Science.gov

Sample records for 14-channel nasa ames

  1. NASA Ames ATM Research

    NASA Technical Reports Server (NTRS)

    Denery, Dallas G.

    2000-01-01

    The NASA Ames research Center, in cooperation with the FAA and the industry, has a series of major research efforts underway that are aimed at : 1) improving the flow of traffic in the national airspace system; and 2) helping to define the future air traffic management system. The purpose of this presentation will be to provide a brief summary of some of these activities.

  2. NASA Ames Research Center Overview

    NASA Technical Reports Server (NTRS)

    Boyd, Jack

    2006-01-01

    A general overview of the NASA Ames Research Center is presented. The topics include: 1) First Century of Flight, 1903-2003; 2) NACA Research Centers; 3) 65 Years of Innovation; 4) Ames Projects; 5) NASA Ames Research Center Today-founded; 6) Astrobiology; 7) SOFIA; 8) To Explore the Universe and Search for Life: Kepler: The Search for Habitable Planets; 9) Crew Exploration Vehicle/Crew Launch Vehicle; 10) Lunar Crater Observation and Sensing Satellite (LCROSS); 11) Thermal Protection Materials and Arc-Jet Facility; 12) Information Science & Technology; 13) Project Columbia Integration and Installation; 14) Air Traffic Management/Air Traffic Control; and 15) New Models-UARC.

  3. Transformation Systems at NASA Ames

    NASA Technical Reports Server (NTRS)

    Buntine, Wray; Fischer, Bernd; Havelund, Klaus; Lowry, Michael; Pressburger, TOm; Roach, Steve; Robinson, Peter; VanBaalen, Jeffrey

    1999-01-01

    In this paper, we describe the experiences of the Automated Software Engineering Group at the NASA Ames Research Center in the development and application of three different transformation systems. The systems span the entire technology range, from deductive synthesis, to logic-based transformation, to almost compiler-like source-to-source transformation. These systems also span a range of NASA applications, including solving solar system geometry problems, generating data analysis software, and analyzing multi-threaded Java code.

  4. NASA Ames Environmental Sustainability Report 2011

    NASA Technical Reports Server (NTRS)

    Clarke, Ann H.

    2011-01-01

    The 2011 Ames Environmental Sustainability Report is the second in a series of reports describing the steps NASA Ames Research Center has taken toward assuring environmental sustainability in NASA Ames programs, projects, and activities. The Report highlights Center contributions toward meeting the Agency-wide goals under the 2011 NASA Strategic Sustainability Performance Program.

  5. NASA-Ames vertical gun

    NASA Technical Reports Server (NTRS)

    Schultz, P. H.

    1984-01-01

    A national facility, the NASA-Ames vertical gun range (AVGR) has an excellent reputation for revealing fundamental aspects of impact cratering that provide important constraints for planetary processes. The current logistics in accessing the AVGR, some of the past and ongoing experimental programs and their relevance, and the future role of this facility in planetary studies are reviewed. Publications resulting from experiments with the gun (1979 to 1984) are listed as well as the researchers and subjects studied.

  6. The IBM PC at NASA Ames

    NASA Technical Reports Server (NTRS)

    Peredo, James P.

    1988-01-01

    Like many large companies, Ames relies very much on its computing power to get work done. And, like many other large companies, finding the IBM PC a reliable tool, Ames uses it for many of the same types of functions as other companies. Presentation and clarification needs demand much of graphics packages. Programming and text editing needs require simpler, more-powerful packages. The storage space needed by NASA's scientists and users for the monumental amounts of data that Ames needs to keep demand the best database packages that are large and easy to use. Availability to the Micom Switching Network combines the powers of the IBM PC with the capabilities of other computers and mainframes and allows users to communicate electronically. These four primary capabilities of the PC are vital to the needs of NASA's users and help to continue and support the vast amounts of work done by the NASA employees.

  7. Terminal Area ATM Research at NASA Ames

    NASA Technical Reports Server (NTRS)

    Tobias, Leonard

    1997-01-01

    The presentation will highlight the following: (1) A brief review of ATC research underway 15 years ago; (2) A summary of Terminal Area ATM Tool Development ongoing at NASA Ames; and (3) A projection of research activities 10-15 years from now.

  8. NASA Ames aerospace systems directorate research

    NASA Technical Reports Server (NTRS)

    Albers, James A.

    1991-01-01

    The Aerospace Systems Directorate is one of four research directorates at the NASA Ames Research Center. The Directorate conducts research and technology development for advanced aircraft and aircraft systems in intelligent computational systems and human-machine systems for aeronautics and space. The Directorate manages research and aircraft technology development projects, and operates and maintains major wind tunnels and flight simulation facilities. The Aerospace Systems Directorate's research and technology as it relates to NASA agency goals and specific strategic thrusts are discussed.

  9. Management process invaded Ames as the Center shifted from NACA to NASA oversight. Ames constructed

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Management process invaded Ames as the Center shifted from NACA to NASA oversight. Ames constructed a review room in its headquarters building where, in the graphical style that prevailed in the 1960's, Ames leadership could review progress against schedule, budget and performance measures. Shown, in October 1965 is Merrill Mead chief of Ames' program and resources office. (for H Julian Allen Retirement album)

  10. Aerothermodynamics research at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Deiwert, George S.

    1987-01-01

    Research activity in the aerothermodynamics branch at the NASA Ames Research Center is reviewed. Advanced concepts and mission studies relating to the next generation aerospace transportation systems are summarized and directions for continued research identified. Theoretical and computational studies directed at determining flow fields and radiative and convective heating loads in real gases are described. Included are Navier-Stokes codes for equilibrium and thermochemical nonequilibrium air. Experimental studies in the 3.5-ft hypersonic wind tunnel, the ballistic ranges, and the electric arc driven shock tube are described. Tested configurations include generic hypersonic aerospace plane configurations, aeroassisted orbital transfer vehicle shapes and Galileo probe models.

  11. Air Traffic Management Research at NASA Ames

    NASA Technical Reports Server (NTRS)

    Davis, Thomas J.

    2012-01-01

    The Aviation Systems Division at the NASA Ames Research Center conducts leading edge research in air traffic management concepts and technologies. This overview will present concepts and simulation results for research in traffic flow management, safe and efficient airport surface operations, super density terminal area operations, separation assurance and system wide modeling and simulation. A brief review of the ongoing air traffic management technology demonstration (ATD-1) will also be presented. A panel discussion, with Mr. Davis serving as a panelist, on air traffic research will follow the briefing.

  12. Theoretical Chemistry At NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Langhoff, Stephen

    1996-01-01

    The theoretical work being carried out in the Computational Chemistry Branch at NASA Ames will be overviewed. This overview will be followed by a more in-depth discussion of our theoretical work to determine molecular opacities for the TiO and water molecules and a discussion of our density function theory (DFT) calculations to determine the harmonic frequencies and intensities to the vibrational bands of polycyclic aromatic hydrocarbons (PAHs) to assess their role as carriers to the unidentified infrared (UIR) bands. Finally, a more in-depth discussion of our work in the area of computational molecular nanotechnology will be presented.

  13. PSP Testing at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Bell, J. H.; Hand, L. A.; Schairer, E. T.; Mehta, R. D.; George, Michael W. (Technical Monitor)

    1997-01-01

    Pressure sensitive paints (PSPs) are now used routinely for measuring surface pressures on wind tunnel models at transonic and supersonic Mach numbers. The method utilizes a surface coating containing fluorescent or phosphorescent materials, the brightness of which varies with the local air pressure on the surface. The present paper will summarize PSP activities (in progress and planned) at the NASA Ames Research Center. One of the main accomplishments at NASA Ames has been the development of a PSP measurement system that is production testing capable. This system has been integrated successfully into the large-scale wind tunnel facilities at Ames. There are several problems related to PSP testing which are unique to large-scale wind tunnel testing. The hardware is often difficult to set-up and must operate under harsh conditions (e.g. high pressures and low temperatures). The data acquisition and reduction times need to be kept to a minimum so that the overall wind tunnel productivity is not compromised. The pressure sensitive paints needs to be very robust; the paints must readily adhere to different surfaces with varying geometries and remain functional for long running times. The paint must have well understood, and preferably minimal, temperature sensitivity since fine control of the tunnel temperature is not easily achievable in the larger wind tunnels. In an effort to improve the overall accuracy of the PSP technique, we are currently evaluating some referenced pressure sensitive paints which contain a pressure- independent luminophor in addition to the one which is affected by the surface pressure. The two luminophors are chosen so that their emission wavelengths are somewhat different. Then by taking two 'wind-on' images with either two cameras (with different filters) or one camera with a rotating filter system, the need for 'wind-off' images can be eliminated. The ratio of the two wind-on images accounts for nonuniform lighting and model motion problems

  14. NASA Ames UV-LED Poster Overview

    NASA Technical Reports Server (NTRS)

    Jaroux, Belgacem Amar

    2015-01-01

    UV-LED is a small satellite technology demonstration payload being flown on the Saudisat-4 spacecraft that is demonstrating non-contacting charge control of an isolated or floating mass using new solid-state ultra-violet light emitting diodes (UV-LEDs). Integrated to the rest of the spacecraft and launched on a Dnepr in June 19, 2014, the project is a collaboration between the NASA Ames Research Center (ARC), Stanford University, and King Abdulaziz City for Science and Technology (KACST). Beginning with its commissioning in December, 2015, the data collected by UV-LED have validated a novel method of charge control that will improve the performance of drag-free spacecraft allowing for concurrent science collection during charge management operations as well as reduce the mass, power and volume required while increasing lifetime and reliability of a charge management subsystem. UV-LED continues to operate, exploring new concepts in non-contacting charge control and collecting data crucial to understanding the lifetime of ultra-violet light emitting diodes in space. These improvements are crucial to the success of ground breaking missions such as LISA and BBO, and demonstrates the ability of low cost small satellite missions to provide technological advances that far exceed mission costs.

  15. NASA Ames Celebrates Curiosity Rover's Landing on Mars

    NASA Video Gallery

    Nearly 7,000 people came to NASA Ames Research Center, Moffett Field, Calif., to watch the Mars Science Laboratory rover Curiosity land on Mars. A full day's worth of activities and discussions wit...

  16. The Western Aeronautical Test Range of NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Moore, A. L.

    1984-01-01

    An overview of the Western Aeronautical Test Range (WATR) of NASA Ames Research Center (ARC) is presented in this paper. The three WATR facilities are discussed, and three WATR elements - mission control centerns, communications systems, real-time processing and display systems, and tracking systems -are reviewed. The relationships within the NASA WATR, with respect to the NASA aeronautics program, are also discussed.

  17. NASA Ames Fluid Mechanics Laboratory research briefs

    NASA Technical Reports Server (NTRS)

    Davis, Sanford (Editor)

    1994-01-01

    The Ames Fluid Mechanics Laboratory research program is presented in a series of research briefs. Nineteen projects covering aeronautical fluid mechanics and related areas are discussed and augmented with the publication and presentation output of the Branch for the period 1990-1993.

  18. Photonic processing at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Ochoa, Ellen; Reid, Max

    1990-01-01

    The Photonic Processing group is engaged in applied research on optical processors in support of the Ames vision to lead the development of autonomous intelligent systems. Optical processors, in conjunction with numeric and symbolic processors, are needed to provide the powerful processing capability that is required for many future agency missions. The research program emphasizes application of analog optical processing, where free-space propagation between components allows natural implementations of algorithms requiring a large degree of parallel computation. Special consideration is given in the Ames program to the integration of optical processors into larger, heterogeneous computational systems. Demonstration of the effective integration of optical processors within a broader knowledge-based system is essential to evaluate their potential for dependable operation in an autonomous environment such as space. The Ames Photonics program is currently addressing several areas of interest. One of the efforts is to develop an optical correlator system with two programmable spatial light modulators (SLMs) to perform distortion invariant pattern recognition. Another area of research is optical neural networks, also for use in distortion-invariant pattern recognition.

  19. Quantifying Climate Change Hydrologic Risk at NASA Ames Research Center

    NASA Astrophysics Data System (ADS)

    Mills, W. B.; Bromirski, P. D.; Coats, R. N.; Costa-Cabral, M.; Fong, J.; Loewenstein, M.; Milesi, C.; Miller, N.; Murphy, N.; Roy, S.

    2013-12-01

    In response to 2009 Executive Order 13514 mandating U.S. federal agencies to evaluate infrastructure vulnerabilities due to climate variability and change we provide an analysis of future climate flood risk at NASA Ames Research Center (Ames) along South S.F. Bay. This includes likelihood analysis of large-scale water vapor transport, statistical analysis of intense precipitation, high winds, sea level rise, storm surge, estuary dynamics, saturated overland flooding, and likely impacts to wetlands and habitat loss near Ames. We use the IPCC CMIP5 data from three Atmosphere-Ocean General Circulation Models with Radiative Concentration Pathways of 8.5 Wm-2 and 4.5 Wm-2 and provide an analysis of climate variability and change associated with flooding and impacts at Ames. Intense storms impacting Ames are due to two large-scale processes, sub-tropical atmospheric rivers (AR) and north Pacific Aleutian low-pressure (AL) storm systems, both of which are analyzed here in terms of the Integrated Water Vapor (IWV) exceeding a critical threshold within a search domain and the wind vector transporting the IWV from southerly to westerly to northwesterly for ARs and northwesterly to northerly for ALs and within the Ames impact area during 1970-1999, 2040-2069, and 2070-2099. We also include a statistical model of extreme precipitation at Ames based on large-scale climatic predictors, and characterize changes using CMIP5 projections. Requirements for levee height to protect Ames are projected to increase and continually accelerate throughout this century as sea level rises. We use empirical statistical and analytical methods to determine the likelihood, in each year from present through 2099, of water level surpassing different threshold values in SF Bay near NASA Ames. We study the sensitivity of the water level corresponding to a 1-in-10 and 1-in-100 likelihood of exceedance to changes in the statistical distribution of storm surge height and ENSO height, in addition to

  20. Comparison Between Field Data and NASA Ames Wind Tunnel Data

    SciTech Connect

    Corbus, D.

    2005-11-01

    The objective of this analysis is to compare the measured data from the NASA Ames wind tunnel experiment to those collected in the field at the National Wind Technology Center (NWTC) with the same turbine configuration. The results of this analysis provide insight into what measurements can be made in the field as opposed to wind tunnel testing.

  1. NASA Ames and Future of Space Exploration, Science, and Aeronautics

    NASA Technical Reports Server (NTRS)

    Cohen, Jacob

    2015-01-01

    Pushing the frontiers of aeronautics and space exploration presents multiple challenges. NASA Ames Research Center is at the forefront of tackling these issues, conducting cutting edge research in the fields of air traffic management, entry systems, advanced information technology, intelligent human and robotic systems, astrobiology, aeronautics, space, earth and life sciences and small satellites. Knowledge gained from this research helps ensure the success of NASA's missions, leading us closer to a world that was only imagined as science fiction just decades ago.

  2. Technology transfer in the NASA Ames Advanced Life Support Division

    NASA Technical Reports Server (NTRS)

    Connell, Kathleen; Schlater, Nelson; Bilardo, Vincent; Masson, Paul

    1992-01-01

    This paper summarizes a representative set of technology transfer activities which are currently underway in the Advanced Life Support Division of the Ames Research Center. Five specific NASA-funded research or technology development projects are synopsized that are resulting in transfer of technology in one or more of four main 'arenas:' (1) intra-NASA, (2) intra-Federal, (3) NASA - aerospace industry, and (4) aerospace industry - broader economy. Each project is summarized as a case history, specific issues are identified, and recommendations are formulated based on the lessons learned as a result of each project.

  3. NASA-Ames workload research program

    NASA Technical Reports Server (NTRS)

    Hart, Sandra

    1988-01-01

    Research has been underway for several years to develop valid and reliable measures and predictors of workload as a function of operator state, task requirements, and system resources. Although the initial focus of this research was on aeronautics, the underlying principles and methodologies are equally applicable to space, and provide a set of tools that NASA and its contractors can use to evaluate design alternatives from the perspective of the astronauts. Objectives and approach of the research program are described, as well as the resources used in conducting research and the conceptual framework around which the program evolved. Next, standardized tasks are described, in addition to predictive models and assessment techniques and their application to the space program. Finally, some of the operational applications of these tasks and measures are reviewed.

  4. NASA Ames Sustainability Initiatives: Aeronautics, Space Exploration, and Sustainable Futures

    NASA Technical Reports Server (NTRS)

    Grymes, Rosalind A.

    2015-01-01

    In support of the mission-specific challenges of aeronautics and space exploration, NASA Ames produces a wealth of research and technology advancements with significant relevance to larger issues of planetary sustainability. NASA research on NexGen airspace solutions and its development of autonomous and intelligent technologies will revolutionize both the nation's air transporation systems and have applicability to the low altitude flight economy and to both air and ground transporation, more generally. NASA's understanding of the Earth as a complex of integrated systems contributes to humanity's perception of the sustainability of our home planet. Research at NASA Ames on closed environment life support systems produces directly applicable lessons on energy, water, and resource management in ground-based infrastructure. Moreover, every NASA campus is a 'city'; including an urbanscape and a workplace including scientists, human relations specialists, plumbers, engineers, facility managers, construction trades, transportation managers, software developers, leaders, financial planners, technologists, electricians, students, accountants, and even lawyers. NASA is applying the lessons of our mission-related activities to our urbanscapes and infrastructure, and also anticipates a leadership role in developing future environments for living and working in space.

  5. Computational Fluid Dynamics Program at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.

    1989-01-01

    The Computational Fluid Dynamics (CFD) Program at NASA Ames Research Center is reviewed and discussed. The technical elements of the CFD Program are listed and briefly discussed. These elements include algorithm research, research and pilot code development, scientific visualization, advanced surface representation, volume grid generation, and numerical optimization. Next, the discipline of CFD is briefly discussed and related to other areas of research at NASA Ames including experimental fluid dynamics, computer science research, computational chemistry, and numerical aerodynamic simulation. These areas combine with CFD to form a larger area of research, which might collectively be called computational technology. The ultimate goal of computational technology research at NASA Ames is to increase the physical understanding of the world in which we live, solve problems of national importance, and increase the technical capabilities of the aerospace community. Next, the major programs at NASA Ames that either use CFD technology or perform research in CFD are listed and discussed. Briefly, this list includes turbulent/transition physics and modeling, high-speed real gas flows, interdisciplinary research, turbomachinery demonstration computations, complete aircraft aerodynamics, rotorcraft applications, powered lift flows, high alpha flows, multiple body aerodynamics, and incompressible flow applications. Some of the individual problems actively being worked in each of these areas is listed to help define the breadth or extent of CFD involvement in each of these major programs. State-of-the-art examples of various CFD applications are presented to highlight most of these areas. The main emphasis of this portion of the presentation is on examples which will not otherwise be treated at this conference by the individual presentations. Finally, a list of principal current limitations and expected future directions is given.

  6. Air Traffic Management Research at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Lee, Katharine

    2005-01-01

    Since the late 1980's, NASA Ames researchers have been investigating ways to improve the air transportation system through the development of decision support automation. These software advances, such as the Center-TRACON Automation System (eTAS) have been developed with teams of engineers, software developers, human factors experts, and air traffic controllers; some ASA Ames decision support tools are currently operational in Federal Aviation Administration (FAA) facilities and some are in use by the airlines. These tools have provided air traffic controllers and traffic managers the capabilities to help reduce overall delays and holding, and provide significant cost savings to the airlines as well as more manageable workload levels for air traffic service providers. NASA is continuing to collaborate with the FAA, as well as other government agencies, to plan and develop the next generation of decision support tools that will support anticipated changes in the air transportation system, including a projected increase to three times today's air-traffic levels by 2025. The presentation will review some of NASA Ames' recent achievements in air traffic management research, and discuss future tool developments and concepts currently under consideration.

  7. NASA Ames Arc Jets and Range, Capabilities for Planetary Entry

    NASA Technical Reports Server (NTRS)

    Fretter, Ernest F.

    2005-01-01

    NASA is pursuing innovative technologies and concepts as part of America's Vision for Space Exploration. The rapidly emerging field of nanotechnology has led to new concepts for multipurpose shields to prevent catastrophic loss of vehicles and crew against the triple threats of aeroheating during atmospheric entry, radiation (Solar and galactic cosmic rays) and Micrometorid/Orbital Debris (MMOD) strikes. One proposed concept is the Thermal Radiation Impact Protection System (TRIPS) using carbon nanotubes, hydrogenated carbon nanotubes, and ceramic coatings as a multi-use TPS. The Thermophysics Facilities Branch of the Space Technology Division at NASA Ames Research Center provides testing services for the development and validation of the present and future concepts being developed by NASA and national and International research firms. The Branch operates two key facilities - the Range Complex and the Arc Jets. The Ranges include both the Ames Vertical Gun Range (AVGR) and the Hypervelocity Free Flight (HFF) gas guns best suited for MMOD investigations. Test coupons can be installed in the AVGR or HFF and subjected to particle impacts from glass or metal particles from micron to _ inch (6.35-mm) diameters and at velocities from 5 to 8 kilometers per second. The facility can record high-speed data on film and provide damage assessment for analysis by the Principle Investigator or Ames personnel. Damaged articles can be installed in the Arc Jet facility for further testing to quantify the effects of damage on the heat shield s performance upon entry into atmospheric environments.

  8. Human Robotic Study at Houghton Crater - virtual reality study from NASA Ames (FFC) Future Fight

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Human Robotic Study at Houghton Crater - virtual reality study from NASA Ames (FFC) Future Fight Central simulator tower L-R: Dr Geoffrey Briggs; Jen Jasper (seated); Dr Jan Akins and Mr. Tony Gross, Ames

  9. NASA/Ames Research Center's science and applications aircraft program

    NASA Technical Reports Server (NTRS)

    Hall, G. Warren

    1991-01-01

    NASA-Ames Research Center operates a fleet of seven Science and Applications Aircraft, namely the C-141/Kuiper Airborne Observatory (KAO), DC-8, C-130, Lear Jet, and three ER-2s. These aircraft are used to satisfy two major objectives, each of equal importance. The first is to acquire remote and in-situ scientific data in astronomy, astrophysics, earth sciences, ocean processes, atmospheric physics, meteorology, materials processing and life sciences. The second major objective is to expedite the development of sensors and their attendant algorithms for ultimate use in space and to simulate from an aircraft, the data to be acquired from spaceborne sensors. NASA-Ames Science and Applications Aircraft are recognized as national and international facilities. They have performed and will continue to perform, operational missions from bases in the United States and worldwide. Historically, twice as many investigators have requested flight time than could be accommodated. This situation remains true today and is expected to increase in the years ahead. A major advantage of the existing fleet of aircraft is their ability to cover a large expanse of the earth's ecosystem from the surface to the lower stratosphere over large distances and time aloft. Their large payload capability allows a number of scientists to use multi-investigator sensor suites to permit simultaneous and complementary data gathering. In-flight changes to the sensors or data systems have greatly reduced the time required to optimize the development of new instruments. It is doubtful that spaceborne systems will ever totally replace the need for airborne science aircraft. The operations philosophy and capabilities exist at NASA-Ames Research Center.

  10. A Standard Kinematic Model for Flight Simulation at NASA Ames

    NASA Technical Reports Server (NTRS)

    Mcfarland, R. E.

    1975-01-01

    A standard kinematic model for aircraft simulation exists at NASA-Ames on a variety of computer systems, one of which is used to control the flight simulator for advanced aircraft (FSAA). The derivation of the kinematic model is given and various mathematical relationships are presented as a guide. These include descriptions of standardized simulation subsystems such as the atmospheric turbulence model and the generalized six-degrees-of-freedom trim routine, as well as an introduction to the emulative batch-processing system which enables this facility to optimize its real-time environment.

  11. Planning and scheduling research at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Friedland, Peter

    1990-01-01

    Planning and scheduling is the area of artificial intelligence research that focuses on the determination of a series of operations to achieve some set of (possibly) interacting goals and the placement of those operations in a timeline that allows them to be accomplished given available resources. Work in this area at the NASA Ames Research Center ranging from basic research in constrain-based reasoning and machine learning, to the development of efficient scheduling tools, to the application of such tools to complex agency problems is described.

  12. Unique life sciences research facilities at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Mulenburg, G. M.; Vasques, M.; Caldwell, W. F.; Tucker, J.

    1994-01-01

    The Life Science Division at NASA's Ames Research Center has a suite of specialized facilities that enable scientists to study the effects of gravity on living systems. This paper describes some of these facilities and their use in research. Seven centrifuges, each with its own unique abilities, allow testing of a variety of parameters on test subjects ranging from single cells through hardware to humans. The Vestibular Research Facility allows the study of both centrifugation and linear acceleration on animals and humans. The Biocomputation Center uses computers for 3D reconstruction of physiological systems, and interactive research tools for virtual reality modeling. Psycophysiological, cardiovascular, exercise physiology, and biomechanical studies are conducted in the 12 bed Human Research Facility and samples are analyzed in the certified Central Clinical Laboratory and other laboratories at Ames. Human bedrest, water immersion and lower body negative pressure equipment are also available to study physiological changes associated with weightlessness. These and other weightlessness models are used in specialized laboratories for the study of basic physiological mechanisms, metabolism and cell biology. Visual-motor performance, perception, and adaptation are studied using ground-based models as well as short term weightlessness experiments (parabolic flights). The unique combination of Life Science research facilities, laboratories, and equipment at Ames Research Center are described in detail in relation to their research contributions.

  13. Reduced Crew Operations Research at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Brandt, Summer L.; Lachter, Joel

    2017-01-01

    In 2012, NASA began exploring the feasibility of single pilot reduced crew operations (SPORCO) in the context of scheduled passenger air carrier operations (i.e., Parts 121 and 135). This research was spurred by two trends in aviation research: the trend toward reducing costs and a shortage of pilots. A series of simulations were conducted to develop tools and a concept of operations to support RCO. This slide deck is a summary of the NASA Ames RCO research prepared for an R T team at Airbus. Airbus is considering moving forward with reducing crew during the cruise phase of flight with long-haul flights and is interested in the work we have completed.

  14. Computational Nanotechnology at NASA Ames Research Center, 1996

    NASA Technical Reports Server (NTRS)

    Globus, Al; Bailey, David; Langhoff, Steve; Pohorille, Andrew; Levit, Creon; Chancellor, Marisa K. (Technical Monitor)

    1996-01-01

    Some forms of nanotechnology appear to have enormous potential to improve aerospace and computer systems; computational nanotechnology, the design and simulation of programmable molecular machines, is crucial to progress. NASA Ames Research Center has begun a computational nanotechnology program including in-house work, external research grants, and grants of supercomputer time. Four goals have been established: (1) Simulate a hypothetical programmable molecular machine replicating itself and building other products. (2) Develop molecular manufacturing CAD (computer aided design) software and use it to design molecular manufacturing systems and products of aerospace interest, including computer components. (3) Characterize nanotechnologically accessible materials of aerospace interest. Such materials may have excellent strength and thermal properties. (4) Collaborate with experimentalists. Current in-house activities include: (1) Development of NanoDesign, software to design and simulate a nanotechnology based on functionalized fullerenes. Early work focuses on gears. (2) A design for high density atomically precise memory. (3) Design of nanotechnology systems based on biology. (4) Characterization of diamonoid mechanosynthetic pathways. (5) Studies of the laplacian of the electronic charge density to understand molecular structure and reactivity. (6) Studies of entropic effects during self-assembly. Characterization of properties of matter for clusters up to sizes exhibiting bulk properties. In addition, the NAS (NASA Advanced Supercomputing) supercomputer division sponsored a workshop on computational molecular nanotechnology on March 4-5, 1996 held at NASA Ames Research Center. Finally, collaborations with Bill Goddard at CalTech, Ralph Merkle at Xerox Parc, Don Brenner at NCSU (North Carolina State University), Tom McKendree at Hughes, and Todd Wipke at UCSC are underway.

  15. A Perspective on NASA Ames Air Traffic Management Research

    NASA Technical Reports Server (NTRS)

    Schroeder, Jeffery A.

    2012-01-01

    This paper describes past and present air-traffic-management research at NASA Ames Research Center. The descriptions emerge from the perspective of a technical manager who supervised the majority of this research for the last four years. Past research contributions built a foundation for calculating accurate flight trajectories to enable efficient airspace management in time. That foundation led to two predominant research activities that continue to this day - one in automatically separating aircraft and the other in optimizing traffic flows. Today s national airspace uses many of the applications resulting from research at Ames. These applications include the nationwide deployment of the Traffic Management Advisor, new procedures enabling continuous descent arrivals, cooperation with industry to permit more direct flights to downstream way-points, a surface management system in use by two cargo carriers, and software to evaluate how well flights conform to national traffic management initiatives. The paper concludes with suggestions for prioritized research in the upcoming years. These priorities include: enabling more first-look operational evaluations, improving conflict detection and resolution for climbing or descending aircraft, and focusing additional attention on the underpinning safety critical items such as a reliable datalink.

  16. Computational Fluid Dynamics at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Kutler, Paul

    1994-01-01

    Computational fluid dynamics (CFD) is beginning to play a major role in the aircraft industry of the United States because of the realization that CFD can be a new and effective design tool and thus could provide a company with a competitive advantage. It is also playing a significant role in research institutions, both governmental and academic, as a tool for researching new fluid physics, as well as supplementing and complementing experimental testing. In this presentation, some of the progress made to date in CFD at NASA Ames will be reviewed. The presentation addresses the status of CFD in terms of methods, examples of CFD solutions, and computer technology. In addition, the role CFD will play in supporting the revolutionary goals set forth by the Aeronautical Policy Review Committee established by the Office of Science and Technology Policy is noted. The need for validated CFD tools is also briefly discussed.

  17. The NASA Ames Fatigue Countermeasures Program: The Next Generation

    NASA Technical Reports Server (NTRS)

    Rosekind, Mark R.; Neri, David F.; Miller, Donna L.; Gregory, Kevin B.; Webbon, Lissa L.; Oyung, Ray L.

    1997-01-01

    Twenty-four hour, global aviation operations pose unique challenges to humans. Physiological requirements related to sleep, the internal circadian clock, and human fatigue are critical factors that are known to affect safety, performance, and productivity. Understanding the human operators' physiological capabilities, and limitations, will be important to address these issues as global demand for aviation activities continues to increase. In 1980, in response to a Congressional request, the National Aeronautics and Space Administration (NASA) Ames Research Center initiated a Fatigue/Jet Lag Program to examine the role of fatigue in flight operations. Originally established by Dr. John K. Lauber and Dr. Charles E. Billings, the Program was designed to address three objectives: (1) determine the extent of fatigue, sleep loss, and circadian disruption in flight operations; (2) determine how fatigue affected flight crew performance; and (3) develop strategies to maximize performance and alertness during flight operations.

  18. Space technology test facilities at the NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R.; Rodrigues, Annette T.

    1990-01-01

    The major space research and technology test facilities at the NASA Ames Research Center are divided into five categories: General Purpose, Life Support, Computer-Based Simulation, High Energy, and the Space Exploraton Test Facilities. The paper discusses selected facilities within each of the five categories and discusses some of the major programs in which these facilities have been involved. Special attention is given to the 20-G Man-Rated Centrifuge, the Human Research Facility, the Plant Crop Growth Facility, the Numerical Aerodynamic Simulation Facility, the Arc-Jet Complex and Hypersonic Test Facility, the Infrared Detector and Cryogenic Test Facility, and the Mars Wind Tunnel. Each facility is described along with its objectives, test parameter ranges, and major current programs and applications.

  19. The NASA Ames Controlled Environment Research Chamber - Present status

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R.; Korsmeyer, David J.; Harper, Lynn D.; Force, Edwin L.

    1994-01-01

    The Controlled Environment Research Chamber (CERC) at the NASA Ames Research Center was created for early-on investigation of promising new technologies for life support of advanced space exploration missions. The CERC facility is being used to address the advanced technology requirements necessary to implement an integrated working and living environment for a planetary habitat. The CERC, along with a human-powered centrifuge, a planetary terrain simulator, advanced displays, and a virtual reality capability, is able to develop and demonstrate applicable technologies for future planetary exploration. There will be several robotic mechanisms performing exploration taskes external to the habitat that will be controlled through the virtual environment to provide representative workloads for the crew. Finally, there will be a discussion of innovative new multidisciplinary test facilities, and how effective they are to the investigation of the wide range of human and machine problems inherent in exploration missions.

  20. The NASA Ames Controlled Environment Research Chamber: Present status

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R.; Korsmeyer, David J.; Harper, Lynn D.; Force, Edwin L.

    1994-01-01

    The Controlled Environment Research Chamber (CERC) at the NASA Ames Research Center was created for early-on investigation of promising new technologies for life support of advanced space exploration missions. The CERC facility is being used to address the advanced technology requirements necessary to implement an integrated working and living environment for a planetary habitat. The CERC, along with a human-powered centrifuge, a planetary terrain simulator, advanced displays, and a virtual reality, is able to develop and demonstrate applicable technologies for future planetary exploration. There will be several robotic mechanisms performing exploration tasks external to the habitat that will be controlled through the virtual environment to provide representative workloads for the crew. Finally, there will be a discussion of innovative new multidisciplinary test facilities, and how effective they are to the investigation of the wide range of human and machine problems inherent in exploration missions.

  1. NASA Ames Research Center 60 MW Power Supply Modernization

    NASA Technical Reports Server (NTRS)

    Choy, Yuen Ching; Ilinets, Boris V.; Miller, Ted; Nagel, Kirsten (Technical Monitor)

    2001-01-01

    The NASA Ames Research Center 60 MW DC Power Supply was built in 1974 to provide controlled DC power for the Thermophysics Facility Arc Jet Laboratory. The Power Supply has gradually losing reliability due to outdated technology and component life limitation. NASA has decided to upgrade the existing rectifier modules with contemporary high-power electronics and control equipment. NASA plans to complete this project in 2001. This project includes a complete replacement of obsolete thyristor stacks in all six rectifier modules and rectifier bridge control system. High power water-cooled thyristors and freewheeling diodes will be used. The rating of each of the six modules will be 4000 A at 5500 V. The control firing angle signal will be sent from the Facility Control System to six modules via fiberoptic cable. The Power Supply control and monitoring system will include a Master PLC in the Facility building and a Slave PLC in each rectifier module. This system will also monitor each thyristor level in each stack and the auxiliary equipment.

  2. Selected Topics in Overset Technology Development and Applications At NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Chan, William M.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    This paper presents a general overview of overset technology development and applications at NASA Ames Research Center. The topics include: 1) Overview of overset activities at NASA Ames; 2) Recent developments in Chimera Grid Tools; 3) A general framework for multiple component dynamics; 4) A general script module for automating liquid rocket sub-systems simulations; and 5) Critical future work.

  3. Briefing to University of Porto on NASA Airborne Science Program and Ames UAVs

    NASA Technical Reports Server (NTRS)

    Fladeland, Matthew

    2015-01-01

    NASA Ames is exploring a partnership with the University of Portugal to jointly develop and test new autonomous vehicle technologies. As part of the discussions I will be briefing the University of Portugal faculty on the NASA Airborne Science Program (ASP) and associated activities at NASA Ames Research Center. The presentation will communicate the requirements that drive the program, the assets available to NASA researchers, and discuss research projects that have used unmanned aircraft systems including MIZOPEX, Surprise Valley, and Florida Keys Coral Reef assessment. Other topics will include the SIERRA and Dragon Eye UAV projects operated at Ames.

  4. (New) NASA Administrator Sean O'Keefe comes to Ames for employee briefing and tour. Here he welcomes

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (New) NASA Administrator Sean O'Keefe comes to Ames for employee briefing and tour. Here he welcomes JASON kids to NASA while handing out patches and pins. Tom Clausen and Donald James, Ames Education Office in background.

  5. Flight Test 4 Preliminary Results: NASA Ames SSI

    NASA Technical Reports Server (NTRS)

    Isaacson, Doug; Gong, Chester; Reardon, Scott; Santiago, Confesor

    2016-01-01

    Realization of the expected proliferation of Unmanned Aircraft System (UAS) operations in the National Airspace System (NAS) depends on the development and validation of performance standards for UAS Detect and Avoid (DAA) Systems. The RTCA Special Committee 228 is charged with leading the development of draft Minimum Operational Performance Standards (MOPS) for UAS DAA Systems. NASA, as a participating member of RTCA SC-228 is committed to supporting the development and validation of draft requirements as well as the safety substantiation and end-to-end assessment of DAA system performance. The Unmanned Aircraft System (UAS) Integration into the National Airspace System (NAS) Project conducted flight test program, referred to as Flight Test 4, at Armstrong Flight Research Center from April -June 2016. Part of the test flights were dedicated to the NASA Ames-developed Detect and Avoid (DAA) System referred to as JADEM (Java Architecture for DAA Extensibility and Modeling). The encounter scenarios, which involved NASA's Ikhana UAS and a manned intruder aircraft, were designed to collect data on DAA system performance in real-world conditions and uncertainties with four different surveillance sensor systems. Flight test 4 has four objectives: (1) validate DAA requirements in stressing cases that drive MOPS requirements, including: high-speed cooperative intruder, low-speed non-cooperative intruder, high vertical closure rate encounter, and Mode CS-only intruder (i.e. without ADS-B), (2) validate TCASDAA alerting and guidance interoperability concept in the presence of realistic sensor, tracking and navigational errors and in multiple-intruder encounters against both cooperative and non-cooperative intruders, (3) validate Well Clear Recovery guidance in the presence of realistic sensor, tracking and navigational errors, and (4) validate DAA alerting and guidance requirements in the presence of realistic sensor, tracking and navigational errors. The results will be

  6. Summary of proceedings of the first meeting of the NASA Ames Simulator Sickness Steering Committee

    NASA Technical Reports Server (NTRS)

    Hettinger, Lawrence J.; Mccauley, Michael E.; Cook, Anthony E.; Voorhees, James W.

    1989-01-01

    A program of research to investigate simulator induced sickness has recently been initiated under the sponsorship of NASA Ames Research Center to coordinate efforts to investigate and eventually eliminate the problem of simulator sickness. As part of this program, a Simulator Sickness Steering Committee has been assembled, comprised of eighteen representatives from the Army, Air Force, Navy, NASA, NATO, academia, and industry. The proceedings of the first meeting of the NASA Ames Simulator Sickness Steering Committee are summarized and discussed.

  7. Recent Developments in Ultra High Temperature Ceramics at NASA Ames

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia M.; Gasch, Matt; Lawson, John W.; Gusman, Michael I.; Stackpole, Margaret M.

    2009-01-01

    NASA Ames is pursuing a variety of approaches to modify and control the microstructure of UHTCs with the goal of improving fracture toughness, oxidation resistance and controlling thermal conductivity. The overall goal is to produce materials that can perform reliably as sharp leading edges or nose tips in hypersonic reentry vehicles. Processing approaches include the use of preceramic polymers as the SiC source (as opposed to powder techniques), the addition of third phases to control grain growth and oxidation, and the use of processing techniques to produce high purity materials. Both hot pressing and field assisted sintering have been used to make UHTCs. Characterization of the mechanical and thermal properties of these materials is ongoing, as is arcjet testing to evaluate performance under simulated reentry conditions. The preceramic polymer approach has generated a microstructure in which elongated SiC grains grow in the form of an in-situ composite. This microstructure has the advantage of improving fracture toughness while potentially improving oxidation resistance by reducing the amount and interconnectivity of SiC in the material. Addition of third phases, such as Ir, results in a very fine-grained microstructure, even in hot-pressed samples. The results of processing and compositional changes on microstructure and properties are reported, along with selected arcjet results.

  8. 3rd Annual NASA Ames Space Science and Astrobiology Jamboree

    NASA Technical Reports Server (NTRS)

    Dotson, Jessie

    2015-01-01

    The Space Science and Astrobiology Division at NASA Ames Research Center consists of over 50 civil servants and more than 110 contractors, co-­-ops, post-­-docs and associates. Researchers in the division are pursuing investigations in a variety of fields including exoplanets, planetary science, astrobiology and astrophysics. In addition, division personnel support a wide variety of NASA missions including (but not limited to) Kepler, SOFIA, LADEE, JWST, and New Horizons. With such a wide variety of interesting research going on, distributed among three branches in at least 5 different buildings, it can be difficult to stay abreast of what one's fellow researchers are doing. Our goal in organizing this symposium is to facilitate communication and collaboration among the scientists within the division, and to give center management and other ARC researchers and engineers an opportunity to see what scientific research and science mission work is being done in the division. We are also continuing the tradition within the Space Science and Astrobiology Division to honor one senior and one early career scientist with the Pollack Lecture and the Early Career Lecture, respectively. With the Pollack Lecture, our intent is to select a senior researcher who has made significant contributions to any area of research within the space sciences, and we are pleased to honor Dr. William Borucki this year. With the Early Career Lecture, our intent is to select a young researcher within the division who, by their published scientific papers, shows great promise for the future in any area of space science research, and we are pleased to honor Dr. Melinda Kahre this year

  9. NASA Ames Helps Search For and Study of Sutter's Mill Meteorites

    NASA Video Gallery

    Scientists, researchers and volunteers from NASA Ames, the SETI Institute and other organizations are searching for fragments of the Sutter's Mill Meteor that illuminated the sky over the Sierra Ne...

  10. Atmosphere of Freedom: Sixty Years at the NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Bugos, Glenn E.; Launius, Roger (Technical Monitor)

    2000-01-01

    Throughout Ames History, four themes prevail: a commitment to hiring the best people; cutting-edge research tools; project management that gets things done faster, better and cheaper; and outstanding research efforts that serve the scientific professions and the nation. More than any other NASA Center, Ames remains shaped by its origins in the NACA (National Advisory Committee for Aeronautics). Not that its missions remain the same. Sure, Ames still houses the world's greatest collection of wind tunnels and simulation facilities, its aerodynamicists remain among the best in the world, and pilots and engineers still come for advice on how to build better aircraft. But that is increasingly part of Ames' past. Ames people have embraced two other missions for its future. First, intelligent systems and information science will help NASA use new tools in supercomputing, networking, telepresence and robotics. Second, astrobiology will explore lore the prospects for life on Earth and beyond. Both new missions leverage Ames long-standing expertise in computation and in the life sciences, as well as its relations with the computing and biotechnology firms working in the Silicon Valley community that has sprung up around the Center. Rather than the NACA missions, it is the NACA culture that still permeates Ames. The Ames way of research management privileges the scientists and engineers working in the laboratories. They work in an atmosphere of freedom, laced with the expectation of integrity and responsibility. Ames researchers are free to define their research goals and define how they contribute to the national good. They are expected to keep their fingers on the pulse of their disciplines, to be ambitious yet frugal in organizing their efforts, and to always test their theories in the laboratory or in the field. Ames' leadership ranks, traditionally, are cultivated within this scientific community. Rather than manage and supervise these researchers, Ames leadership merely

  11. The NASA Ames Closed Environmental Research Chamber: Present Status

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R.; Korsmeyer, David J.; Harper, Lynn D.; Force, Edwin L.

    1994-01-01

    The Closed Environmental Research Chamber (CERC) at the NASA Ames Research Center was created to investigate both components and complete systems for life support of advanced space exploration missions. This facility includes a Main Chamber, an Airlock, a Sample Transfer Lock, a Vacuum System, an Air Recompression System, a dedicated control room and a pit area for housing supporting and environmental control systems. The Main Chamber provides 310 sq ft of internal working/living space on two levels. It is planned that the CERC will be a human-rated facility for habitation simulation under mass balance closure conditions. The internal pressure will be variable over the range of 14.7 psia to 5 psia with accompanying capability for variation in atmosphere composition to maintain the oxygen partial pressure at 160 mm Hg. The CERC will be provided with a core set of primary life support subsystems for temperature and humidity control, C02 removal and trace contaminant control. Interfacing with external life support technology test bds with be provided, along with connection to centralized, microprocessor-based data acquisition and control systems. This paper will discuss the current status of the CERC facility and show how it is being used to address the advanced technology requirements necessary to implement an integrated working and living environment for a planetary habitat. In particular, it will be shown how the CERC, along with a human-powered centrifuge, a planetary terrain simulator and advanced displays and a virtual reality capability will work together to develop and demonstration applicable technologies for future planetary habitats. Artificial intelligence and expert system programming techniques will be used extensively to provide an automated environment for a 4-person crew. There will be several robotic mechanisms performing exploration tasks external to the habitat that will be controlled through the virtual environment to provide representative

  12. Application of CFD in aeronautics at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Maksymiuk, Catherine M.; Enomoto, Francis Y.; Vandalsem, William R.

    1995-01-01

    The role of Computational Fluid Dynamics (CFD) at Ames Research Center has expanded to address a broad range of aeronautical problems, including wind tunnel support, flight test support, design, and analysis. Balancing the requirements of each new problem against the available resources - software, hardware, time, and expertise - is critical to the effective use of CFD. Several case studies of recent applications highlight the depth of CFD capability at Ames, the tradeoffs involved in various approaches, and lessons learned in the use of CFD as an engineering tool.

  13. Autonomy @ Ames

    NASA Technical Reports Server (NTRS)

    Van Dalsem, William; Krishnakumar, Kalmanje Srinivas

    2016-01-01

    This is a powerpoint presentation that highlights autonomy across the 15 NASA technology roadmaps, including specific examples of projects (past and present) at NASA Ames Research Center. The NASA technology roadmaps are located here: http:www.nasa.govofficesocthomeroadmapsindex.html

  14. Cultivating a Grassroots Aerospace Innovation Culture at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    D'Souza, Sarah; Sanchez, Hugo; Lewis, Ryan

    2017-01-01

    This paper details the adaptation of specific 'knowledge production' methods to implement a first of its kind, grassroots event that provokes a cultural change in how the NASA Ames civil servant community engages in the creation and selection of innovative ideas. Historically, selection of innovative proposals at NASA Ames Research Center is done at the highest levels of management, isolating the views and perspectives of the larger civil servant community. Additionally, NASA innovation programs are typically open to technical organizations and do not engage non-technical organizations to bring forward innovative processes/business practices. Finally, collaboration on innovative ideas and associated solutions tend to be isolated to organizational silos. In this environment, not all Ames employees feel empowered to innovate and opportunities for employee collaboration are limited. In order to address these issues, the 'innovation contest' method was adapted to create the NASA Ames Innovation Fair, a unique, grassroots innovation opportunity for the civil servant community. The Innovation Fair consisted of a physical event with a virtual component. The physical event provided innovators the opportunity to collaborate and pitch their innovations to the NASA Ames community. The civil servant community then voted for the projects that they viewed as innovative and would contribute to NASA's core mission, making this event a truly grassroots effort. The Innovation Fair website provided a location for additional knowledge sharing, discussion, and voting. On March 3rd, 2016, the 'First Annual NASA Ames Innovation Fair' was held with 49 innovators and more than 300 participants collaborating and/or voting for the best innovations. Based on the voting results, seven projects were awarded seed funding for projects ranging from innovative cost models to innovations in aerospace technology. Surveys of both innovators and Fair participants show the Innovation Fair was successful

  15. The viability of establishing collaborative, reconfigurable research environments for the Human Performance Research Laboratory at NASA Ames

    NASA Technical Reports Server (NTRS)

    Clipson, Colin

    1994-01-01

    This paper will review and summarize research initiatives conducted between 1987 and 1992 at NASA Ames Research Center by a research team from the University of Michigan Architecture Research Laboratory. These research initiatives, funded by a NASA grant NAG2-635, examined the viability of establishing collaborative, reconfigurable research environments for the Human Performance Research Laboratory at NASA Ames in California. Collaborative Research Environments are envisioned as a way of enhancing the work of NASA research teams, optimizing the use of shared resources, and providing superior environments for housing research activities. The Integrated Simulation Project at NASA, Ames Human Performance Research Laboratory is one of the current realizations of this initiative.

  16. Comparison of Heat Flux Gages for High Enthalpy Flows - NASA Ames and IRS

    NASA Technical Reports Server (NTRS)

    Loehle, Stefan; Nawaz, Anuscheh; Herdrich, Georg; Fasoulas, Stefanos; Martinez, Edward; Raiche, George

    2016-01-01

    This article is a companion to a paper on heat flux measurements as initiated under a Space Act Agreement in 2011. The current focus of this collaboration between the Institute of Space Systems (IRS) of the University of Stuttgart and NASA Ames Research Center is the comparison and refinement of diagnostic measurements. A first experimental campaign to test different heat flux gages in the NASA Interaction Heating Facility (IHF) and the Plasmawindkanaele (PWK) at IRS was established. This paper focuses on the results of the measurements conducted at IRS. The tested gages included a at face and hemispherical probe head, a 4" hemispherical slug calorimeter, a null-point calorimeter from Ames and a null-point calorimeter developed for this purpose at IRS. The Ames null-point calorimeter was unfortunately defective upon arrival. The measured heat fluxes agree fairly well with each other. The reason for discrepancies can be attributed to signal-to-noise levels and the probe geometry.

  17. Evaluating Fatigue in Operational Settings: The NASA Ames Fatigue Countermeasures Program

    NASA Technical Reports Server (NTRS)

    Rosekind, Mark R.; Gregory, Kevin; Miller, Donna; Webbon, Lissa; Oyung, Ray

    1996-01-01

    In response to a 1980 Congressional request, NASA Ames initiated a program to examine fatigue in flight operations. The Program objectives are to examine fatigue, sleep loss, and circadian disruption in flight operations, determine the effects of these factors on flight crew performance, and the development of fatigue countermeasures. The NASA Ames Fatigue Countermeasures Program conducts controlled laboratory experiments, full-mission flight simulations, and field studies. A range of subjective, behavioral, performance, physiological, and environmental measures are used depending on study objectives. The Program has developed substantial expertise in gathering data during actual flight operations and in other work settings. This has required the development of ambulatory and other measures that can be carried throughout the world and used at 41,000 feet in aircraft cockpits. The NASA Ames Fatigue Countermeasures Program has examined fatigue in shorthaul, longhaul, overnight cargo, and helicopter operations. A recent study of planned cockpit rest periods demonstrated the effectiveness of a brief inflight nap to improve pilot performance and alertness. This study involved inflight reaction time/vigilance performance testing and EEG/EOG measures of physiological alertness. The NASA Ames Fatigue Countermeasures Program has applied scientific findings to the development of education and training materials on fatigue countermeasures, input to federal regulatory activities on pilot flight, duty, and rest requirements, and support of National Transportation Safety Board accident investigations. Current activities are examining fatigue in nonaugmented longhaul flights, regional/commuter flight operations, corporate/business aviation, and psychophysiological variables related to performance.

  18. Flight researh at NASA Ames Research Center: A test pilot's perspective

    NASA Technical Reports Server (NTRS)

    Hall, G. Warren

    1987-01-01

    In 1976 NASA elected to assign responsibility for each of the various flight regimes to individual research centers. The NASA Ames Research Center at Moffett Field, California was designated lead center for vertical and short takeoff and landing, V/STOL research. The three most recent flight research airplanes being flown at the center are discussed from the test pilot's perspective: the Quiet Short Haul Research Aircraft; the XV-15 Tilt Rotor Research Aircraft; and the Rotor Systems Research Aircraft.

  19. Shock Tube and Ballistic Range Facilities at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay H.; Wilder, Michael C.; Reda, Daniel C.; Cornelison, Charles J.; Cruden, Brett A.; Bogdanoff, David W.

    2010-01-01

    The Electric Arc Shock Tube (EAST) facility and the Hypervelocity Free Flight Aerodynamic Facility (HFFAF) at NASA Ames Research Center are described. These facilities have been in operation since the 1960s and have supported many NASA missions and technology development initiatives. The facilities have world-unique capabilities that enable experimental studies of real-gas aerothermal, gas dynamic, and kinetic phenomena of atmospheric entry.

  20. Mechanical design of NASA Ames Research Center vertical motion simulator

    NASA Technical Reports Server (NTRS)

    Engelbert, D. F.; Bakke, A. P.; Chargin, M. K.; Vallotton, W. C.

    1976-01-01

    NASA has designed and is constructing a new flight simulator with large vertical travel. Several aspects of the mechanical design of this Vertical Motion Simulator (VMS) are discussed, including the multiple rack and pinion vertical drive, a pneumatic equilibration system, and the friction-damped rigid link catenaries used as cable supports.

  1. A Survey of Knowledge Management Research & Development at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    This chapter catalogs knowledge management research and development activities at NASA Ames Research Center as of April 2002. A general categorization scheme for knowledge management systems is first introduced. This categorization scheme divides knowledge management capabilities into five broad categories: knowledge capture, knowledge preservation, knowledge augmentation, knowledge dissemination, and knowledge infrastructure. Each of nearly 30 knowledge management systems developed at Ames is then classified according to this system. Finally, a capsule description of each system is presented along with information on deployment status, funding sources, contact information, and both published and internet-based references.

  2. Consolidated Laser-Induced Fluorescence Diagnostic Systems for the NASA Ames Arc Jet Facilities

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay H.; Wilder, Michael C.; Porter, Barry J.; Brown, Jeffrey D.; Yeung, Dickson; Battazzo, Stephen J.; Brubaker, Timothy R.

    2016-01-01

    The spectroscopic diagnostic technique of two photon absorption laser-induced fluorescence (TALIF) of atomic species for non-intrusive arc jet flow property measurement was first implemented at NASA Ames in the mid-1990s. Use of TALIF expanded at NASA Ames and to NASA Johnson's arc jet facility in the late 2000s. In 2013-2014, NASA combined the agency's large-scale arc jet test capabilities at NASA Ames. Concurrent with that effort, the agency also sponsored a project to establish two comprehensive LIF diagnostic systems for the Aerodynamic Heating Facility (AHF) and Interaction Heating Facility (IHF) arc jets. The scope of the project enabled further engineering development of the existing IHF LIF system as well as the complete reconstruction of the original AHF LIF system. The updated LIF systems are identical in design and capability. They represent the culmination of over 20 years of development experience in transitioning a specialized laboratory research tool into a measurement system for large-scale, high-demand test facilities. This paper documents the overall system design from measurement requirements to implementation. Representative data from the redeveloped AHF and IHF LIF systems are also presented.

  3. Consolidated Laser-Induced Fluorescence Diagnostic Systems for the NASA Ames Arc Jet Facilities

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay; Wilder, Michael C.; Porter, Barry; Brown, Jeff; Yeung, Dickson; Battazzo, Steve; Brubaker, Tim

    2016-01-01

    The spectroscopic diagnostic technique of two photon absorption laser-induced fluorescence (TALIF) of atomic species for non-intrusive arc jet flow property measurement was first implemented at NASA Ames in the mid-1990s. Use of TALIF expanded at NASA Ames and to NASA Johnsons arc jet facility in the late 2000s. In 2013-2014, NASA combined the agency's large-scale arc jet test capabilities at NASA Ames. Concurrent with that effort, the agency also sponsored a project to establish two comprehensive LIF diagnostic systems for the Aerodynamic Heating Facility (AHF) and Interaction Heating Facility (IHF) arc jets. The scope of the project enabled further engineering development of the existing IHF LIF system as well as the complete reconstruction of the original AHF LIF system. The updated LIF systems are identical in design and capability. They represent the culmination of over 20 years of development experience in transitioning a specialized laboratory research tool into a measurement system for large-scale, high-demand test facilities. This paper documents the overall system design from measurement requirements to implementation. Representative data from the redeveloped AHF and IHF LIF systems are also presented.

  4. Flow characterization in the NASA Ames 16-inch Shock Tunnel

    NASA Technical Reports Server (NTRS)

    Cavolowsky, John A.; Loomis, Mark P.; Bogdanoff, David W.; Zambrana, Horacio A.; Newfield, Mark E.; Tam, Tim C.

    1992-01-01

    Flow characteristics of NASA's 16-Inch Shock Tunnel are determined for purposes of providing hypersonic propulsion simulation capability. The key tunnel operating parameters are the incident shock speed and reservoir pressure and enthalpy. Flow characteristics of concern are the nozzle exit pressure, temperature, Mach number, Reynolds number, chemical composition, and flow uniformity. Surface mounted gages (for pressure and heat transfer) and nonintrusive optical flow diagnostics (emission and absorption spectroscopy and holographic interferometry) are used to verify tunnel conditions. Experimental measurements are used to validate computational analysis for predicting facility performance, and CFD is used to interpret the free stream optical diagnostic measurements.

  5. Second Annual NASA Ames Space Science and Astrobiology Jamboree

    NASA Technical Reports Server (NTRS)

    Dotson, Jessie

    2014-01-01

    The Space Science and Astrobiology Division's researchers are pursuing investigations in a variety of fields, including exoplanets, planetary science, astrobiology, and astrophysics. In addition division personnel support a wide variety of NASA missions. With a wide variety of interesting research going on, distributed among the three branches in at least 5 buildings, it can be difficult to stay abreast of what one's fellow researchers are doing. Our goal in organizing this symposium is to facilitate communication and collaboration among the scientist within the division and to give center management and other ARC researchers and Engineers an opportunity to see what scientific missions work is being done in the division.

