protein family.

    PubMed

    Keller, Rob C A

    2014-12-01

    The role of protein-lipid interactions is increasingly recognized to be of importance in numerous biological processes. Bioinformatics is being increasingly used as a helpful tool in studying protein-lipid interactions. Especially recently developed approaches recognizing lipid binding regions in proteins can be implemented. In this study one of those bioinformatics approaches specialized in identifying lipid binding helical regions in proteins is expanded. The approach is explored further by features which can be easily obtained manually. Some interesting examples of members of the amphitropic protein family have been investigated in order to demonstrate the additional features of this bioinformatics approach. The results in this study seem to indicate interesting characteristics of amphitropic proteins and provide insight into the mechanistic functioning and overall understanding of this intriguing class of proteins. Additionally, the results demonstrate that the presented bioinformatics approach might be either an interesting starting point in protein-lipid interactions studies or a good tool for selecting new focus points for more detailed experimental research of proteins with known overall protein-lipid binding abilities.

  8. A Web-based classification system of DNA-binding protein families.

    PubMed

    Karmirantzou, M; Hamodrakas, S J

    2001-07-01

    Rational classification of proteins encoded in sequenced genomes is critical for making the genome sequences maximally useful for functional and evolutionary studies. The family of DNA-binding proteins is one of the most populated and studied amongst the various genomes of bacteria, archaea and eukaryotes and the Web-based system presented here is an approach to their classification. The DnaProt resource is an annotated and searchable collection of protein sequences for the families of DNA-binding proteins. The database contains 3238 full-length sequences (retrieved from the SWISS-PROT database, release 38) that include, at least, a DNA-binding domain. Sequence entries are organized into families defined by PROSITE patterns, PRINTS motifs and de novo excised signatures. Combining global similarities and functional motifs into a single classification scheme, DNA-binding proteins are classified into 33 unique classes, which helps to reveal comprehensive family relationships. To maximize family information retrieval, DnaProt contains a collection of multiple alignments for each DNA-binding family while the recognized motifs can be used as diagnostically functional fingerprints. All available structural class representatives have been referenced. The resource was developed as a Web-based management system for online free access of customized data sets. Entries are fully hyperlinked to facilitate easy retrieval of the original records from the source databases while functional and phylogenetic annotation will be applied to newly sequenced genomes. The database is freely available for online search of a library containing specific patterns of the identified DNA-binding protein classes and retrieval of individual entries from our WWW server (http://kronos.biol.uoa.gr/~mariak/dbDNA.html).

  9. Accelerated Disease Onset with Stabilized Familial Amyotrophic Lateral Sclerosis (ALS)-linked Mutant TDP-43 Proteins*

    PubMed Central

    Watanabe, Shoji; Kaneko, Kumi; Yamanaka, Koji

    2013-01-01

    Abnormal protein accumulation is a pathological hallmark of neurodegenerative diseases, including accumulation of TAR DNA-binding protein 43 (TDP-43) in amyotrophic lateral sclerosis (ALS). Dominant mutations in the TDP-43 gene are causative for familial ALS; however, the relationship between mutant protein biochemical phenotypes and disease course and their significance to disease pathomechanism are not known. Here, we found that longer half-lives of mutant proteins correlated with accelerated disease onset. Based on our findings, we established a cell model in which chronic stabilization of wild-type TDP-43 protein provoked cytotoxicity and recapitulated pathogenic protein cleavage and insolubility to the detergent Sarkosyl, TDP-43 properties that have been observed in sporadic ALS lesions. Furthermore, these cells showed proteasomal impairment and dysregulation of their own mRNA levels. These results suggest that chronically increased stability of mutant or wild-type TDP-43 proteins results in a gain of toxicity through abnormal proteostasis. PMID:23235148

  10. Genome-Wide Identification and Expression of Xenopus F-Box Family of Proteins

    PubMed Central

    Saritas-Yildirim, Banu; Pliner, Hannah A.; Ochoa, Angelica; Silva, Elena M.

    2015-01-01

    Protein degradation via the multistep ubiquitin/26S proteasome pathway is a rapid way to alter the protein profile and drive cell processes and developmental changes. Many key regulators of embryonic development are targeted for degradation by E3 ubiquitin ligases. The most studied family of E3 ubiquitin ligases is the SCF ubiquitin ligases, which use F-box adaptor proteins to recognize and recruit target proteins. Here, we used a bioinformatics screen and phylogenetic analysis to identify and annotate the family of F-box proteins in the Xenopus tropicalis genome. To shed light on the function of the F-box proteins, we analyzed expression of F-box genes during early stages of Xenopus development. Many F-box genes are broadly expressed with expression domains localized to diverse tissues including brain, spinal cord, eye, neural crest derivatives, somites, kidneys, and heart. All together, our genome-wide identification and expression profiling of the Xenopus F-box family of proteins provide a foundation for future research aimed to identify the precise role of F-box dependent E3 ubiquitin ligases and their targets in the regulatory circuits of development. PMID:26327321

  11. Claudins reign: The claudin/EMP/PMP22/γ channel protein family in C. elegans.

    PubMed

    Simske, Jeffrey S

    2013-07-01

    The claudin family of integral membrane proteins was identified as the major protein component of the tight junctions in all vertebrates. Since their identification, claudins, and their associated pfam00822 superfamily of proteins have been implicated in a wide variety of cellular processes. Claudin homologs have been identified in invertebrates as well, including Drosophila and C. elegans. Recent studies demonstrate that the C. elegans claudins, clc-1-clc- 5, and similar proteins in the greater PMP22/EMP/claudin/voltage-gated calcium channel γ subunit family, including nsy-4, and vab-9, while highly divergent at a sequence level from each other and from the vertebrate claudins, in many cases play roles similar to those traditionally assigned to their vertebrate homologs. These include regulating cell adhesion and passage of small molecules through the paracellular space, channel activity, protein aggregation, sensitivity to pore-forming toxins, intercellular signaling, cell fate specification and dynamic changes in cell morphology. Study of claudin superfamily proteins in C. elegans should continue to provide clues as to how claudin family protein function has been adapted to perform diverse functions at specialized cell-cell contacts in metazoans.

  12. The alpha-subunit of protein prenyltransferases is a member of the tetratricopeptide repeat family.

    PubMed

    Zhang, H; Grishin, N V

    1999-08-01

    Lipidation catalyzed by protein prenyltransferases is essential for the biological function of a number of eukaryotic proteins, many of which are involved in signal transduction and vesicular traffic regulation. Sequence similarity searches reveal that the alpha-subunit of protein prenyltransferases (PTalpha) is a member of the tetratricopeptide repeat (TPR) superfamily. This finding makes the three-dimensional structure of the rat protein farnesyltransferase the first structural model of a TPR protein interacting with its protein partner. Structural comparison of the two TPR domains in protein farnesyltransferase and protein phosphatase 5 indicates that variation in TPR consensus residues may affect protein binding specificity through altering the overall shape of the TPR superhelix. A general approach to evolutionary analysis of proteins with repetitive sequence motifs has been developed and applied to the protein prenyltransferases and other TPR proteins. The results suggest that all members in PTalpha family originated from a common multirepeat ancestor, while the common ancestor of PTalpha and other members of TPR superfamily is likely to be a single repeat protein.

  13. The rheostat in the membrane: BCL-2 family proteins and apoptosis

    PubMed Central

    Volkmann, N; Marassi, F M; Newmeyer, D D; Hanein, D

    2014-01-01

    Apoptosis, a mechanism for programmed cell death, has key roles in human health and disease. Many signals for cellular life and death are regulated by the BCL-2 family proteins and converge at mitochondria, where cell fate is ultimately decided. The BCL-2 family includes both pro-life (e.g. BCL-XL) and pro-death (e.g. BAX, BAK) proteins. Previously, it was thought that a balance between these opposing proteins, like a simple ‘rheostat', could control the sensitivity of cells to apoptotic stresses. Later, this rheostat concept had to be extended, when it became clear that BCL-2 family proteins regulate each other through a complex network of bimolecular interactions, some transient and some relatively stable. Now, studies have shown that the apoptotic circuitry is even more sophisticated, in that BCL-2 family interactions are spatially dynamic, even in nonapoptotic cells. For example, BAX and BCL-XL can shuttle between the cytoplasm and the mitochondrial outer membrane (MOM). Upstream signaling pathways can regulate the cytoplasmic–MOM equilibrium of BAX and thereby adjust the sensitivity of cells to apoptotic stimuli. Thus, we can view the MOM as the central locale of a dynamic life–death rheostat. BAX invariably forms extensive homo-oligomers after activation in membranes. However, recent studies, showing that activated BAX monomers determine the kinetics of MOM permeabilization (MOMP), perturb the lipid bilayer and form nanometer size pores, pose questions about the role of the oligomerization. Other lingering questions concern the molecular mechanisms of BAX redistribution between MOM and cytoplasm and the details of BAX/BAK–membrane assemblies. Future studies need to delineate how BCL-2 family proteins regulate MOMP, in concert with auxiliary MOM proteins, in a dynamic membrane environment. Technologies aimed at elucidating the structure and function of the full-length proteins in membranes are needed to illuminate some of these critical issues. PMID

