Science.gov

Sample records for 14-crystal germanium array

  1. Design and Construction of an Ultra-Low-Background 14 Crystal Germanium Array for High Efficiency and Coincidence Measurements

    SciTech Connect

    Keillor, Martin E.; Aalseth, Craig E.; Day, Anthony R.; Fast, James E.; Hoppe, Eric W.; Hyronimus, Brian J.; Hossbach, Todd W.; Miley, Harry S.; Seifert, Allen; Warren, Glen A.

    2009-12-01

    ABSTRACT Physics experiments, environmental surveillance, and treaty verification techniques continue to require increased sensitivity for detecting and quantifying radionuclides of interest. This can be done by detecting a greater fraction of gamma emissions from a sample (higher detection efficiency) and reducing instrument backgrounds. A current effort for increased sensitivity in high resolution gamma spectroscopy will produce an intrinsic germanium (HPGe) array designed for high detection efficiency, ultra-low-background performance, and useful coincidence efficiencies. The system design is optimized to accommodate filter paper samples, e.g. samples collected by the Radionuclide Aerosol Sampler/Analyzer (RASA). The system will provide high sensitivity for weak collections on atmospheric filter samples, as well as offering the potential to gather additional information from more active filters using gamma cascade coincidence detection. The current effort is constructing an ultra-low-background HPGe crystal array consisting of two vacuum cryostats, each housing a hexagonal array of 7 crystals on the order of 70% relative efficiency per crystal. Traditional methods for constructing ultra-low-background detectors are used, including use of materials known to be low in radioactive contaminants, use of ultra pure reagents, clean room assembly, etc. The cryostat will be constructed mainly from copper electroformed into near-final geometry at PNNL. Details of the detector design, simulation of efficiency and coincidence performance, HPGe crystal testing, and progress on cryostat construction are presented.

  2. Developing Germanium on Nothing (GON) Nanowire Arrays

    NASA Astrophysics Data System (ADS)

    Thomas, Paul M.

    Advanced crystal growth techniques enable novel devices and circuit designs to further scale and integrate heterogeneous structures for CMOS, MEMS/NEMS, and optoelectronic applications. In particular, nanowires (NW) are among the promising structures derived from these developments. Research has demonstrated the utility of NWs as a channel material for gate-all-around transistors, high sensitivity biological/chemical sensors, photodetectors, as well as a whole spectrum of LEDs and lasers. However, NW based devices are not without their fabrication challenges. Relatively simple structures for CMOS or MEMS/NEMS processes are difficult to reproduce when many NW based devices rely on a dropcast process. This thesis demonstrates a method for producing Germanium on Nothing (GON) NW arrays on a Si substrate that forgoes dropcasting and, instead, creates NWs via selective material removal methods commonly utilized by industry. GON NW arrays are formed through the sequential use of E-beam lithography, selective wet chemical etching, and reactive ion etching. Global oxide thinning in BOE leaves a thin masking layer that protects the underlying Si, preventing etching in a TMAH solution. GON regions are defined by E-beam lithography and are subject to a RIE which creates release points in the remaining SiO 2. Unmasked Si is then etched by a TMAH solution, undercutting the Ge lines, leaving an array of suspended Ge wires. NW dimensions are reached by thinning the Ge wire diameter with a H2O2 solution. NWs with ˜50 nm diameters and ˜ 200 nm lengths, as well as 10 microm by 10 microm membranes of Ge/SiO2, have been demonstrated in this thesis.

  3. Initial Results: An Ultra-Low-Background Germanium Crystal Array

    DTIC Science & Technology

    2010-09-01

    INITIAL RESULTS: AN ULTRA-LOW-BACKGROUND GERMANIUM CRYSTAL ARRAY Martin E. Keillor, Craig E. Aalseth, Anthony R. Day, Luke E. Erikson , James E. Fast...Brian D. Glasgow, Eric W. Hoppe, Todd W. Hossbach, Brian J. Hyronimus, Harry S. Miley, Allan W. Myers, and Allen Seifert Pacific Northwest

  4. Germanium

    SciTech Connect

    Major-Sosias, M.A.

    1996-01-01

    Germanium is an important semiconductor material, or metalloid which, by definition, is a material whose electrical properties are halfway between those of metallic conductors and electrical insulators. This paper describes the properties, sources, and market for germanium.

  5. Performance of A Compact Multi-crystal High-purity Germanium Detector Array for Measuring Coincident Gamma-ray Emissions

    SciTech Connect

    Howard, Chris; Daigle, Stephen; Buckner, Matt; Erikson, Luke E.; Runkle, Robert C.; Stave, Sean C.; Champagne, Art; Cooper, Andrew; Downen, Lori; Glasgow, Brian D.; Kelly, Keegan; Sallaska, Anne

    2015-02-18

    The Multi-sensor Airborne Radiation Survey (MARS) detector is a 14-crystal array of high-purity germanium (HPGe) detectors housed in a single cryostat. The array was used to measure the astrophysical S-factor for the 14N(p,γ)15O* reaction for several transition energies at an effective center of mass energy of 163 keV. Owing to the segmented nature of the MARS detector, the effect of gamma-ray summing was greatly reduced in comparison to past experiments which utilized large, single-crystal detectors. The new S-factor values agree within the uncertainties with the past measurements. Details of the analysis and detector performance will be presented.

  6. Initial Component Testing for a Germanium Array Cryostat

    SciTech Connect

    Keillor, Martin E.; Aalseth, Craig E.; Day, Anthony R.; Fast, James E.; Hoppe, Eric W.; Hyronimus, Brian J.; Hossbach, Todd W.; Seifert, Allen

    2009-06-01

    This report describes progress on the construction of two ultra-low-background cryostats that are part of the NA-22 funded “Radionuclide Laboratories” (RN Labs) project. Each cryostat will house seven high-purity germanium crystals (HPGe). These cryostats are being built from a limited set of materials that are known to have very low levels of radioactive impurities. The RN Labs instrument is designed to take advantage of low background performance, high detection efficiency, and γ-γ coincidence signatures to provide unprecedented gamma spectroscopy sensitivity. The project is focused on improving gamma analysis capabilities for nuclear detonation detection (NDD) applications. The instrument also has the potential for basic nuclear physics research. Section 1 provides the background for the project. Section 2 discusses germanium crystal acceptance testing. Design problems were found after the first delivery of new detectors from the vendor, Canberra Semiconductors. The first four crystals were returned for repair, resulting in a delay in crystal procurement. Section 3 provides an update on copper electroforming. In general, electroforming parts for RN Labs has proceeded smoothly, but there have been recent problems in electroforming three large copper parts necessary for the project. Section 4 describes the first round of testing for the instrument: anti-cosmic scintillator testing, electronics testing, and initial vacuum testing. Section 5 concludes with an overall description of the state of the project and challenges that remain.

  7. Development of silicon-germanium visible-near infrared arrays

    NASA Astrophysics Data System (ADS)

    Zeller, John W.; Rouse, Caitlin; Efstathiadis, Harry; Haldar, Pradeep; Lewis, Jay S.; Dhar, Nibir K.; Wijewarnasuriya, Priyalal; Puri, Yash R.; Sood, Ashok K.

    2016-05-01

    Photodetectors based on germanium which do not require cooling and can provide good near-infrared (NIR) detection performance offer a low-cost alternative to conventional infrared sensors based on material systems such as InGaAs, InSb, and HgCdTe. As a result of the significant difference in thermal expansion coefficients between germanium and silicon, tensile strain incorporated into Ge epitaxial layers deposited on Si utilizing specialized growth processes can extend the operational range of detection to 1600 nm and longer wavelengths. We have fabricated Ge based PIN photodetectors on 300 mm diameter Si wafers to take advantage of high throughput, large-area complementary metal-oxide semiconductor (CMOS) technology. This device fabrication process involves low temperature epitaxial deposition of Ge to form a thin p+ (boron) Ge seed/buffer layer, and subsequent higher temperature deposition of a thicker Ge intrinsic layer. This is followed by selective ion implantation of phosphorus of various concentrations to form n+ Ge regions, deposition of a passivating oxide cap, and then top copper contacts to complete the PIN detector devices. Various techniques including transmission electron microscopy (TEM) and secondary ion mass spectrometry (SIMS) have been employed to characterize the material and structural properties of the epitaxially grown layers and fabricated detector devices, and these results are presented. The I-V response of the photodetector devices with and without illumination was also measured, for which the Ge based photodetectors consistently exhibited low dark currents of around ~1 nA at -1 V bias.

  8. The Constellation-X Focal Plane Microcalorimeter Array: An NTD-Germanium Solution

    NASA Technical Reports Server (NTRS)

    Beeman, J.; Silver, E.; Bandler, S.; Schnopper, H.; Murray, S.; Madden, N.; Landis, D.; Haller, E. E.; Barbera, M.

    2001-01-01

    The hallmarks of Neutron Transmutation Doped (NTD) germanium cryogenic thermistors include high reliability, reproducibility, and long term stability of bulk carrier transport properties. Using micro-machined NTD Ge thermistors with integral 'flying' leads, we can now fabricate two-dimensional arrays that are built up from a series of stacked linear arrays. We believe that this modular approach of building, assembling, and perhaps replacing individual modules of detectors is essential to the successful fabrication and testing of large multi-element instruments. Details of construction are presented.

  9. Optimization of Germanium Cell Arrays in Tungsten Emitter-based Solar TPV Systems

    NASA Astrophysics Data System (ADS)

    Datas, A.; Algora, C.; Corregidor, V.; Martín, D.; Bett, A. W.; Dimroth, F.; Fernández, J.

    2007-02-01

    This work presents a simulation study to find the best cell array configuration which leads to the maximum thermophotovoltaic (TPV) conversion efficiency in a specific solar thermophotovoltaic (STPV) system. First, the optical and electrical device parameters have been extracted from germanium TPV cells working at 25°C. Then, a cell model consisting of two parallel diodes and two resistances (series and shunt) has been developed for its use in SPICE® software. The parameters of this model have been obtained from the fitting of dark the I-V curve from germanium cells. In addition, the cell photocurrent density has been calculated by integrating the measured spectral response (SR) of the cells under a typical tungsten emission spectrum at different system view factors (VF), i.e. ratios of power density on the emitter surface to the power density on the receptor surface. Changing the VF leads to different light power densities reaching the receptor area for a fixed emitter temperature. Different emitter temperatures have also been taken into account in this study. They are directly related to the different re-emitting efficiencies expected for the concentrator-emitter system in a real STPV system. Finally, the overall array efficiency has been estimated for different array configurations working from 0.01 to the maximum view factor for each array configuration, which depends on the geometry and the number of cells in the array. The cell temperature effect on the efficiency has been also considered from the measured cells in flash equipment.

  10. Direct writing of large-area micro/nano-structural arrays on single crystalline germanium substrates using femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Li, Lin; Wang, Jun

    2017-06-01

    A direct writing technique for fabricating micro/nano-structural arrays without using a multi-scanning process, multi-beam interference, or any assisted microlens arrays is reported. Various sub-wavelength micro/nano-structural arrays have been directly written on single crystalline germanium substrate surfaces using femtosecond laser pulses. The evolution of the multiscale surface morphology from periodic micro/nano-structures to V-shaped microgrooves has been achieved, and the relationship between array characteristics and laser polarization directions has been discussed. The self-organization model agrees well with the experimental results in this study.

  11. CASCADES: An Ultra-Low-Background Germanium Crystal Array at Pacific Northwest National Laboratory

    SciTech Connect

    Keillor, M. E.; Aalseth, C. E.; Day, A. R.; Erikson, L. E.; Fast, J. E.; Glasgow, B. D.; Hoppe, E. W.; Hossbach, T. W.; Hyronimus, B. J.; Miley, H. S.; Myers, A. W.; Seifert, A.; Stavenger, T. J.

    2011-12-13

    State-of-the-art treaty verification techniques, environmental surveillance, and physics experiments require increased sensitivity for detecting and quantifying radionuclides of interest. This can be accomplished with new detector designs that establish high detection efficiency and reduced instrument backgrounds. Current research is producing an intrinsic germanium (HPGe) array designed for high detection efficiency, ultra-low-background performance, and sensitive {gamma}--{gamma} coincidence detection. The system design is optimized to accommodate filter paper samples, e.g. samples collected by the Radionuclide Aerosol Sampler/Analyzer. The system will provide high sensitivity for weak collections on atmospheric filter samples (e.g.<10{sup 5} fissions) as well as offering the potential to gather additional information from higher activity filters using gamma cascade coincidence detection. The first of two HPGe crystal arrays in ultra-low-background vacuum cryostats has been assembled, with the second in progress. Traditional methods for constructing ultra-low-background detectors were followed, including use of materials known to be low in radioactive contaminants, use of ultra-pure reagents, and clean room assembly. The cryostat is constructed mainly from copper electroformed into near-final geometry at Pacific Northwest National Laboratory. Details of the detector assembly and initial background and spectroscopic measurement results are presented; also a description of the custom analysis package used by this project is given.

  12. CASCADES: An Ultra-Low-Background Germanium Crystal Array at Pacific Northwest National Laboratory

    SciTech Connect

    Keillor, Martin E.; Aalseth, Craig E.; Day, Anthony R.; Erikson, Luke E.; Fast, James E.; Glasgow, Brian D.; Hoppe, Eric W.; Hossbach, Todd W.; Hyronimus, Brian J.; Miley, Harry S.; Myers, Allan W.; Seifert, Allen; Stavenger, Timothy J.

    2011-07-14

    State-of-the-art treaty verification techniques, environmental surveillance, and physics experiments require increased sensitivity for detecting and quantifying radionuclides of interest. This can be accomplished with new detector designs that establish high detection efficiency and reduced instrument backgrounds. Current research is producing an intrinsic germanium (HPGe) array designed for high detection efficiency, ultra-low-background performance, and sensitive {gamma}-{gamma} coincidence detection. The system design is optimized to accommodate filter paper samples, e.g., samples collected by the Radionuclide Aerosol Sampler/Analyzer. The system will provide high sensitivity for weak collections on atmospheric filter samples (e.g., < 10{sup 5} fissions), as well as offering the potential to gather additional information from higher activity filters using gamma cascade coincidence detection. The first of two HPGe crystal arrays in ultra-low-background vacuum cryostats has been assembled, with the second in progress. Traditional methods for constructing ultra-low-background detectors were followed, including use of materials known to be low in radioactive contaminants, use of ultra-pure reagents, and clean room assembly. The cryostat is constructed mainly from copper electroformed into near-final geometry at Pacific Northwest National Laboratory. Details of the detector assembly and initial background and spectroscopic measurement results are presented; also a description of the custom analysis package used by this project is given.

  13. Infrared microspectroscopic imaging using a large radius germanium internal reflection element and a focal plane array detector.

    PubMed

    Patterson, Brian M; Havrilla, George J; Marcott, Curtis; Story, Gloria M

    2007-11-01

    Previously, we established the ability to collect infrared microspectroscopic images of large areas using a large radius hemisphere internal reflection element (IRE) with both a single point and a linear array detector. In this paper, preliminary work in applying this same method to a focal plane array (FPA) infrared imaging system is demonstrated. Mosaic tile imaging using a large radius germanium hemispherical IRE on a FPA Fourier transform infrared microscope imaging system can be used to image samples nearly 1.5 mm x 2 mm in size. A polymer film with a metal mask is imaged using this method for comparison to previous work. Images of hair and skin samples are presented, highlighting the complexity of this method. Comparisons are made between the linear array and FPA methods.

  14. STARS/LiBerACE: Segmented silicon and high-purity germanium detector arrays for low-energy nuclear reaction and structure studies

    NASA Astrophysics Data System (ADS)

    Lesher, S. R.; Phair, L.; Bernstein, L. A.; Bleuel, D. L.; Burke, J. T.; Church, J. A.; Fallon, P.; Gibelin, J.; Scielzo, N. D.; Wiedeking, M.

    2010-09-01

    The Silicon Telescope Array for Reaction Studies (STARS) consists of large-area annular double-sided silicon detectors for charged-particle identification. The Livermore Berkeley Array for Collaborative Experiments (LiBerACE) is an array of six Compton-suppressed high-purity germanium Clover detectors for efficient detection of γ-rays. These detector arrays are versatile tools for studies of neutron-induced reaction cross-sections, fission, light neutron-rich nuclei, and other low-energy nuclear physics topics through transfer, fusion, incomplete-fusion, and inelastic-scattering reactions. The STARS and LiBerACE arrays and typical experimental configurations are described in detail.

  15. Majo-ra-na: An Ultra-Low Background Enriched-Germanium Detector Array for Fundamental Physics Measurements

    NASA Astrophysics Data System (ADS)

    Gehman, Victor

    2010-02-01

    The Majo-ra-na collaboration will search for neutrinoless double-beta decay (0νββ) by fielding an array of high-purity germanium (HPGe) detectors in ultra-clean electroformed-copper cryostats deep underground. Recent advances in HPGe detector technology, in particular P-type Point-Contact (PPC) detectors, present exciting new techniques for identifying and reducing backgrounds to the 0νββ signal. This should result in greatly improved sensitivity over previous generation experiments. The very low energy threshold attainable with PPC detectors also provides for a broader physics program including searches for dark matter and axions. The Majo-ra-na De-mon-strat-or is an R&D program that will field three ˜20 kg modules of PPC detectors at Sanford Underground Laboratory. Half of the detectors will be enriched to 86% in ^76Ge. Here, we will cover the motivation, design, recent progress and current status of this effort, with special attention to its physics reach. )

  16. Germanium blocked-impurity-band detector arrays - Unpassivated devices with bulk substrates

    NASA Technical Reports Server (NTRS)

    Watson, Dan M.; Guptill, Matthew T.; Huffman, James E.; Krabach, Timothy N.; Raines, S. N.; Satyapal, Shobita

    1993-01-01

    We have fabricated and characterized six-element monolithic arrays of Ge:Ga blocked-impurity-band detectors, with threshold wavelength 220 microns, peak quantum efficiency 14 percent, detective quantum efficiency 9 percent, dark current 300 e(-)/s, and response uniformity better than 4 percent. The devices are described very well by the standard model of blocked-impurity-band detectors and appear to satisfy many of the requirements of low-background astronomical instruments.

  17. MAJORANA: An Ultra-Low Background Enriched-Germanium Detector Array for Fundamental Physics Measurements

    NASA Astrophysics Data System (ADS)

    Detwiler, Jason

    2009-10-01

    The Majorana collaboration aims to perform a search for neutrinoless double-beta decay (0νββ) by fielding arrays of HPGe detectors mounted in ultra-clean electroformed-copper cryostats located deep underground. Recent advances in HPGe detector technology, in particular P-type Point-Contact (PPC) detectors, show great promise for identifying and reducing backgrounds to the 0νββ signal, which should result in improved sensitivity over previous generation experiments. The ultra-low energy threshold possible in PPC detectors also enables a broader physics program including sensitive searches for dark matter and axions. The Majorana Demonstrator R&D program will field three ˜20 kg modules of PPC detectors at Sanford Underground Laboratory. Half of the detector mass will be enriched to 86% in ^76Ge. I will present the motivation, design, recent progress and current status of this R&D effort, and discuss its physics reach.

  18. Germanium-76 Sample Analysis

    SciTech Connect

    Kouzes, Richard T.; Engelhard, Mark H.; Zhu, Zihua

    2011-04-01

    The MAJORANA DEMONSTRATOR is a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay (0νββ). The DEMONSTRATOR will utilize 76Ge from Russia, and the first one gram sample was received from the supplier for analysis on April 24, 2011. The Environmental Molecular Sciences facility, a DOE user facility at PNNL, was used to make the required isotopic and chemical purity measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR. The results of this first analysis are reported here.

  19. Enhanced reversible lithium storage in germanium nano-island coated 3D hexagonal bottle-like Si nanorod arrays

    NASA Astrophysics Data System (ADS)

    Yue, Chuang; Yu, Yingjian; Wu, Zhenguo; He, Xu; Wang, Jianyuan; Li, Juntao; Li, Cheng; Wu, Suntao; Li, Jing; Kang, Junyong

    2014-01-01

    The rapid development of numerous microscale electronic devices, such as smart dust, micro or nano bio-sensors, medical implants and so on, has induced an urgent demand for integratable micro or nano battery supplies with high energy and power densities. In this work, 3D hexagonal bottle-like Si/Ge composite nanorod (NR) array electrodes with good uniformity and mechanical stability potentially used in micro or nano rechargeable Li-ion batteries (LIBs) were fabricated on Si substrates by a cost-effective, wafer scale and Si-compatible process. The optimized Ge nano-islands coated Si NR composite arrays as anode materials exhibit superior areal capacities and cycling performances by virtue of their favourable structural and improved conductivity features. The unique Si-based composite electrode in nanostructures can be technically and fundamentally employed to configurate all-solid-state Li-ion micro-batteries as on-chip power systems integrated into micro-electronic devices such as M/NEMS devices or autonomous wireless microsystems.The rapid development of numerous microscale electronic devices, such as smart dust, micro or nano bio-sensors, medical implants and so on, has induced an urgent demand for integratable micro or nano battery supplies with high energy and power densities. In this work, 3D hexagonal bottle-like Si/Ge composite nanorod (NR) array electrodes with good uniformity and mechanical stability potentially used in micro or nano rechargeable Li-ion batteries (LIBs) were fabricated on Si substrates by a cost-effective, wafer scale and Si-compatible process. The optimized Ge nano-islands coated Si NR composite arrays as anode materials exhibit superior areal capacities and cycling performances by virtue of their favourable structural and improved conductivity features. The unique Si-based composite electrode in nanostructures can be technically and fundamentally employed to configurate all-solid-state Li-ion micro-batteries as on-chip power systems

  20. Oriented bottom-up growth of armchair graphene nanoribbons on germanium

    DOEpatents

    Arnold, Michael Scott; Jacobberger, Robert Michael

    2016-03-15

    Graphene nanoribbon arrays, methods of growing graphene nanoribbon arrays and electronic and photonic devices incorporating the graphene nanoribbon arrays are provided. The graphene nanoribbons in the arrays are formed using a scalable, bottom-up, chemical vapor deposition (CVD) technique in which the (001) facet of the germanium is used to orient the graphene nanoribbon crystals along the [110] directions of the germanium.

  1. Extrinsic germanium Blocked Impurity Bank (BIB) detectors

    NASA Technical Reports Server (NTRS)

    Krabach, Timothy N.; Huffman, James E.; Watson, Dan M.

    1989-01-01

    Ge:Ga blocked-impurity-band (BIB) detectors with long wavelength thresholds greater than 190 microns and peak quantum efficiencies of 4 percent, at an operating temperature of 1.8 K, have been fabricated. These proof of concept devices consist of a high purity germanium blocking layer epitaxially grown on a Ga-doped Ge substrate. This demonstration of BIB behavior in germanium enables the development of far infrared detector arrays similar to the current silicon-based devices. Present efforts are focussed on improving the chemical vapor deposition process used to create the blocking layer and on the lithographic processing required to produce monolithic detector arrays in germanium. Approaches to test the impurity levels in both the blocking and active layers are considered.

  2. TRIFLUOROMETHYL COMPOUNDS OF GERMANIUM

    DTIC Science & Technology

    FLUORIDES, *GERMANIUM COMPOUNDS, *HALIDES, *ORGANOMETALLIC COMPOUNDS, ALKYL RADICALS, ARSENIC COMPOUNDS, CHEMICAL BONDS, CHEMICAL REACTIONS ...CHLORIDES, CHLORINE COMPOUNDS, HYDROLYSIS, IODIDES, METHYL RADICALS, POTASSIUM COMPOUNDS, PYROLYSIS, STABILITY, SYNTHESIS, TIN COMPOUNDS.

  3. Mineral commodity profiles: Germanium

    USGS Publications Warehouse

    Butterman, W.C.; Jorgenson, John D.

    2005-01-01

    Overview -- Germanium is a hard, brittle semimetal that first came into use a half-century ago as a semiconductor material in radar units and as the material from which the first transistor was made. Today it is used principally as a component of the glass in telecommunications fiber optics; as a polymerization catalyst for polyethylene terephthalate (PET), a commercially important plastic; in infrared (IR) night vision devices; and as a semiconductor and substrate in electronics circuitry. Most germanium is recovered as a byproduct of zinc smelting, although it also has been recovered at some copper smelters and from the fly ash of coal-burning industrial powerplants. It is a highly dispersed element, associated primarily with base-metal sulfide ores. In the United States, germanium is recovered from zinc smelter residues and manufacturing scrap and is refined by two companies at four germanium refineries. One of the four refineries is dedicated to processing scrap. In 2000, producers sold zone-refined (high-purity) germanium at about $1,250 per kilogram and electronic-grade germanium dioxide (GeO2) at $800 per kilogram. Domestic refined production was valued at $22 million. Germanium is a critical component in highly technical devices and processes. It is likely to remain in demand in the future at levels at least as high as those of 2000. U.S. resources of germanium are probably adequate to meet domestic needs for several decades.

  4. Electrodeposited germanium nanowires.

    PubMed

    Mahenderkar, Naveen K; Liu, Ying-Chau; Koza, Jakub A; Switzer, Jay A

    2014-09-23

    Germanium (Ge) is a group IV semiconductor with superior electronic properties compared with silicon, such as larger carrier mobilities and smaller effective masses. It is also a candidate anode material for lithium-ion batteries. Here, a simple, one-step method is introduced to electrodeposit dense arrays of Ge nanowires onto indium tin oxide (ITO) substrates from aqueous solution. The electrochemical reduction of ITO produces In nanoparticles that act as a reduction site for aqueous Ge(IV) species, and as a solvent for the crystallization of Ge nanowires. Nanowires deposited at 95 °C have an average diameter of 100 nm, whereas those deposited at room temperature have an average diameter of 35 nm. Both optical absorption and Raman spectroscopy suggest that the electrodeposited Ge is degenerate. The material has an indirect bandgap of 0.90-0.92 eV, compared with a value of 0.67 eV for bulk, intrinsic Ge. The blue shift is attributed to the Moss-Burstein effect, because the material is a p-type degenerate semiconductor. On the basis of the magnitude of the blue shift, the hole concentration is estimated to be 8 × 10(19) cm(-3). This corresponds to an In impurity concentration of about 0.2 atom %. The resistivity of the wires is estimated to be 4 × 10(-5) Ω·cm. The high conductivity of the wires should make them ideal for lithium-ion battery applications.

  5. Germanium detector passivated with hydrogenated amorphous germanium

    DOEpatents

    Hansen, William L.; Haller, Eugene E.

    1986-01-01

    Passivation of predominantly crystalline semiconductor devices (12) is provided for by a surface coating (21) of sputtered hydrogenated amorphous semiconductor material. Passivation of a radiation detector germanium diode, for example, is realized by sputtering a coating (21) of amorphous germanium onto the etched and quenched diode surface (11) in a low pressure atmosphere of hydrogen and argon. Unlike prior germanium diode semiconductor devices (12), which must be maintained in vacuum at cryogenic temperatures to avoid deterioration, a diode processed in the described manner may be stored in air at room temperature or otherwise exposed to a variety of environmental conditions. The coating (21) compensates for pre-existing undesirable surface states as well as protecting the semiconductor device (12) against future impregnation with impurities.

  6. Germanium Detectors in Homeland Security at PNNL

    SciTech Connect

    Stave, Sean C.

    2015-05-01

    Neutron and gamma-ray detection is used for non-proliferation and national security applications. While lower energy resolution detectors such as NaI(Tl) have their place, high purity germanium (HPGe) also has a role to play. A detection with HPGe is often a characterization due to the very high energy resolution. However, HPGe crystals remain small and expensive leaving arrays of smaller crystals as an excellent solution. PNNL has developed two similar HPGe arrays for two very different applications. One array, the Multisensor Aerial Radiation Survey (MARS) detector is a fieldable array that has been tested on trucks, boats, and helicopters. The CASCADES HPGe array is an array designed to assay samples in a low background environment. The history of HPGe arrays at PNNL and the development of MARS and CASCADES will be detailed in this paper along with some of the other applications of HPGe at PNNL.

  7. Germanium detectors in homeland security at PNNL

    DOE PAGES

    Stave, S.

    2015-05-01

    Neutron and gamma-ray detection is used for non-proliferation and national security applications. While lower energy resolution detectors such as NaI(Tl) have their place, high purity germanium (HPGe) also has a role to play. A detection with HPGe is often a characterization due to the very high energy resolution. However, HPGe crystals remain small and expensive leaving arrays of smaller crystals as an excellent solution. PNNL has developed two similar HPGe arrays for two very different applications. One array, the Multisensor Aerial Radiation Survey (MARS) detector is a fieldable array that has been tested on trucks, boats, and helicopters. The CASCADESmore » HPGe array is an array designed to assay samples in a low background environment. The history of HPGe arrays at PNNL and the development of MARS and CASCADES will be detailed in this paper along with some of the other applications of HPGe at PNNL.« less

  8. Germanium detectors in homeland security at PNNL

    SciTech Connect

    Stave, S.

    2015-05-01

    Neutron and gamma-ray detection is used for non-proliferation and national security applications. While lower energy resolution detectors such as NaI(Tl) have their place, high purity germanium (HPGe) also has a role to play. A detection with HPGe is often a characterization due to the very high energy resolution. However, HPGe crystals remain small and expensive leaving arrays of smaller crystals as an excellent solution. PNNL has developed two similar HPGe arrays for two very different applications. One array, the Multisensor Aerial Radiation Survey (MARS) detector is a fieldable array that has been tested on trucks, boats, and helicopters. The CASCADES HPGe array is an array designed to assay samples in a low background environment. The history of HPGe arrays at PNNL and the development of MARS and CASCADES will be detailed in this paper along with some of the other applications of HPGe at PNNL.

  9. Lithium drifted germanium system

    NASA Technical Reports Server (NTRS)

    Fjarlie, E. J.

    1969-01-01

    General characteristics of the lithium-drifted germanium photodiode-Dewar-preamplifier system and particular operating instructions for the device are given. Information is included on solving operational problems.

  10. Calibration of a large hyperpure germanium array for in-vivo detection of the actinides with a tissue-equivalent torso phantom

    SciTech Connect

    Berger, C.D.; Lane, B.H.

    1983-01-01

    For calibration of the array for internally deposited /sup 238/Pu, /sup 239/Pu, and /sup 241/Am, a tissue-equivalent anthropomorphic phantom, was used for efficiency determinations at the ORNL facility. This phantom consists of a tissue-equivalent torso into which is imbedded an adult male skeleton, interchangeable organs containing a homogeneous distribution of various radionuclides, and two sets of chest overlay plates for simulation of progressively thicker tissue over the chest, as well as differing thoracic fat contents. (PSB)

  11. Bridgman Growth of Germanium

    NASA Technical Reports Server (NTRS)

    Szofran, F. R.; Volz, M. P.; Cobb, S. D.; Motakef, S.

    1997-01-01

    The high-magnetic-field crystal growth facility at the Marshall Space Flight Center will be briefly described. This facility has been used to grow bulk germanium by the Bridgman technique in magnetic fields up to 5 Tesla. The results of investigations of ampoule material on the interface shape and thermal field applied to the melt on stability against convection will be discussed.

  12. Attenuated total internal reflection infrared microspectroscopic imaging using a large-radius germanium internal reflection element and a linear array detector.

    PubMed

    Patterson, Brian M; Havrilla, George J

    2006-11-01

    The number of techniques and instruments available for Fourier transform infrared (FT-IR) microspectroscopic imaging has grown significantly over the past few years. Attenuated total internal reflectance (ATR) FT-IR microspectroscopy reduces sample preparation time and has simplified the analysis of many difficult samples. FT-IR imaging has become a powerful analytical tool using either a focal plane array or a linear array detector, especially when coupled with a chemometric analysis package. The field of view of the ATR-IR microspectroscopic imaging area can be greatly increased from 300 x 300 microm to 2500 x 2500 microm using a larger internal reflection element of 12.5 mm radius instead of the typical 1.5 mm radius. This gives an area increase of 70x before aberrant effects become too great. Parameters evaluated include the change in penetration depth as a function of beam displacement, measurements of the active area, magnification factor, and change in spatial resolution over the imaging area. Drawbacks such as large file size will also be discussed. This technique has been successfully applied to the FT-IR imaging of polydimethylsiloxane foam cross-sections, latent human fingerprints, and a model inorganic mixture, which demonstrates the usefulness of the method for pharmaceuticals.

  13. Germanium accumulation-mode charge-injection-device process

    NASA Technical Reports Server (NTRS)

    Moore, T. G.

    1981-01-01

    Gallium doped germanium is suitable for applications in the detection of far infrared radiation. Measurements were made on experimental photoconductors (PCs), accumulation mode charge injection devices (AMCIDs), and the SSPC (a switched, sampled PC alternative to the AMCID). The results indicate that the SSPC, which had a responsivity near 1.5 amp/watt, is desirable for use in two dimensional detector arrays.

  14. Vapor pressure of germanium precursors

    NASA Astrophysics Data System (ADS)

    Pangrác, J.; Fulem, M.; Hulicius, E.; Melichar, K.; Šimeček, T.; Růžička, K.; Morávek, P.; Růžička, V.; Rushworth, S. A.

    2008-11-01

    The vapor pressure of two germanium precursors tetrakis(methoxy)germanium (Ge(OCH 3) 4, CASRN 992-91-6) and tetrakis(ethoxy)germanium (Ge(OC 2H 5) 4, CASRN 14165-55-0) was determined using a static method in the temperature range 259-303 K. The experimental vapor pressure data were fit with the Antoine equation. The mass spectra before and after degassing by vacuum distillation at low temperature are also reported and discussed.

  15. Germanium detector vacuum encapsulation

    NASA Technical Reports Server (NTRS)

    Madden, N. W.; Malone, D. F.; Pehl, R. H.; Cork, C. P.; Luke, P. N.; Landis, D. A.; Pollard, M. J.

    1991-01-01

    This paper describes an encapsulation technology that should significantly improve the viability of germanium gamma-ray detectors for a number of important applications. A specialized vacuum chamber has been constructed in which the detector and the encapsulating module are processed in high vacuum. Very high vacuum conductance is achieved within the valveless encapsulating module. The detector module is then sealed without breaking the chamber vacuum. The details of the vacuum chamber, valveless module, processing, and sealing method are presented.

  16. Germanium detector vacuum encapsulation

    NASA Technical Reports Server (NTRS)

    Madden, N. W.; Malone, D. F.; Pehl, R. H.; Cork, C. P.; Luke, P. N.; Landis, D. A.; Pollard, M. J.

    1991-01-01

    This paper describes an encapsulation technology that should significantly improve the viability of germanium gamma-ray detectors for a number of important applications. A specialized vacuum chamber has been constructed in which the detector and the encapsulating module are processed in high vacuum. Very high vacuum conductance is achieved within the valveless encapsulating module. The detector module is then sealed without breaking the chamber vacuum. The details of the vacuum chamber, valveless module, processing, and sealing method are presented.

  17. Germanium-76 Sample Analysis: Revision 3

    SciTech Connect

    Kouzes, Richard T.; Zhu, Zihua; Engelhard, Mark H.

    2011-09-19

    The MAJORANA DEMONSTRATOR is a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay (0{nu}{beta}{beta}). The DEMONSTRATOR will utilize 76Ge from Russia. The first one-gram sample was received from the supplier for analysis on April 24, 2011. The second one-gram sample was received from the supplier for analysis on July 12, 2011. The third sample, which came from the first large shipment of germanium from the vendor, was received from Oak Ridge National Laboratory (ORNL) on September 13, 2011. The Environmental Molecular Sciences facility, a DOE user facility at PNNL, was used to make the required isotopic and chemical purity measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR. The results of these analyses are reported here. The isotopic composition of a sample of natural germanium was also measured twice. Differences in the result between these two measurements led to a re-measurement of the second 76Ge sample.

  18. Analog/Digital System for Germanium Thermometer

    NASA Technical Reports Server (NTRS)

    Woodhouse, Christopher

    1988-01-01

    Electronic system containing analog and digital circuits makes high-precision, four-wire measurements of resistance of each germanium resistance thermometer (GRT) in array of devices, using alternating current (ac) of 1 micro-A. At end measurement interval, contents of negative register subtracted from positive one, resulting in very-narrow-band synchronous demodulation of carrier wave and suppression of out-of-band noise. Microprocessor free to perform other duties after measurement complete. Useful in noisy terrestrial environments encountered in factories.

  19. Monocrystalline germanium film on sapphire

    NASA Astrophysics Data System (ADS)

    Godbey, David J.; Qadri, Syed B.

    1993-04-01

    A monocrystalline germanium film is grown on a sapphire substrate with a (I 102) orientation. The substrate is first pretreated to restructure the (1102) surface plane. Typically, restructuring is accomplished by either an anneal at high temperature or ion bombardment. A monocrystalline germanium layer is grown on the pretreated surface by a vapor deposition process such as molecular beam epitaxy or chemical vapor deposition.

  20. Moth's eye anti-reflection gratings on germanium freeform surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Meng; Shultz, Jason A.; Owen, Joseph D.; Davies, Matthew A.; Suleski, Thomas J.

    2014-09-01

    Germanium is commonly used for optical components in the infrared, but the high refractive index of germanium causes significant losses due to Fresnel reflections. Anti-reflection (AR) surfaces based on subwavelength "moth's eye" gratings provide one means to significantly increase optical transmission. As found in nature, these gratings are conformal to the curved surfaces of lenslets in the eye of the moth. Engineered optical systems inspired by biological examples offer possibilities for increased performance and system miniaturization, but also introduce significant challenges to both design and fabrication. In this paper, we consider the design and fabrication of conformal moth's eye AR structures on germanium freeform optical surfaces, including lens arrays and Alvarez lenses. Fabrication approaches and limitations based on both lithography and multi-axis diamond machining are considered. Rigorous simulations of grating performance and approaches for simulation of conformal, multi-scale optical systems are discussed.

  1. Cryogenic readout techniques for germanium detectors

    SciTech Connect

    Benato, G.; Cattadori, C.; Di Vacri, A.; Ferri, E.

    2015-07-01

    High Purity Germanium detectors are used in many applications, from nuclear and astro-particle physics, to homeland security or environment protection. Although quite standard configurations are often used, with cryostats, charge sensitive amplifiers and analog or digital acquisition systems all commercially available, it might be the case that a few specific applications, e.g. satellites, portable devices, cryogenic physics experiments, etc. also require the development of a few additional or complementary techniques. An interesting case is for sure GERDA, the Germanium Detector Array experiment, searching for neutrino-less double beta decay of {sup 76}Ge at the Gran Sasso National Laboratory of INFN - Italy. In GERDA the entire detector array, composed of semi-coaxial and BEGe naked crystals, is operated suspended inside a cryostat filled with liquid argon, that acts not only as cooling medium and but also as an active shield, thanks to its scintillation properties. These peculiar circumstances, together with the additional requirement of a very low radioactive background from all the materials adjacent to the detectors, clearly introduce significant constraints on the design of the Ge front-end readout electronics. All the Ge readout solutions developed within the framework of the GERDA collaboration, for both Phase I and Phase II, will be briefly reviewed, with their relative strength and weakness compared together and with respect to ideal Ge readout. Finally, the digital processing techniques developed by the GERDA collaboration for energy estimation of Ge detector signals will be recalled. (authors)

  2. Slow Crack Growth of Germanium

    NASA Technical Reports Server (NTRS)

    Salem, Jon

    2016-01-01

    The fracture toughness and slow crack growth parameters of germanium supplied as single crystal beams and coarse grain disks were measured. Although germanium is anisotropic (A=1.7), it is not as anisotropic as SiC, NiAl, or Cu, as evidence by consistent fracture toughness on the 100, 110, and 111 planes. Germanium does not exhibit significant slow crack growth in distilled water. (n=100). Practical values for engineering design are a fracture toughness of 0.7 MPam and a Weibull modulus of m=6+/-2. For well ground and reasonable handled coupons, fracture strength should be greater than 30 MPa.

  3. Germanium geochemistry and mineralogy

    USGS Publications Warehouse

    Bernstein, L.R.

    1985-01-01

    Germanium is enriched in the following geologic environments: 1. (1) iron meteorites and terrestrial iron-nickel; 2. (2) sulfide ore deposits, particularly those hosted by sedimentary rocks; 3. (3) iron oxide deposits; 4. (4) oxidized zones of Ge-bearing sulfide deposits; 5. (5) pegmatites, greisens, and skarns; and 6. (6) coal and lignitized wood. In silicate melts, Ge is highly siderophile in the presence of native iron-nickel; otherwise, it is highly lithophile. Among silicate minerals, Ge is concentrated in those having less polymerized silicate tetrahedra such as olivine and topaz. In deposits formed from hydrothermal solutions, Ge tends to be enriched mostly in either sulfides or in fluorine-bearing phases; it is thus concentrated both in some hydrothermal sulfide deposits and in pegmatites, greisens, and skarns. In sulfide deposits that formed from solutions having low to moderate sulfur activity, Ge is concentrated in sphalerite in amounts up to 3000 ppm. Sulfide deposits that formed from solutions having higher sulfur activity allowed Ge to either form its own sulfides, particularly with Cu, or to substitute for As, Sn, or other metals in sulfosalts. The Ge in hydrothermal fluids probably derives from enrichment during the fractional crystallization of igneous fluids, or is due to the incorporation of Ge from the country rocks, particularly from those containing organic material. Germanium bonds to lignin-derivative organic compounds that are found in peat and lignite, accounting for its common concentration in coals and related organic material. Germanium is precipitated from water together with iron hydroxide, accounting for its concentration in some sedimentary and supergene iron oxide deposits. It also is able to substitute for Fe in magnetite in a variety of geologic environments. In the oxidized zone of Ge-bearing sulfide deposits, Ge is concentrated in oxides, hydroxides, and hydroxy-sulfates, sometimes forming its own minerals. It is particularly

  4. Hafnium germanium telluride

    PubMed Central

    Jang, Gyung-Joo; Yun, Hoseop

    2008-01-01

    The title hafnium germanium telluride, HfGeTe4, has been synthesized by the use of a halide flux and structurally characterized by X-ray diffraction. HfGeTe4 is isostructural with stoichiometric ZrGeTe4 and the Hf site in this compound is also fully occupied. The crystal structure of HfGeTe4 adopts a two-dimensional layered structure, each layer being composed of two unique one-dimensional chains of face-sharing Hf-centered bicapped trigonal prisms and corner-sharing Ge-centered tetra­hedra. These layers stack on top of each other to complete the three-dimensional structure with undulating van der Waals gaps. PMID:21202163

  5. Germanium requirements for national defense

    NASA Astrophysics Data System (ADS)

    Fink, Donald A.; Culver-Hopper, Julia

    1991-07-01

    Germanium, one of the most important of the advanced electronic materials, is used in semiconductor devices, fiber optic systems, and infrared sensors for ships, aircraft, missiles, tanks and anti-tank units. Because of its importance in these applications, germanium was added to the National Defense Stockpile in the early 1980s. This study estimates the appropriate amount of germanium to be held in the stockpile, given DoD's current assumptions for stockpile planning. Because of the dearth of publicly available data on germanium supplies and demands, the analysts based these estimates on data gathered from Service Program Offices and industry and company officials throughout North America. The study was conducted in support of DoD's ongoing effort to review and update the requirements for strategic and critical materials.

  6. Ordered growth of germanium hut islands on Si (001) molecular bonded substrates

    NASA Astrophysics Data System (ADS)

    Poydenot, V.; Dujardin, R.; Rouvière, J. L.; Barski, A.; Fournel, F.

    2004-12-01

    Ordered germanium hut islands are grown by molecular-beam epitaxy on high twist angle molecular bonded silicon (001) substrates (twist angle higher than 20°). We show that the growth organization is induced by an array of interfacial tilt dislocations. Plan-view transmission electron microscopy and atomic force microscopy observations show that the orientation and period of the tilt dislocation array determine the orientation, period, and length of elongated germanium hut islands. The strain field generated by an array of tilt dislocations is proposed as the driving force of the reported organization.

  7. Local structure of germanium-sulfur, germanium-selenium, and germanium-tellurium vitreous alloys

    SciTech Connect

    Bordovsky, G. A.; Terukov, E. I.; Anisimova, N. I.; Marchenko, A. V.; Seregin, P. P.

    2009-09-15

    {sup 119}Sn and {sup 129}Te ({sup 129}I) Moessbauer spectroscopy showed that chalcogen-enriched Ge{sub 100-y}X{sub y} (X = S, Se, Te) glasses are constructed of structural units including two-coordinated chalcogen atoms in chains such as Ge-X-Ge- and Ge-X-X-Ge-. Germanium in these glasses is only tetravalent and four-coordinated, and only chalcogen atoms are in the local environment of germanium atoms. Chalcogen-depleted glasses are constructed of structural units including two-coordinated (in Ge-X-Ge- chains) and three-coordinated chalcogen atoms (in -Ge-X-Ge- chains). Germanium in these glasses stabilizes in both the tetravalent four-coordinated and divalent three-coordinated states, and only chalcogen atoms are in the local environment of germanium atoms.

  8. Resonant germanium nanoantenna photodetectors.

    PubMed

    Cao, Linyou; Park, Joon-Shik; Fan, Pengyu; Clemens, Bruce; Brongersma, Mark L

    2010-04-14

    On-chip optical interconnection is considered as a substitute for conventional electrical interconnects as microelectronic circuitry continues to shrink in size. Central to this effort is the development of ultracompact, silicon-compatible, and functional optoelectronic devices. Photodetectors play a key role as interfaces between photonics and electronics but are plagued by a fundamental efficiency-speed trade-off. Moreover, engineering of desired wavelength and polarization sensitivities typically requires construction of space-consuming components. Here, we demonstrate how to overcome these limitations in a nanoscale metal-semiconductor-metal germanium photodetector for the optical communications band. The detector capitalizes on antenna effects to dramatically enhance the photoresponse (>25-fold) and to enable wavelength and polarization selectivity. The electrical design featuring asymmetric metallic contacts also enables ultralow dark currents (approximately 20 pA), low power consumption, and high-speed operation (>100 GHz). The presented high-performance photodetection scheme represents a significant step toward realizing integrated on-chip communication and manifests a new paradigm for developing miniaturized optoelectronics components.

  9. Germananes: Germanium Graphane Analogues

    NASA Astrophysics Data System (ADS)

    Goldberger, Joshua

    2014-03-01

    Graphene's success has shown that it is not only possible to create stable, single-atom thick sheets from a crystalline solid, but that these materials have fundamentally different properties than the parent material. Our interest focuses on the synthesis and properties of Group IV graphane analogues. We have synthesized for the first time, mm-scale crystals of a hydrogen-terminated germanium multilayered graphane analogue (germanane, GeH) from the topochemical deintercalation of CaGe2. This layered van der Waals solid is analogous to multilayered graphane. The surface layer of GeH only slowly oxidizes in air over the span of five months, while the underlying layers are resilient to oxidation. We demonstrate that it is possible to covalently terminate the external surface with organic substituents to tune the electronic structure, and enhance the stability. These materials represent a new class of covalently terminated graphane analogues having great potential for a wide range of optoelectronic and sensing applications, especially since theory predicts a direct band gap of 1.53 eV and an electron mobility of 18,000 cm2/Vs which is five times higher than that of bulk Ge.

  10. OCCURRENCE OF GERMANIUM AND ARSENIC IN METEORITES.

    PubMed

    Papish, J; Hanford, Z M

    1930-03-07

    1. Spectroscopic evidence has been obtained of the occurrence of germanium in certain siderites, siderolites and aerolites. 2. Judging from the number and intensity of spectral lines the germanium in these meteorites is present in traces. 3. Germanium has been extracted from Toluca and Welland siderites. 4. Arsenic has been extracted from Toluca and Welland siderites.

  11. The Germanium Dichotomy in Martian Meteorites

    NASA Technical Reports Server (NTRS)

    Humayun, M.; Yang, S.; Righter, K.; Zanda, B.; Hewins, R. H.

    2016-01-01

    Germanium is a moderately volatile and siderophile element that follows silicon in its compatibility during partial melting of planetary mantles. Despite its obvious usefulness in planetary geochemistry germanium is not analyzed routinely, with there being only three prior studies reporting germanium abundances in Martian meteorites. The broad range (1-3 ppm) observed in Martian igneous rocks is in stark contrast to the narrow range of germanium observed in terrestrial basalts (1.5 plus or minus 0.1 ppm). The germanium data from these studies indicates that nakhlites contain 2-3 ppm germanium, while shergottites contain approximately 1 ppm germanium, a dichotomy with important implications for core formation models. There have been no reliable germanium abundances on chassignites. The ancient meteoritic breccia, NWA 7533 (and paired meteorites) contains numerous clasts, some pristine and some impact melt rocks, that are being studied individually. Because germanium is depleted in the Martian crust relative to chondritic impactors, it has proven useful as an indicator of meteoritic contamination of impact melt clasts in NWA 7533. The germanium/silicon ratio can be applied to minerals that might not partition nickel and iridium, like feldspars. We report germanium in minerals from the 3 known chassignites, 2 nakhlites and 5 shergottites by LAICP- MS using a method optimized for precise germanium analysis.

  12. Dermal absorption of inorganic germanium in rats.

    PubMed

    Yokoi, Katsuhiko; Kawaai, Takae; Konomi, Aki; Uchida, Yuka

    2008-11-01

    So-called germanium 'health' products including dietary supplements, cosmetics, accessories, and warm bath service containing germanium compounds and metalloid are popular in Japan. Subchronic and chronic oral exposure of germanium dioxide (GeO(2)), popular chemical form of inorganic germanium causes severe germanium toxicosis including death and kidney dysfunction in humans and experimental animals. Intestinal absorption of neutralized GeO(2) or germanate is almost complete in humans and animals. However, it is not known whether germanium is cutaneously absorbed. We tested dermal absorption of neutralized GeO(2) or germanate using male F344/N rats. Three groups of rats were treated with a 3-h topical application of hydrophilic ointment containing graded level of neutralized GeO(2) (pH 7.4): 0, 0.21 and 0.42 mg GeO(2)/g. Germanium concentration in blood and tissues sampled from rats after topical application of inorganic germanium was measured by inductively coupled plasma-mass spectrometry. Animals topically applied 0.42 mg GeO(2)/g ointment had significantly higher germanium concentrations in plasma, liver, and kidney than those of rats that received no topical germanium. The results indicate that skin is permeable to inorganic germanium ion or germanate and recurrent exposure of germanium compounds may pose a potential health hazard.

  13. Self-assembled germanium nano-clusters on silver(110) [rapid communication

    NASA Astrophysics Data System (ADS)

    Léandri, C.; Oughaddou, H.; Gay, J. M.; Aufray, B.; Le Lay, G.; Bibérian, J. P.; Ranguis, A.; Bunk, O.; Johnson, R. L.

    2004-12-01

    The adsorption of germanium on Ag(1 1 0) has been investigated by scanning tunnelling microscopy (STM), as well as surface X-ray diffraction (SXRD). At 0.5 germanium monolayer (ML) coverage, Low Energy Electron Diffraction (LEED) patterns reveals a sharp c(4 × 2) superstructure. Based on STM images and SXRD measurements, we present an atomic model of the surface structure with Ge atoms forming tetramer nano-clusters perfectly assembled in a two-dimensional array over the silver top layer. The adsorption of the germanium atoms induces a weak perturbation of the Ag surface. Upon comparison with results obtained on the (1 1 1) and (1 0 0) faces, we stress the role played by the relative interactions between silver and germanium on the observed surface structures.

  14. Surface Passivation of Germanium Nanowires

    SciTech Connect

    Adhikari, Hemant; Sun, Shiyu; Pianetta, Piero; Chidsey, Chirstopher E.D.; McIntyre, Paul C.; /SLAC, SSRL

    2005-05-13

    The surface of single crystal, cold-wall CVD-grown germanium nanowires was studied by synchrotron radiation photoemission spectroscopy (SR-PES) and also by conventional XPS. The as-grown germanium nanowires seem to be hydrogen terminated. Exposure to laboratory atmosphere leads to germanium oxide growth with oxidation states of Ge{sup 1+}, Ge{sup 2+}, Ge{sup 3+}, while exposure to UV light leads to a predominance of the Ge{sup 4+} oxidation state. Most of the surface oxide could be removed readily by aqueous HF treatment which putatively leaves the nanowire surface hydrogen terminated with limited stability in air. Alternatively, chlorine termination could be achieved by aq. HCl treatment of the native oxide-coated nanowires. Chlorine termination was found to be relatively more stable than the HF-last hydrogen termination.

  15. [Effects of Germanium Concentrations on Germanium Accumulation and Biotransformation of Polysaccarified Germanium in Cordyceps militaris].

    PubMed

    Wang, Ju-feng; Li, Hu-ming; Yang, Dao-de

    2015-11-01

    To study the effects of Germanium (Ge) concentration on Ge accumulation and biotransformation of polysaccarified Ge (PG) in Cordyceps militaris. Solid and liquid culture were used in this study. In the solid culture conditions, when the Ge concentration of medium was 200 mg/L, the sporophore biomass of Cordyceps militaris was the maximum; and when Ge concentration was 300 mg/L,the amount of biotransformation of PG in sporophore was the highest; and when the Ge concentration is 250 mg/L, conversion rate of organic germanium (OG) in sporophore reached the highest value. In the liquid culture conditions, when the Ge concentration was 250 mg/L, the mycelium biomass of Cordyceps militaris was the maximum; and when Ge concentration was 150 mg/L, the amount of organic conversion of PG in mycelium was the most; and conversion rate of OG in mycelium was the highest in media with the Ge concentration of 200 mg/L. This study showed the germanium concentrations in 150 - 300 mg/L was more suitable for Ge accumulation and biotransformation of PG in Cordyceps militaris. In general, the biotransformation capacity to germanium of sporophore was stronger than that of mycelium of Cordyceps militaris. Germanium can significantly affect Ge accumulation and biotransformation of PG in Cordyceps militaris (P < 0.05) at different concentration. This result has practical value for Ge enriched cultivation of fruiting body in Cordyceps militaris.

  16. Germanium Multiphase Equation of State

    NASA Astrophysics Data System (ADS)

    Crockett, Scott; Kress, Joel; Rudin, Sven; de Lorenzi-Venneri, Giulia

    2013-06-01

    A new SESAME multiphase Germanium equation of state (EOS) has been developed utilizing the best experimental data and theoretical calculations. The equilibrium EOS includes the GeI (diamond), GeII (beta-Sn) and liquid phases. We will also explore the meta-stable GeIII (tetragonal) phase of germanium. The theoretical calculations used in constraining the EOS are based on quantum molecular dynamics and density functional theory phonon calculations. We propose some physics rich experiments to better understand the dynamics of this element.

  17. Germanium Nanocrystal Solar Cells

    NASA Astrophysics Data System (ADS)

    Holman, Zachary Charles

    Greenhouse gas concentrations in the atmosphere are approaching historically unprecedented levels from burning fossil fuels to meet the ever-increasing world energy demand. A rapid transition to clean energy sources is necessary to avoid the potentially catastrophic consequences of global warming. The sun provides more than enough energy to power the world, and solar cells that convert sunlight to electricity are commercially available. However, the high cost and low efficiency of current solar cells prevent their widespread implementation, and grid parity is not anticipated to be reached for at least 15 years without breakthrough technologies. Semiconductor nanocrystals (NCs) show promise for cheap multi-junction photovoltaic devices. To compete with photovoltaic materials that are currently commercially available, NCs need to be inexpensively cast into dense thin films with bulk-like electrical mobilities and absorption spectra that can be tuned by altering the NC size. The Group II-VI and IV-VI NC communities have had some success in achieving this goal by drying and then chemically treating colloidal particles, but the more abundant and less toxic Group IV NCs have proven more challenging. This thesis reports thin films of plasma-synthesized Ge NCs deposited using three different techniques, and preliminary solar cells based on these films. Germanium tetrachloride is dissociated in the presence of hydrogen in a nonthermal plasma to nucleate Ge NCs. Transmission electron microscopy and X-ray diffraction indicate that the particles are nearly monodisperse (standard deviations of 10-15% the mean particle diameter) and the mean diameter can be tuned from 4-15 nm by changing the residence time of the Ge NCs in the plasma. In the first deposition scheme, a Ge NC colloid is formed by reacting nanocrystalline powder with 1-dodecene and dispersing the functionalized NCs in a solvent. Films are then formed on substrates by drop-casting the colloid and allowing it to dry

  18. NdP5O14 crystal used for miniature rangefinder

    NASA Astrophysics Data System (ADS)

    1983-08-01

    A 70 mm long NdP5O14 crystal weighing 60 lbs and with good optical properties was grown and used with a miniature xenon lamp pumped, Q-tunable dye laser weighing 23 grams to determine its rangefinding capability. Results show the measurement range is 60 to approximately 300 m, with an accuracy of 2.5m and a ranging probability of 96%. Papers presented at a color center laser symposium are summarized. Topics covered include color center physics, and development trends into research with color center applications in chemistry, optical frequency measurement, and laser frequency measurement.

  19. Epitaxial Deposition Of Germanium Doped With Gallium

    NASA Technical Reports Server (NTRS)

    Huffman, James E.

    1994-01-01

    Epitaxial layers of germanium doped with gallium made by chemical vapor deposition. Method involves combination of techniques and materials used in chemical vapor deposition with GeH4 or GeCl4 as source of germanium and GaCl3 as source of gallium. Resulting epitaxial layers of germanium doped with gallium expected to be highly pure, with high crystalline quality. High-quality material useful in infrared sensors.

  20. Epitaxial Deposition Of Germanium Doped With Gallium

    NASA Technical Reports Server (NTRS)

    Huffman, James E.

    1994-01-01

    Epitaxial layers of germanium doped with gallium made by chemical vapor deposition. Method involves combination of techniques and materials used in chemical vapor deposition with GeH4 or GeCl4 as source of germanium and GaCl3 as source of gallium. Resulting epitaxial layers of germanium doped with gallium expected to be highly pure, with high crystalline quality. High-quality material useful in infrared sensors.

  1. Calibration of Germanium Resistance Thermometers

    NASA Technical Reports Server (NTRS)

    Ladner, D.; Urban, E.; Mason, F. C.

    1987-01-01

    Largely completed thermometer-calibration cryostat and probe allows six germanium resistance thermometers to be calibrated at one time at superfluid-helium temperatures. In experiments involving several such thermometers, use of this calibration apparatus results in substantial cost savings. Cryostat maintains temperature less than 2.17 K through controlled evaporation and removal of liquid helium from Dewar. Probe holds thermometers to be calibrated and applies small amount of heat as needed to maintain precise temperature below 2.17 K.

  2. Mineral resource of the month: germanium

    USGS Publications Warehouse

    Guberman, David

    2010-01-01

    The article provides information on germanium, an element with electrical properties between those of a metal and an insulator. Applications of germanium include its use as a component of the glass in fiber-optic cable, in infrared optics devices and as a semiconductor and substrate used in electronic and solar applications. Germanium was first isolated by German chemist Clemens Winkler in 1886 and was named after Winkler's native country. In 2008, the leading sources of primary germanium from coal or zinc include Canada, China and Russia.

  3. Hydrothermal synthesis of bismuth germanium oxide

    DOEpatents

    Boyle, Timothy J.

    2016-12-13

    A method for the hydrothermal synthesis of bismuth germanium oxide comprises dissolving a bismuth precursor (e.g., bismuth nitrate pentahydrate) and a germanium precursor (e.g., germanium dioxide) in water and heating the aqueous solution to an elevated reaction temperature for a length of time sufficient to produce the eulytite phase of bismuth germanium oxide (E-BGO) with high yield. The E-BGO produced can be used as a scintillator material. For example, the air stability and radioluminescence response suggest that the E-BGO can be employed for medical applications.

  4. Structural Design Parameters for Germanium

    NASA Technical Reports Server (NTRS)

    Salem, Jon; Rogers, Richard; Baker, Eric

    2017-01-01

    The fracture toughness and slow crack growth parameters of germanium supplied as single crystal beams and coarse grain disks were measured. Although germanium is anisotropic (A* 1.7), it is not as anisotropic as SiC, NiAl, or Cu. Thus the fracture toughness was similar on the 100, 110, and 111 planes, however, measurements associated with randomly oriented grinding cracks were 6 to 30 higher. Crack extension in ring loaded disks occurred on the 111 planes due to both the lower fracture energy and the higher stresses on stiff 111 planes. Germanium exhibits a Weibull scale effect, but does not exhibit significant slow crack growth in distilled water. (n 100), implying that design for quasi static loading can be performed with scaled strength statistics. Practical values for engineering design are a fracture toughness of 0.69 0.02 MPam (megapascals per square root meter) and a Weibull modulus of m 6 2. For well ground and reasonable handled coupons, average fracture strength should be greater than 40 megapascals. Aggregate, polycrystalline elastic constants are Epoly 131 gigapascals, vpoly 0.22.

  5. Germanium recycling in the United States in 2000

    USGS Publications Warehouse

    Jorgenson, John D.

    2006-01-01

    This report describes the recycling flow of germanium in the United States in 2000, as well as other germanium material flow streams. Germanium was recycled mostly from new scrap that was generated during the manufacture of germanium-containing fiber optic cables and from new and old scrap products of germanium-containing infrared imaging devices. In 2000, about 11.5 metric tons of germanium was recycled, about 40 percent of which was derived from old scrap. The germanium recycling rate was estimated to be 50 percent, and germanium scrap recycling efficiency, 76 percent.

  6. A Complete Physical Germanium-on-Silicon Quantum Dot Self-Assembly Process

    PubMed Central

    Alkhatib, Amro; Nayfeh, Ammar

    2013-01-01

    Achieving quantum dot self-assembly at precise pre-defined locations is of vital interest. In this work, a novel physical method for producing germanium quantum dots on silicon using nanoindentation to pre-define nucleation sites is described. Self-assembly of ordered ~10 nm height germanium quantum dot arrays on silicon substrates is achieved. Due to the inherent simplicity and elegance of the proposed method, the results describe an attractive technique to manufacture semiconductor quantum dot structures for future quantum electronic and photonic applications. PMID:23807261

  7. Self-organized growth of germanium nanocolumns

    NASA Astrophysics Data System (ADS)

    Mussabek, G. K.; Yermukhamed, D.; Dikhanbayev, K. K.; Schleusener, A.; Mathur, S.; Sivakov, V.

    2017-03-01

    The crystalline germanium nanostructures were obtained on a silicon surface by the chemical vapor deposition technique using a germanium (IV) iso-propoxide ([Ge(OiPr)4]) metalorganic precursor as a germanium source. As was observed, the one-dimensional (1D) germanium nanostructures on the silicon surface form without using a metal catalyst, meaning that the formation of 1D nanostructures is based not on a vapor-liquid-solid (VLS) growth mechanism, but on self-organization processes which take place on the silicon surfaces during the CVD process of germanium iso-propoxide pyrolysis. Our observation suggests that the non-catalytic growth of germanium nanocolumns is strongly dependent on the CVD process temperature. The germanium phase composition and morphology have been investigated by x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS), and high resolution scanning electron microscopy (HRSEM), respectively. Our results provide a new way to grow 1D germanium nanostructures without contamination by a catalyst, which the vapor-liquid-solid growth mechanism is known to cause, allowing for the application of such materials in micro- and optoelectronics.

  8. Mineral resource of the month: germanium

    USGS Publications Warehouse

    Jorgenson, John D.

    2003-01-01

    Germanium is a hard, brittle semimetal that first came into use over a half-century ago as a semiconductor material in radar units and in the first transistor ever made. Most germanium is recovered as a byproduct of zinc smelting, but it has also been recovered at some copper smelters and from the fly ash of coal-burning industrial power plants.

  9. High efficiency germanium-assisted grating coupler.

    PubMed

    Yang, Shuyu; Zhang, Yi; Baehr-Jones, Tom; Hochberg, Michael

    2014-12-15

    We propose a fiber to submicron silicon waveguide vertical coupler utilizing germanium-on-silicon gratings. The germanium is epitaxially grown on silicon in the same step for building photodetectors. Coupling efficiency based on FDTD simulation is 76% at 1.55 µm and the optical 1dB bandwidth is 40 nm.

  10. The Reactivity of Germanium Phosphanides with Chalcogens.

    PubMed

    Harris, Lisa M; Tam, Eric C Y; Cummins, Struan J W; Coles, Martyn P; Fulton, J Robin

    2017-03-06

    The reactivity of germanium phosphanido complexes with elemental chalcogens is reported. Addition of sulfur to [(BDI)GePCy2] (BDI = CH{(CH3)CN-2,6-iPr2C6H3}2) results in oxidation at germanium to form germanium(IV) sulfide [(BDI)Ge(S)PCy2] and oxidation at both germanium and phosphorus to form germanium(IV) sulfide dicylohexylphosphinodithioate complex [(BDI)Ge(S)SP(S)Cy2], whereas addition of tellurium to [(BDI)GePCy2] only gives the chalcogen inserted product, [(BDI)GeTePCy2]. This reactivity is different from that observed between [(BDI)GePCy2] and selenium. Addition of selenium to the diphenylphosphanido germanium complex, [(BDI)GePPh2], results in insertion of selenium into the Ge-P bond to form [(BDI)GeSePCy2] as well as the oxidation at phosphorus to give [(BDI)GeSeP(Se)Ph2]. In contrast, addition of selenium to the bis(trimethylsilyl)phosphanido germanium complex, [(BDI)GeP(SiMe3)2], yields the germanium(IV) selenide [(BDI)Ge(Se)P(SiMe3)2].