  6. Ames Infusion Stories for NASA Annual Technology Report

    NASA Technical Reports Server (NTRS)

    Smith, Brandon; Jan, Darrell Leslie; Venkatapathy, Ethiraj

    2015-01-01

    These are short (2-page) high-level summaries of technologies that have been infused - i.e., taken the next level. For example, 3DMAT started off as a Center Innovation Fund (CIF) project and graduated to the Game-changing Program (GCD), where it is being prepared for use in Orion. The Nano Entry System similarly started as CIF and graduated to GCD. The High Tortuosity Carbon Dioxide Conversion Device also started off as CIF and then received an award for further development from the NASA Innovative Advanced Concepts program (NIAC).

  7. Optical information processing at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Reid, Max B.; Bualat, Maria G.; Cho, Young C.; Downie, John D.; Gary, Charles K.; Ma, Paul W.; Ozcan, Meric; Pryor, Anna H.; Spirkovska, Lilly

    1993-01-01

    The combination of analog optical processors with digital electronic systems offers the potential of tera-OPS computational performance, while often requiring less power and weight relative to all-digital systems. NASA is working to develop and demonstrate optical processing techniques for on-board, real time science and mission applications. Current research areas and applications under investigation include optical matrix processing for space structure vibration control and the analysis of Space Shuttle Main Engine plume spectra, optical correlation-based autonomous vision for robotic vehicles, analog computation for robotic path planning, free-space optical interconnections for information transfer within digital electronic computers, and multiplexed arrays of fiber optic interferometric sensors for acoustic and vibration measurements.

  8. Satellite communications provisions on NASA Ames instrumented aircraft platforms for Earth science research/applications

    NASA Technical Reports Server (NTRS)

    Shameson, L.; Brass, J. A.; Hanratty, J. J.; Roberts, A. C.; Wegener, S. S.

    1995-01-01

    Earth science activities at NASA Ames are research in atmospheric and ecosystem science, development of remote sensing and in situ sampling instruments, and their integration into scientific research platform aircraft. The use of satellite communications can greatly extend the capability of these agency research platform aircraft. Current projects and plans involve satellite links on the Perseus UAV and the ER-2 via TDRSS and a proposed experiment on the NASA Advanced Communications Technology Satellite. Provisions for data links on the Perseus research platform, via TDRSS S-band multiple access service, have been developed and are being tested. Test flights at Dryden are planned to demonstrate successful end-to-end data transfer. A Unisys Corp. airborne satcom STARLink system is being integrated into an Ames ER-2 aircraft. This equipment will support multiple data rates up to 43 Mb/s each via the TDRS S Ku-band single access service. The first flight mission for this high-rate link is planned for August 1995. Ames and JPL have proposed an ACTS experiment to use real-time satellite communications to improve wildfire research campaigns. Researchers and fire management teams making use of instrumented aircraft platforms at a prescribed burn site will be able to communicate with experts at Ames, the U.S. Forest Service, and emergency response agencies.

  9. Experimental program for real gas flow code validation at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Deiwert, George S.; Strawa, Anthony W.; Sharma, Surendra P.; Park, Chul

    1989-01-01

    The experimental program for validating real gas hypersonic flow codes at NASA Ames Rsearch Center is described. Ground-based test facilities used include ballistic ranges, shock tubes and shock tunnels, arc jet facilities and heated-air hypersonic wind tunnels. Also included are large-scale computer systems for kinetic theory simulations and benchmark code solutions. Flight tests consist of the Aeroassist Flight Experiment, the Space Shuttle, Project Fire 2, and planetary probes such as Galileo, Pioneer Venus, and PAET.

  10. On-board Science Understanding: NASA Ames' Efforts

    NASA Technical Reports Server (NTRS)

    Roush, Ted L.; Cheeseman, Peter; Gulick, Virginia; Wolf, David; Gazis, Paul; Benedix, Gretchen; Buntine, Wray; Glymour, Clark; Pedersen, Liam; Ruzon, Mark

    1998-01-01

    In the near future NASA intends to explore various regions of our solar system using robotic devices such as rovers, spacecraft, airplanes, and/or balloons. Such platforms will likely carry imaging devices, and a variety of analytical instruments intended to evaluate the chemical and mineralogical nature of the environment(s) that they encounter. Historically, mission operations have involved: (1) return of scientific data from the craft; (2) evaluation of the data by space scientists; (3) recommendations of the scientists regarding future mission activity; (4) commands for achieving these activities being transmitted to the craft; and (5) the activity being undertaken. This cycle is then repeated for the duration of the mission with command opportunities once or perhaps twice per day. In a rapidly changing environment, such as might be encountered by a rover traversing hundreds of meters a day or a spacecraft encountering an asteroid, this historical cycle is not amenable to rapid long range traverses, discovery of novelty, or rapid response to any unexpected situations. In addition to real-time response issues, the nature of imaging and/or spectroscopic devices are such that tremendous data volumes can be acquired, for example during a traverse. However, such data volumes can rapidly exceed on-board memory capabilities prior to the ability to transmit it to Earth. Additionally, the necessary communication band-widths are restrictive enough so that only a small portion of these data can actually be returned to Earth. Such scenarios clearly require the enabling of some crucial decisions to be made on-board by these robotic explorers. These decisions transcend the electromechanical control, health, and navigation issues associated with robotic operations. Instead they focus upon a long term goal of automating scientific discovery based upon data returned by sensors of the robot craft. Such an approach would eventually enable it to understand what is interesting

  11. Recent Progress in Entry Radiation Measurements in the NASA Ames Electric ARC Shock Tube Facility

    NASA Technical Reports Server (NTRS)

    Cruden, Brett A.

    2012-01-01

    The Electric Arc Shock Tube (EAST) at NASA Ames Research Center is NASA's only working shock tube capable of obtaining conditions representative of entry in a multitude of planetary atmospheres. The facility is capable of mapping spectroscopic signatures of a wide range of planetary entries from the Vacuum Ultraviolet through Mid-Wave Infrared (120-5500 nm). This paper summarizes the tests performed in EAST for Earth, Mars and Venus entries since 2008, then focuses on a specific test case for CO2/N2 mixtures. In particular, the paper will focus on providing information for the proper interpretation of the EAST data.

  12. The NASA Ames Hypervelocity Free Flight Aerodynamic Facility: Experimental Simulation of the Atmospheric Break-Up of Meteors

    NASA Technical Reports Server (NTRS)

    Wilder, M. C.; Bogdanoff, D. W.

    2015-01-01

    The Hypervelocity Free Flight Aerodynamic Facility at NASA Ames Research Center provides a potential platform for the experimental simulation of meteor breakup at conditions that closely match full-scale entry condition for select parameters. The poster describes the entry environment simulation capabilities of the Hypervelocity Free Flight Aerodynamic Facility (HFFAF) at NASA Ames Research Center and provides example images of the fragmentation of a hypersonic projectile for which break-up was initiated by mechanical forces (impact with a thin polymer diaphragm).

  13. NASA Ames DEVELOP Interns: Helping the Western United States Manage Natural Resources One Project at a Time

    NASA Technical Reports Server (NTRS)

    Justice, Erin; Newcomer, Michelle

    2010-01-01

    The western half of the United States is made up of a number of diverse ecosystems ranging from arid desert to coastal wetlands and rugged forests. Every summer for the past 7 years students ranging from high school to graduate level gather at NASA Ames Research Center (ARC) as part of the DEVELOP Internship Program. Under the guidance of Jay Skiles [Ames Research Center (ARC) - Ames DEVELOP Manager] and Cindy Schmidt [ARC/San Jose State University Ames DEVELOP Coordinator] they work as a team on projects exploring topics including: invasive species, carbon flux, wetland restoration, air quality monitoring, storm visualizations, and forest fires. The study areas for these projects have been in Washington, Utah, Oregon, Nevada, Hawaii, Alaska and California. Interns combine data from NASA and partner satellites with models and in situ measurements to complete prototype projects demonstrating how NASA data and resources can help communities tackle their Earth Science related problems.

  14. Waste Processing Research and Technology Development at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Fisher, John; Kliss, Mark

    2004-01-01

    The current "store and return" approach for handling waste products generated during low Earth orbit missions will not meet the requirements for future human missions identified in NASA s new Exploration vision. The objective is to develop appropriate reliable waste management systems that minimize maintenance and crew time, while maintaining crew health and safety, as well as providing protection of planetary surfaces. Solid waste management requirements for these missions include waste volume reduction, stabilization and storage, water recovery, and ultimately recovery of carbon dioxide, nutrients and other resources from a fully regenerative food production life support system. This paper identifies the key drivers for waste management technology development within NASA, and provides a roadmap for the developmental sequence and progression of technologies. Recent results of research and technology development activities at NASA Ames Research Center on candidate waste management technologies with emphasis on compaction, lyophilization, and incineration are discussed.

  15. Bayesian Research at the NASA Ames Research Center,Computational Sciences Division

    NASA Technical Reports Server (NTRS)

    Morris, Robin D.

    2003-01-01

    NASA Ames Research Center is one of NASA s oldest centers, having started out as part of the National Advisory Committee on Aeronautics, (NACA). The site, about 40 miles south of San Francisco, still houses many wind tunnels and other aviation related departments. In recent years, with the growing realization that space exploration is heavily dependent on computing and data analysis, its focus has turned more towards Information Technology. The Computational Sciences Division has expanded rapidly as a result. In this article, I will give a brief overview of some of the past and present projects with a Bayesian content. Much more than is described here goes on with the Division. The web pages at http://ic.arc. nasa.gov give more information on these, and the other Division projects.

  16. Consolidated Laser-Induced Fluorescence Diagnostic Systems for the NASA Ames Arc Jet Facilities

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay H.; Wilder, Michael C.; Porter, Barry J.; Brown, Jeffrey D.; Yeung, Dickson; Battazzo, Stephen J.; Brubaker, Timothy R.

    2016-01-01

    The spectroscopic diagnostic technique of two photon absorption laser-induced fluorescence (LIF) of atomic species for non-intrusive arc jet flow property measurement was first implemented at NASA Ames in the mid-1990s. In 2013-2014, NASA combined the agency's large-scale arc jet test capabilities at NASA Ames. Concurrent with that effort, the agency also sponsored a project to establish two comprehensive LIF diagnostic systems for the Aerodynamic Heating Facility (AHF) and Interaction Heating Facility (IHF) arc jets. The scope of the project enabled further engineering development of the existing IHF LIF system as well as the complete reconstruction of the AHF LIF system. The updated LIF systems are identical in design and capability. They represent the culmination of over 20 years of development experience in transitioning a specialized laboratory research tool into a measurement system for large-scale, high-demand test facilities. This paper will document the latest improvements of the LIF system design and demonstrations of the redeveloped AHF and IHF LIF systems.

  17. Yesterday, today and tomorrow: A perspective of CFD at NASA's Ames Research Center

    NASA Technical Reports Server (NTRS)

    Kutler, Paul; Gross, Anthony R.

    1987-01-01

    The opportunity to reflect on the computational fluid dynamics (CFD) progam at the NASA Ames Research Center (its beginning, its present state, and its direction for the future) is afforded. Essential elements of the research program during each period are reviewed, including people, facilities, and research problems. The burgeoning role that CFD is playing in the aerospace business is discussed, as is the necessity for validated CFD tools. The current aeronautical position of this country is assessed, as are revolutionary goals to help maintain its aeronautical supremacy in the world.

  18. Global Biology: An Interdisciplinary Scientific Research Program at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Lawless, James G.; Colin, Lawrence

    1984-01-01

    NASA has initiated new effort in Global Biology, the primary focus of which is to understand biogeochemical cycles. As part of this effort, an interdisciplinary team of scientists has formed at Ames Research Center to investigate the cycling of sulfur in the marine coastal zone and to study the cycling of nitrogen in terrestrial ecosystems. Both studies will use remotely sensed data, coupled with ground-based research, to identify and measure the transfer of major and minor biologically produced gases between these ecosystems and global reservoirs.

  19. Global biology - An interdisciplinary scientific research program at NASA, Ames Research Center

    NASA Technical Reports Server (NTRS)

    Lawless, J. G.; Colin, L.

    1983-01-01

    NASA has initiated new effort in Global Biology, the primary focus of which is to understand biogeochemical cycles. As part of this effort, an interdisciplinary team of scientists has formed at Ames Research Center to investigate the cycling of sulfur in the marine coastal zone and to study the cycling of nitrogen in terrestrial ecosystems. Both studies will use remotely sensed data, coupled with ground-based research, to identify and measure the transfer of major and minor biologically produced gases between these ecosystems and global reservoirs.

  20. Mars atmospheric dynamics as simulated by the NASA AMES General Circulation Model. II - Transient baroclinic eddies

    NASA Astrophysics Data System (ADS)

    Barnes, J. R.; Pollack, J. B.; Haberle, R. M.; Leovy, C. B.; Zurek, R. W.; Lee, H.; Schaeffer, J.

    1993-02-01

    A large set of experiments performed with the NASA Ames Mars General Circulation Model is analyzed to determine the properties, structure, and dynamics of the simulated transient baroclinic eddies. There is strong transient baroclinic eddy activity in the extratropics of the Northern Hemisphere during the northern autumn, winter, and spring seasons. The eddy activity remains strong for very large dust loadings, though it shifts northward. The eastward propagating eddies are characterized by zonal wavenumbers of 1-4 and periods of about 2-10 days. The properties of the GCM baroclinic eddies in the northern extratropics are compared in detail with analogous properties inferred from Viking Lander meteorology observations.

  1. Upper Boundary Extension of the NASA Ames Mars General Circulation Model

    NASA Technical Reports Server (NTRS)

    Brecht, Amanda S.; Hollingsworth, J. L.; Kahre, M. A.; Schaeffer, J. R.

    2012-01-01

    Extending the NASA Ames Mars General Circulation Model (MGCM) upper boundary will expand our understanding of the connection between the lower and upper atmosphere of Mars through the middle atmosphere. The extension's main requirements is incorporation of Non-local thermodynamic equilibrium (NLTE) heating (visible) and cooling (infrared). NLTE occurs when energy is exchanged more rapidly with the radiation field (or other energy sources) rather than collisions with other molecules. Without NLTE above approximately 80km/approximately 60km in Mars' atmosphere the IR/visible heating rates are overestimated. Currently NLTE has been applied successfully into the 1D RT code and is in progress for the 3D application.

  2. Testing of SLA-561V in NASA-Ames' Turbulent Flow Duct with Augmented Radiative Heating

    NASA Technical Reports Server (NTRS)

    Sepka, Steven A.; Kornienko, Robert S.; Radbourne, Chris A.

    2010-01-01

    As part of Mars Science Laboratory s (MSL) heatshield development program, SLA-561 was tested in NASA Ames Turbulent Flow Duct (TFD) Facility. For these tests, the TFD facility was modified to include a ceramic plate located in the wall opposite to the test model. Normally the TFD wall opposite to the test model is water-cooled steel. Installing a noncooled ceramic plate allows the ceramic to absorb convective heating and radiate the energy back to the test model as the plate heats up. This work was an effort to increase the severity of TFD test conditions. Presented here are the results from these tests.

  3. Transverse vorticity measurements in the NASA Ames 80 x 120 wind tunnel boundary layer

    NASA Technical Reports Server (NTRS)

    Foss, John F.; Bhol, D. G.; Bramkamp, F. D.; Klewicki, J. G.

    1994-01-01

    The MSU compact four-wire transverse vorticity probe permits omega(sub z)(t) measurements in a nominally 1 sq mm domain. Note that a conventional coordinate system is used with x and y in the streamwise and normal directions respectively. The purpose of this investigation was to acquire time series data in the same access port at the ceiling of the 80 ft x 120 ft wind tunnel (NASA Ames Research Center) as earlier used by the Wallace group from the University of Maryland and to compare the present results with those of the three-component vorticity probe used in that earlier study.

  4. Building intelligent systems - Artificial intelligence research at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Friedland, Peter; Lum, Henry

    1987-01-01

    The basic components that make up the goal of building autonomous intelligent systems are discussed, and ongoing work at the NASA Ames Research Center is described. It is noted that a clear progression of systems can be seen through research settings (both within and external to NASA) to Space Station testbeds to systems which actually fly on the Space Station. The starting point for the discussion is a 'truly' autonomous Space Station intelligent system, responsible for a major portion of Space Station control. Attention is given to research in fiscal 1987, including reasoning under uncertainty, machine learning, causal modeling and simulation, knowledge from design through operations, advanced planning work, validation methodologies, and hierarchical control of and distributed cooperation among multiple knowledge-based systems.

  5. Building intelligent systems: Artificial intelligence research at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Friedland, P.; Lum, H.

    1987-01-01

    The basic components that make up the goal of building autonomous intelligent systems are discussed, and ongoing work at the NASA Ames Research Center is described. It is noted that a clear progression of systems can be seen through research settings (both within and external to NASA) to Space Station testbeds to systems which actually fly on the Space Station. The starting point for the discussion is a truly autonomous Space Station intelligent system, responsible for a major portion of Space Station control. Attention is given to research in fiscal 1987, including reasoning under uncertainty, machine learning, causal modeling and simulation, knowledge from design through operations, advanced planning work, validation methodologies, and hierarchical control of and distributed cooperation among multiple knowledge-based systems.

  6. Upper surface blowing noise of the NASA-Ames quiet short-haul research aircraft

    NASA Technical Reports Server (NTRS)

    Bohn, A. J.; Shovlin, M. D.

    1980-01-01

    An experimental study of the propulsive-lift noise of the NASA-Ames quiet short-haul research aircraft (QSRA) is described. Comparisons are made of measured QSRA flyover noise and model propulsive-lift noise data available in references. Developmental tests of trailing-edge treatments were conducted using sawtooth-shaped and porous USB flap trailing-edge extensions. Small scale parametric tests were conducted to determine noise reduction/design relationships. Full-scale static tests were conducted with the QSRA preparatory to the selection of edge treatment designs for flight testing. QSRA flight and published model propulsive-lift noise data have similar characteristics. Noise reductions of 2 to 3 dB were achieved over a wide range of frequency and directivity angles in static tests of the QSRA. These noise reductions are expected to be achieved or surpassed in flight tests planned by NASA in 1980.

  7. Extending the NASA Ames Mars General Circulation Model to Explore Mars’ Middle Atmosphere

    NASA Astrophysics Data System (ADS)

    Brecht, Amanda; Hollingsworth, J.; Kahre, M.; Schaeffer, J.

    2013-10-01

    The NASA Ames Mars General Circulation Model (MGCM) upper boundary has been extended to ~120 km altitude (p ~10-5 mbar). The extension of the MGCM upper boundary initiates the ability to understand the connection between the lower and upper atmosphere of Mars through the middle atmosphere 70 - 120 km). Moreover, it provides the opportunity to support future missions (i.e. the 2013 MAVEN mission). A major factor in this extension is the incorporation of the Non-Local Thermodynamic Equilibrium (NLTE) heating (visible) and cooling (infrared). This modification to the radiative transfer forcing (i.e., RT code) has been significantly tested in a 1D vertical column and now has been ported to the full 3D Mars GCM. Initial results clearly show the effects of NLTE in the upper middle atmosphere. Diagnostic of seasonal mean fields and large-scale wave activity will be shown with insight into circulation patterns in the middle atmosphere. Furthermore, sensitivity tests with the resolution of the pressure and temperature grids, in which the k-coefficients are calculated upon, have been performed in the 1D RT code. Our progress on this research will be presented. Brecht is supported by NASA’s Postdoctoral Program at the Ames Research Center, administered by Oak Ridge Associated Universities through a contract with NASA.

  8. NASA Ames Research Center R and D Services Directorate Biomedical Systems Development

    NASA Technical Reports Server (NTRS)

    Pollitt, J.; Flynn, K.

    1999-01-01

    The Ames Research Center R&D Services Directorate teams with NASA, other government agencies and/or industry investigators for the development, design, fabrication, manufacturing and qualification testing of space-flight and ground-based experiment hardware for biomedical and general aerospace applications. In recent years, biomedical research hardware and software has been developed to support space-flight and ground-based experiment needs including the E 132 Biotelemetry system for the Research Animal Holding Facility (RAHF), E 100 Neurolab neuro-vestibular investigation systems, the Autogenic Feedback Systems, and the Standard Interface Glove Box (SIGB) experiment workstation module. Centrifuges, motion simulators, habitat design, environmental control systems, and other unique experiment modules and fixtures have also been developed. A discussion of engineered systems and capabilities will be provided to promote understanding of possibilities for future system designs in biomedical applications. In addition, an overview of existing engineered products will be shown. Examples of hardware and literature that demonstrate the organization's capabilities will be displayed. The Ames Research Center R&D Services Directorate is available to support the development of new hardware and software systems or adaptation of existing systems to meet the needs of academic, commercial/industrial, and government research requirements. The Ames R&D Services Directorate can provide specialized support for: System concept definition and feasibility Mathematical modeling and simulation of system performance Prototype hardware development Hardware and software design Data acquisition systems Graphical user interface development Motion control design Hardware fabrication and high-fidelity machining Composite materials development and application design Electronic/electrical system design and fabrication System performance verification testing and qualification.

  9. Recent Upgrades to the NASA Ames Mars General Circulation Model: Applications to Mars' Water Cycle

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Jeffery L.; Kahre, M. A.; Haberle, R. M.; Montmessin, F.; Wilson, R. J.; Schaeffer, J.

    2008-09-01

    We report on recent improvements to the NASA Ames Mars general circulation model (GCM), a robust 3D climate-modeling tool that is state-of-the-art in terms of its physics parameterizations and subgrid-scale processes, and which can be applied to investigate physical and dynamical processes of the present (and past) Mars climate system. The most recent version (gcm2.1, v.24) of the Ames Mars GCM utilizes a more generalized radiation code (based on a two-stream approximation with correlated k's); an updated transport scheme (van Leer formulation); a cloud microphysics scheme that assumes a log-normal particle size distribution whose first two moments are treated as atmospheric tracers, and which includes the nucleation, growth and sedimentation of ice crystals. Atmospheric aerosols (e.g., dust and water-ice) can either be radiatively active or inactive. We apply this version of the Ames GCM to investigate key aspects of the present water cycle on Mars. Atmospheric dust is partially interactive in our simulations; namely, the radiation code "sees" a prescribed distribution that follows the MGS thermal emission spectrometer (TES) year-one measurements with a self-consistent vertical depth scale that varies with season. The cloud microphysics code interacts with a transported dust tracer column whose surface source is adjusted to maintain the TES distribution. The model is run from an initially dry state with a better representation of the north residual cap (NRC) which accounts for both surface-ice and bare-soil components. A seasonally repeatable water cycle is obtained within five Mars years. Our sub-grid scale representation of the NRC provides for a more realistic flux of moisture to the atmosphere and a much drier water cycle consistent with recent spacecraft observations (e.g., Mars Express PFS, corrected MGS/TES) compared to models that assume a spatially uniform and homogeneous north residual polar cap.

  10. Recent Advancements in the Infrared Flow Visualization System for the NASA Ames Unitary Plan Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Garbeff, Theodore J., II; Baerny, Jennifer K.

    2017-01-01

    The following details recent efforts undertaken at the NASA Ames Unitary Plan wind tunnels to design and deploy an advanced, production-level infrared (IR) flow visualization data system. Highly sensitive IR cameras, coupled with in-line image processing, have enabled the visualization of wind tunnel model surface flow features as they develop in real-time. Boundary layer transition, shock impingement, junction flow, vortex dynamics, and buffet are routinely observed in both transonic and supersonic flow regimes all without the need of dedicated ramps in test section total temperature. Successful measurements have been performed on wing-body sting mounted test articles, semi-span floor mounted aircraft models, and sting mounted launch vehicle configurations. The unique requirements of imaging in production wind tunnel testing has led to advancements in the deployment of advanced IR cameras in a harsh test environment, robust data acquisition storage and workflow, real-time image processing algorithms, and evaluation of optimal surface treatments. The addition of a multi-camera IR flow visualization data system to the Ames UPWT has demonstrated itself to be a valuable analyses tool in the study of new and old aircraft/launch vehicle aerodynamics and has provided new insight for the evaluation of computational techniques.

  11. The NASA/Ames Mars General Circulation Model: Model Improvements and Comparison with Observations

    NASA Technical Reports Server (NTRS)

    Haberle, R. M.; Hollingsworth, J. L.; Colaprete, A.; Bridger, A. F. C.; McKay, C. P.; Murphy, J. R.; Schaeffer, J.; Freedman, R.; Fonda, Mark (Technical Monitor)

    2003-01-01

    For many years, the NASA/Ames Mars General Circulation Model (GCM) has been built around the UCLA B-grid dynamical core. An attached tracer transport scheme based on the aerosol microphysical model of Toon et al. (1988) provided a tool for studying dust storm transport and feedbacks (Murphy et al., 1995). While we still use a B-grid version of the model, the Ames group is now transitioning to the ARIES/GEOS Goddard C-grid dynamical core (Suarez and Takacs, 1995). The C-grid produces smoother fields when the model top is raised above 50 km, and has a built in transport scheme for an arbitrary number of tracers. All of our transport simulations are now carried out with the C-grid. We have also been updating our physics package. Several years ago we replaced our bulk boundary layer scheme with a level 2 type diffusive scheme, and added a multi-level soil model (Haberle et al., 2000). More recently we replaced our radiation code with a more generalized two-stream code that accounts for aerosol multiple scattering and gaseous absorption. This code gives us much more flexibility in choosing aerosol optical properties and radiatively active gases.

  12. New Diagnostic, Launch and Model Control Techniques in the NASA Ames HFFAF Ballistic Range

    NASA Technical Reports Server (NTRS)

    Bogdanoff, David W.

    2012-01-01

    This report presents new diagnostic, launch and model control techniques used in the NASA Ames HFFAF ballistic range. High speed movies were used to view the sabot separation process and the passage of the model through the model splap paper. Cavities in the rear of the sabot, to catch the muzzle blast of the gun, were used to control sabot finger separation angles and distances. Inserts were installed in the powder chamber to greatly reduce the ullage volume (empty space) in the chamber. This resulted in much more complete and repeatable combustion of the powder and hence, in much more repeatable muzzle velocities. Sheets of paper or cardstock, impacting one half of the model, were used to control the amplitudes of the model pitch oscillations.

  13. An evaluation plan of bus architectures and protocols using the NASA Ames intelligent redundant actuation system

    NASA Technical Reports Server (NTRS)

    Defeo, P.; Chen, M.

    1987-01-01

    Means for evaluating data bus architectures and protocols for highly integrated flight control system applications are needed. Described are the criteria and plans to do this by using the NASA/Ames Intelligent Redundant Actuation System (IRAS) experimental set-up. Candidate bus architectures differ from one another in terms of: topology, access control, message transfer schemes, message characteristics, initialization. data flow control, transmission rates, fault tolerance, and time synchronization. The evaluation criteria are developed relative to these features. A preliminary, analytical evaluation of four candidate busses (MIL-STD-1553B, DATAC, Ethernet, and HSIS) is described. A bus must be exercised in a real-time environment to evaluate its dynamic characteristics. A plan for real-time evaluation of these four busses using a combination of hardware and simulation techniques is presented.

  14. Enthalpy By Energy Balance for Aerodynamic Heating Facility at NASA Ames Research Center Arc Jet Complex

    NASA Technical Reports Server (NTRS)

    Hightower, T. Mark; MacDonald, Christine L.; Martinez, Edward R.; Balboni, John A.; Anderson, Karl F.; Arnold, Jim O. (Technical Monitor)

    2002-01-01

    The NASA Ames Research Center (ARC) Arc Jet Facilities' Aerodynamic Heating Facility (AHF) has been instrumented for the Enthalpy By Energy Balance (EB2) method. Diagnostic EB2 data is routinely taken for all AHF runs. This paper provides an overview of the EB2 method implemented in the AHF. The chief advantage of the AHF implementation over earlier versions is the non-intrusiveness of the instruments used. For example, to measure the change in cooling water temperature, thin film 1000 ohm Resistance Temperature Detectors (RTDs) are used with an Anderson Current Loop (ACL) as the signal conditioner. The ACL with 1000 ohm RTDs allows for very sensitive measurement of the increase in temperature (Delta T) of the cooling water to the arc heater, which is a critical element of the EB2 method. Cooling water flow rates are measured with non-intrusive ultrasonic flow meters.

  15. The NASA Ames integral aircraft passenger seat concept - A human engineering approach

    NASA Technical Reports Server (NTRS)

    Kubokawa, C. C.

    1974-01-01

    A new NASA Ames concept for an aircraft passenger seat has been under research and development since 1968. It includes many human-factor features that will provide protection to the passenger from vibration, jostle, and high impact. It is comfortable and safer than any of the seats presently in use. An in-depth design, fabrication, and impact analysis was conducted in order to design a seat that will maximize passenger protection in high g impacts (20 g horizontal -Gx, 36 g vertical +Gz, 16 g lateral Gy). The method for absorbing impact energy was accomplished with a combination of stretching stainless steel cables, thread breaking of stitches, hydraulic mechanism and the special Temper Form cushions. The restraint system for the seat consisted of a lap belt and shoulder harness inertia reel combination.

  16. The NASA Ames 16-Inch Shock Tunnel Nozzle Simulations and Experimental Comparison

    NASA Technical Reports Server (NTRS)

    TokarcikPolsky, S.; Papadopoulos, P.; Venkatapathy, E.; Delwert, G. S.; Edwards, Thomas A. (Technical Monitor)

    1995-01-01

    The 16-Inch Shock Tunnel at NASA Ames Research Center is a unique test facility used for hypersonic propulsion testing. To provide information necessary to understand the hypersonic testing of the combustor model, computational simulations of the facility nozzle were performed and results are compared with available experimental data, namely static pressure along the nozzle walls and pitot pressure at the exit of the nozzle section. Both quasi-one-dimensional and axisymmetric approaches were used to study the numerous modeling issues involved. The facility nozzle flow was examined for three hypersonic test conditions, and the computational results are presented in detail. The effects of variations in reservoir conditions, boundary layer growth, and parameters of numerical modeling are explored.

  17. Modifications to the NASA Ames Space Station Proximity Operations (PROX OPS) Simulator

    NASA Technical Reports Server (NTRS)

    Brody, Adam

    1988-01-01

    As the United States is approaching an operational space station era, flight simulators are required to investigate human design and performance aspects associated with orbital operations. Among these are proximity operations (PROX OPS), those activities occurring within a 1-km sphere of Space Station including rendezvous, docking, rescue, and repair. The Space Station Proximity Operations Simulator at NASA Ames Research Center was modified to provide the capability for investigations into human performance aspects of proximity operations. Accurate flight equations of motion were installed to provide the appropriate visual scene to test subjects performing simulated missions. Also, the flight control system was enhanced by enabling pilot control over thruster acceleration values. Currently, research is under way to examine human performance in a variety of mission scenarios.

  18. Development and Flight of the NASA-Ames Research Center Payload on Spacelab-J

    NASA Technical Reports Server (NTRS)

    Schmidt, Gregory K.; Ball, Sally M.; Stolarik, Thomas M.; Eodice, Michael T.

    1993-01-01

    Spacelab-J was an international Spacelab mission with numerous innovative Japanese and American materials and life science experiments. Two of the Spacelab-J experiments were designed over a period of more than a decade by a team from NASA-Ames Research Center. The Frog Embryology Experiment investigated and is helping to resolve a century-long quandary on the effects of gravity on amphibian development. The Autogenic Feedback Training Experiment, flown on Spacelab-J as part of a multi-mission investigation, studied the effects of Autogenic Feedback Therapy on limiting the effects of Space Motion Sickness on astronauts. Both experiments employed the use of a wide variety of specially designed hardware to achieve the experiment objectives. This paper reviews the development of both experiments, from the initial announcement of opportunity in 1978, through selection on Spacelab-J and subsequent hardware and science procedures development, culminating in the highly successful Spacelab-J flight in September 1992.

  19. Development and operation of a real-time simulation at the NASA Ames Vertical Motion Simulator

    NASA Technical Reports Server (NTRS)

    Sweeney, Christopher; Sheppard, Shirin; Chetelat, Monique

    1993-01-01

    The Vertical Motion Simulator (VMS) facility at the NASA Ames Research Center combines the largest vertical motion capability in the world with a flexible real-time operating system allowing research to be conducted quickly and effectively. Due to the diverse nature of the aircraft simulated and the large number of simulations conducted annually, the challenge for the simulation engineer is to develop an accurate real-time simulation in a timely, efficient manner. The SimLab facility and the software tools necessary for an operating simulation will be discussed. Subsequent sections will describe the development process through operation of the simulation; this includes acceptance of the model, validation, integration and production phases.

  20. Development of Implicit Methods in CFD NASA Ames Research Center 1970's - 1980's

    NASA Technical Reports Server (NTRS)

    Pulliam, Thomas H.

    2010-01-01

    The focus here is on the early development (mid 1970's-1980's) at NASA Ames Research Center of implicit methods in Computational Fluid Dynamics (CFD). A class of implicit finite difference schemes of the Beam and Warming approximate factorization type will be addressed. The emphasis will be on the Euler equations. A review of material pertinent to the solution of the Euler equations within the framework of implicit methods will be presented. The eigensystem of the equations will be used extensively in developing a framework for various methods applied to the Euler equations. The development and analysis of various aspects of this class of schemes will be given along with the motivations behind many of the choices. Various acceleration and efficiency modifications such as matrix reduction, diagonalization and flux split schemes will be presented.

  1. THE NASA AMES POLYCYCLIC AROMATIC HYDROCARBON INFRARED SPECTROSCOPIC DATABASE: THE COMPUTED SPECTRA

    SciTech Connect

    Bauschlicher, C. W.; Ricca, A.; Boersma, C.; Mattioda, A. L.; Cami, J.; Peeters, E.; Allamandola, L. J.; Sanchez de Armas, F.; Puerta Saborido, G.; Hudgins, D. M.

    2010-08-15

    The astronomical emission features, formerly known as the unidentified infrared bands, are now commonly ascribed to polycyclic aromatic hydrocarbons (PAHs). The laboratory experiments and computational modeling done at the NASA Ames Research Center to create a collection of PAH IR spectra relevant to test and refine the PAH hypothesis have been assembled into a spectroscopic database. This database now contains over 800 PAH spectra spanning 2-2000 {mu}m (5000-5 cm{sup -1}). These data are now available on the World Wide Web at www.astrochem.org/pahdb. This paper presents an overview of the computational spectra in the database and the tools developed to analyze and interpret astronomical spectra using the database. A description of the online and offline user tools available on the Web site is also presented.

  2. Updates on Modeling the Water Cycle with the NASA Ames Mars Global Climate Model

    NASA Technical Reports Server (NTRS)

    Kahre, M. A.; Haberle, R. M.; Hollingsworth, J. L.; Montmessin, F.; Brecht, A. S.; Urata, R.; Klassen, D. R.; Wolff, M. J.

    2017-01-01

    Global Circulation Models (GCMs) have made steady progress in simulating the current Mars water cycle. It is now widely recognized that clouds are a critical component that can significantly affect the nature of the simulated water cycle. Two processes in particular are key to implementing clouds in a GCM: the microphysical processes of formation and dissipation, and their radiative effects on heating/ cooling rates. Together, these processes alter the thermal structure, change the dynamics, and regulate inter-hemispheric transport. We have made considerable progress representing these processes in the NASA Ames GCM, particularly in the presence of radiatively active water ice clouds. We present the current state of our group's water cycle modeling efforts, show results from selected simulations, highlight some of the issues, and discuss avenues for further investigation.­

  3. The NASA Ames PAH IR Spectroscopic Database: A Demo of its Contents and Web Tools

    NASA Astrophysics Data System (ADS)

    Boersma, Christiaan; Sánchez de Armas, F.; Ricca, A.; Cami, J.; Peeters, E.; Mattioda, A. L.; Bauschlicher, C. W., Jr.; Allamandola, L. J.

    2009-01-01

    The features formerly known as the Unidentified Infrared (UIR) Emission Bands are now generally attributed to polycyclic aromatic hydrocarbons (PAHs). Exploitation of these features as astrophysical and astrochemical probes requires the IR properties of PAHs under interstellar conditions. To fulfill this need, we experimentally measured and theoretically computed the 2-2000 µm spectra of many PAHs over the past 18 years at NASA's Ames Research Center. Today's collection comprises about 600 theoretically computed and 60 laboratory measured spectra of PAHs in different forms. The molecules in the collection range in size from C10H8 to C130H28. For most of these, spectra are available for PAHs in their neutral and singly charged (+/-) states. In some cases, IR spectra of multiply charged species were also computed. The database includes pure PAHs; PAHs containing nitrogen (PANHs), oxygen, and silicon; PAHs with side groups; PAHs with extra hydrogens; and PAHs complexed with iron and magnesium. This collection of PAH spectra from 2 - 2000 µm has been assembled into a uniform database, which we will make publicly available on the web in early 2009. A WebGUI interface has been developed that can effectively interrogate the database using a variety of queries, such as formula, molecular name, charge, specific number of atoms, etc. Several molecules can be selected in such a process and one can obtain their 3-D structures, plot and co-add their spectra, adjust parameters such as the bandwidth, download their data and print graphs. The database can also be downloaded as a whole and IDL-routines are provided to interrogate it. This talk will present an overview of the contents and the web-GUI tools of the NASA Ames PAH IR Spectroscopic Database. Hands-on demonstrations will be available at the SOFIA Booth.

  4. Training for life science experiments in space at the NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Rodrigues, Annette T.; Maese, A. Christopher

    1993-01-01

    As this country prepares for exploration to other planets, the need to understand the affects of long duration exposure to microgravity is evident. The National Aeronautics and Space Administration (NASA) Ames Research Center's Space Life Sciences Payloads Office is responsible for a number of non-human life sciences payloads on NASA's Space Shuttle's Spacelab. Included in this responsibility is the training of those individuals who will be conducting the experiments during flight, the astronauts. Preparing a crew to conduct such experiments requires training protocols that build on simple tasks. Once a defined degree of performance proficiency is met for each task, these tasks are combined to increase the complexity of the activities. As tasks are combined into in-flight operations, they are subjected to time constraints and the crew enhances their skills through repetition. The science objectives must be completely understood by the crew and are critical to the overall training program. Completion of the in-flight activities is proof of success. Because the crew is exposed to the background of early research and plans for post-flight analyses, they have a vested interest in the flight activities. The salient features of this training approach is that it allows for flexibility in implementation, consideration of individual differences, and a greater ability to retain experiment information. This training approach offers another effective alternative training tool to existing methodologies.

  5. Transforming BIM to BEM: Generation of Building Geometry for the NASA Ames Sustainability Base BIM

    SciTech Connect

    O'Donnell, James T.; Maile, Tobias; Rose, Cody; Mrazovic, Natasa; Morrissey, Elmer; Regnier, Cynthia; Parrish, Kristen; Bazjanac, Vladimir

    2013-01-01

    Typical processes of whole Building Energy simulation Model (BEM) generation are subjective, labor intensive, time intensive and error prone. Essentially, these typical processes reproduce already existing data, i.e. building models already created by the architect. Accordingly, Lawrence Berkeley National Laboratory (LBNL) developed a semi-automated process that enables reproducible conversions of Building Information Model (BIM) representations of building geometry into a format required by building energy modeling (BEM) tools. This is a generic process that may be applied to all building energy modeling tools but to date has only been used for EnergyPlus. This report describes and demonstrates each stage in the semi-automated process for building geometry using the recently constructed NASA Ames Sustainability Base throughout. This example uses ArchiCAD (Graphisoft, 2012) as the originating CAD tool and EnergyPlus as the concluding whole building energy simulation tool. It is important to note that the process is also applicable for professionals that use other CAD tools such as Revit (“Revit Architecture,” 2012) and DProfiler (Beck Technology, 2012) and can be extended to provide geometry definitions for BEM tools other than EnergyPlus. Geometry Simplification Tool (GST) was used during the NASA Ames project and was the enabling software that facilitated semi-automated data transformations. GST has now been superseded by Space Boundary Tool (SBT-1) and will be referred to as SBT-1 throughout this report. The benefits of this semi-automated process are fourfold: 1) reduce the amount of time and cost required to develop a whole building energy simulation model, 2) enable rapid generation of design alternatives, 3) improve the accuracy of BEMs and 4) result in significantly better performing buildings with significantly lower energy consumption than those created using the traditional design process, especially if the simulation model was used as a predictive

  6. Fidelity assessment of a UH-60A simulation on the NASA Ames vertical motion simulator

    NASA Technical Reports Server (NTRS)

    Atencio, Adolph, Jr.

    1993-01-01

    Helicopter handling qualities research requires that a ground-based simulation be a high-fidelity representation of the actual helicopter, especially over the frequency range of the investigation. This experiment was performed to assess the current capability to simulate the UH-60A Black Hawk helicopter on the Vertical Motion Simulator (VMS) at NASA Ames, to develop a methodology for assessing the fidelity of a simulation, and to find the causes for lack of fidelity. The approach used was to compare the simulation to the flight vehicle for a series of tasks performed in flight and in the simulator. The results show that subjective handling qualities ratings from flight to simulator overlap, and the mathematical model matches the UH-60A helicopter very well over the range of frequencies critical to handling qualities evaluation. Pilot comments, however, indicate a need for improvement in the perceptual fidelity of the simulation in the areas of motion and visual cuing. The methodology used to make the fidelity assessment proved useful in showing differences in pilot work load and strategy, but additional work is needed to refine objective methods for determining causes of lack of fidelity.

  7. Sources and levels of background noise in the NASA Ames 40- by 80-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.

    1988-01-01

    Background noise levels are measured in the NASA Ames Research Center 40- by 80-Foot Wind Tunnel following installation of a sound-absorbent lining on the test-section walls. Results show that the fan-drive noise dominated the empty test-section background noise at airspeeds below 120 knots. Above 120 knots, the test-section broadband background noise was dominated by wind-induced dipole noise (except at lower harmonics of fan blade-passage tones) most likely generated at the microphone or microphone support strut. Third-octave band and narrow-band spectra are presented for several fan operating conditions and test-section airspeeds. The background noise levels can be reduced by making improvements to the microphone wind screen or support strut. Empirical equations are presented relating variations of fan noise with fan speed or blade-pitch angle. An empirical expression for typical fan noise spectra is also presented. Fan motor electric power consumption is related to the noise generation. Preliminary measurements of sound absorption by the test-section lining indicate that the 152 mm thick lining will adequately absorb test-section model noise at frequencies above 300 Hz.

  8. Computational fluid dynamics at NASA Ames and the numerical aerodynamic simulation program

    NASA Technical Reports Server (NTRS)

    Peterson, V. L.

    1985-01-01

    Computers are playing an increasingly important role in the field of aerodynamics such as that they now serve as a major complement to wind tunnels in aerospace research and development. Factors pacing advances in computational aerodynamics are identified, including the amount of computational power required to take the next major step in the discipline. The four main areas of computational aerodynamics research at NASA Ames Research Center which are directed toward extending the state of the art are identified and discussed. Example results obtained from approximate forms of the governing equations are presented and discussed, both in the context of levels of computer power required and the degree to which they either further the frontiers of research or apply to programs of practical importance. Finally, the Numerical Aerodynamic Simulation Program--with its 1988 target of achieving a sustained computational rate of 1 billion floating-point operations per second--is discussed in terms of its goals, status, and its projected effect on the future of computational aerodynamics.

  9. Exploring Mars' Middle Atmosphere with the Extended NASA Ames Mars General Circulation Model

    NASA Astrophysics Data System (ADS)

    Brecht, A. S.; Hollingsworth, J. L.; Kahre, M. A.; Schaeffer, J.

    2013-12-01

    The NASA Ames Mars General Circulation Model (Mars GCM) upper boundary has been extended to ~120 km altitude (pT ~ 10-6 mbar). The extension of the Mars GCM upper boundary initiates the ability to understand the connection between the lower and upper atmosphere of Mars through the middle atmosphere. Moreover, it provides the opportunity to support missions (i.e. the 2013 MAVEN mission). A major factor in this extension is the incorporation of the Non-Local Thermodynamic Equilibrium (NLTE) heating (visible) and cooling (infrared). The calculated solar heating rates (LTE heating rates) within the Mars GCM are corrected for NLTE by applying factors from Table 1 in López-Valverde et al. (1998). The CO2 15-μm cooling parameterizations is adapted from Bougher et al. (2006). This modification to the radiative transfer forcing has been significantly tested in a 1D vertical column (i.e. RT code) and now has been ported to the full 3D Mars GCM. Initial results clearly show the effects of NLTE in the upper middle atmosphere. Diagnostic of seasonal mean fields and large-scale wave activity will be shown with insight into circulation patterns in the middle atmosphere. Furthermore, sensitivity tests with the resolution of the pressure and temperature grids, in which the k-coefficients are calculated upon, have been performed in the 1D RT code. Our progress on this research will be presented.

  10. Flow Property Measurement Using Laser-Induced Fluorescence in the NASA Ames Interaction Heating Facility

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay Henderson; Porter, Barry J.; Carballo, Julio Enrique

    2011-01-01

    The spectroscopic diagnostic technique of two photon absorption laser-induced fluorescence (TALIF) of atomic species has been applied to single-point measurements of velocity and static temperature in the NASA Ames Interaction Heating Facility (IHF) arc jet. Excitation spectra of atomic oxygen and nitrogen were recorded while scanning a tunable dye laser over the absorption feature. Thirty excitation spectra were acquired during 8 arc jet runs at two facility operating conditions; the number of scans per run varied between 2 and 6. Curve fits to the spectra were analyzed to recover their Doppler shifts and widths, from which the flow velocities and static temperatures, respectively, were determined. An increase in the number of independent flow property pairs from each as-measured scan was obtained by extracting multiple lower-resolution scans. The larger population sample size enabled the mean property values and their uncertainties for each run to be characterized with greater confidence. The average plus or minus 2 sigma uncertainties in the mean velocities and temperatures for all 8 runs were plus or minus 1.4% and plus or minus 11%, respectively.

  11. Design outline for a new multiman ATC simulation facility at NASA-Ames Research Center

    NASA Technical Reports Server (NTRS)

    Kreifeldt, J. G.; Gallagher, O.

    1977-01-01

    A new and unique facility for studying human factors aspects in aeronautics is being planned for use in the Man-Vehicle Systems Research Division at the NASA-Ames Research Center. This facility will replace the existing three cockpit-single ground controller station and be expandable to include approximately seven cockpits and two ground controller stations. Unlike the previous system, each cockpit will be mini-computer centered and linked to a main CPU to effect a distributed computation facility. Each simulator will compute its own flight dynamic and flight path predictor. Mechanical flight instruments in each cockpit will be locally supported and CRT cockpit displays of (e.g.) traffic and or RNAV information will be centrally computed and distributed as a means of extending the existing computational and graphical resources. An outline of the total design is presented which addresses the technical design options and research possibilities of this unique man-machine facility and which may also serve as a model for other real time distributed simulation facilities.

  12. Emission Spectroscopy and Radiometric Measurements in the NASA Ames IHF Arc Jet Facility

    NASA Technical Reports Server (NTRS)

    Winter, Michael W.; Raiche, George A.; Prabhu, Dinesh K.

    2012-01-01

    Plasma diagnostic measurement campaigns in the NASA Ames Interaction Heating Facility (IHF) have been conducted over the last several years with a view towards characterizing the flow in the arc jet facility by providing data necessary for modeling and simulation. Optical emission spectroscopy has been used in the plenum and in the free jet of the nozzle. Radiation incident over a probe surface has also been measured using radiometry. Plenum measurements have shown distinct radial profiles of temperature over a range of operating conditions. For cases where large amounts of cold air are added radially to the main arc-heated stream, the temperature profiles are higher by as much as 1500 K than the profiles assumed in flow simulations. Optical measurements perpendicular to the flow direction in the free jet showed significant contributions to the molecule emission through inverse pre-dissociation, thus allowing determination of atom number densities from molecular emission. This has been preliminarily demonstrated with the N2 1st Positive System. Despite the use of older rate coefficients, the resulting atom densities are reasonable and surprisingly close to flow predictions.

  13. Simulation of 3-D Nonequilibrium Seeded Air Flow in the NASA-Ames MHD Channel

    NASA Technical Reports Server (NTRS)

    Gupta, Sumeet; Tannehill, John C.; Mehta, Unmeel B.

    2004-01-01

    The 3-D nonequilibrium seeded air flow in the NASA-Ames experimental MHD channel has been numerically simulated. The channel contains a nozzle section, a center section, and an accelerator section where magnetic and electric fields can be imposed on the flow. In recent tests, velocity increases of up to 40% have been achieved in the accelerator section. The flow in the channel is numerically computed us ing a 3-D parabolized Navier-Stokes (PNS) algorithm that has been developed to efficiently compute MHD flows in the low magnetic Reynolds number regime: The MHD effects are modeled by introducing source terms into the PNS equations which can then be solved in a very efficient manner. The algorithm has been extended in the present study to account for nonequilibrium seeded air flows. The electrical conductivity of the flow is determined using the program of Park. The new algorithm has been used to compute two test cases that match the experimental conditions. In both cases, magnetic and electric fields are applied to the seeded flow. The computed results are in good agreement with the experimental data.

  14. Low-level jets in the NASA Ames Mars general circulation model

    NASA Astrophysics Data System (ADS)

    Joshi, M. M.; Haberle, R. M.; Barnes, J. R.; Murphy, J. R.; Schaeffer, J.

    1997-03-01

    Previous simulations of the Martian atmosphere have shown how topography acts to confine the low-level Hadley cell flow into intense jets on the eastern flanks of Tharsis and Syrtis Major. We now conduct detailed studies of these jets using the NASA Ames Mars general circulation model (MGCM). The structure of the flow is found to be sensitive to local topography as well as large-scale diabatic heating patterns, consistent with terrestrial studies, and MGCM studies carried out with simplified topography. The summer subtropical zonal winds associated with the Hadley circulation also form spatially confined intense jet cores. Diurnal variations in heating affect jet structure in three distinct ways. Global tides interact with the jets, resulting in effects such as the two reinforcing each other at the summer subtropics near midday, leading to high winds and surface stresses at this time. Slope winds act to change the character of the jets during the course of a day, especially at Syrtis Major and the Hellas basin, where slopes are large. Vertical mixing acts to decrease low-level winds during the late afternoon. The sensitivity of the results to atmospheric dust loading is examined. We finally show how a decrease in boundary layer height due to dust loading actually augments mid-afternoon jet strength near the surface. The resulting increase in maximum surface stress indicates that this is a positive feedback to dust lifting.

  15. Multi-Mission Suitability of the NASA Ames Modular Common Bus

    NASA Technical Reports Server (NTRS)

    Tietz, Sascha; Bell, James H.; Hine, Butler

    2009-01-01

    The obvious advantages of small spacecraft - their lower cost structure and the rapid development schedule - have enabled a large number of missions in the past. However, most of these missions have been focused on Earth observation from low Earth orbits. In 2006, the Small Spacecraft Division at the NASA Ames Research Center began the development of the Modular Common Bus, a spacecraft capable of delivering scientifically and technically useful payloads to a variety of destinations within 0.1 AU around the Earth. The core technologies used in the Common Bus design are a composite structure with body-mounted solar cells, an integrated avionics unit, and a high performance bipropellant propulsion system. Due to its modular approach, the Common Bus can be adapted to fit specific mission needs while still using a standardized and qualified set of components. Additionally a number of low cost launch vehicles are supported, resulting in overall mission costs of around $150M including the launch vehicle but excluding the science payloads. This significant reduction in cost and the shorter development time would enable NASA to conduct more frequent exploration missions within its budget and timeframe constraints, compared to the status quo. In this paper the suitability of the Common Spacecraft Bus for four different exploration scenarios is analyzed. These scenarios include a lunar orbiter, a lunar lander, a mission to a Sun-Earth Libration Point, and a rendezvous mission to a Near Earth Object. For each scenario, a preliminary design reference mission is developed and key design parameters for the spacecraft are determined.

  16. PIAA Coronagraph Development at NASA Ames: High Contrast Laboratory Demonstration at 2 l/D

    NASA Astrophysics Data System (ADS)

    Belikov, Ruslan; Pluzhnik, E.; Witteborn, F. C.; Lynch, D. H.; Greene, T. P.; Zell, P. T.; Balasubramanian, K.; Guyon, O.

    2011-01-01

    Coronagraph technology is advancing and promises to directly image and spectrally characterize extrasolar Earth-like planets in the foreseeable future (such as the 2020 decade) with a telescope as small as 1.5m. A small Explorer-sized telescope can also be launched in the 2010 decade capable of seeing debris disks as small as 10s of zodis and potentially a few large planets. The Phase Induced Amplitude Apodization (PIAA) coronagraph makes such aggressive performance possible. We report on the latest results from a testbed at NASA Ames that is focused on developing and testing the PIAA coronagraph. This laboratory facility was built in 2008 and is designed to be flexible, operated in an actively thermally stabilized air environment, and to complement collaborative efforts at NASA JPL's High Contrast Imaging Testbed. For our wavefront control we are using small Micro-Electro-Mechanical-System deformable mirrors (MEMS DMs), which promise to reduce the size of the beam and overall instrument, a consideration that becomes very important for small telescopes. We describe our lab efforts and results, which include: the operation of our new active thermal control system; the demonstration of 5.4x10-8 (at time of this writing) average raw contrast in a dark zone from 2.0 - 5.2 λ/D in monochromatic light with a refractive PIAA system; preliminary results with an innovative low-cost set of reflective PIAA from JPL; preliminary results with a set of next-generation reflective PIAA built by Tinsley and designed to have the best theoretical broadband performance so far; and finally, an innovative design for a chromatically compensated focal plane occulter that promises to enhance broadband performance by matching the wavelength-dependent inner working angle of coronagraphs such as PIAA.

  17. Investigation of seismicity and related effects at NASA Ames-Dryden Flight Research Facility, Computer Center, Edwards, California

    NASA Technical Reports Server (NTRS)

    Cousineau, R. D.; Crook, R., Jr.; Leeds, D. J.

    1985-01-01

    This report discusses a geological and seismological investigation of the NASA Ames-Dryden Flight Research Facility site at Edwards, California. Results are presented as seismic design criteria, with design values of the pertinent ground motion parameters, probability of recurrence, and recommended analogous time-history accelerograms with their corresponding spectra. The recommendations apply specifically to the Dryden site and should not be extrapolated to other sites with varying foundation and geologic conditions or different seismic environments.

  18. NASA-Ames three-dimensional potential flow analysis system (POTFAN) equation solver code (SOLN) version 1

    NASA Technical Reports Server (NTRS)

    Davis, J. E.; Bonnett, W. S.; Medan, R. T.

    1976-01-01

    A computer program known as SOLN was developed as an independent segment of the NASA-Ames three-dimensional potential flow analysis systems of linear algebraic equations. Methods used include: LU decomposition, Householder's method, a partitioning scheme, and a block successive relaxation method. Due to the independent modular nature of the program, it may be used by itself and not necessarily in conjunction with other segments of the POTFAN system.

  19. Ames Fellows Award - Mark

    NASA Video Gallery

    Dr. Hans Mark is a leading expert in the fields of aerospace design and national defense policy. From 1969 to 1977, he served as Director of the NASA Ames Research Center. During his tenure, Ames b...

  20. Formation of the Martian Polar Layered Terrains: Quantifying Polar Water Ice and Dust Surface Deposition During Current and Past Orbital Epochs with the NASA Ames GCM

    NASA Astrophysics Data System (ADS)

    Emmett, J. A.; Murphy, J. R.

    2016-09-01

    The NASA Ames GCM will be used to quantify net annual polar deposition rates of water ice and dust on Mars during current and past orbital epochs to investigate the formation history, structure, and stratigraphy of the polar layered terrains.

  1. Experimental Investigations of the NASA Common Research Model in the NASA Langley National Transonic Facility and NASA Ames 11-Ft Transonic Wind Tunnel (Invited)

    NASA Technical Reports Server (NTRS)

    Rivers, S. M.; Dittberner, Ashley

    2011-01-01

    Experimental aerodynamic investigations of the NASA Common Research Model have been conducted in the NASA Langley National Transonic Facility and the NASA Ames 11-ft wind tunnel. Data have been obtained at chord Reynolds numbers of 5 million for five different configurations at both wind tunnels. Force and moment, surface pressure and surface flow visualization data were obtained in both facilities but only the force and moment data are presented herein. Nacelle/pylon, tail effects and tunnel to tunnel variations have been assessed. The data from both wind tunnels show that an addition of a nacelle/pylon gave an increase in drag, decrease in lift and a less nose down pitching moment around the design lift condition of 0.5 and that the tail effects also follow the expected trends. Also, all of the data shown fall within the 2-sigma limits for repeatability. The tunnel to tunnel differences are negligible for lift and pitching moment, while the drag shows a difference of less than ten counts for all of the configurations. These differences in drag may be due to the variation in the sting mounting systems at the two tunnels.

  2. Surface Lander Missions to Mars: Support via Analysis of the NASA Ames Mars General Circulation Model

    NASA Technical Reports Server (NTRS)

    Murphy, James R.; Bridger, Alison F.C.; Haberle, Robert M.