  14. The rheostat in the membrane: BCL-2 family proteins and apoptosis.

    PubMed

    Volkmann, N; Marassi, F M; Newmeyer, D D; Hanein, D

    2014-02-01

    Apoptosis, a mechanism for programmed cell death, has key roles in human health and disease. Many signals for cellular life and death are regulated by the BCL-2 family proteins and converge at mitochondria, where cell fate is ultimately decided. The BCL-2 family includes both pro-life (e.g. BCL-XL) and pro-death (e.g. BAX, BAK) proteins. Previously, it was thought that a balance between these opposing proteins, like a simple 'rheostat', could control the sensitivity of cells to apoptotic stresses. Later, this rheostat concept had to be extended, when it became clear that BCL-2 family proteins regulate each other through a complex network of bimolecular interactions, some transient and some relatively stable. Now, studies have shown that the apoptotic circuitry is even more sophisticated, in that BCL-2 family interactions are spatially dynamic, even in nonapoptotic cells. For example, BAX and BCL-XL can shuttle between the cytoplasm and the mitochondrial outer membrane (MOM). Upstream signaling pathways can regulate the cytoplasmic-MOM equilibrium of BAX and thereby adjust the sensitivity of cells to apoptotic stimuli. Thus, we can view the MOM as the central locale of a dynamic life-death rheostat. BAX invariably forms extensive homo-oligomers after activation in membranes. However, recent studies, showing that activated BAX monomers determine the kinetics of MOM permeabilization (MOMP), perturb the lipid bilayer and form nanometer size pores, pose questions about the role of the oligomerization. Other lingering questions concern the molecular mechanisms of BAX redistribution between MOM and cytoplasm and the details of BAX/BAK-membrane assemblies. Future studies need to delineate how BCL-2 family proteins regulate MOMP, in concert with auxiliary MOM proteins, in a dynamic membrane environment. Technologies aimed at elucidating the structure and function of the full-length proteins in membranes are needed to illuminate some of these critical issues.

  15. Horizontal Transfer, Not Duplication, Drives the Expansion of Protein Families in Prokaryotes

    PubMed Central

    Treangen, Todd J.; Rocha, Eduardo P. C.

    2011-01-01

    Gene duplication followed by neo- or sub-functionalization deeply impacts the evolution of protein families and is regarded as the main source of adaptive functional novelty in eukaryotes. While there is ample evidence of adaptive gene duplication in prokaryotes, it is not clear whether duplication outweighs the contribution of horizontal gene transfer in the expansion of protein families. We analyzed closely related prokaryote strains or species with small genomes (Helicobacter, Neisseria, Streptococcus, Sulfolobus), average-sized genomes (Bacillus, Enterobacteriaceae), and large genomes (Pseudomonas, Bradyrhizobiaceae) to untangle the effects of duplication and horizontal transfer. After removing the effects of transposable elements and phages, we show that the vast majority of expansions of protein families are due to transfer, even among large genomes. Transferred genes—xenologs—persist longer in prokaryotic lineages possibly due to a higher/longer adaptive role. On the other hand, duplicated genes—paralogs—are expressed more, and, when persistent, they evolve slower. This suggests that gene transfer and gene duplication have very different roles in shaping the evolution of biological systems: transfer allows the acquisition of new functions and duplication leads to higher gene dosage. Accordingly, we show that paralogs share most protein–protein interactions and genetic regulators, whereas xenologs share very few of them. Prokaryotes invented most of life's biochemical diversity. Therefore, the study of the evolution of biology systems should explicitly account for the predominant role of horizontal gene transfer in the diversification of protein families. PMID:21298028

  16. Protein Kinase D family kinases: roads start to segregate.

    PubMed

    Wille, Christoph; Seufferlein, Thomas; Eiseler, Tim

    2014-01-01

    Highly invasive pancreatic tumors are often recognized in late stages due to a lack of clear symptoms and pose major challenges for treatment and disease management. Broad-band Protein Kinase D (PKD) inhibitors have recently been proposed as additional treatment option for this disease. PKDs are implicated in the control of cancer cell motility, angiogenesis, proliferation and metastasis. In particular, PKD2 expression is elevated in pancreatic cancer, whereas PKD1 expression is comparably lower. In our recent study we report that both kinases control PDAC cell invasive properties in an isoform-specific, but opposing manner. PKD1 selectively mediates anti-migratory/anti-invasive features by preferential regulation of the actin-regulatory Cofilin-phosphatase Slingshot1L (SSH1L). PKD2, on the other hand enhances invasion and angiogenesis of PDAC cells in 3D-ECM cultures and chorioallantois tumor models by stimulating expression and secretion of matrix-metalloproteinase 7 and 9 (MMP7/9). MMP9 also enhances PKD2-mediated tumor angiogenesis releasing extracellular matrix-bound VEGF-A. We thus suggest high PKD2 expression and loss of PKD1 may be beneficial for tumor cells to enhance their matrix-invading abilities. In our recent study we demonstrate for the first time PKD1 and 2 isoform-selective effects on pancreatic cancer cell invasion, in-vitro and in-vivo, defining isoform-specific regulation of PKDs as a major future issue. PMID:24847910

  17. The CPCFC cuticular protein family: Anatomical and cuticular locations in Anopheles gambiae and distribution throughout Pancrustacea.

    PubMed

    Vannini, Laura; Bowen, John Hunter; Reed, Tyler W; Willis, Judith H

    2015-10-01

    Arthropod cuticles have, in addition to chitin, many structural proteins belonging to diverse families. Information is sparse about how these different cuticular proteins contribute to the cuticle. Most cuticular proteins lack cysteine with the exception of two families (CPAP1 and CPAP3), recently described, and the one other that we now report on that has a motif of 16 amino acids first identified in a protein, Bc-NCP1, from the cuticle of nymphs of the cockroach, Blaberus craniifer (Jensen et al., 1997). This motif turns out to be present as two or three copies in one or two proteins in species from many orders of Hexapoda. We have named the family of cuticular proteins with this motif CPCFC, based on its unique feature of having two cysteines interrupted by five amino acids (C-X(5)-C). Analysis of the single member of the family in Anopheles gambiae (AgamCPCFC1) revealed that its mRNA is most abundant immediately following ecdysis in larvae, pupae and adults. The mRNA is localized primarily in epidermis that secretes hard cuticle, sclerites, setae, head capsules, appendages and spermatheca. EM immunolocalization revealed the presence of the protein, generally in endocuticle of legs and antennae. A phylogenetic analysis found proteins bearing this motif in 14 orders of Hexapoda, but not in some species for which there are complete genomic data. Proteins were much longer in Coleoptera and Diptera than in other orders. In contrast to the 1 and occasionally 2 copies in other species, a dragonfly, Ladona fulva, has at least 14 genes coding for family members. CPCFC proteins were present in four classes of Crustacea with 5 repeats in one species, and motifs that ended C-X(7)-C in Malacostraca. They were not detected, except as obvious contaminants, in any other arthropod subphyla or in any other phylum. The conservation of CPCFC proteins throughout the Pancrustacea and the small number of copies in individual species indicate that, when present, these proteins are

  18. The HMGN Family of Chromatin-Binding Proteins: Dynamic Modulators of Epigenetic Processes

    PubMed Central

    Kugler, Jamie E.; Deng, Tao; Bustin, Michael

    2012-01-01

    The HMGN family of proteins binds to nucleosomes without any specificity for the underlying DNA sequence. They affect the global and local structure of chromatin, as well as the levels of histone modifications and thus play a role in epigenetic regulation of gene expression. This review focuses on the recent studies that provide new insights on the interactions between HMGN proteins, nucleosomes, and chromatin, and the effects of these interactions on epigenetic and transcriptional regulation. PMID:22326857

  19. A Protein Domain and Family Based Approach to Rare Variant Association Analysis

    PubMed Central

    Richardson, Tom G.; Shihab, Hashem A.; Rivas, Manuel A.; McCarthy, Mark I.; Campbell, Colin; Timpson, Nicholas J.; Gaunt, Tom R.

