Science.gov

Sample records for 14-d saturation dive

  1. Nutritional Assessment During a 14-d Saturation Dive: the NASA Extreme Environment Mission Operation V Project

    NASA Technical Reports Server (NTRS)

    Smith, S. M.; Davis-Street, J. E.; Fesperman, J. V.; Smith, M. D.; Rice, B. L.; Zwart, S. R.

    2006-01-01

    Ground-based analogs of spaceflight are an important means of studying physiological and nutritional changes associated with space travel, particularly since exploration missions are anticipated, and flight research opportunities are limited. A clinical nutritional assessment of the NASA Extreme Environment Mission Operation V (NEEMO) crew (4 M, 2 F) was conducted before, during, and after the 14-d saturation dive. Blood and urine samples were collected before (D-12 and D-1), during (MD 7 and MD 12), and after (R + 0 and R + 7) the dive. The foods were typical of the spaceflight food system. A number of physiological changes were reported both during the dive and post dive that are also commonly observed during spaceflight. Serum hemoglobin and hematocrit were decreased (P less than 0.05) post dive. Serum ferritin and ceruloplasmin significantly increased during the dive, while transferring receptors tended to go down during the dive and were significantly decreased by the last day (R + 0). Along with significant hematological changes, there was also evidence for increased oxidative damage and stress during the dive. 8-hydroxydeoxyguanosine was elevated (P less than 0.05) during the dive, while glutathione peroxidase and superoxide disrnutase activities were decreased (P less than 0.05) during the dive. Serum C-reactive protein (CRP) concentration also tended to increase during the dive, suggesting the presence of a stress-induced inflammatory response, Decreased leptin during the dive (P less than 0.05) may also be related to the increased stress. Similar to what is observed during spaceflight, subjects had decreased energy intake and weight loss during the dive. Together, these similarities to spaceflight provide a model to further define the physiological effects of spaceflight and investigate potential countermeasures.

  2. Decompression sickness from saturation diving: a case control study of some diving exposure characteristics.

    PubMed

    Jacobsen, G; Jacobsen, J E; Peterson, R E; McLellan, J H; Brooke, S T; Nome, T; Brubakk, A O

    1997-06-01

    A comprehensive computerized database of diving activity for a Norwegian offshore diving contractor [Stolt-Nielsen Seaway (SNS)] covering the years 1983-1990 has been established. The database contains detailed dive information about 12,087 surface-oriented and 2,622 saturation dives. During this period a majority of the divers were permanently employed. Preliminary analysis had suggested that decompression sickness (DCS) might be the result of exposure to factors causing pathophysiologic effects which accumulate over the course of a single dive or a series of dives. This concept evolved into the HADES (Highest Accumulated Decompression Score) theory which assumes that DCS is predictable once the underlying exposure factors are understood. The incidence of DCS among the SNS divers from saturation diving in the North Sea was studied by use of a "nested" case-control design. Twenty-one case dives (i.e., dives where DCS occurred) were compared with 41 randomly selected control dives. For these dives, several saturation dive characteristics were established. The relative pressure change between maximum and minimum storage depths was significantly greater among the cases. For each 1% increase in the relative pressure change there was a 5% increase in the probability of a saturation dive resulting in DCS. Significantly more cases than controls performed a saturation dive with more than one storage depth, and the data suggested that there were more and greater ascending and descending changes in storage depth conditions among the affected divers.

  3. Nutritional status changes in humans during a 14-day saturation dive: the NASA Extreme Environment Mission Operations V project.

    PubMed

    Smith, Scott M; Davis-Street, Janis E; Fesperman, J Vernell; Smith, Myra D; Rice, Barbara L; Zwart, Sara R

    2004-07-01

    Ground-based analogs of spaceflight are an important means of studying physiologic and nutritional changes associated with space travel, and the NASA Extreme Environment Mission Operations V (NEEMO) is such an analog. To determine whether saturation diving has nutrition-related effects similar to those of spaceflight, we conducted a clinical nutritional assessment of the NEEMO crew (4 men, 2 women) before, during, and after their 14-d saturation dive. Blood and urine samples were collected before, during, and after the dive. The foods consumed by the crew were typical of the spaceflight food system. A number of physiologic changes were observed, during and after the dive, that are also commonly observed during spaceflight. Hemoglobin and hematocrit were lower (P < 0.05) after the dive. Transferrin receptors were significantly lower immediately after the dive. Serum ferritin increased significantly during the dive. There was also evidence indicating that oxidative damage and stress increased during the dive. Glutathione peroxidase and superoxide dismutase decreased during and after the dive (P < 0.05). Decreased leptin during the dive (P < 0.05) may have been related to the increased stress. Subjects had decreased energy intake and weight loss during the dive, similar to what is observed during spaceflight. Together, these similarities to spaceflight provide a model to use in further defining the physiologic effects of spaceflight and investigating potential countermeasures.

  4. Nutritional status changes in humans during a 14-day saturation dive: the NASA Extreme Environment Mission Operations V project

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Davis-Street, Janis E.; Fesperman, J. Vernell; Smith, Myra D.; Rice, Barbara L.; Zwart, Sara R.

    2004-01-01

    Ground-based analogs of spaceflight are an important means of studying physiologic and nutritional changes associated with space travel, and the NASA Extreme Environment Mission Operations V (NEEMO) is such an analog. To determine whether saturation diving has nutrition-related effects similar to those of spaceflight, we conducted a clinical nutritional assessment of the NEEMO crew (4 men, 2 women) before, during, and after their 14-d saturation dive. Blood and urine samples were collected before, during, and after the dive. The foods consumed by the crew were typical of the spaceflight food system. A number of physiologic changes were observed, during and after the dive, that are also commonly observed during spaceflight. Hemoglobin and hematocrit were lower (P < 0.05) after the dive. Transferrin receptors were significantly lower immediately after the dive. Serum ferritin increased significantly during the dive. There was also evidence indicating that oxidative damage and stress increased during the dive. Glutathione peroxidase and superoxide dismutase decreased during and after the dive (P < 0.05). Decreased leptin during the dive (P < 0.05) may have been related to the increased stress. Subjects had decreased energy intake and weight loss during the dive, similar to what is observed during spaceflight. Together, these similarities to spaceflight provide a model to use in further defining the physiologic effects of spaceflight and investigating potential countermeasures.

  5. Pulmonary mechanical function and diffusion capacity after deep saturation dives.

    PubMed Central

    Thorsen, E; Segadal, K; Myrseth, E; Påsche, A; Gulsvik, A

    1990-01-01

    To assess the effects of deep saturation dives on pulmonary function, static and dynamic lung volumes, transfer factor for carbon monoxide (T1CO), delta-N2, and closing volume (CV) were measured before and after eight saturation dives to pressures of 3.1-4.6 MPa. The atmospheres were helium-oxygen mixtures with partial pressures of oxygen of 40-60 kPa. The durations of the dives were 14-30 days. Mean rate of decompression was 10.5-13.5 kPa/hour. A total of 43 divers were examined, six of whom took part in two dives, the others in one only. Dynamic lung volumes did not change significantly but total lung capacity (TLC) increased significantly by 4.3% and residual volume (RV) by 14.8% (p less than 0.05). CV was increased by 16.7% (p less than 0.01). The T1CO was reduced from 13.0 +/- 1.6 to 11.8 +/- 1.7 mmol/min/kPa (p less than 0.01) when corrected to a haemoglobin concentration of 146 g/l. Effective alveolar volume was unchanged. The increase in TLC and decrease in T1CO were correlated (r = -0.574, p less than 0.02). A control examination of 38 of the divers four to six weeks after the dives showed a partial normalisation of the changes. The increase in TLC, RV, and CV, and the decrease in T1CO, could be explained by a loss of pulmonary elastic tissue caused by inflammatory reactions induced by oxygen toxicity or venous gas emboli. PMID:2337532

  6. Saturation diving alters folate status and biomarkers of DNA damage and repair.

    PubMed

    Zwart, Sara R; Jessup, J Milburn; Ji, Jiuping; Smith, Scott M

    2012-01-01

    Exposure to oxygen-rich environments can lead to oxidative damage, increased body iron stores, and changes in status of some vitamins, including folate. Assessing the type of oxidative damage in these environments and determining its relationships with changes in folate status are important for defining nutrient requirements and designing countermeasures to mitigate these effects. Responses of humans to oxidative stressors were examined in participants undergoing a saturation dive in an environment with increased partial pressure of oxygen, a NASA Extreme Environment Mission Operations mission. Six participants completed a 13-d saturation dive in a habitat 19 m below the ocean surface near Key Largo, FL. Fasting blood samples were collected before, twice during, and twice after the dive and analyzed for biochemical markers of iron status, oxidative damage, and vitamin status. Body iron stores and ferritin increased during the dive (P<0.001), with a concomitant decrease in RBC folate (P<0.001) and superoxide dismutase activity (P<0.001). Folate status was correlated with serum ferritin (Pearson r = -0.34, P<0.05). Peripheral blood mononuclear cell poly(ADP-ribose) increased during the dive and the increase was significant by the end of the dive (P<0.001); γ-H2AX did not change during the mission. Together, the data provide evidence that when body iron stores were elevated in a hyperoxic environment, a DNA damage repair response occurred in peripheral blood mononuclear cells, but double-stranded DNA damage did not. In addition, folate status decreases quickly in this environment, and this study provides evidence that folate requirements may be greater when body iron stores and DNA damage repair responses are elevated.

  7. Oxygen saturation in free-diving whales: optical sensor development

    NASA Astrophysics Data System (ADS)

    Gutierrez-Herrera, Enoch; Vacas-Jacques, Paulino; Anderson, Rox; Zapol, Warren; Franco, Walfre

    2013-02-01

    Mass stranding of live whales has been explained by proposing many natural or human-related causes. Recent necropsy reports suggest a link between the mass stranding of beaked whales and the use of naval mid-frequency sonar. Surprisingly, whales have experienced symptoms similar to those caused by inert gas bubbles in human divers. Our goal is to develop a compact optical sensor to monitor the consumption of the oxygen stores in the muscle of freely diving whales. To this end we have proposed the use of a near-infrared phase-modulated frequency-domain spectrophotometer, in reflectance mode, to probe tissue oxygenation. Our probe consists of three main components: radiofrequency (RF) modulated light sources, a high-bandwidth avalanche photodiode with transimpedance amplifier, and a RF gain and phase detector. In this work, we concentrate on the design and performance of the light sensor, and its corresponding amplifier unit. We compare three state-of-the-art avalanche photodiodes: one through-hole device and two surface-mount detectors. We demonstrate that the gain due to the avalanche effect differs between sensors. The avalanche gain near maximum bias of the through-hole device exceeds by a factor of 2.5 and 8.3 that of the surface-mount detectors. We present the behavior of our assembled through-hole detector plus high-bandwidth transimpedance amplifier, and compare its performance to that of a commercially available module. The assembled unit enables variable gain, its phase noise is qualitatively lower, and the form factor is significantly smaller. Having a detecting unit that is compact, flexible, and functional is a milestone in the development of our tissue oxygenation tag.

  8. A novel wearable apnea dive computer for continuous plethysmographic monitoring of oxygen saturation and heart rate.

    PubMed

    Kuch, Benjamin; Koss, Bernhard; Dujic, Zeljko; Buttazzo, Giorgio; Sieber, Arne

    2010-03-01

    We describe the development of a novel wrist-mounted apnea dive computer. The device is able to measure and display transcutaneous oxygen saturation, heart rate, plethysmographic pulse waveform, depth, time and temperature during breath-hold dives. All measurements are stored in an external memory chip. The data-processing software reads from the chip and writes the processed data into a comma-separated values file which can be analysed by applications such as Microsoft Excel™ or Open Office™. The housing is waterproof and pressure-resistant to more than 20 bar (2.026 MPa) (breath-hold divers have already exceeded 200 metres' sea water depth). It is compact, lightweight, has low power requirements and is easy to use.

  9. Development of prototype full-automatic environmental control system for nitrox saturation diving.

    PubMed

    Okamoto, M; Yamagichi, H

    1998-01-01

    A full-automated hyperbaric environmental control system (HECS) for nitrox saturation diving HABITAT has been examined since 1994. HECS was planned to be located inside HABITAT and operated automatically by supplying electricity and cooling water. To realize this, a regenerative-type carbon dioxide removal method and AC 100 V electric powered blower system were developed as key technology. By using molecular sieves as an adsorbent material for carbon dioxide, automated sequence for adsorbent and regeneration could be successfully realized. Also, by using solid-state conductor circuit, an AC 100 V type blower to use under hyperbaric conditions could be developed. A prototype HECS was manufactured and settled in JAMSTEC diving simulator for further evaluation.

  10. Effects of 30-m nitrox saturation dive on the immune system in man.

    PubMed

    Shimamiya, T; Terada, N; Wakabayashi, S; Mohri, M

    2006-01-01

    Hyperbaria reportedly affects the immune system, but the role of psychological factors arising from confinement has not been taken into consideration. We investigated the immune changes in 4 subjects exposed to a 9-day simulated 30-m (400-kPa) nitrogen-oxygen (nitrox) saturation dive, and compared the results with those of our previous study that showed immune and mood changes in normobaric confinement. Blood samples were taken before, during, and after the dive or confinement, and activated with an anti-CD2 agonistic antibody. The percentages of granulocytes, natural killer (NK) cells, and cells positive for CD69, an early activation marker, were analyzed by flow cytometry. Reduction of CD69 expression percentage was observed under both hyperbaric and normobaric conditions. Percentages of innate immune cells, such as granulocytes and NK cells decreased or remained mostly unchanged, contrasting with our previous study, which demonstrated increases in both percentages coordinate with mood improvement. We conclude that these changes may have been triggered by suppression of sympathetic nerve activity that occurs in 30-m nitrox saturation hyperbaria.

  11. Sleep, mood, and fatigue during a 14-day He-O2 open-sea saturation dive to 850 fsw with excursions to 950 fsw.

    PubMed

    Townsend, R E; Hall, D A

    1978-06-01

    To obtain information on sleep, mood, and performance of divers and surface support personnel during deep dives in the open sea, 12 divers and 12 surface support personnel were monitored during a 14-day open-sea saturation dive using the U.S. Navy Deep Diving System, Mark 2, Mod O. Divers lived in the deck decompression chambers at 850 fsw equivalent and made 5 days of excursion wet dives to approximately 950 fsw via the Personnel Transfer Capsule. Electroencephalographic and self-report measures of sleep, and measures of mood, anxiety, and 4-choice reaction time performance were obtained during a predive base-line period and throughout the dive and decompression. Results suggested that, unless personnel are rotated, there are limitations to the practical duration of very deep open-sea saturation dives caused by the accumulation of sleep debt, fatigue, and loss of psychological vigor.

  12. Diving under a microscope--a new simple and versatile in vitro diving device for fluorescence and confocal microscopy allowing the controls of hydrostatic pressure, gas pressures, and kinetics of gas saturation.

    PubMed

    Wang, Qiong; Belhomme, Marc; Guerrero, François; Mazur, Aleksandra; Lambrechts, Kate; Theron, Michaël

    2013-06-01

    How underwater diving effects the function of the arterial wall and the activities of endothelial cells is the focus of recent studies on decompression sickness. Here we describe an in vitro diving system constructed to achieve real-time monitoring of cell activity during simulated dives under fluorescent microscopy and confocal microscopy. A 1-mL chamber with sapphire windows on both sides and located on the stage of an inverted microscope was built to allow in vitro diving simulation of isolated cells or arteries in which activities during diving are monitored in real-time via fluorescent microscopy and confocal microscopy. Speed of compression and decompression can range from 20 to 2000 kPa/min, allowing systemic pressure to range up to 6500 kPa. Diving temperature is controlled at 37°C. During air dive simulation oxygen partial pressure is optically monitored. Perfusion speed can range from 0.05 to 10 mL/min. The system can support physiological viability of in vitro samples for real-time monitoring of cellular activity during diving. It allows regulations of pressure, speeds of compression and decompression, temperature, gas saturation, and perfusion speed. It will be a valuable tool for hyperbaric research.

  13. A Review of Physiological and Performance Limits in Saturation Diving: 1968-1983.

    DTIC Science & Technology

    1987-06-01

    1983 are listed in Table IA. These multiple diving series were developed to extend both bottom time and maximal depth in exploration dives ( PHYSALIE I...include the intermediate stages ( PHYSALIE IV, SAGITTAIRE and III), or exponential (i.e., decreasing rate of compression with increasing depth) compression...profiles (JANUS IIIA and SAGITTAIRE II), or both (JANUS IIIB, . PHYSALIE V and VI, SAGITTAIRF. VI, DRET 79/131, ENTREX V AND VIII) (Fructus & Rostain

  14. Potential Fifty Percent Reduction in Saturation Diving Decompression Time Using a Combination of Intermittent Recompression and Exercise

    NASA Technical Reports Server (NTRS)

    Gernhardt, Michael I.; Abercromby, Andrew; Conklin, Johnny

    2007-01-01

    Conventional saturation decompression protocols use linear decompression rates that become progressively slower at shallower depths, consistent with free gas phase control vs. dissolved gas elimination kinetics. If decompression is limited by control of free gas phase, linear decompression is an inefficient strategy. The NASA prebreathe reduction program demonstrated that exercise during O2 prebreathe resulted in a 50% reduction (2 h vs. 4 h) in the saturation decompression time from 14.7 to 4.3 psi and a significant reduction in decompression sickness (DCS: 0 vs. 23.7%). Combining exercise with intermittent recompression, which controls gas phase growth and eliminates supersaturation before exercising, may enable more efficient saturation decompression schedules. A tissue bubble dynamics model (TBDM) was used in conjunction with a NASA exercise prebreathe model (NEPM) that relates tissue inert gas exchange rate constants to exercise (ml O2/kg-min), to develop a schedule for decompression from helium saturation at 400 fsw. The models provide significant prediction (p < 0.001) and goodness of fit with 430 cases of DCS in 6437 laboratory dives for TBDM (p = 0.77) and with 22 cases of DCS in 159 altitude exposures for NEPM (p = 0.70). The models have also been used operationally in over 25,000 dives (TBDM) and 40 spacewalks (NEPM). The standard U.S. Navy (USN) linear saturation decompression schedule from saturation at 400 fsw required 114.5 h with a maximum Bubble Growth Index (BGI(sub max)) of 17.5. Decompression using intermittent recompression combined with two 10 min exercise periods (75% VO2 (sub peak)) per day required 54.25 h (BGI(sub max): 14.7). Combined intermittent recompression and exercise resulted in a theoretical 53% (2.5 day) reduction in decompression time and theoretically lower DCS risk compared to the standard USN decompression schedule. These results warrant future decompression trials to evaluate the efficacy of this approach.

  15. Up-Regulation of Antioxidant Proteins in the Plasma Proteome during Saturation Diving: Unique Coincidence under Hypobaric Hypoxia

    PubMed Central

    Domoto, Hideharu; Iwaya, Keiichi; Ikomi, Fumitaka; Matsuo, Hirotaka; Tadano, Yutaka; Fujii, Shigenori; Tachi, Kazuyoshi; Itoh, Yoshiyuki; Sato, Michiya; Inoue, Kimitoshi; Shinomiya, Nariyoshi

    2016-01-01

    Saturation diving (SD) is one of the safest techniques for tolerating hyperbaric conditions for long durations. However, the changes in the human plasma protein profile that occur during SD are unknown. To identify differential protein expression during or after SD, 65 blood samples from 15 healthy Japanese men trained in SD were analyzed by two-dimensional fluorescence difference gel electrophoresis. The expression of two proteins, one 32.4 kDa with an isoelectric point (pI) of 5.8 and the other 44.8 kDa with pI 4.0, were elevated during SD to 60, 100, and 200 meters sea water (msw). The expression of these proteins returned to pre-diving level when the SD training was completed. The two proteins were identified using in-gel digestion and mass spectrometric analysis; the 32.4 kDa protein was transthyretin and the 44.8 kDa protein was alpha-1-acid glycoprotein 1. Oxidation was detected at methionine 13 of transthyretin and at methionine 129 of alpha-1-acid glycoprotein 1 by tandem mass spectrometry. Moreover, haptoglobin was up-regulated during the decompression phase of 200 msw. These plasma proteins up-regulated during SD have a common function as anti-oxidants. This suggests that by coordinating their biological effects, these proteins activate a defense mechanism to counteract the effects of hyperbaric-hyperoxic conditions during SD. PMID:27741252

  16. Effect of a short-acting NO donor on bubble formation from a saturation dive in pigs.

    PubMed

    Møllerløkken, A; Berge, V J; Jørgensen, A; Wisløff, U; Brubakk, A O

    2006-12-01

    It has previously been reported that a nitric oxide (NO) donor reduces bubble formation from an air dive and that blocking NO production increases bubble formation. The present study was initiated to see whether a short-acting NO donor (glycerol trinitrate, 5 mg/ml; Nycomed Pharma) given immediately before start of decompression would affect the amount of vascular bubbles during and after decompression from a saturation dive in pigs. A total of 14 pigs (Sus scrofa domestica of the strain Norsk landsvin) were randomly divided into an experimental (n = 7) and a control group (n = 7). The pigs were anesthetized with ketamine and alpha-chloralose and compressed in a hyperbaric chamber to 500 kPa (40 m of seawater) in 2 min, and they had 3-h bottom time while breathing nitrox (35 kPa O(2)). The pigs were all decompressed to the surface (100 kPa) at a rate of 200 kPa/h. During decompression, the inspired Po(2) of the breathing gas was kept at 100 kPa. Thirty minutes before decompression, the experimental group received a short-acting NO donor intravenously, while the control group were given equal amounts of saline. The average number of bubbles seen during the observation period decreased from 0.2 to 0.02 bubbles/cm(2) (P < 0.0001) in the experimental group compared with the controls. The present study gives further support to the role of NO in preventing vascular bubble formation after decompression.

  17. Doppler ultrasound surveillance in deep tunneling compressed-air work with Trimix breathing: bounce dive technique compared to saturation-excursion technique.

    PubMed

    Vellinga, T P van Rees; Sterk, W; de Boer, A G E M; van der Beek, A J; Verhoeven, A C; van Dijk, F J H

    2008-01-01

    The Western Scheldt Tunneling Project in The Netherlands provided a unique opportunity to evaluate two deep-diving techniques with Doppler ultrasound surveillance. Divers used the bounce diving techniques for repair and maintenance of the TBM. The tunnel boring machine jammed at its deepest depth. As a result the work time was not sufficient. The saturation diving technique was developed and permitted longer work time at great depth. Thirty-one divers were involved in this project. Twenty-three divers were examined using Doppler ultrasound. Data analysis addressed 52 exposures to Trimix at 4.6-4.8 bar gauge using the bounce technique and 354 exposures to Trimix at 4.0-6.9 bar gauge on saturation excursions. No decompression incidents occurred with either technique during the described phase of the project. Doppler ultrasound revealed that the bubble loads assessed in both techniques were generally low. We find out, that despite longer working hours, shorter decompression times and larger physical workloads, the saturation-excursion technique was associated with significant lower bubble grades than in the bounce technique using Doppler Ultrasound. We conclude that the saturation-excursion technique with Trimix is a good option for deep and long exposures in caisson work. The Doppler technique proved valuable, and it should be incorporated in future compressed-air work.

  18. The High Pressure Nervous Syndrome During Human Deep Saturation and Excursion Diving

    DTIC Science & Technology

    1973-01-01

    thyrotoxicosis and during the shivering of cold. Whilst tremor may not be very incapaci- tating, it is an important rarly sign of the HPNS and may be the ’ rst... warning that th; rate of compression for the depth desired is too fas», before other more serious HPNS changes arc seen, su. h as in the...the late of compression in deep saturation oxygen-helium discs has been reduced significantly to ameliorate the signs and sympt uns of HPNS found

  19. Effect of mental task load on fronto-central theta activity in a deep saturation dive to 450 msw.

    PubMed

    Lorenz, J; Lorenz, B; Heineke, M

    1992-07-01

    The increase of theta activity (4-7 Hz) in the electroencephalogram (EEG) during deep diving is commonly attributed to pathophysiologic mechanisms underlying the high pressure neurologic syndrome. The aim of this study was to clarify whether more precise cognitive aspects of the condition may be described in which theta activity occurs during a deep dive. Among 4 divers who were repeatedly examined during the GUSI 14 dive to 450 msw, 3 divers exhibited a pronounced correlation between short-term memory load, as varied by the memory set size of Sternberg's memory search task (MST), and the size of a distinct peak in the theta band of the EEG-power spectrum. The power of this peak was greatest in the fronto-central electrode position (Fz), increased dramatically during MST-performance at pressure, and failed to subside fully 1 day before surfacing. Despite the close dependency of observed theta activity on cognitive demands, no consistent correlation with performance measures (mean reaction time and errors) was found. In one diver, theta waves of similar morphology appeared in the resting EEG and increased significantly during the dive. We suggest two alternative explanations for the positive interaction of memory load and hyperbaric exposure on Fz-theta: a) Both factors induce a state of increased mental effort or selectivity of attention, known to be accompanied by frontal theta activity from normobaric studies. b) Pressure abnormally facilitates or patterns rhythmical excitations underlying theta activity that would occur naturally to a lesser extent during certain mental activities, learning, or repetitive short-term memory operations.

  20. Body Heat Loss in Diving.

    DTIC Science & Technology

    1980-01-01

    is new is the severity of the thermal problem in deep excursion dives from a diving bell or habitat. A diver working from the surface expects to be...chilled, and if the water is extremely cold he may need hot water in free flooding suits. But in deep saturation diving, where the water is always cold...5 to 10 C(41 to 50 F) -- a diver badly needs a well-insulated suit and supplemental heat, neither of which is fully available yet. In such deep

  1. Diving medicine.

    PubMed

    Bove, Alfred A

    2014-06-15

    Exposure to the undersea environment has unique effects on normal physiology and can result in unique disorders that require an understanding of the effects of pressure and inert gas supersaturation on organ function and knowledge of the appropriate therapies, which can include recompression in a hyperbaric chamber. The effects of Boyle's law result in changes in volume of gas-containing spaces when exposed to the increased pressure underwater. These effects can cause middle ear and sinus injury and lung barotrauma due to lung overexpansion during ascent from depth. Disorders related to diving have unique presentations, and an understanding of the high-pressure environment is needed to properly diagnose and manage these disorders. Breathing compressed air underwater results in increased dissolved inert gas in tissues and organs. On ascent after a diving exposure, the dissolved gas can achieve a supersaturated state and can form gas bubbles in blood and tissues, with resulting tissue and organ damage. Decompression sickness can involve the musculoskeletal system, skin, inner ear, brain, and spinal cord, with characteristic signs and symptoms. Usual therapy is recompression in a hyperbaric chamber following well-established protocols. Many recreational diving candidates seek medical clearance for diving, and healthcare providers must be knowledgeable of the environmental exposure and its effects on physiologic function to properly assess individuals for fitness to dive. This review provides a basis for understanding the diving environment and its accompanying disorders and provides a basis for assessment of fitness for diving.

  2. Diving birds

    NASA Astrophysics Data System (ADS)

    Clanet, Christophe; Masson, Lucien; McKinley, Gareth; Cohen, Robert; Ecole polytechnique Collaboration; MIT Collaboration

    2015-11-01

    Many seabirds (gannets, pelicans, gulls, albatrosses) dive into water at high speeds (25 m/s) in order to capture underwater preys. Diving depths of 20 body lengths are reported in the literature. This value is much larger than the one achieved by men, which is of the order of 5. We study this difference by comparing the impact of slender vs bluff bodies. We show that, contrary to bluff bodies, the penetration depth of slender bodies presents a maximum value for a specific impact velocity that we connect to the velocity of diving birds.

  3. Diving medicine.

    PubMed

    Benton, P J; Glover, M A

    2006-01-01

    Recreational diving developed in the late 1940s when self-contained underwater breathing apparatus (SCUBA) first became available for civilian use. At the same time the development of the commercial airliner, in particular the jet airliner, made possible the concept of international travel for pleasure as opposed to business. Over the past 50 years the number of international tourists has increased by over 2500% from a mere 25 million in 1950 to over 700 million in 2002 (Treadwell TL. Trends in travel. In: Zuckerman JN, editor. Principles and practice of travel medicine, 2001; p. 2-6). The popularity of recreational diving has also increased over the same period from an activity experienced by a small number of individuals in the early 1950s to an activity today enjoyed by many millions. The combination of increased international travel and the means by which to enter and explore the underwater world has led to diving becoming increasingly popular as a tourist activity.

  4. Physiological Monitoring in Diving Mammals

    DTIC Science & Technology

    2014-09-30

    isobestic point, the point where the spectra cross over (see below). Data from 5 marine mammal species (killer whale , 5 beluga whale , pilot whale ...spectra of HbO2 and HbR in several species of marine mammals (orcas, short-finned pilot whales , belugas , and northern elephant seals) and compare these...large, freely diving whales . We intend to use this data logger to measure muscle O2 saturation and determine how blood flow to muscle is altered during

  5. Polar Diving

    NASA Technical Reports Server (NTRS)

    2006-01-01

    3 July 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows layers exposed by erosion in a trough within the north polar residual cap of Mars, diving beneath a younger covering of polar materials. The layers have, since the Mariner 9 mission in 1972, been interpreted to be composed of a combination of dust and ice in unknown proportions. In this scene, a layer of solid carbon dioxide, which was deposited during the previous autumn and winter, blankets the trough as well as the adjacent terrain. Throughout northern spring, the carbon dioxide will be removed; by summer, the layers will be frost-free.

    Location near: 81.4oN, 352.2oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Spring

  6. Neurological long term consequences of deep diving.

    PubMed Central

    Todnem, K; Nyland, H; Skeidsvoll, H; Svihus, R; Rinck, P; Kambestad, B K; Riise, T; Aarli, J A

    1991-01-01

    Forty commercial saturation divers, mean age 34.9 (range 24-49) years, were examined one to seven years after their last deep dive (190-500 metres of seawater). Four had by then lost their divers' licence because of neurological problems. Twenty seven (68%) had been selected by neurological examination and electroencephalography before the deep dives. The control group consisted of 100 men, mean age 34.0 (range 22-48) years. The divers reported significantly more symptoms from the nervous system. Concentration difficulties and paraesthesia in feet and hands were common. They had more abnormal neurological findings by neurological examination compatible with dysfunction in the lumbar spinal cord or roots. They also had a larger proportion of abnormal electroencephalograms than the controls. The neurological symptoms and findings were highly significantly correlated with exposure to deep diving (depth included), but even more significantly correlated to air and saturation diving and prevalence of decompression sickness. Visual evoked potentials, brainstem auditory evoked potentials, and magnetic resonance imaging of the brain did not show more abnormal findings in the divers. Four (10%) divers had had episodes of cerebral dysfunction during or after the dives; two had had seizures, one had had transitory cerebral ischaemia and one had had transitory global amnesia. It is concluded that deep diving may have a long term effect on the nervous system of the divers. PMID:2025592

  7. Diving and pregnancy.

    PubMed

    Camporesi, E M

    1996-08-01

    Scuba diving during pregnancy has increased in incidence as a result of substantial growth in the number of young females attracted to sport diving. This review summarizes the physiological changes induced by immersion, diving and decompression, on male and female divers. Furthermore, it extends to literature review, in animal models, of the susceptibility of a pregnant animal to diving decompression injury. Publications regarding reports of diving injury in pregnant humans are also reviewed, comprising very recent material from the sport diving community. It is concluded that there is no countraindication to diving for the normal, healthy, nonpregnant female. However, pregnant females should refrain from diving, because the fetus is not protected from decompression problems and is at risk of malformation and gas embolism after decompression disease. It is prudent to advise pregnant patients of the increased risk of diving problems for the fetus during pregnancy. However, should a woman have completed a dive during early pregnancy because she was unaware she was pregnant, the present evidence is not to recommend an abortion, because several normal pregnancies have been documented even if diving is continued. Snorkeling can still be practiced during pregnancy, but scuba diving should be discontinued until after the birth period.

  8. A Modified Prophylactic Regimen for the Prevention of Otitis Externa in Saturation Divers

    DTIC Science & Technology

    2013-10-01

    regimen of two to three times daily while in a saturation environment. However, on two occasions during a 1000 feet of sea water ( fsw ) dry saturation...dive and during a 150 fsw dive in the U.S. Navy Saturation Flyaway Diving System (SATFADS), two different divers noted bilateral ear itching and...irritation. During the 1000 fsw dive, one diver reported bilateral ear itching and irritation of the left ear that was greater than the right ear on

  9. Fatal diving accidents in western Norway 1983-2007.

    PubMed

    Ramnefjell, M P; Morild, I; Mørk, S J; Lilleng, P K

    2012-11-30

    Despite efforts to reduce their number, fatal diving accidents still occur. The circumstances and post-mortem findings in 40 fatal diving accidents in western Norway from 1983 through 2007 were investigated. Diving experience, medical history and toxicology reports were retrieved. The material consisted of recreational divers, professional saturation divers and professional divers without experience with saturation. In 33 cases the diving equipment was examined as part of the forensic investigation. In 27 cases defects in the diving equipment were found. For six divers such defects were responsible for the fatal accidents. Eighteen divers died on the surface or less than 10 m below surface. Five divers reached below 100 msw, and two of them died at this depth. The fatalities were not season-dependent. However, wave-height and strength of currents were influential factors in some cases. Twelve divers were diving alone. Twenty divers had one buddy, 9 of these divers were alone at the time of death. The cause of death was drowning in 31 out of 40 divers; one of them had a high blood-ethanol concentration, in two other divers ethanol was found in the urine, indicating previous ethanol consumption. Nine divers died from sudden decompression, pulmonary barotraumas, underwater trauma and natural causes. The study shows that most of the fatal diving accidents could be avoided if adequate diving safety procedures had been followed.

  10. [Lungs et diving].

    PubMed

    Héritier, F; Avanzi, P; Nicod, L

    2014-11-19

    Whilst underwater, the body is submitted to significant variations of the surrounding pressure according to the depth. These conditions modify the hemodynamic and the ventilatory mechanics considerably. Some repercussions, like pulmonary barotrauma, are related to simple physical phenomena. Others, like decompression sickness, are due to more com- plex processes. Breath-hold diving disrupts haematosis and can be complicated by alveolar haemorrhage and loss of consciousness. Acute pulmonary oedema during scuba-diving, breath-hold diving and swimming has been reported more recently. In case of pulmonary disorders scuba-diving is contraindicated most of the time. It is therefore highly recommended to seek medical advice to prevent problems.

  11. High altitude diving depths.

    PubMed

    Paulev, Poul-Erik; Zubieta-Calleja, Gustavo

    2007-01-01

    In order to make any sea level dive table usable during high altitude diving, a new conversion factor is created. We introduce the standardized equivalent sea depth (SESD), which allows conversion of the actual lake diving depth (ALDD) to an equivalent sea dive depth. SESD is defined as the sea depth in meters or feet for a standardized sea dive, equivalent to a mountain lake dive at any altitude, such that [image omitted] [image omitted] [image omitted] Mountain lakes contain fresh water with a relative density that can be standardized to 1,000 kg m(-3), and sea water can likewise be standardized to a relative density of 1,033 kg m(-3), at the general gravity of 9.80665 m s(-2). The water density ratio (1,000/1,033) refers to the fresh lake water and the standardized sea water densities. Following calculation of the SESD factor, we recommend the use of our simplified diving table or any acceptable sea level dive table with two fundamental guidelines: 1. The classical decompression stages (30, 20, and 10 feet or 9, 6, and 3 m) are corrected to the altitude lake level, dividing the stage depth by the SESD factor. 2. Likewise, the lake ascent rate during diving is equal to the sea ascent rate divided by the SESD factor.

  12. Deep-diving dinosaurs

    NASA Astrophysics Data System (ADS)

    Hayman, John

    2012-08-01

    Dysbaric bone necrosis demonstrated in ichthyosaurs may be the result of prolonged deep diving rather than rapid ascent to escape predators. The bone lesions show structural and anatomical similarity to those that may occur in human divers and in the deep diving sperm whale, Physeter macrocephalus.

  13. Advanced dive monitoring system.

    PubMed

    Sternberger, W I; Goemmer, S A

    1999-01-01

    The US Navy supports deep diving operations with a variety of mixed-gas life support systems. A systems engineering study was conducted for the Naval Experimental Dive Unit (Panama City, FL) to develop a concept design for an advanced dive monitoring system. The monitoring system is intended primarily to enhance diver safety and secondarily to support diving medicine research. Distinct monitoring categories of diver physiology, life support system, and environment are integrated in the monitoring system. A system concept is proposed that accommodates real-time and quantitative measurements, noninvasive physiological monitoring, and a flexible and expandable implementation architecture. Human factors and ergonomic design considerations have been emphasized to assure that there is no impact on the diver's primary mission. The Navy has accepted the resultant system requirements and the basic design concept. A number of monitoring components have been implemented and successfully support deep diving operations.

  14. Physiological Monitoring in Diving Mammals

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Physiological Monitoring in Diving Mammals Andreas...large, freely diving whales. We wanted to study physiological responses during diving in free-ranging, deep diving cetaceans. The idea was to measure...contain a sensor to be implanted into the muscle. The logger will collect physiological data from muscle tissue in freely diving marine mammals. The

  15. Travelers' Health: Scuba Diving

    MedlinePlus

    ... TS, Bennett PB, Elliott DH. Bennett and Elliott’s Physiology and Medicine of Diving. 5th ed. London: Saunders; ... 2004. p. 195–223. Neuman TS, Thom SR. Physiology and medicine of hyperbaric oxygen therapy. Philadelphia, PA: ...

  16. Diving dynamics of seabirds

    NASA Astrophysics Data System (ADS)

    Jung, Sunghwan; Chang, Brian; Croson, Matt; Straker, Lorian; Dove, Carla

    2015-03-01

    Diving is the activity of falling from air into water, which is somewhat dangerous due to the impact. Humans dive for entertainments less than 20 meters high, however seabirds dive as a hunting mechanism from more than 20 meters high. Moreover, most birds including seabirds have a slender and long neck compared to many other animals, which can potentially be the weakest part of the body upon axial impact compression. Motivated by the diving dynamics, we investigate the effect of surface and geometric configurations on structures consisting of a beak-like cone and a neck-like elastic beam. A transition from non-buckling to buckling is characterized and understood through physical experiments and an analytical model.

  17. Diving fatality investigations: recent changes.

    PubMed

    Edmonds, Carl; Caruso, James

    2014-06-01

    Modifications to the investigation procedures in diving fatalities have been incorporated into the data acquisition by diving accident investigators. The most germane proposal for investigators assessing diving fatalities is to delay the drawing of conclusions until all relevant diving information is known. This includes: the accumulation and integration of the pathological data; the access to dive computer information; re-enactments of diving incidents; post-mortem CT scans and the interpretation of intravascular and tissue gas detected. These are all discussed, with reference to the established literature and recent publications.

  18. 46 CFR 197.410 - Dive procedures.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... GENERAL PROVISIONS Commercial Diving Operations Operations § 197.410 Dive procedures. (a) The diving supervisor shall insure that— (1) Before commencing diving operations, dive team members are briefed on— (i... safety of the diving operation; and (iii) Any modifications to the operations manual or...

  19. 46 CFR 197.430 - SCUBA diving.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false SCUBA diving. 197.430 Section 197.430 Shipping COAST... GENERAL PROVISIONS Commercial Diving Operations Specific Diving Mode Procedures § 197.430 SCUBA diving. The diving supervisor shall insure that— (a) SCUBA diving is not conducted— (1) Outside the...

  20. 46 CFR 197.430 - SCUBA diving.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false SCUBA diving. 197.430 Section 197.430 Shipping COAST... GENERAL PROVISIONS Commercial Diving Operations Specific Diving Mode Procedures § 197.430 SCUBA diving. The diving supervisor shall insure that— (a) SCUBA diving is not conducted— (1) Outside the...

  1. 46 CFR 197.410 - Dive procedures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... GENERAL PROVISIONS Commercial Diving Operations Operations § 197.410 Dive procedures. (a) The diving supervisor shall insure that— (1) Before commencing diving operations, dive team members are briefed on— (i... safety of the diving operation; and (iii) Any modifications to the operations manual or...

  2. 46 CFR 197.430 - SCUBA diving.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false SCUBA diving. 197.430 Section 197.430 Shipping COAST... GENERAL PROVISIONS Commercial Diving Operations Specific Diving Mode Procedures § 197.430 SCUBA diving. The diving supervisor shall insure that— (a) SCUBA diving is not conducted— (1) Outside the...

  3. 46 CFR 197.410 - Dive procedures.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... GENERAL PROVISIONS Commercial Diving Operations Operations § 197.410 Dive procedures. (a) The diving supervisor shall insure that— (1) Before commencing diving operations, dive team members are briefed on— (i... safety of the diving operation; and (iii) Any modifications to the operations manual or...

  4. 46 CFR 197.430 - SCUBA diving.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false SCUBA diving. 197.430 Section 197.430 Shipping COAST... GENERAL PROVISIONS Commercial Diving Operations Specific Diving Mode Procedures § 197.430 SCUBA diving. The diving supervisor shall insure that— (a) SCUBA diving is not conducted— (1) Outside the...

  5. 46 CFR 197.410 - Dive procedures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... GENERAL PROVISIONS Commercial Diving Operations Operations § 197.410 Dive procedures. (a) The diving supervisor shall insure that— (1) Before commencing diving operations, dive team members are briefed on— (i... safety of the diving operation; and (iii) Any modifications to the operations manual or...

  6. 46 CFR 197.430 - SCUBA diving.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false SCUBA diving. 197.430 Section 197.430 Shipping COAST... GENERAL PROVISIONS Commercial Diving Operations Specific Diving Mode Procedures § 197.430 SCUBA diving. The diving supervisor shall insure that— (a) SCUBA diving is not conducted— (1) Outside the...

  7. 46 CFR 197.410 - Dive procedures.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... GENERAL PROVISIONS Commercial Diving Operations Operations § 197.410 Dive procedures. (a) The diving supervisor shall insure that— (1) Before commencing diving operations, dive team members are briefed on— (i... safety of the diving operation; and (iii) Any modifications to the operations manual or...

  8. 46 CFR 197.460 - Diving equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Diving equipment. 197.460 Section 197.460 Shipping COAST... GENERAL PROVISIONS Commercial Diving Operations Periodic Tests and Inspections of Diving Equipment § 197.460 Diving equipment. The diving supervisor shall insure that the diving equipment designated for...

  9. Physiological Monitoring in Diving Mammals

    DTIC Science & Technology

    2010-09-30

    and Neurobiology, 2009. 165(28-39). 4. Fahlman, A., et al., Deep diving mammals : Dive behavior and circulatory adjustments contribute to bends...1 DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. Physiological Monitoring in Diving Mammals Peter L...NGO) scrutiny of the complex relationship between ocean noise, bubble injury and marine mammal strandings (http://www.awionline.org/oceans/Noise

  10. The Physics of Diving

    NASA Astrophysics Data System (ADS)

    Katzgraber, Helmut

    2007-10-01

    The underwater world, and in particular our oceans, represent a final frontier of exploration. In the past, studying the underwater fauna and flora used to be a dangerous undertaking reserved to professional divers. Technological advances over the last 50 years have given sports divers the opportunity to explore this fascinating world using self-contained underwater breathing apparatuses (SCUBA). Despite these technological advances humans have to cope with an unusual environment: perception is different underwater and there is always a risk of decompression illness due to the ambient pressure. After a brief overview of SCUBA diving, some physical phenomena particular to diving will be presented.

  11. Scuba Diving Safety

    MedlinePlus

    ... font-size:14px;}h1,.impact-text,.impact-text-large{font-family:"Source Sans Pro";line-height:34px; ... and Scuba Schools International (SSI). Basic courses involve classroom instruction, training pools and open-water settings. Diving ...

  12. Dive into Scuba

    ERIC Educational Resources Information Center

    Coelho, Jeffrey; Fielitz, Lynn R.

    2006-01-01

    Scuba is a unique physical education activity that middle school and high school students can experience in physical education to provide them with the basic skills needed to enjoy the sport for many years to come. This article describes the basic scuba diving equipment, proper training and certification for instructors and students, facilities,…

  13. Neurology and diving.

    PubMed

    Massey, E Wayne; Moon, Richard E

    2014-01-01

    Diving exposes a person to the combined effects of increased ambient pressure and immersion. The reduction in pressure when surfacing can precipitate decompression sickness (DCS), caused by bubble formation within tissues due to inert gas supersaturation. Arterial gas embolism (AGE) can also occur due to pulmonary barotrauma as a result of breath holding during ascent or gas trapping due to disease, causing lung hyperexpansion, rupture and direct entry of alveolar gas into the blood. Bubble disease due to either DCS or AGE is collectively known as decompression illness. Tissue and intravascular bubbles can induce a cascade of events resulting in CNS injury. Manifestations of decompression illness can vary in severity, from mild (paresthesias, joint pains, fatigue) to severe (vertigo, hearing loss, paraplegia, quadriplegia). Particularly as these conditions are uncommon, early recognition is essential to provide appropriate management, consisting of first aid oxygen, targeted fluid resuscitation and hyperbaric oxygen, which is the definitive treatment. Less common neurologic conditions that do not require hyperbaric oxygen include rupture of a labyrinthine window due to inadequate equalization of middle ear pressure during descent, which can precipitate vertigo and hearing loss. Sinus and middle ear overpressurization during ascent can compress the trigeminal and facial nerves respectively, causing temporary facial hypesthesia and lower motor neuron facial weakness. Some conditions preclude safe diving, such as seizure disorders, since a convulsion underwater is likely to be fatal. Preventive measures to reduce neurologic complications of diving include exclusion of individuals with specific medical conditions and safe diving procedures, particularly related to descent and ascent.

  14. Human Simulated Diving Experiments.

    ERIC Educational Resources Information Center

    Bruce, David S.; Speck, Dexter F.

    1979-01-01

    This report details several simulated divinq experiments on the human. These are suitable for undergraduate or graduate laboratories in human or environmental physiology. The experiment demonstrates that a diving reflex is precipitated by both facial cooling and apnea. (Author/RE)

  15. ASSESSMENT OF PLUME DIVING

    EPA Science Inventory

    This presentation presents an assessment of plume diving. Observations included: vertical plume delineation at East Patchogue, NY showed BTEX and MTBE plumes sinking on either side of a gravel pit; Lake Druid TCE plume sank beneath unlined drainage ditch; and aquifer recharge/dis...

  16. Toppling Techniques in Diving

    ERIC Educational Resources Information Center

    Wilson, Barry D.

    1977-01-01

    This paper demonstrates that in a toppling dive (1) a 1:1 ratio exists between the rotational speed of the diver immediately before and after the take-off and (2) the take-off angle as defined by Page is approximately 50 percent. (Author)

  17. Diving into Oceans.

    ERIC Educational Resources Information Center

    Braus, Judy, Ed.

    1992-01-01

    Ranger Rick's NatureScope is a creative education series dedicated to inspiring in children an understanding and appreciation of the natural world while developing the skills they will need to make responsible decisions about the environment. The topic of this issue is "Diving Into Oceans." Contents are organized into the following…

  18. Insights from venous oxygen profiles: oxygen utilization and management in diving California sea lions.

    PubMed

    McDonald, Birgitte I; Ponganis, Paul J

    2013-09-01

    The management and depletion of O2 stores underlie the aerobic dive capacities of marine mammals. The California sea lion (Zalophus californianus) presumably optimizes O2 store management during all dives, but approaches its physiological limits during deep dives to greater than 300 m depth. Blood O2 comprises the largest component of total body O2 stores in adult sea lions. Therefore, we investigated venous blood O2 depletion during dives of California sea lions during maternal foraging trips to sea by: (1) recording venous partial pressure of O2 (P(O2)) profiles during dives, (2) characterizing the O2-hemoglobin (Hb) dissociation curve of sea lion Hb and (3) converting the P(O2) profiles into percent Hb saturation (S(O2)) profiles using the dissociation curve. The O2-Hb dissociation curve was typical of other pinnipeds (P50=28±2 mmHg at pH 7.4). In 43% of dives, initial venous S(O2) values were greater than 78% (estimated resting venous S(O2)), indicative of arterialization of venous blood. Blood O2 was far from depleted during routine shallow dives, with minimum venous S(O2) values routinely greater than 50%. However, in deep dives greater than 4 min in duration, venous S(O2) reached minimum values below 5% prior to the end of the dive, but then increased during the last 30-60 s of ascent. These deep dive profiles were consistent with transient venous blood O2 depletion followed by partial restoration of venous O2 through pulmonary gas exchange and peripheral blood flow during ascent. These differences in venous O2 profiles between shallow and deep dives of sea lions reflect distinct strategies of O2 store management and suggest that underlying cardiovascular responses will also differ.