    1997-01-01

    We have characterized the near-surface martian wind environment as calculated with a set of numerical simulations carried out with the NASA Ames Mars General Circulation Model (Mars GCM). These wind environments are intended to offer future spacecraft missions to the martian surface a data base from which to choose those locations which meet the mission's criteria for minimal near surface winds to enable a successful landing. We also became involved in the development and testing of the wind sensor which is currently onboard the Mars-bound Pathfinder lander. We began this effort with a comparison of Mars GCM produced winds with those measured by the Viking landers during their descent through the martian atmosphere and their surface wind measurements during the 3+ martian year lifetime of the mission. Unexpected technical difficulties in implementing the sophisticated Planetary Boundary Layer (PBL) scheme of Haberle et al. (1993) within the Mars GCM precluded our carrying out this investigation with the desired improvement to the model's treatment of the PBL. Thus, our results from this effort are not as conclusive as we had anticipated. As it turns out, similar difficulties have been experienced by other Mars modelling groups in attempting to implement very similar PBL routines into their GCMs (Mars General Circulation Model Intercomparison Workshop, held at Oxford University, United Kingdom, July 22-24, 1996; organized by J. Murphy, J. Hollingsworth, M. Joshi). These problems, which arise due to the nature of the time stepping in each of the models, are near to being resolved at the present. The model discussions which follow herein are based upon results using the existing, less sophisticated PBL routine. We fully anticipate implementing the tools we have developed in the present effort to investigate GCM results with the new PBL scheme implemented, and thereafter producing the technical document detailing results from the analysis tools developed during this

  3. Low-Disturbance Flow Characteristics of the NASA-Ames Laminar Flow Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.; Laub, James A.; Davis, Sanford S. (Technical Monitor)

    1994-01-01

    A unique, low-disturbance (quiet) supersonic wind tunnel has been commissioned at the NASA-Ames Fluid Mechanics Laboratory (FML) to support Supersonic Laminar Flow Control (SLFC) research. Known as the Laminar Flow Supersonic Wind Tunnel (LFSWT), this tunnel is designed to operate at potential cruise Mach numbers and unit Reynolds numbers (Re) of the High Speed Civil Transport (HSCT). The need to better understand the receptivity of the transition phenomena on swept (HSCT) wings to attachment-line contamination and cross-flows has provided the impetus for building the LFSWT. Low-disturbance or "quiet" wind tunnels are known to be an essential part of any meaningful boundary layer transition research. In particular, the receptivity of supersonic boundary layers to wind tunnel disturbances can significantly alter the transition phenomena under investigation on a test model. Consequently, considerable effort has gone into the design of the LFSWT to provide quiet flow. The paper describes efforts to quantify the low-disturbance flows in the LFSWT operating at Mach 1.6, as a precursor to transition research on wing models. The research includes: (1) Flow measurements in both the test section and settling chamber of the LFSWT, using a full range of measurement techniques; (2) Study of the state of the test section boundary layer so far by using a single hot-wire mounted above the floor centerline, with and without boundary layer trips fitted at the test section entrance; (3) The effect of flow quality of unsteady supersonic diffuser flow, joint steps and gaps, and wall vibration.

  4. Recent Progress in Planetary Laboratory Astrophysics achieved with NASA Ames' COSmIC Facility

    NASA Astrophysics Data System (ADS)

    Salama, Farid; Sciamma-O'Brien, Ella; Bejaoui, Salma

    2016-10-01

    We describe the characteristics and the capabilities of the laboratory facility, COSmIC, that was developed at NASA Ames to generate, process and analyze interstellar, circumstellar and planetary analogs in the laboratory [1]. COSmIC stands for "Cosmic Simulation Chamber" and is dedicated to the study of neutral and ionized molecules and nanoparticles under the low temperature and high vacuum conditions that are required to simulate various space environments such as planetary atmospheres. COSmIC integrates a variety of state-of-the-art instruments that allow forming, processing and monitoring simulated space conditions for planetary, circumstellar and interstellar materials in the laboratory. The COSmIC experimental setup is composed of a Pulsed Discharge Nozzle (PDN) expansion, that generates a plasma in the stream of a free supersonic jet expansion, coupled to two high-sensitivity, complementary in situ diagnostics: a Cavity Ring Down Spectroscopy (CRDS) and laser induced fluorescence (LIF) systems for photonic detection [2, 3], and a Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection [4].Recent results obtained using COSmIC will be highlighted. In particular, the progress that has been achieved in an on-going study investigating the formation and the characterization of laboratory analogs of Titan's aerosols generated from gas-phase molecular precursors [5] will be presented. Plans for future laboratory experiments on planetary molecules and aerosols in the growing field of planetary laboratory astrophysics will also be addressed, as well as the implications of studies underway for astronomical observations.References: [1] Salama F., in Organic Matter in Space, IAU S251, Kwok & Sandford eds, CUP, S251, 4, 357 (2008).[2] Biennier L., Salama, F., Allamandola L., & Scherer J., J. Chem. Phys., 118, 7863 (2003)[3] Tan X, & Salama F., J. Chem. Phys. 122, 84318 (2005)[4] Ricketts C., Contreras C., Walker, R., Salama F., Int. J. Mass Spec, 300

  5. An Overview of the NASA Ames Millimeter-Wave Thermal Launch System

    NASA Technical Reports Server (NTRS)

    Murakami, David

    2012-01-01

    The Millimeter-Wave Thermal Launch System (MTLS) is a beamed-energy propulsion concept being designed at NASA Ames Research Center. This effort is in response to the NASA Office of the Chief Technologist s announcement of the Ride the Light program. Our objective is to produce a design that goes beyond the feasibility analysis level of previous studies and provides a solid foundation for low cost access to space. The MTLS is designed to place a 500 lb payload into Low Earth Orbit (LEO) two times a day. This frequent launch, small payload niche is well suited for the particular advantages and constraints of beamed-energy propulsion, and has the potential to drastically increase access to space by reducing the cost per kilogram of placing payloads into LEO. This paper summarizes the findings of the MTLS study. The chemical rocket engine is in principle a simple device. It acts by releasing the chemical energy stored in propellants such as hydrogen and oxygen through combustion, then converting that thermal energy into kinetic energy by expansion through a nozzle. As such, it is fundamentally limited by the energy released in combustion reactions and the molecular weight of the products of those reactions. The highest performing conventional propellant combination, liquid oxygen and liquid hydrogen, can produce vacuum specific impulses of around 450 seconds. The design space of current launch vehicles (which tend to be large, multi-stage, and expendable) are defined by these limitations. An entirely new approach may be necessary in order to enable future launch vehicles of radically improved capabilities. Beamed-energy propulsion (BEP) is an alternative approach that bypasses the energy limitations of chemical propulsion. Instead of relying on a chemical reaction as the energy source, it is supplied externally via a beam of electromagnetic energy produced on the ground. In the concept examined in the MTLS, this energy is absorbed by a heat exchanger which then

  6. M2-F1 mounted in NASA Ames Research Center 40x80 foot wind tunnel

    NASA Technical Reports Server (NTRS)

    1962-01-01

    After the first attempted ground-tow tests of the M2-F1 in March 1963, the vehicle was taken to the Ames Research Center, Mountain View, CA, for wind-tunnel testing. During these tests, Milt Thompson and others were in the M2-F1 to position the control surfaces for each test. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop near Long Beach for modification. With a special gearbox and racing slicks, the Pontiac could tow the 1,000-pound M2-F1 110 miles per hour in 30 seconds. It proved adequate for the roughly 400 car tows that got the M2-F1 airborne to prove it could fly safely and to train pilots before they were towed behind a C

  7. Measurement and Analysis of Atmospheric Spectral Optical Depths with NASA Ames Airborne Sunphotometers During TARFOX and ACE-2

    NASA Technical Reports Server (NTRS)

    Livingston, John M.

    1997-01-01

    In accordance with the scope of work of this contract, the following tasks were undertaken and completed during the course of the contract: (1) Participation in the design and development of the 14-channel Ames Airborne Tracking Sunphotometer (AATS-14), including the development and implementation of Visual Basic software for real-time data processing and display and post-acquisition data reduction and analysis. (2) Operation of the six-channel Ames Airborne Tracking Sunphotometer (AATS-6) aboard the University of Washington C-131A during TARFOX and in-field analysis and presentation of data acquired with the AATS-6. (3) Post-mission analysis of data acquired during TARFOX with the AATS-6 and the AATS-14. (4) Pre-TARFOX calibration of the AATS-6 at Mauna Loa Observatory in May 1996, and post-TARFOX calibration of the AATS-6 and AATS- 14 at Zugspitze, Germany in October 1996, including analyses of all data sets. (5) Analysis of AATS-14 airborne calibration data acquired on 17 November 1996 during a late afternoon Pelican flight over the central California coast. (6) Operational training, instrument preparation, field coordination, and analysis of shipboard measurements of aerosol optical depth with the AATS-6 during ACE-2. (7) Coordination of data acquisition with the AATS-14 aboard the Pelican during ACE-2 and in-field preliminary data analysis and presentation. (8) Calibration of the AATS-6 and AATS-14 in April/May 1997 at Mauna Loa prior to ACE-2, and post-mission calibration of the AATS-6 at Mauna Loa in August 1997.

  8. Atmospheric Rotational Effects on Mars Based on the NASA Ames General Circulation Model: Angular Momentum Approach

    NASA Technical Reports Server (NTRS)

    Sanchez, Braulio V.; Haberle, Robert M.; Schaeffer, James

    2004-01-01

    The objective of the investigation is to determine the motion of the rotational axis of Mars as a result of mass variations in the atmosphere and condensation and sublimation of CO2 ice on the polar caps. A planet experiences this type of motion if it has an atmosphere, which is changing its mass distribution with respect to the solid body of the planet and/or it is asymmetrically changing the amount of ice at the polar caps. The physical principle involved is the conservation of angular momentum, one can get a feeling for it by sitting on a well oiled swivel chair holding a rotating wheel on a horizontal direction and then changing the rotation axis of the wheel to a vertical direction. The person holding the wheel and the chair would begin to rotate in opposite direction to the rotation of the wheel. The motions of Mars atmosphere and the ice caps variations are obtained from a mathematical model developed at the NASA Ames Research Center. The model produces outputs for a time span of one Martian year, which is equivalent to 687 Earth days. The results indicate that Mars axis of rotation moves in a spiral with respect to a reference point on the surface of the planet. It can move as far away as 35.3 cm from the initial location as a result of both mass variations in the atmosphere and asymmetric ice variations at the polar caps. Furthermore the pole performs close to two revolutions around the reference point during a Martian year. This motion is a combination of two motions, one produced by the atmospheric mass variations and another due to the variations in the ice caps. The motion due to the atmospheric variations is a spiral performing about two and a half revolutions around the reference point during which the pole can move as far as 40.9 cm. The motion due to variations in the ice caps is a spiral performing almost three revolutions during which the pole can move as far as 32.8 cm.

  9. Emission Spectroscopic Measurements with an Optical Probe in the NASA Ames IHF Arc Jet Facility

    NASA Technical Reports Server (NTRS)

    Winter, Michael; Prabhu, Dinesh K.; Raiche, George A.; Terrazas-Salinas, Imelda; Hui, Frank C. L.

    2011-01-01

    An optical probe was designed to measure radiation (from inside the arc heater) incident on a test sample immersed in the arc-heated stream. Currently, only crude estimates are available for this incident radiation. Unlike efforts of the past, where the probe line of sight was inclined to the nozzle centerline, the present development focuses on having the probe line of sight coincide with the nozzle centerline. A fiber-coupled spectrometer was used to measure the spectral distribution of incident radiation in the wavelength range of 225 to 900 nm. The radiation heat flux in this wavelength range was determined by integration of measured emission spectral intensity calibrated to incident irradiance from an integrating sphere. Two arc-heater conditions, corresponding to stream bulk enthalpy levels of 12 and 22 MJ/kg, were investigated in the 13-inch diameter nozzle of the Interaction Heating Facility at NASA Ames Research Center. With the probe placed at a distance of 10 inches from the nozzle exit plane, total radiative heat fluxes were measured to be 3.3 and 8.4 W/sq cm for the 12 and 22 MJ/kg conditions, respectively. About 17% of these radiative fluxes were due to bound-bound radiation from atoms and molecules, while the remaining 83% could be attributed to continua (bound-free and/or free-free). A comparison with spectral simulation based on CFD solutions for the arc-heater flow field and with spectroscopic measurements in the plenum region indicates that more than 95% of the measured radiation is generated in the arc region. The total radiative heat flux from the line radiation could increase by a factor of two through contributions from wavelengths outside the measured range, i.e., from the vacuum ultraviolet (wavelengths less than 225 nm) and the infrared (wavelengths greater than 900 nm). An extrapolation of the continuum radiation to these two wavelength regions was not attempted. In the tested configuration, the measured radiative heat flux accounts for

  10. Preliminary Computational Study for Future Tests in the NASA Ames 9 foot' x 7 foot Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Pearl, Jason M.; Carter, Melissa B.; Elmiligui, Alaa A.; WInski, Courtney S.; Nayani, Sudheer N.

    2016-01-01

    The NASA Advanced Air Vehicles Program, Commercial Supersonics Technology Project seeks to advance tools and techniques to make over-land supersonic flight feasible. In this study, preliminary computational results are presented for future tests in the NASA Ames 9 foot x 7 foot supersonic wind tunnel to be conducted in early 2016. Shock-plume interactions and their effect on pressure signature are examined for six model geometries. Near- field pressure signatures are assessed using the CFD code USM3D to model the proposed test geometries in free-air. Additionally, results obtained using the commercial grid generation software Pointwise Reigistered Trademark are compared to results using VGRID, the NASA Langley Research Center in-house mesh generation program.

  11. Construction of a 2- by 2-foot transonic adaptive-wall test section at the NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Morgan, Daniel G.; Lee, George

    1986-01-01

    The development of a new production-size, two-dimensional, adaptive-wall test section with ventilated walls at the NASA Ames Research Center is described. The new facility incorporates rapid closed-loop operation, computer/sensor integration, and on-line interference assessment and wall corrections. Air flow through the test section is controlled by a series of plenum compartments and three-way slide vales. A fast-scan laser velocimeter was built to measure velocity boundary conditions for the interference assessment scheme. A 15.2-cm- (6.0-in.-) chord NACA 0012 airfoil model will be used in the first experiments during calibration of the facility.

  12. Calibration and Data Retrieval Algorithms for the NASA Langley/Ames Diode Laser Hygrometer for the NASA Trace-P Mission

    NASA Technical Reports Server (NTRS)

    Podolske, James R.; Sachse, Glen W.; Diskin, Glenn S.; Hipskino, R. Stephen (Technical Monitor)

    2002-01-01

    This paper describes the procedures and algorithms for the laboratory calibration and the field data retrieval of the NASA Langley / Ames Diode Laser Hygrometer as implemented during the NASA Trace-P mission during February to April 2000. The calibration is based on a NIST traceable dewpoint hygrometer using relatively high humidity and short pathlength. Two water lines of widely different strengths are used to increase the dynamic range of the instrument in the course of a flight. The laboratory results are incorporated into a numerical model of the second harmonic spectrum for each of the two spectral window regions using spectroscopic parameters from the HITRAN database and other sources, allowing water vapor retrieval at upper tropospheric and lower stratospheric temperatures and humidity levels. The data retrieval algorithm is simple, numerically stable, and accurate. A comparison with other water vapor instruments on board the NASA DC-8 and ER-2 aircraft is presented.

  13. An Aerodynamic Performance Evaluation of the NASA/Ames Research Center Advanced Concepts Flight Simulator. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Donohue, Paul F.

    1987-01-01

    The results of an aerodynamic performance evaluation of the National Aeronautics and Space Administration (NASA)/Ames Research Center Advanced Concepts Flight Simulator (ACFS), conducted in association with the Navy-NASA Joint Institute of Aeronautics, are presented. The ACFS is a full-mission flight simulator which provides an excellent platform for the critical evaluation of emerging flight systems and aircrew performance. The propulsion and flight dynamics models were evaluated using classical flight test techniques. The aerodynamic performance model of the ACFS was found to realistically represent that of current day, medium range transport aircraft. Recommendations are provided to enhance the capabilities of the ACFS to a level forecast for 1995 transport aircraft. The graphical and tabular results of this study will establish a performance section of the ACFS Operation's Manual.

  14. Acquisition and Analysis of NASA Ames Sunphotometer Measurements during SAGE III Validation Campaigns and other Tropospheric and Stratospheric Research Missions

    NASA Technical Reports Server (NTRS)

    Livingston, John M.

    2004-01-01

    NASA Cooperative Agreement NCC2-1251 provided funding from April 2001 through December 2003 for Mr. John Livingston of SRI International to collaborate with NASA Ames Research Center scientists and engineers in the acquisition and analysis of airborne sunphotometer measurements during various atmospheric field studies. Mr. Livingston participated in instrument calibrations at Mauna Loa Observatory, pre-mission hardware and software preparations, acquisition and analysis of sunphotometer measurements during the missions, and post-mission analysis of data and reporting of scientific findings. The atmospheric field missions included the spring 2001 Intensive of the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia), the Asian Dust Above Monterey-2003 (ADAM-2003) experiment, and the winter 2003 Second SAGE III Ozone Loss and Validation Experiment (SOLVE II).

  15. Results of the NASA/MSFC FA-23 plume technology test program performed in the NASA/Ames unitary wind tunnels

    NASA Technical Reports Server (NTRS)

    Hendershot, K. C.

    1977-01-01

    A 2.25% scale model of the space shuttle external tank and solid rocket boosters was tested in the NASA/Ames Unitary 11 x 11 foot transonic and 9 x 7 foot supersonic tunnels to obtain base pressure data with firing solid propellant exhaust plumes. Data system difficulties prevented the acquisition of any useful data in the 9 x 7 tunnel. However, 28 successful rocket test firings were made in the 11 x 11 tunnel, providing base pressure data at Mach numbers of 0.5, 0.9, 1.05, 1.2, and 1.3 and at plume pressure ratios ranging from 11 to 89.

  16. Recent Developments in Gun Operating Techniques at the NASA Ames Ballistic Ranges

    NASA Technical Reports Server (NTRS)

    Bogdanoff, D. W.; Miller, R. J.

    1996-01-01

    This paper describes recent developments in gun operating techniques at the Ames ballistic range complex. This range complex has been in operation since the early 1960s. Behavior of sabots during separation and projectile-target impact phenomena have long been observed by means of short-duration flash X-rays: new versions allow operation in the lower-energy ("soft") X-ray range and have been found to be more effective than the earlier designs. The dynamics of sabot separation is investigated in some depth from X-ray photographs of sabots launched in the Ames 1.0 in and 1.5 in guns; the sabot separation dynamics appears to be in reasonably good agreement with standard aerodynamic theory. Certain sabot packages appear to suffer no erosion or plastic deformation on traversing the gun barrel, contrary to what would be expected. Gun erosion data from the Ames 0.5 in, 1.0 in, and 1.5 in guns is examined in detail and can be correlated with a particular non- dimensionalized powder mass parameter. The gun erosion increases very rapidly as this parameter is increased. Representative shapes of eroded gun barrels are given. Guided by a computational fluid dynamics (CFD) code, the operating conditions of the Ames 0.5 in and 1.5 in guns were modified. These changes involved: (1) reduction in the piston mass, powder mass and hydrogen fill pressure and (2) reduction in pump tube volume, while maintaining hydrogen mass. These changes resulted in muzzle velocity increases of 0.5-0.8 km/sec, achieved simultaneously with 30-50 percent reductions in gun erosion.

  17. Performance of the OVERFLOW-MLP and LAURA-MLP CFD Codes on the NASA Ames 512 CPU Origin System

    NASA Technical Reports Server (NTRS)

    Taft, James R.

    2000-01-01

    The shared memory Multi-Level Parallelism (MLP) technique, developed last year at NASA Ames has been very successful in dramatically improving the performance of important NASA CFD codes. This new and very simple parallel programming technique was first inserted into the OVERFLOW production CFD code in FY 1998. The OVERFLOW-MLP code's parallel performance scaled linearly to 256 CPUs on the NASA Ames 256 CPU Origin 2000 system (steger). Overall performance exceeded 20.1 GFLOP/s, or about 4.5x the performance of a dedicated 16 CPU C90 system. All of this was achieved without any major modification to the original vector based code. The OVERFLOW-MLP code is now in production on the inhouse Origin systems as well as being used offsite at commercial aerospace companies. Partially as a result of this work, NASA Ames has purchased a new 512 CPU Origin 2000 system to further test the limits of parallel performance for NASA codes of interest. This paper presents the performance obtained from the latest optimization efforts on this machine for the LAURA-MLP and OVERFLOW-MLP codes. The Langley Aerothermodynamics Upwind Relaxation Algorithm (LAURA) code is a key simulation tool in the development of the next generation shuttle, interplanetary reentry vehicles, and nearly all "X" plane development. This code sustains about 4-5 GFLOP/s on a dedicated 16 CPU C90. At this rate, expected workloads would require over 100 C90 CPU years of computing over the next few calendar years. It is not feasible to expect that this would be affordable or available to the user community. Dramatic performance gains on cheaper systems are needed. This code is expected to be perhaps the largest consumer of NASA Ames compute cycles per run in the coming year.The OVERFLOW CFD code is extensively used in the government and commercial aerospace communities to evaluate new aircraft designs. It is one of the largest consumers of NASA supercomputing cycles and large simulations of highly resolved full

  18. NASA Ames DEVELOP Interns Collaborate with the South Bay Salt Pond Restoration Project to Monitor and Study Restoration Efforts using NASA's Satellites

    NASA Technical Reports Server (NTRS)

    Newcomer, Michelle E.; Kuss, Amber Jean; Nguyen, Andrew; Schmidt, Cynthia L.

    2012-01-01

    In the past, natural tidal marshes in the south bay were segmented by levees and converted into ponds for use in salt production. In an effort to provide habitat for migratory birds and other native plants and animals, as well as to rebuild natural capital, the South Bay Salt Pond Restoration Project (SBSPRP) is focused on restoring a portion of the over 15,000 acres of wetlands in California's South San Francisco Bay. The process of restoration begins when a levee is breached; the bay water and sediment flow into the ponds and eventually restore natural tidal marshes. Since the spring of 2010 the NASA Ames Research Center (ARC) DEVELOP student internship program has collaborated with the South Bay Salt Pond Restoration Project (SBSPRP) to study the effects of these restoration efforts and to provide valuable information to assist in habitat management and ecological forecasting. All of the studies were based on remote sensing techniques -- NASA's area of expertise in the field of Earth Science, and used various analytical techniques such as predictive modeling, flora and fauna classification, and spectral detection, to name a few. Each study was conducted by a team of aspiring scientists as a part of the DEVELOP program at Ames.

  19. Supporting flight data analysis for Space Shuttle Orbiter experiments at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Green, M. J.; Budnick, M. P.; Yang, L.; Chiasson, M. P.

    1983-01-01

    The space shuttle orbiter experiments program is responsible for collecting flight data to extend the research and technology base for future aerospace vehicle design. The infrared imagery of shuttle (IRIS), catalytic surface effects, and tile gap heating experiments sponsored by Ames Research Center are part of this program. The software required to process the flight data which support these experiments is described. In addition, data analysis techniques, developed in support of the IRIS experiment, are discussed. Using the flight data base, the techniques provide information useful in analyzing and correcting problems with the experiment, and in interpreting the IRIS image obtained during the entry of the third shuttle mission.

  20. ELAPSE - NASA AMES LISP AND ADA BENCHMARK SUITE: EFFICIENCY OF LISP AND ADA PROCESSING - A SYSTEM EVALUATION

    NASA Technical Reports Server (NTRS)

    Davis, G. J.

    1994-01-01

    One area of research of the Information Sciences Division at NASA Ames Research Center is devoted to the analysis and enhancement of processors and advanced computer architectures, specifically in support of automation and robotic systems. To compare systems' abilities to efficiently process Lisp and Ada, scientists at Ames Research Center have developed a suite of non-parallel benchmarks called ELAPSE. The benchmark suite was designed to test a single computer's efficiency as well as alternate machine comparisons on Lisp, and/or Ada languages. ELAPSE tests the efficiency with which a machine can execute the various routines in each environment. The sample routines are based on numeric and symbolic manipulations and include two-dimensional fast Fourier transformations, Cholesky decomposition and substitution, Gaussian elimination, high-level data processing, and symbol-list references. Also included is a routine based on a Bayesian classification program sorting data into optimized groups. The ELAPSE benchmarks are available for any computer with a validated Ada compiler and/or Common Lisp system. Of the 18 routines that comprise ELAPSE, provided within this package are 14 developed or translated at Ames. The others are readily available through literature. The benchmark that requires the most memory is CHOLESKY.ADA. Under VAX/VMS, CHOLESKY.ADA requires 760K of main memory. ELAPSE is available on either two 5.25 inch 360K MS-DOS format diskettes (standard distribution) or a 9-track 1600 BPI ASCII CARD IMAGE format magnetic tape. The contents of the diskettes are compressed using the PKWARE archiving tools. The utility to unarchive the files, PKUNZIP.EXE, is included. The ELAPSE benchmarks were written in 1990. VAX and VMS are trademarks of Digital Equipment Corporation. MS-DOS is a registered trademark of Microsoft Corporation.

  1. The Real-Time Wall Interference Correction System of the NASA Ames 12-Foot Pressure Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Ulbrich, Norbert

    1998-01-01

    An improved version of the Wall Signature Method was developed to compute wall interference effects in three-dimensional subsonic wind tunnel testing of aircraft models in real-time. The method may be applied to a full-span or a semispan model. A simplified singularity representation of the aircraft model is used. Fuselage, support system, propulsion simulator, and separation wake volume blockage effects are represented by point sources and sinks. Lifting effects are represented by semi-infinite line doublets. The singularity representation of the test article is combined with the measurement of wind tunnel test reference conditions, wall pressure, lift force, thrust force, pitching moment, rolling moment, and pre-computed solutions of the subsonic potential equation to determine first order wall interference corrections. Second order wall interference corrections for pitching and rolling moment coefficient are also determined. A new procedure is presented that estimates a rolling moment coefficient correction for wings with non-symmetric lift distribution. Experimental data obtained during the calibration of the Ames Bipod model support system and during tests of two semispan models mounted on an image plane in the NASA Ames 12 ft. Pressure Wind Tunnel are used to demonstrate the application of the wall interference correction method.

  2. An analysis of sound absorbing linings for the interior of the NASA Ames 80 x 120-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Wilby, J. F.; White, P. H.

    1985-01-01

    It is desirable to achieve low frequency sound absorption in the tests section of the NASA Ames 80X120-ft wind tunnel. However, it is difficult to obtain information regarding sound absorption characteristics of potential treatments because of the restrictions placed on the dimensions of the test chambers. In the present case measurements were made in a large enclosure for aircraft ground run-up tests. The normal impedance of the acoustic treatment was measured using two microphones located close to the surface of the treatment. The data showed reasonably good agreement with analytical methods which were then used to design treatments for the wind tunnel test section. A sound-absorbing lining is proposed for the 80X120-ft wind tunnel.

  3. Adjoint Method and Predictive Control for 1-D Flow in NASA Ames 11-Foot Transonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Ardema, Mark

    2006-01-01

    This paper describes a modeling method and a new optimal control approach to investigate a Mach number control problem for the NASA Ames 11-Foot Transonic Wind Tunnel. The flow in the wind tunnel is modeled by the 1-D unsteady Euler equations whose boundary conditions prescribe a controlling action by a compressor. The boundary control inputs to the compressor are in turn controlled by a drive motor system and an inlet guide vane system whose dynamics are modeled by ordinary differential equations. The resulting Euler equations are thus coupled to the ordinary differential equations via the boundary conditions. Optimality conditions are established by an adjoint method and are used to develop a model predictive linear-quadratic optimal control for regulating the Mach number due to a test model disturbance during a continuous pitch

  4. Parameter identification studies on the NASA/Ames Research Center Advanced Concepts Flight Simulator. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Mckavitt, Thomas P., Jr.

    1990-01-01

    The results of an aircraft parameters identification study conducted on the National Aeronautics and Space Administration/Ames Research Center Advanced Concepts Flight Simulator (ACFS) in conjunction with the Navy-NASA Joint Institute of Aeronautics are given. The ACFS is a commercial airline simulator with a design based on future technology. The simulator is used as a laboratory for human factors research and engineering as applied to the commercial airline industry. Parametric areas examined were engine pressure ratio (EPR), optimum long range cruise Mach number, flap reference speed, and critical take-off speeds. Results were compared with corresponding parameters of the Boeing 757 and 767 aircraft. This comparison identified two areas where improvements can be made: (1) low maximum lift coefficients (on the order of 20-25 percent less than those of a 757); and (2) low optimum cruise Mach numbers. Recommendations were made to those anticipated with the application of future technologies.

  5. An Experimental Evaluation of Advanced Rotorcraft Airfoils in the NASA Ames Eleven-foot Transonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Flemming, Robert J.

    1984-01-01

    Five full scale rotorcraft airfoils were tested in the NASA Ames Eleven-Foot Transonic Wind Tunnel for full scale Reynolds numbers at Mach numbers from 0.3 to 1.07. The models, which spanned the tunnel from floor to ceiling, included two modern baseline airfoils, the SC1095 and SC1094 R8, which have been previously tested in other facilities. Three advanced transonic airfoils, designated the SSC-A09, SSC-A07, and SSC-B08, were tested to confirm predicted performance and provide confirmation of advanced airfoil design methods. The test showed that the eleven-foot tunnel is suited to two-dimensional airfoil testing. Maximum lift coefficients, drag coefficients, pitching moments, and pressure coefficient distributions are presented. The airfoil analysis codes agreed well with the data, with the Grumman GRUMFOIL code giving the best overall performance correlation.

  6. Supersonic Retropropulsion Experimental Results from the NASA Ames 9- x 7-Foot Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Rhode, Matthew N.; Edquist, Karl T.

    2012-01-01

    Supersonic retropropulsion was experimentally examined in the Ames Research Center 9x7-Foot Supersonic Wind Tunnel at Mach 1.8 and 2.4. The experimental model, previously designed for and tested in the Langley Research Center Unitary Plan Wind Tunnel at Mach 2.4, 3.5 and 4.6, was a 5-in diameter 70-deg sphere-cone forebody with a 9.55-in long cylindrical aftbody. The forebody was designed to accommodate up to four 4:1 area ratio nozzles, one on the model centerline and the other three on the half radius spaced 120-deg apart. Surface pressure and flow visualization were the primary measurements, including high-speed data to investigate the dynamics of the interactions between the bow and nozzle shocks. Three blowing configurations were tested with thrust coefficients up to 10 and angles of attack up to 20-deg. Preliminary results and observations from the test are provided

  7. A New Way of Doing Business: Reusable Launch Vehicle Advanced Thermal Protection Systems Technology Development: NASA Ames and Rockwell International Partnership

    NASA Technical Reports Server (NTRS)

    Carroll, Carol W.; Fleming, Mary; Hogenson, Pete; Green, Michael J.; Rasky, Daniel J. (Technical Monitor)

    1995-01-01

    NASA Ames Research Center and Rockwell International are partners in a Cooperative Agreement (CA) for the development of Thermal Protection Systems (TPS) for the Reusable Launch Vehicle (RLV) Technology Program. This Cooperative Agreement is a 30 month effort focused on transferring NASA innovations to Rockwell and working as partners to advance the state-of-the-art in several TPS areas. The use of a Cooperative Agreement is a new way of doing business for NASA and Industry which eliminates the traditional customer/contractor relationship and replaces it with a NASA/Industry partnership.

  8. Report of the Interagency Optical Network Testbeds Workshop 2, NASA Ames Research Center, September 12-14, 2005

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The Optical Network Testbeds Workshop 2 (ONT2), held on September 12-14, 2005, was cosponsored by the Department of Energy Office of Science (DOE/SC) and the National Aeronautics and Space Administration (NASA), in cooperation with the Joint Engineering Team (JET) of the Federal Networking and Information Technology Research and Development (NITRD) Program's Large Scale Networking (LSN) Coordinating Group. The ONT2 workshop was a follow-on to an August 2004 Workshop on Optical Network Testbeds (ONT1). ONT1 recommended actions by the Federal agencies to assure timely development and implementation of optical networking technologies and infrastructure. Hosted by the NASA Ames Research Center in Mountain View, California, the ONT2 workshop brought together representatives of the U.S. advanced research and education (R&E) networks, regional optical networks (RONs), service providers, international networking organizations, and senior engineering and R&D managers from Federal agencies and national research laboratories. Its purpose was to develop a common vision of the optical network technologies, services, infrastructure, and organizations needed to enable widespread use of optical networks; recommend activities for transitioning the optical networking research community and its current infrastructure to leading-edge optical networks over the next three to five years; and present information enabling commercial network infrastructure providers to plan for and use leading-edge optical network services in that time frame.

  9. Researcher's guide to the NASA Ames Flight Simulator for Advanced Aircraft (FSAA)

    NASA Technical Reports Server (NTRS)

    Sinacori, J. B.; Stapleford, R. L.; Jewell, W. F.; Lehman, J. M.

    1977-01-01

    Performance, limitations, supporting software, and current checkout and operating procedures are presented for the flight simulator, in terms useful to the researcher who intends to use it. Suggestions to help the researcher prepare the experimental plan are also given. The FSAA's central computer, cockpit, and visual and motion systems are addressed individually but their interaction is considered as well. Data required, available options, user responsibilities, and occupancy procedures are given in a form that facilitates the initial communication required with the NASA operations' group.

  10. An Overview of Current Capabilities and Research Activities in the Airspace Operations Laboratory at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Prevot, Thomas; Smith, Nancy M.; Palmer, Everett; Callantine, Todd; Lee, Paul; Mercer, Joey; Homola, Jeff; Martin, Lynne; Brasil, Connie; Cabrall, Christopher

    2014-01-01

    The Airspace Operations Laboratory at NASA Ames conducts research to provide a better understanding of roles, responsibilities, and requirements for human operators and automation in future air traffic management (ATM) systems. The research encompasses developing, evaluating, and integrating operational concepts and technologies for near-, mid-, and far-term air traffic operations. Current research threads include efficient arrival operations, function allocation in separation assurance and efficient airspace and trajectory management. The AOL has developed powerful air traffic simulation capabilities, most notably the Multi Aircraft Control System (MACS) that is used for many air traffic control simulations at NASA and its partners in government, academia and industry. Several additional NASA technologies have been integrated with the AOL's primary simulation capabilities where appropriate. Using this environment, large and small-scale system-level evaluations can be conducted to help make near-term improvements and transition NASA technologies to the FAA, such as the technologies developed under NASA's Air Traffic Management Demonstration-1 (ATD-1). The AOL's rapid prototyping and flexible simulation capabilities have proven a highly effective environment to progress the initiation of trajectory-based operations and support the mid-term implementation of NextGen. Fundamental questions about accuracy requirements have been investigated as well as realworld problems on how to improve operations in some of the most complex airspaces in the US. This includes using advanced trajectory-based operations and prototype tools for coordinating arrivals to converging runways at Newark airport and coordinating departures and arrivals in the San Francisco and the New York metro areas. Looking beyond NextGen, the AOL has started exploring hybrid human/automation control strategies as well as highly autonomous operations in the air traffic control domain. Initial results

  11. Retrospective of photography at NASA Ames Research Center from 1940 to 1996 (Extended Abstract)

    NASA Astrophysics Data System (ADS)

    Ponseggi, Bernard G.

    1997-05-01

    This paper deals with what is known as photo/optical instrumentation technology and/or technical photography. In 1940 this was called photography, in the late 40's the Civil Service Commission introduced a new classification called photography/technical to differentiate between still photographers and those engaging in recording engineering data. In October of 1958 a historic event took place, Congress transferred all of the duties of NACA to a newly formed agency called NASA, and with it came a call for systems that would keep up with new requirements. There was a need to change the type and style of equipment to keep up with the demands for more accurate information. Existing hardware was modified and new hardware was developed and designed to meet the new requirements of space travel of manned and unmanned orbital vehicles. This family of equipment had to withstand the rigors of space travel such as extremely high `G' forces, temperature changes and `O' gravity, while on earth we needed equipment to document launch of space vehicles as well as wind tunnel testing, rocket sled stands etc.. Some requirements were similar to those of launch vehicles, some were totally different and had other requirements, eventually they were all resolved. As electronic data systems became available NASA experimented with their use in data acquisition. This portion of this session will discuss the changes over the years and their effect on the acquisition of data, those that worked, as well as those that were a disappointment.

  12. Laboratory Simulations Of Titan’s Atmospheric Chemistry With The NASA Ames Titan Haze Simulation Experiment

    NASA Astrophysics Data System (ADS)

    Sciamma-O'Brien, Ella; Contreras, C. S.; Ricketts, C. L.; Salama, F.

    2012-05-01

    Solar UV radiation and electron bombardment from Saturn’s magnetosphere dissociate nitrogen and methane in Titan’s atmosphere, leading to the production of heavier molecules and solid organic aerosols that contribute to the haze layers giving Titan its characteristic orange color. The detection of benzene and toluene, critical precursors of polycyclic aromatic hydrocarbon (PAH), in Titan’s ionosphere, by the Cassini INMS suggests that PAHs might play a role in the production of Titan’s aerosols. The Titan Haze Simulation (THS) experiment has been developed at NASA Ames’ Cosmic Simulation facility (COSmIC) to study the chemical pathways that link the simple molecules resulting from the first steps of the N2-CH4 chemistry (C2H2, C2H4, HCN..) to benzene, and to PAHs and nitrogen-containing PAHs (PANHs) as precursors to the production of solid aerosols. In the THS experiment, Titan’s atmospheric chemistry is simulated by plasma in the stream of a supersonic jet expansion. With this unique design, the gas mixture is cooled to Titan-like temperature ( 150K) before inducing the chemistry by plasma discharge. Different gas mixtures containing the first products of Titan’s N2-CH4 chemistry, but also much heavier molecules like PAHs or PANHs can be injected to study specific chemical reactions. The products of the chemistry are detected and studied using Cavity Ring Down Spectroscopy and Time-Of-Flight Mass Spectrometry. Thin tholin (Titan aerosol analogs) deposits are also produced in the THS experiment and can be analyzed by Gas Chromatography-Mass Spectrometry (GC-MS) and Scanning Electron Microscopy (SEM). We present the results of mass spectrometry studies using different gas mixtures, and discuss their relevance for the study of specific pathways in Titan’s atmospheric chemistry. Acknowledgements: This research is supported by NASA PATM. E.S.O., C.S.C. and C.L.R acknowledge the support of the NASA Postdoctoral Program. The authors acknowledge the

  13. Ames Fellows Award - Johnson

    NASA Video Gallery

    Dr. Wayne Johnson is a rotorcraft pioneer and visionary. His legacy of rotorcraft research at NASA Ames continues to be of fundamental importance to the U.S. Army and to the international rotorcraf...

  14. Wind Erosion Regimes and the Evolution of the Surface of Mars Studied with the NASA Ames Mars General Circulation Model

    NASA Astrophysics Data System (ADS)

    Armstrong, J.; Leovy, C.

    2004-12-01

    A billion year integration of Mars orbital parameters and the NASA Ames Mars General Circulation Model are combined to investigate the long-term erosional history of the surface of Mars. In agreement with findings of Robert Haberle et al., we find that the distribution of potential surface erosion by wind is robust with respect to orbital parameter variations. Potential erosion is strongest: (1) in storm tracks following the edges of the seasonal polar caps, (2) in regions of low surface elevation, (3) in regions of strong cross-equatorial solstice flows at moderate to high obliquity. It follows that maximum long-term erosion rates occur throughout most of the northern plains, in Acidalia and portions of Amazonis and Utopia, and in the Hellas basin. We also investigate the sensitivity of wind erosion to changes in global mean surface pressure and find, as expected, very high sensitivity. For example, if global mean surface pressure were to increase from the current 6 mb to 40 mb, model potential erosion rates increase by more than one order of magnitude. In this regime, potential erosion rates are sufficiently high that several km of easily eroded fine regolith could be removed in a time span of 100 million years. Possible observational consequences of these results will be discussed.

  15. On Laminar to Turbulent Transition of Arc-Jet Flow in the NASA Ames Panel Test Facility

    NASA Technical Reports Server (NTRS)

    Gokcen, Tahir; Alunni, Antonella I.

    2012-01-01

    This paper provides experimental evidence and supporting computational analysis to characterize the laminar to turbulent flow transition in a high enthalpy arc-jet facility at NASA Ames Research Center. The arc-jet test data obtained in the 20 MW Panel Test Facility include measurements of surface pressure and heat flux on a water-cooled calibration plate, and measurements of surface temperature on a reaction-cured glass coated tile plate. Computational fluid dynamics simulations are performed to characterize the arc-jet test environment and estimate its parameters consistent with the facility and calibration measurements. The present analysis comprises simulations of the nonequilibrium flowfield in the facility nozzle, test box, and flowfield over test articles. Both laminar and turbulent simulations are performed, and the computed results are compared with the experimental measurements, including Stanton number dependence on Reynolds number. Comparisons of computed and measured surface heat fluxes (and temperatures), along with the accompanying analysis, confirm that that the boundary layer in the Panel Test Facility flow is transitional at certain archeater conditions.

  16. Performance tests for the NASA Ames Research Center 20 cm x 40 cm oscillating flow wind tunnel

    NASA Technical Reports Server (NTRS)

    Cook, W. J.; Giddings, T. A.

    1984-01-01

    An evaluation is presented of initial tests conducted to assess the performance of the NASA Ames 20 cm x 40 cm oscillating flow wind tunnel. The features of the tunnel are described and two aspects of tunnel operation are discussed. The first is an assessment of the steady mainstream and boundary layer flows and the second deals with oscillating mainstream and boundary layer flows. Experimental results indicate that in steady flow the test section mainstream velocity is uniform in the flow direction and in cross section. The freestream turbulence intensity is about 0.2 percent. With minor exceptions the steady turbulent boundary layer generated on the top wall of the test section exhibits the characteristics of a zero pressure gradient turbulent boundary layer generated on a flat plate. The tunnel was designed to generate sinusoidal oscillating mainstream flows. Experiments confirm that the tunnel produces sinusoidal mainstream velocity variations for the range of frequencies (up to 15 Hz). The results of this study demonstrate that the tunnel essentially produces the flows that it was designed to produce.

  17. An Experimental Study of the Ground Transportation System (GTS) Model in the NASA Ames 7- by 10-Ft Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Storms, Bruce L.; Ross, James C.; Heineck, James T.; Walker, Stephen M.; Driver, David M.; Zilliac, Gregory G.; Bencze, Daniel P. (Technical Monitor)

    2001-01-01

    The 1/8-scale Ground Transportation System (GTS) model was studied experimentally in the NASA Ames 7- by 10-Ft Wind Tunnel. Designed for validation of computational fluid dynamics (CFD), the GTS model has a simplified geometry with a cab-over-engine design and no tractor-trailer gap. As a further simplification, all measurements of the GTS model were made without wheels. Aerodynamic boattail plates were also tested on the rear of the trailer to provide a simple geometry modification for computation. The experimental measurements include body-axis drag, surface pressures, surface hot-film anemometry, oil-film interferometry, and 3-D particle image velocimetry (PIV). The wind-averaged drag coefficient with and without boattail plates was 0.225 and 0.277, respectively. PIV measurements behind the model reveal a significant reduction in the wake size due to the flow turning provided by the boattail plates. Hot-film measurements on the side of the cab indicate laminar separation with turbulent reattachment within 0.08 trailer width for zero and +/- 10 degrees yaw. Oil film interferometry provided quantitative measurements of skin friction and qualitative oil flow images. A complete set of the experimental data and the surface definition of the model are included on a CD-ROM for further analysis and comparison.

  18. A three-dimensional orthogonal laser velocimeter for the NASA Ames 7- by 10-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Dunagan, Stephen E.; Cooper, Donald L.

    1995-01-01

    A three-component dual-beam laser-velocimeter system has been designed, fabricated, and implemented in the 7-by 10-Foot Wind Tunnel at NASA Ames Research Center. The instrument utilizes optical access from both sides and the top of the test section, and is configured for uncoupled orthogonal measurements of the three Cartesian coordinates of velocity. Bragg cell optics are used to provide fringe velocity bias. Modular system design provides great flexibility in the location of sending and receiving optics to adapt to specific experimental requirements. Near-focus Schmidt-Cassegrain optic modules may be positioned for collection of forward or backward scattered light over a large solid angle, and may be clustered to further increase collection solid angle. Multimode fiber optics transmit collected light to the photomultiplier tubes for processing. Counters are used to process the photomultiplier signals and transfer the processed data digitally via buffered interface controller to the host MS-DOS computer. Considerable data reduction and graphical display programming permit on-line control of data acquisition and evaluation of the incoming data. This paper describes this system in detail and presents sample data illustrating the system's capability.

  19. Optimizing Facility Configurations and Operating Conditions for Improved Performance in the NASA Ames 24 Inch Shock Tube

    NASA Technical Reports Server (NTRS)

    Bogdanoff, David W.; Cruden, Brett A.

    2016-01-01

    The Ames Electric Arc Shock Tube (EAST) is a shock tube wherein the driver gas can be heated by an electric arc discharge. The electrical energy is stored in a 1.2 MJ capacitor bank. Four inch and 24 inch diameter driven tubes are available. The facility is described and the need for testing in the 24 inch tube to better simulate low density NASA mission profiles is discussed. Three test entries, 53, 53B and 59, are discussed. Tests are done with air or Mars gas (95.7% CO2/2.7% N2/1.6% Ar) at pressures of 0.01 to 0.14 Torr. Velocities spanned 6.3-9.2 km/s, with a nominal center of 7 km/s. Many facility configurations are studied in an effort to improve data quality. Various driver and driven tube configurations and the use of a buffer section between the driver and the driven tube are studied. Diagnostics include test times, time histories of the shock light pulses and tilts of the shock wave off the plane normal to the tube axis. The report will detail the results of the various trials, give the best configuration/operating conditions found to date and provide recommendations for further improvements. Finally, diaphragm performance is discussed.

  20. Development of the NASA-Ames low disturbance supersonic wind tunnel for transition research up to Mach 2.5

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.; Laub, James A.; King, Lyndell S.; Reda, Daniel C.

    1992-01-01

    A unique, low-disturbance supersonic wind tunnel is being developed at NASA-Ames to support supersonic laminar flow control research at cruise Mach numbers of the High Speed Civil Transport (HSCT). The distinctive aerodynamic features of this new quiet tunnel will be a low-disturbance settling chamber, laminar boundary layers on the nozzle walls and steady supersonic diffuser flow. Furthermore, this new wind tunnel will operate continuously at uniquely low compression ratios (less than unity). This feature allows an existing non-specialist compressor to be used as a major part of the drive system. In this paper, we highlight activities associated with drive system development, the establishment of natural laminar flow on the test section walls, and instrumentation development for transition detection. Experimental results from an 1/8th-scale model of the supersonic wind tunnel are presented and discussed in association with theoretical predictions. Plans are progressing to build the full-scale wind tunnel by the end of 1993.

  1. Joint NASA Ames/Langley Experimental Evaluation of Integrated Air/Ground Operations for En Route Free Maneuvering

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Kopardekar, Parimal; Battiste, Vernol; Doble, Nathan; Johnson, Walter; Lee, Paul; Prevot, Thomas; Smith, Nancy

    2005-01-01

    In order to meet the anticipated future demand for air travel, the National Aeronautics and Space Administration (NASA) is investigating a new concept of operations known as Distributed Air-Ground Traffic Management (DAG-TM). Under the En Route Free Maneuvering component of DAG-TM, appropriately equipped autonomous aircraft self separate from other autonomous aircraft and from managed aircraft that continue to fly under today s Instrument Flight Rules (IFR). Controllers provide separation services between IFR aircraft and assign traffic flow management constraints to all aircraft. To address concept feasibility issues pertaining to integrated air/ground operations at various traffic levels, NASA Ames and Langley Research Centers conducted a joint human-in-the-loop experiment. Professional airline pilots and air traffic controllers flew a total of 16 scenarios under four conditions: mixed autonomous/managed operations at three traffic levels and a baseline all-managed condition at the lowest traffic level. These scenarios included en route flights and descents to a terminal area meter fix in airspace modeled after the Dallas Ft. Worth area. Pilots of autonomous aircraft met controller assigned meter fix constraints with high success. Separation violations by subject pilots did not appear to vary with traffic level and were mainly attributable to software errors and procedural lapses. Controller workload was lower for mixed flight conditions, even at higher traffic levels. Pilot workload was deemed acceptable under all conditions. Controllers raised several safety concerns, most of which pertained to the occurrence of near-term conflicts between autonomous and managed aircraft. These issues are being addressed through better compatibility between air and ground systems and refinements to air and ground procedures.

  2. Merging Intelligent Systems Technologies with CFD Analysis Strategies: Prototype Development at NASA Ames

    NASA Technical Reports Server (NTRS)

    Thompson, David E.; Brooks, Walt F. (Technical Monitor)

    1994-01-01

    A collaborative team of researchers from fields of Computational Fluid Dynamics (CFD), fluid physics, computer architectures, and computer science and knowledge engineering have begun work on a prototype system that addresses several of industry's concerns in using NASA-developed CFD codes as part of the design cycle. A major problem exists in the application of CFD technologies within the aeronautics design cycle due primarily to misunderstandings in the ranges of applicability of the various solver codes or turbulence models. Features that arise during the CFD solution process need to be discriminated and recognized as actual flow features with physical support in the geometry and flow conditions of the problem being solved, or as numerical or non-physical errors arising from mis-application of solver code and its parameters, gridding strategies, or discretization. interpolations. The fundamental concept is to develop an intelligent computational system that can accept the engineer's definition of the problem and construct an optimal CFD solution. To do this requires capturing both the knowledge of how to apply the various CFD tools and how to adapt the application of those tools to flow structures as they evolve during the flow simulation. Embedded within this adaptive system approach is the additional desire to automatically identify and quantify the quality of resolution of the pertinent flow structures, be they genuine or error-induced, and then to adjust the solution strategy accordingly. This paper discusses the status of that prototyping effort.

  3. Report on the 2011 and 2012 NASA Ames Research Center (ARC) / Alaska State Cargo Airship Workshops

    NASA Technical Reports Server (NTRS)

    Hochstettler, Ronald

    2012-01-01

    This presentation will summarize the Cargo Airships for Northern Operations workshop that was held August 24-25, 2011. This workshop co-sponsored by NASA ARC and the Alaska State Department of Transportation was initiated by interest from Alaska Lt. Governor Mead Treadwell for assistance in investigating the potential benefits of proposed cargo airships for the Alaskan economy and societal needs. The workshop provided a brief background on the technology and operational aspects of conventional airships and hybrids followed by presentations on issues affecting cargo airship operations such as weather management, insurance, regulations, crew duty/rest rules, and available support infrastructures. Speakers representing potential cargo airship users from Alaskan State and commercial organizations presented the needs they felt could be met by cargo airship services. Presenters from Canadian private and military interests also detailed applications and missions that cargo airships could provide to remote regions of Canada. Cost drivers of cargo airship operations were also addressed and tools for modeling and analyzing operational factors and costs affecting cargo airship operations were discussed. Four breakout sessions were held which allowed workshop participants to contribute inputs to four topic areas: Business Approaches and Strategies (financing incentives public/private partnerships etc) for Airship Development and Operation, Design, Development, Production Challenges, and Possible Solutions, Regulatory, Certification, Legal, and Insurance Issues, and Operational Issues, Customer Requirements, and Airship Requirements. A follow on to the 2011 cargo airship workshop is being planned for July 31 August 2, 2012. A status update on this second workshop will also be presented.

  4. Analytical study of the effects of wind tunnel turbulence on turbofan rotor noise. [NASA Ames 40 by 80 foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Gliebe, P. R.; Kerschen, E. J.

    1979-01-01

    The influence of tunnel turbulence on turbofan rotor noise was carried out to evaluate the effectiveness of the NASA Ames 40 by 80 foot tunnel in simulating flight levels of fan noise. A previously developed theory for predicting rotor/turbulence interaction noise was refined and extended to include first-order effects of inlet turbulence anisotropy. This theory was then verified by carrying out extensive data/theory comparisons. The resulting model computer program was then employed to carry out a parametric study of the effects of fan size, blade number, and operating line on rotor/turbulence noise for outdoor test stand. NASA Ames wind tunnel, and flight inlet turbulence conditions. A major result of this study is that although wind tunnel rotor/turbulence noise levels are not as low as flight levels they are substantially lower than the outdoor test stand levels and do not mask other sources of fan noise.

  5. Current Background Noise Sources and Levels in the NASA Ames 40- by 80-Foot Wind Tunnel: A Status Report

    NASA Technical Reports Server (NTRS)

    Allen, Christopher S.; Jaeger, Stephen; Soderman, Paul; Koga, Dennis (Technical Monitor)

    1999-01-01

    Background noise measurements were made of the acoustic environment in the National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel (40x80) at NASA Ames Research Center. The measurements were acquired subsequent to the 40x80 Aeroacoustic Modernization Project, which was undertaken to improve the anechoic characteristics of the 40x80's closed test section as well as reduce the levels of background noise in the facility. The resulting 40x80 anechoic environment was described by Soderman et. al., and the current paper describes the resulting 40x80 background noise, discusses the sources of the noise, and draws comparisons to previous 40x80 background noise levels measurements. At low wind speeds or low frequencies, the 40x80 background noise is dominated by the fan drive system. To obtain the lowest fan drive noise for a given tunnel condition, it is possible in the 40x80 to reduce the fans' rotational speed and adjust the fans' blade pitch, as described by Schmidtz et. al. This idea is not new, but has now been operationally implemented with modifications for increased power at low rotational speeds. At low to mid-frequencies and at higher wind speeds, the dominant noise mechanism was thought to be caused by the surface interface of the previous test section floor acoustic lining. In order to reduce this noise mechanism, the new test section floor lining was designed to resist the pumping of flow in and out of the space between the grating slats required to support heavy equipment. In addition, the lining/flow interface over the entire test section was designed to be smoother and quieter than the previous design. At high wind speeds or high frequencies, the dominant source of background noise in the 40x80 is believed to be caused by the response of the in-flow microphone probes (required by the nature of the closed test section) to the fluctuations in the freestream flow. The resulting background noise levels are also different for probes of various

  6. Piloted Evaluation of Modernized Limited Authority Control Laws in the NASA-Ames Vertical Motion Simulator (VMS)

    NASA Technical Reports Server (NTRS)

    Sahasrabudhe, Vineet; Melkers, Edgar; Faynberg, Alexander; Blanken, Chris L.

    2003-01-01

    The UH-60 BLACK HAWK was designed in the 1970s, when the US Army primarily operated during the day in good visual conditions. Subsequently, the introduction of night-vision goggles increased the BLACK HAWK'S mission effectiveness, but the accident rate also increased. The increased accident rate is strongly tied to increased pilot workload as a result of a degradation in visual cues. Over twenty years of research in helicopter flight control and handling qualities has shown that these degraded handling qualities can be recovered by modifying the response type of the helicopter in low speed flight. Sikorsky Aircraft Corporation initiated a project under the National Rotorcraft Technology Center (NRTC) to develop modern flight control laws while utilizing the existing partial authority Stability Augmentation System (SAS) of the BLACK HAWK. This effort resulted in a set of Modernized Control Laws (MCLAWS) that incorporate rate command and attitude command response types. Sikorsky and the US Army Aeroflightdynamics Directorate (AFDD) conducted a piloted simulation on the NASA-Ames Vertical h4otion Simulator, to assess potential handling qualities and to reduce the risk of subsequent implementation and flight test of these modern control laws on AFDD's EH-60L helicopter. The simulation showed that Attitude Command Attitude Hold control laws in pitch and roll improve handling qualities in the low speed flight regime. These improvements are consistent across a range of mission task elements and for both good and degraded visual environments. The MCLAWS perform better than the baseline UH-60A control laws in the presence of wind and turbulence. Finally, while the improved handling qualities in the pitch and roll axis allow the pilot to pay more attention to the vertical axis and hence altitude performance also improves, it is clear from pilot comments and altitude excursions that the addition of an Altitude Hold function would further reduce workload and improve overall

  7. Nanotechnology at NASA Ames

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Meyyappan, Meyya; Yan, Jerry (Technical Monitor)

    2000-01-01

    Advanced miniaturization, a key thrust area to enable new science and exploration missions, provides ultrasmall sensors, power sources, communication, navigation, and propulsion systems with very low mass, volume, and power consumption. Revolutions in electronics and computing will allow reconfigurable, autonomous, 'thinking' spacecraft. Nanotechnology presents a whole new spectrum of opportunities to build device components and systems for entirely new space architectures: (1) networks of ultrasmall probes on planetary surfaces; (2) micro-rovers that drive, hop, fly, and burrow; and (3) collections of microspacecraft making a variety of measurements.