    2016-01-01

    Background It has become common practice to analyse large scale sequencing data with statistical approaches based around the aggregation of rare variants within the same gene. We applied a novel approach to rare variant analysis by collapsing variants together using protein domain and family coordinates, regarded to be a more discrete definition of a biologically functional unit. Methods Using Pfam definitions, we collapsed rare variants (Minor Allele Frequency ≤ 1%) together in three different ways 1) variants within single genomic regions which map to individual protein domains 2) variants within two individual protein domain regions which are predicted to be responsible for a protein-protein interaction 3) all variants within combined regions from multiple genes responsible for coding the same protein domain (i.e. protein families). A conventional collapsing analysis using gene coordinates was also undertaken for comparison. We used UK10K sequence data and investigated associations between regions of variants and lipid traits using the sequence kernel association test (SKAT). Results We observed no strong evidence of association between regions of variants based on Pfam domain definitions and lipid traits. Quantile-Quantile plots illustrated that the overall distributions of p-values from the protein domain analyses were comparable to that of a conventional gene-based approach. Deviations from this distribution suggested that collapsing by either protein domain or gene definitions may be favourable depending on the trait analysed. Conclusion We have collapsed rare variants together using protein domain and family coordinates to present an alternative approach over collapsing across conventionally used gene-based regions. Although no strong evidence of association was detected in these analyses, future studies may still find value in adopting these approaches to detect previously unidentified association signals. PMID:27128313

  20. Genome-wide identification and analysis of FK506-binding protein family gene family in strawberry (Fragaria × ananassa).

    PubMed

    Leng, Xiangpeng; Liu, Dan; Zhao, Mizhen; Sun, Xin; Li, Yu; Mu, Qian; Zhu, Xudong; Li, Pengyu; Fang, Jinggui

    2014-01-25

    The FK506 binding proteins (FKBPs) are abundant and ubiquitous proteins belonging to the large peptidyl-prolylcis-trans isomerase superfamily. FKBPs are known to be involved in many biological processes including hormone signaling, plant growth, and stress responses through a chaperone or an isomerization of proline residues during protein folding. The availability of complete strawberry genome sequences allowed the identification of 23 FKBP genes by HMMER and blast analysis. Chromosome scaffold locations of these FKBP genes in the strawberry genome were determined and the protein domain and motif organization of FaFKBPs analyzed. The phylogenetic relationships between strawberry FKBPs were also assessed. The expression profiles of FaFKBPs genes results revealed that most FaFKBPs were expressed in all tissues, while a few FaFKBPs were specifically expressed in some of the tissues. These data not only contribute to some better understanding of the complex regulation of the strawberry FKBP gene family, but also provide valuable information for further research in strawberry functional genomics. PMID:24230972

  1. Genome-wide identification and analysis of FK506-binding protein family gene family in strawberry (Fragaria × ananassa).

    PubMed

    Leng, Xiangpeng; Liu, Dan; Zhao, Mizhen; Sun, Xin; Li, Yu; Mu, Qian; Zhu, Xudong; Li, Pengyu; Fang, Jinggui

    2014-01-25

    The FK506 binding proteins (FKBPs) are abundant and ubiquitous proteins belonging to the large peptidyl-prolylcis-trans isomerase superfamily. FKBPs are known to be involved in many biological processes including hormone signaling, plant growth, and stress responses through a chaperone or an isomerization of proline residues during protein folding. The availability of complete strawberry genome sequences allowed the identification of 23 FKBP genes by HMMER and blast analysis. Chromosome scaffold locations of these FKBP genes in the strawberry genome were determined and the protein domain and motif organization of FaFKBPs analyzed. The phylogenetic relationships between strawberry FKBPs were also assessed. The expression profiles of FaFKBPs genes results revealed that most FaFKBPs were expressed in all tissues, while a few FaFKBPs were specifically expressed in some of the tissues. These data not only contribute to some better understanding of the complex regulation of the strawberry FKBP gene family, but also provide valuable information for further research in strawberry functional genomics.

  2. Bcl-2–family proteins and hematologic malignancies: history and future prospects

    PubMed Central

    2008-01-01

    BCL-2 was the first antideath gene dis-covered, a milestone that effectively launched a new era in cell death research. Since its discovery more than 2 decades ago, multiple members of the human Bcl-2 family of apoptosis-regulating proteins have been identified, including 6 antiapoptotic proteins, 3 structurally similar proapoptotic proteins, and several structurally diverse proapoptotic interacting proteins that operate as upstream agonists or antagonists. Bcl-2–family proteins regulate all major types of cell death, including apoptosis, necrosis, and autophagy. As such, they operate as nodal points at the convergence of multiple pathways with broad relevance to biology and medicine. Bcl-2 derives its name from its original discovery in the context of B-cell lymphomas, where chromosomal translocations commonly activate the BCL-2 protooncogene, endowing B cells with a selective survival advantage that promotes their neoplastic expansion. The concept that defective programmed cell death contributes to malignancy was established by studies of Bcl-2, representing a major step forward in current understanding of tumorigenesis. Experimental therapies targeting Bcl-2 family mRNAs or proteins are currently in clinical testing, raising hopes that a new class of anticancer drugs may be near. PMID:18362212

  3. Recombinant Preparation, Biochemical Analysis, and Structure Determination of Sirtuin Family Histone/Protein Deacylases.

    PubMed

    Suenkel, B; Steegborn, C

    2016-01-01

    Lysine acetylation is long known as a regulatory posttranslational modification of histone proteins and is emerging as a ubiquitous intracellular protein modification. Additional lysine acylations such as succinylation and glutarylation have also been found on histones and other proteins. Acylations are reversibly attached through nonenzymatic acylation mechanisms and the action of protein acyl transferases and protein deacylases (PDACs). Sirtuins are an evolutionary defined class of PDACs and act as metabolic sensors by catalyzing a unique deacylation reaction that requires the cosubstrate NAD(+). Sirtuins are found in all domains of life, and the mammalian sirtuin family comprises seven isoforms in different cellular compartments. They regulate a wide range of cellular targets and functions, such as energy metabolism and stress responses, and they have been implicated in aging processes and aging-related diseases. A large body of functional, biochemical, biophysical, and structural work on isolated sirtuins has provided many important insights that complement the many physiological studies on this enzyme family. They enabled the comprehensive structural and biochemical analysis of sirtuin catalysis, substrate selectivity, and regulation. Here, we describe the recombinant production of sirtuin proteins, with an emphasis on the mammalian isoforms. We then describe their application in activity and binding assays and for crystal structure analysis. We provide protocols for these procedures, and we discuss typical pitfalls in studying this enzyme family and how to avoid them. This information will support further molecular studies on sirtuin mechanisms and functions. PMID:27372754

  4. Marked variability in the extent of protein disorder within and between viral families.

    PubMed

    Pushker, Ravindra; Mooney, Catherine; Davey, Norman E; Jacqué, Jean-Marc; Shields, Denis C

    2013-01-01

    Intrinsically disordered regions in eukaryotic proteomes contain key signaling and regulatory modules and mediate interactions with many proteins. Many viral proteomes encode disordered proteins and modulate host factors through the use of short linear motifs (SLiMs) embedded within disordered regions. However, the degree of viral protein disorder across different viruses is not well understood, so we set out to establish the constraints acting on viruses, in terms of their use of disordered protein regions. We surveyed predicted disorder across 2,278 available viral genomes in 41 families, and correlated the extent of disorder with genome size and other factors. Protein disorder varies strikingly between viral families (from 2.9% to 23.1% of residues), and also within families. However, this substantial variation did not follow the established trend among their hosts, with increasing disorder seen across eubacterial, archaebacterial, protists, and multicellular eukaryotes. For example, among large mammalian viruses, poxviruses and herpesviruses showed markedly differing disorder (5.6% and 17.9%, respectively). Viral families with smaller genome sizes have more disorder within each of five main viral types (ssDNA, dsDNA, ssRNA+, dsRNA, retroviruses), except for negative single-stranded RNA viruses, where disorder increased with genome size. However, surveying over all viruses, which compares tiny and enormous viruses over a much bigger range of genome sizes, there is no strong association of genome size with protein disorder. We conclude that there is extensive variation in the disorder content of viral proteomes. While a proportion of this may relate to base composition, to extent of gene overlap, and to genome size within viral types, there remain important additional family and virus-specific effects. Differing disorder strategies are likely to impact on how different viruses modulate host factors, and on how rapidly viruses can evolve novel instances of SLi

  5. The protein disulphide-isomerase family: unravelling a string of folds.

    PubMed Central

    Ferrari, D M; Söling, H D

    1999-01-01

    The mammalian protein disulphide-isomerase (PDI) family encompasses several highly divergent proteins that are involved in the processing and maturation of secretory proteins in the endoplasmic reticulum. These proteins are characterized by the presence of one or more domains of roughly 95-110 amino acids related to the cytoplasmic protein thioredoxin. All but the PDI-D subfamily are composed entirely of repeats of such domains, with at least one domain containing and one domain lacking a redox-active -Cys-Xaa-Xaa-Cys- tetrapeptide. In addition to their known roles as redox catalysts and isomerases, the last few years have revealed additional functions of the PDI proteins, including peptide binding, cell adhesion and perhaps chaperone activities. Attention is now turning to the non-redox-active domains of the PDIs, which may play an important role in all of the known activities of these proteins. Thus the presence of both redox-active and -inactive domains within these proteins portends a complexity of functions differentially accommodated by the various family members. PMID:10085220

  6. Analysis of the Nse3/MAGE-Binding Domain of the Nse4/EID Family Proteins

    PubMed Central

    Guerineau, Marc; Kriz, Zdenek; Kozakova, Lucie; Bednarova, Katerina; Janos, Pavel; Palecek, Jan