  19. Deep-Diving California Sea Lions: Are they Pushing their Physiological Limit

    DTIC Science & Technology

    2013-09-30

    during descent of deep dives to values less than 10 beats min-1 (Fig.1). Such a low heart rate also limits the absorption and distribution of both...maintain arterial hemoglobin saturation above 90% during deep dives as long as 7 minutes (McDonald and Ponganis 2012; McDonald and Ponganis 2013). In...system, experiences significant hypoxemia with routine arterial hemoglobin desaturation to 10 to 20% (Meir et al. 2009). However, similar to the sea

  20. 29 CFR 1910.424 - SCUBA diving.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 5 2012-07-01 2012-07-01 false SCUBA diving. 1910.424 Section 1910.424 Labor Regulations... SCUBA diving. (a) General. Employers engaged in SCUBA diving shall comply with the following requirements, unless otherwise specified. (b) Limits. SCUBA diving shall not be conducted: (1) At depths...

  1. 29 CFR 1910.424 - SCUBA diving.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false SCUBA diving. 1910.424 Section 1910.424 Labor Regulations... SCUBA diving. (a) General. Employers engaged in SCUBA diving shall comply with the following requirements, unless otherwise specified. (b) Limits. SCUBA diving shall not be conducted: (1) At depths...

  2. 29 CFR 1910.424 - SCUBA diving.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 5 2011-07-01 2011-07-01 false SCUBA diving. 1910.424 Section 1910.424 Labor Regulations... SCUBA diving. (a) General. Employers engaged in SCUBA diving shall comply with the following requirements, unless otherwise specified. (b) Limits. SCUBA diving shall not be conducted: (1) At depths...

  3. 29 CFR 1910.424 - SCUBA diving.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 5 2014-07-01 2014-07-01 false SCUBA diving. 1910.424 Section 1910.424 Labor Regulations... SCUBA diving. (a) General. Employers engaged in SCUBA diving shall comply with the following requirements, unless otherwise specified. (b) Limits. SCUBA diving shall not be conducted: (1) At depths...

  4. 29 CFR 1910.424 - SCUBA diving.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 5 2013-07-01 2013-07-01 false SCUBA diving. 1910.424 Section 1910.424 Labor Regulations... SCUBA diving. (a) General. Employers engaged in SCUBA diving shall comply with the following requirements, unless otherwise specified. (b) Limits. SCUBA diving shall not be conducted: (1) At depths...

  5. 43 CFR 15.8 - Skin diving.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Skin diving. 15.8 Section 15.8 Public Lands: Interior Office of the Secretary of the Interior KEY LARGO CORAL REEF PRESERVE § 15.8 Skin diving. Diving with camera, or diving for observation and pleasure is permitted and encouraged within the Preserve....

  6. 43 CFR 15.8 - Skin diving.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Skin diving. 15.8 Section 15.8 Public Lands: Interior Office of the Secretary of the Interior KEY LARGO CORAL REEF PRESERVE § 15.8 Skin diving. Diving with camera, or diving for observation and pleasure is permitted and encouraged within...

  7. 43 CFR 15.8 - Skin diving.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Skin diving. 15.8 Section 15.8 Public Lands: Interior Office of the Secretary of the Interior KEY LARGO CORAL REEF PRESERVE § 15.8 Skin diving. Diving with camera, or diving for observation and pleasure is permitted and encouraged within...

  8. 43 CFR 15.8 - Skin diving.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Skin diving. 15.8 Section 15.8 Public Lands: Interior Office of the Secretary of the Interior KEY LARGO CORAL REEF PRESERVE § 15.8 Skin diving. Diving with camera, or diving for observation and pleasure is permitted and encouraged within...

  9. 43 CFR 15.8 - Skin diving.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Skin diving. 15.8 Section 15.8 Public Lands: Interior Office of the Secretary of the Interior KEY LARGO CORAL REEF PRESERVE § 15.8 Skin diving. Diving with camera, or diving for observation and pleasure is permitted and encouraged within...

  10. EPO modulation in a 14-days undersea scuba dive.

    PubMed

    Revelli, L; Vagnoni, S; D'Amore, A; Di Stasio, E; Lombardi, C P; Storti, G; Proietti, R; Balestra, C; Ricerca, B M

    2013-10-01

    Erythropoiesis is affected during deep saturation dives. The mechanism should be related to a downregulation of serum Erythropoietin (s-EPO) concentration or to a toxic effect of the hyperbaric hyperoxia. We evaluated s-EPO and other haematological parameters in 6 scuba divers before, during and after a 14-days guinness saturation dive (8-10 m). Athletes were breathing air at 1.8-2 ATA, under the control of a team of physicians. Serum parameters were measured before diving (T0) and: 7 days (T1), 14 days (T2) after the beginning of the dive and 2 h (T3) and 24 h (T4) after resurfacing. Hgb, and many other haematological parameters did not change whereas Ht, s-EPO, the ratio between s-EPO predicted and that observed and reticulocytes (absolute, percent) declined progressively from T0 to T3. At T4 a significant rise in s-EPO was observed. Hgb did not vary but erythropoiesis seemed to be affected as s-EPO and reticulocyte counts showed. All these changes were statistically significant. The experiment, conducted in realistic conditions of dive length, oxygen concentration and pressure, allows us to formulate some hypotheses about the role of prolonged hyperbarism on erythropoiesis. The s-EPO rise, 24 h after resurfacing, is clearly documented and related to the "Normobaric Oxygen Paradox". This evidence suggests interesting hypotheses for new clinical applications such as modulation of s-EPO production and Hgb content triggered by appropriate O₂ administration in pre-surgical patients or in some anemic disease.

  11. Diving Medicine: Frequently Asked Questions

    MedlinePlus

    ... After Diving Fin Foot Frontal Headaches Hand & Foot Edema Immersion Diuresis (Urge to Urinate) This underwater phenomenon ... and Depression Medications Respiratory Breathing Discomfort Immersion Pulmonary Edema Mechanism of Injury for Pulmonary Over-Inflation Syndrome ...

  12. Neurological complications of underwater diving.

    PubMed

    Rosińska, Justyna; Łukasik, Maria; Kozubski, Wojciech

    2015-01-01

    The diver's nervous system is extremely sensitive to high ambient pressure, which is the sum of atmospheric and hydrostatic pressure. Neurological complications associated with diving are a difficult diagnostic and therapeutic challenge. They occur in both commercial and recreational diving and are connected with increasing interest in the sport of diving. Hence it is very important to know the possible complications associated with this kind of sport. Complications of the nervous system may result from decompression sickness, pulmonary barotrauma associated with cerebral arterial air embolism (AGE), otic and sinus barotrauma, high pressure neurological syndrome (HPNS) and undesirable effect of gases used for breathing. The purpose of this review is to discuss the range of neurological symptoms that can occur during diving accidents and also the role of patent foramen ovale (PFO) and internal carotid artery (ICA) dissection in pathogenesis of stroke in divers.

  13. Diving seabirds: the stability of a diving elastic beam

    NASA Astrophysics Data System (ADS)

    Chang, Brian; Croson, Matthew; Jung, Sunghwan

    2015-11-01

    In this study, we examine the buckling stability of a beam attached to a cone plunge diving into a bath of water, which is inspired by diving birds. This beam-cone system initially experiences an impact force before the cone is completely submerged, followed by a hydrodynamic drag force. Using high speed imaging techniques, it was observed that the soft elastic beam exhibits either buckling (unstable) or non-buckling (stable) behaviors upon impact and submergence. Large cone angles, long beams, and high impact velocities likely cause buckling in the beam. By varying geometric factors of the beam-cone system and changing the impact velocity, a transition from non-buckling to buckling is characterized through physical experiments and is verified by an analytical model. This study elucidates under which conditions diving birds may possibly get injured.

  14. Diving at altitude: from definition to practice.

    PubMed

    Egi, S Murat; Pieri, Massimo; Marroni, Alessandro

    2014-01-01

    Diving above sea level has different motivations for recreational, military, commercial and scientific activities. Despite the apparently wide practice of inland diving, there are three major discrepancies about diving at altitude: threshold elevation that requires changes in sea level procedures; upper altitude limit of the applicability of these modifications; and independent validation of altitude adaptation methods of decompression algorithms. The first problem is solved by converting the normal fluctuation in barometric pressure to an altitude equivalent. Based on the barometric variations recorded from a meteorological center, it is possible to suggest 600 meters as a threshold for classifying a dive as an "altitude" dive. The second problem is solved by proposing the threshold altitude of aviation (2,400 meters) to classify "high" altitude dives. The DAN (Divers Alert Network) Europe diving database (DB) is analyzed to solve the third problem. The database consists of 65,050 dives collected from different dive computers. A total of 1,467 dives were found to be classified as altitude dives. However, by checking the elevation according to the logged geographical coordinates, 1,284 dives were disqualified because the altitude setting had been used as a conservative setting by the dive computer despite the fact that the dive was made at sea level. Furthermore, according to the description put forward in this manuscript, 72 dives were disqualified because the surface level elevation is lower than 600 meters. The number of field data (111 dives) is still very low to use for the validation of any particular method of altitude adaptation concerning decompression algorithms.

  15. Respiratory Heat Loss Limits in Helium-Oxygen Saturation Diving

    DTIC Science & Technology

    1980-06-01

    STATEMENT (of te obstrol eaterdin Bleek #iferen f mim fier ee) WS SUPPLEMENTARY NOTES It. KEY WORDS (Contm nu F ewfer aie It nl*OOWY Mel D*UtltY or...THIS PASS 3Be a 3M 20. (CONTINUED) neutral skin temperature in a hot water suit. This level of respiratory heat loss is predicted to allow an average...respiratory heat loss from the ventilatory response to the exercise, will be dissipated through the diver’s skin as he adjusts his hot water flow and

  16. Human Bone Matrix Changes During Deep Saturation Dives

    DTIC Science & Technology

    2008-08-08

    agreement notwithstanding, much remains unknown about its pathogenesis, prevention, and treatment . DON is currently disqualifying for U.S. Navy divers...recourse for symptomatic treatment is surgical joint replacement.7 The principal mechanism of bone injury is generally accepted to be bubble formation...urine concentrations of Ntx have been demonstrated in bone diseases such as osteoporosis, primary hyperthyroidism , and Paget’s disease. Also

  17. 29 CFR 1926.1084 - SCUBA diving.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false SCUBA diving. 1926.1084 Section 1926.1084 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Diving Specific Operations Procedures § 1926.1084 SCUBA diving. Note: The requirements applicable to construction work under this section are identical to...

  18. 29 CFR 1926.1084 - SCUBA diving.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false SCUBA diving. 1926.1084 Section 1926.1084 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Diving Specific Operations Procedures § 1926.1084 SCUBA diving. Note: The requirements applicable to construction work under this section are identical to...

  19. 29 CFR 1926.1084 - SCUBA diving.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false SCUBA diving. 1926.1084 Section 1926.1084 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Diving Specific Operations Procedures § 1926.1084 SCUBA diving. Note: The requirements applicable to construction work under this section are identical to...

  20. 29 CFR 1926.1084 - SCUBA diving.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false SCUBA diving. 1926.1084 Section 1926.1084 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Diving Specific Operations Procedures § 1926.1084 SCUBA diving. Note: The requirements applicable to construction work under this section are identical to...

  1. The epidemiology of injury in scuba diving.

    PubMed

    Buzzacott, Peter L

    2012-01-01

    The epidemiology of injury associated with recreational scuba diving is reviewed. A search of electronic databases and reference lists identified pertinent research. Barotrauma, decompression sickness and drowning-related injuries were the most common morbidities associated with recreational scuba diving. The prevalence of incidents ranged from 7 to 35 injuries per 10,000 divers and from 5 to 152 injuries per 100,000 dives. Recreational scuba diving fatalities account for 0.013% of all-cause mortality aged ≥ 15 years. Drowning was the most common cause of death. Among treated injuries, recovery was complete in the majority of cases. Dive injuries were associated with diver-specific factors such as insufficient training and preexisting medical conditions. Environmental factors included air temperature and flying after diving. Dive-specific factors included loss of buoyancy control, rapid ascent and repetitive deep diving. The most common event to precede drowning was running out of gas (compressed air). Though diving injuries are relatively rare prospective, longitudinal studies are needed to quantify the effects of known risk factors and, indeed, asymptomatic injuries (e.g. brain lesions). Dive injury health economics data also remains wanting. Meanwhile, health promotion initiatives should continue to reinforce adherence to established safe diving practices such as observing depth/time limits, safety stops and conservative ascent rates. However, there is an obvious lack of evaluated diving safety interventions.

  2. 29 CFR 1926.1084 - SCUBA diving.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false SCUBA diving. 1926.1084 Section 1926.1084 Labor Regulations...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Diving Specific Operations Procedures § 1926.1084 SCUBA diving. Note: The requirements applicable to construction work under this section are identical to...

  3. Scuba diving activates vascular antioxidant system.

    PubMed

    Sureda, A; Batle, J M; Ferrer, M D; Mestre-Alfaro, A; Tur, J A; Pons, A

    2012-07-01

    The aim was to study the effects of scuba diving immersion on plasma antioxidant defenses, nitric oxide production, endothelin-1 and vascular endothelial growth factor levels. 9 male divers performed an immersion at 50 m depth for a total time of 35 min. Blood samples were obtained before diving at rest, immediately after diving, and 3 h after the diving session. Leukocyte counts, plasma 8oxoHG, malondialdehyde and nitrite levels significantly increased after recovery. Activities of lactate dehydrogenase, creatine kinase, catalase and superoxide significantly increased immediately after diving and these activities remained high after recovery. Plasma myeloperoxidase activity and protein levels and extracellular superoxide dismutase protein levels increased after 3 h. Endothelin-1 concentration significantly decreased after diving and after recovery. Vascular endothelial growth factor concentration significantly increased after diving when compared to pre-diving values, returning to initial values after recovery. Scuba diving at great depth activated the plasma antioxidant system against the oxidative stress induced by elevated pO₂ oxygen associated with hyperbaria. The decrease in endothelin-1 levels and the increase in nitric oxide synthesis could be factors that contribute to post-diving vasodilation. Diving increases vascular endothelial growth factor plasma levels which can contribute to the stimulation of tissue resistance to diving-derived oxidative damage.

  4. 33 CFR 146.40 - Diving casualties.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Diving casualties. 146.40 Section 146.40 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES OPERATIONS OCS Facilities § 146.40 Diving casualties. Diving related...

  5. 17 CFR 240.14d-1 - Scope of and definitions applicable to Regulations 14D and 14E.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... a minimum acceptance condition included in the terms of the offer has been satisfied by counting...) shall apply to any tender offer that is subject to section 14(d)(1) of the Act (15 U.S.C. 78n(d)(1)), including, but not limited to, any tender offer for securities of a class described in that section that...

  6. Cardiovascular responses during free-diving in the sea.

    PubMed

    Marongiu, E; Crisafulli, A; Ghiani, G; Olla, S; Roberto, S; Pinna, M; Pusceddu, M; Palazzolo, G; Sanna, I; Concu, A; Tocco, F

    2015-04-01

    Cardiac output has never been assessed during free-diving diving in the sea. Knowledge of human diving response in this setting is therefore scarce. 3 immersions were performed by 7 divers: at depths of 10 m, 20 m and 30 m. Each test consisted of 3 apnea phases: descent, static and ascent. An impedance cardiograph provided data on stroke volume, heart rate and cardiac output. Mean blood pressure, arterial O2 saturation and blood lactate values were also collected. Starting from a resting value of 4.5±1.6 L∙min(-1), cardiac output at 10 m showed an increase up to 7.1±2.2 L∙min(-1) (p<0.01) during the descent, while conditions during the static and ascent phases remained unchanged. At 20 m cardiac output values were 7.3±2.4 L∙min(-1) and 6.7(±1).2 L∙min(-1) during ascent and descent, respectively (p<0.01), and 4.3±0.9 L∙min(-1) during static phase. At 30 m cardiac output values were 6.5±1.8 L∙min(-1) and 7.5±2 L∙min(-1) during descent and ascent, respectively (p<0.01), and 4.7±2.1 L∙min(-1) during static phase. Arterial O2 saturation decreased with increasing dive depth, reaching 91.1±3.4% (p<0.001 vs. rest) upon emergence from a depth of 30 m. Blood lactate values increased to 4.1±1.2 mmol∙L(-1) at the end of the 30 m dive (p<0.001 vs. rest). Results seem to suggest that simultaneous activation of exercise and diving response could lead to an absence of cardiac output reduction aimed at an oxygen-conserving effect.

  7. Facts about saturated fats

    MedlinePlus

    Cholesterol - saturated fat; Atherosclerosis - saturated fat; Hardening of the arteries - saturated fat; Hyperlipidemia - saturated fat; Hypercholesterolemia - saturated fat; Coronary artery disease - saturated fat; ...

  8. Recreational technical diving part 2: decompression from deep technical dives.

    PubMed

    Doolette, David J; Mitchell, Simon J

    2013-06-01

    Technical divers perform deep, mixed-gas 'bounce' dives, which are inherently inefficient because even a short duration at the target depth results in lengthy decompression. Technical divers use decompression schedules generated from modified versions of decompression algorithms originally developed for other types of diving. Many modifications ostensibly produce shorter and/or safer decompression, but have generally been driven by anecdote. Scientific evidence relevant to many of these modifications exists, but is often difficult to locate. This review assembles and examines scientific evidence relevant to technical diving decompression practice. There is a widespread belief that bubble algorithms, which redistribute decompression in favour of deeper decompression stops, are more efficient than traditional, shallow-stop, gas-content algorithms, but recent laboratory data support the opposite view. It seems unlikely that switches from helium- to nitrogen-based breathing gases during ascent will accelerate decompression from typical technical bounce dives. However, there is evidence for a higher prevalence of neurological decompression sickness (DCS) after dives conducted breathing only helium-oxygen than those with nitrogen-oxygen. There is also weak evidence suggesting less neurological DCS occurs if helium-oxygen breathing gas is switched to air during decompression than if no switch is made. On the other hand, helium-to-nitrogen breathing gas switches are implicated in the development of inner-ear DCS arising during decompression. Inner-ear DCS is difficult to predict, but strategies to minimize the risk include adequate initial decompression, delaying helium-to-nitrogen switches until relatively shallow, and the use of the maximum safe fraction of inspired oxygen during decompression.

  9. Diving down the reefs? Intensive diving tourism threatens the reefs of the northern Red Sea.

    PubMed

    Hasler, Harald; Ott, Jörg A

    2008-10-01

    Intensive recreational SCUBA diving threatens coral reef ecosystems. The reefs at Dahab, South Sinai, Egypt, are among the world's most dived (>30,000 dives y(-1)). We compared frequently dived sites to sites with no or little diving. Benthic communities and condition of corals were examined by the point intercept sampling method in the reef crest zone (3m) and reef slope zone (12 m). Additionally, the abundance of corallivorous and herbivorous fish was estimated based on the visual census method. Sediments traps recorded the sedimentation rates caused by SCUBA divers. Zones subject to intensive SCUBA diving showed a significantly higher number of broken and damaged corals and significantly lower coral cover. Reef crest coral communities were significantly more affected than those of the reef slope: 95% of the broken colonies were branching ones. No effect of diving on the abundance of corallivorous and herbivorous fish was evident. At heavily used dive sites, diver-related sedimentation rates significantly decreased with increasing distance from the entrance, indicating poor buoyancy regulation at the initial phase of the dive. The results show a high negative impact of current SCUBA diving intensities on coral communities and coral condition. Corallivorous and herbivorous fishes are apparently not yet affected, but are endangered if coral cover decline continues. Reducing the number of dives per year, ecologically sustainable dive plans for individual sites, and reinforcing the environmental education of both dive guides and recreational divers are essential to conserve the ecological and the aesthetic qualities of these dive sites.

  10. Basic Scientific Principles of Diving

    ERIC Educational Resources Information Center

    MacLean, Don

    1976-01-01

    Described are some of the physical and physiological scientific principles related to diving. The article is written as supplementary information for a teacher and includes suggested activities, a keyed test, and a bibliography. This article complements one on Sea Lab II in the same issue. (MA)

  11. 46 CFR 197.210 - Designation of diving supervisor.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Designation of diving supervisor. 197.210 Section 197... HEALTH STANDARDS GENERAL PROVISIONS Commercial Diving Operations General § 197.210 Designation of diving supervisor. The name of the diving supervisor for each commercial diving operation shall be— (a)...

  12. Blood temperature profiles of diving elephant seals.

    PubMed

    Meir, Jessica U; Ponganis, Paul J

    2010-01-01

    Hypothermia-induced reductions in metabolic rate have been proposed to suppress metabolism and prolong the duration of aerobic metabolism during dives of marine mammals and birds. To determine whether core hypothermia might contribute to the repetitive long-duration dives of the northern elephant seal Mirounga angustirostris, blood temperature profiles were obtained in translocated juvenile elephant seals equipped with a thermistor and backpack recorder. Representative temperature (the y-intercept of the mean temperature vs. dive duration relationship) was 37.2 degrees C +/- 0.6 degrees C (n=3 seals) in the extradural vein, 38.1 degrees C +/- 0.7 degrees C (n = 4 seals) in the hepatic sinus, and 38.8 degrees +/- 1.6 degrees C (n = 6 deals) in the aorta. Mean temperature was significantly though weakly negatively related to dive duration in all but one seal. Mean venous temperatures of all dives of individual seals ranged between 36 degrees and 38 degrees C, while mean arterial temperatures ranged between 35 degrees and 39 degrees C. Transient decreases in venous and arterial temperatures to as low as 30 degrees -33 degrees C occurred in some dives >30 min (0.1% of dives in the study). The lack of significant core hypothermia during routine dives (10-30 min) and only a weak negative correlation of mean temperature with dive duration do not support the hypothesis that a cold-induced Q(10) effect contributes to metabolic suppression of central tissues during dives. The wide range of arterial temperatures while diving and the transient declines in temperature during long dives suggest that alterations in blood flow patterns and peripheral heat loss contribute to thermoregulation during diving.

  13. Saturation meter

    DOEpatents

    Gregurech, S.

    1984-08-01

    A saturation meter for use in a pressurized water reactor plant comprising a differential pressure transducer having a first and second pressure sensing means and an alarm. The alarm is connected to the transducer and is preset to activate at a level of saturation prior to the formation of a steam void in the reactor vessel.

  14. DIVE Into Metadata With MMI

    NASA Astrophysics Data System (ADS)

    Neiswender, C.; Bermudez, L.; Galbraith, N. R.; Graybeal, J.

    2007-12-01

    Within research environments, good, usable data is paramount to scientific success. However, extremely diverse data is often distributed across many institutions, collected in a variety of ways, and stored in dissimilar systems. Standards-based interoperability is the key to harnessing this variety into a strategic set of usable data. As a community collaboration, the Marine Metadata Interoperability project (MMI) exists to promote the exchange, integration and use of marine data through enhanced data publishing, discovery, documentation and accessibility. To accomplish these goals, MMI has established a collaborative web environment (http://marinemetadata.org), informative guides, workshops on current topics, vocabulary working groups, and interoperable projects (OOSTethys and the OGC Oceans Interoperability Experiment, http://www.oostethys.org/). In January 2008, MMI will launch a new initiative: the DIVE Strike Force. Called DIVE for Discover, Interrogate, Validate and Educate. The MMI strike force initiative will facilitate concentrated research into a specific area needed by the marine science community. Each focused team of scientists, technologists and data managers will work to comprehensively review and explain existing capabilities and best practices, comparing existing solutions for the community. For this first DIVE Strike Force, team efforts will be focused on metadata tools. The Tools Strike Force will: * Discover available tools for the creation and publication of metadata and metadata vocabularies; * Interrogate the community about each tool, assessing criteria to be agreed upon, for example the capabilities of each, strengths and weaknesses, level of adoption, and where each tool would best be used; * Validate the best and most applicable tools objectively; * Educate the wider marine metadata community using the MMI webpage, and other resources as appropriate. Participants in each DIVE will be solicited from throughout the community, and

  15. High diving metabolism results in a short aerobic dive limit for Steller sea lions (Eumetopias jubatus).

    PubMed

    Gerlinsky, Carling D; Rosen, David A S; Trites, Andrew W

    2013-07-01

    The diving capacity of marine mammals is typically defined by the aerobic dive limit (ADL) which, in lieu of direct measurements, can be calculated (cADL) from total body oxygen stores (TBO) and diving metabolic rate (DMR). To estimate cADL, we measured blood oxygen stores, and combined this with diving oxygen consumption rates (VO2) recorded from 4 trained Steller sea lions diving in the open ocean to depths of 10 or 40 m. We also examined the effect of diving exercise on O2 stores by comparing blood O2 stores of our diving animals to non-diving individuals at an aquarium. Mass-specific blood volume of the non-diving individuals was higher in the winter than in summer, but there was no overall difference in blood O2 stores between the diving and non-diving groups. Estimated TBO (35.9 ml O2 kg(-1)) was slightly lower than previously reported for Steller sea lions and other Otariids. Calculated ADL was 3.0 min (based on an average DMR of 2.24 L O2 min(-1)) and was significantly shorter than the average 4.4 min dives our study animals performed when making single long dives-but was similar to the times recorded during diving bouts (a series of 4 dives followed by a recovery period on the surface), as well as the dive times of wild animals. Our study is the first to estimate cADL based on direct measures of VO2 and blood oxygen stores for an Otariid and indicates they have a much shorter ADL than previously thought.

  16. Nitrogen Uptake During Air Diving

    DTIC Science & Technology

    1994-03-10

    depth. The measurement system was attached to a syringe pump and air was added to the closed-circuit system during compression. Gas was circulated...with the syringe pump until pre-dive temperatures and oxygen sensor output stabilized (oxygen sensor output varied with temperature). This equilibration...provided voltage output to the computer. The spirometer was calibrated with a 3 liter syringe (Collins, Model M-20). A temperature probe (YSI, Model

  17. Can diving-induced tissue nitrogen supersaturation increase the chance of acoustically driven bubble growth in marine mammals?

    PubMed

    Houser, D S; Howard, R; Ridgway, S

    2001-11-21

    The potential for acoustically mediated causes of stranding in cetaceans (whales and dolphins) is of increasing concern given recent stranding events associated with anthropogenic acoustic activity. We examine a potentially debilitating non-auditory mechanism called rectified diffusion. Rectified diffusion causes gas bubble growth, which in an insonified animal may produce emboli, tissue separation and high, localized pressure in nervous tissue. Using the results of a dolphin dive study and a model of rectified diffusion for low-frequency exposure, we demonstrate that the diving behavior of cetaceans prior to an intense acoustic exposure may increase the chance of rectified diffusion. Specifically, deep diving and slow ascent/descent speed contributes to increased gas-tissue saturation, a condition that amplifies the likelihood of rectified diffusion. The depth of lung collapse limits nitrogen uptake per dive and the surface interval duration influences the amount of nitrogen washout from tissues between dives. Model results suggest that low-frequency rectified diffusion models need to be advanced, that the diving behavior of marine mammals of concern needs to be investigated to identify at-risk animals, and that more intensive studies of gas dynamics within diving marine mammals should be undertaken.

  18. Shallow Water Diving - The NASA Experience

    NASA Technical Reports Server (NTRS)

    Fitzpatrick, Daniel; Kelsey-Seybold

    2010-01-01

    This slide presentation reviews some of the problems and solutions that personnel have experienced during sessions in the Neutral Bu0yancy Lab (NBL). It reviews the standard dive that occurs at the NBL, Boyles and Henry's laws as they relate to the effects of diving. It then reviews in depth some of the major adverse physiologic events that happen during a diving session: Ear and Sinus Barotrauma, Decompression Sickness, (DCS), Pulmonary Barotrauma (i.e., Arterial Gas Embolism (AGE). Mediastinal Emphysema, Subcutaneous Emphysema, and Pneumothorax) Oxygen Toxicity and Hypothermia. It includes information about the pulmonary function in NBL divers. Also included is recommendations about flying after diving.

  19. Extreme hypoxemic tolerance and blood oxygen depletion in diving elephant seals.

    PubMed

    Meir, Jessica U; Champagne, Cory D; Costa, Daniel P; Williams, Cassondra L; Ponganis, Paul J

    2009-10-01

    Species that maintain aerobic metabolism when the oxygen (O(2)) supply is limited represent ideal models to examine the mechanisms underlying tolerance to hypoxia. The repetitive, long dives of northern elephant seals (Mirounga angustirostris) have remained a physiological enigma as O(2) stores appear inadequate to maintain aerobic metabolism. We evaluated hypoxemic tolerance and blood O(2) depletion by 1) measuring arterial and venous O(2) partial pressure (Po(2)) during dives with a Po(2)/temperature recorder on elephant seals, 2) characterizing the O(2)-hemoglobin (O(2)-Hb) dissociation curve of this species, 3) applying the dissociation curve to Po(2) profiles to obtain %Hb saturation (So(2)), and 4) calculating blood O(2) store depletion during diving. Optimization of O(2) stores was achieved by high venous O(2) loading and almost complete depletion of blood O(2) stores during dives, with net O(2) content depletion values up to 91% (arterial) and 100% (venous). In routine dives (>10 min) Pv(O(2)) and Pa(O(2)) values reached 2-10 and 12-23 mmHg, respectively. This corresponds to So(2) of 1-26% and O(2) contents of 0.3 (venous) and 2.7 ml O(2)/dl blood (arterial), demonstrating remarkable hypoxemic tolerance as Pa(O(2)) is nearly equivalent to the arterial hypoxemic threshold of seals. The contribution of the blood O(2) store alone to metabolic rate was nearly equivalent to resting metabolic rate, and mean temperature remained near 37 degrees C. These data suggest that elephant seals routinely tolerate extreme hypoxemia during dives to completely utilize the blood O(2) store and maximize aerobic dive duration.

  20. Teaching Persons with Disabilities to SCUBA Diving.

    ERIC Educational Resources Information Center

    Jankowski, Louis W.

    This booklet is designed to sensitize and inform the scuba diving instructor on appropriate attitudes and successful methods for teaching scuba diving to persons with physical disability. It addresses misconceptions about people with disabilities and the importance of effective two-way communication and mutual respect between instructors and…

  1. Introduction to Scuba Diving. Diver Education Series.

    ERIC Educational Resources Information Center

    Somers, Lee H.

    Scuba diving is often referred to as a "recreational sport." However, the term "sport" sometimes implies erroneous connotations and limits understanding. Scuba diving can be an avocation or a vocation. It is a pastime, a pursuit, or even a lifestyle, that can be as limited or extensive as one makes it. A persons level of commitment, degree of…

  2. Rotation, Translation, and Trajectory in Diving

    ERIC Educational Resources Information Center

    Stroup, Francis; Bushnell, David L.

    1969-01-01

    The fundamental techniques of diving such as the approach, arm swing, hurdle, lift, body positions, and entrance form are relatively stable and can be reduced largely to habit. However, after a diver has mastered them, there remains the problem of partitioning the energy exerted in a dive between translation and rotation. (CK)

  3. The Physics of Breath-Hold Diving.

    ERIC Educational Resources Information Center

    Aguilella, Vicente; Aguilella-Arzo, Marcelo

    1996-01-01

    Analyzes physical features of breath-hold diving. Considers the diver's descent and the initial surface dive and presents examples that show the diver's buoyancy equilibrium varying with depth, the driving force supplied by finning, and the effect of friction between the water and the diver. (Author/JRH)

  4. Wind-Tunnel Investigations of Diving Brakes

    NASA Technical Reports Server (NTRS)

    Fucha, D.

    1942-01-01

    Unduly high diving speeds can be effectively controlled by diving brakes but their employment involves at the same time a number of disagreeable features: namely, rotation of zero lift direction, variation of diviving moment, and, the creation of a potent dead air region.

  5. How seabirds plunge-dive without injuries.

    PubMed

    Chang, Brian; Croson, Matthew; Straker, Lorian; Gart, Sean; Dove, Carla; Gerwin, John; Jung, Sunghwan

    2016-10-25

    In nature, several seabirds (e.g., gannets and boobies) dive into water at up to 24 m/s as a hunting mechanism; furthermore, gannets and boobies have a slender neck, which is potentially the weakest part of the body under compression during high-speed impact. In this work, we investigate the stability of the bird's neck during plunge-diving by understanding the interaction between the fluid forces acting on the head and the flexibility of the neck. First, we use a salvaged bird to identify plunge-diving phases. Anatomical features of the skull and neck were acquired to quantify the effect of beak geometry and neck musculature on the stability during a plunge-dive. Second, physical experiments using an elastic beam as a model for the neck attached to a skull-like cone revealed the limits for the stability of the neck during the bird's dive as a function of impact velocity and geometric factors. We find that the neck length, neck muscles, and diving speed of the bird predominantly reduce the likelihood of injury during the plunge-dive. Finally, we use our results to discuss maximum diving speeds for humans to avoid injury.

  6. 17 CFR 240.14d-4 - Dissemination of tender offers to security holders.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... to security holders. 240.14d-4 Section 240.14d-4 Commodity and Securities Exchanges SECURITIES AND... offers to security holders. As soon as practicable on the date of commencement of a tender offer, the bidder must publish, send or give the disclosure required by § 240.14d-6 to security holders of the...

  7. 17 CFR 240.14d-4 - Dissemination of tender offers to security holders.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... to security holders. 240.14d-4 Section 240.14d-4 Commodity and Securities Exchanges SECURITIES AND... offers to security holders. As soon as practicable on the date of commencement of a tender offer, the bidder must publish, send or give the disclosure required by § 240.14d-6 to security holders of the...

  8. 17 CFR 240.14d-4 - Dissemination of tender offers to security holders.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... to security holders. 240.14d-4 Section 240.14d-4 Commodity and Securities Exchanges SECURITIES AND... offers to security holders. As soon as practicable on the date of commencement of a tender offer, the bidder must publish, send or give the disclosure required by § 240.14d-6 to security holders of the...

  9. 17 CFR 240.14d-4 - Dissemination of tender offers to security holders.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... to security holders. 240.14d-4 Section 240.14d-4 Commodity and Securities Exchanges SECURITIES AND... offers to security holders. As soon as practicable on the date of commencement of a tender offer, the bidder must publish, send or give the disclosure required by § 240.14d-6 to security holders of the...

  10. [Medical aspects of diving in the tropics].

    PubMed

    Muth, C M; Müller, P; Kemmer, A

    2005-07-07

    Scuba diving vacations in tropical surroundings belong to the repertoire of most divers. In addition to carefully making travel plans and taking care of the necessary vaccinations and appropriate malaria prophylaxis, the following points also must be observed. The flight itself affects diving safety. In particular, a too short time interval between diving and the return flight can lead to decompression problems. Because most of the diving areas are reached by ship, many divers need a prophylaxis against motion sickness. Moreover, external otitis occurs more frequently while diving in the tropics. Finally, there is potential danger from the sea inhabitants, primarily from scorpion fishes, Portuguese Man-of-Wars, box jellyfishes as well as cone snails.

  11. The cardiovascular system and diving risk.

    PubMed

    Bove, Alfred A

    2011-01-01

    Recreational scuba diving is a sport that requires a certain physical capacity, in addition to consideration of the environmental stresses produced by increased pressure, low temperature and inert gas kinetics in tissues of the body. Factors that may influence ability to dive safely include age, physical conditioning, tolerance of cold, ability to compensate for central fluid shifts induced by water immersion, and ability to manage exercise demands when heart disease might compromise exercise capacity. Patients with coronary heart disease, valvular heart disease, congenital heart disease and cardiac arrhythmias are capable of diving, but consideration must be given to the environmental factors that might interact with the cardiac disorder. Understanding of the interaction of the diving environment with various cardiac disorders is essential to providing a safe diving environment to individual divers with known heart disease.

  12. Advanced deep sea diving equipment

    NASA Technical Reports Server (NTRS)

    Danesi, W. A.

    1972-01-01

    Design requirements are generated for a deep sea heavy duty diving system to equip salvage divers with equipment and tools that permit work of the same quality and in times approaching that done on the surface. The system consists of a helmet, a recirculator for removing carbon dioxide, and the diver's dress. The diver controls the inlet flow by the recirculatory control valve and is able to change closed cycle operation to open cycle if malfunction occurs. Proper function of the scrubber in the recirculator minimizes temperature and humidity effects as it filters the returning air.

  13. Deep-diving sea lions exhibit extreme bradycardia in long-duration dives.

    PubMed

    McDonald, Birgitte I; Ponganis, Paul J

    2014-05-01

    Heart rate and peripheral blood flow distribution are the primary determinants of the rate and pattern of oxygen store utilisation and ultimately breath-hold duration in marine endotherms. Despite this, little is known about how otariids (sea lions and fur seals) regulate heart rate (fH) while diving. We investigated dive fH in five adult female California sea lions (Zalophus californianus) during foraging trips by instrumenting them with digital electrocardiogram (ECG) loggers and time depth recorders. In all dives, dive fH (number of beats/duration; 50±9 beats min(-1)) decreased compared with surface rates (113±5 beats min(-1)), with all dives exhibiting an instantaneous fH below resting (<54 beats min(-1)) at some point during the dive. Both dive fH and minimum instantaneous fH significantly decreased with increasing dive duration. Typical instantaneous fH profiles of deep dives (>100 m) consisted of: (1) an initial rapid decline in fH resulting in the lowest instantaneous fH of the dive at the end of descent, often below 10 beats min(-1) in dives longer than 6 min in duration; (2) a slight increase in fH to ~10-40 beats min(-1) during the bottom portion of the dive; and (3) a gradual increase in fH during ascent with a rapid increase prior to surfacing. Thus, fH regulation in deep-diving sea lions is not simply a progressive bradycardia. Extreme bradycardia and the presumed associated reductions in pulmonary and peripheral blood flow during late descent of deep dives should (a) contribute to preservation of the lung oxygen store, (b) increase dependence of muscle on the myoglobin-bound oxygen store, (c) conserve the blood oxygen store and (d) help limit the absorption of nitrogen at depth. This fH profile during deep dives of sea lions may be characteristic of deep-diving marine endotherms that dive on inspiration as similar fH profiles have been recently documented in the emperor penguin, another deep diver that dives on inspiration.

  14. 46 CFR 197.404 - Responsibilities of the diving supervisor.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Responsibilities of the diving supervisor. 197.404... SAFETY AND HEALTH STANDARDS GENERAL PROVISIONS Commercial Diving Operations Operations § 197.404 Responsibilities of the diving supervisor. (a) The diving supervisor shall— (1) Be fully cognizant of...

  15. 29 CFR 1910.410 - Qualifications of dive team.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... aid (American Red Cross standard course or equivalent). (4) Dive team members who are exposed to or... 29 Labor 5 2014-07-01 2014-07-01 false Qualifications of dive team. 1910.410 Section 1910.410... Requirements § 1910.410 Qualifications of dive team. (a) General. (1) Each dive team member shall have...

  16. 29 CFR 1910.410 - Qualifications of dive team.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... aid (American Red Cross standard course or equivalent). (4) Dive team members who are exposed to or... 29 Labor 5 2011-07-01 2011-07-01 false Qualifications of dive team. 1910.410 Section 1910.410... Requirements § 1910.410 Qualifications of dive team. (a) General. (1) Each dive team member shall have...

  17. 29 CFR 1910.410 - Qualifications of dive team.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... aid (American Red Cross standard course or equivalent). (4) Dive team members who are exposed to or... 29 Labor 5 2013-07-01 2013-07-01 false Qualifications of dive team. 1910.410 Section 1910.410... Requirements § 1910.410 Qualifications of dive team. (a) General. (1) Each dive team member shall have...

  18. 29 CFR 1910.410 - Qualifications of dive team.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... aid (American Red Cross standard course or equivalent). (4) Dive team members who are exposed to or... 29 Labor 5 2012-07-01 2012-07-01 false Qualifications of dive team. 1910.410 Section 1910.410... Requirements § 1910.410 Qualifications of dive team. (a) General. (1) Each dive team member shall have...

  19. 29 CFR 1910.421 - Pre-dive procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... fitness of dive team members (including any impairment known to the employer); (7) Repetitive dive... current state of physical fitness, and indicate to the dive team member the procedure for reporting physical problems or adverse physiological effects during and after the dive. (g) Equipment inspection....

  20. 29 CFR 1910.421 - Pre-dive procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... fitness of dive team members (including any impairment known to the employer); (7) Repetitive dive... current state of physical fitness, and indicate to the dive team member the procedure for reporting physical problems or adverse physiological effects during and after the dive. (g) Equipment inspection....

  1. 29 CFR 1910.421 - Pre-dive procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... fitness of dive team members (including any impairment known to the employer); (7) Repetitive dive... current state of physical fitness, and indicate to the dive team member the procedure for reporting physical problems or adverse physiological effects during and after the dive. (g) Equipment inspection....

  2. 29 CFR 1910.421 - Pre-dive procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... fitness of dive team members (including any impairment known to the employer); (7) Repetitive dive... current state of physical fitness, and indicate to the dive team member the procedure for reporting physical problems or adverse physiological effects during and after the dive. (g) Equipment inspection....

  3. The death of buddy diving?

    PubMed

    Cooper, P David

    2011-12-01

    Dear Editor, By focussing on the details of the Watson case, I believe Bryan Walpole has missed the thrust of my earlier letter. I agree this was a complex case, which is why I deliberately avoided the murky specifics in order to consider the 'big-picture' ramifications of the judgement. My concerns relate to the potential consequences of the unintended interplay between unrelated developments in the medical and legal arenas. Taken together, I believe these developments threaten the very institution of buddy diving. I have been unable to verify Dr Walpole's claim that the statute under which Mr Watson was convicted has not been used previously in a criminal trial. I must, however, refute his assertion that this legislation is some sort of idiosyncratic historical hangover or legal curiosity unique to Queensland. Although the original legislation pre-dates Australian federation, this statute has survived intact through 110 years of reviews and amendments to the Queensland Criminal Code. The application of this 19th century law to the Watson case now provides a direct, post-federation, 21st century relevance. Nor is Queensland alone in having such a statute on its books. Section 151 of the Criminal Code Act in Dr Walpole's home state of Tasmania states "When a person undertakes to do any act, the omission to do which is or may be dangerous to human life or health, it is his duty to do that act." Similar statutes can also be found in the legislation of other Australian states and as far afield as New Zealand and Canada. The phrasing of the relevant sections is, in many cases, almost identical to Queensland's, reflecting the common judicial heritage of these places. Even if this ruling's reach extended no further than the Queensland border its ramifications would be immense. Tourism statistics reveal that over 1.2 million visitors perform nearly 3.5 million dives/snorkels in Queensland each year. An estimated 93% of international divers visiting Australia stopover in

  4. Dive and discover: Expeditions to the seafloor

    NASA Astrophysics Data System (ADS)

    Ayers Lawrence, Lisa

    The Dive and Discover Web site is a virtual treasure chest of deep sea science and classroom resources. The goals of Dive and Discover are to engage students, teachers, and the general public in the excitement of ocean disco very through an interactive educational Web site. You can follow scientists on oceanographic research cruises by reading their daily cruise logs, viewing photos and video clips of the discoveries, and even e-mailing questions to the scientists and crew. WHOI has also included an "Educator's Companion" section with teaching strategies, activities, and assessments, making Dive and Discover an excellent resource for the classroom.

  5. Dive and discover: Expeditions to the seafloor

    NASA Astrophysics Data System (ADS)

    Lawrence, Lisa Ayers

    The Dive and Discover Web site is a virtual treasure chest of deep sea science and classroom resources. The goals of Dive and Discover are to engage students, teachers, and the general public in the excitement of ocean disco very through an interactive educational Web site. You can follow scientists on oceanographic research cruises by reading their daily cruise logs, viewing photos and video clips of the discoveries, and even e-mailing questions to the scientists and crew. WHOI has also included an “Educator's Companion” section with teaching strategies, activities, and assessments, making Dive and Discover an excellent resource for the classroom.

  6. Recreational Diving Impacts on Coral Reefs and the Adoption of Environmentally Responsible Practices within the SCUBA Diving Industry.

    PubMed

    Roche, Ronan C; Harvey, Chloe V; Harvey, James J; Kavanagh, Alan P; McDonald, Meaghan; Stein-Rostaing, Vivienne R; Turner, John R

    2016-07-01

    Recreational diving on coral reefs is an activity that has experienced rapidly growing levels of popularity and participation. Despite providing economic activity for many developing coastal communities, the potential role of dive impacts in contributing to coral reef damage is a concern at heavily dived locations. Management measures to address this issue increasingly include the introduction of programmes designed to encourage environmentally responsible practices within the dive industry. We examined diver behaviour at several important coral reef dive locations within the Philippines and assessed how diver characteristics and dive operator compliance with an environmentally responsible diving programme, known as the Green Fins approach, affected reef contacts. The role of dive supervision was assessed by recording dive guide interventions underwater, and how this was affected by dive group size. Of the 100 recreational divers followed, 88 % made contact with the reef at least once per dive, with a mean (±SE) contact rate of 0.12 ± 0.01 per min. We found evidence that the ability of dive guides to intervene and correct diver behaviour in the event of a reef contact decreases with larger diver group sizes. Divers from operators with high levels of compliance with the Green Fins programme exhibited significantly lower reef contact rates than those from dive operators with low levels of compliance. The successful implementation of environmentally responsible diving programmes, which focus on influencing dive industry operations, can contribute to the management of human impacts on coral reefs.

  7. Recreational Diving Impacts on Coral Reefs and the Adoption of Environmentally Responsible Practices within the SCUBA Diving Industry

    NASA Astrophysics Data System (ADS)

    Roche, Ronan C.; Harvey, Chloe V.; Harvey, James J.; Kavanagh, Alan P.; McDonald, Meaghan; Stein-Rostaing, Vivienne R.; Turner, John R.

    2016-07-01

    Recreational diving on coral reefs is an activity that has experienced rapidly growing levels of popularity and participation. Despite providing economic activity for many developing coastal communities, the potential role of dive impacts in contributing to coral reef damage is a concern at heavily dived locations. Management measures to address this issue increasingly include the introduction of programmes designed to encourage environmentally responsible practices within the dive industry. We examined diver behaviour at several important coral reef dive locations within the Philippines and assessed how diver characteristics and dive operator compliance with an environmentally responsible diving programme, known as the Green Fins approach, affected reef contacts. The role of dive supervision was assessed by recording dive guide interventions underwater, and how this was affected by dive group size. Of the 100 recreational divers followed, 88 % made contact with the reef at least once per dive, with a mean (±SE) contact rate of 0.12 ± 0.01 per min. We found evidence that the ability of dive guides to intervene and correct diver behaviour in the event of a reef contact decreases with larger diver group sizes. Divers from operators with high levels of compliance with the Green Fins programme exhibited significantly lower reef contact rates than those from dive operators with low levels of compliance. The successful implementation of environmentally responsible diving programmes, which focus on influencing dive industry operations, can contribute to the management of human impacts on coral reefs.