  8. Report of the Interagency Optical Network Testbeds Workshop 2 September 12-14, 2006 NASA Ames Research Center

    SciTech Connect

    Joe Mambretti Richard desJardins

    2006-05-01

    A new generation of optical networking services and technologies is rapidly changing the world of communications. National and international networks are implementing optical services to supplement traditional packet routed services. On September 12-14, 2005, the Optical Network Testbeds Workshop 2 (ONT2), an invitation-only forum hosted by the NASA Research and Engineering Network (NREN) and co-sponsored by the Department of Energy (DOE), was held at NASA Ames Research Center in Mountain View, California. The aim of ONT2 was to help the Federal Large Scale Networking Coordination Group (LSN) and its Joint Engineering Team (JET) to coordinate testbed and network roadmaps describing agency and partner organization views and activities for moving toward next generation communication services based on leading edge optical networks in the 3-5 year time frame. ONT2 was conceived and organized as a sequel to the first Optical Network Testbeds Workshop (ONT1, August 2004, www.nren.nasa.gov/workshop7). ONT1 resulted in a series of recommendations to LSN. ONT2 was designed to move beyond recommendations to agree on a series of “actionable objectives” that would proactively help federal and partner optical network testbeds and advanced research and education (R&E) networks to begin incorporating technologies and services representing the next generation of advanced optical networks in the next 1-3 years. Participants in ONT2 included representatives from innovative prototype networks (Panel A), basic optical network research testbeds (Panel B), and production R&D networks (Panels C and D), including “JETnets,” selected regional optical networks (RONs), international R&D networks, commercial network technology and service providers (Panel F), and senior engineering and R&D managers from LSN agencies and partner organizations. The overall goal of ONT2 was to identify and coordinate short and medium term activities and milestones for researching, developing, identifying

  9. NASA Ames Laminar Flow Supersonic Wind Tunnel (LFSWT) Tests of a 10 deg Cone at Mach 1.6

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.; Laub, James A.

    1997-01-01

    This work is part of the ongoing qualification of the NASA Ames Laminar Flow Supersonic Wind Tunnel (LFSWT) as a low-disturbance (quiet) facility suitable for transition research. A 10 deg cone was tested over a range of unit Reynolds numbers (Re = 2.8 to 3.8 million per foot (9.2 to 12.5 million per meter)) and angles of incidence (O deg to 10 deg) at Mach 1.6. The location of boundary layer transition along the cone was measured primarily from surface temperature distributions, with oil flow interferometry and Schlieren flow visualization providing confirmation measurements. With the LFSWT in its normal quiet operating mode, no transition was detected on the cone in the test core, over the Reynolds number range tested at zero incidence and yaw. Increasing the pressure disturbance levels in the LFSWT test section by a factor of five caused transition onset on the cone within the test core, at zero incidence and yaw. When operating the LFSWT in its normal quiet mode, transition could only be detected in the test core when high angles of incidence (greater than 5 deg) for cones were set. Transition due to elevated pressure disturbances (Tollmien-Schlichting) and surface trips produced a skin temperature rise of order 4 F (2.2 C). Transition due to cross flows on the leeward side of the cone at incidence produced a smaller initial temperature rise of only order 2.5 F (1.4 C), which indicates a slower transition process. We can conclude that these cone tests add further proof that the LFSWT test core is normally low-disturbance (pressure fluctuations greater than 0.1%), as found by associated direct flow quality measurements discussed in this report. Furthermore, in a quiet test environment, the skin temperature rise is sensitive to the type of dominant instability causing transition. The testing of a cone in the LFSWT provides an excellent experiment for the development of advanced transition detection techniques.

  10. New results from the analyses of the solid phase of the NASA Ames Titan Haze Simulation (THS) experiment

    NASA Astrophysics Data System (ADS)

    Sciamma-O'Brien, Ella; Upton, Kathleen T.; Beauchamp, Jesse L.; Salama, Farid

    2015-11-01

    In Titan’s atmosphere, a complex chemistry occurs at low temperature between N2 and CH4 that leads to the production of heavy organic molecules and subsequently solid aerosols. The Titan Haze Simulation (THS) experiment was developed at the NASA Ames COSmIC facility to study Titan’s atmospheric chemistry at low temperature. In the THS, the chemistry is simulated by plasma in the stream of a supersonic expansion. With this unique design, the gas is cooled to Titan-like temperature (~150K) before inducing the chemistry by plasma, and remains at low temperature in the plasma (~200K). Different N2-CH4-based gas mixtures can be injected in the plasma, with or without the addition of heavier molecules, in order to monitor the evolution of the chemical growth.Following a recent in situ mass spectrometry study of the gas phase that demonstrated that the THS is a unique tool to probe the first and intermediate steps of Titan’s atmospheric chemistry at low temperature (Sciamma-O’Brien et al., Icarus, 243, 325 (2014)), we have performed a complementary study of the solid phase. The findings are consistent with the chemical growth evolution observed in the gas phase. Grains and aggregates form in the gas phase and can be jet deposited onto various substrates for ex situ analyses. Scanning Electron Microscopy images show that more complex mixtures produce larger aggregates, and that different growth mechanisms seem to occur depending on the gas mixture. They also allow the determination of the size distribution of the THS solid grains. A Direct Analysis in Real Time mass spectrometry analysis coupled with Collision Induced Dissociation has detected the presence of aminoacetonitrile, a precursor of glycine, in the THS aerosols. X-ray Absorption Near Edge Structure (XANES) measurements also show the presence of imine and nitrile functional groups, showing evidence of nitrogen chemistry. Infrared and µIR spectra of samples deposited on KBr and Si substrates show the

  11. Model Deformation Measurements of Sonic Boom Models in the NASA Ames 9- by 7-Ft Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Schairer, Edward T.; Kushner, Laura K.; Garbeff, Theodore J.; Heineck, James T.

    2015-01-01

    The deformations of two sonic-boom models were measured by stereo photogrammetry during tests in the 9- by 7-Ft Supersonic Wind Tunnel at NASA Ames Research Center. The models were geometrically similar but one was 2.75 times as large as the other. Deformation measurements were made by simultaneously imaging the upper surfaces of the models from two directions by calibrated cameras that were mounted behind windows of the test section. Bending and twist were measured at discrete points using conventional circular targets that had been marked along the leading and trailing edges of the wings and tails. In addition, continuous distributions of bending and twist were measured from ink speckles that had been applied to the upper surfaces of the model. Measurements were made at wind-on (M = 1.6) and wind-off conditions over a range of angles of attack between 2.5 deg. and 5.0 deg. At each condition, model deformation was determined by comparing the wind-off and wind-on coordinates of each measurement point after transforming the coordinates to reference coordinates tied to the model. The necessary transformations were determined by measuring the positions of a set of targets on the rigid center-body of the models whose model-axes coordinates were known. Smoothly varying bending and twist measurements were obtained at all conditions. Bending displacements increased in proportion to the square of the distance to the centerline. Maximum deflection of the wingtip of the larger model was about 5 mm (2% of the semispan) and that of the smaller model was 0.9 mm (1% of the semispan). The change in wing twist due to bending increased in direct proportion to distance from the centerline and reached a (absolute) maximum of about -1? at the highest angle of attack for both models. The measurements easily resolved bending displacements as small as 0.05 mm and bending-induced changes in twist as small as 0.05 deg.

  12. The NASA Ames PAH IR Spectroscopic Database Version 2.00: Updated Content, Web Site, and On(Off)line Tools

    NASA Astrophysics Data System (ADS)

    Boersma, C.; Bauschlicher, C. W., Jr.; Ricca, A.; Mattioda, A. L.; Cami, J.; Peeters, E.; Sánchez de Armas, F.; Puerta Saborido, G.; Hudgins, D. M.; Allamandola, L. J.

    2014-03-01

    A significantly updated version of the NASA Ames PAH IR Spectroscopic Database, the first major revision since its release in 2010, is presented. The current version, version 2.00, contains 700 computational and 75 experimental spectra compared, respectively, with 583 and 60 in the initial release. The spectra span the 2.5-4000 μm (4000-2.5 cm-1) range. New tools are available on the site that allow one to analyze spectra in the database and compare them with imported astronomical spectra as well as a suite of IDL object classes (a collection of programs utilizing IDL's object-oriented programming capabilities) that permit offline analysis called the AmesPAHdbIDLSuite. Most noteworthy among the additions are the extension of the computational spectroscopic database to include a number of significantly larger polycyclic aromatic hydrocarbons (PAHs), the ability to visualize the molecular atomic motions corresponding to each vibrational mode, and a new tool that allows one to perform a non-negative least-squares fit of an imported astronomical spectrum with PAH spectra in the computational database. Finally, a methodology is described in the Appendix, and implemented using the AmesPAHdbIDLSuite, that allows the user to enforce charge balance during the fitting procedure.

  13. THE NASA AMES PAH IR SPECTROSCOPIC DATABASE VERSION 2.00: UPDATED CONTENT, WEB SITE, AND ON(OFF)LINE TOOLS

    SciTech Connect

    Boersma, C.; Mattioda, A. L.; Allamandola, L. J.; Bauschlicher, C. W. Jr.; Ricca, A.; Cami, J.; Peeters, E.; De Armas, F. Sánchez; Saborido, G. Puerta; Hudgins, D. M.

    2014-03-01

    A significantly updated version of the NASA Ames PAH IR Spectroscopic Database, the first major revision since its release in 2010, is presented. The current version, version 2.00, contains 700 computational and 75 experimental spectra compared, respectively, with 583 and 60 in the initial release. The spectra span the 2.5-4000 μm (4000-2.5 cm{sup -1}) range. New tools are available on the site that allow one to analyze spectra in the database and compare them with imported astronomical spectra as well as a suite of IDL object classes (a collection of programs utilizing IDL's object-oriented programming capabilities) that permit offline analysis called the AmesPAHdbIDLSuite. Most noteworthy among the additions are the extension of the computational spectroscopic database to include a number of significantly larger polycyclic aromatic hydrocarbons (PAHs), the ability to visualize the molecular atomic motions corresponding to each vibrational mode, and a new tool that allows one to perform a non-negative least-squares fit of an imported astronomical spectrum with PAH spectra in the computational database. Finally, a methodology is described in the Appendix, and implemented using the AmesPAHdbIDLSuite, that allows the user to enforce charge balance during the fitting procedure.

  14. A Tale of Two Small Business Grants: The Best of Times, the Worst of Times from the NASA Ames Small Business Innovative Research (SBIR) Program

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel R.; Lee, Geoffrey S.

    2006-01-01

    The purposes of the SBIR Program are to: stimulate technological innovation in the private sector; strengthen the role of Small Business Concerns (SBCs) in meeting Federal research and development needs; increase the commercial application of these research results; and encourage participation of socially and economically disadvantaged persons and women-owned small businesses. The process can be highly rewarding, providing the small business with resources to pursue research and development with a focus on providing NASA with new and advanced capabilities. We present two examples of how the NASA Ames SBIR Program has addressed these purposes, nurturing innovative ideas from small, businesses into commercially viable products that also address analytical needs in space research. These examples, from the Science Instruments for Conducting Solar System Exploration Subtopic, describe the journey from innovative concept to analytical instrument, one successful and one hampered by numerous roadblocks (including some international intrigue}.

  15. Development of a High Resolution Weather Forecast Model for Mesoamerica Using the NASA Ames Code I Private Cloud Computing Environment

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew; Case, Jonathan; Venner, Jason; Moreno-Madrinan, Max J.; Delgado, Francisco

    2012-01-01

    Two projects at NASA Marshall Space Flight Center have collaborated to develop a high resolution weather forecast model for Mesoamerica: The NASA Short-term Prediction Research and Transition (SPoRT) Center, which integrates unique NASA satellite and weather forecast modeling capabilities into the operational weather forecasting community. NASA's SERVIR Program, which integrates satellite observations, ground-based data, and forecast models to improve disaster response in Central America, the Caribbean, Africa, and the Himalayas.

  16. Joseph Ames

    NASA Technical Reports Server (NTRS)

    1920-01-01

    Dr. Joseph Sweetman Ames at his desk at the NACA headquarters. Dr. Ames was a founding member of NACA (National Advisory Committee for Aeronautics), appointed by President Woodrow Wilson in 1915. Ames took on NACA's most challenging assignments but mostly represented physics. He chaired the Foreign Service Committee of the newly-founded National Research Council, oversaw the NACA's patent cross-licensing plan that allowed manufacturers to share technologies. Ames expected the NACA to encourage engineering education. He pressed universities to train more aerodynamicists, then structured NACA to give young engineers on-the-job training. Ames gave the NACA a focused vision that was research-based and decided that aerodynamics was the most important field of endeavor. He championed the work of theorists like Max Munk. The world class wind tunnels at Langley Aeronautical laboratory reflected his vision as well as the faith Congress put in him. Ames became chairman of the NACA main committee in 1927. Two years later he accepted the Collier Trophy on behalf on the NACA. He kept the NACA alive when Herbert Hoover tried to eliminate it and transfer its duties to industry. Ames accepted a nomination by Air Minister Hermann Goring to the Deutsche Akademie der Luftfartforschung. Ames then considered it an honor, many Americans did, and was surprised to learn about the massive Nazi investment in aeronautical infrastructure, then six times larger than the NACA. Ames urged the funding for a second laboratory and expansion of the NACA facilities to prepare for war. A stroke in May 1936 paralyzed the right side of his body. He immediately resigned as chairman of the NACA executive committee and in October 1937 he resigned from the NACA main committee. On June 8, 1944 the NACA officially dedicated its new laboratory in Sunnyvale California to Joseph S. Ames. Ames died in 1943, having never stepped foot in the new laboratory that bears his name; the Ames Aeronautical Laboratory

  17. Ames Research Center Publications-1976

    NASA Technical Reports Server (NTRS)

    Sherwood, B.

    1978-01-01

    Bibliography of the publications of Ames Research Center authors and contractors, which appeared in formal NASA publications, journal articles, books, chapters of books, patents, and contractor reports. Covers 1976.

  18. Ames Scientists Develop MSL Instrument

    NASA Video Gallery

    David Blake, a research scientist at NASA Ames, led the development of CheMin, one of ten scientific instruments onboard Curiosity, the Mars Scientific Laboratory. The Powder X-Ray Diffraction tool...

  19. Ames research center publications, 1975

    NASA Technical Reports Server (NTRS)

    Sherwood, B. R. (Compiler)

    1977-01-01

    This bibliography cites 851 documents by Ames Research Center personnel and contractors which appeared in formal NASA publications, journals, books, patents, and contractor reports in 1975, or not included in previous annual bibliographies. An author index is provided.

  20. Results of the AFRSI rewaterproofing systems screening test in the NASA/Ames Research Center (ARC) 2 x 2-foot transonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Marroquin, J.; Kingsland, R. B.

    1985-01-01

    An experimental investigation was conducted in the NASA/Ames Research Center 2x2-foot Transonic Wind Tunnel to evaluate two AFRSI rewaterproofing systems and to investigate films as a means of reducing blanket joint distortion. The wind tunnel wall slot configuration influenced on the flow field over the test panel was investigated; primarily using oil flow data, and resulted in a closed slot configuration to provide a satisfactory screening environment flow field for the test. Sixteen AFRSI test panels, configured to represent the test system or film, were subjected to this screening environment (a flow field of separated and reattached flow at a freestream Mach numnber of 0.65 and q = 650 or 900 psf). Each condition was held until damage to the test article was observed or 55 minutes if no damage was incurred. All objectives related to AFRSI rewaterproofing and to the use of films to stiffen the blanket fibers were achieved.

  1. Thermal modeling of the NASA-Ames Research Center Cryogenic Optical Test Facility and a single-arch, fused-natural-quartz mirror

    NASA Technical Reports Server (NTRS)

    Ng, Y. S.; Augason, Gordon C.; Young, Jeffrey A.; Howard, Steven D.; Melugin, Ramsey K.

    1990-01-01

    A thermal model of the dewar and optical system of the Cryogenic Optical Test Facility at NASA-Ames Research Center was developed using the computer codes SINDA and MONTE CARLO. The model was based on the geometry, boundary conditions, and physical properties of the test facility and was developed to investigate heat transfer mechanisms and temperatures in the facility and in test mirrors during cryogenic optical tests. A single-arch, fused-natural-quartz mirror was the first mirror whose thermal loads and temperature distributions were modeled. From the temperature distribution, the thermal gradients in the mirror were obtained. The model predicted that a small gradient should exist for the single arch mirror. This was later verified by the measurement of mirror temperatures. The temperatures, predicted by the model at various locations within the dewar, were in relatively good agreement with the measured temperatures. The model is applicable to both steady-state and transient cooldown operations.

  2. Proposed Use of the NASA Ames Nebula Cloud Computing Platform for Numerical Weather Prediction and the Distribution of High Resolution Satellite Imagery

    NASA Technical Reports Server (NTRS)

    Limaye, Ashutosh S.; Molthan, Andrew L.; Srikishen, Jayanthi

    2010-01-01

    The development of the Nebula Cloud Computing Platform at NASA Ames Research Center provides an open-source solution for the deployment of scalable computing and storage capabilities relevant to the execution of real-time weather forecasts and the distribution of high resolution satellite data to the operational weather community. Two projects at Marshall Space Flight Center may benefit from use of the Nebula system. The NASA Short-term Prediction Research and Transition (SPoRT) Center facilitates the use of unique NASA satellite data and research capabilities in the operational weather community by providing datasets relevant to numerical weather prediction, and satellite data sets useful in weather analysis. SERVIR provides satellite data products for decision support, emphasizing environmental threats such as wildfires, floods, landslides, and other hazards, with interests in numerical weather prediction in support of disaster response. The Weather Research and Forecast (WRF) model Environmental Modeling System (WRF-EMS) has been configured for Nebula cloud computing use via the creation of a disk image and deployment of repeated instances. Given the available infrastructure within Nebula and the "infrastructure as a service" concept, the system appears well-suited for the rapid deployment of additional forecast models over different domains, in response to real-time research applications or disaster response. Future investigations into Nebula capabilities will focus on the development of a web mapping server and load balancing configuration to support the distribution of high resolution satellite data sets to users within the National Weather Service and international partners of SERVIR.

  3. Ocean-atmosphere relationships from synoptic scale to local scale in South San Francisco Bay, with implications to flood risk at NASA Ames Research Center, Silicon Valley

    NASA Astrophysics Data System (ADS)

    Mills, W. B.; Costa-Cabral, M. C.; Bromirski, P. D.; Miller, N. L.; Coats, R. N.; Loewenstein, M.; Roy, S. B.; MacWilliams, M.

    2012-12-01

    This work evaluates the implications to flooding risk at the low-lying NASA Ames Research Center in South San Francisco Bay under historical and projected climate and sea level rise. Atmospheric circulation patterns over the Pacific Ocean, influenced by ENSO and PDO, can result in extended periods of higher mean coastal sea level in California. Simultaneously they originate a larger number of storms that make landfall and have higher mean intensity. These storms generate barometrically-induced high water anomalies, and winds that are sometimes capable of producing large coastal waves. Storm surges that propagate from the coast into the estuary and South Bay, and locally-generated waves, may compromise the discharge capacity of stream channels. These conditions also typically generate high intensity rainfall, and the reduced channel capacity may result in fluvial flooding. Such atmospheric circulation patterns may persist for many months, during which California experiences more precipitation events of longer mean duration and higher intensity, leading to large precipitation totals that saturate soils and may exceed the storage capacity of stormwater retention ponds. Future scenarios of sea level rise, that may surpass a meter in this century according to the projections recently published by the National Research Council for states of CA, OR and WA, and projected atmospheric circulation changes associated with anthropogenic climate change, may amplify these risks. We evaluate the impacts of these changes on NASA's Ames Research Center through four areas of study: (i) wetland accretion and evolution as mean sea level rises, with implications to the Bay's response to the sea level rise and storm surges, (ii) hydrodynamic modeling to simulate the propagation of tidal height and storm surges in the Bay and the influence of local winds on wave height, (iii) evaluation of historical data and future climate projections to identify extreme precipitation events, and (iv

  4. Aeroacoustic Study of a 26%-Scale Semispan Model of a Boeing 777 Wing in the NASA Ames 40- by 80-Foot Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Horne, W. Clifton; Burnside, Nathan J.; Soderman, Paul T.; Jaeger, Stephen M.; Reinero, Bryan R.; James, Kevin D.; Arledge, Thomas K.

    2004-01-01

    An acoustic and aerodynamic study was made of a 26%-scale unpowered Boeing 777 aircraft semispan model in the NASA Ames 40- by 80-Foot Wind Tunnel for the purpose of identifying and attenuating airframe noise sources. Simulated approach and landing configurations were evaluated at Mach numbers between 0.12 and 0.24. Cruise configurations were evaluated at Mach numbers between 0.24 and 0.33. The research team used two Ames phased-microphone arrays, a large fixed array and a small traversing array, mounted under the wing to locate and compare various noise sources in the wing high-lift system and landing gear. Numerous model modifications and noise alleviation devices were evaluated. Simultaneous with acoustic measurements, aerodynamic forces were recorded to document aircraft conditions and any performance changes caused by the geometric modifications. Numerous airframe noise sources were identified that might be important factors in the approach and landing noise of the full-scale aircraft. Several noise-control devices were applied to each noise source. The devices were chosen to manipulate and control, if possible, the flow around the various tips and through the various gaps of the high-lift system so as to minimize the noise generation. Fences, fairings, tip extensions, cove fillers, vortex generators, hole coverings, and boundary-layer trips were tested. In many cases, the noise-control devices eliminated noise from some sources at specific frequencies. When scaled to full-scale third-octave bands, typical noise reductions ranged from 1 to 10 dB without significant aerodynamic performance loss.

  5. Proposed Use of the NASA Ames Nebula Cloud Computing Platform for Numerical Weather Prediction and the Distribution of High Resolution Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Limaye, A.; Molthan, A.

    2010-12-01

    The development of the Nebula Cloud Computing Platform at NASA Ames Research Center provides an open-source solution for the deployment of scalable computing and storage capabilities relevant to the execution of real-time weather forecasts and the distribution of high resolution satellite data to the operational weather community. Two projects at Marshall Space Flight Center may benefit from use of the Nebula system. The NASA Short-term Prediction Research and Transition (SPoRT) Center facilitates the use of unique NASA satellite data and research capabilities in the operational weather community by providing datasets relevant to numerical weather prediction, and satellite data sets useful in weather analysis. SERVIR provides satellite data products for decision support, emphasizing environmental threats such as wildfires, floods, landslides, and other hazards, with interests in numerical weather prediction in support of disaster response. The Weather Research and Forecast (WRF) model Environmental Modeling System (WRF-EMS) has been configured for Nebula cloud computing use via the creation of a disk image and deployment of repeated instances. Given the available infrastructure within Nebula and the “infrastructure as a service” concept, the system appears well-suited for the rapid deployment of additional forecast models over different domains, in response to real-time research applications or disaster response. Future investigations into Nebula capabilities will focus on the development of a web mapping server and load balancing configuration to support the distribution of high resolution satellite data sets to users within the National Weather Service and international partners of SERVIR.

  6. Aeroacoustic Characterization of the NASA Ames Experimental Aero-Physics Branch 32- by 48-Inch Subsonic Wind Tunnel with a 24-Element Phased Microphone Array

    NASA Technical Reports Server (NTRS)

    Costanza, Bryan T.; Horne, William C.; Schery, S. D.; Babb, Alex T.

    2011-01-01

    The Aero-Physics Branch at NASA Ames Research Center utilizes a 32- by 48-inch subsonic wind tunnel for aerodynamics research. The feasibility of acquiring acoustic measurements with a phased microphone array was recently explored. Acoustic characterization of the wind tunnel was carried out with a floor-mounted 24-element array and two ceiling-mounted speakers. The minimum speaker level for accurate level measurement was evaluated for various tunnel speeds up to a Mach number of 0.15 and streamwise speaker locations. A variety of post-processing procedures, including conventional beamforming and deconvolutional processing such as TIDY, were used. The speaker measurements, with and without flow, were used to compare actual versus simulated in-flow speaker calibrations. Data for wind-off speaker sound and wind-on tunnel background noise were found valuable for predicting sound levels for which the speakers were detectable when the wind was on. Speaker sources were detectable 2 - 10 dB below the peak background noise level with conventional data processing. The effectiveness of background noise cross-spectral matrix subtraction was assessed and found to improve the detectability of test sound sources by approximately 10 dB over a wide frequency range.

  7. The Formation of Solid Particles from their Gas-Phase Molecular Precursors in Cosmic Environments with NASA Ames' COSmIC Facility

    NASA Technical Reports Server (NTRS)

    Salama, Farid

    2014-01-01

    We present and discuss the unique characteristics and capabilities of the laboratory facility, COSmIC, that was developed at NASA Ames to generate, process and analyze interstellar, circumstellar and planetary analogs in the laboratory. COSmIC stands for Cosmic Simulation Chamber and is dedicated to the study of molecules and ions under the low temperature and high vacuum conditions that are required to simulate interstellar, circumstellar and planetary physical environments in space. COSmIC integrates a variety of state-of-the-art instruments that allow forming, processing and monitoring simulated space conditions for planetary, circumstellar and interstellar materials in the laboratory. COSmIC is composed of a Pulsed Discharge Nozzle (PDN) expansion that generates a free jet supersonic expansion coupled to two ultrahigh-sensitivity, complementary in situ diagnostics: a Cavity Ring Down Spectroscopy (CRDS) system for photonic detection and a Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection. Recent, unique, laboratory astrophysics results that were obtained using the capabilities of COSmIC will be discussed, in particular the progress that have been achieved in monitoring in the laboratory the formation of solid gains from their gas-phase molecular precursors in environments as varied as stellar/circumstellar outflow and planetary atmospheres. Plans for future, next generation, laboratory experiments on cosmic molecules and grains in the growing field of laboratory astrophysics will also be addressed as well as the implications of these studies for current and upcoming space missions.

  8. Results of a long-term study of vapor intrusion at four large buildings at the NASA Ames Research Center.

    PubMed

    Brenner, David

    2010-06-01

    Most of the published empirical data on indoor air concentrations resulting from vapor intrusion of contaminants from underlying groundwater are for residential structures. The National Aeronautics and Space Administration (NASA) Research Park site, located in Moffett Field, CA, and comprised of 213 acres, is being planned for redevelopment as a collaborative research and educational campus with associated facilities. Groundwater contaminated with hydrocarbon and halogenated hydrocarbon volatile organic compounds (VOCs) is the primary environmental medium of concern at the site. Over a 15-month period, approximately 1000 indoor, outdoor ambient, and outdoor ambient background samples were collected from four buildings designated as historical landmarks using Summa canisters and analyzed by the U.S. Environmental Protection Agency TO-15 selective ion mode. Both 24-hr and sequential 8-hr samples were collected. Comparison of daily sampling results relative to daily background results indicates that the measured trichloroethylene (TCE) concentrations were primarily due to the subsurface vapor intrusion pathway, although there is likely some contribution due to infiltration of TCE from the outdoor ambient background concentrations. Analysis of the cis-1,2-dichloroethylene concentrations relative to TCE concentrations with respect to indoor air concentrations and the background air support this hypothesis; however, this indicates that relative contributions of the vapor intrusion and infiltration pathways vary with each building. Indoor TCE concentrations were also compared with indoor benzene and background benzene concentrations. These data indicate significant correlation between background benzene concentrations and the concentration of benzene in the indoor air, indicating benzene was present in the indoor air primarily through infiltration of outdoor air into the indoor space. By comparison, measured TCE indoor air concentrations showed a significantly different

  9. Results of heat transfer tests of an 0.0175-scale space shuttle vehicle model 22 OTS in the NASA-Ames 3.5 foot hypersonic wind tunnel (IH3), volume 1

    NASA Technical Reports Server (NTRS)

    Foster, T. F.; Lockman, W. K.

    1975-01-01

    Heat transfer data for the 0.0175-scale space shuttle vehicle 3 are presented. Interference heating effects were investigated by a model build-up technique of orbiter alone, tank alone, second, and first stage configurations. The test program was conducted in the NASA-Ames 3.5-foot hypersonic wind tunnel at Mach 5.3 for nominal free stream Reynolds number per foot values of 1.5, and 5.0 million.

  10. Full-scale S-76 rotor performance and loads at low speeds in the NASA Ames 80- by 120-Foot Wind Tunnel. Vol. 1

    NASA Technical Reports Server (NTRS)

    Shinoda, Patrick M.

    1996-01-01

    A full-scale helicopter rotor test was conducted in the NASA Ames 80- by 120-Foot Wind Tunnel with a four-bladed S-76 rotor system. Rotor performance and loads data were obtained over a wide range of rotor shaft angles-of-attack and thrust conditions at tunnel speeds ranging from 0 to 100 kt. The primary objectives of this test were (1) to acquire forward flight rotor performance and loads data for comparison with analytical results; (2) to acquire S-76 forward flight rotor performance data in the 80- by 120-Foot Wind Tunnel to compare with existing full-scale 40- by 80-Foot Wind Tunnel test data that were acquired in 1977; (3) to evaluate the acoustic capability of the 80- by 120- Foot Wind Tunnel for acquiring blade vortex interaction (BVI) noise in the low speed range and compare BVI noise with in-flight test data; and (4) to evaluate the capability of the 80- by 120-Foot Wind Tunnel test section as a hover facility. The secondary objectives were (1) to evaluate rotor inflow and wake effects (variations in tunnel speed, shaft angle, and thrust condition) on wind tunnel test section wall and floor pressures; (2) to establish the criteria for the definition of flow breakdown (condition where wall corrections are no longer valid) for this size rotor and wind tunnel cross-sectional area; and (3) to evaluate the wide-field shadowgraph technique for visualizing full-scale rotor wakes. This data base of rotor performance and loads can be used for analytical and experimental comparison studies for full-scale, four-bladed, fully articulated rotor systems. Rotor performance and structural loads data are presented in this report.

  11. Investigating the asymmetry of Mars’ South Polar Cap using the NASA Ames Mars General Circulation Model with a CO2 cloud microphysics scheme

    NASA Astrophysics Data System (ADS)

    Dequaire, Julie; Kahre, M. A.; Haberle, R. M.; Hollingsworth, J. L.; NASA Ames Global Climate Modelling Group

    2013-10-01

    One of the most intriguing and least understood climate phenomena on Mars is the existence of a high albedo perennial south polar CO2 ice cap that is offset from the pole in the western hemisphere (SPRC). Colaprete et al. (2005) hypothesize that since the process by which CO2 surface frost accumulates (i.e., precipitation or direct vapor deposition) affects the albedo of the ice, the atmosphere can play a role in the stability and asymmetry of the cap. They show that the basins of Hellas and Argyre force a stationary wave resulting in a colder western hemisphere in which atmospheric CO2 condensation and precipitation is favored. Because precipitated CO2 is brighter than directly deposited CO2, this could maintain the asymmetry of the southern ice cap. We build on their study with a version of the NASA Ames GCM that includes a newly incorporated CO2 cloud microphysics scheme. Simulated results compare well to observed temperatures, pressures and cap recession rates. Observed mesospheric and polar night clouds are well reproduced by the model, and a third unobserved type of cloud is predicted to form close to the surface of the subliming caps. As hypothesized by Colaprete et al. (2005), we find that the zonally asymmetric topography forces a stationary wave in the atmosphere resulting in an asymmetric cloud cover over the south pole during fall and winter and maximizing snowfall over a region encompassing the SPRC. These positive results open to further studies including a mesospheric simulation to refine the horizontal grid around the SPRC as well as the implementation of an ice albedo scheme dependent both on the amount and size of aerosols falling onto the cap during fall and winter (snow, frost and dust), and on surface metamorphism processes due to sintering and incoming solar radiation. The goal of this work is to develop a more complete understanding of the existence of the SPRC and of the Martian CO2 cycle.

  12. The Mars Dust Cycle: Investigating the Effects of Radiatively Active Water Ice Clouds on Surface Stresses and Dust Lifting Potential with the NASA Ames Mars General Circulation Model

    NASA Technical Reports Server (NTRS)

    Kahre, Melinda A.; Hollingsworth, Jeffery

    2012-01-01

    The dust cycle is a critically important component of Mars' current climate system. Dust is present in the atmosphere of Mars year-round but the dust loading varies with season in a generally repeatable manner. Dust has a significant influence on the thermal structure of the atmosphere and thus greatly affects atmospheric circulation. The dust cycle is the most difficult of the three climate cycles (CO2, water, and dust) to model realistically with general circulation models. Until recently, numerical modeling investigations of the dust cycle have typically not included the effects of couplings to the water cycle through cloud formation. In the Martian atmosphere, dust particles likely provide the seed nuclei for heterogeneous nucleation of water ice clouds. As ice coats atmospheric dust grains, the newly formed cloud particles exhibit different physical and radiative characteristics. Thus, the coupling between the dust and water cycles likely affects the distributions of dust, water vapor and water ice, and thus atmospheric heating and cooling and the resulting circulations. We use the NASA Ames Mars GCM to investigate the effects of radiatively active water ice clouds on surface stress and the potential for dust lifting. The model includes a state-of-the-art water ice cloud microphysics package and a radiative transfer scheme that accounts for the radiative effects of CO2 gas, dust, and water ice clouds. We focus on simulations that are radiatively forced by a prescribed dust map, and we compare simulations that do and do not include radiatively active clouds. Preliminary results suggest that the magnitude and spatial patterns of surface stress (and thus dust lifting potential) are substantial influenced by the radiative effects of water ice clouds.

  13. Biological Visualization, Imaging and Simulation(Bio-VIS) at NASA Ames Research Center: Developing New Software and Technology for Astronaut Training and Biology Research in Space

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey

    2003-01-01

    The Bio- Visualization, Imaging and Simulation (BioVIS) Technology Center at NASA's Ames Research Center is dedicated to developing and applying advanced visualization, computation and simulation technologies to support NASA Space Life Sciences research and the objectives of the Fundamental Biology Program. Research ranges from high resolution 3D cell imaging and structure analysis, virtual environment simulation of fine sensory-motor tasks, computational neuroscience and biophysics to biomedical/clinical applications. Computer simulation research focuses on the development of advanced computational tools for astronaut training and education. Virtual Reality (VR) and Virtual Environment (VE) simulation systems have become important training tools in many fields from flight simulation to, more recently, surgical simulation. The type and quality of training provided by these computer-based tools ranges widely, but the value of real-time VE computer simulation as a method of preparing individuals for real-world tasks is well established. Astronauts routinely use VE systems for various training tasks, including Space Shuttle landings, robot arm manipulations and extravehicular activities (space walks). Currently, there are no VE systems to train astronauts for basic and applied research experiments which are an important part of many missions. The Virtual Glovebox (VGX) is a prototype VE system for real-time physically-based simulation of the Life Sciences Glovebox where astronauts will perform many complex tasks supporting research experiments aboard the International Space Station. The VGX consists of a physical display system utilizing duel LCD projectors and circular polarization to produce a desktop-sized 3D virtual workspace. Physically-based modeling tools (Arachi Inc.) provide real-time collision detection, rigid body dynamics, physical properties and force-based controls for objects. The human-computer interface consists of two magnetic tracking devices

  14. Validating Above-cloud Aerosol Optical Depth Retrieved from MODIS using NASA Ames Airborne Sun-Tracking Photometric and Spectrometric (AATS and 4STAR) Measurements

    NASA Astrophysics Data System (ADS)

    Jethva, H. T.; Torres, O.; Remer, L. A.; Redemann, J.; Dunagan, S. E.; Livingston, J. M.; Shinozuka, Y.; Kacenelenbogen, M. S.; Segal-Rosenhaimer, M.

    2014-12-01

    Absorbing aerosols produced from biomass burning and dust outbreaks are often found to overlay the lower level cloud decks as evident in the satellite images. In contrast to the cloud-free atmosphere, in which aerosols generally tend to cool the atmosphere, the presence of absorbing aerosols above cloud poses greater potential of exerting positive radiative effects (warming) whose magnitude directly depends on the aerosol loading above cloud, optical properties of clouds and aerosols, and cloud fraction. In recent years, development of algorithms that exploit satellite-based passive measurements of ultraviolet (UV), visible, and polarized light as well as lidar-based active measurements constitute a major breakthrough in the field of remote sensing of aerosols. While the unprecedented quantitative information on aerosol loading above cloud is now available from NASA's A-train sensors, a greater question remains ahead: How to validate the satellite retrievals of above-cloud aerosols (ACA)? Direct measurements of ACA such as carried out by the NASA Ames Airborne Tracking Sunphotometer (AATS) and Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) can be of immense help in validating ACA retrievals. In this study, we validate the ACA optical depth retrieved using the 'color ratio' (CR) method applied to the MODIS cloudy-sky reflectance by using the airborne AATS and 4STAR measurements. A thorough search of the historic AATS-4STAR database collected during different field campaigns revealed five events where biomass burning, dust, and wildfire-emitted aerosols were found to overlay lower level cloud decks observed during SAFARI-2000, ACE-ASIA 2001, and SEAC4RS-2013, respectively. The co-located satellite-airborne measurements revealed a good agreement (root-mean-square-error<0.1 for Aerosol Optical Depth (AOD) at 500 nm) with most matchups falling within the estimated uncertainties in the MODIS retrievals (-10% to +50%). An extensive validation of

  15. UHTC Research at NASA Ames

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia M.

    2011-01-01

    For enhanced aerodynamic performance. Materials for sharp leading edges can be reusable but need different properties because of geometry and very high temperatures. Require materials with significantly higher temperature capabilities, but for short duration. Current shuttle RCC leading edge materials: T approx. 1650 C. Materials for vehicles with sharp leading edges: T>2000 C. >% Figure depicts: High Temperature at Tip and Steep Temperature Gradient. Passive cooling is simplest option to manage the intense heating on sharp leading edges.

  16. Comparison of acoustic data from a 102 mm conic nozzle as measured in the RAE 24-foot wind tunnel and the NASA Ames 40- by 80-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Atencio, A., Jr.; Mckie, J.

    1982-01-01

    A cooperative program between the Royal Aircraft Establishment (RAE), England, and the NASA Ames Research Center was initiated to compare acoustic measurements made in the RAE 24-foot wind tunnel and in the Ames 40- by 80-foot wind tunnel. The acoustic measurements were made in both facilities using the same 102 mm conical nozzle supplied by the RAE. The nozzle was tested by each organization using its respective jet test rig. The mounting hardware and nozzle exit conditions were matched as closely as possible. The data from each wind tunnel were independently analyzed by the respective organization. The results from these tests show good agreement. In both facilities, interference with acoustic measurement is evident at angles in the forward quadrant.

  17. Investigating the asymmetry of Mars' South Polar Cap using the NASA Ames Mars General Circulation Model with a CO2 cloud microphysics scheme

    NASA Astrophysics Data System (ADS)

    Dequaire, J. M.; Kahre, M. A.; Haberle, R. M.; Hollingsworth, J. L.

    2013-12-01

    One of the most intriguing and least understood climate phenomena on Mars is the existence of a high albedo perennial south polar CO2 ice cap that is offset from the pole in the western hemisphere (SPRC). Colaprete et al. (2005) hypothesize that since the process by which CO2 surface frost accumulates (i.e., precipitation or direct vapor deposition) affects the albedo of the ice, the atmosphere can play a role in the stability and asymmetry of the cap. They show that the basins of Hellas and Argyre force a stationary wave resulting in a colder western hemisphere in which atmospheric CO2 condensation and precipitation is favored. Because precipitated CO2 is brighter than directly deposited CO2, they suggest that this topography driven atmospheric circulation maintains the asymmetry of the southern ice cap. However, Colaprete et al (2005) do not explicitly model the albedo of the south cap to demonstrate the viability of their hypothesis. We build on their study with a version of the NASA Ames GCM that includes a newly incorporated CO2 cloud microphysics scheme. Simulated results compare well to observed temperatures, pressures, cap recession rates and cloud patterns (mesospheric and polar night clouds). Although mesospheric and polar night clouds are thoroughly documented in the literature, the model predicts a third type of cloud to form close to the surface of the subliming ice caps, which has not been observed. As hypothesized by Colaprete et al. (2005), we find that the zonally asymmetric topography forces a stationary wave in the atmosphere resulting in an asymmetric cloud cover over the south pole during fall and winter and enhanced snowfall over a region encompassing the SPRC. These positive results open to further studies including a mesospheric simulation to refine the horizontal grid around the SPRC as well as the implementation of an ice albedo scheme dependent both on the amount and size of aerosols falling onto the cap during fall and winter (snow

  18. Investigations of the 0.020-scale 88-OTS Integrated Space Shuttle Vehicle Jet-Plume Model in the NASA/Ames Research Center 11 by11-Foot Unitary Plan Wind Tunnel (IA80). Volume 1

    NASA Technical Reports Server (NTRS)

    Nichols, M. E.

    1976-01-01

    The results are documented of jet plume effects wind tunnel test of the 0.020-scale 88-OTS launch configuration space shuttle vehicle model in the 11 x 11 foot leg of the NASA/Ames Research Center Unitary Plan Wind Tunnel. This test involved cold gas main propulsion system (MPS) and solid rocket motor (SRB) plume simulations at Mach numbers from 0.6 to 1.4. Integrated vehicle surface pressure distributions, elevon and rudder hinge moments, and wing and vertical tail root bending and torsional moments due to MPS and SRB plume interactions were determined. Nozzle power conditions were controlled per pretest nozzle calibrations. Model angle of attack was varied from -4 deg to +4 deg; model angle of sideslip was varied from -4 deg to +4 deg. Reynolds number was varied for certain test conditions and configurations, with the nominal freestream total pressure being 14.69 psia. Plotted force and pressure data are presented.

  19. Simulation investigation of the effect of the NASA Ames 80-by 120-foot wind tunnel exhaust flow on light aircraft operating in the Moffett field trafffic pattern

    NASA Technical Reports Server (NTRS)

    Streeter, Barry G.

    1986-01-01

    A preliminary study of the exhaust flow from the Ames Research Center 80 by 120 Foot Wind Tunnel indicated that the flow might pose a hazard to low-flying light aircraft operating in the Moffett Field traffic pattern. A more extensive evaluation of the potential hazard was undertaken using a fixed-base, piloted simulation of a light, twin-engine, general-aviation aircraft. The simulated aircraft was flown through a model of the wind tunnel exhaust by pilots of varying experience levels to develop a data base of aircraft and pilot reactions. It is shown that a light aircraft would be subjected to a severe disturbance which, depending upon entry condition and pilot reaction, could result in a low-altitude stall or cause damage to the aircraft tail structure.

  20. Ames Research Center Research and Technology 2000

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This report highlights the challenging work accomplished during fiscal year 2000 by Ames research scientists,engineers, and technologists. It discusses research and technologies that enable the Information Age, that expand the frontiers of knowledge for aeronautics and space, and that help to maintain U.S. leadership in aeronautics and space research and technology development. The accomplishments are grouped into four categories based on four of NASA's Strategic Enterprises: Aerospace Technology, Space Science, Biological and Physical Research, and Earth Science. The primary purpose of this report is to communicate knowledge-to inform our stakeholders, customer, and partners, and the people of the United States about the scope and diversity of Ames' mission,the nature of Ames' research and technolog) activities,and the stimulating challenges ahead. The accomplishments cited illustrate the contributions that Ames is willing to improve the quality of life for our citizens and the economic position of the United States in the world marketplace.

  1. Ames Life Science Data Archive: Translational Rodent Research at Ames

    NASA Technical Reports Server (NTRS)

    Wood, Alan E.; French, Alison J.; Ngaotheppitak, Ratana; Leung, Dorothy M.; Vargas, Roxana S.; Maese, Chris; Stewart, Helen

    2014-01-01

    The Life Science Data Archive (LSDA) office at Ames is responsible for collecting, curating, distributing and maintaining information pertaining to animal and plant experiments conducted in low earth orbit aboard various space vehicles from 1965 to present. The LSDA will soon be archiving data and tissues samples collected on the next generation of commercial vehicles; e.g., SpaceX & Cygnus Commercial Cargo Craft. To date over 375 rodent flight experiments with translational application have been archived by the Ames LSDA office. This knowledge base of fundamental research can be used to understand mechanisms that affect higher organisms in microgravity and help define additional research whose results could lead the way to closing gaps identified by the Human Research Program (HRP). This poster will highlight Ames contribution to the existing knowledge base and how the LSDA can be a resource to help answer the questions surrounding human health in long duration space exploration. In addition, it will illustrate how this body of knowledge was utilized to further our understanding of how space flight affects the human system and the ability to develop countermeasures that negate the deleterious effects of space flight. The Ames Life Sciences Data Archive (ALSDA) includes current descriptions of over 700 experiments conducted aboard the Shuttle, International Space Station (ISS), NASA/MIR, Bion/Cosmos, Gemini, Biosatellites, Apollo, Skylab, Russian Foton, and ground bed rest studies. Research areas cover Behavior and Performance, Bone and Calcium Physiology, Cardiovascular Physiology, Cell and Molecular Biology, Chronobiology, Developmental Biology, Endocrinology, Environmental Monitoring, Gastrointestinal Physiology, Hematology, Immunology, Life Support System, Metabolism and Nutrition, Microbiology, Muscle Physiology, Neurophysiology, Pharmacology, Plant Biology, Pulmonary Physiology, Radiation Biology, Renal, Fluid and Electrolyte Physiology, and Toxicology. These

  2. Flight and full-scale wind-tunnel comparison of pressure distributions from an F-18 aircraft at high angles of attack. [Conducted in NASA Ames Research Center's 80 by 120 ft wind tunnel

    NASA Technical Reports Server (NTRS)

    Fisher, David F.; Lanser, Wendy R.

    1994-01-01

    Pressure distributions were obtained at nearly identical fuselage stations and wing chord butt lines in flight on the F-18 HARV at NASA Dryden Flight Research Center and in the NASA Ames Research Center's 80 by 120 ft wind tunnel on a full-scale F/A-18 aircraft. The static pressures were measured at the identical five stations on the forebody, three stations on the left and right leading-edge extensions, and three spanwise stations on the wing. Comparisons of the flight and wind-tunnel pressure distributions were made at alpha = 30 deg, 45 deg, and 60 deg/59 deg. In general, very good agreement was found. Minor differences were noted at the forebody at alpha = 45 deg and 60 deg in the magnitude of the vortex footprints and a Mach number effect was noted at the leading-edge extension at alpha = 30 deg. The inboard leading edge flap data from the wind tunnel at alpha = 59 deg showed a suction peak that did not appear in the flight data. This was the result of a vortex from the corner of the leading edge flap whose path was altered by the lack of an engine simulation in the wind tunnel.

  3. AIM: Ames Imaging Module Spacecraft Camera

    NASA Technical Reports Server (NTRS)

    Thompson, Sarah

    2015-01-01

    The AIM camera is a small, lightweight, low power, low cost imaging system developed at NASA Ames. Though it has imaging capabilities similar to those of $1M plus spacecraft cameras, it does so on a fraction of the mass, power and cost budget.

  4. Ames Research Center Publications, July 1971 through December 1973

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A bibliography of the publications of Ames Research Center authors and contractors which appeared as formal NASA publications, journal articles, books, chapters of books, patents, and contractor reports is presented. Years covered are July 1971 through December 1973.

  5. Ames Lab 101: Technology Transfer

    ScienceCinema

    Covey, Debra

    2016-07-12

    Ames Laboratory Associate Laboratory Director, Sponsored Research Administration, Debra Covey discusses technology transfer. Covey also discusses Ames Laboratory's most successful transfer, lead-free solder.

  6. Flight effects on noise by the JT8D engine with inverted primary/fan flow as measured in the NASA-Ames 40 by 80 foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Strout, F. G.

    1978-01-01

    A JT8D-17R engine with inverted primary and fan flows was tested under static conditions as well as in the NASA Ames 40 by 80 Foot Wind Tunnel to determine static and flight noise characteristics, and flow profile of a large scale engine. Test and analysis techniques developed by a previous model and JT8D engine test program were used to determine the in-flight noise. The engine with inverted flow was tested with a conical nozzle and with a plug nozzle, 20 lobe nozzle, and an acoustic shield. Wind tunnel results show that forward velocity causes significant reduction in peak PNL suppression relative to uninverted flow. The loss of EPNL suppression is relatively modest. The in-flight peak PNL suppression of the inverter with conical nozzle was 2.5 PNdb relative to a static value of 5.5 PNdb. The corresponding EPNL suppression was 4.0 EPNdb for flight and 5.0 EPNdb for static operation. The highest in-flight EPNL suppression was 7.5 EPNdb obtained by the inverter with 20 lobe nozzle and acoustic shield. When compared with the JT8D engine with internal mixer, the inverted flow configuration provides more EPNL suppression under both static and flight conditions.

  7. Results of tests to determine the aerodynamic characteristics of two potential aeromaneuvering orbit-to-orbit shuttle (AMOOS) vehicle configurations in the NASA-Ames 3.5 foot hypersonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Ketter, F. C., Jr.

    1974-01-01

    An aerodynamic wind tunnel investigation was conducted in the NASA-Ames Research Center (ARC) 3.5-foot hypersonic facility to provide data for use in obtaining experimental force and static stability characteristics of two potential aeromaneuvering orbit-to-orbit shuttle (AMOOS) vehicle configurations. The experimental data were compared with the aerodynamic characteristics estimated using Newtonian theory, thus establishing the usefulness of these predictions. The candidate AMOOS configurations selected for the wind tunnel tests were the AMOOS 5B and HB configurations. Two flap configurations were tested for each candidate - a forward or compression surface flap and an aft or expansion flap. Photographs and sketches of the two configurations with different control surfaces are shown. It was determined that Newtonian theory generally predicted the aerodynamics of the 5B configuration with acceptable accuracy for all expansion flap deflections and for compression flap deflections less than or equal to 10 degrees. Flow separation upstream of large compression flap deflections was detected from the experimental data.

  8. Rotorcraft In-Flight Simulation Research at NASA Ames Research Center: A Review of the 1980's and plans for the 1990's

    NASA Technical Reports Server (NTRS)

    Aiken, Edwin W.; Hindson, William S.; Lebacqz, J. Victor; Denery, Dallas G.; Eshow, Michelle M.

    1991-01-01

    A new flight research vehicle, the Rotorcraft-Aircrew System Concepts Airborne Laboratory (RASCAL), is being developed by the U.S. Army and NASA at ARC. The requirements for this new facility stem from a perception of rotorcraft system technology requirements for the next decade together with operational experience with the Boeing Vertol CH-47B research helicopter that was operated as an in-flight simulator at ARC during the past 10 years. Accordingly, both the principal design features of the CH-47B variable-stability system and the flight-control and cockpit-display programs that were conducted using this aircraft at ARC are reviewed. Another U.S Army helicopter, a Sikorsky UH-60A Black Hawk, was selected as the baseline vehicle for the RASCAL. The research programs that influence the design of the RASCAL are summarized, and the resultant requirements for the RASCAL research system are described. These research programs include investigations of advanced, integrated control concepts for achieving high levels of agility and maneuverability, and guidance technologies, employing computer/sensor-aiding, designed to assist the pilot during low-altitude flight in conditions of limited visibility. The approach to the development of the new facility is presented and selected plans for the preliminary design of the RASCAL are described.

  9. Results of a jet plume effects test on Rockwell International integrated space shuttle vehicle using a vehicle 5 configuration 0.02-scale model (88-OTS) in the 11 by 11 foot leg of the NASA/Ames Research Center unitary plan wind tunnel (IA19), volume 1

    NASA Technical Reports Server (NTRS)

    Nichols, M. E.

    1975-01-01

    Results are presented of jet plume effects test IA19 using a vehicle 5 configuration integrated space shuttle vehicle 0.02-scale model in the NASA/Ames Research Center 11 x 11-foot leg of the unitary plan wind tunnel. The jet plume power effects on the integrated vehicle static pressure distribution were determined along with elevon, main propulsion system nozzle, and solid rocket booster nozzle effectiveness and elevon hinge moments.

  10. Ames Lab 101: Danny Shechtman Returns to the Ames Laboratory

    SciTech Connect

    Shechtman, Danny

    2012-01-01

    Danny Shechtman, Ames Laboratory Scientist and winner of the Nobel Prize in Chemistry 2011, returned to the Ames Lab on February 14, 2012. During this time, the Nobel Laureate met with the press as well as ISU students.

  11. Ames Lab 101: Danny Shechtman Returns to the Ames Laboratory

    ScienceCinema

    Shechtman, Danny

    2016-07-12

    Danny Shechtman, Ames Laboratory Scientist and winner of the Nobel Prize in Chemistry 2011, returned to the Ames Lab on February 14, 2012. During this time, the Nobel Laureate met with the press as well as ISU students.

  12. Ames Fitness Program

    NASA Technical Reports Server (NTRS)

    Pratt, Randy

    1993-01-01

    The Ames Fitness Program services 5,000 civil servants and contractors working at Ames Research Center. A 3,000 square foot fitness center, equipped with cardiovascular machines, weight training machines, and free weight equipment is on site. Thirty exercise classes are held each week at the Center. A weight loss program is offered, including individual exercise prescriptions, fitness testing, and organized monthly runs. The Fitness Center is staffed by one full-time program coordinator and 15 hours per week of part-time help. Membership is available to all employees at Ames at no charge, and there are no fees for participation in any of the program activities. Prior to using the Center, employees must obtain a physical examination and complete a membership package. Funding for the Ames Fitness Program was in jeopardy in December 1992; however, the employees circulated a petition in support of the program and collected more than 1500 signatures in only three days. Funding has been approved through October 1993.

  13. Results of an investigation to determine local flow characteristics at the air data probe locations using an 0.030-scale model (45-0) of the space shuttle vehicle orbiter configuration 140A/B (modified) in the NASA Ames Research Center unitary plan wind tunnel (OA161, A, B, C), volume 1

    NASA Technical Reports Server (NTRS)

    Nichols, M. E.

    1976-01-01

    Results are presented of wind tunnel test 0A161 of a 0.030-scale model 45-0 of the configuration 140A/B (modified) space shuttle vehicle orbiter in the NASA Ames Research Center Unitary Plan Wind Tunnel facilities. The purpose of this test was to determine local total and static pressure environments for the air data probe locations and relative effectiveness of alternate flight-test probe configurations. Testing was done in the Mach number range from 0.30 to 3.5. Angle of attack was varied from -8 to 25 degrees while sideslip varied between -8 and 8 degrees.

  14. Results of a M = 5.3 heat transfer test of the integrated vehicle using phase-change paint techniques on the 0.0175-scale model 56-OTS in the NASA/Ames Research Center 3.5-foot hypersonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Marroquin, J.

    1985-01-01

    An experimental investigation was performed in the NASA/Ames Research Center 3.5-foot Hypersonic Wind Tunnel to obtain supersonic heat-distribution data in areas between the orbiter and external tank using phase-change paint techniques. The tests used Novamide SSV Model 56-OTS in the first and second-stage ascent configurations. Data were obtained at a nominal Mach number of 5.3 and a Reynolds number per foot of 5 x 10 to the 6th power with angles of attack of 0 deg, +/- 5 deg, and sideslip angles of 0 deg and +/- 5 deg.

  15. Routine environmental audit of Ames Laboratory, Ames, Iowa

    SciTech Connect

    1994-09-01

    This document contains the findings identified during the routine environmental audit of Ames Laboratory, Ames, Iowa, conducted September 12--23, 1994. The audit included a review of all Ames Laboratory operations and facilities supporting DOE-sponsored activities. The audit`s objective is to advise the Secretary of Energy, through the Assistant Secretary for Environment, Safety and Health, as to the adequacy of the environmental protection programs established at Ames Laboratory to ensure the protection of the environment, and compliance with Federal, state, and DOE requirements.

  16. The Ames Vertical Gun Range

    NASA Technical Reports Server (NTRS)

    Karcz, J. S.; Bowling, D.; Cornelison, C.; Parrish, A.; Perez, A.; Raiche, G.; Wiens, J.-P.

    2016-01-01

    The Ames Vertical Gun Range (AVGR) is a national facility for conducting laboratory- scale investigations of high-speed impact processes. It provides a set of light-gas, powder, and compressed gas guns capable of accelerating projectiles to speeds up to 7 km s(exp -1). The AVGR has a unique capability to vary the angle between the projectile-launch and gravity vectors between 0 and 90 deg. The target resides in a large chamber (diameter approximately 2.5 m) that can be held at vacuum or filled with an experiment-specific atmosphere. The chamber provides a number of viewing ports and feed-throughs for data, power, and fluids. Impacts are observed via high-speed digital cameras along with investigation-specific instrumentation, such as spectrometers. Use of the range is available via grant proposals through any Planetary Science Research Program element of the NASA Research Opportunities in Space and Earth Sciences (ROSES) calls. Exploratory experiments (one to two days) are additionally possible in order to develop a new proposal.

  17. 'Fluid Dynamics,' mixed media by Tina York depicts fluid dynamics studies at the Ames Research

    NASA Technical Reports Server (NTRS)

    2001-01-01

    'Fluid Dynamics,' mixed media by Tina York depicts fluid dynamics studies at the Ames Research Center. The purpose of such studies is to learn more about what happens to an object when it encounters the friction of atmospheric resistence (such as a plane encountering resistance as it speeds through the air). used in Ames 60 year history by Glenn Bugos NASA SP-4314

  18. Ames Lab 101: Rare Earths

    ScienceCinema

    Gschneidner, Karl

    2016-07-12

    "Mr. Rare Earth," Ames Laboratory scientist Karl Gschneidner Jr., explains the importance of rare-earth materials in many of the technologies we use today -- ranging from computers to hybrid cars to wind turbines. Gschneidner is a world renowned rare-earths expert at the U.S. Department of Energy's Ames Laboratory.