  11. MAJORANA Collaboration's experience with germanium detectors

    DOE PAGES

    Mertens, S.; Abgrall, N.; Avignone, F. T.; ...

    2015-05-01

    The goal of the Majorana Demonstrator project is to search for 0νββ decay in 76Ge. Of all candidate isotopes for 0νββ, 76Ge has some of the most favorable characteristics. Germanium detectors are a well established technology, and in searches for 0νββ, the high purity germanium crystal acts simultaneously as source and detector. Furthermore, p-type germanium detectors provide excellent energy resolution and a specially designed point contact geometry allows for sensitive pulse shape discrimination. This paper will summarize the experiences the MAJORANA collaboration made with enriched germanium detectors manufactured by ORTEC®®. The process from production, to characterization and integration in MAJORANAmore » mounting structure will be described. A summary of the performance of all enriched germanium detectors will be given.« less

  12. MAJORANA Collaboration's experience with germanium detectors

    SciTech Connect

    Mertens, S.; Abgrall, N.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Brudanin, V.; Busch, M.; Buuck, M.; Byram, D.; Caldwell, A. S.; Chan, Y. -D.; Christofferson, C. D.; Cuesta, C.; Detwiler, J. A.; Efremenko, Yu; Ejiri, H.; Elliott, S. R.; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I.; Guiseppe, V. E.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Jasinski, B. R.; Keeter, K. J.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; MacMullin, J.; Martin, R. D.; Meijer, S. J.; Orrell, J. L.; O'Shaughnessy, C.; Overman, N. R.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Ronquest, M. C.; Shanks, B.; Shirchenko, M.; Snyder, N.; Tedeschi, D.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C. -H.; Yumatov, V.

    2015-05-01

    The goal of the Majorana Demonstrator project is to search for 0νββ decay in 76Ge. Of all candidate isotopes for 0νββ, 76Ge has some of the most favorable characteristics. Germanium detectors are a well established technology, and in searches for 0νββ, the high purity germanium crystal acts simultaneously as source and detector. Furthermore, p-type germanium detectors provide excellent energy resolution and a specially designed point contact geometry allows for sensitive pulse shape discrimination. This paper will summarize the experiences the MAJORANA collaboration made with enriched germanium detectors manufactured by ORTEC®®. The process from production, to characterization and integration in MAJORANA mounting structure will be described. A summary of the performance of all enriched germanium detectors will be given.

  13. Black Germanium fabricated by reactive ion etching

    NASA Astrophysics Data System (ADS)

    Steglich, Martin; Käsebier, Thomas; Kley, Ernst-Bernhard; Tünnermann, Andreas

    2016-09-01

    A reactive ion etching technique for the preparation of statistical "Black Germanium" antireflection surfaces, relying on self-organization in a Cl2 etch chemistry, is presented. The morphology of the fabricated Black Germanium surfaces is the result of a random lateral distribution of pyramidal etch pits with heights around (1450 ± 150) nm and sidewall angles between 80° and 85°. The pyramids' base edges are oriented along the <110> crystal directions of Germanium, indicating a crystal anisotropy of the etching process. In the Vis-NIR, the tapered Black Germanium surface structure suppresses interface reflection to <2.5 % for normal incidence and still to <6 % at an angle of incidence of 70°. The presented Black Germanium might find applications as low-cost AR structure in optoelectronics and IR optics.

  14. MAJORANA Collaboration's Experience with Germanium Detectors

    SciTech Connect

    Mertens, S.; Abgrall, N.; Avignone, III, F. T.; Bertrand, F. E.; Efremenko, Yuri; Galindo-Uribarri, A; Radford, D. C.; Romero-Romero, E.; White, B. R.; Wilkerson, J. F.; Majorana,

    2015-01-01

    The goal of the Majorana Demonstrator project is to search for 0v beta beta decay in Ge-76. Of all candidate isotopes for 0v beta beta, Ge-76 has some of the most favorable characteristics. Germanium detectors are a well established technology, and in searches for 0v beta beta, the high purity germanium crystal acts simultaneously as source and detector. Furthermore, p-type germanium detectors provide excellent energy resolution and a specially designed point contact geometry allows for sensitive pulse shape discrimination. This paper will summarize the experiences the MAJORANA collaboration made with enriched germanium detectors manufactured by ORTEC (R)(R). The process from production, to characterization and integration in MAJORANA mounting structure will be described. A summary of the performance of all enriched germanium detectors will be given.

  15. Microstrutured fibers with germanium doped core components

    NASA Astrophysics Data System (ADS)

    Kobelke, J.; Schuster, K.; Schwuchow, A.; Wang, Y.; Brückner, S.; Becker, M.; Rothhardt, M.; Kirchhof, J.; Ecke, W.; Willsch, R.; Bartelt, H.

    2009-05-01

    The paper reports preparation and applicative aspects of two types of index guiding microstructured fibers (MOFs) with germanium doped cores. The first fiber type has a solid core with graded germanium profile. It shows a high photosensitivity compared to pure silica MOFs. We inscribed high-quality Bragg gratings with a reflectivity of 73% without hydrogen loading. The solid core germanium doped MOF was spliced with standard silica fiber. The minimum splice loss was about 1 dB at 1550 μm wavelength. A more complex MOF type was prepared with germanium doped holey core in a silica holey cladding. The germanium doped core area includes seven holes in hexagonal arrangement with equal diameter and pitch sizes. The holey core propagates a large area annulus mode. We show the suitability of this MOF for chemical gas sensing by filling the core cavities with hydrocarbon analytes.

  16. The Germanium GAlactic Plane Patrol mission

    NASA Technical Reports Server (NTRS)

    Tueller, Jack; Gehrels, Neil; Leventhal, Marvin

    1992-01-01

    The goal of the Germanium GAlactic Plane Patrol mission (GGAPP) is to provide a continuous monitor of the Galactic Plane (GP) for variable sources of gamma-ray lines. Potentially interesting sources include black hole candidates, X-ray binary systems, pulsars, gamma-ray bursts, and solar flares. The GGAPP instrument is an array of Ge detectors cooled by a mechanical refrigerator to achieve a spectral resolution of 2 keV at 1 MeV (1/500). A bismuth germanate (BGO) shield will restrict the field-of-view (FOV) to within 20 deg of the GP, and a modulation collimator system will locate strong sources to less than 0.3 deg in galactic longitude, provide a direct means of subtracting background, and mapping the diffuse emission from the GP. The spacecraft will be rotationally stabilized with the spin axis perpendicular to the GP such that the modulator scans in galactic longitude. A HEO or L1 orbit will keep GGAPP far away from the strong background produced by the Earth. GGAPP will provide a natural bridge between GRO and future missions such as INTEGRAL/NAE.

  17. Germanium multiphase equation of state

    SciTech Connect

    Crockett, Scott D.; Lorenzi-Venneri, Giulia De; Kress, Joel D.; Rudin, Sven P.

    2014-05-07

    A new SESAME multiphase germanium equation of state (EOS) has been developed using the best available experimental data and density functional theory (DFT) calculations. The equilibrium EOS includes the Ge I (diamond), the Ge II (β-Sn) and the liquid phases. The foundation of the EOS is based on density functional theory calculations which are used to determine the cold curve and the Debye temperature. Results are compared to Hugoniot data through the solid-solid and solid-liquid transitions. We propose some experiments to better understand the dynamics of this element

  18. Germanium multiphase equation of state

    DOE PAGES

    Crockett, Scott D.; Lorenzi-Venneri, Giulia De; Kress, Joel D.; ...

    2014-05-07

    A new SESAME multiphase germanium equation of state (EOS) has been developed using the best available experimental data and density functional theory (DFT) calculations. The equilibrium EOS includes the Ge I (diamond), the Ge II (β-Sn) and the liquid phases. The foundation of the EOS is based on density functional theory calculations which are used to determine the cold curve and the Debye temperature. Results are compared to Hugoniot data through the solid-solid and solid-liquid transitions. We propose some experiments to better understand the dynamics of this element

  19. Germanium multiphase equation of state

    NASA Astrophysics Data System (ADS)

    Crockett, S. D.; De Lorenzi-Venneri, G.; Kress, J. D.; Rudin, S. P.

    2014-05-01

    A new SESAME multiphase germanium equation of state (EOS) has been developed utilizing the best available experimental data and density functional theory (DFT) calculations. The equilibrium EOS includes the Ge I (diamond), the Ge II (β-Sn) and the liquid phases. The foundation of the EOS is based on density functional theory calculations which are used to determine the cold curve and the Debye temperature. Results are compared to Hugoniot data through the solid-solid and solid-liquid transitions. We propose some experiments to better understand the dynamics of this element.

  20. Functionalization of Mechanochemically Passivated Germanium Nanoparticles via "Click" Chemistry

    NASA Astrophysics Data System (ADS)

    Purkait, Tapas Kumar

    Germanium nanoparticles (Ge NPs) may be fascinating for their electronic and optoelectronic properties, as the band gap of Ge NPs can be tuned from the infrared into the visible range of solar spectru. Further functionalization of those nanoparticles may potentially lead to numerous applications ranging from surface attachment, bioimaging, drug delivery and nanoparticles based devices. Blue luminescent germanium nanoparticles were synthesized from a novel top-down mechanochemical process using high energy ball milling (HEBM) of bulk germanium. Various reactive organic molecules (such as, alkynes, nitriles, azides) were used in this process to react with fresh surface and passivate the surface through Ge-C or Ge-N bond. Various purification process, such as gel permeation chromatography (GPC), Soxhlet dailysis etc. were introduced to purify nanoparticles from molecular impurities. A size separation technique was developed using GPC. The size separated Ge NPs were characterize by TEM, small angle X-ray scattering (SAXS), UV-vis absorption and photoluminescence (PL) emission spectroscopy to investigate their size selective properties. Germanium nanoparticles with alkyne termini group were prepared by HEBM of germanium with a mixture of n-alkynes and alpha, o-diynes. Additional functionalization of those nanoparticles was achieved by copper(I) catalyzed azide-alkyne "click" reaction. A variety of organic and organometallic azides including biologically important glucals have been reacted in this manner resulting in nanopartilces adorned with ferrocenyl, trimethylsilyl, and glucal groups. Additional functionalization of those nanoparticles was achieved by reactions with various azides via a Cu(I) catalyzed azide-alkyne "click" reaction. Various azides, including PEG derivatives and cylcodextrin moiety, were grafted to the initially formed surface. Globular nanoparticle arrays were formed through interparticle linking via "click" chemistry or "host-guest" chemistry

  1. Detector Arrays For Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R.; Mckelvey, M. E.; Goebel, J. H.; Anderson, G. M.; Lee, J. H.

    1988-01-01

    Paper describes status of program for developing integrated infrared detectors for astronomy. Program covers variety of detectors, including extrinsic silicon, extrinsic germanium, and indium antimonide devices with hybrid silicon multiplexers. Paper notes for arrays to reach background noise limit in cryogenic telescope, continued reductions in readout noise and dark current needed.

  2. Electronic considerations for externally segmented germanium detectors

    NASA Technical Reports Server (NTRS)

    Madden, N. W.; Landis, D. A.; Goulding, F. S.; Pehl, R. H.; Cork, C. P.; Luke, P. N.; Malone, D. F.; Pollard, M. J.

    1991-01-01

    The dominant background source for germanium gamma ray detector spectrometers used for some astrophysics observations is internal beta decay. Externally segmented germanium gamma ray coaxial detectors can identify beta decay by localizing the event. Energetic gamma rays interact in the germanium detector by multiple Compton interactions while beta decay is a local process. In order to recognize the difference between gamma rays and beta decay events, the external electrode (outside of detector) is electrically partitioned. The instrumentation of these external segments and the consequence with respect to the spectrometer energy signal is examined.

  3. Binding of germanium of Pseudomonas putida cells

    SciTech Connect

    Klapcinska, B.; Chmielowski, J.

    1986-05-01

    The binding of germanium to Pseudomonas putida ATCC 33015 was investigated by using whole intact cells grown in a medium supplemented with GeO/sub 2/ and catechol or acetate. Electron-microscopic examination of the control and metal-loaded samples revealed that germanium was bound within the cell envelope. A certain number of small electron-dense deposits of the bound element were found in the cytoplasm when the cells were grown in the presence of GeO/sub 2/ and catechol. The study of germanium distribution in cellular fractions revealed that catechol facilitated the intracellular accumulation of this element.

  4. Patterning NHS-terminated SAMs on germanium.

    PubMed

    Morris, Carleen J; Shestopalov, Alexander A; Gold, Brian H; Clark, Robert L; Toone, Eric J

    2011-05-17

    Here we report a simple, robust approach to patterning functional SAMs on germanium. The protocol relies on catalytic soft-lithographic pattern transfer from an elastomeric stamp bearing pendant immobilized sulfonic acid moieties to an NHS-functionalized bilayer molecular system comprising a primary ordered alkyl monolayer and a reactive ester secondary overlayer. The catalytic polyurethane-acrylate stamp was used to form micrometer-scale features of chemically distinct SAMs on germanium. The methodology represents the first example of patterned SAMs on germanium, a semiconductor material.

  5. Electronic considerations for externally segmented germanium detectors

    NASA Technical Reports Server (NTRS)

    Madden, N. W.; Landis, D. A.; Goulding, F. S.; Pehl, R. H.; Cork, C. P.; Luke, P. N.; Malone, D. F.; Pollard, M. J.

    1991-01-01

    The dominant background source for germanium gamma ray detector spectrometers used for some astrophysics observations is internal beta decay. Externally segmented germanium gamma ray coaxial detectors can identify beta decay by localizing the event. Energetic gamma rays interact in the germanium detector by multiple Compton interactions while beta decay is a local process. In order to recognize the difference between gamma rays and beta decay events, the external electrode (outside of detector) is electrically partitioned. The instrumentation of these external segments and the consequence with respect to the spectrometer energy signal is examined.

  6. Segmentation of the Outer Contact on P-Type Coaxial Germanium Detectors

    SciTech Connect

    Hull, Ethan L.; Pehl, Richard H.; Lathrop, James R.; Martin, Gregory N.; Mashburn, R. B.; Miley, Harry S.; Aalseth, Craig E.; Hossbach, Todd W.

    2006-09-21

    Germanium detector arrays are needed for low-level counting facilities. The practical applications of such user facilities include characterization of low-level radioactive samples. In addition, the same detector arrays can also perform important fundamental physics measurements including the search for rare events like neutrino-less double-beta decay. Coaxial germanium detectors having segmented outer contacts will provide the next level of sensitivity improvement in low background measurements. The segmented outer detector contact allows performance of advanced pulse shape analysis measurements that provide additional background reduction. Currently, n-type (reverse electrode) germanium coaxial detectors are used whenever a segmented coaxial detector is needed because the outer boron (electron barrier) contact is thin and can be segmented. Coaxial detectors fabricated from p-type germanium cost less, have better resolution, and are larger than n-type coaxial detectors. However, it is difficult to reliably segment p-type coaxial detectors because thick (~1 mm) lithium-diffused (hole barrier) contacts are the standard outside contact for p-type coaxial detectors. During this Phase 1 Small Business Innovation Research (SBIR) we have researched the possibility of using amorphous germanium contacts as a thin outer contact of p-type coaxial detectors that can be segmented. We have developed amorphous germanium contacts that provide a very high hole barrier on small planar detectors. These easily segmented amorphous germanium contacts have been demonstrated to withstand several thousand volts/cm electric fields with no measurable leakage current (<1 pA) from charge injection over the hole barrier. We have also demonstrated that the contact can be sputter deposited around and over the curved outside surface of a small p-type coaxial detector. The amorphous contact has shown good rectification properties on the outside of a small p-type coaxial detector. These encouraging

  7. Photodiodes based on self-assembled GeSi/Si(001) nanoisland arrays grown by the combined sublimation molecular-beam epitaxy of silicon and vapor-phase epitaxy of germanium

    SciTech Connect

    Filatov, D. O.; Gorshkov, A. P.; Volkova, N. S.; Guseinov, D. V.; Alyabina, N. A.; Ivanova, M. M.; Chalkov, V. Yu.; Denisov, S. A.; Shengurov, V. G.

    2015-03-15

    We investigate the photosensitivity spectra of photodiodes based on Si p-i-n structures with single-layered and multilayer self-assembled GeSi/Si(001) nanoisland arrays in the i region, which are grown using a technique combining Si molecular-beam epitaxy and Ge vapor-phase epitaxy, in dependence on the temperature, diode bias, and GeSi nanoisland parameters. We show that the temperature and field dependences of the diode photosensitivity in the spectral range of the interband optical absorption in GeSi nanoislands are determined by the ratio between the rate of emission of photoexcited holes from the nanoislands and the rate of the recombination of excess carriers in them. We demonstrate the possibility of determination of the hole recombination lifetime in GeSi nanoislands from the temperature and field dependences of the photosensitivity.

  8. A review on germanium nanowires.

    PubMed

    Pei, Li Z; Cai, Zheng Y

    2012-01-01

    Ge nanowires exhibit wide application potential in the fields of nanoscale devices due to their excellently optical and electrical properties. This article reviews the recent progress and patents of Ge nanowires. The recent progress and patents for the synthesis of Ge nanowires using chemical vapor deposition, laser ablation, thermal evaporation, template method and supercritical fluid-liquid-solid method are demonstrated. Amorphous germanium oxide layer and defects existing in Ge nanowires result in poor Ohmic contact between Ge nanowires and electrodes. Therefore, Ge nanowires should be passivated in order to deposit connecting electrodes before applied in nanoelectronic devices. The experimental progress and patents on the application of Ge nanowires as field effect transistors, lithium batteries, photoresistors, memory cell and fluid sensors are discussed. Finally, the future development of Ge nanowires for the synthesis and practical application is also discussed.

  9. Solution synthesis of germanium nanocrystals

    DOEpatents

    Gerung, Henry [Albuquerque, NM; Boyle, Timothy J [Kensington, MD; Bunge, Scott D [Cuyahoga Falls, OH

    2009-09-22

    A method for providing a route for the synthesis of a Ge(0) nanometer-sized material from. A Ge(II) precursor is dissolved in a ligand heated to a temperature, generally between approximately 100.degree. C. and 400.degree. C., sufficient to thermally reduce the Ge(II) to Ge(0), where the ligand is a compound that can bond to the surface of the germanium nanomaterials to subsequently prevent agglomeration of the nanomaterials. The ligand encapsulates the surface of the Ge(0) material to prevent agglomeration. The resulting solution is cooled for handling, with the cooling characteristics useful in controlling the size and size distribution of the Ge(0) materials. The characteristics of the Ge(II) precursor determine whether the Ge(0) materials that result will be nanocrystals or nanowires.

  10. High Efficiency Germanium Immersion Gratings

    SciTech Connect

    Kuzmenko, P J; Davis, P J; Little, S L; Little, L M; Bixler, J V

    2006-05-01

    We have fabricated several germanium immersion gratings by single crystal, single point diamond flycutting on an ultra-precision lathe. Use of a dead sharp tool produces groove corners less than 0.1 micron in radius and consequently high diffraction efficiency. We measured first order efficiencies in immersion of over 80% at 10.6 micron wavelength. Wavefront error was low averaging 0.06 wave rms (at 633 nm) across the full aperture. The grating spectral response was free of ghosts down to our detection limit of 1 part in 10{sup 4}. Scatter should be low based upon the surface roughness. Measurement of the spectral line profile of a CO{sub 2} laser sets an upper bound on total integrated scatter of 0.5%.

  11. Germanium: giving microelectronics an efficiency boost

    USGS Publications Warehouse

    Mercer, Celestine N.

    2015-07-30

    Germanium is an essentially nontoxic element, with the exception of only a few compounds. However, if dissolved concentrations in drinking water are as high as one or more parts per million chronic diseases may occur.

  12. Tough germanium nanoparticles under electrochemical cycling.

    PubMed

    Liang, Wentao; Yang, Hui; Fan, Feifei; Liu, Yang; Liu, Xiao Hua; Huang, Jian Yu; Zhu, Ting; Zhang, Sulin

    2013-04-23

    Mechanical degradation of the electrode materials during electrochemical cycling remains a serious issue that critically limits the capacity retention and cyclability of rechargeable lithium-ion batteries. Here we report the highly reversible expansion and contraction of germanium nanoparticles under lithiation-delithiation cycling with in situ transmission electron microscopy (TEM). During multiple cycles to the full capacity, the germanium nanoparticles remained robust without any visible cracking despite ∼260% volume changes, in contrast to the size-dependent fracture of silicon nanoparticles upon the first lithiation. The comparative in situ TEM study of fragile silicon nanoparticles suggests that the tough behavior of germanium nanoparticles can be attributed to the weak anisotropy of the lithiation strain at the reaction front. The tough germanium nanoparticles offer substantial potential for the development of durable, high-capacity, and high-rate anodes for advanced lithium-ion batteries.

  13. Germanium Resistance Thermometer For Subkelvin Temperatures

    NASA Technical Reports Server (NTRS)

    Castles, Stephen H.

    1993-01-01

    Improved germanium resistance thermometer measures temperatures as small as 0.01 K accurately. Design provides large area for electrical connections (to reduce electrical gradients and increase sensitivity to changes in temperatures) and large heat sink (to minimize resistance heating). Gold pads on top and bottom of germanium crystal distribute electrical current and flow of heat nearly uniformly across crystal. Less expensive than magnetic thermometers or superconducting quantum interference devices (SQUID's) otherwise used.

  14. WIMP Searches at Canfranc with Germanium Detectors

    NASA Astrophysics Data System (ADS)

    Morales, Angel

    2001-04-01

    An overview of the searches for Weak Interacting Massive Particles (WIMPs) through their scattering off Germanium nuclei carried out in the Canfranc Tunnel Astroparticle Laboratory (at 2450 metres of water equivalent (m.w.e.)) in a collaboration between the Universities of South Carolina and Zaragoza is given. The main experimental results are sketched both for natural abundance (COSME) and 76Ge enriched (IGEX) Germanium detector experiments are summarized and a briefing on the GEDEON project is also presented.

  15. Germanium Resistance Thermometer For Subkelvin Temperatures

    NASA Technical Reports Server (NTRS)

    Castles, Stephen H.

    1993-01-01

    Improved germanium resistance thermometer measures temperatures as small as 0.01 K accurately. Design provides large area for electrical connections (to reduce electrical gradients and increase sensitivity to changes in temperatures) and large heat sink (to minimize resistance heating). Gold pads on top and bottom of germanium crystal distribute electrical current and flow of heat nearly uniformly across crystal. Less expensive than magnetic thermometers or superconducting quantum interference devices (SQUID's) otherwise used.

  16. Time integrated optical emission studies of the laser produced germanium plasma

    NASA Astrophysics Data System (ADS)

    Iqbal, Javed; Ahmed, R.; Baig, M. A.

    2017-04-01

    We present new time integrated data on the optical emission spectra of laser produced germanium plasma using a Q-switched Nd:YAG laser (1064 nm), power density up to about 5  ×  109 W cm‑2 in conjunction with a set of five spectrometers covering a spectral range from 200 nm to 720 nm. Well resolved structure due to the 4p5s  →  4p2 transition array of neutral germanium and a few multiplets of singly ionized germanium have been observed. Plasma temperature has been determined in the range (9000–11 000) K using four different techniques; two line ratio method, Boltzmann plot, Saha–Boltzmann plot and Marotta’s technique whereas electron density has been deduced from the Stark broadened line profiles in the range (0.5–5.0)  ×  1017 cm‑3, depending on the laser pulse energy to produce the germanium plasma. Full width at half maximum (FWHM) of a number of neutral and singly ionized germanium lines have been extracted by the Lorentzian fit to the experimentally observed line profiles. In addition, we have compared the experimentally measured relative line strengths for the 4p5s 3P0,1,2  →  4p2 3P0,1,2 multiplet with that calculated in the LS-coupling scheme revealing that the intermediate coupling scheme is more appropriate for the level designations in germanium.

  17. Neutron Transmutation Doped (NTD) germanium thermistors for sub-mm bolometer applications

    NASA Technical Reports Server (NTRS)

    Haller, E. E.; Itoh, K. M.; Beeman, J. W.

    1996-01-01

    Recent advances in the development of neutron transmutation doped (NTD) semiconductor thermistors fabricated from natural and controlled isotopic composition germanium are reported. The near ideal doping uniformity that can be achieved with the NTD process, the device simplicity of NTD Ge thermistors and the high performance of cooled junction field effect transistor preamplifiers led to the widespread acceptance of these thermal sensors in ground-based, airborne and spaceborne radio telescopes. These features made possible the development of efficient bolometer arrays.

  18. Germanium-silicon solid solutions

    NASA Technical Reports Server (NTRS)

    Zemskov, V. S.; Kubasov, V. N.; Belokurova, I. N.; Titkov, A. N.; Shulpina, I. L.; Safarov, V. I.; Guseva, N. B.

    1977-01-01

    An experiment on melting and directional crystallization of an antimony (Sb) doped germanium silicon (GeSi) solid solution was designed for the Apollo-Soyuz Test Project (ASTP) to study the possibility of using zero-g conditions for obtaining solid-solution monocrystals with uniformly distributed components. Crystallization in the zero-g environment did not occur under ideal stationary growth and segregation conditions. Crystallization under zero-g conditions revealed the heterogeneous nature of Si and Sb distribution in the cross sections of crystals. The presence of the radial thermal gradient in the multipurpose furnace could be one of the reasons for such Si and Sb distribution. The structure of space-grown crystals correlates with the nature of heterogeneities of Si and Sb distribution in crystals. The type of surface morphology and the contour observed in space-grown crystals were never observed in ground-based crystals and indicate the absence of wetting of the graphitized walls of the ampoule by the melt during melting and crystallization.

  19. Silicon-germanium photodetectors for optical telecommunications

    NASA Astrophysics Data System (ADS)

    Ali, Dyan

    This thesis investigates the design and growth of silicon-germanium p-i-n photodetectors for optical telecommunications applications. Two types of heterostructures are considered: strained silicon-germanium layers grown directly on silicon substrates, and strain-balanced silicon-germanium/silicon superlattice grown on relaxed buffer layers. The heterostructures are designed using existing band structure models and are grown using solid source molecular beam epitaxy (SS-MBE). To facilitate these growths, an atomic absorption spectroscopy- based flux monitor for the silicon source is developed and calibrated. In addition, the development of a substrate preparation procedure for relaxed buffer layers that is compatible with SS-MBE is developed and allows the growth of epitaxial films with low defect densities. P-i-n diodes processed from these films are shown to have low reverse leakage currents densities compared to other competing devices. Photocurrent spectroscopy is used to characterize these structures. A clear reduction in the bandgap of the heterostructures over that of the constituent alloys due to exploitation of the Type-II band offsets in the silicon-germanium material system is demonstrated in both, the strained and strain-balanced photodetectors. Finally, the low leakage current densities are exploited to fabricate devices with noise equivalent powers comparable to or better than competing approaches based on the growth of germanium on silicon substrates.

  20. Recovery of germanium-68 from irradiated targets

    DOEpatents

    Phillips, Dennis R.; Jamriska, Sr., David J.; Hamilton, Virginia T.

    1993-01-01

    A process for selective separation of germanium-68 from proton irradiated molybdenum targets is provided and includes dissolving the molybdenum target in a hydrogen peroxide solution to form a first ion-containing solution, contacting the first ion-containing solution with a cationic resin whereby ions selected from the group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium and rubidium remain in a second ion-containing solution while ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium and zirconium are selectively adsorbed by the first resin, adjusting the pH of the second ion-containing solution to within a range of from about 0.7 to about 3.0, adjusting the soluble metal halide concentration in the second ion-containing solution to a level adapted for subsequent separation of germanium, contacting the pH-adjusted, soluble metal halide-containing second ion-containing solution with a dextran-based material whereby germanium ions are separated by the dextran-based material, and recovering the germanium from the dextran-based material, preferably by distillation.

  1. A pseudo-single-crystalline germanium film for flexible electronics

    NASA Astrophysics Data System (ADS)

    Higashi, H.; Kasahara, K.; Kudo, K.; Okamoto, H.; Moto, K.; Park, J.-H.; Yamada, S.; Kanashima, T.; Miyao, M.; Tsunoda, I.; Hamaya, K.

    2015-01-01

    We demonstrate large-area (˜600 μm), (111)-oriented, and high-crystallinity, i.e., pseudo-single-crystalline, germanium (Ge) films at 275 °C, where the temperature is lower than the softening temperature of a flexible substrate. A modulated gold-induced layer exchange crystallization method with an atomic-layer deposited Al2O3 barrier and amorphous-Ge/Au multilayers is established. From the Raman measurements, we can judge that the crystallinity of the obtained Ge films is higher than those grown by aluminum-induced-crystallization methods. Even on a flexible substrate, the pseudo-single-crystalline Ge films for the circuit with thin-film transistor arrays can be achieved, leading to high-performance flexible electronics based on an inorganic-semiconductor channel.

  2. A pseudo-single-crystalline germanium film for flexible electronics

    SciTech Connect

    Higashi, H.; Yamada, S.; Kanashima, T.; Hamaya, K.; Kasahara, K.; Park, J.-H.; Miyao, M.; Kudo, K.; Okamoto, H.; Moto, K.; Tsunoda, I.

    2015-01-26

    We demonstrate large-area (∼600 μm), (111)-oriented, and high-crystallinity, i.e., pseudo-single-crystalline, germanium (Ge) films at 275 °C, where the temperature is lower than the softening temperature of a flexible substrate. A modulated gold-induced layer exchange crystallization method with an atomic-layer deposited Al{sub 2}O{sub 3} barrier and amorphous-Ge/Au multilayers is established. From the Raman measurements, we can judge that the crystallinity of the obtained Ge films is higher than those grown by aluminum-induced-crystallization methods. Even on a flexible substrate, the pseudo-single-crystalline Ge films for the circuit with thin-film transistor arrays can be achieved, leading to high-performance flexible electronics based on an inorganic-semiconductor channel.

  3. Imaging spin diffusion in germanium at room temperature

    NASA Astrophysics Data System (ADS)

    Zucchetti, C.; Bottegoni, F.; Vergnaud, C.; Ciccacci, F.; Isella, G.; Ghirardini, L.; Celebrano, M.; Rortais, F.; Ferrari, A.; Marty, A.; Finazzi, M.; Jamet, M.

    2017-07-01

    We report on the nonlocal detection of optically oriented spins in lightly n -doped germanium at room temperature. Localized spin generation is achieved by scanning a circularly polarized laser beam (λ =1550 nm) on an array of lithographically defined Pt microstructures. The in-plane oriented spin generated at the edges of such microstructures, placed at different distances from a spin-detection element, allows for a direct imaging of spin diffusion in the semiconductor, leading to a measured spin diffusion length of about 10 μ m . Two different spin-detection blocks are employed, consisting of either a magnetic tunnel junction or a platinum stripe where the spin current is converted in an electrical signal by the inverse spin-Hall effect. The second solution represents the realization of a nonlocal spin-injection/detection scheme that is completely free from ferromagnetic functional blocks.

  4. Approximating the detection limit of an infrared spectroscopic imaging microscope operating in an attenuated total reflection (ATR) modality: theoretical and empirical results for an instrument using a linear array detector and a 1.5 millimeter germanium hemisphere internal reflection element.

    PubMed

    Lanzarotta, Adam

    2015-01-01

    Theoretical and empirical detection limits have been estimated for aripiprazole (analyte) in alpha lactose monohydrate (matrix model pharmaceutical formulation) using a micro-attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopic imaging instrument equipped with a linear array detector and a 1.5 mm germanium hemisphere internal reflection element (IRE). The instrument yielded a theoretical detection limit of 0.0035% (35 parts per million (ppm)) when operating under diffraction-limited conditions, which was 49 times lower than what was achieved with a traditional macro-ATR instrument operating under practical conditions (0.17%, 1700 ppm). However, these results may not be achievable for most analyses because the detection limits will be particle size limited, rather than diffraction limited, for mixtures with average particle diameters greater than 8.3 μm (most pharmaceutical samples). For example, a theoretical detection limit of 0.028% (280 ppm) was calculated for an experiment operating under particle size-limited conditions where the average particle size was 23.4 μm. These conditions yielded a detection limit of 0.022% (220 ppm) when measured empirically, which was close to the theoretical value and only eight times lower than that of a faster, more simplistic macro-ATR instrument. Considering the longer data acquisition and processing times characteristic of the micro-ATR imaging approach (minutes or even hours versus seconds), the cost-benefit ratio may not often be favorable for the analysis of analytes in matrices that exhibit only a few overlapping absorptions (low-interfering matrices such as alpha lactose monohydrate) using this technique compared to what can be achieved using macro-ATR. However, the advantage was significant for detecting analytes in more complex matrices (those that exhibited several overlapping absorptions with the analyte) because the detection limit of the macro-ATR approach was highly formulation

  5. Front End Spectroscopy ASIC for Germanium Detectors

    NASA Astrophysics Data System (ADS)

    Wulf, Eric

    Large-area, tracking, semiconductor detectors with excellent spatial and spectral resolution enable exciting new access to soft (0.2-5 MeV) gamma-ray astrophysics. The improvements from semiconductor tracking detectors come with the burden of high density of strips and/or pixels that require high-density, low-power, spectroscopy quality readout electronics. CMOS ASIC technologies are a natural fit to this requirement and have led to high-quality readout systems for all current semiconducting tracking detectors except for germanium detectors. The Compton Spectrometer and Imager (COSI), formerly NCT, at University of California Berkeley and the Gamma-Ray Imager/Polarimeter for Solar flares (GRIPS) at Goddard Space Flight Center utilize germanium cross-strip detectors and are on the forefront of NASA's Compton telescope research with funded missions of long duration balloon flights. The development of a readout ASIC for germanium detectors would allow COSI to replace their discrete electronics readout and would enable the proposed Gamma-Ray Explorer (GRX) mission utilizing germanium strip-detectors. We propose a 3-year program to develop and test a germanium readout ASIC to TRL 5 and to integrate the ASIC readout onto a COSI detector allowing a TRL 6 demonstration for the following COSI balloon flight. Our group at NRL led a program, sponsored by another government agency, to produce and integrate a cross-strip silicon detector ASIC, designed and fabricated by Dr. De Geronimo at Brookhaven National Laboratory. The ASIC was designed to handle the large (>30 pF) capacitance of three 10 cm^2 detectors daisy-chained together. The front-end preamplifier, selectable inverter, shaping times, and gains make this ASIC compatible with a germanium cross-strip detector as well. We therefore have the opportunity and expertise to leverage the previous investment in the silicon ASIC for a new mission. A germanium strip detector ASIC will also require precise timing of the signals at

  6. Gamma-ray imaging with germanium detectors

    NASA Astrophysics Data System (ADS)

    Mahoney, W. A.; Callas, J. L.; Ling, J. C.; Radocinski, R. G.; Skelton, R. T.; Varnell, L. S.; Wheaton, W. A.

    1993-01-01

    Externally segmented germanium detectors promise a breakthrough in gamma-ray imaging capabilities while retaining the superb energy resolution of germanium spectrometers. By combining existing position-sensitive detectors with an appropriate code aperture, two-dimensional imaging with 0.2-deg angular resolution becomes practical for a typical balloon experiment. Much finer resolutions are possible with larger separations between detectors and the coded aperture as would be applicable for space-based or lunar-based observatories. Two coaxial germanium detectors divided into five external segments have been fabricated and have undergone extensive performance evaluation and imaging testing in our laboratory. These tests together with detailed Monte Carlo modeling calculations have demonstrated the great promise of this sensor technology for future gamma-ray missions.

  7. Gamma-ray imaging with germanium detectors

    NASA Technical Reports Server (NTRS)

    Mahoney, W. A.; Callas, J. L.; Ling, J. C.; Radocinski, R. G.; Skelton, R. T.; Varnell, L. S.; Wheaton, W. A.

    1993-01-01

    Externally segmented germanium detectors promise a breakthrough in gamma-ray imaging capabilities while retaining the superb energy resolution of germanium spectrometers. By combining existing position-sensitive detectors with an appropriate code aperture, two-dimensional imaging with 0.2-deg angular resolution becomes practical for a typical balloon experiment. Much finer resolutions are possible with larger separations between detectors and the coded aperture as would be applicable for space-based or lunar-based observatories. Two coaxial germanium detectors divided into five external segments have been fabricated and have undergone extensive performance evaluation and imaging testing in our laboratory. These tests together with detailed Monte Carlo modeling calculations have demonstrated the great promise of this sensor technology for future gamma-ray missions.

  8. Chalcogenide and germanium hybrid optics

    NASA Astrophysics Data System (ADS)

    Cogburn, Gabriel

    2011-11-01

    When choosing a material to design infrared optics, an optical designer has to decide which material properties are most important to what they are trying to achieve. Factors include; cost, optical performance, index of material, sensor format, manufacturability, mechanical mounting and others. This paper will present an optical design that is made for a 640×480, 17μm sensor and is athermalized by using the material properties of chalcogenide glass and Germanium (Ge). The optical design will be a 3-element, f1.0 optic with an EFL of 20mm at 10μm. It consists of two Ge spherical lenses and a middle chalcogenide aspheric element. By using Ge and chalcogenide, this design utilizes the high index of Ge and combines it with the lower dn/dt of chalcogenide glass to provide an athermalized design without the use of additional electro-optical compensation inside the assembly. This study will start from the optical design process and explain the mechanical and optical properties of the design, then show the manufacturing process of molding an aspheric chalcogenide element. After the three elements are manufactured, they will be assembled and tested throughout the temperature range of -40 to 85°C to compare optical performance to design expectations. Ultimately, this paper will show that a high performance, athermalized optical assembly is possible to manufacture at a lower cost with the use of combining different infrared materials that allow for spherical Ge lenses and only one aspherical chalcogenide element which can be produced in higher volumes at lower costs through glass molding technology.

  9. Germanium-overcoated niobium Dayem bridges

    NASA Technical Reports Server (NTRS)

    Holdeman, L. B.; Peters, P. N.

    1976-01-01

    Overcoating constriction microbridges with semiconducting germanium provides additional thermal conductivity at liquid-helium temperatures to reduce the effects of self-heating in these Josephson junctions. Microwave-induced steps were observed in the I-V characteristics of an overcoated Dayem bridge fabricated in a 15-nm-thick niobium film; at least 20 steps could be counted at 4.2 K. No steps were observed in the I-V characteristics of the bridge prior to overcoating. In addition, the germanium overcoat can protect against electrical disturbances at room temperature.

  10. Silicon and germanium nanocrystals: properties and characterization

    PubMed Central

    Carvalho, Alexandra; Coutinho, José

    2014-01-01

    Summary Group-IV nanocrystals have emerged as a promising group of materials that extends the realm of application of bulk diamond, silicon, germanium and related materials beyond their traditional boundaries. Over the last two decades of research, their potential for application in areas such as optoelectronic applications and memory devices has been progressively unraveled. Nevertheless, new challenges with no parallel in the respective bulk material counterparts have arisen. In this review, we consider what has been achieved and what are the current limitations with regard to growth, characterization and modeling of silicon and germanium nanocrystals and related materials. PMID:25383290

  11. Atomic scale dynamics of ultrasmall germanium clusters.

    PubMed

    Bals, S; Van Aert, S; Romero, C P; Lauwaet, K; Van Bael, M J; Schoeters, B; Partoens, B; Yücelen, E; Lievens, P; Van Tendeloo, G

    2012-06-12

    Starting from the gas phase, small clusters can be produced and deposited with huge flexibility with regard to composition, materials choice and cluster size. Despite many advances in experimental characterization, a detailed morphology of such clusters is still lacking. Here we present an atomic scale observation as well as the dynamical behaviour of ultrasmall germanium clusters. Using quantitative scanning transmission electron microscopy in combination with ab initio calculations, we are able to characterize the transition between different equilibrium geometries of a germanium cluster consisting of less than 25 atoms. Seven-membered rings, trigonal prisms and some smaller subunits are identified as possible building blocks that stabilize the structure.

  12. Atomic scale dynamics of ultrasmall germanium clusters

    PubMed Central

    Bals, S.; Van Aert, S.; Romero, C.P.; Lauwaet, K.; Van Bael, M.J.; Schoeters, B.; Partoens, B.; Yücelen, E.; Lievens, P.; Van Tendeloo, G.

    2012-01-01

    Starting from the gas phase, small clusters can be produced and deposited with huge flexibility with regard to composition, materials choice and cluster size. Despite many advances in experimental characterization, a detailed morphology of such clusters is still lacking. Here we present an atomic scale observation as well as the dynamical behaviour of ultrasmall germanium clusters. Using quantitative scanning transmission electron microscopy in combination with ab initio calculations, we are able to characterize the transition between different equilibrium geometries of a germanium cluster consisting of less than 25 atoms. Seven-membered rings, trigonal prisms and some smaller subunits are identified as possible building blocks that stabilize the structure. PMID:22692540

  13. Neutron-transmutation-doped germanium bolometers

    NASA Technical Reports Server (NTRS)

    Palaio, N. P.; Rodder, M.; Haller, E. E.; Kreysa, E.

    1983-01-01

    Six slices of ultra-pure germanium were irradiated with thermal neutron fluences between 7.5 x 10 to the 16th and 1.88 x 10 to the 18th per sq cm. After thermal annealing the resistivity was measured down to low temperatures (less than 4.2 K) and found to follow the relationship rho = rho sub 0 exp(Delta/T) in the hopping conduction regime. Also, several junction FETs were tested for noise performance at room temperature and in an insulating housing in a 4.2 K cryostat. These FETs will be used as first stage amplifiers for neutron-transmutation-doped germanium bolometers.

  14. Germanium-overcoated niobium Dayem bridges

    NASA Technical Reports Server (NTRS)

    Holdeman, L. B.; Peters, P. N.

    1976-01-01

    Overcoating constriction microbridges with semiconducting germanium provides additional thermal conductivity at liquid-helium temperatures to reduce the effects of self-heating in these Josephson junctions. Microwave-induced steps were observed in the I-V characteristics of an overcoated Dayem bridge fabricated in a 15-nm-thick niobium film; at least 20 steps could be counted at 4.2 K. No steps were observed in the I-V characteristics of the bridge prior to overcoating. In addition, the germanium overcoat can protect against electrical disturbances at room temperature.

  15. Silver nano-inukshuks on germanium.

    PubMed

    Aizawa, Masato; Cooper, Anne M; Malac, Marek; Buriak, Jillian M

    2005-05-01

    The integration of metallic nanostructures with semiconductors is important for a variety of technological applications. Through an efficient galvanic displacement reaction on germanium, complex silver nanostructures form spontaneously in aqueous conditions at room temperature. The structures, termed nano-inukshuks, are based on stacks of hexagonal metallic structures that grow, initially, parallel to the surface normal of the germanium. TEM, SEM, XPS, XRD, and EDS indicate that the structures are crystalline silver and, based on open cell potential studies, that their nucleation takes place in the first 100 s, followed by growth of the silver structures, most likely through Volmer-Weber growth.

  16. High Duty Cycle Germanium Lasers and Continuous Terahertz Emission from Germanium

    DTIC Science & Technology

    2000-09-29

    which allows one to construct crystal volume. The set of three lines relatively arbitrary shapes because the generated photons corresponds to an...measured laser emission from contacts of the lasers. However, the heat conductivity of beryllium-doped germanium crystals with small inter- this...conventional, continuously excited beryllium-doped germanium crystals with a volume of 0.5 mm 3 . Experimental and theoretical investigations of Table 1

  17. The hyperion particle-γ detector array

    DOE PAGES

    Hughes, R. O.; Burke, J. T.; Casperson, R. J.; ...

    2017-03-08

    Hyperion is a new high-efficiency charged-particle γ-ray detector array which consists of a segmented silicon telescope for charged-particle detection and up to fourteen high-purity germanium clover detectors for the detection of coincident γ rays. The array will be used in nuclear physics measurements and Stockpile Stewardship studies and replaces the STARLiTeR array. In conclusion, this article discusses the features of the array and presents data collected with the array in the commissioning experiment.

  18. The hyperion particle-γ detector array

    NASA Astrophysics Data System (ADS)

    Hughes, R. O.; Burke, J. T.; Casperson, R. J.; Ota, S.; Fisher, S.; Parker, J.; Beausang, C. W.; Dag, M.; Humby, P.; Koglin, J.; McCleskey, E.; McIntosh, A. B.; Saastamoinen, A.; Tamashiro, A. S.; Wilson, E.; Wu, T. C.

    2017-06-01

    Hyperion is a new high-efficiency charged-particle γ-ray detector array which consists of a segmented silicon telescope for charged-particle detection and up to fourteen high-purity germanium clover detectors for the detection of coincident γ rays. The array will be used in nuclear physics measurements and Stockpile Stewardship studies and replaces the STARLiTeR array. This article discusses the features of the array and presents data collected with the array in the commissioning experiment.

  19. Novel metastable metallic and semiconducting germaniums.

    PubMed

    Selli, Daniele; Baburin, Igor A; Martoňák, Roman; Leoni, Stefano

    2013-01-01

    Group-IVa elements silicon and germanium are known for their semiconducting properties at room temperature, which are technologically critical. Metallicity and superconductivity are found at higher pressures only, Ge β-tin (tI4) being the first high-pressure metallic phase in the phase diagram. However, recent experiments suggest that metallicity in germanium is compatible with room conditions, calling for a rethinking of our understanding of its phase diagram. Missing structures can efficiently be identified based on structure prediction methods. By means of ab initio metadynamics runs we explored the lower-pressure region of the phase diagram of germanium. A monoclinic germanium phase (mC16) with four-membered rings, less dense than diamond and compressible into β-tin phase (tI4) was found. Tetragonal bct-5 appeared between diamond and tI4. mC16 is a narrow-gap semiconductor, while bct-5 is metallic and potentially still superconducting in the very low pressure range. This finding may help resolving outstanding experimental issues.

  20. Electron tunnelling into amorphous germanium and silicon.

    NASA Technical Reports Server (NTRS)

    Smith, C. W.; Clark, A. H.

    1972-01-01

    Measurements of tunnel conductance versus bias, capacitance versus bias, and internal photoemission were made in the systems aluminum-oxide-amorphous germanium and aluminium-oxide-amorphous silicon. A function was extracted which expresses the deviation of these systems from the aluminium-oxide-aluminium system.

  1. Improving CMOS-compatible Germanium photodetectors.

    PubMed

    Li, Guoliang; Luo, Ying; Zheng, Xuezhe; Masini, Gianlorenzo; Mekis, Attila; Sahni, Subal; Thacker, Hiren; Yao, Jin; Shubin, Ivan; Raj, Kannan; Cunningham, John E; Krishnamoorthy, Ashok V

    2012-11-19

    We report design improvements for evanescently coupled Germanium photodetectors grown at low temperature. The resulting photodetectors with 10 μm Ge length manufactured in a commercial CMOS process achieve >0.8 A/W responsivity over the entire C-band, with a device capacitance of <7 fF based on measured data.

  2. Germanium JFET for Cryogenic Readout Electronics

    NASA Technical Reports Server (NTRS)

    Das, N. C.; Monroy, C.; Jhabvala, M.; Shu, P.

    1999-01-01

    The n-channel Germanium junction field effect transistor (Ge-JFET) was designed and fabricated for cryogenic applications. The Ge-JFET exhibits superior noise performance at liquid nitrogen temperature (77 K). From the device current voltage characteristics of n-channel JFETs, it is seen that transconductance increases monotonically with the lowering of temperature to 4.2 K (liquid helium temperature).

  3. Novel metastable metallic and semiconducting germaniums

    PubMed Central

    Selli, Daniele; Baburin, Igor A.; Martoňák, Roman; Leoni, Stefano

    2013-01-01

    Group-IVa elements silicon and germanium are known for their semiconducting properties at room temperature, which are technologically critical. Metallicity and superconductivity are found at higher pressures only, Ge β-tin (tI4) being the first high-pressure metallic phase in the phase diagram. However, recent experiments suggest that metallicity in germanium is compatible with room conditions, calling for a rethinking of our understanding of its phase diagram. Missing structures can efficiently be identified based on structure prediction methods. By means of ab initio metadynamics runs we explored the lower-pressure region of the phase diagram of germanium. A monoclinic germanium phase (mC16) with four-membered rings, less dense than diamond and compressible into β-tin phase (tI4) was found. Tetragonal bct-5 appeared between diamond and tI4. mC16 is a narrow-gap semiconductor, while bct-5 is metallic and potentially still superconducting in the very low pressure range. This finding may help resolving outstanding experimental issues. PMID:23492980

  4. Spin-Charge Conversion Phenomena in Germanium

    NASA Astrophysics Data System (ADS)

    Oyarzún, Simón; Rortais, Fabien; Rojas-Sánchez, Juan-Carlos; Bottegoni, Federico; Laczkowski, Piotr; Vergnaud, Céline; Pouget, Stéphanie; Okuno, Hanako; Vila, Laurent; Attané, Jean-Philippe; Beigné, Cyrille; Marty, Alain; Gambarelli, Serge; Ducruet, Clarisse; Widiez, Julie; George, Jean-Marie; Jaffrès, Henri; Jamet, Matthieu

    2017-01-01

    The spin-orbit coupling relating the electron spin and momentum allows for spin generation, detection and manipulation. It thus fulfils the three basic functions of the spin field-effect-transistor made of semiconductors. In this paper, we review our recent results on spin-charge conversion in bulk germanium and at the Ge(111) surface. We used the spin pumping technique to generate pure spin currents to be injected into bulk germanium and at the Fe/Ge(111) interface. The mechanism for spin-charge conversion in bulk germanium is the spin Hall effect and we could experimentally determine the spin Hall angle θSHE, i.e., the spin-charge conversion efficiency, in heavily doped n-type and p-type germanium. We found very small values at room temperature: θSHE ≈ (1-2) × 10-3 in n-Ge and θSHE ≈ (6-7) × 10-4 in p-Ge. Moreover, we pointed out the essential role of spin dependent scattering on ionized impurities in the spin Hall effect mechanism. We concluded that the spin Hall effect in bulk germanium is too weak to produce large spin currents, whereas a large Rashba effect (>100 meV) at Ge(111) surfaces covered with heavy metals could generate spin polarized currents. We could indeed demonstrate a giant spin-to-charge conversion in metallic states at the Fe/Ge(111) interface due to the Rashba coupling. We generated very large charge currents by direct spin pumping into the interface states from 20 K to room temperature. By this, we raise a new paradigm: the possibility to use the spin-orbit coupling for the development of the spin-field-effect-transistor.

  5. Detector arrays for low-background space infrared astronomy

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R.; Mckelvey, M. E.; Goebel, J. H.; Anderson, G. M.; Lee, J. H.

    1986-01-01

    The status of development and characterization tests of integrated infrared detector array technology for astronomy applications is described. The devices under development include intrinsic, extrinsic silicon, and extrinsic germanium detectors, with hybrid silicon multiplexers. Laboratory test results and successful astronomy imagery have established the usefulness of integrated arrays in low-background astronomy applications.

  6. Detector arrays for low-background space infrared astronomy

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R.; Mckelvey, M. E.; Goebel, J. H.; Anderson, G. M.; Lee, J. H.

    1986-01-01

    The status of development and characterization tests of integrated infrared detector array technology for astronomy applications is described. The devices under development include intrinsic, extrinsic silicon, and extrinsic germanium detectors, with hybrid silicon multiplexers. Laboratary test results and successful astronomy imagery have established the usefulness of integrated arrays in low-background astronomy applications.

  7. Comparison of organic and inorganic germanium compounds in cellular radiosensitivity and preparation of germanium nanoparticles as a radiosensitizer.

    PubMed

    Lin, Ming-Hsing; Hsu, Tzu-Sheng; Yang, Pei-Ming; Tsai, Meng-Yen; Perng, Tsong-Pyng; Lin, Lih-Yuan

    2009-03-01

    The aim of this work is to compare the radiosensitizing effect between organic and inorganic germanium compounds and to investigate whether nanometer-sized germanium particles can act as radiosensitizers. Bis (2-carboxyethylgermanium) sesquioxide (Ge-132), germanium oxide (GeO(2)) and germanium nanoparticles were used in this study. Cell viability was determined by clonogenic survival assay. Cellular DNA damage was evaluated by alkaline comet assay, confocal microscopy and the cellular level of phospho-histone H2AX (gamma-H2AX). Nanometer-sized germanium particles were fabricated. They have a similar radiosensitizing effect as that of GeO(2). Conversely, Ge-132 did not enhance the radiosensitivity of cells. Comet assay was employed to evaluate the level of DNA damage and confirmed that inorganic germanium compounds enhanced cellular radiosensitivity. Notably, the comet assay indicated that the nanoparticle itself caused a higher level of DNA damage. The possibility that germanium nanoparticles per se caused DNA damage was ruled out when the cellular level of gamma-H2AX was examined. We demonstrated that inorganic but not organic germanium compounds exerted radiosensitizing effect in cells. Nanometer-sized germanium particles were fabricated and were able to enhance the radiosensitivity of cells. Confounding effect may occur when comet assay is used to estimate the level of DNA damage in the presence of germanium nanoparticles.

  8. Germanium Metal - Insulator - Semiconductor Field Effect Transistors Utilizing a Germanium Nitride Gate Insulator.

    NASA Astrophysics Data System (ADS)

    Rosenberg, James Jordan

    The work presented in this thesis provides new information on three distinct but related topics. Firstly, it describes a technique for growing thin films of germanium nitride on germanium--a previously unexplored semiconductor -insulator system. Secondly, it describes electrical measurements made on metal-Ge(,3)N(,4)-Ge capacitors which demonstrate that this metal-insulator-semiconductor (MIS) system is of high quality. Thirdly, it describes a process by which n-channel germanium metal-insulator-semiconductor field effect transistors (MISFETs) have been fabricated. The motivations for exploring this new MIS system (e.g. basic physics of germanium inversion layers, higher performance MISFETs, etc.) are also described. The growth technique described here and the films produced by it possess several distinct advantages over previous methods of obtaining insulating films on germanium. The growth technique itself is simple. It involves no elaborate or expensive equipment, and is essentially identical in its execution (although not in its chemical process) to conventional techniques for obtaining an insulator on silicon (i.e. thermal oxidation of silicon). The film growth technique yields very reproducible results (in terms of film thickness and refractive index) from wafer to wafer. The physical properties of the film itself are also attractive. It is far more chemically stable than germanium oxide, and is quite process compatible. It is resistant to many chemicals encountered in typical processing cycles, but also can be readily patterned in hot phosphoric acid, which does not appreciably attack germanium. Electrical measurements on MIS capacitors indicate that the density of fast states at the germanium-germanium nitride interface is quite low. The interface state density is less than or equal to 1 x 10('11)/cm('2)-eV from midgap to within 0.15 eV of the conduction band edge, as determined by variable frequency capacitance measurements. The MISFETs fabricated for this

  9. Optical Detection Properties of Silicon-Germanium Quantum Well Structures

    DTIC Science & Technology

    1996-10-18

    AFIT/DS/ENP/96-07 OPTICAL DETECTION PROPERTIES OF SILICON-GERMANIUM QUANTUM WELL STRUCTURES DISSERTATION Michael R. Gregg, Captain, USAF AFIT/DS/ENP...96 Approved for public release; distribution unlimited DTC Qr. ~r AFIT/DS/ENP/96-07 Optical Detection Properties of Silicon-Germanium Quantum Well ...release; distribution unlimited AFIT/DS/ENP/96-07 Optical Detection Properties of Silicon-Germanium Quantum Well Structures Michael R. Gregg, BA, MS

  10. High-fidelity chemical patterning on oxide-free germanium.

    PubMed

    Hohman, J Nathan; Kim, Moonhee; Lawrence, Jeffrey A; McClanahan, Patrick D; Weiss, Paul S

    2012-04-25

    Oxide-free germanium can be chemically patterned directly with self-assembled monolayers of n-alkanethiols via submerged microcontact printing. Native germanium dioxide is water soluble; immersion activates the germanium surface for self-assembly by stripping the oxide. Water additionally provides an effective diffusion barrier that prevents undesired ink transport. Patterns are stable with respect to molecular exchange by carboxyl-functionalized thiols.

  11. Crucible-free pulling of germanium crystals

    NASA Astrophysics Data System (ADS)

    Wünscher, Michael; Lüdge, Anke; Riemann, Helge

    2011-03-01

    Commonly, germanium crystals are grown after the Czochralski (CZ) method. The crucible-free pedestal and floating zone (FZ) methods, which are widely used for silicon growth, are hardly known to be investigated for germanium. The germanium melt is more than twice as dense as liquid silicon, which could destabilize a floating zone. Additionally, the lower melting point and the related lower radiative heat loss is shown to reduce the stability especially of the FZ process with the consequence of a screw-like crystal growth. We found that the lower heat radiation of Ge can be compensated by the increased convective cooling of a helium atmosphere instead of the argon ambient. Under these conditions, the screw-like growth could be avoided. Unfortunately, the helium cooling deteriorates the melting behavior of the feed rod. Spikes appear along the open melt front, which touch on the induction coil. In order to improve the melting behavior, we used a lamp as a second energy source as well as a mixture of Ar and He. With this, we found a final solution for growing stable crystals from germanium by using both gases in different parts of the furnace. The experimental work is accompanied by the simulation of the stationary temperature field. The commercially available software FEMAG-FZ is used for axisymmetric calculations. Another tool for process development is the lateral photo-voltage scanning (LPS), which can determine the shape of the solid-liquid phase boundary by analyzing the growth striations in a lateral cut of a grown crystal. In addition to improvements of the process, these measurements can be compared with the calculated results and, hence, conduce to validate the calculation.

  12. Improving Germanium Detector Resolution and Reliability

    DTIC Science & Technology

    2008-09-01

    layer and fast states in the oxide/germanium interfacial layer have been investigated by Bardeen et al. (1956). Because electrons are attracted to the...figure art work. REFERENCES Bardeen , J., R. E. Coovert, S. R. Morrison, J. R. Schrieffer, R. Sun (1956). Surface conductance and the field effect...Chapman, B. (1980). Glow Discharge Processes: Sputtering and Plasma Etching, John Wiley & Sons, Inc.. Dinger, R. J. (1975). Dead layers at the surface of

  13. Germanium films by polymer-assisted deposition

    DOEpatents

    Jia, Quanxi; Burrell, Anthony K.; Bauer, Eve; Ronning, Filip; McCleskey, Thomas Mark; Zou, Guifu

    2013-01-15

    Highly ordered Ge films are prepared directly on single crystal Si substrates by applying an aqueous coating solution having Ge-bound polymer onto the substrate and then heating in a hydrogen-containing atmosphere. A coating solution was prepared by mixing water, a germanium compound, ethylenediaminetetraacetic acid, and polyethyleneimine to form a first aqueous solution and then subjecting the first aqueous solution to ultrafiltration.

  14. Large Cryogenic Germanium Detector. Final Report

    SciTech Connect

    Mandic, Vuk

    2013-02-13

    The goal of this project was to investigate possible ways of increasing the size of cryogenic Ge detectors. This project identified two possible approaches to increasing the individual cryogenic Ge detector size. The first approach relies on using the existing technology for growing detector-grade (high-purity) germanium crystals of dislocation density 100-7000 cm{sup -2}. The second approach is to consider dislocation-free Ge crystals.

  15. Smooth germanium nanowires prepared by a hydrothermal deposition process

    SciTech Connect

    Pei, L.Z.; Zhao, H.S.; Tan, W.; Yu, H.Y.; Chen, Y.W.; Fan, C.G.; Zhang, Qian-Feng

    2009-11-15

    Smooth germanium nanowires were prepared using Ge and GeO{sub 2} as the starting materials and Cu sheet as the substrate by a simple hydrothermal deposition process. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations show that the germanium nanowires are smooth and straight with uniform diameter of about 150 nm in average and tens of micrometers in length. X-ray diffraction (XRD) and Raman spectrum of the germanium nanowires display that the germanium nanowires are mainly composed of cubic diamond phase. PL spectrum shows a strong blue light emission at 441 nm. The growth mechanism is also discussed.

  16. Bottom-up assembly of metallic germanium

    PubMed Central

    Scappucci, Giordano; Klesse, Wolfgang M.; Yeoh, LaReine A.; Carter, Damien J.; Warschkow, Oliver; Marks, Nigel A.; Jaeger, David L.; Capellini, Giovanni; Simmons, Michelle Y.; Hamilton, Alexander R.

    2015-01-01

    Extending chip performance beyond current limits of miniaturisation requires new materials and functionalities that integrate well with the silicon platform. Germanium fits these requirements and has been proposed as a high-mobility channel material, a light emitting medium in silicon-integrated lasers, and a plasmonic conductor for bio-sensing. Common to these diverse applications is the need for homogeneous, high electron densities in three-dimensions (3D). Here we use a bottom-up approach to demonstrate the 3D assembly of atomically sharp doping profiles in germanium by a repeated stacking of two-dimensional (2D) high-density phosphorus layers. This produces high-density (1019 to 1020 cm−3) low-resistivity (10−4Ω · cm) metallic germanium of precisely defined thickness, beyond the capabilities of diffusion-based doping technologies. We demonstrate that free electrons from distinct 2D dopant layers coalesce into a homogeneous 3D conductor using anisotropic quantum interference measurements, atom probe tomography, and density functional theory. PMID:26256239

  17. Bottom-up assembly of metallic germanium.

    PubMed

    Scappucci, Giordano; Klesse, Wolfgang M; Yeoh, LaReine A; Carter, Damien J; Warschkow, Oliver; Marks, Nigel A; Jaeger, David L; Capellini, Giovanni; Simmons, Michelle Y; Hamilton, Alexander R

    2015-08-10

    Extending chip performance beyond current limits of miniaturisation requires new materials and functionalities that integrate well with the silicon platform. Germanium fits these requirements and has been proposed as a high-mobility channel material, a light emitting medium in silicon-integrated lasers, and a plasmonic conductor for bio-sensing. Common to these diverse applications is the need for homogeneous, high electron densities in three-dimensions (3D). Here we use a bottom-up approach to demonstrate the 3D assembly of atomically sharp doping profiles in germanium by a repeated stacking of two-dimensional (2D) high-density phosphorus layers. This produces high-density (10(19) to 10(20) cm(-3)) low-resistivity (10(-4)Ω · cm) metallic germanium of precisely defined thickness, beyond the capabilities of diffusion-based doping technologies. We demonstrate that free electrons from distinct 2D dopant layers coalesce into a homogeneous 3D conductor using anisotropic quantum interference measurements, atom probe tomography, and density functional theory.

  18. The MAJORANA DEMONSTRATOR: A search for neutrinoless double-beta decay of germanium-76

    NASA Astrophysics Data System (ADS)

    Schubert, Alexis; Majorana Collaboration

    2011-04-01

    Observation of neutrinoless double-beta decay (0 νββ) could determine whether the neutrino is a Majorana particle and may provide information on neutrino mass. The MAJORANA Collaboration will search for 0 νββ of 76Ge in an array of germanium detectors enriched to 86% in 76Ge. Germanium detectors are a well-understood technology and have the benefits of excellent energy resolution, a high Q-value, and the ability to act as source and detector. The p-type point contact germanium detectors chosen by the MAJORANA Collaboration provide low noise, low energy threshold, and some ability to distinguish between the signal and background events. MAJORANA is constructing the DEMONSTRATOR, which will be used to conduct research and development toward a tonne-scale Ge experiment. The DEMONSTRATOR will be installed deep underground and will contain 40 kg of Ge deployed in an ultra-low-background shielded environment. Research supported by DOE under contracts DE-AC05-00OR22725 and DE-FG02-97ER41020.

  19. Low Power Silicon Germanium Electronics for Microwave Radiometers

    NASA Technical Reports Server (NTRS)

    Doiron, Terence A.; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    Space-based radiometric observations of key hydrological parameters (e.g., soil moisture) at the spatial and temporal scales required in the post-2002 era face significant technological challenges. These measurements are based on relatively low frequency thermal microwave emission (at 1.4 GHz for soil moisture and salinity, 10 GHz and up for precipitation, and 19 and 37 GHz for snow). The long wavelengths at these frequencies coupled with the high spatial and radiometric resolutions required by the various global hydrology communities necessitate the use of very large apertures (e.g., greater than 20 m at 1.4 GHz) and highly integrated stable RF electronics on orbit. Radio-interferometric techniques such as Synthetic Thinned Array Radiometry (STAR), using silicon germanium (SiGe) low power radio frequency integrated circuits (RFIC), is one of the most promising technologies to enable very large non-rotating apertures in space. STAR instruments are composed of arrays of small antenna/receiving elements that are arranged so that the collecting area is smaller than an equivalent real aperture system, allowing very high packing densities for launch. A 20 meter aperture at L-band, for example, will require greater than 1000 of these receiving elements. SiGe RFIC's reduce power consumption enough to make an array like this possible in the power-limited environment of space flight. An overview of the state-of-the-art will be given, and current work in the area of SiGe radiometer development for soil moisture remote sensing will be discussed.

  20. Optical Activation of Germanium Plasmonic Antennas in the Mid-Infrared.

    PubMed

    Fischer, Marco P; Schmidt, Christian; Sakat, Emilie; Stock, Johannes; Samarelli, Antonio; Frigerio, Jacopo; Ortolani, Michele; Paul, Douglas J; Isella, Giovanni; Leitenstorfer, Alfred; Biagioni, Paolo; Brida, Daniele

    2016-07-22

    Impulsive interband excitation with femtosecond near-infrared pulses establishes a plasma response in intrinsic germanium structures fabricated on a silicon substrate. This direct approach activates the plasmonic resonance of the Ge structures and enables their use as optical antennas up to the mid-infrared spectral range. The optical switching lasts for hundreds of picoseconds until charge recombination redshifts the plasma frequency. The full behavior of the structures is modeled by the electrodynamic response established by an electron-hole plasma in a regular array of antennas.