  8. Decompression sickness following breath-hold diving.

    PubMed

    Schipke, J D; Gams, E; Kallweit, Oliver

    2006-01-01

    Despite convincing evidence of a relationship between breath-hold diving and decompression sickness (DCS), the causal connection is only slowly being accepted. Only the more recent textbooks have acknowledged the risks of repetitive breath-hold diving. We compare four groups of breath-hold divers: (1) Japanese and Korean amas and other divers from the Pacific area, (2) instructors at naval training facilities, (3) spear fishers, and (4) free-dive athletes. While the number of amas is likely decreasing, and Scandinavian Navy training facilities recorded only a few accidents, the number of spear fishers suffering accidents is on the rise, in particular during championships or using scooters. Finally, national and international associations (e.g., International Association of Free Drives [IAFD] or Association Internationale pour Le Developpment De L'Apnee [AIDA]) promote free-diving championships including deep diving categories such as constant weight, variable weight, and no limit. A number of free-diving athletes, training for or participating in competitions, are increasingly accident prone as the world record is presently set at a depth of 171 m. This review presents data found after searching Medline and ISI Web of Science and using appropriate Internet search engines (e.g., Google). We report some 90 cases in which DCS occurred after repetitive breath-hold dives. Even today, the risk of suffering from DCS after repetitive breath-hold diving is often not acknowledged. We strongly suggest that breath-hold divers and their advisors and physicians be made aware of the possibility of DCS and of the appropriate therapeutic measures to be taken when DCS is suspected. Because the risk of suffering from DCS increases depending on depth, bottom time, rate of ascent, and duration of surface intervals, some approaches to assess the risks are presented. Regrettably, none of these approaches is widely accepted. We propose therefore the development of easily manageable

  9. Distributed Saturation

    NASA Technical Reports Server (NTRS)

    Chung, Ming-Ying; Ciardo, Gianfranco; Siminiceanu, Radu I.

    2007-01-01

    The Saturation algorithm for symbolic state-space generation, has been a recent break-through in the exhaustive veri cation of complex systems, in particular globally-asyn- chronous/locally-synchronous systems. The algorithm uses a very compact Multiway Decision Diagram (MDD) encoding for states and the fastest symbolic exploration algo- rithm to date. The distributed version of Saturation uses the overall memory available on a network of workstations (NOW) to efficiently spread the memory load during the highly irregular exploration. A crucial factor in limiting the memory consumption during the symbolic state-space generation is the ability to perform garbage collection to free up the memory occupied by dead nodes. However, garbage collection over a NOW requires a nontrivial communication overhead. In addition, operation cache policies become critical while analyzing large-scale systems using the symbolic approach. In this technical report, we develop a garbage collection scheme and several operation cache policies to help on solving extremely complex systems. Experiments show that our schemes improve the performance of the original distributed implementation, SmArTNow, in terms of time and memory efficiency.

  10. SCUBA Diving and Asthma: Clinical Recommendations and Safety.

    PubMed

    Coop, Christopher A; Adams, Karla E; Webb, Charles N

    2016-02-01

    The objective of this article is to review the available studies regarding asthma and SCUBA (self-contained underwater breathing apparatus) diving. A literature search was conducted in MEDLINE to identify peer-reviewed articles related to asthma and SCUBA diving using the following keywords: asthma, allergy, and SCUBA diving. SCUBA diving is a popular sport with more than 9 million divers in the USA. SCUBA diving can be a dangerous sport. Bronchospasm can develop in asthmatic patients and cause airway obstruction. Airway obstruction may be localized to the distal airway which prevents gas elimination. Uncontrolled expansion of the distal airway may result in pulmonary barotrauma. There is also the risk of a gas embolism. Asthmatic divers can also aspirate seawater which may induce bronchospasm. Pollen contamination of their oxygen tank may exacerbate atopic asthma in patients. Diving may be hazardous to the lung function of patients with asthma. Despite the risks of SCUBA diving, many asthmatic individuals can dive without serious diving events. Diving evaluations for asthmatic patients have focused on a thorough patient history, spirometry, allergy testing, and bronchial challenges. For patients that wish to dive, their asthma should be well controlled without current chest symptoms. Patients should have a normal spirometry. Some diving societies recommend that an asthmatic patient should successfully pass a bronchial provocation challenge. Recommendations also state that exercise-, emotion-, and cold-induced asthmatics should not dive. Asthmatic patients requiring rescue medication within 48 h should not dive.

  11. A forensic diving medicine examination of a highly publicised scuba diving fatality.

    PubMed

    Edmonds, Carl

    2012-12-01

    A high-profile diving death occurred in 2003 at the site of the wreck of the SS Yongala off the Queensland coast. The victim's buddy, her husband, was accused of her murder and found guilty of manslaughter in an Australian court. A detailed analysis of all the evidence concerning this fatality suggests alternative medical reasons for her death. The value of decompression computers in determining the diving details and of CT scans in clarifying autopsy findings is demonstrated. The victim was medically, physically and psychologically unfit to undertake the fatal dive. She was inexperienced and inadequately supervised. She was over-weighted and exposed for the first time to difficult currents. The analysis of the dive demonstrates how important it is to consider the interaction of all factors and to not make deductions from individual items of information. It also highlights the importance of early liaison between expert divers, technicians, diving clinicians and pathologists, if inappropriate conclusions are to be avoided.

  12. Training rats to voluntarily dive underwater: investigations of the mammalian diving response.

    PubMed

    McCulloch, Paul F

    2014-11-12

    Underwater submergence produces autonomic changes that are observed in virtually all diving animals. This reflexly-induced response consists of apnea, a parasympathetically-induced bradycardia and a sympathetically-induced alteration of vascular resistance that maintains blood flow to the heart, brain and exercising muscles. While many of the metabolic and cardiorespiratory aspects of the diving response have been studied in marine animals, investigations of the central integrative aspects of this brainstem reflex have been relatively lacking. Because the physiology and neuroanatomy of the rat are well characterized, the rat can be used to help ascertain the central pathways of the mammalian diving response. Detailed instructions are provided on how to train rats to swim and voluntarily dive underwater through a 5 m long Plexiglas maze. Considerations regarding tank design and procedure room requirements are also given. The behavioral training is conducted in such a way as to reduce the stressfulness that could otherwise be associated with forced underwater submergence, thus minimizing activation of central stress pathways. The training procedures are not technically difficult, but they can be time-consuming. Since behavioral training of animals can only provide a model to be used with other experimental techniques, examples of how voluntarily diving rats have been used in conjunction with other physiological and neuroanatomical research techniques, and how the basic training procedures may need to be modified to accommodate these techniques, are also provided. These experiments show that voluntarily diving rats exhibit the same cardiorespiratory changes typically seen in other diving animals. The ease with which rats can be trained to voluntarily dive underwater, and the already available data from rats collected in other neurophysiological studies, makes voluntarily diving rats a good behavioral model to be used in studies investigating the central aspects of the

  13. Pulmonary gas exchange in diving.

    PubMed

    Moon, R E; Cherry, A D; Stolp, B W; Camporesi, E M

    2009-02-01

    Diving-related pulmonary effects are due mostly to increased gas density, immersion-related increase in pulmonary blood volume, and (usually) a higher inspired Po(2). Higher gas density produces an increase in airways resistance and work of breathing, and a reduced maximum breathing capacity. An additional mechanical load is due to immersion, which can impose a static transrespiratory pressure load as well as a decrease in pulmonary compliance. The combination of resistive and elastic loads is largely responsible for the reduction in ventilation during underwater exercise. Additionally, there is a density-related increase in dead space/tidal volume ratio (Vd/Vt), possibly due to impairment of intrapulmonary gas phase diffusion and distribution of ventilation. The net result of relative hypoventilation and increased Vd/Vt is hypercapnia. The effect of high inspired Po(2) and inert gas narcosis on respiratory drive appear to be minimal. Exchange of oxygen by the lung is not impaired, at least up to a gas density of 25 g/l. There are few effects of pressure per se, other than a reduction in the P50 of hemoglobin, probably due to either a conformational change or an effect of inert gas binding.

  14. 17 CFR 240.14d-4 - Dissemination of tender offers to security holders.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Dissemination of tender offers to security holders. 240.14d-4 Section 240.14d-4 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, SECURITIES EXCHANGE ACT OF 1934 Rules...

  15. 17 CFR 240.14d-6 - Disclosure of tender offer information to security holders.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Disclosure of tender offer information to security holders. 240.14d-6 Section 240.14d-6 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, SECURITIES EXCHANGE ACT OF 1934 Rules...

  16. 17 CFR 240.14d-2 - Commencement of a tender offer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Commencement of a tender offer. 240.14d-2 Section 240.14d-2 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, SECURITIES EXCHANGE ACT OF 1934 Rules and Regulations Under...

  17. 17 CFR 240.14d-10 - Equal treatment of security holders.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... holders are afforded equal right to elect among each of the types of consideration offered; and (2) The... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Equal treatment of security... Under the Securities Exchange Act of 1934 Regulation 14d § 240.14d-10 Equal treatment of...

  18. 17 CFR 240.14d-6 - Disclosure of tender offer information to security holders.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... information to security holders. 240.14d-6 Section 240.14d-6 Commodity and Securities Exchanges SECURITIES AND... information to security holders. (a) Information required on date of commencement—(1) Long-form publication. If a tender offer is published, sent or given to security holders on the date of commencement...

  19. 17 CFR 240.14d-10 - Equal treatment of security holders.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... holders. 240.14d-10 Section 240.14d-10 Commodity and Securities Exchanges SECURITIES AND EXCHANGE... holders. (a) No bidder shall make a tender offer unless: (1) The tender offer is open to all security holders of the class of securities subject to the tender offer; and (2) The consideration paid to...

  20. 17 CFR 240.14d-6 - Disclosure of tender offer information to security holders.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... information to security holders. 240.14d-6 Section 240.14d-6 Commodity and Securities Exchanges SECURITIES AND... information to security holders. (a) Information required on date of commencement—(1) Long-form publication. If a tender offer is published, sent or given to security holders on the date of commencement...

  1. 17 CFR 240.14d-10 - Equal treatment of security holders.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... holders. 240.14d-10 Section 240.14d-10 Commodity and Securities Exchanges SECURITIES AND EXCHANGE... holders. (a) No bidder shall make a tender offer unless: (1) The tender offer is open to all security holders of the class of securities subject to the tender offer; and (2) The consideration paid to...

  2. 17 CFR 240.14d-10 - Equal treatment of security holders.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... holders. 240.14d-10 Section 240.14d-10 Commodity and Securities Exchanges SECURITIES AND EXCHANGE... holders. (a) No bidder shall make a tender offer unless: (1) The tender offer is open to all security holders of the class of securities subject to the tender offer; and (2) The consideration paid to...

  3. 17 CFR 240.14d-6 - Disclosure of tender offer information to security holders.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... information to security holders. 240.14d-6 Section 240.14d-6 Commodity and Securities Exchanges SECURITIES AND... information to security holders. (a) Information required on date of commencement—(1) Long-form publication. If a tender offer is published, sent or given to security holders on the date of commencement...

  4. 17 CFR 240.14d-6 - Disclosure of tender offer information to security holders.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... information to security holders. 240.14d-6 Section 240.14d-6 Commodity and Securities Exchanges SECURITIES AND... information to security holders. (a) Information required on date of commencement—(1) Long-form publication. If a tender offer is published, sent or given to security holders on the date of commencement...

  5. 17 CFR 240.14d-10 - Equal treatment of security holders.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... holders. 240.14d-10 Section 240.14d-10 Commodity and Securities Exchanges SECURITIES AND EXCHANGE... holders. (a) No bidder shall make a tender offer unless: (1) The tender offer is open to all security holders of the class of securities subject to the tender offer; and (2) The consideration paid to...

  6. -Saturated Solutions

    NASA Astrophysics Data System (ADS)

    Eliyan, Faysal Fayez; Alfantazi, Akram

    2014-11-01

    This paper presents an electrochemical study on the corrosion behavior of API-X100 steel, heat-treated to have microstructures similar to those of the heat-affected zones (HAZs) of pipeline welding, in bicarbonate-CO2 saturated solutions. The corrosion reactions, onto the surface and through the passive films, are simulated by cyclic voltammetry. The interrelation between bicarbonate concentration and CO2 hydration is analyzed during the filming process at the open-circuit potentials. In dilute bicarbonate solutions, H2CO3 drives more dominantly the cathodic reduction and the passive films form slowly. In the concentrated solutions, bicarbonate catalyzes both the anodic and cathodic reactions, only initially, after which it drives a fast-forming thick passivation that inhibits the underlying dissolution and impedes the cathodic reduction. The significance of the substrate is as critical as that of passivation in controlling the course of the corrosion reactions in the dilute solutions. For fast-cooled (heat treatment) HAZs, its metallurgical significance becomes more comparable to that of slower-cooled HAZs as the bicarbonate concentration is higher.

  7. Saturated fat (image)

    MedlinePlus

    ... saturated fats. Vegetable sources of saturated fat include coconut and palm oils. When looking at a food label, pay ... saturated fats. Vegetable sources of saturated fat include coconut and palm oils. When looking at a food label, pay ...

  8. Blood oxygen depletion is independent of dive function in a deep diving vertebrate, the northern elephant seal.

    PubMed

    Meir, Jessica U; Robinson, Patrick W; Vilchis, L Ignacio; Kooyman, Gerald L; Costa, Daniel P; Ponganis, Paul J

    2013-01-01

    Although energetics is fundamental to animal ecology, traditional methods of determining metabolic rate are neither direct nor instantaneous. Recently, continuous blood oxygen (O2) measurements were used to assess energy expenditure in diving elephant seals (Mirounga angustirostris), demonstrating that an exceptional hypoxemic tolerance and exquisite management of blood O2 stores underlie the extraordinary diving capability of this consummate diver. As the detailed relationship of energy expenditure and dive behavior remains unknown, we integrated behavior, ecology, and physiology to characterize the costs of different types of dives of elephant seals. Elephant seal dive profiles were analyzed and O2 utilization was classified according to dive type (overall function of dive: transit, foraging, food processing/rest). This is the first account linking behavior at this level with in vivo blood O2 measurements in an animal freely diving at sea, allowing us to assess patterns of O2 utilization and energy expenditure between various behaviors and activities in an animal in the wild. In routine dives of elephant seals, the blood O2 store was significantly depleted to a similar range irrespective of dive function, suggesting that all dive types have equal costs in terms of blood O2 depletion. Here, we present the first physiological evidence that all dive types have similarly high blood O2 demands, supporting an energy balance strategy achieved by devoting one major task to a given dive, thereby separating dive functions into distinct dive types. This strategy may optimize O2 store utilization and recovery, consequently maximizing time underwater and allowing these animals to take full advantage of their underwater resources. This approach may be important to optimizing energy expenditure throughout a dive bout or at-sea foraging trip and is well suited to the lifestyle of an elephant seal, which spends > 90% of its time at sea submerged making diving its most "natural

  9. Blood Oxygen Depletion Is Independent of Dive Function in a Deep Diving Vertebrate, the Northern Elephant Seal

    PubMed Central

    Meir, Jessica U.; Robinson, Patrick W.; Vilchis, L. Ignacio; Kooyman, Gerald L.; Costa, Daniel P.; Ponganis, Paul J.

    2013-01-01

    Although energetics is fundamental to animal ecology, traditional methods of determining metabolic rate are neither direct nor instantaneous. Recently, continuous blood oxygen (O2) measurements were used to assess energy expenditure in diving elephant seals (Mirounga angustirostris), demonstrating that an exceptional hypoxemic tolerance and exquisite management of blood O2 stores underlie the extraordinary diving capability of this consummate diver. As the detailed relationship of energy expenditure and dive behavior remains unknown, we integrated behavior, ecology, and physiology to characterize the costs of different types of dives of elephant seals. Elephant seal dive profiles were analyzed and O2 utilization was classified according to dive type (overall function of dive: transit, foraging, food processing/rest). This is the first account linking behavior at this level with in vivo blood O2 measurements in an animal freely diving at sea, allowing us to assess patterns of O2 utilization and energy expenditure between various behaviors and activities in an animal in the wild. In routine dives of elephant seals, the blood O2 store was significantly depleted to a similar range irrespective of dive function, suggesting that all dive types have equal costs in terms of blood O2 depletion. Here, we present the first physiological evidence that all dive types have similarly high blood O2 demands, supporting an energy balance strategy achieved by devoting one major task to a given dive, thereby separating dive functions into distinct dive types. This strategy may optimize O2 store utilization and recovery, consequently maximizing time underwater and allowing these animals to take full advantage of their underwater resources. This approach may be important to optimizing energy expenditure throughout a dive bout or at-sea foraging trip and is well suited to the lifestyle of an elephant seal, which spends > 90% of its time at sea submerged making diving its most

  10. Use of a mobile diving support vessel, Offshore California

    SciTech Connect

    Carroll, J.P.

    1983-03-01

    The Blue Dolphin is a converted workboat with a one-atmosphere manipulator bell diving system. It provides diving support for Chevron's offshore drilling program. This support includes underwater inspection, repair and salvage.

  11. Summer diving behavior of male walruses in Bristol Bay, Alaska

    USGS Publications Warehouse

    Jay, C.V.; Farley, Sean D.; Garner, G.W.

    2001-01-01

    Pacific walruses (Odobenus rosmarus divergens) make trips from ice or land haul-out sites to forage for benthic prey. We describe dive and trip characteristics from time-depth-recorder data collected over a one-month period during summer from four male Pacific walruses in Bristol Bay, Alaska. Dives were classified into four types. Shallow (4 m), short (2.7 min), square-shaped dives accounted for 11% of trip time, and many were probably associated with traveling. Shallow (2 m) and very short (0.5 min) dives composed only 1% of trip time. Deep (41 m), long (7.2 min), square-shaped dives accounted for 46% of trip time and were undoubtedly associated with benthic foraging. V-shaped dives ranged widely in depth, were of moderate duration (4.7 min), and composed 3% of trip time. These dives may have been associated with navigation or exploration of the seafloor for potential prey habitat. Surface intervals between dives were similar among dive types, and generally lasted 1-2 min. Total foraging time was strongly correlated with trip duration and there was no apparent diel pattern of diving in any dive type among animals. We found no correlation between dive duration and postdive surface interval within dive types, suggesting that diving occurred within aerobic dive limits. Trip duration varied considerably within and among walruses (0.3-9.4 d), and there was evidence that some of the very short trips were unrelated to foraging. Overall, walruses were in the water for 76.6% of the time, of which 60.3% was spent diving.

  12. Recreational technical diving part 1: an introduction to technical diving methods and activities.

    PubMed

    Mitchell, Simon J; Doolette, David J

    2013-06-01

    Technical divers use gases other than air and advanced equipment configurations to conduct dives that are deeper and/or longer than typical recreational air dives. The use of oxygen-nitrogen (nitrox) mixes with oxygen fractions higher than air results in longer no-decompression limits for shallow diving, and faster decompression from deeper dives. For depths beyond the air-diving range, technical divers mix helium, a light non-narcotic gas, with nitrogen and oxygen to produce 'trimix'. These blends are tailored to the depth of intended use with a fraction of oxygen calculated to produce an inspired oxygen partial pressure unlikely to cause cerebral oxygen toxicity and a nitrogen fraction calculated to produce a tolerable degree of nitrogen narcosis. A typical deep technical dive will involve the use of trimix at the target depth with changes to gases containing more oxygen and less inert gas during the decompression. Open-circuit scuba may be used to carry and utilise such gases, but this is very wasteful of expensive helium. There is increasing use of closed-circuit 'rebreather' devices. These recycle expired gas and potentially limit gas consumption to a small amount of inert gas to maintain the volume of the breathing circuit during descent and the amount of oxygen metabolised by the diver. This paper reviews the basic approach to planning and execution of dives using these methods to better inform physicians of the physical demands and risks.

  13. Effects of scuba diving on vascular repair mechanisms.

    PubMed

    Culic, Vedrana Cikes; Van Craenenbroeck, Emeline; Muzinic, Nikolina Rezic; Ljubkovic, Marko; Marinovic, Jasna; Conraads, Viviane; Dujic, Zeljko

    2014-01-01

    A single air dive causes transient endothelial dysfunction. Endothelial progenitor cells (EPCs) and circulating angiogenic cells (CAC) contribute synergistically to endothelial repair. In this study (1) the acute effects of diving on EPC numbers and CAC migration and (2) the influence of the gas mixture (air/nitrox-36) was investigated. Ten divers performed two dives to 18 meters on Day (D) 1 and D3, using air. After 15 days, dives were repeated with nitrox-36. Blood sampling took place before and immediately after diving. Circulating EPCs were quantified by flow cytometry, CAC migration of culture was assessed on D7. When diving on air, a trend for reduced EPC numbers is observed post-dive, which is persistent on D1 and D3. CAC migration tends to improve acutely following diving. These effects are more pronounced with nitrox-36 dives. Diving acutely affects EPC numbers and CAC function, and to a larger extent when diving with nitrox-36. The diving-induced oxidative stress may influence recruitment or survival of EPC. The functional improvement of CAC could be a compensatory mechanism to maintain endothelial homeostasis.

  14. 29 CFR 1915.6 - Commerical diving operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Commerical diving operations. 1915.6 Section 1915.6 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Commerical diving operations. Commerical diving operations shall be subject to subpart T of part...

  15. 29 CFR 1926.1086 - Mixed-gas diving.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Mixed-gas diving. 1926.1086 Section 1926.1086 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Diving Specific Operations Procedures § 1926.1086 Mixed-gas diving. Note: The requirements applicable to construction work under this section...

  16. 46 CFR 197.334 - Open diving bells.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Open diving bells. 197.334 Section 197.334 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE OCCUPATIONAL SAFETY AND HEALTH STANDARDS GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.334 Open diving bells. Each open...

  17. 46 CFR 56.50-110 - Diving support systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Diving support systems. 56.50-110 Section 56.50-110... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-110 Diving support systems. (a) In addition to the requirements of this part, piping for diving installations which is permanently...

  18. Techniques for Diving Deeper Than 1,500 Feet,

    DTIC Science & Technology

    1980-03-01

    Divinr X. Fructus English: Abstract This is a summary of our chamber dives ( Physalie an" Sagittaire) and sea dives (Janus I, II and IV), which...between 1400 to 1800 ft. The recent results are perhaps a little worse than the first British dives to 1500 ft in 1970 and the early French Physalie and

  19. 29 CFR 1910.421 - Pre-dive procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... reserves); (4) Thermal protection; (5) Diving equipment and systems; (6) Dive team assignments and physical... designation or residual inert gas status of dive team members; (8) Decompression and treatment procedures... breathing gas supply system including reserve breathing gas supplies, masks, helmets, thermal...

  20. 29 CFR 1910.426 - Mixed-gas diving.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... fsw or when the dive involves inwater decompression time of greater than 120 minutes, except when... depths greater than 300 fsw, except when diving is conducted in physically confining spaces. (c... for dives deeper than 100 fsw or outside the no-decompression limits. (8) When a closed bell is...

  1. 29 CFR 1910.425 - Surface-supplied air diving.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-supplied air diving shall not be conducted at depths deeper than 190 fsw, except that dives with bottom times of 30 minutes or less may be conducted to depths of 220 fsw. (2) A decompression chamber shall be... fsw. (3) A bell shall be used for dives with an inwater decompression time greater than 120...

  2. 29 CFR 1910.426 - Mixed-gas diving.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... fsw or when the dive involves inwater decompression time of greater than 120 minutes, except when... depths greater than 300 fsw, except when diving is conducted in physically confining spaces. (c... for dives deeper than 100 fsw or outside the no-decompression limits. (8) When a closed bell is...

  3. 29 CFR 1910.425 - Surface-supplied air diving.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-supplied air diving shall not be conducted at depths deeper than 190 fsw, except that dives with bottom times of 30 minutes or less may be conducted to depths of 220 fsw. (2) A decompression chamber shall be... fsw. (3) A bell shall be used for dives with an inwater decompression time greater than 120...

  4. 29 CFR 1910.426 - Mixed-gas diving.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... fsw or when the dive involves inwater decompression time of greater than 120 minutes, except when... depths greater than 300 fsw, except when diving is conducted in physically confining spaces. (c... for dives deeper than 100 fsw or outside the no-decompression limits. (8) When a closed bell is...

  5. 29 CFR 1910.426 - Mixed-gas diving.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... fsw or when the dive involves inwater decompression time of greater than 120 minutes, except when... depths greater than 300 fsw, except when diving is conducted in physically confining spaces. (c... for dives deeper than 100 fsw or outside the no-decompression limits. (8) When a closed bell is...

  6. 29 CFR 1910.425 - Surface-supplied air diving.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-supplied air diving shall not be conducted at depths deeper than 190 fsw, except that dives with bottom times of 30 minutes or less may be conducted to depths of 220 fsw. (2) A decompression chamber shall be... fsw. (3) A bell shall be used for dives with an inwater decompression time greater than 120...

  7. 46 CFR 197.432 - Surface-supplied air diving.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... at depths less than 190 fsw, except that dives with bottom times of 30 minutes or less may be conducted to depths of 220 fsw; (b) Each diving operation has a primary breathing gas supply; (c) Each diver... deeper than 130 fsw or outside the no-decompression limits— (1) Each diving operation has a...

  8. 29 CFR 1910.425 - Surface-supplied air diving.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-supplied air diving shall not be conducted at depths deeper than 190 fsw, except that dives with bottom times of 30 minutes or less may be conducted to depths of 220 fsw. (2) A decompression chamber shall be... fsw. (3) A bell shall be used for dives with an inwater decompression time greater than 120...

  9. 46 CFR 197.432 - Surface-supplied air diving.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... at depths less than 190 fsw, except that dives with bottom times of 30 minutes or less may be conducted to depths of 220 fsw; (b) Each diving operation has a primary breathing gas supply; (c) Each diver... deeper than 130 fsw or outside the no-decompression limits— (1) Each diving operation has a...

  10. 29 CFR 1910.425 - Surface-supplied air diving.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-supplied air diving shall not be conducted at depths deeper than 190 fsw, except that dives with bottom times of 30 minutes or less may be conducted to depths of 220 fsw. (2) A decompression chamber shall be... fsw. (3) A bell shall be used for dives with an inwater decompression time greater than 120...

  11. 46 CFR 197.432 - Surface-supplied air diving.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... at depths less than 190 fsw, except that dives with bottom times of 30 minutes or less may be conducted to depths of 220 fsw; (b) Each diving operation has a primary breathing gas supply; (c) Each diver... deeper than 130 fsw or outside the no-decompression limits— (1) Each diving operation has a...

  12. 46 CFR 197.432 - Surface-supplied air diving.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... at depths less than 190 fsw, except that dives with bottom times of 30 minutes or less may be conducted to depths of 220 fsw; (b) Each diving operation has a primary breathing gas supply; (c) Each diver... deeper than 130 fsw or outside the no-decompression limits— (1) Each diving operation has a...

  13. 29 CFR 1910.426 - Mixed-gas diving.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... fsw or when the dive involves inwater decompression time of greater than 120 minutes, except when... depths greater than 300 fsw, except when diving is conducted in physically confining spaces. (c... for dives deeper than 100 fsw or outside the no-decompression limits. (8) When a closed bell is...

  14. 46 CFR 197.432 - Surface-supplied air diving.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... at depths less than 190 fsw, except that dives with bottom times of 30 minutes or less may be conducted to depths of 220 fsw; (b) Each diving operation has a primary breathing gas supply; (c) Each diver... deeper than 130 fsw or outside the no-decompression limits— (1) Each diving operation has a...

  15. 29 CFR 1910.410 - Qualifications of dive team.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... control the exposure of others to hyperbaric conditions shall be trained in diving-related physics and... dive team member. (2) The employer shall not require a dive team member to be exposed to hyperbaric... hyperbaric conditions for the duration of any temporary physical impairment or condition which is known...

  16. Otologic Hazards Related to Scuba Diving

    PubMed Central

    Glazer, Tiffany A.; Telian, Steven A.

    2016-01-01

    Context: As of 2015, more than 23 million scuba diver certifications have been issued across the globe. Given the popularity of scuba diving, it is incumbent on every physician to know and understand the specific medical hazards and conditions associated with scuba diving. Evidence Acquisition: Sources were obtained from PubMed, MEDLINE, and EBSCO databases from 1956 onward and ranged from diverse fields including otologic reviews and wilderness medicine book chapters. Study Design: Clinical review. Level of Evidence: Level 5. Results: Otologic hazards can be categorized into barotrauma-related injuries or decompression sickness. Conclusion: When combined with a high index of suspicion, the physician can recognize these disorders and promptly initiate proper treatment of the potentially hazardous and irreversible conditions related to scuba diving. PMID:26857731

  17. O2 store management in diving emperor penguins

    PubMed Central

    Ponganis, P. J.; Stockard, T. K.; Meir, J. U.; Williams, C. L.; Ponganis, K. V.; Howard, R.

    2009-01-01

    Summary In order to further define O2 store utilization during dives and understand the physiological basis of the aerobic dive limit (ADL, dive duration associated with the onset of post-dive blood lactate accumulation), emperor penguins (Aptenodytes forsteri) were equipped with either a blood partial pressure of oxygen (PO2) recorder or a blood sampler while they were diving at an isolated dive hole in the sea ice of McMurdo Sound, Antarctica. Arterial PO2 profiles (57 dives) revealed that (a) pre-dive PO2 was greater than that at rest, (b) PO2 transiently increased during descent and (c) post-dive PO2 reached that at rest in 1.92±1.89 min (N=53). Venous PO2 profiles (130 dives) revealed that (a) pre-dive venous PO2 was greater than that at rest prior to 61% of dives, (b) in 90% of dives venous PO2 transiently increased with a mean maximum PO2 of 53±18 mmHg and a mean increase in PO2 of 11±12 mmHg, (c) in 78% of dives, this peak venous PO2 occurred within the first 3 min, and (d) post-dive venous PO2 reached that at rest within 2.23±2.64 min (N=84). Arterial and venous PO2 values in blood samples collected 1–3 min into dives were greater than or near to the respective values at rest. Blood lactate concentration was less than 2 mmol l–1 as far as 10.5 min into dives, well beyond the known ADL of 5.6 min. Mean arterial and venous PN2 of samples collected at 20–37 m depth were 2.5 times those at the surface, both being 2.1±0.7 atmospheres absolute (ATA; N=3 each), and were not significantly different. These findings are consistent with the maintenance of gas exchange during dives (elevated arterial and venous PO2 and PN2 during dives), muscle ischemia during dives (elevated venous PO2, lack of lactate washout into blood during dives), and arterio-venous shunting of blood both during the surface period (venous PO2 greater than that at rest) and during dives (arterialized venous PO2 values during descent, equivalent arterial and venous PN2 values during

  18. Deep-diving foraging behaviour of sperm whales (Physeter macrocephalus).

    PubMed

    Watwood, Stephanie L; Miller, Patrick J O; Johnson, Mark; Madsen, Peter T; Tyack, Peter L

    2006-05-01

    1. Digital tags were used to describe diving and vocal behaviour of sperm whales during 198 complete and partial foraging dives made by 37 individual sperm whales in the Atlantic Ocean, the Gulf of Mexico and the Ligurian Sea. 2. The maximum depth of dive averaged by individual differed across the three regions and was 985 m (SD = 124.3), 644 m (123.4) and 827 m (60.3), respectively. An average dive cycle consisted of a 45 min (6.3) dive with a 9 min (3.0) surface interval, with no significant differences among regions. On average, whales spent greater than 72% of their time in foraging dive cycles. 3. Whales produced regular clicks for 81% (4.1) of a dive and 64% (14.6) of the descent phase. The occurrence of buzz vocalizations (also called 'creaks') as an indicator of the foraging phase of a dive showed no difference in mean prey capture attempts per dive between regions [18 buzzes/dive (7.6)]. Sperm whales descended a mean of 392 m (144) from the start of regular clicking to the first buzz, which supports the hypothesis that regular clicks function as a long-range biosonar. 4. There were no significant differences in the duration of the foraging phase [28 min (6.0)] or percentage of the dive duration in the foraging phase [62% (7.3)] between the three regions, with an overall average proportion of time spent actively encountering prey during dive cycles of 0.53 (0.05). Whales maintained their time in the foraging phase by decreasing transit time for deeper foraging dives. 5. Similarity in foraging behaviour in the three regions and high diving efficiencies suggest that the success of sperm whales as mesopelagic predators is due in part to long-range echolocation of deep prey patches, efficient locomotion and a large aerobic capacity during diving.

  19. [Scuba diving and the heart. Cardiac aspects of sport scuba diving].

    PubMed

    Muth, Claus-Martin; Tetzlaff, Kay

    2004-06-01

    Diving with self-contained underwater breathing apparatus (scuba) has become a popular recreational sports activity throughout the world. A high prevalence of cardiovascular disorders among the population makes it therefore likely that subjects suffering from cardiovascular problems may want to start scuba diving. Although scuba diving is not a competitive sport requiring athletic health conditions, a certain medical fitness is recommended because of the physical peculiarities of the underwater environment. Immersion alone will increase cardiac preload by central blood pooling with a rise in both cardiac output and blood pressure, counteracted by increased diuresis. Exposure to cold and increased oxygen partial pressure during scuba diving will additionally increase afterload by vasoconstrictive effects and may exert bradyarryhthmias in combination with breath-holds. Volumes of gas-filled body cavities will be affected by changing pressure (Figure 1), and inert gas components of the breathing gas mixture such as nitrogen in case of air breathing will dissolve in body tissues and venous blood with increasing alveolar inert gas pressure. During decompression a free gas phase may form in supersaturated tissues, resulting in the generation of inert gas microbubbles that are eliminated by the venous return to the lungs under normal circumstances. Certain cardiovascular conditions may have an impact on these physiological changes and pose the subject at risk of suffering adverse events from scuba diving. Arterial hypertension may be aggravated by underwater exercise and immersion. Symptomatic coronary artery disease and symptomatic heart rhythm disorders preclude diving. The occurrence of ventricular extrasystoles according to Lown classes I and II, and the presence of atrial fibrillation are considered relative contraindications in the absence of an aggravation following exercise. Asymptomatic subjects with Wolff-Parkinson-White syndrome may be allowed to dive, but in

  20. Negative neurofunctional effects of frequency, depth and environment in recreational scuba diving: the Geneva "memory dive" study

    PubMed Central

    Slosman, D; de Ribaupierre, S; Chicherio, C; Ludwig, C; Montandon, M; Allaoua, M; Genton, L; Pichard, C; Grousset, A; Mayer, E; Annoni, J; de Ribaupierre, A

    2004-01-01

    Objectives: To explore relationships between scuba diving activity, brain, and behaviour, and more specifically between global cerebral blood flow (CBF) or cognitive performance and total, annual, or last 6 months' frequencies, for standard dives or dives performed below 40 m, in cold water or warm sea geographical environments. Methods: A prospective cohort study was used to examine divers from diving clubs around Lac Léman and Geneva University Hospital. The subjects were 215 healthy recreational divers (diving with self-contained underwater breathing apparatus). Main outcome measures were: measurement of global CBF by 133Xe SPECT (single photon emission computed tomography); psychometric and neuropsychological tests to assess perceptual-motor abilities, spatial discrimination, attentional resources, executive functioning, and memory; evaluation of scuba diving activity by questionnaire focusing on number and maximum depth of dives and geographical site of the diving activity (cold water v warm water); and body composition analyses (BMI). Results: (1) A negative influence of depth of dives on CBF and its combined effect with BMI and age was found. (2) A specific diving environment (more than 80% of dives in lakes) had a negative effect on CBF. (3) Depth and number of dives had a negative influence on cognitive performance (speed, flexibility and inhibition processing in attentional tasks). (4) A negative effect of a specific diving environment on cognitive performance (flexibility and inhibition components) was found. Conclusions: Scuba diving may have long-term negative neurofunctional effects when performed in extreme conditions, namely cold water, with more than 100 dives per year, and maximal depth below 40 m. PMID:15039241

  1. Serum levels of S-100B after recreational scuba diving.

    PubMed

    Stavrinou, L C; Kalamatianos, T; Stavrinou, P; Papasilekas, T; Psachoulia, C; Tzavara, C; Stranjalis, G

    2011-12-01

    Recreational scuba diving is a sport of increasing popularity. Previous studies indicating subtle brain injury in asymptomatic divers imply a cumulative effect of minor neural insults in association with diving for professional and/or recreational purposes, over the long-term. This is the first study to investigate putative neural tissue burden during recreational scuba diving by measuring circulating levels of S-100B, a sensitive biomarker of brain injury. 5 male divers performed 3 consecutive dives under conservative recreational diving settings (maximum depth 15 m, duration of dive 56 min, ascend rate 1.15 m/min) with an interval of 12 h between each session. Although a small increase in serum S-100B levels after each dive was apparent, this increase did not quite reach statistical significance (p=0.057). Moreover, no abnormal S-100B values were recorded (mean baseline: 0.06 μg/L, mean post-dive: 0.086 μg/L) and no effect of the 3 consecutive dives on changes in S-100B levels was detected. These results suggest that under the experimental conditions tested, diving does not seem to have a discernible and/or cumulative impact on central nervous system integrity. The extent to which variable diving settings and practices as well as individual susceptibility factors underlie putative neural tissue burden in asymptomatic divers, remains to be established.

  2. Influence of repeated daily diving on decompression stress.

    PubMed

    Zanchi, J; Ljubkovic, M; Denoble, P J; Dujic, Z; Ranapurwala, S; Pollock, N W

    2014-06-01

    Acclimatization (an adaptive change in response to repeated environmental exposure) to diving could reduce decompression stress. A decrease in post-dive circulating venous gas emboli (VGE or bubbles) would represent positive acclimatization. The purpose of this study was to determine whether four days of daily diving alter post-dive bubble grades. 16 male divers performed identical no-decompression air dives on 4 consecutive days to 18 meters of sea water for 47 min bottom times. VGE monitoring was performed with transthoracic echocardiography every 20 min for 120 min post-dive. Completion of identical daily dives resulted in progressively decreasing odds (or logit risk) of having relatively higher grade bubbles on consecutive days. The odds on Day 4 were half that of Day 1 (OR 0.50, 95% CI: 0.34, 0.73). The odds ratio for a >III bubble grade on Day 4 was 0.37 (95% CI: 0.20, 0.70) when compared to Day 1. The current study indicates that repetitive daily diving may reduce bubble formation, representing a positive (protective) acclimatization to diving. Further work is required to evaluate the impact of additional days of diving and multiple dive days and to determine if the effect is sufficient to alter the absolute risk of decompression sickness.

  3. Agreement among High School Diving Judges.

    ERIC Educational Resources Information Center

    Stewart, Michael J.; Blair, William O.

    1982-01-01

    Raters' agreement and the relative consistency of diving judges at a boy's competition were analyzed using intraclass correlations within 16 position x type combinations. Judges' variance was significant for 5 of the 16 combinations. Point estimates were generally greater for consistency than for raters' agreement about scores. (Author/CM)

  4. DeepDive: Declarative Knowledge Base Construction

    PubMed Central

    De Sa, Christopher; Ratner, Alex; Ré, Christopher; Shin, Jaeho; Wang, Feiran; Wu, Sen; Zhang, Ce

    2016-01-01

    The dark data extraction or knowledge base construction (KBC) problem is to populate a SQL database with information from unstructured data sources including emails, webpages, and pdf reports. KBC is a long-standing problem in industry and research that encompasses problems of data extraction, cleaning, and integration. We describe DeepDive, a system that combines database and machine learning ideas to help develop KBC systems. The key idea in DeepDive is that statistical inference and machine learning are key tools to attack classical data problems in extraction, cleaning, and integration in a unified and more effective manner. DeepDive programs are declarative in that one cannot write probabilistic inference algorithms; instead, one interacts by defining features or rules about the domain. A key reason for this design choice is to enable domain experts to build their own KBC systems. We present the applications, abstractions, and techniques of DeepDive employed to accelerate construction of KBC systems. PMID:28344371

  5. Effect of Diving and Diving Hoods on the Bacterial Flora of the External Ear Canal and Skin

    DTIC Science & Technology

    1982-05-01

    NAVAL MEDICAL RESEARCH INSTITUTE BETHESDA, MARYLAND 82-22 EFFECT OF DIVING AND DIVING HOODS ON THE BACTERIAL FLORA OF THE EXTERNAL EAR CANAL AND SKIN...Subtitle) 5. TYPE OF REPeRT & PERIOD COVERED EFFECT OF DIVING AND DIVING HOODS ON THE BACTERIAL - PROGRESS FLORA OF THE EXTERNAL EAR CANAL AND SKIN MEDICAL...bacterial flora of the external ear canals and posterior auricular skin surface was investigated’in a group of 26 divers after 25 dry-suit dives in harbor

  6. Abstracts Biomedical Research and Underwater Breathing Apparatus Evaluation Dives 10 to 1600 Feet April 1-2, 1974 Conference

    DTIC Science & Technology

    1974-04-01

    8 CARBOXYHEMOGLOBIN IN SATURATION DIVING ........... ......... 10 HYPERBARIC GASES AND THE 02 TRANSPORT SYSTEM OF RED...maintained at 30-32 0 C (86-89.6 0 F), relative humidity was 68-74%, and there was no measurable atmospheric velocity (V 10 m/min, or 33 ft/min). Comfort and...effect of surgical and emotional stress on man have shown a decrease in functioning of the hypothalamic-hypophyseal-testicular axis as measured by

  7. [Hyperbaric therapy and diving medicine - diving medicine - present state and prospects].

    PubMed

    Winkler, Bernd; Muth, Claus-Martin; Piepho, Tim

    2015-10-01

    The diving accident (decompression incident, DCI) occurs in the decompression phase of dives. The DCI can either be caused by an arterial gas embolism (AGE) subsequent to a pulmonary barotrauma or by the formation of inert gas bubbles subsequent to a reduction of ambient pressure during the ascent from depth. In contrast to the traditional assumption that decompression incidents only occur if decompression rules are neglected, recent data indicate that a vast amount of diving accidents occur even though divers adhered to the rules. Hence, there is a large inter- and intraindividual variability in the predisposition for diving accidents. Within the past few years, the molecular understanding of the pathophysiology of diving accidents has improved considerably. It is now well accepted that pro-inflammatory and pro-coagulatory mechanisms play a central role. Moreover, microparticles are increasingly discussed in the pathogenesis of diving accidents. These new molecular findings have not yet resulted in new therapeutic approaches. However, new approaches of preconditioning before the dive have been developed which are intended to reduce the risk of diving accidents. The symptoms of a diving accident show a large variability and range. They reach from pruritus over tension in the female breast, marbled skin and pain in the joints to severe neurological disability like paraplegia or hemiplegia. Furthermore, pulmonary symptoms can be a result of a pulmonary gas embolism and/or a tension pneumothorax. Extreme cases can also manifest as generalized, difficult-to-treat seizures, loss of consciousness or even death. The evidence-based therapy of diving accidents consists of an immediate application of 100% inspiratory O2. This can be performed via a demand valve, face mask with reservoir bag or ventilation bag connected to a reservoir bag. Fluid substitution is performed by i. v. infusion of 500-1000ml/h of cristalloids. If consciousness is not impaired, the diver is

  8. Locomotion in diving elephant seals: physical and physiological constraints.

    PubMed

    Davis, Randall W; Weihs, Daniel

    2007-11-29

    To better understand how elephant seals (Mirounga angustirostris) use negative buoyancy to reduce energy metabolism and prolong dive duration, we modelled the energetic cost of transit and deep foraging dives in an elephant seal. A numerical integration technique was used to model the effects of swim speed, descent and ascent angles, and modes of locomotion (i.e. stroking and gliding) on diving metabolic rate, aerobic dive limit, vertical displacement (maximum dive depth) and horizontal displacement (maximum horizontal distance along a straight line between the beginning and end locations of the dive) for aerobic transit and foraging dives. Realistic values of the various parameters were taken from previous experimental data. Our results indicate that there is little energetic advantage to transit dives with gliding descent compared with horizontal swimming beneath the surface. Other factors such as feeding and predator avoidance may favour diving to depth during migration. Gliding descent showed variable energy savings for foraging dives. Deep mid-water foraging dives showed the greatest energy savings (approx. 18%) as a result of gliding during descent. In contrast, flat-bottom foraging dives with horizontal swimming at a depth of 400m showed less of an energetic advantage with gliding descent, primarily because more of the dive involved stroking. Additional data are needed before the advantages of gliding descent can be fully understood for male and female elephant seals of different age and body composition. This type of data will require animal-borne instruments that can record the behaviour, three-dimensional movements and locomotory performance of free-ranging animals at depth.

  9. The diving behavior of blue and fin whales: is dive duration shorter than expected based on oxygen stores?

    PubMed

    Croll, D A; Acevedo-Gutiérrez, A; Tershy, B R; Urbán-Ramírez, J

    2001-07-01

    Many diving seabirds and marine mammals have been found to regularly exceed their theoretical aerobic dive limit (TADL). No animals have been found to dive for durations that are consistently shorter than their TADL. We attached time-depth recorders to 7 blue whales and 15 fin whales (family Balaenopteridae). The diving behavior of both species was similar, and we distinguished between foraging and traveling dives. Foraging dives in both species were deeper, longer in duration and distinguished by a series of vertical excursions where lunge feeding presumably occurred. Foraging blue whales lunged 2.4 (+/-1.13) times per dive, with a maximum of six times and average vertical excursion of 30.2 (+/-10.04) m. Foraging fin whales lunged 1.7 (+/-0.88) times per dive, with a maximum of eight times and average vertical excursion of 21.2 (+/-4.35) m. The maximum rate of ascent of lunges was higher than the maximum rate of descent in both species, indicating that feeding lunges occurred on ascent. Foraging dives were deeper and longer than non-feeding dives in both species. On average, blue whales dived to 140.0 (+/-46.01) m and 7.8 (+/-1.89) min when foraging, and 67.6 (+/-51.46) m and 4.9 (+/-2.53) min when not foraging. Fin whales dived to 97.9 (+/-32.59) m and 6.3 (+/-1.53) min when foraging and to 59.3 (+/-29.67) m and 4.2 (+/-1.67) min when not foraging. The longest dives recorded for both species, 14.7 min for blue whales and 16.9 min for fin whales, were considerably shorter than the TADL of 31.2 and 28.6 min, respectively. An allometric comparison of seven families diving to an average depth of 80-150 m showed a significant relationship between body mass and dive duration once Balaenopteridae whales, with a mean dive duration of 6.8 min, were excluded from the analysis. Thus, the short dive durations of blue whales and fin whales cannot be explained by the shallow distribution of their prey. We propose instead that short duration diving in large whales results from

  10. Diving dentistry: a review of the dental implications of scuba diving.

    PubMed

    Zadik, Y; Drucker, S

    2011-09-01

    In light of the overwhelming popularity of self-contained underwater breathing apparatus (SCUBA) diving, general dental practitioners should be prepared to address complications arising as a result of diving and to provide patients with accurate information. The aim of this article was to introduce the concepts of diving medicine and dentistry to the dentist, and to supply the dental practitioner with some diagnostic tools as well as treatment guidelines. The literature was reviewed to address diving barotrauma (pressure-induced injury related to an air space) to the head, face and oral regions, as well as scuba mouthpiece-related oral conditions. The relevant conditions for dentists who treat divers include diving-associated headache (migraine, tension-type headache), barosinusitis and barotitis-media (sinus and middle ear barotrauma, respectively), neuropathy, trigeminal (CN V) or facial (CN VII) nerve baroparesis (pressure-induced palsy), dental barotrauma (barometric-related tooth injury), barodontalgia (barometric-related dental pain), mouthpiece-associated herpes infection, pharyngeal gag reflex and temporomandibular joint disorder (dysfunction). For each condition, a theoretical description is followed by practical recommendations for the dental practitioner for the prevention and management of the condition.

  11. Deadly diving? Physiological and behavioural management of decompression stress in diving mammals

    PubMed Central

    Hooker, S. K.; Fahlman, A.; Moore, M. J.; Aguilar de Soto, N.; Bernaldo de Quirós, Y.; Brubakk, A. O.; Costa, D. P.; Costidis, A. M.; Dennison, S.; Falke, K. J.; Fernandez, A.; Ferrigno, M.; Fitz-Clarke, J. R.; Garner, M. M.; Houser, D. S.; Jepson, P. D.; Ketten, D. R.; Kvadsheim, P. H.; Madsen, P. T.; Pollock, N. W.; Rotstein, D. S.; Rowles, T. K.; Simmons, S. E.; Van Bonn, W.; Weathersby, P. K.; Weise, M. J.; Williams, T. M.; Tyack, P. L.