  19. Ames Lab 101: Lanthanum Decanting

    ScienceCinema

    Riedemann, Trevor

    2016-07-12

    Ames Laboratory scientist Trevor Riedemann explains the process that allows Ames Laboratory to produce some of the purest lanthanum in the world. This and other high-purity rare-earth elements are used to create alloys used in various research projects and play a crucial role in the Planck satellite mission.

  20. Ames Lab 101: Rare Earths

    SciTech Connect

    Gschneidner, Karl

    2010-01-01

    "Mr. Rare Earth," Ames Laboratory scientist Karl Gschneidner Jr., explains the importance of rare-earth materials in many of the technologies we use today -- ranging from computers to hybrid cars to wind turbines. Gschneidner is a world renowned rare-earths expert at the U.S. Department of Energy's Ames Laboratory.

  1. Ames Research Center publications: A continuing bibliography, 1980

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This bibliography lists formal NASA publications, journal articles, books, chapters of books, patents, contractor reports, and computer programs that were issued by Ames Research Center and indexed by Scientific and Technical Aerospace Reports, Limited Scientific and Technical Aerospace Reports, International Aerospace Abstracts, and Computer Program Abstracts in 1980. Citations are arranged by directorate, type of publication, and NASA accession numbers. Subject, personal author, corporate source, contract number, and report/accession number indexes are provided.

  2. Ames Research Center publications: A continuing bibliography, 1978

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This bibliography lists formal NASA publications, journal articles, books, chapters of books, patents and contractor reports issued by Ames Research Center which were indexed by Scientific and Technical Aerospace Abstracts, Limited Scientific and Technical Aerospace Abstracts, and International Aerospace Abstracts in 1978. Citations are arranged by directorate, type of publication and NASA accession numbers. Subject, personal author, corporate source, contract number, and report/accession number indexes are provided.

  3. The 1979 Ames Research Center Publications: A continuing bibliography

    NASA Technical Reports Server (NTRS)

    1979-01-01

    This bibliography lists formal NASA publications, journal articles, books, chapters of books, patents, and contractor reports issued by Ames Research Center which were indexed by Scientific and Technical Aerospace Reports, Limited Scientific and Technical Aerospace Reports, and International Aerospace Abstracts in 1979. Citations are arranged by directorate, type of publication, and NASA accession numbers. Subject, Personal Author, Corporate Source, Contract Number, and Report/Accession Number Indexes are provided.

  4. Future Directions in Rotorcraft Technology at Ames Research Center

    DTIC Science & Technology

    2000-05-01

    being pursued within the Army/NASA Rotorcraft Division. High Lift Airfoils and the Stall Free Rotor Unlike fixed wing aircraft, helicopter rotors have...pitch angle control inputs, a revolutionary new concept will become a reality - the Stall- Free Rotor. The implications for rotorcraft, beyond the...Rotorcraft Algorithm Development and Integrated Control Laws ( RADICL ) program, the U.S. Army, Sikorsky, ZF Luftfahrttechnik, and NASA Ames Research Center

  5. Ames Hybrid Combustion Facility

    NASA Technical Reports Server (NTRS)

    Zilliac, Greg; Karabeyoglu, Mustafa A.; Cantwell, Brian; Hunt, Rusty; DeZilwa, Shane; Shoffstall, Mike; Soderman, Paul T.; Bencze, Daniel P. (Technical Monitor)

    2003-01-01

    The report summarizes the design, fabrication, safety features, environmental impact, and operation of the Ames Hybrid-Fuel Combustion Facility (HCF). The facility is used in conducting research into the scalability and combustion processes of advanced paraffin-based hybrid fuels for the purpose of assessing their applicability to practical rocket systems. The facility was designed to deliver gaseous oxygen at rates between 0.5 and 16.0 kg/sec to a combustion chamber operating at pressures ranging from 300 to 900. The required run times were of the order of 10 to 20 sec. The facility proved to be robust and reliable and has been used to generate a database of regression-rate measurements of paraffin at oxygen mass flux levels comparable to those of moderate-sized hybrid rocket motors.

  6. NASA Space Human Factors Program

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This booklet briefly and succinctly treats 23 topics of particular interest to the NASA Space Human Factors Program. Most articles are by different authors who are mainly NASA Johnson or NASA Ames personnel. Representative topics covered include mental workload and performance in space, light effects on Circadian rhythms, human sleep, human reasoning, microgravity effects and automation and crew performance.

  7. Ames Optimized TCA Configuration

    NASA Technical Reports Server (NTRS)

    Cliff, Susan E.; Reuther, James J.; Hicks, Raymond M.

    1999-01-01

    Configuration design at Ames was carried out with the SYN87-SB (single block) Euler code using a 193 x 49 x 65 C-H grid. The Euler solver is coupled to the constrained (NPSOL) and the unconstrained (QNMDIF) optimization packages. Since the single block grid is able to model only wing-body configurations, the nacelle/diverter effects were included in the optimization process by SYN87's option to superimpose the nacelle/diverter interference pressures on the wing. These interference pressures were calculated using the AIRPLANE code. AIRPLANE is an Euler solver that uses a unstructured tetrahedral mesh and is capable of computations about arbitrary complete configurations. In addition, the buoyancy effects of the nacelle/diverters were also included in the design process by imposing the pressure field obtained during the design process onto the triangulated surfaces of the nacelle/diverter mesh generated by AIRPLANE. The interference pressures and nacelle buoyancy effects are added to the final forces after each flow field calculation. Full details of the (recently enhanced) ghost nacelle capability are given in a related talk. The pseudo nacelle corrections were greatly improved during this design cycle. During the Ref H and Cycle 1 design activities, the nacelles were only translated and pitched. In the cycle 2 design effort the nacelles can translate vertically, and pitch to accommodate the changes in the lower surface geometry. The diverter heights (between their leading and trailing edges) were modified during design as the shape of the lower wing changed, with the drag of the diverter changing accordingly. Both adjoint and finite difference gradients were used during optimization. The adjoint-based gradients were found to give good direction in the design space for configurations near the starting point, but as the design approached a minimum, the finite difference gradients were found to be more accurate. Use of finite difference gradients was limited by the

  8. Leveraging object-oriented development at Ames

    NASA Technical Reports Server (NTRS)

    Wenneson, Greg; Connell, John

    1994-01-01

    This paper presents lessons learned by the Software Engineering Process Group (SEPG) from results of supporting two projects at NASA Ames using an Object Oriented Rapid Prototyping (OORP) approach supported by a full featured visual development environment. Supplemental lessons learned from a large project in progress and a requirements definition are also incorporated. The paper demonstrates how productivity gains can be made by leveraging the developer with a rich development environment, correct and early requirements definition using rapid prototyping, and earlier and better effort estimation and software sizing through object-oriented methods and metrics. Although the individual elements of OO methods, RP approach and OO metrics had been used on other separate projects, the reported projects were the first integrated usage supported by a rich development environment. Overall the approach used was twice as productive (measured by hours per OO Unit) as a C++ development.

  9. A real-time screening assay for GIRK1/4 channel blockers.

    PubMed

    Walsh, Kenneth B

    2010-12-01

    The cardiac acetylcholine-activated K(+) channel (I(K,Ach)) represents a novel target for drug therapy in the treatment of atrial fibrillation (AF). This channel is a member of the G-protein-coupled inward rectifier K(+) (GIRK) channel superfamily and is composed of the GIRK1/4 (Kir3.1 and Kir3.4) subunits. The goal of this study was to develop a cell-based screening assay for identifying new blockers of the GIRK1/4 channel. The mouse atrial HL-1 cell line, expressing the GIRK1/4 channel, was plated in 96-well plate format, loaded with the fluorescent membrane potential-sensitive dye bis-(1,3-dibutylbarbituric acid) trimethine oxonol (DiBAC(4)(3)) and measured using a fluorescent imaging plate reader (FLIPR). Application of the muscarinic agonist carbachol to the cells caused a rapid, time-dependent decrease in the fluorescent signal, indicative of K(+) efflux through the GIRK1/4 channel (carbachol vs. control solution, Z' factor = 0.5-0.6). The GIRK1/4 channel fluorescent signal was blocked by BaCl(2) and enhanced by increasing the driving force for K(+) across the cell membrane. To test the utility of the assay for screening GIRK1/4 channel blockers, cells were treated with a small compound library of Na(+) and K(+) channel modulators. Analogues of amiloride and propafenone were identified as channel blockers at concentrations less than 1 µM. Thus, the GIRK1/4 channel assay may be used in the development of new and selective agents for treating AF.

  10. Future Directions in Rotorcraft Technology at Ames Research Center

    NASA Technical Reports Server (NTRS)

    Aiken, Edwin W.; Ormiston, Robert A; Young, Larry A.

    2000-01-01

    Members of the NASA and Army rotorcraft research community at Ames Research Center have developed a vision for 'Vertical Flight 2025'. This paper describes the development of that vision and the steps being taken to implement it. In an effort to realize the vision, consistent with both NASA and Army Aviation strategic plans, two specific technology development projects have been identified: (1) one focused on a personal transportation system capable of vertical flight (the 'Roto-Mobile') and (2) the other on small autonomous rotorcraft (which is inclusive of vehicles which range in grams of gross weight for 'MicroRotorcraft' to thousands of kilograms for rotorcraft uninhabited aerial vehicles). The paper provides a status report on these projects as well as a summary of other revolutionary research thrusts being planned and executed at Ames Research Center.

  11. Environmental Survey preliminary report, Ames Laboratory, Ames, Iowa

    SciTech Connect

    Not Available

    1989-03-01

    This report presents the preliminary findings of the first phase of the environmental Survey of the United States Department of Energy's (DOE) Ames Laboratory, conducted April 18 through 22, 1988. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team members are being supplied by private contractors. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the Ames Laboratory. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at the Ames Laboratory, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S A) Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The S A plan is being developed by the Idaho National Engineering Laboratory. When S A is completed, the results will be incorporated into the Ames Laboratory Environmental Survey findings for inclusion in the Environmental Survey Summary Report. 60 refs., 13 figs., 20 tabs.

  12. Ames Research Center cryogenics program

    NASA Technical Reports Server (NTRS)

    Kittel, Peter

    1987-01-01

    Viewgraphs describe the Ames Research Center's cryogenics program. Diagrams are given of a fluid management system, a centrifugal pump, a flow meter, a liquid helium test facility, an extra-vehicular activity coupler concept, a dewar support with passive orbital disconnect, a pulse tube refrigerator, a dilution refrigerator, and an adiabatic demagnetization cooler.

  13. Some innovations and accomplishments of Ames Research Center since its inception

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The innovations and accomplishments of Ames Research Center from 1940 through 1966 are summarized and illustrated. It should be noted that a number of accomplishments were begun at the NASA Dryden Flight Research Facility before that facility became part of the Ames Research Center. Such accomplishments include the first supersonic flight, the first hypersonic flight, the lunar landing research vehicle, and the first digital fly-by-wire aircraft.

  14. The Ames Project (1942-1946)

    SciTech Connect

    2012-06-14

    The Ames Laboratory was officially founded on May 17, 1947, following development of a process to purify uranium metal for the historic Manhattan Project. From 1942 to 1946, Ames Lab scientists produced over two-million pounds of uranium metal. A U.S. Department of Energy national research laboratory, the Ames Laboratory creates materials and energy solutions. Iowa State University operates Ames Laboratory under contract with the DOE.

  15. AMED: The Allied and Complementary Medicine Database.

    PubMed

    Vardell, Emily

    2016-01-01

    AMED: The Allied and Complementary Medicine Database is a resource from the Health Care Information Service of the British Library. AMED offers access to complementary and alternative medicine topics, such as acupuncture, chiropractic, herbalism, homeopathy, hospice care, hypnosis, palliative care, physiotherapy, podiatry, and rehabilitation. This column features a sample search to demonstrate the type of information available within AMED. AMED is available through the EBSCOhost and OVID platforms.

  16. The Ames Project (1942-1946)

    ScienceCinema

    None

    2016-07-12

    The Ames Laboratory was officially founded on May 17, 1947, following development of a process to purify uranium metal for the historic Manhattan Project. From 1942 to 1946, Ames Lab scientists produced over two-million pounds of uranium metal. A U.S. Department of Energy national research laboratory, the Ames Laboratory creates materials and energy solutions. Iowa State University operates Ames Laboratory under contract with the DOE.

  17. Static and wind tunnel near-field/far-field jet noise measurements from model scale single-flow base line and suppressor nozzles. Summary report. [conducted in the Boeing large anechoic test chamber and the NASA-Ames 40by 80-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Jaeck, C. L.

    1977-01-01

    A test program was conducted in the Boeing large anechoic test chamber and the NASA-Ames 40- by 80-foot wind tunnel to study the near- and far-field jet noise characteristics of six baseline and suppressor nozzles. Static and wind-on noise source locations were determined. A technique for extrapolating near field jet noise measurements into the far field was established. It was determined if flight effects measured in the near field are the same as those in the far field. The flight effects on the jet noise levels of the baseline and suppressor nozzles were determined. Test models included a 15.24-cm round convergent nozzle, an annular nozzle with and without ejector, a 20-lobe nozzle with and without ejector, and a 57-tube nozzle with lined ejector. The static free-field test in the anechoic chamber covered nozzle pressure ratios from 1.44 to 2.25 and jet velocities from 412 to 594 m/s at a total temperature of 844 K. The wind tunnel flight effects test repeated these nozzle test conditions with ambient velocities of 0 to 92 m/s.

  18. NASA and Public-Private Partnerships

    NASA Technical Reports Server (NTRS)

    Martin, Gary L.

    2010-01-01

    This slide presentation reviews ways to build public-private partnerships with NASA, and the many efforts that Ames Research Center is engaged in in building partnerships with private businesses, not profit organizations and universities.

  19. Incubation of NASA technology

    NASA Astrophysics Data System (ADS)

    Olson, Richard

    1996-03-01

    Traditionally, government agencies have sought to transfer technology by licensing to large corporations. An alternative route to commercialization is through the entrepreneurial process: using government technology to assist new businesses in the environment of a business incubator. The NASA Ames Technology Commercialization Center, in Sunnyvale, California, is a business incubator used to commercialize NASA technology. In operation almost two years, it has helped twenty new, high technology ventures. Ice Management Systems is one of these. The Center is funded by NASA and operated by IC2, a think-tank associated with the University of Texas at Austin.

  20. Ames Research Center publications, 1977

    NASA Technical Reports Server (NTRS)

    1979-01-01

    This bibliography lists 786 formal NASA publications, journal articles, books, chapters of books, patents, and contractor reports which appeared during 1977 or which were not included in previous annual bibliographies. Citations are arranged by directorate, type of publication, and author. Each NASA report is identified by a technical report and accession number to facilitate ordering. An author index is provided.

  1. Final environmental impact statement for Ames Research Center

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The NASA-Ames Research Center is described. together with the nature of its activities, from which it can be seen that the center is basically not a major pollution source. Geographical, and climatic characteristics of the site are described. inasmuch as they influence both the choice of disposal methods and the environmental effects of the pollutants. The known or probable pollution sources at the center are described. Where the intensities of these sources might exceed the recommended guidelines, the corrective actions that have been taken are described.

  2. The NASA Sharp Flight Experiment

    NASA Technical Reports Server (NTRS)

    Rasky, Daniel J.; Salute, Joan; Kolodziej, Paul; Bull, Jeffrey

    1998-01-01

    The Slender Hypersonic Aerothermodynamic Research Program (SHARP) was initiated by NASA Ames, and executed in partnership with Sandia National Laboratory and the US Air Force, to demonstrate sharp, passive leading edge designs for hypersonic vehicles, incorporating new ultra-high temperature ceramics (UHTC's). These new ceramic composites have been undergoing development, characterization and ground testing at NASA Ames for the last nine years. This paper will describe the background, flight objectives, design and pertinent flight results of SHARP, and some of the potential implications for future hypersonic vehicle designs.

  3. Ames, pesticides, and cancer revisited.

    PubMed

    Richter, Elihu D; Chlamtac, Noga

    2002-01-01

    The case for continuing use of existing levels of pesticides in agriculture, espoused by Bruce Ames, is refuted. Ames' contentions that naturally occurring carcinogens are far more widespread than man-made ones, that pesticides prevent cancer by providing fruits and vegetables at lower costs to the poor, and that animal data on high risks with high doses cannot predict low risks from low doses in humans do not address key issues: 1) fruits and vegetables contain mixtures of carcinogens and anti-carcinogens, and selection effects from human exposures to these mixtures go back more than a million years; 2) exposures from bioconcentrations of biopersistent organochlorines in the food chain create particular risks for meat-eaters, who have higher cancer risks than vegetarians; 3) even low doses from ingestion of produce containing pesticide residues can cause tissue injury, which could itself promote cancer; 4) epidemiologic data show rises in cancer incidences in older people in many countries, major differences in cancer risks between countries, and converging trends in risks for populations migrating to certain countries; 5) studies of pesticide-exposed workers consistently show increased rates of cancers and birth defects and cancers in their offspring; 6) epidemiologic studies based on large databases tend to underestimate risks from environmental causes because of exposure misclassification; 7) exposures to many organochlorines may have pervasive effects on endocrine function; 8) crop yields can be increased with less use of pesticides. Studies demonstrating the latter need replication, and should be supported as part of a coherent government agenda to develop alternative farming methods.

  4. Tiger Team Assessment of the Ames Laboratory

    SciTech Connect

    Not Available

    1992-03-01

    This report documents the Tiger Assessment of the Ames Laboratory (Ames), located in Ames, Iowa. Ames is operated for the US Department of Energy (DOE) by Iowa State University. The assessment was conducted from February 10 to March 5, 1992, under the auspices of the Office of Special Projects, Office of the Assistant Secretary of Environment, Safety and Health, Headquarters, DOE. The assessment was comprehensive, encompassing Environment, Safety, and Health (ES H) disciplines; management practices; and contractor and DOE self-assessments. Compliance with applicable Federal, State of Iowa, and local regulations; applicable DOE Orders; best management practices; and internal requirements at Ames Laboratory were assessed. In addition, an evaluation of the adequacy and effectiveness of DOE and the site contractor's management of ES H/quality assurance program was conducted.

  5. Automatic speech recognition research at NASA-Ames Research Center

    NASA Technical Reports Server (NTRS)

    Coler, Clayton R.; Plummer, Robert P.; Huff, Edward M.; Hitchcock, Myron H.

    1977-01-01

    A trainable acoustic pattern recognizer manufactured by Scope Electronics is presented. The voice command system VCS encodes speech by sampling 16 bandpass filters with center frequencies in the range from 200 to 5000 Hz. Variations in speaking rate are compensated for by a compression algorithm that subdivides each utterance into eight subintervals in such a way that the amount of spectral change within each subinterval is the same. The recorded filter values within each subinterval are then reduced to a 15-bit representation, giving a 120-bit encoding for each utterance. The VCS incorporates a simple recognition algorithm that utilizes five training samples of each word in a vocabulary of up to 24 words. The recognition rate of approximately 85 percent correct for untrained speakers and 94 percent correct for trained speakers was not considered adequate for flight systems use. Therefore, the built-in recognition algorithm was disabled, and the VCS was modified to transmit 120-bit encodings to an external computer for recognition.

  6. NASA Ames Summer High School Apprenticeship Research Program

    NASA Technical Reports Server (NTRS)

    Powell, P.

    1985-01-01

    The Summer High School Apprenticeship Research Program (SHARP) is described. This program is designed to provide engineering experience for gifted female and minority high school students. The students from this work study program which features trips, lectures, written reports, and job experience describe their individual work with their mentors.

  7. NASA-Ames Summer High School Apprenticeship Research Program (SHARP)

    NASA Technical Reports Server (NTRS)

    Powell, P.

    1983-01-01

    The function of SHARP is to recognize high school juniors who have demonstrated unusually high promise for sucess in mathemtics and science. Twenty academically talented students who will be seniors in high school in September were chosen to participate in SHARP 83. Mentors were selected to provide students with first-hand experiences in a research and development environment in order that each student might try out his or her tentative professional career choice. Some special features of SHARP included field trips to private industries doing similar and related research, special lectures on topics of research here at ARC, individual and group counseling sessions, written research papers and oral reports, and primarily the opportunity to be exposed to the present frontiers in space exploration and research. The long-range goal of SHARP is to contribute to the future recruitment of needed scientists and engineers. This final report is summary of all the phases of the planning and implemenation of the 1983 Summer High School Apprenticeship Research Program (SHARP).

  8. Computational fluid dynamics at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Kutler, Paul

    1989-01-01

    Computational fluid dynamics (CFD) has made great strides in the detailed simulation of complex fluid flows, including the fluid physics of flows heretofore not understood. It is now being routinely applied to some rather complicated problems, and starting to impact the design cycle of aerospace flight vehicles and their components. In addition, it is being used to complement, and is being complemented by, experimental studies. In the present paper, some major elements of contemporary CFD research, such as code validation, turbulence physics, and hypersonic flows are discussed, along with a review of the principal pacing items that currently govern CFD. Several examples of pioneering CFD research are presented to illustrate the current state of the art. Finally, prospects for the future development and application of CFD are suggested.

  9. NASA Ames Develops Woven Thermal Protection System (TPS)

    NASA Video Gallery

    The Woven Thermal Protection System (WTPS) project explores an innovative way to design, develop and manufacture a family of ablative TPS materials using weaving technology and testing them in the ...

  10. NASA Ames Summer High School Apprenticeship Research Program

    DTIC Science & Technology

    1988-09-01

    existence began as many as 5,000 years ago, but the first major breakthrough stemmed from the devel- opment of the arithmetic machine in 1642 by Blaise ... Pascal . The machine contained eight wheels having the numbers zero through nine printed on them. These wheels were attached in such a way that dialing

  11. The Ames Power Monitoring System

    NASA Technical Reports Server (NTRS)

    Osetinsky, Leonid; Wang, David

    2003-01-01

    The Ames Power Monitoring System (APMS) is a centralized system of power meters, computer hardware, and specialpurpose software that collects and stores electrical power data by various facilities at Ames Research Center (ARC). This system is needed because of the large and varying nature of the overall ARC power demand, which has been observed to range from 20 to 200 MW. Large portions of peak demand can be attributed to only three wind tunnels (60, 180, and 100 MW, respectively). The APMS helps ARC avoid or minimize costly demand charges by enabling wind-tunnel operators, test engineers, and the power manager to monitor total demand for center in real time. These persons receive the information they need to manage and schedule energy-intensive research in advance and to adjust loads in real time to ensure that the overall maximum allowable demand is not exceeded. The APMS (see figure) includes a server computer running the Windows NT operating system and can, in principle, include an unlimited number of power meters and client computers. As configured at the time of reporting the information for this article, the APMS includes more than 40 power meters monitoring all the major research facilities, plus 15 Windows-based client personal computers that display real-time and historical data to users via graphical user interfaces (GUIs). The power meters and client computers communicate with the server using Transmission Control Protocol/Internet Protocol (TCP/IP) on Ethernet networks, variously, through dedicated fiber-optic cables or through the pre-existing ARC local-area network (ARCLAN). The APMS has enabled ARC to achieve significant savings ($1.2 million in 2001) in the cost of power and electric energy by helping personnel to maintain total demand below monthly allowable levels, to manage the overall power factor to avoid low power factor penalties, and to use historical system data to identify opportunities for additional energy savings. The APMS also

  12. Consolidating NASA's Arc Jets

    NASA Technical Reports Server (NTRS)

    Balboni, John A.; Gokcen, Tahir; Hui, Frank C. L.; Graube, Peter; Morrissey, Patricia; Lewis, Ronald

    2015-01-01

    The paper describes the consolidation of NASA's high powered arc-jet testing at a single location. The existing plasma arc-jet wind tunnels located at the Johnson Space Center were relocated to Ames Research Center while maintaining NASA's technical capability to ground-test thermal protection system materials under simulated atmospheric entry convective heating. The testing conditions at JSC were reproduced and successfully demonstrated at ARC through close collaboration between the two centers. New equipment was installed at Ames to provide test gases of pure nitrogen mixed with pure oxygen, and for future nitrogen-carbon dioxide mixtures. A new control system was custom designed, installed and tested. Tests demonstrated the capability of the 10 MW constricted-segmented arc heater at Ames meets the requirements of the major customer, NASA's Orion program. Solutions from an advanced computational fluid dynamics code were used to aid in characterizing the properties of the plasma stream and the surface environment on the calorimeters in the supersonic flow stream produced by the arc heater.

  13. Flight Research at Ames: Fifty-Seven Years of Development and Validation of Aeronautical Technology

    NASA Technical Reports Server (NTRS)

    Borchers, Paul F.; Franklin, James A.; Fletcher, Jay W.

    1998-01-01

    This NASA special publication presents a general overview of the flight research that has been conducted at Ames Research Center over the last 57 years. Icing research, transonic model testing, aerodynamics, variable stability aircraft, boundary layer control, short takeoff and landing (STOL), vertical/ short takeoff and landing (V/STOL) and rotorcraft research are among the major topics of interest discussed. Flying qualities, stability and control, performance evaluations, gunsight tracking and guidance and control displays research are also presented. An epilogue is included which presents the significant contributions that came about as a result of research and development conducted at Ames.

  14. Ames Lab 101: Next Generation Power Lines

    SciTech Connect

    Russell, Alan

    2010-01-01

    Ames Laboratory scientist Alan Russell discusses the need to develop new power lines that are stronger and more conductive as a way to address the problem of the nation's aging and inadequate power grid.

  15. Ames Lab 101: osgBullet

    SciTech Connect

    McCorkle, Doug

    2010-01-01

    Ames Laboratory scientist Doug McCorkle explains osgBullet, a 3-D virtual simulation software, and how it helps engineers design complex products and systems in a realistic, real-time virtual environment.

  16. Ames Lab 101: osgBullet

    ScienceCinema

    McCorkle, Doug

    2016-07-12

    Ames Laboratory scientist Doug McCorkle explains osgBullet, a 3-D virtual simulation software, and how it helps engineers design complex products and systems in a realistic, real-time virtual environment.

  17. Ames Lab 101: Next Generation Power Lines

    ScienceCinema

    Russell, Alan

    2016-07-12

    Ames Laboratory scientist Alan Russell discusses the need to develop new power lines that are stronger and more conductive as a way to address the problem of the nation's aging and inadequate power grid.

  18. Ames Lab 101: Reinventing the Power Cable

    SciTech Connect

    Russell, Alan

    2013-09-27

    Ames Laboratory researchers are working to develop new electrical power cables that are stronger and lighter than the cables currently used in the nation's power grid. Nano Tube animation by Iain Goodyear

  19. Ames Lab 101: Reinventing the Power Cable

    ScienceCinema

    Russell, Alan

    2016-07-12

    Ames Laboratory researchers are working to develop new electrical power cables that are stronger and lighter than the cables currently used in the nation's power grid. Nano Tube animation by Iain Goodyear

  20. Ames Lab Named an Industry Safety Leader

    ScienceCinema

    Wessels, Tom

    2016-07-12

    The U.S. Department of Energy's Ames Laboratory has been named a 2010 Industry Leader Award winner by the National Safety Council. The Ames Laboratory was one of only 81 companies/organizations to receive the award for their safety performance and the only DOE national laboratory on the list. The award represents the top 5 percent of members that have qualified for the National Safety Council 2010 Occupational Excellence Achievement Award, based on 2009 calendar year data.

  1. Study of optical techniques for the Ames unitary wind tunnels. Part 3: Angle of attack

    NASA Technical Reports Server (NTRS)

    Lee, George

    1992-01-01

    A review of optical sensors that are capable of accurate angle of attack measurements in wind tunnels was conducted. These include sensors being used or being developed at NASA Ames and Langley Research Centers, Boeing Airplane Company, McDonald Aircraft Company, Arnold Engineering Development Center, National Aerospace Laboratory of the Netherlands, National Research Council of Canada, and the Royal Aircraft Establishment of England. Some commercial sensors that may be applicable to accurate angle measurements were also reviewed. It was found that the optical sensor systems were based on interferometers, polarized light detector, linear or area photodiode cameras, position sensing photodetectors, and laser scanners. Several of the optical sensors can meet the requirements of the Ames Unitary Plan Wind Tunnel. Two of these, the Boeing interferometer and the Complere lateral effect photodiode sensors are being developed for the Ames Unitary Plan Wind Tunnel.

  2. Why Earth Matters to NASA: A Conversation with Harrison Ford

    NASA Video Gallery

    Actor Harrison Ford was on location at NASA's Ames Research Center, Mountain View, Calif., last November to film a segment of Showtime's "Years of Living Dangerously" documentary on climate change....

  3. NASA/ARC proposed training in intelligent control

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1990-01-01

    Viewgraphs on NASA Ames Research Center proposed training in intelligent control was presented. Topics covered include: fuzzy logic control; neural networks in control; artificial intelligence in control; hybrid approaches; hands on experience; and fuzzy controllers.

  4. 77 FR 52067 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-28

    ... SPACE ADMINISTRATION NASA Advisory Council; Commercial Space Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY: This Committee reports to the NAC... Agreements --Ames Research Center's Commercial Space Activities and Plans --Dryden Flight Research...

  5. Design, development and evaluation of Stanford/Ames EVA prehensors

    NASA Technical Reports Server (NTRS)

    Leifer, Larry J.; Aldrich, J.; Leblanc, M.; Sabelman, E.; Schwandt, D.

    1988-01-01

    Space Station operations and maintenance are expected to make unprecedented demands on astronaut EVA. With Space Station expected to operate with an 8 to 10 psi atmosphere (4 psi for Shuttle operations), the effectivness of pressurized gloves is called into doubt at the same time that EVA activity levels are to be increased. To address the need for more frequent and complex EVA missions and also to extend the dexterity, duration, and safety of EVA astronauts, NASA Ames and Stanford University have an ongoing cooperative agreement to explore and compare alternatives. This is the final Stanford/Ames report on manually powered Prehensors, each of which consists of a shroud forming a pressure enclosure around the astronaut's hand, and a linkage system to transfer the motions and forces of the hand to mechanical digits attached to the shroud. All prehensors are intended for attachment to a standard wrist coupling, as found on the AX-5 hard suit prototype, so that realistic tests can be performed under normal and reduced gravity as simulated by water flotation.

  6. Fifteen Years of Laboratory Astrophysics at Ames

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Sandford, S. A.; Salama, F.; Hudgins, D. M.; Bernstein, M.; Goorvitch, David (Technical Monitor)

    1998-01-01

    Tremendous strides have been made in our understanding of interstellar material over the past fifteen years thanks to significant, parallel developments in two closely related areas: observational astronomy and laboratory astrophysics. Fifteen years ago the composition of interstellar dust was largely guessed at, the concept of ices in dense molecular clouds ignored, and the notion of large, abundant, gas phase, carbon-rich molecules widespread throughout the interstellar medium (ISM) considered impossible. Today the composition of dust in the diffuse ISM is reasonably well constrained to cold refractory materials comprised of amorphous and crystalline silicates mixed with an amorphous carbonaceous material containing aromatic structural units and short, branched aliphatic chains. In the dense ISM, these cold dust particles are coated with mixed-molecular ices whose compositions are very well known. Lastly, the signature of carbon-rich polycyclic aromatic hydrocarbons (PAHs), shockingly large molecules by early interstellar chemistry standards, is widespread throughout the ISM. This great progress has only been made possible by the close collaboration of laboratory experimentalists with observers and theoreticians, all with the goal of applying their skills to astrophysical problems of direct interest to NASA programs. Such highly interdisciplinary collaborations ensure fundamental, in depth coverage of the wide-ranging challenges posed by astrophysics. These challenges include designing astrophysically focused experiments and data analysis, tightly coupled with astrophysical searches spanning 2 orders of magnitude in wavelength, and detailed theoretical modeling. The impact of our laboratory has been particularly effective as there is constant cross-talk and feedback between quantum theorists; theoretical astrophysicists and chemists; experimental physicists; organic, physical and petroleum chemists; and infrared and UV/Vis astronomers. In this paper, two examples

  7. Ames Research Center C-130

    NASA Technical Reports Server (NTRS)

    Koozer, Mark A.

    1991-01-01

    The C130 Earth Resources Aircraft provides a platform for a variety of sensors that collect data in support of terrestrial and atmospheric projects sponsored by NASA in coordination with Federal, state, university, and industry investigators. This data is applied to research in the areas of forestry, agriculture, land use and land cover analysis, hydrology, geology, photogrammetry, oceanography, meteorology, and other earth science disciplines. The C130 is a platform aircraft flying up to 25,000 feet above sea level at speeds between 150 and 330 knots True Air Speed. The aircraft is capable of precise flight line navigation by means of an optical borescope from which line guidance is provided to the pilots.

  8. PMARC - PANEL METHOD AMES RESEARCH CENTER

    NASA Technical Reports Server (NTRS)

    Ashby, D. L.

    1994-01-01

    Panel methods are moderate cost tools for solving a wide range of engineering problems. PMARC (Panel Method Ames Research Center) is a potential flow panel code that numerically predicts flow fields around complex three-dimensional geometries. PMARC's predecessor was a panel code named VSAERO which was developed for NASA by Analytical Methods, Inc. PMARC is a new program with many additional subroutines and a well-documented code suitable for powered-lift aerodynamic predictions. The program's open architecture facilitates modifications or additions of new features. Another improvement is the adjustable size code which allows for an optimum match between the computer hardware available to the user and the size of the problem being solved. PMARC can be resized (the maximum number of panels can be changed) in a matter of minutes. Several other state-of-the-art PMARC features include internal flow modeling for ducts and wind tunnel test sections, simple jet plume modeling essential for the analysis and design of powered-lift aircraft, and a time-stepping wake model which allows the study of both steady and unsteady motions. PMARC is a low-order panel method, which means the singularities are distributed with constant strength over each panel. In many cases low-order methods can provide nearly the same accuracy as higher order methods (where the singularities are allowed to vary linearly or quadratically over each panel). Low-order methods have the advantage of a shorter computation time and do not require exact matching between panels. The flow problem is solved by assuming that the body is at rest in a moving flow field. The body is modeled as a closed surface which divides space into two regions -- one region contains the flow field of interest and the other contains a fictitious flow. External flow problems, such as a wing in a uniform stream, have the external region as the flow field of interest and the internal flow as the fictitious flow. This arrangement is

  9. PMARC - PANEL METHOD AMES RESEARCH CENTER

    NASA Technical Reports Server (NTRS)

    Ashby, D. L.

    1994-01-01

    Panel methods are moderate cost tools for solving a wide range of engineering problems. PMARC (Panel Method Ames Research Center) is a potential flow panel code that numerically predicts flow fields around complex three-dimensional geometries. PMARC's predecessor was a panel code named VSAERO which was developed for NASA by Analytical Methods, Inc. PMARC is a new program with many additional subroutines and a well-documented code suitable for powered-lift aerodynamic predictions. The program's open architecture facilitates modifications or additions of new features. Another improvement is the adjustable size code which allows for an optimum match between the computer hardware available to the user and the size of the problem being solved. PMARC can be resized (the maximum number of panels can be changed) in a matter of minutes. Several other state-of-the-art PMARC features include internal flow modeling for ducts and wind tunnel test sections, simple jet plume modeling essential for the analysis and design of powered-lift aircraft, and a time-stepping wake model which allows the study of both steady and unsteady motions. PMARC is a low-order panel method, which means the singularities are distributed with constant strength over each panel. In many cases low-order methods can provide nearly the same accuracy as higher order methods (where the singularities are allowed to vary linearly or quadratically over each panel). Low-order methods have the advantage of a shorter computation time and do not require exact matching between panels. The flow problem is solved by assuming that the body is at rest in a moving flow field. The body is modeled as a closed surface which divides space into two regions -- one region contains the flow field of interest and the other contains a fictitious flow. External flow problems, such as a wing in a uniform stream, have the external region as the flow field of interest and the internal flow as the fictitious flow. This arrangement is

  10. The Ames 12-Foot Pressure Tunnel: Tunnel Empty Flow Calibration Results and Discussion

    NASA Technical Reports Server (NTRS)

    Zell, Peter T.; Banducci, David E. (Technical Monitor)

    1996-01-01

    An empty test section flow calibration of the refurbished NASA Ames 12-Foot Pressure Tunnel was recently completed. Distributions of total pressure, dynamic pressure, Mach number, flow angularity temperature, and turbulence are presented along with results obtained prior to facility demolition. Axial static pressure distributions along tunnel centerline are also compared. Test section model support geometric configurations will be presented along with a discussion of the issues involved with different model mounting schemes.

  11. Mefloquine inhibits voltage dependent Nav1.4 channel by overlapping the local anaesthetic binding site.

    PubMed

    Paiz-Candia, Bertin; Islas, Angel A; Sánchez-Solano, Alfredo; Mancilla-Simbro, Claudia; Scior, Thomas; Millan-PerezPeña, Lourdes; Salinas-Stefanon, Eduardo M

    2017-02-05

    Mefloquine constitutes a multitarget antimalaric that inhibits cation currents. However, the effect and the binding site of this compound on Na(+) channels is unknown. To address the mechanism of action of mefloquine, we employed two-electrode voltage clamp recordings on Xenopus laevis oocytes, site-directed mutagenesis of the rat Na(+) channel, and a combined in silico approach using Molecular Dynamics and docking protocols. We found that mefloquine: i) inhibited Nav1.4 currents (IC50 =60μM), ii) significantly delayed fast inactivation but did not affect recovery from inactivation, iii) markedly the shifted steady-state inactivation curve to more hyperpolarized potentials. The presence of the β1 subunit significantly reduced mefloquine potency, but the drug induced a significant frequency-independent rundown upon repetitive depolarisations. Computational and experimental results indicate that mefloquine overlaps the local anaesthetic binding site by docking at a hydrophobic cavity between domains DIII and DIV that communicates the local anaesthetic binding site with the selectivity filter. This is supported by the fact that mefloquine potency significantly decreased on mutant Nav1.4 channel F1579A and significantly increased on K1237S channels. In silico this compound docked above F1579 forming stable π-π interactions with this residue. We provide structure-activity insights into how cationic amphiphilic compounds may exert inhibitory effects by docking between the local anaesthetic binding site and the selectivity filter of a mammalian Na(+) channel. Our proposed synergistic cycle of experimental and computational studies may be useful for elucidating binding sites of other drugs, thereby saving in vitro and in silico resources.

  12. Proceedings of the NASA Laboratory Astrophysics Workshop

    NASA Technical Reports Server (NTRS)

    Salama, Farid (Editor)

    2002-01-01

    This document is the proceedings of the NASA Laboratory Astrophysics Workshop, convened May 1-3, 2002 at NASA's Ames Research Center. Sponsored by the NASA Office of Space Science (OSS), this programmatic workshop is held periodically by NASA to discuss the current state of knowledge in the interdisciplinary field of laboratory astrophysics and to identify the science priorities (needs) in support of NASA's space missions. An important goal of the Workshop is to provide input to OSS in the form of a white paper for incorporation in its strategic planning. This report comprises a record of the complete proceedings of the Workshop and the Laboratory Astrophysics White Paper drafted at the Workshop.

  13. Ames Lab 101: C6: Virtual Engineering

    SciTech Connect

    2010-01-01

    Ames Laboratory scientist Doug McCorkle explains the importance of virtual engineering and talks about the C6. The C6 is a three-dimensional, fully-immersive synthetic environment residing in the center atrium of Iowa State University's Howe Hall.

  14. Ames Lab 101: Ultrafast Magnetic Switching

    SciTech Connect

    Jigang Wang

    2013-04-08

    Ames Laboratory physicists have found a new way to switch magnetism that is at least 1000 times faster than currently used in magnetic memory technologies. Magnetic switching is used to encode information in hard drives, magnetic random access memory and other computing devices. The discovery potentially opens the door to terahertz and faster memory speeds.

  15. Ames Lab 101: Single Crystal Growth

    SciTech Connect

    Schlagel, Deborah

    2013-09-27

    Ames Laboratory scientist Deborah Schlagel talks about the Lab's research in growing single crystals of various metals and alloys. The single crystal samples are vital to researchers' understanding of the characteristics of a materials and what gives these materials their particular properties.

  16. Ames Lab 101: Rare-Earth Recycling

    ScienceCinema

    Ryan Ott

    2016-07-12

    Recycling keeps paper, plastics, and even jeans out of landfills. Could recycling rare-earth magnets do the same? Perhaps, if the recycling process can be improved. Scientists at the U.S. Department of Energy's Ames Laboratory are working to more effectively remove the neodymium, a rare earth, from the mix of other materials in a magnet.

  17. Ames Lab 101: Rare-Earth Recycling

    SciTech Connect

    Ryan Ott

    2012-09-05

    Recycling keeps paper, plastics, and even jeans out of landfills. Could recycling rare-earth magnets do the same? Perhaps, if the recycling process can be improved. Scientists at the U.S. Department of Energy's Ames Laboratory are working to more effectively remove the neodymium, a rare earth, from the mix of other materials in a magnet.

  18. Ames Research Center Publications: A Continuing Bibliography

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The Ames Research Center Publications: A Continuing Bibliography contains the research output of the Center indexed during 1981 in Scientific and Technical Aerospace Reports (STAR), Limited Scientific and Technical Aerospace Reports (LSTAR), International Aerospace Abstracts (IAA), and Computer Program Abstracts (CPA). This bibliography is published annually in an attempt to effect greater awareness and distribution of the Center's research output.

  19. Ames Lab 101: Single Crystal Growth

    ScienceCinema

    Schlagel, Deborah

    2016-07-12

    Ames Laboratory scientist Deborah Schlagel talks about the Lab's research in growing single crystals of various metals and alloys. The single crystal samples are vital to researchers' understanding of the characteristics of a materials and what gives these materials their particular properties.

  20. A Classroom Modification of the Ames Test.

    ERIC Educational Resources Information Center

    Yavornitzky, Joseph; Trzeciak, Victor

    1979-01-01

    A modification of the Ames test for detecting carcinogens and mutagens using a strain of bacteria is described. A suggestion is given for checking the correctness of procedures by using particular hair dyes which have been shown to be mutogenic. (Author/SA)

  1. Ames Lab 101: Ultrafast Magnetic Switching

    ScienceCinema

    Jigang Wang

    2016-07-12

    Ames Laboratory physicists have found a new way to switch magnetism that is at least 1000 times faster than currently used in magnetic memory technologies. Magnetic switching is used to encode information in hard drives, magnetic random access memory and other computing devices. The discovery potentially opens the door to terahertz and faster memory speeds.

  2. Ames Lab 101: C6: Virtual Engineering

    ScienceCinema

    None

    2016-07-12

    Ames Laboratory scientist Doug McCorkle explains the importance of virtual engineering and talks about the C6. The C6 is a three-dimensional, fully-immersive synthetic environment residing in the center atrium of Iowa State University's Howe Hall.

  3. NASA Performance Report

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Introduction NASA's mission is to advance and communicate scientific knowledge and understanding of Earth, the solar system, and the universe; to advance human exploration, use, and development of space; and to research, develop, verify, and transfer advanced aeronautics, space, and related technologies. In support of this mission, NASA has a strategic architecture that consists of four Enterprises supported by four Crosscutting Processes. The Strategic Enterprises are NASA's primary mission areas to include Earth Science, Space Science, Human Exploration and Development of Space, and Aerospace Technology. NASA's Crosscutting Processes are Manage Strategically, Provide Aerospace Products and Capabilities, Generate Knowledge and Communicate Knowledge. The implementation of NASA programs, science, and technology research occurs primarily at our Centers. NASA consists of a Headquarters, nine Centers, and the Jet Propulsion Laboratory, as well as several ancillary installations and offices in the United States and abroad. The nine Centers are as follows: (1) Ames Research Center, (2) Dryden Flight Research Center (DFRC), (3) Glenn Research Center (GRC), (4) Goddard Space Flight Center (GSFC), (5) Johnson Space Center, (6) Kennedy Space Center (KSC), (7) Langley Research Center (LaRC), (8) Marshall Space Flight Center (MSFC), and (9) Stennis Space Center (SSC).

  4. NASA KingAir #801 during takeoff

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA KingAir N801NA during takeoff. The Beechcraft Beech 200 Super KingAir aircraft N7NA, known as NASA 7, has been a support aircraft for many years, flying 'shuttle' missions to Ames Research Center. It once flew from the Jet Propulsion Laboratory and back each day but now (2001) flies between the Dryden Flight Research Center and Ames. Dryden assumed the mission and aircraft in September 1996. A second Beechcraft Beech 200 Super King Air, N701NA, redesignated N801NA, transferred to Dryden on 3 Oct. 1997 and is used for research missions but substitutes for NASA 7 on shuttle missions when NASA 7 is not available.

  5. NASA develops new digital flight control system

    NASA Technical Reports Server (NTRS)

    Mewhinney, Michael

    1994-01-01

    This news release reports on the development and testing of a new integrated flight and propulsion automated control system that aerospace engineers at NASA's Ames Research Center have been working on. The system is being tested in the V/STOL (Vertical/Short Takeoff and Landing) Systems Research Aircraft (VSRA).

  6. Fundamental research in artificial intelligence at NASA

    NASA Technical Reports Server (NTRS)

    Friedland, Peter

    1990-01-01

    This paper describes basic research at NASA in the field of artificial intelligence. The work is conducted at the Ames Research Center and the Jet Propulsion Laboratory, primarily under the auspices of the NASA-wide Artificial Intelligence Program in the Office of Aeronautics, Exploration and Technology. The research is aimed at solving long-term NASA problems in missions operations, spacecraft autonomy, preservation of corporate knowledge about NASA missions and vehicles, and management/analysis of scientific and engineering data. From a scientific point of view, the research is broken into the categories of: planning and scheduling; machine learning; and design of and reasoning about large-scale physical systems.

  7. How NASA's Technology Can Help the Automotive Industry

    NASA Technical Reports Server (NTRS)

    Fong, Terrence W.; Worden, Simon Peter

    2015-01-01

    Presentation describes how automobile companies developing self-driving cars and NASA face similar challenges which can be solved using similar technologies. To provide context, the presentation also describes how NASA Ames is working with automobile companies, such as Nissan, to research and development relevant technologies.

  8. Robust Mosaicking of Stereo Digital Elevation Models from the Ames Stereo Pipeline

    NASA Technical Reports Server (NTRS)

    Kim, Tae Min; Moratto, Zachary M.; Nefian, Ara Victor

    2010-01-01

    Robust estimation method is proposed to combine multiple observations and create consistent, accurate, dense Digital Elevation Models (DEMs) from lunar orbital imagery. The NASA Ames Intelligent Robotics Group (IRG) aims to produce higher-quality terrain reconstructions of the Moon from Apollo Metric Camera (AMC) data than is currently possible. In particular, IRG makes use of a stereo vision process, the Ames Stereo Pipeline (ASP), to automatically generate DEMs from consecutive AMC image pairs. However, the DEMs currently produced by the ASP often contain errors and inconsistencies due to image noise, shadows, etc. The proposed method addresses this problem by making use of multiple observations and by considering their goodness of fit to improve both the accuracy and robustness of the estimate. The stepwise regression method is applied to estimate the relaxed weight of each observation.

  9. Microbiology and potential applications of aerobic methane oxidation coupled to denitrification (AME-D) process: A review.

    PubMed

    Zhu, Jing; Wang, Qian; Yuan, Mengdong; Tan, Giin-Yu Amy; Sun, Faqian; Wang, Cheng; Wu, Weixiang; Lee, Po-Heng

    2016-03-01

    Aerobic methane oxidation coupled to denitrification (AME-D) is an important link between the global methane and nitrogen cycles. This mini-review updates discoveries regarding aerobic methanotrophs and denitrifiers, as a prelude to spotlight the microbial mechanism and the potential applications of AME-D. Until recently, AME-D was thought to be accomplished by a microbial consortium where denitrifying bacteria utilize carbon intermediates, which are excreted by aerobic methanotrophs, as energy and carbon sources. Potential carbon intermediates include methanol, citrate and acetate. This mini-review presents microbial thermodynamic estimations and postulates that methanol is the ideal electron donor for denitrification, and may serve as a trophic link between methanotrophic bacteria and denitrifiers. More excitingly, new discoveries have revealed that AME-D is not only confined to the conventional synergism between methanotrophic bacteria and denitrifiers. Specifically, an obligate aerobic methanotrophic bacterium, Methylomonas denitrificans FJG1, has been demonstrated to couple partial denitrification with methane oxidation, under hypoxia conditions, releasing nitrous oxide as a terminal product. This finding not only substantially advances the understanding of AME-D mechanism, but also implies an important but unknown role of aerobic methanotrophs in global climate change through their influence on both the methane and nitrogen cycles in ecosystems. Hence, further investigation on AME-D microbiology and mechanism is essential to better understand global climate issues and to develop niche biotechnological solutions. This mini-review also presents traditional microbial techniques, such as pure cultivation and stable isotope probing, and powerful microbial techniques, such as (meta-) genomics and (meta-) transcriptomics, for deciphering linked methane oxidation and denitrification. Although AME-D has immense potential for nitrogen removal from wastewater, drinking

  10. Computational Modeling of the Ames 11-Ft Transonic Wind Tunnel in Conjunction with IofNEWT

    NASA Technical Reports Server (NTRS)

    Djomehri, M. Jahed; Buning, Pieter G.; Erickson, Larry L.; George, Michael W. (Technical Monitor)

    1995-01-01

    Technical advances in Computational Fluid Dynamics have now made it possible to simulate complex three-dimensional internal flows about models of various size placed in a Transonic Wind Tunnel. TWT wall interference effects have been a source of error in predicting flight data from actual wind tunnel measured data. An advantage of such internal CFD calculations is to directly compare numerical results with the actual tunnel data for code assessment and tunnel flow analysis. A CFD capability has recently been devised for flow analysis of the NASA/Ames 11-Ft TWT facility. The primary objectives of this work are to provide a CFD tool to study the NASA/Ames 11-Ft TWT flow characteristics, to understand the slotted wall interference effects, and to validate CFD codes. A secondary objective is to integrate the internal flowfield calculations with the Pressure Sensitive Paint data, a surface pressure distribution capability in Ames' production wind tunnels. The effort has been part of the Ames IofNEWT, Integration of Numerical and Experimental Wind Tunnels project, which is aimed at providing further analytical tools for industrial application. We used the NASA/Ames OVERFLOW code to solve the thin-layer Navier-Stokes equations. Viscosity effects near the model are captured by Baldwin-Lomax or Baldwin-Barth turbulence models. The solver was modified to model the flow behavior in the vicinity of the tunnel longitudinal slotted walls. A suitable porous type wall boundary condition was coded to account for the cross-flow through the test section. Viscous flow equations were solved in generalized coordinates with a three-factor implicit central difference scheme in conjunction with the Chimera grid procedure. The internal flow field about the model and the tunnel walls were descretized by the Chimera overset grid system. This approach allows the application of efficient grid generation codes about individual components of the configuration; separate minor grids were developed

  11. Synaptotagmin I delays the fast inactivation of Kv1.4 channel through interaction with its N-terminus

    PubMed Central

    2014-01-01

    Background The voltage-gated potassium channel Kv1.4 is an important A-type potassium channel and modulates the excitability of neurons in central nervous system. Analysis of the interaction between Kv1.4 and its interacting proteins is helpful to elucidate the function and mechanism of the channel. Results In the present research, synaptotagmin I was for the first time demonstrated to be an interacting protein of Kv1.4 and its interaction with Kv1.4 channel did not require the mediation of other synaptic proteins. Using patch-clamp technique, synaptotagmin I was found to delay the inactivation of Kv1.4 in HEK293T cells in a Ca2+-dependent manner, and this interaction was proven to have specificity. Mutagenesis experiments indicated that synaptotagmin I interacted with the N-terminus of Kv1.4 and thus delayed its N-type fast inactivation. Conclusion These data suggest that synaptotagmin I is an interacting protein of Kv1.4 channel and, as a negative modulator, may play an important role in regulating neuronal excitability and synaptic efficacy. PMID:24423395

  12. Neurolab: Final Report for the Ames Research Center Payload

    NASA Technical Reports Server (NTRS)

    Maese, A. Christopher (Editor); Ostrach, Louis H. (Editor); Dalton, Bonnie P. (Technical Monitor)

    2002-01-01

    Neurolab, the final Spacelab mission, launched on STS-90 on April 17, 1998, was dedicated to studying the nervous system. NASA cooperated with domestic and international partners to conduct the mission. ARC's (Ames Research Center's) Payload included 15 experiments designed to study the adaptation and development of the nervous system in microgravity. The payload had the largest number of Principal and Co-Investigators, largest complement of habitats and experiment unique equipment flown to date, and most diverse distribution of live specimens ever undertaken by ARC, including rodents, toadfish, swordtail fish, water snails, hornweed and crickets To facilitate tissue sharing and optimization of science objectives, investigators were grouped into four science discipline teams: Neuronal Plasticity, Mammalian Development, Aquatic, and Neurobiology. Several payload development challenges were experienced and required an extraordinary effort, by all involved, to meet the launch schedule. With respect to hardware and the total amount of recovered science, Neurolab was regarded as an overall success. However, a high mortality rate in one rodent group and several hardware anomalies occurred inflight that warranted postflight investigations. Hardware, science, and operations lessons were learned that should be taken into consideration by payload teams developing payloads for future Shuttle missions and the International Space Station.

  13. NASA Quest.

    ERIC Educational Resources Information Center

    Ashby, Susanne

    2000-01-01

    Introduces NASA Quest as part of NASA's Learning Technologies Project, which connects students to the people of NASA through the various pages at the website where students can glimpse the various types of work performed at different NASA facilities and talk to NASA workers about the type of work they do. (ASK)

  14. Study of optical techniques for the Ames unitary wind tunnels. Part 4: Model deformation

    NASA Technical Reports Server (NTRS)

    Lee, George

    1992-01-01

    A survey of systems capable of model deformation measurements was conducted. The survey included stereo-cameras, scanners, and digitizers. Moire, holographic, and heterodyne interferometry techniques were also looked at. Stereo-cameras with passive or active targets are currently being deployed for model deformation measurements at NASA Ames and LaRC, Boeing, and ONERA. Scanners and digitizers are widely used in robotics, motion analysis, medicine, etc., and some of the scanner and digitizers can meet the model deformation requirements. Commercial stereo-cameras, scanners, and digitizers are being improved in accuracy, reliability, and ease of operation. A number of new systems are coming onto the market.

  15. Feasibility study of transit photon correlation anemometer for Ames Research Center unitary wind tunnel plan

    NASA Technical Reports Server (NTRS)

    Mayo, W. T., Jr.; Smart, A. E.

    1979-01-01

    A laser transit anemometer measured a two-dimensional vector velocity, using the transit time of scattering particles between two focused and parallel laser beams. The objectives were: (1) the determination of the concentration levels and light scattering efficiencies of naturally occurring, submicron particles in the NASA/Ames unitary wind tunnel and (2) the evaluation based on these measured data of a laser transit anemometer with digital correlation processing for nonintrusive velocity measurement in this facility. The evaluation criteria were the speeds at which point velocity measurements could be realized with this technique (as determined from computer simulations) for given accuracy requirements.

  16. AI at Ames: Artificial Intelligence research and application at NASA Ames Research Center, Moffett Field, California, February 1985

    NASA Technical Reports Server (NTRS)

    Andrews, Alison E. (Editor)

    1985-01-01

    Charts are given that illustrate function versus domain for artificial intelligence (AI) applications and interests and research area versus project number for AI research. A list is given of project titles with associated project numbers and page numbers. Also, project descriptions, including title, participants, and status are given.

  17. Joseph Ames's "Typographical Antiquities" and the Antiquarian Tradition

    ERIC Educational Resources Information Center

    Shiner, Elaine

    2013-01-01

    One of the most famous historical documents of English printing is Joseph Ames's "Typographical Antiquities," published in London in 1749. Although Ames referred to his work as a history of printing, the bulk of it is a list of the first printers in England and their works through 1600, with very full bibliographical descriptions for…

  18. Ames Lab 101: 3D Metals Printer

    SciTech Connect

    Ott, Ryan

    2014-02-13

    To meet one of the biggest energy challenges of the 21st century - finding alternatives to rare-earth elements and other critical materials - scientists will need new and advanced tools. The Critical Materials Institute at the U.S. Department of Energy's Ames Laboratory has a new one: a 3D printer for metals research. 3D printing technology, which has captured the imagination of both industry and consumers, enables ideas to move quickly from the initial design phase to final form using materials including polymers, ceramics, paper and even food. But the Critical Materials Institute (CMI) will apply the advantages of the 3D printing process in a unique way: for materials discovery.

  19. Ames Lab 101: 3D Metals Printer

    ScienceCinema

    Ott, Ryan

    2016-07-12

    To meet one of the biggest energy challenges of the 21st century - finding alternatives to rare-earth elements and other critical materials - scientists will need new and advanced tools. The Critical Materials Institute at the U.S. Department of Energy's Ames Laboratory has a new one: a 3D printer for metals research. 3D printing technology, which has captured the imagination of both industry and consumers, enables ideas to move quickly from the initial design phase to final form using materials including polymers, ceramics, paper and even food. But the Critical Materials Institute (CMI) will apply the advantages of the 3D printing process in a unique way: for materials discovery.