    2012-01-01

    Background The Nse1, Nse3 and Nse4 proteins form a tight sub-complex of the large SMC5-6 protein complex. hNSE3/MAGEG1, the mammalian ortholog of Nse3, is the founding member of the MAGE (melanoma-associated antigen) protein family and the Nse4 kleisin subunit is related to the EID (E1A-like inhibitor of differentiation) family of proteins. We have recently shown that human MAGE proteins can interact with NSE4/EID proteins through their characteristic conserved hydrophobic pocket. Methodology/Principal Findings Using mutagenesis and protein-protein interaction analyses, we have identified a new Nse3/MAGE-binding domain (NMBD) of the Nse4/EID proteins. This short domain is located next to the Nse4 N-terminal kleisin motif and is conserved in all NSE4/EID proteins. The central amino acid residues of the human NSE4b/EID3 domain were essential for its binding to hNSE3/MAGEG1 in yeast two-hybrid assays suggesting they form the core of the binding domain. PEPSCAN ELISA measurements of the MAGEC2 binding affinity to EID2 mutant peptides showed that similar core residues contribute to the EID2-MAGEC2 interaction. In addition, the N-terminal extension of the EID2 binding domain took part in the EID2-MAGEC2 interaction. Finally, docking and molecular dynamic simulations enabled us to generate a structure model for EID2-MAGEC2. Combination of our experimental data and the structure modeling showed how the core helical region of the NSE4/EID domain binds into the conserved pocket characteristic of the MAGE protein family. Conclusions/Significance We have identified a new Nse4/EID conserved domain and characterized its binding to Nse3/MAGE proteins. The conservation and binding of the interacting surfaces suggest tight co-evolution of both Nse4/EID and Nse3/MAGE protein families. PMID:22536443

  7. Integration of related sequences with protein three-dimensional structural families in an updated version of PALI database.

    PubMed

    Gowri, V S; Pandit, Shashi B; Karthik, P S; Srinivasan, N; Balaji, S

    2003-01-01

    The database of Phylogeny and ALIgnment of homologous protein structures (PALI) contains three-dimensional (3-D) structure-dependent sequence alignments as well as structure-based phylogenetic trees of protein domains in various families. The latest updated version (Release 2.1) comprises of 844 families of homologous proteins involving 3863 protein domain structures with each of these families having at least two members. Each member in a family has been structurally aligned with every other member in the same family using two proteins at a time. In addition, an alignment of multiple structures has also been performed using all the members in a family. Every family with at least three members is associated with two dendrograms, one based on a structural dissimilarity metric and the other based on similarity of topologically equivalenced residues for every pairwise alignment. Apart from these multi-member families, there are 817 single member families in the updated version of PALI. A new feature in the current release of PALI is the integration, with 3-D structural families, of sequences of homologues from the sequence databases. Alignments between homologous proteins of known 3-D structure and those without an experimentally derived structure are also provided for every family in the enhanced version of PALI. The database with several web interfaced utilities can be accessed at: http://pauling.mbu.iisc.ernet.in/~pali.

  8. Bioinformatic Characterization of the 4-Toluene Sulfonate Uptake Permease (TSUP) Family of Transmembrane Proteins

    PubMed Central

    Shlykov, Maksim A.; Zheng, Wei Hao; Chen, Jonathan S.; Saier, Milton H.

    2012-01-01

    The ubiquitous sequence diverse 4-Toluene Sulfonate Uptake Permease (TSUP) family contains few characterized members and is believed to catalyze the transport of several sulfur-based compounds. Prokaryotic members of the TSUP family outnumber the eukaryotic members substantially, and in prokaryotes, but not eukaryotes, extensive lateral gene transfer occurred during family evolution. Despite unequal representation, homologues from the three taxonomic domains of life share well-conserved motifs. We show that the prototypical eight TMS topology arose from an intragenic duplication of a four TMS unit. Possibly, a two TMS α-helical hairpin structure was the precursor of the 4 TMS repeat unit. Genome context analyses confirmed the proposal of a sulfur-based compound transport role for many TSUP homologues, but functional outliers appear to be prevalent as well. Preliminary results suggest that the TSUP family is a member of a large novel superfamily that includes rhodopsins, integral membrane chaperone proteins, transmembrane electron flow carriers and several transporter families. All of these proteins probably arose via the same pathway: 2 → 4 → 8 TMSs followed by loss of a TMS either at the N- or C-terminus, depending on the family, to give the more frequent 7 TMS topology. PMID:22192777

  9. Comparative Genomics of Helicobacter pylori: Analysis of the Outer Membrane Protein Families

    PubMed Central

    Alm, Richard A.; Bina, James; Andrews, Beth M.; Doig, Peter; Hancock, Robert E. W.; Trust, Trevor J.

    2000-01-01

    The two complete genomic sequences of Helicobacter pylori J99 and 26695 were used to compare the paralogous families (related genes within one genome, likely to have related function) of genes predicted to encode outer membrane proteins which were present in each strain. We identified five paralogous gene families ranging in size from 3 to 33 members; two of these families contained members specific for either H. pylori J99 or H. pylori 26695. Most orthologous protein pairs (equivalent genes between two genomes, same function) shared considerable identity between the two strains. The unusual set of outer membrane proteins and the specialized outer membrane may be a reflection of the adaptation of H. pylori to the unique gastric environment where it is found. One subfamily of proteins, which contains both channel-forming and adhesin molecules, is extremely highly related at the sequence level and has likely arisen due to ancestral gene duplication. In addition, the largest paralogous family contained two essentially identical pairs of genes in both strains. The presence and genomic organization of these two pairs of duplicated genes were analyzed in a panel of independent H. pylori isolates. While one pair was present in every strain examined, one allele of the other pair appeared partially deleted in several isolates. PMID:10858232

  10. Expression of Notch Family Proteins in Placentas From Patients With Early-Onset Severe Preeclampsia

    PubMed Central

    Zhao, Wei-Xiu; Huang, Tao-Tao; Jiang, Meng; Feng, Ran

    2014-01-01

    Objectives: This study is aimed to identify the expression of Notch family proteins in placentas from patients with early-onset severe preeclampsia. Study Design: The expression of Notch family proteins in placentas was investigated by immunohistochemistry, Western blotting, and real-time reverse transcription–polymerase chain reaction (RT-PCR). Results: The profile of distribution of all Notch family proteins in placentas from patients with early-onset severe preeclampsia is similar to that in normal placentas. All Notch family proteins are expressed in placental trophoblasts. Moreover, Notch1 and Jagged1 (Jag1) are detected in placental endothelial cells. Real-time RT-PCR showed that messenger RNA levels of Notch2 and Delta-like4 (Dll4) in placentas from patients with early-onset severe preeclampsia are lower than that of normal placentas. Western blotting showed a significant increase in Notch3 expression and a significant decrease in Notch2 expression in placentas from patients with early-onset severe preeclampsia relative to those in normal placentas. Conclusion: The results suggest that Notch2 and Notch3 may play some roles in the pathogenesis of preeclampsia. PMID:24336671

  11. The Bacterial Intimins and Invasins: A Large and Novel Family of Secreted Proteins

    PubMed Central

    Tsai, Jennifer C.; Yen, Ming-Ren; Castillo, Rostislav; Leyton, Denisse L.; Henderson, Ian R.; Saier, Milton H.

    2010-01-01

    Background Gram-negative bacteria have developed a limited repertoire of solutions for secreting proteins from the cytoplasmic compartment to the exterior of the cell. Amongst the spectrum of secreted proteins are the intimins and invasins (the Int/Inv family; TC# 1.B.54) which are characterized by an N-terminal β-barrel domain and a C-terminal surface localized passenger domain. Despite the important role played by members of this family in diseases mediated by several species of the Enterobacteriaceae, there has been little appreciation for the distribution and diversity of these proteins amongst Gram-negative bacteria. Furthermore, there is little understanding of the molecular events governing secretion of these proteins to the extracellular milieu. Principal Findings In silico approaches were used to analyze the domain organization and diversity of members of this secretion family. Proteins belonging to this family are predominantly associated with organisms from the γ-proteobacteria. Whilst proteins from the Chlamydia, γ-, β- and ε-proteobacteria possess β-barrel domains and passenger domains of various sizes, Int/Inv proteins from the α-proteobacteria, cyanobacteria and chlorobi possess only the predicted β-barrel domains. Phylogenetic analyses revealed that with few exceptions these proteins cluster according to organismal type, indicating that divergence occurred contemporaneously with speciation, and that horizontal transfer was limited. Clustering patterns of the β-barrel domains correlate well with those of the full-length proteins although the passenger domains do so with much less consistency. The modular subdomain design of the passenger domains suggests that subdomain duplication and deletion have occurred with high frequency over evolutionary time. However, all repeated subdomains are found in tandem, suggesting that subdomain shuffling occurred rarely if at all. Topological predictions for the β-barrel domains are presented. Conclusion

  12. Isolation and characterization of an abortifacient protein, momorcochin, from root tubers of Momordica cochinchinensis (family cucurbitaceae).