    2012-01-01

    Decompression sickness (DCS; ‘the bends’) is a disease associated with gas uptake at pressure. The basic pathology and cause are relatively well known to human divers. Breath-hold diving marine mammals were thought to be relatively immune to DCS owing to multiple anatomical, physiological and behavioural adaptations that reduce nitrogen gas (N2) loading during dives. However, recent observations have shown that gas bubbles may form and tissue injury may occur in marine mammals under certain circumstances. Gas kinetic models based on measured time-depth profiles further suggest the potential occurrence of high blood and tissue N2 tensions. We review evidence for gas-bubble incidence in marine mammal tissues and discuss the theory behind gas loading and bubble formation. We suggest that diving mammals vary their physiological responses according to multiple stressors, and that the perspective on marine mammal diving physiology should change from simply minimizing N2 loading to management of the N2 load. This suggests several avenues for further study, ranging from the effects of gas bubbles at molecular, cellular and organ function levels, to comparative studies relating the presence/absence of gas bubbles to diving behaviour. Technological advances in imaging and remote instrumentation are likely to advance this field in coming years. PMID:22189402

  12. The silent witness: using dive computer records in diving fatality investigations.

    PubMed

    Sayer, Martin D J; Azzopardi, Elaine

    2014-09-01

    Downloaded data from diving computers can offer invaluable insights into diving incidents resulting in fatalities. Such data form an essential part of subsequent investigations or in legal actions related to the diving incident. It is often tempting to accept the information being displayed from a computer download without question. However, there is a large variability between the makes and models of dive computer in how the data are recorded, stored and re-displayed and caution must be employed in the interpretation of the evidence. In reporting on downloaded data, investigators should be fully aware of the limitations in the data retrieved. They should also know exactly how to interpret parameters such as: the accuracy of the dive profile; the effects of different mode settings; the precision of displayed water temperatures; the potential for misrepresenting breathing rates where there are data from integrated monitoring systems, and be able to challenge some forms of displayed information either through re-modelling based on the pressure/time profiles or by testing the computers in standardised conditions.

  13. Sphenoid sinus barotrauma after scuba diving.

    PubMed

    Jeong, Jin Hyeok; Kim, Kuk; Cho, Seok Hyun; Kim, Kyung Rae

    2012-01-01

    We report the case of an 18-year-old male patient operated on for sphenoid sinus barotrauma after scuba diving. The patient attended our emergency department because of intractable headache but did not improve with conservative treatment. After computed tomography and magnetic resonance imaging examination, he was diagnosed with sphenoid sinusitis that extended to the nasal septum. He therefore underwent surgery for sinus ventilation and abscess drainage.

  14. Carbon dioxide absorbents for rebreather diving.

    PubMed

    Pennefather, John

    2016-09-01

    Firstly I would like to thank SPUMS members for making me a Life Member of SPUMS; I was surprised and greatly honoured by the award. I also want to confirm and expand on the findings on carbon dioxide absorbents reported by David Harvey et al. For about 35 years, I was the main player in deciding which absorbent went into Australian Navy and Army diving sets. On several occasions, suppliers of absorbents to the anaesthesia market tried to supply the Australian military market. On no occasion did they provide absorbent that came close to the minimum absorbent capacity required, generally being 30-40% less efficient than diving-grade absorbents. Because I regard lives as being more important than any likely dollar saving, the best absorbent was always selected unless two suppliers provided samples with the same absorbent capacity. On almost every occasion, there was a clear winner and cost was never considered. I suggest the same argument for the best absorbent should be used by members and their friends who dive using rebreather sets. I make this point because of my findings on a set that was brought to me after the death of its owner. The absorbent was not the type or grain size recommended by the manufacturer of the set and did not resemble any of the diving grade absorbents I knew of. I suspected by its appearance that it was anaesthetic grade absorbent. When I tested the set, the absorbent system failed very quickly so it is likely that carbon dioxide toxicity contributed to his death. The death was not the subject of an inquest and I have no knowledge of how the man obtained the absorbent. Possibly there was someone from an operating theatre staff who unintentionally caused their friend's death by supplying him with 'borrowed absorbent'. I make this point as I would like to discourage members from making a similar error.

  15. Diving in Contaminated Water: Health Risk Matrix

    DTIC Science & Technology

    2006-10-01

    health effects if they are present in high concentrations. Some of the metals are insoluble ( mercury , lead) and are associated with particles. Therefore...risk associated with that parameter is really low (for example, copper and mercury ). However, divers have to keep in mind that they may encounter higher...levels if they dive in special areas (areas severely affected by mining activities in the case of copper and mercury ). As research and monitoring

  16. Project Review of the Experimental Diving Unit

    DTIC Science & Technology

    1994-06-01

    by CF along with 2 proto- type Surface Supplied CUMA (SS CUMA) from Fullerton Sherwood Engineering Ltd. A SS CUMA would provide longer dive endurance...were purchased from Exotemp Systems. - 16- Nil repo. PROJECTIONS The glov and batery evaluation will continue during CUMA decompression table development... type of apparatus and it would be difficult to relate results from this test to those from other countries. Therefore, a new test method and acceptable

  17. Diel Variation in Beaked Whale Diving Behavior

    DTIC Science & Technology

    2008-01-01

    finned pilot whales (G. macrorhynchus) off the Canary Islands spent more time foraging at night near the surface, based on acoustic tags recording...dive data from two species, Cuvier’s and Blainville’s beaked whales, tagged with time-depth recorders off the west coast of the island of Hawai‘i...Methods Field work was undertaken off the west side of the island of Hawai‘i in each year from 2002 through 2007. Methods have been

  18. 46 CFR 197.434 - Surface-supplied mixed-gas diving.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... bell is used for dives deeper than 220 fsw or when the dive involves in-water decompression times... physically confining space; (d) A closed bell is used for dives at depths greater than 300 fsw, except...

  19. 46 CFR 197.434 - Surface-supplied mixed-gas diving.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... bell is used for dives deeper than 220 fsw or when the dive involves in-water decompression times... physically confining space; (d) A closed bell is used for dives at depths greater than 300 fsw, except...

  20. 46 CFR 197.434 - Surface-supplied mixed-gas diving.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... bell is used for dives deeper than 220 fsw or when the dive involves in-water decompression times... physically confining space; (d) A closed bell is used for dives at depths greater than 300 fsw, except...

  1. 46 CFR 197.434 - Surface-supplied mixed-gas diving.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... bell is used for dives deeper than 220 fsw or when the dive involves in-water decompression times... physically confining space; (d) A closed bell is used for dives at depths greater than 300 fsw, except...

  2. 46 CFR 197.434 - Surface-supplied mixed-gas diving.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... bell is used for dives deeper than 220 fsw or when the dive involves in-water decompression times... physically confining space; (d) A closed bell is used for dives at depths greater than 300 fsw, except...

  3. The epidemiology of murder and suicide involving scuba diving.

    PubMed

    Buzzacott, Peter; Denoble, Petar

    2012-01-01

    Murder and suicide in involving scuba are extremely rare. A systematic search identified 19 published studies describing 4,339 recreational diving fatalities occurring between 1956 and 2011. Case vignettes identified three possible murders and eight likely suicides. These are summarised and the victims' demography described. Prevalences of 69 murders per 105 diving fatalities and 184 suicides per 105 diving fatalities are lower than found among all cause mortality in the USA and Australia.

  4. Fabrication of a custom diving mouthpiece using a thermoforming material.

    PubMed

    Matsui, Ryosuke; Ueno, Toshiaki; Ohyama, Takashi

    2004-10-01

    Scuba divers may suffer from temporomandibular joint dysfunction and related problems associated with the use of commercially available diving mouthpieces. Several authors have recommended that custom diving mouthpieces be fabricated for relieving the symptoms of diver's mouth syndrome. The lost wax technique is commonly used for this purpose but may be time-consuming and is technically complicated. This article describes a simplified technique using thermoforming material for fabricating a custom diving mouthpiece.

  5. Dive behaviour can predict metabolic expenditure in Steller sea lions

    PubMed Central

    Goundie, Elizabeth T.; Rosen, David A. S.; Trites, Andrew W.

    2015-01-01

    Quantification of costs associated with foraging contributes to understanding the energetic impact that changes in prey availability have on the energy balance of an animal and the fitness of populations. However, estimating the costs of foraging is difficult for breath-hold divers, such as Steller sea lions, that feed underwater. We developed models parameterized with data from free-diving captive Steller sea lions to estimate the costs incurred by wild animals while foraging. We measured diving metabolic rate of trained sea lions performing four types of dives to 10 and 40 m in the open ocean and estimated the separate costs of different dive components: surface time; bottom time; and transiting to and from depth. We found that the sea lions' diving metabolic rates were higher while transiting (20.5 ± 13.0 ml O2 min−1 kg−1) than while swimming at depth (13.5 ± 4.1 ml O2 min−1 kg−1), and both were higher than metabolism at the surface (9.2 ± 1.6 ml O2 min−1 kg−1). These values were incorporated into an energetic model that accurately predicted oxygen consumption for dives only (within 9.5%) and dive cycles (within 7.7%), although it consistently overestimated costs by 5.9% for dives and 21.8% for dive cycles. Differences in the costs of individual components of dives also explained differences in the efficiency of different dive strategies. Single dives were energetically less costly than bout dives; however, sea lions were more efficient at replenishing oxygen stores after bout dives and could therefore spend a greater portion of their time foraging than when undertaking single dives. The metabolic rates we measured for the different behavioural components of diving can be applied to time–depth recordings from wild Steller sea lions to estimate the energy expended while foraging. In turn, this can be used to understand how changes in prey availability affect energy balance and the health of individuals in

  6. SCUBA medicine: a first-responder's guide to diving injuries.

    PubMed

    Salahuddin, Moin; James, Laurie A; Bass, Evan Stuart

    2011-01-01

    Self-contained underwater breathing apparatus (SCUBA) diving is an ever-growing sport, and despite a myriad of technological advances to improve safety, it remains dangerous. Providers of medical care for SCUBA divers must have an understanding of diving physiology and potential medical problems that can occur. SCUBA diving also can take participants to remote areas, so being properly prepared for potential emergencies can make a significant difference. The following is a review of diving physiology and the medical problems that can occur in SCUBA divers, along with some suggestions as to how to prepare for a SCUBA excursion.

  7. Dive behaviour can predict metabolic expenditure in Steller sea lions.

    PubMed

    Goundie, Elizabeth T; Rosen, David A S; Trites, Andrew W

    2015-01-01

    Quantification of costs associated with foraging contributes to understanding the energetic impact that changes in prey availability have on the energy balance of an animal and the fitness of populations. However, estimating the costs of foraging is difficult for breath-hold divers, such as Steller sea lions, that feed underwater. We developed models parameterized with data from free-diving captive Steller sea lions to estimate the costs incurred by wild animals while foraging. We measured diving metabolic rate of trained sea lions performing four types of dives to 10 and 40 m in the open ocean and estimated the separate costs of different dive components: surface time; bottom time; and transiting to and from depth. We found that the sea lions' diving metabolic rates were higher while transiting (20.5 ± 13.0 ml O2 min(-1) kg(-1)) than while swimming at depth (13.5 ± 4.1 ml O2 min(-1) kg(-1)), and both were higher than metabolism at the surface (9.2 ± 1.6 ml O2 min(-1) kg(-1)). These values were incorporated into an energetic model that accurately predicted oxygen consumption for dives only (within 9.5%) and dive cycles (within 7.7%), although it consistently overestimated costs by 5.9% for dives and 21.8% for dive cycles. Differences in the costs of individual components of dives also explained differences in the efficiency of different dive strategies. Single dives were energetically less costly than bout dives; however, sea lions were more efficient at replenishing oxygen stores after bout dives and could therefore spend a greater portion of their time foraging than when undertaking single dives. The metabolic rates we measured for the different behavioural components of diving can be applied to time-depth recordings from wild Steller sea lions to estimate the energy expended while foraging. In turn, this can be used to understand how changes in prey availability affect energy balance and the health of individuals in

  8. Gait switches in deep-diving beaked whales: biomechanical strategies for long-duration dives.

    PubMed

    Martín López, Lucía Martina; Miller, Patrick J O; Aguilar de Soto, Natacha; Johnson, Mark

    2015-05-01

    Diving animals modulate their swimming gaits to promote locomotor efficiency and so enable longer, more productive dives. Beaked whales perform extremely long and deep foraging dives that probably exceed aerobic capacities for some species. Here, we use biomechanical data from suction-cup tags attached to three species of beaked whales (Mesoplodon densirostris, N=10; Ziphius cavirostris, N=9; and Hyperoodon ampullatus, N=2) to characterize their swimming gaits. In addition to continuous stroking and stroke-and-glide gaits described for other diving mammals, all whales produced occasional fluke-strokes with distinctly larger dorso-ventral acceleration, which we termed 'type-B' strokes. These high-power strokes occurred almost exclusively during deep dive ascents as part of a novel mixed gait. To quantify body rotations and specific acceleration generated during strokes we adapted a kinematic method combining data from two sensors in the tag. Body rotations estimated with high-rate magnetometer data were subtracted from accelerometer data to estimate the resulting surge and heave accelerations. Using this method, we show that stroke duration, rotation angle and acceleration were bi-modal for these species, with B-strokes having 76% of the duration, 52% larger body rotation and four times more surge than normal strokes. The additional acceleration of B-strokes did not lead to faster ascents, but rather enabled brief glides, which may improve the overall efficiency of this gait. Their occurrence towards the end of long dives leads us to propose that B-strokes may recruit fast-twitch fibres that comprise ∼80% of swimming muscles in Blainville's beaked whales, thus prolonging foraging time at depth.

  9. 29 CFR Appendix B to Subpart T to... - Guidelines for Scientific Diving

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... project using scientific diving is the advancement of science; therefore, information and data resulting... are not included within scientific diving. 4. Scientific divers, based on the nature of...

  10. 29 CFR Appendix B to Subpart T of... - Guidelines for Scientific Diving

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... project using scientific diving is the advancement of science; therefore, information and data resulting... are not included within scientific diving. 4. Scientific divers, based on the nature of...

  11. Diving through the thermal window: implications for a warming world

    PubMed Central

    Campbell, Hamish A.; Dwyer, Ross G.; Gordos, Matthew; Franklin, Craig E.

    2010-01-01

    Population decline and a shift in the geographical distribution of some ectothermic animals have been attributed to climatic warming. Here, we show that rises in water temperature of a few degrees, while within the thermal window for locomotor performance, may be detrimental to diving behaviour in air-breathing ectotherms (turtles, crocodilians, marine iguanas, amphibians, snakes and lizards). Submergence times and internal and external body temperature were remotely recorded from freshwater crocodiles (Crocodylus johnstoni) while they free-ranged throughout their natural habitat in summer and winter. During summer, the crocodiles' mean body temperature was 5.2 ± 0.1°C higher than in winter and the largest proportion of total dive time was composed of dive durations approximately 15 min less than in winter. Diving beyond 40 min during summer required the crocodiles to exponentially increase the time they spent on the surface after the dive, presumably to clear anaerobic debt. The relationship was not as significant in winter, even though a greater proportion of dives were of a longer duration, suggesting that diving lactate threshold (DLT) was reduced in summer compared with winter. Additional evidence for a reduced DLT in summer was derived from the stronger influence body mass exerted upon dive duration, compared to winter. The results demonstrate that the higher summer body temperature increased oxygen demand during the dive, implying that thermal acclimatization of the diving metabolic rate was inadequate. If the study findings are common among air-breathing diving ectotherms, then long-term warming of the aquatic environment may be detrimental to behavioural function and survivorship. PMID:20610433

  12. Yet More Visualized JAMSTEC Cruise and Dive Information

    NASA Astrophysics Data System (ADS)

    Tomiyama, T.; Hase, H.; Fukuda, K.; Saito, H.; Kayo, M.; Matsuda, S.; Azuma, S.

    2014-12-01

    Every year, JAMSTEC performs about a hundred of research cruises and numerous dive surveys using its research vessels and submersibles. JAMSTEC provides data and samples obtained during these cruises and dives to international users through a series of data sites on the Internet. The "DARWIN (http://www.godac.jamstec.go.jp/darwin/e)" data site disseminates cruise and dive information. On DARWIN, users can search interested cruises and dives with a combination search form or an interactive tree menu, and find lists of observation data as well as links to surrounding databases. Document catalog, physical sample databases, and visual archive of dive surveys (e. g. in http://www.godac.jamstec.go.jp/jmedia/portal/e) are directly accessible from the lists. In 2014, DARWIN experienced an update, which was arranged mainly for enabling on-demand data visualization. Using login users' functions, users can put listed data items into the virtual basket and then trim, plot and download the data. The visualization tools help users to quickly grasp the quality and characteristics of observation data. Meanwhile, JAMSTEC launched a new data site named "JDIVES (http://www.godac.jamstec.go.jp/jdives/e)" to visualize data and sample information obtained by dive surveys. JDIVES shows tracks of dive surveys on the "Google Earth Plugin" and diagrams of deep-sea environmental data such as temperature, salinity, and depth. Submersible camera images and links to associated databases are placed along the dive tracks. The JDVIES interface enables users to perform so-called virtual dive surveys, which can help users to understand local geometries of dive spots and geological settings of associated data and samples. It is not easy for individual researchers to organize a huge amount of information recovered from each cruise and dive. The improved visibility and accessibility of JAMSTEC databases are advantageous not only for second-hand users, but also for on-board researchers themselves.

  13. Effect of recreational diving on Patagonian rocky reefs.

    PubMed

    Bravo, Gonzalo; Márquez, Federico; Marzinelli, Ezequiel M; Mendez, María M; Bigatti, Gregorio

    2015-03-01

    Tourism has grown considerably in the last decades, promoting activities such as recreational SCUBA diving that may affect marine benthic communities. In Puerto Madryn, Patagonia Argentina, sub-aquatic tourism areas (STA) receive about 7,000 divers per year. Diving is concentrated on a few small rocky reefs and 50% of the dives occur in summer. In this work, we evaluated the effect of recreational diving activities on benthic communities and determined whether diving causes a press (long-term) or a pulse (short-term) response. We quantified the percentage cover of benthic organisms and compared benthic assemblage structure and composition between two sites with contrasting usage by divers, 'highly disturbed' and 'moderately disturbed' sites, and two 'control' sites with similar physical characteristics but no diving activity, twice before and after the diving peak in summer. We found differences in benthic assemblage structure (identity and relative abundance of taxa) and composition (identity only) among diving sites and controls. These differences were consistent before and after the peak of diving in summer, suggesting that recreational diving may produce a press impact on overall benthic assemblage structure and composition in these STA. At the moderately disturbed site, however, covers of specific taxa, such as some key habitat-forming or highly abundant species, usually differed from those in controls only immediately after summer, after which they begun to resemble controls, suggesting a pulse impact. Thus, STA in Golfo Nuevo seem to respond differently to disturbances of diving depending on the usage of the sites. This information is necessary to develop sound management strategies in order to preserve local biodiversity.

  14. Diving through the thermal window: implications for a warming world.

    PubMed

    Campbell, Hamish A; Dwyer, Ross G; Gordos, Matthew; Franklin, Craig E

    2010-12-22

    Population decline and a shift in the geographical distribution of some ectothermic animals have been attributed to climatic warming. Here, we show that rises in water temperature of a few degrees, while within the thermal window for locomotor performance, may be detrimental to diving behaviour in air-breathing ectotherms (turtles, crocodilians, marine iguanas, amphibians, snakes and lizards). Submergence times and internal and external body temperature were remotely recorded from freshwater crocodiles (Crocodylus johnstoni) while they free-ranged throughout their natural habitat in summer and winter. During summer, the crocodiles' mean body temperature was 5.2±0.1°C higher than in winter and the largest proportion of total dive time was composed of dive durations approximately 15 min less than in winter. Diving beyond 40 min during summer required the crocodiles to exponentially increase the time they spent on the surface after the dive, presumably to clear anaerobic debt. The relationship was not as significant in winter, even though a greater proportion of dives were of a longer duration, suggesting that diving lactate threshold (DLT) was reduced in summer compared with winter. Additional evidence for a reduced DLT in summer was derived from the stronger influence body mass exerted upon dive duration, compared to winter. The results demonstrate that the higher summer body temperature increased oxygen demand during the dive, implying that thermal acclimatization of the diving metabolic rate was inadequate. If the study findings are common among air-breathing diving ectotherms, then long-term warming of the aquatic environment may be detrimental to behavioural function and survivorship.

  15. Saturated fats (image)

    MedlinePlus

    Saturated fats are found predominantly in animal products such as meat and dairy products, and are strongly associated with higher cholesterol levels. Tropical oils such as palm, coconut, and coconut butter, are also high in saturated fats.

  16. Diving in a warming world: the thermal sensitivity and plasticity of diving performance in juvenile estuarine crocodiles (Crocodylus porosus).

    PubMed

    Rodgers, Essie M; Schwartz, Jonathon J; Franklin, Craig E

    2015-01-01

    Air-breathing, diving ectotherms are a crucial component of the biodiversity and functioning of aquatic ecosystems, but these organisms may be particularly vulnerable to the effects of climate change on submergence times. Ectothermic dive capacity is thermally sensitive, with dive durations significantly reduced by acute increases in water temperature; it is unclear whether diving performance can acclimate/acclimatize in response to long-term exposure to elevated water temperatures. We assessed the thermal sensitivity and plasticity of 'fright-dive' capacity in juvenile estuarine crocodiles (Crocodylus porosus; n = 11). Crocodiles were exposed to one of three long-term thermal treatments, designed to emulate water temperatures under differing climate change scenarios (i.e. current summer, 28°C; 'moderate' climate warming, 31.5°C; 'high' climate warming, 35°C). Dive trials were conducted in a temperature-controlled tank across a range of water temperatures. Dive durations were independent of thermal acclimation treatment, indicating a lack of thermal acclimation response. Acute increases in water temperature resulted in significantly shorter dive durations, with mean submergence times effectively halving with every 3.5°C increase in water temperature (Q 10 0.17, P < 0.001). Maximal dive performances, however, were found to be thermally insensitive across the temperature range of 28-35°C. These results suggest that C. porosus have a limited or non-existent capacity to thermally acclimate sustained 'fright-dive' performance. If the findings here are applicable to other air-breathing, diving ectotherms, the functional capacity of these organisms will probably be compromised under climate warming.

  17. Exercise-induced myofibrillar disruption with sarcolemmal integrity prior to simulated diving has no effect on vascular bubble formation in rats.

    PubMed

    Jørgensen, Arve; Foster, Philip P; Eftedal, Ingrid; Wisløff, Ulrik; Paulsen, Gøran; Havnes, Marianne B; Brubakk, Alf O

    2013-05-01

    Decompression sickness is initiated by gas bubbles formed during decompression, and it has been generally accepted that exercise before decompression causes increased bubble formation. There are indications that exercise-induced muscle injury seems to be involved. Trauma-induced skeletal muscle injury and vigorous exercise that could theoretically injure muscle tissues before decompression have each been shown to result in profuse bubble formation. Based on these findings, we hypothesized that exercise-induced skeletal muscle injury prior to decompression from diving would cause increase of vascular bubbles and lower survival rates after decompression. In this study, we examined muscle injury caused by eccentric exercise in rats prior to simulated diving and we observed the resulting bubble formation. Female Sprague-Dawley rats (n = 42) ran downhill (-16º) for 100 min on a treadmill followed by 90 min rest before a 50-min simulated saturation dive (709 kPa) in a pressure chamber. Muscle injury was evaluated by immunohistochemistry and qPCR, and vascular bubbles after diving were detected by ultrasonic imaging. The exercise protocol resulted in increased mRNA expression of markers of muscle injury; αB-crystallin, NF-κB, and TNF-α, and myofibrillar disruption with preserved sarcolemmal integrity. Despite evident myofibrillar disruption after eccentric exercise, no differences in bubble amounts or survival rates were observed in the exercised animals as compared to non-exercised animals after diving, a novel finding that may be applicable to humans.

  18. Inhibition of shivering in hypothermic seals during diving.

    PubMed

    Kvadsheim, Petter H; Folkow, Lars P; Blix, Arnoldus Schytte

    2005-08-01

    The mammalian response to hypothermia is increased metabolic heat production, usually by way of muscular activity, such as shivering. Seals, however, have been reported to respond to diving with hypothermia, which in other mammals under other circumstances would have elicited vigorous shivering. In the diving situation, shivering could be counterproductive, because it obviously would increase oxygen consumption and therefore reduce diving capacity. We have measured the electromyographic (EMG) activity of three different muscles and the rectal and brain temperature of hooded seals (Cystophora cristata) while they were exposed to low ambient temperatures in a climatic chamber and while they performed a series of experimental dives in cold water. In air, the seals had a normal mammalian shivering response to cold. Muscles were recruited in a sequential manner until body temperature stopped dropping. Shivering was initiated when rectal temperature fell below 35.3 +/- 0.6 degrees C (n = 6). In the hypothermic diving seal, however, the EMG activity in all of the muscles that had been shivering vigorously before submergence was much reduced, or stopped altogether, whereas it increased again upon emergence but was again reduced if diving was repeated. We conclude that shivering is inhibited during diving to allow a decrease in body temperature whereby oxygen consumption is decreased and diving capacity is extended.

  19. Are the Risks of Sport Scuba Diving Being Underestimated?

    ERIC Educational Resources Information Center

    Roos, Robert

    1989-01-01

    A lawsuit has challenged the safety of the tables widely used in scuba diving. Other concerns also have emerged: A condition known as patent foramen ovale may increase the risk of decompression sickness, and studies are raising questions about the long-term effects of diving. (Author/JD)

  20. Scuba Diving and Kinesiology: Development of an Academic Program

    ERIC Educational Resources Information Center

    Kovacs, Christopher R.; Walter, Daniel

    2015-01-01

    The use of scuba diving as a recreational activity within traditional university instructional programs has been well established. Departments focusing on kinesiology, physical education, or exercise science have often provided scuba diving lessons as part of their activity-based course offerings. However, few departments have developed an…

  1. Scuba diving is possible and safe for patients with haemophilia.

    PubMed

    Schved, J F; De Haro, M; Drapeau, M; Schved, M

    2012-01-01

    For a long time, physical activities have been contraindicated in haemophiliacs or were restricted to few activities. Sports are nowadays advocated for haemophiliacs. Although various lists of physical activities have been proposed, scuba diving is never mentioned. Thus, with a group of haemophilic volunteers, a study was launched on whether, with strict medical follow-up, scuba diving could be allowed for patients with haemophilia. All the participants followed a training program including theory and assessment. In 6 years, a total of 517 dives were performed by 20 patients with congenital bleeding disorders. Nine were under prophylaxis for haemophilia, and nine received on-demand treatment. Two patients had type I von Willebrand's disease. Among the 20 patients, 12 made 12-153 dives, whereas six made eight dives each. No incident was noted during or after the dives. Thus, scuba diving can be authorized for PWH, if they have none of the specific medical contraindications for diving and if they have received medical training allowing them to manage their disease themselves.

  2. 29 CFR 1926.1076 - Qualifications of dive team.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... § 1926.1076 Qualifications of dive team. Note: The requirements applicable to construction work under... 29 Labor 8 2010-07-01 2010-07-01 false Qualifications of dive team. 1926.1076 Section 1926.1076 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH...

  3. 29 CFR 1926.1082 - Procedures during dive.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Procedures during dive. 1926.1082 Section 1926.1082 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Diving General Operations Procedures §...

  4. 29 CFR 1926.1083 - Post-dive procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Post-dive procedures. 1926.1083 Section 1926.1083 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Diving General Operations Procedures §...

  5. Recent modifications to the investigation of diving related deaths.

    PubMed

    Edmonds, Carl; Caruso, James

    2014-03-01

    The investigation of deaths that involve diving using a compressed breathing gas (SCUBA diving) is a specialized area of forensic pathology. Diving related deaths occur more frequently in certain jurisdictions, but any medical examiner or coroner's office may be faced with performing this type of investigation. In order to arrive at the correct conclusion regarding the cause and manner of death, forensic pathologists and investigators need to have a basic understanding of diving physiology, and should also utilize more recently developed technology and ancillary techniques. In the majority of diving related deaths, the cause of death is drowning, but this more often represents a final common pathway due to a water environment. The chain of events leading to the death is just as important to elucidate if similar deaths are to be minimized in the future. Re-enactment of accident scenarios, interrogation of dive computers, postmortem radiographic imaging, and slight alterations in autopsy technique may allow some of these diving related deaths to the better characterized. The amount and location of gas present in the body at the time of autopsy may be very meaningful or may simply represent a postmortem artifact. Medical examiners, coroners, and forensic investigators should consider employing select ancillary techniques to more thoroughly investigate the factors contributing a death associated with SCUBA diving.

  6. 29 CFR 1926.1081 - Pre-dive procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Pre-dive procedures. 1926.1081 Section 1926.1081 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Diving General Operations Procedures §...

  7. 29 CFR 1926.1076 - Qualifications of dive team.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... § 1926.1076 Qualifications of dive team. Note: The requirements applicable to construction work under... 29 Labor 8 2011-07-01 2011-07-01 false Qualifications of dive team. 1926.1076 Section 1926.1076 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH...

  8. Supportive Evidence for Altered Platelet Function in the Dived Rat

    DTIC Science & Technology

    1974-11-01

    decompression in animals, as well as in man. Among the effec Is of diving on various cellular and molecular blood components either in the presence or...rat is a suitable laboratory model for investigating the effects of diving on blood components and should provide the means for pursuing future

  9. 29 CFR 1926.1085 - Surface-supplied air diving.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Surface-supplied air diving. 1926.1085 Section 1926.1085 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION... Procedures § 1926.1085 Surface-supplied air diving. Note: The requirements applicable to construction...

  10. 29 CFR 1910.423 - Post-dive procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... no-decompression limits, deeper than 100 fsw or using mixed gas as a breathing mixture, the employer... the surface to a minimum of 165 fsw (6 ATA) shall be available at the dive location for: (i) Surface-supplied air diving to depths deeper than 100 fsw and shallower than 220 fsw; (ii) Mixed gas...

  11. 29 CFR 1910.423 - Post-dive procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... no-decompression limits, deeper than 100 fsw or using mixed gas as a breathing mixture, the employer... the surface to a minimum of 165 fsw (6 ATA) shall be available at the dive location for: (i) Surface-supplied air diving to depths deeper than 100 fsw and shallower than 220 fsw; (ii) Mixed gas...

  12. 29 CFR 1910.423 - Post-dive procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... no-decompression limits, deeper than 100 fsw or using mixed gas as a breathing mixture, the employer... the surface to a minimum of 165 fsw (6 ATA) shall be available at the dive location for: (i) Surface-supplied air diving to depths deeper than 100 fsw and shallower than 220 fsw; (ii) Mixed gas...

  13. 29 CFR 1910.423 - Post-dive procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... no-decompression limits, deeper than 100 fsw or using mixed gas as a breathing mixture, the employer... the surface to a minimum of 165 fsw (6 ATA) shall be available at the dive location for: (i) Surface-supplied air diving to depths deeper than 100 fsw and shallower than 220 fsw; (ii) Mixed gas...

  14. 29 CFR 1910.423 - Post-dive procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... no-decompression limits, deeper than 100 fsw or using mixed gas as a breathing mixture, the employer... the surface to a minimum of 165 fsw (6 ATA) shall be available at the dive location for: (i) Surface-supplied air diving to depths deeper than 100 fsw and shallower than 220 fsw; (ii) Mixed gas...

  15. Swimming & Diving: Special Olympics Sports Skills Instructional Program.

    ERIC Educational Resources Information Center

    Joseph P. Kennedy, Jr. Foundation, Washington, DC.

    One of five parts of the Special Olympics' Sports Skills Instructional Program, the booklet addresses ways to teach swimming and diving to mentally retarded students. Short term objectives of the program encompass warmup, basic swimming and diving skills, safety, and good sportsmanship. The long term goal focuses on acquisition of basic skills,…

  16. The consequences of misinterpreting dive computers: three case studies.

    PubMed

    Sayer, Martin Dj; Wilson, Colin M; Laden, Gerard; Lonsdale, Phillip

    2008-03-01

    Three cases are presented where there is a direct link between how the divers used their dive computers and the eventual requirement for their therapeutic recompression. The first case involves a diver with a previous history of decompression incidents making adjustments to their dive computer without understanding the outcomes of those alterations. The second case involves two divers running out of air and surfacing having missed significant amounts of decompression, caused by the dive computer not reducing their decompression obligation in actual time. This effect and performance differences between three models of computers were demonstrated in subsequent compression chamber trials reported here. The final case involves a diver who completed their dive within the indicated limits of their dive computer but subsequently developed serious neurological decompression sickness that left severe permanent residua. Compression chamber trials suggested that a combination of poor measurement accuracy and outdated decompression management in the computer used could have contributed to the diver's eventual poor outcome.

  17. Novel locomotor muscle design in extreme deep-diving whales.

    PubMed

    Velten, B P; Dillaman, R M; Kinsey, S T; McLellan, W A; Pabst, D A

    2013-05-15

    Most marine mammals are hypothesized to routinely dive within their aerobic dive limit (ADL). Mammals that regularly perform deep, long-duration dives have locomotor muscles with elevated myoglobin concentrations that are composed of predominantly large, slow-twitch (Type I) fibers with low mitochondrial volume densities (V(mt)). These features contribute to extending ADL by increasing oxygen stores and decreasing metabolic rate. Recent tagging studies, however, have challenged the view that two groups of extreme deep-diving cetaceans dive within their ADLs. Beaked whales (including Ziphius cavirostris and Mesoplodon densirostris) routinely perform the deepest and longest average dives of any air-breathing vertebrate, and short-finned pilot whales (Globicephala macrorhynchus) perform high-speed sprints at depth. We investigated the locomotor muscle morphology and estimated total body oxygen stores of several species within these two groups of cetaceans to determine whether they (1) shared muscle design features with other deep divers and (2) performed dives within their calculated ADLs. Muscle of both cetaceans displayed high myoglobin concentrations and large fibers, as predicted, but novel fiber profiles for diving mammals. Beaked whales possessed a sprinter's fiber-type profile, composed of ~80% fast-twitch (Type II) fibers with low V(mt). Approximately one-third of the muscle fibers of short-finned pilot whales were slow-twitch, oxidative, glycolytic fibers, a rare fiber type for any mammal. The muscle morphology of beaked whales likely decreases the energetic cost of diving, while that of short-finned pilot whales supports high activity events. Calculated ADLs indicate that, at low metabolic rates, both beaked and short-finned pilot whales carry sufficient onboard oxygen to aerobically support their dives.

  18. Alveolar gas composition and exchange during deep breath-hold diving and dry breath holds in elite divers.

    PubMed

    Ferretti, G; Costa, M; Ferrigno, M; Grassi, B; Marconi, C; Lundgren, C E; Cerretelli, P

    1991-02-01

    End tidal O2 and CO2 (PETCO2) pressures, expired volume, blood lactate concentration ([Lab]), and arterial blood O2 saturation [dry breath holds (BHs) only] were assessed in three elite breath-hold divers (ED) before and after deep dives and BH and in nine control subjects (C; BH only). After the dives (depth 40-70 m, duration 88-151 s), end-tidal O2 pressure decreased from approximately 140 Torr to a minimum of 30.6 Torr, PETCO2 increased from approximately 25 Torr to a maximum of 47.0 Torr, and expired volume (BTPS) ranged from 1.32 to 2.86 liters. Pulmonary O2 exchange was 455-1,006 ml. CO2 output approached zero. [Lab] increased from approximately 1.2 mM to at most 6.46 mM. Estimated power output during dives was 513-929 ml O2/min, i.e. approximately 20-30% of maximal O2 consumption. During BH, alveolar PO2 decreased from approximately 130 to less than 30 Torr in ED and from 125 to 45 Torr in C. PETCO2 increased from approximately 30 to approximately 50 Torr in both ED and C. Contrary to C, pulmonary O2 exchange in ED was less than resting O2 consumption, whereas CO2 output approached zero in both groups. [Lab] was unchanged. Arterial blood O2 saturation decreased more in ED than in C. ED are characterized by increased anaerobic metabolism likely due to the existence of a diving reflex.

  19. Field Evaluation of Topside Decompression Monitor (TDM) During Ships Husbandary Diving at SWRMC-NI

    DTIC Science & Technology

    2011-05-31

    information was entered for all attending SWRMC–NI divers. Supplied with gas from a scuba cylinder as a pressure controller to simulate dive profiles, the...Navy Experimental Diving Unit TA 09-04 321 Bullfinch Rd. NEDU TR 11...TDM) DURING SHIPS HUSBANDRY DIVING AT SWRMC-NI Navy Experimental Diving Unit Authors: K. A

  20. A Method for Identification of Some Components of Judging Springboard Diving.

    ERIC Educational Resources Information Center

    McCormick, James H.; And Others

    1982-01-01

    This study identifies critical elements of the front dive half-twist that judges are likely to look for when they score springboard diving competitions. Videotapes of divers at a 1979 intercollegiate diving meet were made and analyzed, using grid scoring procedures, to isolate components of the dives that would help predict judges' scores.…

  1. Diving and foraging patterns of Marbled Murrelets (Brachyramphus marmoratus): Testing predictions from optimal-breathing models

    USGS Publications Warehouse

    Jodice, Patrick G.; Collopy, M.W.

    1999-01-01

    The diving behavior of Marbled Murrelets (Brachyramphus marmoratus) was studied using telemetry along the Oregon coast during the 1995 and 1996 breeding seasons and examined in relation to predictions from optimal-breathing models. Duration of dives, pauses, dive bouts, time spent under water during dive bouts, and nondiving intervals between successive dive bouts were recorded. Most diving metrics differed between years but not with oceanographic conditions or shore type. There was no effect of water depth on mean dive time or percent time spent under water even though dive bouts occurred in depths from 3 to 36 m. There was a significant, positive relationship between mean dive time and mean pause time at the dive-bout scale each year. At the dive-cycle scale, there was a significant positive relationship between dive time and preceding pause time in each year and a significant positive relationship between dive time and ensuing pause time in 1996. Although it appears that aerobic diving was the norm, there appeared to be an increase in anaerobic diving in 1996. The diving performance of Marbled Murrelets in this study appeared to be affected by annual changes in environmental conditions and prey resources but did not consistently fit predictions from optimal-breathing models.

  2. Sequential effects in Olympic synchronized diving scores

    PubMed Central

    2017-01-01

    When judging performances in a sequence, the current score is often influenced by the preceding score. Where athletes are perceived to be similar, a judgement is assimilated towards the previous one. However, if judges focus on the differences between the two athletes, this will result in a contrasting influence on their scores. Here, I investigate sequential effects during synchronized diving events at the 2012 and 2016 Olympic Games. Although previous research found assimilation in scores of gymnasts, the current data showed contrast effects—current scores benefited from following a poor performance but were at a disadvantage if they followed a high-scoring performance. One explanation may be that the processes involved in judging synchronized pairs results in a focus on the differences between athletes, producing a contrast effect across dives. That the specific direction of this sequential bias may depend on the particular sport has implications for how judges might approach their roles in a context-dependent manner, as well as how such biases should be addressed. PMID:28280583

  3. The F-14D: A Case Study in Decision-Making

    DTIC Science & Technology

    2007-11-02

    Appropriations Committee, according to Mr Tim Paterson , the staff member in charge of the issue, was that. the OSD decision to cut the F-14D was ill conceived...90 were $400 million, for which the Navy would receive no aircraft. According to the data Mr. Paterson was able to gather, funding production through...Corporation, Wasmngton, D.C. (Telephone). • I. i’Ir Tim Peterson. House Aporopriations Committee Staff, U.S. House of Representatives, Washington, D.C. 5

  4. CHST14/D4ST1 deficiency: New form of Ehlers-Danlos syndrome.

    PubMed

    Kosho, Tomoki

    2016-02-01

    Carbohydrate sulfotransferase 14/dermatan 4-O-sulfotransferase-1 (CHST14/D4ST1) deficiency represents a specific form of Ehlers-Danlos syndrome (EDS) caused by recessive loss-of-function mutations in CHST14. The disorder has been independently termed "adducted thumb-clubfoot syndrome", "EDS, Kosho type", and "EDS, musculocontractural type". To date, 31 affected patients from 21 families have been described. Clinically, CHST14/D4ST1 deficiency is characterized by multiple congenital malformations (craniofacial features including large fontanelle, hypertelorism, short and downslanting palpebral fissures, blue sclerae, short nose with hypoplastic columella, low-set and rotated ears, high palate, long philtrum, thin upper lip vermilion, small mouth, and micro-retrognathia; multiple congenital contractures including adduction-flexion contractures and talipes equinovarus as well as other visceral or ophthalmological malformations) and progressive multisystem fragility-related complications (skin hyperextensibility, bruisability, and fragility with atrophic scars; recurrent dislocations; progressive talipes or spinal deformities; pneumothorax or pneumohemothorax; large subcutaneous hematomas; and diverticular perforation). Etiologically, multisystem fragility is presumably caused by impaired assembly of collagen fibrils resulting from loss of dermatan sulfate (DS) in the decorin glycosaminoglycan side chain that promotes electrostatic binding between collagen fibrils. This is the first reported human disorder that specifically affects biosynthesis of DS. Its clinical characteristics indicate that CHST14/D4ST1 and, more fundamentally, DS, play a critical role in fetal development and maintenance of connective tissues in multiple organs. Considering that patients with CHST14/D4ST1 deficiency develop progressive multisystem fragility-related manifestations, establishment of a comprehensive and detailed natural history and health-care guidelines as well as further elucidation

  5. Sports-related lung injury during breath-hold diving.

    PubMed

    Mijacika, Tanja; Dujic, Zeljko

    2016-12-01

    The number of people practising recreational breath-hold diving is constantly growing, thereby increasing the need for knowledge of the acute and chronic effects such a sport could have on the health of participants. Breath-hold diving is potentially dangerous, mainly because of associated extreme environmental factors such as increased hydrostatic pressure, hypoxia, hypercapnia, hypothermia and strenuous exercise.In this article we focus on the effects of breath-hold diving on pulmonary function. Respiratory symptoms have been reported in almost 25% of breath-hold divers after repetitive diving sessions. Acutely, repetitive breath-hold diving may result in increased transpulmonary capillary pressure, leading to noncardiogenic oedema and/or alveolar haemorrhage. Furthermore, during a breath-hold dive, the chest and lungs are compressed by the increasing pressure of water. Rapid changes in lung air volume during descent or ascent can result in a lung injury known as pulmonary barotrauma. Factors that may influence individual susceptibility to breath-hold diving-induced lung injury range from underlying pulmonary or cardiac dysfunction to genetic predisposition.According to the available data, breath-holding does not result in chronic lung injury. However, studies of large populations of breath-hold divers are necessary to firmly exclude long-term lung damage.

  6. Characteristics of diving in radio-marked Xantus's Murrelets

    USGS Publications Warehouse

    Hamilton, C.D.; Golightly, R.T.; Takekawa, J.Y.

    2005-01-01

    We monitored diving activity of radio-marked Xantus's Murrelets Synthliboramphus hypoleucus near Anacapa Island, California, during the breeding season. Thirteen radio-marked murrelets were remotely monitored from Anacapa Island with a handheld antenna and radio receiver for 29 hours in three sample periods in April and May 2003. Mean dive durations in the sample periods were 18 s ?? 2 s, 28 s ?? 2 s, and 24 s ?? 4 s, suggesting that dives were less than 21 m from the surface. Dive duration and subsequent time on the surface differed between the sample periods. Dive duration and subsequent time on the surface were not correlated in observations stratified by individual bird or by sample period. Further, dive duration and subsequent time on the surface were not correlated within foraging bouts. Dive characteristics measured near Anacapa Island suggested that Xantus's Murrelets have the ability to capture prey found at varying depths, but will feed on prey that is most available near the surface of the water.

  7. Sympathetic nerve activity and simulated diving in healthy humans.

    PubMed

    Shamsuzzaman, Abu; Ackerman, Michael J; Kuniyoshi, Fatima Sert; Accurso, Valentina; Davison, Diane; Amin, Raouf S; Somers, Virend K

    2014-04-01

    The goal of our study was to develop a simple and practical method for simulating diving in humans using facial cold exposure and apnea stimuli to measure neural and circulatory responses during the stimulated diving reflex. We hypothesized that responses to simultaneous facial cold exposure and apnea (simulated diving) would be synergistic, exceeding the sum of responses to individual stimuli. We studied 56 volunteers (24 female and 32 male), average age of 39 years. All subjects were healthy, free of cardiovascular and other diseases, and on no medications. Although muscle sympathetic nerve activity (MSNA), blood pressure, and vascular resistance increased markedly during both early and late phases of simulated diving, significant reductions in heart rate were observed only during the late phase. Total MSNA during simulated diving was greater than combined MSNA responses to the individual stimuli. We found that simulated diving is a powerful stimulus to sympathetic nerve traffic with significant bradycardia evident in the late phase of diving and eliciting synergistic sympathetic and parasympathetic responses. Our data provide insight into autonomic triggers that could help explain catastrophic cardiovascular events that may occur during asphyxia or swimming, such as in patients with obstructive sleep apnea or congenital long QT syndrome.

  8. Early diving behaviour in juvenile penguins: improvement or selection processes

    PubMed Central

    Weimerskirch, Henri; Bost, Charles-André

    2016-01-01

    The early life stage of long-lived species is critical to the viability of population, but is poorly understood. Longitudinal studies are needed to test whether juveniles are less efficient foragers than adults as has been hypothesized. We measured changes in the diving behaviour of 17 one-year-old king penguins Aptenodytes patagonicus at Crozet Islands (subantartic archipelago) during their first months at sea, using miniaturized tags that transmitted diving activity in real time. We also equipped five non-breeder adults with the same tags for comparison. The data on foraging performance revealed two groups of juveniles. The first group made shallower and shorter dives that may be indicative of early mortality while the second group progressively increased their diving depths and durations, and survived the first months at sea. This surviving group of juveniles required the same recovery durations as adults, but typically performed shallower and shorter dives. There is thereby a relationship between improved diving behaviour and survival in young penguins. This long period of improving diving performance in the juvenile life stage is potentially a critical period for the survival of deep avian divers and may have implications for their ability to adapt to environmental change. PMID:27484650

  9. High feeding costs limit dive time in the largest whales.

    PubMed

    Acevedo-Gutiérrez, A; Croll, D A; Tershy, B R

    2002-06-01

    Large body size usually extends dive duration in air-breathing vertebrates. However, the two largest predators on earth, the blue whale (Balaenoptera musculus) and the fin whale (B. physalus), perform short dives for their size. Here, we test the hypothesis that the foraging behavior of these two species (lunge-feeding) is energetically expensive and limits their dive duration. We estimated the cost of lunge-feeding in both species using an approach that combined attaching time/depth recorders to seven blue whales and eight fin whales and comparing the collected dive information with predictions made by optimality models of dive behavior. We show that the rate at which whales recovered from a foraging dive was twice that of a non-foraging dive and that the cost of foraging relative to the cost of travel to and from the prey patch was 3.15 in blue whales (95 % CI 2.58-3.72) and 3.60 in fin whales (95 % CI 2.35-4.85). Whales foraged in small areas (<1 km(2)) and foraging bouts lasted more than one dive, indicating that prey did not disperse and thus that prey dispersal could not account for the limited dive durations of the whales. Despite the enormous size of blue whales and fin whales, the high energetic costs of lunge-feeding confine them to short durations of submergence and to areas with dense prey aggregations. As a corollary, because of their limited foraging time under water, these whales may be particularly vulnerable to perturbations in prey abundance.

  10. CORE SATURATION BLOCKING OSCILLATOR

    DOEpatents

    Spinrad, R.J.

    1961-10-17

    A blocking oscillator which relies on core saturation regulation to control the output pulse width is described. In this arrangement an external magnetic loop is provided in which a saturable portion forms the core of a feedback transformer used with the thermionic or semi-conductor active element. A first stationary magnetic loop establishes a level of flux through the saturation portion of the loop. A second adjustable magnet moves the flux level to select a saturation point giving the desired output pulse width. (AEC)

  11. [Diagnosis and treatment of diving accidents. New German guidelines for diving accidents 2014-2017].