  20. Data Mining at NASA: From Theory to Applications

    NASA Technical Reports Server (NTRS)

    Srivastava, Ashok N.

    2009-01-01

    This slide presentation demonstrates the data mining/machine learning capabilities of NASA Ames and Intelligent Data Understanding (IDU) group. This will encompass the work done recently in the group by various group members. The IDU group develops novel algorithms to detect, classify, and predict events in large data streams for scientific and engineering systems. This presentation for Knowledge Discovery and Data Mining 2009 is to demonstrate the data mining/machine learning capabilities of NASA Ames and IDU group. This will encompass the work done re cently in the group by various group members.

  1. Ames Research Center FY 2000 Implementation Plan: Leading Technology into the New Millennium

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This document presents the implementation plan for Ames Research Center (ARC) within the overall framework of the NASA Strategic Plan. It describes how ARC intends to implement its Center of Excellence responsibilities, Agency assigned missions, Agency and Enterprise lead programs, and other roles in support of NASA's vision and mission. All Federal agencies are required by the 1993 Government Performance and Results Act to implement a long-term strategic planning process that includes measurable outcomes and strict accountability. At NASA, this planning process is shaped by the Space Act of 1958, annual appropriations, and other external mandates, as well as by customer requirements. The resulting Strategic Plan sets the overall architecture for what we do, identifies who our customers are, and directs where we are going and why. The Strategic Plan is the basis upon which decisions regarding program implementation and resource deployment are made. Whereas the strategic planning process examines the long-term direction of the organization and identifies a specific set of goals, the implementation planning process examines the detailed performance of the organization and allocates resources toward meeting these goals. It is the purpose of this implementation document to provide the connection between the NASA Strategic Plan and the specific programs and support functions that ARC employees perform. This connection flows from the NASA Strategic Plan, through the various Strategic Enterprise plans to the ARC Center of Excellence, primary missions, Lead Center programs, program support responsibilities, and ultimately, to the role of the individual ARC employee.

  2. Reaching for the APEX at Ames

    NASA Technical Reports Server (NTRS)

    Kohut, Matthew

    2008-01-01

    The multidimensional design of the APEX program is the result of an extensive research and development effort dating back nearly a decade. "In the late 1990s and early 2000, we were pretty successful at getting new research and technology projects here at the center," Johnson says, "and we had a lack of critical mass of project managers. We were taking people who were primarily researchers and putting them in the position of managing projects." Smith and Johnson held a series of workshops across the center during 2000 and 2001 to gather feedback about how to address this issue. When they briefed the center's senior management on their findings, one of the top recommendations was to establish a project manager development program at Ames. At that point, they cast a wide net for ideas and information. "We did centerwide needs assessment, we did focus groups, we did surveys," Smith says. "We came up with a proposal for what a program would look like, tying in what we knew about the Academy of Program1 Project Leadership (now the Academy for Program/Project and Engineering Leadership, or APPEL), what we've seen at other centers, what other centers have tried. We were always checking to make sure our program mapped to APPEL. We also looked at the PMI [Project Management Institute] model, INCOSE [International Council on Systems Engineering], CMMI [Capability Maturity Model Integration], you name it." "We had a lot of conversations with the Jet Propulsion Lab and Goddard," Johnson adds. "We saw those centers as models for what Ames was aspiring to be in terms of a center for managing space flight missions." Their research confirmed what they already knew-that strong practitioner involvement would be critical to their program design process. 'XPEX is for the practitioner by the practitioner," Smith says. "They have to be a part of designing it. Otherwise there's no way we could design a program that meets their needs." At the same time that they worked at the grassroots

  3. Ames life science telescience testbed evaluation

    NASA Technical Reports Server (NTRS)

    Haines, Richard F.; Johnson, Vicki; Vogelsong, Kristofer H.; Froloff, Walt

    1989-01-01

    Eight surrogate spaceflight mission specialists participated in a real-time evaluation of remote coaching using the Ames Life Science Telescience Testbed facility. This facility consisted of three remotely located nodes: (1) a prototype Space Station glovebox; (2) a ground control station; and (3) a principal investigator's (PI) work area. The major objective of this project was to evaluate the effectiveness of telescience techniques and hardware to support three realistic remote coaching science procedures: plant seed germinator charging, plant sample acquisition and preservation, and remote plant observation with ground coaching. Each scenario was performed by a subject acting as flight mission specialist, interacting with a payload operations manager and a principal investigator expert. All three groups were physically isolated from each other yet linked by duplex audio and color video communication channels and networked computer workstations. Workload ratings were made by the flight and ground crewpersons immediately after completing their assigned tasks. Time to complete each scientific procedural step was recorded automatically. Two expert observers also made performance ratings and various error assessments. The results are presented and discussed.

  4. Ames collaborative study of cosmic ray neutrons

    NASA Technical Reports Server (NTRS)

    Hewitt, J. E.; Hughes, L.; Mccaslin, J. B.; Stephens, L. D.; Rindi, A.; Smith, A. R.; Thomas, R. H.; Griffith, R. V.; Welles, C. G.; Baum, J. W.

    1976-01-01

    The results of a collaborative study to define both the neutron flux and the spectrum more precisely and to develop a dosimetry package that can be flown quickly to altitude for solar flare events are described. Instrumentation and analysis techniques were used which were developed to measure accelerator-produced radiation. The instruments were flown in the Ames Research Center high altitude aircraft. Neutron instrumentation consisted of Bonner spheres with both active and passive detector elements, threshold detectors of both prompt-counter and activation-element types, a liquid scintillation spectrometer based on pulse-shape discrimination, and a moderated BF3 counter neutron monitor. In addition, charged particles were measured with a Reuter-Stokes ionization chamber system and dose equivalent with another instrument. Preliminary results from the first series of flights at 12.5 km (41,000 ft) are presented, including estimates of total neutron flux intensity and spectral shape and of the variation of intensity with altitude and geomagnetic latitude.

  5. Ames Lab 101: Real-Time 3D Imaging

    SciTech Connect

    Zhang, Song

    2010-01-01

    Ames Laboratory scientist Song Zhang explains his real-time 3-D imaging technology. The technique can be used to create high-resolution, real-time, precise, 3-D images for use in healthcare, security, and entertainment applications.

  6. Ames Lab 101: Real-Time 3D Imaging

    ScienceCinema

    Zhang, Song

    2016-07-12

    Ames Laboratory scientist Song Zhang explains his real-time 3-D imaging technology. The technique can be used to create high-resolution, real-time, precise, 3-D images for use in healthcare, security, and entertainment applications.

  7. Site environmental report for Ames Laboratory, calendar year 1989

    SciTech Connect

    Mathison, L.K.

    1990-05-01

    This report contains brief information concerning the environment and environmental monitoring at Ames Laboratory. Discharges of liquid wastes, radioactive effluents and soil contamination are described. 7 refs., 4 figs., 1 tab. (CBS)

  8. 2. David Ames, Photographer, October 1982 VIEW EAST SHOWING WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. David Ames, Photographer, October 1982 VIEW EAST SHOWING WEST (FRONT) ELEVATION - Jacob Dingee House, 105 East Seventh Street (moved to 500 Block North Market Street), Wilmington, New Castle County, DE

  9. Ames Laboratory integrated safety management self-assessment report

    SciTech Connect

    1997-10-01

    The implementation of Integrated Safety Management (ISM) at Ames Laboratory began with the signing of the ISM Implementation Charter on February 24, 1997 (see Appendix A). The first step toward implementation of ISM at Ames Laboratory is the performance of a Self-Assessment (SA). In preparation for the SA, a workshop on ISM was provided to the Laboratory`s Environment, Safety, and Health (ES&H) Coordinators, Safety Review Committee members, and the Environment, Safety, Health and Assurance (ESH&A) staff. In addition, a briefing was given to the Laboratory`s Executive Council and Program Directors. Next, an SA Team was organized. The Team was composed of four Ames Laboratory and four Department of Energy-Chicago Operations Office (DOE-CH) staff members. The purpose of this SA was to determine the current status of ES&H management within Ames Laboratory, as well as to identify areas which need to be improved during ISM implementation. The SA was conducted by reviewing documents, interviewing Ames Laboratory management and staff, and performing walkthroughs of Laboratory areas. At the conclusion of this SA, Ames Laboratory management was briefed on the strengths, weaknesses, and the areas of improvement which will assist in the implementation of ISM.

  10. The Ames MER Microscopic Imager Toolkit

    NASA Technical Reports Server (NTRS)

    Sargent, Randy; Deans, Matthew; Kunz, Clayton; Sims, Michael; Herkenhoff, Ken

    2005-01-01

    The Mars Exploration Rovers, Spirit and Opportunity, have spent several successful months on Mars, returning gigabytes of images and spectral data to scientists on Earth. One of the instruments on the MER rovers, the Athena Microscopic Imager (MI), is a fixed focus, megapixel camera providing a plus or minus mm depth of field and a 3lx31mm field of view at a working distance of 63 mm from the lens to the object being imaged. In order to maximize the science return from this instrument, we developed the Ames MI Toolkit and supported its use during the primary mission. The MI Toolkit is a set of programs that operate on collections of MI images, with the goal of making the data more understandable to the scientists on the ground. Because of the limited depth of field of the camera, and the often highly variable topography of the terrain being imaged, MI images of a given rock are often taken as a stack, with the Instrument Deployment Device (IDD) moving along a computed normal vector, pausing every few millimeters for the MI to acquire an image. The MI Toolkit provides image registration and focal section merging, which combine these images to form a single, maximally in-focus image, while compensating for changes in lighting as well as parallax due to the motion of the camera. The MI Toolkit also provides a 3-D reconstruction of the surface being imaged using stereo and can embed 2-D MI images as texture maps into 3-D meshes produced by other imagers on board the rover to provide context. The 2-D images and 3-D meshes output from the Toolkit are easily viewed by scientists using other mission tools, such as Viz or the MI Browser. This paper describes the MI Toolkit in detail, as well as our experience using it with scientists at JPL during the primary MER mission.

  11. The Ames MER microscopic imager toolkit

    USGS Publications Warehouse

    Sargent, R.; Deans, Matthew; Kunz, C.; Sims, M.; Herkenhoff, K.

    2005-01-01

    12The Mars Exploration Rovers, Spirit and Opportunity, have spent several successful months on Mars, returning gigabytes of images and spectral data to scientists on Earth. One of the instruments on the MER rovers, the Athena Microscopic Imager (MI), is a fixed focus, megapixel camera providing a ??3mm depth of field and a 31??31mm field of view at a working distance of 63 mm from the lens to the object being imaged. In order to maximize the science return from this instrument, we developed the Ames MI Toolkit and supported its use during the primary mission. The MI Toolkit is a set of programs that operate on collections of MI images, with the goal of making the data more understandable to the scientists on the ground. Because of the limited depth of field of the camera, and the often highly variable topography of the terrain being imaged, MI images of a given rock are often taken as a stack, with the Instrument Deployment Device (IDD) moving along a computed normal vector, pausing every few millimeters for the MI to acquire an image. The MI Toolkit provides image registration and focal section merging, which combine these images to form a single, maximally in-focus image, while compensating for changes in lighting as well as parallax due to the motion of the camera. The MI Toolkit also provides a 3-D reconstruction of the surface being imaged using stereo and can embed 2-D MI images as texture maps into 3-D meshes produced by other imagers on board the rover to provide context. The 2-D images and 3-D meshes output from the Toolkit are easily viewed by scientists using other mission tools, such as Viz or the MI Browser.This paper describes the MI Toolkit in detail, as well as our experience using it with scientists at JPL during the primary MER mission. ?? 2005 IEEE.

  12. Enabling UAS Research at the NASA EAV Laboratory

    NASA Technical Reports Server (NTRS)

    Ippolito, Corey A.

    2015-01-01

    The Exploration Aerial Vehicles (EAV) Laboratory at NASA Ames Research Center leads research into intelligent autonomy and advanced control systems, bridging the gap between simulation and full-scale technology through flight test experimentation on unmanned sub-scale test vehicles.

  13. The NASA - Arc 10/20 micron camera

    NASA Technical Reports Server (NTRS)

    Roellig, T. L.; Cooper, R.; Deutsch, L. K.; Mccreight, C.; Mckelvey, M.; Pendleton, Y. J.; Witteborn, F. C.; Yuen, L.; Mcmahon, T.; Werner, M. W.

    1994-01-01

    A new infrared camera (AIR Camera) has been developed at NASA - Ames Research Center for observations from ground-based telescopes. The heart of the camera is a Hughes 58 x 62 pixel Arsenic-doped Silicon detector array that has the spectral sensitivity range to allow observations in both the 10 and 20 micron atmospheric windows.

  14. Facilitating NASA Earth Science Data Processing Using Nebula Cloud Computing

    NASA Technical Reports Server (NTRS)

    Pham, Long; Chen, Aijun; Kempler, Steven; Lynnes, Christopher; Theobald, Michael; Asghar, Esfandiari; Campino, Jane; Vollmer, Bruce

    2011-01-01

    Cloud Computing has been implemented in several commercial arenas. The NASA Nebula Cloud Computing platform is an Infrastructure as a Service (IaaS) built in 2008 at NASA Ames Research Center and 2010 at GSFC. Nebula is an open source Cloud platform intended to: a) Make NASA realize significant cost savings through efficient resource utilization, reduced energy consumption, and reduced labor costs. b) Provide an easier way for NASA scientists and researchers to efficiently explore and share large and complex data sets. c) Allow customers to provision, manage, and decommission computing capabilities on an as-needed bases

  15. Comparison of the NASA Common Research Model European Transonic Wind Tunnel Test Data to NASA Test Data

    NASA Technical Reports Server (NTRS)

    Rivers, Melissa B.; Quest, Jurgen; Rudnik, Ralf

    2015-01-01

    Experimental aerodynamic investigations of the NASA Common Research Model have been conducted in the NASA Langley National Transonic Facility, the NASA Ames 11-ft wind tunnel, and the European Transonic Wind Tunnel. In the NASA Ames 11-ft wind tunnel, data have been obtained at only a chord Reynolds number of 5 million for a wing/body/tail = 0 degree incidence configuration. Data have been obtained at chord Reynolds numbers of 5, 19.8 and 30 million for the same configuration in the National Transonic Facility and in the European Transonic Facility. Force and moment, surface pressure, wing bending and twist, and surface flow visualization data were obtained in all three facilities but only the force and moment, surface pressure and wing bending and twist data are presented herein.

  16. Comparison of the NASA Common Research Model European Transonic Wind Tunnel Test Data to NASA Test Data

    NASA Technical Reports Server (NTRS)

    Rivers, Melissa; Quest, Juergen; Rudnik, Ralf

    2015-01-01

    Experimental aerodynamic investigations of the NASA Common Research Model have been conducted in the NASA Langley National Transonic Facility, the NASA Ames 11-ft wind tunnel, and the European Transonic Wind Tunnel. In the NASA Ames 11-ft wind tunnel, data have been obtained at only a chord Reynolds number of 5 million for a wing/body/tail = 0 degree incidence configuration. Data have been obtained at chord Reynolds numbers of 5, 19.8 and 30 million for the same configuration in the National Transonic Facility and in the European Transonic Facility. Force and moment, surface pressure, wing bending and twist, and surface flow visualization data were obtained in all three facilities but only the force and moment and surface pressure data are presented herein.

  17. The NASA/Army Autonomous Rotorcraft Project

    NASA Technical Reports Server (NTRS)

    Whalley, M.; Freed, M.; Takahashi, M.; Christian, D.; Patterson-Hine, A.; Schulein, G.; Harris, R.

    2002-01-01

    An overview of the NASA Ames Research Center Autonomous Rotorcraft Project (ARP) is presented. The project brings together several technologies to address NASA and US Army autonomous vehicle needs, including a reactive planner for mission planning and execution, control system design incorporating a detailed understanding of the platform dynamics, and health monitoring and diagnostics. A candidate reconnaissance and surveillance mission is described. The autonomous agent architecture and its application to the candidate mission are presented. Details of the vehicle hardware and software development are provided.

  18. NASA's Single-Pilot Operations Technical Interchange Meeting: Proceedings and Findings

    NASA Technical Reports Server (NTRS)

    Comerford, Doreen; Brandt, Summer L.; Lachter, Joel B.; Wu, Shu-Chieh; Mogford, Richard H.; Battiste, Vernol; Johnson, Walter W.

    2013-01-01

    Researchers at the National Aeronautics and Space Administration (NASA) Ames Research Center and Langley Research Center are jointly investigating issues associated with potential concepts, or configurations, in which a single pilot might operate under conditions that are currently reserved for a minimum of two pilots. As part of early efforts, NASA Ames Research Center hosted a technical interchange meeting in order to gain insight from members of the aviation community regarding single-pilot operations (SPO). The meeting was held on April 10-12, 2012 at NASA Ames Research Center. Professionals in the aviation domain were invited because their areas of expertise were deemed to be directly related to an exploration of SPO. NASA, in selecting prospective participants, attempted to represent various relevant sectors within the aviation domain. Approximately 70 people representing government, academia, and industry attended. A primary focus of this gathering was to consider how tasks and responsibilities might be re-allocated to allow for SPO.

  19. NASA's Use of Human Behavior Models for Concept Development and Evaluation

    NASA Technical Reports Server (NTRS)

    Gore, Brian F.

    2012-01-01

    Overview of NASA's use of computational approaches and methods to support research goals, of human performance models, with a focus on examples of the methods used in Code TH and TI at NASA Ames, followed by an in depth review of MIDAS' current FAA work.

  20. NASA Conference on Aircraft Operating Problems: A Compilation of the Papers Presented

    NASA Technical Reports Server (NTRS)

    1965-01-01

    This compilation includes papers presented at the NASA Conference on Aircraft Operating Problems held at the Langley Research Center on May 10 - 12, 1965. Contributions were made by representatives of the Ames Research Center, the Flight Research Center, end the Langley Research Center of NASA, as well as by representatives of the Federal Aviation Agency.

  1. Processing Earth Observing images with Ames Stereo Pipeline

    NASA Astrophysics Data System (ADS)

    Beyer, R. A.; Moratto, Z. M.; Alexandrov, O.; Fong, T.; Shean, D. E.; Smith, B. E.

    2013-12-01

    ICESat with its GLAS instrument provided valuable elevation measurements of glaciers. The loss of this spacecraft caused a demand for alternative elevation sources. In response to that, we have improved our Ames Stereo Pipeline (ASP) software (version 2.1+) to ingest satellite imagery from Earth satellite sources in addition to its support of planetary missions. This enables the open source community a free method to generate digital elevation models (DEM) from Digital Globe stereo imagery and alternatively other cameras using RPC camera models. Here we present details of the software. ASP is a collection of utilities written in C++ and Python that implement stereogrammetry. It contains utilities to manipulate DEMs, project imagery, create KML image quad-trees, and perform simplistic 3D rendering. However its primary application is the creation of DEMs. This is achieved by matching every pixel between the images of a stereo observation via a hierarchical coarse-to-fine template matching method. Matched pixels between images represent a single feature that is triangulated using each image's camera model. The collection of triangulated features represents a point cloud that is then grid resampled to create a DEM. In order for ASP to match pixels/features between images, it requires a search range defined in pixel units. Total processing time is proportional to the area of the first image being matched multiplied by the area of the search range. An incorrect search range for ASP causes repeated false positive matches at each level of the image pyramid and causes excessive processing times with no valid DEM output. Therefore our system contains automatic methods for deducing what the correct search range should be. In addition, we provide options for reducing the overall search range by applying affine epipolar rectification, homography transform, or by map projecting against a prior existing low resolution DEM. Depending on the size of the images, parallax, and image

  2. Results of the NASP Ames Integrated Mixing Hypersonic Engine (AIMHYE) Scramjet Test Program

    NASA Technical Reports Server (NTRS)

    Cavolowsky, John A.; Loomis, Mark P.; Deiwert, George S.

    1995-01-01

    This paper describes the test techniques and results from the National Aerospace Plane Government Work Package 53, the Ames Integrated Mixing Hypersonic Engine (AIMHYE) Scramjet Test program conducted in the NASA Ames 16-Inch Combustion Driven Shock Tunnel. This was a series of near full-scale scramjet combustor tests with the objective to obtain high speed combustor and nozzle data from an engine with injector configurations similar to the NASP E21 and E22a designs. The experimental test approach was to use a large combustor model (80-100% throat height) designed and fabricated for testing in the semi-free jet mode. The conditions tested were similar to the "blue book" conditions at Mach 12, 14, and 16. GWP 53 validated use of large, long test time impulse facilities, specifically the Ames 16-Inch Shock Tunnel, for high Mach number scramjet propulsion testing an integrated test rig (inlet, combustor, and nozzle). Discussion of key features of the test program will include: effects of the 2-D combustor inlet pressure profile; performance of large injectors' fueling system that included nozzlettes, base injection, and film cooling; and heat transfer measurements to the combustor. Significant instrumentation development and application efforts include the following: combustor force balance application for measurement of combustor drag for comparison with integrated point measurements of skin friction; nozzle metric strip for measuring thrust with comparison to integrated pressure measurements; and nonintrusive optical fiber-based diode laser absorption measurements of combustion products for determination of combustor performance. Direct measurements will be reported for specific test article configurations and compared with CFD solutions.

  3. NASA Network

    NASA Technical Reports Server (NTRS)

    Carter, David; Wetzel, Scott

    2000-01-01

    The NASA Network includes nine NASA operated and partner operated stations covering North America, the west coast of South America, the Pacific, and Western Australia . A new station is presently being setup in South Africa and discussions are underway to add another station in Argentina. NASA SLR operations are supported by Honeywell Technical Solutions, Inc (HTSI), formally AlliedSignal Technical Services, The University of Texas, the University of Hawaii and Universidad Nacional de San Agustin.

  4. 1998 NASA-ASEE-Stanford Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This report presents the essential features and highlights of the 1998 Summer Faculty Fellowship Program at Ames Research Center and Dryden Flight Research Center in a comprehensive and concise form. Summary reports describing the fellows' technical accomplishments are enclosed in the attached technical report. The proposal for the 1999 NASA-ASEE-Stanford Summer Faculty Fellowship Program is being submitted under separate cover. Of the 31 participating fellows, 27 were at Ames and 4 were at Dryden. The Program's central feature is the active participation by each fellow in one of the key technical activities currently under way at either the NASA Ames Research Center or the NASA Dryden Flight Research Center. The research topic is carefully chosen in advance to satisfy the criteria of: (1) importance to NASA, (2) high technical level, and (3) a good match to the interests, ability, and experience of the fellow, with the implied possibility of NASA-supported follow-on work at the fellow's home institution. Other features of the Summer Faculty Fellowship Program include participation by the fellows in workshops and seminars at Stanford, the Ames Research Center, and other off-site locations. These enrichment programs take place either directly or remotely, via the Stanford Center for Professional Development, and also involve specific interactions between fellows and Stanford faculty on technical and other academic subjects. A few, brief remarks are in order to summarize the fellows' opinions of the summer program. It is noteworthy that 90% of the fellows gave the NASA-Ames/Dryden- Stanford program an "excellent" rating and the remaining 10%, "good." Also, 100% would recommend the program to their colleagues as an effective means of furthering their professional development as teachers and researchers. Last, but not least, 87% of the fellows stated that a continuing research relationship with their NASA colleagues' organization probably would be maintained. Therefore

  5. NASA Solve

    NASA Video Gallery

    NASA Solve lists opportunities available to the general public to contribute to solving tough problems related to NASA’s mission through challenges, prize competitions, and crowdsourcing activities...

  6. Innovation @ NASA

    NASA Technical Reports Server (NTRS)

    Roman, Juan A.

    2014-01-01

    This presentation provides an overview of the activities National Aeronautics and Space Administration (NASA) is doing to encourage innovation across the agency. All information provided is available publicly.

  7. NASA Carbon Monitoring System Program

    NASA Astrophysics Data System (ADS)

    Kaye, J. A.; Doorn, B.; Jucks, K. W.; Wickland, D. E.; Bontempi, P. S.; "Nasa CMS Pilot Product; Scoping Study Teams"

    2010-12-01

    NASA has recently begun a focused program to provide products on the amount and distribution of carbon reservoirs and fluxes in the global environment informed by the increasing global observational capability for these quantities developed by NASA and its interagency and international partners. This program, known as a Carbon Monitoring System (CMS), serves as a user-responsive, product-oriented overlay onto the existing observational, modeling, and research programs sponsored by NASA's Earth Science Division (ESD). Initial emphasis is on two pilot products - one on terrestrial biomass and one on integrated emission/uptake ("flux"), as well as a "scoping study" that will enable longer-term planning built around the increasing global observational capability NASA expects to be launching in the next few years (e.g., Landsat Data Continuity Mission in 2012, reflight of Orbiting Carbon Observatory in 2013, decadal survey missions including ICESat-II in 2015 and DESDynI in 2017). Initial efforts on the pilot products are based largely at three NASA centers (Ames, Goddard, Jet Propulsion Laboratory), but will draw on the broader expertise of the research community through workshops (e.g., one held in Boulder in July, 2010) as well as a planned solicitation for a Science Definition Team to provide broader guidance into the development, evaluation, and future evolution of the pilot products. The NASA CMS activity, with its emphasis on utilization of NASA remote-sensing data, will complement related efforts of other Federal agencies; coordination with other agencies will be carried out through the US Global Change Research Program. In this talk, steps taken to initiate this activity in FY2010 and plans for its evolution into the future will be presented.

  8. Differential efficacy of GoSlo-SR compounds on BKα and BKαγ1-4 channels.

    PubMed

    Kshatri, Aravind S; Li, Qin; Yan, Jiusheng; Large, Roddy J; Sergeant, Gerard P; McHale, Noel G; Thornbury, Keith D; Hollywood, Mark A

    2017-01-02

    Large conductance, voltage and Ca(2+) activated K(+) channels (BK channels) are abundantly expressed throughout the body and are important regulators of smooth muscle tone and neuronal excitability. Their dysfunction is implicated in various diseases including overactive bladder, hypertension and erectile dysfunction. Therefore, BK channel openers bear significant therapeutic potential to treat the above diseases. GoSlo-SR compounds were designed to be potent and efficacious BK channel openers. Although their structural activity relationships, activation in both BKα and BKαβ channels and the hypothetical mode of action of these compounds has been studied in detail in recent years, their effectiveness to open the BKαγ channels still remains unexplored. In this study, we have examined the efficacy of 3 closely related GoSlo-SR openers, GoSlo-SR-5-6 (SR-5-6), GoSlo-SR-5-44 (SR-5-44) and GoSlo-SR-5-130 (SR-5-130) using inside out patches on BKα channels coexpressed with 4 different LRRC (γ1-4) subunits in HEK293 cells. Our data suggests that the activation effects due to SR-5-6 were not significantly affected in the presence of γ1-4 subunits. Interestingly, the effects of more efficacious BK channel opener SR-5-44 were altered by different γ subunits. In cells expressing BKα channels, the shift in V1/2 (ΔV1/2) induced by SR-5-44 (3 μM) was -76 ± 3 mV, whereas it was significantly reduced by ∼70 % in BKαγ1 channels (ΔV1/2= -23 ± 3, p < 0.001, ANOVA). In BKαγ2 channels the ΔV1/2 was -36 ± 1 mV, which was less than that observed in BKαγ3 and BKαγ4 channels where the ΔV1/2 was -47 ± 5 mV, and -82 ± 5 mV, respectively. Additionally, the excitatory effects of a 'β specific' BK channel opener, SR-5-130 were only partially restored in the patches containing BKαγ1-4 channels. Together this data highlights that subtle modifications in GoSlo-SR structures alter their effectiveness on BK channels with accessory γ subunits and this study might provide a scaffold for the development of more tissue specific BK channel openers.

  9. Supersonic Retropropulsion CFD Validation with Ames Unitary Plan Wind Tunnel Test Data

    NASA Technical Reports Server (NTRS)

    Schauerhamer, Daniel G.; Zarchi, Kerry A.; Kleb, William L.; Edquist, Karl T.

    2013-01-01

    A validation study of Computational Fluid Dynamics (CFD) for Supersonic Retropropulsion (SRP) was conducted using three Navier-Stokes flow solvers (DPLR, FUN3D, and OVERFLOW). The study compared results from the CFD codes to each other and also to wind tunnel test data obtained in the NASA Ames Research Center 90 70 Unitary PlanWind Tunnel. Comparisons include surface pressure coefficient as well as unsteady plume effects, and cover a range of Mach numbers, levels of thrust, and angles of orientation. The comparisons show promising capability of CFD to simulate SRP, and best agreement with the tunnel data exists for the steadier cases of the 1-nozzle and high thrust 3-nozzle configurations.

  10. Ames test results on shot-tank residues

    SciTech Connect

    Bloom, G.H.

    1990-09-21

    In August 1987, a routine Ames test on soot from the Lawrence Livermore National Laboratory (LLNL) 4-in. gun showed that the soot was mutagenic to Salmonella bacteria. Subsequent liquid chromatography on the soot showed that, out of hundreds of ultravoilet-absorbing compounds found in the residue, only three or four were mutagenic. When a sample large enough to weigh was collected, it was found that No environmentally identified complex mixture has ever been reported with as much Ames/Salmonella activity per gram as the gun residues.'' Since then, Ames tests of hundreds of samples have verified that the residues from our gun tanks may be hazardous to health. The actual degree of the hazard and the identity of the offending chemicals are still unknown. 2 refs.

  11. Study of optical techniques for the Ames unitary wind tunnels. Part 2: Light sheet and vapor screen

    NASA Technical Reports Server (NTRS)

    Lee, George

    1992-01-01

    Light sheet and vapor screen methods have been studied with particular emphasis on those systems that have been used in large transonic and supersonic wind tunnels. The various fluids and solids used as tracers or light scatters and the methods for tracing generation have been studied. Light sources from high intensity lamps and various lasers have been surveyed. Light sheet generation and projection methods were considered. Detectors and location of detectors were briefly studied. A vapor screen system and a technique for location injection of tracers for the NASA Ames 9 by 7 foot Supersonic Wind Tunnel were proposed.

  12. A study of the noise radiation from four helicopter rotor blades. [tests in Ames 40 by 20 foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Lee, A.; Mosher, M.

    1978-01-01

    Acoustic measurements were taken of a modern helicopter rotor with four blade tip shapes in the NASA Ames 40-by-80-Foot Wind Tunnel. The four tip shapes are: rectangular, swept, trapezoidal, and swept tapered in platform. Acoustic effects due to tip shape changes were studied based on the dBA level, peak noise pressure, and subjective rating. The swept tapered blade was found to be the quietest above an advancing tip Mach number of about 0.9, and the swept blade was the quietest at low speed. The measured high speed impulsive noise was compared with theoretical predictions based on thickness effects; good agreement was found.

  13. NASA Vision

    NASA Technical Reports Server (NTRS)

    Prior, Edwin J.

    2003-01-01

    The political, economic, and enivronmental conditions of the twenty-first century demand new goals for NASA. These goals include the imaging of habitable extrasolar planets, expanded commercialization of low earth orbit, clean and rapid air transportation, environment protection, and distance learning. The presentation recommends strategies for pursuing these goals, and summarizes activities at NASA Langley Research Center (LaRC).

  14. A review of recent programs and future plans for rotorcraft in-flight simulation at Ames Research Center

    NASA Technical Reports Server (NTRS)

    Eshow, Michelle M.; Aiken, Edwin W.; Hindson, William S.; Lebacqz, J. V.; Denery, Dallas G.

    1991-01-01

    A new flight research vehicle, the Rotorcraft-Aircrew Systems Concepts Airborne Laboratory (RASCAL), is being developed by the U.S. Army and NASA at Ames Research Center. The requirements for this new facility stem from a perception of rotorcraft system technology requirements for the next decade together with operational experience with the CH-47B research helicopter that was operated as an in-flight simulator at Ames during the past 10 years. Accordingly, both the principal design features of the CH-47B variable-stability system and the flight-control and cockpit-display programs that were conducted using this aircraft at Ames are reviewed. Another U.S. Army helicopter, a UH-60A Black Hawk, has been selected as the baseline vehicle for the RASCAL. The research programs that influence the design of the RASCAL are summarized, and the resultant requirements for the RASCAL research system are described. These research programs include investigations of advanced, integrated control concepts for achieving high levels of agility and maneuverability, and guidance technologies, employing computer/sensor-aiding, designed to assist the pilot during low-altitude flight in conditions of limited visibility. The approach to the development of the new facility is presented and selected plans for the preliminary design of the RASCAL are described.

  15. Axisymmetric & non-axisymmetric exhaust jet induced-effects on a V/STOL vehicle design. Part 1: Data presentation. [conducted in Ames 11-foot transonic tunnel

    NASA Technical Reports Server (NTRS)

    Schnell, W. C.; Ordonez, G. W.

    1981-01-01

    A 1/8 scale jet-effects model was tested in the NASA Ames 11 ft transonic tunnel at static conditions and over a range of Mach numbers from 0.4 to 1.4. The data presented show that significant differences in aeropropulsion performance can be expected by varying the exhaust nozzle type and its geometric parameters on a V/STOL underwing nacelle installation.

  16. Proceedings of the NASA Laboratory Astrophysics Workshop

    NASA Technical Reports Server (NTRS)

    Weck, Phillippe F. (Editor); Kwong, Victor H. S. (Editor); Salama, Farid (Editor)

    2006-01-01

    This report is a collection of papers presented at the 2006 NASA Workshop on Laboratory Astrophysics held in the University of Nevada, Las Vegas (UNLV) from February 14 to 16, 2006. This workshop brings together producers and users of laboratory astrophysics data so that they can understand each other's needs and limitations in the context of the needs for NASA's missions. The last NASA-sponsored workshop was held in 2002 at Ames Research Center. Recent related meetings include the Topical Session at the AAS meeting and the European workshop at Pillnitz, Germany, both of which were held in June 2005. The former showcased the importance of laboratory astrophysics to the community at large, while the European workshop highlighted a multi-laboratory approach to providing the needed data. The 2006 NASA Workshop on Laboratory Astrophysics, sponsored by the NASA Astrophysics Division, focused on the current status of the field and its relevance to NASA. This workshop attracted 105 participants and 82 papers of which 19 were invited. A White Paper identifying the key issues in laboratory astrophysics during the break-out sessions was prepared by the Scientific Organizing Committee, and has been forwarded to the Universe Working Group (UWG) at NASA Headquarters. This White Paper, which represented the collective inputs and opinions from experts and stakeholders in the field of astrophysics, should serve as the working document for the future development of NASA's R&A program in laboratory astrophysics.

  17. The Pilot Land Data System (PLDS) at the Ames Research Center manages aircraft data in collaboration with an ecosystem research project

    NASA Technical Reports Server (NTRS)

    Angelici, Gary; Popovici, Lidia; Skiles, Jay

    1991-01-01

    The Pilot Land Data System (PLDS) is a data and information system serving NASA-supported investigators in the land science community. The three nodes of the PLDS, one each at the Ames Research Center (ARC), the Goddard Space Flight Center (GSFC) and the Jet Propulsion Laboratory (JPL), cooperate in providing consistent information describing the various data holding in the hardware and software (accessible via network and modem) that provide information about and access to PLDS-held data, which is available for distribution. A major new activity of the PLDS node at the Ames Research Center involves the interaction of the PLDS with an active NASA ecosystem science project, the Oregon Transect Ecosystems Research involves the management of, access to, and distribution of the large volume of widely-varying aircraft data collected by OTTER. The OTTER project, is managed by researchers at the Ames Research Center and Oregon State University. Its principal objective is to estimate major fluxes of carbon, nitrogen, and water of forest ecosystems using an ecosystem process model driven by remote sensing data. Ten researchers at NASA centers and universities are analyzing data for six sites along a temperature-moisture gradient across the western half of central Oregon (called the Oregon Transect). Sensors mounted on six different aircraft have acquired data over the Oregon Transect in support of the OTTER project.

  18. Field Trial Results of a 14-channel GPR Integrated with a U.S. Program for 3-D Utility Mapping

    NASA Astrophysics Data System (ADS)

    Anspach, James H.

    2013-04-01

    Existing underground utilities continue to be a leading cause of highway construction delay claims in the United States. Although 80-90% of existing utilities can typically be discovered and mapped using a wide range of geophysical tools, there is a recognizable need to improve the process. Existing shortcomings to the utility mapping process include a lack of viable depth attributes, long field occupation times, low experience level of the field technicians, and separate survey / geophysics functions. The U.S. National Academies and its Transportation Research Board recently concluded a project on alleviating the existing utility mapping shortcomings through the development of enhanced GPR. An existing commercial 400MHz 14-channel towed array was enhanced with positioning and interpretation hardware and software over a 3-year US 2M program. Field trials for effectiveness were conducted in a city suburb commercialized environment where the relative permittivity values averaged 9.4. The effectiveness of enhanced GPR was compared to traditional utility mapping techniques (Single Channel GPR, FDEM, Acoustic, Sondes, Gradiometric Magnetometers) during the project. The project area utilities included natural gas, water, electric, telephone, cable, storm, sanitary, traffic control, and several unknown function lines. Depths for these utilities were mostly unknown. 81% of known (from records and field appurtenance visual observation) utilities were detected via traditional geophysical means. These traditional geophysical means also detected 14% additional and previously "unknown" utilities. The enhanced GPR detected approximately 40% of the known and unknown utilities, and found an additional 6% of utilities that were previously undetected. These additional utilities were subsequently determined to be small diameter abandoned water and gas systems in very poor and broken condition. Although it did well with metallic water and gas lines, communication and electric

  19. Wind-Tunnel Capability at Ames Research Center

    NASA Technical Reports Server (NTRS)

    Snyder, C. T.; Presley, L. L.

    1987-01-01

    Report describes $700 million wind-tunnel complex at Ames Research Center, including auxiliary support systems, test instrumentation, and special test rigs. Planned near-term facility improvement aimed at providing new test capabilities and increased productivity, as well as some potential longer-term improvements, also discussed. Aerodynamic test facilities range from subsonic wind tunnels to highenthalpy arc jets.

  20. The 1994 Ames Research Center publications: A bibliography

    NASA Technical Reports Server (NTRS)

    Scarich, Shelley J. (Editor)

    1995-01-01

    This document is a compilation of the scientific and technical information that Ames Research Center has produced during the calendar year 1994. Included are citations for formal reports, high-number conference publications, high-number technical memorandums, contractor reports, journal articles, meeting presentation, tech briefs, patents, and translations.

  1. Ames Laboratory site environmental report, calendar year 1995

    SciTech Connect

    1997-01-01

    This report summarizes the environmental status of Ames Laboratory for calendar year 1995. It includes descriptions of the Laboratory site, its mission, the status of its compliance with applicable environmental regulations, its planning and activities to maintain compliance, and a comprehensive review of its environmental protection, surveillance and monitoring programs.

  2. Ames Selective Dissemination of Information (SDI) System Operating Manual.

    ERIC Educational Resources Information Center

    Anderson, Lloyd E.; Wegner, Waldo W.

    The Ames Selective Dissemination of Information (SDI) System is an attempt to efficiently place rapidly increasing amounts of information into the hands of scientists and engineers who can exploit it. It is a computerized current awareness system designed to increase researchers' literature searching capabilities by bringing to their attention…

  3. Ames Director William 'Bill' Ballhaus (center left) joins visitor Sir Jeffrey Pope from Royla

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Ames Director William 'Bill' Ballhaus (center left) joins visitor Sir Jeffrey Pope from Royla Aircraft Industry, England (center right) at the NAS Facility Cray 2 computer with Ron Deiss, NAS Deputy Manager (L) and Vic Peterson, Ames Deputy Director (R).

  4. NASA Facts: SporeSat

    NASA Technical Reports Server (NTRS)

    Martinez, Andres; Cappuccio, Gelsomina; Tomko, David

    2013-01-01

    SporeSat is an autonomous, free-flying three-unit (3U) spacecraft that will be used to conduct scientific experiments to gain a deeper knowledge of the mechanisms of plant cell gravity sensing. SporeSat is being developed through a partnership between NASAs Ames Research Center and the Department of Agricultural and Biological Engineering at Purdue University. Amani Salim and Jenna L. Rickus are the Purdue University Principal Investigators. The SporeSat mission will be flown using a 3U nanosatellite weighing approximately 12 pounds and measuring 14 inches long by 4 inches wide by 4 inches tall. SporeSat will utilize flight-proven spacecraft technologies demonstrated on prior Ames nanosatellite missions such as PharmaSat and OrganismOrganic Exposure to Orbital Stresses (OOREOS) as well as upgrades that increase the hardware integration capabilities with SporeSat science instrumentation. In addition, the SporeSat science payload will serve as a technology platform to evaluate new microsensor technologies for enabling future fundamental biology missions.

  5. Sikorsky UH-60 (USA 82-23748 NASA-748) Air-loads research aircraft - Blackhawk helicopter with

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Sikorsky UH-60 (USA 82-23748 NASA-748) Air-loads research aircraft - Blackhawk helicopter with MUX-Bucket in flight Note: Used in publication in Flight Research at Ames; 57 Years of Development and Validation of Aeronautical Technology NASA SP-1998-3300 fig. 135

  6. NASA Vision

    NASA Technical Reports Server (NTRS)

    Fenton, Mary (Editor); Wood, Jennifer (Editor)

    2003-01-01

    This newsletter contains several articles, primarily on International Space Station (ISS) crewmembers and their activities, as well as the activities of NASA administrators. Other subjects covered in the articles include the investigation of the Space Shuttle Columbia accident, activities at NASA centers, Mars exploration, a collision avoidance test on a unmanned aerial vehicle (UAV). The ISS articles cover landing in a Soyuz capsule, photography from the ISS, and the Expedition Seven crew.

  7. NASA/ESA CV-990 spacelab simulation

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Due to interest in the application of simplified techniques used to conduct airborne science missions at NASA's Ames Research Center, a joint NASA/ESA endeavor was established to conduct an extensive Spacelab simulation using the NASA CV-990 airborne laboratory. The scientific payload was selected to perform studies in upper atmospheric physics and infrared astronomy with principal investigators from France, the Netherlands, England, and several groups from the United States. Communication links between the 'Spacelab' and a ground based mission operations center were limited consistent with Spacelab plans. The mission was successful and provided extensive data relevant to Spacelab objectives on overall management of a complex international payload; experiment preparation, testing, and integration; training for proxy operation in space; data handling; multiexperimenter use of common experimenter facilities (telescopes); multiexperiment operation by experiment operators; selection criteria for Spacelab experiment operators; and schedule requirements to prepare for such a Spacelab mission.

  8. 76 FR 22900 - Decision To Evaluate a Petition To Designate a Class of Employees From Ames Laboratory in Ames...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-25

    ... Employees Occupational Illness Compensation Program Act of 2000. The initial proposed definition for the class being evaluated, subject to revision as warranted by the evaluation, is as follows: Facility: Ames.... Period of Employment: January 1, 1942 through December 31, 1970. FOR FURTHER INFORMATION CONTACT:...

  9. Fisher Ames and Political Judgment: Reason, Passion, and Vehement Style in the Jay Treaty Speech.

    ERIC Educational Resources Information Center

    Farrell, James M.

    1990-01-01

    Analyzes Fisher Ames' fiery speech of 1796 on the Jay Treaty. Demonstrates the influence of Scottish enlightenment thinkers (particularly in moral sense philosophy and faculty psychology) on Ames and his rhetoric. Demonstrates how Ames made a compelling case to shift the standard of political judgment from reason to passion. (SR)

  10. NASA's Lunar Impact Monitoring Program

    NASA Technical Reports Server (NTRS)

    Suggs, Robert M.; Cooke, William; Swift, Wesley; Hollon, Nicholas

    2007-01-01

    NASA's Meteoroid Environment Office nas implemented a program to monitor the Moon for meteoroid impacts from the Marshall Space Flight Center. Using off-the-shelf telescopes and video equipment, the moon is monitored for as many as 10 nights per month, depending on weather. Custom software automatically detects flashes which are confirmed by a second telescope, photometrically calibrated using background stars, and published on a website for correlation with other observations, Hypervelocity impact tests at the Ames Vertical Gun Facility have been performed to determine the luminous efficiency ana ejecta characteristics. The purpose of this research is to define the impact ejecta environment for use by lunar spacecraft designers of the Constellation (manned lunar) Program. The observational techniques and preliminary results will be discussed.

  11. Exobiology in Earth orbit: The results of science workshops held at NASA, Ames Research Center

    NASA Technical Reports Server (NTRS)

    Defrees, D. (Editor); Brownlee, D. (Editor); Tarter, J. (Editor); Usher, D. (Editor); Irvine, W. (Editor); Klein, H. (Editor)

    1989-01-01

    The Workshops on Exobiology in Earth Orbit were held to explore concepts for orbital experiments of exobiological interest and make recommendations on which classes of experiments should be carried out. Various observational and experimental opportunities in Earth orbit are described including those associated with the Space Shuttle laboratories, spacecraft deployed from the Space Shuttle and expendable launch vehicles, the Space Station, and lunar bases. Specific science issues and technology needs are summarized. Finally, a list of recommended experiments in the areas of observational exobiology, cosmic dust collection, and in situ experiments is presented.

  12. Recent developments in rotary-balance testing of fighter aircraft configurations at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Malcolm, G. N.; Schiff, L. B.

    1985-01-01

    Two rotary balance apparatuses were developed for testing airplane models in a coning motion. A large scale apparatus, developed for use in the 12-Foot Pressure Wind tunnel primarily to permit testing at high Reynolds numbers, was recently used to investigate the aerodynamics of 0.05-scale model of the F-15 fighter aircraft. Effects of Reynolds number, spin rate parameter, model attitude, presence of a nose boom, and model/sting mounting angle were investigated. A smaller apparatus, which investigates the aerodynamics of bodies of revolution in a coning motion, was used in the 6-by-6 foot Supersonic Wind Tunnel to investigate the aerodynamic behavior of a simple representation of a modern fighter, the Standard Dynamic Model (SDM). Effects of spin rate parameter and model attitude were investigated. A description of the two rigs and a discussion of some of the results obtained in the respective test are presented.

  13. Evaluation of the Rotational Throttle Interface for Converting Aircraft Utilizing the NASA Ames Vertical Motion Simulator

    NASA Technical Reports Server (NTRS)

    Rozovski, David; Theodore, Colin R.

    2011-01-01

    An experiment was conducted to compare a conventional helicopter Thrust Control Lever (TCL) to the Rotational Throttle Interface (RTI) for tiltrotor aircraft. The RTI is designed to adjust its orientation to match the angle of the tiltrotor s nacelles. The underlying principle behind the design is to increase pilot awareness of the vehicle s configuration state (i.e. nacelle angle). Four test pilots flew multiple runs on seven different experimental courses. Three predominant effects were discovered in the testing of the RTI: 1. Unintentional binding along the control axis resulted in difficulties with precision power setting, 2. Confusion in which way to move the throttle grip was present during RTI transition modes, and 3. Pilots were not able to distinguish small angle differences during RTI transition. In this experiment the pilots were able to successfully perform all of the required tasks with both inceptors although the handling qualities ratings were slightly worse for the RTI partly due to unforeseen deficiencies in the design. Pilots did however report improved understanding of nacelle movement during transitions with the RTI.

  14. A new 3D LDV system for the NASA Ames 6 x 6 ft. wind tunnel

    NASA Technical Reports Server (NTRS)

    Owen, F. K.; Orngard, G. M.; Mcdevitt, T. K.

    1985-01-01

    An obvious extension of wind tunnel laser Doppler velocimetry (LDV), which is currently mainly limited to two-component measurements, would involve the measurement of three simultaneous velocity components. The present paper is concerned with an approach to reduce the degree of optical complexity involved in the design of a three-dimensional (3D) LDV system, taking into account the use of polarization separation. Such a system, utilizing polarization as well as color separation, has been designed and tested in a 6 x 6 foot supersonic wind tunnel. The considered instrument was designed for the on line measurement of three mean velocity components, turbulence levels, and shear stresses on a number of models under a wide variety of test conditions. Attention is given to optical details, data reduction, and sample application.

  15. Proceedings of the 1985 NASA Ames Research Center's Ground-Effects Workshop

    NASA Technical Reports Server (NTRS)

    Mitchell, Kerry (Editor)

    1987-01-01

    The purpose of the workshop was to discuss the current technology base for aerodynamic ground effects and to establish directions for further research of advanced, high performance aircraft designs, particularly those concepts utilizing powered lift systems; e.g., V/STOL, ASTOVL, and STOL aircraft. Fourteen papers were presented in the following areas: suckdown and fountain effects in hover; STOL ground vortex and hot gas ingestion; and vortex lift and jet flaps in ground effect. These subject areas were chosen with regard to current activities in the field of aircraft ground effects research.

  16. Prediction of orbiter RSI tile gap heating ratios from NASA/Ames double wedge model test

    NASA Technical Reports Server (NTRS)

    1978-01-01

    In-depth gap heating ratios for Orbiter RSI tile sidewalls were predicted based on near steady state temperature measurements obtained from double wedge model tests. An analysis was performed to derive gap heating ratios which would result in the best fit of test data; provide an assessment of open gap response, and supply the definition of gap filler requirements on the Orbiter. A comparison was made of these heating ratios with previously derived ratios in order to verify the extrapolation of the wing glove data to Orbiter flight conditions. The analysis was performed with the Rockwell TPS Multidimensional Heat Conduction Program for a 3-D, 2.0-inch thick flat RSI tile with 255 nodal points. The data from 14 tests was used to correlate with the analysis. The results show that the best-fit heating ratios at the station farthest upstream on the model for most gap depths were less than the extrapolated values of the wing glove model heating ratios. For the station farthest downstream on the model, the baseline heating ratios adequately predicted or over-predicted the test data.

  17. Flow Quality Survey of the NASA Ames 11-by 11-Ft Transonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Amaya, Max A.

    2011-01-01

    New baseline turbulence levels have been measured using a new CTA and new hot-wire sensors. Levels remain the same as measured in 1999. Data and methodology documented (almost). New baseline acoustics levels have been measured up to Mach 1.35. -Levels are higher than reported in 1999. -Data and methodology documented (almost). Application of fairings to the strut trailing edge showed up to a 10% reduction in the tunnel background noise. Data analysis and documentation for publishing is ongoing.

  18. Fidelity Assessment of a UH-60A Simulation on the NASA Ames Vertical Motion Simulator

    DTIC Science & Technology

    1993-09-01

    lateral cyclic stick position, in. PIO pilot-induced oscillation blong longitudinal cyclic stick position, in. PSD power spectral density 6ped pedal...12 -10 60 -6 -0 20 ~~2o 40 60 80 100 12 10 6010 303 70 60 so 30 au T I I I /PT 1 -17 -180 -160 -140 -120 k1*00 100 120 140 160 180 UO - iO 11 20 so X A...4) (Continued). 00286 50 100 S0 250 . .. . . . 0 5O IO ’K 0 i 0 0 20 40 G0 Time (s9c) Figure C-i18. Dash/quick-stop time history data for flight

  19. The NASA-AMES Research Center Stratospheric Aerosol Model. 1. Physical Processes and Computational Analogs

    NASA Technical Reports Server (NTRS)

    Turco, R. P.; Hamill, P.; Toon, O. B.; Whitten, R. C.; Kiang, C. S.

    1979-01-01

    A time-dependent one-dimensional model of the stratospheric sulfate aerosol layer is presented. In constructing the model, a wide range of basic physical and chemical processes are incorporated in order to avoid predetermining or biasing the model predictions. The simulation, which extends from the surface to an altitude of 58 km, includes the troposphere as a source of gases and condensation nuclei and as a sink for aerosol droplets. The size distribution of aerosol particles is resolved into 25 categories with particle radii increasing geometrically from 0.01 to 2.56 microns such that particle volume doubles between categories.

  20. NASA Ames potential flow analysis (POTFAN) geometry program (POTGEM), version 1

    NASA Technical Reports Server (NTRS)

    Medan, R. T.; Bullock, R. B.

    1976-01-01

    A computer program known as POTGEM is reported which has been developed as an independent segment of a three-dimensional linearized, potential flow analysis system and which is used to generate a panel point description of arbitrary, three-dimensional bodies from convenient engineering descriptions consisting of equations and/or tables. Due to the independent, modular nature of the program, it may be used to generate corner points for other computer programs.

  1. NASA Ames summary high school apprenticeship research program, 1983 research papers

    NASA Technical Reports Server (NTRS)

    Powell, P.

    1984-01-01

    Engineering enrollments are rising in universities; however, the graduate engineer shortage continues. Particularly, women and minorities will be underrepresented for years to come. As one means of solving this shortage, Federal agencies facing future scientific and technological challenges were asked to participate in the Summer High School Apprenticeship Research Program (SHARP). This program was created 4 years ago to provide an engineering experience for gifted female and minority high school students at an age when they could still make career and education decisions. The SHARP Program is designed for high school juniors (women and minorities) who are U.S. citizens, are 16 years old, and who have unusually high promise in mathematics and science through outstanding academic performance in high school. Students who are accepted into this summer program will earn as they learn by working 8 hours a day in a 5-day work week. This work-study program features weekly field trips, lectures and written reports, and job experience related to the student's career interests.

  2. Shock Tube and Ballistic Range Facilities at NASA Ames Research Center

    DTIC Science & Technology

    2010-04-01

    vacuum system over extended periods of time. This system can also be used to diagnose vacuum system failures. A programmable logic controller (PLC...Additional PMTs are installed for use as triggers for the imaging spectrograph cameras ; these PMTs use higher gain settings than the TOA PMTs to ensure...respectively. Each shadowgraph station is equipped with orthogonal-viewing parallel-light shadowgraph cameras and high-speed timers for recording the flight

  3. The Life Sciences program at the NASA Ames Research Center - An overview

    NASA Technical Reports Server (NTRS)

    Vernikos-Danellis, Joan; Sharp, Joseph C.

    1989-01-01

    The research projects planned for the Life Sciences program have a goal of answering basic questions concerning the nature of life itself and its evolution in the universe from basic elements, as well as the search for extraterrestrial intelligence. The program also includes studies of the evolution and development of life on the planet earth, and the global changes occurring today that affect life on the earth. The paper describes the simulation models developed to study the effects of space, the flight projects of the program, and the biomedical program, which currently focuses on the physiological changes in the human body that are associated with space flights and the interactions among these changes.

  4. Trajectory module of the NASA Ames Research Center aircraft synthesis program ACSYNT

    NASA Technical Reports Server (NTRS)

    Tauber, M. E.; Paterson, J. A.

    1978-01-01

    A program was developed to calculate trajectories for both military and commercial aircraft for use in the aircraft synthesis program, ACSYNT. The function of the trajectory module was to calculate the changes in the vehicle's flight conditions and weight, as fuel is consumed, during the flying of one or more missions. The trajectory calculations started with a takeoff, followed by up to 12 phases chosen from among the following: climb, cruise, acceleration, combat, loiter, descent, and paths. In addition, a balanced field length was computed. The emphasis was on relatively simple formulations and analytic expressions suitable for rapid computation since a prescribed trajectory had to be calculated many times in the process of converging an aircraft design, or finding an optimum configuration. The trajectory module consists of about 2500 cards and operational on a CDC 7600 computer.

  5. Modernization and Activation of the NASA Ames 11- by 11-Foot Transonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Kmak, Frank J.

    2000-01-01

    The Unitary Plan Wind Tunnel (UPWT) was modernized to improve performance, capability, productivity, and reliability. Automation systems were installed in all three UPWT tunnel legs and the Auxiliaries facility. Major improvements were made to the four control rooms, model support systems, main drive motors, and main drive speed control. Pressure vessel repairs and refurbishment to the electrical distribution system were also completed. Significant changes were made to improve test section flow quality in the 11-by 11-Foot Transonic leg. After the completion of the construction phase of the project, acceptance and checkout testing was performed to demonstrate the capabilities of the modernized facility. A pneumatic test of the tunnel circuit was performed to verify the structural integrity of the pressure vessel before wind-on operations. Test section turbulence, flow angularity, and acoustic parameters were measured throughout the tunnel envelope to determine the effects of the tunnel flow quality improvements. The new control system processes were thoroughly checked during wind-off and wind-on operations. Manual subsystem modes and automated supervisory modes of tunnel operation were validated. The aerodynamic and structural performance of both the new composite compressor rotor blades and the old aluminum rotor blades was measured. The entire subsonic and supersonic envelope of the 11-by 11-Foot Transonic leg was defined up to the maximum total pressure.

  6. Quality assurance software inspections at NASA Ames: Metrics for feedback and modification

    NASA Technical Reports Server (NTRS)

    Wenneson, G.

    1985-01-01

    Software inspections are a set of formal technical review procedures held at selected key points during software development in order to find defects in software documents--is described in terms of history, participants, tools, procedures, statistics, and database analysis.