    PubMed

    Yeung, H W; Ng, T B; Wong, N S; Li, W W

    1987-07-01

    A glycoprotein with a molecular weight of 32,000 as estimated by SDS-polyacrylamide gel electrophoresis, and characterized by an abundance of Asp and Glu residues and an absence of Cys residues in its amino acid analysis, was isolated from fresh root tubers of Momordica cochinchinensis using a procedure that involved acetone precipitation, ammonium sulfate precipitation, ion exchange chromatography on DEAE Sepharose CL-6B and gel filtration on Sephadex G-75. The protein was capable of inducing mid-term abortion in mice. The characteristics of this protein were compared and contrasted with those of the abortifacient proteins isolated from other plants of the Cucurbitaceae family. PMID:3667075

  13. Isolation and characterization of an abortifacient protein, momorcochin, from root tubers of Momordica cochinchinensis (family cucurbitaceae).

    PubMed

    Yeung, H W; Ng, T B; Wong, N S; Li, W W

    1987-07-01

    A glycoprotein with a molecular weight of 32,000 as estimated by SDS-polyacrylamide gel electrophoresis, and characterized by an abundance of Asp and Glu residues and an absence of Cys residues in its amino acid analysis, was isolated from fresh root tubers of Momordica cochinchinensis using a procedure that involved acetone precipitation, ammonium sulfate precipitation, ion exchange chromatography on DEAE Sepharose CL-6B and gel filtration on Sephadex G-75. The protein was capable of inducing mid-term abortion in mice. The characteristics of this protein were compared and contrasted with those of the abortifacient proteins isolated from other plants of the Cucurbitaceae family.

  14. Methuselah/Methuselah-like G protein-coupled receptors constitute an ancient metazoan gene family

    PubMed Central

    de Mendoza, Alexandre; Jones, Jeffery W.; Friedrich, Markus

    2016-01-01

    Inconsistent conclusions have been drawn regarding the phylogenetic age of the Methuselah/Methuselah-like (Mth/Mthl) gene family of G protein-coupled receptors, the founding member of which regulates development and lifespan in Drosophila. Here we report the results from a targeted homolog search of 39 holozoan genomes and phylogenetic analysis of the conserved seven transmembrane domain. Our findings reveal that the Mth/Mthl gene family is ancient, has experienced numerous extinction and expansion events during metazoan evolution, and acquired the current definition of the Methuselah ectodomain during its exceptional expansion in arthropods. In addition, our findings identify Mthl1, Mthl5, Mthl14, and Mthl15 as the oldest Mth/Mthl gene family paralogs in Drosophila. Future studies of these genes have the potential to define ancestral functions of the Mth/Mthl gene family. PMID:26915348

  15. Delineation of the Pasteurellaceae-specific GbpA-family of glutathione-binding proteins

    PubMed Central

    2011-01-01

    Background The Gram-negative bacterium Haemophilus influenzae is a glutathione auxotroph and acquires the redox-active tripeptide by import. The dedicated glutathione transporter belongs to the ATP-binding cassette (ABC)-transporter superfamily and displays more than 60% overall sequence identity with the well-studied dipeptide (Dpp) permease of Escherichia coli. The solute binding protein (SBP) that mediates glutathione transport in H. influenzae is a lipoprotein termed GbpA and is 54% identical to E. coli DppA, a well-studied member of family 5 SBP's. The discovery linking GbpA to glutathione import came rather unexpectedly as this import-priming SBP was previously annotated as a heme-binding protein (HbpA), and was thought to mediate heme acquisition. Nonetheless, although many SBP's have been implicated in more than one function, a prominent physiological role for GbpA and its partner permease in heme acquisition appears to be very unlikely. Here, we sought to characterize five representative GbpA homologs in an effort to delineate the novel GbpA-family of glutathione-specific family 5 SBPs and to further clarify their functional role in terms of ligand preferences. Results Lipoprotein and non-lipoprotein GbpA homologs were expressed in soluble form and substrate specificity was evaluated via a number of ligand binding assays. A physiologically insignificant affinity for hemin was observed for all five GbpA homologous test proteins. Three out of five test proteins were found to bind glutathione and some of its physiologically relevant derivatives with low- or submicromolar affinity. None of the tested SBP family 5 allocrites interacted with the remaining two GbpA test proteins. Structure-based sequence alignments and phylogenetic analysis show that the two binding-inert GbpA homologs clearly form a separate phylogenetic cluster. To elucidate a structure-function rationale for this phylogenetic differentiation, we determined the crystal structure of one of the

  16. OmpA family proteins and Pmp-like autotransporter: new adhesins of Waddlia chondrophila.

    PubMed

    Kebbi-Beghdadi, Carole; Domröse, Andreas; Becker, Elisabeth; Cisse, Ousmane H; Hegemann, Johannes H; Greub, Gilbert

    2015-08-01

    Waddlia chondrophila is a obligate intracellular bacterium belonging to the Chlamydiales order, a clade that also includes the well-known classical Chlamydia responsible for a number of severe human and animal diseases. Waddlia is an emerging pathogen associated with adverse pregnancy outcomes in humans and abortion in ruminants. Adhesion to the host cell is an essential prerequisite for survival of every strict intracellular bacteria and, in classical Chlamydia, this step is partially mediated by polymorphic outer membrane proteins (Pmps), a family of highly diverse autotransporters that represent about 15% of the bacterial coding capacity. Waddlia chondrophila genome however only encodes one putative Pmp-like protein. Using a proteomic approach, we identified several bacterial proteins potentially implicated in the adhesion process and we characterized their expression during the replication cycle of the bacteria. In addition, we demonstrated that the Waddlia Pmp-like autotransporter as well as OmpA2 and OmpA3, two members of the extended Waddlia OmpA protein family, exhibit adhesive properties on epithelial cells. We hypothesize that the large diversity of the OmpA protein family is linked to the wide host range of these bacteria that are able to enter and multiply in various host cells ranging from protozoa to mammalian and fish cells.

  17. A new family of β-helix proteins with similarities to the polysaccharide lyases

    DOE PAGES

    Close, Devin W.; D'Angelo, Sara; Bradbury, Andrew R. M.

    2014-09-27

    Microorganisms that degrade biomass produce diverse assortments of carbohydrate-active enzymes and binding modules. Despite tremendous advances in the genomic sequencing of these organisms, many genes do not have an ascribed function owing to low sequence identity to genes that have been annotated. Consequently, biochemical and structural characterization of genes with unknown function is required to complement the rapidly growing pool of genomic sequencing data. A protein with previously unknown function (Cthe_2159) was recently isolated in a genome-wide screen using phage display to identify cellulose-binding protein domains from the biomass-degrading bacterium Clostridium thermocellum. Here, the crystal structure of Cthe_2159 is presentedmore » and it is shown that it is a unique right-handed parallel β-helix protein. Despite very low sequence identity to known β-helix or carbohydrate-active proteins, Cthe_2159 displays structural features that are very similar to those of polysaccharide lyase (PL) families 1, 3, 6 and 9. Cthe_2159 is conserved across bacteria and some archaea and is a member of the domain of unknown function family DUF4353. This suggests that Cthe_2159 is the first representative of a previously unknown family of cellulose and/or acid-sugar binding β-helix proteins that share structural similarities with PLs. More importantly, these results demonstrate how functional annotation by biochemical and structural analysis remains a critical tool in the characterization of new gene products.« less

  18. Variability and Action Mechanism of a Family of Anticomplement Proteins in Ixodes ricinus

    PubMed Central

    Lahaye, Kathia; Gensale, François; Denis, Valérie; Charloteaux, Benoît; Decrem, Yves; Prévôt, Pierre-Paul; Brossard, Michel; Vanhamme, Luc; Godfroid, Edmond

    2008-01-01

    Background Ticks are blood feeding arachnids that characteristically take a long blood meal. They must therefore counteract host defence mechanisms such as hemostasis, inflammation and the immune response. This is achieved by expressing batteries of salivary proteins coded by multigene families. Methodology/Principal Findings We report the in-depth analysis of a tick multigene family and describe five new anticomplement proteins in Ixodes ricinus. Compared to previously described Ixodes anticomplement proteins, these segregated into a new phylogenetic group or subfamily. These proteins have a novel action mechanism as they specifically bind to properdin, leading to the inhibition of C3 convertase and the alternative complement pathway. An excess of non-synonymous over synonymous changes indicated that coding sequences had undergone diversifying selection. Diversification was not associated with structural, biochemical or functional diversity, adaptation to host species or stage specificity but rather to differences in antigenicity. Conclusions/Significance Anticomplement proteins from I. ricinus are the first inhibitors that specifically target a positive regulator of complement, properdin. They may provide new tools for the investigation of role of properdin in physiological and pathophysiological mechanisms. They may also be useful in disorders affecting the alternative complement pathway. Looking for and detecting the different selection pressures involved will help in understanding the evolution of multigene families and hematophagy in arthropods. PMID:18167559