  1. Optical Activation of Germanium Plasmonic Antennas in the Mid-Infrared

    NASA Astrophysics Data System (ADS)

    Fischer, Marco P.; Schmidt, Christian; Sakat, Emilie; Stock, Johannes; Samarelli, Antonio; Frigerio, Jacopo; Ortolani, Michele; Paul, Douglas J.; Isella, Giovanni; Leitenstorfer, Alfred; Biagioni, Paolo; Brida, Daniele

    2016-07-01

    Impulsive interband excitation with femtosecond near-infrared pulses establishes a plasma response in intrinsic germanium structures fabricated on a silicon substrate. This direct approach activates the plasmonic resonance of the Ge structures and enables their use as optical antennas up to the mid-infrared spectral range. The optical switching lasts for hundreds of picoseconds until charge recombination redshifts the plasma frequency. The full behavior of the structures is modeled by the electrodynamic response established by an electron-hole plasma in a regular array of antennas.

  2. Neutron transmutation doped (Ntd) germanium thermistors for sub-Mm bolometer applications

    SciTech Connect

    Haller, E.E. |; Itoh, K.M.; Beeman, J.W.

    1996-09-01

    The authors report on recent advances in the development of Neutron Transmutation Doped (NTD) semiconductor thermistors fabricated from germanium of natural and controlled isotopic composition. The near ideal doping uniformity which can be achieved with the NTD process, the device simplicity of NTD Ge thermistors and the high performance of cooled junction field effect transistor (FET) preamplifiers have led to the widespread acceptance of these thermal sensors in many radiotelescopes operating on the ground, on high altitude aircraft and on spaceborne satellites. These features also have made possible the development of efficient bolometer arrays which are beginning to produce exciting results.

  3. Germanium: From Its Discovery to SiGe Devices

    SciTech Connect

    Haller, E.E.

    2006-06-14

    Germanium, element No.32, was discovered in 1886 by Clemens Winkler. Its first broad application was in the form of point contact Schottky diodes for radar reception during WWII. The addition of a closely spaced second contact led to the first all-solid-state electronic amplifier device, the transistor. The relatively low bandgap, the lack of a stable oxide and large surface state densities relegated germanium to the number 2 position behind silicon. The discovery of the lithium drift process, which made possible the formation of p-i-n diodes with fully depletable i-regions several centimeters thick, led germanium to new prominence as the premier gamma-ray detector. The development of ultra-pure germanium yielded highly stable detectors which have remained unsurpassed in their performance. New acceptors and donors were discovered and the electrically active role of hydrogen was clearly established several years before similar findings in silicon. Lightly doped germanium has found applications as far infrared detectors and heavily Neutron Transmutation Doped (NTD) germanium is used in thermistor devices operating at a few milliKelvin. Recently germanium has been rediscovered by the silicon device community because of its superior electron and hole mobility and its ability to induce strains when alloyed with silicon. Germanium is again a mainstream electronic material.

  4. Tunable porosity of 3D-networks with germanium nodes.

    PubMed

    Monnereau, Laure; Muller, Thierry; Lang, Mathias; Bräse, Stefan

    2016-01-11

    Eight hyper cross-linked polymers based on tetrakis(4-ethynylphenyl)germanium and tetrakis(4-ethynylphenyl)methane are presented. After investigation of their N2 adsorption properties at 77 K, the porosity of the germanium-based porous organic polymers (POPs) was modulated under acidic conditions, offering an easy and direct way, in a single step, to tune the adsorption properties.

  5. Josephson tunnel junction with polycrystalline silicon, germanium or silicon-germanium alloy tunneling barrier

    SciTech Connect

    Kroger, H.

    1980-09-02

    A Josephson tunnel junction device having niobium nitride superconductive electrodes includes a polycrystalline semiconductor tunnelling barrier therebetween comprised of silicon, germanium or an alloy thereof preferably deposited on the lower superconductive electrodes by chemical vapor deposition. The barrier height of the junction is precisely controlled by precision doping of the semiconductor material.

  6. All-Inorganic Germanium Nanocrystal Films by Cationic Ligand Exchange.

    PubMed

    Wheeler, Lance M; Nichols, Asa W; Chernomordik, Boris D; Anderson, Nicholas C; Beard, Matthew C; Neale, Nathan R

    2016-03-09

    We introduce a new paradigm for group IV nanocrystal surface chemistry based on room temperature surface activation that enables ionic ligand exchange. Germanium nanocrystals synthesized in a gas-phase plasma reactor are functionalized with labile, cationic alkylammonium ligands rather than with traditional covalently bound groups. We employ Fourier transform infrared and (1)H nuclear magnetic resonance spectroscopies to demonstrate the alkylammonium ligands are freely exchanged on the germanium nanocrystal surface with a variety of cationic ligands, including short inorganic ligands such as ammonium and alkali metal cations. This ionic ligand exchange chemistry is used to demonstrate enhanced transport in germanium nanocrystal films following ligand exchange as well as the first photovoltaic device based on an all-inorganic germanium nanocrystal absorber layer cast from solution. This new ligand chemistry should accelerate progress in utilizing germanium and other group IV nanocrystals for optoelectronic applications.

  7. All-inorganic Germanium nanocrystal films by cationic ligand exchange

    DOE PAGES

    Wheeler, Lance M.; Nichols, Asa W.; Chernomordik, Boris D.; ...

    2016-01-21

    In this study, we introduce a new paradigm for group IV nanocrystal surface chemistry based on room temperature surface activation that enables ionic ligand exchange. Germanium nanocrystals synthesized in a gas-phase plasma reactor are functionalized with labile, cationic alkylammonium ligands rather than with traditional covalently bound groups. We employ Fourier transform infrared and 1H nuclear magnetic resonance spectroscopies to demonstrate the alkylammonium ligands are freely exchanged on the germanium nanocrystal surface with a variety of cationic ligands, including short inorganic ligands such as ammonium and alkali metal cations. This ionic ligand exchange chemistry is used to demonstrate enhanced transport inmore » germanium nanocrystal films following ligand exchange as well as the first photovoltaic device based on an all-inorganic germanium nanocrystal absorber layer cast from solution. This new ligand chemistry should accelerate progress in utilizing germanium and other group IV nanocrystals for optoelectronic applications.« less

  8. REACTIVITY OF THE GERMANIUM SURFACE: Chemical Passivation and Functionalization

    NASA Astrophysics Data System (ADS)

    Loscutoff, Paul W.; Bent, Stacey F.

    2006-05-01

    With the rapidly changing materials needs of modern microelectronics, germanium provides an opportunity for future-generation devices. Controlling germanium interfaces will be essential for this purpose. We review germanium surface reactivity, beginning with a description of the most commonly used surfaces, Ge(100) and Ge(111). An analysis of oxide formation shows why the poor oxide properties have hindered practical use of germanium to date. This is followed by an examination of alternate means of surface passivation, with particular attention given to sulfide, chloride, and hydride termination. Specific tailoring of the interface properties is possible through organic functionalization. The few solution functionalization methods that have been studied are reviewed. Vacuum functionalization has been studied to a much greater extent, with dative bonding and cycloaddition reactions emerging as principle reaction mechanisms. These are reviewed through molecular reaction studies that demonstrate the versatility of the germanium surface.

  9. Germanium resistance thermometer calibration at superfluid helium temperatures

    NASA Technical Reports Server (NTRS)

    Mason, F. C.

    1985-01-01

    The rapid increase in resistance of high purity semi-conducting germanium with decreasing temperature in the superfluid helium range of temperatures makes this material highly adaptable as a very sensitive thermometer. Also, a germanium thermometer exhibits a highly reproducible resistance versus temperature characteristic curve upon cycling between liquid helium temperatures and room temperature. These two factors combine to make germanium thermometers ideally suited for measuring temperatures in many cryogenic studies at superfluid helium temperatures. One disadvantage, however, is the relatively high cost of calibrated germanium thermometers. In space helium cryogenic systems, many such thermometers are often required, leading to a high cost for calibrated thermometers. The construction of a thermometer calibration cryostat and probe which will allow for calibrating six germanium thermometers at one time, thus effecting substantial savings in the purchase of thermometers is considered.

  10. Germanium resistance thermometer calibration at superfluid helium temperatures

    NASA Technical Reports Server (NTRS)

    Mason, F. C.

    1985-01-01

    The rapid increase in resistance of high purity semi-conducting germanium with decreasing temperature in the superfluid helium range of temperatures makes this material highly adaptable as a very sensitive thermometer. Also, a germanium thermometer exhibits a highly reproducible resistance versus temperature characteristic curve upon cycling between liquid helium temperatures and room temperature. These two factors combine to make germanium thermometers ideally suited for measuring temperatures in many cryogenic studies at superfluid helium temperatures. One disadvantage, however, is the relatively high cost of calibrated germanium thermometers. In space helium cryogenic systems, many such thermometers are often required, leading to a high cost for calibrated thermometers. The construction of a thermometer calibration cryostat and probe which will allow for calibrating six germanium thermometers at one time, thus effecting substantial savings in the purchase of thermometers is considered.

  11. All-inorganic Germanium nanocrystal films by cationic ligand exchange

    SciTech Connect

    Wheeler, Lance M.; Nichols, Asa W.; Chernomordik, Boris D.; Anderson, Nicholas C.; Beard, Matthew C.; Neale, Nathan R.

    2016-01-21

    In this study, we introduce a new paradigm for group IV nanocrystal surface chemistry based on room temperature surface activation that enables ionic ligand exchange. Germanium nanocrystals synthesized in a gas-phase plasma reactor are functionalized with labile, cationic alkylammonium ligands rather than with traditional covalently bound groups. We employ Fourier transform infrared and 1H nuclear magnetic resonance spectroscopies to demonstrate the alkylammonium ligands are freely exchanged on the germanium nanocrystal surface with a variety of cationic ligands, including short inorganic ligands such as ammonium and alkali metal cations. This ionic ligand exchange chemistry is used to demonstrate enhanced transport in germanium nanocrystal films following ligand exchange as well as the first photovoltaic device based on an all-inorganic germanium nanocrystal absorber layer cast from solution. This new ligand chemistry should accelerate progress in utilizing germanium and other group IV nanocrystals for optoelectronic applications.

  12. Neutron transmutation doped natural and isotopically engineered germanium thermistors

    NASA Astrophysics Data System (ADS)

    Haller, Eugene E.; Itoh, K. M.; Beeman, Jeffrey W.; Hansen, William L.; Ozhogin, V. I.

    1994-06-01

    We report on the development, fabrication and performance of a new class of thermal sensors for far IR and millimeter wave detection. These devices consist of small single crystal samples of ultra-pure, natural or isotopically engineered germanium which have been doped by the neutron transmutation doping (NTD) technique. The concentrations of the acceptor and donor dopants (N(subscript A),N(subscript D)) can be accurately controlled with this technique. They depend on the thermal neutron fluence, the neutron absorption cross sections and the atomic fractions of (superscript 70)Ge (for the Ga acceptors) and (superscript 74)Ge (for the As donors), respectively. The values of N(subscript A) and N(subscript D) and their ratio result in a predictable resistivity of the Ge crystals down to temperatures of a few milliKelvin. The excellent control of the resistivity down to very low temperatrues, together with the development of ohmic contacts working at the lowest temperatures, allows the fabrication of high sensitivity bolometer arrays with over 100 pixels and highly uniform response.

  13. Germanium Detector Crystal Axis Orientation for the MAJORANA Demonstrator

    NASA Astrophysics Data System (ADS)

    Letourneau, Hannah

    2013-10-01

    The MAJORANA Demonstrator, currently being constructed at Sanford Underground Research Facility in Lead, South Dakota, is an array of germanium detectors which will be used to search for neutrinoless double beta decay, which would demonstrate that neutrinos have a Majorana mass term and lepton number is not conserved. An important characteristic of semiconductor detectors is the crystal axis orientation, because the propagation of electromagnetic signals is attenuated by the location of the interaction relative to the axis of the crystal. Conventionally, a goniometer is used to position a collimated low energy gamma source in many small increments around the detector to measure the rise time at each position. However, due to physical constraints from the casing of the Demonstrator, a different method must be developed. At the University of Washington this summer, I worked with a 76 Ge point-contact detector. I found the crystal axis orientation first with Americium 241, a lower energy gamma source. Then, I used a higher energy source, Thorium 232, in conjunction with the only a few angular reference points to also calculate rise time. Also, I wrote code to process the data. The success of this method will be evaluated and discussed. NSF

  14. Neutron damage tests of a highly segmented germanium crystal

    NASA Astrophysics Data System (ADS)

    Ross, T. J.; Beausang, C. W.; Lee, I. Y.; Macchiavelli, A. O.; Gros, S.; Cromaz, M.; Clark, R. M.; Fallon, P.; Jeppesen, H.; Allmond, J. M.

    2009-07-01

    To evaluate the effect of neutron damage on the performance of highly segmented germanium detectors the P3 prototype detector for the GRETINA array was subjected to a neutron flux of ∼3×109 n/cm2 over a period of 5 days. During the irradiation, the resolution (full-width half-maximum (FWHM)) of the 1332 keV 60Co photopeak increased from ∼1.8 to ∼6.0 keV while the full-width at tenth maximum (FWTM) increased from ∼4 keV to more than 12 keV. Following the irradiation the detector was successfully annealed and the energy resolution returned to pre-irradiation values. All detector segments were fully functional before and after the annealing and following multiple room-temperature cycles. A comparison of digitized pulse shapes in the damaged and annealed detector indicates that the effect of extreme neutron damage (FWHM=6 keV) on the position resolution is on the order of ∼1.7 mm while for 3 keV resolution the position resolution degrades by ∼0.5 mm.

  15. Simulated performance of a germanium Compton telescope

    NASA Astrophysics Data System (ADS)

    Boggs, Steven E.; Jean, Pierre

    2001-09-01

    To build upon the goals of the upcoming INTEGRAL mission, the next generation soft γ-ray (0.2-20 MeV) observatory will require improved sensitivity to nuclear line emission while maintaining high spectral resolution. We present the simulated performance of a germanium Compton telescope (GCT) design, which will allow a factor of ten improvement in sensitivity over INTEGRAL/SPI. We also discuss a number of issues concerning reconstruction techniques and event cuts, and demonstrate how these affect the overall performance of the telescope.

  16. Tensile strain mapping in flat germanium membranes

    SciTech Connect

    Rhead, S. D. Halpin, J. E.; Myronov, M.; Patchett, D. H.; Allred, P. S.; Wilson, N. R.; Leadley, D. R.; Shah, V. A.; Kachkanov, V.; Dolbnya, I. P.; Reparaz, J. S.; Sotomayor Torres, C. M.

    2014-04-28

    Scanning X-ray micro-diffraction has been used as a non-destructive probe of the local crystalline quality of a thin suspended germanium (Ge) membrane. A series of reciprocal space maps were obtained with ∼4 μm spatial resolution, from which detailed information on the strain distribution, thickness, and crystalline tilt of the membrane was obtained. We are able to detect a systematic strain variation across the membranes, but show that this is negligible in the context of using the membranes as platforms for further growth. In addition, we show evidence that the interface and surface quality is improved by suspending the Ge.

  17. Germanium anode with excellent lithium storage performance in a germanium/lithium-cobalt oxide lithium-ion battery.

    PubMed

    Li, Xiuwan; Yang, Zhibo; Fu, Yujun; Qiao, Li; Li, Dan; Yue, Hongwei; He, Deyan

    2015-02-24

    Germanium is a highly promising anode material for lithium-ion batteries as a consequence of its large theoretical specific capacity, good electrical conductivity, and fast lithium ion diffusivity. In this work, Co3O4 nanowire array fabricated on nickel foam was designed as a nanostructured current collector for Ge anode. By limiting the voltage cutoff window in an appropriate range, the obtained Ge anode exhibits excellent lithium storage performance in half- and full-cells, which can be mainly attributed to the designed nanostructured current collector with good conductivity, enough buffering space for the volume change, and shortened ionic transport length. More importantly, the assembled Ge/LiCoO2 full-cell shows a high energy density of 475 Wh/kg and a high power density of 6587 W/kg. A high capacity of 1184 mA h g(-1) for Ge anode was maintained at a current density of 5000 mA g(-1) after 150 cycles.

  18. Purification of Germanium Crystals by Zone Refining

    NASA Astrophysics Data System (ADS)

    Kooi, Kyler; Yang, Gang; Mei, Dongming

    2016-09-01

    Germanium zone refining is one of the most important techniques used to produce high purity germanium (HPGe) single crystals for the fabrication of nuclear radiation detectors. During zone refining the impurities are isolated to different parts of the ingot. In practice, the effective isolation of an impurity is dependent on many parameters, including molten zone travel speed, the ratio of ingot length to molten zone width, and number of passes. By studying the theory of these influential factors, perfecting our cleaning and preparation procedures, and analyzing the origin and distribution of our impurities (aluminum, boron, gallium, and phosphorous) identified using photothermal ionization spectroscopy (PTIS), we have optimized these parameters to produce HPGe. We have achieved a net impurity level of 1010 /cm3 for our zone-refined ingots, measured with van der Pauw and Hall-effect methods. Zone-refined ingots of this purity can be processed into a detector grade HPGe single crystal, which can be used to fabricate detectors for dark matter and neutrinoless double beta decay detection. This project was financially supported by DOE Grant (DE-FG02-10ER46709) and the State Governor's Research Center.

  19. Germanium avalanche receiver for low power interconnects

    NASA Astrophysics Data System (ADS)

    Virot, Léopold; Crozat, Paul; Fédéli, Jean-Marc; Hartmann, Jean-Michel; Marris-Morini, Delphine; Cassan, Eric; Boeuf, Frédéric; Vivien, Laurent

    2014-09-01

    Recent advances in silicon photonics have aided the development of on-chip communications. Power consumption, however, remains an issue in almost all integrated devices. Here, we report a 10 Gbit per second waveguide avalanche germanium photodiode under low reverse bias. The avalanche photodiode scheme requires only simple technological steps that are fully compatible with complementary metal oxide semiconductor processes and do not need nanometre accuracy and/or complex epitaxial growth schemes. An intrinsic gain higher than 20 was demonstrated under a bias voltage as low as -7 V. The Q-factor relating to the signal-to-noise ratio at 10 Gbit per second was maintained over 20 dB without the use of a trans-impedance amplifier for an input optical power lower than -26 dBm thanks to an aggressive shrinkage of the germanium multiplication region. A maximum gain over 140 was also obtained for optical powers below -35 dBm. These results pave the way for low-power-consumption on-chip communication applications.

  20. High-purity germanium crystal growing

    SciTech Connect

    Hansen, W.L.; Haller, E.E.

    1982-10-01

    The germanium crystals used for the fabrication of nuclear radiation detectors are required to have a purity and crystalline perfection which is unsurpassed by any other solid material. These crystals should not have a net electrically active impurity concentration greater than 10/sup 10/cm/sup -3/ and be essentially free of charge trapping defects. Such perfect crystals of germanium can be grown only because of the highly favorable chemical and physical properties of this element. However, ten years of laboratory scale and commercial experience has still not made the production of such crystals routine. The origin and control of many impurities and electrically active defect complexes is now fairly well understood but regular production is often interrupted for long periods due to the difficulty of achieving the required high purity or to charge trapping in detectors made from crystals seemingly grown under the required conditions. The compromises involved in the selection of zone refining and crystal grower parts and ambients is discussed and the difficulty in controlling the purity of key elements in the process is emphasized. The consequences of growing in a hydrogen ambient are discussed in detail and it is shown how complexes of neutral defects produce electrically active centers.

  1. Ultra High-Rate Germanium (UHRGe) Modeling Status Report

    SciTech Connect

    Warren, Glen A.; Rodriguez, Douglas C.

    2012-06-07

    The Ultra-High Rate Germanium (UHRGe) project at Pacific Northwest National Laboratory (PNNL) is conducting research to develop a high-purity germanium (HPGe) detector that can provide both the high resolution typical of germanium and high signal throughput. Such detectors may be beneficial for a variety of potential applications ranging from safeguards measurements of used fuel to material detection and verification using active interrogation techniques. This report describes some of the initial radiation transport modeling efforts that have been conducted to help guide the design of the detector as well as a description of the process used to generate the source spectrum for the used fuel application evaluation.

  2. Oxygen defect processes in silicon and silicon germanium

    SciTech Connect

    Chroneos, A.; Sgourou, E. N.; Londos, C. A.; Schwingenschlögl, U.

    2015-06-15

    Silicon and silicon germanium are the archetypical elemental and alloy semiconductor materials for nanoelectronic, sensor, and photovoltaic applications. The investigation of radiation induced defects involving oxygen, carbon, and intrinsic defects is important for the improvement of devices as these defects can have a deleterious impact on the properties of silicon and silicon germanium. In the present review, we mainly focus on oxygen-related defects and the impact of isovalent doping on their properties in silicon and silicon germanium. The efficacy of the isovalent doping strategies to constrain the oxygen-related defects is discussed in view of recent infrared spectroscopy and density functional theory studies.

  3. Background suppression techniques in germanium detectors

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Cheung, Cynthia

    1992-01-01

    A new generation of astrophysical gamma ray spectrometers employing germanium solid state detectors for precise energy measurement are currently being planned for spaceflight in the late 1990's and the early 21st century. Because the observations of weak celestial sources are carried out in an intense radiation environment, the key objective of instrument design is to find ways to reduce the background. The current state of the knowledge in this field is reviewed and the new hardware techniques under design and test are discussed. Many of these techniques have already been flight tested on balloon platforms. Recent results from some of these tests are presented. By carefully applying these techniques it should be possible to achieve sensitivities that are factors of 3 to 10 better than would be obtained for a conventional instrument of similar weight.

  4. Germanium implantation into substrates for integrated optics

    NASA Astrophysics Data System (ADS)

    Poumellec, B.; Traverse, A.; Artigaud, S.; Hervo, J.

    1994-04-01

    Germanium and helium implantations have been performed in LiNbO 3, SiO 2 quartz and silica. The agreement between calculated and experimental doping profiles is excellent. The index profiles coincide with the calculated collision profiles but we have observed a surface effect in quartz and LiNbO 3. In the first material, Ge implantation yields a larger decrease of the refractive index at the surface than He, as it is predicted by calculation if we assume the refractive index and the disorder profile to be connected. In contrast, in LiNbO 3 a reverse observation is made with respect to the refractive index. It is accompanied by chemical perturbation which interferes with the structural modification at the origin of the refractive index change. One advantage of the method is that implanted Ge is in a reduced state.

  5. Uniform phosphorus doping of untapered germanium nanowires.

    PubMed

    Guilloy, K; Pauc, N; Gentile, P; Robin, E; Calvo, V

    2016-12-02

    One of the major challenges in the growth of vapor-liquid-solid (VLS) nanowires is the control of dopant incorporation in the structures. In this work, we study the n-type doping and morphology of nanowires grown by chemical vapor deposition when HCl is introduced. We obtain fully untapered nanowires with a growth temperature up to 410 °C and measure their resistivity using the 4-probe technique to be 2.0 mΩ cm. We perform energy dispersive x-ray measurements showing a concentration of dopants in the (5-7) × 10(18) cm(-3) range, being radially and axially uniform. The combination of these two measurements shows that the mobility is the same as for bulk germanium, demonstrating that the VLS mechanism has no detrimental effect for the electron transport in these nanowires.

  6. Synthesis of silicon and germanium nanowires.

    SciTech Connect

    Clement, Teresa J.; Hsu, Julia W. P.

    2007-11-01

    The vapor-liquid-solid growth process for synthesis of group-IV semiconducting nanowires using silane, germane, disilane and digermane precursor gases has been investigated. The nanowire growth process combines in situ gold seed formation by vapor deposition on atomically clean silicon (111) surfaces, in situ growth from the gaseous precursor(s), and real-time monitoring of nanowire growth as a function of temperature and pressure by a novel optical reflectometry technique. A significant dependence on precursor pressure and growth temperature for the synthesis of silicon and germanium nanowires is observed, depending on the stability of the specific precursor used. Also, the presence of a nucleation time for the onset of nanowire growth has been found using our new in situ optical reflectometry technique.

  7. Fabrication and characteristics of porous germanium films

    PubMed Central

    Jing, Chengbin; Zhang, Chuanjian; Zang, Xiaodan; Zhou, Wenzheng; Bai, Wei; Lin, Tie; Chu, Junhao

    2009-01-01

    Porous germanium films with good adhesion to the substrate were produced by annealing GeO2 ceramic films in H2 atmosphere. The reduction of GeO2 started at the top of a film and resulted in a Ge layer with a highly porous surface. TEM and Raman measurements reveal small Ge crystallites at the top layer and a higher degree of crystallinity at the bottom part of the Ge film; visible photoluminescence was detected from the small crystallites. Porous Ge films exhibit high density of holes (1020 cm−3) and a maximum of Hall mobility at ∼225 K. Their p-type conductivity is dominated by the defect scattering mechanism. PMID:27877311

  8. Silicon germanium carbon heteroepitaxial growth on silicon

    NASA Astrophysics Data System (ADS)

    Mayer, James W.

    1993-10-01

    This project represents the initiation of band-gap engineering of Si-based devices at Arizona State University by James W. Mayer. While at Cornell, he directed the Microscience and Technology program supported by the Semiconductor Research Corporation. His Work on heteoepitaxy of SiGe on silicon convinced him that heteroepitaxy on Si was a viable technique for forming smaller band gap layers on silicon but the requirement was for larger energy-gap materials. In the fall of 1991, James Mayer visited Tom Picraux of Sandia National Laboratories and Clarence Tracy of Motorola Semiconductor Products to discuss the possibility of a joint program to investigate Silicon Germanium Carbon Heteroepitaxial Growth on Silicon. This represented a new research and development initiate for band gap engineering.

  9. Zirconia-germanium interface photoemission spectroscopy using synchrotron radiation

    SciTech Connect

    Chui, Chi On

    2005-04-05

    An ultrathin zirconia gate dielectric had been successfully incorporated into germanium metal-oxide-semiconductor (MOS) devices demonstrating very high permittivity gate stacks with no apparent interfacial layer. In this study, synchrotron radiation photoemission spectroscopy has been applied on the same gate stack to identify and quantify the presence of any interfacial germanium sub-oxide layer. By taking progressive core- level spectra during the layer-by-layer removal of the zirconia film, an oxidized germanium layer with sub-monolayer thickness was found possibly arising from an interfacial Zr-O-Ge bonding configuration. In addition, the offsets in the valence band spectra were also monitored and the energy band diagram of the zirconia-germanium heterostructure was constructed. Compared to high-{kappa} gate stacks on Si, the thinner interfacial layer and larger conduction band offset in high-{kappa} gate stacks on Ge suggest better scalability towards an ultimately higher MOS gate capacitance.

  10. Na-doped optical Germanium bulk crystals

    NASA Astrophysics Data System (ADS)

    Pekar, G. S.; Singaevsky, A. F.

    2012-09-01

    In an effort to develop a material for infrared (IR) optics with improved parameters, bulk crystals of optical germanium doped with Na have been first grown and studied. Single-crystalline and coarse-crystalline Ge:Na boules of different shapes and dimensions, up to 10 kg by weight, have been grown. Sodium was incorporated into the Ge crystal during the crystal growing from the melt. Despite the fact that Na contamination in the source material was not strictly controlled, the density of Na in the grown crystals determined by the neutron activation analysis as well as by the glow discharge mass spectrometry did not exceed 1015 cm-3. Just this value may be supposed to be close to the solubility limit of Na incorporated in Ge in the course of bulk crystal growth. A first demonstration of donor behavior of Na in bulk Ge crystals is made by means of a thermoelectric type of testing. An interstitial location of Na impurity has been verified by experiments on donor drift in the dc electric field. The crystals are grown with free electron density in the range from 5ṡ1013 to 4ṡ1014 cm-3 which is optimal for using Ge crystals as an optical material for fabricating passive elements of the IR technique. A comparison between the properties of Ge:Na crystals and Ge crystals doped with Sb, a conventional impurity in optical germanium, grown under the same technological conditions and from the same intrinsic Ge as a source material, revealed a number of advantages of Ge:Na crystals; among them, the higher transparency in the IR region, smaller radiation scattering and higher regular optical transmission, lower dislocation density, more uniform distribution of electrical and optical characteristics over the crystal volume, the identity of optical parameters in the single-crystalline, and coarse-crystalline boules. No degradation of optical elements fabricated from Ge:Na crystals was detected in the course of their commercial application, starting from 1998.

  11. Electromechanically cooled germanium radiation detector system

    NASA Astrophysics Data System (ADS)

    Lavietes, Anthony D.; Joseph Mauger, G.; Anderson, Eric H.

    1999-02-01

    We have successfully developed and fielded an electromechanically cooled germanium radiation detector (EMC-HPGe) at Lawrence Livermore National Laboratory (LLNL). This detector system was designed to provide optimum energy resolution, long lifetime, and extremely reliable operation for unattended and portable applications. For most analytical applications, high purity germanium (HPGe) detectors are the standard detectors of choice, providing an unsurpassed combination of high energy resolution performance and exceptional detection efficiency. Logistical difficulties associated with providing the required liquid nitrogen (LN) for cooling is the primary reason that these systems are found mainly in laboratories. The EMC-HPGe detector system described in this paper successfully provides HPGe detector performance in a portable instrument that allows for isotopic analysis in the field. It incorporates a unique active vibration control system that allows the use of a Sunpower Stirling cycle cryocooler unit without significant spectral degradation from microphonics. All standard isotopic analysis codes, including MGA and MGA++ [1], GAMANL [2], GRPANL [3]and MGAU [4], typically used with HPGe detectors can be used with this system with excellent results. Several national and international Safeguards organisations including the International Atomic Energy Agency (IAEA) and U.S. Department of Energy (DOE) have expressed interest in this system. The detector was combined with custom software and demonstrated as a rapid Field Radiometric Identification System (FRIS) for the U.S. Customs Service [5]. The European Communities' Safeguards Directorate (EURATOM) is field-testing the first Safeguards prototype in their applications. The EMC-HPGe detector system design, recent applications, and results will be highlighted.

  12. Reduction of Defects in Germanium-Silicon

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Crystals grown without contact with a container have far superior quality to otherwise similar crystals grown in direct contact with a container. In addition to float-zone processing, detached- Bridgman growth is a promising tool to improve crystal quality, without the limitations of float zoning or the defects introduced by normal Bridgman growth. Goals of this project include the development of the detached Bridgman process to be reproducible and well understood and to quantitatively compare the defect and impurity levels in crystals grown by these three methods. Germanium (Ge) and germanium-silicon (Ge-Si) alloys are being used. At MSFC, we are responsible for the detached Bridgman experiments intended to differentiate among proposed mechanisms of detachment, and to confirm or refine our understanding of detachment. Because the contact angle is critical to determining the conditions for detachment, the sessile drop method was used to measure the contact angles as a function of temperature and composition for a large number of substrates made of potential ampoule materials. Growth experiments have used pyrolytic boron nitride (pBN) and fused silica ampoules with the majority of the detached results occurring predictably in the pBN. Etch pit density (EPD) measurements of normal and detached Bridgman-grown Ge samples show a two order of magnitude improvement in the detached-grown samples. The nature and extent of detachment is determined by using profilometry in conjunction with optical and electron microscopy. The stability of detachment has been analyzed, and an empirical model for the conditions necessary to achieve sufficient stability to maintain detached growth for extended periods has been developed. We have investigated the effects on detachment of ampoule material, pressure difference above and below the melt, and Si concentration; samples that are nearly completely detached can be grown repeatedly in pBN. Current work is concentrated on developing a

  13. Electromechanically-cooled germanium radiation detector system

    SciTech Connect

    Lavietes, A. D., LLNL.

    1998-05-01

    We have successfully developed and fielded an electromechanically cooled germanium radiation detector (EMC-HPGe) at Lawrence Livermore National Laboratory (LLNL). This detector system was designed to provide optimum energy resolution, long lifetime, and extremely reliable operation for unattended and portable applications. For most analytical applications, high-purity germanium (HPGe) detectors are the standard detectors of choice, providing an unsurpassed combination of high energy resolution performance and exceptional detection efficiency. Logistical difficulties associated with providing the required liquid nitrogen (LN) for cooling is the primary reason that these systems are found mainly in laboratories. The EMC-HPGe detector system described in this paper successfully provides HPGe detector performance in a portable instrument that allows for isotopic analysis in the field. It incorporates a unique active vibration control system that allows the use of a Sunpower Stirling cycle cryocooler unit without significant spectral degradation from microphonics. All standard isotopic analysis codes, including MGA and MGA++[1], GAMANL[2], GRPANL[3] and MGAU[4], typically used with HPGe detectors can be used with this system with excellent results. Several national and international Safeguards organizations including the International Atomic Energy Agency (IAEA) and U.S. Department of Energy (DOE) have expressed interest in this system. The detector was combined with custom software and demonstrated as a rapid Field Radiometric Identification System (FRIS) for the U.S. Customs Service[5]. The European Communities' Safeguards Directorate (EURATOM) is field-testing the first Safeguards prototype in their applications. The EMC-HPGe detector system design, recent applications, and results will be highlighted.

  14. Near-infrared emission from mesoporous crystalline germanium

    SciTech Connect

    Boucherif, Abderraouf; Aimez, Vincent; Arès, Richard; Korinek, Andreas

    2014-10-15

    Mesoporous crystalline germanium was fabricated by bipolar electrochemical etching of Ge wafer in HF-based electrolyte. It yields uniform mesoporous germanium layers composed of high density of crystallites with an average size 5-7 nm. Subsequent extended chemical etching allows tuning of crystallites size while preserving the same chemical composition. This highly controllable nanostructure exhibits photoluminescence emission above the bulk Ge bandgap, in the near-infrared range (1095-1360nm) with strong evidence of quantum confinement within the crystallites.

  15. Method for using germanium thermometers in moderately high magnetic fields

    NASA Astrophysics Data System (ADS)

    Roy, A.; Buchanan, D. S.; Ginsberg, D. M.

    1985-03-01

    We have devised a simple method for extending the zero-field calibration of a germanium resistance thermometer to include the effects of magnetic fields up to 5 T. We describe the application of this method to the use of a germanium thermometer at liquid-helium temperatures. We outline a similar procedure to take into account the temperature variation of the calibration of a Hall probe.

  16. Near-infrared emission from mesoporous crystalline germanium

    NASA Astrophysics Data System (ADS)

    Boucherif, Abderraouf; Korinek, Andreas; Aimez, Vincent; Arès, Richard

    2014-10-01

    Mesoporous crystalline germanium was fabricated by bipolar electrochemical etching of Ge wafer in HF-based electrolyte. It yields uniform mesoporous germanium layers composed of high density of crystallites with an average size 5-7 nm. Subsequent extended chemical etching allows tuning of crystallites size while preserving the same chemical composition. This highly controllable nanostructure exhibits photoluminescence emission above the bulk Ge bandgap, in the near-infrared range (1095-1360nm) with strong evidence of quantum confinement within the crystallites.

  17. Hydrothermal germanium over the southern East pacific rise.

    PubMed

    Mortlock, R A; Froelich, P N

    1986-01-03

    Germanium enrichment in the oceanic water column above the southern axis of the East Pacific Rise results from hydrothermal solutions emanating from hot springs along the rise crest. This plume signature provides a new oceanic tracer of reactions between seawater and sea floor basalts during hydrothermal alteration. In contrast to the sharp plumes of (3)He and manganese, the germanium plume is broad and diffuse, suggesting the existence of pervasive venting of low-temperature solutions off the ridge axis.

  18. Optical gain in single tensile-strained germanium photonic wire.

    PubMed

    de Kersauson, M; El Kurdi, M; David, S; Checoury, X; Fishman, G; Sauvage, S; Jakomin, R; Beaudoin, G; Sagnes, I; Boucaud, P

    2011-09-12

    We have investigated the optical properties of tensile-strained germanium photonic wires. The photonic wires patterned by electron beam lithography (50 μm long, 1 μm wide and 500 nm thick) are obtained by growing a n-doped germanium film on a GaAs substrate. Tensile strain is transferred in the germanium layer using a Si₃N₄ stressor. Tensile strain around 0.4% achieved by the technique corresponds to an optical recombination of tensile-strained germanium involving light hole band around 1690 nm at room temperature. We show that the waveguided emission associated with a single tensile-strained germanium wire increases superlinearly as a function of the illuminated length. A 20% decrease of the spectral broadening is observed as the pump intensity is increased. All these features are signatures of optical gain. A 80 cm⁻¹ modal optical gain is derived from the variable strip length method. This value is accounted for by the calculated gain material value using a 30 band k · p formalism. These germanium wires represent potential building blocks for integration of nanoscale optical sources on silicon.

  19. Method of fabricating germanium and gallium arsenide devices

    NASA Technical Reports Server (NTRS)

    Jhabvala, Murzban (Inventor)

    1990-01-01

    A method of semiconductor diode fabrication is disclosed which relies on the epitaxial growth of a precisely doped thickness layer of gallium arsenide or germanium on a semi-insulating or intrinsic substrate, respectively, of gallium arsenide or germanium by either molecular beam epitaxy (MBE) or by metal-organic chemical vapor deposition (MOCVD). The method involves: depositing a layer of doped or undoped silicon dioxide on a germanium or gallium arsenide wafer or substrate, selectively removing the silicon dioxide layer to define one or more surface regions for a device to be fabricated thereon, growing a matched epitaxial layer of doped germanium or gallium arsenide of an appropriate thickness using MBE or MOCVD techniques on both the silicon dioxide layer and the defined one or more regions; and etching the silicon dioxide and the epitaxial material on top of the silicon dioxide to leave a matched epitaxial layer of germanium or gallium arsenide on the germanium or gallium arsenide substrate, respectively, and upon which a field effect device can thereafter be formed.

  20. Promoting Cell Proliferation Using Water Dispersible Germanium Nanowires

    PubMed Central

    Bezuidenhout, Michael; Liu, Pai; Singh, Shalini; Kiely, Maeve

    2014-01-01

    Group IV Nanowires have strong potential for several biomedical applications. However, to date their use remains limited because many are synthesised using heavy metal seeds and functionalised using organic ligands to make the materials water dispersible. This can result in unpredicted toxic side effects for mammalian cells cultured on the wires. Here, we describe an approach to make seedless and ligand free Germanium nanowires water dispersible using glutamic acid, a natural occurring amino acid that alleviates the environmental and health hazards associated with traditional functionalisation materials. We analysed the treated material extensively using Transmission electron microscopy (TEM), High resolution-TEM, and scanning electron microscope (SEM). Using a series of state of the art biochemical and morphological assays, together with a series of complimentary and synergistic cellular and molecular approaches, we show that the water dispersible germanium nanowires are non-toxic and are biocompatible. We monitored the behaviour of the cells growing on the treated germanium nanowires using a real time impedance based platform (xCELLigence) which revealed that the treated germanium nanowires promote cell adhesion and cell proliferation which we believe is as a result of the presence of an etched surface giving rise to a collagen like structure and an oxide layer. Furthermore this study is the first to evaluate the associated effect of Germanium nanowires on mammalian cells. Our studies highlight the potential use of water dispersible Germanium Nanowires in biological platforms that encourage anchorage-dependent cell growth. PMID:25237816

  1. Promoting cell proliferation using water dispersible germanium nanowires.

    PubMed

    Bezuidenhout, Michael; Liu, Pai; Singh, Shalini; Kiely, Maeve; Ryan, Kevin M; Kiely, Patrick A

    2014-01-01

    Group IV Nanowires have strong potential for several biomedical applications. However, to date their use remains limited because many are synthesised using heavy metal seeds and functionalised using organic ligands to make the materials water dispersible. This can result in unpredicted toxic side effects for mammalian cells cultured on the wires. Here, we describe an approach to make seedless and ligand free Germanium nanowires water dispersible using glutamic acid, a natural occurring amino acid that alleviates the environmental and health hazards associated with traditional functionalisation materials. We analysed the treated material extensively using Transmission electron microscopy (TEM), High resolution-TEM, and scanning electron microscope (SEM). Using a series of state of the art biochemical and morphological assays, together with a series of complimentary and synergistic cellular and molecular approaches, we show that the water dispersible germanium nanowires are non-toxic and are biocompatible. We monitored the behaviour of the cells growing on the treated germanium nanowires using a real time impedance based platform (xCELLigence) which revealed that the treated germanium nanowires promote cell adhesion and cell proliferation which we believe is as a result of the presence of an etched surface giving rise to a collagen like structure and an oxide layer. Furthermore this study is the first to evaluate the associated effect of Germanium nanowires on mammalian cells. Our studies highlight the potential use of water dispersible Germanium Nanowires in biological platforms that encourage anchorage-dependent cell growth.

  2. A germanium hybrid pixel detector with 55μm pixel size and 65,000 channels

    NASA Astrophysics Data System (ADS)

    Pennicard, D.; Struth, B.; Hirsemann, H.; Sarajlic, M.; Smoljanin, S.; Zuvic, M.; Lampert, M. O.; Fritzsch, T.; Rothermund, M.; Graafsma, H.

    2014-12-01

    Hybrid pixel semiconductor detectors provide high performance through a combination of direct detection, a relatively small pixel size, fast readout and sophisticated signal processing circuitry in each pixel. For X-ray detection above 20 keV, high-Z sensor layers rather than silicon are needed to achieve high quantum efficiency, but many high-Z materials such as GaAs and CdTe often suffer from poor material properties or nonuniformities. Germanium is available in large wafers of extremely high quality, making it an appealing option for high-performance hybrid pixel X-ray detectors, but suitable technologies for finely pixelating and bump-bonding germanium have not previously been available. A finely-pixelated germanium photodiode sensor with a 256 by 256 array of 55μm pixels has been produced. The sensor has an n-on-p structure, with 700μm thickness. Using a low-temperature indium bump process, this sensor has been bonded to the Medipix3RX photoncounting readout chip. Tests with the LAMBDA readout system have shown that the detector works successfully, with a high bond yield and higher image uniformity than comparable high-Z systems. During cooling, the system is functional around -80°C (with warmer temperatures resulting in excessive leakage current), with -100°C sufficient for good performance.

  3. Astroparticle physics with a customized low-background broad energy Germanium detector

    SciTech Connect

    Aalseth, Craig E.; Amman, M.; Avignone, Frank T.; Back, Henning O.; Barabash, Alexander S.; Barbeau, P. S.; Bergevin, M.; Bertrand, F.; Boswell, M.; Brudanin, V.; Bugg, William; Burritt, Tom H.; Busch, Matthew; Capps, Greg L.; Chan, Yuen-Dat; Collar, J. I.; Cooper, R. J.; Creswick, R.; Detwiler, Jason A.; Diaz, J.; Doe, Peter J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, Steven R.; Ely, James H.; Esterline, James H.; Farach, H. A.; Fast, James E.; Fields, N.; Finnerty, P.; Fujikawa, Brian; Fuller, Erin S.; Gehman, Victor M.; Giovanetti, G. K.; Guiseppe, Vincente; Gusey, K.; Hallin, A. L.; Harper, Gregory; Hazama, R.; Henning, Reyco; Hime, Andrew; Hoppe, Eric W.; Hossbach, Todd W.; Howe, M. A.; Johnson, R. A.; Keeter, K.; Keillor, Martin E.; Keller, C.; Kephart, Jeremy D.; Kidd, Mary; Knecht, A.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; Leviner, L.; Loach, J. C.; Luke, P.; MacMullin, S.; Marino, Michael G.; Martin, R. D.; Mei, Dong-Ming; Miley, Harry S.; Miller, M. L.; Mizouni, Leila; Myers, Allan W.; Nomachi, Masaharu; Orrell, John L.; Peterson, David; Phillips, D.; Poon, Alan; Prior, Gersende; Qian, J.; Radford, D. C.; Rielage, Keith; Robertson, R. G. H.; Rodriguez, Larry; Rykaczewski, Krzysztof P.; Salazar, Harold; Schubert, Alexis G.; Shima, T.; Shirchenko, M.; Steele, David; Strain, J.; Swift, Gary; Thomas, K.; Timkin, V.; Tornow, W.; Van Wechel, T. D.; Vanyushin, I.; Varner, R. L.; Vetter, Kai; Wilkerson, J. F.; Wolfe, B. A.; Xiang, W.; Yakushev, E.; Yaver, Harold; Young, A.; Yu, Chang-Hong; Yumatov, Vladimir; Zhang, C.; Zimmerman, S.

    2011-10-01

    The Majorana Collaboration is building the Majorana Demonstrator, a 60 kg array of high purity germanium detectors housed in an ultra-low background shield at the Sanford Underground Laboratory in Lead, SD. The Majorana Demonstrator will search for neutrinoless double-beta decay of 76Ge while demonstrating the feasibility of a tonne-scale experiment. It may also carry out a dark matter search in the 1-10 GeV/c² mass range. We have found that customized Broad Energy Germanium (BEGe) detectors produced by Canberra have several desirable features for a neutrinoless double-beta decay experiment, including low electronic noise, excellent pulse shape analysis capabilities, and simple fabrication. We have deployed a customized BEGe, the Majorana Low-Background BEGe at Kimballton (MALBEK), in a low-background cryostat and shield at the Kimballton Underground Research Facility in Virginia. This paper will focus on the detector characteristics and measurements that can be performed with such a radiation detector in a low-background environment.

  4. Directed synthesis of germanium oxide nanowires by vapor-liquid-solid oxidation.

    PubMed

    Gunji, M; Thombare, S V; Hu, S; McIntyre, P C

    2012-09-28

    We report on the directed synthesis of germanium oxide (GeO(x)) nanowires (NWs) by locally catalyzed thermal oxidation of aligned arrays of gold catalyst-tipped germanium NWs. During oxygen anneals conducted above the Au-Ge binary eutectic temperature (T > 361 °C), one-dimensional oxidation of as-grown Ge NWs occurs by diffusion of Ge through the Au-Ge catalyst droplet, in the presence of an oxygen containing ambient. Elongated GeO(x) wires grow from the liquid catalyst tip, consuming the adjoining Ge NWs as they grow. The oxide NWs' diameter is dictated by the catalyst diameter and their alignment generally parallels that of the growth direction of the initial Ge NWs. Growth rate comparisons reveal a substantial oxidation rate enhancement in the presence of the Au catalyst. Statistical analysis of GeO(x) nanowire growth by ex situ transmission electron microscopy and scanning electron microscopy suggests a transition from an initial, diameter-dependent kinetic regime, to diameter-independent wire growth. This behavior suggests the existence of an incubation time for GeO(x) NW nucleation at the start of vapor-liquid-solid oxidation.

  5. Limits on light WIMPs with a germanium detector at 177 eVee threshold at the China Jinping Underground Laboratory

    NASA Astrophysics Data System (ADS)

    Liu, S. K.; Yue, Q.; Kang, K. J.; Cheng, J. P.; Wong, H. T.; Li, Y. J.; Lin, S. T.; Chang, J. P.; Chen, N.; Chen, Q. H.; Chen, Y. H.; Chuang, Y. C.; Deng, Z.; Du, Q.; Gong, H.; Hao, X. Q.; He, H. J.; He, Q. J.; Huang, H. X.; Huang, T. R.; Jiang, H.; Li, H. B.; Li, J. M.; Li, J.; Li, J.; Li, X.; Li, X. Q.; Li, X. Y.; Li, Y. L.; Liao, H. Y.; Lin, F. K.; Lü, L. C.; Ma, H.; Mao, S. J.; Qin, J. Q.; Ren, J.; Ren, J.; Ruan, X. C.; Shen, M. B.; Singh, L.; Singh, M. K.; Soma, A. K.; Su, J.; Tang, C. J.; Tseng, C. H.; Wang, J. M.; Wang, L.; Wang, Q.; Wu, S. Y.; Wu, Y. C.; Wu, Y. C.; Xianyu, Z. Z.; Xiao, R. Q.; Xing, H. Y.; Xu, F. Z.; Xu, Y.; Xu, X. J.; Xue, T.; Yang, C. W.; Yang, L. T.; Yang, S. W.; Yi, N.; Yu, C. X.; Yu, H.; Yu, X. Z.; Zeng, X. H.; Zeng, Z.; Zhang, L.; Zhang, Y. H.; Zhao, M. G.; Zhao, W.; Zhou, Z. Y.; Zhu, J. J.; Zhu, W. B.; Zhu, X. Z.; Zhu, Z. H.; CDEX Collaboration

    2014-08-01

    The China Dark Matter Experiment reports results on light WIMP dark matter searches at the China Jinping Underground Laboratory with a germanium detector array with a total mass of 20 g. The physics threshold achieved is 177 eVee ("ee" represents electron equivalent energy) at 50% signal efficiency. With 0.784 kg-days of data, exclusion region on spin-independent coupling with the nucleon is derived, improving over our earlier bounds at WIMP mass less than 4.6 GeV.

  6. Germanium ``hexa'' detector: production and testing

    NASA Astrophysics Data System (ADS)

    Sarajlić, M.; Pennicard, D.; Smoljanin, S.; Hirsemann, H.; Struth, B.; Fritzsch, T.; Rothermund, M.; Zuvic, M.; Lampert, M. O.; Askar, M.; Graafsma, H.

    2017-01-01

    Here we present new result on the testing of a Germanium sensor for X-ray radiation. The system is made of 3 × 2 Medipix3RX chips, bump-bonded to a monolithic sensor, and is called ``hexa''. Its dimensions are 45 × 30 mm2 and the sensor thickness was 1.5 mm. The total number of the pixels is 393216 in the matrix 768 × 512 with pixel pitch 55 μ m. Medipix3RX read-out chip provides photon counting read-out with single photon sensitivity. The sensor is cooled to ‑126°C and noise levels together with flat field response are measured. For ‑200 V polarization bias, leakage current was 4.4 mA (3.2 μ A/mm2). Due to higher leakage around 2.5% of all pixels stay non-responsive. More than 99% of all pixels are bump bonded correctly. In this paper we present the experimental set-up, threshold equalization procedure, image acquisition and the technique for bump bond quality estimate.

  7. Detached Growth of Germanium and Germaniumsilicon

    NASA Technical Reports Server (NTRS)

    Dold, P.; Schweizer, M.; Szofran, F.; Benz, K. W.

    1999-01-01

    Up to now, detached growth was observed mainly under microgravity, i.e. under the absence of hydrostatic pressure that hinders the formation of a free melt meniscus. the detached growth of germanium doped with gallium was obtained under 1 g conditions, the growth was performed in quartz-glass ampoule. Part of the crystal grew without wall contact, the detached growth was observed in-situ with a CCD-camera as well as after the growth process in form of growth lines and the formation of <111> facets on the crystal surface. GeSi crystal (oriientation: <111>, maximum silicon content: 4 at%, seed material: Ge) was grown in a pBN crucible (excluding the possibility of in-situ monitoring of the growth process). The grown crystal exhibits three growth facets, indicating also wall free growth. Surface analysis of the crystals (NDIC, SEM) and characterization of crystal segregation (EDAX, resistivity measurement) and defect structure (EPD, x-ray diffraction measurements) will be presented.

  8. Indirect absorption in germanium quantum wells

    NASA Astrophysics Data System (ADS)

    Schaevitz, R. K.; Ly-Gagnon, D. S.; Roth, J. E.; Edwards, E. H.; Miller, D. A. B.

    2011-09-01

    Germanium has become a promising material for creating CMOS-compatible optoelectronic devices, such as modulators and detectors employing the Franz-Keldysh effect (FKE) or the quantum-confined Stark effect (QCSE), which meet strict energy and density requirements for future interconnects. To improve Ge-based modulator design, it is important to understand the contributions to the insertion loss (IL). With indirect absorption being the primary component of IL, we have experimentally determined the strength of this loss and compared it with theoretical models. For the first time, we have used the more sensitive photocurrent measurements for determining the effective absorption coefficient in our Ge/SiGe quantum well material employing QCSE. This measurement technique enables measurement of the absorption coefficient over four orders of magnitude. We find good agreement between our thin Ge quantum wells and the bulk material parameters and theoretical models. Similar to bulk Ge, we find that the 27.7 meV LA phonon is dominant in these quantum confined structures and that the electroabsorption profile can be predicted using the model presented by Frova, Phys. Rev., 145 (1966).

  9. Detached Growth of Germanium and Germaniumsilicon

    NASA Technical Reports Server (NTRS)

    Dold, P.; Schweizer, M.; Szofran, F.; Benz, K. W.

    1999-01-01

    Up to now, detached growth was observed mainly under microgravity, i.e. under the absence of hydrostatic pressure that hinders the formation of a free melt meniscus. the detached growth of germanium doped with gallium was obtained under 1 g conditions, the growth was performed in quartz-glass ampoule. Part of the crystal grew without wall contact, the detached growth was observed in-situ with a CCD-camera as well as after the growth process in form of growth lines and the formation of <111> facets on the crystal surface. GeSi crystal (oriientation: <111>, maximum silicon content: 4 at%, seed material: Ge) was grown in a pBN crucible (excluding the possibility of in-situ monitoring of the growth process). The grown crystal exhibits three growth facets, indicating also wall free growth. Surface analysis of the crystals (NDIC, SEM) and characterization of crystal segregation (EDAX, resistivity measurement) and defect structure (EPD, x-ray diffraction measurements) will be presented.

  10. Growth and properties of nanocrystalline germanium films

    NASA Astrophysics Data System (ADS)

    Niu, Xuejun; Dalal, Vikram L.

    2005-11-01

    We report on the growth characteristics and structure of nanocrystalline germanium films using low-pressure plasma-assisted chemical vapor deposition process in a remote electron-cyclotron-resonance reactor. The films were grown from mixtures of germane and hydrogen at deposition temperatures varying between 130 °C and 310 °C. The films were measured for structure using Raman and x-ray spectroscopy. It is shown that the orientation of the film depends strongly upon the deposition conditions. Low-temperature growth leads to both <111> and <220> orientations, whereas at higher temperatures, the <220> grain strongly dominates. The Raman spectrum reveals a sharp crystalline peak at 300 cm-1 and a high ratio between crystalline and amorphous peak that is at 285 cm-1. The grain size in the films is a strong function of hydrogen dilution, with higher dilutions leading to smaller grain sizes. Growth temperature also has a strong influence on grain size, with higher temperatures yielding larger grain sizes. From these results, which are seen to be compatible with the growth of nanocrystalline Si films, it is seen that the natural growth direction for the film is <220>, and that bonded hydrogen interferes with the growth of <220> grains. High hydrogen dilutions lead to more random nucleation.

  11. Electrodeposition of germanium from supercritical fluids.

    PubMed

    Ke, Jie; Bartlett, Philip N; Cook, David; Easun, Timothy L; George, Michael W; Levason, William; Reid, Gillian; Smith, David; Su, Wenta; Zhang, Wenjian

    2012-01-28

    Several Ge(II) and Ge(IV) compounds were investigated as possible reagents for the electrodeposition of Ge from liquid CH(3)CN and CH(2)F(2) and supercritical CO(2) containing as a co-solvent CH(3)CN (scCO(2)) and supercritical CH(2)F(2) (scCH(2)F(2)). For Ge(II) reagents the most promising results were obtained using [NBu(n)(4)][GeCl(3)]. However the reproducibility was poor and the reduction currents were significantly less than the estimated mass transport limited values. Deposition of Ge containing films was possible at high cathodic potential from [NBu(n)(4)][GeCl(3)] in liquid CH(3)CN and supercritical CO(2) containing CH(3)CN but in all cases they were heavily contaminated by C, O, F and Cl. Much more promising results were obtained using GeCl(4) in liquid CH(2)F(2) and supercritical CH(2)F(2). In this case the reduction currents were consistent with mass transport limited reduction and bulk electrodeposition produced amorphous films of Ge. Characterisation by XPS showed the presence of low levels of O, F and C, XPS confirmed the presence of Ge together with germanium oxides, and Raman spectroscopy showed that the as deposited amorphous Ge could be crystallised by the laser used in obtaining the Raman measurements.

  12. Tunnel current across linear homocatenated germanium chains

    SciTech Connect

    Matsuura, Yukihito

    2014-01-28

    The electronic transport properties of germanium oligomers catenating into linear chains (linear Ge chains) have been theoretically studied using first principle methods. The conduction mechanism of a Ge chain sandwiched between gold electrodes was analyzed based on the density of states and the eigenstates of the molecule in a two-probe environment. Like that of silicon chains (Si chains), the highest occupied molecular orbital of Ge chains contains the extended σ-conjugation of Ge 4p orbitals at energy levels close to the Fermi level; this is in contrast to the electronic properties of linear carbon chains. Furthermore, the conductance of a Ge chain is expected to decrease exponentially with molecular length L. The decay constant β, which is defined as e{sup −βL}, of a Ge chain is similar to that of a Si chain, whereas the conductance of the Ge chains is higher than that of Si chains even though the Ge–Ge bond length is longer than the Si–Si bond length.

  13. Determination of the Wetting Angle of Germanium and Germanium-Silicon Melts on Different Substrate Materials

    NASA Technical Reports Server (NTRS)

    Kaiser, Natalie; Croell, Arne; Szofran, F. R.; Cobb. S. D.; Dold, P.; Benz, K. W.

    1999-01-01

    During Bridgman growth of semiconductors detachment of the crystal and the melt meniscus has occasionally been observed, mainly under microgravity (microg) conditions. An important factor for detached growth is the wetting angle of the melt with the crucible material. High contact angles are more likely to result in detachment of the growing crystal from the ampoule wall. In order to achieve detached growth of germanium (Ge) and germanium-silicon (GeSi) crystals under 1g and microg conditions, sessile drop measurements were performed to determine the most suitable ampoule material as well as temperature dependence of the surface tension for GeSi. Sapphire, fused quartz, glassy carbon, graphite, SiC, pyrolytic Boron Nitride (pBN), AIN, and diamond were used as substrates. Furthermore, different cleaning procedures and surface treatments (etching, sandblasting, etc.) of the same substrate material and their effect on the wetting behavior were studied during these experiments. pBN and AIN substrates exhibited the highest contact angles with values around 170 deg.

  14. Determination of the Wetting Angle of Germanium and Germanium-Silicon Melts on Different Substrate Materials

    NASA Technical Reports Server (NTRS)

    Kaiser, Natalie; Croell, Arne; Szofran, F. R.; Cobb. S. D.; Dold, P.; Benz, K. W.

    1999-01-01

    During Bridgman growth of semiconductors detachment of the crystal and the melt meniscus has occasionally been observed, mainly under microgravity (microg) conditions. An important factor for detached growth is the wetting angle of the melt with the crucible material. High contact angles are more likely to result in detachment of the growing crystal from the ampoule wall. In order to achieve detached growth of germanium (Ge) and germanium-silicon (GeSi) crystals under 1g and microg conditions, sessile drop measurements were performed to determine the most suitable ampoule material as well as temperature dependence of the surface tension for GeSi. Sapphire, fused quartz, glassy carbon, graphite, SiC, pyrolytic Boron Nitride (pBN), AIN, and diamond were used as substrates. Furthermore, different cleaning procedures and surface treatments (etching, sandblasting, etc.) of the same substrate material and their effect on the wetting behavior were studied during these experiments. pBN and AIN substrates exhibited the highest contact angles with values around 170 deg.

  15. The role of oxidized germanium in the growth of germanium nanoparticles on hafnia

    NASA Astrophysics Data System (ADS)

    Winkenwerder, Wyatt A.; Ekerdt, John G.

    2008-08-01

    The role oxidized germanium (GeO x) plays in germanium (Ge) nanoparticle growth on hafnia is reported. Oxide islands, in the form of hafnium germinate, form on hafnia during the initial stages of growth. The Ge adatoms are oxidized by background oxidants, such as water, only when they are in contact with the hafnia surface. Once a sufficient amount of hafnium germinate has formed, Ge nanoparticles nucleate such that nanoparticle growth proceeds by Ge growth on GeO x. Nanoparticles are not deposited on the hafnia but only on the interfacial oxide islands formed early in the growth process. Annealing hafnia in a silane ambient after Ge nanoparticle growth reduces the amount of GeO x and appears to transform it into a hafnium silicate. Furthermore, the electronic and/or chemical interaction between the Ge nanoparticles and the hafnia substrate is changed by the silane annealing step as reflected in the binding energy shift in the Ge 2p signal and the increased retention time of metal-oxide-semiconductor capacitors made from Ge nanoparticles and hafnia. Pretreating hafnia in silane leads to hafnium silicate islands and subsequent Ge nanoparticle growth proceeds on the silicate islands.

  16. Germanium orthogonal strip detector system for gamma-ray imaging

    NASA Astrophysics Data System (ADS)

    Hull, Ethan L.; Burks, Morgan; Cork, Chris P.; Craig, William W.; Eckels, Del; Fabris, Lorenzo; Lavietes, Anthony D.; Luke, Paul N.; Madden, Norman W.; Pehl, Richard H.; Ziock, Klaus

    2001-12-01

    A germanium-detector based, gamma-ray imaging system has been designed, fabricated, and tested. The detector, cryostat, electronics, readout, and imaging software are discussed. An 11 millimeter thick, 2 millimeter pitch 19x19 orthogonal strip planar germanium detector is used in front of a coaxial detector to provide broad energy coverage. The planar detector was fabricated using amorphous germanium contacts. Each channel is read out with a compact, low noise external FET preamplifier specially designed for this detector. A bank of shaping amplifiers, fast amplifiers, and fast leading edge discriminators were designed and fabricated to process the signals from preamplifiers. The readout system coordinates time coincident x-y strip addresses with an x-strip spectroscopy signal and a spectroscopy signal from the coaxial detector. This information is sent to a computer where an image is formed. Preliminary shadow and pinhole images demonstrate the viability of a germanium based imaging system. The excellent energy resolution of the germanium detector system provides isotopic imaging.

  17. High-pressure viewports for infrared systems. Phase 1: Germanium

    NASA Astrophysics Data System (ADS)

    Stachiw, J. D.

    1980-09-01

    Spherical sectors fabricated from polycrystalline germanium can serve successfully as pressure-resistant windows in IR systems in the marine environment. Spherical sectors and included spherical angle withstood 100 pressure cycles from 0 to 20000 psi without cracking when tested hydrostatically in a compliant metallic mounting with an inclined seat protected by elastomeric gaskets. Nylon cloth-reinforced Neoprane and Kelvar-49-reinforced epoxy gaskets performed successfully provided that the bearing stress did not exceed 20000 psi for Neoprene and 60000 psi for epoxy gaskets. The average flexural and compressive short-term strengths of germanium under uniaxial loading were found to be in the 70000 to 15000 psi ranges, respectively. Germanium also exhibits static fatigue under sustained flexure loading in the marine environment. The static fatigue limit for sustained loading of 1000 hour duration in a seawater environment was found to be in the 8000 to 10000 psi range. Germanium was found to also to exhibit the Kaiser effect even though it is only a rather weak emitter of acoustic emissions under compressive loading. It appears that recording of acoustic emissions during a structural proof test could be incorporated into the quality assurance program for germanium lenses and windows where it would complement visual inspection for the presence of incipient cracks.

  18. Demonstration of surface electron rejection with interleaved germanium detectors for dark matter searches

    SciTech Connect

    Agnese, R.; Balakishiyeva, D.; Saab, T.; Welliver, B.; Anderson, A. J.; Figueroa-Feliciano, E.; Hertel, S. A.; McCarthy, K. A.; Basu Thakur, R.; Bauer, D. A.; Holmgren, D.; Hsu, L.; Loer, B.; Schmitt, R.; Borgland, A.; Brandt, D.; Brink, P. L.; Do Couto E Silva, E.; Godfrey, G. L.; Hasi, J. [SLAC National Accelerator Laboratory Collaboration: The SuperCDMS Collaboration; and others

    2013-10-14

    The SuperCDMS experiment in the Soudan Underground Laboratory searches for dark matter with a 9-kg array of cryogenic germanium detectors. Symmetric sensors on opposite sides measure both charge and phonons from each particle interaction, providing excellent discrimination between electron and nuclear recoils, and between surface and interior events. Surface event rejection capabilities were tested with two {sup 210}Pb sources producing ∼130 beta decays/hr. In ∼800 live hours, no events leaked into the 8–115 keV signal region, giving upper limit leakage fraction 1.7 × 10{sup −5} at 90% C.L., corresponding to < 0.6 surface event background in the future 200-kg SuperCDMS SNOLAB experiment.

  19. Demonstration of Surface Electron Rejection with Interleaved Germanium Detectors for Dark Matter Searches

    SciTech Connect

    Agnese, R.; Anderson, A. J.; Balakishiyeva, D.; Basu Thakur, R.; Bauer, D. A.; Borgland, A.; Brandt, D.; Brink, P. L.; Bunker, R.; Cabrera, B.; Caldwell, D. O.; Cerdeno, D. G.; Chagani, H.; Cherry, M.; Cooley, J.; Cornell, B.; Crewdson, C. H.; Cushman, Priscilla B.; Daal, M.; Di Stefano, P. C.; Do Couto E Silva, E.; Doughty, T.; Esteban, L.; Fallows, S.; Figueroa-Feliciano, E.; Fox, J.; Fritts, M.; Godfrey, G. L.; Golwala, S. R.; Hall, Jeter C.; Harris, H. R.; Hasi, J.; Hertel, S. A.; Hines, B. A.; Hofer, T.; Holmgren, D.; Hsu, L.; Huber, M. E.; Jastram, A.; Kamaev, O.; Kara, B.; Kelsey, M. H.; Kenany, S.; Kennedy, A.; Kenney, C. J.; Kiveni, M.; Koch, K.; Loer, B.; Lopez Asamar, E.; Mahapatra, R.; Mandic, V.; Martinez, C.; McCarthy, K. A.; Mirabolfathi, N.; Moffatt, R. A.; Moore, D. C.; Nadeau, P.; Nelson, R. H.; Novak, L.; Page, K.; Partridge, R.; Pepin, M.; Phipps, A.; Prasad, K.; Pyle, M.; Qiu, H.; Radpour, R.; Rau, W.; Redl, P.; Reisetter, A.; Resch, R. W.; Ricci, Y.; Saab, T.; Sadoulet, B.; Sander, J.; Schmitt, R.; Schneck, K.; Schnee, Richard; Scorza, S.; Seitz, D.; Serfass, B.; Shank, B.; Speller, D.; Tomada, A.; Villano, A. N.; Welliver, B.; Wright, D. H.; Yellin, S.; Yen, J. J.; Young, B. A.; Zhang, J.