    PubMed

    Jüttner, B; Wölfel, C; Liedtke, H; Meyne, K; Werr, H; Bräuer, T; Kemmerer, M; Schmeißer, G; Piepho, T; Müller, O; Schöppenthau, H

    2015-06-01

    In 2015 the German Society for Diving and Hyperbaric Medicine (GTÜM) and the Swiss Underwater and Hyperbaric Medical Society (SUHMS) published the updated guidelines on diving accidents 2014-2017. These multidisciplinary guidelines were developed within a structured consensus process by members of the German Interdisciplinary Association for Intensive Care and Emergency Medicine (DIVI), the Sports Divers Association (VDST), the Naval Medical Institute (SchiffMedInst), the Social Accident Insurance Institution for the Building Trade (BG BAU), the Association of Hyperbaric Treatment Centers (VDD) and the Society of Occupational and Environmental Medicine (DGAUM). This consensus-based guidelines project (development grade S2k) with a representative group of developers was conducted by the Association of Scientific Medical Societies in Germany. It provides information and instructions according to up to date evidence to all divers and other lay persons for first aid recommendations to physician first responders and emergency physicians as well as paramedics and all physicians at therapeutic hyperbaric chambers for the diagnostics and treatment of diving accidents. To assist in implementing the guideline recommendations, this article summarizes the rationale, purpose and the following key action statements: on-site 100% oxygen first aid treatment, still patient positioning and fluid administration are recommended. Hyperbaric oxygen (HBO) recompression remains unchanged the established treatment in severe cases with no therapeutic alternatives. The basic treatment scheme recommended for diving accidents is hyperbaric oxygenation at 280 kPa. For quality management purposes there is a need in the future for a nationwide register of hyperbaric therapy.

  12. U S Navy Diving Manual. Volume 2. Mixed-Gas Diving. Revision 1.

    DTIC Science & Technology

    1981-07-01

    systems (port and starboard) with a common cated of welded HY80 steel and has an outside diam- helium recovery system. The diving system is not eter of 84...board Manuf. Co. batteries) 28v, DC Material HY80 Steel C02 scrubbers- Construction Welded -Number 2 Dimensions- - Type Absorbent -Outside diameter at...the MK not normally use any breathing device, although sev- I Chariot Dress quickly discovered that the steel oxy- eral models existed. Other groups

  13. [Medical certification for high altitude travel and scuba diving].

    PubMed

    Wuillemin, Timothée; Dos Santos Bragança, Angel; Ziltener, Jean-Luc; Berney, Jean-Yves; Lanier, Cédric

    2014-09-24

    People are more and more looking for adventures and discovery of unusual locations. Journeys to high altitude and scuba diving are part of these activities and their access has become easier for a lot of people not necessarily experienced with their dangers. The general practitioner will have to be able to deliver some advices and recommendations to his patients about the risks related to these activities and their ability to practice them. He will also have to deliver some certificates of medical fitness to dive. This paper proposes a brief review of the most important medical aspects to know about high altitude and scuba diving.

  14. Alveolar hemorrhage after scuba diving: a case report.

    PubMed

    Tsai, Ming-Ju; Tsai, Mee-Sun; Tsai, Ying-Ming; Lien, Chi-Tun; Hwang, Jhi-Jhu; Huang, Ming-Shyan

    2010-07-01

    Self-contained underwater breathing apparatus (scuba) diving is increasingly popular in Taiwan. There are few references in the literature regarding pulmonary hemorrhage as the sole manifestation of pulmonary barotrauma in scuba divers, and no study from Taiwan was found in the literature. We present the case of a 25-year-old man who suffered alveolar hemorrhage related to pulmonary barotrauma as a complication of scuba diving. To our knowledge, this is the first case report describing a Taiwanese subject suffering from non-fatal pulmonary hemorrhage after scuba diving.

  15. Energy cost and optimisation in breath-hold diving.

    PubMed

    Trassinelli, M

    2016-05-07

    We present a new model for calculating locomotion costs in breath-hold divers. Starting from basic mechanics principles, we calculate the work that the diver must provide through propulsion to counterbalance the action of drag, the buoyant force and weight during immersion. Compared to those in previous studies, the model presented here accurately analyses breath-hold divers which alternate active swimming with prolonged glides during the dive (as is the case in mammals). The energy cost of the dive is strongly dependent on these prolonged gliding phases. Here we investigate the length and impacts on energy cost of these glides with respect to the diver characteristics, and compare them with those observed in different breath-hold diving species. Taking into account the basal metabolic rate and chemical energy to propulsion transformation efficiency, we calculate optimal swim velocity and the corresponding total energy cost (including metabolic rate) and compare them with observations. Energy cost is minimised when the diver passes through neutral buoyancy conditions during the dive. This generally implies the presence of prolonged gliding phases in both ascent and descent, where the buoyancy (varying with depth) is best used against the drag, reducing energy cost. This is in agreement with past results (Miller et al., 2012; Sato et al., 2013) where, when the buoyant force is considered constant during the dive, the energy cost was minimised for neutral buoyancy. In particular, our model confirms the good physical adaption of dolphins for diving, compared to other breath-hold diving species which are mostly positively buoyant (penguins for example). The presence of prolonged glides implies a non-trivial dependency of optimal speed on maximal depth of the dive. This extends previous findings (Sato et al., 2010; Watanabe et al., 2011) which found no dependency of optimal speed on dive depth for particular conditions. The energy cost of the dive can be further

  16. Reduced taxonomic richness of lice (Insecta: Phthiraptera) in diving birds.

    PubMed

    Felsõ, B; Rózsa, L

    2006-08-01

    Avian lice occupy different habitats in the host plumage that the physical environment outside the host body may affect in several ways. Interactions between host plumage and water may be an important source of such effects. Here, we use a comparative approach to examine the effect of a host's diving behavior on the taxonomic richness of its lice. Louse genera richness was significantly lower in clades of diving birds than on their nondiving sister clades. Species richness of host and body mass did not differ significantly between these clades; thus, these factors did not bias our results. This study suggests that the hosts' diving behavior can effectively influence ectoparasite communities.

  17. Diving in a warming world: the thermal sensitivity and plasticity of diving performance in juvenile estuarine crocodiles (Crocodylus porosus)

    PubMed Central

    Rodgers, Essie M.; Schwartz, Jonathon J.; Franklin, Craig E.

    2015-01-01

    Air-breathing, diving ectotherms are a crucial component of the biodiversity and functioning of aquatic ecosystems, but these organisms may be particularly vulnerable to the effects of climate change on submergence times. Ectothermic dive capacity is thermally sensitive, with dive durations significantly reduced by acute increases in water temperature; it is unclear whether diving performance can acclimate/acclimatize in response to long-term exposure to elevated water temperatures. We assessed the thermal sensitivity and plasticity of ‘fright-dive’ capacity in juvenile estuarine crocodiles (Crocodylus porosus; n = 11). Crocodiles were exposed to one of three long-term thermal treatments, designed to emulate water temperatures under differing climate change scenarios (i.e. current summer, 28°C; ‘moderate’ climate warming, 31.5°C; ‘high’ climate warming, 35°C). Dive trials were conducted in a temperature-controlled tank across a range of water temperatures. Dive durations were independent of thermal acclimation treatment, indicating a lack of thermal acclimation response. Acute increases in water temperature resulted in significantly shorter dive durations, with mean submergence times effectively halving with every 3.5°C increase in water temperature (Q10 0.17, P < 0.001). Maximal dive performances, however, were found to be thermally insensitive across the temperature range of 28–35°C. These results suggest that C. porosus have a limited or non-existent capacity to thermally acclimate sustained ‘fright-dive’ performance. If the findings here are applicable to other air-breathing, diving ectotherms, the functional capacity of these organisms will probably be compromised under climate warming. PMID:27293738

  18. Orbital subperiosteal hematoma from scuba diving.

    PubMed

    Rosenberry, Clark; Angelidis, Matthew; Devita, Diane

    2010-09-01

    Only a few cases of nontraumatic orbital subperiosteal hematoma due to scuba diving have been reported, and this is the first of such cases that underwent surgical intervention. This injury results from negative pressure within the face mask, suctioning orbital tissues into the mask after incomplete equilibration of pressure on descent. Valsalva maneuver is a second mechanism implicated in the etiology of this injury. Recognition of this injury is of the utmost importance because vision loss is a possible complication if there is compression of the optic nerve or increased intraocular pressure. In many cases of nontraumatic orbital hematoma, conservative management is adequate; however, this case was an exception due to worsening exam findings. Divers may be able to prevent this injury by frequent and gentle equilibration of mask pressure on descent.

  19. Pulmonary Function After Oxygen-Accelerated Decompressions from Repetitive Sub-Saturation Air Dives

    DTIC Science & Technology

    2005-04-01

    16 5 806 16 2 631 15 6 261 8 3 177 16 7 460 16 4 338 14 8 1068 16 n = the number of subjects for whom pulmonary function was measured after surfacing...function measurement session involved three successful repeats of each test, according to the American Thoracic Society standards.5 The average values from...capacity (DLCO) corrected for hemoglobin concentration. Flow volume loops were measured on each occasion, and diffusing capacity was measured at

  20. A Trimix Saturation Dive to 660 Metres: Studies of Cognitive Performance, Mood and Sleep Quality,

    DTIC Science & Technology

    1982-03-01

    as efficient as its supporters claim, the implications are fairly far-reaching and this may give priority to further development with the novel...performance will improve simply because of increased amounts of practice on each session. This allows for development of more efficient strategies for...of the sentences were obviously true, for example: "Captain is a military title", and half were obviously false, for example: "Veal cutlets crawl on

  1. Recommended Dietary Menus for Use in Operational and Research Saturation Diving

    DTIC Science & Technology

    1991-05-01

    GMS MARGARINE-CORN-REG 1.0 TBSP 14.1 GMS CAKE-POUND 1.0 SLICE 33.0 GMS SNACK RAISINS-SEEDLESS 0.7 CUP 108.8 GMS NUTS - CASHEWS -DRY ROASTED 0.2 CUP 34.3...CUP 250.0 GMS TEA-INSTANT-PREP-UNSWEET 2.0 CUPS 474.0 GMS MARGARINE-CORN-REG 1.0 TBSP 14.1 GMS SNACK NUTS - CASHEWS -OIL ROASTED 0.3 CUP 39.0 GMS...GMS SNACK RAISINS-SEEDLESS 0.7 CUP 108.8 GMS NUTS - CASHEWS -DRY ROASTED 0.3 CUP 41.1 GMS NUTRIENT VALUES Kcalories 3694 Kc Carbohydrate 545.0 Gm Protein

  2. Effects of successive air and nitrox dives on human vascular function.

    PubMed

    Marinovic, Jasna; Ljubkovic, Marko; Breskovic, Toni; Gunjaca, Grgo; Obad, Ante; Modun, Darko; Bilopavlovic, Nada; Tsikas, Dimitrios; Dujic, Zeljko

    2012-06-01

    SCUBA diving is regularly associated with asymptomatic changes in cardiac, pulmonary and vascular function. The aim of this study was to evaluate the changes in vascular/endothelial function following SCUBA diving and to assess the potential difference between two breathing gases: air and nitrox 36 (36% oxygen and 64% nitrogen). Ten divers performed two 3-day diving series (no-decompression dive to 18 m with 47 min bottom time with air and nitrox, respectively), with 2 weeks pause in between. Arterial/endothelial function was assessed using SphygmoCor and flow-mediated dilation measurements, and concentration of nitrite before and after diving was determined in venous blood. Production of nitrogen bubbles post-dive was assessed by ultrasonic determination of venous gas bubble grade. Significantly higher bubbling was found after all air dives as compared to nitrox dives. Pulse wave velocity increased slightly (~6%), significantly after both air and nitrox diving, indicating an increase in arterial stiffness. However, augmentation index became significantly more negative after diving indicating smaller wave reflection. There was a trend for post-dive reduction of FMD after air dives; however, only nitrox diving significantly reduced FMD. No significant differences in blood nitrite before and after the dives were found. We found that nitrox diving affects systemic/vascular function more profoundly than air diving by reducing FMD response, most likely due to higher oxygen load. Both air and nitrox dives increased arterial stiffness, but decreased wave reflection suggesting a decrease in peripheral resistance due to exercise during diving. These effects of nitrox and air diving were not followed by changes in plasma nitrite.

  3. Decompression from He-N2-O2 (TRIMIX) Bounce Dives Is Not More Efficient Than From He-O2 (HELIOX) Bounce Dives

    DTIC Science & Technology

    2015-05-28

    hyperbaric or hypobaric exposure for a minimum of 48 hours before and following any experimental dive. These restrictions were to avoid alterations ...pressure” decompression table,f states that longer times were required at deeper decompression stops for heliox diving than for nitrogen-based diving.39...The report provides no experimental evidence to support this statement; although the executive summary states that nearly 700 man- dives at depths up

  4. Oxygen Breathing Accelerates Decompression from Saturation at 40 msw in 70-kg Swine

    DTIC Science & Technology

    2010-07-01

    2010 0 2 AFfER A DEEP SATURATION DIVE-PETERSEN ET AL. REFERENCES 1. Bain SA, Tmg J, Simeonovic CJ, Wilson JO. Technique of venous catheterization ...was catheterized with a 16-gauge by 20.3-cm single lumen catheter (Braun Certofix; B. Braun Medical Inc., Bethlehem, PA) via the modified Seldinger...respiratory distress, as evidenced by open-mouthed, labored breathing, central cyanosis, or the production of frothy white sputum. The onset of se- vere

  5. 23. VIEW, FROM EAST, SHOWING DIVING AND MAIN POOLS AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. VIEW, FROM EAST, SHOWING DIVING AND MAIN POOLS AND WEST ELEVATION OF OFFICE AND FIRST AID BUILDING - Glen Echo Park, Crystal Swimming Pool, 7300 McArthur Boulevard, Glen Echo, Montgomery County, MD

  6. The risks of scuba diving: a focus on Decompression Illness.

    PubMed

    Hall, Jennifer

    2014-11-01

    Decompression Illness includes both Decompression Sickness (DCS) and Pulmonary Overinflation Syndrome (POIS), subsets of diving-related injury related to scuba diving. DCS is a condition in which gas bubbles that form while diving do not have adequate time to be resorbed or "off-gassed," resulting in entrapment in specific regions of the body. POIS is due to an overly rapid ascent to the surface resulting in the rupture of alveoli and subsequent extravasation of air bubbles into tissue planes or even the cerebral circulation. Divers must always be cognizant of dive time and depth, and be trained in the management of decompression. A slow and controlled ascent, plus proper control of buoyancy can reduce the dangerous consequences of pulmonary barotrauma. The incidence of adverse effects can be diminished with safe practices, allowing for the full enjoyment of this adventurous aquatic sport.

  7. SCUBA Diving for Blind and Visually Impaired People.

    ERIC Educational Resources Information Center

    Candela, Anthony R.

    1982-01-01

    The author, a trained scuba (self-contained underwater breathing apparatus) diver who is severely visually impaired provides an orientation to scuba diving as a leisure and career activity. (Author/SB)

  8. First records of dive durations for a hibernating sea turtle.

    PubMed

    Hochscheid, Sandra; Bentivegna, Flegra; Hays, Graeme C

    2005-03-22

    The first published record, from the early 1970s, of hibernation in sea turtles is based on the reports of the indigenous Indians and fishermen from Mexico, who hunted dormant green turtles (Chelonia mydas) in the Gulf of California. However, there were no successful attempts to investigate the biology of this particular behaviour further. Hence, data such as the exact duration and energetic requirements of dormant winter submergences are lacking. We used new satellite relay data loggers to obtain the first records of up to 7h long dives of a loggerhead turtle (Caretta caretta) overwintering in Greek waters. These represent the longest dives ever reported for a diving marine vertebrate. There is strong evidence that the dives were aerobic, because the turtle surfaced only for short intervals and before the calculated oxygen stores were depleted. This evidence suggests that the common belief that sea turtles hibernate underwater, as some freshwater turtles do, is incorrect.

  9. First records of dive durations for a hibernating sea turtle

    PubMed Central

    Hochscheid, Sandra; Bentivegna, Flegra; Hays, Graeme C

    2005-01-01

    The first published record, from the early 1970s, of hibernation in sea turtles is based on the reports of the indigenous Indians and fishermen from Mexico, who hunted dormant green turtles (Chelonia mydas) in the Gulf of California. However, there were no successful attempts to investigate the biology of this particular behaviour further. Hence, data such as the exact duration and energetic requirements of dormant winter submergences are lacking. We used new satellite relay data loggers to obtain the first records of up to 7 h long dives of a loggerhead turtle (Caretta caretta) overwintering in Greek waters. These represent the longest dives ever reported for a diving marine vertebrate. There is strong evidence that the dives were aerobic, because the turtle surfaced only for short intervals and before the calculated oxygen stores were depleted. This evidence suggests that the common belief that sea turtles hibernate underwater, as some freshwater turtles do, is incorrect. PMID:17148134

  10. The Risks of Scuba Diving: A Focus on Decompression Illness

    PubMed Central

    2014-01-01

    Decompression Illness includes both Decompression Sickness (DCS) and Pulmonary Overinflation Syndrome (POIS), subsets of diving-related injury related to scuba diving. DCS is a condition in which gas bubbles that form while diving do not have adequate time to be resorbed or “off-gassed,” resulting in entrapment in specific regions of the body. POIS is due to an overly rapid ascent to the surface resulting in the rupture of alveoli and subsequent extravasation of air bubbles into tissue planes or even the cerebral circulation. Divers must always be cognizant of dive time and depth, and be trained in the management of decompression. A slow and controlled ascent, plus proper control of buoyancy can reduce the dangerous consequences of pulmonary barotrauma. The incidence of adverse effects can be diminished with safe practices, allowing for the full enjoyment of this adventurous aquatic sport. PMID:25478296

  11. Gluon saturation in a saturated environment

    SciTech Connect

    Kopeliovich, B. Z.; Potashnikova, I. K.; Schmidt, Ivan

    2011-07-15

    A bootstrap equation for self-quenched gluon shadowing leads to a reduced magnitude of broadening for partons propagating through a nucleus. Saturation of small-x gluons in a nucleus, which has the form of transverse momentum broadening of projectile gluons in pA collisions in the nuclear rest frame, leads to a modification of the parton distribution functions in the beam compared with pp collisions. In nucleus-nucleus collisions all participating nucleons acquire enhanced gluon density at small x, which boosts further the saturation scale. Solution of the reciprocity equations for central collisions of two heavy nuclei demonstrate a significant, up to several times, enhancement of Q{sub sA}{sup 2}, in AA compared with pA collisions.

  12. Selective brain cooling and its vascular basis in diving seals.

    PubMed

    Blix, Arnoldus Schytte; Walløe, Lars; Messelt, Edward B; Folkow, Lars P

    2010-08-01

    Brain (T(brain)), intra-aorta (T(aorta)), latissimus dorsi muscle (T(m)) and rectal temperature (T(r)) were measured in harp (Pagophilus groenlandicus) and hooded (Cystophora cristata) seals during experimental dives in 4 degrees C water. The median brain cooling was about 1 degrees C during 15 min diving, but in some cases it was as much as 2.5 degrees C. Cooling rates were slow for the first couple of minutes, but increased significantly after about 5 min of diving. The onset of cooling sometimes occurred before the start of the dive, confirming that the cooling is under cortical control, like the rest of the diving responses. T(aorta) also fell significantly, and was always lower than T(brain), while T(m) was fairly stable during dives. Detailed studies of the vascular anatomy of front flippers revealed that brachial arterial blood can be routed either through flipper skin capillaries for nutritive purposes and return through sophisticated vascular heat exchangers to avoid heat loss to the environment, or, alternatively, through numerous arterio-venous shunts in the skin and return by way of large superficial veins, which then carry cold blood to the heart. In the latter situation the extent to which the brain is cooled is determined by the ratio of carotid to brachial arterial blood flow, and water temperature, and the cooling is selective in that only those organs that are circulated will be cooled. It is concluded that T(brain) is actively down-regulated during diving, sometimes by as much as 2.5 degrees C, whereby cerebral oxygen requirements may be reduced by as much as 25% during extended dives.

  13. The Mammalian Diving Response: An Enigmatic Reflex to Preserve Life?

    PubMed Central

    2013-01-01

    The mammalian diving response is a remarkable behavior that overrides basic homeostatic reflexes. It is most studied in large aquatic mammals but is seen in all vertebrates. Pelagic mammals have developed several physiological adaptations to conserve intrinsic oxygen stores, but the apnea, bradycardia, and vasoconstriction is shared with those terrestrial and is neurally mediated. The adaptations of aquatic mammals are reviewed here as well as the neural control of cardiorespiratory physiology during diving in rodents. PMID:23997188

  14. Diving decompression models and bubble metrics: modern computer syntheses.

    PubMed

    Wienke, B R

    2009-04-01

    A quantitative summary of computer models in diving applications is presented, underscoring dual phase dynamics and quantifying metrics in tissue and blood. Algorithms covered include the multitissue, diffusion, split phase gradient, linear-exponential, asymmetric tissue, thermodynamic, varying permeability, reduced gradient bubble, tissue bubble diffusion, and linear-exponential phase models. Defining relationships are listed, and diver staging regimens are underscored. Implementations, diving sectors, and correlations are indicated for models with a history of widespread acceptance, utilization, and safe application across recreational, scientific, military, research, and technical communities. Presently, all models are incomplete, but many (included above) are useful, having resulted in diving tables, underwater meters, and dive planning software. Those herein employ varying degrees of calibration and data tuning. We discuss bubble metrics in tissue and blood as a backdrop against computer models. The past 15 years, or so, have witnessed changes and additions to diving protocols and table procedures, such as shorter nonstop time limits, slower ascent rates, shallow safety stops, ascending repetitive profiles, deep decompression stops, helium based breathing mixtures, permissible reverse profiles, multilevel techniques, both faster and slower controlling repetitive tissue halftimes, smaller critical tensions, longer flying-after-diving surface intervals, and others. Stimulated by Doppler and imaging technology, table and decompression meter development, theory, statistics, chamber and animal testing, or safer diving consensus, these modifications affect a gamut of activity, spanning bounce to decompression, single to multiday, and air to mixed gas diving. As it turns out, there is growing support for many protocols on operational, experimental, and theoretical grounds, with bubble models addressing many concerns on plausible bases, but with further testing or

  15. Developing an effective diving program for a hydro maintenance project

    SciTech Connect

    Stasch, E.

    1997-08-01

    A trash problem at the Fort Randall hydropower project threatened to affect operations and cause potential machinery damage. When traditional approaches to clean away the trash were judged unfeasible, US Army Corps of Engineers managers developed a combined mechanical cleanup and underwater diving program. A contractor successfully removed 500 tons of debris at a cost of about $302,000. The dive plan and problems experienced during the project are detailed in the article.

  16. Nitrogen narcosis and alcohol consumption--a scuba diving fatality.

    PubMed

    Michalodimitrakis, E; Patsalis, A

    1987-07-01

    Nitrogen narcosis can cause death among experienced scuba divers. Nitrogen under pressure affects the brain by acting as an anesthetic agent. Furthermore, the consumption of ethanol along with diving will cause the symptoms of nitrogen narcosis to occur at depths less than 30 m. Our case deals with an experienced diver who drank alcoholic beverages before diving and developed symptoms of nitrogen narcosis at a shallow depth. These two conditions contributed to his death by drowning.

  17. Should children be SCUBA diving?: Cerebral arterial gas embolism in a swimming pool.

    PubMed

    Johnson, Valerie; Adkinson, Cheryl; Bowen, Mariya; Ortega, Henry

    2012-04-01

    Cerebral arterial gas embolism (CAGE) is a well-known serious complication of self-contained breathing apparatus (SCUBA) diving. Most serious complications of SCUBA diving occur in adults because most of SCUBA divers are adults. However, young age is an independent risk factor for injury in SCUBA diving and shallow-water SCUBA diving is the riskiest environment for CAGE. We present a case of a 10-year-old boy who developed CAGE while taking SCUBA diving lessons in a university swimming pool. This case illustrates the potential danger of SCUBA diving for children who lack understanding of the physics of diving as well as the often unappreciated risk of shallow-water SCUBA diving. Our intent is to educate providers of primary care to children, so that they may appropriately advise parents about SCUBA diving, and to educate providers of emergency care to children, so that they will recognize this uncommon but serious emergency condition.

  18. Acute ischemic colitis secondary to air embolism after diving

    PubMed Central

    Payor, Austin Daniel; Tucci, Veronica

    2011-01-01

    Ischemic colitis (IC) secondary to air embolism from decompression sickness or barotrauma during diving is an extremely rare condition. After extensive review of the available literature, we found that there has been only one reported case of IC secondary to air embolism from diving. Although air embolization from diving and the various medical complications that follow have been well documented, the clinical manifestation of IC from an air embolism during diving is very rare and thus far unstudied. Common symptoms of IC include abdominal pain, bloody or non-bloody diarrhea or nausea or vomiting or any combination. Emergency physicians and Critical Care specialists should consider IC as a potential diagnosis for a patient with the above-mentioned symptoms and a history of recent diving. We report a case of IC from air embolism after a routine dive to 75 feet below sea level in a 53-year-old White female who presented to a community Emergency Department complaining of a 2-day history of diffuse abdominal pain and nausea. She was diagnosed by colonoscopy with biopsies and treated conservatively with antibiotics, bowel rest, and a slow advancement in diet. PMID:22096777

  19. Extracting Databases from Dark Data with DeepDive.

    PubMed

    Zhang, Ce; Shin, Jaeho; Ré, Christopher; Cafarella, Michael; Niu, Feng

    2016-01-01

    DeepDive is a system for extracting relational databases from dark data: the mass of text, tables, and images that are widely collected and stored but which cannot be exploited by standard relational tools. If the information in dark data - scientific papers, Web classified ads, customer service notes, and so on - were instead in a relational database, it would give analysts a massive and valuable new set of "big data." DeepDive is distinctive when compared to previous information extraction systems in its ability to obtain very high precision and recall at reasonable engineering cost; in a number of applications, we have used DeepDive to create databases with accuracy that meets that of human annotators. To date we have successfully deployed DeepDive to create data-centric applications for insurance, materials science, genomics, paleontologists, law enforcement, and others. The data unlocked by DeepDive represents a massive opportunity for industry, government, and scientific researchers. DeepDive is enabled by an unusual design that combines large-scale probabilistic inference with a novel developer interaction cycle. This design is enabled by several core innovations around probabilistic training and inference.

  20. Function of head-bobbing behavior in diving little grebes.

    PubMed

    Gunji, Megu; Fujita, Masaki; Higuchi, Hiroyoshi

    2013-08-01

    Most birds show a characteristic head movement that consists of head stabilization and quick displacement. In this movement, which is analogous to saccadic eye movement in mammals, head stabilization plays an important role in stabilizing the retinal image. This head movement, called "head bobbing", is particularly pronounced during walking. Previous studies focusing on anatomical and behavioral features have pointed out that visual information is also important for diving birds, indicating its significance in the head movements of diving birds. In the present study, the kinematic and behavioral features of head bobbing in diving little grebes were described by motion analysis to identify the head movement in diving birds. The results showed that head-bobbing stroke (HBS) consisted of a thrust phase and a hold phase as is typical for head bobbing during walking birds. This suggests that HBS is related to visual stabilization under water. In HBS, grebes tended to dive with longer stroke length and smaller stroke frequency than in non-bobbing stroke. This suggests that the behavior, which is related to vision, affects the kinematic stroke parameters. This clarification of underwater head movement will help in our understanding not only of vision, but also of the kinematic strategy of diving birds.

  1. Pulmonary function in children after a single scuba dive.

    PubMed

    Lemaître, F; Tourny-Chollet, C; Hamidouche, V; Lemouton, M C

    2006-11-01

    This study evaluated the respiratory effects of a single dive in children. Eighteen young divers and 18 controls participated in our study (age range: 9 - 13 years). Volumes and expiratory flow rates were measured 20 minutes before and 10 minutes after one air dive (3 meters, 25 minutes). Before the dive, no differences were noted regarding pulmonary parameters. Ten minutes after the dive, decreases were noted in forced expiratory volume in 1 s (FEV1) and maximal voluntary ventilation (- 8 %, - 5.3 %, respectively; p < 0.01), peak expiratory flow, maximal expiratory flow rates at 50 % of FVC (MEF(50 %)) and MEF(25 %), forced mid-expiratory flow rate (FEF(25 - 75 %)), and FEV1/FVC(- 5.9 %, - 14.3 %, - 21.4 %, - 4.2 %, - 3.5 %, respectively; p < 0.05). The respiratory pattern observed 10 minutes after a single dive to three meters indicated airway narrowing. However, no association between diving experience and lung function was obtained.

  2. Extracting Databases from Dark Data with DeepDive

    PubMed Central

    Zhang, Ce; Shin, Jaeho; Ré, Christopher; Cafarella, Michael; Niu, Feng

    2016-01-01

    DeepDive is a system for extracting relational databases from dark data: the mass of text, tables, and images that are widely collected and stored but which cannot be exploited by standard relational tools. If the information in dark data — scientific papers, Web classified ads, customer service notes, and so on — were instead in a relational database, it would give analysts a massive and valuable new set of “big data.” DeepDive is distinctive when compared to previous information extraction systems in its ability to obtain very high precision and recall at reasonable engineering cost; in a number of applications, we have used DeepDive to create databases with accuracy that meets that of human annotators. To date we have successfully deployed DeepDive to create data-centric applications for insurance, materials science, genomics, paleontologists, law enforcement, and others. The data unlocked by DeepDive represents a massive opportunity for industry, government, and scientific researchers. DeepDive is enabled by an unusual design that combines large-scale probabilistic inference with a novel developer interaction cycle. This design is enabled by several core innovations around probabilistic training and inference. PMID:28316365

  3. Activation of Brainstem Neurons by Underwater Diving in the Rat

    PubMed Central

    Panneton, W. Michael; Gan, Qi; Le, Jason; Livergood, Robert S.; Clerc, Philip; Juric, Rajko

    2012-01-01

    The mammalian diving response is a powerful autonomic adjustment to underwater submersion greatly affecting heart rate, arterial blood pressure, and ventilation. The bradycardia is mediated by the parasympathetic nervous system, arterial blood pressure is mediated via the sympathetic system and still other circuits mediate the respiratory changes. In the present study we investigate the cardiorespiratory responses and the brainstem neurons activated by voluntary diving of trained rats, and, compare them to control and swimming animals which did not dive. We show that the bradycardia and increase in arterial blood pressure induced by diving were significantly different than that induced by swimming. Neuronal activation was calculated after immunohistochemical processing of brainstem sections for Fos protein. Labeled neurons were counted in the caudal pressor area, the medullary dorsal horn, subnuclei of the nucleus tractus solitarii (NTS), the nucleus raphe pallidus (RPa), the rostroventrolateral medulla, the A5 area, the nucleus locus coeruleus, the Kölliker–Fuse area, and the external lateral and superior lateral subnuclei of the parabrachial nucleus. All these areas showed significant increases in Fos labeling when data from voluntary diving rats were compared to control rats and all but the commissural subnucleus of the NTS, A5 area, and RPa were significantly different from swimming rats. These data provide a substrate for more precise experiments to determine the role of these nuclei in the reflex circuits driving the diving response. PMID:22563319

  4. Dive patterns of tagged right whales in the Great South Channel

    NASA Astrophysics Data System (ADS)

    Winn, Howard E.; Goodyear, Jeffrey D.; Kenney, Robert D.; Petricig, Richard O.

    Right whales were tagged in 1988 and 1989 with radio and sonic telemetry tags as part of a multidisciplinary investigation of right whales and their habitat in the Great South Channel region east of Cape Cod. The tags yielded data on the durations of 6456 dives and 6482 surfacings, as well as 23,538 measurements of the depth of a diving whale. Log-survivorship analysis of the 1988 data showed a clear separation between the durations of dives between blows within a single surfacing sequence or bout (intea-bout dives) and longer dives between surfacing sequences (interbout dives) at 27 s, which was also applied to the 1989 data. Inter-bout dives averaged 127.3 s, and were significantly longer in 1988 than in 1989. Inter-bout dives were significantly longer during the day than night in 1988, and longer at night in 1989. The average intea-bout dive duration was 11.8 s, with 1989 dives longer than those in 1988. Surface durations averaged 6.2 s, and were also significantly longer in 1989. Dive depths were recorded only in 1989. Mean dive depth was 7.3 m, and only 12 dives went deeper than 30 m. The typical right whale dive pattern in 1988 included relatively short surfacings, long dives during the day, and shorter dives at night. This correlated with strong diel vertical migration by the dense zooplankton patches on which they were presumed to be feeding based on indirect evidence-from near the surface at night to near the bottom during the day. The 1989 pattern included longer dives during the night, as well as some exceptionally long surfacings. Zooplankton in 1989 did not migrate vertically, and remained near the surface day and night in right whale feeding areas. Right whale dive patterns in the Great South Channel are closely correlated with the horizontal and vertical distributions and movements of dense patches of their zooplankton prey.

  5. Regional heterothermy and conservation of core temperature in emperor penguins diving under sea ice.

    PubMed

    Ponganis, P J; Van Dam, R P; Levenson, D H; Knower, T; Ponganis, K V; Marshall, G

    2003-07-01

    Temperatures were recorded at several body sites in emperor penguins (Aptenodytes forsteri) diving at an isolated dive hole in order to document temperature profiles during diving and to evaluate the role of hypothermia in this well-studied model of penguin diving physiology. Grand mean temperatures (+/-S.E.) in central body sites during dives were: stomach: 37.1+/-0.2 degrees C (n=101 dives in five birds), pectoral muscle: 37.8+/-0.1 degrees C (n=71 dives in three birds) and axillary/brachial veins: 37.9+/-0.1 degrees C (n=97 dives in three birds). Mean diving temperature and duration correlated negatively at only one site in one bird (femoral vein, r=-0.59, P<0.05; range <1 degrees C). In contrast, grand mean temperatures in the wing vein, foot vein and lumbar subcutaneous tissue during dives were 7.6+/-0.7 degrees C (n=157 dives in three birds), 20.2+/-1.2 degrees C (n=69 in three birds) and 35.2+/-0.2 degrees C (n=261 in six birds), respectively. Mean limb temperature during dives negatively correlated with diving duration in all six birds (r=-0.29 to -0.60, P<0.05). In two of six birds, mean diving subcutaneous temperature negatively correlated with diving duration (r=-0.49 and -0.78, P<0.05). Sub-feather temperatures decreased from 31 to 35 degrees C during rest periods to a grand mean of 15.0+/-0.7 degrees C during 68 dives of three birds; mean diving temperature and duration correlated negatively in one bird (r=-0.42, P<0.05). In general, pectoral, deep venous and even stomach temperatures during diving reflected previously measured vena caval temperatures of 37-39 degrees C more closely than the anterior abdominal temperatures (19-30 degrees C) recently recorded in diving emperors. Although prey ingestion can result in cooling in the stomach, these findings and the lack of negative correlations between internal temperatures and diving duration do not support a role for hypothermia-induced metabolic suppression of the abdominal organs as a mechanism of

  6. SHAD-Nisat: A Composite Study of Shallow Saturation Diving Incorporating Long Duration Air Saturation with Excursions, Deep Nitrox Saturation, and Switch from Nitrogen to Helium

    DTIC Science & Technology

    1982-08-01

    which is targeted to the gram negatives). Debris built up in both canals necessitating wire loop removal. Ear powder containing a sulfa drug and...restriction in the A-V valve. The PR and QRS intervals are indicators of changes in ionic balance or drugs . A look at Table IV-1 shows no remarkable...and is has been seen in experiments using nitrous oxide to mimic nitrogen narcosis (Hamilton, 1973). It is caused also by other "narcotic" drugs

  7. Incidence of Decompression Illness and Other Diving Related Medical Problems Amongst Royal Navy Divers 1995-1999

    DTIC Science & Technology

    1999-01-01

    diving apparatus used with the semiclosed Diving Set Self Contained Clearance Diving (DSSCCD) being replaced by the closed circuit Clearance Diving... closed circuit Long Endurance Breathing Apparatus (Mixed Gas) (LEBA (MG)) diving apparatus, which uses oxygen in nitrogen breathing mixtures, was...using surface supplied open circuit 20% oxygen in helium (855/100,000) with 3 cases occurring after 60 msw dives of short duration using CDBA (252

  8. Determinants of arterial gas embolism after scuba diving.

    PubMed

    Ljubkovic, Marko; Zanchi, Jaksa; Breskovic, Toni; Marinovic, Jasna; Lojpur, Mihajlo; Dujic, Zeljko

    2012-01-01

    Scuba diving is associated with breathing gas at increased pressure, which often leads to tissue gas supersaturation during ascent and the formation of venous gas emboli (VGE). VGE crossover to systemic arteries (arterialization), mostly through the patent foramen ovale, has been implicated in various diving-related pathologies. Since recent research has shown that arterializations frequently occur in the absence of cardiac septal defects, our aim was to investigate the mechanisms responsible for these events. Divers who tested negative for patent foramen ovale were subjected to laboratory testing where agitated saline contrast bubbles were injected in the cubital vein at rest and exercise. The individual propensity for transpulmonary bubble passage was evaluated echocardiographically. The same subjects performed a standard air dive followed by an echosonographic assessment of VGE generation (graded on a scale of 0-5) and distribution. Twenty-three of thirty-four subjects allowed the transpulmonary passage of saline contrast bubbles in the laboratory at rest or after a mild/moderate exercise, and nine of them arterialized after a field dive. All subjects with postdive arterialization had bubble loads reaching or exceeding grade 4B in the right heart. In individuals without transpulmonary passage of saline contrast bubbles, injected either at rest or after an exercise bout, no postdive arterialization was detected. Therefore, postdive VGE arterialization occurs in subjects that meet two criteria: 1) transpulmonary shunting of contrast bubbles at rest or at mild/moderate exercise and 2) VGE generation after a dive reaches the threshold grade. These findings may represent a novel concept in approach to diving, where diving routines will be tailored individually.

  9. Lift-based paddling in diving grebe.

    PubMed

    Johansson, L C; Lindhe Norberg, U M

    2001-05-01

    To examine the hydrodynamic propulsion mechanism of a diving great crested grebe (Podiceps cristatus), the three-dimensional kinematics was determined by digital analysis of sequential video images of dorsal and lateral views. During the acceleration phase of this foot-propelled bird, the feet move through an arc in a plane nearly normal to the bird's line of motion through the water, i.e. the toes move dorsally and medially but not caudally relative to the water. The kinematics of the grebe's lobed feet is different from that in anseriforms, whose feet move in a plane mostly parallel to the bird's line of progress through the water. Our results suggest that the foot-propelled locomotor mechanism of grebes is based primarily on a lift-producing leg and foot stroke, in contrast to the drag-based locomotion assumed previously. We suggest that the lift-based paddling of grebes considerably increases both maximum swimming speed and energetic efficiency over drag-based propulsion. Furthermore, the results implicate a new interpretation of the functional morphology of these birds, with the toes serving as a self-stabilizing multi-slotted hydrofoil during the power phase.

  10. The Lester-Jones tube and scuba diving.

    PubMed

    Mani, Navin; de Carpentier, John

    2009-01-01

    Insertion of a Lester-Jones tube remains the standard treatment for epiphora secondary to canalicular obstruction. We report on a patient requiring removal of his correctly working Lester-Jones tube to allow him to continue his hobby of scuba diving. This particular complication of the Lester-Jones tube has never previously been reported in the literature. Patients with Lester-Jones tubes are unable to perform the valsalva manoeuvre. The valsalva manoeuvre involves blowing the nose against occluded nostrils resulting in a raised pressure in the nose and post-nasal space which is transmitted via the eustachian tubes to the middle ear. The ability to perform a successful valsalva manoeuvre is a prerequisite of scuba diving to equalise middle ear pressure. Inability to equalise middle ear pressure can lead to barotrauma, including pain, rupture of the tympanic membrane and labyrinthine fistula. We recommend that when planning the insertion of a Lester-Jones tube it is wise to enquire whether the patient undertakes scuba diving. If the patient prefers to scuba dive raher than have control of their epiphora, the surgery should be deferred until the patient gives up diving.

  11. Diving bradycardia is not correlated to the oculocardiac reflex.

    PubMed

    Folgering, H; Wijnheymer, P; Geeraedts, L

    1983-08-01

    Both facial immersion in cold water and pressure on the eyeball cause reflex bradycardia. These reflexes are called diving reflex and oculocardiac reflex, respectively. The latter is sometimes used in diving medicine to estimate the risk of severe diving bradycardia. The purpose of this study was to quantify the effects of both reflexes on heart rate in 15 subjects. All subjects performed four tests: (1) breath-holding (2) breath-holding and facial immersion in water of 10 degrees, 15 degrees, and 20 degrees C; (3) facial immersion in water and snorkeling; (4) application of pressure of 30, 50, and 70 mmHg on the eyeball. In seven subjects an additional test was done: (5) eyeball pressures during breath-holding. It was shown that the intensity of the oculocardiac reflex is not a good indication of the bradycardia that can be expected during diving. It is proposed that breath-holding with facial immersion in water of 20 degrees C or colder during at least 10 s is a more appropriate test to assess the possibility of severe diving bradycardia and cardiac arrhythmias.

  12. Diving behaviour and decompression sickness among Galapagos underwater harvesters.

    PubMed

    Westin, A A; Asvall, J; Idrovo, G; Denoble, P; Brubakk, A O

    2005-01-01

    Diving conditions, dive profiles, vascular bubbles, and symptoms of decompression sickness (DCS) in a group of Galapagos commercial divers are described. They harvest sea cucumbers from small boats with surface supplied air (hookah). Dive profiles for 12 divers were recorded using dive loggers, and bubble formation was measured in the pulmonary artery. DCS symptoms were assessed by interview. A total of 380 immersions were recorded over a nine day period. The divers did on average 6.3 immersions per day, in a yo-yo pattern. Mean overall depth was 34.5 FSW. Maximum recorded depth was 107 FSW. Average bottom time per day per diver was 175 minutes. 82 % of all ascents exceeded the recommended maximum ascent rate of 30 FSW/ min. High bubble grades were observed on six occasions, but the test was unreliable. Muscle and joint pain was reported on five occasions, in three different divers. Symptoms were typically managed by analgesics, in-water recompression or not at all. The divers were extremely reluctant to seek professional help for DCS symptoms, mostly due to the high costs of treatment. We conclude that the fishermen dive beyond standard no-decompression limits, and that DCS symptoms are common.

  13. Deep-Diving California Sea Lions: Are They Pushing Their Physiological Limit?

    DTIC Science & Technology

    2014-09-30

    bradycardia during descent occurs in deep-diving emperor penguins (Wright et al. 2014), and in deep-diving bottlenose dolphins (Tursiops truncatus...potential for vascular bubble formation in a repetitively diving dolphin . J Exp Biol 213: 52-62. Kooyman, G.L., E.A. Wahrenbrock, M.A. Castellini...Experimental Biology 210: 278-289. Williams, T.M., J.E. Haun and W.A. Friedl. 1999. The diving physiology of bottlenose dolphins (Tursiops truncatus). I

  14. Three-Hour Dives with Exercise While Breathing Oxygen Partial Pressure of 1.3 ATM

    DTIC Science & Technology

    2007-10-01

    intervals, were tested for accumulation of pulmonary oxygen toxicity. We measured pulmonary function (flow-volume loopsand diffusing capacity for carbon...accumulated over five days of three-hour dives when half of the dive time was spent exercising. We measured changes in pulmonary function and...dives, 7 we also measured visual refraction when we tested pulmonary function. METHODS GENERAL The dives were identical to those for the four-hour

  15. Blood Oxygen Depletion in Diving California Sea Lions: How Close to the Limit

    DTIC Science & Technology

    2011-09-30

    often calculated (cADL) on the basis of total body O2 stores and an estimated diving metabolic rate , has become an essential concept in the...interpretation of diving behavior and foraging ecology (Kooyman and Ponganis 1998); however, the actual rate and magnitude of O2 store depletion during dives...has not been determined in any otariid. This project will document the rate and magnitude of blood O2 store depletion during diving in California sea

  16. Saturation in coupled oscillators

    NASA Astrophysics Data System (ADS)

    Roman, Ahmed; Hanna, James

    2015-03-01

    We consider a weakly nonlinear system consisting of a resonantly forced oscillator coupled to an unforced oscillator. It has long been known that, for quadratic nonlinearities and a 2:1 resonance between the oscillators, a perturbative solution of the dynamics exhibits a phenomenon known as saturation. At low forcing, the forced oscillator responds, while the unforced oscillator is quiescent. Above a critical value of the forcing, the forced oscillator's steady-state amplitude reaches a plateau, while that of the unforced oscillator increases without bound. We show that, contrary to established folklore, saturation is not unique to quadratically nonlinear systems. We present conditions on the form of the nonlinear couplings and resonance that lead to saturation. Our results elucidate a mechanism for localization or diversion of energy in systems of coupled oscillators, and suggest new approaches for the control or suppression of vibrations in engineered systems.

  17. Dive and Explore: An Interactive Web Visualization that Simulates Making an ROV Dive to an Active Submarine Volcano

    NASA Astrophysics Data System (ADS)

    Weiland, C.; Chadwick, W. W.

    2004-12-01

    Several years ago we created an exciting and engaging multimedia exhibit for the Hatfield Marine Science Center that lets visitors simulate making a dive to the seafloor with the remotely operated vehicle (ROV) named ROPOS. The exhibit immerses the user in an interactive experience that is naturally fun but also educational. The public display is located at the Hatfield Marine Science Visitor Center in Newport, Oregon. We are now completing a revision to the project that will make this engaging virtual exploration accessible to a much larger audience. With minor modifications we will be able to put the exhibit onto the world wide web so that any person with internet access can view and learn about exciting volcanic and hydrothermal activity at Axial Seamount on the Juan de Fuca Ridge. The modifications address some cosmetic and logistic ISSUES confronted in the museum environment, but will mainly involve compressing video clips so they can be delivered more efficiently over the internet. The web version, like the museum version, will allow users to choose from 1 of 3 different dives sites in the caldera of Axial Volcano. The dives are based on real seafloor settings at Axial seamount, an active submarine volcano on the Juan de Fuca Ridge (NE Pacific) that is also the location of a seafloor observatory called NeMO. Once a dive is chosen, then the user watches ROPOS being deployed and then arrives into a 3-D computer-generated seafloor environment that is based on the real world but is easier to visualize and navigate. Once on the bottom, the user is placed within a 360 degree panorama and can look in all directions by manipulating the computer mouse. By clicking on markers embedded in the scene, the user can then either move to other panorama locations via movies that travel through the 3-D virtual environment, or they can play video clips from actual ROPOS dives specifically related to that scene. Audio accompanying the video clips informs the user where they are

  18. Physiological constraints and energetic costs of diving behaviour in marine mammals: a review of studies using trained Steller sea lions diving in the open ocean.

    PubMed

    Rosen, David A S; Hindle, Allyson G; Gerlinsky, Carling D; Goundie, Elizabeth; Hastie, Gordon D; Volpov, Beth L; Trites, Andrew W

    2017-01-01

    Marine mammals are characterized as having physiological specializations that maximize the use of oxygen stores to prolong time spent under water. However, it has been difficult to undertake the requisite controlled studies to determine the physiological limitations and trade-offs that marine mammals face while diving in the wild under varying environmental and nutritional conditions. For the past decade, Steller sea lions (Eumetopias jubatus) trained to swim and dive in the open ocean away from the physical confines of pools participated in studies that investigated the interactions between diving behaviour, energetic costs, physiological constraints, and prey availability. Many of these studies measured the cost of diving to understand how it varies with behaviour and environmental and physiological conditions. Collectively, these studies show that the type of diving (dive bouts or single dives), the level of underwater activity, the depth and duration of dives, and the nutritional status and physical condition of the animal affect the cost of diving and foraging. They show that dive depth, dive and surface duration, and the type of dive result in physiological adjustments (heart rate, gas exchange) that may be independent of energy expenditure. They also demonstrate that changes in prey abundance and nutritional status cause sea lions to alter the balance between time spent at the surface acquiring oxygen (and offloading CO2 and other metabolic by-products) and time spent at depth acquiring prey. These new insights into the physiological basis of diving behaviour further our understanding of the potential scope for behavioural responses of marine mammals to environmental changes, the energetic significance of these adjustments, and the consequences of approaching physiological limits.