  19. A new family of β-helix proteins with similarities to the polysaccharide lyases.

    PubMed

    Close, Devin W; D'Angelo, Sara; Bradbury, Andrew R M

    2014-10-01

    Microorganisms that degrade biomass produce diverse assortments of carbohydrate-active enzymes and binding modules. Despite tremendous advances in the genomic sequencing of these organisms, many genes do not have an ascribed function owing to low sequence identity to genes that have been annotated. Consequently, biochemical and structural characterization of genes with unknown function is required to complement the rapidly growing pool of genomic sequencing data. A protein with previously unknown function (Cthe_2159) was recently isolated in a genome-wide screen using phage display to identify cellulose-binding protein domains from the biomass-degrading bacterium Clostridium thermocellum. Here, the crystal structure of Cthe_2159 is presented and it is shown that it is a unique right-handed parallel β-helix protein. Despite very low sequence identity to known β-helix or carbohydrate-active proteins, Cthe_2159 displays structural features that are very similar to those of polysaccharide lyase (PL) families 1, 3, 6 and 9. Cthe_2159 is conserved across bacteria and some archaea and is a member of the domain of unknown function family DUF4353. This suggests that Cthe_2159 is the first representative of a previously unknown family of cellulose and/or acid-sugar binding β-helix proteins that share structural similarities with PLs. Importantly, these results demonstrate how functional annotation by biochemical and structural analysis remains a critical tool in the characterization of new gene products.

  20. A new family of β-helix proteins with similarities to the polysaccharide lyases

    SciTech Connect

    Close, Devin W.; D'Angelo, Sara; Bradbury, Andrew R. M.

    2014-09-27

    Microorganisms that degrade biomass produce diverse assortments of carbohydrate-active enzymes and binding modules. Despite tremendous advances in the genomic sequencing of these organisms, many genes do not have an ascribed function owing to low sequence identity to genes that have been annotated. Consequently, biochemical and structural characterization of genes with unknown function is required to complement the rapidly growing pool of genomic sequencing data. A protein with previously unknown function (Cthe_2159) was recently isolated in a genome-wide screen using phage display to identify cellulose-binding protein domains from the biomass-degrading bacterium Clostridium thermocellum. Here, the crystal structure of Cthe_2159 is presented and it is shown that it is a unique right-handed parallel β-helix protein. Despite very low sequence identity to known β-helix or carbohydrate-active proteins, Cthe_2159 displays structural features that are very similar to those of polysaccharide lyase (PL) families 1, 3, 6 and 9. Cthe_2159 is conserved across bacteria and some archaea and is a member of the domain of unknown function family DUF4353. This suggests that Cthe_2159 is the first representative of a previously unknown family of cellulose and/or acid-sugar binding β-helix proteins that share structural similarities with PLs. More importantly, these results demonstrate how functional annotation by biochemical and structural analysis remains a critical tool in the characterization of new gene products.

  1. Phenotypic variability in three families with valosin-containing protein mutation

    PubMed Central

    Spina, S.; Van Laar, A. D.; Murrell, J. R.; Hamilton, R. L.; Kofler, J. K.; Epperson, F.; Farlow, M. R.; Lopez, O. L.; Quinlan, J.; DeKosky, S. T.; Ghetti, B.

    2013-01-01

    Background and purpose The phenotype of IBMPFD [inclusion body myopathy with Paget’s disease of the bone and frontotemporal dementia (FTD)] associated with valosin-containing protein(VCP) mutation is described in three families. Methods Probands were identified based on a pathological diagnosis of frontotemporal lobar degeneration with TDP-43-positive inclusions type IV. VCP sequencing was carried out. Clinical data on affected family members were reviewed. Results Ohio family: four subjects presented muscle weakness and wasting. (One subject had both neuropathic and myopathic findings and another subject showed only evidence of myopathy. The etiology of weakness could not be ascertained in the remaining two subjects.) Two individuals also showed Parkinsonism (with associated FTD in one of the two). The proband’s brain displayed FTLD-TDP type IV and Braak stage five Parkinson’s disease (PD). A VCP R191Q mutation was found. Pennsylvania family: 11 subjects developed IBMPFD. Parkinsonism was noted in two mutation carriers, whilst another subject presented with primary progressive aphasia (PPA). A novel VCP T262A mutation was found. Indiana family: three subjects developed IBMPFD. FTD was diagnosed in two individuals and suspected in the third one who also displayed muscle weakness. A VCP R159C mutation was found. Conclusions We identified three families with IBMPFD associated with VCP mutations. Clinical and pathological PD was documented for the first time in members of two families. A novel T262A mutation was found. One individual had PPA: an uncommon presentation of IBMPFD. PMID:22900631

  2. A Primary Sequence Analysis of the ARGONAUTE Protein Family in Plants

    PubMed Central

    Rodríguez-Leal, Daniel; Castillo-Cobián, Amanda; Rodríguez-Arévalo, Isaac; Vielle-Calzada, Jean-Philippe

    2016-01-01

    Small RNA (sRNA)-mediated gene silencing represents a conserved regulatory mechanism controlling a wide diversity of developmental processes through interactions of sRNAs with proteins of the ARGONAUTE (AGO) family. On the basis of a large phylogenetic analysis that includes 206 AGO genes belonging to 23 plant species, AGO genes group into four clades corresponding to the phylogenetic distribution proposed for the ten family members of Arabidopsis thaliana. A primary analysis of the corresponding protein sequences resulted in 50 sequences of amino acids (blocks) conserved across their linear length. Protein members of the AGO4/6/8/9 and AGO1/10 clades are more conserved than members of the AGO5 and AGO2/3/7 clades. In addition to blocks containing components of the PIWI, PAZ, and DUF1785 domains, members of the AGO2/3/7 and AGO4/6/8/9 clades possess other consensus block sequences that are exclusive of members within these clades, suggesting unforeseen functional specialization revealed by their primary sequence. We also show that AGO proteins of animal and plant kingdoms share linear sequences of blocks that include motifs involved in posttranslational modifications such as those regulating AGO2 in humans and the PIWI protein AUBERGINE in Drosophila. Our results open possibilities for exploring new structural and functional aspects related to the evolution of AGO proteins within the plant kingdom, and their convergence with analogous proteins in mammals and invertebrates.

  3. A Primary Sequence Analysis of the ARGONAUTE Protein Family in Plants.

    PubMed

    Rodríguez-Leal, Daniel; Castillo-Cobián, Amanda; Rodríguez-Arévalo, Isaac; Vielle-Calzada, Jean-Philippe

    2016-01-01

    Small RNA (sRNA)-mediated gene silencing represents a conserved regulatory mechanism controlling a wide diversity of developmental processes through interactions of sRNAs with proteins of the ARGONAUTE (AGO) family. On the basis of a large phylogenetic analysis that includes 206 AGO genes belonging to 23 plant species, AGO genes group into four clades corresponding to the phylogenetic distribution proposed for the ten family members of Arabidopsis thaliana. A primary analysis of the corresponding protein sequences resulted in 50 sequences of amino acids (blocks) conserved across their linear length. Protein members of the AGO4/6/8/9 and AGO1/10 clades are more conserved than members of the AGO5 and AGO2/3/7 clades. In addition to blocks containing components of the PIWI, PAZ, and DUF1785 domains, members of the AGO2/3/7 and AGO4/6/8/9 clades possess other consensus block sequences that are exclusive of members within these clades, suggesting unforeseen functional specialization revealed by their primary sequence. We also show that AGO proteins of animal and plant kingdoms share linear sequences of blocks that include motifs involved in posttranslational modifications such as those regulating AGO2 in humans and the PIWI protein AUBERGINE in Drosophila. Our results open possibilities for exploring new structural and functional aspects related to the evolution of AGO proteins within the plant kingdom, and their convergence with analogous proteins in mammals and invertebrates. PMID:27635128

  4. A Primary Sequence Analysis of the ARGONAUTE Protein Family in Plants.

    PubMed

    Rodríguez-Leal, Daniel; Castillo-Cobián, Amanda; Rodríguez-Arévalo, Isaac; Vielle-Calzada, Jean-Philippe

    2016-01-01

    Small RNA (sRNA)-mediated gene silencing represents a conserved regulatory mechanism controlling a wide diversity of developmental processes through interactions of sRNAs with proteins of the ARGONAUTE (AGO) family. On the basis of a large phylogenetic analysis that includes 206 AGO genes belonging to 23 plant species, AGO genes group into four clades corresponding to the phylogenetic distribution proposed for the ten family members of Arabidopsis thaliana. A primary analysis of the corresponding protein sequences resulted in 50 sequences of amino acids (blocks) conserved across their linear length. Protein members of the AGO4/6/8/9 and AGO1/10 clades are more conserved than members of the AGO5 and AGO2/3/7 clades. In addition to blocks containing components of the PIWI, PAZ, and DUF1785 domains, members of the AGO2/3/7 and AGO4/6/8/9 clades possess other consensus block sequences that are exclusive of members within these clades, suggesting unforeseen functional specialization revealed by their primary sequence. We also show that AGO proteins of animal and plant kingdoms share linear sequences of blocks that include motifs involved in posttranslational modifications such as those regulating AGO2 in humans and the PIWI protein AUBERGINE in Drosophila. Our results open possibilities for exploring new structural and functional aspects related to the evolution of AGO proteins within the plant kingdom, and their convergence with analogous proteins in mammals and invertebrates.