  7. NASA Ames Summer High School Apprenticeship Research Program: 1986 research papers

    NASA Technical Reports Server (NTRS)

    Powell, Patricia

    1988-01-01

    Engineering enrollments are rising in universities; however the graduate engineering shortage continues. Particularly, women and minorities will be underrepresented for many years. As one means of solving this shortage, Federal agencies facing future scientific and technological challenges were asked to participate in the Summer High School Apprenticeship Research Program (SHARP). This program was created to provide an engineering experience for gifted female and minority high school students at an age when they could still make career and education decisions. The SHARP program is designed for high school juniors who are U.S. citizens, are 16 years old, and who have very high promise in math and science through outstanding academic performance in high school. Students who are accepted into this summer program will earn as they learn by working 8 hr days in a 5-day work week. Reports from SHARP students are presented.

  8. Computational Nanoelectronics and Nanotechnology at NASA ARC

    NASA Technical Reports Server (NTRS)

    Saini, Subhash; Kutler, Paul (Technical Monitor)

    1998-01-01

    Both physical and economic considerations indicate that the scaling era of CMOS will run out of steam around the year 2010. However, physical laws also indicate that it is possible to compute at a rate of a billion times present speeds with the expenditure of only one Watt of electrical power. NASA has long-term needs where ultra-small semiconductor devices are needed for critical applications: high performance, low power, compact computers for intelligent autonomous vehicles and Petaflop computing technology are some key examples. To advance the design, development, and production of future generation micro- and nano-devices, IT Modeling and Simulation Group has been started at NASA Ames with a goal to develop an integrated simulation environment that addresses problems related to nanoelectronics and molecular nanotechnology. Overview of nanoelectronics and nanotechnology research activities being carried out at Ames Research Center will be presented. We will also present the vision and the research objectives of the IT Modeling and Simulation Group including the applications of nanoelectronic based devices relevant to NASA missions.

  9. Computational Nanoelectronics and Nanotechnology at NASA ARC

    NASA Technical Reports Server (NTRS)

    Saini, Subhash

    1998-01-01

    Both physical and economic considerations indicate that the scaling era of CMOS will run out of steam around the year 2010. However, physical laws also indicate that it is possible to compute at a rate of a billion times present speeds with the expenditure of only one Watt of electrical power. NASA has long-term needs where ultra-small semiconductor devices are needed for critical applications: high performance, low power, compact computers for intelligent autonomous vehicles and Petaflop computing technolpgy are some key examples. To advance the design, development, and production of future generation micro- and nano-devices, IT Modeling and Simulation Group has been started at NASA Ames with a goal to develop an integrated simulation environment that addresses problems related to nanoelectronics and molecular nanotecnology. Overview of nanoelectronics and nanotechnology research activities being carried out at Ames Research Center will be presented. We will also present the vision and the research objectives of the IT Modeling and Simulation Group including the applications of nanoelectronic based devices relevant to NASA missions.

  10. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Close-up view of the interior of a NASA Bioreactor shows the plastic plumbing and valves (cylinders at center) to control fluid flow. A fresh nutrient bag is installed at top; a flattened waste bag behind it will fill as the nutrients are consumed during the course of operation. The drive chain and gears for the rotating wall vessel are visible at bottom center center. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  11. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Close-up view of the interior of a NASA Bioreactor shows the plastic plumbing and valves (cylinders at right center) to control fluid flow. The rotating wall vessel is at top center. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  12. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Electronics control module for the NASA Bioreactor. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  13. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Interior of a Biotechnology Refrigerator that preserves samples for use in (or after culturing in) the NASA Bioreactor. The unit is shown extracted from a middeck locker shell. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  14. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Biotechnology Refrigerator that preserves samples for use in (or after culturing in) the NASA Bioreactor. The unit is shown extracted from a middeck locker shell. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  15. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Interior view of the gas supply for the NASA Bioreactor. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  16. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Biotechnology Refrigerator that preserves samples for use in (or after culturing in) the NASA Bioreactor. The unit is shown extracted from a middeck locker shell and with thermal blankets partially removed. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  17. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Laptop computer sits atop the Experiment Control Computer for a NASA Bioreactor. The flight crew can change operating conditions in the Bioreactor by using the graphical interface on the laptop. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  18. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Exterior view of the NASA Bioreactor Engineering Development Unit flown on Mir. The rotating wall vessel is behind the window on the face of the large module. Control electronics are in the module at left; gas supply and cooling fans are in the module at back. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  19. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Astronaut John Blaha replaces an exhausted media bag and filled waste bag with fresh bags to continue a bioreactor experiment aboard space station Mir in 1996. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. This image is from a video downlink. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC).

  20. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The heart of the bioreactor is the rotating wall vessel, shown without its support equipment. Volume is about 125 mL. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  1. Agent Technology from a NASA Perspective

    NASA Technical Reports Server (NTRS)

    Truszkowski, Walt; Hallock, Harold; Kurien, James

    1999-01-01

    NASA's drive toward realizing higher levels of autonomy, in both its ground and space systems, is supporting an active and growing interest in agent technology. This paper will address the expanding research in this exciting technology area. As examples of current work, the Lights-Out Ground Operations System (LOGOS), under prototyping at the Goddard Space Flight Center (GSFC), and the spacecraft-oriented Remote Agent project under development at the Ames Research Center (ARC) and the Jet Propulsion Laboratory (JPL) will be presented.

  2. 3-D seismic exploration in the Ames hole

    SciTech Connect

    Ainsworth, K.R.

    1995-09-01

    The Ames Crater of Major County, Oklahoma has been one of the more controversial drilling projects to emerge in the Mid-Continent province in this decade. Within the crater, dolomitic and granodiorite breccias produce substantial quantities of oil and gas within structurally controlled accumulations. To understand the structural complexities of the crater, Continental Resources, in partnership with other Ames operators, acquired 3-D seismic data in four separate acquisition projects across various exploratory and development projects across the crater. Integrated seismic and subsurface control revealed four separate features within the principal crater floor oil and gas accumulation. Using the 3-D data as a lead tool, these companies identified and developed a significant number of commercial tests within the limits of the seismic surveys. Although the tool generally proved to be successful, reservoir variability, velocity variations, and interpretational errors resulted in some non-commercial and dry tests.

  3. Developing questionnaires for educational research: AMEE Guide No. 87.

    PubMed

    Artino, Anthony R; La Rochelle, Jeffrey S; Dezee, Kent J; Gehlbach, Hunter

    2014-06-01

    In this AMEE Guide, we consider the design and development of self-administered surveys, commonly called questionnaires. Questionnaires are widely employed in medical education research. Unfortunately, the processes used to develop such questionnaires vary in quality and lack consistent, rigorous standards. Consequently, the quality of the questionnaires used in medical education research is highly variable. To address this problem, this AMEE Guide presents a systematic, seven-step process for designing high-quality questionnaires, with particular emphasis on developing survey scales. These seven steps do not address all aspects of survey design, nor do they represent the only way to develop a high-quality questionnaire. Instead, these steps synthesize multiple survey design techniques and organize them into a cohesive process for questionnaire developers of all levels. Addressing each of these steps systematically will improve the probabilities that survey designers will accurately measure what they intend to measure.

  4. Is the Moon Illusion a Celestial Ames Demonstration?

    NASA Astrophysics Data System (ADS)

    Brecher, Kenneth

    2010-01-01

    To most naked eye observers, the Moon appears larger when seen near the horizon than it does when seen near the zenith. This "Moon Illusion” has been reported from as early as the fourth century BC and has been the subject of hundreds of papers and two books. Its explanation does not lie in the realm of physics (atmospheric refraction) or astronomy (eccentric lunar orbit) but, rather, in the realm of visual perception. Theories for the cause of the effect abound but, at present, there is no universally accepted explanation. Because the effect can be easily observed in many locations and during the course of an academic year, the moon illusion can provide a nice astronomical example that involves both direct observations and theoretical analysis. As part of the NSF funded "Project LITE: Light Inquiry Through Experiments", we have been developing inexpensive experiments and demonstrations that can be done at home. One of these is a miniature version of the classic "Ames Room". The life size version was originally developed by Adelbert Ames, Jr. and can be seen in many science museums. Our "digital” Ames Room has been designed to be printed on heavy paper using an inexpensive inkjet printer from a PDF file that is posted on the Project LITE web site http://lite.bu.edu and then cut and folded to make the room. When viewed through one wall using a commonly available door viewer, it dramatically demonstrates how the eye and brain system assesses the relative size of objects by making comparisons with the surrounding environment in which the objects are placed. In this presentation we will discuss some insights that the Ames Room provides that may offer clues to the correct explanation for the Moon Illusion. Project LITE is supported by the NSF through DUE Grant # 0715975.

  5. Ames Laboratory annual site environmental report, calendar year 1996

    SciTech Connect

    1998-04-01

    This report summarizes the environmental status of Ames Laboratory for calendar year 1996. It includes descriptions of the Laboratory site, its mission, the status of its compliance with applicable environmental regulations, its planning and activities to maintain compliance, and a comprehensive review of its environmental protection, surveillance and monitoring programs. Ames Laboratory is located on the campus of Iowa State University (ISU) and occupies twelve buildings owned by the Department of Energy (DOE). The Laboratory also leases space in ISU owned buildings. Laboratory activities involve less than ten percent of the total chemical use and approximately one percent of the radioisotope use on the ISU campus. In 1996, the Office of Assurance and Assessment merged with the Environment, Safety and Health Group forming the Environment, Safety, Health and Assurance (ESH and A) office. In 1996, the Laboratory accumulated and disposed of wastes under US Environmental Protection Agency (EPA) issued generator numbers. Ames Laboratory submitted a Proposed Site Treatment Plan to EPA in December 1995. This plan complied with the Federal Facilities Compliance Act (FFCA). It was approved by EPA in January 1996. The consent agreement/consent order was issued in February 1996. Pollution awareness, waste minimization and recycling programs, implemented in 1990 and updated in 1994, continued through 1996. Included in these efforts were a waste white paper and green computer paper recycling program. Ames Laboratory also continued to recycle salvageable metal and used oil, and it recovered freon for recycling. All of the chemical and nearly all of the radiological legacy wastes were properly disposed by the end of 1996. Additional radiological legacy waste will be properly disposed during 1997.

  6. Ames Coronagraph Experiment: Enabling Missions to Directly Image Exoplanets

    NASA Technical Reports Server (NTRS)

    Belikov, Ruslan

    2014-01-01

    Technology to find biomarkers and life on other worlds is rapidly maturing. If there is a habitable planet around the nearest star, we may be able to detect it this decade with a small satellite mission. In the 2030 decade, we will likely know if there is life in our Galactic neighborhood (1000 nearest stars). The Ames Coronagraph Experiment is developing coronagraphic technologies to enable such missions.

  7. Ames Research Center SR&T program and earth observations

    NASA Technical Reports Server (NTRS)

    Poppoff, I. G.

    1972-01-01

    An overview is presented of the research activities in earth observations at Ames Research Center. Most of the tasks involve the use of research aircraft platforms. The program is also directed toward the use of the Illiac 4 computer for statistical analysis. Most tasks are weighted toward Pacific coast and Pacific basin problems with emphasis on water applications, air applications, animal migration studies, and geophysics.

  8. Ames Laboratory Site Environmental Report, Calendar year 1991

    SciTech Connect

    Mathison, L.

    1991-12-31

    The summarized data and conclusions from the Ames Laboratory environmental monitoring program are presented in this Annual Site Environmental Report. This program is a working requirement of Department of Energy (DOE) Order 5484.1, ``Environmental Protection, Safety, and Health Protection Information Reporting Requirements`` and Order 5400.1, ``General Environmental Protection Program.`` Ames Laboratory is located on the campus of Iowa State University (ISU) and occupies several buildings owned by the DOE. The Laboratory also leases space in ISU-owned buildings. Laboratory research activities involve less than ten percent of the total chemical use and one percent of the radioisotope use on the ISU campus. Ames Laboratory is responsible for a small chemical burial site, located on ISU property. The site was used for the disposal of chemical and metal slags from thorium and uranium production. Samples of water from existing test wells and upstream and downstream sites on the nearby Squaw Creek show no detectable migration of the contents of the burial site. A Site Assessment plan submitted to the State of Iowa Department of Natural Resources (DNR) was approved. A Remedial Investigation/Feasibility Study work plan has been completed for additional studies at the site. This has been reviewed and approved by the DOE Chicago Field Office and the DNR. A National Environmental Policy Act (NEPA) review of the site resulted in a categorical exclusion finding which has been approved by the DOE. Ames Laboratory has an area contaminated by diesel fuel at the location of a storage tank which was removed in 1970. Soil corings and groundwater have been analyzed for contamination and an assessment written. Pollution awareness and waste minimization programs and plans were implemented in 1990. Included in this effort was the implementation of a waste white paper and green computer paper recycling program.

  9. Environmental monitoring at Ames Laboratory: calendar year 1980

    SciTech Connect

    Voss, M.D.

    1981-04-01

    The results and conclusions from the Ames Laboratory environmental monitoring programs for the Ames Laboratory Research Reactor (ALRR) and other Laboratory facilities are presented. The major areas of radiological monitoring were ALRR effluent air, environmental air, effluent water and environmental water. A summary of the radioactivity found in the environment is presented. The ALRR ceased operation on December 1, 1977. Decommissioning activities began January 3, 1978, and are scheduled for completion October 1, 1981. Analysis of air samples collected at the ALRR on-site station showed no radioactivity that could be attributed to ALRR operations. The radiosotope of significance in the ALRR stack effluent was tritium (H-3). The yearly individual dose from H-3 at the exclusion fence was estimated to be 0.016 mRem and the estimated dose to the entire population within an 80 Km (50 mile) radius of the ALRR was 26.6 man-Rem. These values are 0.0032% and 0.026%, respectively, of the doses derived from the concentration guides. On September 1, 1978, the ALRR site was connected to the City of Ames sanitary sewage system. All liquids (except building foundation and roof water) from the ALRR complex are now discharged to the sewage system negating the requirement for monitoring chemical constituents of effluent and environmental waters. In the radioactive liquid waste released to the City of Ames sewage system from the ALRR complex, H-3 was the predominant isotope. After dilution with other waste water from the ALRR complex, the potential dose was not more than 0.68% of the dose derived from the concentration guide. Building foundation and roof water are discharged to a drainage gulch on site.

  10. Environmental monitoring at Ames Laboratory: Calendar year 1979

    SciTech Connect

    Voss, M.D.

    1980-04-01

    The results and conclusions from the Ames Laboratory environmental monitoring programs for the Ames Laboratory Research Reactor (ALRR) are presented. The major areas of radiological monitoring were ALRR effluent air, environmental air, effluent water and environmental water. Analysis of air samples collected at the ALRR site showed detectable amounts of /sup 60/Co. This isotope was 1.5 x 10/sup -4/% of the concentration guide (1) and was probably due to ALRR operations. The radioisotope of significance in the ALRR stack effluent was tritium. The average yearly individual dose from /sup 3/H at the exclusion fence was estimated to 0.0038 mRem and the estimated dose to the entire population within an 80 Km (50 mile) radius of the ALRR was 6.31 man-Rem. These values are 0.00076% and 0.0063%, respectively, of the doses derived from the concentration guides. In the radioactive liquid waste released to the City of Ames sewage system from the ALRR complex, /sup 3/H was the predominant isotope. After dilution with other waste water from the ALRR complex, the potential dose was not more than 0.59% of the dose derived from the concentration guide.

  11. Ames Laboratory Site Environmental Report, Calendar year 1992

    SciTech Connect

    Not Available

    1992-12-31

    The summarized data and conclusions from the Ames Laboratory environmental monitoring program are presented in this Annual Site Environmental Report. Pollution awareness and waste minimization programs and plans implemented in 1990 are continuing to date. Ames Laboratory (AL) is responsible for a small chemical burial site, located on ISU property. The site was used for the disposal of chemical and metal slags from thorium and uranium production. Samples of water from existing test wells, and upstream and downstream sites on the nearby Squaw Creek, have not detected migration of the buried materials off site. Surface, hand auger and deep boring soil samples have been collected from the site. The analytical results are pending, Six new monitoring wells have been installed and sampled. Analytical results are pending. Ames Laboratory is responsible for an area contaminated by diesel fuel that leaked from an underground storage tank (UST) in 1970. The tank was removed that year. Soil borings and groundwater have been analyzed for contamination and a preliminary assessment written. Nine small inactive waste sites have been identified for characterization. The NEPA review for this work resulted in a CX determination. The work plans were approved by AL and CH. A subcontractor has surveyed and sampled the sites. Analytical results are pending.

  12. Regulatory implications of Ames' mutagenicity assay using Salmonella typhimurium

    SciTech Connect

    Jackson, B.A.; Pertel, R.

    1986-07-01

    Interpretive difficulties can be expected when molecular biology and modern genetics are applied to the safety evaluation of chemicals. Experience, in a regulatory setting, with evaluating the results of short term tests, such as Ames' mutagenicity assay using Salmonella typhimurium (Ames' assay), shows that the traditional toxicological paradigm for interpreting and evaluating the results of such tests is less than adequate. The considerable importance of a negative test outcome to the public health as well as to the course of the commercial development of a potentially useful chemical places special demands on both the investigator and the regulatory reviewer for an understanding of Ames' assay. The adequate design, conduct, interpretation, and evaluation of the outcomes of this assay require a knowledge of the chemical properties of the test agent, an understanding of the scientific basis of the test, and an appreciation of the extent to which modifications of the assay can alter the outcome. The investigator and the regulatory reviewer use the same considerations to determine the adequacy of the test design and of the test results. However, a fundamental difference exists between how they interpret results and how they view the outcome. Results from a study comparing activation systems from food animal and laboratory animal sources are used to illustrate the complexity of using safety data from a genetic test. A framework is developed to suggest how to accommodate the points of view of the investigator and the regulatory reviewer in evaluating these data.

  13. NASA Robotic Neurosurgery Testbed

    NASA Technical Reports Server (NTRS)

    Mah, Robert

    1997-01-01

    The detection of tissue interface (e.g., normal tissue, cancer, tumor) has been limited clinically to tactile feedback, temperature monitoring, and the use of a miniature ultrasound probe for tissue differentiation during surgical operations, In neurosurgery, the needle used in the standard stereotactic CT or MRI guided brain biopsy provides no information about the tissue being sampled. The tissue sampled depends entirely upon the accuracy with which the localization provided by the preoperative CT or MRI scan is translated to the intracranial biopsy site. In addition, no information about the tissue being traversed by the needle (e.g., a blood vessel) is provided. Hemorrhage due to the biopsy needle tearing a blood vessel within the brain is the most devastating complication of stereotactic CT/MRI guided brain biopsy. A robotic neurosurgery testbed has been developed at NASA Ames Research Center as a spin-off of technologies from space, aeronautics and medical programs. The invention entitled "Robotic Neurosurgery Leading to Multimodality Devices for Tissue Identification" is nearing a state ready for commercialization. The devices will: 1) improve diagnostic accuracy and precision of general surgery, with near term emphasis on stereotactic brain biopsy, 2) automate tissue identification, with near term emphasis on stereotactic brain biopsy, to permit remote control of the procedure, and 3) reduce morbidity for stereotactic brain biopsy. The commercial impact from this work is the potential development of a whole new generation of smart surgical tools to increase the safety, accuracy and efficiency of surgical procedures. Other potential markets include smart surgical tools for tumor ablation in neurosurgery, general exploratory surgery, prostate cancer surgery, and breast cancer surgery.

  14. NASA Robotic Neurosurgery Testbed

    NASA Technical Reports Server (NTRS)

    Mah, Robert

    1997-01-01

    The detection of tissue interface (e.g., normal tissue, cancer, tumor) has been limited clinically to tactile feedback, temperature monitoring, and the use of a miniature ultrasound probe for tissue differentiation during surgical operations. In neurosurgery, the needle used in the standard stereotactic CT (Computational Tomography) or MRI (Magnetic Resonance Imaging) guided brain biopsy provides no information about the tissue being sampled. The tissue sampled depends entirely upon the accuracy with which the localization provided by the preoperative CT or MRI scan is translated to the intracranial biopsy site. In addition, no information about the tissue being traversed by the needle (e.g., a blood vessel) is provided. Hemorrhage due to the biopsy needle tearing a blood vessel within the brain is the most devastating complication of stereotactic CT/MRI guided brain biopsy. A robotic neurosurgery testbed has been developed at NASA Ames Research Center as a spin-off of technologies from space, aeronautics and medical programs. The invention entitled 'Robotic Neurosurgery Leading to Multimodality Devices for Tissue Identification' is nearing a state ready for commercialization. The devices will: 1) improve diagnostic accuracy and precision of general surgery, with near term emphasis on stereotactic brain biopsy, 2) automate tissue identification, with near term emphasis on stereotactic brain biopsy, to permit remote control of the procedure, and 3) reduce morbidity for stereotactic brain biopsy. The commercial impact from this work is the potential development of a whole new generation of smart surgical tools to increase the safety, accuracy and efficiency of surgical procedures. Other potential markets include smart surgical tools for tumor ablation in neurosurgery, general exploratory surgery, prostate cancer surgery, and breast cancer surgery.

  15. NASA Astrophysics Technology Needs

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2012-01-01

    July 2010, NASA Office of Chief Technologist (OCT) initiated an activity to create and maintain a NASA integrated roadmap for 15 key technology areas which recommend an overall technology investment strategy and prioritize NASA?s technology programs to meet NASA?s strategic goals. Science Instruments, Observatories and Sensor Systems(SIOSS) roadmap addresses technology needs to achieve NASA?s highest priority objectives -- not only for the Science Mission Directorate (SMD), but for all of NASA.

  16. The NASA integrated test facility and its impact on flight research

    NASA Technical Reports Server (NTRS)

    Mackall, D. A.; Pickett, M. D.; Schilling, L. J.; Wagner, C. A.

    1988-01-01

    The Integrated Test Facility (ITF), being built at NASA Ames-Dryden Flight Research Facility, will provide new test capabilities for emerging research aircraft. An overview of the ITF and the challenges being addressed by this unique facility are outlined. The current ITF capabilities, being developed with the X-29 Forward Swept Wing Program, are discussed along with future ITF activities.

  17. Human Factors in Aeronautics at NASA

    NASA Technical Reports Server (NTRS)

    Mogford, Richard

    2016-01-01

    This is a briefing to a regularly meeting DoD group called the Human Systems Community of Interest: Mission Effectiveness. I was asked to address human factors in aeronautics at NASA. (Exploration (space) human factors has apparently already been covered.) The briefing describes human factors organizations at NASA Ames and Langley. It then summarizes some aeronautics tasks that involve the application of human factors in the development of specific tools and capabilities. The tasks covered include aircrew checklists, dispatch operations, Playbook, Dynamic Weather Routes, Traffic Aware Strategic Aircrew Requests, and Airplane State Awareness and Prediction Technologies. I mention that most of our aeronautics work involves human factors as embedded in development tasks rather than basic research.

  18. Meeting Report--NASA Radiation Biomarker Workshop

    SciTech Connect

    Straume, Tore; Amundson, Sally A,; Blakely, William F.; Burns, Frederic J.; Chen, Allen; Dainiak, Nicholas; Franklin, Stephen; Leary, Julie A.; Loftus, David J.; Morgan, William F.; Pellmar, Terry C.; Stolc, Viktor; Turteltaub, Kenneth W.; Vaughan, Andrew T.; Vijayakumar, Srinivasan; Wyrobek, Andrew J.

    2008-05-01

    A summary is provided of presentations and discussions from the NASA Radiation Biomarker Workshop held September 27-28, 2007, at NASA Ames Research Center in Mountain View, California. Invited speakers were distinguished scientists representing key sectors of the radiation research community. Speakers addressed recent developments in the biomarker and biotechnology fields that may provide new opportunities for health-related assessment of radiation-exposed individuals, including for long-duration space travel. Topics discussed include the space radiation environment, biomarkers of radiation sensitivity and individual susceptibility, molecular signatures of low-dose responses, multivariate analysis of gene expression, biomarkers in biodefense, biomarkers in radiation oncology, biomarkers and triage following large-scale radiological incidents, integrated and multiple biomarker approaches, advances in whole-genome tiling arrays, advances in mass-spectrometry proteomics, radiation biodosimetry for estimation of cancer risk in a rat skin model, and confounding factors. Summary conclusions are provided at the end of the report.

  19. 2nd NASA CFD Validation Workshop

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The purpose of the workshop was to review NASA's progress in CFD validation since the first workshop (held at Ames in 1987) and to affirm the future direction of the NASA CFD validation program. The first session consisted of overviews of CFD validation research at each of the three OAET research centers and at Marshall Space Flight Center. The second session consisted of in-depth technical presentations of the best examples of CFD validation work at each center (including Marshall). On the second day the workshop divided into three working groups to discuss CFD validation progress and needs in the subsonic, high-speed, and hypersonic speed ranges. The emphasis of the working groups was on propulsion.

  20. The Collaborative Information Portal and NASA's Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Mak, Ronald; Walton, Joan

    2005-01-01

    The Collaborative Information Portal was enterprise software developed jointly by the NASA Ames Research Center and the Jet Propulsion Laboratory for NASA's Mars Exploration Rover mission. Mission managers, engineers, scientists, and researchers used this Internet application to view current staffing and event schedules, download data and image files generated by the rovers, receive broadcast messages, and get accurate times in various Mars and Earth time zones. This article describes the features, architecture, and implementation of this software, and concludes with lessons we learned from its deployment and a look towards future missions.

  1. User Interface Technology Transfer to NASA's Virtual Wind Tunnel System

    NASA Technical Reports Server (NTRS)

    vanDam, Andries

    1998-01-01

    Funded by NASA grants for four years, the Brown Computer Graphics Group has developed novel 3D user interfaces for desktop and immersive scientific visualization applications. This past grant period supported the design and development of a software library, the 3D Widget Library, which supports the construction and run-time management of 3D widgets. The 3D Widget Library is a mechanism for transferring user interface technology from the Brown Graphics Group to the Virtual Wind Tunnel system at NASA Ames as well as the public domain.

  2. NASA UAV Airborne Science Capabilities in Support of Water Resource Management

    NASA Technical Reports Server (NTRS)

    Fladeland, Matthew

    2015-01-01

    This workshop presentation focuses on potential uses of unmanned aircraft observations in support of water resource management and agriculture. The presentation will provide an overview of NASA Airborne Science capabilities with an emphasis on past UAV missions to provide context on accomplishments as well as technical challenges. I will also focus on recent NASA Ames efforts to assist in irrigation management and invasive species management using airborne and satellite datasets.

  3. NASA Computational Fluid Dynamics Conference. Volume 1: Sessions 1-6

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Presentations given at the NASA Computational Fluid Dynamics (CFD) Conference held at the NASA Ames Research Center, Moffett Field, California, March 7-9, 1989 are given. Topics covered include research facility overviews of CFD research and applications, validation programs, direct simulation of compressible turbulence, turbulence modeling, advances in Runge-Kutta schemes for solving 3-D Navier-Stokes equations, grid generation and invicid flow computation around aircraft geometries, numerical simulation of rotorcraft, and viscous drag prediction for rotor blades.

  4. MODELING THE EFFECTS OF CLIMATE AND LAND USE CHANGE ON CARBON AND TRACE GAS BUDGETS OVER THE AMAZON REGION USING NASA SATELLITE PRODUCTS

    EPA Science Inventory

    As part of the LBA-ECO Phase III synthesis efforts for remote sensing and predictive modeling of Amazon carbon, water, and trace gas fluxes, we are evaluating results from the regional ecosystem model called NASA-CASA (Carnegie-Ames Stanford Approach). The NASA-CASA model has bee...

  5. Groundwater hydrology study of the Ames Chemical Disposal Site

    SciTech Connect

    Stickel, T.

    1996-05-09

    The Ames Laboratory Chemical Disposal Site is located in northwestern Ames, Iowa west of Squaw Creek. From 1957 to 1966, Ames Laboratory conducted research to develop processes to separate uranium and thorium from nuclear power fuel and to separate yttrium from neutron shielding sources. The wastes from these processes, which contained both hazardous and radiological components, were placed into nine burial pits. Metal drums, plywood boxes, and steel pails were used to store the wastes. Uranium was also burned on the ground surface of the site. Monitoring wells were placed around the waste burial pits. Groundwater testing in 1993 revealed elevated levels of Uranium 234, Uranium 238, beta and alpha radiation. The north side of the burial pit had elevated levels of volatile organic compounds. Samples in the East Ravine showed no volatile organics; however, they did contain elevated levels of radionuclides. These analytical results seem to indicate that the groundwater from the burial pit is flowing down hill and causing contamination in the East Ravine. Although there are many avenues for the contamination to spread, the focus of this project is to understand the hydrogeology of the East Ravine and to determine the path of groundwater flow down the East Ravine. The groundwater flow data along with other existing information will be used to assess the threat of chemical migration down the East Ravine and eventually off-site. The primary objectives of the project were as follows: define the geology of the East Ravine; conduct slug tests to determine the hydraulic conductivity of both oxidized and unoxidized till; develop a three-dimensional mathematical model using ModIME and MODFLOW to simulate groundwater flow in the East Ravine.

  6. Voluntary cleanup of the Ames chemical disposal site.

    SciTech Connect

    Taboas, A. L.; Freeman, R.; Peterson, J.; Environmental Assessment; USDOE

    2003-01-01

    The U.S. Department of Energy completed a voluntary removal action at the Ames chemical disposal site, a site associated with the early days of the Manhattan Project. It contained chemical and low-level radioactive wastes from development of the technology to extract uranium from uranium oxide. The process included the preparation of a Remedial Investigation, Feasibility Study, Baseline Risk Assessment, and, ultimately, issuance of a Record of Decision. Various stakeholder groups were involved, including members of the regulatory community, the general public, and the landowner, Iowa State University. The site was restored and returned to the landowner for unrestricted use.

  7. Crop scientists break down barriers at Ames meeting

    SciTech Connect

    Moffat, A.S.

    1992-09-04

    For years, crop science has been balkanized, with specialists in rice, corn, and soy beans, for example, working on their commodities and attending their own meetings. But at the First International Crop Science Congress, held in July in Ames, Iowa-an 8-day event 3 years in the making-the discipline displayed a new found hybrid vigor. More than 1000 researchers of various persuasions, including plant molecular biology, classical plant breeding, agronomy, and soil science, representing 85 countries, shared their expertise in basic and applied studies. Here are a couple of proposals for expanding world food production and another that shows the diverse roles crops can play.

  8. Use of Ames test in evaluation of shale oil fractions.

    PubMed Central

    Pelroy, R A; Petersen, M R

    1979-01-01

    Conditions that affect the sensitivity of the Ames assay of complex hydrocarbon mixtures derived from shale oil were studied. Two fractions, one enriched in polynuclear aromatic compounds (PNA fraction), and a second fraction enriched in aromatic and heterocyclic amines (basic fraction), were selected for most of this work because of their comparatively high mutagenicity (i.e., compared with raw shale oil). The crude shale oil, as well as the basic, PNA, and tar fractions were mutagenic against the Salmonella typhimurium test strains, TA98 and TA100. Mutation was dependent on metabolic activation by microsomal (S9) enzymes. Both test strains responded equally well to the crude product and to the basic fraction; however, strain TA100 was more effective than TA198 in demonstrating the mutagenicity of the PNA fraction. The mutagenicity of the tar fraction could be most easily detected after metabolic activation in a liquid medium, as opposed to S9 activation in the top agar of the standard Ames assay. The mutagenicity of the basic fraction or 2-aminoanthracene was also demonstrated by metabolic activation in a liquid medium. In other set of experiments, the effect of chemical composition on the expression of mutagenicity in the standard Ames assay was estimated. Premutagens requiring metabolic activation were added to the basic and PNA fractions, and the numbers of revertants obtained in the presence of the fractions were compared with mutation induced by the compounds alone. The basic fraction did not interfere with the mutagenicity of 2-aminoanthracene and 7,9 dimethylbenz[c]acridine. Moreover, in certain experiments, the mutagenicity of the complex fraction plus the added compound was higher than expected on the basis of assays performed on these materials separately. Conversely, the PNA fraction prevented or strongly inhibited mutation by several polynuclear aroumatic compounds, and an acridine. However, the PNA fraction did not inhibit mutation induced by 2

  9. A white paper: NASA virtual environment research, applications, and technology

    NASA Technical Reports Server (NTRS)

    Null, Cynthia H. (Editor); Jenkins, James P. (Editor)

    1993-01-01

    Research support for Virtual Environment technology development has been a part of NASA's human factors research program since 1985. Under the auspices of the Office of Aeronautics and Space Technology (OAST), initial funding was provided to the Aerospace Human Factors Research Division, Ames Research Center, which resulted in the origination of this technology. Since 1985, other Centers have begun using and developing this technology. At each research and space flight center, NASA missions have been major drivers of the technology. This White Paper was the joint effort of all the Centers which have been involved in the development of technology and its applications to their unique missions. Appendix A is the list of those who have worked to prepare the document, directed by Dr. Cynthia H. Null, Ames Research Center, and Dr. James P. Jenkins, NASA Headquarters. This White Paper describes the technology and its applications in NASA Centers (Chapters 1, 2 and 3), the potential roles it can take in NASA (Chapters 4 and 5), and a roadmap of the next 5 years (FY 1994-1998). The audience for this White Paper consists of managers, engineers, scientists and the general public with an interest in Virtual Environment technology. Those who read the paper will determine whether this roadmap, or others, are to be followed.

  10. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Bioreactor Demonstration System (BDS) comprises an electronics module, a gas supply module, and the incubator module housing the rotating wall vessel and its support systems. Nutrient media are pumped through an oxygenator and the culture vessel. The shell rotates at 0.5 rpm while the irner filter typically rotates at 11.5 rpm to produce a gentle flow that ensures removal of waste products as fresh media are infused. Periodically, some spent media are pumped into a waste bag and replaced by fresh media. When the waste bag is filled, an astronaut drains the waste bag and refills the supply bag through ports on the face of the incubator. Pinch valves and a perfusion pump ensure that no media are exposed to moving parts. An Experiment Control Computer controls the Bioreactor, records conditions, and alerts the crew when problems occur. The crew operates the system through a laptop computer displaying graphics designed for easy crew training and operation. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. See No. 0101824 for a version with labels, and No. 0103180 for an operational schematic.

  11. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Biotechnology Specimen Temperature Controller (BSTC) will cultivate cells until their turn in the bioreactor; it can also be used in culturing experiments that do not require the bioreactor. The BSTC comprises four incubation/refrigeration chambers individually set at 4 to 50 degreesC (near-freezing to above body temperature). Each chamber holds three rugged tissue chamber modules (12 total), clear Teflon bags holding 30 ml of growth media, all positioned by a metal frame. Every 7 to 21 days (depending on growth rates), an astronaut uses a shrouded syringe and the bags' needleless injection ports to transfer a few cells to a fresh media bag, and to introduce a fixative so that the cells may be studied after flight. The design also lets the crew sample the media to measure glucose, gas, and pH levels, and to inspect cells with a microscope. The controller is monitored by the flight crew through a 23-cm (9-inch) color computer display on the face of the BSTC. This view shows the BTSC with the front panel open. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  12. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Bioreactor Demonstration System (BDS) comprises an electronics module, a gas supply module, and the incubator module housing the rotating wall vessel and its support systems. Nutrient media are pumped through an oxygenator and the culture vessel. The shell rotates at 0.5 rpm while the irner filter typically rotates at 11.5 rpm to produce a gentle flow that ensures removal of waste products as fresh media are infused. Periodically, some spent media are pumped into a waste bag and replaced by fresh media. When the waste bag is filled, an astronaut drains the waste bag and refills the supply bag through ports on the face of the incubator. Pinch valves and a perfusion pump ensure that no media are exposed to moving parts. An Experiment Control Computer controls the Bioreactor, records conditions, and alerts the crew when problems occur. The crew operates the system through a laptop computer displaying graphics designed for easy crew training and operation. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. See No. 0101823 for a version without labels, and No. 0103180 for an operational schematic.

  13. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Biotechnology Specimen Temperature Controller (BSTC) will cultivate cells until their turn in the bioreactor; it can also be used in culturing experiments that do not require the bioreactor. The BSTC comprises four incubation/refrigeration chambers individually set at 4 to 50 deg. C (near-freezing to above body temperature). Each chamber holds three rugged tissue chamber modules (12 total), clear Teflon bags holding 30 ml of growth media, all positioned by a metal frame. Every 7 to 21 days (depending on growth rates), an astronaut uses a shrouded syringe and the bags' needleless injection ports to transfer a few cells to a fresh media bag, and to introduce a fixative so that the cells may be studied after flight. The design also lets the crew sample the media to measure glucose, gas, and pH levels, and to inspect cells with a microscope. The controller is monitored by the flight crew through a 23-cm (9-inch) color computer display on the face of the BSTC. This view shows the BTSC with the front panel open. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  14. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Bioreactor Demonstration System (BDS) comprises an electronics module, a gas supply module, and the incubator module housing the rotating wall vessel and its support systems. Nutrient media are pumped through an oxygenator and the culture vessel. The shell rotates at 0.5 rpm while the irner filter typically rotates at 11.5 rpm to produce a gentle flow that ensures removal of waste products as fresh media are infused. Periodically, some spent media are pumped into a waste bag and replaced by fresh media. When the waste bag is filled, an astronaut drains the waste bag and refills the supply bag through ports on the face of the incubator. Pinch valves and a perfusion pump ensure that no media are exposed to moving parts. An Experiment Control Computer controls the Bioreactor, records conditions, and alerts the crew when problems occur. The crew operates the system through a laptop computer displaying graphics designed for easy crew training and operation. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. See No. 0101816 for a version without labels, and No. 0103180 for an operational schematic.

  15. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Bioreactor Demonstration System (BDS) comprises an electronics module, a gas supply module, and the incubator module housing the rotating wall vessel and its support systems. Nutrient media are pumped through an oxygenator and the culture vessel. The shell rotates at 0.5 rpm while the irner filter typically rotates at 11.5 rpm to produce a gentle flow that ensures removal of waste products as fresh media are infused. Periodically, some spent media are pumped into a waste bag and replaced by fresh media. When the waste bag is filled, an astronaut drains the waste bag and refills the supply bag through ports on the face of the incubator. Pinch valves and a perfusion pump ensure that no media are exposed to moving parts. An Experiment Control Computer controls the Bioreactor, records conditions, and alerts the crew when problems occur. The crew operates the system through a laptop computer displaying graphics designed for easy crew training and operation. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. See No. 0101825 for a version with major elements labeled, and No. 0103180 for an operational schematic. 0101816

  16. Brown Adipose Tissue Function Is Enhanced in Long-Lived, Male Ames Dwarf Mice.

    PubMed

    Darcy, Justin; McFadden, Samuel; Fang, Yimin; Huber, Joshua A; Zhang, Chi; Sun, Liou Y; Bartke, Andrzej

    2016-12-01

    Ames dwarf mice (Prop1(df/df)) are long-lived due to a loss of function mutation, resulting in deficiency of GH, TSH, and prolactin. Along with a marked extension of longevity, Ames dwarf mice have improved energy metabolism as measured by an increase in their oxygen consumption and heat production, as well as a decrease in their respiratory quotient. Along with alterations in energy metabolism, Ames dwarf mice have a lower core body temperature. Moreover, Ames dwarf mice have functionally altered epididymal white adipose tissue (WAT) that improves, rather than impairs, their insulin sensitivity due to a shift from pro- to anti-inflammatory cytokine secretion. Given the unique phenotype of Ames dwarf epididymal WAT, their improved energy metabolism, and lower core body temperature, we hypothesized that Ames dwarf brown adipose tissue (BAT) may function differently from that of their normal littermates. Here we use histology and RT-PCR to demonstrate that Ames dwarf mice have enhanced BAT function. We also use interscapular BAT removal to demonstrate that BAT is necessary for Ames dwarf energy metabolism and thermogenesis, whereas it is less important for their normal littermates. Furthermore, we show that Ames dwarf mice are able to compensate for loss of interscapular BAT by using their WAT depots as an energy source. These findings demonstrate enhanced BAT function in animals with GH and thyroid hormone deficiencies, chronic reduction of body temperature, and remarkably extended longevity.

  17. Optimization Study of the Ames 0.5 Two-Stage Light Gas Gun

    NASA Technical Reports Server (NTRS)

    Bogdanoff, D. W.

    1996-01-01

    There is a need for more faithful simulation of space debris impacts on various space vehicles. Space debris impact velocities can range up to 14 km/sec and conventional two-stage light gas guns with moderately heavy saboted projectiles are limited to launch velocities of 7-8 km/sec. Any increases obtained in the launch velocities will result in more faithful simulations of debris impacts. It would also be valuable to reduce the maximum gun and projectile base pressures and the gun barrel erosion rate. In this paper, the results of a computational fluid dynamics (CFD) study designed to optimize the performance of the NASA Ames 0.5' gun by systematically varying seven gun operating parameters are reported. Particularly beneficial effects were predicted to occur if (1) the piston mass was decreased together with the powder mass and the hydrogen fill pressure and (2) the pump tube length was decreased. The optimum set of changes in gun operating conditions were predicted to produce an increase in muzzle velocity of 0.7-1.0 km/sec, simultaneously with a substantial decrease in gun erosion. Preliminary experimental data have validated the code predictions. Velocities of up to 8.2 km/sec with a 0.475 cm diameter saboted aluminum sphere have been obtained, along with large reductions in gun erosion rates.

  18. NASA ATP Force Measurement Technology Capability Strategic Plan

    NASA Technical Reports Server (NTRS)

    Rhew, Ray D.

    2008-01-01

    The Aeronautics Test Program (ATP) within the National Aeronautics and Space Administration (NASA) Aeronautics Research Mission Directorate (ARMD) initiated a strategic planning effort to re-vitalize the force measurement capability within NASA. The team responsible for developing the plan included members from three NASA Centers (Langley, Ames and Glenn) as well as members from the Air Force s Arnold Engineering and Development Center (AEDC). After visiting and discussing force measurement needs and current capabilities at each participating facility as well as selected force measurement companies, a strategic plan was developed to guide future NASA investments. This paper will provide the details of the strategic plan and include asset management, organization and technology research and development investment priorities as well as efforts to date.

  19. Evolutionary Ensemble for In Silico Prediction of Ames Test Mutagenicity

    NASA Astrophysics Data System (ADS)

    Chen, Huanhuan; Yao, Xin

    Driven by new regulations and animal welfare, the need to develop in silico models has increased recently as alternative approaches to safety assessment of chemicals without animal testing. This paper describes a novel machine learning ensemble approach to building an in silico model for the prediction of the Ames test mutagenicity, one of a battery of the most commonly used experimental in vitro and in vivo genotoxicity tests for safety evaluation of chemicals. Evolutionary random neural ensemble with negative correlation learning (ERNE) [1] was developed based on neural networks and evolutionary algorithms. ERNE combines the method of bootstrap sampling on training data with the method of random subspace feature selection to ensure diversity in creating individuals within an initial ensemble. Furthermore, while evolving individuals within the ensemble, it makes use of the negative correlation learning, enabling individual NNs to be trained as accurate as possible while still manage to maintain them as diverse as possible. Therefore, the resulting individuals in the final ensemble are capable of cooperating collectively to achieve better generalization of prediction. The empirical experiment suggest that ERNE is an effective ensemble approach for predicting the Ames test mutagenicity of chemicals.

  20. The PC/AT compatible computer as a mission control center display processor at Ames-Dryden Flight Research Facility

    NASA Technical Reports Server (NTRS)

    Hammons, Kevin R.

    1988-01-01

    The NASA Ames-Dryden Flight Research Facility's Western Aeronautical Test Range will assign the flight test data display processing function to Mission Control Centers in order to allow research engineers to flexibly configure their own display-processing system to optimize performance during a flight research mission. This will leave the Telemetry Radar Acquisition and Processing System more time to acquire data. One of the processors chosen to handle the display-processing function is an IBM PC/AT-compatible, rack-mounted PC giving engineers a personalized set of analytic and display tools, developed on the basis of off-the-shelf PC/AT-compatible engineering hardware and software items.

  1. Advancing Test Capabilities at NASA Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Bell, James

    2015-01-01

    NASA maintains twelve major wind tunnels at three field centers capable of providing flows at 0.1 M 10 and unit Reynolds numbers up to 45106m. The maintenance and enhancement of these facilities is handled through a unified management structure under NASAs Aeronautics and Evaluation and Test Capability (AETC) project. The AETC facilities are; the 11x11 transonic and 9x7 supersonic wind tunnels at NASA Ames; the 10x10 and 8x6 supersonic wind tunnels, 9x15 low speed tunnel, Icing Research Tunnel, and Propulsion Simulator Laboratory, all at NASA Glenn; and the National Transonic Facility, Transonic Dynamics Tunnel, LAL aerothermodynamics laboratory, 8 High Temperature Tunnel, and 14x22 low speed tunnel, all at NASA Langley. This presentation describes the primary AETC facilities and their current capabilities, as well as improvements which are planned over the next five years. These improvements fall into three categories. The first are operations and maintenance improvements designed to increase the efficiency and reliability of the wind tunnels. These include new (possibly composite) fan blades at several facilities, new temperature control systems, and new and much more capable facility data systems. The second category of improvements are facility capability advancements. These include significant improvements to optical access in wind tunnel test sections at Ames, improvements to test section acoustics at Glenn and Langley, the development of a Supercooled Large Droplet capability for icing research, and the development of an icing capability for large engine testing. The final category of improvements consists of test technology enhancements which provide value across multiple facilities. These include projects to increase balance accuracy, provide NIST-traceable calibration characterization for wind tunnels, and to advance optical instruments for Computational Fluid Dynamics (CFD) validation. Taken as a whole, these individual projects provide significant

  2. NASA Workshop on future directions in surface modeling and grid generation

    NASA Technical Reports Server (NTRS)

    Vandalsem, W. R.; Smith, R. E.; Choo, Y. K.; Birckelbaw, L. D.; Vogel, A. A.

    1992-01-01

    Given here is a summary of the paper sessions and panel discussions of the NASA Workshop on Future Directions in Surface Modeling and Grid Generation held a NASA Ames Research Center, Moffett Field, California, December 5-7, 1989. The purpose was to assess U.S. capabilities in surface modeling and grid generation and take steps to improve the focus and pace of these disciplines within NASA. The organization of the workshop centered around overviews from NASA centers and expert presentations from U.S. corporations and universities. Small discussion groups were held and summarized by group leaders. Brief overviews and a panel discussion by representatives from the DoD were held, and a NASA-only session concluded the meeting. In the NASA Program Planning Session summary there are five recommended steps for NASA to take to improve the development and application of surface modeling and grid generation.

  3. Ames Laboratory site environmental report, Calendar year 1994

    SciTech Connect

    1994-12-31

    The Ames Laboratory conducts fundamental research in the physical, chemical, materials, and mathematical sciences and engineering which underlie energy generating, conversion, transmission and storage technologies, environmental improvement, and other technical areas essential to national needs. These efforts will be maintained so as to contribute to the achievement of the vision of DOE and, more specifically, to increase the general levels of knowledge and technical capabilities, to prepare engineering and physical sciences students for the future, both academia and industry, and to develop new technologies and practical applications from our basic scientific programs that will contribute to a strengthening of the US economy. The Laboratory approaches all its operations with the safety and health of all workers as a constant objective and with genuine concern for the environment. The Laboratory relies upon its strengths in materials synthesis and processing, materials reliability, chemical analysis, chemical sciences, photosynthesis, materials sciences, metallurgy, high-temperature superconductivity, and applied mathematical sciences to conduct the long term basic and intermediate range applied research needed to solve the complex problems encountered in energy production, and utilization as well as environmental restoration and waste management. Ames Laboratory will continue to maintain a very significant and highly beneficial pre-college math and science education program which currently serves both teachers and students at the middle school and high school levels. Our technology transfer program is aided by joint efforts with ISU`s technology development and commercialization enterprise and will sustain concerted efforts to implement Cooperative Research and Development Agreements, industrially sponsored Work for Others projects. and scientific personnel exchanges with our various customers.

  4. Using databases in medical education research: AMEE Guide No. 77.

    PubMed

    Cleland, Jennifer; Scott, Neil; Harrild, Kirsten; Moffat, Mandy

    2013-05-01

    This AMEE Guide offers an introduction to the use of databases in medical education research. It is intended for those who are contemplating conducting research in medical education but are new to the field. The Guide is structured around the process of planning your research so that data collection, management and analysis are appropriate for the research question. Throughout we consider contextual possibilities and constraints to educational research using databases, such as the resources available, and provide concrete examples of medical education research to illustrate many points. The first section of the Guide explains the difference between different types of data and classifying data, and addresses the rationale for research using databases in medical education. We explain the difference between qualitative research and qualitative data, the difference between categorical and quantitative data, and the difference types of data which fall into these categories. The Guide reviews the strengths and weaknesses of qualitative and quantitative research. The next section is structured around how to work with quantitative and qualitative databases and provides guidance on the many practicalities of setting up a database. This includes how to organise your database, including anonymising data and coding, as well as preparing and describing your data so it is ready for analysis. The critical matter of the ethics of using databases in medical educational research, including using routinely collected data versus data collected for research purposes, and issues of confidentiality, is discussed. Core to the Guide is drawing out the similarities and differences in working with different types of data and different types of databases. Future AMEE Guides in the research series will address statistical analysis of data in more detail.

  5. NASA Mission: The Universe

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This booklet is mainly a recruitment tool for the various NASA Centers. This well illustrated booklet briefly describes NASA's mission and career opportunities on the NASA team. NASA field installations and their missions are briefly noted. NASA's four chief program offices are briefly described. They are: (1) Aeronautics, Exploration, and Space Technology; (2) Space Flight; (3) Space Operations; and (4) Space Science and Applications.

  6. The NASA Astrophysics Program

    NASA Technical Reports Server (NTRS)

    Zebulum, Ricardo S.

    2011-01-01

    NASA's scientists are enjoying unprecedented access to astronomy data from space, both from missions launched and operated only by NASA, as well as missions led by other space agencies to which NASA contributed instruments or technology. This paper describes the NASA astrophysics program for the next decade, including NASA's response to the ASTRO2010 Decadal Survey.

  7. Blockade by NIP-142, an antiarrhythmic agent, of carbachol-induced atrial action potential shortening and GIRK1/4 channel.

    PubMed

    Matsuda, Tomoyuki; Ito, Mie; Ishimaru, Sayoko; Tsuruoka, Noriko; Saito, Tomoaki; Iida-Tanaka, Naoko; Hashimoto, Norio; Yamashita, Toru; Tsuruzoe, Nobutomo; Tanaka, Hikaru; Shigenobu, Koki

    2006-08-01

    Mechanisms for the atria-specific action potential-prolonging action of NIP-142 ((3R*,4S*)-4-cyclopropylamino-3,4-dihydro-2,2-dimethyl-6-(4-methoxyphenylacetylamino)-7-nitro-2H-1-benzopyran-3-ol), a benzopyran compound that terminates experimental atrial arrhythmia, was examined. In isolated guinea-pig atrial tissue, NIP-142 reversed the shortening of action potential duration induced by either carbachol or adenosine. These effects were mimicked by tertiapin, but not by E-4031. NIP-142 concentration-dependently blocked the human G protein-coupled inwardly rectifying potassium channel current (GIRK1/4 channel current) expressed in HEK-293 cells with an EC50 value of 0.64 microM. At higher concentrations, NIP-142 blocked the human ether a go-go related gene (HERG) channel current with an EC50 value of 44 microM. In isolated guinea-pig papillary muscles, NIP-142 had no effect on the negative inotropic effect of carbachol under beta-adrenergic stimulation, indicating lack of effect on the muscarinic receptor and Gi protein. These results suggest that NIP-142 directly inhibits the acetylcholine-activated potassium current.

  8. NASA Environmentally Responsible Aviation Hybrid Wing Body Flow-Through Nacelle Wind Tunnel CFD

    NASA Technical Reports Server (NTRS)

    Schuh, Michael J.; Garcia, Joseph A.; Carter, Melissa B.; Deere, Karen A.; Tompkins, Daniel M.; Stremel, Paul M.

    2016-01-01

    Wind tunnel tests of a 5.75 scale model of the Boeing Hybrid Wing Body (HWB) configuration were conducted in the NASA Langley Research Center (LaRC) 14x22 and NASA Ames Research Center (ARC) 40x80 low speed wind tunnels as part of the NASA Environmentally Responsible Aviation (ERA) Project. Computational fluid dynamics (CFD) simulations of the flow-through nacelle (FTN) configuration of this model were performed before and after the testing. This paper presents a summary of the experimental and CFD results for the model in the cruise and landing configurations.

  9. NASA Environmentally Responsible Aviation Hybrid Wing Body Flow-Through Nacelle Wind Tunnel CFD

    NASA Technical Reports Server (NTRS)

    Schuh, Michael J.; Garcia, Jospeh A.; Carter, Melissa B.; Deere, Karen A.; Stremel, Paul M.; Tompkins, Daniel M.

    2016-01-01

    Wind tunnel tests of a 5.75% scale model of the Boeing Hybrid Wing Body (HWB) configuration were conducted in the NASA Langley Research Center (LaRC) 14'x22' and NASA Ames Research Center (ARC) 40'x80' low speed wind tunnels as part of the NASA Environmentally Responsible Aviation (ERA) Project. Computational fluid dynamics (CFD) simulations of the flow-through nacelle (FTN) configuration of this model were performed before and after the testing. This paper presents a summary of the experimental and CFD results for the model in the cruise and landing configurations.

  10. Working at NASA

    NASA Technical Reports Server (NTRS)

    Harding, Adam

    2010-01-01

    This slide presentation reviews the author's educational and work background prior to working at NASA. It then presents an overview of NASA Dryden, a brief review of the author's projects while working at NASA, and some closing thoughts.

  11. NASA - Beyond Boundaries

    NASA Technical Reports Server (NTRS)

    McMillan, Courtenay

    2016-01-01

    NASA is able to achieve human spaceflight goals in partnership with international and commercial teams by establishing common goals and building connections. Presentation includes photographs from NASA missions - on orbit, in Mission Control, and at other NASA facilities.

  12. NASA/RAE cooperation on a knowlede based flight status monitor

    NASA Technical Reports Server (NTRS)

    Butler, G. F.; Duke, E. L.

    1989-01-01

    As part of a US/UK cooperative aeronautical research pragram, a joint activity between the Dryden Flight Research Facility of the NASA Ames Research Center (Ames-Dryden) and the Royal Aerospace Establishment (RAE) on Knowledge Based Systems was established. Under the agreement, a Flight Status Monitor Knowledge base developed at Ames-Dryden was implemented using the real-time IKBS toolkit, MUSE, which was developed in the UK under RAE sponsorship. The Flight Status Monitor is designed to provide on-line aid to the flight test engineer in the interpretation of system health and status by storing expert knowledge of system behavior in an easily accessible form. The background to the cooperation is described and the details of the Flight Status Monitor, the MUSE implementation are presented.

  13. NASA Downscaling Project: Final Report

    NASA Technical Reports Server (NTRS)

    Ferraro, Robert; Waliser, Duane; Peters-Lidard, Christa

    2017-01-01

    A team of researchers from NASA Ames Research Center, Goddard Space Flight Center, the Jet Propulsion Laboratory, and Marshall Space Flight Center, along with university partners at UCLA, conducted an investigation to explore whether downscaling coarse resolution global climate model (GCM) predictions might provide valid insights into the regional impacts sought by decision makers. Since the computational cost of running global models at high spatial resolution for any useful climate scale period is prohibitive, the hope for downscaling is that a coarse resolution GCM provides sufficiently accurate synoptic scale information for a regional climate model (RCM) to accurately develop fine scale features that represent the regional impacts of a changing climate. As a proxy for a prognostic climate forecast model, and so that ground truth in the form of satellite and in-situ observations could be used for evaluation, the MERRA and MERRA - 2 reanalyses were used to drive the NU - WRF regional climate model and a GEOS - 5 replay. This was performed at various resolutions that were at factors of 2 to 10 higher than the reanalysis forcing. A number of experiments were conducted that varied resolution, model parameterizations, and intermediate scale nudging, for simulations over the continental US during the period from 2000 - 2010. The results of these experiments were compared to observational datasets to evaluate the output.

  14. Selling to NASA

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This handbook is designed to promote a better understanding of NASA's interests and the process of doing business with NASA. The document is divided into the following sections: (1) this is NASA; (2) the procurement process; (3) marketing your capabilities; (4) special assistance programs; (5) NASA field installations; (6) sources of additional help; (7) listing of NASA small/minority business personnel; and (8) NASA organization chart.

  15. NASA metrication activities

    NASA Technical Reports Server (NTRS)

    Vlannes, P. N.

    1978-01-01

    NASA's organization and policy for metrification, history from 1964, NASA participation in Federal agency activities, interaction with nongovernmental metrication organizations, and the proposed metrication assessment study are reviewed.

  16. Facies analysis and depositional environment of the Ames Marine Member of the Conemaugh Group in the Appalachian Basin

    SciTech Connect

    Al-Qayim, B.A.