  19. 33 CFR 150.825 - Reporting a diving-related casualty.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Reporting a diving-related casualty. 150.825 Section 150.825 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Reporting a diving-related casualty. Deaths and injuries related to diving within the safety zone of...

  20. 29 CFR Appendix B to Subpart Y of... - Guidelines for Scientific Diving

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Guidelines for Scientific Diving B Appendix B to Subpart Y... ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Diving Pt. 1926, Subpt. Y, App. B Appendix B to Subpart Y of Part 1926—Guidelines for Scientific Diving Note:...

  1. Hidden Markov models reveal complexity in the diving behaviour of short-finned pilot whales

    PubMed Central

    Quick, Nicola J.; Isojunno, Saana; Sadykova, Dina; Bowers, Matthew; Nowacek, Douglas P.; Read, Andrew J.

    2017-01-01

    Diving behaviour of short-finned pilot whales is often described by two states; deep foraging and shallow, non-foraging dives. However, this simple classification system ignores much of the variation that occurs during subsurface periods. We used multi-state hidden Markov models (HMM) to characterize states of diving behaviour and the transitions between states in short-finned pilot whales. We used three parameters (number of buzzes, maximum dive depth and duration) measured in 259 dives by digital acoustic recording tags (DTAGs) deployed on 20 individual whales off Cape Hatteras, North Carolina, USA. The HMM identified a four-state model as the best descriptor of diving behaviour. The state-dependent distributions for the diving parameters showed variation between states, indicative of different diving behaviours. Transition probabilities were considerably higher for state persistence than state switching, indicating that dive types occurred in bouts. Our results indicate that subsurface behaviour in short-finned pilot whales is more complex than a simple dichotomy of deep and shallow diving states, and labelling all subsurface behaviour as deep dives or shallow dives discounts a significant amount of important variation. We discuss potential drivers of these patterns, including variation in foraging success, prey availability and selection, bathymetry, physiological constraints and socially mediated behaviour. PMID:28361954

  2. The Risk of Noise-Induced Hearing Loss During Simulated Dives in Canadian Forces Hyperbaric Facilities

    DTIC Science & Technology

    2012-10-01

    The risk of noise-induced hearing loss during simulated dives in Canadian Forces hyperbaric facilities Sharon M...2012-084 October 2012 The risk of noise-induced hearing loss during simulated dives in Canadian Forces hyperbaric ...transferred into the dive chamber of a hyperbaric facility. The mechanism is audible and sufficiently high in level in adjacent areas to warrant the

  3. Foraging dives by post-breeding northern pintails

    USGS Publications Warehouse

    Miller, Michael R.

    1983-01-01

    Dabbling ducks (Anatini), including Northern Pintails (Anas acuta), typically feed by “tipping-up” (Bellrose, Ducks, Geese, and Swans of North America, Stackpole Books, Harrisburg, Pennsylvania, 1976) in shallow water. Pintails are not as adapted for diving as members of Aythyini or Oxyurini (Catlett and Johnston, Comp. Biochem. Physiol. 47A:925-931, 1974); however, incidents of foraging dives by small numbers of pintails have been reported (Chapman et al., Br. Birds 52:60, 1959; Bourget and Chapdelaine, Wildfowl 26:55-57, 1975). This paper reports on forage diving by a flock of several hundred pintails. Ecological explanations are suggested to account for the behavior and comparisons with tip-up feeding are presented.

  4. Early genetic responses in rat vascular tissue after simulated diving.

    PubMed

    Eftedal, Ingrid; Jørgensen, Arve; Røsbjørgen, Ragnhild; Flatberg, Arnar; Brubakk, Alf O

    2012-12-18

    Diving causes a transient reduction of vascular function, but the mechanisms behind this are largely unknown. The aim of this study was therefore to analyze genetic reactions that may be involved in acute changes of vascular function in divers. Rats were exposed to 709 kPa of hyperbaric air (149 kPa Po(2)) for 50 min followed by postdive monitoring of vascular bubble formation and full genome microarray analysis of the aorta from diving rats (n = 8) and unexposed controls (n = 9). Upregulation of 23 genes was observed 1 h after simulated diving. The differential gene expression was characteristic of cellular responses to oxidative stress, with functions of upregulated genes including activation and fine-tuning of stress-responsive transcription, cytokine/cytokine receptor signaling, molecular chaperoning, and coagulation. By qRT-PCR, we verified increased transcription of neuron-derived orphan receptor-1 (Nr4a3), plasminogen activator inhibitor 1 (Serpine1), cytokine TWEAK receptor FN14 (Tnfrsf12a), transcription factor class E basic helix-loop-helix protein 40 (Bhlhe40), and adrenomedullin (Adm). Hypoxia-inducible transcription factor HIF1 subunit HIF1-α was stabilized in the aorta 1 h after diving, and after 4 h there was a fivefold increase in total protein levels of the procoagulant plasminogen activator inhibitor 1 (PAI1) in blood plasma from diving rats. The study did not have sufficient power for individual assessment of effects of hyperoxia and decompression-induced bubbles on postdive gene expression. However, differential gene expression in rats without venous bubbles was similar to that of all the diving rats, indicating that elevated Po(2) instigated the observed genetic reactions.

  5. Venous oxygen saturation.

    PubMed

    Hartog, Christiane; Bloos, Frank

    2014-12-01

    Early detection and rapid treatment of tissue hypoxia are important goals. Venous oxygen saturation is an indirect index of global oxygen supply-to-demand ratio. Central venous oxygen saturation (ScvO2) measurement has become a surrogate for mixed venous oxygen saturation (SvO2). ScvO2 is measured by a catheter placed in the superior vena cava. After results from a single-center study suggested that maintaining ScvO2 values >70% might improve survival rates in septic patients, international practice guidelines included this target in a bundle strategy to treat early sepsis. However, a recent multicenter study with >1500 patients found that the use of central hemodynamic and ScvO2 monitoring did not improve long-term survival when compared to the clinical assessment of the adequacy of circulation. It seems that if sepsis is recognized early, a rapid initiation of antibiotics and adequate fluid resuscitation are more important than measuring venous oxygen saturation.

  6. Methods of deep dives in whole ice cover conditions

    NASA Astrophysics Data System (ADS)

    Sagalevich, A. M.

    2016-05-01

    The essence of methodological and engineering questions solved during the preparation and implementation of historic dives of the manned submersibles Mir-1 and Mir-2, allowing humans to see the bottom of the North Pole at a depth of 4300 m, are described together with innovative developments in underwater navigation, as well as the Mir's propulsion, ballast, and other systems that ensured the safety of the dives. These innovative methods have opened up the Arctic's underice space for scientific research and practical exploration for minerals with the direct participation of scientists and specialists.

  7. Provisional Crown Dislodgement during Scuba Diving: A Case of Barotrauma

    PubMed Central

    Gulve, Meenal Nitin; Gulve, Nitin Dilip

    2013-01-01

    Changes in ambient pressure, for example, during flying, diving, or hyperbaric oxygen therapy, can lead to barotrauma. Although it may seem that this issue was neglected in dental education and research in recent decades, familiarity with and understanding of these facts may be of importance for dental practitioners. We report the case of a patient who experienced barotrauma involving dislodgement of a provisional crown during scuba diving. Patients who are exposed to pressure changes as a part of their jobs or hobbies and their dentists should know the causes of barotrauma. In addition, the clinician must be aware of the possible influence of pressure changes on the retention of dental components. PMID:23984113

  8. Dive Angle Sensitivity Analysis for Flight Test Safety and Efficiency

    DTIC Science & Technology

    2010-03-01

    These points develop into high- speed dives and require an accurate predictive model to prevent possible testing accidents. As a flight test is...Looking back at this concept and approach, Equation 2.1 and 2.4 are combined to obtain Equation 2.5.  dh V V dVT D dt W g dt...number of attempts at each test point as well as prevent possible accidents and crashes from data that is misrepresented. The analysis took a Dive

  9. Effect of repetitive SCUBA diving on humoral markers of endothelial and central nervous system integrity.

    PubMed

    Bilopavlovic, Nada; Marinovic, Jasna; Ljubkovic, Marko; Obad, Ante; Zanchi, Jaksa; Pollock, Neal W; Denoble, Petar; Dujic, Zeljko

    2013-07-01

    During SCUBA diving decompression, there is a significant gas bubble production in systemic veins, with rather frequent bubble crossover to arterial side even in asymptomatic divers. The aim of the current study was to investigate potential changes in humoral markers of endothelial and brain damage (endothelin-1, neuron-specific enolase and S-100β) after repetitive SCUBA diving with concomitant assessment of venous gas bubble production and subsequent arterialization. Sixteen male divers performed four open-water no-decompression dives to 18 msw (meters of sea water) lasting 49 min in consecutive days during which they performed moderate-level exercise. Before and after dives 1 and 4 blood was drawn, and bubble production and potential arterialization were echocardiographically evaluated. In addition, a control dive to 5 msw was performed with same duration, water temperature and exercise load. SCUBA diving to 18 msw caused significant bubble production with arterializations in six divers after dive 1 and in four divers after dive 4. Blood levels of endothelin-1 and neuron-specific enolase did not change after diving, but levels of S-100β were significantly elevated after both dives to 18 msw and a control dive. Creatine kinase activity following a control dive was also significantly increased. Although serum S-100β levels were increased after diving, concomitant increase of creatine kinase during control, almost bubble-free, dive suggests the extracranial release of S-100β, most likely from skeletal muscles. Therefore, despite the significant bubble production and sporadic arterialization after open-water dives to 18 msw, the current study found no signs of damage to neurons or the blood-brain barrier.

  10. Seabird diving behaviour reveals the functional significance of shelf-sea fronts as foraging hotspots

    PubMed Central

    Miller, P. I.; Embling, C. B.; Bicknell, A. W. J.; Hosegood, P. J.; Morgan, G.; Ingram, S. N.

    2016-01-01

    Oceanic fronts are key habitats for a diverse range of marine predators, yet how they influence fine-scale foraging behaviour is poorly understood. Here, we investigated the dive behaviour of northern gannets Morus bassanus in relation to shelf-sea fronts. We GPS (global positioning system) tracked 53 breeding birds and examined the relationship between 1901 foraging dives (from time-depth recorders) and thermal fronts (identified via Earth Observation composite front mapping) in the Celtic Sea, Northeast Atlantic. We (i) used a habitat-use availability analysis to determine whether gannets preferentially dived at fronts, and (ii) compared dive characteristics in relation to fronts to investigate the functional significance of these oceanographic features. We found that relationships between gannet dive probabilities and fronts varied by frontal metric and sex. While both sexes were more likely to dive in the presence of seasonally persistent fronts, links to more ephemeral features were less clear. Here, males were positively correlated with distance to front and cross-front gradient strength, with the reverse for females. Both sexes performed two dive strategies: shallow V-shaped plunge dives with little or no active swim phase (92% of dives) and deeper U-shaped dives with an active pursuit phase of at least 3 s (8% of dives). When foraging around fronts, gannets were half as likely to engage in U-shaped dives compared with V-shaped dives, independent of sex. Moreover, V-shaped dive durations were significantly shortened around fronts. These behavioural responses support the assertion that fronts are important foraging habitats for marine predators, and suggest a possible mechanistic link between the two in terms of dive behaviour. This research also emphasizes the importance of cross-disciplinary research when attempting to understand marine ecosystems. PMID:27703698

  11. The cardiovascular and endocrine responses to voluntary and forced diving in trained and untrained rats

    PubMed Central

    DiNovo, Karyn. M.; Connolly, Tiffanny M.

    2010-01-01

    The mammalian diving response, consisting of apnea, bradycardia, and increased total peripheral resistance, can be modified by conscious awareness, fear, and anticipation. We wondered whether swim and dive training in rats would 1) affect the magnitude of the cardiovascular responses during voluntary and forced diving, and 2) whether this training would reduce or eliminate any stress due to diving. Results indicate Sprague-Dawley rats have a substantial diving response. Immediately upon submersion, heart rate (HR) decreased by 78%, from 453 ± 12 to 101 ± 8 beats per minute (bpm), and mean arterial pressure (MAP) decreased 25%, from 143 ± 1 to 107 ± 5 mmHg. Approximately 4.5 s after submergence, MAP had increased to a maximum 174 ± 3 mmHg. Blood corticosterone levels indicate trained rats find diving no more stressful than being held by a human, while untrained rats find swimming and diving very stressful. Forced diving is stressful to both trained and untrained rats. The magnitude of bradycardia was similar during both voluntary and forced diving, while the increase in MAP was greater during forced diving. The diving response of laboratory rats, therefore, appears to be dissimilar from that of other animals, as most birds and mammals show intensification of diving bradycardia during forced diving compared with voluntary diving. Rats may exhibit an accentuated antagonism between the parasympathetic and sympathetic branches of the autonomic nervous system, such that in the autonomic control of HR, parasympathetic activity overpowers sympathetic activity. Additionally, laboratory rats may lack the ability to modify the degree of parasympathetic outflow to the heart during an intense cardiorespiratory response (i.e., the diving response). PMID:19923359

  12. Seabird diving behaviour reveals the functional significance of shelf-sea fronts as foraging hotspots

    NASA Astrophysics Data System (ADS)

    Cox, S. L.; Miller, P. I.; Embling, C. B.; Scales, K. L.; Bicknell, A. W. J.; Hosegood, P. J.; Morgan, G.; Ingram, S. N.; Votier, S. C.

    2016-09-01

    Oceanic fronts are key habitats for a diverse range of marine predators, yet how they influence fine-scale foraging behaviour is poorly understood. Here, we investigated the dive behaviour of northern gannets Morus bassanus in relation to shelf-sea fronts. We GPS (global positioning system) tracked 53 breeding birds and examined the relationship between 1901 foraging dives (from time-depth recorders) and thermal fronts (identified via Earth Observation composite front mapping) in the Celtic Sea, Northeast Atlantic. We (i) used a habitat-use availability analysis to determine whether gannets preferentially dived at fronts, and (ii) compared dive characteristics in relation to fronts to investigate the functional significance of these oceanographic features. We found that relationships between gannet dive probabilities and fronts varied by frontal metric and sex. While both sexes were more likely to dive in the presence of seasonally persistent fronts, links to more ephemeral features were less clear. Here, males were positively correlated with distance to front and cross-front gradient strength, with the reverse for females. Both sexes performed two dive strategies: shallow V-shaped plunge dives with little or no active swim phase (92% of dives) and deeper U-shaped dives with an active pursuit phase of at least 3 s (8% of dives). When foraging around fronts, gannets were half as likely to engage in U-shaped dives compared with V-shaped dives, independent of sex. Moreover, V-shaped dive durations were significantly shortened around fronts. These behavioural responses support the assertion that fronts are important foraging habitats for marine predators, and suggest a possible mechanistic link between the two in terms of dive behaviour. This research also emphasizes the importance of cross-disciplinary research when attempting to understand marine ecosystems.

  13. A red orange extract modulates the vascular response to a recreational dive: a pilot study on the effect of anthocyanins on the physiological consequences of scuba diving.

    PubMed

    Balestra, C; Cimino, F; Theunissen, S; Snoeck, T; Provyn, S; Canali, R; Bonina, A; Virgili, F

    2016-09-01

    Nutritional antioxidants have been proposed as an expedient strategy to counter the potentially deleterious effects of scuba diving on endothelial function, flow-mediated dilation (FMD) and heart function. Sixteen volunteers performing a single standard dive (20 min at 33 m) according to US Navy diving procedures were randomly assigned to two groups: one was administered with two doses of 200 mg of an anthocyanins (AC)-rich extract from red oranges, 12 and 4 h before diving. Anthocyanins supplementation significantly modulated the effects of diving on haematocrit, body water distribution and FMD. AC administration significantly reduces the potentially harmful endothelial effects of a recreational single dive. The lack of any significant effect on the most common markers of plasma antioxidant capacity suggests that the mechanism underlying this protective activity is independent of the putative antioxidant effect of AC and possibly involves cellular signalling modulation of the response to high oxygen.

  14. Perceptions amongst Tasmanian recreational scuba divers of the value of a diving medical.

    PubMed

    Baines, Carol

    2013-12-01

    An online survey was offered to recreational divers in Tasmania to ascertain if they have an understanding of how pressure affects their health and if they considered an annual dive medical necessary. A total of 98 recreational divers completed the survey, five of these had never had a dive medical while 74 felt that if they passed their dive medical they do not have any potential illness. Sixty five saw the dive medical as a comprehensive health check. This project provided an insight to Tasmanian recreational divers' understanding of and attitude towards the value of a dive medical.

  15. Persistent (patent) foramen ovale (PFO): implications for safe diving.

    PubMed

    Germonpré, Peter

    2015-06-01

    Diving medicine is a peculiar specialty. There are physicians and scientists from a wide variety of disciplines with an interest in diving and who all practice 'diving medicine': the study of the complex whole-body physiological changes and interactions upon immersion and emersion. To understand these, the science of physics and molecular gas and fluid movements comes into play. The ultimate goal of practicing diving medicine is to preserve the diver's health, both during and after the dive. Good medicine starts with prevention. For most divers, underwater excursions are not a professional necessity but a hobby; avoidance of risk is generally a much better option than risk mitigation or cure. However, prevention of diving illnesses seems to be even more difficult than treating those illnesses. The papers contained in this issue of DHM are a nice mix of various aspects of PFO that divers are interested in, all of them written by specialist doctors who are avid divers themselves. However, diving medicine should also take advantage of research from the "non-diving" medicine community, and PFO is a prime example. Cardiology and neurology have studied PFO for as long, or even longer than divers have been the subjects of PFO research, and with much greater numbers and resources. Unexplained stroke has been associated with PFO, as has severe migraine with aura. As the association seems to be strong, investigating the effect of PFO closure was a logical step. Devices have been developed and perfected, allowing now for a relatively low-risk procedure to 'solve the PFO problem'. However, as with many things in science, the results have not been as spectacular as hoped for: patients still get recurrences of stroke, still have migraine attacks. The risk-benefit ratio of PFO closure for these non-diving diseases is still debated. For diving, we now face a similar problem. Let there be no doubt that PFO is a pathway through which venous gas emboli (VGE) can arterialize, given

  16. DECOMPRESSION FROM He-N2-O2 (TRIMIX) BOUNCE DIVES IS NOT MORE EFFICIENT THAN FROM He-O2 (HELIOX) BOUNCE DIVES

    DTIC Science & Technology

    2015-05-28

    Experimental Diving Unit who made these experiments possible. 1 INTRODUCTION Nitrogen and oxygena (nitrox) breathing mixtures are impractical for deep...diving because gas mixtures with a high partial pressure of nitrogen are narcotic and dense, which results in mental impairment and increased work of...helium is not narcotic and is less dense than nitrogen . However, a longer decompression obligation is thought to accrue during a heliox bounce dive

  17. Diving bradycardia of elderly Korean women divers, haenyeo, in cold seawater: a field report

    PubMed Central

    LEE, Joo-Young; LEE, Hyo-Hyun; KIM, Siyeon; JANG, Young-Joon; BAEK, Yoon-Jeong; KANG, Kwon-Yong

    2015-01-01

    The purpose of the present field study was to explore diving patterns and heart rate of elderly Korean women divers (haenyeo) while breath-hold diving in cold seawater. We hypothesized that the decreasing rate in heart rate of elderly haenyeos during breath-hold diving was greater and total diving time was shorter than those of young haenyeos from previous studies. Nine haenyeos participated in a field study [68 ± 10 yr in age, ranged from 56 to 83 yr] at a seawater temperature of 10 to 13 °C. Average total diving time including surface swimming time between dives was 253 ± 73 min (155–341 min). Total frequency of dives was 97 ± 28 times and they dived 23 ± 8 times per hour. All haenyeos showed diving bradycardia with a decreased rate of 20 ± 8% at the bottom time (101 ± 20 bpm) when compared to surface swimming time (125 ± 16 bpm) in the sea. Older haenyeos among the nine elderly haenyeos had shorter diving time, less diving frequencies, and lower heart rate at work (p<0.05). These reductions imply that haenyeos voluntarily adjust their workload along with advancing age and diminished cardiovascular functions. PMID:26632118

  18. Diving bradycardia of elderly Korean women divers, haenyeo, in cold seawater: a field report.

    PubMed

    Lee, Joo-Young; Lee, Hyo-Hyun; Kim, Siyeon; Jang, Young-Joon; Baek, Yoon-Jeong; Kang, Kwon-Yong

    2016-01-01

    The purpose of the present field study was to explore diving patterns and heart rate of elderly Korean women divers (haenyeo) while breath-hold diving in cold seawater. We hypothesized that the decreasing rate in heart rate of elderly haenyeos during breath-hold diving was greater and total diving time was shorter than those of young haenyeos from previous studies. Nine haenyeos participated in a field study [68 ± 10 yr in age, ranged from 56 to 83 yr] at a seawater temperature of 10 to 13 °C. Average total diving time including surface swimming time between dives was 253 ± 73 min (155-341 min). Total frequency of dives was 97 ± 28 times and they dived 23 ± 8 times per hour. All haenyeos showed diving bradycardia with a decreased rate of 20 ± 8% at the bottom time (101 ± 20 bpm) when compared to surface swimming time (125 ± 16 bpm) in the sea. Older haenyeos among the nine elderly haenyeos had shorter diving time, less diving frequencies, and lower heart rate at work (p<0.05). These reductions imply that haenyeos voluntarily adjust their workload along with advancing age and diminished cardiovascular functions.

  19. Diving methods and decompression sickness incidence of Miskito Indian underwater harvesters.

    PubMed

    Dunford, R G; Mejia, E B; Salbador, G W; Gerth, W A; Hampson, N B

    2002-01-01

    Diving conditions, dive profiles, and symptoms of decompression sickness (DCS) in a group of Miskito Indian underwater seafood harvesters are described. Dive profiles for 5 divers were recorded with dive computers, and DCS symptoms were assessed by neurological examination and interview. Divers averaged 10 dives a day over a 7-day period with a mean depth of 67 +/- 7 FSW (306 +/- 123 kPa) and average in-water time of 20.6 +/- 6.3 minutes. Limb pain was reported on 10 occasions during 35 man-days of diving. Symptoms were typically managed with analgesic medication rather than recompression. Indices of the decompression stress were estimated from the recorded profiles using a probabilistic model. We conclude that the dives were outside the limits of standard air decompression tables and that DCS symptoms were common. The high frequency of limb pain suggests the potential for dysbaric bone necrosis for these divers.

  20. Diving behaviour of whale sharks in relation to a predictable food pulse.

    PubMed

    Graham, Rachel T; Roberts, Callum M; Smart, James C R

    2006-02-22

    We present diving data for four whale sharks in relation to a predictable food pulse (reef fish spawn) and an analysis of the longest continuous fine-resolution diving record for a planktivorous shark. Fine-resolution pressure data from a recovered pop-up archival satellite tag deployed for 206 days on a whale shark were analysed using the fast Fourier Transform method for frequency domain analysis of time-series. The results demonstrated that a free-ranging whale shark displays ultradian, diel and circa-lunar rhythmicity of diving behaviour. Whale sharks dive to over 979.5 m and can tolerate a temperature range of 26.4 degrees C. The whale sharks made primarily diurnal deep dives and remained in relatively shallow waters at night. Whale shark diving patterns are influenced by a seasonally predictable food source, with shallower dives made during fish spawning periods.

  1. Beginning Skin and Scuba Diving, Physical Education: 5551.69.

    ERIC Educational Resources Information Center

    Roberts, Millie

    This course outline is a guide for teaching the principles and basic fundamentals of beginning skin and scuba diving in grades 7-12. The course format includes lectures, skills practice, films, and tests that focus on mastery of skills and understanding correct usage of skin and scuba equipment. Course content includes the following: (a) history,…

  2. Descriptive Analysis of the Rip Entry in Competitive Diving.

    ERIC Educational Resources Information Center

    Brown, Janet G.; And Others

    1984-01-01

    Different types of diving entries were filmed both above water and underwater to help identify factors which enable divers to enter the water without apparent splash. Anthropometric measures of subjects were taken to determine body streamlining. Results are presented. (Author/DF)

  3. Longitudinal Health Risks Among Graduates and Disenrollees from Diving School.

    DTIC Science & Technology

    1982-07-01

    ntpa- tient medical care (Berghage, 1976; Pullen et al., 1979). For at least one diving condition, dysbaric osteonecrosis , the disorder typically has a...Davidson, 1981). The difficulty in determining the prevalence ot dysbaric osteonecrosis is underscored by Hunter, Biersner, Sphar, and Harvey (1978) who... osteonecrosis , vertigo, dyspnea, immersion diuresis, hyperbaric .,rthralyga, hvpercaplia, oxygen toxicity, nitrogen narcosis, venomous bite or sting

  4. 29 CFR 1910.422 - Procedures during dive.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... applicable to each diving operation unless otherwise specified. (b) Water entry and exit. (1) A means capable of supporting the diver shall be provided for entering and exiting the water. (2) The means provided for exiting the water shall extend below the water surface. (3) A means shall be provided to assist...

  5. A Measurement of "g" Using Alexander's Diving Bell

    ERIC Educational Resources Information Center

    Quiroga, M.; Martinez, S.; Otranto, S.

    2010-01-01

    This paper describes a very simple exercise using an inverted test tube pushed straight down into a column of water to determine the free-fall acceleration "g". The exercise employs the ideal gas law and only involves the measurement of the displacement of the bottom of the "diving bell" and the water level inside the tube with respect to the…

  6. OVERVIEW OF DIVE TRAINER SIMULATOR AT SECOND FLOOR LEVEL SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW OF DIVE TRAINER SIMULATOR AT SECOND FLOOR LEVEL SHOWING CONTROL CENTER CAB. VIEW FACING WEST/NORTHWEST - U.S. Naval Base, Pearl Harbor, Ford Island Polaris Missile Lab & U.S. Fleet Ballistic Missile Submarine Training Center, Between Lexington Boulvevard and the sea plane ramps on the southwest side of Ford Island, Pearl City, Honolulu County, HI

  7. OVERVIEW OF DIVE TRAINER SIMULATOR FROM FIRST FLOOR LEVEL SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW OF DIVE TRAINER SIMULATOR FROM FIRST FLOOR LEVEL SHOWING HYDRAULIC EQUIPMENT, SUPPORTS AND FOUNDATION BLOCKS. VIEW FACING NORTHEAST - U.S. Naval Base, Pearl Harbor, Ford Island Polaris Missile Lab & U.S. Fleet Ballistic Missile Submarine Training Center, Between Lexington Boulvevard and the sea plane ramps on the southwest side of Ford Island, Pearl City, Honolulu County, HI

  8. Capillary saturation and desaturation.

    PubMed

    Hilfer, R; Armstrong, R T; Berg, S; Georgiadis, A; Ott, H

    2015-12-01

    Capillary desaturation experiments produce disconnected (trapped) ganglia of mesoscopic sizes intermediate between pore size and system size. Experimental evidence for interactions between these mesoscale clusters during desaturation is analyzed and discussed within the established microscopic and macroscopic laws of Newton, Young-Laplace, and Darcy. A theoretical expression for capillary number correlations is introduced that seems to have remained unnoticed. It expresses capillary desaturation curves in terms of stationary capillary pressures and relative permeabilities. The theoretical expression shows that the plateau saturation in capillary desaturation curves may in general differ from the residual nonwetting saturation defined through the saturation limit of the main hysteresis loop. Hysteresis effects as well as the difference between wetting and nonwetting fluids are introduced into the analysis of capillary desaturation experiments. The article examines experiments with different desaturation protocols and discusses the existence of a mesoscopic length scale intermediate between pore scale and sample scale. The theoretical expression is derived entirely within the existing traditional theory of two-phase flow in porous media and compared to a recent experiment.

  9. Capillary saturation and desaturation

    NASA Astrophysics Data System (ADS)

    Hilfer, R.; Armstrong, R. T.; Berg, S.; Georgiadis, A.; Ott, H.

    2015-12-01

    Capillary desaturation experiments produce disconnected (trapped) ganglia of mesoscopic sizes intermediate between pore size and system size. Experimental evidence for interactions between these mesoscale clusters during desaturation is analyzed and discussed within the established microscopic and macroscopic laws of Newton, Young-Laplace, and Darcy. A theoretical expression for capillary number correlations is introduced that seems to have remained unnoticed. It expresses capillary desaturation curves in terms of stationary capillary pressures and relative permeabilities. The theoretical expression shows that the plateau saturation in capillary desaturation curves may in general differ from the residual nonwetting saturation defined through the saturation limit of the main hysteresis loop. Hysteresis effects as well as the difference between wetting and nonwetting fluids are introduced into the analysis of capillary desaturation experiments. The article examines experiments with different desaturation protocols and discusses the existence of a mesoscopic length scale intermediate between pore scale and sample scale. The theoretical expression is derived entirely within the existing traditional theory of two-phase flow in porous media and compared to a recent experiment.

  10. Sensitivity to hypercapnia and elimination of CO2 following diving in Steller sea lions (Eumetopias jubatus).

    PubMed

    Gerlinsky, Carling D; Rosen, David A S; Trites, Andrew W

    2014-05-01

    The diving ability of marine mammals is a function of how they use and store oxygen and the physiological control of ventilation, which is in turn dependent on the accumulation of CO2. To assess the influence of CO2 on physiological control of dive behaviour, we tested how increasing levels of inspired CO2 (hypercarbia) and decreasing inspired O2 (hypoxia) affected the diving metabolic rate, submergence times, and dive recovery times (time to replenish O2 stores and eliminate CO2) of freely diving Steller sea lions. We also measured changes in breathing frequency of diving and non-diving individuals. Our findings show that hypercarbia increased breathing frequency (as low as 2 % CO2), but did not affect metabolic rate, or the duration of dives or surface intervals (up to 3 % CO2). Changes in breathing rates indicated respiratory drive was altered by hypercarbia at rest, but blood CO2 levels remained below the threshold that would alter normal dive behaviour. It took the sea lions longer to remove accumulated CO2 than it did for them to replenish their O2 stores following dives (whether breathing ambient air, hypercarbia, or hypoxia). This difference between O2 and CO2 recovery times grew with increasing dive durations, increasing hypercarbia, and was greater for bout dives, suggesting there could be a build-up of CO2 load with repeated dives. Although we saw no evidence of CO2 limiting dive behaviour, the longer time required to remove CO2 may eventually exhibit control over the overall time they can spend in apnoea and overall foraging duration.

  11. Diving-flight aerodynamics of a peregrine falcon (Falco peregrinus).

    PubMed

    Ponitz, Benjamin; Schmitz, Anke; Fischer, Dominik; Bleckmann, Horst; Brücker, Christoph

    2014-01-01

    This study investigates the aerodynamics of the falcon Falco peregrinus while diving. During a dive peregrines can reach velocities of more than 320 km h⁻¹. Unfortunately, in freely roaming falcons, these high velocities prohibit a precise determination of flight parameters such as velocity and acceleration as well as body shape and wing contour. Therefore, individual F. peregrinus were trained to dive in front of a vertical dam with a height of 60 m. The presence of a well-defined background allowed us to reconstruct the flight path and the body shape of the falcon during certain flight phases. Flight trajectories were obtained with a stereo high-speed camera system. In addition, body images of the falcon were taken from two perspectives with a high-resolution digital camera. The dam allowed us to match the high-resolution images obtained from the digital camera with the corresponding images taken with the high-speed cameras. Using these data we built a life-size model of F. peregrinus and used it to measure the drag and lift forces in a wind-tunnel. We compared these forces acting on the model with the data obtained from the 3-D flight path trajectory of the diving F. peregrinus. Visualizations of the flow in the wind-tunnel uncovered details of the flow structure around the falcon's body, which suggests local regions with separation of flow. High-resolution pictures of the diving peregrine indicate that feathers pop-up in the equivalent regions, where flow separation in the model falcon occurred.

  12. Swimming: An Introduction to Swimming, Diving, and SCUBA Diving for Blind and Physically Handicapped Individuals. Leisure Pursuit Series.

    ERIC Educational Resources Information Center

    Cylke, Frank Kurt, Ed.

    The annotated guide lists information sources available from the National Library Service for the Blind and Physically Handicapped in print, disc, cassette, and braille formats concerning swimming and diving with special reference to blind swimmers. The guide begins with a brief sketch of a champion swimmer who is also legally blind and an…

  13. Steller sea lions (Eumetopias jubatus) have greater blood volumes, higher diving metabolic rates and a longer aerobic dive limit when nutritionally stressed.

    PubMed

    Gerlinsky, Carling D; Trites, Andrew W; Rosen, David A S

    2014-03-01

    Marine mammal foraging behaviour inherently depends on diving ability. Declining populations of Steller sea lions may be facing nutritional stress that could affect their diving ability through changes in body composition or metabolism. Our objective was to determine whether nutritional stress (restricted food intake resulting in a 10% decrease in body mass) altered the calculated aerobic dive limit (cADL) of four captive sea lions diving in the open ocean, and how this related to changes in observed dive behaviour. We measured diving metabolic rate (DMR), blood O2 stores, body composition and dive behaviour prior to and while under nutritional restriction. We found that nutritionally stressed sea lions increased the duration of their single long dives, and the proportion of time they spent at the surface during a cycle of four dives. Nutritionally stressed sea lions lost both lipid and lean mass, resulting in potentially lower muscle O2 stores. However, total body O2 stores increased due to rises in blood O2 stores associated with having higher blood volumes. Nutritionally stressed sea lions also had higher mass-specific metabolic rates. The greater rise in O2 stores relative to the increase in mass-specific DMR resulted in the sea lions having a longer cADL when nutritionally stressed. We conclude that there was no negative effect of nutritional stress on the diving ability of sea lions. However, nutritional stress did lower foraging efficiency and require more foraging time to meet energy requirements due to increases in diving metabolic rates and surface recovery times.

  14. Recreational scuba diving, patent foramen ovale and their associated risks.

    PubMed

    Schwerzmann, M; Seiler, C

    2001-06-30

    Scuba diving has become a popular leisure time activity with distinct risks to health owing to its physical characteristics. Knowledge of the behaviour of any mixture of breathable gases under increased ambient pressure is crucial for safe diving and gives clues as to the pathophysiology of compression or decompression related disorders. Immersion in cold water augments cardiac pre- and afterload due to an increase of intrathoracic blood volume and peripheral vasoconstriction. In very rare cases, the vasoconstrictor response can lead to pulmonary oedema. Immersion of the face in cold water is associated with bradycardia mediated by increased vagal tone. In icy water, the bradycardia can be so pronounced, that syncope results. For recreational dives, compressed air (i.e., 4 parts nitrogen and 1 part oxygen) is the preferred breathing gas. Its use is limited for diving to 40 to 50 m, otherwise nitrogen narcosis ("rapture of the deep") reduces a diver's cognitive function and increases the risk of inadequate reactions. At depths of 60 to 70 m oxygen toxicity impairs respiration and at higher partial pressures also functioning of the central nervous system. The use of special nitrogen-oxygen mixtures ("nitrox", 60% nitrogen and 40% oxygen as the typical example) decreases the probability of nitrogen narcosis and probably bubble formation, at the cost of increased risk of oxygen toxicity. Most of the health hazards during dives are consequences of changes in gas volume and formation of gas bubbles due to reduction of ambient pressure during a diver's ascent. The term barotrauma encompasses disorders related to over expansion of gas filled body cavities (mainly the lung and the inner ear). Decompression sickness results from the growth of gas nuclei in predominantly fatty tissue. Arterial gas embolism describes the penetration of such gas bubbles into the systemic circulation, either due to pulmonary barotrauma, transpulmonary passage after massive bubble formation

  15. Habitat-mediated dive behavior in free-ranging grey seals.

    PubMed

    Jessopp, Mark; Cronin, Michelle; Hart, Tom

    2013-01-01

    Understanding the links between foraging behaviour and habitat use of key species is essential to addressing fundamental questions about trophic interactions and ecosystem functioning. Eight female grey seals (Halichoerus grypus) were equipped with time-depth recorders linked to Fastloc GPS tags following the annual moult in southwest Ireland. Individual dives were coupled with environmental correlates to investigate the habitat use and dive behaviour of free-ranging seals. Dives were characterised as either pelagic, benthic, or shallow (where errors in location and charted water depth made differentiating between pelagic and benthic dives unreliable). Sixty-nine percent of dives occurring in water >50 m were benthic. Pelagic dives were more common at night than during the day. Seals performed more pelagic dives over fine sediments (mud/sand), and more benthic dives when foraging over more three-dimensionally complex rock substrates. We used Markov chain analysis to determine the probability of transiting between dive states. A low probability of repeat pelagic dives suggests that pelagic prey were encountered en route to the seabed. This approach could be applied to make more accurate predictions of habitat use in data-poor areas, and investigate contentious issues such as resource overlap and competition between top predators and fisheries, essential for the effective conservation of these key marine species.

  16. Identifying foraging events in deep diving southern elephant seals, Mirounga leonina, using acceleration data loggers

    NASA Astrophysics Data System (ADS)

    Gallon, S.; Bailleul, F.; Charrassin, J.-B.; Guinet, C.; Bost, C.-A.; Handrich, Y.; Hindell, M.

    2013-04-01

    Southern elephant seals (Mirounga leonina) range widely throughout the Southern Ocean and are associated with important habitats (e.g., ice edges, shelf) where they accumulate energy to fuel their reproductive efforts on land. Knowledge of the fine scale foraging behaviour used to garner this energy, however, is limited. For the first time, acceleration loggers were deployed on three adult southern elephant seals during a translocation study at Kerguelen Island. The aims of the study were to (1) identify prey capture attempts using 2-D accelerometer tags deployed on the head of southern elephant seals, (2) compare the number of foraging dives identified by simple dive depth profiles and accelerometer profiles and (3) compare dive characteristics between prey encounter and non-prey encounter dives. The 2-D loggers recorded depth every second, surge and heave accelerations at 8 or 16 Hz and were carried for periods between 23 and 121 h. Rapid head movements were interpreted to be associated with prey encounter events. Acceleration data detected possible prey encounter events in 39-52% of dives whilst 67-80% of dives were classified as foraging dives when using dive depth profiles alone. Prey encounters occurred in successive dives during days and nights and lasted between tenths of a second and 7.6 min. Binomial linear mixed effect models showed that seals were diving significantly deeper and increased both descent rate and bottom duration when encountering prey. Dive duration, however, did not significantly increase during dives with prey encounters. These results are in accordance with optimal foraging theory, which predicts that deep divers should increase both their transit rates and the time spent at depth when a profitable prey patch is encountered. These findings indicate that this technique is promising as it more accurately detects possible prey encounter events compared with dive depth profiles alone and thus provides a better understanding of seal foraging

  17. Competitive apnea diving sessions induces an adaptative antioxidant response in mononucleated blood cells.

    PubMed

    Sureda, A; Batle, J M; Tur, J A; Pons, A

    2015-09-01

    The aim was evaluating the effects of hypoxia/reoxygenation repetitive episodes during 5 days of apnea diving (3-day training/2-day competition) on peripheral blood mononuclear cells (PBMCs) antioxidant defenses, oxidative damage, and plasma xanthine oxidase activity. Blood samples, from seven professional apnea divers, were taken under basal conditions the previous morning to the first training session (pre-diving basal), 4 h after ending the competition (4 h post-diving) and the following morning (15 h after last dive) in basal conditions (post-diving basal). Glucose levels significantly decreased whereas triglycerides increased at 4 h post-diving, both returning to basal values at post-diving basal. Glutathione reductase and catalase activity significantly increased after 4 h post-diving remaining elevated at post-diving basal. Glutathione peroxidase and superoxide dismutase activities and catalase protein levels progressively increased after diving with significant differences respect to initial values at post-diving basal. No significant differences were observed in circulating PBMCs and oxidative damage markers. Plasma xanthine oxidase activity and nitrite levels, but not the inducible nitric oxide synthetase, significantly increased 4 h post-diving, returning to the basal values after 15 h. In conclusion, chronic and repetitive episodes of diving apnea during five consecutive days increased plasma xanthine oxidase activity and nitric oxide production which could enhance the signalling role of reactive oxygen and nitrogen species for PBMCs antioxidant adaptation against hypoxia/reoxygenation.

  18. Argon used as dry suit insulation gas for cold-water diving

    PubMed Central

    2013-01-01

    Background Cold-water diving requires good thermal insulation because hypothermia is a serious risk. Water conducts heat more efficiently compared to air. To stay warm during a dive, the choice of thermal protection should be based on physical activity, the temperature of the water, and the duration of exposure. A dry suit, a diving suit filled with gas, is the most common diving suit in cold water. Air is the traditional dry suit inflation gas, whereas the thermal conductivity of argon is approximately 32% lower compared to that of air. This study evaluates the benefits of argon, compared to air, as a thermal insulation gas for a dry suit during a 1-h cold-water dive by divers of the Royal Netherlands Navy. Methods Seven male Special Forces divers made (in total) 19 dives in a diving basin with water at 13°C at a depth of 3 m for 1 h in upright position. A rubber dry suit and woollen undergarment were used with either argon (n = 13) or air (n = 6) (blinded to the divers) as suit inflation gas. Core temperature was measured with a radio pill during the dive. Before, halfway, and after the dive, subjective thermal comfort was recorded using a thermal comfort score. Results No diver had to abort the test due to cold. No differences in core temperature and thermal comfort score were found between the two groups. Core temperature remained unchanged during the dives. Thermal comfort score showed a significant decrease in both groups after a 60-min dive compared to baseline. Conclusions In these tests the combination of the dry suit and undergarment was sufficient to maintain core temperature and thermal comfort for a dive of 1 h in water at 13°C. The use of argon as a suit inflation gas had no added value for thermal insulation compared to air for these dives. PMID:24438580

  19. Investigating annual diving behaviour by hooded seals (Cystophora cristata) within the Northwest Atlantic Ocean.

    PubMed

    Andersen, Julie M; Skern-Mauritzen, Mette; Boehme, Lars; Wiersma, Yolanda F; Rosing-Asvid, Aqqalu; Hammill, Mike O; Stenson, Garry B

    2013-01-01

    With the exception of relatively brief periods when they reproduce and moult, hooded seals, Cystophora cristata, spend most of the year in the open ocean where they undergo feeding migrations to either recover or prepare for the next fasting period. Valuable insights into habitat use and diving behaviour during these periods have been obtained by attaching Satellite Relay Data Loggers (SRDLs) to 51 Northwest (NW) Atlantic hooded seals (33 females and 18 males) during ice-bound fasting periods (2004-2008). Using General Additive Models (GAMs) we describe habitat use in terms of First Passage Time (FPT) and analyse how bathymetry, seasonality and FPT influence the hooded seals' diving behaviour described by maximum dive depth, dive duration and surface duration. Adult NW Atlantic hooded seals exhibit a change in diving activity in areas where they spend >20 h by increasing maximum dive depth, dive duration and surface duration, indicating a restricted search behaviour. We found that male and female hooded seals are spatially segregated and that diving behaviour varies between sexes in relation to habitat properties and seasonality. Migration periods are described by increased dive duration for both sexes with a peak in May, October and January. Males demonstrated an increase in dive depth and dive duration towards May (post-breeding/pre-moult) and August-October (post-moult/pre-breeding) but did not show any pronounced increase in surface duration. Females dived deepest and had the highest surface duration between December and January (post-moult/pre-breeding). Our results suggest that the smaller females may have a greater need to recover from dives than that of the larger males. Horizontal segregation could have evolved as a result of a resource partitioning strategy to avoid sexual competition or that the energy requirements of males and females are different due to different energy expenditure during fasting periods.

  20. Saturated Zone Colloid Transport

    SciTech Connect

    H. S. Viswanathan

    2004-10-07

    This scientific analysis provides retardation factors for colloids transporting in the saturated zone (SZ) and the unsaturated zone (UZ). These retardation factors represent the reversible chemical and physical filtration of colloids in the SZ. The value of the colloid retardation factor, R{sub col} is dependent on several factors, such as colloid size, colloid type, and geochemical conditions (e.g., pH, Eh, and ionic strength). These factors are folded into the distributions of R{sub col} that have been developed from field and experimental data collected under varying geochemical conditions with different colloid types and sizes. Attachment rate constants, k{sub att}, and detachment rate constants, k{sub det}, of colloids to the fracture surface have been measured for the fractured volcanics, and separate R{sub col} uncertainty distributions have been developed for attachment and detachment to clastic material and mineral grains in the alluvium. Radionuclides such as plutonium and americium sorb mostly (90 to 99 percent) irreversibly to colloids (BSC 2004 [DIRS 170025], Section 6.3.3.2). The colloid retardation factors developed in this analysis are needed to simulate the transport of radionuclides that are irreversibly sorbed onto colloids; this transport is discussed in the model report ''Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]). Although it is not exclusive to any particular radionuclide release scenario, this scientific analysis especially addresses those scenarios pertaining to evidence from waste-degradation experiments, which indicate that plutonium and americium may be irreversibly attached to colloids for the time scales of interest. A section of this report will also discuss the validity of using microspheres as analogs to colloids in some of the lab and field experiments used to obtain the colloid retardation factors. In addition, a small fraction of colloids travels with the groundwater without any significant retardation

  1. Comparative histology of muscle in free ranging cetaceans: shallow versus deep diving species

    PubMed Central

    Sierra, E.; Fernández, A.; Espinosa de los Monteros, A.; Díaz-Delgado, J.; Bernaldo de Quirós, Y.; García-Álvarez, N.; Arbelo, M.; Herráez, P.

    2015-01-01

    Different marine mammal species exhibit a wide range of diving behaviour based on their breath-hold diving capabilities. They are classically categorized as long duration, deep-diving and short duration, shallow-diving species. These abilities are likely to be related to the muscle characteristics of each species. Despite the increasing number of publications on muscle profile in different cetacean species, very little information is currently available concerning the characteristics of other muscle components in these species. In this study, we examined skeletal muscle fiber type, fiber size (cross sectional area and lesser diameter), intramuscular substrates, and perimysium-related structures, by retrospective study in 146 stranded cetaceans involving 15 different species. Additionally, we investigated diving profile-specific histological features. Our results suggest that deep diving species have higher amount of intramyocyte lipid droplets, and evidence higher percentage of intramuscular adipose tissue, and larger fibre sizes in this group of animals. PMID:26514564

  2. A suspended dive-net technique for catching territorial divers

    USGS Publications Warehouse

    Uher-Koch, Brian D.; Rizzolo, Daniel; Wright, Kenneth G.; Schmutz, Joel A.

    2016-01-01

    A variety of methods such as night-lighting and lift nets have been used to catch divers (Gavidae), although 24-hour daylight in the Arctic summer and the remote nature of field sites can make the use of these traditional methods impossible. Our research required capture of adult divers at remote locations in northern Alaska. Here we describe a suspended dive-net technique that we used to safely capture territorial White-billed Gavia adamsii and Pacific Divers G. pacifica and that is lightweight and easy to set up. We also were able to capture divers with chicks, and failed breeders, and suggest that this method could be used to catch other territorial aquatic diving birds, especially other diver species.

  3. Implementation of the submarine diving simulation in a distributed environment

    NASA Astrophysics Data System (ADS)

    Ha, Sol; Cha, Ju-Hwan; Roh, Myung-Il; Lee, Kyu-Yeul

    2012-09-01

    To implement a combined discrete event and discrete time simulation such as submarine diving simulation in a distributed environment, e.g., in the High Level Architecture (HLA)/Run-Time Infrastructure (RTI), a HLA interface, which can easily connect combined models with the HLA/RTI, was developed in this study. To verify the function and performance of the HLA interface, it was applied to the submarine dive scenario in a distributed environment, and the distributed simulation shows the same results as the stand-alone simulation. Finally, by adding a visualization model to the simulation and by editing this model, we can confirm that the HLA interface can provide user-friendly functions such as adding new model and editing a model.