  5. A Primary Sequence Analysis of the ARGONAUTE Protein Family in Plants

    PubMed Central

    Rodríguez-Leal, Daniel; Castillo-Cobián, Amanda; Rodríguez-Arévalo, Isaac; Vielle-Calzada, Jean-Philippe

    2016-01-01

    Small RNA (sRNA)-mediated gene silencing represents a conserved regulatory mechanism controlling a wide diversity of developmental processes through interactions of sRNAs with proteins of the ARGONAUTE (AGO) family. On the basis of a large phylogenetic analysis that includes 206 AGO genes belonging to 23 plant species, AGO genes group into four clades corresponding to the phylogenetic distribution proposed for the ten family members of Arabidopsis thaliana. A primary analysis of the corresponding protein sequences resulted in 50 sequences of amino acids (blocks) conserved across their linear length. Protein members of the AGO4/6/8/9 and AGO1/10 clades are more conserved than members of the AGO5 and AGO2/3/7 clades. In addition to blocks containing components of the PIWI, PAZ, and DUF1785 domains, members of the AGO2/3/7 and AGO4/6/8/9 clades possess other consensus block sequences that are exclusive of members within these clades, suggesting unforeseen functional specialization revealed by their primary sequence. We also show that AGO proteins of animal and plant kingdoms share linear sequences of blocks that include motifs involved in posttranslational modifications such as those regulating AGO2 in humans and the PIWI protein AUBERGINE in Drosophila. Our results open possibilities for exploring new structural and functional aspects related to the evolution of AGO proteins within the plant kingdom, and their convergence with analogous proteins in mammals and invertebrates. PMID:27635128

  6. The Nap family proteins, CG5017/Hanabi and Nap1, are essential for Drosophila spermiogenesis.

    PubMed

    Kimura, Shuhei

    2013-04-01

    Spermiogenesis is a dynamic process leading to alterations in cell morphology. In spermiogenesis, the roles of the histone chaperones are largely unknown. Here, I report the unexpected roles of two Nap family proteins, CG5017/Hanabi and nucleosome assembly protein 1 (Nap1) in Drosophila. Hanabi is mainly localized in the cytoplasm, and the hanabi mutant shows fully scattered nuclei and abnormality of nuclear shaping in spermatid elongation. In contrast, Nap1 is localized at the apical tip of the sperm head, and the nap1 mutant exhibits disruption of the nuclear bundle in the later stage. These findings imply that Nap family proteins might individually sustain cytoskeleton-based morphogenesis, rather than histone biogenesis. PMID:23454210

  7. Systematic Identification of Novel Protein Domain Families Associated with Nuclear Functions

    PubMed Central

    Doerks, Tobias; Copley, Richard R.; Schultz, Jörg; Ponting, Chris P.; Bork, Peer

    2002-01-01

    A systematic computational analysis of protein sequences containing known nuclear domains led to the identification of 28 novel domain families. This represents a 26% increase in the starting set of 107 known nuclear domain families used for the analysis. Most of the novel domains are present in all major eukaryotic lineages, but 3 are species specific. For about 500 of the 1200 proteins that contain these new domains, nuclear localization could be inferred, and for 700, additional features could be predicted. For example, we identified a new domain, likely to have a role downstream of the unfolded protein response; a nematode-specific signalling domain; and a widespread domain, likely to be a noncatalytic homolog of ubiquitin-conjugating enzymes. PMID:11779830

  8. The 'tubulin-like' S1 protein of Spirochaeta is a member of the hsp65 stress protein family

    NASA Technical Reports Server (NTRS)

    Munson, D.; Obar, R.; Tzertzinis, G.; Margulis, L.

    1993-01-01

    A 65-kDa protein (called S1) from Spirochaeta bajacaliforniensis was identified as 'tubulin-like' because it cross-reacted with at least four different antisera raised against tubulin and was isolated, with a co-polymerizing 45-kDa protein, by warm-cold cycling procedures used to purify tubulin from mammalian brain. Furthermore, at least three genera of non-cultivable symbiotic spirochetes (Pillotina, Diplocalyx, and Hollandina) that contain conspicuous 24-nm cytoplasmic tubules displayed a strong fluorescence in situ when treated with polyclonal antisera raised against tubulin. Here we summarize results that lead to the conclusion that this 65-kDa protein has no homology to tubulin. S1 is an hsp65 stress protein homologue. Hsp65 is a highly immunogenic family of hsp60 proteins which includes the 65-kDa antigens of Mycobacterium tuberculosis (an active component of Freund's complete adjuvant), Borrelia, Treponema, Chlamydia, Legionella, and Salmonella. The hsp60s, also known as chaperonins, include E. coli GroEL, mitochondrial and chloroplast chaperonins, the pea aphid 'symbionin' and many other proteins involved in protein folding and the stress response.

  9. High mobility group nucleosome-binding family proteins promote astrocyte differentiation of neural precursor cells.

    PubMed

    Nagao, Motoshi; Lanjakornsiripan, Darin; Itoh, Yasuhiro; Kishi, Yusuke; Ogata, Toru; Gotoh, Yukiko

    2014-11-01

    Astrocytes are the most abundant cell type in the mammalian brain and are important for the functions of the central nervous system. Although previous studies have shown that the STAT signaling pathway or its regulators promote the generation of astrocytes from multipotent neural precursor cells (NPCs) in the developing mammalian brain, the molecular mechanisms that regulate the astrocytic fate decision have still remained largely unclear. Here, we show that the high mobility group nucleosome-binding (HMGN) family proteins, HMGN1, 2, and 3, promote astrocyte differentiation of NPCs during brain development. HMGN proteins were expressed in NPCs, Sox9(+) glial progenitors, and GFAP(+) astrocytes in perinatal and adult brains. Forced expression of either HMGN1, 2, or 3 in NPCs in cultures or in the late embryonic neocortex increased the generation of astrocytes at the expense of neurons. Conversely, knockdown of either HMGN1, 2, or 3 in NPCs suppressed astrocyte differentiation and promoted neuronal differentiation. Importantly, overexpression of HMGN proteins did not induce the phosphorylation of STAT3 or activate STAT reporter genes. In addition, HMGN family proteins did not enhance DNA demethylation and acetylation of histone H3 around the STAT-binding site of the gfap promoter. Moreover, knockdown of HMGN family proteins significantly reduced astrocyte differentiation induced by gliogenic signal ciliary neurotrophic factor, which activates the JAK-STAT pathway. Therefore, we propose that HMGN family proteins are novel chromatin regulatory factors that control astrocyte fate decision/differentiation in parallel with or downstream of the JAK-STAT pathway through modulation of the responsiveness to gliogenic signals. PMID:25069414

  10. Vesicular trafficking in characean green algae and the possible involvement of a VAMP72-family protein.

    PubMed

    Hoepflinger, Marion; Hametner, Christina; Ueda, Takashi; Foissner, Ilse

    2014-01-01

    The RAB5 GTPase ARA6 (AtARA6) of Arabidopsis thaliana is known to be involved in endosomal trafficking by targeting vesicles to the plasma membrane. During this process AtARA6 is working in close relationship with the SNARE protein VAMP727 (vesicle associated membrane protein 727). Recently, ARA6 of the characean green algae Chara australis (CaARA6) was shown to have properties similar to AtARA6, pointing to similar trafficking pathways. In order to gain further insight into the vesicle trafficking machinery of characeae, C. australis was analyzed for homologous proteins of the VAMP72-family. A CaVAMP72 protein was detected and classified by protein sequence alignment and phylogenetic analyses.

  11. Vesicular trafficking in characean green algae and the possible involvement of a VAMP72-family protein.

    PubMed

    Hoepflinger, Marion C; Hametner, Christina; Ueda, Takashi; Foissner, Ilse

    2014-01-01

    The RAB5 GTPase ARA6 of Arabidopsis thaliana is known to be involved in endosomal trafficking by targeting vesicles to the plasma membrane. During this process AtARA6 is working in close relationship with the SNARE protein VAMP727 (vesicle associated membrane protein 727). Recently, ARA6 of the characean green algae Chara australis (CaARA6) was shown to have properties similar to AtARA6, pointing to similar trafficking pathways. In order to gain further insight into the vesicle trafficking machinery of Characeae, C. australis was analyzed for homologous proteins of the VAMP72-family. A CaVAMP72 protein was detected and classified by protein sequence alignment and phylogenetic analyses.