    2013-10-17

    The SuperCDMS experiment in the Soudan Underground Laboratory searches for dark matter with a 9-kg array of cryogenic germanium detectors. Symmetric sensors on opposite sides measure both charge and phonons from each particle interaction, providing excellent discrimination between electron and nuclear recoils, and between surface and interior events. Furthermore, surface event rejection capabilities were tested with two 210Pb sources producing ~130 beta decays/hr. We found that in ~800 live hours, no events leaked into the 8–115 keV signal region, giving upper limit leakage fraction 1.7 x 10-5 at 90% C.L., corresponding to<0.6 surface event background in the future 200-kg SuperCDMS SNOLAB experiment.

  20. High-Resolution Gamma-Ray Imaging Measurements Using Externally Segmented Germanium Detectors

    NASA Technical Reports Server (NTRS)

    Callas, J.; Mahoney, W.; Skelton, R.; Varnell, L.; Wheaton, W.

    1994-01-01

    Fully two-dimensional gamma-ray imaging with simultaneous high-resolution spectroscopy has been demonstrated using an externally segmented germanium sensor. The system employs a single high-purity coaxial detector with its outer electrode segmented into 5 distinct charge collection regions and a lead coded aperture with a uniformly redundant array (URA) pattern. A series of one-dimensional responses was collected around 511 keV while the system was rotated in steps through 180 degrees. A non-negative, linear least-squares algorithm was then employed to reconstruct a 2-dimensional image. Corrections for multiple scattering in the detector, and the finite distance of source and detector are made in the reconstruction process.

  1. Complete synthesis of germanium nanocrystal encrusted carbon colloids in supercritical CO2 and their superhydrophobic properties.

    PubMed

    Barrett, Christopher A; Singh, Ajay; Murphy, Joseph A; O'Sullivan, Catriona; Buckley, D N; Ryan, Kevin M

    2011-09-06

    Colloidal carbon spheres were synthesized by the carbonization of squalane, a nonvolatile hydrocarbon solvent, in supercritical carbon dioxide. Precise pressure modulation of the fluid medium led to size controlled growth of carbon spheres ranging from 300 to 1500 nm in diameter. This unique synthetic approach of carbonizing a hydrocarbon suspension in supercritical fluid is found to suppress any particle aggregation, resulting in excellent sphere monodispersity. Core-shell hybrid structures of C-Ge were subsequently formed by inducing the growth of 10-40 nm sized germanium nanocrystals from the spheres in a hierarchical bottom-up approach. Extensive characterization of the spheres and nanocrystals was conducted using transmission and scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Raman, and thermogravametric analysis. Assemblies of nanocrystal modified carbon colloids impart outstanding superhydrophobic properties due to the combined nano- and microstructuring of the particle arrays. © 2011 American Chemical Society

  2. 40 CFR 421.180 - Applicability: Description of the primary and secondary germanium and gallium subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... primary and secondary germanium and gallium subcategory. 421.180 Section 421.180 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Germanium and Gallium Subcategory § 421.180 Applicability: Description of the primary and secondary germanium and gallium subcategory. The provisions of this subpart are...

  3. 40 CFR 421.180 - Applicability: Description of the primary and secondary germanium and gallium subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... primary and secondary germanium and gallium subcategory. 421.180 Section 421.180 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Germanium and Gallium Subcategory § 421.180 Applicability: Description of the primary and secondary germanium and gallium subcategory. The provisions of this subpart are...

  4. 40 CFR 421.180 - Applicability: Description of the primary and secondary germanium and gallium subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... primary and secondary germanium and gallium subcategory. 421.180 Section 421.180 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Germanium and Gallium Subcategory § 421.180 Applicability: Description of the primary and secondary germanium and gallium subcategory. The provisions of this subpart are...

  5. 40 CFR 421.180 - Applicability: Description of the primary and secondary germanium and gallium subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... primary and secondary germanium and gallium subcategory. 421.180 Section 421.180 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Germanium and Gallium Subcategory § 421.180 Applicability: Description of the primary and secondary germanium and gallium subcategory. The provisions of this subpart are...

  6. 40 CFR 421.180 - Applicability: Description of the primary and secondary germanium and gallium subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... primary and secondary germanium and gallium subcategory. 421.180 Section 421.180 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Germanium and Gallium Subcategory § 421.180 Applicability: Description of the primary and secondary germanium and gallium subcategory. The provisions of this subpart are...

  7. Liquid phase epitaxial growth and characterization of germanium far infrared blocked impurity band detectors

    SciTech Connect

    Bandaru, Jordana

    2001-01-01

    Germanium Blocked Impurity Band (BIB) detectors require a high purity blocking layer (< 1013 cm-3) approximately 1 mm thick grown on a heavily doped active layer (~ 1016cm-3) approximately 20 mm thick. Epilayers were grown using liquid phase epitaxy (LPE) of germanium out of lead solution. The effects of the crystallographic orientation of the germanium substrate on LPE growth modes were explored. Growth was studied on substrates oriented by Laue x-ray diffraction between 0.02° and 10° from the {111} toward the {100}. Terrace growth was observed, with increasing terrace height for larger misorientation angles. It was found that the purity of the blocking layer was limited by the presence of phosphorus in the lead solvent. Unintentionally doped Ge layers contained ~1015 cm-3 phosphorus as determined by Hall effect measurements and Photothermal Ionization Spectroscopy (PTIS). Lead purification by vacuum distillation and dilution reduced the phosphorus concentration in the layers to ~ 1014 cm-3 but further reduction was not observed with successive distillation runs. The graphite distillation and growth components as an additional phosphorus source cannot be ruled out. Antimony (~1016 cm-3) was used as a dopant for the active BIB layer. A reduction in the donor binding energy due to impurity banding was observed by variable temperature Hall effect measurements. A BIB detector fabricated from an Sb-doped Ge layer grown on a pure substrate showed a low energy photoconductive onset (~6 meV). Spreading resistance measurements on doped layers revealed a nonuniform dopant distribution with Sb pile-up at the layer surface, which must be removed by chemomechanical polishing. Sb diffusion into the pure substrate was observed by Secondary Ion Mass Spectroscopy (SIMS) for epilayers grown at 650 C. The Sb concentration at the interface dropped by an order of magnitude

  8. Theoretical and experimental investigation of cosmogenic radioisotope production in germanium

    NASA Astrophysics Data System (ADS)

    Avignone, F. T.; Brodzinski, R. L.; Collar, J. I.; Miley, H. S.; Garcia, E.; Morales, A.; Morales, J.; Nuñez-Lagos, R.; Reeves, J. H.; Saenz, C.; Villar, J. A.

    1992-07-01

    Rates were calculated for the cosmic-ray-induced production of 3H, 54Mn, 57Ni, 57,58Co, 65,67Ga, 65Zn, and 68Ge in natural germanium using two experimental neutron spectra from the literature. Reaction excitation functions were computed with a nuclear spallation code. Experimental production rates of 54Mn, 57,58Co, 65Zn, 67Ga and 68Ge were derived from background spectra of natural isotopic abundance germanium detectors. The rate for 57Co was also derived from data taken with a detector fabricated from germanium isotopically enriched to 86% 76Ge and ˜14% 74Ge. The calculated and experimental data are in agreement within a factor of two and in many cases within 30%.

  9. Germanium implanted Bragg gratings in silicon on insulator waveguides

    NASA Astrophysics Data System (ADS)

    Loiacono, Renzo; Reed, Graham T.; Gwilliam, Russell; Mashanovich, Goran Z.; O'Faolain, Liam; Krauss, Thomas; Lulli, Giorgio; Jeynes, Chris; Jones, Richard

    2010-02-01

    Integrated Bragg gratings are an interesting candidate for waveguide coupling, telecommunication applications, and for the fabrication of integrated photonic sensors. These devices have a high potential for optical integration and are compatible with CMOS processing techniques if compared to their optical fibre counterpart. In this work we present design, fabrication, and testing of Germanium ion implanted Bragg gratings in silicon on insulator (SOI). A periodic refractive index modulation is produced in a 1μm wide SOI rib waveguide by implanting Germanium ions through an SiO2 hardmask. The implantation conditions have been analysed by 3D ion implantation modelling and the induced refractive index change has been investigated on implanted samples by Rutherford Backscattering Spectroscopy (RBS) and ellipsometry analysis. An extinction ratio of up to 30dB in transmission, around the 1.55μm wavelength, has been demonstrated for Germanium implanted gratings on SOI waveguides.

  10. Modeling of dislocation dynamics in germanium Czochralski growth

    NASA Astrophysics Data System (ADS)

    Artemyev, V. V.; Smirnov, A. D.; Kalaev, V. V.; Mamedov, V. M.; Sidko, A. P.; Podkopaev, O. I.; Kravtsova, E. D.; Shimansky, A. F.

    2017-06-01

    Obtaining very high-purity germanium crystals with low dislocation density is a practically difficult problem, which requires knowledge and experience in growth processes. Dislocation density is one of the most important parameters defining the quality of germanium crystal. In this paper, we have performed experimental study of dislocation density during 4-in. germanium crystal growth using the Czochralski method and comprehensive unsteady modeling of the same crystal growth processes, taking into account global heat transfer, melt flow and melt/crystal interface shape evolution. Thermal stresses in the crystal and their relaxation with generation of dislocations within the Alexander-Haasen model have been calculated simultaneously with crystallization dynamics. Comparison to experimental data showed reasonable agreement for the temperature, interface shape and dislocation density in the crystal between calculation and experiment.

  11. Academic and industry research progress in germanium nanodevices.

    PubMed

    Pillarisetty, Ravi

    2011-11-16

    Silicon has enabled the rise of the semiconductor electronics industry, but it was not the first material used in such devices. During the 1950s, just after the birth of the transistor, solid-state devices were almost exclusively manufactured from germanium. Today, one of the key ways to improve transistor performance is to increase charge-carrier mobility within the device channel. Motivated by this, the solid-state device research community is returning to investigating the high-mobility material germanium. Germanium-based transistors have the potential to operate at high speeds with low power requirements and might therefore be used in non-silicon-based semiconductor technology in the future. © 2011 Macmillan Publishers Limited. All rights reserved

  12. Germanium FCC structure from a colloidal crystal template

    SciTech Connect

    Miguez, H.; Meseguer, F.; Lopez, C.; Holgado, M.; Andreasen, G.; Mifsud, A.; Fornes, V.

    2000-05-16

    Here, the authors show a method to fabricate a macroporous structure in which the pores, essentially identical, arrange regularly in a face-centered cubic (FCC) lattice. The result is a network of air spheres in a germanium medium. This structure presents the highest dielectric contrast ({epsilon}{sub Ge}/{epsilon}{sub air} = 16) ever achieved in the optical regime in such periodic structures, which could result in important applications in photonics. The authors employ solid silica colloidal crystals (opals) as templates within which a cyclic germanium growth process is carried out. Thus, the three-dimensional periodicity of the host is inherited by the guest. Afterward, the silica is removed and a germanium opal replica is obtained.

  13. Next Generation Device Grade Silicon-Germanium on Insulator

    PubMed Central

    Littlejohns, Callum G.; Nedeljkovic, Milos; Mallinson, Christopher F.; Watts, John F.; Mashanovich, Goran Z.; Reed, Graham T.; Gardes, Frederic Y.

    2015-01-01

    High quality single crystal silicon-germanium-on-insulator has the potential to facilitate the next generation of photonic and electronic devices. Using a rapid melt growth technique we engineer tailored single crystal silicon-germanium-on-insulator structures with near constant composition over large areas. The proposed structures avoid the problem of laterally graded SiGe compositions, caused by preferential Si rich solid formation, encountered in straight SiGe wires by providing radiating elements distributed along the structures. This method enables the fabrication of multiple single crystal silicon-germanium-on-insulator layers of different compositions, on the same Si wafer, using only a single deposition process and a single anneal process, simply by modifying the structural design and/or the anneal temperature. This facilitates a host of device designs, within a relatively simple growth environment, as compared to the complexities of other methods, and also offers flexibility in device designs within that growth environment. PMID:25656076

  14. Graphene-like monolayer low-buckled honeycomb germanium film

    NASA Astrophysics Data System (ADS)

    He, Yezeng; Luo, Haibo; Li, Hui; Sui, Yanwei; Wei, Fuxiang; Meng, Qingkun; Yang, Weiming; Qi, Jiqiu

    2017-04-01

    Molecular dynamics simulations have been performed to study the cooling process of two-dimensional liquid germanium under nanoslit confinement. The results clearly indicates that the liquid germanium undergoes an obvious liquid-solid phase transition to a monolayer honeycomb film with the decrease of temperature, accompanying the rapid change in potential energy, atomic volume, coordination number and lateral radial distribution function. During the solidification process, some hexagonal atomic islands first randomly emerge in the disordered liquid film and then grow up to stable crystal grains which keep growing and finally connect together to form a honeycomb polycrystalline film. It is worth noting that the honeycomb germanium film is low-buckled, quite different from the planar graphene.

  15. Stability of Detached Grown Germanium Single Crystals

    NASA Technical Reports Server (NTRS)

    Schweizer, M.; Volz, M. P.; Cobb, S. D.; Vujisic, L.; Szofran, F. R.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Detachment of the melt meniscus from the crucible during semiconductor Bridgman growth experiments has been observed in recent years, especially under microgravity experiments. Under earth conditions, the hydrostatic pressure counteracts the mechanism, whereby it is more difficult to achieve detached Bridgman growth. Attempts to get stable detached growth under terrestrial conditions have been discussed in the literature and have been the subject of recent experiments in our own group. The advantage of crystals grown without wall contact is obvious: In general, they possess a higher crystal quality than conventional Bridgman grown crystals with wall contact. However, due to the interaction of different parameters such as the wetting behavior of the melt with the crucible, and the dependence of the growth angle with the shape of the melt meniscus, the mechanism leading to detachment is very complicated and not completely understood. We have grown several doped and undoped Germanium crystals with the detached Bridgman and the normal Bridgman growth technique. Pyrolytic boron nitride containers were used for all growth experiments. In the detached grown crystals the typical gap thickness between the pBN crucible and the crystal is in the range of 10 to 100 micrometers, which was determined by performing profilometer measurements. Etch pit density measurements were also performed and a comparison between detached and attached grown crystals will be given. An interesting feature was detected on the surface of a detached grown crystal. Strong surface striations with an average axial distance of 0.5 mm were observed around the whole circumference. The maximum fluctuation of the gap thickness is in the range of 5-10 micrometers. These variations of the detached gap along the crystal axis can be explained by a kind of stiction of the melt/crucible interface and thus by a variation of the meniscus shape. This phenomenon leading to the fluctuation of the gap thickness will be

  16. Stability of Detached Grown Germanium Single Crystals

    NASA Technical Reports Server (NTRS)

    Schweizer, M.; Volz, M. P.; Cobb, S. D.; Motakef, S.; Szofran, F. R.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Detachment of the melt meniscus from the crucible during semiconductor Bridgman growth experiments has been observed in recent years especially, under microgravity experiments. Under earth conditions, the hydrostatic pressure counteracts the mechanism, whereby it is more difficult to achieve detached Bridgman growth. Attempts to get stable detached growth under terrestrial conditions have been discussed in the literature and have been the subject of recent experiments in our own group. The advantage of crystals grown without wall contact is obvious: In general, they possess a higher crystal quality than conventional Bridgman grown crystals with wall contact. However, due to the interaction of different parameters such as the wetting behavior of the melt with the crucible, and the dependence of the growth angle with the shape of the melt meniscus, the mechanism leading to detachment is very complicated and not completely understood. We have grown several doped and undoped Germanium crystals with the detached Bridgman and the normal Bridgman growth technique. Pyrolytic boron nitride containers were used for all growth experiments. In the detached grown crystals the typical gap thickness between the pBN crucible and the crystal is in the range of 10 to 100 microns, which was determined by performing profilometer measurements. Etch pit density measurements were also performed and a comparison between detached and attached grown crystals will be given. An interesting feature was detected on the surface of a detached grown crystal. Strong surface striations with an average axial distance of 0.5mm were observed around the whole circumference. The maximum fluctuation of the gap thickness is in the range of 5-10 microns. These variations of the detached gap along the crystal axis can be explained by a kind of stiction of the melt/crucible interface and thus by a variation of the meniscus shape. This phenomenon leading to the fluctuation of the gap thickness will be

  17. Stability of Detached Grown Germanium Single Crystals

    NASA Technical Reports Server (NTRS)

    Schweizer, M.; Volz, M. P.; Cobb, S. D.; Motakef, S.; Szofran, F. R.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Detachment of the melt meniscus from the crucible during semiconductor Bridgman growth experiments has been observed in recent years especially, under microgravity experiments. Under earth conditions, the hydrostatic pressure counteracts the mechanism, whereby it is more difficult to achieve detached Bridgman growth. Attempts to get stable detached growth under terrestrial conditions have been discussed in the literature and have been the subject of recent experiments in our own group. The advantage of crystals grown without wall contact is obvious: In general, they possess a higher crystal quality than conventional Bridgman grown crystals with wall contact. However, due to the interaction of different parameters such as the wetting behavior of the melt with the crucible, and the dependence of the growth angle with the shape of the melt meniscus, the mechanism leading to detachment is very complicated and not completely understood. We have grown several doped and undoped Germanium crystals with the detached Bridgman and the normal Bridgman growth technique. Pyrolytic boron nitride containers were used for all growth experiments. In the detached grown crystals the typical gap thickness between the pBN crucible and the crystal is in the range of 10 to 100 microns, which was determined by performing profilometer measurements. Etch pit density measurements were also performed and a comparison between detached and attached grown crystals will be given. An interesting feature was detected on the surface of a detached grown crystal. Strong surface striations with an average axial distance of 0.5mm were observed around the whole circumference. The maximum fluctuation of the gap thickness is in the range of 5-10 microns. These variations of the detached gap along the crystal axis can be explained by a kind of stiction of the melt/crucible interface and thus by a variation of the meniscus shape. This phenomenon leading to the fluctuation of the gap thickness will be

  18. Stability of Detached Grown Germanium Single Crystals

    NASA Technical Reports Server (NTRS)

    Schweizer, M.; Volz, M. P.; Cobb, S. D.; Vujisic, L.; Szofran, F. R.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Detachment of the melt meniscus from the crucible during semiconductor Bridgman growth experiments has been observed in recent years, especially under microgravity experiments. Under earth conditions, the hydrostatic pressure counteracts the mechanism, whereby it is more difficult to achieve detached Bridgman growth. Attempts to get stable detached growth under terrestrial conditions have been discussed in the literature and have been the subject of recent experiments in our own group. The advantage of crystals grown without wall contact is obvious: In general, they possess a higher crystal quality than conventional Bridgman grown crystals with wall contact. However, due to the interaction of different parameters such as the wetting behavior of the melt with the crucible, and the dependence of the growth angle with the shape of the melt meniscus, the mechanism leading to detachment is very complicated and not completely understood. We have grown several doped and undoped Germanium crystals with the detached Bridgman and the normal Bridgman growth technique. Pyrolytic boron nitride containers were used for all growth experiments. In the detached grown crystals the typical gap thickness between the pBN crucible and the crystal is in the range of 10 to 100 micrometers, which was determined by performing profilometer measurements. Etch pit density measurements were also performed and a comparison between detached and attached grown crystals will be given. An interesting feature was detected on the surface of a detached grown crystal. Strong surface striations with an average axial distance of 0.5 mm were observed around the whole circumference. The maximum fluctuation of the gap thickness is in the range of 5-10 micrometers. These variations of the detached gap along the crystal axis can be explained by a kind of stiction of the melt/crucible interface and thus by a variation of the meniscus shape. This phenomenon leading to the fluctuation of the gap thickness will be

  19. Germanium terminated (1 0 0) diamond.

    PubMed

    Sear, Michael J; Schenk, Alex K; Tadich, Anton; Spencer, Benjamin J; Wright, Christopher A; Stacey, Alastair; Pakes, Chris I

    2017-04-12

    An ordered germanium terminated (1 0 0) diamond surface has been formed and characterised using a combination of low energy electron diffraction and synchrotron-based core level photoemission spectroscopy. A number of preparation methods are explored, in each case inducing a two domain [Formula: see text] surface reconstruction. The surface becomes saturated with bonded germanium such that each [Formula: see text] unit cell hosts 1.26 Ge atoms on average, and possesses a negative electron affinity of  -0.71 eV.

  20. Comparative infrared study of silicon and germanium nitrides

    NASA Astrophysics Data System (ADS)

    Baraton, M. I.; Marchand, R.; Quintard, P.

    1986-03-01

    Silicon and germanium nitride (Si 3N 4 and Ge 3N 4) are isomorphic compounds. They have been studied in the β-phase which crystallises in the hexagonal system. The space group is P6 3/m (C 6h2). The IR transmission spectra of these two nitrides are very similar but the absorption frequencies of germanium nitride are shifted to the lower values in comparison with silicon nitride. We noted that the atomic mass effect is the only cause of this shift for the streching modes but not for the bending modes.

  1. The Novel Synthesis of Silicon and Germanium Nanocrystallites

    SciTech Connect

    Kauzlarich, S M; Liu, Q; Yin, S C; Lee, W H; Taylor, B

    2001-04-03

    Interest in the synthesis of semiconductor nanoparticles has been generated by their unusual optical and electronic properties arising from quantum confinement effects. We have synthesized silicon and germanium nanoclusters by reacting Zintl phase precursors with either silicon or germanium tetrachloride in various solvents. Strategies have been investigated to stabilize the surface, including reactions with RLi and MgBrR (R = alkyl). This synthetic method produces group IV nanocrystals with passivated surfaces. These nanoparticle emit over a very large range in the visible region. These particles have been characterized using HRTEM, FTIR, UV-Vis, solid state NMR, and fluorescence. The synthesis and characterization of these nanoclusters will be presented.

  2. Germanium terminated (1 0 0) diamond

    NASA Astrophysics Data System (ADS)

    Sear, Michael J.; Schenk, Alex K.; Tadich, Anton; Spencer, Benjamin J.; Wright, Christopher A.; Stacey, Alastair; Pakes, Chris I.

    2017-04-01

    An ordered germanium terminated (1 0 0) diamond surface has been formed and characterised using a combination of low energy electron diffraction and synchrotron-based core level photoemission spectroscopy. A number of preparation methods are explored, in each case inducing a two domain ≤ft(3× 1\\right) surface reconstruction. The surface becomes saturated with bonded germanium such that each ≤ft(3× 1\\right) unit cell hosts 1.26 Ge atoms on average, and possesses a negative electron affinity of  ‑0.71 eV.

  3. Measurement and simulation of the segmented Germanium-Detector's Efficiency

    NASA Astrophysics Data System (ADS)

    Salem, Shadi

    This paper presents the methods to determine the detection efficiency of the segmented germanium detector. Two methods are given for the investigating the detection efficiency of the semiconductor segmented-germanium detector. Experimental measurements using radioactive sources are reported. The radioactive sources, which were involved, can give us the opportunity to cover the photon energy ranging up to hundreds of keV. A useful compilation is included of the latest values of the emission rates per decay for the following radioactive sources: 241Am and 133Ba. The second method, the simulation of the efficiency is involved for comparison purposes. A good agreement between the measurements and the simulation is obtained.

  4. Silicon germanium semiconductive alloy and method of fabricating same

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor)

    2008-01-01

    A silicon germanium (SiGe) semiconductive alloy is grown on a substrate of single crystalline Al.sub.2O.sub.3. A {111} crystal plane of a cubic diamond structure SiGe is grown on the substrate's {0001} C-plane such that a <110> orientation of the cubic diamond structure SiGe is aligned with a <1,0,-1,0> orientation of the {0001} C-plane. A lattice match between the substrate and the SiGe is achieved by using a SiGe composition that is 0.7223 atomic percent silicon and 0.2777 atomic percent germanium.

  5. Solution-Processed Germanium Nanowire-Positioned Schottky Solar Cells

    DTIC Science & Technology

    2011-04-01

    available soon. Solution-processed germanium nanowire-positioned Schottky solar cells Nanoscale Research Letters 2011, 6:287 doi:10.1186/1556-276X-6-287 Ju...DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Solution-processed germanium nanowire-positioned Schottky solar cells 5a. CONTRACT...nanowire (GeNW)-positioned Schottky solar cell was fabricated by a solution process. A GeNW-containing solution was spread out onto asymmetric metal

  6. High-Pressure Viewports for Infrared Systems. Phase 1. Germanium

    DTIC Science & Technology

    1980-09-01

    associated with a base metal ore, like ores of zinc,. o lead, or copper (table 2). - Although the germanium content of sphalerite is quite low, it...zinc smelting process takes place in three steps: (1) processing of zinc sulfide ores to obtain 8 Piedmont. JR. and JR Riordan, The Supply of...PPM Sphalerite ZnS 100-1850 Chalcopyrite CuFeS2 10-40 Enargite Cu3 AsS4 10-80 Cassiterite SnO 4 10 Table 2. Minerals containing germanium. zinc

  7. Servo System for the Athermalisation of a Germanium Lens,

    DTIC Science & Technology

    1982-11-01

    AD-A129 355 SERVO SYSTEM FOR THE ATHERMALISATION OF A GERMANIUM 1/I LENS(U) ROYAL SIGNALS AND RADAR ESTABLISHMENT MALVERN (ENGLAND) I C CARMICHAEL ET...St*%0AftS-,94-A .1 I.I ! / ,It ’IL"ITE Bi187081 RSRE MEMORANDUM No. 3527 ROYAL SIGNALS & RADAR ESTABLISHMENT SERVO SYSTEM FOR THE ATHERMALISATION OF...LA -4N ROYAL SIGNALS AND RADAR ESTABLISHMENT Memorandum 3527 Title: SERVO SYSTEM FOR THE ATHERMALISATION OF A GERMANIUM LENS Authors: I C Carmichael

  8. The GALATEA test-facility for high purity germanium detectors

    NASA Astrophysics Data System (ADS)

    Abt, I.; Caldwell, A.; Dönmez, B.; Garbini, L.; Irlbeck, S.; Majorovits, B.; Palermo, M.; Schulz, O.; Seitz, H.; Stelzer, F.

    2015-05-01

    GALATEA is a test facility designed to investigate bulk and surface effects in high purity germanium detectors. A vacuum tank houses a cold volume with the detector inside. A system of three precision motorized stages allows an almost complete scan of the detector. The main feature of GALATEA is that there is no material between source and detector. This allows the usage of alpha and beta sources to study surface effects. A 19-fold segmented true-coaxial germanium detector was used for commissioning. A first analysis of data obtained with an alpha source is presented here.

  9. Multiplexing photonic devices integrated on a silicon/germanium platform for the mid-infrared

    NASA Astrophysics Data System (ADS)

    Labeye, P.; Koshkinbayeva, A.; Dupoy, M.; Barritault, P.; Lartigue, O.; Fournier, M.; Fedeli, J.-M.; Boutami, S.; Garcia, S.; Nicoletti, S.; Duraffourg, L.

    2017-02-01

    With the recent progress in integrated silicon photonics technology and the recent development of efficient quantum cascade laser technology (QCL), there is now a very good opportunity to investigate new gas sensors offering both very high sensitivity, high selectivity (multi-gas sensing, atmosphere analysis) and low cost thanks to the integration on planar substrate. In this context, we have developed singlemode optical waveguides in the mid-infrared based on Silicon/Germanium alloy integrated on silicon. These waveguides, compatible with standard microelectronic technologies present very low loss in the 3300 - 1300 cm-1 range. This paper presents the design, technological realization, and characterization of array waveguide grating devices specifically developed for the simultaneous detection of several gas using arrays of QCL sources. Gas sensing generally requires a tunable source continuously covering the whole operational range of the QCL stack. With this objective, specific design has been adopted to flatten the optical transfer function of the whole multiplexers. Samples devices around 2235cm-1 were realized and tested and showed results in good agreement with the modeling, flat transmission over a full 100 cm-1 operational range were obtained with a peak-to-valley modulation of -5dB were experimentally measured. These devices will be soon associated with QCL arrays in order to provide integrated, powerful, multi wavelength, laser sources in the 2235 cm-1 region applicable to NO, CO, and CO2 multi-gas sensor.

  10. Germanium-doped crystalline silicon: Effects of germanium doping on boron-related defects

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaodong; Yu, Xuegong; Yang, Deren

    2014-09-01

    Recently it has been recognized that germanium (Ge) doping can be used for microelectronics and photovoltaic devices. This article reviews the recent results about the effects of Ge doping on boron-related defects in crystalline silicon. Behavior of Ge interacting with the acceptor dopants is also discussed therein. In addition, the article provides a comprehensive review on the effect of Ge doping to the formation of iron-boron pairs and boron-oxygen defects that is responsible for the light induced degradation (LID) of the carrier lifetime. The improvement silicon-based solar cells application from Ge doping is discussed as well, including the increment of cell efficiency and the power output of corresponding modules under sunlight illumination.

  11. Detached Bridgman Growth of Germanium and Germanium-Silicon Alloy Crystals

    NASA Technical Reports Server (NTRS)

    Szofran, F. R.; Volz, M. P.; Schweizer, M.; Cobb, S. D.; Motakef, S.; Croell, A.; Dold, P.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Earth based experiments on the science of detached crystal growth are being conducted on germanium and germanium-silicon alloys (2 at% Si average composition) in preparation for a series of experiments aboard the International Space Station (ISS). The purpose of the microgravity experiments includes differentiating among proposed mechanisms contributing to detachment, and confirming or refining our understanding of the detachment mechanism. Because large contact angle are critical to detachment, sessile drop measurements were used to determine the contact angles as a function of temperature and composition for a large number of substrates made of potential ampoule materials. Growth experiments have used pyrolytic boron nitride (pBN) and fused silica ampoules with the majority of the detached results occurring predictably in the pBN. The contact angles were 173 deg (Ge) and 165 deg (GeSi) for pBN. For fused silica, the contact angle decreases from 150 deg to an equilibrium value of 117 deg (Ge) or from 129 deg to an equilibrium value of 100 deg (GeSi) over the duration of the experiment. The nature and extent of detachment is determined by using profilometry in conjunction with optical and electron microscopy. The stability of detachment has been analyzed, and an empirical model for the conditions necessary to achieve sufficient stability to maintain detached growth for extended periods has been developed. Results in this presentation will show that we have established the effects on detachment of ampoule material, pressure difference above and below the melt, and silicon concentration; samples that are nearly completely detached can be grown repeatedly in pBN.

  12. Novel approach for n-type doping of HVPE gallium nitride with germanium

    NASA Astrophysics Data System (ADS)

    Hofmann, Patrick; Krupinski, Martin; Habel, Frank; Leibiger, Gunnar; Weinert, Berndt; Eichler, Stefan; Mikolajick, Thomas

    2016-09-01

    We present a novel method for germanium doping of gallium nitride by in-situ chlorination of solid germanium during the hydride vapour phase epitaxy (HVPE) process. Solid germanium pieces were placed in the doping line with a hydrogen chloride flow directed over them. We deduce a chlorination reaction taking place at 800 ° C , which leads to germanium chloroform (GeHCl3) or germanium tetrachloride (GeCl4). The reactor shows a germanium rich residue after in-situ chlorination experiments, which can be removed by hydrogen chloride etching. All gallium nitride crystals exhibit n-type conductivity, which shows the validity of the in-situ chlorination of germanium for doping. A complex doping profile is found for each crystal, which was assigned to a combination of localised supply of the dopant and sample rotation during growth and switch-off effects of the HVPE reactor.

  13. Low-background detector arrays for infrared astronomy

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R.; Estrada, J. A.; Goebel, J. H.; Mckelvey, M. E.; Mckibbin, D. D.; Mcmurray, R. E., Jr.; Weber, T. T.

    1989-01-01

    The status of a program which develops and characterizes integrated infrared (IR) detector array technology for space astronomical applications is described. The devices under development include intrinsic, extrinsic silicon, and extrinsic germanium detectors, coupled to silicon readout electronics. Low-background laboratory test results include measurements of responsivity, noise, dark current, temporal response, and the effects of gamma-radiation. In addition, successful astronomical imagery has been obtained on some arrays from this program. These two aspects of the development combine to demonstrate the strong potential for integrated array technology for IR space astronomy.

  14. PHASE EQUILIBRIUM STUDIES OF GERMANIUM AND SILICON AT HIGH PRESSURES.

    DTIC Science & Technology

    phase Ge-IV with the body centered cubic structure . The triple point between Ge-I (diamond structure), Ge-III (body centered tetragonal) and Ge-IV (body...Another new phase with the simple cubic structure has been detected for the first time although its relations to the other polymorphs of germanium has

  15. Deformation potential constants of gallium impurity in germanium

    NASA Astrophysics Data System (ADS)

    Martin, A. D.; Fisher, P.; Freeth, C. A.; Salib, E. H.; Simmonds, P. E.

    1983-12-01

    The deformation potential constants and intensity parameters of some of the states and optically induced transitions of gallium impurity in germanium have been determined both experimentally and theoretically. The latter are based on the effective mass wavefunctions of Kohn and Schechter and of Mendelson and James. Reasonably good agreement is found between the experimental and theoretical results.

  16. Enhanced life ion source for germanium and carbon ion implantation

    SciTech Connect

    Hsieh, Tseh-Jen; Colvin, Neil; Kondratenko, Serguei

    2012-11-06

    Germanium and carbon ions represent a significant portion of total ion implantation steps in the process flow. Very often ion source materials that used to produce ions are chemically aggressive, especially at higher temperatures, and result in fast ion source performance degradation and a very limited lifetime [B.S. Freer, et. al., 2002 14th Intl. Conf. on Ion Implantation Technology Proc, IEEE Conf. Proc., p. 420 (2003)]. GeF{sub 4} and CO{sub 2} are commonly used to generate germanium and carbon beams. In the case of GeF{sub 4} controlling the tungsten deposition due to the de-composition of WF{sub 6} (halogen cycle) is critical to ion source life. With CO{sub 2}, the materials oxidation and carbon deposition must be controlled as both will affect cathode thermionic emission and anti-cathode (repeller) efficiencies due to the formation of volatile metal oxides. The improved ion source design Extended Life Source 3 (Eterna ELS3) together with its proprietary co-gas material implementation has demonstrated >300 hours of stable continuous operation when using carbon and germanium ion beams. Optimizing cogas chemistries retard the cathode erosion rate for germanium and carbon minimizes the adverse effects of oxygen when reducing gas is introduced for carbon. The proprietary combination of hardware and co-gas has improved source stability and the results of the hardware and co-gas development are discussed.

  17. Solution-processable white-light-emitting germanium nanocrystals

    SciTech Connect

    Shirahata, Naoto

    2014-06-01

    This paper describes an efficient chemical route for the synthesis of visible light emitting nanocrystals of germanium (ncGe). The synthesis started by heating Ge(II) iodide at 300 °C in argon atmosphere. Spectroscopic characterizations confirmed the formation of diamond cubic lattice structures of ncGe. By grafting hydrophobic chains on the ncGe surface, the dispersions in nonpolar solvents of the ncGe became very stable. The as-synthesized ncGe showed the bluish white photoluminescence (PL) feature, but it was found that the PL spectrum is composed of many different emission spectra. Therefore, the color-tuning of white light emission is demonstrated through the witting removal of extra ncGe with unfavorable emission feature by making full use of column chromatographic techniques. - Highlights: • Visible light emitting nanocrystals of germanium was synthesized by chemical reduction of germanium iodide. • White light emission was achieved by control over size distribution of germanium nanocrystals. • Tuning the color of white light was achieved by separation of nanocrystals by emission.

  18. Active noise canceling system for mechanically cooled germanium radiation detectors

    DOEpatents

    Nelson, Karl Einar; Burks, Morgan T

    2014-04-22

    A microphonics noise cancellation system and method for improving the energy resolution for mechanically cooled high-purity Germanium (HPGe) detector systems. A classical adaptive noise canceling digital processing system using an adaptive predictor is used in an MCA to attenuate the microphonics noise source making the system more deployable.

  19. Modified matrix volatilization setup for characterization of high purity germanium.

    PubMed

    Meruva, Adisesha Reddy; Raparthi, Shekhar; Kumar, Sunil Jai

    2016-01-01

    Modified matrix volatilization (MV) method has been described to characterize high purity germanium material of 7 N (99.99999%) purity. Transport of both, the chlorine gas generated in-situ in this method and the argon gas (carrier) is fine controlled by means of a mass flow controller. This enabled both uniform reaction of chlorine gas with the germanium matrix and smooth removal of germanium matrix as its chloride. This resulted in improvement in the reproducibility of the analytical results. The use of quartz reaction vessel has lead to the reduction in the process blank levels. The combined effect of these modifications in the MV setup has resulted in very consistent and low process blanks and hence improved detection limits of this method. Applicability of the method has been expanded to rare earth elements and other elements after examining their recoveries. The quantification is done by using inductively coupled plasma quadrupole mass spectrometer (ICP-QMS) and continuum source graphite furnace atomic absorption spectrometry (CS-GFAAS). In the absence of certified reference materials for high pure germanium, the accuracy of the method is established by spike recovery tests. The precision of the method has been found to vary from 1 to 30% for concentrations between 1 and 30 ng g(-1). The limits of detection (LOD) for the target analytes are found to be between 18 and 0.033 ng g(-1). Copyright © 2015 Elsevier B.V. All rights reserved.

  20. [Spectroscopic properties of Er3+-doped germanium bismuthate glass].

    PubMed

    Zhang, Yong; Ren, Guo-Zhong; Yang, Qi-Bin; Xu, Chang-Fu; Liu, Yun-Xin; Shang, Zhen-Gang

    2008-05-01

    Er(3+)-Doped Germanium Bismuthate Glass was fabricated and characterized. The absorption spectrum and up-conversion spectrum of glass were studied. The Judd-Oflet intensity parameters omega(t) (t = 2, 4, 6), determined based on Judd-Ofelt theory, were found to be omega2 = 3.35 x 10(-20) cm2, omega4 = 1.34 x 10(-20) cm2, omega6 = 0.67 x 10(-20) cm2. Frequency up-conversion of Er(3+)-doped germanium bismuthate glass has been investigated. The up-conversion mechanisms are discussed under 808 nm and 980 nm excitation. Stimulated emission cross-section of 4I(13/2) --> 4I(15/2) transition was calculated by McCumber theory. Compared to other host glasses, the emission property of Er(3+)-doped germanium bismuthate glasses has advantage over those of silicate, phosphate and germinate glasses. Er(3+)-doped germanium bismuth glasses are promising upconversion optical and optic-communication materials.

  1. The 100 micron detector development program. [gallium doped germanium photoconductors

    NASA Technical Reports Server (NTRS)

    Moore, W. J.

    1976-01-01

    An effort to optimize gallium-doped germanium photoconductors (Ge:Ga) for use in space for sensitive detection of far infrared radiation in the 100 micron region is described as well as the development of cryogenic apparatus capable of calibrating detectors under low background conditions.

  2. Discovery of gallium, germanium, lutetium, and hafnium isotopes

    SciTech Connect

    Gross, J.L.; Thoennessen, M.

    2012-09-15

    Currently, twenty-eight gallium, thirty-one germanium, thirty-five lutetium, and thirty-six hafnium isotopes have been observed and the discovery of these isotopes is described here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  3. Modeling of Boron and Phosphorus Implantation into (100) Germanium

    SciTech Connect

    Suh,Y.; Carroll, M.; Levy, R.; Sahiner, M.; Bisognin, G.; King, C.

    2005-01-01

    Boron and phosphorus implants into germanium and silicon with energies from 20 to 320 keV and ion doses from 5x10{sup 13} to 5x10{sup 16} cm{sup -2} were characterized using secondary ion mass spectrometry. The first four moments of all implants were calculated from the experimental data. Both the phosphorus and boron implants were found to be shallower in the germanium than in the silicon for the same implant parameters and high hole concentrations, as high as 2x10{sup 20} cm{sup -3}, were detected by spreading resistance profiling immediately after boron implants without subsequent annealing. Channeling experiments using nuclear reaction analysis also indicated high substitutional fractions ({approx}19%) even in the highest dose case immediately after implant. A greater straggle (second moment) is, however, observed in the boron implants in the germanium than in the silicon despite having a shorter projected range in the germanium. Implant profiles predicted by Monte Carlo simulations and Lindhard-Scharff-Schiott theory were calculated to help clarify the implant behavior. Finally, the experimentally obtained moments were used to calculate Pearson distribution fits to the boron and phosphorus implants for rapid simulation of nonamorphizing doses over the entire energy range examined.

  4. Evaluation of Segmented Amorphous-Contact Planar Germanium Detectors for Heavy-Element Research

    NASA Astrophysics Data System (ADS)

    Jackson, Emily G.

    The challenge of improving our understanding of the very heaviest nuclei is at the forefront of contemporary low-energy nuclear physics. In the last two decades, "in-beam" spectroscopy experiments have advanced from Z=98 to Z=104, Rutherfordium, allowing insights into the dynamics of the fission barrier, high-order deformations, and pairing correlations. However, new detector technologies are needed to advance to even heavier nuclei. This dissertation is aimed at evaluating one promising new technology; large segmented planar germanium wafers for this area of research. The current frontier in gamma-ray spectroscopy involves large-volume (>9 cm thick) coaxial detectors that are position sensitive and employ gamma-ray "tracking". In contrast, the detectors assessed in this dissertation are relatively thin (~1 cm) segmented planar wafers with amorphous-germanium strip contacts that can tolerate extremely high gamma-ray count rates, and can accommodate hostile neutron fluxes. They may be the only path to heavier "in-beam" spectroscopy with production rates below 1 nanobarn. The resiliency of these detectors against neutron-induced damage is examined. Two detectors were deliberately subjected to a non-uniform neutron fluence leading to considerable degradation of performance. The neutrons were produced using the 7Li(p, n)7Be reaction at the UMass Lowell Van-de-Graaff accelerator with a 3.7-MeV proton beam incident on a natural Li target. The energy of the neutrons emitted at zero degrees was 2.0 MeV, close to the mean energy of the fission neutron spectrum, and each detector was exposed to a fluence >3.6 x109 n/cm2. A 3-D software "trap-corrector" gain-matching algorithm considerably restored the overall performance. Other neutron damage mitigation tactics were explored including over biasing the detector and flooding the detector with a high gamma-ray count rate. Various annealing processes to remove neutron damage were investigated. An array of very large diameter

  5. An environmentally-friendly vacuum reduction metallurgical process to recover germanium from coal fly ash.

    PubMed

    Zhang, Lingen; Xu, Zhenming

    2016-07-15

    The demand for germanium in the field of semiconductor, electronics, and optical devices is growing rapidly; however, the resources of germanium are scarce worldwide. As a secondary material, coal fly ash could be further recycled to retrieve germanium. Up to now, the conventional processes to recover germanium have two problems as follows: on the one hand, it is difficult to be satisfactory for its economic and environmental effect; on the other hand, the recovery ratio of germanium is not all that could be desired. In this paper, an environmentally-friendly vacuum reduction metallurgical process (VRMP) was proposed to recover germanium from coal fly ash. The results of the laboratory scale experiments indicated that the appropriate parameters were 1173K and 10Pa with 10wt% coke addition for 40min, and recovery ratio germanium was 93.96%. On the basis of above condition, the pilot scale experiments were utilized to assess the actual effect of VRMP for recovery of germanium with parameter of 1473K, 1-10Pa and heating time 40min, the recovery ratio of germanium reached 94.64%. This process considerably enhances germanium recovery, meanwhile, eliminates much of the water usage and residue secondary pollution compared with other conventional processes. Copyright © 2016. Published by Elsevier B.V.

  6. Detached Bridgman Growth of Germanium and Germanium-Silicon Alloy Crystals

    NASA Technical Reports Server (NTRS)

    Szofran, F. R.; Volz, M. P.; Schweizer, M.; Kaiser, N.; Cobb, S. D.; Motakef, S.; Vujisic, L. J.; Croell, A.; Dold, P.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Earth based experiments on the science of detached crystal growth are being conducted on germanium and germanium-silicon alloys (2at% Si average composition) in preparation for a series of experiments aboard the International Space Station (ISS) to differentiate among proposed mechanisms contributing to detachment. Sessile drop measurements were first carried out for a large number of substrates made of potential ampoule materials to determine the contact angles and the surface tension as a function of temperature and composition. The process atmosphere and duration of the experiment (for some cases) were also found to have significant influence on the wetting angle. Growth experiments have used pyrolytic boron nitride (pBN) and fused silica ampoules with the majority of the detached results occurring predictably in the pBN. The contact angles were 173 deg (Ge) and 165 deg (GeSi) for pBN. For fused silica, the contact angle decreases to an equilibrium value with duration of measurement ranging from 150 to 117 deg (Ge), 129 to 100 deg (GeSi). Forming gas (Ar + 2% H2) and vacuum have been used in the growth ampoules. With gas in the ampoule, a variation of the temperature profile during growth has been used to control the pressure difference between the top of the melt and the volume below the melt caused by detachment of the growing crystal. The stability of detachment has been modeled and substantial insight has been gained into the reasons that detachment has most often been observed in reduced gravity but nonetheless has occurred randomly even there. An empirical model for the conditions necessary to achieve sufficient stability to maintain detached growth for extended periods has been developed and will be presented. Methods for determining the nature and extent of detachment include profilometry and optical and electron microscopy. This surface study is the subject of another presentation at this Congress. Results in this presentation will show that we have

  7. Gamma-ray array physics.

    SciTech Connect

    Lister, C. J.

    1999-05-25

    In this contribution I am going to discuss the development of large arrays of Compton Suppressed, High Purity Germanium (HpGe) detectors and the physics that has been, that is being, and that will be done with them. These arrays and their science have dominated low-energy nuclear structure research for the last twenty years and will continue to do so in the foreseeable future. John Sharpey Schafer played a visionary role in convincing a skeptical world that the development of these arrays would lead to a path of enlightenment. The extent to which he succeeded can be seen both through the world-wide propagation of ever more sophisticated devices, and through the world-wide propagation of his students. I, personally, would not be working in research if it were not for Johns inspirational leadership. I am eternally grateful to him. Many excellent reviews of array physics have been made in the past which can provide detailed background reading. The review by Paul Nolan, another ex-Sharpey Schafer student, is particularly comprehensive and clear.

  8. Germanium, Arsenic, and Selenium Abundances in Metal-poor Stars

    NASA Astrophysics Data System (ADS)

    Roederer, Ian U.

    2012-09-01

    The elements germanium (Ge, Z = 32), arsenic (As, Z = 33), and selenium (Se, Z = 34) span the transition from charged-particle or explosive synthesis of the iron-group elements to neutron-capture synthesis of heavier elements. Among these three elements, only the chemical evolution of germanium has been studied previously. Here we use archive observations made with the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope and observations from several ground-based facilities to study the chemical enrichment histories of seven stars with metallicities -2.6 <= [Fe/H] <= -0.4. We perform a standard abundance analysis of germanium, arsenic, selenium, and several other elements produced by neutron-capture reactions. When combined with previous derivations of germanium abundances in metal-poor stars, our sample reveals an increase in the [Ge/Fe] ratios at higher metallicities. This could mark the onset of the weak s-process contribution to germanium. In contrast, the [As/Fe] and [Se/Fe] ratios remain roughly constant. These data do not directly indicate the origin of germanium, arsenic, and selenium at low metallicity, but they suggest that the weak and main components of the s-process are not likely sources. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. This research made use of StarCAT, hosted by the Mikulski Archive at the Space Telescope Science Institute (MAST). These data are associated with Programs GO-7348, GO-7433, GO-8197, GO-9048, GO-9455, and GO-9804.Based on data obtained from the European Southern Observatory (ESO) Science Archive Facility. These data are associated with Programs 67.D-0439(A), 074.C-0364(A), 076.B-0055(A), and 080.D-0347(A).This research has made use of the Keck Observatory Archive (KOA), which is operated by

  9. Magnetic arrays

    DOEpatents

    Trumper, D.L.; Kim, W.; Williams, M.E.

    1997-05-20

    Electromagnet arrays are disclosed which can provide selected field patterns in either two or three dimensions, and in particular, which can provide single-sided field patterns in two or three dimensions. These features are achieved by providing arrays which have current densities that vary in the windings both parallel to the array and in the direction of array thickness. 12 figs.

  10. Magnetic arrays

    SciTech Connect

    Trumper, David L.; Kim, Won-jong; Williams, Mark E.

    1997-05-20

    Electromagnet arrays which can provide selected field patterns in either two or three dimensions, and in particular, which can provide single-sided field patterns in two or three dimensions. These features are achieved by providing arrays which have current densities that vary in the windings both parallel to the array and in the direction of array thickness.

  11. Large-volume ultralow background germanium-germanium coincidence/anticoincidence gamma-ray spectrometer

    SciTech Connect

    Brodzinski, R.L.; Brown, D.P.; Evans, J.C. Jr.; Hensley, W.K.; Reeves, J.H.; Wogman, N.A.; Avignone, F.T. III; Miley, H.S.; Moore, R.S.

    1984-03-01

    A large volume (approx. 1440 cm/sup 3/), multicrystal, high resolution intrinsic germanium gamma-ray spectrometer has been designed based on 3 generations of experiments. The background from construction materials used in standard commercial configurations has been reduced by at least two orders of magnitude. Data taken with a 132 cm/sup 3/ prototype detector, installed in the Homestake Gold Mine, are presented. The first application of the full scale detector will be an ultrasensitive search for neutrinoless and two-neutrino double beta decay of /sup 76/Ge. The size and geometrical configuration of the crystals is chosen to optimize detection of double decay to the first excited state of /sup 76/Se with subsequent emission of a 559 keV gamma ray. The detector will be sufficiently sensitive for measuring the neutrinoless double beta decay to the ground state to establish a minimum half life of 1.4.10/sup 24/ y. Application of the large spectrometer system to the analysis of low level environmental and biological samples is discussed.

  12. Bioaccumulation of germanium by Pseudomonas putida in the presence of two selected substrates

    SciTech Connect

    Chmielowski, J.; Klapcinska, B.

    1986-05-01

    The uptake of germanium by Pseudomonas putida ATCC 33015 was studied in the presence of catechol or acetate or both as representative substrates differing in their ability to form complexes with this element. The bacteria were taken from a batch culture grown on acetate as the sole carbon source. Cells introduced into a medium containing germanium and either catechol or a mixture of catechol and acetate accumulated germanium in a biphasic way. After a lower level of accumulation that corresponded to the value obtained in the presence of acetate was reached, a further increase in the germanium content up to a higher saturation level was observed. The appearance of the second step of accumulation, which corresponded to the linear degradation of catechol, proved that catechol facilitated the transport of germanium into the cells through the nonspecific uptake of the germanium-catechol complex by an inducible catechol transport system.

  13. Single-crystal germanium grown on (1-1 0 2) sapphire by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Godbey, D. J.; Qadri, S. B.; Twigg, M. E.; Richmond, E. D.

    1989-06-01

    Crystalline germanium films have been successfully grown on the (1-1 0 2) sapphire surface using molecular beam epitaxy. Growth at temperatures above 700 C and after preannealing the sapphire substrates above 1100 C resulted in germanium films with a (110) orientation. A 500 nm germanium film grown at 800 C after preannealing the sapphire substrate at 1400 C gave an X-ray rocking curve width that measured 317 arcsec at half maximum for the (220) reflection.

  14. Investigation of adatom adsorption on single layer buckled germanium selenide

    NASA Astrophysics Data System (ADS)

    Arkın, H.; Aktürk, E.

    2016-12-01

    A recent study of Hu et al. [1] predicted that 2D single layer of asymmetric washboard germanium selenide is found to be stable and display semiconducting properties. Motivating from this study, we have shown that another phase, which is 2D buckled honeycomb germanium selenide, is also stable. This phase exhibits semiconducting behavior with a band gap of 2.29 eV. Furthermore, on the basis of the first principles, spin-polarized density functional calculations, we investigate the effect of selected adatoms adsorption on the b-GeSe single layer. The adatoms Se, Ge, S, Si, C, Br and P are chemisorbed with significant binding energy where this effects modify the electronic structure of the single layer buckled GeSe locally by tuning the band gap. Net integer magnetic moment can be achieved and b-GeSe attains half metallicity through the adsorption of Si, Ge, P and Br.

  15. Development of neutron-transmutation-doped germanium bolometer material

    SciTech Connect

    Palaio, N.P.

    1983-08-01

    The behavior of lattice defects generated as a result of the neutron-transmutation-doping of germanium was studied as a function of annealing conditions using deep level transient spectroscopy (DLTS) and mobility measurements. DLTS and variable temperature Hall effect were also used to measure the activation of dopant impurities formed during the transmutation process. In additioon, a semi-automated method of attaching wires on to small chips of germanium (< 1 mm/sup 3/) for the fabrication of infrared detecting bolometers was developed. Finally, several different types of junction field effect transistors were tested for noise at room and low temperature (approx. 80 K) in order to find the optimum device available for first stage electronics in the bolometer signal amplification circuit.

  16. Synthesis and photoluminescence of ultra-pure germanium nanoparticles

    NASA Astrophysics Data System (ADS)

    Chivas, R.; Yerci, S.; Li, R.; Dal Negro, L.; Morse, T. F.

    2011-09-01

    We have used aerosol deposition to synthesize defect and micro-strain free, ultra-pure germanium nanoparticles. Transmission electron microscopy images show a core-shell configuration with highly crystalline core material. Powder X-ray diffraction measurements verify the presence of highly pure, nano-scale germanium with average crystallite size of 30 nm and micro-strain of 0.058%. X-ray photoelectron spectroscopy demonstrates that GeO x ( x ⩽ 2) shells cover the surfaces of the nanoparticles. Under optical excitation, these nanoparticles exhibit two separate emission bands at room temperature: a visible emission at 500 nm with 0.5-1 ns decay times and an intense near-infrared emission at 1575 nm with up to ˜20 μs lifetime.

  17. Characterization of the impurities in tungsten/silicon-germanium contacts

    SciTech Connect

    Gregg, H.A. Sr.

    1986-03-26

    Secondary ion mass spectrometry and Auger electron spectrometry depth profiling were used to determine impurity distributions in sputter deposited tungsten films over N-type and P-type 80/20 silicon-germanium elements of thermoelectric devices. These analyses showed that silicon, oxygen, sodium, boron, and phosphorous were present as impurities in the tungsten film. All these impurities except oxygen and sodium came from the substrate. Oxygen was gettered by the tungsten films, while sodium was possibly the result of sample handling. Further, the results from this study indicate that an oxide build-up, primarily at the tungsten/silicon-germanium interface of the N-type materials, is the major contributor to contact resistance in thermoelectric devices.

  18. Discovery of Photospheric Germanium in Hot DA White Dwarfs

    NASA Astrophysics Data System (ADS)

    Vennes, Stéphane; Chayer, Pierre; Dupuis, Jean

    2005-04-01

    We report the identification of Ge IV resonance lines in ultraviolet spectra of the hot DA white dwarfs Feige 24, G191-B2B, and GD 246. The lines originate in the stellar photosphere, and we measure low Ge/H abundance ratios ranging between -8.0 and -8.7. We also tentatively identify a resonance line of Sn IV blended with an Fe V line in the spectrum of G191-B2B. The presence of germanium extends our knowledge of the abundance pattern in hot white dwarfs beyond the iron group. The abundance ratio appears nearly solar, which implies either that the germanium abundance mixture in these stars has remained unaltered since leaving the main sequence or that diffusion processes (e.g., selective radiation pressure) are coincidentally reproducing a solar Ge/H ratio.

  19. Preconcentration of germanium on mercapto-modified silica gel

    NASA Astrophysics Data System (ADS)

    Göktürk, Gamze; Delzendeh, Mehrdad; Volkan, Mürvet

    2000-07-01

    A simple method for the determination of ultra-trace amounts of germanium in natural waters has been developed. Germanium was preconcentrated using silica having mercapto functional groups, namely mercapto silica and determined by hydride generation flame atomic absorption spectrometry (HGAAS). Utilising mercapto silica, satisfactory recovery values (>95%) were obtained at natural pH, for germanate concentrations as low as 50 ng l -1. Considering the highest preconcentration factor (400-fold) obtained, the sensitivity and 3s-detection limit of mercapto silica-HGAAS system can be expressed as 3.65 ng l -1/0.0044 AU and 0.813 ng l -1, respectively. Interference effects of diverse ions were investigated for HGAAS and mercapto silica-HGAAS systems.

  20. Metabolism of tellurium, antimony and germanium simultaneously administered to rats.

    PubMed

    Kobayashi, Akihiro; Ogra, Yasumitsu

    2009-06-01

    Recently, tellurium (Te), antimony (Sb) and germanium (Ge) have been used as an alloy in phase-change optical magnetic disks, such as digital versatile disk-random access memory (DVD-RAM) and DVD-recordable disk (DVD-RW). Although these metalloids, the so-called "exotic" elements, are known to be non-essential and harmful, little is known about their toxic effects and metabolism. Metalloid compounds, tellurite, antimonite and germanium dioxide, were simultaneously administered to rats. Their distributions metabolites were determined and identified by speciation. Te and Sb accumulated in red blood cells (RBCs): Te accumulated in RBCs in the dimethylated form, while Sb accumulated in the inorganic/non-methylated form. In addition, trimethyltelluronium (TMTe) was the urinary metabolite of Te, whereas Sb in urine was not methylated but oxidized. Ge was also not methylated in rats. These results suggest that each metalloid is metabolized via a unique pathway.

  1. Synthesis and Gas Phase Thermochemistry of Germanium-Containing Compounds

    SciTech Connect

    Classen, Nathan Robert

    2002-01-01

    The driving force behind much of the work in this dissertation was to gain further understanding of the unique olefin to carbene isomerization observed in the thermolysis of 1,1-dimethyl-2-methylenesilacyclobutane by finding new examples of it in other silicon and germanium compounds. This lead to the examination of a novel phenylmethylenesilacyclobut-2-ene, which did not undergo olefin to carbene rearrangement. A synthetic route to methylenegermacyclobutanes was developed, but the methylenegermacyclobutane system exhibited kinetic instability, making the study of the system difficult. In any case the germanium system decomposed through a complex mechanism which may not include olefin to carbene isomerization. However, this work lead to the study of the gas phase thermochemistry of a series of dialkylgermylene precursors in order to better understand the mechanism of the thermal decomposition of dialkylgermylenes. The resulting dialkylgermylenes were found to undergo a reversible intramolecular β C-H insertion mechanism.

  2. Diffusion of n-type dopants in germanium

    SciTech Connect

    Chroneos, A.; Bracht, H.

    2014-03-15

    Germanium is being actively considered by the semiconductor community as a mainstream material for nanoelectronic applications. Germanium has advantageous materials properties; however, its dopant-defect interactions are less understood as compared to the mainstream material, silicon. The understanding of self- and dopant diffusion is essential to form well defined doped regions. Although p-type dopants such as boron exhibit limited diffusion, n-type dopants such as phosphorous, arsenic, and antimony diffuse quickly via vacancy-mediated diffusion mechanisms. In the present review, we mainly focus on the impact of intrinsic defects on the diffusion mechanisms of donor atoms and point defect engineering strategies to restrain donor atom diffusion and to enhance their electrical activation.

  3. Electronic Structure of Germanium Nanocrystal Films Probed with Synchrotron Radiation

    SciTech Connect

    Bostedt, C

    2002-05-01

    The fundamental structure--property relationship of semiconductor quantum dots has been investigated. For deposited germanium nanocrystals strong quantum confinement effects have been determined with synchrotron radiation based x-ray absorption and photoemission techniques. The nanocrystals are condensed out of the gas phase with a narrow size distribution and subsequently deposited in situ onto various substrates. The particles are crystalline in the cubic phase with a structurally disordered surface shell and the resulting film morphology depends strongly on the substrate material and condition. The disordered surface region has an impact on the overall electronic structure of the particles. In a size-dependent study, the conduction and valence band edge of germanium nanocrystals have been measured for the first time and compared to the bulk crystal. The band edges move to higher energies as the particle size is decreased, consistent with quantum confinement theory. To obtain a more accurate analysis of confinement effects in the empty states, a novel analysis method utilizing an effective particle size for the x-ray absorption experiment, which allows a deconvolution of absorption edge broadening effects, has been introduced. Comparison of the present study to earlier studies on silicon reveals that germanium exhibits stronger quantum confinement effects than silicon. Below a critical particle size of 2.3 {+-} 0.7 nm, the band gap of germanium becomes larger than that of silicon--even if it is the opposite for bulk materials. This result agrees phenomenologically with effective mass and tight binding theories but contradicts the findings of recent pseudopotential calculations. The discrepancy between theory and experiments is attributed to the differences in the theoretical models and experimental systems. The experimentally observed structural disorder of the particle surface has to be included in the theoretical models.

  4. Optical properties of silicon germanium waveguides at telecommunication wavelengths.

    PubMed

    Hammani, Kamal; Ettabib, Mohamed A; Bogris, Adonis; Kapsalis, Alexandros; Syvridis, Dimitris; Brun, Mickael; Labeye, Pierre; Nicoletti, Sergio; Richardson, David J; Petropoulos, Periklis

    2013-07-15

    We present a systematic experimental study of the linear and nonlinear optical properties of silicon-germanium (SiGe) waveguides, conducted on samples of varying cross-sectional dimensions and Ge concentrations. The evolution of the various optical properties for waveguide widths in the range 0.3 to 2 µm and Ge concentrations varying between 10 and 30% is considered. Finally, we comment on the comparative performance of the waveguides, when they are considered for nonlinear applications at telecommunications wavelengths.

  5. Formation of a crystalline phase in amorphous hydrogenated carbon-germanium films by electron beam irradiation

    SciTech Connect

    Tyczkowski, J.; Pietrzyk, B.; Mazurczyk, R.; Polanski, K.; Balcerski, J.; Delamar, M.

    1997-11-01

    The influence of electron beam irradiation on morphology of plasma deposited amorphous hydrogenated carbon-germanium films produced from tetramethylgermanium in a three-electrode af reactor has been studied. It has been found that the insulating films are insensitive to this treatment, whereas a crystalline phase occurs in the semiconducting films. Although the molar content of germanium in these films amounts only to about 0.2, the crystalline phase is composed of pure germanium nanocrystals which contain about 70{percent} of the whole amount of germanium existing in the films. The nanocrystals are agglomerated in globules of 50{endash}500 nm in diameter. {copyright} {ital 1997 American Institute of Physics.}

  6. High-Purity Germanium Crystals Study for Underground Experiments

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Yang, Gang; Gavoni, Jayesh; Wang, Guojian; Mei, Hao; Mei, Dongming; Cubed Collaboration

    2013-10-01

    The main characterization is the measurement of electrical properties such as carrier concentration, carrier mobility, resistivity of germanium crystal, as well as to identify whether the crystal is n-type or p-type. Van der pauw Hall effect measurement is conducted at room temperature and 77 K separately for measuring electrical properties for shallow level impurities. The results show that the ionized impurity level of crystals grown in our lab has reached about 1010 /cm3. The accumulated data are applied with theoretical analysis. The study of mobility reveals the different scattering mechanisms involved with impurities and lattice vibrations of the crystal. Theoretical calculations have been performed with reasonable parameter assumption and then compared with experimental data. It is found that neutral impurity concentration constrains mobility at 77 K while ionized impurity is within the acceptable range (below 1012/cm3) in germanium crystals. Mobility can increase significantly when neutral impurity concentration is below 1014/cm3. Therefore, a large reduction of neutral impurity is a desirable approach for obtaining larger mobility, which would improve timing response of germanium detectors. Sponsored by Department of Energy- DE-FG02-10ER46709 and the State of South Dakota.

  7. Germanium on silicon to enable integrated photonic circuits

    NASA Astrophysics Data System (ADS)

    Hopkins, F. Kenneth; Walsh, Kevin M.; Benken, Alexander; Jones, John; Averett, Kent; Diggs, Darnell E.; Tan, Loon-Seng; Mou, Shin; Grote, James G.

    2013-09-01

    Electronic circuits alone cannot fully meet future requirements for speed, size, and weight of many sensor systems, such as digital radar technology and as a result, interest in integrated photonic circuits (IPCs) and the hybridization of electronics with photonics is growing. However, many IPC components such as photodetectors are not presently ideal, but germanium has many advantages to enable higher performance designs that can be better incorporated into an IPC. For example, Ge photodetectors offer an enormous responsivity to laser wavelengths near 1.55μm at high frequencies to 40GHz, and they can be easily fabricated as part of a planar silicon processing schedule. At the same time, germanium has enormous potential for enabling 1.55 micron lasers on silicon and for enhancing the performance of silicon modulators. Our new effort has begun by studying the deposition of germanium on silicon and beginning to develop methods for processing these films. In initial experiments comparing several common chemical solutions for selective etching under patterned positive photoresist, it was found that hydrogen peroxide (H2O2) at or below room temperature (20 C) produced the sharpest patterns in the Ge films; H2O2 at a higher temperature (50 C) resulted in the greatest lateral etching.