  4. James Cameron discusses record dive and science concerns

    NASA Astrophysics Data System (ADS)

    Showstack, Randy; Balcerak, Ernie

    2012-12-01

    James Cameron, the explorer and filmmaker, led a 4 December panel at the AGU Fall Meeting in San Francisco to discuss his daring dive on 26 March to the bottom of the ocean in a one-person vertical "torpedo" submarine, the Deepsea Challenger, and to present some initial science findings from expedition samples and data. The dive touched the bottom of the Challenger Deep, a valley in the floor of the nearly 11-kilometer-deep Mariana Trench in the western Pacific Ocean. The vessel landed close to the same depth and at a location similar to where Don Walsh and Jacques Piccard descended in the Trieste bathyscaphe on 23 January 1960 at a then record-setting depth of 10,911 meters.

  5. Ultraviolet vision and foraging in dip and plunge diving birds

    PubMed Central

    Håstad, Olle; Ernstdotter, Emma; Ödeen, Anders

    2005-01-01

    Many fishes are sensitive to ultraviolet (UV) light and display UV markings during courtship. As UV scatters more than longer wavelengths of light, these signals are only effective at short distances, reducing the risk of detection by swimming predators. Such underwater scattering will be insignificant for dip and plunge diving birds, which prey on fishes just below the water surface. One could therefore expect to find adaptations in the eyes of dip and plunge diving birds that tune colour reception to UV signals. We used a molecular method to survey the colour vision tuning of five families of dip or plunge divers and compared the results with those from sister taxa of other foraging methods. We found evidence of extended UV vision only in gulls (Laridae). Based on available evidence, it is more probable that this trait is associated with their terrestrial foraging habits rather than piscivory. PMID:17148194

  6. Ultraviolet vision and foraging in dip and plunge diving birds.

    PubMed

    Håstad, Olle; Ernstdotter, Emma; Odeen, Anders

    2005-09-22

    Many fishes are sensitive to ultraviolet (UV) light and display UV markings during courtship. As UV scatters more than longer wavelengths of light, these signals are only effective at short distances, reducing the risk of detection by swimming predators. Such underwater scattering will be insignificant for dip and plunge diving birds, which prey on fishes just below the water surface. One could therefore expect to find adaptations in the eyes of dip and plunge diving birds that tune colour reception to UV signals. We used a molecular method to survey the colour vision tuning of five families of dip or plunge divers and compared the results with those from sister taxa of other foraging methods. We found evidence of extended UV vision only in gulls (Laridae). Based on available evidence, it is more probable that this trait is associated with their terrestrial foraging habits rather than piscivory.

  7. Effect of Exercise on Bubble Activity during Diving

    DTIC Science & Technology

    2001-06-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO 11088 TITLE: Effect of Exercise on Bubble Activity during Diving...following component part numbers comprise the compilation report: ADPO11059 thru ADP011100 UNCLASSIFIED 34-1 Effect of Exercise on Bubble Activity ...York, Ontario M3M 3B9 CANADA Exercise Science Department, Concordia University and Department of Physical Education, McGill University Montreal

  8. Assessment of Thermal Protection Afforded by Hot Water Diving Suits

    DTIC Science & Technology

    1980-07-03

    Assessment of Thermal Protect! " Afforded by Hot Water Diving Suits A AA L. A. Kuehn Diver thermal comfort in cold water is presently only...with proper control oj inlet suit water flow% and temperature, as well as heating of inspired gas, this suit technology suffices for thermal comfort for...technology provides in part to the convective heat loss that it prpsents, sustained long-term thermal comfort in cold water, Webb (W) has defined a

  9. Operational Considerations for the Standby Diver in CUMA Dives

    DTIC Science & Technology

    2010-11-01

    004 Vol 4 Book 2 ( Canadian Underwater Minecountermeasures Apparatus Version 2) Department of National Defence, Canada . [2] Nishi RY and Warlow MRN...Defence R&D Canada Technical Memorandum DRDC Toronto TM 2010-082 November 2010 Operational...Considerations for the Standby Diver in CUMA Dives R.Y. Nishi A.J. Ward D.J. Eaton Defence R&D Canada – Toronto

  10. Beaked Whale Group Deep Dive Behavior from Passive Acoustic Monitoring

    DTIC Science & Technology

    2015-09-30

    Acoustic Monitoring Len Thomas, Tiago Marques Centre for Research into Ecological and Environmental Modelling University of St Andrews The...is to provide novel information on beaked whale group foraging dive behavior using Passive Acoustic Monitoring (PAM) at the Atlantic Undersea Test...method capable of utilizing passive acoustic data from the hydrophone array at AUTEC to track individual clicking beaked whales within group deep

  11. Repeated Six-Hour Dives 1.35 ATM Oxygen Partial Pressure

    DTIC Science & Technology

    2005-10-01

    hemoglobin and carboxyhemoglobin , visual refraction was tested, and pulmonary function was measured . Additionally, the divers completed the postdive...and single six-hour dives in water or in the dry chamber where divers breathed oxygen at a partial pressure of 1.6 atm.4 In all studies we measured ...bands for each variable, as the lower limits of normal. We did not measure visual refraction daily during the pairs of daily dives or five daily dives

  12. Pulmonary Oxygen Toxicity with Exercise: Single MK 25 Rebreather Dives or Split 6-Hour Exposures

    DTIC Science & Technology

    2007-10-01

    blood samples were taken and hemoglobin and carboxyhemoglobin concentrations measured (CO- oximeter, Instrumentation Laboratory; Lexington, MA) for...performance was measured in conjunction with the dives. Two sets of similar dives using the MK 20 UBA were then conducted with three days off between...sets. Physical performance and total plasma antioxidant potential were measured . After the single dives, the incidence of respiratory symptoms (23%) or

  13. Blood Oxygen Depletion in Diving California Sea Lions: How Close to the Limit

    DTIC Science & Technology

    2013-09-30

    appropriate surrogate model for further investigation of blood N2 uptake during diving. RELATED PROJECTS Deep-diving California sea lions: Are they... reservoir in the collapsed lungs serves to supplement blood O2 levels during ascent. Conclusions: Although California sea lions have extreme hypoxemic...Elsner et al. 1998) and f) the basic assumptions of many recent computer models of the uptake and distribution of N2 during diving (Fahlman et al. 2009

  14. Converting chemical energy into electricity through a functionally cooperating device with diving-surfacing cycles.

    PubMed

    Song, Mengmeng; Cheng, Mengjiao; Ju, Guannan; Zhang, Yajun; Shi, Feng

    2014-11-05

    A smart device that can dive or surface in aqueous medium has been developed by combining a pH-responsive surface with acid-responsive magnesium. The diving-surfacing cycles can be used to convert chemical energy into electricity. During the diving-surfacing motion, the smart device cuts magnetic flux lines and produces a current, demonstrating that motional energy can be realized by consuming chemical energy of magnesium, thus producing electricity.

  15. Blood Oxygen Depletion in Diving California Sea Lions: How Close to the Limit

    DTIC Science & Technology

    2010-09-30

    accumulation). The ADL, which is often calculated (cADL) on the basis of total body O2 stores and an estimated diving metabolic rate , has become an essential...concept in the interpretation of diving behavior and foraging ecology (Kooyman and Ponganis 1998); however, the actual rate and magnitude of O2 store...depletion during dives has not been determined in any otariid. This project will document the rate and magnitude of blood O2 store depletion during

  16. Ontogeny of diving behaviour in the Australian sea lion: trials of adolescence in a late bloomer.

    PubMed

    Fowler, Shannon L; Costa, Daniel P; Arnould, John P Y; Gales, Nicholas J; Kuhn, Carey E

    2006-03-01

    1. Foraging behaviours of the Australian sea lion (Neophoca cinerea) reflect an animal working hard to exploit benthic habitats. Lactating females demonstrate almost continuous diving, maximize bottom time, exhibit elevated field metabolism and frequently exceed their calculated aerobic dive limit. Given that larger animals have disproportionately greater diving capabilities, we wanted to examine how pups and juveniles forage successfully. 2. Time/depth recorders were deployed on pups, juveniles and adult females at Seal Bay Conservation Park, Kangaroo Island, South Australia. Ten different mother/pup pairs were equipped at three stages of development (6, 15 and 23 months) to record the diving behaviours of 51 (nine instruments failed) animals. 3. Dive depth and duration increased with age. However, development was slow. At 6 months, pups demonstrated minimal diving activity and the mean depth for 23-month-old juveniles was only 44 +/- 4 m, or 62% of adult mean depth. 4. Although pups and juveniles did not reach adult depths or durations, dive records for young sea lions indicate benthic diving with mean bottom times (2.0 +/- 0.2 min) similar to those of females (2.1 +/- 0.2 min). This was accomplished by spending higher proportions of each dive and total time at sea on or near the bottom than adults. Immature sea lions also spent a higher percentage of time at sea diving. 5. Juveniles may have to work harder because they are weaned before reaching full diving capability. For benthic foragers, reduced diving ability limits available foraging habitat. Furthermore, as juveniles appear to operate close to their physiological maximum, they would have a difficult time increasing foraging effort in response to reductions in prey. Although benthic prey are less influenced by seasonal fluctuations and oceanographic perturbations than epipelagic prey, demersal fishery trawls may impact juvenile survival by disrupting habitat and removing larger size classes of prey. These

  17. Intrapulmonary shunt and SCUBA diving: another risk factor?

    PubMed

    Madden, Dennis; Ljubkovic, Marko; Dujic, Zeljko

    2015-02-01

    Laboratory and field investigations have demonstrated that intrapulmonary arteriovenous anastomoses (IPAVA) may provide an additional means for venous gas emboli (VGE) to cross over to the arterial circulation due to their larger diameter compared to pulmonary microcirculation. Once thought to be the primary cause of decompression sickness (DCS), it has been demonstrated that, even in large quantities, their presence does not always result in injury. Normally, VGE are trapped in the site of gas exchange in the lungs and eliminated via diffusion. When VGE crossover takes place in arterial circulation, they have the potential to cause more harm as they are redistributed to the brain, spinal column, and other sensitive tissues. The patent foramen ovale (PFO) was once thought to be the only risk factor for an increase in arterialization; however, IPAVAs represent another pathway for this crossover to occur. The opening of IPAVAs is associated with exercise and hypoxic gas mixtures, both of which divers may encounter. The goal of this review is to describe how IPAVAs may impact diving physiology, specifically during decompression, and what this means for the individual diver as well as the future of commercial and recreational diving. Future research must continue on the relationship between IPAVAs and the environmental and physiological circumstances that lead to their opening and closing, as well as how they may contribute to diving injuries such as DCS.

  18. Incremental Knowledge Base Construction Using DeepDive

    PubMed Central

    Shin, Jaeho; Wu, Sen; Wang, Feiran; De Sa, Christopher; Zhang, Ce; Ré, Christopher

    2016-01-01

    Populating a database with unstructured information is a long-standing problem in industry and research that encompasses problems of extraction, cleaning, and integration. Recent names used for this problem include dealing with dark data and knowledge base construction (KBC). In this work, we describe DeepDive, a system that combines database and machine learning ideas to help develop KBC systems, and we present techniques to make the KBC process more efficient. We observe that the KBC process is iterative, and we develop techniques to incrementally produce inference results for KBC systems. We propose two methods for incremental inference, based respectively on sampling and variational techniques. We also study the tradeoff space of these methods and develop a simple rule-based optimizer. DeepDive includes all of these contributions, and we evaluate Deep-Dive on five KBC systems, showing that it can speed up KBC inference tasks by up to two orders of magnitude with negligible impact on quality. PMID:27144081

  19. A comparison of auditory brainstem responses across diving bird species

    USGS Publications Warehouse

    Crowell, Sara E.; Berlin, Alicia; Carr, Catherine E; Olsen, Glenn H.; Therrien, Ronald E; Yannuzzi, Sally E; Ketten, Darlene R

    2015-01-01

    There is little biological data available for diving birds because many live in hard-to-study, remote habitats. Only one species of diving bird, the black-footed penguin (Spheniscus demersus), has been studied in respect to auditory capabilities (Wever et al., Proc Natl Acad Sci USA 63:676–680, 1969). We, therefore, measured in-air auditory threshold in ten species of diving birds, using the auditory brainstem response (ABR). The average audiogram obtained for each species followed the U-shape typical of birds and many other animals. All species tested shared a common region of the greatest sensitivity, from 1000 to 3000 Hz, although audiograms differed significantly across species. Thresholds of all duck species tested were more similar to each other than to the two non-duck species tested. The red-throated loon (Gavia stellata) and northern gannet (Morus bassanus) exhibited the highest thresholds while the lowest thresholds belonged to the duck species, specifically the lesser scaup (Aythya affinis) and ruddy duck (Oxyura jamaicensis). Vocalization parameters were also measured for each species, and showed that with the exception of the common eider (Somateria mollisima), the peak frequency, i.e., frequency at the greatest intensity, of all species' vocalizations measured here fell between 1000 and 3000 Hz, matching the bandwidth of the most sensitive hearing range.

  20. Energetics of the yo-yo dives of predatory sharks.

    PubMed

    Iosilevskii, Gil; Papastamatiou, Yannis P; Meyer, Carl G; Holland, Kim N

    2012-02-07

    Sharks zigzag vertically through the water in a series of alternating ascending and descending segments, changing depth by a few tens of meters over a period of a few hundred seconds. This 'yo-yo' like behavior has several characteristic patterns, identifiable by the way the swimming and vertical velocities vary along the dive. We suggest that these patterns represent different optimal strategies minimizing the cost of locomotion under different constraints; moreover, these constraints can be inferred by matching the pattern of a dive with a (standard) optimal swimming strategy for which the constraints are known. We used three sets of constraints and two definitions of the 'cost of locomotion' to analytically generate four standard optimal strategies; we have used high resolution tracking data from four tiger sharks to identify two different yo-yo diving patterns. These patterns seem to match two of the standard strategies: one that maximizes range, given an alternating power supply (e.g., swimming actively on ascents and lazily on descents); and the other that maximizes range, given an alternating vertical velocity (implying an 'intentional' up-and-down motion).

  1. A comparison of auditory brainstem responses across diving bird species.

    PubMed

    Crowell, Sara E; Wells-Berlin, Alicia M; Carr, Catherine E; Olsen, Glenn H; Therrien, Ronald E; Yannuzzi, Sally E; Ketten, Darlene R

    2015-08-01

    There is little biological data available for diving birds because many live in hard-to-study, remote habitats. Only one species of diving bird, the black-footed penguin (Spheniscus demersus), has been studied in respect to auditory capabilities (Wever et al., Proc Natl Acad Sci USA 63:676-680, 1969). We, therefore, measured in-air auditory threshold in ten species of diving birds, using the auditory brainstem response (ABR). The average audiogram obtained for each species followed the U-shape typical of birds and many other animals. All species tested shared a common region of the greatest sensitivity, from 1000 to 3000 Hz, although audiograms differed significantly across species. Thresholds of all duck species tested were more similar to each other than to the two non-duck species tested. The red-throated loon (Gavia stellata) and northern gannet (Morus bassanus) exhibited the highest thresholds while the lowest thresholds belonged to the duck species, specifically the lesser scaup (Aythya affinis) and ruddy duck (Oxyura jamaicensis). Vocalization parameters were also measured for each species, and showed that with the exception of the common eider (Somateria mollisima), the peak frequency, i.e., frequency at the greatest intensity, of all species' vocalizations measured here fell between 1000 and 3000 Hz, matching the bandwidth of the most sensitive hearing range.

  2. Optimal diving maneuver strategy considering guidance accuracy for hypersonic vehicle

    NASA Astrophysics Data System (ADS)

    Zhu, Jianwen; Liu, Luhua; Tang, Guojian; Bao, Weimin

    2014-11-01

    An optimal maneuver strategy considering terminal guidance accuracy for hypersonic vehicle in dive phase is investigated in this paper. First, it derives the complete three-dimensional nonlinear coupled motion equation without any approximations based on diving relative motion relationship directly, and converts it into linear decoupled state space equation with the same relative degree by feedback linearization. Second, the diving guidance law is designed based on the decoupled equation to meet the terminal impact point and falling angle constraints. In order to further improve the interception capability, it constructs maneuver control model through adding maneuver control item to the guidance law. Then, an integrated performance index consisting of maximum line-of-sight angle rate and minimum energy consumption is designed, and optimal control is employed to obtain optimal maneuver strategy when the encounter time is determined and undetermined, respectively. Furthermore, the performance index and suboptimal strategy are reconstructed to deal with the control capability constraint and the serous influence on terminal guidance accuracy caused by maneuvering flight. Finally, the approach is tested using the Common Aero Vehicle-H model. Simulation results demonstrate that the proposed strategy can achieve high precision guidance and effective maneuver at the same time, and the indices are also optimized.

  3. Relative decompression risk of dry and wet chamber air dives.

    PubMed

    Weathersby, P K; Survanshi, S S; Nishi, R Y

    1990-07-01

    The difference in risk of decompression sickness (DCS) between dry chamber subjects and wet, working divers is unknown and a direct test of the difference would be large and expensive. We used probabilistic models and maximum likelihood estimation to examine 797 dry (and generally resting and comfortable) and 244 wet (and generally working and cold) chamber dives from the Defence and Civil Institute of Environmental Medicine, supplemented with 483 wet (working, cold) dives from the Navy Experimental Diving Unit. Several analyses considered whether dry and wet data were distinguishable using several models, whether models obtained from one set of exposure conditions would correctly predict the occurrence of DCS in the other condition, and whether a single wet-dry risk difference parameter was different from zero. Although the two conditions may not produce identical risks, immersion appears to change relative risk of DCS by less than 30% and certainly involves less than a doubling of DCS risk. Uncontrolled differences in exercise and temperature stresses unavoidably complicate interpretation. Several methods are presented to extrapolate results from dry-test subjects in decompression trials to expected at-sea performance.

  4. A comparison of auditory brainstem responses across diving bird species

    PubMed Central

    Crowell, Sara E.; Wells-Berlin, Alicia M.; Carr, Catherine E.; Olsen, Glenn H.; Therrien, Ronald E.; Yannuzzi, Sally E.; Ketten, Darlene R.

    2015-01-01

    There is little biological data available for diving birds because many live in hard-to-study, remote habitats. Only one species of diving bird, the black-footed penguin (Spheniscus demersus), has been studied in respect to auditory capabilities (Wever et al. 1969). We therefore measured in-air auditory threshold in ten species of diving birds, using the auditory brainstem response (ABR). The average audiogram obtained for each species followed the U-shape typical of birds and many other animals. All species tested shared a common region of greatest sensitivity, from 1000 to 3000 Hz, although audiograms differed significantly across species. Thresholds of all duck species tested were more similar to each other than to the two non-duck species tested. The red-throated loon (Gavia stellata) and northern gannet (Morus bassanus) exhibited the highest thresholds while the lowest thresholds belonged to the duck species, specifically the lesser scaup (Aythya affinis) and ruddy duck (Oxyura jamaicensis). Vocalization parameters were also measured for each species, and showed that with the exception of the common eider (Somateria mollisima), the peak frequency, i.e. frequency at the greatest intensity, of all species’ vocalizations measured here fell between 1000 and 3000 Hz, matching the bandwidth of the most sensitive hearing range. PMID:26156644

  5. Repeated Four-Hour Dives With PO2 = 1.35 ATM

    DTIC Science & Technology

    2004-07-01

    Navy Experimental Diving Unit TA 02-22 321 Bullfinch Rd. NEDU TR 04-29 Panama City, FL 32407-7015 July 2004 REPEATED FOUR-HOUR DIVES WITH P0 2 =1.35...Experimental Diving Unit 6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and Zip Code) 321 Bullfinch Road, Panama City, FL 32407-7015 8a...referred to the optometry clinic at Tyndall Air Force Base for complete eye examinations during the week before diving and during the week following

  6. [A CASE OF NATTOU (FERMENTED-SOYBEAN)-INDUCED LATE-ONSET ANAPHYLAXIS FOLLOWING SCUBA DIVING].

    PubMed

    Nagakura, Toshikazu; Tanaka, Katsuichirou; Horikawa, Satoshi

    2015-06-01

    We here report a 34-years old male who had nattou-(fermented-soybean) induced late-onset anaphylaxis following SCUBA diving to about 20 m in the ocean off a small remote Japanese island (Kuroshima, Okinawa). He had eaten nattou for breakfast at 7:30 am. He traveled by boat to the dive site, dove twice and then ate lunch at 12:30 on the diving boat (no nattou at lunch). After lunch at 14:30 he dove again (third dive of the day) during which time itchiness started. Back on the diving boat, urticarial was noticed. At 15:30, while washing his diving gear at the diving shop near the harbor, he fainted. A physician arrived on the scene at 15:45. Chest sound was clear and SpO2 was 98%, and blood pressure was 60/- mmHg. Intra-venous hydrocortisone was given, however, his recovery was not satisfactory. Then he was transferred to the Yaeyama Hospital by helicopter at 17:45. The examination of diving computer analysis reveals no sign of increased residual nitrogen, denying the possibility of decompression syndrome. Prick to prick test shows a strongly positive response to nattou. Nattou-induced late-onset anaphylaxis following SCUBA diving was suspected.

  7. Epilepsy, scuba diving and risk assessment. Near misses and the need for ongoing vigilance.

    PubMed

    Smart, David; Lippmann, John

    2013-03-01

    There is ongoing debate about the safety of scuba diving for individuals with a history of epilepsy. An in-water seizure is highly likely to be fatal. Recommendations for fitness to dive vary with some regarding epilepsy as an absolute contraindication to diving (South Pacific Underwater Medicine Society) and others permitting diving under strict criteria (United Kingdom Sport Diving Medical Committee) with diving to be postponed for a period of three to five years without seizures. Long-term follow up of people with epilepsy shows that at least one-third will have a recurrence and that the risk remains elevated for many years. We present three cases where individuals with a history of epilepsy (or likely epilepsy) almost fell through the cracks of health risk assessment, two with near-fatal consequences. These cases inform the on-going debate about fitness to dive for those with current or past epilepsy, and highlight the importance of education for doctors, dive professionals and divers about the risks associated with epilepsy and diving.

  8. Decompression syndrome and the evolution of deep diving physiology in the Cetacea

    NASA Astrophysics Data System (ADS)

    Beatty, Brian Lee; Rothschild, Bruce M.

    2008-09-01

    Whales repetitively dive deep to feed and should be susceptible to decompression syndrome, though they are not known to suffer the associated pathologies. Avascular osteonecrosis has been recognized as an indicator of diving habits of extinct marine amniotes. Vertebrae of 331 individual modern and 996 fossil whales were subjected to macroscopic and radiographic examination. Avascular osteonecrosis was found in the Oligocene basal odontocetes (Xenorophoidea) and in geologically younger mysticetes, such as Aglaocetus [a sister taxon to Balaenopteridae + (Balaenidae + Eschrichtiidae) clade]. These are considered as early “experiments” in repetitive deep diving, indicating that they independently converged on their similar specialized diving physiologies.

  9. Functional properties of myoglobins from five whale species with different diving capacities.

    PubMed

    Helbo, Signe; Fago, Angela

    2012-10-01

    Whales show an exceptionally wide range of diving capabilities and many express high amounts of the O(2) carrier protein myoglobin (Mb) in their muscle tissues, which increases their aerobic diving capacity. Although previous studies have mainly focused on the muscle Mb concentration and O(2) carrying capacity as markers of diving behavior in whales, it still remains unexplored whether whale Mbs differ in their O(2) affinities and nitrite reductase and peroxidase enzymatic activities, all functions that could contribute to differences in diving capacities. In this study, we have measured the functional properties of purified Mbs from five toothed whales and two baleen whales and have examined their correlation with average dive duration. Results showed that some variation in functional properties exists among whale Mbs, with toothed whale Mbs having higher O(2) affinities and nitrite reductase activities (similar to those of horse Mb) compared with baleen whale Mbs. However, these differences did not correlate with average dive duration. Instead, a significant correlation was found between whale Mb concentration and average duration and depth of dives, and between O(2) affinity and nitrite reductase activity when including horse Mb. Despite the fact that the functional properties showed little species-specific differences in vitro, they may still contribute to enhancing diving capacity as a result of the increased muscle Mb concentration found in extreme divers. In conclusion, Mb concentration rather than specific functional reactivities may support whale diving performance.

  10. Diving behavior and fishing performance: the case of lobster artisanal fishermen of the Yucatan coast, Mexico.

    PubMed

    Huchim-Lara, Oswaldo; Salas, Silvia; Chin, Walter; Montero, Jorge; Fraga, Julia

    2015-01-01

    An average of 209 cases of decompression sickness (DCS) have been reported every year among artisanal fishermen. divers of the Yucatan Peninsula, Mexico. DCS is a major problem among fishermen divers worldwide. This paper explores how diving behavior and fishing techniques among fishermen relate to the probability of experiencing DCS (Pdcs). Fieldwork was conducted in two communities during the 2012-2013 fishing season. Fishermen were classified into three groups (two per group) according to their fishing performance and followed during their journeys. Dive profiles were recorded using Sensus Ultra dive recorders (Reefet Inc.). Surveys were used to record fishing yields from cooperative and individual fishermen along with fishing techniques and dive behavior. 120 dives were recorded. Fishermen averaged three dives/day, with an average depth of 47 ± 2 feet of sea water (fsw) and an average total bottom time (TBT) of 95 ± 11 minutes. 24% of dives exceeded the 2008 U.S. Navy no-decompression limit. The average ascent rate was 20 fsw/minute, and 5% of those exceeded 40 fsw/minute. Inadequate decompression was observed in all fishermen. Fishermen are diving outside the safety limits of both military and recreational standards. Fishing techniques and dive behavior were important factors in Pdcs. Fishermen were reluctant to seek treatment, and symptoms were relieved with analgesics.

  11. Determination of Flight Paths of an SBD-1 Airplane in Simulated Diving Attacks, Special Report

    NASA Technical Reports Server (NTRS)

    Johnson, Harold I.

    1943-01-01

    An investigation has been made to determine the motions of and the flight paths describe by a Navy dive-bombing airplane in simulated diving attacks. The data necessary to evaluate these items, with the exception of the atmospheric wind data, were obtained from automatic recording instruments installed entirely within the airplane. The atmospheric wind data were obtained from the ground by the balloon-theodolite method. The results of typical dives at various dive angles are presented in the form of time histories of the motion of the airplane as well as flight paths calculated with respect to still air and with respect to the ground.

  12. High altitude dives from 7000 to 14,200 feet in the Himalayas.

    PubMed

    Sahni, T K; John, M J; Dhall, A; Chatterjee, A K

    1991-07-01

    Indian Navy divers carried out no-decompression dives at altitudes of 7000 to 14,200 ft (2134-4328 m) in the Nilgiris and Himalayas from May to July 1988. Seventy-eight dives on air and 22 dives on oxygen were carried out at various altitudes. The final dives were at Lake Pangong Tso (4328 m) in Ladakh, Himalayas, to a maximum of 140 feet of sea water (fsw) [42.6 meters of sea water (msw)] equivalent ocean depth in minimum water temperature of 2 degrees C. Oxygen diving at 14,200 ft (4328 m) was not successful. Aspects considered were altitude adaptation, diminished air pressure diving, hypothermia, and remote area survival. Depths at altitude were converted to depths at sea level and were applied to the Royal Navy air tables. Altitude-related manifestations, hypoxia, hypothermia, suspected oxygen toxicity, and equipment failure were observed. It is concluded that stress is due to effects of altitude and cold on man and equipment, as well as changes in diving procedures when diving at high altitudes. Equivalent air depths when applied to Royal Navy tables could be considered a safe method for diving at altitudes.

  13. Time Variation of the Distance Separating Bomb and Dive Bomber Subsequent to Bomb Release

    NASA Technical Reports Server (NTRS)

    Mathews, Charles W.

    1952-01-01

    A study has been made of the variation of the distance separating bomb and aircraft with time after release as applied to dive-bombing operations, Separation distances determined from this study are presented in terms of two variables only, dive angle and maximum airplane accelerometer reading; the values of separation distance include the effects of delay in initiation of the pull-out and lag in attainment of the maximum normal acceleration.Contains analysis and calculations of the separation distances between bomb and dive bomber following bomb release, Separation distances as determined by the dive angle and the maximum airplane accelerometer reading are presented in a single chart.

  14. 29 CFR Appendix B to Subpart T to... - Guidelines for Scientific Diving

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... project using scientific diving is the advancement of science; therefore, information and data resulting... data gatherer. Construction and trouble-shooting tasks traditionally associated with commercial...

  15. The Effect of 20 Minutes Scuba Diving on Cognitive Function of Professional Scuba Divers

    PubMed Central

    Pourhashemi, Seyedeh Faezeh; Sahraei, Hedayat; Meftahi, Gholam Hossein; Hatef, Boshra; Gholipour, Bahareh

    2016-01-01

    Background Physical activity increases the performance of the nervous system by stimulating the body’s metabolism and improving the efficiency of the ATP production system. Objectives In the present study, the effect of twenty minutes scuba diving in high depth (10m) on cognitive function and stress system activity was investigated. Methods Twelve professional scuba divers with a mean age of 23 ± 1 year, weight of 80 ± 2.5 kg and height of 1.79 ± 3.5 cm resident in the city of Mashhad participated in the test. Their cognitive functions were measured 60 min before and 20 min after diving and the data were evaluated using the PASAT software. In the present study, parameters such as general mental health, sustained attention, average response speed, and mental fatigue were measured. Moreover, in order to determine the activity of the stress system, their salivary cortisol was collected before and after diving. Results Results revealed that, the general mental health of these scuba divers was normal and it did not undergo a remarkable change after diving. Their average response speed and sustained attention had a significant decrease after scuba diving. Mental fatigue after diving increased. Also, salivary cortisol level significantly increased after diving. Conclusions According to our data, it seems that scuba diving as stress stimulant increases cortisol level and therefore reduces cognitive performance after diving. PMID:27826405

  16. A Navy Diving Supervisor’s Guide to the Nontechnical Skills Required for Safe and Productive Diving Operations

    DTIC Science & Technology

    2005-06-01

    in the near future.Ř Models of situation awareness generally propose the following three levels (see Figure Level 1: Basic. An awareness of the key...reacted to the situation. QUESTIONS TO CALIBRATE SITUATION AWARENESS It is suggested that periodically during a dive, you ask the following questions of...diagnosed, you need only to follow a series of rules. Therefore, you do not need to be an expert or to understand every step. Positives Negatives You

  17. Apparatus Makes Precisely Saturated Solutions

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.

    1989-01-01

    Simple laboratory apparatus establishes equilibrium conditions of temperature and concentration in solutions for use in precise measurements of saturation conditions. With equipment typical measurement of saturation concentration of protein in solution established and measured within about 24 hours. Precisely saturated solution made by passing solvent or solution slowly along column packed with solute at precisely controlled temperature. If necessary, flow stopped for experimentally determined interval to allow equilibrium to be established in column.

  18. Saturated fats: what dietary intake?

    PubMed

    German, J Bruce; Dillard, Cora J

    2004-09-01

    Public health recommendations for the US population in 1977 were to reduce fat intake to as low as 30% of calories to lower the incidence of coronary artery disease. These recommendations resulted in a compositional shift in food materials throughout the agricultural industry, and the fractional content of fats was replaced principally with carbohydrates. Subsequently, high-carbohydrate diets were recognized as contributing to the lipoprotein pattern that characterizes atherogenic dyslipidemia and hypertriacylglycerolemia. The rising incidences of metabolic syndrome and obesity are becoming common themes in the literature. Current recommendations are to keep saturated fatty acid, trans fatty acid, and cholesterol intakes as low as possible while consuming a nutritionally adequate diet. In the face of such recommendations, the agricultural industry is shifting food composition toward lower proportions of all saturated fatty acids. To date, no lower safe limit of specific saturated fatty acid intakes has been identified. This review summarizes research findings and observations on the disparate functions of saturated fatty acids and seeks to bring a more quantitative balance to the debate on dietary saturated fat. Whether a finite quantity of specific dietary saturated fatty acids actually benefits health is not yet known. Because agricultural practices to reduce saturated fat will require a prolonged and concerted effort, and because the world is moving toward more individualized dietary recommendations, should the steps to decrease saturated fatty acids to as low as agriculturally possible not wait until evidence clearly indicates which amounts and types of saturated fatty acids are optimal?

  19. Dive behaviour impacts the ability of heart rate to predict oxygen consumption in Steller sea lions (Eumetopias jubatus) foraging at depth.

    PubMed

    Young, Beth L; Rosen, David A S; Hindle, Allyson G; Haulena, Martin; Trites, Andrew W

    2011-07-01

    The predictive relationship between heart rate (f(H)) and oxygen consumption (VO2) has been derived for several species of marine mammals swimming horizontally or diving in tanks to shallow depths. However, it is unclear how dive activity affects the f(H):VO2 relationship and whether the existing equations apply to animals diving to deeper depths. We investigated these questions by simultaneously measuring the f(H) and VO2 of Steller sea lions (Eumetopias jubatus) under different activity states (surface resting or diving), types of dives (single dives or dive bouts), and depths (10 or 40 m). We examined the relationship over dives only and also over dive cycles (dive + surface interval). We found that f(H) could only predict VO2 over a complete single dive cycle or dive bout cycle (i.e. surface intervals had to be included). The predictive equation derived for sea lions resting on the surface did not differ from that for single dive cycles. However, the equation derived over dive bout cycles (multiple dives + surface intervals) differed from those for single dive cycles or surface resting, with similar f(H) for multiple dive bout equations yielding higher predicted VO2 than that for single dive bout cycles (or resting). The f(H):VO2 relationships were not significantly affected by dive duration, dive depth, water temperature or cumulative food consumed under the conditions tested. Ultimately, our results demonstrate that f(H) can be used to predict activity-specific metabolic rates of diving Steller sea lions, but only over complete dive cycles that include a post-dive surface recovery period.

  20. Acute and potentially persistent effects of scuba diving on the blood transcriptome of experienced divers.

    PubMed

    Eftedal, Ingrid; Ljubkovic, Marko; Flatberg, Arnar; Jørgensen, Arve; Brubakk, Alf O; Dujic, Zeljko

    2013-10-16

    During scuba diving, the circulatory system is stressed by an elevated partial pressure of oxygen while the diver is submerged and by decompression-induced gas bubbles on ascent to the surface. This diving-induced stress may trigger decompression illness, but the majority of dives are asymptomatic. In this study we have mapped divers' blood transcriptomes with the aim of identifying genes, biological pathways, and cell types perturbed by the physiological stress in asymptomatic scuba diving. Ten experienced divers abstained from diving for >2 wk before performing a 3-day series of daily dives to 18 m depth for 47 min while breathing compressed air. Blood for microarray analysis was collected before and immediately after the first and last dives, and 10 matched nondivers provided controls for predive stationary transcriptomes. MetaCore GeneGo analysis of the predive samples identified stationary upregulation of genes associated with apoptosis, inflammation, and innate immune responses in the divers, most significantly involving genes in the TNFR1 pathway of caspase-dependent apoptosis, HSP60/HSP70 signaling via TLR4, and NF-κB-mediated transcription. Diving caused pronounced shifts in transcription patterns characteristic of specific leukocytes, with downregulation of genes expressed by CD8+ T lymphocytes and NK cells and upregulation of genes expressed by neutrophils, monocytes, and macrophages. Antioxidant genes were upregulated. Similar transient responses were observed after the first and last dive. The results indicate that sublethal oxidative stress elicits the myeloid innate immune system in scuba diving and that extensive diving may cause persistent change in pathways controlling apoptosis, inflammation, and innate immune responses.

  1. How man-made interference might cause gas bubble emboli in deep diving whales

    PubMed Central

    Fahlman, Andreas; Tyack, Peter L.; Miller, Patrick J. O.; Kvadsheim, Petter H.

    2014-01-01

    Recent cetacean mass strandings in close temporal and spatial association with sonar activity has raised the concern that anthropogenic sound may harm breath-hold diving marine mammals. Necropsy results of the stranded whales have shown evidence of bubbles in the tissues, similar to those in human divers suffering from decompression sickness (DCS). It has been proposed that changes in behavior or physiological responses during diving could increase tissue and blood N2 levels, thereby increasing DCS risk. Dive data recorded from sperm, killer, long-finned pilot, Blainville's beaked and Cuvier's beaked whales before and during exposure to low- (1–2 kHz) and mid- (2–7 kHz) frequency active sonar were used to estimate the changes in blood and tissue N2 tension (PN2). Our objectives were to determine if differences in (1) dive behavior or (2) physiological responses to sonar are plausible risk factors for bubble formation. The theoretical estimates indicate that all species may experience high N2 levels. However, unexpectedly, deep diving generally result in higher end-dive PN2 as compared with shallow diving. In this focused review we focus on three possible explanations: (1) We revisit an old hypothesis that CO2, because of its much higher diffusivity, forms bubble precursors that continue to grow in N2 supersaturated tissues. Such a mechanism would be less dependent on the alveolar collapse depth but affected by elevated levels of CO2 following a burst of activity during sonar exposure. (2) During deep dives, a greater duration of time might be spent at depths where gas exchange continues as compared with shallow dives. The resulting elevated levels of N2 in deep diving whales might also make them more susceptible to anthropogenic disturbances. (3) Extended duration of dives even at depths beyond where the alveoli collapse could result in slow continuous accumulation of N2 in the adipose tissues that eventually becomes a liability. PMID:24478724

  2. The effects of experimentally induced hyperthyroidism on the diving physiology of harbor seals (Phoca vitulina)

    PubMed Central

    Weingartner, Gundula M.; Thornton, Sheila J.; Andrews, Russel D.; Enstipp, Manfred R.; Barts, Agnieszka D.; Hochachka, Peter W.

    2012-01-01

    Many phocid seals are expert divers that remain submerged longer than expected based on estimates of oxygen storage and utilization. This discrepancy is most likely due to an overestimation of diving metabolic rate. During diving, a selective redistribution of blood flow occurs, which may result in reduced metabolism in the hypoperfused tissues and a possible decline in whole-body metabolism to below the resting level (hypometabolism). Thyroid hormones are crucial in regulation of energy metabolism in vertebrates and therefore their control might be an important part of achieving a hypometabolic state during diving. To investigate the effect of thyroid hormones on diving physiology of phocid seals, we measured oxygen consumption, heart rate, and post-dive lactate concentrations in five harbor seals (Phoca vitulina) conducting 5 min dives on command, in both euthyroid and experimentally induced hyperthyroid states. Oxygen consumption during diving was significantly reduced (by 25%) in both euthyroid and hyperthyroid states, confirming that metabolic rate during diving falls below resting levels. Hyperthyroidism increased oxygen consumption (by 7–8%) when resting in water and during diving, compared with the euthyroid state, illustrating the marked effect of thyroid hormones on metabolic rate. Consequently, post-dive lactate concentrations were significantly increased in the hyperthyroid state, suggesting that the greater oxygen consumption rates forced seals to make increased use of anaerobic metabolic pathways. During diving, hyperthyroid seals also exhibited a more profound decline in heart rate than seals in the euthyroid state, indicating that these seals were pushed toward their aerobic limit and required a more pronounced cardiovascular response. Our results demonstrate the powerful role of thyroid hormones in metabolic regulation and support the hypothesis that thyroid hormones play a role in modulating the at-sea metabolism of phocid seals. PMID:23060807

  3. 76 FR 67480 - Standard on Commercial Diving Operations; Extension of the Office of Management and Budget's (OMB...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-01

    ... Occupational Safety and Health Administration Standard on Commercial Diving Operations; Extension of the Office of Management and Budget's (OMB) Approval of Information Collection (Paperwork) Requirements AGENCY... requirements specified in the Commercial Diving Operations Standard (29 CFR part 1910, subpart T)....

  4. Saturation of Zonal Flows

    NASA Astrophysics Data System (ADS)

    Kim, Eun-Jin

    2002-11-01

    Zonal flows (ZF) are generated by drift wave (DW) turbulence and then regulate it near marginality by shear suppression. Since collisions damp ZF while ZF suppress DW, the amplitude of DW turbulence (i.e. turbulent transport) is, in turn, proportional to collisionality. A key question is then what happens away from marginality, namely what is the saturation mechanism of ZF in that regime? This raises the interesting physical question of how ZF interact with mne 0, poloidally non-axisymmetric modes [1], both linearly and non linearly. We investigate this issue by exploring the nonlinear excitation of GKH modes by modulational instability in the background of finite amplitude of DW turbulence, as well as the linear inflection-type instability of ZF. In a simple model with cold ions, we show that ZF can grow faster than the linear GKH for γ/ω

  5. Effects of diving and oxygen on autonomic nervous system and cerebral blood flow.

    PubMed

    Winklewski, Pawel J; Kot, Jacek; Frydrychowski, Andrzej F; Nuckowska, Magdalena K; Tkachenko, Yurii

    2013-09-01

    Recreational scuba diving is a popular leisure activity with the number of divers reaching several millions worldwide. Scuba diving represents a huge challenge for integrative physiology. In mammalian evolution, physiological reflexes developed to deal with lack of oxygen, rather than with an excess, which makes adaptations to scuba diving more difficult to describe and understand than those associated with breath-hold diving. The underwater environment significantly limits the use of equipment to register the organism's functions, so, in most instances, scientific theories are built on experiments that model real diving to some extent, like hyperbaric exposures, dive reflexes or water immersion. The aim of this review is to summarise the current knowledge related to the influence exerted by physiological conditions specific to diving on the autonomic nervous system and cerebral blood flow. The main factors regulating cerebral blood flow during scuba diving are discussed as follows: 1) increased oxygen partial pressure; 2) immersion-related trigemino-cardiac reflexes and 3) exposure to cold, exercise and stress. Also discussed are the potential mechanisms associated with immersion pulmonary oedema.

  6. Unmanned Evaluation of Mares Abyss 22 Navy Open Circuit Scuba Regulator for Cold Water Diving

    DTIC Science & Technology

    2011-05-05

    scuba regulator was conducted, and the results were compared to the U.S. Navy performance limits and goals for use in cold water diving applications...resistive effort; work of breathing; unmanned evaluation; open circuit scuba regulator; cold water diving ; Mares Abyss 22 Navy; UBA; underwater

  7. Resistance Training for Rescue Divers in the Sport Scuba Diving Industry.

    ERIC Educational Resources Information Center

    Mier, Constance M.; Kegeles, Sharon

    2002-01-01

    Asserts that the need for certified rescue divers increases as the diving industry grows. Rescue divers must be physically prepared to perform several dives in one day and to carry equipment on and off the boat. Physical recovery is also important, as they must be alert at all times to potential emergency situations. This require high levels of…

  8. Condition and mass impact oxygen stores and dive duration in adult female northern elephant seals.

    PubMed

    Hassrick, J L; Crocker, D E; Teutschel, N M; McDonald, B I; Robinson, P W; Simmons, S E; Costa, D P

    2010-02-15

    The range of foraging behaviors available to deep-diving, air-breathing marine vertebrates is constrained by their physiological capacity to breath-hold dive. We measured body oxygen stores (blood volume and muscle myoglobin) and diving behavior in adult female northern elephant seals, Mirounga angustirostris, to investigate age-related effects on diving performance. Blood volume averaged 74.4+/-17.0 liters in female elephant seals or 20.2+/-2.0% of body mass. Plasma volume averaged 32.2+/-7.8 liters or 8.7+/-0.7% of body mass. Absolute plasma volume and blood volume increased independently with mass and age. Hematocrit decreased weakly with mass but did not vary with age. Muscle myoglobin concentration, while higher than previously reported (7.4+/-0.7 g%), did not vary with mass or age. Pregnancy status did not influence blood volume. Mean dive duration, a proxy for physiological demand, increased as a function of how long seals had been at sea, followed by mass and hematocrit. Strong effects of female body mass (range, 218-600 kg) on dive duration, which were independent of oxygen stores, suggest that larger females had lower diving metabolic rates. A tendency for dives to exceed calculated aerobic limits occurred more frequently later in the at-sea migration. Our data suggest that individual physiological state variables and condition interact to determine breath-hold ability and that both should be considered in life-history studies of foraging behavior.

  9. Safety Practices for Commercial Diving. Module SH-43. Safety and Health.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on safety practices for commercial diving is one of 50 modules concerned with job safety and health. This module provides a brief orientation to safety considerations for commercial diving. Following the introduction, nine objectives (each keyed to a page in the text) the student is expected to accomplish are listed (e.g., Name…

  10. Competitive Swimming and Diving. Official Rules, Officating. August 1983-August 1984. NAGWS Guide.

    ERIC Educational Resources Information Center

    American Alliance for Health, Physical Education, Recreation and Dance, Reston, VA. National Association for Girls and Women in Sport.

    Arranged in three sections, this pamphlet details the rules, officiating techniques, and official records for girls' and womens' competitive swimming and diving. Section 1 lists members of the national rules committee, major rule changes for 1983-84, and official rules for swimming and diving competition. Section 2 contains officiating tips,…

  11. Scientific Diving Training Course. Red Sea & Gulf of Aden Programme (PERSGA).

    ERIC Educational Resources Information Center

    Arab Organization for Education and Science, Cairo (Egypt).

    This document presents the scientific diving training course organized by the Arab League Educational, Cultural and Scientific Organization (ALECSO) for the Program for Environmental Studies, Red Sea and Gulf of Aden (PERSGA). This course of six weeks duration aims to produce a person who is capable of carrying out scientific diving tasks in the…

  12. 36 CFR 3.18 - May I snorkel or underwater dive in park waters?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false May I snorkel or underwater dive in park waters? 3.18 Section 3.18 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR BOATING AND WATER USE ACTIVITIES § 3.18 May I snorkel or underwater dive in...

  13. 36 CFR 3.18 - May I snorkel or underwater dive in park waters?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false May I snorkel or underwater dive in park waters? 3.18 Section 3.18 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR BOATING AND WATER USE ACTIVITIES § 3.18 May I snorkel or underwater dive in...

  14. Using Stimulation of the Diving Reflex in Humans to Teach Integrative Physiology

    ERIC Educational Resources Information Center

    Choate, Julia K.; Denton, Kate M.; Evans, Roger G.; Hodgson, Yvonne

    2014-01-01

    During underwater submersion, the body responds by conserving O[subscript 2] and prioritizing blood flow to the brain and heart. These physiological adjustments, which involve the nervous, cardiovascular, and respiratory systems, are known as the diving response and provide an ideal example of integrative physiology. The diving reflex can be…

  15. [Underwater dive in fresh water complicated by a cardiorespiratory arrest on obstructive shock].

    PubMed

    Bourmanne, E; Jacobs, D; Caldow, M; El Kaissi, M

    2015-01-01

    We present the case of a french patient who dived in fresh water in Lac de l'Eau d'Heure on 8 December 2014. The 35 meters deep diving was complicated by an obstructive shock resulting from lung overpressure and decompression illness.

  16. 29 CFR Appendix B to Subpart Y of... - Guidelines for Scientific Diving

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Guidelines for Scientific Diving B Appendix B to Subpart Y of Part 1926 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH..., Subpt. Y, App. B Appendix B to Subpart Y of Part 1926—Guidelines for Scientific Diving Note:...

  17. 29 CFR Appendix B to Subpart Y of... - Guidelines for Scientific Diving

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Guidelines for Scientific Diving B Appendix B to Subpart Y of Part 1926 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH..., Subpt. Y, App. B Appendix B to Subpart Y of Part 1926—Guidelines for Scientific Diving Note:...

  18. 29 CFR Appendix B to Subpart Y of... - Guidelines for Scientific Diving

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Guidelines for Scientific Diving B Appendix B to Subpart Y..., Subpt. Y, App. B Appendix B to Subpart Y of Part 1926—Guidelines for Scientific Diving Note: The requirements applicable to construction work under this appendix B are identical to those set forth at...

  19. 29 CFR Appendix B to Subpart Y of... - Guidelines for Scientific Diving

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Guidelines for Scientific Diving B Appendix B to Subpart Y..., Subpt. Y, App. B Appendix B to Subpart Y of Part 1926—Guidelines for Scientific Diving Note: The requirements applicable to construction work under this appendix B are identical to those set forth at...