  12. Vesicular trafficking in characean green algae and the possible involvement of a VAMP72-family protein.

    PubMed

    Hoepflinger, Marion; Hametner, Christina; Ueda, Takashi; Foissner, Ilse

    2014-01-01

    The RAB5 GTPase ARA6 (AtARA6) of Arabidopsis thaliana is known to be involved in endosomal trafficking by targeting vesicles to the plasma membrane. During this process AtARA6 is working in close relationship with the SNARE protein VAMP727 (vesicle associated membrane protein 727). Recently, ARA6 of the characean green algae Chara australis (CaARA6) was shown to have properties similar to AtARA6, pointing to similar trafficking pathways. In order to gain further insight into the vesicle trafficking machinery of characeae, C. australis was analyzed for homologous proteins of the VAMP72-family. A CaVAMP72 protein was detected and classified by protein sequence alignment and phylogenetic analyses. PMID:24614164

  13. Vesicular trafficking in characean green algae and the possible involvement of a VAMP72-family protein.

    PubMed

    Hoepflinger, Marion C; Hametner, Christina; Ueda, Takashi; Foissner, Ilse

    2014-01-01

    The RAB5 GTPase ARA6 of Arabidopsis thaliana is known to be involved in endosomal trafficking by targeting vesicles to the plasma membrane. During this process AtARA6 is working in close relationship with the SNARE protein VAMP727 (vesicle associated membrane protein 727). Recently, ARA6 of the characean green algae Chara australis (CaARA6) was shown to have properties similar to AtARA6, pointing to similar trafficking pathways. In order to gain further insight into the vesicle trafficking machinery of Characeae, C. australis was analyzed for homologous proteins of the VAMP72-family. A CaVAMP72 protein was detected and classified by protein sequence alignment and phylogenetic analyses. PMID:25764429

  14. THE RNAissance Family: SR proteins as multifaceted regulators of gene expression

    PubMed Central

    Howard, Jonathan M.; Sanford, Jeremy R.

    2014-01-01

    Serine and Arginine-rich (SR) proteins play multiple roles in the eukaryotic gene expression pathway. Initially described as constitutive and alternative splicing factors, it is now clear that SR proteins are key determinants of exon identity and function as molecular adaptors, linking the pre-mRNA to the splicing machinery. In addition, SR proteins are now implicated in many aspects of mRNA and ncRNA processing well beyond splicing. These unexpected roles, including RNA transcription, export, translation and decay may prove to be the rule rather than the exception. To simply define this family of RNA binding proteins as splicing factors belies the broader roles of SR proteins in post-transcriptional gene expression. PMID:25155147

  15. A conserved family of proteins facilitates nascent lipid droplet budding from the ER

    PubMed Central

    Choudhary, Vineet; Ojha, Namrata; Golden, Andy

    2015-01-01

    Lipid droplets (LDs) are found in all cells and play critical roles in lipid metabolism. De novo LD biogenesis occurs in the endoplasmic reticulum (ER) but is not well understood. We imaged early stages of LD biogenesis using electron microscopy and found that nascent LDs form lens-like structures that are in the ER membrane, raising the question of how these nascent LDs bud from the ER as they grow. We found that a conserved family of proteins, fat storage-inducing transmembrane (FIT) proteins, is required for proper budding of LDs from the ER. Elimination or reduction of FIT proteins in yeast and higher eukaryotes causes LDs to remain in the ER membrane. Deletion of the single FIT protein in Caenorhabditis elegans is lethal, suggesting that LD budding is an essential process in this organism. Our findings indicated that FIT proteins are necessary to promote budding of nascent LDs from the ER. PMID:26504167

  16. A bone sialoprotein-binding protein from Staphylococcus aureus: a member of the staphylococcal Sdr family.

    PubMed Central

    Tung, H s; Guss, B; Hellman, U; Persson, L; Rubin, K; Rydén, C

    2000-01-01

    Staphylococcus aureus bacteria, isolated from bone and joint infections, specifically interact with bone sialoprotein (BSP), a glycoprotein of bone and dentine extracellular matrix, via a cell-surface protein of M(r) 97000 [Yacoub, Lindahl, Rubin, Wendel, Heinegârd and Rydén, (1994) Eur. J. Biochem. 222, 919-925]. Amino acid sequences of seven trypsin fragments from the 97000-M(r) BSP-binding protein were determined. A gene encoding a protein encompassing all seven peptide sequences was identified from chromosomal DNA isolated from S. aureus strain O24. This gene encodes a protein with 1171 amino acids, called BSP-binding protein (Bbp), which displays similarity to recently described proteins of the Sdr family from S. aureus. SdrC, SdrD and SdrE encode putative cell-surface proteins with no described ligand specificity. Bbp also shows similarity to a fibrinogen-binding protein from S. epidermidis called Fbe. A serine-aspartic acid repeat sequence was found close to the cell-wall-anchoring Leu-Pro-Xaa-Thr-Gly sequence in the C-terminal end of the protein. Escherichia coli cells were transformed with an expression vector containing a major part of the bbp gene fused to the gene for glutathione S-transferase. The affinity-purified fusion protein bound radiolabelled native BSP, and inhibited the binding of radiolabelled BSP to staphylococcal cells. Serum from patients suffering from bone and joint infection contained antibodies that reacted with the fusion protein of the BSP-binding protein, indicating that the protein is expressed during an infection and is immunogenic. The S. aureus Bbp protein may be important in the localization of bacteria to bone tissue, and thus might be of relevance in the pathogenicity of osteomyelitis. PMID:10642520

  17. Molecular evolution of the bacterial pseudouridine-5'-phosphate glycosidase protein family.

    PubMed

    Thapa, Keshav; Oja, Terhi; Metsä-Ketelä, Mikko

    2014-10-01

    Pseudouridine is a noncanonical C-nucleoside commonly present in RNA, which is not metabolized in mammals, but can be recycled by the unique enzyme family of bacterial pseudouridine glycosidases such as YeiN from Escherichia coli. Here, we present rigorous bioinformatic and biochemical analyses of the protein family in order to find sequences that might code for nonpseudouridine glycosidase activities. To date, the only other function reported for the enzyme family occurs during the biosynthesis of the antibiotic alnumycin A in Streptomyces species, where AlnA functions as an unusual C-glycosynthase. Bioinformatics analysis of 755 protein sequences identified one group of sequences that were unlikely to harbour pseudouridine glycosidase activities. This observation was confirmed in vitro with one representative protein, IdgA from Streptomyces albus, which was unable to synthesize pseudouridine monophosphate, but was able to attach d-ribose-5-phosphate to juglone. Furthermore, our analyses provide evidence for horizontal gene transfer of pseudouridine glycosidases that may have occurred in Streptomyces and Doria species. Inspection of the genomic loci in the vicinity of pseudouridine glycosidases revealed that in 77% of the strains a kinase gene putatively involved in the phosphorylation of pseudouridine was found nearby, whereas the sequences encoding nonpseudouridine glycosidases coexisted with a phosphatase of the haloacid dehalogenase enzyme family. The investigation suggested that these unknown sequences might be involved in the biosynthesis of soluble blue pigments because of the presence of genes homologous to nonribosomal peptide synthetases.

  18. Family.

    ERIC Educational Resources Information Center

    Hurst, Hunter, Ed.; And Others

    1985-01-01

    This document contains the fourth volume of "Today's Delinquent," an annual publication of the National Center for Juvenile Justice. This volume deals with the issue of the family and delinquency. "The Family and Delinquency" (LaMar T. Empey) systematically reviews and weighs the evidence to support prominent theories on the origins of…

  19. Comparative Study on Sequence–Structure–Function Relationship of the Human Short-chain Dehydrogenases/Reductases Protein Family

    PubMed Central

    Tang, Nu Thi Ngoc; Le, Ly

    2014-01-01

    Human short-chain dehydrogenases/reductases (SDRs) protein family has been the subject of recent studies for its critical role in human metabolism. Studies also found that single nucleotide polymorphisms of the SDR protein family were responsible for a variety of genetic diseases, including type II diabetes. This study reports the effect of sequence variation on the structural and functional integrities of human SDR protein family using phylogenetics and correlated mutation analysis tools. Our results indicated that (i) tyrosine, serine, and lysine are signature protein residues that have direct contribution to the structural and functional stabilities of the SDR protein family, (ii) subgroups of SDR protein family have their own signature protein combination that represent their unique functionality, and (iii) mutations of the human SDR protein family showed high correlation in terms of evolutionary history. In combination, the results inferred that over evolutionary history, the SDR protein family was able to diverge itself in order to adapt with the changes in human nutritional demands. Our study reveals understanding of structural and functional scaffolds of specific SDR subgroups that may facilitate the design of specific inhibitor. PMID:25374450

  20. Heavy metal-associated isoprenylated plant protein (HIPP): characterization of a family of proteins exclusive to plants.

    PubMed

    de Abreu-Neto, João Braga; Turchetto-Zolet, Andreia C; de Oliveira, Luiz Felipe Valter;