  8. Fluorine-enhanced boron diffusion in germanium-preamorphized silicon

    SciTech Connect

    Jacques, J.M.; Jones, K.S.; Robertson, L.S.; Li-Fatou, A.; Hazelton, C.M.; Napolitani, E.; Rubin, L.M.

    2005-10-01

    Silicon wafers were preamorphized with 60 keV Ge{sup +} or 70 keV Si{sup +} at a dose of 1x10{sup 15} atoms/cm{sup 2}. F{sup +} was then implanted into some samples at 6 keV at doses ranging from 1x10{sup 14} to 5x10{sup 15} atoms/cm{sup 2}, followed by {sup 11}B{sup +} implants at 500 eV, 1x10{sup 15} atoms/cm{sup 2}. Secondary-ion-mass spectrometry confirmed that fluorine enhances boron motion in germanium-preamorphized materials in the absence of annealing. The magnitude of boron diffusion scales with increasing fluorine dose. Boron motion in as-implanted samples occurs when fluorine is concentrated above 1x10{sup 20} atoms/cm{sup 3}. Boron atoms are mobile in as-implanted, amorphous material at concentrations up to 1x10{sup 19} atoms/cm{sup 3}. Fluorine directly influences boron motion only prior to activation annealing. During the solid-phase epitaxial regrowth process, fluorine does not directly influence boron motion, it simply alters the recrystallization rate of the silicon substrate. Boron atoms can diffuse in germanium-amorphized silicon during recrystallization at elevated temperatures without the assistance of additional dopants. Mobile boron concentrations up to 1x10{sup 20} atoms/cm{sup 3} are observed during annealing of germanium-preamorphized wafers.

  9. Metastable phases in mechanically alloyed aluminum germanium powders

    SciTech Connect

    Yvon, P.J.; Schwarz, R.B.

    1993-03-01

    Aluminum and germanium form a simple eutectic system with no stable intermetallic phase, and limited mutual solubility. We report the formation of a metastable rhombohedral,{gamma}{sub 1} phase by mechanically alloying aluminum and germanium powders. This phase, which appears for compositions between 20 and 50 at. % germanium, has also been observed in rapidly quenched alloys, but there is disagreement as to its composition. By measuring the heat of crystallization as a function of composition, we determined the composition of the {gamma}{sub 1} phase to be Al{sub 70}Ge{sub 30}. We also produced Al{sub 70}Ge{sub 30} by arc melting the pure elements, followed by splat-quenching at a cooling rate in the range of 10{sup 8} K s{sup {minus}1}. This method produced two metastable phases, one of which was found to be the {gamma}{sub 1} phase obtained by mechanical alloying. The other was a monoclinic phase reported earlier in the literature as {gamma}{sub 2}.

  10. Germanium-containing resist for bilayer resist process

    NASA Astrophysics Data System (ADS)

    Fujioka, Hirofumi; Nakajima, Hiroyuki H. N.; Kishimura, Shinji; Nagata, Hitoshi

    1990-06-01

    Germanium-containing resist material has been investigated as a new type of removable bilayer resist , since the oxide of germanium is soluble in conventional acids. The polymers derived from trimethylgermyl- styrene ( GeSt) show good resistance to 02 RIE , and their surface has been "determined to be converted into GeO, by XPS measurement before and after 02 RIE. The homopolymer of GeSt has been found to crosslink upon exposure to deep UV or electron beam radiation and to behave as a negative resist. The sensitivity is enhanced several times as high as that of the PGeSt by copolymerizing with 1 0 mol% chloromethyl-styrene ( CMSt) . The copolymer gives fine resist patterns with vertical sidewalls in a bilayer process. The germanium- containing resist pattern after 02 RIE is not completely dissolved in some acids such as H2 SO4 . This is due to the organic components remaining in the film. However, it has been found that it is perfectly dissolved in oxidizing acids such as fuming HNO and H2S04/H202(2/l) without a residue.

  11. Real-time assessment of a linear pyroelectric sensor array for object classication

    NASA Astrophysics Data System (ADS)

    White, William E., III; Brown, Jeremy B.; Chari, Srikant; Jacobs, Eddie L.

    2010-10-01

    Pyroelectric linear arrays can be used to generate profiles of targets. Simulations have shown that generated profiles can be used to classify human and animal targets. A pyroelectric array system was used to collect data and classify targets as either human or non-human in real time. The pyroelectric array system consists of a 128-element Dias 128LTI pyroelectric linear array, an F/0.86 germanium lens, and an 18F4550 pic microcontroller for A/D conversion and communication. The classifier used for object recognition was trained using data collected in petting zoos and tested using data collected at the US-Mexico border in Arizona.

  12. Kokkos Array

    SciTech Connect

    Edwards Daniel Sunderland, Harold Carter

    2012-09-12

    The Kokkos Array library implements shared-memory array data structures and parallel task dispatch interfaces for data-parallel computational kernels that are performance-portable to multicore-CPU and manycore-accelerator (e.g., GPGPU) devices.

  13. Electronic transport in arrays of gold nanocrystals

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Raghuveer

    We examine electronic transport through two-dimensional arrays of gold nanocrystals. Recently developed techniques of particle synthesis and array self-assembly provide ordered (and disordered) monolayers of six-nanometer diameter gold nanocrystals on substrates with in-plane electrodes. These well-characterized superlattices allow investigation of basic questions about electronic conduction in metal quantum dot assemblies, answers to which have previously remained elusive. We first address the relation between current and voltage. Central to transport is the Coulomb blockade, the energetic cost of adding a single electron to a nanocrystal. Theoretical studies suggest power-law scaling of current beyond a threshold voltage in Coulomb blockade dominated systems. In ordered arrays, our data follow a power-law form, but with a scaling exponent significantly higher than the theoretical prediction. In disordered arrays, power-law scaling is violated; we explain that disorder disturbs the branching of current-carrying paths responsible for power-law conduction. Second, we examine the effect of temperature on transport. We find a large low-temperature regime (up to about 100 K) in which thermal energy acts only to linearly suppress the threshold voltage, leaving the current scale unaffected. We provide a simple, analytic model of thermally assisted tunneling which quantitatively describes the data. Third, we develop a simple and novel technique to tune the interparticle electronic couplings of the arrays---deposition of small amounts of germanium on the monolayers. The germanium dopant lowers the voltage threshold, and also increases conductivity. It also increases the temperature dependence of transport, suggesting the introduction of trapped states between the gold nanocrystal cores.

  14. Nanocylinder arrays

    DOEpatents

    Tuominen, Mark; Schotter, Joerg; Thurn-Albrecht, Thomas; Russell, Thomas P.

    2007-03-13

    Pathways to rapid and reliable fabrication of nanocylinder arrays are provided. Simple methods are described for the production of well-ordered arrays of nanopores, nanowires, and other materials. This is accomplished by orienting copolymer films and removing a component from the film to produce nanopores, that in turn, can be filled with materials to produce the arrays. The resulting arrays can be used to produce nanoscale media, devices, and systems.

  15. Nanocylinder arrays

    DOEpatents

    Tuominen, Mark; Schotter, Joerg; Thurn-Albrecht, Thomas; Russell, Thomas P.

    2009-08-11

    Pathways to rapid and reliable fabrication of nanocylinder arrays are provided. Simple methods are described for the production of well-ordered arrays of nanopores, nanowires, and other materials. This is accomplished by orienting copolymer films and removing a component from the film to produce nanopores, that in turn, can be filled with materials to produce the arrays. The resulting arrays can be used to produce nanoscale media, devices, and systems.

  16. Search for Pauli exclusion principle violating atomic transitions and electron decay with a p-type point contact germanium detector

    SciTech Connect

    Abgrall, N.; Arnquist, I. J.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Bradley, A. W.; Brudanin, V.; Busch, M.; Buuck, M.; Caldwell, A. S.; Chan, Y. -D.; Christofferson, C. D.; Chu, P. -H.; Cuesta, C.; Detwiler, J. A.; Dunagan, C.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Finnerty, P. S.; Galindo-Uribarri, A.; Gilliss, T.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Jasinski, B. R.; Keeter, K. J.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; MacMullin, J.; Martin, R. D.; Massarczyk, R.; Meijer, S. J.; Mertens, S.; Orrell, J. L.; O’Shaughnessy, C.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Shanks, B.; Shirchenko, M.; Suriano, A. M.; Tedeschi, D.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C. -H.; Yumatov, V.; Zhitnikov, I.

    2016-11-11

    A search for Pauli-exclusion-principle-violating K electron transitions was performed using 89.5 kg-d of data collected with a p-type point contact high-purity germanium detector operated at the Kimballton Underground Research Facility. A lower limit on the transition lifetime of s at 90% C.L. was set by looking for a peak at 10.6 keV resulting from the X-ray and Auger electrons present following the transition. A similar analysis was done to look for the decay of atomic K-shell electrons into neutrinos, resulting in a lower limit of s at 90% C.L. It is estimated that the Majorana Demonstrator, a 44 kg array of p-type point contact detectors that will search for the neutrinoless double-beta decay of Ge, could improve upon these exclusion limits by an order of magnitude after three years of operation.

  17. Naturally occurring vapor-liquid-solid (VLS) Whisker growth of germanium sulfide

    USGS Publications Warehouse

    Finkelman, R.B.; Larson, R.R.; Dwornik, E.J.

    1974-01-01

    The first naturally occurring terrestrial example of vapor-liquid-solid (VLS) growth has been observed in condensates from gases released by burning coal in culm banks. Scanning electron microscopy, X-ray diffraction, and energy dispersive analysis indicate that the crystals consist of elongated rods (??? 100 ??m) of germanium sulfide capped by bulbs depleted in germanium. ?? 1974.

  18. Oligogermanes as molecular precursors for germanium(0) nanoparticles: Size control and size-dependent fluorescence

    SciTech Connect

    Schrick, Aaron C.; Weinert, Charles S.

    2013-10-15

    Graphical abstract: Catenated germanium compounds are employed as molecular precursors for germanium(0) nanoparticles. The size of the nanoparticles, and their fluorescence spectra, depend on the number of catenated germanium atoms present in the precursor. - Highlights: • We have used oligogermanes for the size-specific synthesis of germanium(0) nanoparticles. • The size of the nanomaterials obtained depends directly on the degree of catenation present in the oligogermane precursor. • The nanoparticles are shown to exhibit size-dependent fluorescence. • Oligogermanes will function as useful precursors for the synthesis of a variety of nanomaterials. - Abstract: Germanium nanoparticles were synthesized in solution from novel oligogermane molecular precursors. The size of the nanoparticles obtained is directly related to the number of catenated germanium atoms present in the oligogermane precursor and the nanoparticles exhibit size-dependent fluorescence. The germanium nanoparticles were also characterized by TEM, powder XRD, FTIR, EDS and XPS methods. This method appears to be a promising new route for the synthesis of germanium nanoparticles since the size of the materials obtained can be controlled by the choice of the oligogermane used as the precursor.

  19. Variable-Temperature Cryostat For Radiation-Damage Testing Of Germanium Detectors

    NASA Technical Reports Server (NTRS)

    Floyd, Samuel R.; Puc, Bernard P.

    1992-01-01

    Variable-temperature cryostats developed to study radiation damage to, and annealing of, germanium gamma-ray detectors. Two styles: one accommodates large single detector and one accommodates two medium-sized detectors. New cryostats allow complete testing of large-volume germanium gamma-ray detectors without breaking cryostat vacuum and removing detectors for annealing.

  20. VINROUGE: a very compact 2-5μm high-resolution spectrograph with germanium immersion grating

    NASA Astrophysics Data System (ADS)

    Arasaki, Takayuki; Kobayashi, Naoto; Ikeda, Yuji; Kondo, Shohei; Sarugaku, Yuki; Kaji, Sayumi; Kawakita, Hideyo

    2016-08-01

    The infrared high-resolution and highly-sensitive spectroscopy can provide new and deep insights in many fields of astronomy. The 2.0-5.5 μm region is a very unique and important wavelength region for astrochemistry and astrobiology, because the vibrational transitions of C-H, N-H, O-H, C-O, and C-N bonds in many molecules, which are of astrophysical interest, concentrate in this wavelength range. To advance the study in this wavelength range, we are developing a new near-infrared spectrograph: VINROUGE (= Very-compact INfrared high-ResOlUtion Ge-immersion Echelle spectrograph). The instrumental concepts of VINROUGE are "high-resolution", "highly-sensitive", and "very-compact instrumentation". With (i) Germanium immersion grating, (ii) white pupil spectrograph design, (iii) reflective optics using the integrated off-axis mirrors and the optical bench by ceramic (cordierite CO-220), and (iv) highly-sensitive array (HAWAII-2RG 5.3μm cutoff array), we could obtain a solution of optical design with a spectral resolution of 80,000, total throughput of > 0.28, and a compact volume that is smaller than 600 mm×600 mm×600 mm even for 10-m class telescope. We have already completed the development of Germanium immersion grating. In this year, we plan to fabricate a set of integrated off-axis ceramic mirrors together with the ceramic optical bench to demonstrate that the reflective optics was an athermal performance. The first light of VINROUGE is expected in 2019.

  1. Investigation of alginate binding to germanium and polystyrene substrata conditioned with mussel adhesive protein

    SciTech Connect

    Suci, P.A.; Geesey, G.G.

    1995-06-15

    Binding of alginate from Macrocystis pyrifera (kelp) to germanium and polystyrene substrata conditioned with mussel adhesive protein (MAP) from Mytilis edulis, to germanium substrata conditioned with bovine serum albumin (BSA) and polylysine, and to germanium substrata coated with aminopropyltriethoxysilane (APS) was investigated using attenuated total reflection Fourier transform infrared spectrometry. Binding of alginate to MAP appears to be proportional to surface coverage for levels tested. Distinct spectral features appear in the region associated with pyranose ring vibrations upon binding of alginate to MAP, polylysine, and APS, indicating that lysine residues play a prominent role in promoting irreversible adsorption with perturbation of pyranose ring atoms. BSA does not appear to enhance alginate adsorption over that observed on clean germanium and no new spectral features appear as a result of binding. The level of irreversible binding of alginate to germanium and polystyrene substrata conditioned with MAP is similar.

  2. Adhesion and friction behavior of group 4 elements germanium, silicon, tin, and lead

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1975-01-01

    Adhesion and friction studies were conducted with thin films of the group IV elements silicon, germanium, tin, and lead ion plated on the nickel (011) substrate. The mating surface was gold (111). Contacts were made for the elements in the clean state and with oxygen present. Adhesion and friction experiments were conducted at very light loads of 1 to 10 g. Sliding was at a speed of 0.7 mm/min. Friction results indicate that the more covalently bonded elements silicon and germanium exhibit lower adhesion and friction than the more metallic bonded tin and lead. The adhesion of gold to germanium was observed, and recrystallization of the transferred gold occurred. Plastic flow of germanium was seen with sliding. Oxygen reduced, but did not eliminate, the adhesion observed with germanium and silicon.

  3. Nanoindentation-induced phase transformation and structural deformation of monocrystalline germanium: a molecular dynamics simulation investigation

    PubMed Central

    2013-01-01

    Molecular dynamics simulations were conducted to study the nanoindentation of monocrystalline germanium. The path of phase transformation and distribution of transformed region on different crystallographic orientations were investigated. The results indicate the anisotropic behavior of monocrystalline germanium. The nanoindentation-induced phase transformation from diamond cubic structure to β-tin-Ge was found in the subsurface region beneath the tool when indented on the (010) plane, while direct amorphization was observed in the region right under the indenter when the germanium was loaded along the [101] and [111] directions. The transformed phases extend along the < 110 > slip direction of germanium. The depth and shape of the deformed layers after unloading are quite different according to the crystal orientation of the indentation plane. The study results suggest that phase transformation is the dominant mechanism of deformation of monocrystalline germanium film in nanoindentation. PMID:23947487

  4. Multilayers Diamond-Like Carbon Film with Germanium Buffer Layers by Pulsed Laser Deposition

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; Lu, Y. M.; Guo, Y. L.; Huang, G. J.; Wang, S. Y.; Tian, F. T.

    Multilayer diamond-like carbon film with germanium buffer layers, which was composed of several thick DLC layers and thin germanium island “layers” and named as Ge-DLC film, was prepared on the germanium substrate by ultraviolet laser. The Ge-DLC film had almost same surface roughness as the pure DLC film. Hardness of the Ge-DLC film was above 48.1GPa, which was almost the same as that of pure DLC film. Meanwhile, compared to the pure DLC film, the critical load of Ge-DLC film on the germanium substrate increased from 81.6mN to 143.8mN. Moreover, Ge-DLC film on germanium substrates had no change after fastness tests. The results showed that Ge-DLC film not only kept high hardness but also had higher critical load than that of pure DLC film. Therefore, it could be used as practical protective films.

  5. Germanium CCDs for large-format SWIR and X-ray imaging

    NASA Astrophysics Data System (ADS)

    Leitz, C.; Rabe, S.; Prigozhin, I.; Burke, B.; Zhu, M.; Ryu, K.; Cooper, M.; Reich, R.; Johnson, K.; Hu, W. L.; Felton, B.; Cook, M.; Stull, C.; Suntharalingam, V.

    2017-05-01

    Germanium exhibits high sensitivity to short-wave infrared (SWIR) and X-ray radiation, making it an interesting candidate for imaging applications in these bands. Recent advances in germanium processing allow for high-quality charge-coupled devices (CCDs) to be realized in this material. In this article, we discuss our evaluation of germanium as an absorber material for CCDs via fabrication and analysis of discrete devices such as diodes, metal-insulator-semiconductor capacitors, and buried-channel metal-oxide-semiconductor field-effect transistors (MOSFETs). We then describe fabrication of our first imaging device on germanium, a 32 × 1 × 8.1 μm linear shift register. Based on this work, we find that germanium is a promising material for CCDs imaging in the SWIR and X-ray bands.

  6. Les alliages germanium-etain et silicium-germanium-etain: Croissance, proprietes structurales et stabilite thermique

    NASA Astrophysics Data System (ADS)

    Fournier-Lupien, Jean-Hughes

    Tin-containing group IV semiconductors present a rich playground for an independent control of bandgap and lattice parameter. The ability to grow these metastable alloys on silicon (Si) platform is a key step to achieve a new class of Si-compatible heterostructures and low dimensional systems relevant for applications in electronics and optoelectronics. With this perspective, this work focuses on understanding the structural properties of germanium-tin (GeSn) and silicon-germanium-tin (SiGeSn) alloys. Pseudomorphic layers (< 100 nm) of GeSn and SiGeSn have been grown on Si(001) substrate via low defect relaxed Ge virtual substrate in a reduced pressure chemical vapor deposition (RP-CVD) system. The precursors used during the growth are disilane (Si 2H6), digermane (Ge2H6) (10% diluted in H2), and tin tetrachloride (SnCl4) using N2 as carrier gas. Low temperature growth (between 350 and 475 °C) is used in order to prevent Sn segregation and clustering. Non-equilibrium growth allows Sn to crystallize into diamond cubic alpha-Sn structure and successfully be alloyed with group IV semiconductors leading to metastable alloys. The alloy composition range of SixGe1-x-ySn y and Ge1-zSnz sample is 0.04 ≤ x ≤ 0.19, 0.02 ≤ y ≤ 0.11 and 0.02 ≤ z ≤ 0.09. Post-growth structural analyses show that low growth temperature increases the incorporation of Sn in both binary and ternary alloys. Note that for the ternary alloy, increasing Sn composition leads a reduction in Si composition. This behavior is due to the fact that the cracking temperature of Si precursor is higher than that of Sn precursor. Raman spectroscopy has been used to characterize the as-grown layers and an empirical model has been established to quantify the composition and strain of the ternary alloy SiGeSn. Using three excitation wavelengths 532 nm, 633 nm and 785 nm, we found that 633 nm wavelength is the more appropriate to clearly identify all the vibrational modes in SiGeSn lattice. This

  7. The Czochralski Growth of Large Diameter La3Ga5.5Ta0.5O14 Crystals Along Different Orientations

    SciTech Connect

    Luo,J.; Shah, D.; Klemenz, C.; Dudley, M.; Chen, H.

    2006-01-01

    La3Ga5SiO14, La3Ga5.5Ta0.5O14 and La3Ga5.5Nb0.5O14 crystals exhibit outstanding piezoelectric properties. They are of considerable interest for high-precision resonators. Although the synthesis of these crystals has been actively pursued over the past years, there are still some setbacks slowing down industrial applications. We report on the growth of La3Ga5.5Ta0.5O14 (LGT) crystals by the Czochralski growth along left angle bracket0 0 1right-pointing angle bracket, left angle bracket1 0 0right-pointing angle bracket and left angle bracket1 2 0right-pointing angle bracket. These crystals were characterized by different techniques, including X-ray synchrotron topography. LGT crystals show a facet structure which determines the overall 3D distribution of other defects and strain. The relationship between faceting and crystal imperfections such as striations, dislocations, and inclusions will be discussed. After optimization of growth conditions, inclusions-free, colorless transparent single crystals with a diameter of 2' were obtained. These crystals were processed into Y-cut plano-convex resonators, and the Qf product measured from fundamental to ninth overtone. Values exceeding the limit of AT- and SC-cut quartz were obtained.

  8. The Majorana Demonstrator: A search for neutrinoless double-beta decay of germanium-76

    SciTech Connect

    Elliott, S. R.; Boswell, M.; Goett, J.; Rielage, K.; Ronquest, M. C.; Xu, W.; Abgrall, N.; Chan, Y-D.; Hegai, A.; Martin, R. D.; Mertens, S.; Poon, A. W. P.; Aguayo, E.; Fast, J. E.; Hoppe, E. W.; Kouzes, R. T.; LaFerriere, B. D.; Orrell, J. L.; Overman, N. R.; Soin, A.; and others

    2013-12-30

    The MAJORANA collaboration is searching for neutrinoless double beta decay using {sup 76}Ge, which has been shown to have a number of advantages in terms of sensitivities and backgrounds. The observation of neutrinoless double-beta decay would show that lepton number is violated and that neutrinos are Majorana particles and would simultaneously provide information on neutrino mass. Attaining sensitivities for neutrino masses in the inverted hierarchy region, 15 - 50 meV, will require large, tonne-scale detectors with extremely low backgrounds, at the level of ∼1 count/t-y or lower in the region of the signal. The MAJORANA collaboration, with funding support from DOE Office of Nuclear Physics and NSF Particle Astrophysics, is constructing the DEMONSTRATOR, an array consisting of 40 kg of p-type point-contact high-purity germanium (HPGe) detectors, of which ∼30 kg will be enriched to 87% in {sup 76}Ge. The DEMONSTRATOR is being constructed in a clean room laboratory facility at the 4850' level (4300 m.w.e.) of the Sanford Underground Research Facility (SURF) in Lead, SD. It utilizes a compact graded shield approach with the inner portion consisting of ultra-clean Cu that is being electroformed and machined underground. The primary aim of the DEMONSTRATOR is to show the feasibility of a future tonne-scale measurement in terms of backgrounds and scalability.

  9. Significant thermal conductivity reduction of silicon nanowire forests through discrete surface doping of germanium

    SciTech Connect

    Pan, Ying; Hong, Guo; Raja, Shyamprasad N.; Zimmermann, Severin; Poulikakos, Dimos; Tiwari, Manish K.

    2015-03-02

    Silicon nanowires (SiNWs) are promising materials for the realization of highly-efficient and cost effective thermoelectric devices. Reduction of the thermal conductivity of such materials is a necessary and viable pathway to achieve sufficiently high thermoelectric efficiencies, which are inversely proportional to the thermal conductivity. In this article, vertically aligned forests of SiNW and germanium (Ge)-doped SiNW with diameters around 100 nm have been fabricated, and their thermal conductivity has been measured. The results show that discrete surface doping of Ge on SiNW arrays can lead to 23% reduction in thermal conductivity at room temperature compared to uncoated SiNWs. Such reduction can be further enhanced to 44% following a thermal annealing step. By analyzing the binding energy changes of Ge-3d and Si-2p using X-ray photoelectron spectroscopy, we demonstrate that surface doped Ge interacts strongly with Si, enhancing phonon scattering at the Si-Ge interface as has also been shown in non-equilibrium molecular dynamics studies of single nanowires. Overall, our results suggest a viable pathway to improve the energy conversion efficiency of nanowire-forest thermoelectric nanomaterials.

  10. Temperature-dependent Refractive Index of Silicon and Germanium

    NASA Technical Reports Server (NTRS)

    Frey, Bradley J.; Leviton, Douglas B.; Madison, Timothy J.

    2006-01-01

    Silicon and germanium are perhaps the two most well-understood semiconductor materials in the context of solid state device technologies and more recently micromachining and nanotechnology. Meanwhile, these two materials are also important in the field of infrared lens design. Optical instruments designed for the wavelength range where these two materials are transmissive achieve best performance when cooled to cryogenic temperatures to enhance signal from the scene over instrument background radiation. In order to enable high quality lens designs using silicon and germanium at cryogenic temperatures, we have measured the absolute refractive index of multiple prisms of these two materials using the Cryogenic, High-Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, as a function of both wavelength and temperature. For silicon, we report absolute refractive index and thermo-optic coefficient (dn/dT) at temperatures ranging from 20 to 300 K at wavelengths from 1.1 to 5.6 pin, while for germanium, we cover temperatures ranging from 20 to 300 K and wavelengths from 1.9 to 5.5 microns. We compare our measurements with others in the literature and provide temperature-dependent Sellmeier coefficients based on our data to allow accurate interpolation of index to other wavelengths and temperatures. Citing the wide variety of values for the refractive indices of these two materials found in the literature, we reiterate the importance of measuring the refractive index of a sample from the same batch of raw material from which final optical components are cut when absolute accuracy greater than k5 x 10" is desired.

  11. Germanium Lift-Off Masks for Thin Metal Film Patterning

    NASA Technical Reports Server (NTRS)

    Brown, Ari

    2012-01-01

    A technique has been developed for patterning thin metallic films that are, in turn, used to fabricate microelectronics circuitry and thin-film sensors. The technique uses germanium thin films as lift-off masks. This requires development of a technique to strip or undercut the germanium chemically without affecting the deposited metal. Unlike in the case of conventional polymeric lift-off masks, the substrate can be exposed to very high temperatures during processing (sputter deposition). The reason why polymeric liftoff masks cannot be exposed to very high temperatures (greater than 100 C) is because (a) they can become cross linked, making lift-off very difficult if not impossible, and (b) they can outgas nitrogen and oxygen, which then can react with the metal being deposited. Consequently, this innovation is expected to find use in the fabrication of transition edge sensors and microwave kinetic inductance detectors, which use thin superconducting films deposited at high temperature as their sensing elements. Transition edge sensors, microwave kinetic inductance detectors, and their circuitry are comprised of superconducting thin films, for example Nb and TiN. Reactive ion etching can be used to pattern these films; however, reactive ion etching also damages the underlying substrate, which is unwanted in many instances. Polymeric lift-off techniques permit thin-film patterning without any substrate damage, but they are difficult to remove and the polymer can outgas during thin-film deposition. The outgassed material can then react with the film with the consequence of altered and non-reproducible materials properties, which, in turn, is deleterious for sensors and their circuitry. The purpose of this innovation was to fabricate a germanium lift-off mask to be used for patterning thin metal films.

  12. Effect of germanium dioxide on growth of Spirulina platensis

    NASA Astrophysics Data System (ADS)

    Cao, Ji-Xiang

    1996-12-01

    This study on the effect of different concentrations of germanium dioxide (GeO2) on the specific growth rate (SGR), pigment contents, protein content and amino acid composition of Spirulina platensis showed that Ge was not the essential element of this alga; that GeO2 could speed up growth and raise protein content of S. platensis, and could possibly influence the photosynthesis system. The concentration range of GeO2 beneficial to growth of S. platensis is from 5 100mg/l. GeO2 is proposed to be utilized to remove contamination by Chlorella spp. usually occurring in the cultivation of Spirulina.

  13. Diffusion of iron, cobalt, and nickel in liquid germanium

    SciTech Connect

    Denisov, V.M.; Beletskii, V.V.

    1988-03-01

    To improve the processes employed for preparing single crystals with fixed electrophysical properties it is necessary to have information about the coefficients of diffusion of the impurities present in the melts. In this paper data on the diffusion of Fe, Co, and Ni in liquid germanium, starting from its melting point up to 1380/degree/K, are presented. The coefficients of diffusion of Fe, Co, and Ni in liquid Ge were determined by the capillary method. It was established that the change in the structure of liquid helium as a function of the temperature is responsible for the characteristic features of diffusion in the systems studied.

  14. Phonon Quasidiffusion in Cryogenic Dark Matter Search Large Germanium Detectors

    SciTech Connect

    Leman, S.W.; Cabrera, B.; McCarthy, K.A.; Pyle, M.; Resch, R.; Sadoulet, B.; Sundqvist, K.M.; Brink, P.L.; Cherry, M.; Do Couto E Silva, E.; Figueroa-Feliciano, E.; Mirabolfathi, N.; Serfass, B.; Tomada, A.; /Stanford U., Phys. Dept.

    2012-06-04

    We present results on quasidiffusion studies in large, 3 inch diameter, 1 inch thick [100] high purity germanium crystals, cooled to 50 mK in the vacuum of a dilution refrigerator, and exposed with 59.5 keV gamma-rays from an Am-241 calibration source. We compare data obtained in two different detector types, with different phonon sensor area coverage, with results from a Monte Carlo. The Monte Carlo includes phonon quasidiffusion and the generation of phonons created by charge carriers as they are drifted across the detector by ionization readout channels.

  15. Gallium-doped germanium, evaluation of photoconductors, part 1

    NASA Technical Reports Server (NTRS)

    Moore, W. J.

    1979-01-01

    Gallium-doped germanium far infrared detectors were evaluated at low temperatures and low background simulating the space environment. Signal and noise characteristics were determined for detector temperatures in the 2K to 4K range. Optimum performance occurs at about 2.5K for all devices tested. The minimum average NEP in the 40-130 micron region was found to be approximately 4 x 10 to the minus 17th power watt Hz(-1/2) at a frequency of 1 Hz.

  16. Three holes bound to a double acceptor - Be(+) in germanium

    NASA Technical Reports Server (NTRS)

    Haller, E. E.; Mcmurray, R. E., Jr.; Falicov, L. M.; Haegel, N. M.; Hansen, W. L.

    1983-01-01

    A double acceptor binding three holes has been observed for the first time with photoconductive far-infrared spectroscopy in beryllium-doped germanium single crystals. This new center, Be(+), has a hole binding energy of about 5 meV and is only present when free holes are generated by ionization of either neutral shallow acceptors or neutral Be double acceptors. The Be(+) center thermally ionizes above 4 K. It disappears at a uniaxial stress higher than about a billion dyn/sq cm parallel to (111) as a result of the lifting of the valence-band degeneracy.

  17. Integration of germanium waveguide photodetectors for intrachip optical interconnects

    NASA Astrophysics Data System (ADS)

    Rouviere, Mathieu; Halbwax, Mathieu; Cercus, Jean-Luc; Cassan, Eric; Vivien, Laurent; Pascal, Daniel; Heitzmann, Michel; Hartmann, Jean-Michel; Laval, Suzanne

    2005-07-01

    The main characteristics of germanium photodetectors integrated in silicon-on-insulator optical waveguides for intrachip optical interconnects are presented. The epitaxial Ge layers are grown on Si(001) by reduced-pressure chemical vapor deposition. The optical absorption of Ge layers is recorded from 1.2 to 1.7 µm and linked to the layer strain. The responsivity of an interdigitated metal-semiconductor-metal Ge photodetector has been measured. Light coupling from a slightly etched submicron rib silicon-on-insulator waveguide to a Ge photodetector is studied for two configurations: butt coupling and vertical coupling.

  18. Germanium photodetector with 60 GHz bandwidth using inductive gain peaking.

    PubMed

    Novack, Ari; Gould, Mike; Yang, Yisu; Xuan, Zhe; Streshinsky, Matthew; Liu, Yang; Capellini, Giovanni; Lim, Andy Eu-Jin; Lo, Guo-Qiang; Baehr-Jones, Tom; Hochberg, Michael

    2013-11-18

    Germanium-on-silicon photodetectors have been heavily investigated in recent years as a key component of CMOS-compatible integrated photonics platforms. It has previously been shown that detector bandwidths could theoretically be greatly increased with the incorporation of a carefully chosen inductor and capacitor in the photodetector circuit. Here, we show the experimental results of such a circuit that doubles the detector 3dB bandwidth to 60 GHz. These results suggest that gain peaking is a generally applicable tool for increasing detector bandwidth in practical photonics systems without requiring the difficult process of lowering detector capacitance.

  19. Infrared absorption study of neutron-transmutation-doped germanium

    NASA Technical Reports Server (NTRS)

    Park, I. S.; Haller, E. E.

    1988-01-01

    Using high-resolution far-infrared Fourier transform absorption spectroscopy and Hall effect measurements, the evolution of the shallow acceptor and donor impurity levels in germanium during and after the neutron transmutation doping process was studied. The results show unambiguously that the gallium acceptor level concentration equals the concentration of transmutated Ge-70 atoms during the whole process indicating that neither recoil during transmutation nor gallium-defect complex formation play significant roles. The arsenic donor levels appear at full concentration only after annealing for 1 h at 450 C. It is shown that this is due to donor-radiation-defect complex formation. Again, recoil does not play a significant role.

  20. A miniature temperature high germanium doped PCF interferometer sensor.

    PubMed

    Favero, F C; Spittel, R; Just, F; Kobelke, J; Rothhardt, M; Bartelt, H

    2013-12-16

    We report in this paper a high thermal sensitivity (78 pm/°C) modal interferometer using a very short Photonic Crystal Fiber stub with a shaped Germanium doped core. The Photonic Crystal Fiber is spliced between two standard fibers. The splice regions allow the excitation of the core and cladding modes in the PCF and perform an interferometric interaction of such modes. The device is proposed for sensitive temperature measurements in transmission, as well as in reflection operation mode with the same high temperature sensitivity.

  1. Photosensitivity of germanium-doped silica glass and fibers

    NASA Astrophysics Data System (ADS)

    Grubsky, Victor

    Germanium-doped silica glass changes its refractive index when it is exposed with UV light. This effect is caused by intrinsic defects of germanosilicate glass called germanium oxygen-deficient centers (GODC). The photosensitivity of glass allows fabrication of various refractive-index gratings in germanosilicate optical fibers. These gratings are basic elements used by the telecommunication industry. Nevertheless, the physical mechanisms causing the index change in glass are still unclear. In this thesis we discuss some aspects of the photosensitivity of germanium-doped glass and optical fibers. First, we present a historic overview of the previous work on defects in glass and their role for photosensitivity. The photoionization and densification theories of photosensitivity are reviewed. We then consider the transformations of defects in glass caused by UV radiation. We show that an index change can be produced by exciting either 240-nm or 330-nm absorption bands of GODC. We prove that the excitation of GODC to their triplet state is essential to produce a change in the glass structure. We also show that UV radiation forms a new defect with a luminescence band at 650 nm. We study the nature of the increase in glass photosensitivity caused by saturating glass with molecular hydrogen before exposing it to UV light. Hydrogen-loading the glass increases the saturated value of its index change by at least an order of magnitude and allows the use of high-coherence lasers at 275-305 nm for efficient and high-precision fiber grating fabrication. We also show that the stability of the refractive index change in hydrogen-loaded fibers is correlated with the water content of the glass. The difference between the spectral dependencies of photosensitivity in hydrogen-loaded and hydrogen-free glass suggests that different mechanisms are responsible for the index change in these two cases. We propose possible photoinduced reactions of hydrogen with germanium-doped glass

  2. A DONOR COMPLEX WITH TUNNELING HYDROGEN IN PURE GERMANIUM

    SciTech Connect

    Joos, B.; Haller, E.E.; Falicov, L.M.

    1980-02-01

    A shallow donor complex observed by several authors in ultrapure germanium grown in a hydrogen atmosphere is attributed to an oxygen-hydrogen system. Photoconductivity data under stress are presented. An abrupt transition in the spectra at a well-defined stress (2.1 x 10{sup 8} dyn cm{sup -2}) is found. It is explained by a theory which involves dynamic tunneling of the hydrogen in the vicinity of an oxygen center. The comparison with other complex donors and acceptors supports the model.

  3. Giant negative piezoresistance effect in copper-doped germanium

    SciTech Connect

    Dubon, O.D.; Haller, E.E. |; Walukiewicz, W.; Beeman, J.W.

    1996-09-01

    We have observed a stress-induced decrease of over ten orders of magnitude in the low-temperature electrical resistivity of copper- doped germanium single crystals. The application of large uniaxial stresses in a <001> direction leas to a change in the copper ground- state wavefunction from the highly localized (1s){sup 3} to the much more extended (1s){sup 2}(2s){sup 1} configuration. We attribute the decrease in the resistivity to impurity band conduction by the 2s - holes of the high pressure configuration.

  4. Ultra-low noise mechanically cooled germanium detector

    NASA Astrophysics Data System (ADS)

    Barton, P.; Amman, M.; Martin, R.; Vetter, K.

    2016-03-01

    Low capacitance, large volume, high purity germanium (HPGe) radiation detectors have been successfully employed in low-background physics experiments. However, some physical processes may not be detectable with existing detectors whose energy thresholds are limited by electronic noise. In this paper, methods are presented which can lower the electronic noise of these detectors. Through ultra-low vibration mechanical cooling and wire bonding of a CMOS charge sensitive preamplifier to a sub-pF p-type point contact HPGe detector, we demonstrate electronic noise levels below 40 eV-FWHM.

  5. Infrared absorption study of neutron-transmutation-doped germanium

    NASA Technical Reports Server (NTRS)

    Park, I. S.; Haller, E. E.

    1988-01-01

    Using high-resolution far-infrared Fourier transform absorption spectroscopy and Hall effect measurements, the evolution of the shallow acceptor and donor impurity levels in germanium during and after the neutron transmutation doping process was studied. The results show unambiguously that the gallium acceptor level concentration equals the concentration of transmutated Ge-70 atoms during the whole process indicating that neither recoil during transmutation nor gallium-defect complex formation play significant roles. The arsenic donor levels appear at full concentration only after annealing for 1 h at 450 C. It is shown that this is due to donor-radiation-defect complex formation. Again, recoil does not play a significant role.

  6. Doping of germanium nanowires grown in presence of PH3

    NASA Astrophysics Data System (ADS)

    Tutuc, E.; Chu, J. O.; Ott, J. A.; Guha, S.

    2006-12-01

    The authors study the Au-catalyzed chemical vapor growth of germanium (Ge) nanowires in the presence of phosphine (PH3), used as a dopant precursor. The device characteristics of the ensuing nanowire field effect transistors (FETs) indicate n-type, highly doped nanowires. Using a combination of different nanowire growth sequences and their FET characteristics, the authors determine that phosphorus incorporates predominately via the conformal growth, which accompanies the acicular, nanowire growth. As such, the Ge nanowires grown in the presence of PH3 contain a phosphorus doped shell and an undoped core. The authors determine the doping level in the shell to be ≃(1-4)×1019cm-3.

  7. Performance of a 60 gram cryogenic germanium detector

    SciTech Connect

    Cummings, A.; Wang, N.; Shutt, T.; Barnes, P.; Lange, A.; Sadoulet, B.; Stubbs, C. . Dept. of Physics); Emes, J.; Ross, R.; Smith, G. ); Giraud-Heraud ); Haller, E.E. . Dept. of Materials Science and Mineral Engineering); Rich, J. )

    1991-04-01

    The authors have developed a 60 g particle detector which utilizes both the ionization and the photons produced by a particle interaction. Six NTD Ge thermistors are attached to a pure germanium crystal which has implanted contacts for drifting charge. The authors have operated our detector at 30 mK, and the authors have studied its response to irradiation by 18 and 60 keV photons from an 241 Am source. This paper presents an analysis of the resolution of our detector, considering the noise of the front end electronics, and signals from extraneous sources such as microphonics.

  8. Germanium wrap-around photodetectors on Silicon photonics.

    PubMed

    Going, Ryan; Seok, Tae Joon; Loo, Jodi; Hsu, Kyle; Wu, Ming C

    2015-05-04

    We present a novel waveguide coupling scheme where a germanium diode grown via rapid melt growth is wrapped around a silicon waveguide. A 4 fF PIN photodiode is demonstrated with 0.95 A/W responsivity at 1550 nm, 6 nA dark current, and nearly 9 GHz bandwidth. Devices with shorter intrinsic region exhibit higher bandwidth (30 GHz) and slightly lower responsivity (0.7 A/W). An NPN phototransistor is also demonstrated using the same design with 14 GHz f(T).

  9. Resonance-enhanced waveguide-coupled silicon-germanium detector

    NASA Astrophysics Data System (ADS)

    Alloatti, L.; Ram, R. J.

    2016-02-01

    A photodiode with 0.55 ± 0.1 A/W responsivity at a wavelength of 1176.9 nm has been fabricated in a 45 nm microelectronics silicon-on-insulator foundry process. The resonant waveguide photodetector exploits carrier generation in silicon-germanium within a microring which is compatible with high-performance electronics. A 3 dB bandwidth of 5 GHz at -4 V bias is obtained with a dark current of less than 20 pA.

  10. Germanium diffusion mechanisms in silicon from first principles

    NASA Astrophysics Data System (ADS)

    Caliste, Damien; Pochet, Pascal; Deutsch, Thierry; Lançon, Frédéric

    2007-03-01

    We present an extensive numerical study of the basic mechanisms that describe germanium diffusion in silicon mediated by point defects. This diffusion can be created by vacancies, interstitial atoms, or fourfold coordinated defects. All energies and elementary barriers have been precisely determined by ab initio calculations. The results for vacancies are compared with recently published values. The complex interstitial landscape is systematized and the key role of the hexagonal location is stressed as a halfway stable state between two, more stable, dumbbell [110] states. Finally, the mechanism of a concerted exchange linking two fourfold coordinated defects is fully calculated. Its activation energy is higher than for interstitial or vacancy mediated movements.

  11. Germanium nanowire growth controlled by surface diffusion effects

    SciTech Connect

    Schmidtbauer, Jan; Bansen, Roman; Heimburger, Robert; Teubner, Thomas; Boeck, Torsten; Fornari, Roberto

    2012-07-23

    Germanium nanowires (NWs) were grown onto Ge(111) substrates by the vapor-liquid-solid process using gold droplets. The growth was carried out in a molecular beam epitaxy chamber at substrate temperatures between 370 Degree-Sign C and 510 Degree-Sign C. The resulting nanowire growth rate turns out to be highly dependent on the substrate temperature exhibiting the maximum at T = 430 Degree-Sign C. The temperature dependence of growth rate can be attributed to surface diffusion both along the substrate and nanowire sidewalls. Analyzing the diffusive material transport yields a diffusion length of 126 nm at a substrate temperature of 430 Degree-Sign C.

  12. Josephson tunnel junctions with chemically vapor deposited polycrystalline germanium barriers

    SciTech Connect

    Kroger, H.; Jillie, D.W.; Smith, L.N.; Phaneuf, L.E.; Potter, C.N.; Shaw, D.M.; Cukauskas, E.J.; Nisenoff, M.

    1984-03-01

    High quality Josephson tunnel junctions have been fabricated whose tunneling barrier is polycrystalline germanium chemically vapor deposited on a NbN base electrode and covered by a Nb counterelectrode. These junctions have excellent characteristics for device applications: values of V/sub m/ (the product of the critical current and the subgap resistance measured at 2 mV and 4.2 K) ranging between 35--48 mV, ideal threshold curves, a steep current rise at the gap voltage, and Josephson current densities from 100 to 1100 A/cm/sup 2/.

  13. Bulk and surface effects in segmented high purity germanium detectors

    NASA Astrophysics Data System (ADS)

    Abt, I.; Caldwell, A.; Dönmez, B.; Irlbeck, S.; Majorovits, B.; Volynets, O.

    2013-08-01

    Segmented high-purity germanium detectors have been developed for a variety of experiments. The segmentation is used to augment the excellent energy resolution of such a device with spatial information to disentangle event topologies. Several performance aspects of true-coaxial segmented detectors are presented, especially the effects due to the crystallographic axes and the problem of events close to the surfaces of the detector. A test stand and Monte Carlo tools developed to study such effects are introduced. The simulation tools can also be used to design novel detectors, such as segmented point-contact detectors. A particular design is presented and discussed.

  14. Effect of ion-plated films of germanium and silicon on friction, wear, and oxidation of 52100 bearing steel

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.; Spalvins, T.

    1977-01-01

    Friction and wear experiments were conducted with ion plated films of germanium and silicon on the surface of 52100 bearing steel both dry and in the presence of mineral oil. Both silicon and germanium were found to reduce wear, with germanium being more effective than silicon. An optimum film thickness of germanium for minimum wear without surface crack formation was found to be approximately 400 nanometers (4000 A). The presence of silicon and germanium on the 52100 bearing steel surface improved resistance to oxidation.

  15. Efficiency as a function of MEQ-CWT for large area germanium detectors using LLNL phantom.

    PubMed

    Rajaram, S; Brindha, J Thulasi; Sreedevi, K R; Hegde, A G

    2012-01-01

    The lung counting system at Kalpakkam, India, used for the estimation of transuranics deposited in the lungs of occupational workers, consists of an array of three large area germanium detectors fixed in a single assembly. The efficiency calibration for low energy photons was carried out using ²⁴¹Am and ²³²Th lung sets of Lawrence Livermore National Laboratory phantom. The muscle equivalent chest wall thickness (MEQ-CWT) was derived for the three energies 59.5, 75.95 (average energy of ²³²Th) and 238.9 keV for the series of overlay plates made of different adipose mass ratios. Efficiency as a function of MEQ-CWT was calculated for individual detectors for the three energies. Variation of MEQ-CWT from 16 to 40 mm resulted in an efficiency variation of around 40 % for all the three energies. The array efficiency for different MEQ-CWT ranged from 1.4×10⁻³ to 3.2×10⁻³, 1.5×10⁻³ to 3.3×10⁻³ and 1.1×10⁻³ to 2.3×10⁻³ for 59.5, 75.95 and 238.9 keV, respectively. In the energy response, efficiency was observed to be maximum for 75.95 keV compared with 59.5 and 238.9 keV.

  16. Superconductivity and unexpected chemistry of germanium hydrides under pressure

    NASA Astrophysics Data System (ADS)

    Davari Esfahani, M. Mahdi; Oganov, Artem R.; Niu, Haiyang; Zhang, Jin

    2017-04-01

    Following the idea that hydrogen-rich compounds might be high-Tc superconductors at high pressures, and the very recent breakthrough in predicting and synthesizing hydrogen sulfide with record-high Tc=203 K , an ab initio evolutionary algorithm for crystal structure prediction was employed to find stable germanium hydrides. In addition to the earlier structure of germane with space group Ama2, we propose a C2/m structure, which is energetically more favorable at pressures above 278 GPa (with inclusion of zero-point energy). Our calculations indicate that the C2/m phase of germane is a superconductor with Tc=67 K at 280 GPa. Germane is found to become thermodynamically unstable to decomposition to hydrogen and the compound Ge3H11 at pressures above 300 GPa. Ge3H11 with space group I 4 ¯m 2 is found to become stable at above 285 GPa with Tc=43 K . We find that the pressure-induced phase stability of germanium hydrides is distinct from analogous isoelectronic systems, e.g., Si hydrides and Sn hydrides. Superconductivity stems from large electron-phonon coupling associated with the wagging, bending, and stretching intermediate-frequency modes derived mainly from hydrogen.

  17. Materials and Fabrication Issues for Large Machined Germanium Immersion Gratings

    SciTech Connect

    Kuzmenko, P J; Davis, P J; Little, S L; Hale, L C

    2006-05-22

    LLNL has successfully fabricated small (1.5 cm{sup 2} area) germanium immersion gratings. We studied the feasibility of producing a large germanium immersion grating by means of single point diamond flycutting. Our baseline design is a 63.4o blaze echelle with a 6 cm beam diameter. Birefringence and refractive index inhomogeneity due to stresses produced by the crystal growth process are of concern. Careful selection of the grating blank and possibly additional annealing to relieve stress will be required. The Large Optics Diamond Turning Machine (LODTM) at LLNL is a good choice for the fabrication. It can handle parts up to 1.5 meter in diameter and 0.5 meter in length and is capable of a surface figure accuracy of better than 28 nm rms. We will describe the machine modifications and the machining process for a large grating. A next generation machine, the Precision Optical Grinder and Lathe (POGAL), currently under development has tighter specifications and could produce large gratings with higher precision.

  18. Characterisation of the SmartPET planar Germanium detectors

    NASA Astrophysics Data System (ADS)

    Boston, H. C.; Boston, A. J.; Cooper, R. J.; Cresswell, J.; Grint, A. N.; Mather, A. R.; Nolan, P. J.; Scraggs, D. P.; Turk, G.; Hall, C. J.; Lazarus, I.; Berry, A.; Beveridge, T.; Gillam, J.; Lewis, R.

    2007-08-01

    Small Animal Reconstruction PET (SmartPET) is a project funded by the UK medical research council (MRC) to demonstrate proof of principle that Germanium can be utilised in Positron Emission Tomography (PET). The SmartPET demonstrator consists of two orthogonal strip High Purity Germanium (HPGe) planar detectors manufactured by ORTEC. The aim of the project is to produce images of an internal source with sub mm 3 spatial resolution. Before this image can be achieved the detectors have to be fully characterised to understand the response at any given location to a γ-ray interaction. This has been achieved by probing the two detectors at a number of specified points with collimated sources of various energies and strengths. A 1 mm diameter collimated beam of photons was raster scanned in 1 mm steps across the detector. Digital pulse shape data were recorded from all the detector channels and the performance of the detector for energy and position determination has been assessed. Data will be presented for the first SmartPET detector.

  19. Evaluating a new segmented germanium detector contact technology

    NASA Astrophysics Data System (ADS)

    Jackson, E. G.; Lister, C. J.; Chowdhury, P.; Hull, E.; Pehl, R.

    2012-10-01

    New technologies for making gamma ray detectors position sensitive have many applications in space science, medical imaging, homeland security, and in nuclear structure research. One promising approach uses high-purity germanium wafers with the planar surfaces segmented into orthogonal strip patterns forming a Double-Sided Strip Detector (DSSD). The combination of data from adjoining strips, or pixels, is physics-rich for Compton image formation and polarization studies. However, sensitivity to charge loss and various kinds of cross-talk [1] have limited the usefulness of first generation devices. We are investigating new contact technologies, developed by PhDs Co [2], based on amorphous-germanium and yttrium contacts RF sputter deposited to a thickness of ˜ 1000 å. New techniques allow both physical and photolithographic segmentation of the contacts with inter-strip gap widths of 0.25 mm. These modifications should improve all aspects of charge collection. The new detector technology employs the same material and fabrication technique for both the n- and p- contacts, thus removing artificial asymmetry in the data. Results from tests of cross-talk, charge collection, and scattering asymmetry will be presented and compared with older technologies. This mechanically cooled counter, NP-7, seems to represent a breakthrough.[4pt] [1] S. Gros et al., Nucl. Inst. Meth. A 602, 467 (2009).[0pt] [2] E. Hull et al Nucl Inst Meth A 626, 39 (2011)

  20. Germanium electroabsorption devices on silicon for optical interconnects

    NASA Astrophysics Data System (ADS)

    Kuo, Yu-Hsuan; Miller, David A. B.; Harris, James S.

    2006-02-01

    Monolithic integration of both electronic and optic components into a silicon-based platform will provide high-speed optical interconnects and solve the power-bandwidth limitations. However, the lack of strong optical effects in silicon has limited the progress in the transmitter-end applications. Recently our research had demonstrated strong quantum-confined Stark effect (QCSE) in germanium quantum-well modulators on silicon. This first strong physical mechanism for group-IV photonics has a comparable behavior to III-V material systems. With proper quantum well structure design, we also demonstrated QCSE in C-band for long distance communications with CMOS-operational temperatures. The device fabrication is also compatible with standard silicon chip processes. Since the QCSE, a type of electroabsorption effect, requires much shorter optical length, it is suitable for device miniaturizations and possible for use in both lateral and vertical modulator configurations. Moreover, silicon-germanium electroabsorption modulators are inherently photodetectors, this advantage will enable efficient transmitter/receiver applications for optical interconnects.

  1. Reduction of phosphorus diffusion in germanium by fluorine implantation

    SciTech Connect

    El Mubarek, H. A. W.

    2013-12-14

    The control of phosphorus (P) diffusion in germanium (Ge) is essential for the realisation of ultrashallow n-type junctions in Ge. This work reports a detailed study of the effect of fluorine (F) co-implantation on P diffusion in Ge. P and F profiles were characterized by secondary ion mass spectroscopy. The ion implantation damage was investigated using cross sectional transmission electron microscopy. It is shown that F co-implantation reduces the implanted P profile width and reduces both intrinsic and extrinsic P diffusion in Ge. A defect mediated mechanism for the strong influence of F co-implantation on P diffusion in Ge is proposed and invokes the formation of F{sub n}V{sub m} clusters in the F-amorphized Ge layer. A fraction of these F{sub n}V{sub m} clusters decorate the interstitial type end-of-range defects in the re-grown Ge layer and the rest react during re-growth with interstitial germanium atoms diffusing back from the amorphous crystalline interface. The Ge vacancies are then annihilated and mobile interstitial F is released and out diffuses from the surface. This results in a re-grown Ge layer which has a low vacancy concentration and in which the P diffusion rate is reduced. These results open the way to the realization of enhanced Ge n-type devices.

  2. Intrinsic germanium detector used in borehole sonde for uranium exploration

    USGS Publications Warehouse

    Senftle, F.E.; Moxham, R.M.; Tanner, A.B.; Boynton, G.R.; Philbin, P.W.; Baicker, J.A.

    1976-01-01

    A borehole sonde (~1.7 m long; 7.3 cm diameter) using a 200 mm2 planar intrinsic germanium detector, mounted in a cryostat cooled by removable canisters of frozen propane, has been constructed and tested. The sonde is especially useful in measuring X- and low-energy gamma-ray spectra (40–400 keV). Laboratory tests in an artificial borehole facility indicate its potential for in-situ uranium analyses in boreholes irrespective of the state of equilibrium in the uranium series. Both natural gamma-ray and neutron-activation gamma-ray spectra have been measured with the sonde. Although the neutron-activation technique yields greater sensitivity, improvements being made in the resolution and efficiency of intrinsic germanium detectors suggest that it will soon be possible to use a similar sonde in the passive mode for measurement of uranium in a borehole down to about 0.1% with acceptable accuracy. Using a similar detector and neutron activation, the sonde can be used to measure uranium down to 0.01%.

  3. Crystal Growth of Germanium-Silicon Alloys on the ISS

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.; Croell, A.

    2015-01-01

    A series of Ge(1-x)Si(x) crystal growth experiments are planned to be conducted in the Low Gradient Furnace (LGF) onboard the International Space Station. The experiments are part of the investigation "Influence of Containment on the Growth of Silicon-Germanium" (ICESAGE). The primary objective of the research is to determine the influence of containment on the processing-induced defects and impurity incorporation in germanium-silicon alloy crystals. A comparison will be made between crystals grown by the normal and "detached" Bridgman methods and the ground-based float zone technique. Crystals grown without being in contact with a container have superior quality to otherwise similar crystals grown in direct contact with a container, especially with respect to impurity incorporation, formation of dislocations, and residual stress in crystals. "Detached" or "dewetted" Bridgman growth is similar to regular Bridgman growth in that most of the melt is in contact with the crucible wall, but the crystal is separated from the wall by a small gap, typically of the order of 10-100 microns. Long duration reduced gravity is essential to test the proposed theory of detached growth. Detached growth requires the establishment of a meniscus between the crystal and the ampoule wall. This meniscus can exist over a much larger range of processing parameters in microgravity and the meniscus is more stable under microgravity conditions. The plans for the flight experiments will be described.

  4. Crystallization of Electrodeposited Germanium Thin Film on Silicon (100)

    PubMed Central

    Abidin, Mastura Shafinaz Zainal; Matsumura, Ryo; Anisuzzaman, Mohammad; Park, Jong-Hyeok; Muta, Shunpei; Mahmood, Mohamad Rusop; Sadoh, Taizoh; Hashim, Abdul Manaf

    2013-01-01

    We report the crystallization of electrodeposited germanium (Ge) thin films on n-silicon (Si) (100) by rapid melting process. The electrodeposition was carried out in germanium (IV) chloride: propylene glycol (GeCl4:C3H8O2) electrolyte with constant current of 50 mA for 30 min. The measured Raman spectra and electron backscattering diffraction (EBSD) images show that the as-deposited Ge thin film was amorphous. The crystallization of deposited Ge was achieved by rapid thermal annealing (RTA) at 980 °C for 1 s. The EBSD images confirm that the orientations of the annealed Ge are similar to that of the Si substrate. The highly intense peak of Raman spectra at 300 cm−1 corresponding to Ge-Ge vibration mode was observed, indicating good crystal quality of Ge. An additional sub peak near to 390 cm−1 corresponding to the Si-Ge vibration mode was also observed, indicating the Ge-Si mixing at Ge/Si interface. Auger electron spectroscopy (AES) reveals that the intermixing depth was around 60 nm. The calculated Si fraction from Raman spectra was found to be in good agreement with the value estimated from Ge-Si equilibrium phase diagram. The proposed technique is expected to be an effective way to crystallize Ge films for various device applications as well as to create strain at the Ge-Si interface for enhancement of mobility. PMID:28788375

  5. Germanium nano-cluster films as humidity and hydrogen sensors

    NASA Astrophysics Data System (ADS)

    Mackenzie, D. M. A.; Brown, S. A.

    2012-10-01

    Films of germanium nano-clusters of 30 nm diameter were fabricated in a high-vacuum deposition apparatus utilizing an inert-gas-aggregation source. The germanium films readily formed an oxide layer in high vacuum along with a corresponding resistance increase, a process that accelerated when films were exposed to dry air. A decrease in resistance was observed when films were exposed to ambient air, and this was attributed to water vapour adsorbing on the surface. The effects of film-thickness were investigated. A reversible change in resistance of 2 orders of magnitude was observed for 99% humidity, with a response time of tens of minutes. It is proposed that the resistance-decrease occurs because water vapour creates surface defects which act as donors causing the electron concentration in the n-type film to increase. The films were also sensitive to hydrogen concentrations above 1% in dry air, with up to a factor of 25 decrease in resistance observed for 5% hydrogen concentration at room temperature. Unexpectedly, the sensitivity to hydrogen was only observed at temperatures below 100 °C, suggesting that surface moisture is necessary for films to show sensitivity to hydrogen.

  6. Germanium Isotopic Fractionation in Iron Meteorites : Comparison with Experimental Data

    NASA Astrophysics Data System (ADS)

    Luais, B.; Toplis, M.; Tissandier, L.; Roskosz, M.

    2009-05-01

    Magmatic and non-magmatic iron meteorites are thought to be formed respectively by processes of metal- silicate segregation, and complex impacts on undifferentiated parent bodies. These processes are inferred from variations of siderophile element concentrations, such as Ge, Ni, Ir. Germanium is moderately siderophile, with metal-silicate partition coefficients which depend on oxygen fugacity. Germanium is also moderately volatile, and fractionation would be expected during high temperature processes. In order to investigate the extent of elemental and isotopic fractionation of germanium during metal-silicate equilibria and impact processes, we use a double approach including (1) Ge isotopic measurements of iron meteorites from non-magmatic and magmatic groups [1], and (2) experimental investigations of the isotopic fractionation associated with germanium transfer from an oxidized silicate liquid to a metallic phase under various fO2 conditions. Experiments were performed in a 1 atm vertical drop quench furnace, with starting materials corresponding to a glass of 1 bar An-Di euctectic composition doped with ˜ 4,000 ppm reference Ge standard, and pure Ni capsules as the metal phase. The assembly was heated at 1355°C for t =2 to 60 hrs over a range of fO2 from 4 log units below, to 2.5 log units above, the IW buffer. Metal and silicate phases were then mechanically separated. For isotopic measurements, the metal phase of these experiments and the selected iron meteorites were dissolved in high-purity dilute nitric acid. Chemical purification of Ge, and isotopic measurements using the Isoprobe MC-ICPMS follow Luais (2007). Germanium isotopic measurements of Fe-meteorites show that δ74Ge of magmatic irons are constant (δ74Ge=+1.77±0.22‰, 2σ), but heavier than non-magmatic irons (IAB : +1.15±0.2‰; IIE : -0.27 to +1.40±0.2‰). Time series experiments at the IW buffer show that there is a clear continuous increase in δ 74Ge in the metal as a function of time

  7. Hydrometallurgical recovery of germanium from coal gasification fly ash. Solvent extraction method

    SciTech Connect

    Arroyo, F.; Fernandez-Pereira, C.

    2008-05-15

    This article is concerned with a simple hydrometallurgical method for the selective recovery of germanium from fly ash (FA) generated in an integrated gasification with combined cycle (IGCC) process. The method is based on the leaching of FA with water and a subsequent concentration and selective separation of germanium by a solvent method. Regarding the leaching step, the different operational conditions studied were liquid/solid (L/S) ratio and time of contact. The solvent extraction method was based on germanium complexation with catechol (CAT) in an aqueous solution followed by the extraction of the Ge-CAT complex with an extracting organic reagent diluted in an organic solvent. The main factors examined during the extraction tests were aqueous phase/organic phase (AP/OP) volumetric ratio, aqueous phase pH, amounts of reagents, and time of contact. Germanium extraction yields were higher than 90%. Alkaline and acid stripping of organic extracts were studied obtaining the best results with 1M NaOH (85%). A high-purity germanium solution was obtained. Experimental data presented in this work show that the extraction of germanium by the solvent method designed can be selective toward germanium, and this element can be effectively separated from arsenic, molybdenum, nickel, antimony, vanadium, and zinc.

  8. Germanium-on-silicon nitride waveguides for mid-infrared integrated photonics

    NASA Astrophysics Data System (ADS)

    Li, Wei; Anantha, P.; Bao, Shuyu; Lee, Kwang Hong; Guo, Xin; Hu, Ting; Zhang, Lin; Wang, Hong; Soref, Richard; Tan, Chuan Seng

    2016-12-01

    A germanium-based platform with a large core-clad index contrast, germanium-on-silicon nitride waveguide, is demonstrated at mid-infrared wavelength. Simulations are performed to verify the feasibility of this structure. This structure is realized by first bonding a silicon-nitride-deposited germanium-on-silicon donor wafer onto a silicon substrate wafer, followed by the layer transfer approach to obtain germanium-on-silicon nitride structure, which is scalable to all wafer sizes. The misfit dislocations which initially form along the interface between germanium/silicon can be removed by chemical mechanical polishing after layer transfer process resulting in a high-quality germanium layer. At the mid-infrared wavelength of 3.8 μm, the germanium-on-silicon nitride waveguide has a propagation loss of 3.35 ± 0.5 dB/cm and a bend loss of 0.14 ± 0.01 dB/bend for a radius of 5 μm for the transverse-electric mode.

  9. Advances in fractal germanium micro/nanoclusters induced by gold: microstructures and properties.

    PubMed

    Chen, Zhiwen; Shek, Chan-Hung; Wu, C M Lawrence; Lai, Joseph K L

    2014-02-01

    Germanium materials are a class of unique semiconductor materials with widespread technological applications because of their valuable semiconducting, electrical, optical, and thermoelectric power properties in the fields of macro/mesoscopic materials and micro/nanodevices. In this review, we describe the efforts toward understanding the microstructures and various properties of the fractal germanium micro/nanoclusters induced by gold prepared by high vacuum thermal evaporation techniques, highlighting contributions from our laboratory. First, we present the integer and non-integer dimensional germanium micro/nanoclusters such as nanoparticles, nanorings, and nanofractals induced by gold and annealing. In particular, the nonlinear electrical behavior of a gold/germanium bilayer film with the interesting nanofractal is discussed in detail. In addition, the third-order optical nonlinearities of the fractal germanium nanocrystals embedded in gold matrix will be summarized by using the sensitive and reliable Z-scan techniques aimed to determine the nonlinear absorption coefficient and nonlinear refractive index. Finally, we emphasize the thermoelectric power properties of the gold/germanium bilayer films. The thermoelectric power measurement is considered to be a more effective method than the conductivity for investigating superlocalization in a percolating system. This research may provide a novel insight to modulate their competent performance and promote rational design of micro/nanodevices. Once mastered, germanium thin films with a variety of fascinating micro/nanoclusters will offer vast and unforeseen opportunities in the semiconductor industry as well as in other fields of science and technology.

  10. Inelasticity and precipitation of germanium from a solid solution in Al-Ge binary alloys

    NASA Astrophysics Data System (ADS)

    Kardashev, B. K.; Korchunov, B. N.; Nikanorov, S. P.; Osipov, V. N.