    1983-01-01

    The lithologic and paleontological aspects for fifty localities of the Ames Marine Member were examined. The regional stratigraphic reconstruction shows that it is variably composed of limestone and shale, and often associated with a thin basal coal seam. A generalized, composite stratigraphic section of the Ames Member consists of the following units from top to bottom: the Grafton Sandstone, Nonmarine Shale, Upper Ames Shale, Upper Ames Limestone, Middle Ames Shale, Lower Ames Limestone, Lower Ames Shale, Ames Coal, Nonmarine Silty Shale, and Harlem Coal. Harlem coal is commonly the basal coal in Ohio, and the Ames Coal is common in Pennsylvania and West Virginia. Insoluble residue analysis of 223 samples shows that quartz and glauconite are the major and significant residues. The major petrographic components of the Ames rocks are bioclastic grains of echinoderm, brachiopods, molluscs, bryozoa, and foraminifera in a matrix variably composed of clay and calcium carbonate. A quantitative microfacies study applying factor and cluster analysis reveals five basin-wide biofacies and four lithofacies reflecting a gradient from shoreline to an offshore position. The areal and vertical distribution of the different facies reflects the transgression-regression history of the Ames Cycle. A uniform slow eustatic rise of sea level with an early rapid transgression was responsible for the deposition of most of the Ames marine section. The small, upper, underdeveloped regressive section suggests a rapid regression by active prograding deltaic deposits which rapidly terminated the marine conditions over most the the Appalachian Basin.

  17. Support System Effects on the NASA Common Research Model

    NASA Technical Reports Server (NTRS)

    Rivers, S. Melissa B.; Hunter, Craig A.

    2012-01-01

    An experimental investigation of the NASA Common Research Model was conducted in the NASA Langley National Transonic Facility and NASA Ames 11-Foot Transonic Wind Tunnel Facility for use in the Drag Prediction Workshop. As data from the experimental investigations was collected, a large difference in moment values was seen between the experimental and the computational data from the 4th Drag Prediction Workshop. This difference led to the present work. In this study, a computational assessment has been undertaken to investigate model support system interference effects on the Common Research Model. The configurations computed during this investigation were the wing/body/tail=0deg without the support system and the wing/body/tail=0deg with the support system. The results from this investigation confirm that the addition of the support system to the computational cases does shift the pitching moment in the direction of the experimental results.

  18. Modification of the Ames 40- by 80-foot wind tunnel for component acoustic testing for the second generation supersonic transport

    NASA Technical Reports Server (NTRS)

    Schmitz, F. H.; Allmen, J. R.; Soderman, P. T.

    1994-01-01

    The development of a large-scale anechoic test facility where large models of engine/airframe/high-lift systems can be tested for both improved noise reduction and minimum performance degradation is described. The facility development is part of the effort to investigate economically viable methods of reducing second generation high speed civil transport noise during takeoff and climb-out that is now under way in the United States. This new capability will be achieved through acoustic modifications of NASA's second largest subsonic wind tunnel: the 40-by 80-Foot Wind Tunnel at the NASA Ames Research Center. Three major items are addressed in the design of this large anechoic and quiet wind tunnel: a new deep (42 inch (107 cm)) test section liner, expansion of the wind tunnel drive operating envelope at low rpm to reduce background noise, and other promising methods of improving signal-to-noise levels of inflow microphones. Current testing plans supporting the U.S. high speed civil transport program are also outlined.

  19. A note on the revised galactic neutron spectrum of the Ames collaborative study

    NASA Technical Reports Server (NTRS)

    Schaefer, H. J.

    1980-01-01

    Energy distributions of the neutron dose equivalents in the 0.1 to 300 Mev interval for the Ames and Hess spectra are compared. The Ames spectrum shows no evaporation peak, moves the bulk of the flux away from the region of elastic collision and spreads it more evenly over higher energies. The neutron spectrum in space does not seem to hear out the Ames model. Emulsion findings on all manned missions of the past consistently indicate that evaporation events are a prolific source of neutrons in space.

  20. Writing competitive research conference abstracts: AMEE Guide no. 108.

    PubMed

    Varpio, Lara; Amiel, Jonathan; Richards, Boyd F

    2016-09-01

    The ability to write a competitive research conference abstract is an important skill for medical educators. A compelling and concise abstract can convince peer reviewers, conference selection committee members, and conference attendees that the research described therein is worthy for inclusion in the conference program and/or for their attendance in the meeting. This AMEE Guide is designed to help medical educators write research conference abstracts that can achieve these outcomes. To do so, this Guide begins by examining the rhetorical context (i.e. the purpose, audience, and structure) of research conference abstracts and then moves on to describe the abstract selection processes common to many medical education conferences. Next, the Guide provides theory-based information and concrete suggestions on how to write persuasively. Finally, the Guide offers some writing tips and some proofreading techniques that all authors can use. By attending to the aspects of the research conference abstract addressed in this Guide, we hope to help medical educators enhance this important text in their writing repertoire.

  1. International round-robin study on the Ames fluctuation test.

    PubMed

    Reifferscheid, G; Maes, H M; Allner, B; Badurova, J; Belkin, S; Bluhm, K; Brauer, F; Bressling, J; Domeneghetti, S; Elad, T; Flückiger-Isler, S; Grummt, H J; Gürtler, R; Hecht, A; Heringa, M B; Hollert, H; Huber, S; Kramer, M; Magdeburg, A; Ratte, H T; Sauerborn-Klobucar, R; Sokolowski, A; Soldan, P; Smital, T; Stalter, D; Venier, P; Ziemann, Chr; Zipperle, J; Buchinger, S

    2012-04-01

    An international round-robin study on the Ames fluctuation test [ISO 11350, 2012], a microplate version of the classic plate-incorporation method for the detection of mutagenicity in water, wastewater and chemicals was performed by 18 laboratories from seven countries. Such a round-robin study is a precondition for both the finalization of the ISO standardization process and a possible regulatory implementation in water legislation. The laboratories tested four water samples (spiked/nonspiked) and two chemical mixtures with and without supplementation of a S9-mix. Validity criteria (acceptable spontaneous and positive control-induced mutation counts) were fulfilled by 92-100%, depending on the test conditions. A two-step method for statistical evaluation of the test results is proposed and assessed in terms of specificity and sensitivity. The data were first subjected to powerful analysis of variance (ANOVA) after an arcsine-square-root transformation to detect significant differences between the test samples and the negative control (NC). A threshold (TH) value based on a pooled NC was then calculated to exclude false positive test results. Statistically, positive effects observed by the William's test were considered negative, if the mean of all replicates of a sample did not exceed the calculated TH. By making use of this approach, the overall test sensitivity was 100%, and the test specificity ranged from 80 to 100%.

  2. Mobile technologies in medical education: AMEE Guide No. 105.

    PubMed

    Masters, Ken; Ellaway, Rachel H; Topps, David; Archibald, Douglas; Hogue, Rebecca J

    2016-06-01

    Mobile technologies (including handheld and wearable devices) have the potential to enhance learning activities from basic medical undergraduate education through residency and beyond. In order to use these technologies successfully, medical educators need to be aware of the underpinning socio-theoretical concepts that influence their usage, the pre-clinical and clinical educational environment in which the educational activities occur, and the practical possibilities and limitations of their usage. This Guide builds upon the previous AMEE Guide to e-Learning in medical education by providing medical teachers with conceptual frameworks and practical examples of using mobile technologies in medical education. The goal is to help medical teachers to use these concepts and technologies at all levels of medical education to improve the education of medical and healthcare personnel, and ultimately contribute to improved patient healthcare. This Guide begins by reviewing some of the technological changes that have occurred in recent years, and then examines the theoretical basis (both social and educational) for understanding mobile technology usage. From there, the Guide progresses through a hierarchy of institutional, teacher and learner needs, identifying issues, problems and solutions for the effective use of mobile technology in medical education. This Guide ends with a brief look to the future.

  3. Ethnography in qualitative educational research: AMEE Guide No. 80.

    PubMed

    Reeves, Scott; Peller, Jennifer; Goldman, Joanne; Kitto, Simon

    2013-08-01

    Ethnography is a type of qualitative research that gathers observations, interviews and documentary data to produce detailed and comprehensive accounts of different social phenomena. The use of ethnographic research in medical education has produced a number of insightful accounts into its role, functions and difficulties in the preparation of medical students for clinical practice. This AMEE Guide offers an introduction to ethnography - its history, its differing forms, its role in medical education and its practical application. Specifically, the Guide initially outlines the main characteristics of ethnography: describing its origins, outlining its varying forms and discussing its use of theory. It also explores the role, contribution and limitations of ethnographic work undertaken in a medical education context. In addition, the Guide goes on to offer a range of ideas, methods, tools and techniques needed to undertake an ethnographic study. In doing so it discusses its conceptual, methodological, ethical and practice challenges (e.g. demands of recording the complexity of social action, the unpredictability of data collection activities). Finally, the Guide provides a series of final thoughts and ideas for future engagement with ethnography in medical education. This Guide is aimed for those interested in understanding ethnography to develop their evaluative skills when reading such work. It is also aimed at those interested in considering the use of ethnographic methods in their own research work.

  4. Analysis of Hexanitrostilbene (HNS) and Dipicryethane (DPE) for Mutagenicity by the Ames/Salmonella Assay

    SciTech Connect

    Wu, R; Felton, J

    2007-10-12

    The Ames/Salmonella assay, developed by Professor Bruce Ames at the University of California, Berkeley, is a rapid and sensitive assay for detecting mutagenicity of various chemical compounds (Maron and Ames, 1983). It is a widely accepted short-term assay for detecting chemicals that induce mutations in the histidine (his) gene of Salmonella typhimurium. This is a reverse mutation assay that detects the mutational reversion of his-dependent Salmonella to the his-independent counterpart. Thereby, mutagenic compounds will increase the frequency of occurrence of his-independent bacterial colonies. The assay utilizes the specific genetically constructed strains of bacteria either with or without mammalian metabolic activation enzymes (S9), Aroclor induced rat liver homogenate to assess the mutagenicity of different compounds. In this study, we will use the Ames/Salmonella assay to investigate the mutagenicity of Hexanitrostilbene (HNS) from both Bofors and Pantex, and Dipicryethane (DPE).

  5. Making Stuff Outreach at the Ames Laboratory and Iowa State University

    SciTech Connect

    Ament, Katherine; Karsjen, Steven; Leshem-Ackerman, Adah; King, Alexander

    2011-04-01

    The U. S. Department of Energy's Ames Laboratory in Ames, Iowa was a coalition partner for outreach activities connected with NOVA's Making Stuff television series on PBS. Volunteers affiliated with the Ames Laboratory and Iowa State University, with backgrounds in materials science, took part in activities including a science-themed Family Night at a local mall, Science Cafes at the Science Center of Iowa, teacher workshops, demonstrations at science nights in elementary and middle schools, and various other events. We describe a selection of the activities and present a summary of their outcomes and extent of their impact on Ames, Des Moines and the surrounding communities in Iowa. In Part 2, results of a volunteer attitude survey are presented, which shed some light on the volunteer experience and show how the volunteers participation in outreach activities has affected their views of materials education.

  6. Status of the NASA YF-12 Propulsion Research Program

    NASA Technical Reports Server (NTRS)

    Albers, J. A.

    1976-01-01

    The YF-12 research program was initiated to establish a technology base for the design of an efficient propulsion system for supersonic cruise aircraft. The major technology areas under investigation in this program are inlet design analysis, propulsion system steady-state performance, propulsion system dynamic performance, inlet and engine control systems, and airframe/propulsion system interactions. The objectives, technical approach, and status of the YF-12 propulsion program are discussed. Also discussed are the results obtained to date by the NASA Ames, Lewis, and Dryden research centers. The expected technical results and proposed future programs are also given. Propulsion system configurations are shown.

  7. NASA rotorcraft technology for the 21st century

    NASA Technical Reports Server (NTRS)

    Albers, James A.

    1989-01-01

    Current and planned rotorcraft technology-related research at NASA's Ames, Lewis, and Langley research centers is discussed with a view to the fruits of these efforts beyond the year 2000. Examples of promising technologies are higher-harmonic and dynamic rotor controls, advanced structural composites, aerodynamics and acoustics simulation models for design predictions, automated flight controls, and high-reliability rotor drivetrains. The overall payoff from an integration of these technologies will allow safe automated flying in all weather conditions, as well as precision-hover and exceptionally low noise and vibration levels.

  8. Analysis of NASA Common Research Model Dynamic Data

    NASA Technical Reports Server (NTRS)

    Balakrishna, S.; Acheson, Michael J.

    2011-01-01

    Recent NASA Common Research Model (CRM) tests at the Langley National Transonic Facility (NTF) and Ames 11-foot Transonic Wind Tunnel (11-foot TWT) have generated an experimental database for CFD code validation. The database consists of force and moment, surface pressures and wideband wing-root dynamic strain/wing Kulite data from continuous sweep pitch polars. The dynamic data sets, acquired at 12,800 Hz sampling rate, are analyzed in this study to evaluate CRM wing buffet onset and potential CRM wing flow separation.

  9. Application of the Ames/Salmonella assay to routine industrial hygiene work

    SciTech Connect

    Miller, G.C.; Avila, J.; Elliott, J.; Felton, J.; Nielson, J.

    1992-05-01

    We have used the Ames/Salmonella assay aggressively for swipe-testing surfaces and for sampling the air people breathe. Our technique for air sampling particulates and subsequently analyzing them using a simple gravimetric assay and the Ames/Salmonella (or other biological) assay is discussed herein. We also discuss some recent applications of the assay to test for mutagenic materials on surfaces and in the air at Lawrence Livermore National Laboratory (LLNL).

  10. The Ame2016 atomic mass evaluation * (I). Evaluation of input data; and adjustment procedures

    SciTech Connect

    Huang, W. J.; Audi, G.; Wang, Meng; Kondev, F. G.; Naimi, S.; Xu, Xing

    2017-01-01

    This paper is the first of two articles (Part I and Part II) that presents the results of the new atomic mass evaluation, Ame2016. It includes complete information on the experimental input data (also including unused and rejected ones), as well as details on the evaluation procedures used to derive the tables of recommended values given in the second part. This article describes the evaluation philosophy and procedures that were implemented in the selection of specific nuclear reaction, decay and mass-spectrometric results. These input values were entered in the least-squares adjustment for determining the best values for the atomic masses and their uncertainties. Details of the calculation and particularities of the Ame are then described. All accepted and rejected data, including outweighted ones, are presented in a tabular format and compared with the adjusted values obtained using the least-squares fit analysis. Differences with the previous Ame2012 evaluation are discussed and specific information is presented for several cases that may be of interest to Ame users. The second Ame2016 article gives a table with the recommended values of atomic masses, as well as tables and graphs of derived quantities, along with the list of references used in both the Ame2016 and the Nubase2016 evaluations (the first paper in this issue). Amdc: http://amdc.impcas.ac.cn/

  11. "Ames Research Center: Linking our Origins to our Future"

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.

    2005-01-01

    Our research traces a path from interstellar materials to inhabited worlds and beyond. We examine how protoplanetary disks evolve and form terrestrial planets, the evolutionary paths of habitable planets, and how external factors (e.g., orbital eccentricity) and internal factors (atmospheric circulation) affect habitability. We trace, spectroscopically and chemically, the evolution of organic molecules from the interstellar medium onto habitable bodies. We examine how membranes might form under prebiotic planetary conditions. We evolve proteins capable of sustaining early metabolism, such as synthesis of biopolymers and transport of ions across membranes. We estimate the frequency of finding a functional prebiotic protein that formed spontaneously. We characterize the formation of diagnostic microbial biosignatures in rock-hosted ecosystems in ophiolite springs as an analog for subsurface life within our solar system, and photosynthetic microbial mats as biota that could be detected on extrasolar planets. We develop quantitative models that simulate energy relationships, biogeochemical cycling, trace gas exchange, and biodiversity. We examine the effects of climate variability on a vegetation-rich biosphere over intermediate time scales, using South American ecosystems as a model. We address natural transport of life beyond its planet of origin, such as on a meteorite, where survivors must withstand radiation, desiccation, and time in transit. We fly organisms and ecosystems in low Earth orbit to test their resistance to space. The Ames E&PO program disseminates these themes to national- and international-scale audiences through partnerships with the California Academy of Sciences, Yellow stone National Park, New York Hall of Science, and several K-14 educational organizations.

  12. The Role of Synthetic Biology in NASA's Missions

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2016-01-01

    The time has come to for NASA to exploit synthetic biology in pursuit of its missions, including aeronautics, earth science, astrobiology and most notably, human exploration. Conversely, NASA advances the fundamental technology of synthetic biology as no one else can because of its unique expertise in the origin of life and life in extreme environments, including the potential for alternate life forms. This enables unique, creative "game changing" advances. NASA's requirement for minimizing upmass in flight will also drive the field toward miniaturization and automation. These drivers will greatly increase the utility of synthetic biology solutions for military, health in remote areas and commercial purposes. To this end, we have begun a program at NASA to explore the use of synthetic biology in NASA's missions, particular space exploration. As part of this program, we began hosting an iGEM team of undergraduates drawn from Brown and Stanford Universities to conduct synthetic biology research at NASA Ames Research Center. The 2011 team (http://2011.igem.org/Team:Brown-Stanford) produced an award-winning project on using synthetic biology as a basis for a human Mars settlement.

  13. NASA Systems Engineering Handbook

    NASA Technical Reports Server (NTRS)

    Shishko, Robert; Aster, Robert; Chamberlain, Robert G.; Mcduffee, Patrick; Pieniazek, Les; Rowell, Tom; Bain, Beth; Cox, Renee I.; Mooz, Harold; Polaski, Lou

    1995-01-01

    This handbook brings the fundamental concepts and techniques of systems engineering to NASA personnel in a way that recognizes the nature of NASA systems and environment. It is intended to accompany formal NASA training courses on systems engineering and project management when appropriate, and is designed to be a top-level overview. The concepts were drawn from NASA field center handbooks, NMI's/NHB's, the work of the NASA-wide Systems Engineering Working Group and the Systems Engineering Process Improvement Task team, several non-NASA textbooks and guides, and material from independent systems engineering courses taught to NASA personnel. Five core chapters cover systems engineering fundamentals, the NASA Project Cycle, management issues in systems engineering, systems analysis and modeling, and specialty engineering integration. It is not intended as a directive. Superseded by: NASA/SP-2007-6105 Rev 1 (20080008301).

  14. Role of High-End Computing in Meeting NASA's Science and Engineering Challenges

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Tu, Eugene L.; Van Dalsem, William R.

    2006-01-01

    Two years ago, NASA was on the verge of dramatically increasing its HEC capability and capacity. With the 10,240-processor supercomputer, Columbia, now in production for 18 months, HEC has an even greater impact within the Agency and extending to partner institutions. Advanced science and engineering simulations in space exploration, shuttle operations, Earth sciences, and fundamental aeronautics research are occurring on Columbia, demonstrating its ability to accelerate NASA s exploration vision. This talk describes how the integrated production environment fostered at the NASA Advanced Supercomputing (NAS) facility at Ames Research Center is accelerating scientific discovery, achieving parametric analyses of multiple scenarios, and enhancing safety for NASA missions. We focus on Columbia s impact on two key engineering and science disciplines: Aerospace, and Climate. We also discuss future mission challenges and plans for NASA s next-generation HEC environment.

  15. NASA's unique networking environment

    NASA Technical Reports Server (NTRS)

    Johnson, Marjory J.

    1988-01-01

    Networking is an infrastructure technology; it is a tool for NASA to support its space and aeronautics missions. Some of NASA's networking problems are shared by the commercial and/or military communities, and can be solved by working with these communities. However, some of NASA's networking problems are unique and will not be addressed by these other communities. Individual characteristics of NASA's space-mission networking enviroment are examined, the combination of all these characteristics that distinguish NASA's networking systems from either commercial or military systems is explained, and some research areas that are important for NASA to pursue are outlined.

  16. A NASA/RAE cooperation in the development of a real-time knowledge based autopilot

    NASA Technical Reports Server (NTRS)

    Daysh, Colin; Corbin, Malcolm; Butler, Geoff; Duke, Eugene L.; Belle, Steven D.; Brumbaugh, Randal W.

    1991-01-01

    As part of a US/UK cooperative aeronautical research program, a joint activity between NASA-Ames and the Royal Aerospace Establishment on Knowledge Based Systems (KBS) was established. This joint activity is concerned with tools and techniques for the implementation and validation of real-time KBS. The proposed next stage of the research is described, in which some of the problems of implementing and validating a Knowledge Based Autopilot (KBAP) for a generic high performance aircraft will be studied.

  17. High altitude perspective. [cost-reimbursable services using NASA U-2 aircraft

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The capabilities of the NASA Ames Center U-2 aircraft for research or experimental programs are described for such areas as Earth resources inventories; remote sensing data interpretation, electronic sensor research and development; satellite investigative support; stratospheric gas studies; and astronomy and astrophysics. The availability of this aircraft on a cost-reimbursable basis for use in high-altitude investigations that cannot be performed by the private sector is discussed.

  18. Network Computer Technology. Phase I: Viability and Promise within NASA's Desktop Computing Environment

    NASA Technical Reports Server (NTRS)

    Paluzzi, Peter; Miller, Rosalind; Kurihara, West; Eskey, Megan

    1998-01-01

    Over the past several months, major industry vendors have made a business case for the network computer as a win-win solution toward lowering total cost of ownership. This report provides results from Phase I of the Ames Research Center network computer evaluation project. It identifies factors to be considered for determining cost of ownership; further, it examines where, when, and how network computer technology might fit in NASA's desktop computing architecture.

  19. Mixing alcohol with energy drink (AMED) and total alcohol consumption: a systematic review and meta-analysis.

    PubMed

    Verster, Joris C; Benson, Sarah; Johnson, Sean J; Scholey, Andrew; Alford, Chris

    2016-01-01

    It has been suggested that consuming alcohol mixed with energy drink (AMED) may increase total alcohol consumption. Aims of this systematic review and meta-analysis were (i) to compare alcohol consumption of AMED consumers with alcohol only (AO) consumers (between-group comparisons), and (ii) to examine if alcohol consumption of AMED consumers differs on AMED and AO occasions (within-subject comparisons). A literature search identified fourteen studies. Meta-analyses of between-group comparisons of N = 5212 AMED consumers and N = 12,568 AO consumers revealed that on a typical single drinking episode AMED consumers drink significantly more alcohol than AO consumers (p = 0.0001, ES = 0.536, 95%CI: 0.349 to 0.724). Meta-analyses of within-subject comparisons among N = 2871 AMED consumers revealed no significant difference in overall alcohol consumption on a typical drinking episode between AMED and AO occasions (p = 0.465, ES = -0.052, 95%CI: -0.192 to 0.088). In conclusion, between-group comparisons suggest that heavy alcohol consumption is one of the several phenotypical differences between AMED and AO consumers. Within-subject comparisons revealed, however, that AMED consumption does not increase the total amount of alcohol consumed on a single drinking episode.

  20. NASA Ground-Truthing Capabilities Demonstrated

    NASA Technical Reports Server (NTRS)

    Lopez, Isaac; Seibert, Marc A.

    2004-01-01

    NASA Research and Education Network (NREN) ground truthing is a method of verifying the scientific validity of satellite images and clarifying irregularities in the imagery. Ground-truthed imagery can be used to locate geological compositions of interest for a given area. On Mars, astronaut scientists could ground truth satellite imagery from the planet surface and then pinpoint optimum areas to explore. These astronauts would be able to ground truth imagery, get results back, and use the results during extravehicular activity without returning to Earth to process the data from the mission. NASA's first ground-truthing experiment, performed on June 25 in the Utah desert, demonstrated the ability to extend powerful computing resources to remote locations. Designed by Dr. Richard Beck of the Department of Geography at the University of Cincinnati, who is serving as the lead field scientist, and assisted by Dr. Robert Vincent of Bowling Green State University, the demonstration also involved researchers from the NASA Glenn Research Center and the NASA Ames Research Center, who worked with the university field scientists to design, perform, and analyze results of the experiment. As shown real-time Hyperion satellite imagery (data) is sent to a mass storage facility, while scientists at a remote (Utah) site upload ground spectra (data) to a second mass storage facility. The grid pulls data from both mass storage facilities and performs up to 64 simultaneous band ratio conversions on the data. Moments later, the results from the grid are accessed by local scientists and sent directly to the remote science team. The results are used by the remote science team to locate and explore new critical compositions of interest. The process can be repeated as required to continue to validate the data set or to converge on alternate geophysical areas of interest.

  1. Building 1100--NASA

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Building 1100 is the NASA administrative building. Services located in this building include two banks, a post office, barber shop, cafeteria, snack bar, travel agency, dry cleaners, the NASA Exchange retail store and medical facilities for employees.

  2. #NASATweetup @NASA_Langley

    NASA Video Gallery

    NASA Langley Research Center's first tweet-up involved a diverse group of more than 40 that included an astronaut's daughter, a physics student from Wisconsin, one of NASA's newest space camp crew ...

  3. The NASA Organization

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This Handbook, effective 13 September 1994, documents the NASA organization, defines terms, and sets forth the policy and requirements for establishing, modifying, and documenting the NASA organizational structure and for assigning organizational responsibilities.

  4. NASA Geodynamics Program

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Activities and achievements for the period of May 1983 to May 1984 for the NASA geodynamics program are summarized. Abstracts of papers presented at the Conference are inlcuded. Current publications associated with the NASA Geodynamics Program are listed.

  5. NASA Now: Rocket Engineering

    NASA Video Gallery

    What’s the difference between fission and fusion? What are the applications & benefits of nuclear power & propulsion at NASA? How can NASA gain nuclear energy’s benefits for space exploration? ...

  6. NASA systems engineering handbook

    NASA Astrophysics Data System (ADS)

    Shishko, Robert; Aster, Robert; Chamberlain, Robert G.; McDuffee, Patrick; Pieniazek, Les; Rowell, Tom; Bain, Beth; Cox, Renee I.; Mooz, Harold; Polaski, Lou

    1995-06-01

    This handbook brings the fundamental concepts and techniques of systems engineering to NASA personnel in a way that recognizes the nature of NASA systems and environment. It is intended to accompany formal NASA training courses on systems engineering and project management when appropriate, and is designed to be a top-level overview. The concepts were drawn from NASA field center handbooks, NMI's/NHB's, the work of the NASA-wide Systems Engineering Working Group and the Systems Engineering Process Improvement Task team, several non-NASA textbooks and guides, and material from independent systems engineering courses taught to NASA personnel. Five core chapters cover systems engineering fundamentals, the NASA Project Cycle, management issues in systems engineering, systems analysis and modeling, and specialty engineering integration. It is not intended as a directive.

  7. NASA Now: Balloon Research

    NASA Video Gallery

    In this NASA Now program, Debbie Fairbrother discusses two types of high-altitude balloons that NASA is using to test scientific instruments and spacecraft. She also talks about the Ideal Gas Law a...

  8. Chemical Engineering at NASA

    NASA Technical Reports Server (NTRS)

    Collins, Jacob

    2008-01-01

    This viewgraph presentation is a review of the career paths for chemicals engineer at NASA (specifically NASA Johnson Space Center.) The author uses his personal experience and history as an example of the possible career options.

  9. NASA strategic plan

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The NASA Strategic Plan is a living document. It provides far-reaching goals and objectives to create stability for NASA's efforts. The Plan presents NASA's top-level strategy: it articulates what NASA does and for whom; it differentiates between ends and means; it states where NASA is going and what NASA intends to do to get there. This Plan is not a budget document, nor does it present priorities for current or future programs. Rather, it establishes a framework for shaping NASA's activities and developing a balanced set of priorities across the Agency. Such priorities will then be reflected in the NASA budget. The document includes vision, mission, and goals; external environment; conceptual framework; strategic enterprises (Mission to Planet Earth, aeronautics, human exploration and development of space, scientific research, space technology, and synergy); strategic functions (transportation to space, space communications, human resources, and physical resources); values and operating principles; implementing strategy; and senior management team concurrence.

  10. Mutagenicity and cytotoxicity of naphthoquinones for Ames Salmonella tester strains

    SciTech Connect

    Hakura, Atsushi; Mochida, Hisatoshi; Tsutsui, Yoshie; Yamatsu, Kiyomi

    1994-07-01

    The molecular mechanisms involved in quinone cytotoxicity, especially mutagenicity, are still largely unknown. In order to better understand the molecular aspects of the mechanisms of quinone mutagenicity and cytotoxicity, we examined them by using a series of 13 simple structural naphthoquinone (NQ) derivatives for 9 Ames Salmonella mutagenicity tester strains in the presence or absence of liver homogenate S9 mix from rats induced with phenobarbital and 5,6-benzoflavone. Most NQs used in this study showed mutagenicity with and/or without S9 mix. The most potent mutagenic NQ was 2,3-dichloro-1,4-NQ, with mutagenicity of 18 induced revertents/nmol/plate for strain TA104 without S9 mix. Among the strains used, TA104, which is sensitive to oxidative mutagens, was the most sensitive to the NQs, and the second most sensitive strain was TA2637, which detects bulky DNA adducts. The relationship of mutagenic potency to the one-electron reduction potential with TA104 suggested that the higher redox potential NQs were more mutagenic than the lower redox potential NQs. The cytotoxic effect of the NQs was largely dependent on the structures of their substituents. It was suggested that the higher redox potential NQs were more cytotoxic than the lower redox potential NQs for all of the strains used, in contrast to the mutagenicity of the NQs. The presence of S9 mix decreased the cytotoxic effect of the NQs, the extent of which was also largely dependent on the structures of their substituents and is in accordance with the order of the height of the one-electron reduction potentials. These results indicate that the mutagenicity of NQs in Salmonella typhimurium was due to oxidative damage produced with activated oxygen species such as hydroxy radical and superoxide anion radical, which are generated as a result of the reduction of the NQs, and to bulky NQ-DNA adducts accounting for their electrophilic property, whose contribution was largely dependent on the substituents of NQs.

  11. Strain-specific single-nucleotide polymorphism assays for the Bacillus anthracis Ames strain.

    PubMed

    Van Ert, Matthew N; Easterday, W Ryan; Simonson, Tatum S; U'Ren, Jana M; Pearson, Talima; Kenefic, Leo J; Busch, Joseph D; Huynh, Lynn Y; Dukerich, Megan; Trim, Carla B; Beaudry, Jodi; Welty-Bernard, Amy; Read, Timothy; Fraser, Claire M; Ravel, Jacques; Keim, Paul

    2007-01-01

    Highly precise diagnostics and forensic assays can be developed through a combination of evolutionary analysis and the exhaustive examination of genomic sequences. In Bacillus anthracis, whole-genome sequencing efforts revealed ca. 3,500 single-nucleotide polymorphisms (SNPs) among eight different strains and evolutionary analysis provides the identification of canonical SNPs. We have previously shown that SNPs are highly evolutionarily stable, and the clonal nature of B. anthracis makes them ideal signatures for subtyping this pathogen. Here we identified SNPs that define the lineage of B. anthracis that contains the Ames strain, the strain used in the 2001 bioterrorist attacks in the United States. Sequencing and real-time PCR were used to validate these SNPs across B. anthracis strains, including (i) 88 globally and genetically diverse isolates; (ii) isolates that were shown to be genetic relatives of the Ames strain by multiple-locus variable number tandem repeat analysis (MLVA); and (iii) several different lab stocks of the Ames strain, including a clinical isolate from the 2001 letter attack. Six SNPs were found to be highly specific for the Ames strain; four on the chromosome, one on the pX01 plasmid, and one on the pX02 plasmid. All six SNPs differentiated the B. anthracis Ames strain from the 88 unique B. anthracis strains, while five of the six separated Ames from its close genetic relatives. The use of these SNPs coupled with real-time PCR allows specific and sensitive (<100 fg of template DNA) identification of the Ames strain. This evolutionary and genomics-based approach provides an effective means for the discovery of strain-specific SNPs in B. anthracis.

  12. The AME2016 atomic mass evaluation (I). Evaluation of input data; and adjustment procedures

    NASA Astrophysics Data System (ADS)

    Huang, W. J.; Audi, G.; Wang, Meng; Kondev, F. G.; Naimi, S.; Xu, Xing

    2017-03-01

    This paper is the first of two articles (Part I and Part II) that presents the results of the new atomic mass evaluation, AME2016. It includes complete information on the experimental input data (also including unused and rejected ones), as well as details on the evaluation procedures used to derive the tables of recommended values given in the second part. This article describes the evaluation philosophy and procedures that were implemented in the selection of specific nuclear reaction, decay and mass-spectrometric results. These input values were entered in the least-squares adjustment for determining the best values for the atomic masses and their uncertainties. Details of the calculation and particularities of the AME are then described. All accepted and rejected data, including outweighted ones, are presented in a tabular format and compared with the adjusted values obtained using the least-squares fit analysis. Differences with the previous AME2012 evaluation are discussed and specific information is presented for several cases that may be of interest to AME users. The second AME2016 article gives a table with the recommended values of atomic masses, as well as tables and graphs of derived quantities, along with the list of references used in both the AME2016 and the NUBASE2016 evaluations (the first paper in this issue). AMDC: http://amdc.impcas.ac.cn/ Contents The AME2016 atomic mass evaluation (I). Evaluation of input data; and adjustment proceduresAcrobat PDF (1.2 MB) Table I. Input data compared with adjusted valuesAcrobat PDF (1.3 MB)

  13. NASA Robot Brain Surgeon

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mechanical Engineer Michael Guerrero works on the Robot Brain Surgeon testbed in the NeuroEngineering Group at the Ames Research Center, Moffett Field, California. Principal investigator Dr. Robert W. Mah states that potentially the simple robot will be able to feel brain structures better than any human surgeon, making slow, very precise movements during an operation. The brain surgery robot that may give surgeons finer control of surgical instruments during delicate brain operations is still under development.

  14. History at NASA

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The efforts of the National Aeronautics and Space Administration to capture and record the events of the past are described, particularly the research accomplishments of NASA's agency-wide history program. A concise guide to the historical research resources available at NASA Headquarters in Washington, D.C., at NASA facilities around the country, and through the federal records systems is given.

  15. The NASA Clinic System

    NASA Technical Reports Server (NTRS)

    Scarpa, Philip J.; Williams, Richard

    2009-01-01

    NASA maintains on site occupational health clinics at all Centers and major facilities NASA maintains an on-site clinic that offers comprehensive health care to astronauts at the Johnson Space Center NASA deploys limited health care capability to space and extreme environments Focus is always on preventive health care

  16. NASA's educational programs

    NASA Technical Reports Server (NTRS)

    Brown, Robert W.

    1990-01-01

    The educational programs of NASA's Educational Affairs Division are examined. The problem of declining numbers of science and engineering students is reviewed. The various NASA educational programs are described, including programs at the elementary and secondary school levels, teacher education programs, and undergraduate, graduate, and university faculty programs. The coordination of aerospace education activities and future plans for increasing NASA educational programs are considered.

  17. Doing business with NASA

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A brochure that was designed to encourage contractors to do business with NASA is presented. The brochure is divided into six sections: (1) This is NASA; (2) The procurement process; (3) Marketing your capabilities; (4) Special assistance programs; (5) NASA field installations; and (6) Sources of additional help.

  18. Accessing Wind Tunnels From NASA's Information Power Grid

    NASA Technical Reports Server (NTRS)

    Becker, Jeff; Biegel, Bryan (Technical Monitor)

    2002-01-01

    The NASA Ames wind tunnel customers are one of the first users of the Information Power Grid (IPG) storage system at the NASA Advanced Supercomputing Division. We wanted to be able to store their data on the IPG so that it could be accessed remotely in a secure but timely fashion. In addition, incorporation into the IPG allows future use of grid computational resources, e.g., for post-processing of data, or to do side-by-side CFD validation. In this paper, we describe the integration of grid data access mechanisms with the existing DARWIN web-based system that is used to access wind tunnel test data. We also show that the combined system has reasonable performance: wind tunnel data may be retrieved at 50Mbits/s over a 100 base T network connected to the IPG storage server.

  19. Thermo Physics Facilities Branch Brochure ARC Jet Complex Fact Sheets, Hypervelocity Free-Flight Aerodynamic Facility Fact Sheets, Ames Vertical Gun Range Fact Sheets

    NASA Technical Reports Server (NTRS)

    Fretter, E. F. (Editor); Kuhns, Jay (Editor); Nuez, Jay (Editor)

    2003-01-01

    The Ames Arc Jet Complex has a rich heritage of over 40 years in Thermal Protection System (TPS) development for every NASA Space Transportation and Planetary program, including Apollo, Space Shuttle, Viking, Pioneer-Venus, Galileo, Mars Pathfinder,Stardust, NASP,X-33,X-34,SHARP-B1 and B2,X-37 and Mars Exploration Rovers. With this early TPS history came a long heritage in the development of the arc jet facilities. These are used to simulate the aerodynamic heating that occurs on the nose cap, wing leading edges and on other areas of the spacecraft requiring thermal protection. TPS samples have been run in the arc jets from a few minutes to over an hour,from one exposure to multiple exposures of the same sample, in order t o understand the TPS materials response to a hot gas flow environment (representative of real hyperthermal environments experienced in flight). The Ames Arc l e t Complex is a key enabler for customers involved in the three major areas of TPS development: selection, validation, and qualification. The arc jet data are critical for validating TPS thermal models, heat shield designs and repairs, and ultimately for flight qualification.

  20. NASA Pocket Statistics

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA Pocket Statistics is published for the use of NASA managers and their staff. Included herein is Administrative and Organizational information, summaries of Space Flight Activity including the NASA Major Launch Record, and NASA Procurement, Financial, and Manpower data. The NASA Major Launch Record includes all launches of Scout class and larger vehicles. Vehicle and spacecraft development flights are also included in the Major Launch Record. Shuttle missions are counted as one launch and one payload, where free flying payloads are not involved. Satellites deployed from the cargo bay of the Shuttle and placed in a separate orbit or trajectory are counted as an additional payload.

  1. NASA Thesaurus Data File

    NASA Technical Reports Server (NTRS)

    2012-01-01

    The NASA Thesaurus contains the authorized NASA subject terms used to index and retrieve materials in the NASA Aeronautics and Space Database (NA&SD) and NASA Technical Reports Server (NTRS). The scope of this controlled vocabulary includes not only aerospace engineering, but all supporting areas of engineering and physics, the natural space sciences (astronomy, astrophysics, planetary science), Earth sciences, and the biological sciences. The NASA Thesaurus Data File contains all valid terms and hierarchical relationships, USE references, and related terms in machine-readable form. The Data File is available in the following formats: RDF/SKOS, RDF/OWL, ZThes-1.0, and CSV/TXT.

  2. The AME2016 atomic mass evaluation (II). Tables, graphs and references

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Audi, G.; Kondev, F. G.; Huang, W. J.; Naimi, S.; Xu, Xing

    2017-03-01

    This paper is the second part of the new evaluation of atomic masses, AME2016. Using least-squares adjustments to all evaluated and accepted experimental data, described in Part I, we derive tables with numerical values and graphs to replace those given in AME2012. The first table lists the recommended atomic mass values and their uncertainties. It is followed by a table of the influences of data on primary nuclides, a table of various reaction and decay energies, and finally, a series of graphs of separation and decay energies. The last section of this paper lists all references of the input data used in the AME2016 and the NUBASE2016 evaluations (first paper in this issue). AMDC: http://amdc.impcas.ac.cn/ Contents The AME2016 atomic mass evaluation (II). Tables, graphs and referencesAcrobat PDF (293 KB) Table I. The 2016 Atomic mass tableAcrobat PDF (273 KB) Table II. Influences on primary nuclidesAcrobat PDF (160 KB) Table III. Nuclear-reaction and separation energiesAcrobat PDF (517 KB) Graphs of separation and decay energiesAcrobat PDF (589 KB) References used in the AME2016 and the NUBASE2016 evaluationsAcrobat PDF (722 KB)

  3. NASA Now: Microbes @ NASA: Early Earth Ecosystems

    NASA Video Gallery

    What may look like green slime growing on a pond is what scientists call a microbial mat! Why does NASA care about slime? Microbial mats are living examples of the most ancient biological communiti...

  4. Model Deformation Measurements at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Burner, A. W.

    1998-01-01

    Only recently have large amounts of model deformation data been acquired in NASA wind tunnels. This acquisition of model deformation data was made possible by the development of an automated video photogrammetric system to measure the changes in wing twist and bending under aerodynamic load. The measurement technique is based upon a single view photogrammetric determination of two dimensional coordinates of wing targets with a fixed third dimensional coordinate, namely the spanwise location. A major consideration in the development of the measurement system was that use of the technique must not appreciably reduce wind tunnel productivity. The measurement technique has been used successfully for a number of tests at four large production wind tunnels at NASA and a dedicated system is nearing completion for a fifth facility. These facilities are the National Transonic Facility, the Transonic Dynamics Tunnel, and the Unitary Plan Wind Tunnel at NASA Langley, and the 12-FT Pressure Tunnel at NASA Ames. A dedicated system for the Langley 16-Foot Transonic Tunnel is scheduled to be used for the first time for a test in September. The advantages, limitations, and strategy of the technique as currently used in NASA wind tunnels are presented. Model deformation data are presented which illustrate the value of these measurements. Plans for further enhancements to the technique are presented.

  5. Origins and development of NASA's exobiology program, 1958-1976

    NASA Astrophysics Data System (ADS)

    Dick, Steven J.

    2009-07-01

    Following NASA's founding in 1958, the American space agency was quick to embrace exobiology as an important goal. In July 1959 NASA's first administrator, T. Keith Glennan, appointed a Bioscience Advisory Committee, which reported in January 1960 that NASA should not only be involved in space medicine, but also should undertake the search for extraterrestrial life. In the spring of 1960 NASA set up an Office of Life Sciences. By August it had authorized the Jet Propulsion Laboratory (JPL) to study the type of spacecraft needed to land on Mars and search for life. In order to study chemical evolution, the conditions under which life might survive, and a variety of related issues, NASA's first life sciences lab was set up at its Ames Research Center in California in 1960. In 1962 the Space Science Board of the National Academy of Sciences set the search for extraterrestrial life as "the prime goal of space biology". The search for life beyond Earth in many ways became a driver of the American space program, and these early events were the essential underpinnings that led to the landings of two Viking spacecraft on Mars in 1976. Despite the failure to find life unambiguously, research in exobiology continued and was transformed two decades later as astrobiology.

  6. NASA's Education Program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    NASA's current education programs, which will be examined under its Strategic Plan for Education are presented. It is NASA's first goal to maintain this base - revising, expanding, or eliminating programs as necessary. Through NASA's second goal, new education reform initiatives will be added which specifically address NASA mission requirements, national educational reform, and Federal Coordinating Council for Science, Engineering, and Technology (FCCSET) priorities. The chapters in this publication are divided by educational levels, with additional sections on programs to improve the technological competence of students and on an array of NASA published materials to supplement programs. The resource section lists NASA's national and regional Teacher Resource Centers and introduces the reader to NASA's Central Operation of Resources for Educators (CORE), which distributes materials in audiovisual format.

  7. Fluid dynamic research at NASA-Ames Research Center related to transonic wind tunnel design and testing techniques

    NASA Technical Reports Server (NTRS)

    Muhlstein, L., Jr.; Steinle, F., Jr.

    1976-01-01

    Fluid dynamic research with the objective of developing new and improved technology in both test facility concepts and test techniques is being reported. A summary of efforts and results thus far obtained in four areas is presented. The four area are: (1) the use of heavy gases to obtain high Reynolds numbers at transonic speeds: (2) high Reynolds number tests of the C-141A wing configuration; (3) performance and flow quality of the pilot injector driven wind tunnel; and (4) integration time required to extract accurate static and dynamic data from tests in transonic wind tunnels. Some of the principal conclusions relative to each of the four areas are: (1) Initial attempts to apply analytical corrections to test results using gases with gamma other than 1.4 to simulate conditions in air show promise but need significant improvement; (2) for the C-141A configuration, no Reynolds number less than the full scale flight value provides an accurate simulation of the full scale flow; (3) high ratios of tunnel mass flow rate to injection mass flow rate and high flow quality can be obtained in an injector driven transonic wind tunnel; and (4) integration times of 0.5 to 1.0 sec may be required for static force and pressure tests, respectively, at some transonic test conditions in order to obtain the required data accuracy.

  8. Feasibility and concept study to convert the NASA/AMES vertical motion simulator to a helicopter simulator

    NASA Technical Reports Server (NTRS)

    Belsterling, C. A.; Chou, R. C.; Davies, E. G.; Tsui, K. C.

    1978-01-01

    The conceptual design for converting the vertical motion simulator (VMS) to a multi-purpose aircraft and helicopter simulator is presented. A unique, high performance four degrees of freedom (DOF) motion system was developed to permanently replace the present six DOF synergistic system. The new four DOF system has the following outstanding features: (1) will integrate with the two large VMS translational modes and their associated subsystems; (2) can be converted from helicopter to fixed-wing aircraft simulation through software changes only; (3) interfaces with an advanced cab/visual display system of large dimensions; (4) makes maximum use of proven techniques, convenient materials and off-the-shelf components; (5) will operate within the existing building envelope without modifications; (6) can be built within the specified weight limit and avoid compromising VMS performance; (7) provides maximum performance with a minimum of power consumption; (8) simple design minimizes coupling between motions and maximizes reliability; and (9) can be built within existing budgetary figures.

  9. Atmospheric Methane Measurements from an Aircraft Based at NASA Ames: Five Years of Observations by the AJAX Project

    NASA Technical Reports Server (NTRS)

    Iraci, Laura

    2016-01-01

    The Alpha Jet Atmospheric eXperiment (AJAX) is a research project based at Moffett Field, CA, which collects airborne measurements of ozone, carbon dioxide, methane, water vapor, and formaldehyde, as well as 3-D winds, temperature, pressure, and location. Since its first science flight in 2011, AJAX has developed a wide a variety of mission types, combining vertical profiles (from approx. 8 km to near surface),boundary layer legs, and plume sampling as needed. With an ongoing five-year data set, the team has sampled over 160 vertical profiles, a dozen wildfires, and numerous stratospheric ozone intrusions. This talk will present an overview of our flights flown to date, with particular focus on methane observations in the San Francisco Bay Area, Sacramento, and the delta region.

  10. Results from the EPL monkey-pod experiment conducted as part of the 1974 NASA/Ames shuttle CVT-2

    NASA Technical Reports Server (NTRS)

    Rahlmann, D. F.; Kodama, A. M.; Mains, R. C.; Pace, N.

    1974-01-01

    The participation of the Environmental Physiology Laboratory (EPL) in the general purpose laboratory concept verification test 3 is documented. The EPL Monkey-Pod Experiment was designed to incorporate a 10-12 kg, pig tailed monkey, Macaca nemestrina, into the pod and measure the physiological responses of the animal continuously. Four major elements comprise the EPL Monkey-Pod Experiment System: (1) a fiberglass pod containing the instrumented monkey plus feeder and watering devices, (2) an inner console containing the SKYLAB mass spectrometer with its associated valving and electronic controls, sensing, control and monitoring units for lower body negative pressure, feeder activity, waterer activity, temperatures, and gas metabolism calibration, (3) an umbilical complex comprising gas flow lines and electrical cabling between the inner and outer console and (4) an outer console in principle representing the experiment support to be provided from general spacecraft sources.

  11. Instrumentation applications to Space Shuttle models and thermal protection system tiles tested in NASA-AMES wind tunnels

    NASA Technical Reports Server (NTRS)

    Coe, C. F.; Brownson, J. J.

    1981-01-01

    The highlights of the many wind-tunnel tests conducted in the course of the Space Shuttle development program are presented with emphasis on instrumentation applications. The examples of tests discussed include airframe aerodynamics, aerodynamic heating, aerodynamic noise, tile dynamic response, and tile loads. Many of the tests were conducted with standard wind-tunnel instrumentation. Most of the more unusual instrumentation requirements were related to the thermal protection system, where some pressure-sensor concepts were adapted to measure airloads on tiles. These measurements provided the only quantitative data that could be used to confirm the airload analysis procedure. Limited applications of computers to experimental control, in conjunction with data taken during Shuttle tests, have resulted in substantial benefits in overall test efficiency.

  12. Characteristics of the NASA-Ames Laminar Flow Supersonic Wind Tunnel for Unique Mach 1.6 Transition Studies

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.; Laub, James A.

    1997-01-01

    Flow quality measurements have been performed in the unique Laminar Flow Supersonic Wind Tunnel (LFSWT) to examine both mean and dynamic characteristics. The intent was to provide the necessary flow information about this ground test facility, to support meaningful transition research at Mach 1.6 and flight unit Reynolds numbers. This paper is intended to assist other experimentalists with similar goals of characterizing low-supersonic test environments. An array of instrumentation has been used to highlight the importance of proper selection of pressure instruments and data acquisition procedures. We conclude that the test section is low-disturbance (based on classical standards of pressure disturbances less than 0.1% with no specified data bandwidth), and has uniform flow. This is confirmation that the quiet design features of the LFSWT are effective. However, characterization of the test section flow over a 0.25k-5Ok bandwidth shows that the disturbance levels can be greater than classical standards particularly for stagnation pressures less than 9.5 psia (0.65 bar) with low stagnation temperatures. Variability of the flow disturbances in the settling chamber and test section is contained in a narrow frequency bandwidth below 5k Hz, which is associated with resonant frequencies from the pressure reduction system. So far, these disturbances have not impacted transition along the tunnel walls or a 10 degrees cone. However, continual vigilance is required to maintain a known low-disturbance environment for transition research in the LFSWT. Furthermore, the formation of standards for flow quality measurements is strongly recommended, so that transition research can be better isolated from tunnel disturbances.

  13. Revalidation of the NASA Ames 11-by 11-Foot Transonic Wind Tunnel with a Commercial Airplane Model

    NASA Technical Reports Server (NTRS)

    Kmak, Frank J.; Hudgins, M.; Hergert, D.; George, Michael W. (Technical Monitor)

    2001-01-01

    The 11-By 11-Foot Transonic leg of the Unitary Plan Wind Tunnel (UPWT) was modernized to improve tunnel performance, capability, productivity, and reliability. Wind tunnel tests to demonstrate the readiness of the tunnel for a return to production operations included an Integrated Systems Test (IST), calibration tests, and airplane validation tests. One of the two validation tests was a 0.037-scale Boeing 777 model that was previously tested in the 11-By 11-Foot tunnel in 1991. The objective of the validation tests was to compare pre-modernization and post-modernization results from the same airplane model in order to substantiate the operational readiness of the facility. Evaluation of within-test, test-to-test, and tunnel-to-tunnel data repeatability were made to study the effects of the tunnel modifications. Tunnel productivity was also evaluated to determine the readiness of the facility for production operations. The operation of the facility, including model installation, tunnel operations, and the performance of tunnel systems, was observed and facility deficiency findings generated. The data repeatability studies and tunnel-to-tunnel comparisons demonstrated outstanding data repeatability and a high overall level of data quality. Despite some operational and facility problems, the validation test was successful in demonstrating the readiness of the facility to perform production airplane wind tunnel%, tests.

  14. Ames Infusion Stories for NASA Annual Technology Report: Nano Entry System for CubeSat-Class Payloads

    NASA Technical Reports Server (NTRS)

    Smith, Brandon; Jan, Darrell Leslie; Venkatapathy, Etiraj

    2015-01-01

    The Nano Entry System for CubeSat-Class Payloads led to the development of the Nano-Adaptable Deployable Entry and Placement Technology ("Nano-ADEPT"). Nano-ADEPT is a mechanically deployed entry, descent, and landing (EDL) system that stows during launch and cruise (like an umbrella) and serves as both heat shield and primary structure during EDL. It is especially designed for small spacecraft where volume is a limiting constraint.

  15. Results from the EPL monkey-pod flight experiments conducted aboard the NASA/Ames CV-990, May 1976

    NASA Technical Reports Server (NTRS)

    Rahlmann, D. F.; Kodama, A. M.; Mains, R. C.; Pace, N.

    1976-01-01

    The participation of the Environmental Physiology Laboratory (EPL) in the general purpose laboratory concept verification test 3 is documented. The EPL Monkey-Pod Experiment was designed to incorporate a 10-12 kg, pig tailed monkey, Macaca nemestrina, into the pod and measure the physiological responses of the animal continously. Four major elements comprise the EPL Monkey-Pod Experiment System: (1) a fiberglass pod containing the instrumented monkey plus feeder and watering devices, (2) an inner console containing the SKYLAB mass spectrometer with its associated valving and electronic controls, sensing, control and monitoring units for lower body negative pressure, feeder activity, waterer activity, temperatures, and gas metabolism calibration, (3) an umbilical complex comprising gas flow lines and electrical cabling between the inner and outer console and (4) an outer console in principle representing the experiment support to be provided from general space craft sources.

  16. Technology's Role in NASA's Future

    NASA Video Gallery

    NASA Chief Technologist Bobby Braun talks to NASA managers about the vital role technology research and development will play in NASA's future. Braun discusses how NASA will use new technologies to...

  17. Wind tunnel measurements on a full-scale F/A-18 with a tangentially blowing slot. [conducted in the Ames 80 by 120 foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Lanser, Wendy R.

    1994-01-01

    A full-scale F/A-18 was tested in the 80 by 120-Foot Wind Tunnel at NASA Ames Research Center to measure the effectiveness of a tangentially blowing slot in generating significant yawing moments while minimizing coupling in the pitch and roll axes. Various slot configurations were tested to determine the optimum configuration. The test was conducted for angles of attack from 25 to 50 deg, angles of sideslip from -15 to +15 deg, and freestream velocities from 67 ft/sec to 168 ft/sec. By altering the forebody vortex flow, yaw control was maintained for angles of attack up to 50 deg. Of particular interest was the result that blowing very close to the radome apex was not as effective as blowing slightly farther aft on the radome, that a 16-inch slot was more efficient, and that yawing moments were generated without inducing significant rolling or pitching moments.

  18. AME seminar program in the United States: genesis, goals, and cost-benefit reflections.

    PubMed

    Bradfield, J Y; Harris, J L

    1977-04-01

    The practicing physician's requirement for continuing postgraduate medical education is generally accepted and has generated a number of postgraduate education programs. In 1960, the FAA inaugurated a seminar program to serve the special educational needs of its approximately 7,500 designated Aviation Medical Examiners. These doctors, the majority of whom are civilian physicians representing almost every specialty, are charged with issuing or withholding the pilot's medical license to fly. Under the administration of coauthor Harris, the AME Seminar Program undergoes modification and change as improvements are suggested by accrued experience. Evaluation of data acquired from a variety of sources indicates that the AME does, in fact, need refresher training in civil aviation medicine. In helping fulfill that need, the AME Seminar Program is working effectively.

  19. The Ame2016 atomic mass evaluation * (II). Tables, graphs and references

    SciTech Connect

    Wang, Meng; Audi, G.; Kondev, F. G.; Huang, W. J.; Naimi, S.; Xu, Xing

    2017-01-01

    This paper is the second part of the new evaluation of atomic masses, Ame2016. Using least-squares adjustments to all evaluated and accepted experimental data, described in Part I, we derive tables with numerical values and graphs to replace those given in Ame2012. The first table lists the recommended atomic mass values and their uncertainties. It is followed by a table of the influences of data on primary nuclides, a table of various reaction and decay energies, and finally, a series of graphs of separation and decay energies. The last section of this paper lists all references of the input data used in the Ame2016 and the Nubase2016 evaluations (first paper in this issue). Amdc: http://amdc.impcas.ac.cn/

  20. Corrective Action Plan in response to the March 1992 Tiger Team Assessment of the Ames Laboratory

    SciTech Connect

    Not Available

    1992-11-20

    On March 5, 1992, a Department of Energy (DOE) Tiger Team completed an assessment of the Ames Laboratory, located in Ames, Iowa. The purpose of the assessment was to provide the Secretary of Energy with a report on the status and performance of Environment, Safety and Health (ES&H) programs at Ames Laboratory. Detailed findings of the assessment are presented in the report, DOE/EH-0237, Tiger Team Assessment of the Ames Laboratory. This document, the Ames Laboratory Corrective Action Plan (ALCAP), presents corrective actions to overcome deficiencies cited in the Tiger Team Assessment. The Tiger Team identified 53 Environmental findings, from which the Team derived four key findings. In the Safety and Health (S&H) area, 126 concerns were identified, eight of which were designated Category 11 (there were no Category I concerns). Seven key concerns were derived from the 126 concerns. The Management Subteam developed 19 findings which have been summarized in four key findings. The eight S&H Category 11 concerns identified in the Tiger Team Assessment were given prompt management attention. Actions to address these deficiencies have been described in individual corrective action plans, which were submitted to DOE Headquarters on March 20, 1992. The ALCAP includes actions described in this early response, as well as a long term strategy and framework for correcting all remaining deficiencies. Accordingly, the ALCAP presents the organizational structure, management systems, and specific responses that are being developed to implement corrective actions and to resolve root causes identified in the Tiger Team Assessment. The Chicago Field Office (CH), IowaState University (ISU), the Institute for Physical Research and Technology (IPRT), and Ames Laboratory prepared the ALCAP with input from the DOE Headquarters, Office of Energy Research (ER).