    2015-08-01

    The influence of precipitation of germanium atoms in a solid solution on the dependence of the inelasticity characteristics on the germanium content in aluminum-germanium alloys prepared by directional crystallization has been studied. It has been shown that the Young's modulus defect, the amplitude-dependent decrement, and the microplastic flow stress at a specified cyclic strain amplitude have extreme values at the eutectic germanium content in the alloy. The eutectic composition of the alloy undergoes a ductilebrittle transition. It has been found that there is a correlation between the dependences of the Young's modulus defect, amplitude-dependent decrement, microplastic flow stress, and specific entropy of the exothermal process of germanium precipitation on the germanium content in the hypoeutectic alloy. The concentration dependences of the inelasticity characteristics and their changes after annealing have been explained by the change in the resistance to the motion of intragrain dislocations due to different structures of the Guinier-Preston zones formed during the precipitation of germanium atoms.

  11. Crystal-originated particles in germanium-doped Czochralski silicon crystal

    NASA Astrophysics Data System (ADS)

    Chen, Jiahe; Yang, Deren; Li, Hong; Ma, Xiangyang; Tian, Daxi; Li, Liben; Que, Duainlin

    2007-08-01

    Grown-in distribution and annealing behavior of crystal-originated particles (COPs) in Czochralski silicon (Cz-Si) wafer with germanium doping have been investigated. It was found that COPs with high density but small sizes were inclined to generate in germanium-doped Cz-Si (GCz-Si) wafer. The increase of boron atoms in Cz-Si crystal with the germanium doping could benefit the formation of COPs while the oxygen interstitials in GCz-Si wafer could enhance the generation of COPs with small sizes. Meanwhile, it was suggested that the germanium doping in Cz-Si would result in the poor thermal stability of COPs. It is proposed that the combination between germanium atom and vacancy could reduce the free vacancy concentration and the onset temperature for void generation, thus forming denser but smaller void. While the stress compensation induced by boron and germanium atoms could increase the vacancy fluxes in heavy-boron doped GCz-Si crystal, the presence of oxygen atom in GCz-Si would incline to benefit the formation of inner oxide walls of void, especially with small sizes. Furthermore, thinner oxide walls within void for GCz-Si crystal are considered to be charged for the easy annihilation by the germanium doping.

  12. Germanium ion implantation to Improve Crystallinity during Solid Phase Epitaxy and the effect of AMU Contamination

    SciTech Connect

    Lee, K. S.; Yoo, D. H.; Son, G. H.; Lee, C. H.; Noh, J. H.; Han, J. J.; Yu, Y. S.; Hyung, Y. W.; Kim, Y. K.; Lee, S. C.; Lee, H. D.; Moon, J. T.; Yang, J. K.; Song, D. G.; Lim, T. J.

    2006-11-13

    Germanium ion implantation was investigated for crystallinity enhancement during solid phase epitaxial regrowth (SPE) using high current implantation equipment. Electron back-scatter diffraction(EBSD) measurement showed numerical increase of 19 percent of <100> signal, which might be due to pre-amorphization effect on silicon layer deposited by LPCVD process with germanium ion implantation. On the other hand, electrical property such as off-leakage current of NMOS transistor degraded in specific regions of wafers, which implied non-uniform distribution of donor-type impurities into channel area. It was confirmed that arsenic atoms were incorporated into silicon layer during germanium ion implantation. Since the equipment for germanium pre-amorphization implantation(PAI) was using several source gases such as BF3 and AsH3, atomic mass unit(AMU) contamination during PAI of germanium with AMU 74 caused the incorporation of arsenic with AMU 75 which resided in arc-chamber and other parts of the equipment. It was effective to use germanium isotope of AMU 72 to suppress AMU contamination, however it led serious reduction of productivity because of decrease in beam current by 30 percent as known to be difference in isotope abundance. It was effective to use enriched germanium source gas with AMU 72 in order to improve productivity. Spatial distribution of arsenic impurities in wafers was closely related to hardware configuration of ion implantation equipment.

  13. Mechanically Cooled Large-Volume Germanium Detector Systems for Nuclear Explosion Monitoring

    SciTech Connect

    Hull, Ethan L.; Pehl, Richard H.; Lathrop, James R.; Martin, Gregory N.; Mashburn, R. B.; Miley, Harry S.; Aalseth, Craig E.; Hossbach, Todd W.; Bowyer, Ted W.

    2006-09-21

    Compact maintenance free mechanical cooling systems are being developed to operate large volume (~570 cm3, ~3 kg, 140% or larger) germanium detectors for field applications. We are using a new generation of Stirling-cycle mechanical coolers for operating the very largest volume germanium detectors with absolutely no maintenance or liquid nitrogen requirements. The user will be able to leave these systems unplugged on the shelf until needed. The flip of a switch will bring a system to life in ~1 hour for measurements. The maintenance-free operating lifetime of these detector systems will exceed five years. These features are necessary for remote long-duration liquid-nitrogen free deployment of large-volume germanium gamma-ray detector systems for Nuclear Explosion Monitoring (NEM). The Radionuclide Aerosol Sampler/Analyzer (RASA) will greatly benefit from the availability of such detectors by eliminating the need for liquid nitrogen at RASA sites while still allowing the very largest available germanium detectors to be utilized. These mechanically cooled germanium detector systems being developed here will provide the largest, most sensitive detectors possible for use with the RASA. To provide such systems, the appropriate technical fundamentals are being researched. Mechanical cooling of germanium detectors has historically been a difficult endeavor. The success or failure of mechanically cooled germanium detectors stems from three main technical issues: temperature, vacuum, and vibration. These factors affect one another. There is a particularly crucial relationship between vacuum and temperature. These factors will be experimentally studied both separately and together to insure a solid understanding of the physical limitations each factor places on a practical mechanically cooled germanium detector system for field use. Using this knowledge, a series of mechanically cooled germanium detector prototype systems are being designed and fabricated. Our collaborators

  14. Work Function Control of Germanium through Carborane-Carboxylic Acid Surface Passivation.

    PubMed

    Serino, Andrew C; Anderson, Mary E; Saleh, Liban M A; Dziedzic, Rafal M; Mills, Harrison; Heidenreich, Liv K; Spokoyny, Alexander M; Weiss, Paul S

    2017-10-02

    Self-assembled monolayers (SAMs) of carborane isomers with different dipole moments passivate germanium to modulate surface work function while maintaining chemical environment and surface energy. To identify head groups capable of monolayer formation on germanium surfaces, we studied thiol-, hydroxyl-, and carboxyl-terminated carboranes. These films were successfully formed with carboxylic acid head groups instead of the archetypal thiol, suggesting that the carborane cluster significantly affects headgroup reactivity. Film characterization included X-ray and ultraviolet photoelectron spectroscopies as well as contact angle goniometry. Using these carboranes, the germanium surface work function was tailored over 0.4 eV without significant changes to wetting properties.

  15. Discrimination of nuclear and electronic recoil events using plasma effect in germanium detectors

    NASA Astrophysics Data System (ADS)

    Wei, W.-Z.; Liu, J.; Mei, D.-M.

    2016-07-01

    We report a new method of using the plasma time difference, which results from the plasma effect, between the nuclear and electronic recoil events in high-purity germanium detectors to distinguish these two types of events in the search for rare physics processes. The physics mechanism of the plasma effect is discussed in detail. A numerical model is developed to calculate the plasma time for nuclear and electronic recoils at various energies in germanium detectors. It can be shown that under certain conditions the plasma time difference is large enough to be observable. The experimental aspects in realizing such a discrimination in germanium detectors is discussed.

  16. Influence of Containment on the Growth of Germanium-Silicon in Microgravity

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.; Croll, A.; Sorgenfrei, T.

    2017-01-01

    This investigation involves the comparison of results achieved from three types of crystal growth of germanium and germanium-silicon alloys: Float zone growth, Bridgman growth, and Detached Bridgman growth. The fundamental goal of the proposed research is to determine the influence of containment on the processing-induced defects and impurity incorporation in germanium-silicon (GeSi) crystals (silicon concentration in the solid up to 5%) for three different growth configurations in order to quantitatively assess the improvements of crystal quality possible by detached growth.

  17. Influence of Containment on the Growth of Silicon-Germanium: A Materials Science Flight Project

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.; Croell, A.

    2012-01-01

    This investigation involves the comparison of results achieved from three types of crystal growth of germanium and germanium-silicon alloys: (1) Float zone growth (2) Bridgman growth (3) Detached Bridgman growth crystal The fundamental goal of the proposed research is to determine the influence of containment on the processing-induced defects and impurity incorporation in germanium-silicon (GeSi) crystals (silicon concentration in the solid up to 5 at%) for three different growth configurations in order to quantitatively assess the improvements of crystal quality possible by detached growth.

  18. SNP Arrays

    PubMed Central

    Louhelainen, Jari

    2016-01-01

    The papers published in this Special Issue “SNP arrays” (Single Nucleotide Polymorphism Arrays) focus on several perspectives associated with arrays of this type. The range of papers vary from a case report to reviews, thereby targeting wider audiences working in this field. The research focus of SNP arrays is often human cancers but this Issue expands that focus to include areas such as rare conditions, animal breeding and bioinformatics tools. Given the limited scope, the spectrum of papers is nothing short of remarkable and even from a technical point of view these papers will contribute to the field at a general level. Three of the papers published in this Special Issue focus on the use of various SNP array approaches in the analysis of three different cancer types. Two of the papers concentrate on two very different rare conditions, applying the SNP arrays slightly differently. Finally, two other papers evaluate the use of the SNP arrays in the context of genetic analysis of livestock. The findings reported in these papers help to close gaps in the current literature and also to give guidelines for future applications of SNP arrays. PMID:27792140

  19. Crystal field energy levels, spin-Hamiltonian parameters and local structures for the Cr3+ and Mn4+ centers in La3Ga5SiO14 crystals

    NASA Astrophysics Data System (ADS)

    Mei, Yang; Chen, Bo-Wei; Zheng, Wen-Chen; Li, Bang-Xing

    2017-02-01

    The crystal field energy levels (obtained from optical spectra) together with the spin-Hamiltonian parameters g//, g⊥ and D (obtained from EPR spectra) for 3d3 ions Cr3+ and Mn4+ at the trigonal octahedral Ga3+ sites in La3Ga5SiO14 crystals are computed from the complete diagonalization (of energy matrix) method based on the two-spin-orbit-parameter model. The model takes into account the contributions due to the spin-orbit parameter of central dn ion (in the traditional crystal field theory) and that of ligand ions via covalence effect. The calculated results are in rational accord with the experimental values. The calculations also imply that the covalence of (MnO6)8- center in La3Ga5SiO14 crystals is stronger than that of (CrO6)9- center, and the impurity-induced local lattice relaxation for (MnO6)8- center is larger than that for (CrO6)9- cluster because of the larger size and charge mismatch for Mn4+ replacing Ga3+ in La3Ga5SiO14 crystals.

  20. AGATA—Advanced GAmma Tracking Array

    NASA Astrophysics Data System (ADS)

    Akkoyun, S.; Algora, A.; Alikhani, B.; Ameil, F.; de Angelis, G.; Arnold, L.; Astier, A.; Ataç, A.; Aubert, Y.; Aufranc, C.; Austin, A.; Aydin, S.; Azaiez, F.; Badoer, S.; Balabanski, D. L.; Barrientos, D.; Baulieu, G.; Baumann, R.; Bazzacco, D.; Beck, F. A.; Beck, T.; Bednarczyk, P.; Bellato, M.; Bentley, M. A.; Benzoni, G.; Berthier, R.; Berti, L.; Beunard, R.; Lo Bianco, G.; Birkenbach, B.; Bizzeti, P. G.; Bizzeti-Sona, A. M.; Le Blanc, F.; Blasco, J. M.; Blasi, N.; Bloor, D.; Boiano, C.; Borsato, M.; Bortolato, D.; Boston, A. J.; Boston, H. C.; Bourgault, P.; Boutachkov, P.; Bouty, A.; Bracco, A.; Brambilla, S.; Brawn, I. P.; Brondi, A.; Broussard, S.; Bruyneel, B.; Bucurescu, D.; Burrows, I.; Bürger, A.; Cabaret, S.; Cahan, B.; Calore, E.; Camera, F.; Capsoni, A.; Carrió, F.; Casati, G.; Castoldi, M.; Cederwall, B.; Cercus, J.-L.; Chambert, V.; El Chambit, M.; Chapman, R.; Charles, L.; Chavas, J.; Clément, E.; Cocconi, P.; Coelli, S.; Coleman-Smith, P. J.; Colombo, A.; Colosimo, S.; Commeaux, C.; Conventi, D.; Cooper, R. J.; Corsi, A.; Cortesi, A.; Costa, L.; Crespi, F. C. L.; Cresswell, J. R.; Cullen, D. M.; Curien, D.; Czermak, A.; Delbourg, D.; Depalo, R.; Descombes, T.; Désesquelles, P.; Detistov, P.; Diarra, C.; Didierjean, F.; Dimmock, M. R.; Doan, Q. T.; Domingo-Pardo, C.; Doncel, M.; Dorangeville, F.; Dosme, N.; Drouen, Y.; Duchêne, G.; Dulny, B.; Eberth, J.; Edelbruck, P.; Egea, J.; Engert, T.; Erduran, M. N.; Ertürk, S.; Fanin, C.; Fantinel, S.; Farnea, E.; Faul, T.; Filliger, M.; Filmer, F.; Finck, Ch.; de France, G.; Gadea, A.; Gast, W.; Geraci, A.; Gerl, J.; Gernhäuser, R.; Giannatiempo, A.; Giaz, A.; Gibelin, L.; Givechev, A.; Goel, N.; González, V.; Gottardo, A.; Grave, X.; Grebosz, J.; Griffiths, R.; Grint, A. N.; Gros, P.; Guevara, L.; Gulmini, M.; Görgen, A.; Ha, H. T. M.; Habermann, T.; Harkness, L. J.; Harroch, H.; Hauschild, K.; He, C.; Hernández-Prieto, A.; Hervieu, B.; Hess, H.; Hüyük, T.; Ince, E.; Isocrate, R.; Jaworski, G.; Johnson, A.; Jolie, J.; Jones, P.; Jonson, B.; Joshi, P.; Judson, D. S.; Jungclaus, A.; Kaci, M.; Karkour, N.; Karolak, M.; Kaşkaş, A.; Kebbiri, M.; Kempley, R. S.; Khaplanov, A.; Klupp, S.; Kogimtzis, M.; Kojouharov, I.; Korichi, A.; Korten, W.; Kröll, Th.; Krücken, R.; Kurz, N.; Ky, B. Y.; Labiche, M.; Lafay, X.; Lavergne, L.; Lazarus, I. H.; Leboutelier, S.; Lefebvre, F.; Legay, E.; Legeard, L.; Lelli, F.; Lenzi, S. M.; Leoni, S.; Lermitage, A.; Lersch, D.; Leske, J.; Letts, S. C.; Lhenoret, S.; Lieder, R. M.; Linget, D.; Ljungvall, J.; Lopez-Martens, A.; Lotodé, A.; Lunardi, S.; Maj, A.; van der Marel, J.; Mariette, Y.; Marginean, N.; Marginean, R.; Maron, G.; Mather, A. R.; Meçzyński, W.; Mendéz, V.; Medina, P.; Melon, B.; Menegazzo, R.; Mengoni, D.; Merchan, E.; Mihailescu, L.; Michelagnoli, C.; Mierzejewski, J.; Milechina, L.; Million, B.; Mitev, K.; Molini, P.; Montanari, D.; Moon, S.; Morbiducci, F.; Moro, R.; Morrall, P. S.; Möller, O.; Nannini, A.; Napoli, D. R.; Nelson, L.; Nespolo, M.; Ngo, V. L.; Nicoletto, M.; Nicolini, R.; Le Noa, Y.; Nolan, P. J.; Norman, M.; Nyberg, J.; Obertelli, A.; Olariu, A.; Orlandi, R.; Oxley, D. C.; Özben, C.; Ozille, M.; Oziol, C.; Pachoud, E.; Palacz, M.; Palin, J.; Pancin, J.; Parisel, C.; Pariset, P.; Pascovici, G.; Peghin, R.; Pellegri, L.; Perego, A.; Perrier, S.; Petcu, M.; Petkov, P.; Petrache, C.; Pierre, E.; Pietralla, N.; Pietri, S.; Pignanelli, M.; Piqueras, I.; Podolyak, Z.; Le Pouhalec, P.; Pouthas, J.; Pugnére, D.; Pucknell, V. F. E.; Pullia, A.; Quintana, B.; Raine, R.; Rainovski, G.; Ramina, L.; Rampazzo, G.; La Rana, G.; Rebeschini, M.; Recchia, F.; Redon, N.; Reese, M.; Reiter, P.; Regan, P. H.; Riboldi, S.; Richer, M.; Rigato, M.; Rigby, S.; Ripamonti, G.; Robinson, A. P.; Robin, J.; Roccaz, J.; Ropert, J.-A.; Rossé, B.; Rossi Alvarez, C.; Rosso, D.; Rubio, B.; Rudolph, D.; Saillant, F.; Şahin, E.; Salomon, F.; Salsac, M.-D.; Salt, J.; Salvato, G.; Sampson, J.; Sanchis, E.; Santos, C.; Schaffner, H.; Schlarb, M.; Scraggs, D. P.; Seddon, D.; Şenyiğit, M.; Sigward, M.-H.; Simpson, G.; Simpson, J.; Slee, M.; Smith, J. F.; Sona, P.; Sowicki, B.; Spolaore, P.; Stahl, C.; Stanios, T.; Stefanova, E.; Stézowski, O.; Strachan, J.; Suliman, G.; Söderström, P.-A.; Tain, J. L.; Tanguy, S.; Tashenov, S.; Theisen, Ch.; Thornhill, J.; Tomasi, F.; Toniolo, N.; Touzery, R.; Travers, B.; Triossi, A.; Tripon, M.; Tun-Lanoë, K. M. M.; Turcato, M.; Unsworth, C.; Ur, C. A.; Valiente-Dobon, J. J.; Vandone, V.; Vardaci, E.; Venturelli, R.; Veronese, F.; Veyssiere, Ch.; Viscione, E.; Wadsworth, R.; Walker, P. M.; Warr, N.; Weber, C.; Weisshaar, D.; Wells, D.; Wieland, O.; Wiens, A.; Wittwer, G.; Wollersheim, H. J.; Zocca, F.; Zamfir, N. V.; Ziebliński, M.; Zucchiatti, A.

    2012-03-01

    The Advanced GAmma Tracking Array (AGATA) is a European project to develop and operate the next generation γ-ray spectrometer. AGATA is based on the technique of γ-ray energy tracking in electrically segmented high-purity germanium crystals. This technique requires the accurate determination of the energy, time and position of every interaction as a γ ray deposits its energy within the detector volume. Reconstruction of the full interaction path results in a detector with very high efficiency and excellent spectral response. The realisation of γ-ray tracking and AGATA is a result of many technical advances. These include the development of encapsulated highly segmented germanium detectors assembled in a triple cluster detector cryostat, an electronics system with fast digital sampling and a data acquisition system to process the data at a high rate. The full characterisation of the crystals was measured and compared with detector-response simulations. This enabled pulse-shape analysis algorithms, to extract energy, time and position, to be employed. In addition, tracking algorithms for event reconstruction were developed. The first phase of AGATA is now complete and operational in its first physics campaign. In the future AGATA will be moved between laboratories in Europe and operated in a series of campaigns to take advantage of the different beams and facilities available to maximise its science output. The paper reviews all the achievements made in the AGATA project including all the necessary infrastructure to operate and support the spectrometer.

  1. Characteristics of GRIFFIN high-purity germanium clover detectors

    NASA Astrophysics Data System (ADS)

    Rizwan, U.; Garnsworthy, A. B.; Andreoiu, C.; Ball, G. C.; Chester, A.; Domingo, T.; Dunlop, R.; Hackman, G.; Rand, E. T.; Smith, J. K.; Starosta, K.; Svensson, C. E.; Voss, P.; Williams, J.

    2016-06-01

    The Gamma-Ray Infrastructure For Fundamental Investigations of Nuclei, GRIFFIN, is a new experimental facility for radioactive decay studies at the TRIUMF-ISAC laboratory. The performance of the 16 high-purity germanium (HPGe) clover detectors that will make up the GRIFFIN spectrometer is reported. The energy resolution, efficiency, timing resolution, crosstalk and preamplifier properties of each crystal were measured using a combination of analog and digital data acquisition techniques. The absolute efficiency and add-back factors are determined for the energy range of 80-3450 keV. The detectors show excellent performance with an average over all 64 crystals of a FWHM energy resolution of 1.89(6) keV and relative efficiency with respect to a 3 in . × 3 in . NaI detector of 41(1)% at 1.3 MeV.

  2. Portable electro-mechanically cooled high-resolution germanium detector

    SciTech Connect

    Neufeld, K.W.; Ruhter, W.D.

    1995-05-01

    We have integrated a small, highly-reliable, electro-mechanical cryo-cooler with a high-resolution germanium detector for portable/field applications. The system weighs 6.8 kg and requires 40 watts of power to operate once the detector is cooled to its operating temperature. the detector is a 500 mm{sup 2} by 20-mm thick low-energy configuration that gives a full-width at half maximum (FWHM) energy resolution of 523 eV at 122 keV, when cooled with liquid nitrogen. The energy resolution of the detector, when cooled with the electro-mechanical cooler, is 570 eV at 122 keV. We have field tested this system in measurements of plutonium and uranium for isotopic and enrichment information using the MGA and MGAU analysis programs without any noticeable effects on the results.

  3. Method of manufacturing a niobium-aluminum-germanium superconductive material

    DOEpatents

    Wang, John L.; Pickus, Milton R.; Douglas, Kent E.

    1980-01-01

    A method for manufacturing flexible Nb.sub.3 (Al,Ge) multifilamentary superconductive material in which a sintered porous niobium compact is infiltrated with an aluminum-germanium alloy and thereafter deformed and heat treated in a series of steps at different successively higher temperatures preferably below 1000.degree. C. to produce filaments composed of Nb.sub.3 (Al,G3) within the compact. By avoiding temperatures in excess of 1000.degree. C. during the heat treatment, cladding material such as copper can be applied to facilitate a deformation step preceding the heat treatment and can remain in place through the heat treatment to also serve as a temperature stabilizer for supeconductive material produced. Further, these lower heat treatment temperatures favor formation of filaments with reduced grain size and, hence with more grain boundaries which in turn increase the current-carrying capacity of the superconductive material.

  4. Properties of silicon-germanium thermoelectric alloys with additives

    NASA Technical Reports Server (NTRS)

    Mclane, George; Raag, Valvo; Danielson, Lee; Wood, Charles; Vandersande, Jan

    1986-01-01

    The paper reports the results of measurements (Seebeck and Hall coefficients, electrical resistivity, and thermal conductivity) on silicon-germanium (Si-20 at. pct Ge) alloy with boron phosphide, B(6.5)P) as an additive, prepared as described by McLane et al. (1986). The power factor (Seebeck coefficient squared divided by electrical resistivity) and the thermal conductivity of SeGe/B(6.5)P material were found to be lower than for the 'standard' SiGe (Si-22 at. pct Ge) material. However, no net improvement was achieved in the figure-of-merit of the sample tested. It is suggested that structural inhomogeneities, revealed by a SEM examination, might be responsible for this lack of improvement.

  5. Experimental investigation on oxidation kinetics of germanium by ozone

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolei; Zhao, Zhiqian; Xiang, Jinjuan; Wang, Wenwu; Zhang, Jing; Zhao, Chao; Ye, Tianchun

    2016-12-01

    Oxidation kinetics of germanium surface by ozone at low temperature (≤400 °C) is experimentally investigated. The growth process contains two regions: initial linear growth region and following parabolic growth region. The GeOx thickness vs. oxidation time plot obeys the well-known Deal-Grove or linear parabolic model. The linear growth region contains reaction of oxygen atoms with surface bond and back bonds of outmost Ge layer. And the activation energy is experimentally estimated to be 0.06 eV. Such small activation energy indicates that the linear growth region is nearly barrier-less. The parabolic growth region starts when the oxygen atoms diffuse into back bonds of second outmost Ge layers. And the activation energy for this process is found to be 0.54 eV. Furthermore, in the ozone oxidation it is not O3 molecules but O radicals that go through the GeOx film.

  6. Young’s modulus of [111] germanium nanowires

    SciTech Connect

    Maksud, M.; Yoo, J.; Harris, C. T.; Palapati, N. K. R.; Subramanian, A.

    2015-11-02

    Our paper reports a diameter-independent Young’s modulus of 91.9 ± 8.2 GPa for [111] Germanium nanowires (Ge NWs). When the surface oxide layer is accounted for using a core-shell NW approximation, the YM of the Ge core approaches a near theoretical value of 147.6 ± 23.4 GPa. The ultimate strength of a NW device was measured at 10.9 GPa, which represents a very high experimental-to-theoretical strength ratio of ~75%. Furthermore, with increasing interest in this material system as a high-capacity lithium-ion battery anode, the presented data provide inputs that are essential in predicting its lithiation-induced stress fields and fracture behavior.

  7. Study on the Properties of High Purity Germanium Crystals

    NASA Astrophysics Data System (ADS)

    Yang, G.; Mei, H.; Guan, Y. T.; Wang, G. J.; Mei, D. M.; Irmscher, K.

    2015-05-01

    In the crystal growth lab of South Dakota University, we are growing high purity germanium (HPGe) crystals and using the grown crystals to make radiation detectors. As the detector grade HPGe crystals, they have to meet two critical requirements: an impurity level of ∼109 to 10 atoms /cm3 and a dislocation density in the range of ∼102 to 104 / cm3. In the present work, we have used the following four characterization techniques to investigate the properties of the grown crystals. First of all, an x-ray diffraction method was used to determine crystal orientation. Secondly, the van der Pauw Hall effect measurement was used to measure the electrical properties. Thirdly, a photo-thermal ionization spectroscopy (PTIS) was used to identify what the impurity atoms are in the crystal. Lastly, an optical microscope observation was used to measure dislocation density in the crystal. All of these characterization techniques have provided great helps to our crystal activities.

  8. FTIR and DFT studies of Novel Germanium-Carbon Clusters

    NASA Astrophysics Data System (ADS)

    Robbins, D. L.; Rittby, C. M. L.; Graham, W. R. M.

    2001-10-01

    The vibrational fundamentals and structures of germanium-carbon clusters formed by laser ablation and trapped in solid Ar are currently under investigation. The determination of the ground state geometries and vibrational fundamentals are facilitated by the comparison of frequencies and ^13C isotopic shifts measured by Fourier transform infrared spectroscopy with the predictions of density functional theory. The identification of the ν3 mode of linear GeC_3Ge (observed at 1920.7 cm-1 ) has been made.(D.L.Robbins, C.M.L. Rittby, and W.R.M. Graham J. Chem. Phys. 114, 3570 (2001).) The results of further calculations and assignments on larger species such as GeC4 and GeC9 will be reported.

  9. Anomalous compression behavior of germanium during phase transformation

    SciTech Connect

    Yan, Xiaozhi; Tan, Dayong; Ren, Xiangting; Yang, Wenge E-mail: duanweihe@scu.edu.cn; He, Duanwei E-mail: duanweihe@scu.edu.cn; Mao, Ho-Kwang

    2015-04-27

    In this article, we present the abnormal compression and plastic behavior of germanium during the pressure-induced cubic diamond to β-tin structure transition. Between 8.6 GPa and 13.8 GPa, in which pressure range both phases are co-existing, first softening and followed by hardening for both phases were observed via synchrotron x-ray diffraction and Raman spectroscopy. These unusual behaviors can be interpreted as the volume misfit between different phases. Following Eshelby, the strain energy density reaches the maximum in the middle of the transition zone, where the switch happens from softening to hardening. Insight into these mechanical properties during phase transformation is relevant for the understanding of plasticity and compressibility of crystal materials when different phases coexist during a phase transition.

  10. Impacts of atomistic coating on thermal conductivity of germanium nanowires.

    PubMed

    Chen, Jie; Zhang, Gang; Li, Baowen

    2012-06-13

    By using nonequilibrium molecular dynamics simulations, we demonstrated that thermal conductivity of germanium nanowires can be reduced more than 25% at room temperature by atomistic coating. There is a critical coating thickness beyond which thermal conductivity of the coated nanowire is larger than that of the host nanowire. The diameter-dependent critical coating thickness and minimum thermal conductivity are explored. Moreover, we found that interface roughness can induce further reduction of thermal conductivity in coated nanowires. From the vibrational eigenmode analysis, it is found that coating induces localization for low-frequency phonons, while interface roughness localizes the high-frequency phonons. Our results provide an available approach to tune thermal conductivity of nanowires by atomic layer coating.

  11. Cryogenic performance of high-efficiency germanium immersion grating

    NASA Astrophysics Data System (ADS)

    Sarugaku, Yuki; Ikeda, Yuji; Kaji, Sayumi; Kobayashi, Naoto; Sukegawa, Takashi; Arasaki, Takayuki; Kondo, Sohei; Nakanishi, Kenshi; Yasui, Chikako; Kawakita, Hideyo

    2016-08-01

    Immersion gratings will play important roles for infrared astronomy in the next generation. We have been developing immersion gratings with a variety of kinds of materials and have succeeded in fabricating a high-efficiency germanium (Ge) immersion grating with both a reflection coating on the grating surface and an AR coating on the entrance surface. The grating will be installed in a K-, L-, and M-bands (2-5μm) high-resolution (R=80,000) spectrograph, VINROUGE, which is a prototype for the TMT MIR instrument. In this paper, we report the preliminary results on the evaluation of the Ge immersion grating. We confirmed that the peak absolute diffraction efficiency was in the range of 70-80%, which was as expected from the design, at both room and cryogenic temperatures.

  12. Exceptional transport property in a rolled-up germanium tube

    NASA Astrophysics Data System (ADS)

    Guo, Qinglei; Wang, Gang; Chen, Da; Li, Gongjin; Huang, Gaoshan; Zhang, Miao; Wang, Xi; Mei, Yongfeng; Di, Zengfeng

    2017-03-01

    Tubular germanium (Ge) resistors are demonstrated by rolling-up thin Ge nanomembranes (NMs, 50 nm in thickness) with electrical contacts. The strain distribution of rolled-up Ge microtubes along the radial direction is investigated and predicted by utilizing micro-Raman scattering spectroscopy with two different excitation lasers. Electrical properties are characterized for both unreleased GeNMs and released/rolled-up Ge microtubes. The conductivities of GeNMs significantly decrease after rolling-up into tubular structures, which can be attributed to surface charging states on the conductance, band bending, and piezo-resistance effect. When illuminated with a light source, facilitated by the suppressed dark current of rolled-up Ge tubes, the corresponding signal-to-noise ratio can be dramatically enhanced compared with that of planar GeNMs.

  13. Buried Porous Silicon-Germanium Layers in Monocrystalline Silicon Lattices

    NASA Technical Reports Server (NTRS)

    Fathauer, Robert W. (Inventor); George, Thomas (Inventor); Jones, Eric W. (Inventor)

    1998-01-01

    Monocrystalline semiconductor lattices with a buried porous semiconductor layer having different chemical composition is discussed and monocrystalline semiconductor superlattices with a buried porous semiconductor layers having different chemical composition than that of its monocrystalline semiconductor superlattice are discussed. Lattices of alternating layers of monocrystalline silicon and porous silicon-germanium have been produced. These single crystal lattices have been fabricated by epitaxial growth of Si and Si-Ge layers followed by patterning into mesa structures. The mesa structures are strain etched resulting in porosification of the Si-Ge layers with a minor amount of porosification of the monocrystalline Si layers. Thicker Si-Ge layers produced in a similar manner emitted visible light at room temperature.

  14. Electron temperature and density measurements of laser induced germanium plasma

    SciTech Connect

    Shakeel, Hira; Arshad, Saboohi; Haq, S. U. Nadeem, Ali

    2016-05-15

    The germanium plasma produced by the fundamental harmonics (1064 nm) of Nd:YAG laser in single and double pulse configurations have been studied spectroscopically. The plasma is characterized by measuring the electron temperature using the Boltzmann plot method for neutral and ionized species and electron number density as a function of laser irradiance, ambient pressure, and distance from the target surface. It is observed that the plasma parameters have an increasing trend with laser irradiance (9–33 GW/cm{sup 2}) and with ambient pressure (8–250 mbar). However, a decreasing trend is observed along the plume length up to 4.5 mm. The electron temperature and electron number density are also determined using a double pulse configuration, and their behavior at fixed energy ratio and different interpulse delays is discussed.

  15. Comparison of Germanium Telluride (GeTe) Crystals

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Comparison of Germanium Telluride (GeTe) Crystals grown on Earth (left) and in space (right) during the Skylab SL-3 mission. These crystals were grown using a vapor transport crystal growth method in the Multipurpose Electric Furnace System (MEFS). Crystals grown on earth are needles and platelettes with distorted surfaces and hollow growth habits. The length of the ground-based needle is approximately 2 mm and the average lenth of the platelets is 1 mm. The dull appearance of the Skylab crystals resulted from condensation of the transport agent during the long cooling period dictated by the Skylab furnace. In a dedicated process, this would be prevented by removing the ampoule from the furnace and quenching the vapor source.

  16. Bridgman Growth of Germanium Crystals in a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Schweizer, M.; Cobb, S. D.; Walker, J. S.; Szofran, F. R.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    A series of (100)-oriented gallium-doped germanium crystals have been grown by the Bridgman method and under the influence of a rotating magnetic field (RMF). The RMF has a marked affect on the interface shape, changing it from concave to nearly flat. The onset of time-dependent flow instabilities occurs when the critical magnetic Taylor number is exceeded, and this can be observed by noting the appearance of striations in the grown crystals. The critical magnetic Taylor number is a sensitive function of the aspect ratio and, as the crystal grows under a constant applied magnetic field, the induced striations change from nonperiodic to periodic, undergo a period-doubling transition, and then cease to exist. Also, by pulsing the RMF on and off, it is shown that intentional interface demarcations can be introduced.

  17. Bridgman Growth of Germanium Crystals in a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Szofran, F. R.; Cobb, S. D.; Schweizer, M.; Walker, J. S.

    2005-01-01

    A series of (100)-oriented gallium-doped germanium crystals has been grown by the vertical Bridgman method and under the influence of a rotating magnetic field (RMF). Time-dependent flow instabilities occur when the critical magnetic Taylor number (Tm(sup c)) is exceeded, and this can be observed by noting the appearance of striations in the grown crystals. Tm(sup c) decreases as the aspect ratio of the melt increases, and approaches the theoretical limit expected for an infinite cylinder. Intentional interface demarcations are introduced by pulsing the RMF on and off The RMF has a marked affect on the interface shape, changing it from concave to nearly flat as the RMF strength is increased.

  18. Bridgman Growth of Germanium Crystals in a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Walker, J. S.; Schweizer, M.; Cobb, S. D.; Szofran, F. R.

    2004-01-01

    A series of (100)-oriented gallium-doped germanium crystals have been grown by the Bridgman method and under the influence of a rotating magnetic field (RMF). Time-dependent flow instabilities occur when the critical magnetic Taylor number (Tm(sup c) is exceeded, and this can be observed by noting the appearance of striations in the grown crystals. The experimental data indicate that Tm(sup c) increases as the aspect ratio of the melt decreases. Modeling calculations predicting Tm(sup c) as a function of aspect ratio are in reasonable agreement with the experimental data. The RMF has a marked affect on the interface shape, changing it from concave to nearly flat as the RMF strength is increased. Also, by pulsing the RMF on and off, it is shown that intentional interface demarcations can be introduced.

  19. Young’s modulus of [111] germanium nanowires

    SciTech Connect

    Maksud, M.; Palapati, N. K. R.; Subramanian, A.; Yoo, J.; Harris, C. T.

    2015-11-01

    This paper reports a diameter-independent Young’s modulus of 91.9 ± 8.2 GPa for [111] Germanium nanowires (Ge NWs). When the surface oxide layer is accounted for using a core-shell NW approximation, the YM of the Ge core approaches a near theoretical value of 147.6 ± 23.4 GPa. The ultimate strength of a NW device was measured at 10.9 GPa, which represents a very high experimental-to-theoretical strength ratio of ∼75%. With increasing interest in this material system as a high-capacity lithium-ion battery anode, the presented data provide inputs that are essential in predicting its lithiation-induced stress fields and fracture behavior.

  20. Comparison of Germanium Telluride (GeTe) Crystals

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Comparison of Germanium Telluride (GeTe) Crystals grown on Earth (left) and in space (right) during the Skylab SL-3 mission. These crystals were grown using a vapor transport crystal growth method in the Multipurpose Electric Furnace System (MEFS). Crystals grown on earth are needles and platelettes with distorted surfaces and hollow growth habits. The length of the ground-based needle is approximately 2 mm and the average lenth of the platelets is 1 mm. The dull appearance of the Skylab crystals resulted from condensation of the transport agent during the long cooling period dictated by the Skylab furnace. In a dedicated process, this would be prevented by removing the ampoule from the furnace and quenching the vapor source.

  1. Isotopically enriched germanium detectors for astrophysical gamma-ray spectroscopy

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    1990-01-01

    A study is presented of the instrumental background in astrophysical gamma-ray spectrometers using isotopically enriched germanium detectors. Calculations show that the beta-decay background, which is the largest component between approximately 0.1 and 1.0 MeV in balloonborne and satellite spectrometers, is dominated by the activation of Ge-74. This component can be reduced by an order of magnitude using detectors enriched to more than 80 percent in (Ge-70). The predicted reduction in the total background for current balloonborne instruments is more than a factor of 1.7 between 0.2 and 1.0 MeV. For future satellite instruments, the reduction in this energy range is by more than a factor of 5.

  2. Antibacterial ability and hemocompatibility of graphene functionalized germanium

    PubMed Central

    Geng, Hao; Dai, Jiayun; Li, Jinhua; Di, Zengfeng; Liu, Xuanyong

    2016-01-01

    Germanium (Ge), as an elemental semiconductor material, has been an attractive candidate for manufacturing semiconductor microelectronic device. In the present investigation, to improve the biocompatibility of Ge-based device, graphene film is directly deposited on the Ge surface with different coverage area by controlling the growth time. Compared to bare Ge, the presence of graphene film entitles Ge with satisfactory antibacterial ability against Staphylococcus aureus (S.aureus), and acceptable antibacterial ability against Escherichia coli (E. coli). Meanwhile, antibacterial efficiency closely correlates with coverage area of graphene film, and larger graphene coverage always leads to better antibacterial performance. The underlying mechanism is thought to be the integrative action of phospholipids disturbance and electron extraction at the interface between graphene and biomembrane. Meanwhile, the electron extraction action would further lead to the activation of platelet. This study might provide some new insights into the relationship between antibacterial ability and hemocompatibility based on graphene functionalized biomedical device. PMID:27876839

  3. Germanium Based Field-Effect Transistors: Challenges and Opportunities

    PubMed Central

    Goley, Patrick S.; Hudait, Mantu K.

    2014-01-01

    The performance of strained silicon (Si) as the channel material for today’s metal-oxide-semiconductor field-effect transistors may be reaching a plateau. New channel materials with high carrier mobility are being investigated as alternatives and have the potential to unlock an era of ultra-low-power and high-speed microelectronic devices. Chief among these new materials is germanium (Ge). This work reviews the two major remaining challenges that Ge based devices must overcome if they are to replace Si as the channel material, namely, heterogeneous integration of Ge on Si substrates, and developing a suitable gate stack. Next, Ge is compared to compound III-V materials in terms of p-channel device performance to review how it became the first choice for PMOS devices. Different Ge device architectures, including surface channel and quantum well configurations, are reviewed. Finally, state-of-the-art Ge device results and future prospects are also discussed. PMID:28788569

  4. Young’s modulus of [111] germanium nanowires

    DOE PAGES

    Maksud, M.; Yoo, J.; Harris, C. T.; ...

    2015-11-02

    Our paper reports a diameter-independent Young’s modulus of 91.9 ± 8.2 GPa for [111] Germanium nanowires (Ge NWs). When the surface oxide layer is accounted for using a core-shell NW approximation, the YM of the Ge core approaches a near theoretical value of 147.6 ± 23.4 GPa. The ultimate strength of a NW device was measured at 10.9 GPa, which represents a very high experimental-to-theoretical strength ratio of ~75%. Furthermore, with increasing interest in this material system as a high-capacity lithium-ion battery anode, the presented data provide inputs that are essential in predicting its lithiation-induced stress fields and fracture behavior.

  5. Antibacterial ability and hemocompatibility of graphene functionalized germanium

    NASA Astrophysics Data System (ADS)

    Geng, Hao; Dai, Jiayun; Li, Jinhua; di, Zengfeng; Liu, Xuanyong

    2016-11-01

    Germanium (Ge), as an elemental semiconductor material, has been an attractive candidate for manufacturing semiconductor microelectronic device. In the present investigation, to improve the biocompatibility of Ge-based device, graphene film is directly deposited on the Ge surface with different coverage area by controlling the growth time. Compared to bare Ge, the presence of graphene film entitles Ge with satisfactory antibacterial ability against Staphylococcus aureus (S.aureus), and acceptable antibacterial ability against Escherichia coli (E. coli). Meanwhile, antibacterial efficiency closely correlates with coverage area of graphene film, and larger graphene coverage always leads to better antibacterial performance. The underlying mechanism is thought to be the integrative action of phospholipids disturbance and electron extraction at the interface between graphene and biomembrane. Meanwhile, the electron extraction action would further lead to the activation of platelet. This study might provide some new insights into the relationship between antibacterial ability and hemocompatibility based on graphene functionalized biomedical device.

  6. Enthalpy arrays

    PubMed Central

    Torres, Francisco E.; Kuhn, Peter; De Bruyker, Dirk; Bell, Alan G.; Wolkin, Michal V.; Peeters, Eric; Williamson, James R.; Anderson, Gregory B.; Schmitz, Gregory P.; Recht, Michael I.; Schweizer, Sandra; Scott, Lincoln G.; Ho, Jackson H.; Elrod, Scott A.; Schultz, Peter G.; Lerner, Richard A.; Bruce, Richard H.

    2004-01-01

    We report the fabrication of enthalpy arrays and their use to detect molecular interactions, including protein–ligand binding, enzymatic turnover, and mitochondrial respiration. Enthalpy arrays provide a universal assay methodology with no need for specific assay development such as fluorescent labeling or immobilization of reagents, which can adversely affect the interaction. Microscale technology enables the fabrication of 96-detector enthalpy arrays on large substrates. The reduction in scale results in large decreases in both the sample quantity and the measurement time compared with conventional microcalorimetry. We demonstrate the utility of the enthalpy arrays by showing measurements for two protein–ligand binding interactions (RNase A + cytidine 2′-monophosphate and streptavidin + biotin), phosphorylation of glucose by hexokinase, and respiration of mitochondria in the presence of 2,4-dinitrophenol uncoupler. PMID:15210951

  7. Self-assembled asymmetric membrane containing micron-size germanium for high capacity lithium ion batteries

    DOE PAGES

    Byrd, Ian; Chen, Hao; Webber, Theron; ...

    2015-10-23

    We report the formation of novel asymmetric membrane electrode containing micron-size (~5 μm) germanium powders through a self-assembly phase inversion method for high capacity lithium ion battery anode. 850 mA h g-1 capacity (70%) can be retained at a current density of 600 mA g-1 after 100 cycles with excellent rate performance. Such a high retention rate has rarely been seen for pristine micron-size germanium anodes. Moreover, scanning electron microscope studies reveal that germanium powders are uniformly embedded in a networking porous structure consisting of both nanopores and macropores. It is believed that such a unique porous structure can efficientlymore » accommodate the ~260% volume change during germanium alloying and de-alloying process, resulting in an enhanced cycling performance. Finally, these porous membrane electrodes can be manufactured in large scale using a roll-to-roll processing method.« less

  8. Self-assembled asymmetric membrane containing micron-size germanium for high capacity lithium ion batteries

    SciTech Connect

    Byrd, Ian; Chen, Hao; Webber, Theron; Li, Jianlin; Wu, Ji

    2015-10-23

    We report the formation of novel asymmetric membrane electrode containing micron-size (~5 μm) germanium powders through a self-assembly phase inversion method for high capacity lithium ion battery anode. 850 mA h g-1 capacity (70%) can be retained at a current density of 600 mA g-1 after 100 cycles with excellent rate performance. Such a high retention rate has rarely been seen for pristine micron-size germanium anodes. Moreover, scanning electron microscope studies reveal that germanium powders are uniformly embedded in a networking porous structure consisting of both nanopores and macropores. It is believed that such a unique porous structure can efficiently accommodate the ~260% volume change during germanium alloying and de-alloying process, resulting in an enhanced cycling performance. Finally, these porous membrane electrodes can be manufactured in large scale using a roll-to-roll processing method.

  9. Induced Radioactivity Measured in a Germanium Detector After a Long Duration Balloon Flight

    NASA Technical Reports Server (NTRS)

    Starr, R.; Evans, L. G.; Floyed, S. R.; Drake, D. M.; Feldman, W. C.; Squyres, S. W.; Rester, A. C.

    1997-01-01

    A 13-day long duration balloon flight carrying a germanium detector was flown from Williams Field, Antartica in December 1992. After recovery of the payload the activity induced in the detector was measured.

  10. Electronic and magnetic properties of Fe and Mn doped two dimensional hexagonal germanium sheets

    SciTech Connect

    Soni, Himadri R. Jha, Prafulla K.

    2014-04-24

    Using first principles density functional theory calculations, the present paper reports systematic total energy calculations of the electronic properties such as density of states and magnetic moment of pristine and iron and manganese doped two dimensional hexagonal germanium sheets.

  11. [Development of determination of germanium hydride in the air of workplace by atomic fluorescence].

    PubMed

    Zhang, Jing; Tao, Xue; Li, Chun-Ling; Yan, Hui-Fang

    2011-06-01

    An atomic fluorescence (AFS) method was developed to determine germanium hydride in the air of workplace. Germanium hydride in the air of workplace was collected by charcoal tube, and desorbed by nitric acid followed filtration with 0.22 microm cellulose filter, the AFS was used to determine Germanium in the desorbed solution. The linear was good at the range of 0.85-300 microg/L with the correlation coefficient of 0.9993; the LOD and LOQ were 0.51 microg/L and 0.000 17 mg/m3, respectively. The recovery was ranged from 90% to 106%, the RSD of intra- and inter- precision were 3.3%-5.9% and 3.7%-6.3%. The linear range, sensitivity and precision of the method were all satisfied for the determination of germanium hydride in the air of workplace.

  12. Mechanically Cooled Large-Volume Germanium Detector Systems for Nuclear Explosion Monitoring DOENA27323-1

    SciTech Connect

    Hull, E.L.

    2006-07-28

    Compact maintenance free mechanical cooling systems are being developed to operate large volume germanium detectors for field applications. To accomplish this we are utilizing a newly available generation of Stirling-cycle mechanical coolers to operate the very largest volume germanium detectors with no maintenance. The user will be able to leave these systems unplugged on the shelf until needed. The flip of a switch will bring a system to life in ~ 1 hour for measurements. The maintenance-free operating lifetime of these detector systems will exceed 5 years. These features are necessary for remote long-duration liquid-nitrogen free deployment of large-volume germanium gamma-ray detector systems for Nuclear Explosion Monitoring. The Radionuclide Aerosol Sampler/Analyzer (RASA) will greatly benefit from the availability of such detectors by eliminating the need for liquid nitrogen at RASA sites while still allowing the very largest available germanium detectors to be reliably utilized.

  13. Mechanically Cooled Large-Volume Germanium Detector Systems for Neclear Explosion Monitoring DOENA27323-2

    SciTech Connect

    Hull, E.L.

    2006-10-30

    Compact maintenance free mechanical cooling systems are being developed to operate large volume high-resolution gamma-ray detectors for field applications. To accomplish this we are utilizing a newly available generation of Stirling-cycle mechanical coolers to operate the very largest volume germanium detectors with no maintenance. The user will be able to leave these systems unplugged on the shelf until needed. The maintenance-free operating lifetime of these detector systems will exceed 5 years. Three important factors affect the operation of mechanically cooled germanium detectors: temperature, vacuum, and vibration. These factors will be studied in the laboratory at the most fundamental levels to insure a solid understanding of the physical limitations each factor places on a practical mechanically cooled germanium detector system. Using this knowledge, mechanically cooled germanium detector prototype systems will be designed and fabricated.

  14. Incorporation of oxygen into thermally evaporated germanium and optical characterization of the resulting films

    SciTech Connect

    Al-Kuhaili, M. F.; Durrani, S. M. A.

    2007-09-01

    Germanium powder was thermally evaporated under a vacuum onto unheated substrates as well as substrates heated to 200 deg. C. The striking feature was that the resulting films were transparent. Chemical analysis using x-ray photoelectron spectroscopy depth profiling indicated that oxygen was present throughout the thickness of the films, and therefore the films were composed of substoichiometric germanium oxide. The source of oxygen was investigated, and traced to the source material. Subsequently, the optical constants and the band gaps of the films were determined from spectrophotometric measurements. These properties were found to be intermediate between those of pure germanium and germanium dioxide, with values appropriate for optical applications in the visible range.

  15. The time and temperature dependence of the thermoelectric properties of silicon-germanium alloy

    NASA Technical Reports Server (NTRS)

    Raag, V.

    1975-01-01

    Experimental data on the electrical resistivity and Seebeck coefficient of n-type and p-type silicon-germanium alloys are analyzed in terms of a solid-state dopant precipitation model proposed by Lifshitz and Slyozov (1961). Experimental findings on the time and temperature dependence of the thermal conductivity of these two types of alloy indicate that the thermal conductivity of silicon-germanium alloys changes with time, contrary to previous hypothesis. A preliminary model is presented which stipulates that the observed thermal conductivity decrease in silicon-germanium alloys is due partly to dopant precipitation underlying the electrical property changes and partly to enhanced alloying of the material. It is significant that all three properties asymptotically approach equilibrium values with time. Total characterization of these properties will enable the time change to be fully compensated in the design of a thermoelectric device employing silicon-germanium alloys.

  16. Impurity distribution in high purity germanium crystal and its impact on the detector performance

    NASA Astrophysics Data System (ADS)

    Wang, Guojian; Amman, Mark; Mei, Hao; Mei, Dongming; Irmscher, Klaus; Guan, Yutong; Yang, Gang

    High-purity germanium crystals were grown in a hydrogen atmosphere using the Czochralski method. The axial and radial distributions of impurities in the crystals were measured by Hall effect and Photo-thermal ionization spectroscopy (PTIS). Amorphous semiconductor contacts were deposited on the germanium crystals to make detectors. Three planar detectors were fabricated from three crystals with different net carrier concentrations (1.7, 7.9 and 10x1010 cm-3). We evaluated the electrical and spectral performance of three detectors. Measurements of gamma-ray spectra from 137Cs, 241Am and 60Co sources demonstrate that the detectors have excellent energy resolution. The relationship between the impurities and detector's energy resolution was analyzed. Keywords: High-purity germanium crystal, High-purity germanium detector This work is supported by DOE grant DE-FG02-10ER46709 and the state of South Dakota..

  17. In situ monitoring of Joule heating effects in germanium nanowires by μ-Raman spectroscopy.

    PubMed

    Lugstein, Alois; Mijić, Mario; Burchhart, Thomas; Zeiner, Clemens; Langegger, Rupert; Schneider, Michael; Schmid, Ulrich; Bertagnolli, Emmerich

    2013-02-15

    We explored a noninvasive optical method to determine the Joule heating of individual germanium nanowires. Using confocal μ-Raman spectroscopy, variations in the optical phonon frequency, in detail the downshifting of the first-order Stokes Raman band, are correlated to the temperature increase of vapor-liquid-solid grown germanium nanowires under an applied electrical bias. The germanium nanowires were found to handle high threshold current densities of more than 10(6) A cm(-2) before sustaining immediate deterioration. Failure of single crystalline germanium nanowires was directly observed when the applied electric field reached the breakdown point of 1.25 × 10(5) V cm(-1).

  18. Array tomography: imaging stained arrays.

    PubMed

    Micheva, Kristina D; O'Rourke, Nancy; Busse, Brad; Smith, Stephen J

    2010-11-01

    Array tomography is a volumetric microscopy method based on physical serial sectioning. Ultrathin sections of a plastic-embedded tissue are cut using an ultramicrotome, bonded in an ordered array to a glass coverslip, stained as desired, and imaged. The resulting two-dimensional image tiles can then be reconstructed computationally into three-dimensional volume images for visualization and quantitative analysis. The minimal thickness of individual sections permits high-quality rapid staining and imaging, whereas the array format allows reliable and convenient section handling, staining, and automated imaging. Also, the physical stability of the arrays permits images to be acquired and registered from repeated cycles of staining, imaging, and stain elution, as well as from imaging using multiple modalities (e.g., fluorescence and electron microscopy). Array tomography makes it possible to visualize and quantify previously inaccessible features of tissue structure and molecular architecture. However, careful preparation of the tissue is essential for successful array tomography; these steps can be time-consuming and require some practice to perfect. In this protocol, tissue arrays are imaged using conventional wide-field fluorescence microscopy. Images can be captured manually or, with the appropriate software and hardware, the process can be automated.

  19. Array tomography: production of arrays.

    PubMed

    Micheva, Kristina D; O'Rourke, Nancy; Busse, Brad; Smith, Stephen J

    2010-11-01

    Array tomography is a volumetric microscopy method based on physical serial sectioning. Ultrathin sections of a plastic-embedded tissue are cut using an ultramicrotome, bonded in an ordered array to a glass coverslip, stained as desired, and imaged. The resulting two-dimensional image tiles can then be reconstructed computationally into three-dimensional volume images for visualization and quantitative analysis. The minimal thickness of individual sections permits high-quality rapid staining and imaging, whereas the array format allows reliable and convenient section handling, staining, and automated imaging. Also, the physical stability of the arrays permits images to be acquired and registered from repeated cycles of staining, imaging, and stain elution, as well as from imaging using multiple modalities (e.g., fluorescence and electron microscopy). Array tomography makes it possible to visualize and quantify previously inaccessible features of tissue structure and molecular architecture. However, careful preparation of the tissue is essential for successful array tomography; these steps can be time consuming and require some practice to perfect. This protocol describes the sectioning of embedded tissues and the mounting of the serial arrays. The procedures require some familiarity with the techniques used for ultramicrotome sectioning for electron microscopy.

  20. Infrared Arrays

    NASA Astrophysics Data System (ADS)

    McLean, I.; Murdin, P.

    2000-11-01

    Infrared arrays are small electronic imaging devices subdivided into a grid or `array' of picture elements, or pixels, each of which is made of a material sensitive to photons (ELECTROMAGNETIC RADIATION) with wavelengths much longer than normal visible light. Typical dimensions of currently available devices are about 27-36 mm square, and formats now range from 2048×2048 pixels for the near-infra...

  1. Radiation-electromagnetic effect in germanium single crystals

    SciTech Connect

    Kikoin, I.K.; Kikoin, L.I.; Lazarev, S.D.

    1980-10-01

    An experimental study was made of the radiation-electromagnetic effect in germanium single crystals when excess carriers were generated by bombardment with ..cap alpha.. particles, protons, or x rays in magnetic fields up to 8 kOe. The source of ..cap alpha.. particles and protons was a cyclotron and x rays were provided by a tube with a copper anode. The radiation-electromagnetic emf increased linearly on increase in the magnetic field and was directly proportional to the flux of charged particles at low values of the flux, reaching saturation at high values of the flux (approx.5 x 10/sup 11/ particles .cm/sup -2/ .sec/sup -1/). In the energy range 4--40 MeV the emf was practically independent of the ..cap alpha..-particle energy. The sign of the emf was reversed when samples with a ground front surface were irradiated. Measurements of the photoelectromagnetic and Hall effects in the ..cap alpha..-particle-irradiated samples showed that a p-n junction was produced by these particles and its presence should be allowed for in investigations of the radiation-electromagnetic effect. The measured even radiation-electromagnetic emf increased quadratically on increase in the magnetic field. An investigation was made of the barrier radiation-voltaic effect (when the emf was measured between the irradiated and unirradiated surfaces). Special masks were used to produce a set of consecutive p-n junctions in germanium crystals irradiated with ..cap alpha.. particles. A study of the photovoltaic and photoelectromagnetic effects in such samples showed that the method could be used to increase the efficiency of devices utilizing the photoelectromagnetic effect.

  2. Research progress of Si-based germanium materials and devices

    NASA Astrophysics Data System (ADS)

    Buwen, Cheng; Cheng, Li; Zhi, Liu; Chunlai, Xue

    2016-08-01

    Si-based germanium is considered to be a promising platform for the integration of electronic and photonic devices due to its high carrier mobility, good optical properties, and compatibility with Si CMOS technology. However, some great challenges have to be confronted, such as: (1) the nature of indirect band gap of Ge; (2) the epitaxy of dislocation-free Ge layers on Si substrate; and (3) the immature technology for Ge devices. The aim of this paper is to give a review of the recent progress made in the field of epitaxy and optical properties of Ge heterostructures on Si substrate, as well as some key technologies on Ge devices. High crystal quality Ge epilayers, as well as Ge/SiGe multiple quantum wells with high Ge content, were successfully grown on Si substrate with a low-temperature Ge buffer layer. A local Ge condensation technique was proposed to prepare germanium-on-insulator (GOI) materials with high tensile strain for enhanced Ge direct band photoluminescence. The advances in formation of Ge n+p shallow junctions and the modulation of Schottky barrier height of metal/Ge contacts were a significant progress in Ge technology. Finally, the progress of Si-based Ge light emitters, photodetectors, and MOSFETs was briefly introduced. These results show that Si-based Ge heterostructure materials are promising for use in the next-generation of integrated circuits and optoelectronic circuits. Project supported in part by the National Natural Science Foundation (Nos. 61036003, 61435013) and the Major State Basic Research Development Program of China (No. 2013CB632103).

  3. Epidemiological survey of workers exposed to inorganic germanium compounds

    PubMed Central

    Swennen, B; Mallants, A; Roels, H; Buchet, J; Bernard, A; Lauwerys, R; Lison, D

    2000-01-01

    OBJECTIVES—To assess occupational exposure to inorganic germanium (Ge) in workers from a producing plant, and to assess the health of these workers, with a special focus on respiratory, kidney, and liver functions.
METHODS—Cross sectional study of 75 workers exposed to Ge and 79 matched referents. Exposure was characterised by measuring air and urine concentrations of the element during a typical working week, and health was assessed by a questionnaire, clinical examination, lung function testing, chest radiography, and clinical chemistry in serum and urine, including high and low molecular weight urinary proteins.
RESULTS—Airborne concentrations of Ge (inhalable fraction) ranged from 0.03 to 300 µg/m, which was reflected by increased urinary excretion of Ge (0.12-200 µg/g creatinine, after the shift at the end of the working week). Lung, liver, and haematological variables were not significantly different between referents and workers exposed to Ge. A slightly higher urinary concentration of high molecular weight proteins (albumin and transferrin) was found in workers exposed to Ge, possibly reflecting subclinical glomerular changes. No relation was found between the intensity or duration of exposure and the urinary concentration of albumin. No difference between referents and workers exposed to Ge was found for other renal variables.
CONCLUSIONS—Measurement of urinary Ge can detect occupational exposure to inorganic Ge and its compounds. It is prudent to recommend the monitoring of renal variables in workers exposed to Ge.


Keywords: inorganic germanium; occupational exposure; biological monitoring PMID:10810110

  4. An aeronomical application of a germanium near infrared (NIR) detector

    SciTech Connect

    Noto, J.; Kerr, R.B.; Rudy, R.J.; Williams, R.; Hecht, J.H.

    1994-12-31

    A collaboration between Boston University and the Aerospace corporation has resulted in a germanium based detector used in conjunction with an infrared optimized Fabry-Perot spectrometer. Gold plated mirrors were installed and the appropriate transmissive optics are used in the Fabry-Perot to optimize the NIR transmission. The detector is a germanium PIN diode coated with a layer of silicon-nitride. Current produced by the detector is measured by using a Capacitive Trans-Impedance Amplifier (CITA). An A/D converter samples the amplified capacitor voltage and outputs a 12 bit word that is then passed on to the controlling computer system. The detector, amplifier, and associated electronics are mounted inside a standard IR dewar and operated at 77 K. The authors have operated this detector and spectrometer system at Millstone Hill for about 6 months. Acceptable noise characteristics, a NEP of 10{sup {minus}17} watts, and a QE of 90% at 1.2 {micro}m, have been achieved with an amplifier gain of 200. The system is currently configured for observations of thermospheric helium, and has made the first measurement of the He 10,830 {angstrom} nightglow emission isolated from OH contamination. In an effort to both increase the sensitivity of the Fabry-Perot in the visible and to adapt it for planetary astronomy the authors have entered into a collaboration with CIDTEC. A Charge Injection Detector or CID has some unique capabilities that distinguish it from a CCD and the authors are evaluating it as a detector for the Hadinger fringe pattern produced by a Fabry-Perot. The CID allows non-destructive readout and random access of individual pixels with in the entire frame, this allows for both ``electronic masking`` of bright objects and allows each fringe to be observed without having to readout a large number of dark pixels.

  5. Chiral nematic porous germania and germanium/carbon films

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Nguyen, Thanh-Dinh; Xie, Kai; Hamad, Wadood Y.; MacLachlan, Mark J.

    2015-07-01

    We report our extensive attempts and, ultimately, success to produce crack-free, chiral nematic GeO2/cellulose nanocrystal (CNC) composite films with tunable photonic properties from the controlled assembly of germanium(iv) alkoxides with the lyotropic liquid-crystalline CNCs in a mixed solvent of water/DMF. With different pyrolysis conditions, the photonic GeO2/CNC composites can be converted into freestanding chiral nematic films of amorphous GeO2, and semiconducting mesoporous GeO2/C and Ge/C replicas. These new materials are promising for chiral separation, enantioselective adsorption, catalysis, sensing, optoelectronics, and lithium ion batteries. Furthermore, the new, reproducible synthesis strategies developed may be applicable for constructing other composites and porous materials with chiral nematic ordering.We report our extensive attempts and, ultimately, success to produce crack-free, chiral nematic GeO2/cellulose nanocrystal (CNC) composite films with tunable photonic properties from the controlled assembly of germanium(iv) alkoxides with the lyotropic liquid-crystalline CNCs in a mixed solvent of water/DMF. With different pyrolysis conditions, the photonic GeO2/CNC composites can be converted into freestanding chiral nematic films of amorphous GeO2, and semiconducting mesoporous GeO2/C and Ge/C replicas. These new materials are promising for chiral separation, enantioselective adsorption, catalysis, sensing, optoelectronics, and lithium ion batteries. Furthermore, the new, reproducible synthesis strategies developed may be applicable for constructing other composites and porous materials with chiral nematic ordering. Electronic supplementary information (ESI) available: TGA, IR, Raman, TEM, SEM, BET. See DOI: 10.1039/c5nr02520f

  6. SIMS Characterization of Amorphous Silicon Germanium Alloys Grown by Hot-Wire Deposition

    SciTech Connect

    Reedy, R. C.; Mason, A. R.; Nelson, B. P.; Xu, Y.

    1998-10-16

    In this paper, we present methods for the quantitative secondary ion mass spectrometry (SIMS) characterization of amorphous SiGe:H alloy materials. A set of samples was grown with germanium content ranging from 5% to 77% and was subsequently analyzed by electron probe X-ray microanalysis (EPMA) and nuclear reaction analysis (NRA). Calibration of the SIMS quantification was performed with respect to EPMA data for germanium and NRA data for hydrogen.

  7. HEROICA: A fast screening facility for the characterization of germanium detectors

    SciTech Connect

    Andreotti, Erica; Collaboration: GERDA Collaboration

    2013-08-08

    In the course of 2012, a facility for the fast screening of germanium detectors called HEROICA (Hades Experimental Research Of Intrinsic Crystal Appliances) has been installed at the HADES underground laboratory in the premises of the Belgian Nuclear Research Centre SCK•CEN, in Mol (Belgium). The facility allows performing a complete characterization of the critical germanium detectors' operational parameters with a rate of about two detectors per week.

  8. The Primary and Secondary Production of Germanium: A Life-Cycle Assessment of Different Process Alternatives

    NASA Astrophysics Data System (ADS)

    Robertz, Benedicte; Verhelle, Jensen; Schurmans, Maarten

    2015-02-01

    Germanium is a semiconducting metalloid element used in optical fibers, catalysis, infrared optics, solar cells, and light-emitting diodes. The need for Ge in these markets is considered to increase by a steady ~1% on a yearly basis. Its economic importance, coupled with the identified supply risks, has led to the classification of germanium as a critical raw material within Europe. Since the early 1950s, Umicore Electro-Optic Materials has supplied germanium-based materials solutions to its markets around the world. Umicore extracts germanium from a wide range of refining and recycling feeds. The main objectives of this study were to quantify the potential environmental impacts of the production of germanium from production scraps from the photovoltaic industry and to compare them with the potential impacts of the primary production of germanium from coal. The data related to the secondary production are Umicore-specific data. Environmental impact scores have been calculated for the impact categories recommended by the International reference life cycle data system. The comparison of the primary and secondary production highlights the benefit linked to the recycling of metals.

  9. Epitaxial growth of nanostructured gold films on germanium via galvanic displacement.

    PubMed

    Sayed, Sayed Y; Buriak, Jillian M

    2010-12-01

    This work focuses on the synthesis and characterization of gold films grown via galvanic displacement on Ge(111) substrates. The synthetic approach uses galvanic displacement, a type of electroless deposition that takes place in an efficient manner under aqueous, room temperature conditions. Investigations involving X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques were performed to study the crystallinity and orientation of the resulting gold-on-germanium films. A profound effect of HF(aq) concentration was noted, and although the SEM images did not show significant differences in the resulting gold films, a host of X-ray diffraction studies demonstrated that higher concentrations of HF(aq) led to epitaxial gold-on-germanium, whereas in the absence of HF(aq), lower degrees of order (fiber texture) resulted. Cross-sectional nanobeam diffraction analyses of the Au-Ge interface confirmed the epitaxial nature of the gold-on-germanium film. This epitaxial behavior can be attributed to the simultaneous etching of the germanium oxides, formed during the galvanic displacement process, in the presence of HF. High-resolution TEM analyses showed the coincident site lattice (CSL) interface of gold-on-germanium, which results in a small 3.8% lattice mismatch due to the coincidence of four gold lattices with three of germanium.

  10. Using Fiber Optics to Measure Carrier Drift Velocity of Germanium at 40mK

    NASA Astrophysics Data System (ADS)

    Lam, Albert

    2010-11-01

    The Cryogenic Dark Matter Search (CDMS) uses ultrapure germanium detectors at milliKelvin temperatures to attempt to directly detect weakly interacting massive particles (WIMPs), a candidate for dark matter. When some particle interacts with the crystal structure, ionization and phonon signals are produced. Each particle interaction gives off a unique ratio of ionization signal to phonon signal. In this way, background noise can be separated from events that may involve WIMPs. Current germanium detectors are about the size of a hockey puck. If detectors can be made larger, there would be a greater probability of having a WIMP interaction. To make larger detectors, we need to better understand carrier transport processes in the germanium detectors. So, we measured the carrier drift velocity at 40milliKelvin, the temperature at which detectors operate. The carrier drift velocity gives us insight into how much impurity is present in the germanium detectors. We made this measurement using a fiber optics line. The fiber optics line allowed us to carry light from a 780nm laser diode at room temperature, into our dilution refrigerator and onto a germanium detector at 40milliKelvin. A laser diode allowed us to create electron-hole pairs on the surface of a germanium detector in a much more precise way than a radiation source.

  11. Direct band gap electroluminescence from bulk germanium at room temperature using an asymmetric fin type metal/germanium/metal structure

    SciTech Connect

    Wang, Dong Maekura, Takayuki; Kamezawa, Sho; Yamamoto, Keisuke; Nakashima, Hiroshi

    2015-02-16

    We demonstrated direct band gap (DBG) electroluminescence (EL) at room temperature from n-type bulk germanium (Ge) using a fin type asymmetric lateral metal/Ge/metal structure with TiN/Ge and HfGe/Ge contacts, which was fabricated using a low temperature (<400 °C) process. Small electron and hole barrier heights were obtained for TiN/Ge and HfGe/Ge contacts, respectively. DBG EL spectrum peaked at 1.55 μm was clearly observed even at a small current density of 2.2 μA/μm. Superlinear increase in EL intensity was also observed with increasing current density, due to superlinear increase in population of elections in direct conduction band. The efficiency of hole injection was also clarified.

  12. Microlens arrays

    NASA Astrophysics Data System (ADS)

    Hutley, Michael C.; Stevens, Richard F.; Daly, Daniel J.

    1992-04-01

    Microlenses have been with us for a long time as indeed the very word lens reminds us. Many early lenses,including those made by Hooke and Leeuwenhoek in the 17th century were small and resembled lentils. Many languages use the same word for both (French tilentillelt and German "Linse") and the connection is only obscure in English because we use the French word for the vegetable and the German for the optic. Many of the applications for arrays of inicrolenses are also well established. Lippmann's work on integral photography at the turn of the century required lens arrays and stimulated an interest that is very much alive today. At one stage, lens arrays played an important part in high speed photography and various schemes have been put forward to take advantage of the compact imaging properties of combinations of lens arrays. The fact that many of these ingenious schemes have not been developed to their full potential has to a large degree been due to the absence of lens arrays of a suitable quality and cost.

  13. The Role of the Silicon Germanium (SiGe) Heterojunction Bipolar Transistor (HBT) in Mobile Technology Platforms

    DTIC Science & Technology

    2011-09-01

    The Role of the Silicon Germanium (SiGe) Heterojunction Bipolar Transistor (HBT) in Mobile Technology Platforms by Gregory A. Mitchell...Germanium (SiGe) Heterojunction Bipolar Transistor (HBT) in Mobile Technology Platforms 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...MD 20783-1197 ARL-TN-0459 September 2011 The Role of the Silicon Germanium (SiGe) Heterojunction Bipolar Transistor (HBT) in Mobile

  14. Filter arrays

    DOEpatents

    Page, Ralph H.; Doty, Patrick F.

    2017-08-01

    The various technologies presented herein relate to a tiled filter array that can be used in connection with performance of spatial sampling of optical signals. The filter array comprises filter tiles, wherein a first plurality of filter tiles are formed from a first material, the first material being configured such that only photons having wavelengths in a first wavelength band pass therethrough. A second plurality of filter tiles is formed from a second material, the second material being configured such that only photons having wavelengths in a second wavelength band pass therethrough. The first plurality of filter tiles and the second plurality of filter tiles can be interspersed to form the filter array comprising an alternating arrangement of first filter tiles and second filter tiles.

  15. Aeronomical application of a germanium near infrared (NIR) detector

    NASA Astrophysics Data System (ADS)

    Noto, John; Kerr, Robert B.; Rudy, R. J.; Williams, R.; Hecht, James H.

    1994-09-01

    The wavelength region surrounding 1.0 micrometers has traditionally been a difficult one to observe. GaAs and silicon both have very low quantum efficiency in the NIR, while some improvements can be made by pre-flashing and oxygen soaking a silicon CCD. Greater improvement can be realized by using a material other then silicon as a substrate. Recently, detector technology has improved to the point where NIR observations can be made almost routinely. Scientifically, the NIR region is ideal for the study of molecular line and band emission, as well as low energy atomic transitions. A collaboration between Boston University and the Aerospace Corporation has resulted in a germanium based detector used in conjunction with an infrared optimized Fabry-Perot spectrometer. Gold plated mirrors were installed and the appropriate transmissive optics are used in the Fabry-Perot to optimize the NIR transmission. The detector is a germanium PIN diode coated with a layer of silicon-nitride. Current produced by the detector is measured by using a capacitive trans-impedance amplifier (CITA). An A/D converter samples the amplified capacitor voltage and outputs a 12 bit word that is then passed on to the controlling computer system. The detector, amplifier, and associated electronics are mounted inside a standard IR dewar and operated at 77 degree(s)K. We have operated this detector and spectrometer system at Millstone Hill for about 6 months. Acceptable noise characteristics, a NEP of 10(superscript -17) watts, and a QE of 90% at 1.2 micrometers , have been achieved with an amplifier gain of 200. The system is currently configured for observations of thermospheric helium, and has made the first measurement of the He 10,830 angstrom nightglow emission isolated from OH contamination. In an effort to both increase the sensitivity of our Fabry-Perot in the visible and to adapt it for planetary astronomy we have entered into a collaboration with CIDTEC. A charge injection detector or CID

  16. Automation of the Characterization of High Purity Germanium Detectors

    NASA Astrophysics Data System (ADS)

    Dugger, Charles ``Chip''

    2014-09-01

    Neutrinoless double beta decay is a rare hypothesized process that may yield valuable insight into the fundamental properties of the neutrino. Currently there are several experiments trying to observe this process, including the Majorana DEMONSTRAOR experiment, which uses high purity germanium (HPGe) detectors to generate and search for these events. Because the event happens internally, it is essential to have the lowest background possible. This is done through passive detector shielding, as well as event discrimination techniques that distinguish between multi-site events characteristic of gamma-radiation, and single-site events characteristic of neutrinoless double beta decay. Before fielding such an experiment, the radiation response of the detectors must be characterized. A robotic arm is being tested for future calibration of HPGe detectors. The arm will hold a source at locations relative to the crystal while data is acquired. Several radioactive sources of varying energy levels will be used to determine the characteristics of the crystal. In this poster, I will present our work with the robot, as well as the characterization of data we took with an underground HPGe detector at the WIPP facility in Carlsbad, NM (2013). Neutrinoless double beta decay is a rare hypothesized process that may yield valuable insight into the fundamental properties of the neutrino. Currently there are several experiments trying to observe this process, including the Majorana DEMONSTRAOR experiment, which uses high purity germanium (HPGe) detectors to generate and search for these events. Because the event happens internally, it is essential to have the lowest background possible. This is done through passive detector shielding, as well as event discrimination techniques that distinguish between multi-site events characteristic of gamma-radiation, and single-site events characteristic of neutrinoless double beta decay. Before fielding such an experiment, the radiation response of

  17. An investigation of the gettering properties of silicon-germanium and silicon-carbon compounds

    SciTech Connect

    Barbero, C.J.

    1993-01-01

    Work concerning silicon-germanium (SiGe) and silicon-carbon (SiC) compounds is presented in this dissertation. Extended Hueckel (EHT) parameters for the band structure of group IV semiconductors and semiconductor compounds are put forth using established parameters. It will be demonstrated that EHT theory can accurately predict the band structure for the pure group IV semiconductors, however provides notably unusual results for alloy systems. Relativistic Extended Hueckel (REX) Theory is employed to understand the outcome of transition metals in SiGe and SiC compounds. The gettering effect and efficiency of germanium and carbon is demonstrated by using a 54 atom cluster. SiGe and SiC samples were prepared using keV ion implantation. It was found that annealing germanium implanted samples constrains germanium in a substitutional position. The consequences of different doses and different energies for germanium implanted silicon is also explored. It is established that increasing energy as well as increasing dose has the effect of creating amorphous layers and can cause alloying. Some of the germanium implanted silicon samples were used to study the gettering of copper, which was evaporated on the backside of the samples. Further studies include keV ion implantation of transition metals (iron and nickel) into silicon substrates that were implanted with MeV germanium and carbon prior to keV (iron and nickel) implantation. The effects of transition metals (i.e., iron, nickel and copper) evaporated on ultrahigh vacuum-chemical vapor deposition (UHV-CVD) prepared SiGe compounds was also investigated. Techniques such as Rutherford Backscattering (RBS), Ion Channeling, Secondary Ion Mass Spectrometry (SIMS), Capacitance-Voltage (C-V) and Deep Level Transient Spectroscopy (DLTS) were used to study the effects of implantation energy, implantation dose and annealing temperature as well as the different results produced by introduction of several transition metals.

  18. HEROICA: an underground facility for the fast screening of germanium detectors

    NASA Astrophysics Data System (ADS)

    Andreotti, E.; Garfagnini, A.; Maneschg, W.; Barros, N.; Benato, G.; Brugnera, R.; Costa, F.; Falkenstein, R.; Guthikonda, K. K.; Hegai, A.; Hemmer, S.; Hult, M.; Jänner, K.; Kihm, T.; Lehnert, B.; Liao, H.; Lubashevskiy, A.; Lutter, G.; Marissens, G.; Modenese, L.; Pandola, L.; Reissfelder, M.; Sada, C.; Salathe, M.; Schmitt, C.; Schulz, O.; Schwingenheuer, B.; Turcato, M.; Ur, C.; von Sturm, K.; Wagner, V.; Westermann, J.

    2013-06-01

    HEROICA (Hades Experimental Research Of Intrinsic Crystal Appliances) is an infrastructure to characterize germanium detectors and has been designed and constructed at the HADES Underground Research Laboratory, located in Mol (Belgium). Thanks to the 223 m overburden of clay and sand, the muon flux is lowered by four orders of magnitude. This natural shield minimizes the exposure of radio-pure germanium material to cosmic radiation resulting in a significant suppression of cosmogenic activation in the germanium detectors. The project has been strongly motivated by a special production of germanium detectors for the GERDA experiment. GERDA, currently collecting data at the Laboratori Nazionali del Gran Sasso of INFN, is searching for the neutrinoless double beta decay of 76Ge. In the near future, GERDA will increase its mass and sensitivity by adding new Broad Energy Germanium (BEGe) detectors. The production of the BEGe detectors is done at Canberra in Olen (Belgium), located about 30 km from the underground test site. Therefore, HADES is used both for storage of the crystals over night, during diode production, and for the characterization measurements. A full quality control chain has been setup and tested on the first seven prototype detectors delivered by the manufacturer at the beginning of 2012. The screening capabilities demonstrate that the installed setup fulfills a fast and complete set of measurements on the diodes and it can be seen as a general test facility for the fast screening of high purity germanium detectors. The results are of major importance for a future massive production and characterization chain of germanium diodes foreseen for a possible next generation 1-tonne double beta decay experiment with 76Ge.

  19. Pacific Array

    NASA Astrophysics Data System (ADS)

    Kawakatsu, H.; Takeo, A.; Isse, T.; Nishida, K.; Shiobara, H.; Suetsugu, D.

    2014-12-01

    Based on our recent results on broadband ocean bottom seismometry, we propose a next generation large-scale array experiment in the ocean. Recent advances in ocean bottom broadband seismometry (e.g., Suetsugu & Shiobara, 2014, Annual Review EPS), together with advances in the seismic analysis methodology, have now enabled us to resolve the regional 1-D structure of the entire lithosphere/asthenosphere system, including seismic anisotropy (both radial and azimuthal), with deployments of ~10-15 broadband ocean bottom seismometers (BBOBSs) (namely "ocean-bottom broadband dispersion survey"; Takeo et al., 2013, JGR; Kawakatsu et al., 2013, AGU; Takeo, 2014, Ph.D. Thesis; Takeo et al., 2014, JpGU). Having ~15 BBOBSs as an array unit for 2-year deployment, and repeating such deployments in a leap-frog way (an array of arrays) for a decade or so would enable us to cover a large portion of the Pacific basin. Such efforts, not only by giving regional constraints on the 1-D structure, but also by sharing waveform data for global scale waveform tomography, would drastically increase our knowledge of how plate tectonics works on this planet, as well as how it worked for the past 150 million years. International collaborations might be sought.

  20. Study on the increase of inactive germanium layer in a high-purity germanium detector after a long time operation applying MCNP code

    NASA Astrophysics Data System (ADS)

    Huy, N. Q.; Binh, D. Q.; An, V. X.

    2007-04-01

    This study aims at finding an explanation for the decrease in the efficiency of an HPGe detector and evaluating a change in the detector inactive germanium layer during its operation. Monte Carlo calculations using the MCNP4C2 code were performed to evaluate the detector efficiency for different values of the inactive germanium layer. Comparison of the experimental and calculated data shows that the inactive germanium layer of the detector changed its thickness from 0.35 to 1.16 mm after an operating time of 9 years. Measurements for determining the reduction of the detector efficiency were carried out two times, one after 3 years and another after 9 years of operation. Experimental result shows that the detector efficiency was reduced about 8% in this period. The increase of inactive germanium layer can be considered as the main reason for explaining the reduction of detector efficiency of about 13% at the γ energies from 200 to 1800 keV during 9 years of detector operation, in which 5% for the 3 first years and 8% for the 6 last years.

  1. Comparison of CDMS [100] and [111] Oriented Germanium Detectors

    SciTech Connect

    Leman, S.W.; Hertel, S.A.; Kim, P.; Cabrera, B.; Do Couto E.Silva, E.; Figueroa-Feliciano, E.; McCarthy, K.A.; Resch, R.; Sadoulet, B.; Sundqvist, K.M.; /UC, Berkeley

    2012-09-14

    The Cryogenic Dark Matter Search (CDMS) utilizes large mass, 3-inch diameter x 1-inch thick target masses as particle detectors. The target is instrumented with both phonon and ionization sensors and comparison of energy in each channel provides event-by-event classification of electron and nuclear recoils. Fiducial volume is determined by the ability to obtain good phonon and ionization signal at a particular location. Due to electronic band structure in germanium, electron mass is described by an anisotropic tensor with heavy mass aligned along the symmetry axis defined by the [111] Miller index (L valley), resulting in large lateral component to the transport. The spatial distribution of electrons varies significantly for detectors which have their longitudinal axis orientations described by either the [100] or [111] Miller indices. Electric fields with large fringing component at high detector radius also affect the spatial distribution of electrons and holes. Both effects are studied in a 3 dimensional Monte Carlo and the impact on fiducial volume is discussed.

  2. Characterization of germanium stripe x-ray lasers

    SciTech Connect

    Wan, A.S.; Moreno, J.C.; MacGowan, B.J.

    1993-07-01

    One method of improving the transverse spatial coherence of x-ray lasers (XRLS) is by adaptive spatial filtering of XRL apertures using geometric shaping in the form of bowtie or wedge XRLS. However, we must maintain the desired geometric shapes in exploding foil or slab configurations during the lasing period. As a first step toward understanding Lasing in such geometries we study the behavior of simple stripe XRLs. Past experience with stripe XRLs deposited on thick plastic substrates resulted in significantly weaker laser intensities as compared to line-focused slab XRLs. Possible reasons for this intensity reduction of stripe XRLs could include mixing at the laser boundary, and changes in plasma, kinetics, and hydrodynamic properties which affect laser gains and propagation. We will present experimental and theoretical characterizations of germanium line-focused and stripe XRLs. Key experimental parameters we will study include images of emission profiles of the laser blow-off, angular divergences, XRL output intensities, and ionization balances as we vary XRL designs. We will compare the experimental results with two-dimensional (2-D) laser deposition and hydrodynamics simulations using LASNEX, and study the changes in ionization balances and level populations from post-processing LASNEX results.

  3. Development of a Germanium Small-Animal SPECT System

    PubMed Central

    Johnson, Lindsay C.; Ovchinnikov, Oleg; Shokouhi, Sepideh; Peterson, Todd E.

    2015-01-01

    Advances in fabrication techniques, electronics, and mechanical cooling systems have given rise to germanium detectors suitable for biomedical imaging. We are developing a small-animal SPECT system that uses a double-sided Ge strip detector. The detector’s excellent energy resolution may help to reduce scatter and simplify processing of multi-isotope imaging, while its ability to measure depth of interaction has the potential to mitigate parallax error in pinhole imaging. The detector’s energy resolution is <1% FWHM at 140 keV and its spatial resolution is approximately 1.5 mm FWHM. The prototype system described has a single-pinhole collimator with a 1-mm diameter and a 70-degree opening angle with a focal length variable between 4.5 and 9 cm. Phantom images from the gantry-mounted system are presented, including the NEMA NU-2008 phantom and a hot-rod phantom. Additionally, the benefit of energy resolution is demonstrated by imaging a dual-isotope phantom with 99mTc and 123I without cross-talk correction. PMID:26755832

  4. Suppressed Incomplete Ionization of Shallow Donors in Germanium

    NASA Astrophysics Data System (ADS)

    Menendez, Jose; Xu, Chi; Senaratne, Charutha; Kouvetakis, John

    2015-03-01

    For doping levels Nd >1017 cm-3, an elementary analysis indicates that shallow donors should not be completely ionized in germanium at room temperature. The predicted degree of incomplete ionization (I.I.) represents a fundamental limitation in the quest for ultra-low sheet resistances, as required in Ge-based nMOS devices. Unfortunately, the experimental verification of the predictions is made difficult by the possible presence of inactive dopants, which also lead to free carrier concentrations n

  5. Spin Qubits in Germanium Structures with Phononic Gap

    NASA Technical Reports Server (NTRS)

    Smelyanskiy, V. N.; Vasko, F. T.; Hafiychuk, V. V.; Dykman, M. I.; Petukhov, A. G.

    2014-01-01

    We propose qubits based on shallow donor electron spins in germanium structures with phononic gap. We consider a phononic crystal formed by periodic holes in Ge plate or a rigid cover / Ge layer / rigid substrate structure with gaps approximately a few GHz. The spin relaxation is suppressed dramatically, if the Zeeman frequency omegaZ is in the phononic gap, but an effective coupling between the spins of remote donors via exchange of virtual phonons remains essential. If omegaZ approaches to a gap edge in these structures, a long-range (limited by detuning of omegaZ) resonant exchange interaction takes place. We estimate that ratio of the exchange integral to the longitudinal relaxation rate exceeds 10(exp 5) and lateral scale of resonant exchange 0.1 mm. The exchange contribution can be verified under microwave pumping through oscillations of spin echo signal or through the differential absorption measurements. Efficient manipulation of spins due to the Rabi oscillations opens a new way for quantum information applications.

  6. Inverting polar domains via electrical pulsing in metallic germanium telluride.

    PubMed

    Nukala, Pavan; Ren, Mingliang; Agarwal, Rahul; Berger, Jacob; Liu, Gerui; Johnson, A T Charlie; Agarwal, Ritesh

    2017-04-12

    Germanium telluride (GeTe) is both polar and metallic, an unusual combination of properties in any material system. The large concentration of free-carriers in GeTe precludes the coupling of external electric field with internal polarization, rendering it ineffective for conventional ferroelectric applications and polarization switching. Here we investigate alternate ways of coupling the polar domains in GeTe to external electrical stimuli through optical second harmonic generation polarimetry and in situ TEM electrical testing on single-crystalline GeTe nanowires. We show that anti-phase boundaries, created from current pulses (heat shocks), invert the polarization of selective domains resulting in reorganization of certain 71(o) domain boundaries into 109(o) boundaries. These boundaries subsequently interact and evolve with the partial dislocations, which migrate from domain to domain with the carrier-wind force (electrical current). This work suggests that current pulses and carrier-wind force could be external stimuli for domain engineering in ferroelectrics with significant current leakage.

  7. Rain Erosion Damage Of Diamond-Like Coated Germanium

    NASA Astrophysics Data System (ADS)

    Deom, A. A.; Mackowski, J. M.; Balageas, D. L.; Robert, P.

    1986-05-01

    The rain erosion resistance of germanium may be improved by hydrogenated amorphous carbon (a-C:H) film coatings. a-C:H films are prepared by plasma deposition from hydrocarbons in RF diode glow discharge. The deposition parameters are adjusted to obtain controlled deposition rate and H/C ratio. The coatings are a quarter-wave thick at 10.6 μm. Their knoop micro-hardness is from 1800 to 2200 kgmm-2 for a 10-grams, 30-seconds load. The rain erosion is achieved with the Saab-Scania whirling-arm (Linkoping, Sweden). The impact velocity varies from 200 to 300 ms-l. The optical damage is characterized after each exposure, by modulation transfer function measurement. For 1.2 mm drop diameter the occurrence time of a given optical damage is increased by a factor of 6 to 7. For a 2 mm drop diameter, a factor of about 3 improvement is achieved. This last result is in good agreement with R.A.E. work. For 1.2 mm drop diameter the impingement angle effect is also reported and found in agreement with the sinus law.

  8. Germanium on double-SOI photodetectors for 1550-nm operation

    NASA Astrophysics Data System (ADS)

    Dosunmu, Olufemi I.; Cannon, Douglas D.; Emsley, Matthew K.; Ghyselen, Bruno; Liu, Jifeng; Kimerling, Lionel C.; Unlu, M. S.

    2004-06-01

    We have fabricated and characterized the first resonant cavity enhanced (RCE) germanium photodetectors on double silicon-on-insulator substrates (Ge/DSOI) for operation around the 1550 nm communication wavelength. The Ge layer is grown through a novel two-step UHV/CVD process, while the underlying double-SOI substrate is formed through an ion-cut process. Absorption measurements of an undoped Ge-on-Si (Ge/Si) structure reveal a red-shift of the Ge absorption edge in the NIR, due primarily to a strain-induced bandgap narrowing within the Ge film. By using the strained-Ge absorption coefficients extracted from the absorption measurements, in conjunction with the known properties of the DSOI substrate, we were able to design strained-Ge/DSOI photodetectors optimized for 1550 nm operation. We predict a quantum efficiency of 76% at 1550 nm for a Ge layer thickness of only 860 nm as a result of both strain-induced and resonant cavity enhancement, compared to 2.3% for the same unstrained Ge thickness in a single-pass configuration. We also estimate a transit-time limited bandwidth of 28 GHz. Although the fabricated Ge/DSOI photodetectors were not optimized for 1550 nm operation, we were able to demonstrate an over four-fold improvement in the quantum efficiency, compared to its single-pass counterpart.

  9. Isotopic germanium targets for high beam current applications at GAMMASPHERE.

    SciTech Connect

    Greene, J. P.; Lauritsen, T.

    2000-11-29

    The creation of a specific heavy ion residue via heavy ion fusion can usually be achieved through a number of beam and target combinations. Sometimes it is necessary to choose combinations with rare beams and/or difficult targets in order to achieve the physics goals of an experiment. A case in point was a recent experiment to produce {sup 152}Dy at very high spins and low excitation energy with detection of the residue in a recoil mass analyzer. Both to create the nucleus cold and with a small recoil-cone so that the efficiency of the mass analyzer would be high, it was necessary to use the {sup 80}Se on {sup 76}Ge reaction rather than the standard {sup 48}Ca on {sup 108}Pd reaction. Because the recoil velocity of the {sup 152}Dy residues was very high using this symmetric reaction (5% v/c), it was furthermore necessary to use a stack of two thin targets to reduce the Doppler broadening. Germanium targets are fragile and do not withstand high beam currents, therefore the {sup 76}Ge target stacks were mounted on a rotating target wheel. A description of the {sup 76}Ge target stack preparation will be presented and the target performance described.

  10. Properties of the exotic metastable ST12 germanium allotrope

    NASA Astrophysics Data System (ADS)

    Zhao, Zhisheng; Zhang, Haidong; Kim, Duck Young; Hu, Wentao; Bullock, Emma S.; Strobel, Timothy A.

    2017-01-01

    The optical and electronic properties of semiconducting materials are of great importance to a vast range of contemporary technologies. Diamond-cubic germanium is a well-known semiconductor, although other `exotic' forms may possess distinct properties. In particular, there is currently no consensus for the band gap and electronic structure of ST12-Ge (tP12, P43212) due to experimental limitations in sample preparation and varying theoretical predictions. Here we report clear experimental and theoretical evidence for the intrinsic properties of ST12-Ge, including the first optical measurements on bulk samples. Phase-pure bulk samples of ST12-Ge were synthesized, and the structure and purity were verified using powder X-ray diffraction, transmission electron microscopy, Raman and wavelength/energy dispersive X-ray spectroscopy. Optical measurements indicate that ST12-Ge is a semiconductor with an indirect band gap of 0.59 eV and a direct optical transition at 0.74 eV, which is in good agreement with electrical transport measurements and our first-principles calculations.

  11. Stability and exfoliation of germanane: a germanium graphane analogue.

    PubMed

    Bianco, Elisabeth; Butler, Sheneve; Jiang, Shishi; Restrepo, Oscar D; Windl, Wolfgang; Goldberger, Joshua E

    2013-05-28

    Graphene's success has shown not only that it is possible to create stable, single-atom-thick sheets from a crystalline solid but that these materials have fundamentally different properties than the parent material. We have synthesized for the first time, millimeter-scale crystals of a hydrogen-terminated germanium multilayered graphane analogue (germanane, GeH) from the topochemical deintercalation of CaGe2. This layered van der Waals solid is analogous to multilayered graphane (CH). The surface layer of GeH only slowly oxidizes in air over the span of 5 months, while the underlying layers are resilient to oxidation based on X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy measurements. The GeH is thermally stable up to 75 °C; however, above this temperature amorphization and dehydrogenation begin to occur. These sheets can be mechanically exfoliated as single and few layers onto SiO2/Si surfaces. This material represents a new class of covalently terminated graphane analogues and has great potential for a wide range of optoelectronic and sensing applications, especially since theory predicts a direct band gap of 1.53 eV and an electron mobility ca. five times higher than that of bulk Ge.

  12. Etching of germanium-tin using ammonia peroxide mixture

    SciTech Connect

    Dong, Yuan; Ong, Bin Leong; Wang, Wei; Gong, Xiao; Liang, Gengchiau; Yeo, Yee-Chia; Zhang, Zheng; Pan, Jisheng; Tok, Eng-Soon

    2015-12-28

    The wet etching of germanium-tin (Ge{sub 1-x}Sn{sub x}) alloys (4.2% < x < 16.0%) in ammonia peroxide mixture (APM) is investigated. Empirical fitting of the data points indicates that the etch depth of Ge{sub 1-x}Sn{sub x} is proportional to the square root of the etch time t and decreases exponentially with increasing x for a given t. In addition, X-ray photoelectron spectroscopy results show that increasing t increases the intensity of the Sn oxide peak, whereas no obvious change is observed for the Ge oxide peak. This indicates that an accumulation of Sn oxide on the Ge{sub 1-x}Sn{sub x} surface decreases the amount of Ge atoms exposed to the etchant, which accounts for the decrease in etch rate with increasing etch time. Atomic force microscopy was used to examine the surface morphologies of the Ge{sub 0.918}Sn{sub 0.082} samples. Both root-mean-square roughness and undulation periods of the Ge{sub 1-x}Sn{sub x} surface were observed to increase with increasing t. This work provides further understanding of the wet etching of Ge{sub 1-x}Sn{sub x} using APM and may be used for the fabrication of Ge{sub 1-x}Sn{sub x}-based electronic and photonic devices.

  13. Size-dependent color tuning of efficiently luminescent germanium nanoparticles.

    PubMed

    Shirahata, Naoto; Hirakawa, Daigo; Masuda, Yoshitake; Sakka, Yoshio

    2013-06-18

    It is revealed that rigorous control of the size and surface of germanium nanoparticles allows fine color tuning of efficient fluorescence emission in the visible region. The spectral line widths of each emission were very narrow (<500 meV). Furthermore, the absolute fluorescence quantum yields of each emission were estimated to be 4-15%, which are high enough to be used as fluorescent labeling tags. In this study, a violet-light-emitting nanoparticle is demonstrated to be a new family of luminescent Ge. Such superior properties of fluorescence were observed from the fractions separated from one mother Ge nanoparticle sample by the fluorescent color using our developed combinatorial column technique. It is commonly believed that a broad spectral line width frequently observed from Ge nanoparticle appears because of an indirect band gap nature inherited even in nanostructures, but the present study argues that such a broad luminescence spectrum is expressed as an ensemble of different spectral lines and can be separated into the fractions emitting light in each wavelength region by the appropriate postsynthesis process.

  14. X-ray Characterization of Detached-Grown Germanium Crystals

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Schweizer, M.; Raghothamachar, B.; Dudley, M.; Szoke, J.; Cobb, S. D.; Szofran, F. R.

    2005-01-01

    Germanium (111)-oriented crystals have been grown by the vertical Bridgman technique, in both detached and attached configurations. Microstructural characterization of these crystals has been performed using synchrotron white beam x-ray topography (SWBXT) and double axis x-ray diffraction. Dislocation densities were measured from x-ray topographs obtained using the reflection geometry. For detached-grown crystals, the dislocation density is 4-6 x 10(exp 4) per square centimeter in the seed region, and decreases in the direction of growth to less than 10(exp 3) per square centimeter, and in some crystals reaches less than 10(exp 2) per square centimeter. For crystals grown in the attached configuration, dislocation densities were on the order of 10(exp 4) per square centimeter in the middle of the crystals, increasing to greater than 10(exp 5) per square centimeter near the edge. The measured dislocation densities are in excellent agreement with etch pit density results. The rocking curve linewidths were relatively insensitive to the dislocation densities. However, broadening and splitting of the rocking curves were observed in the vicinity of subgrain boundaries identified by x-ray topography in some of the attached-grown crystals.

  15. Defect Density Characterization of Detached-Grown Germanium Crystals

    NASA Technical Reports Server (NTRS)

    Schweizer, M.; Cobb, S. D.; Volz, M. P.; Szoke, J.; Szofran, F. R.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Several (111)-oriented, Ga-doped germanium crystals were grown in pyrolytic boron nitride (pBN) containers by the Bridgman and the detached Bridgman growth techniques. Growth experiments in closed-bottom pBN containers resulted in nearly completely detached-grown crystals, because the gas pressure below the melt can build up to a higher pressure than above the melt. With open-bottom tubes the gas pressure above and below the melt is balanced during the experiment, and thus no additional force supports the detachment. In this case the crystals grew attached to the wall. Etch pit density (EPD) measurements along the axial growth direction indicated a strong improvement of the crystal quality of the detached-grown samples compared to the attached samples. Starting in the seed with an EPD of 6-8 x 10(exp 3)/square cm it decreased in the detached-grown crystals continuously to about 200-500/square cm . No significant radial difference between the EPD on the edge and the middle of the crystal exists. In the attached grown samples the EPD increases up to a value of about 2-4 x 10(exp 4)/square cm (near the edge) and up to 1 x 10(exp 4)/square cm in the middle of the sample. Thus the difference between the detached- and the attached-grown crystals with respect to the EPD is approximately two orders of magnitude.

  16. Diameter-dependent dopant location in silicon and germanium nanowires

    PubMed Central

    Xie, Ping; Hu, Yongjie; Fang, Ying; Huang, Jinlin; Lieber, Charles M.

    2009-01-01

    We report studies defining the diameter-dependent location of electrically active dopants in silicon (Si) and germanium (Ge) nanowires (NWs) prepared by nanocluster catalyzed vapor-liquid-solid (VLS) growth without measurable competing homogeneous decomposition and surface overcoating. The location of active dopants was assessed from electrical transport measurements before and after removal of controlled thicknesses of material from NW surfaces by low-temperature chemical oxidation and etching. These measurements show a well-defined transition from bulk-like to surface doping as the diameter is decreased <22–25 nm for n- and p-type Si NWs, although the surface dopant concentration is also enriched in the larger diameter Si NWs. Similar diameter-dependent results were also observed for n-type Ge NWs, suggesting that surface dopant segregation may be general for small diameter NWs synthesized by the VLS approach. Natural surface doping of small diameter semiconductor NWs is distinct from many top-down fabricated NWs, explains enhanced transport properties of these NWs and could yield robust properties in ultrasmall devices often dominated by random dopant fluctuations. PMID:19706402

  17. Laser-initiated explosive electron emission from flat germanium crystals

    SciTech Connect

    Porshyn, V. Mingels, S.; Lützenkirchen-Hecht, D.; Müller, G.

    2016-07-28

    Flat Sb-doped germanium (100) crystals were investigated in the triode configuration under pulsed tunable laser illumination (pulse duration t{sub laser} = 3.5 ns and photon energy hν = 0.54–5.90 eV) and under DC voltages <10{sup 4} V. Large bunch charges up to ∼1 μC were extracted from the cathodes for laser pulses >1 MW/cm{sup 2} corresponding to a high quantum efficiency up to 3.3% and cathode currents up to 417 A. This laser-induced explosive electron emission (EEE) from Ge was characterized by its voltage-, laser power- and hν-sensitivity. The analysis of the macroscopic surface damage caused by the EEE is included as well. Moreover, we have carried out first direct measurements of electron energy distributions produced during the EEE from the Ge samples. The measured electron spectra hint for electron excitations to the vacuum level of the bulk and emission from the plasma plume with an average kinetic energy of ∼0.8 eV.

  18. Point defect states in Sb-doped germanium

    SciTech Connect

    Patel, Neil S. Monmeyran, Corentin; Agarwal, Anuradha; Kimerling, Lionel C.

    2015-10-21

    Defect states in n-type Sb-doped germanium were investigated by deep-level transient spectroscopy. Cobalt-60 gamma rays were used to generate isolated vacancies and interstitials which diffuse and react with impurities in the material to form four defect states (E{sub 37}, E{sub 30}, E{sub 22}, and E{sub 21}) in the upper half of the bandgap. Irradiations at 77 K and 300 K as well as isothermal anneals were performed to characterize the relationships between the four observable defects. E{sub 37} is assigned to the Sb donor-vacancy associate (E-center) and is the only vacancy containing defect giving an estimate of 2 × 10{sup 11 }cm{sup −3} Mrad{sup −1} for the uncorrelated vacancy-interstitial pair introduction rate. The remaining three defect states are interstitial associates and transform among one another. Conversion ratios between E{sub 22}, E{sub 21}, and E{sub 30} indicate that E{sub 22} likely contains two interstitials.

  19. Properties of the exotic metastable ST12 germanium allotrope

    DOE PAGES

    Zhao, Zhisheng; Zhang, Haidong; Kim, Duck Young; ...

    2017-01-03

    The optical and electronic properties of semiconducting materials are of great importance to a vast range of contemporary technologies. Diamond-cubic germanium is a well-known semiconductor, although other ‘exotic’ forms may possess distinct properties. In particular, there is currently no consensus for the band gap and electronic structure of ST12-Ge (tP12, P43212) due to experimental limitations in sample preparation and varying theoretical predictions. Here we report clear experimental and theoretical evidence for the intrinsic properties of ST12-Ge, including the first optical measurements on bulk samples. Phase-pure bulk samples of ST12-Ge were synthesized, and the structure and purity were verified using powdermore » X-ray diffraction, transmission electron microscopy, Raman and wavelength/energy dispersive X-ray spectroscopy. Lastly, optical measurements indicate that ST12-Ge is a semiconductor with an indirect band gap of 0.59 eV and a direct optical transition at 0.74 eV, which is in good agreement with electrical transport measurements and our first-principles calculations.« less

  20. Investigation of factors affecting electrical contacts on single germanium nanowires

    NASA Astrophysics Data System (ADS)

    Sett, Shaili; Das, K.; Raychaudhuri, A. K.

    2017-03-01

    We report an experimental investigation of the quality of electrical contacts made on single Germanium nanowires (grown using Au catalyst from vapor) using Cr/Au contact pads. The nanowires are single crystalline and have a thin layer of oxide on them. We find that a low specific contact resistivity of 10-6 Ω cm2 can be obtained in nanowires with low resistance and the contact resistance enhances almost linearly with the nanowire resistivity. The metal semiconductor junction shows an ideality factor close to unity. A low barrier height of 0.15 eV can be obtained in nanowires of lower resistivities which increase to nearly 0.3 eV for nanowires of higher resistivity. The experiments were carried down to 10 K, and junction characteristics as a function of temperature were evaluated. The specific contact resistance increases on cooling but the barrier shows suppression as the nanowire is cooled, along with an enhancement of the ideality factor. We analyze the temperature dependence of these parameters using a model that assumes a Gaussian distribution of barrier heights in the contact region. The temperature dependence predicted by the model was observed, and the relevant parameters were obtained from the data.

  1. Laser-initiated explosive electron emission from flat germanium crystals

    NASA Astrophysics Data System (ADS)

    Porshyn, V.; Mingels, S.; Lützenkirchen-Hecht, D.; Müller, G.

    2016-07-01

    Flat Sb-doped germanium (100) crystals were investigated in the triode configuration under pulsed tunable laser illumination (pulse duration tlaser = 3.5 ns and photon energy hν = 0.54-5.90 eV) and under DC voltages <104 V. Large bunch charges up to ˜1 μC were extracted from the cathodes for laser pulses >1 MW/cm2 corresponding to a high quantum efficiency up to 3.3% and cathode currents up to 417 A. This laser-induced explosive electron emission (EEE) from Ge was characterized by its voltage-, laser power- and hν-sensitivity. The analysis of the macroscopic surface damage caused by the EEE is included as well. Moreover, we have carried out first direct measurements of electron energy distributions produced during the EEE from the Ge samples. The measured electron spectra hint for electron excitations to the vacuum level of the bulk and emission from the plasma plume with an average kinetic energy of ˜0.8 eV.

  2. Properties of the exotic metastable ST12 germanium allotrope

    PubMed Central

    Zhao, Zhisheng; Zhang, Haidong; Kim, Duck Young; Hu, Wentao; Bullock, Emma S.; Strobel, Timothy A.

    2017-01-01

    The optical and electronic properties of semiconducting materials are of great importance to a vast range of contemporary technologies. Diamond-cubic germanium is a well-known semiconductor, although other ‘exotic' forms may possess distinct properties. In particular, there is currently no consensus for the band gap and electronic structure of ST12-Ge (tP12, P43212) due to experimental limitations in sample preparation and varying theoretical predictions. Here we report clear experimental and theoretical evidence for the intrinsic properties of ST12-Ge, including the first optical measurements on bulk samples. Phase-pure bulk samples of ST12-Ge were synthesized, and the structure and purity were verified using powder X-ray diffraction, transmission electron microscopy, Raman and wavelength/energy dispersive X-ray spectroscopy. Optical measurements indicate that ST12-Ge is a semiconductor with an indirect band gap of 0.59 eV and a direct optical transition at 0.74 eV, which is in good agreement with electrical transport measurements and our first-principles calculations. PMID:28045027

  3. The impact of heavy Ga doping on superconductivity in germanium

    NASA Astrophysics Data System (ADS)

    Skrotzki, R.; Herrmannsdörfer, T.; Heera, V.; Fiedler, J.; Mücklich, A.; Helm, M.; Wosnitza, J.

    2011-10-01

    We report new experimental results on how superconductivity in gallium-doped germanium (Ge:Ga) is influenced by hole concentration and microstructure. Ion implantation and subsequent flash-lamp annealing at various temperatures have been utilized to prepare highly p-doped thin films consisting of nanocrystalline and epitaxially grown sublayers with Ga-peak concentrations of up to 8 at. %. Successive structural investigations were carried out by means of Rutherford-backscattering spectrometry in combination with ion channeling, secondary-ion-mass spectrometry, and high-resolution cross-sectional transmission electron microscopy. Hole densities of 1.8.1020 to 5.3.1020 cm-3 (0.4 to 1.2 at. %) were estimated via Hall-effect measurements revealing that only a fraction of the incorporated gallium has been activated electrically to generate free charge carriers. The coincidence of a sufficiently high hole and Ga concentration is required for the formation of a superconducting condensate. Our data reflect a critical hole concentration of around 0.4 at. %. Higher concentrations lead to an increase of Tc from 0.24 to 0.43 K as characterized by electrical-transport measurements. A short mean-free path indicates superconductivity in the dirty limit. In addition, small critical-current densities of max. 20 kA/m2 point to a large impact of the microstructure.

  4. Weak localization and weak antilocalization in doped germanium epilayers

    NASA Astrophysics Data System (ADS)

    Newton, P. J.; Mansell, R.; Holmes, S. N.; Myronov, M.; Barnes, C. H. W.

    2017-02-01

    The magnetoresistance of 50 nm thick epilayers of doped germanium is measured at a range of temperatures down to 1.6 K. Both n- and p-type devices show quantum corrections to the conductivity in an applied magnetic field, with n-type devices displaying weak localization and p-type devices showing weak antilocalization. From fits to these data using the Hikami-Larkin-Nagaoka model, the phase coherence length of each device is extracted, as well as the spin diffusion length of the p-type device. We obtain phase coherence lengths as large as 325 nm in the highly doped n-type device, presenting possible applications in quantum technologies. The decay of the phase coherence length with temperature is found to obey the same power law of lϕ ∝ Tc, where c = -0.68 ± 0.03, for each device, in spite of the clear differences in the nature of the conduction. In the p-type device, the measured spin diffusion length does not change over the range of temperatures for which weak antilocalization can be observed. The presence of a spin-orbit interaction manifested as weak antilocalization in the p-type epilayer suggests that these structures could be developed for use in spintronic devices such as the spin-FET, where significant spin lifetimes would be important for efficient device operation.

  5. Defect Density Characterization of Detached-Grown Germanium Crystals

    NASA Technical Reports Server (NTRS)

    Schweizer, M.; Cobb, S. D.; Volz, M. P.; Szoke, J.; Szofran, F. R.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Several (111)-oriented, Ga-doped germanium crystals were grown in pyrolytic boron nitride (pBN) containers by the Bridgman and the detached Bridgman growth techniques. Growth experiments in closed-bottom pBN containers resulted in nearly completely detached-grown crystals, because the gas pressure below the melt can build up to a higher pressure than above the melt. With open-bottom tubes the gas pressure above and below the melt is balanced during the experiment, and thus no additional force supports the detachment. In this case the crystals grew attached to the wall. Etch pit density (EPD) measurements along the axial growth direction indicated a strong improvement of the crystal quality of the detached-grown samples compared to the attached samples. Starting in the seed with an EPD of 6-8 x 10(exp 3)/square cm it decreased in the detached-grown crystals continuously to about 200-500/square cm . No significant radial difference between the EPD on the edge and the middle of the crystal exists. In the attached grown samples the EPD increases up to a value of about 2-4 x 10(exp 4)/square cm (near the edge) and up to 1 x 10(exp 4)/square cm in the middle of the sample. Thus the difference between the detached- and the attached-grown crystals with respect to the EPD is approximately two orders of magnitude.

  6. Inverting polar domains via electrical pulsing in metallic germanium telluride

    PubMed Central

    Nukala, Pavan; Ren, Mingliang; Agarwal, Rahul; Berger, Jacob; Liu, Gerui; Johnson, A. T. Charlie; Agarwal, Ritesh

    2017-01-01

    Germanium telluride (GeTe) is both polar and metallic, an unusual combination of properties in any material system. The large concentration of free-carriers in GeTe precludes the coupling of external electric field with internal polarization, rendering it ineffective for conventional ferroelectric applications and polarization switching. Here we investigate alternate ways of coupling the polar domains in GeTe to external electrical stimuli through optical second harmonic generation polarimetry and in situ TEM electrical testing on single-crystalline GeTe nanowires. We show that anti-phase boundaries, created from current pulses (heat shocks), invert the polarization of selective domains resulting in reorganization of certain 71o domain boundaries into 109o boundaries. These boundaries subsequently interact and evolve with the partial dislocations, which migrate from domain to domain with the carrier-wind force (electrical current). This work suggests that current pulses and carrier-wind force could be external stimuli for domain engineering in ferroelectrics with significant current leakage. PMID:28401949

  7. Proton-induced radiation damage in germanium detectors

    NASA Technical Reports Server (NTRS)

    Brueckner, J.; Koerfer, M.; Waenke, H.; Schroeder, A. N. F.; Filges, D.; Dragovitsch, P.; Englert, P. A. J.; Starr, R.; Trombka, J. I.

    1991-01-01

    High-purity germanium (HPGe) detectors will be used in future space missions for gamma-ray measurements and will be subject to interactions with energetic particles. To simulate this process, several large-volume n-type HPGe detectors were incrementally exposed to a particle fluence of up to 10 to the 8th protons/sq cm (proton energy: 1.5 GeV) at different operating temperatures (90 to 120 K) to induce radiation damage. Basic scientific and engineering data on detector performance were collected. During the incremental irradiation, the peak shape produced by the detectors showed a significant change from a Gaussian shape to a broad complex structure. After the irradiation, all detectors were thoroughly characterized by measuring many parameters. To remove the accumulated radiation damage, the detectors were stepwise-annealed at temperatures below 110 C, while kept in their specially designed cryostats. This study shows that n-type HPGe detectors can be used in charged-particle environments as high-energy resolution devices until a certain level of radiation damage is accumulated and that the damage can be removed at moderate annealing temperatures and the detector returned to operating condition.

  8. Crystallization of germanium-carbon alloys -- Structure and electronic transport

    SciTech Connect

    John, T.M.; Blaesing, J.; Veit, P.; Druesedau, T.

    1997-07-01

    Amorphous Ge{sub 1{minus}x}C{sub x} alloys were deposited by rf-magnetron sputtering from a germanium target in methane-argon atmosphere. Structural investigations were performed by means of wide and small angle X-ray scattering, X-ray reflectometry and cross-sectional transmission electron microscopy. The electronic transport properties were characterized using Hall-measurements and temperature depended conductivity. The results of X-ray techniques together with the electron microscopy clearly prove the existence of a segregation of the electronic conductivity in the as-prepared films follows the Mott' T{sup {minus}1/4} law, indicating transport by a hopping process. After annealing at 870 K, samples with x {le} 0.4 show crystallization of the Ge-clusters with a crystallite size being a function of x. After Ge-crystallization, the conductivity increases by 4 to 5 orders of magnitude. Above room temperature, electronic transport is determined by a thermally activated process. For lower temperatures, the {sigma}(T) curves show a behavior which is determined by the crystallite size and the free carrier concentration, both depending on the carbon content.

  9. Experimental germanium dioxide-induced neuropathy in rats.

    PubMed

    Matsumuro, K; Izumo, S; Higuchi, I; Ronquillo, A T; Takahashi, K; Osame, M

    1993-01-01

    We report an experimental model of germanium dioxide (GeO2)-induced neuropathy in rats. More than 6 months administration of GeO2 to young rats produced neuropathy characterized by segmental demyelination/remyelination and nerve edema. Electron microscopic studies demonstrated that changes in Schwann cells, such as an increased cytoplasmic volume or disintegration of the cytoplasm, were the earliest pathological findings. Schwann cell mitochondria contained high electron-dense materials. Subsequent removal of necrotic Schwann cell debris and myelin by invading macrophages was evident. These findings suggested that the Schwann cells themselves are the primary target of the toxin. The deposition of electron-dense granules in the intra-axonal vesicles, which was suggestive of glycogen granules in mitochondria, was observed in the advanced stage of the neuropathy. The findings of endoneurial edema with splitting of myelin lamellae were noted at the early stage of demyelination. Nerve edema may be the result of GeO2-induced endothelial cell injury.

  10. Proton-induced radiation damage in germanium detectors

    SciTech Connect

    Bruckner, J.; Korfer, M.; Wanke, H. , Mainz ); Schroeder, A.N.F. ); Figes, D.; Dragovitsch, P. ); Englert, P.A.J. ); Starr, R.; Trombka, J.I. . Goddard Space Flight Center); Taylor, I. ); Drake, D.M.; Shunk, E.R. )

    1991-04-01

    High-purity germanium (HPGe) detectors will be used in future space missions for gamma-ray measurements and will be subject to interactions with energetic particles. To simulate this process several large-volume n-type HPGe detectors were incrementally exposed to a particle fluence of up to 10{sub 8} protons cm{sup {minus}2} (proton energy: 1.5 GeV) at different operating temperatures (90 to 120 K) to induce radiation damage. Basic scientific as well as engineering data on detector performance were collected. During the incremental irradiation, the peak shape produced by the detectors showed a significant change from a Gaussian shape to a broad complex structure. After the irradiation all detectors were thoroughly characterized by measuring many parameters. To remove the accumulated radiation damage the detectors were stepwise annealed at temperatures T {le} 110{degrees}C while staying specially designed cryostats. This paper shows that n-type HPGe detectors can be used in charged particles environments as high-energy resolution devices until a certain level of radiation damage is accumulated and that the damage can be removed at moderate annealing temperatures and the detector returned to operating condition.

  11. Inverting polar domains via electrical pulsing in metallic germanium telluride

    NASA Astrophysics Data System (ADS)

    Nukala, Pavan; Ren, Mingliang; Agarwal, Rahul; Berger, Jacob; Liu, Gerui; Johnson, A. T. Charlie; Agarwal, Ritesh

    2017-04-01

    Germanium telluride (GeTe) is both polar and metallic, an unusual combination of properties in any material system. The large concentration of free-carriers in GeTe precludes the coupling of external electric field with internal polarization, rendering it ineffective for conventional ferroelectric applications and polarization switching. Here we investigate alternate ways of coupling the polar domains in GeTe to external electrical stimuli through optical second harmonic generation polarimetry and in situ TEM electrical testing on single-crystalline GeTe nanowires. We show that anti-phase boundaries, created from current pulses (heat shocks), invert the polarization of selective domains resulting in reorganization of certain 71o domain boundaries into 109o boundaries. These boundaries subsequently interact and evolve with the partial dislocations, which migrate from domain to domain with the carrier-wind force (electrical current). This work suggests that current pulses and carrier-wind force could be external stimuli for domain engineering in ferroelectrics with significant current leakage.

  12. Bending-induced symmetry breaking of lithiation in germanium nanowires.

    PubMed

    Gu, Meng; Yang, Hui; Perea, Daniel E; Zhang, Ji-Guang; Zhang, Sulin; Wang, Chong-Min

    2014-08-13

    From signal transduction of living cells to oxidation and corrosion of metals, mechanical stress intimately couples with chemical reactions, regulating these biological and physiochemical processes. The coupled effect is particularly evident in the electrochemical lithiation/delithiation cycling of high-capacity electrodes, such as silicon (Si), where on the one hand lithiation-generated stress mediates lithiation kinetics and on the other the electrochemical reaction rate regulates stress generation and mechanical failure of the electrodes. Here we report for the first time the evidence on the controlled lithiation in germanium nanowires (GeNWs) through external bending. Contrary to the symmetric core-shell lithiation in free-standing GeNWs, we show bending the GeNWs breaks the lithiation symmetry, speeding up lithaition at the tensile side while slowing down at the compressive side of the GeNWs. The bending-induced symmetry breaking of lithiation in GeNWs is further corroborated by chemomechanical modeling. In the light of the coupled effect between lithiation kinetics and mechanical stress in the electrochemical cycling, our findings shed light on strain/stress engineering of durable high-rate electrodes and energy harvesting through mechanical motion.

  13. Bending-induced Symmetry Breaking of Lithiation in Germanium Nanowires

    SciTech Connect

    Gu, Meng; Yang, Hui; Perea, Daniel E.; Zhang, Jiguang; Zhang, Sulin; Wang, Chong M.

    2014-08-01

    From signal transduction of living cells to oxidation and corrosion of metals, mechanical stress intimately couples with chemical reactions, regulating these biological and physiochemical processes. The coupled effect is particularly evident in electrochemical lithiation/delithiation cycling of high-capacity electrodes, such as silicon (Si), where on one hand lithiation-generated stress mediates lithiation kinetics, and on the other electrochemical reaction rate regulates stress generation and mechanical failure of the electrodes. Here we report for the first time the evidence on the controlled lithiation in germanium nanowires (GeNWs) through external bending. Contrary to the symmetric core-shell lithiation in free-standing GeNWs, we show bending GeNWs breaks the lithiation symmetry, speeding up lithaition at the tensile side while slowing down at the compressive side of the GeNWs. The bending-induced symmetry breaking of lithiation in GeNWs is further corroborated by chemomechanical modeling. In the light of the coupled effect between lithiation kinetics and mechanical stress in the electrochemical cycling, our findings shed light on strain/stress engineering of durable high-rate electrodes and energy harvesting through mechanical motion.

  14. Ductile-regime turning of germanium and silicon

    NASA Technical Reports Server (NTRS)

    Blake, Peter N.; Scattergood, Ronald O.

    1989-01-01

    Single-point diamond turning of silicon and germanium was investigated in order to clarify the role of cutting depth in coaxing a ductile chip formation in normally brittle substances. Experiments based on the rapid withdrawal of the tool from the workpiece have shown that microfracture damage is a function of the effective depth of cut (as opposed to the nominal cutting depth). In essence, damage created by the leading edge of the tool is removed several revolutions later by lower sections of the tool edge, where the effective cutting depth is less. It appears that a truly ductile cutting response can be achieved only when the effective cutting depth, or critical chip thickness, is less than about 20 nm. Factors such as tool rake angle are significant in that they will affect the actual value of the critical chip thickness for transition from brittle to ductile response. It is concluded that the critical chip thickness is an excellent parameter for measuring the effects of machining conditions on the ductility of the cut and for designing tool-workpiece geometry in both turning and grinding.

  15. Stress induced half-metallicity in surface defected germanium nanowires.

    PubMed

    Sk, Mahasin Alam; Ng, Man-Fai; Yang, Shuo-Wang; Lim, Kok Hwa

    2012-01-21

    Germanium nanowires (GeNWs) with single, double, quadruple and octuple surface dangling bonds (SDBs) are investigated using density-functional-theory calculations. We show that single SDB defected GeNWs remain semiconducting as their non-defected form while double or multiple SDB defects result in either semiconducting or metallic GeNWs, depending on the defect's locations on the surface. More importantly, we show that the electronic properties of surface defected GeNWs can also be fine-tuned by applying tensile and compressive strains. Upon the right loading, the surface defected GeNWs become half-metallic. In addition, we determine that the surface defected GeNWs can be classified into three classes: (1) GeNWs with zero magnetic moment, which are either metallic or semiconducting; (2) GeNWs with net magnetic moments equal to the number of SDBs, which are semiconducting with distinct spin-up and spin-down configurations; and (3) GeNWs with net magnetic moments significantly lower than the number of SDBs. We also find that only the defected GeNWs that fall under (3) are potentially half-metallic. Our results predict that half-metallic GeNWs can be obtained via engineering of the surface defects and the structures without the presence of impurity dopants.

  16. Ultra-Pure Water and Extremophilic Bacteria interactions with Germanium Surfaces

    NASA Astrophysics Data System (ADS)

    Sah, Vasu R.

    Supported by a consortium of semiconductor industry sponsors, an international "TIE" project among 5 National Science Foundation (NSF) Industry/university Cooperative Research Centers discovered that a particular extremophilic microbe, Pseudomonas syzygii, persists in the UltraPure Water (UPW) supplies of chip fabrication facilities (FABs) and can bio-corrode germanium wafers to produce microbe-encased optically transparent crystals. Considered as potentially functional "biochips", this investigation explored mechanisms for the efficient and deliberate production of such microbe-germania adducts as a step toward later testing of their properties as sensors or switches in bioelectronic or biophotonic circuits. Recirculating UPW (Ultra-Pure Water) and other purified water, laminar-flow loops were developed across 50X20x1mm germanium (Ge) prisms, followed by subsequent examination of the prism surfaces using Multiple Attenuated Internal Reflection InfraRed (MAIR-IR) spectroscopy, Contact Potential measurements, Differential Interference Contrast Light Microscopy (DICLM), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Analysis (EDS), and Electron Spectroscopy for Chemical Analysis (ESCA; XPS). P. syzygii cultures originally obtained from a working FAB at University of Arizona were successfully grown on R2A minimal nutrient media. They were found to be identical to the microbes in stored UPW from the same facility, such microbes routinely capable of nucleation and entrapment within GeO2 crystals on the Ge flow surfaces. Optimum flow rates and exposure times were 1 ml/minute (3.2 s-1 shear rate) for 4 days at room temperature, producing densest crystal arrays at the prism central zones 2-3 cm from the flow inlets. Other flow rates and exposure times have higher shear rate which induces a different nucleation mechanism and saturation of crystal formation. Nucleation events began with square and circular oxide deposits surrounding active attached bacteria

  17. Hydrometallurgical recovery of germanium from coal gasification fly ash: pilot plant scale evaluation

    SciTech Connect

    Arroyo, F.; Fernandez-Pereira, C.; Olivares, J.; Coca, P.

    2009-04-15

    In this article, a hydrometallurgical method for the selective recovery of germanium from fly ash (FA) has been tested at pilot plant scale. The pilot plant flowsheet comprised a first stage of water leaching of FA, and a subsequent selective recovery of the germanium from the leachate by solvent extraction method. The solvent extraction method was based on Ge complexation with catechol in an aqueous solution followed by the extraction of the Ge-catechol complex (Ge(C{sub 6}H{sub 4}O{sub 2}){sub 3}{sup 2-}) with an extracting organic reagent (trioctylamine) diluted in an organic solvent (kerosene), followed by the subsequent stripping of the organic extract. The process has been tested on a FA generated in an integrated gasification with combined cycle (IGCC) process. The paper describes the designed 5 kg/h pilot plant and the tests performed on it. Under the operational conditions tested, approximately 50% of germanium could be recovered from FA after a water extraction at room temperature. Regarding the solvent extraction method, the best operational conditions for obtaining a concentrated germanium-bearing solution practically free of impurities were as follows: extraction time equal to 20 min; aqueous phase/organic phase volumetric ratio equal to 5; stripping with 1 M NaOH, stripping time equal to 30 min, and stripping phase/organic phase volumetric ratio equal to 5. 95% of germanium were recovered from water leachates using those conditions.

  18. Biallelic and Genome Wide Association Mapping of Germanium Tolerant Loci in Rice (Oryza sativa L.)

    PubMed Central

    Talukdar, Partha; Douglas, Alex; Price, Adam H.; Norton, Gareth J.

    2015-01-01

    Rice plants accumulate high concentrations of silicon. Silicon has been shown to be involved in plant growth, high yield, and mitigating biotic and abiotic stresses. However, it has been demonstrated that inorganic arsenic is taken up by rice through silicon transporters under anaerobic conditions, thus the ability to efficiently take up silicon may be considered either a positive or a negative trait in rice. Germanium is an analogue of silicon that produces brown lesions in shoots and leaves, and germanium toxicity has been used to identify mutants in silicon and arsenic transport. In this study, two different genetic mapping methods were performed to determine the loci involved in germanium sensitivity in rice. Genetic mapping in the biparental cross of Bala × Azucena (an F6 population) and a genome wide association (GWA) study with 350 accessions from the Rice Diversity Panel 1 were conducted using 15 μM of germanic acid. This identified a number of germanium sensitive loci: some co-localised with previously identified quantitative trait loci (QTL) for tissue silicon or arsenic concentration, none co-localised with Lsi1 or Lsi6, while one single nucleotide polymorphism (SNP) was detected within 200 kb of Lsi2 (these are genes known to transport silicon, whose identity was discovered using germanium toxicity). However, examining candidate genes that are within the genomic region of the loci detected above reveals genes homologous to both Lsi1 and Lsi2, as well as a number of other candidate genes, which are discussed. PMID:26356220

  19. Biallelic and Genome Wide Association Mapping of Germanium Tolerant Loci in Rice (Oryza sativa L.).

    PubMed

    Talukdar, Partha; Douglas, Alex; Price, Adam H; Norton, Gareth J

    2015-01-01

    Rice plants accumulate high concentrations of silicon. Silicon has been shown to be involved in plant growth, high yield, and mitigating biotic and abiotic stresses. However, it has been demonstrated that inorganic arsenic is taken up by rice through silicon transporters under anaerobic conditions, thus the ability to efficiently take up silicon may be considered either a positive or a negative trait in rice. Germanium is an analogue of silicon that produces brown lesions in shoots and leaves, and germanium toxicity has been used to identify mutants in silicon and arsenic transport. In this study, two different genetic mapping methods were performed to determine the loci involved in germanium sensitivity in rice. Genetic mapping in the biparental cross of Bala × Azucena (an F6 population) and a genome wide association (GWA) study with 350 accessions from the Rice Diversity Panel 1 were conducted using 15 μM of germanic acid. This identified a number of germanium sensitive loci: some co-localised with previously identified quantitative trait loci (QTL) for tissue silicon or arsenic concentration, none co-localised with Lsi1 or Lsi6, while one single nucleotide polymorphism (SNP) was detected within 200 kb of Lsi2 (these are genes known to transport silicon, whose identity was discovered using germanium toxicity). However, examining candidate genes that are within the genomic region of the loci detected above reveals genes homologous to both Lsi1 and Lsi2, as well as a number of other candidate genes, which are discussed.

  20. Heat capacity of high-purity isotope-enriched germanium-76 in the temperature range of 2-15 K

    NASA Astrophysics Data System (ADS)

    Gusev, A. V.; Gibin, A. M.; Andryushchenko, I. A.; Gavva, V. A.; Kozyrev, E. A.

    2015-09-01

    The heat capacity of high-purity isotopically-enriched germanium Ge-76 has been measured in the range of 2.5-15 K. In this range, the heat capacity of Ge-76 is 6-15% higher than the heat capacity of germanium of the natural isotopic composition, which is determined by a change in the average mass.

  1. Enhanced plasma current collection from weakly conducting solar array blankets

    NASA Technical Reports Server (NTRS)

    Hillard, G. Barry

    1993-01-01

    Among the solar cell technologies to be tested in space as part of the Solar Array Module Plasma Interactions Experiment (SAMPIE) will be the Advanced Photovoltaic Solar Array (APSA). Several prototype twelve cell coupons were built for NASA using different blanket materials and mounting techniques. The first conforms to the baseline design for APSA which calls for the cells to be mounted on a carbon loaded Kapton blanket to control charging in GEO. When deployed, this design has a flexible blanket supported around the edges. A second coupon was built with the cells mounted on Kapton-H, which was in turn cemented to a solid aluminum substrate. A final coupon was identical to the latter but used germanium coated Kapton to control atomic oxygen attack in LEO. Ground testing of these coupons in a plasma chamber showed considerable differences in plasma current collection. The Kapton-H coupon demonstrated current collection consistent with exposed interconnects and some degree of cell snapover. The other two coupons experienced anomalously large collection currents. This behavior is believed to be a consequence of enhanced plasma sheaths supported by the weakly conducting carbon and germanium used in these coupons. The results reported here are the first experimental evidence that the use of such materials can result in power losses to high voltage space power systems.

  2. Chromatographic Separation of Germanium and Arsenic for the Production of High Purity 77As

    PubMed Central

    Gott, Matthew D.; DeGraffenreid, Anthony J.; Feng, Yutian; Phipps, Michael D.; Wycoff, Donald E.; Embree, Mary F.; Cutler, Cathy S.; Ketring, Alan R.; Jurisson, Silvia S.

    2016-01-01

    A simple column chromatographic method was developed to isolate 77As (94 ± 6% (EtOH/HCl); 74 ± 11 (MeOH)) from germanium for potential use in radioimmunotherapy. The separation of arsenic from germanium was based on their relative affinities for different chromatographic materials in aqueous and organic environments. Using an organic or mixed mobile phase, germanium was selectively retained on a silica gel column as germanate, while arsenic was eluted from the column as arsenate. Subsequently, enriched 76Ge (98 ± 2) was recovered for reuse by elution with aqueous solution (neutral to basic). Greater than 98% radiolabeling yield of a 77As-trithiol was observed from methanol separated [77As]arsenate [17]. PMID:26947162

  3. Two-Dimensional Spatial Imaging of Charge Transport in Germanium Crystals at Cryogenic Temperatures

    SciTech Connect

    Moffatt, Robert

    2016-01-01

    In this dissertation, I describe a novel apparatus for studying the transport of charge in semiconductors at cryogenic temperatures. The motivation to conduct this experiment originated from an asymmetry observed between the behavior of electrons and holes in the germanium detector crystals used by the Cryogenic Dark Matter Search (CDMS). This asymmetry is a consequence of the anisotropic propagation of electrons in germanium at cryogenic temperatures. To better model our detectors, we incorporated this effect into our Monte Carlo simulations of charge transport. The purpose of the experiment described in this dissertation is to test those models in detail. Our measurements have allowed us to discover a shortcoming in our most recent Monte Carlo simulations of electrons in germanium. This discovery would not have been possible without the measurement of the full, two-dimensional charge distribution, which our experimental apparatus has allowed for the first time at cryogenic temperatures.

  4. Electrodeposition at room temperature of amorphous silicon and germanium nanowires in ionic liquid

    NASA Astrophysics Data System (ADS)

    Martineau, F.; Namur, K.; Mallet, J.; Delavoie, F.; Endres, F.; Troyon, M.; Molinari, M.

    2009-11-01

    The electrodeposition at room temperature of silicon and germanium nanowires from the air- and water-stable ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (P1,4) containing SiCl4 as Si source or GeCl4 as Ge source is investigated by cyclic voltammetry. By using nanoporous polycarbonate membranes as templates, it is possible to reproducibly grow pure silicon and germanium nanowires of different diameters. The nanowires are composed of pure amorphous silicon or germanium. The nanowires have homogeneous cylindrical shape with a roughness of a few nanometres on the wire surfaces. The nanowires' diameters and lengths well match with the initial membrane characteristics. Preliminary photoluminescence experiments exhibit strong emission in the near infrared for the amorphous silicon nanowires.

  5. Investigation of influential parameters for zone-refinement of germanium crystals

    NASA Astrophysics Data System (ADS)

    Yang, Gang; Govani, Jayesh; Guan, Yutong; Huang, Mianliang; Mei, Hao; Wang, Guojian; Mei, Dongming

    2014-03-01

    In zone-refining of high-purity germanium crystals, the influential parameters include vacuum level, container of germanium ingot, ambient gases, zone travel speed, zone length, etc. In the present work, the influences of zone length and zone travel speed on the purity level of the zone-refined ingot have been investigated with many experiments. The impurity level in the zone-refined ingot was characterized by van der pauw hall measurement. The shallow impurities are measured with a photothermal ionization spectroscopy (PTIS), which identifies existence of boron, aluminum and phosphor as three main impurities, in the zone-refined germanium ingot. Utilizing the multiple experiments, we have optimized the zone length and zone travel speed. We demonstrate our experimental results with solidification theory of metals.

  6. Operando X-ray scattering and spectroscopic analysis of germanium nanowire anodes in lithium ion batteries.

    PubMed

    Silberstein, Katharine E; Lowe, Michael A; Richards, Benjamin; Gao, Jie; Hanrath, Tobias; Abruña, Héctor D

    2015-02-17

    X-ray diffraction (XRD) and Fourier transform extended X-ray absorption fine structure (EXAFS) analysis of X-ray absorption spectroscopy (XAS) measurements have been employed to determine structural and bonding changes, as a function of the lithium content/state of charge, of germanium nanowires used as the active anode material within lithium ion batteries (LIBs). Our data, collected throughout the course of battery cycling (operando), indicate that lithium incorporation within the nanostructured germanium occurs heterogeneously, preferentially into amorphous regions over crystalline domains. Maintenance of the molecular structural integrity within the germanium nanowire is dependent on the depth of discharge. Discharging to a shallower cutoff voltage preserves partial crystallinity for several cycles.

  7. Chromatographic separation of germanium and arsenic for the production of high purity (77)As.

    PubMed

    Gott, Matthew D; DeGraffenreid, Anthony J; Feng, Yutian; Phipps, Michael D; Wycoff, Donald E; Embree, Mary F; Cutler, Cathy S; Ketring, Alan R; Jurisson, Silvia S

    2016-04-08

    A simple column chromatographic method was developed to isolate (77)As (94±6% (EtOH/HCl); 74±11 (MeOH)) from germanium for potential use in radioimmunotherapy. The separation of arsenic from germanium was based on their relative affinities for different chromatographic materials in aqueous and organic environments. Using an organic or mixed mobile phase, germanium was selectively retained on a silica gel column as germanate, while arsenic was eluted from the column as arsenate. Subsequently, enriched (76)Ge (98±2) was recovered for reuse by elution with aqueous solution (neutral to basic). Greater than 98% radiolabeling yield of a (77)As-trithiol was observed from methanol separated [(77)As]arsenate [17]. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. The nucleation and growth of germanium on (11¯02) sapphire deposited by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Godbey, D. J.; Twigg, M. E.

    1991-04-01

    Single-crystal germanium on (11¯02) sapphire films are grown after a substrate preanneal of 1400 °C and at growth temperatures above 700 °C. At a growth temperature of 800 °C, the nucleation site density was ˜1011 cm-2. For thin germanium films, the isolated islands were singly oriented, with single-crystal films obtained for thicker grown films. A 400 °C growth temperature on sapphire was insufficiently high to get epitaxial growth and produced polycrystallites. Growth at 400 °C on an 800 °C grown germanium template did result in epitaxy. However, a high fraction of the twinned orientation was produced, resulting in a bicrystalline film.

  9. Diffusion of interstitial oxygen in silicon and germanium: a hybrid functional study

    NASA Astrophysics Data System (ADS)

    Colleoni, Davide; Pasquarello, Alfredo

    2016-12-01

    The minimum-energy paths for the diffusion of an interstitial O atom in silicon and germanium are studied through the nudged-elastic-band method and hybrid functional calculations. The reconsideration of the diffusion of O in silicon primarily serves the purpose of validating the procedure for studying the O diffusion in germanium. Our calculations show that the minimum energy path goes through an asymmetric transition state in both silicon and germanium. The stability of these transition states is found to be enhanced by the generation of unpaired electrons in the highest occupied single-particle states. Calculated energy barriers are 2.54 and 2.14 eV for Si and Ge, in very good agreement with corresponding experimental values of 2.53 and 2.08 eV, respectively.

  10. Present growth technology of silicon germanium alloys and possible advantages of microgravity growth

    NASA Technical Reports Server (NTRS)

    Stafsudd, O. M.

    1981-01-01

    The growth technology of Silicon-germanium (Si-Ge) alloys and the possible advantages of growth in microgravity is reviewed. The Si-Ge alloys have a continuous variation of bandgap energy from the germanium bandgap to the silicon bandgap. The unusual two slope behavior of Eg versus composition is due to the differences in the conduction band structure between Si and Ge. Below 17% (atomic), the germanium band structure dominates; and above it, the bands are "silicon like". It is found that the growth of Si-Ge alloys in microgravity is very attractive. In particular, the float zone method, in which a liquid zone of controlled starting composition, used to grow a large amount of useful alloy crystal. Large temperature gradients and relatively flat growth interfaces are necessary to obtain homogeneous crystal growth.

  11. Germanium and Silicon Nanocrystal Thin-Film Field-Effect Transistors from Solution

    SciTech Connect

    Holman, Zachary C.; Liu, Chin-Yi; Kortshagen, Uwe R.

    2010-07-09

    Germanium and silicon have lagged behind more popular II-VI and IV-VI semiconductor materials in the emerging field of semiconductor nanocrystal thin film devices. We report germanium and silicon nanocrystal field-effect transistors fabricated by synthesizing nanocrystals in a plasma, transferring them into solution, and casting thin films. Germanium devices show n-type, ambipolar, or p-type behavior depending on annealing temperature with electron and hole mobilities as large as 0.02 and 0.006 cm2 V-1 s-1, respectively. Silicon devices exhibit n-type behavior without any postdeposition treatment, but are plagued by poor film morphology.

  12. Scaling nominal solar cell impedances for array design

    SciTech Connect

    Mueller, R.L.; Wallace, M.T.; Iles, P.

    1994-12-31

    A methodology for estimating the AC impedance of solar arrays and in particular the Mars Pathfinder (MPF) spacecraft cruise stage and lander solar arrays is presented. During an early stage in the spacecraft design, the MPF mission, cost and mass constraints resulted in a proposal to use a gallium arsenide on germanium (GaAs/Ge) cell solar array for the cruise stage and a silicon, back surface field/reflector (Si BSFR) cell solar array for the Mars lander. Previous work had shown that the AC impedance of Si BSFR cells was very different from that of GaAs/Ge cells. There was concern over how the difference in AC impedance would influence the design of the power bus voltage control circuitry and the stability of the power bus in general. The results presented in this paper are based on AC impedance measurements made on single cells and small solar cell arrays. Those measurements were then scaled to the larger spacecraft arrays. In each case, a generic AC model was used to construct impedance equations which were then correlated to test results to find the resistive and capacitive components of the cell impedance between 100 Hz and 100 Khz. The data was obtained using dark forward biasing to simulate different load points and intensities. Cell impedance tests show a large difference between Si BSFR and either Si non-BSF or GaAs/Ge cells, mainly because of the inherently high effective capacitance of the BSFR cells.

  13. Search for Pauli exclusion principle violating atomic transitions and electron decay with a p-type point contact germanium detector

    SciTech Connect

    Abgrall, N.; Arnquist, I. J.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Bradley, A. W.; Brudanin, V.; Busch, M.; Buuck, M.; Caldwell, A. S.; Chan, Y. -D.; Christofferson, C. D.; Chu, P. -H.; Cuesta, C.; Detwiler, J. A.; Dunagan, C.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Finnerty, P. S.; Galindo-Uribarri, A.; Gilliss, T.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Jasinski, B. R.; Keeter, K. J.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; MacMullin, J.; Martin, R. D.; Massarczyk, R.; Meijer, S. J.; Mertens, S.; Orrell, J. L.; O’Shaughnessy, C.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Shanks, B.; Shirchenko, M.; Suriano, A. M.; Tedeschi, D.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C. -H.; Yumatov, V.; Zhitnikov, I.

    2016-11-11

    Here, a search for Pauli-exclusion-principle-violating Kα electron transitions was performed using 89.5 kg-d of data collected with a p-type point contact high-purity germanium detector operated at the Kimballton Underground Research Facility. A lower limit on the transition lifetime of 5.8 × 1030 s at 90% C.L. was set by looking for a peak at 10.6 keV resulting from the X-ray and Auger electrons present following the transition. A similar analysis was done to look for the decay of atomic K-shell electrons into neutrinos, resulting in a lower limit of 6.8 × 1030 s at 90% C.L. It is estimated that the Majorana Demonstrator, a 44 kg array of p-type point contact detectors that will search for the neutrinoless double-beta decay of 76Ge, could improve upon these exclusion limits by an order of magnitude after three years of operation.

  14. Search for Pauli exclusion principle violating atomic transitions and electron decay with a p-type point contact germanium detector

    DOE PAGES

    Abgrall, N.; Arnquist, I. J.; Avignone, F. T.; ...

    2016-11-11

    Here, a search for Pauli-exclusion-principle-violating Kα electron transitions was performed using 89.5 kg-d of data collected with a p-type point contact high-purity germanium detector operated at the Kimballton Underground Research Facility. A lower limit on the transition lifetime of 5.8 × 1030 s at 90% C.L. was set by looking for a peak at 10.6 keV resulting from the X-ray and Auger electrons present following the transition. A similar analysis was done to look for the decay of atomic K-shell electrons into neutrinos, resulting in a lower limit of 6.8 × 1030 s at 90% C.L. It is estimated thatmore » the Majorana Demonstrator, a 44 kg array of p-type point contact detectors that will search for the neutrinoless double-beta decay of 76Ge, could improve upon these exclusion limits by an order of magnitude after three years of operation.« less

  15. Search for Pauli exclusion principle violating atomic transitions and electron decay with a p-type point contact germanium detector

    DOE PAGES

    Abgrall, N.; Arnquist, I. J.; Avignone, F. T.; ...

    2016-11-11

    Here, a search for Pauli-exclusion-principle-violating Kα electron transitions was performed using 89.5 kg-d of data collected with a p-type point contact high-purity germanium detector operated at the Kimballton Underground Research Facility. A lower limit on the transition lifetime of 5.8 × 1030 s at 90% C.L. was set by looking for a peak at 10.6 keV resulting from the X-ray and Auger electrons present following the transition. A similar analysis was done to look for the decay of atomic K-shell electrons into neutrinos, resulting in a lower limit of 6.8 × 1030 s at 90% C.L. It is estimated thatmore » the Majorana Demonstrator, a 44 kg array of p-type point contact detectors that will search for the neutrinoless double-beta decay of 76Ge, could improve upon these exclusion limits by an order of magnitude after three years of operation.« less

  16. Search for Pauli exclusion principle violating atomic transitions and electron decay with a p-type point contact germanium detector

    SciTech Connect

    Abgrall, N.; Arnquist, I. J.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Bradley, A. W.; Brudanin, V.; Busch, M.; Buuck, M.; Caldwell, A. S.; Chan, Y. -D.; Christofferson, C. D.; Chu, P. -H.; Cuesta, C.; Detwiler, J. A.; Dunagan, C.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Finnerty, P. S.; Galindo-Uribarri, A.; Gilliss, T.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Jasinski, B. R.; Keeter, K. J.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; MacMullin, J.; Martin, R. D.; Massarczyk, R.; Meijer, S. J.; Mertens, S.; Orrell, J. L.; O’Shaughnessy, C.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Shanks, B.; Shirchenko, M.; Suriano, A. M.; Tedeschi, D.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C. -H.; Yumatov, V.; Zhitnikov, I.

    2016-11-11

    Here, a search for Pauli-exclusion-principle-violating Kα electron transitions was performed using 89.5 kg-d of data collected with a p-type point contact high-purity germanium detector operated at the Kimballton Underground Research Facility. A lower limit on the transition lifetime of 5.8 × 1030 s at 90% C.L. was set by looking for a peak at 10.6 keV resulting from the X-ray and Auger electrons present following the transition. A similar analysis was done to look for the decay of atomic K-shell electrons into neutrinos, resulting in a lower limit of 6.8 × 1030 s at 90% C.L. It is estimated that the Majorana Demonstrator, a 44 kg array of p-type point contact detectors that will search for the neutrinoless double-beta decay of 76Ge, could improve upon these exclusion limits by an order of magnitude after three years of operation.

  17. PREFACE: 2nd Workshop on Germanium Detectors and Technologies

    NASA Astrophysics Data System (ADS)

    Abt, I.; Majorovits, B.; Keller, C.; Mei, D.; Wang, G.; Wei, W.

    2015-05-01

    The 2nd workshop on Germanium (Ge) detectors and technology was held at the University of South Dakota on September 14-17th 2014, with more than 113 participants from 8 countries, 22 institutions, 15 national laboratories, and 8 companies. The participants represented the following big projects: (1) GERDA and Majorana for the search of neutrinoless double-beta decay (0νββ) (2) SuperCDMS, EDELWEISS, CDEX, and CoGeNT for search of dark matter; (3) TEXONO for sub-keV neutrino physics; (4) AGATA and GRETINA for gamma tracking; (5) AARM and others for low background radiation counting; (5) as well as PNNL and LBNL for applications of Ge detectors in homeland security. All participants have expressed a strong desire on having better understanding of Ge detector performance and advancing Ge technology for large-scale applications. The purpose of this workshop was to leverage the unique aspects of the underground laboratories in the world and the germanium (Ge) crystal growing infrastructure at the University of South Dakota (USD) by brining researchers from several institutions taking part in the Experimental Program to Stimulate Competitive Research (EPSCoR) together with key leaders from international laboratories and prestigious universities, working on the forefront of the intensity to advance underground physics focusing on the searches for dark matter, neutrinoless double-beta decay (0νββ), and neutrino properties. The goal of the workshop was to develop opportunities for EPSCoR institutions to play key roles in the planned world-class research experiments. The workshop was to integrate individual talents and existing research capabilities, from multiple disciplines and multiple institutions, to develop research collaborations, which includes EPSCor institutions from South Dakota, North Dakota, Alabama, Iowa, and South Carolina to support multi-ton scale experiments for future. The topic areas covered in the workshop were: 1) science related to Ge

  18. An estimate of the Germanium isotopic composition of the Ocean.

    NASA Astrophysics Data System (ADS)

    Galy, A.; Rouxel, O.; Mantoura, S.; Elderfield, H.; de La Rocha, C.

    2004-12-01

    Ge is a trace element in seawater whose biogeochemistry is dominated by its Si-like behaviour. Its residence time is poorly constrained but could be close to the mixing time of the ocean. In addition, hydrothermal vents are enriched in Ge (relative to Si) and this excess has been witnessed in the water column. Moreover, Si isotopic variations have been reported in the ocean, related to the precipitation of biogenic opal, while the Si residence time is slightly higher than the Ge residence time. Therefore, variations in the isotopic composition of dissolved Ge in the ocean are expected provided that at least one of the major input or output of Ge has a different isotopic composition. Given the low Ge concentration (around 40 picomol/kg) and the state-of-the art analytical facilities, a direct measurement of the isotopic composition of the seawater is barely conceivable. The major input of Ge into the ocean are the rivers and the hydrothermal vents, while the removal of Ge occurs through the precipitation of biogenic opal and the early diagenesis of passive margins. The mechanism of the later is, however, not well established but could be related to the precipitation of Fe-oxyhydroxide. So the measurement of marine authigenic minerals, biogenic silica and the comparison with an estimate of the bulk silicate Earth (BSE) composition will give some constraints on the Germanium isotopic composition of the ocean. A new technique for the precise and accurate determination of Ge stable isotope compositions has been developed and applied to silicate, sulfide, and biogenic material. The analyses were performed using a continuous flow hydride generation system coupled to a Nu Instrument MC-ICPMS. Samples have been purified through anion and cation exchange resins to separate Ge from matrix elements and potential interferences. Deep sea clays have a similar isotopic composition that MORBs or granites, suggesting that isotopic composition of the dissolved Ge in rivers might not

  19. Detached Solidification of Germanium-Silicon Crystals on the ISS

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.; Croell, A.

    2016-01-01

    A series of Ge(sub 1-x) Si(sub x) crystal growth experiments are planned to be conducted in the Low Gradient Furnace (LGF) onboard the International Space Station. The primary objective of the research is to determine the influence of containment on the processing-induced defects and impurity incorporation in germanium-silicon alloy crystals. A comparison will be made between crystals grown by the normal and "detached" Bridgman methods and the ground-based float zone technique. Crystals grown without being in contact with a container have superior quality to otherwise similar crystals grown in direct contact with a container, especially with respect to impurity incorporation, formation of dislocations, and residual stress in crystals. "Detached" or "dewetted" Bridgman growth is similar to regular Bridgman growth in that most of the melt is in contact with the crucible wall, but the crystal is separated from the wall by a small gap, typically of the order of 10-100 microns. Long duration reduced gravity is essential to test the proposed theory of detached growth. Detached growth requires the establishment of a meniscus between the crystal and the ampoule wall. The existence of this meniscus depends on the ratio of the strength of gravity to capillary forces. On Earth, this ratio is large and stable detached growth can only be obtained over limited conditions. Crystals grown detached on the ground exhibited superior structural quality as evidenced by measurements of etch pit density, synchrotron white beam X-ray topography and double axis X-ray diffraction.

  20. Systematic Uncertainties in High-Rate Germanium Data

    SciTech Connect

    Gilbert, Andrew J.; Fast, James E.; Fulsom, Bryan G.; Pitts, William K.; VanDevender, Brent A.; Wood, Lynn S.

    2016-10-06

    For many nuclear material safeguards inspections, spectroscopic gamma detectors are required which can achieve high event rates (in excess of 10^6 s^-1) while maintaining very good energy resolution for discrimination of neighboring gamma signatures in complex backgrounds. Such spectra can be useful for non-destructive assay (NDA) of spent nuclear fuel with long cooling times, which contains many potentially useful low-rate gamma lines, e.g., Cs-134, in the presence of a few dominating gamma lines, such as Cs-137. Detectors in use typically sacrifice energy resolution for count rate, e.g., LaBr3, or visa versa, e.g., CdZnTe. In contrast, we anticipate that beginning with a detector with high energy resolution, e.g., high-purity germanium (HPGe), and adapting the data acquisition for high throughput will be able to achieve the goals of the ideal detector. In this work, we present quantification of Cs-134 and Cs-137 activities, useful for fuel burn-up quantification, in fuel that has been cooling for 22.3 years. A segmented, planar HPGe detector is used for this inspection, which has been adapted for a high-rate throughput in excess of 500k counts/s. Using a very-high-statistic spectrum of 2.4*10^11 counts, isotope activities can be determined with very low statistical uncertainty. However, it is determined that systematic uncertainties dominate in such a data set, e.g., the uncertainty in the pulse line shape. This spectrum offers a unique opportunity to quantify this uncertainty and subsequently determine required counting times for given precision on values of interest.

  1. Hyperfine interactions at dangling bonds in amorphous germanium

    NASA Astrophysics Data System (ADS)

    Graf, T.; Ishikawa, T.; Itoh, K. M.; Haller, E. E.; Stutzmann, M.; Brandt, M. S.

    2003-11-01

    Isotope-engineered amorphous germanium (a-Ge) films with 73Ge concentrations in the range of 0.1 to 95.6 % have been investigated by electron spin resonance (ESR) and electrically detected magnetic resonance (EDMR) at microwave frequencies between 0.434 and 9.35 GHz. The hyperfine interactions of dangling bond (DB) defects with many 73Ge nuclei and their spin localization radius have been extracted from the broadening of the EDMR signals in isotope enriched samples at different 73Ge concentrations. Linewidths as low as ΔBexppp=2.6 G have been observed at 0.434 GHz in a sample without 73Ge nuclear spins. At low 73Ge concentrations, the frequency-dependent linewidth BSOpp/ν=4.4 G/GHz is determined by g-factor anisotropy and disorder. A frequency-independent linewidth contribution of about 1 G is attributed to dipolar broadening between the DB electronic spins. Over a large range of intermediate concentrations, the statistically distributed nuclear spins of 73Ge atoms on sites close to the DB defect atom are responsible for the overall linewidth. The large linewidth ΔBexppp=300 G of samples with 73Ge concentrations of 95.6% requires a model wave function with a Fermi contact interaction of Aiso=29 G×gμB at the defect atom, indicating that a fraction of 3.4% of the DB wave function originates from s-like orbitals there. The decay of the rest of the DB wave function can be described with a spin localization radius of 3.5 Å by a numerical model for the statistical hyperfine broadening. The delocalization of the DB spin is much smaller than that of the DB charge density determined in transport measurements.

  2. Germanium-silicon fractionation in a tropical, granitic weathering environment

    NASA Astrophysics Data System (ADS)

    Lugolobi, Festo; Kurtz, Andrew C.; Derry, Louis A.

    2010-02-01

    Germanium-silicon (Ge/Si) ratios were determined on quartz diorite bedrock, saprolite, soil, primary and secondary minerals, phytolith, soil and saprolite pore waters, and spring water and stream waters in an effort to understand Ge/Si fractionation during weathering of quartz diorite in the Rio Icacos watershed, Puerto Rico. The Ge/Si ratio of the bedrock is 2 μmol/mol, with individual primary mineral phases ranging between 0.5 and 7 μmol/mol. The ratios in the bulk saprolite are higher (˜3 μmol/mol) than values measured in the bedrock. The major saprolite secondary mineral, kaolinite, has Ge/Si ratios ranging between 4.8 and 6.1 μmol/mol. The high Ge/Si ratios in the saprolite are consistent with preferential incorporation of Ge during the precipitation of kaolinite. Bulk shallow soils have lower ratios (1.1-1.6 μmol/mol) primarily due to the residual accumulation of Ge-poor quartz. Ge/Si ratios measured on saprolite and soil pore waters reflect reactions that take place during mineral transformations at discrete depths. Spring water and baseflow stream waters have the lowest Ge/Si ratios (0.27-0.47 μmol/mol), reflecting deep initial weathering reactions resulting in the precipitation of Ge-enriched kaolinite at the saprolite-bedrock interface. Mass-balance calculations on saprolite require significant loss of Si and Al even within 1 m above the saprolite-bedrock interface. Higher pore water Ge/Si ratios (˜1.2 μmol/mol) are consistent with partial dissolution of this Ge-enriched kaolinite. Pore water Ge/Si ratios increase up through the saprolite and into the overlying soil, but never reach the high values predicted by mass balance, perhaps reflecting the influence of phytolith recycling in the shallow soil.

  3. Low-energy tetrahedral polymorphs of carbon, silicon, and germanium

    NASA Astrophysics Data System (ADS)

    Mujica, Andrés; Pickard, Chris J.; Needs, Richard J.

    2015-06-01

    Searches for low-energy tetrahedral polymorphs of carbon and silicon have been performed using density functional theory computations and the ab initio random structure searching approach. Several of the hypothetical phases obtained in our searches have enthalpies that are lower or comparable to those of other polymorphs of group 14 elements that have either been experimentally synthesized or recently proposed as the structure of unknown phases obtained in experiments, and should thus be considered as particularly interesting candidates. A structure of P b a m symmetry with 24 atoms in the unit cell was found to be a low-energy, low-density metastable polymorph in carbon, silicon, and germanium. In silicon, P b a m is found to have a direct band gap at the zone center with an estimated value of 1.4 eV, which suggests applications as a photovoltaic material. We have also found a low-energy chiral framework structure of P 41212 symmetry with 20 atoms per cell containing fivefold spirals of atoms, whose projected topology is that of the so-called Cairo-type two-dimensional pentagonal tiling. We suggest that P 41212 is a likely candidate for the structure of the unknown phase XIII of silicon. We discuss P b a m and P 41212 in detail, contrasting their energetics and structures with those of other group 14 elements, particularly the recently proposed P 42/n c m structure, for which we also provide a detailed interpretation as a network of tilted diamondlike tetrahedra.

  4. Doping of germanium and silicon crystals with non-hydrogenic acceptors for far infrared lasers

    DOEpatents

    Haller, Eugene E.; Brundermann, Erik

    2000-01-01

    A method for doping semiconductors used for far infrared lasers with non-hydrogenic acceptors having binding energies larger than the energy of the laser photons. Doping of germanium or silicon crystals with beryllium, zinc or copper. A far infrared laser comprising germanium crystals doped with double or triple acceptor dopants permitting the doped laser to be tuned continuously from 1 to 4 terahertz and to operate in continuous mode. A method for operating semiconductor hole population inversion lasers with a closed cycle refrigerator.

  5. Structural and vibrational stability of M and Z phases of silicon and germanium from first principles

    NASA Astrophysics Data System (ADS)

    Bautista-Hernández, A.; Rangel, T.; Romero, A. H.; Rignanese, G.-M.; Salazar-Villanueva, M.; Chigo-Anota, E.

    2013-05-01

    First-principles calculations were performed to investigate the structural feasibility of M and Z phases (novel monoclinic and orthorhombic structures recently reported for carbon) for silicon and germanium. The lattice parameters, bulk modulus, vibrational properties, and elastic constants are calculated using the local density approximation to describe the exchange-correlation energy, while the optical properties are calculated by using Many-Body Perturbation Theory in the G0W0 approximation. Our results indicate that silicon and germanium with the proposed crystal symmetries are elastically and vibrationally stable and are small band-gap semiconductors. We discuss the possible synthesis of such materials.

  6. Reference Correlations for the Thermal Conductivity of Liquid Bismuth, Cobalt, Germanium, and Silicon

    NASA Astrophysics Data System (ADS)

    Assael, M. J.; Antoniadis, K. D.; Wakeham, W. A.; Huber, M. L.; Fukuyama, H.

    2017-09-01

    The available experimental data for the thermal conductivity of liquid bismuth, cobalt, germanium, and silicon have been critically examined with the intention of establishing thermal conductivity reference correlations. All experimental data have been categorized into primary and secondary data according to the quality of measurement specified by a series of criteria. The proposed standard reference correlations for the thermal conductivity of liquid bismuth, cobalt, germanium, and silicon are, respectively, characterized by uncertainties of 10%, 15%, 16%, and 9.5% at the 95% confidence level.

  7. Probing the Electronic Density of States of Germanium Nanoparticles: A Method for Determining Atomic Structure

    SciTech Connect

    Williamson, A; Bostedt, C; van Buuren, T; Willey, T; Terminello, L; Galli, G; Pizzagalli, L

    2004-03-31

    We present first principles electronic structure calculations and photoemission measurements of the change in the valence band DOS of germanium as its dimensions are reduced from the bulk to the nanoscale. By comparing the calculated broadening of the s and s--p band peaks and the energy of surface dangling bonds to the measured DOS we identify the most likely structure of these nanoparticles. We propose that, in contrast to recent interpretations, small 2-3 nm germanium nanoparticles prepared by gas phase aggregation have a distorted diamond structure core and a thermally disordered surface.

  8. Hot Carrier Trapping in High-Purity and Doped Germanium Crystals at Millikelvin Temperatures

    NASA Astrophysics Data System (ADS)

    Piro, M.-C.; Broniatowski, A.; Marnieros, S.; Dumoulin, L.; Olivieri, E.

    2014-09-01

    A new set of experimental data is presented for the mean drift lengths and the drift velocities of hot electrons and holes as a function of the electric field in ultra-pure and in lightly doped (n- and p-type) germanium single crystals at mK temperatures. Measurements are made in the field range between 0.1 and 15 V/cm, typical for the operation of cryogenic germanium detectors for dark matter search. The analysis of the experimental data strongly suggests that the dominant trapping centers are the dopant species in the neutral state.

  9. Polarization insensitive Ge-rich silicon germanium waveguides for optical interconnects on silicon

    NASA Astrophysics Data System (ADS)

    Vakarin, V.; Chaisakul, Papichaya; Frigerio, Jacopo; Ballabio, Andrea; Ramírez, Joan Manel; Le Roux, Xavier; Coudevylle, Jean-René; Vivien, Laurent; Isella, Giovanni; Marris-Morini, Delphine

    2017-05-01

    We propose germanium-rich silicon germanium waveguides as a basic building block for polarization insensitive circuitry on silicon. In this work a detailed study of SiGe waveguides geometries is performed to find optimal parameters to simultaneously obtain low polarization sensitivity and single mode operation at λ=1.55μm. The polarization dependence of the effective index, group index and dispersion coefficient is investigated. Optimized geometries are tolerant to fabrication errors and can be realized with the current state of the art CMOS technology. As a next step polarization insensitive multimode interference structures have been designed.

  10. Reductant-free colloidal synthesis of near-IR emitting germanium nanocrystals: role of primary amine.

    PubMed

    Ghosh, Batu; Ogawara, Makoto; Sakka, Yoshio; Shirahata, Naoto

    2014-03-01

    High temperature colloidal synthesis without using hazardous reducing agent is demonstrated here to develop a straight forward pathway for synthesizing near-IR (NIR) light emitting germanium nanocrystals (Ge NCs). The NCs were prepared by heating a mixture of germanium (II) iodide and organoamine. This article presents an important role of the primary amine which serves as a reducing agent as well as an inhibitor against oxidation by comparing with the tertiary amine. Interestingly, the difference in chemical reactivity between each amine causes the difference in major structural phase of the products. An efficient route to produce NIR light emitting Ge NCs is demonstrated.

  11. Optimization of the Transport Shield for Neutrinoless Double Beta-decay Enriched Germanium

    SciTech Connect

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Orrell, John L.; Reid, Douglas J.; Fast, James E.

    2012-04-15

    This document presents results of an investigation of the material and geometry choice for the transport shield of germanium, the active detector material used in 76Ge neutrinoless double beta decay searches. The objective of this work is to select the optimal material and geometry to minimize cosmogenic production of radioactive isotopes in the germanium material. The design of such a shield is based on the calculation of the cosmogenic production rate of isotopes that are known to cause interfering backgrounds in 76Ge neutrinoless double beta decay searches.

  12. Removal of the long-lived {sup 222}Rn daughters from steel and germanium surfaces

    SciTech Connect

    Wojcik, Marcin; Zuzel, Grzegorz; Majorovits, Bela

    2011-04-27

    Removal of the long-lived {sup 222}Rn daughters ({sup 210}Pb, {sup 210}Bi and {sup 210}Po) from stainless steel and germanium surfaces was investigated. As cleaning technique etching was applied to samples in a form of discs exposed earlier to a strong radon source. Reduction of the {sup 210}Pb activity was tested using a HPGe spectrometer, for {sup 210}Bi a beta spectrometer and for {sup 210}Po an alpha spectrometer was used. According to the conducted measurements all the isotopes were removed very efficiently from germanium. Results obtained for stainless steel were worse but still better than those achieved for copper.

  13. Microstructures of niobium-germanium alloys processed in inert gas in the 100 meter drop tube

    NASA Technical Reports Server (NTRS)

    Bayuzick, R. J.; Robinson, M. B.; Hofmeister, W. H.; Evans, N. D.

    1986-01-01

    The 100 meter drop tube at NASA's Marshall Space Flight Center has been used for a series of experiments with niobium-germanium alloys. These experiments were conducted with electromagnetic levitation melting in a 200 torr helium environment. Liquid alloys experienced large degrees of undercooling prior to solidification in the drop tube. Several interesting metastable structures were observed. However, the recalescence event prevented extended solid solubility of germanium in the A-15 beta phase. Liquids of eutectic composition were found to undercool in the presence of solid alpha and solid Nb5Ge3.

  14. Measuring hole spin states of single quantum dot in germanium hut wire

    NASA Astrophysics Data System (ADS)

    Li, Shu-Xiao; Li, Yan; Gao, Fei; Xu, Gang; Li, Hai-Ou; Cao, Gang; Xiao, Ming; Wang, Ting; Zhang, Jian-Jun; Guo, Guo-Ping

    2017-03-01

    As a group IV material with confined holes, the germanium hut wire is considered a promising candidate for achieving fast electrically controlled spin qubits. Here we fabricated a single quantum dot device on a germanium hut wire and a standard charge stability diagram with excited states was observed by DC transport measurements. By analyzing the Zeeman splitting behaviors of each state, we chose a window for distinguishing different hole parities and spin states, launching the first step towards a useful spin qubit. Effective g-factors around 4.3 for both even and odd hole number states were also extracted.

  15. Point contact germanium detectors at 500 eVee threshold for light dark matter searches

    NASA Astrophysics Data System (ADS)

    Soma, Arun Kumar; Li, Hau-Bin; Lin, Shin-Ted; Wong, Henry Tsz-King; TEXONO Collaboration

    2016-04-01

    Germanium detectors with sub-keV sensitivities can probe low-mass WIMP Dark Matter. This experimental approach is pursued at Kuo-Sheng Neutrino Laboratory (KSNL) in Taiwan and at China Jinping Underground Laboratory (CJPL) in China via TEXONO and CDEX programs, respectively. The highlights of R&D efforts on point contact germanium detectors and in particular the differentiation of surface and bulk events by pulse shape analysis are described. The latest results on WIMP-nucleon scattering cross-sections are also presented. Some of the allowed parameter space implied by other experiments are probed and excluded.

  16. The Excitation and Fano Resonance Spectra of Some Acceptors in Silicon and Germanium

    NASA Astrophysics Data System (ADS)

    Piao, Gejin

    Rich and well resolved p_{3/2 } and p_{1/2} optical absorption spectra have been observed for indium in silicon and p_{3/2}^ectra for singly ionised zinc, Zn^-, in germanium, revealing some new transitions and permitting re-examination in detail of the transition energies, level schemes and deformation potential constants. Ratios of about 4.2 and 4.1 for the binding energies of Zn ^- in germanium to those of group III impurities and neutral zinc in germanium, respectively, were determined. A comparison with theoretical energies was made, showing excellent agreement. A set of asymmetric and broad excitation features was observed in the spectra of Zn^- in germanium; these have a one-to-one correspondence with the p_{3/2} transitions and are separated from them by the zone centre optical phonon energy of bulk germanium. These new features have been identified as Fano resonances. The Fano resonance of the G line was found to be well defined, while the G line in the p_{3/2}^ectrum is almost undetectable. This is the first observation of Fano resonances associated with bound holes in germanium. A simple and accurate method has been developed to deduce the parameters q, Gamma and f of the resonances. The stress behaviour of the rm p _{3/2}, p_{1/2} and Fano series of indium in silicon for F| <111>, <100> and <110> and of the p_{3/2} and Fano series of Zn^- in germanium for F|<111> and <100> have been observed with linearly polarised radiation. The Fano resonances experience splitting under stress in a way similar to their counterparts in the p_{3/2} series. Their strengths, however, do not follow those of their p_{3/2} counterparts. The piezo-Fano selection rules have been derived using group theory. A striking phenomenon for Zn^- in germanium is the appearance of the some stress components of the Fano resonances for which their parents in the p_{3/2} series are strictly forbidden. This is consistent with the selection rules which show how the rules for the p_ {3

  17. Structural and optoelectronic properties of germanium-rich islands grown on silicon using molecular beam epitaxy

    SciTech Connect

    Nataraj, L.; Sustersic, N.; Coppinger, M.; Gerlein, L. F.; Kolodzey, J.; Cloutier, S. G.

    2010-03-22

    We report on the structural and optoelectronic properties of self-assembled germanium-rich islands grown on silicon using molecular beam epitaxy. Raman, photocurrent, photoluminescence, and transient optical spectroscopy measurements suggest significant built-in strains and a well-defined interface with little intermixing between the islands and the silicon. The shape of these islands depends on the growth conditions and includes pyramid, dome, barn-shaped, and superdome islands. Most importantly, we demonstrate that these germanium-rich islands provide efficient light emission at telecommunication wavelengths on a complementary metal-oxide semiconductor-compatible platform.

  18. Global Arrays

    SciTech Connect

    Krishnamoorthy, Sriram; Daily, Jeffrey A.; Vishnu, Abhinav; Palmer, Bruce J.

    2015-11-01

    Global Arrays (GA) is a distributed-memory programming model that allows for shared-memory-style programming combined with one-sided communication, to create a set of tools that combine high performance with ease-of-use. GA exposes a relatively straightforward programming abstraction, while supporting fully-distributed data structures, locality of reference, and high-performance communication. GA was originally formulated in the early 1990’s to provide a communication layer for the Northwest Chemistry (NWChem) suite of chemistry modeling codes that was being developed concurrently.

  19. Self-assembly of tin wires via phase transformation of heteroepitaxial germanium-tin on germanium substrate

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Li, Lingzi; Tok, Eng Soon; Yeo, Yee-Chia

    2015-06-01

    This work demonstrates and describes for the first time an unusual strain-relaxation mechanism by the formation and self-assembly of well-ordered tin wires during the thermal annealing of epitaxial Ge0.83Sn0.17-on-Ge(001) substrate. Fully strained germanium-tin alloys (Ge0.83Sn0.17) were epitaxially grown on Ge(001) substrate by molecular beam epitaxy. The morphological and compositional evolution of Ge0.83Sn0.17 during thermal annealing is studied by atomic force microscopy, X-ray diffraction, transmission electron microscopy. Under certain annealing conditions, the Ge0.83Sn0.17 layer decomposes into two stable phases, and well-defined Sn wires that are preferentially oriented along two orthogonal ⟨100⟩ azimuths are formed. The formation of the Sn wires is related to the annealing temperature and the Ge0.83Sn0.17 thickness, and can be explained by the nucleation of a grain with Sn islands on the outer front, followed by grain boundary migration. The Sn wire formation process is found to be thermally activated, and an activation enthalpy (Ec) of 0.41 eV is extracted. This thermally activated phase transformation, i.e., 2D epitaxial layer to 3D wires, occurs via a mechanism akin to "cellular precipitation." This synthesis route of Sn wires opens new possibilities for creation of nanoscale patterns at high-throughput without the need for lithography.

  20. Self-assembly of tin wires via phase transformation of heteroepitaxial germanium-tin on germanium substrate

    SciTech Connect

    Wang, Wei; Li, Lingzi; Yeo, Yee-Chia; Tok, Eng Soon

    2015-06-14

    This work demonstrates and describes for the first time an unusual strain-relaxation mechanism by the formation and self-assembly of well-ordered tin wires during the thermal annealing of epitaxial Ge{sub 0.83}Sn{sub 0.17}-on-Ge(001) substrate. Fully strained germanium-tin alloys (Ge{sub 0.83}Sn{sub 0.17}) were epitaxially grown on Ge(001) substrate by molecular beam epitaxy. The morphological and compositional evolution of Ge{sub 0.83}Sn{sub 0.17} during thermal annealing is studied by atomic force microscopy, X-ray diffraction, transmission electron microscopy. Under certain annealing conditions, the Ge{sub 0.83}Sn{sub 0.17} layer decomposes into two stable phases, and well-defined Sn wires that are preferentially oriented along two orthogonal 〈100〉 azimuths are formed. The formation of the Sn wires is related to the annealing temperature and the Ge{sub 0.83}Sn{sub 0.17} thickness, and can be explained by the nucleation of a grain with Sn islands on the outer front, followed by grain boundary migration. The Sn wire formation process is found to be thermally activated, and an activation enthalpy (E{sub c}) of 0.41 eV is extracted. This thermally activated phase transformation, i.e., 2D epitaxial layer to 3D wires, occurs via a mechanism akin to “cellular precipitation.” This synthesis route of Sn wires opens new possibilities for creation of nanoscale patterns at high-throughput without the need for lithography.

  1. BIG MAC: A bolometer array for mid-infrared astronomy, Center Director's Discretionary Fund

    NASA Technical Reports Server (NTRS)

    Telesco, C. M.; Decher, R.; Baugher, C.

    1985-01-01

    The infrared array referred to as Big Mac (for Marshall Array Camera), was designed for ground based astronomical observations in the wavelength range 5 to 35 microns. It contains 20 discrete gallium-doped germanium bolometer detectors at a temperature of 1.4K. Each bolometer is irradiated by a square field mirror constituting a single pixel of the array. The mirrors are arranged contiguously in four columns and five rows, thus defining the array configuration. Big Mac utilized cold reimaging optics and an up looking dewar. The total Big Mac system also contains a telescope interface tube for mounting the dewar and a computer for data acquisition and processing. Initial astronomical observations at a major infrared observatory indicate that Big Mac performance is excellent, having achieved the design specifications and making this instrument an outstanding tool for astrophysics.

  2. Neutron damage tests of a highly segmented Germanium detector

    NASA Astrophysics Data System (ADS)

    Ross, T. J.; Beausang, C. W.; Lee, I. Y.; Macchiavelli, A. O.; Gros, S.; Cromaz, M.; Clark, R. M.; Fallon, P.; Jeppesen, Henrik; Allmond, J. M.

    2008-10-01

    Gamma ray energy tracking arrays such as GRETINA/GRETA and AGATA are the latest evolution in gamma ray detection. By locating the interaction points, in 3-dimensions, of individual gamma ray interactions such arrays allow the energies of gamma rays to be reconstructed. This leads to excellent energy resolution, superior peak-to-total ratio and photo peak efficiency and resolving powers up to a thousand times superior to the best current generation array. The position information is extracted from the detailed pulse shapes recorded in each segment. It is anticipated that these tracking-detectors will experience significant neutron fluxes during in beam experiments. Thus it is important to test the response of highly-segmented Ge detectors when subjected to high-energy neutrons. In a one week test carried out at the 88-Inch Cyclotron at LBNL the P3 prototype detector for the GRETINA array was exposed to a neutron flux equivalent to at least one and a half years normal use. The detector was then successfully annealed. Preliminary results for the energy and position resolution, prior to and after neutron damage, and after annealing will be presented.

  3. Application of vacuum reduction and chlorinated distillation to enrich and prepare pure germanium from coal fly ash.

    PubMed

    Zhang, Lingen; Xu, Zhenming

    2017-01-05

    Germanium, as strategic reserve metal, plays critical role in high-tech industry. However, a contradiction of increasing consumption and scarcity of germanium resource is becoming more and more prominent. This paper proposed an integrated process to recycle germanium from coal fly ash. This technological process mainly consisted of two procedures: vacuum reduction with the purposes of enriching germanium and chlorinated distillation with the purposes of purifying germanium. Several highlights are summarized as follows: (i) Separation principle and reaction mechanism were discussed to understand this integrated process. (ii) Optimum designs and product analysis were developed to guide industrial recycling. The appropriate parameters for vacuum reduction process on the basis of response surface methodology (RSM) were 920.53°C and 259.63Pa, with 16.64wt.% reductant, and for the chlorinated distillation process, adding 8mol/l HCl and L/S 7, 8wt.% MnO2. The global recovery rate of germanium was 83.48±0.36% for the integrated process. (iii) This process overcomes the shortages of traditional process and shows its efficiency and environmental performance. It is significant in accordance with the "Reduce, Reuse and Recycle Principle" for solid waste and further provides a new opportunity for germanium recovery from waste by environment-friendly way.

  4. Germanium and Rare Earth Element accumulation in woody bioenergy crops

    NASA Astrophysics Data System (ADS)

    Hentschel, Werner

    2016-04-01

    Germanium and REEs are strategic elements that are used for high tech devices and engineered systems, however these elements are hardly concentrated into mineable ore deposits. Since these elements occur widely dispersed in the earth crust with concentrations of several mgṡkg-1 (Ge 1.6 mgṡkg-1, Nd 25 mgṡkg-1) a new possibility to gain these elements could be phytomining, a technique that uses plants to extract elements from soils via their roots. Since knowledge about accumulating plant species is quite limited we conducted research on the concentrations of strategic elements in wood and leaves of fast growing tree species (Salix spec., Populus spec., Betula pendula, Alnus glutinosa, Fraxinus excelsior, Acer pseudoplatanus). In total 35 study sites were selected in the mining affected area around Freiberg (Saxony, Germany), differing in their species composition and degree of contamination with toxic trace metals (Pb, As, Cd). On each site plant tissues (wood and leaves, respectively) of different species were sampled. In addition soil samples were taken from a soil depth of 0 - 30 cm and 30 - 60 cm. The aim of our work was to investigate correlations between the concentrations of the target elements in plant tissues and soil characteristics like pH, texture, nutrients and concentrations in six operationally defined soil fractions (mobile, acid soluble, oxidizable, amorphic oxides, crystalline oxides, residual or siliceous). Concentrations of elements in soil extracts and plant tissues were measured with ICP-MS. The element Nd was selected as representative for the group of REEs, since this element showed a high correlation with the concentrations of the other REE We found that the concentration of Nd in the leaves (0.31 mgṡkg-1Nd) were several times higher than in herbaceous species (0.05 mgṡkg-1 Nd). The concentration of Ge in leaves were ten times lower than that of Nd whereas in herbaceous species Nd and Ge were in equal magnitude. Within the tree

  5. Structural, optical, and electrical characterization of improved amorphous hydrogenated germanium

    NASA Astrophysics Data System (ADS)

    Turner, W. A.; Jones, S. J.; Pang, D.; Bateman, B. F.; Chen, J. H.; Li, Y.-M.; Marques, F. C.; Wetsel, A. E.; Wickboldt, P.; Paul, W.; Bodart, J.; Norberg, R. E.; El Zawawi, I.; Theye, M. L.

    1990-06-01

    High-quality amorphous hydrogenated germanium has been deposited using the diode rf glow discharge method out of a gas plasma of GeH4 and H2. The optical, electrical, and structural properties of this material have been extensively characterized. The optical and electrical properties are all consistent with material containing a low density of defect related states in the energy gap. In particular, this material has an ημτ=3.2×10-7 cm2/V, ratio of photocurrent to dark current of 1.3×10-1, and flux dependence of the photocurrent with γ=0.79 at 1.25 eV measured using photoconductivity, a μτ=4×10-8 cm2/V measured using time of flight, an Urbach energy of 51 meV and α at 0.7 eV of 8.3 cm-1 measured using photothermal deflection spectroscopy, a dangling bond spin density of 5×1016 cm-3 measured using electron spin resonance, photoluminescence with a peak energy position of 0.81 eV and full width at half maximum of 0.19 eV, an activation energy of 0.52 eV and σ0 of 6.1×103 (Ω cm)-1 measured using dark conductivity, and an E04 band gap of 1.24 eV measured by optical absorption. The structural measurements indicate a homogeneous material lacking any island/tissue and columnar structure when investigated using transmission and scanning electron microscopy, respectively. Hydrogen concentrations calculated from infrared and gas evolution measurements can only by reconciled by postulating a large quantity of unbonded hydrogen whose presence is confirmed using deuteron magnetic resonance. The bonded deuterium component, as seen in this film using DMR, has a spin-lattice relaxation time of the order of 4000 s. The differential scanning calorimetry measurement shows crystallization occurring at 421 °C and the presence of large compressive stresses has been confirmed using a bending-beam method. The experimental details necessary to interpret the quantities quoted here are set out in the text which follows. It is considered that the very good optical and electrical

  6. Spin coherence in silicon/silicon-germanium nanostructures

    NASA Astrophysics Data System (ADS)

    Truitt, James L.

    This thesis investigates the spin coherence of electrons in silicon/silicon-germanium (Si/SiGe) quantum wells. With a long spin coherence time, an electron trapped in a quantum dot in Si/SiGe is a prime candidate for a quantum bit (qubit) in a solid state implementation of a quantum computer. In particular, the mechanisms responsible for decoherence are examined in a variety of Si/SiGe quantum wells, and it is seen that their behavior does not correspond to published theories of decoherence in these structures. Transport data are analyzed for all samples to determine the electrical properties of each, taking into account a parallel conduction path seen in all samples. Furthermore, the effect of confining the electrons into nanostructures of varying size in one of the samples is studied. All but one of the samples examined are grown by ultrahigh vacuum chemical vapor deposition at the University of Wisconsin - Madison. The nanostructures are patterned on a sample provided by IBM using the Nabity Pattern Generation Software (NPGS) on a LEO1530 Scanning Electron Microscope, and etched using SF6 in an STS reactive ion etcher. Continuous-wave electron spin resonance studies are done using a Bruker ESP300E spectrometer, with a 4.2K continuous flow cryostat and X-band cavity. In order to fully characterize the sample, electrical measurements were done. Hall bars are etched into the 2DEGs, and Ohmic contacts are annealed in to provide a current path through the 2DEG. Measurements are made both from room temperature down to 2K in a Physical Property Measurement System (PPMS), and at 300mK using a custom built probe in a one shot 3He cryostat made by Oxford Instruments. The custom built probe also allows high frequency excitations, facilitating electrically detected magnetic resonance (EDMR) experiments. In many of the samples, an orientationally dependent electron spin resonance linewidth is seen whose anisotropy is much larger at small angles than that predicted by

  7. The Amination Reaction on Copper and Germanium β-Nitrocorrolates

    PubMed Central

    Stefanelli, Manuela; Mandoj, Federica; Mastroianni, Marco; Nardis, Sara; Mohite, Pruthviray; Fronczek, Frank R.; Smith, Kevin M.; Kadish, Karl M.; Xiao, Xiao; Ou, Zhongping; Chen, Ping; Paolesse, Roberto

    2011-01-01

    Copper and germanium complexes of β-substituted nitrocorroles were reacted with 4-amino-4H-1,2,4-triazole to give the corresponding β-amino-β-nitro derivatives, in moderate to good yields. This is the first successful example of a vicarious nucleophilic substitution performed on corrole derivatives, because the same reaction carried out on silver complexes afforded the corresponding 6-azahemiporphycenes by way of corrole ring expansion. The first step of this work is related to the modification of a synthetic protocol for preparation of the β-substituted nitro corroles. The nitration reaction was carried out on a copper corrole using NaNO2 as the primary source of NO2− coupled with AgNO2 used as oxidant. By variation of the molar ratio of the reagents it was possible to direct the product distribution towards mono- and di-nitro derivatives. The reaction between mono- and di-nitro derivatives of (TtBuCorrCu) with 4-amino-4H-1,2,4-triazole gave good results, leading to the isolation of 2,3-(NH2)(NO2)-TtBuCorrCu and 2,18-(NH2)2-3,17-(NO2)2-TtBuCorrCu in moderate yields. To elucidate factors that influence the reaction, and to highlight the different behavior observed for different metal complex substrates, the electrochemistry of three copper complexes, TtBuPCorrCu, (NO2)TtBuPCorrCu and (NO2)2TtBuPCorrCu, were studied by cyclic voltammetry and thin-layer UV-visible spectroelectrochemistry. The nitro groups on (NO2)xTtBuPCorrCu are highly electron-withdrawing, which leads not only to a substantial positive shift of all redox potentials, but also to a unique redox behavior and UV-vis spectrum of the singly reduced product as compared to the parent compound, TtBuPCorrCu. Finally, the amination reaction was carried out on a Ge(IV) nitrocorrolate, giving in good yield the 2-amino-3-nitroderivative, which was structurally characterized by single crystal X-ray crystallography. PMID:21797194

  8. Reaction studies of hot silicon and germanium radicals. Progress report, September 1, 1979-August 31, 1980

    SciTech Connect

    Gaspar, P.P.

    1980-08-31

    The experimental approach to attaining the goals of this research program is briefly outlined and the progress made in the last year is reviewed in sections entitled: (a) primary steps in the reaction of recoiling silicon and germanium atoms and the identification of reactive intermediates in the recoil reactions; (b) thermally induced silylene and germylene reactions; (c) ion-molecule reaction studies.

  9. Segmentation of the Outer Contact on P-Type Coaxial Germanium Detectors

    DTIC Science & Technology

    2007-09-01

    needed for low -level counting facilities. The applications of such user facilities include characterization of low -level radioactive samples. In...decay. Germanium coaxial detectors having segmented outer contacts can provide sensitivity improvement in low - background measurements. The...needed for low -level counting facilities. The practical applications of such user facilities include characterization of low -level radioactive samples

  10. Probing the structural evolution of ruthenium doped germanium clusters: Photoelectron spectroscopy and density functional theory calculations

    PubMed Central

    Jin, Yuanyuan; Lu, Shengjie; Hermann, Andreas; Kuang, Xiaoyu; Zhang, Chuanzhao; Lu, Cheng; Xu, Hongguang; Zheng, Weijun

    2016-01-01

    We present a combined experimental and theoretical study of ruthenium doped germanium clusters, RuGen− (n = 3–12), and their corresponding neutral species. Photoelectron spectra of RuGen− clusters are measured at 266 nm. The vertical detachment energies (VDEs) and adiabatic detachment energies (ADEs) are obtained. Unbiased CALYPSO structure searches confirm the low-lying structures of anionic and neutral ruthenium doped germanium clusters in the size range of 3 ≤ n ≤ 12. Subsequent geometry optimizations using density functional theory (DFT) at PW91/LANL2DZ level are carried out to determine the relative stability and electronic properties of ruthenium doped germanium clusters. It is found that most of the anionic and neutral clusters have very similar global features. Although the global minimum structures of the anionic and neutral clusters are different, their respective geometries are observed as the low-lying isomers in either case. In addition, for n > 8, the Ru atom in RuGen−/0 clusters is absorbed endohedrally in the Ge cage. The theoretically predicted vertical and adiabatic detachment energies are in good agreement with the experimental measurements. The excellent agreement between DFT calculations and experiment enables a comprehensive evaluation of the geometrical and electronic structures of ruthenium doped germanium clusters. PMID:27439955

  11. Germanium determination by flame atomic absorption spectrometry: an increased vapor pressure-chloride generation system.

    PubMed

    Kaya, Murat; Volkan, Mürvet

    2011-03-15

    A new chloride generation system was designed for the direct, sensitive, rapid and accurate determination of the total germanium in complex matrices. It was aimed to improve the detection limit of chloride generation technique by increasing the vapor pressure of germanium tetrachloride (GeCl(4)). In order to do so, a novel joint vapor production and gas-liquid separation unit equipped with a home-made oven was incorporated to an ordinary nitrous oxide-acetylene flame atomic absorption spectrometer. Several variables such as reaction time, temperature and acid concentration have been investigated. The linear range for germanium determination was 0.1-10 ng mL(-1) for 1 mL sampling volume with a detection limit (3s) of 0.01 ng mL(-1). The relative standard deviation (RSD) was 2.4% for nine replicates of a 1 ng mL(-1) germanium solution. The method was validated by the analysis of one non-certified and two certified geochemical reference materials, respectively, CRM GSJ-JR-2 (Rhyolite), and GSJ-JR-1 (Rhyolite), and GBW 07107 (Chinese Rock). Selectivity of the method was investigated for Cd(2+), Co(2+), Cu(2+), Fe(3+), Ga(3+), Hg(2+), Ni(2+), Pb(2+), Sn(2+), and Zn(2+) ions and ionic species of As(III), Sb(III), Te(IV), and Se(IV).

  12. Reduced graphene oxide-germanium quantum dot nanocomposite: Electronic, optical and magnetic properties.

    PubMed

    Amollo, Tabitha; Tessema, Gene; Nyamori, Vincent O

    2017-10-11

    Graphene provides numerous possibilities for structural modification and functionalization of its carbon backbone. Localized magnetic moments can, as well, be induced in graphene by the formation of structural defects which include vacancies, edges, and adatoms. In this work, graphene was functionalized using germanium atoms, we report the effect of the Ge ad atoms on the structural, electrical, optical and magnetic properties of graphene. Reduced graphene oxide (rGO)-germanium quantum dot nanocomposites of high crystalline quality were synthesized by the microwave-assisted solvothermal reaction. Highly crystalline spherical shaped germanium quantum dots, of diameter ranging between 1.6-9.0 nm, are anchored on the basal planes of rGO. The nanocomposites exhibit high electrical conductivity with a sheet resistance of up to 16 Ω sq-1. The electrical conductivity is observed to increase with the increase in Ge content in the nanocomposites. High defect-induced magnetization is attained in the composites via germanium adatoms. The evolution of the magnetic moments in the nanocomposites and the coercivity showed marked dependence on the Ge quantum dots size and concentration. Quantum confinement effects is evidenced in the UV-Vis absorbance spectra and photoluminescence emission spectra of the nanocomposites which show marked size-dependence. The composites manifest strong absorption in the UV region, strong luminescence in the near UV region, and a moderate luminescence in the visible region. © 2017 IOP Publishing Ltd.

  13. Probing the structural evolution of ruthenium doped germanium clusters: Photoelectron spectroscopy and density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Jin, Yuanyuan; Lu, Shengjie; Hermann, Andreas; Kuang, Xiaoyu; Zhang, Chuanzhao; Lu, Cheng; Xu, Hongguang; Zheng, Weijun

    2016-07-01

    We present a combined experimental and theoretical study of ruthenium doped germanium clusters, RuGen- (n = 3-12), and their corresponding neutral species. Photoelectron spectra of RuGen- clusters are measured at 266 nm. The vertical detachment energies (VDEs) and adiabatic detachment energies (ADEs) are obtained. Unbiased CALYPSO structure searches confirm the low-lying structures of anionic and neutral ruthenium doped germanium clusters in the size range of 3 ≤ n ≤ 12. Subsequent geometry optimizations using density functional theory (DFT) at PW91/LANL2DZ level are carried out to determine the relative stability and electronic properties of ruthenium doped germanium clusters. It is found that most of the anionic and neutral clusters have very similar global features. Although the global minimum structures of the anionic and neutral clusters are different, their respective geometries are observed as the low-lying isomers in either case. In addition, for n > 8, the Ru atom in RuGen-/0 clusters is absorbed endohedrally in the Ge cage. The theoretically predicted vertical and adiabatic detachment energies are in good agreement with the experimental measurements. The excellent agreement between DFT calculations and experiment enables a comprehensive evaluation of the geometrical and electronic structures of ruthenium doped germanium clusters.

  14. Probing the structural evolution of ruthenium doped germanium clusters: Photoelectron spectroscopy and density functional theory calculations.

    PubMed

    Jin, Yuanyuan; Lu, Shengjie; Hermann, Andreas; Kuang, Xiaoyu; Zhang, Chuanzhao; Lu, Cheng; Xu, Hongguang; Zheng, Weijun

    2016-07-21

    We present a combined experimental and theoretical study of ruthenium doped germanium clusters, RuGen(-) (n = 3-12), and their corresponding neutral species. Photoelectron spectra of RuGen(-) clusters are measured at 266 nm. The vertical detachment energies (VDEs) and adiabatic detachment energies (ADEs) are obtained. Unbiased CALYPSO structure searches confirm the low-lying structures of anionic and neutral ruthenium doped germanium clusters in the size range of 3 ≤ n ≤ 12. Subsequent geometry optimizations using density functional theory (DFT) at PW91/LANL2DZ level are carried out to determine the relative stability and electronic properties of ruthenium doped germanium clusters. It is found that most of the anionic and neutral clusters have very similar global features. Although the global minimum structures of the anionic and neutral clusters are different, their respective geometries are observed as the low-lying isomers in either case. In addition, for n > 8, the Ru atom in RuGen(-/0) clusters is absorbed endohedrally in the Ge cage. The theoretically predicted vertical and adiabatic detachment energies are in good agreement with the experimental measurements. The excellent agreement between DFT calculations and experiment enables a comprehensive evaluation of the geometrical and electronic structures of ruthenium doped germanium clusters.

  15. Germanium nitride and oxynitride films for surface passivation of Ge radiation detectors

    NASA Astrophysics Data System (ADS)

    Maggioni, G.; Carturan, S.; Fiorese, L.; Pinto, N.; Caproli, F.; Napoli, D. R.; Giarola, M.; Mariotto, G.

    2017-01-01

    This work reports a detailed investigation of the properties of germanium nitride and oxynitride films to be applied as passivation layers to Ge radiation detectors. All the samples were deposited at room temperature by reactive RF magnetron sputtering. A strong correlation was found between the deposition parameters, such as deposition rate, substrate bias and atmosphere composition, and the oxygen and nitrogen content in the film matrix. We found that all the films were very poorly crystallized, consisting of very small Ge nitride and oxynitride nanocrystallites, and electrically insulating, with the resistivity changing from three to six orders of magnitude as a function of temperature. A preliminary test of these films as passivation layers was successfully performed by depositing a germanium nitride film on the intrinsic surface of a high-purity germanium (HPGe) diode and measuring the improved performance, in terms of leakage current, with respect to a reference passivated diode. All these interesting results allow us to envisage the application of this coating technology to the surface passivation of germanium-based radiation detectors.

  16. Temperature-Dependent Compensation and Optical Quenching by Thermal Oxygen Donors in Germanium

    NASA Technical Reports Server (NTRS)

    Watson, D.; Guptill, M.; Huffman, J.; Krabach, T.; Raines, S.

    1994-01-01

    Photothermal ionization spectroscopy of germanium, doped in the impurity-band conduction range with gallium acceptors and with thermal oxygen donors, reveals that the donors and acceptors compensate each other at temperatures higher than about 5K, but that the impurities coexist as neutral donors and acceptors at lower temperatures.

  17. Effect of a magnetic field on the diffusion of an electron-hole plasma in germanium.

    NASA Technical Reports Server (NTRS)

    Gurnee, M. N.; Hooke, W. M.; Goldsmith, G. J.; Brennan, M. H.

    1972-01-01

    Study in germanium of an optically injected electron-hole plasma, parallel and perpendicular to an applied magnetic field. The density gradient within the crystal was measured directly by an infrared-beam-absorption technique. Diffusion measurements made parallel to the magnetic field are adequately explained by the theory.

  18. Evaluation of semiconductor specimens by X-ray analysis. [considering germanium and gallium arsenide structures

    NASA Technical Reports Server (NTRS)

    Walter, H. U.

    1975-01-01

    Germanium and GaAs crystals were investigated for studies on photovoltaic effects, chemical etching and epitaxial growth according to the overall objective to assess the defect structure of single crystalline materials. A brief survey of basic theory and topographical techniques is provided; examples of topographs are presented.

  19. Silicon and germanium nanowire electronics: physics of conventional and unconventional transistors.

    PubMed

    Weber, Walter M; Mikolajick, Thomas

    2017-06-01

    Research in the field of electronics of 1D group-IV semiconductor structures has attracted increasing attention over the past 15 years. The exceptional combination of the unique 1D electronic transport properties with the mature material know-how of highly integrated silicon and germanium technology holds the promise of enhancing state-of-the-art electronics. In addition of providing conduction channels that can bring conventional field effect transistors to the uttermost scaling limits, the physics of 1D group IV nanowires endows new device principles. Such unconventional silicon and germanium nanowire devices are contenders for beyond complementary metal oxide semiconductor (CMOS) computing by virtue of their distinct switching behavior and higher expressive value. This review conveys to the reader a systematic recapitulation and analysis of the physics of silicon and germanium nanowires and the most relevant CMOS and CMOS-like devices built from silicon and germanium nanowires, including inversion mode, junctionless, steep-slope, quantum well and reconfigurable transistors.

  20. Enhanced Third Harmonic Generation in Single Germanium Nanodisks Excited at the Anapole Mode.

    PubMed

    Grinblat, Gustavo; Li, Yi; Nielsen, Michael P; Oulton, Rupert F; Maier, Stefan A

    2016-07-13

    We present an all-dielectric germanium nanosystem exhibiting a strong third order nonlinear response and efficient third harmonic generation in the optical regime. A thin germanium nanodisk shows a pronounced valley in its scattering cross section at the dark anapole mode, while the electric field energy inside the disk is maximized due to high confinement within the dielectric. We investigate the dependence of the third harmonic signal on disk size and pump wavelength to reveal the nature of the anapole mode. Each germanium nanodisk generates a high effective third order susceptibility of χ((3)) = 4.3 × 10(-9) esu, corresponding to an associated third harmonic conversion efficiency of 0.0001% at an excitation wavelength of 1650 nm, which is 4 orders of magnitude greater than the case of an unstructured germanium reference film. Furthermore, the nonlinear conversion via the anapole mode outperforms that via the radiative dipolar resonances by about 1 order of magnitude, which is consistent with our numerical simulations. These findings open new possibilities for the optimization of upconversion processes on the nanoscale through the appropriate engineering of suitable dielectric materials.