  20. 29 CFR Appendix B to Subpart T to... - Guidelines for Scientific Diving

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Guidelines for Scientific Diving B Appendix B to Subpart T to Part 1910 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH.... 1910, Subpt. T, App. B Appendix B to Subpart T to Part 1910—Guidelines for Scientific Diving...

  1. Changes in dive behavior during naval sonar exposure in killer whales, long-finned pilot whales, and sperm whales.

    PubMed

    Sivle, L D; Kvadsheim, P H; Fahlman, A; Lam, F P A; Tyack, P L; Miller, P J O

    2012-01-01

    Anthropogenic underwater sound in the environment might potentially affect the behavior of marine mammals enough to have an impact on their reproduction and survival. Diving behavior of four killer whales (Orcinus orca), seven long-finned pilot whales (Globicephala melas), and four sperm whales (Physeter macrocephalus) was studied during controlled exposures to naval sonar [low frequency active sonar (LFAS): 1-2 kHz and mid frequency active sonar (MFAS): 6-7 kHz] during three field seasons (2006-2009). Diving behavior was monitored before, during and after sonar exposure using an archival tag placed on the animal with suction cups. The tag recorded the animal's vertical movement, and additional data on horizontal movement and vocalizations were used to determine behavioral modes. Killer whales that were conducting deep dives at sonar onset changed abruptly to shallow diving (ShD) during LFAS, while killer whales conducting deep dives at the onset of MFAS did not alter dive mode. When in ShD mode at sonar onset, killer whales did not change their diving behavior. Pilot and sperm whales performed normal deep dives (NDD) during MFAS exposure. During LFAS exposures, long-finned pilot whales mostly performed fewer deep dives and some sperm whales performed shallower and shorter dives. Acoustic recording data presented previously indicates that deep diving (DD) is associated with feeding. Therefore, the observed changes in dive behavior of the three species could potentially reduce the foraging efficiency of the affected animals.

  2. Changes in dive behavior during naval sonar exposure in killer whales, long-finned pilot whales, and sperm whales

    PubMed Central

    Sivle, L. D.; Kvadsheim, P. H.; Fahlman, A.; Lam, F. P. A.; Tyack, P. L.; Miller, P. J. O.

    2012-01-01

    Anthropogenic underwater sound in the environment might potentially affect the behavior of marine mammals enough to have an impact on their reproduction and survival. Diving behavior of four killer whales (Orcinus orca), seven long-finned pilot whales (Globicephala melas), and four sperm whales (Physeter macrocephalus) was studied during controlled exposures to naval sonar [low frequency active sonar (LFAS): 1–2 kHz and mid frequency active sonar (MFAS): 6–7 kHz] during three field seasons (2006–2009). Diving behavior was monitored before, during and after sonar exposure using an archival tag placed on the animal with suction cups. The tag recorded the animal's vertical movement, and additional data on horizontal movement and vocalizations were used to determine behavioral modes. Killer whales that were conducting deep dives at sonar onset changed abruptly to shallow diving (ShD) during LFAS, while killer whales conducting deep dives at the onset of MFAS did not alter dive mode. When in ShD mode at sonar onset, killer whales did not change their diving behavior. Pilot and sperm whales performed normal deep dives (NDD) during MFAS exposure. During LFAS exposures, long-finned pilot whales mostly performed fewer deep dives and some sperm whales performed shallower and shorter dives. Acoustic recording data presented previously indicates that deep diving (DD) is associated with feeding. Therefore, the observed changes in dive behavior of the three species could potentially reduce the foraging efficiency of the affected animals. PMID:23087648

  3. Diving Response in Rats: Role of the Subthalamic Vasodilator Area

    PubMed Central

    Golanov, Eugene V.; Shiflett, James M.; Britz, Gavin W.

    2016-01-01

    Diving response (DR) is a powerful integrative response targeted toward survival of the hypoxic/anoxic conditions. Being present in all animals and humans, it allows to survive adverse conditions like diving. Earlier, we discovered that forehead stimulation affords neuroprotective effect, decreasing infarction volume triggered by permanent occlusion of the middle cerebral artery in rats. We hypothesized that cold stimulation of the forehead induces DR in rats, which, in turn, exerts neuroprotection. We compared autonomic [AP, heart rate (HR), cerebral blood flow (CBF)] and EEG responses to the known DR-triggering stimulus, ammonia stimulation of the nasal mucosa, cold stimulation of the forehead, and cold stimulation of the glabrous skin of the tail base in anesthetized rats. Responses in AP, HR, CBF, and EEG to cold stimulation of the forehead and ammonia vapors instillation into the nasal cavity were comparable and differed significantly from responses to the cold stimulation of the tail base. Excitotoxic lesion of the subthalamic vasodilator area (SVA), which is known to participate in CBF regulation and to afford neuroprotection upon excitation, failed to affect autonomic components of the DR evoked by forehead cold stimulation or nasal mucosa ammonia stimulation. We conclude that cold stimulation of the forehead triggers physiological response comparable to the response evoked by ammonia vapor instillation into nasal cavity, which is considered as stimulus triggering protective DR. These observations may explain the neuroprotective effect of the forehead stimulation. Data demonstrate that SVA does not directly participate in the autonomic adjustments accompanying DR; however, it is involved in diving-evoked modulation of EEG. We suggest that forehead stimulation can be employed as a stimulus capable of triggering oxygen-conserving DR and can be used for neuroprotective therapy. PMID:27708614

  4. The physiology and pathophysiology of human breath-hold diving.

    PubMed

    Lindholm, Peter; Lundgren, Claes E G

    2009-01-01

    This is a brief overview of physiological reactions, limitations, and pathophysiological mechanisms associated with human breath-hold diving. Breath-hold duration and ability to withstand compression at depth are the two main challenges that have been overcome to an amazing degree as evidenced by the current world records in breath-hold duration at 10:12 min and depth of 214 m. The quest for even further performance enhancements continues among competitive breath-hold divers, even if absolute physiological limits are being approached as indicated by findings of pulmonary edema and alveolar hemorrhage postdive. However, a remarkable, and so far poorly understood, variation in individual disposition for such problems exists. Mortality connected with breath-hold diving is primarily concentrated to less well-trained recreational divers and competitive spearfishermen who fall victim to hypoxia. Particularly vulnerable are probably also individuals with preexisting cardiac problems and possibly, essentially healthy divers who may have suffered severe alternobaric vertigo as a complication to inadequate pressure equilibration of the middle ears. The specific topics discussed include the diving response and its expression by the cardiovascular system, which exhibits hypertension, bradycardia, oxygen conservation, arrhythmias, and contraction of the spleen. The respiratory system is challenged by compression of the lungs with barotrauma of descent, intrapulmonary hemorrhage, edema, and the effects of glossopharyngeal insufflation and exsufflation. Various mechanisms associated with hypoxia and loss of consciousness are discussed, including hyperventilation, ascent blackout, fasting, and excessive postexercise O(2) consumption. The potential for high nitrogen pressure in the lungs to cause decompression sickness and N(2) narcosis is also illuminated.

  5. Aerobic dive limit does not decline in an aging pinniped.

    PubMed

    Hindle, Allyson G; Mellish, Jo-Ann E; Horning, Markus

    2011-11-01

    Apneustic hunters such as diving mammals exploit body oxygen stores while submerged; therefore, any decline in oxygen handling at advanced life stages could critically impair foraging ability. We calculated the aerobic dive limit (cADL = 17.9 ± 4.4  min SD) from blood and muscle oxygen stores and published metabolic rates of Weddell seals within (9-16 years, n = 24) and beyond peak-reproductive age (17-27 years, n = 26), to investigate (1) senescent constraints in apneustic hunting, and (2) whether mass or age primarily determines oxygen stores and ADL in older seals. We compared cADL with behavioral ADL from 5,275 free-ranging dives (bADL = 24.0 ± 5.3 min, n = 18 females). We observed no changes in Weddell seal oxygen stores, its determinants, or in ADLs late in life. Oxygen stores were better predicted by mass than age, consistent with published findings for young adults. Hematological panels (n = 6) were consistent across mass and age, though hematocrit (females > males, 6% elevation) and mean corpuscular hemoglobin content (females < males, 8% reduction) varied by sex. Whole blood viscosity was decreased with increasing mass in females and was higher than in males overall (+18%). This was largely due to elevated hematocrit in females, although plasma viscosity also varied under some conditions. Females had higher blood volume and elevated blood oxygen stores (vol% body mass), which did not translate into significantly higher cADL (18.1 vs. 17.1 min for males). Neither cADL nor bADL were mass- or age-dependent.

  6. 'Diving reflex' in man - Its relation to isometric and dynamic exercise.

    NASA Technical Reports Server (NTRS)

    Bergman, S. A., Jr.; Campbell, J. K.; Wildenthal, K.

    1972-01-01

    To test the influence of physical activity on the diving reflex, 10 normal men held their breath with their faces immersed in 15 C water during rest, bicycle exercise, and sustained isometric handgrip contraction. At all conditions, a slight but statistically significant elevation of blood pressure and a marked decrease in heart rate occurred during each dive. During moderate bicycle exercise heart rate fell more rapidly than at rest and the final level of bradycardia approached that achieved at rest, despite the fact that predive heart rates were much higher during exercise. When diving occurred in combination with isometric exercise, bradycardia was less severe than during resting dives and final heart rates could be represented as the sum of the expected responses to each intervention alone. In all conditions apnea without face immersion caused bradycardia that was less severe than during wet dives.

  7. Diving experience and emotional factors related to the psychomotor effects of nitrogen narcosis.

    PubMed

    Biersner, R J; Hall, D A; Linaweaver, P G; Neuman, T S

    1978-08-01

    Simple and complex psychomotor performance were tested among 21 Navy divers under normal conditions and during nitrogen narcosis in simulated dives to 170 ft of sea water. Complex psychomotor performance was impaired significantly during narcosis, while simple psychomotor performance remained essentially normal. Differences between baseline scores for complex psychomotor performance (pre- and post-dive combined) and scores obtained from the two combined testing sessions administered during narcosis were correlated with official Navy records of diving experience and self-reported moods. None of the diving experience measures was associated significantly with these difference scores. The moods of Fatigue and Happiness were, however, correlated significantly with impairment. These results indicate that, although previous experience with nitrogen narcosis and diving tasks do not mediate the performance effects of nitrogen narcosis, the complex psychomotor effects nitrogen narcosis are related to emotional traits.

  8. Respiration and deep diving in the bottlenose porpoise.

    PubMed

    Ridgway, S H; Scronce, B L; Kanwisher, J

    1969-12-26

    A bottlenose porpoise was trained to dive untethered in the open ocean and to exhale into an underwater collecting funnel before surfacing from prescribed depths down to 300 meters. The animal was also taught to hold its breath for periods up to 4 minutes at the surface and then blow in the funnel. Alveolar collapse is probably complete at around 100 meters, and little pulmonary respiratory exchange occurs below that depth. Thoracic collapse was observ visually at 10 to 50 meters and by underwater television to 300 meters.

  9. Consensus guidelines for the use of ultrasound for diving research.

    PubMed

    Møllerløkken, Andreas; Blogg, S Lesley; Doolette, David J; Nishi, Ronald Y; Pollock, Neal W

    2016-03-01

    The International Meeting on Ultrasound for Diving Research produced expert consensus recommendations for ultrasound detection of vascular gas bubbles and the analysis, interpretation and reporting of such data. Recommendations for standardization of techniques to allow comparison between studies included bubble monitoring site selection, frequency and duration of monitoring, and use of the Spencer, Kisman-Masurel or Eftedal-Brubakk scales. Recommendations for reporting of results included description of subject posture and provocation manoeuvres during monitoring, reporting of untransformed data and the appropriate use of statistics. These guidelines are available from www.dhmjournal.com.

  10. Dynamics of ultralight aircraft: Dive recovery of hang gliders

    NASA Technical Reports Server (NTRS)

    Jones, R. T.

    1977-01-01

    Longitudinal control of a hang glider by weight shift is not always adequate for recovery from a vertical dive. According to Lanchester's phugoid theory, recovery from rest to horizontal flight ought to be possible within a distance equal to three times the height of fall needed to acquire level flight velocity. A hang glider, having a wing loading of 5 kg sq m and capable of developing a lift coefficient of 1.0, should recover to horizontal flight within a vertical distance of about 12 m. The minimum recovery distance can be closely approached if the glider is equipped with a small all-moveable tail surface having sufficient upward deflection.

  11. Saturation current spikes eliminated in saturable core transformers

    NASA Technical Reports Server (NTRS)

    Schwarz, F. C.

    1971-01-01

    Unsaturating composite magnetic core transformer, consisting of two separate parallel cores designed so impending core saturation causes signal generation, terminates high current spike in converter primary circuit. Simplified waveform, demonstrates transformer effectiveness in eliminating current spikes.

  12. Diving Related Changes in the Blood Oxygen Stores of Rehabilitating Harbor Seal Pups (Phoca vitulina).

    PubMed

    Thomas, Amber; Ono, Kathryn

    2015-01-01

    Harbor seal (Phoca vitulina) pups begin diving within hours of birth, stimulating the development of the blood oxygen (O2) stores necessary to sustain underwater aerobic metabolism. Since harbor seals experience a brief nursing period, the early-life development of these blood O2 stores is necessary for successful post-weaning foraging. If mothers and pups become prematurely separated, the pup may be transported to a wildlife rehabilitation center for care. Previous studies suggest that the shallow pools and lack of diving in rehabilitation facilities may lead to under-developed blood O2 stores, but diving behavior during rehabilitation has not been investigated. This study aimed to simultaneously study the diving behaviors and blood O2 store development of rehabilitating harbor seal pups. Standard hematology measurements (Hct, Hb, RBC, MCV, MCH, MCHC) were taken to investigate O2 storage capacity and pups were equipped with time-depth recorders to investigate natural diving behavior while in rehabilitation. Linear mixed models of the data indicate that all measured blood parameters changed with age; however, when compared to literature values for wild harbor seal pups, rehabilitating pups have smaller red blood cells (RBCs) that can store less hemoglobin (Hb) and subsequently, less O2, potentially limiting their diving capabilities. Wild pups completed longer dives at younger ages (maximum reported <25 days of age: 9 min) in previous studies than the captive pups in this study (maximum <25 days of age: 2.86 min). However, captivity may only affect the rate of development, as long duration dives were observed (maximum during rehabilitation: 13.6 min at 89 days of age). Further, this study suggests that there may be a positive relationship between RBC size and the frequency of long duration dives. Thus, rehabilitating harbor seal pups should be encouraged to make frequent, long duration dives to prepare themselves for post-release foraging.

  13. Diving Related Changes in the Blood Oxygen Stores of Rehabilitating Harbor Seal Pups (Phoca vitulina)

    PubMed Central

    Thomas, Amber; Ono, Kathryn

    2015-01-01

    Harbor seal (Phoca vitulina) pups begin diving within hours of birth, stimulating the development of the blood oxygen (O2) stores necessary to sustain underwater aerobic metabolism. Since harbor seals experience a brief nursing period, the early-life development of these blood O2 stores is necessary for successful post-weaning foraging. If mothers and pups become prematurely separated, the pup may be transported to a wildlife rehabilitation center for care. Previous studies suggest that the shallow pools and lack of diving in rehabilitation facilities may lead to under-developed blood O2 stores, but diving behavior during rehabilitation has not been investigated. This study aimed to simultaneously study the diving behaviors and blood O2 store development of rehabilitating harbor seal pups. Standard hematology measurements (Hct, Hb, RBC, MCV, MCH, MCHC) were taken to investigate O2 storage capacity and pups were equipped with time-depth recorders to investigate natural diving behavior while in rehabilitation. Linear mixed models of the data indicate that all measured blood parameters changed with age; however, when compared to literature values for wild harbor seal pups, rehabilitating pups have smaller red blood cells (RBCs) that can store less hemoglobin (Hb) and subsequently, less O2, potentially limiting their diving capabilities. Wild pups completed longer dives at younger ages (maximum reported <25 days of age: 9 min) in previous studies than the captive pups in this study (maximum <25 days of age: 2.86 min). However, captivity may only affect the rate of development, as long duration dives were observed (maximum during rehabilitation: 13.6 min at 89 days of age). Further, this study suggests that there may be a positive relationship between RBC size and the frequency of long duration dives. Thus, rehabilitating harbor seal pups should be encouraged to make frequent, long duration dives to prepare themselves for post-release foraging. PMID:26061662

  14. Investigation of Dive Brakes and a Dive-Recovery Flap on a High-Aspect-Ratio Wing in the Langley 8-Foot High-Speed Tunnel

    NASA Technical Reports Server (NTRS)

    Mattson, Axel T.

    1946-01-01

    The results of tests made to determine the aerodynamic characteristics of a solid brake, a slotted brake, and a dive-recovery flap mounted on a high aspect ratio wing at high Mach numbers are presented. The data were obtained in the Langley 8-foot high-speed tunnel for corrected Mach numbers up to 0.940. The results have been analyzed with regard to the suitability of dive-control devices for a proposed high-speed airplane in limiting the airplane terminal Mach number by the use of dive brakes and in achieving favorable dive-recovery characteristics by the use of a dive-recovery flap. The analysis of the results indicated that the slotted brake would limit the proposed airplane terminal Mach number to values below 0.880 for altitudes up to 35,000 feet and a wing loading of 80 pounds per square foot and the dive-recovery flap would produce trim changes required for controlled pull-outs at 25,000 feet for a Mach number range from 0.800 to 0.900. Basic changes in spanwise loading are presented to aid in the evaluation of the wing strength requirements.

  15. The effect of O2 and CO2 on the dive behavior and heart rate of lesser scaup ducks (Aythya affinis): quantification of the critical PaO2 that initiates a diving bradycardia.

    PubMed

    Borg, Kim A; Milsom, William K; Jones, David R

    2004-12-15

    Lesser scaup ducks were trained to dive for short and long durations following exposure to various gas concentrations to determine the influence of oxygen (O2) and carbon dioxide (CO2) on diving behavior and heart rate. Compared with normoxia, hyperoxia (50% O2) significantly increased the duration of long dives, whereas severe hypoxia (9% O2) significantly decreased the duration of both short and long dives. Hypercapnia (5% CO2) had no effect on dive duration. Surface intervals were not significantly altered by the oxygen treatments, but significantly increased following CO2 exposure. Heart rate during diving was unaffected by hyperoxia and hypercapnia, but gradually declined in long dives after severe hypoxia. Thus, our results suggest that during the majority of dives, O2 and CO2 levels in lesser scaup ducks are managed through changes in diving behavior without any major cardiovascular adjustments, but below a threshold PaO2, a bradycardia is evoked to conserve the remaining oxygen for hypoxia sensitive tissues. A model of oxygen store utilization during voluntary diving was developed to estimate the critical PaO2 below which bradycardia is initiated (approximately 26 mmHg) and predicted that this critical PaO2 would be reached 19s into a dive after exposure to severe hypoxia, which corresponded exactly with the time of initiation of bradycardia in the severe hypoxia trials.

  16. Dive Europa: a search-for-life initiative.

    PubMed

    Naganuma, T; Uematsu, H

    1998-06-01

    Liquid water, underwater volcanoes and possibly life forms have been suggested to be present beneath the estimated 10 km-thick ice shell of Europa the Jovian satellite J2. Europa's possible ocean is estimated to be 100-200km deep. Despite the great depth of the Europa's ocean, hydrostatic pressure at the seafloor would be 130-260 MPa, corresponding to 13-26 km depth of a theoretical Earth's ocean. The hydrostatic pressure is not beyond the edge of existing deep-sea technology. Here we propose exploration of Europa's deep-sea by the use of current technologies, taking a symbolic example of a deep submergence vehicle Shinkai 6500 which dives to a depth of 6.5 km deep (50 km depth of Europa's ocean). Shinkai 6500 is embarkable in the payload bay of the Space Shuttles in terms of size and weight for the transportation to a Low Earth Orbit (LEO). Secondary boost is needed for interplanetary flight from the LEO. On-orbit assembly of the secondary booster is a technological challenge. The International Space Station (ISS) and ISS-related technologies will facilitate the secondary boost. Also, ice shell drilling is a challenge and is needed before the dive into Europa's ocean. These challenges should be overcome during a certain leading time for matured experience in the ISS operation.

  17. Dive and beak movement patterns in leatherback turtles Dermochelys coriacea during internesting intervals in French Guiana.

    PubMed

    Fossette, Sabrina; Gaspar, Philippe; Handrich, Yves; Le Maho, Yvon; Georges, Jean-Yves

    2008-03-01

    1. Investigating the foraging patterns of free-ranging species is essential to estimate energy/time budgets for assessing their real reproductive strategy. Leatherback turtles Dermochelys coriacea (Vandelli 1761), commonly considered as capital breeders, have been reported recently to prospect actively during the breeding season in French Guiana, Atlantic Ocean. In this study we investigate the possibility of this active behaviour being associated with foraging, by studying concurrently diving and beak movement patterns in gravid females equipped with IMASEN (Inter-MAndibular Angle SENsor). 2. Four turtles provided data for periods varying from 7.3 to 56.1 h while exhibiting continuous short and shallow benthic dives. Beak movement ('b-m') events occurred in 34% of the dives, on average 1.8 +/- 1.4 times per dive. These b-m events lasted between 1.5 and 20 s and occurred as isolated or grouped (two to five consecutive beak movements) events in 96.0 +/- 4.0% of the recorded cases, and to a lesser extent in series (> five consecutive beak movements). 3. Most b-m events occurred during wiggles at the bottom of U- and W-shaped dives and at the beginning and end of the bottom phase of the dives. W-shaped dives were associated most frequently with beak movements (65% of such dives) and in particular with grouped beak movements. 4. Previous studies proposed wiggles to be indicator of predatory activity, U- and W-shaped dives being putative foraging dives. Beak movements recorded in leatherbacks during the first hours of their internesting interval in French Guiana may be related to feeding attempts. 5. In French Guiana, leatherbacks show different mouth-opening patterns for different dive patterns, suggesting that they forage opportunistically on occasional prey, with up to 17% of the dives appearing to be successful feeding dives. 6. This study highlights the contrasted strategies adopted by gravid leatherbacks nesting on the Pacific coasts of Costa Rica, in the deep

  18. Landsliding in partially saturated materials

    USGS Publications Warehouse

    Godt, J.W.; Baum, R.L.; Lu, N.

    2009-01-01

    [1] Rainfall-induced landslides are pervasive in hillslope environments around the world and among the most costly and deadly natural hazards. However, capturing their occurrence with scientific instrumentation in a natural setting is extremely rare. The prevailing thinking on landslide initiation, particularly for those landslides that occur under intense precipitation, is that the failure surface is saturated and has positive pore-water pressures acting on it. Most analytic methods used for landslide hazard assessment are based on the above perception and assume that the failure surface is located beneath a water table. By monitoring the pore water and soil suction response to rainfall, we observed shallow landslide occurrence under partially saturated conditions for the first time in a natural setting. We show that the partially saturated shallow landslide at this site is predictable using measured soil suction and water content and a novel unified effective stress concept for partially saturated earth materials. Copyright 2009 by the American Geophysical Union.

  19. Shallow Habitat Air Dive (SHAD-I): Psychological Screening of Divers as Subjects for Long Duration Saturation Experimentation

    DTIC Science & Technology

    1974-05-31

    choir singing) d. Outdoor team sports (football, baseball , basketball, etc.) e. Outdoor Individual sports (golf, tennis, hunting, fishing, Scuba, etc...Upon Cortico~ steroid Excretion Rates in the Urine of SCUBA Divers, Psychol Scll0(9), 325-326, 1968. 62. Helmreich, R., Bakeman, R. and Radloff, R

  20. Dive and Explore: An Interactive Exhibit That Simulates Making an ROV Dive to a Submarine Volcano, Hatfield Marine Science Visitor Center, Newport, Oregon

    NASA Astrophysics Data System (ADS)

    Weiland, C.; Chadwick, W. W.; Hanshumaker, W.; Osis, V.; Hamilton, C.

    2002-12-01

    We have created a new interactive exhibit in which the user can sit down and simulate that they are making a dive to the seafloor with the remotely operated vehicle (ROV) named ROPOS. The exhibit immerses the user in an interactive experience that is naturally fun but also educational. This new public display is located at the Hatfield Marine Science Visitor Center in Newport, Oregon. The exhibit is designed to look like the real ROPOS control console and includes three video monitors, a PC, a DVD player, an overhead speaker, graphic panels, buttons, lights, dials, and a seat in front of a joystick. The dives are based on real seafloor settings at Axial seamount, an active submarine volcano on the Juan de Fuca Ridge (NE Pacific) that is also the location of a seafloor observatory called NeMO. The user can choose between 1 of 3 different dives sites in the caldera of Axial Volcano. Once a dive is chosen, then the user watches ROPOS being deployed and then arrives into a 3-D computer-generated seafloor environment that is based on the real world but is easier to visualize and navigate. Once on the bottom, the user is placed within a 360 degree panorama and can look in all directions by manipulating the joystick. By clicking on markers embedded in the scene, the user can then either move to other panorama locations via movies that travel through the 3-D virtual environment, or they can play video clips from actual ROPOS dives specifically related to that scene. Audio accompanying the video clips informs the user where they are going or what they are looking at. After the user is finished exploring the dive site they end the dive by leaving the bottom and watching the ROV being recovered onto the ship at the surface. The user can then choose a different dive or make the same dive again. Within the three simulated dives there are a total of 6 arrival and departure movies, 7 seafloor panoramas, 12 travel movies, and 23 ROPOS video clips. The exhibit software was created

  1. Repetitive Diving in Trained Rats Still Increases Fos Production in Brainstem Neurons after Bilateral Sectioning of the Anterior Ethmoidal Nerve

    PubMed Central

    McCulloch, Paul F.; Warren, Erik A.; DiNovo, Karyn M.

    2016-01-01

    This research was designed to investigate the role of the anterior ethmoidal nerve (AEN) during repetitive trained diving in rats, with specific attention to activation of afferent and efferent brainstem nuclei that are part of this reflexive response. The AEN innervates the nose and nasal passages and is thought to be an important component of the afferent limb of the diving response. Male Sprague-Dawley rats (N = 24) were trained to swim and dive through a 5 m underwater maze. Some rats (N = 12) had bilateral sectioning of the AEN, others a Sham surgery (N = 12). Twelve rats (6 AEN cut and 6 Sham) had 24 post-surgical dive trials over 2 h to activate brainstem neurons to produce Fos, a neuronal activation marker. Remaining rats were non-diving controls. Diving animals had significantly more Fos-positive neurons than non-diving animals in the caudal pressor area, ventral medullary dorsal horn, ventral paratrigeminal nucleus, nucleus tractus solitarius, rostral ventrolateral medulla, Raphe nuclei, A5, Locus Coeruleus, and Kölliker-Fuse area. There were no significant differences in brainstem Fos labeling in rats diving with and without intact AENs. Thus, the AENs are not required for initiation of the diving response. Other nerve(s) that innervate the nose and nasal passages, and/or suprabulbar activation of brainstem neurons, may be responsible for the pattern of neuronal activation observed during repetitive trained diving in rats. These results help define the central neuronal circuitry of the mammalian diving response. PMID:27148082

  2. The effectiveness of a health-surveillance program for caisson saturation divers in a tunnel-boring machine: a microbiological survey.

    PubMed

    Van Rees Vellinga, T P; Sterk, W; Van Dijk, F J H

    2010-01-01

    The purpose of this field study is to report and evaluate the implementation of a health surveillance program we developed to monitor the microbiological load for saturation divers, including preventive and therapeutic interventions. We extended the DMAC protocol for Saturation Diving Chamber Hygiene and added some components: ear inspections, swabs and environmental swabs every third day. The implementation was evaluated by analyzing the results of the activities. In a pre-saturation dive check we examined a total of 17 divers. Here we present the data from all seven saturation phases, collected over a period of 1.5 years. In every saturation phase we have found pathogenic bacteria or fungi in divers and in the environment, but more in some periods than in others. We did not observe any serious infection that required a diver to abort his stay in the living chamber. This health surveillance program has demonstrated the potential value of an early warning system to prevent problems. The bacterial load found in divers and in the environment was clearly visible. Prevention could be improved by more consistent implementation of the protocol. Fortunately, the infections had no serious consequences for the health of the workers or for the continuation of the work process.

  3. Abdominally implanted transmitters with percutaneous antennas affect the dive performance of Common Eiders

    USGS Publications Warehouse

    Powell, Abby N.; Latty, Christopher J.; Hollmén, Tuula E.; Petersen, Margaret R.; Andrews, Russel D.

    2010-01-01

    Implanted transmitters have become an important tool for studying the ecology of sea ducks, but their effects remain largely undocumented. To address this, we assessed how abdominally implanted transmitters with percutaneous antennas affect the vertical dive speeds, stroke frequencies, bottom time, and dive duration of captive Common Eiders (Somateria mollissima). To establish baselines, we recorded video of six birds diving 4.9 m prior to surgery, implanted them with 38- to 47-g platform transmitter terminals, and then recorded their diving for 3.5 months after surgery to determine effects. Descent speeds were 16–25% slower and ascent speeds were 17–44% slower after surgery, and both remained below baseline at the end of the study. Dive durations were longer than baseline until day 22. On most days between 15 and 107 days after surgery, foot-stroke frequencies of birds foraging on the bottom were slower. Foot- and wing-stroke frequencies during descent and bottom time did not differ across the time series. If birds that rely on benthic invertebrates for sustenance dive slower and stay submerged longer after being implanted with a satellite transmitter, their foraging energetics may be affected. Researchers considering use of implanted transmitters with percutaneous antennas should be mindful of these effects and the possibility of concomitant alterations in diving behavior, foraging success, and migratory behavior compared to those of unmarked conspecifics.

  4. Recreational scuba diving: negative or positive effects of oxidative and cardiovascular stress?

    PubMed

    Perovic, Antonija; Unic, Adriana; Dumic, Jerka

    2014-01-01

    Environmental conditions and increased physical activity during scuba diving are followed by increased production of free radicals and disturbed redox balance. Redox balance disorder is associated with damage of cellular components, changes of cellular signaling pathways and alterations of gene expression. Oxidative stress leads to increased expression of sirtuins (SIRTs), molecules which play an important role in the antioxidant defense, due to their sensitivity to the changes in the redox status and their ability to regulate redox homeostasis. These facts make SIRTs interesting to be considered as molecules affected by scuba diving and in that sense, as potential biomarkers of oxidative status or possible drug targets in reduction of reactive oxygen species (ROS) accumulation. In addition, SIRTs effects through currently known targets make them intriguing molecules which can act positively on health in general and whose expression can be induced by scuba diving.A demanding physical activity, as well as other circumstances present in scuba diving, has the greatest load on the cardiovascular function (CV). The mechanisms of CV response during scuba diving are still unclear, but diving-induced oxidative stress and the increase in SIRTs expression could be an important factor in CV adaptation. This review summarizes current knowledge on scuba diving-induced oxidative and CV stress and describes the important roles of SIRTs in the (patho)physiological processes caused by the redox balance disorder.

  5. The comparative biology of diving in two genera of European Dytiscidae (Coleoptera).

    PubMed

    Calosi, P; Bilton, D T; Spicer, J I; Verberk, W C E P; Atfield, A; Garland, T

    2012-02-01

    Surfacing behaviour is fundamental in the ecology of aquatic air-breathing organisms; however, it is only in vertebrates that the evolutionary ecology of diving has been well characterized. Here, we explore the diving behaviour of dytiscid beetles, a key group of surface-exchanging freshwater invertebrates, by comparing the dive responses of 25 taxa (Deronectes and Ilybius spp.) acclimated at two temperatures. The allometric slopes of dive responses in these dytiscids appear similar to those of vertebrate ectotherms, supporting the notion that metabolic mode shapes the evolution of diving performance. In both genera, beetles spend more time submerged than on the surface, and surface time does not vary with the temperature of acclimation. However, presumably in order to meet increased oxygen demand at higher temperatures, Deronectes species increase surfacing frequency, whereas Ilybius species decrease dive time, an example of 'multiple solutions.' Finally, widespread northern species appear to possess higher diving performances than their geographically restricted southern relatives, something which may have contributed to their range expansion ability.

  6. Scuba decompression illness and diving fatalities in an overseas military community.

    PubMed

    Arness, M K

    1997-04-01

    A retrospective study of scuba decompression illness (DCI) and fatalities in the U.S. military community on Okinawa Island, Japan, was performed for 1989-95. Some 94 cases of diving DCI, including 10 cases of cerebral air-gas embolism (CAGE), and 9 diving fatalities were reported, for an annual incidence of 13.4 DCI events and 1.3 fatalities per 100,000 dives. The overall estimated incidence of scuba DCI was estimated to be 1/7400 dives, with an annual incidence of undeserved DCI of 1/37,300, and a fatality rate of 1/76,900. A review of treatment dives revealed a 10% overdiagnosis rate in cases treated for presumed DCI. A bimodal distribution of DCI accidents was observed for depths deeper or shallower than 24.6m/80FSW (feet of sea water). Increased risk of DCI in diving deeper than 24.6m/80FSW was associated with violations of no-decompression limits (NDL), while other risk factors were associated with diving to less than 24.6m/80FSW. NDL violations accounted for only 24/94 (26%) of all DCI accidents. Treatment of divers with hyperbaric oxygen (HBOT) led to complete recovery in 91% of cases, but of those divers requiring retreatment with HBOT, 67% had chronic residua of DCI. Selected illustrative and interesting cases are discussed.

  7. Exercise at depth alters bradycardia and incidence of cardiac anomalies in deep-diving marine mammals.

    PubMed

    Williams, Terrie M; Fuiman, Lee A; Kendall, Traci; Berry, Patrick; Richter, Beau; Noren, Shawn R; Thometz, Nicole; Shattock, Michael J; Farrell, Edward; Stamper, Andy M; Davis, Randall W

    2015-01-16

    Unlike their terrestrial ancestors, marine mammals routinely confront extreme physiological and physical challenges while breath-holding and pursuing prey at depth. To determine how cetaceans and pinnipeds accomplish deep-sea chases, we deployed animal-borne instruments that recorded high-resolution electrocardiograms, behaviour and flipper accelerations of bottlenose dolphins (Tursiops truncatus) and Weddell seals (Leptonychotes weddellii) diving from the surface to >200 m. Here we report that both exercise and depth alter the bradycardia associated with the dive response, with the greatest impacts at depths inducing lung collapse. Unexpectedly, cardiac arrhythmias occurred in >73% of deep, aerobic dives, which we attribute to the interplay between sympathetic and parasympathetic drivers for exercise and diving, respectively. Such marked cardiac variability alters the common view of a stereotypic 'dive reflex' in diving mammals. It also suggests the persistence of ancestral terrestrial traits in cardiac function that may help explain the unique sensitivity of some deep-diving marine mammals to anthropogenic disturbances.

  8. Constraint lines and performance envelopes in behavioral physiology: the case of the aerobic dive limit.

    PubMed

    Horning, Markus

    2012-01-01

    Constraint lines-the boundaries that delimit point clouds in bivariate scattergrams-have been applied in macro-ecology to quantify the effects of limiting factors on response variables, but have not been applied to the behavioral performance and physiological ecology of individual vertebrates. I propose that behavioral scattergrams of air-breathing, diving vertebrates contain informative edges that convey insights into physiological constraints that shape the performance envelopes of divers. In the classic example of repeated cycles of apnea and eupnea in diving, air-breathing vertebrates, the need to balance oxygen consumption, and intake should differentially constrain recovery for dives within or exceeding the aerobic dive limit (ADL). However, the bulk of variance observed in recovery versus dive duration scattergrams originates from undetermined behavioral variables, and deviations from overall stasis may become increasingly apparent at progressively smaller scales of observation. As shown on dive records from 79 Galápagos fur seals, the selection of appropriate time scales of integration yields two distinct recovery boundaries for dive series within and beyond the estimated ADL. An analysis of the corresponding constraint lines is independent of central tendencies in data and avoids violating parametric assumptions for large data sets where variables of interest account for only a small portion of observed variance. I hypothesize that the intercept between these constraint lines represents the effective ADL, and present physiological and ecological considerations to support this hypothesis.

  9. Dive characteristics can predict foraging success in Australian fur seals (Arctocephalus pusillus doriferus) as validated by animal-borne video

    PubMed Central

    Volpov, Beth L.; Rosen, David A. S.; Hoskins, Andrew J.; Lourie, Holly J.; Dorville, Nicole; Baylis, Alastair M. M.; Wheatley, Kathryn E.; Marshall, Greg; Abernathy, Kyler; Semmens, Jayson; Hindell, Mark A.; Arnould, John P. Y.

    2016-01-01

    ABSTRACT Dive characteristics and dive shape are often used to infer foraging success in pinnipeds. However, these inferences have not been directly validated in the field with video, and it remains unclear if this method can be applied to benthic foraging animals. This study assessed the ability of dive characteristics from time-depth recorders (TDR) to predict attempted prey capture events (APC) that were directly observed on animal-borne video in Australian fur seals (Arctocephalus pusillus doriferus, n=11). The most parsimonious model predicting the probability of a dive with ≥1 APC on video included only descent rate as a predictor variable. The majority (94%) of the 389 total APC were successful, and the majority of the dives (68%) contained at least one successful APC. The best model predicting these successful dives included descent rate as a predictor. Comparisons of the TDR model predictions to video yielded a maximum accuracy of 77.5% in classifying dives as either APC or non-APC or 77.1% in classifying dives as successful verses unsuccessful. Foraging intensity, measured as either total APC per dive or total successful APC per dive, was best predicted by bottom duration and ascent rate. The accuracy in predicting total APC per dive varied based on the number of APC per dive with maximum accuracy occurring at 1 APC for both total (54%) and only successful APC (52%). Results from this study linking verified foraging dives to dive characteristics potentially opens the door to decades of historical TDR datasets across several otariid species. PMID:26873950

  10. Microparticle production, neutrophil activation, and intravascular bubbles following open-water SCUBA diving.

    PubMed

    Thom, Stephen R; Milovanova, Tatyana N; Bogush, Marina; Bhopale, Veena M; Yang, Ming; Bushmann, Kim; Pollock, Neal W; Ljubkovic, Marko; Denoble, Petar; Dujic, Zeljko

    2012-04-01

    The goal of this study was to evaluate annexin V-positive microparticles (MPs) and neutrophil activation in humans following decompression from open-water SCUBA diving with the hypothesis that changes are related to intravascular bubble formation. Sixteen male volunteer divers followed a uniform profile of four daily SCUBA dives to 18 m of sea water for 47 min. Blood was obtained prior to and at 80 min following the first and fourth dives to evaluate the impact of repetitive diving, and intravascular bubbles were quantified by trans-thoracic echocardiography carried out at 20-min intervals for 2 h after each dive. MPs increased by 3.4-fold after each dive, neutrophil activation occurred as assessed by surface expression of myeloperoxidase and the CD18 component of β(2)-integrins, and there was an increased presence of the platelet-derived CD41 protein on the neutrophil surface indicating interactions with platelet membranes. Intravascular bubbles were detected in all divers. Surprisingly, significant inverse correlations were found among postdiving bubble scores and MPs, most consistently at 80 min or more after the dive on the fourth day. There were significant positive correlations between MPs and platelet-neutrophil interactions after the first dive and between platelet-neutrophil interactions and neutrophil activation documented as an elevation in β(2)-integrin expression after the fourth dive. We conclude that MPs- and neutrophil-related events in humans are consistent with findings in an animal decompression model. Whether there are causal relationships among bubbles, MPs, platelet-neutrophil interactions, and neutrophil activation remains obscure and requires additional study.

  11. A New Method to Quantify within Dive Foraging Behaviour in Marine Predators

    PubMed Central

    Heerah, Karine; Hindell, Mark; Guinet, Christophe; Charrassin, Jean-Benoît

    2014-01-01

    Studies on diving behaviour classically divide a dive into three phases: the descent, bottom and ascent phases, with foraging assumed to occur during the bottom phase. The greater complexity of dive revealed through modern, high resolution data highlights the need to re-assess this approach and to consider a larger number of phases within individual dives. Two southern elephant seals (SES) were fitted with a head mounted Time Depth Recorder (TDR) and an accelerometer from which prey capture attempts were estimated. A Weddell seal was also fitted with a TDR. TDRs for both species recorded depth once per second. We quantified the within dive behaviour using an automated broken stick algorithm identifying the optimal number of segments within each dive. The vertical sinuosity of the segments was used to infer two types of behaviours, with highly sinuous segments indicating "hunting" and less sinuous segments indicating "transiting". Using the broken stick method the seals alternated between "hunting" and "transit" modes with an average of 6±2 and 7±0.02 behavioural phases within each dive for the Weddell seal and SES, respectively. In SES, 77% of prey capture attempts (identified from the acceleration data) occurred in highly sinuous phases (“hunting”) as defined by our new approach. SES spent more time in transit mode within a dive, and hunting mostly occurred during the bottom phase. Conversely the Weddell seal spent more time in hunting mode which also occurred during bottom phase but occurred mostly at shallower depths. Such differences probably reflect different foraging tactics and habitat use. For both species, hunting time differs significantly from bottom time previously used as a proxy for the time spent foraging in a dive. The hunting time defined by our method therefore provides a more accurate fine-scale description of the seals' foraging behaviour. PMID:24922323

  12. Diving behaviour of harbour seal Phoca vitulina pups from nursing to independent feeding

    NASA Astrophysics Data System (ADS)

    Bekkby, T.; Bjørge, A.

    2000-12-01

    To study the diving activity of harbour seal ( Phoca vitulina) from nursing to independent feeding, we VHF radio tagged and tracked seven pups. The pups gradually developed the diving skills necessary to obtain enough food after weaning and to avoid natural and man-made dangers. The maximum dive duration remained unchanged with pup age, indicating that pups have considerable breath-holding capacity already from an early age. However, mean dive duration increased with age, from 0.92 min in pups ≤25 days old to 2.55 min in 1-2 month olds, and 3.09 min in 2-3 month olds. The increase continued for weeks after the assumed weaning, and indicates that the capacity to perform long-lasting dives steadily increases as the pups grow older. Mean and maximum surface duration remained unchanged with pup age. Mean surface duration was 0.32 min with a maximum value of 6.10 min. An increase in mean surface duration with mean dive duration was found when the pups were ≤25 days old, but not when they were older. This may indicate that young pups need to rest more after diving than older ones. No relationship was found between dive duration and the subsequent surface interval. The proportion of time spent submerged increased with age, from 71% when the pups were ≤25 days old to 86% when they were older. The pups hauled-out less frequently as they grew older. The pups were never recorded outside the study area (defined by the 30-km station range). Time of day, tidal height and weather conditions seemed not to influence the diving behaviour of the pups.

  13. Insulin-dependent diabetes mellitus and recreational scuba diving in Australia.

    PubMed

    Johnson, Rebecca

    2016-09-01

    Dive medicine bodies worldwide recognise that, with comprehensive screening and careful management, people with insulin-dependent diabetes (IDDM) can dive safely. Despite this, people with IDDM in Australia are generally denied access to dive training, an out-dated status quo that is not acceptable to the Australian diabetes community. This paper reflects upon the important advocacy work that has been done to progress this issue, and what is still required to open up access and bring Australia into line with more flexible and supportive international standards.

  14. Sequential gene expression profiling in the mouse spleen during 14 d feeding with Lactobacillus brevis KB290.

    PubMed

    Fukui, Yuichiro; Sasaki, Erika; Fuke, Nobuo; Nakai, Yuji; Ishijima, Tomoko; Abe, Keiko; Yajima, Nobuhiro

    2014-06-14

    Some lactic acid bacteria play an important role in the immune system with potential benefits to the host. However, detailed mechanisms of immune modulation exerted by probiotics remain to be clarified. Since immune response changes in a time-related manner in some cases, we monitored changes in mRNA levels in the spleen of mice during 14 d feeding with Lactobacillus brevis KB290 (KB290). Female BALB/c mice, aged 9 weeks, commenced a diet containing KB290 (3 × 109 colony-forming units/g) or starch for a period of 1, 4, 7 or 14 d. Cytotoxic activity of the resulting splenocytes against YAC-1 cells was measured using flow cytometry. The activity was found to be significantly higher in the treated group on days 1 and 7. The highest activity appeared on day 4, but was not statistically significantly different. Gene expression profiles were analysed using DNA microarray. Gene Ontology (GO) terms related to the immune process were significantly enriched in the up-regulated gene set on days 1, 4 and 7, and GO terms related to the cellular process were enriched in the down-regulated gene set on days 4 and 7. Although the up-regulated genes involved in antigen processing and presentation for stimulation of CD8+ cytotoxic T cells were not observed on day 14, some genes involved in T-cell and natural killer cell activation remained up-regulated until day 14. For the majority of the genes tested, RT-PCR analysis was used to verify the results obtained from the DNA microarray analysis. The sequential gene expression profiling reflected changes in cytotoxic activity during KB290 feeding.

  15. Theory of graphene saturable absorption

    NASA Astrophysics Data System (ADS)

    Marini, A.; Cox, J. D.; García de Abajo, F. J.

    2017-03-01

    Saturable absorption is a nonperturbative nonlinear optical phenomenon that plays a pivotal role in the generation of ultrafast light pulses. Here we show that this effect emerges in graphene at unprecedentedly low light intensities, thus opening avenues to new nonlinear physics and applications in optical technology. Specifically, we theoretically investigate saturable absorption in extended graphene by developing a semianalytical nonperturbative single-particle approach, describing electron dynamics in the atomically-thin material using the two-dimensional Dirac equation for massless Dirac fermions, which is recast in the form of generalized Bloch equations. By solving the electron dynamics nonperturbatively, we account for both interband and intraband contributions to the intensity-dependent saturated conductivity and conclude that the former dominates regardless of the intrinsic doping state of the material. We obtain results in qualitative agreement with atomistic quantum-mechanical simulations of graphene nanoribbons including electron-electron interactions, finite-size, and higher-band effects. Remarkably, such effects are found to affect mainly the linear absorption, while the predicted saturation intensities are in good quantitative agreement in the limit of extended graphene. Additionally, we find that the modulation depth of saturable absorption in graphene can be electrically manipulated through an externally applied gate voltage. Our results are relevant for the development of graphene-based optoelectronic devices, as well as for applications in mode-locking and random lasers.

  16. Slow light and saturable absorption

    NASA Astrophysics Data System (ADS)

    Selden, A. C.

    2009-06-01

    Quantitative analysis of slow light experiments utilising coherent population oscillation (CPO) in a range of saturably absorbing media, including ruby and alexandrite, Er3+:Y2SiO5, bacteriorhodopsin, semiconductor quantum devices and erbium-doped optical fibres, shows that the observations may be more simply interpreted as saturable absorption phenomena. A basic two-level model of a saturable absorber displays all the effects normally associated with slow light, namely phase shift and modulation gain of the transmitted signal, hole burning in the modulation frequency spectrum and power broadening of the spectral hole, each arising from the finite response time of the non-linear absorption. Only where hole-burning in the optical spectrum is observed (using independent pump and probe beams), or pulse delays exceeding the limits set by saturable absorption are obtained, can reasonable confidence be placed in the observation of slow light in such experiments. Superluminal (“fast light”) phenomena in media with reverse saturable absorption (RSA) may be similarly explained.

  17. The Adventures of the Diving-Bell Spider

    NASA Astrophysics Data System (ADS)

    Thevenin, Raphaele; Dupeux, Guillaume; Piroird, Keyvan; Clanet, Christophe; Quere, David; Interfaces; Co. Team

    2012-11-01

    The Argyroneta Aquatica is a unique spider that has every features of a usual terrestrial spider, but constantly lives under water. To however still be able to breath oxygen, it builds an underwater bell of air (hence its other name ``the diving-bell spider''): using its superhydrophobic abdomen, it pulls an air bubble at the surface by leaving the latter very rapidly. It then enters the bell formed under aquatic plants or under its under-water web, and leaves it more slowly so as to entrain the least air possible. We study these dynamics that take place at the air/water interfaces. We reduce the spider to two beads, one for the hydrophobic abdomen, one for the hydrophilic head, and measure and model the air entrainment according to the size and surface properties of the abdomen and to the velocity of motion.

  18. Course Outline for a SCUBA Diving Speciality "UNDERWATER Survey DIVER"

    NASA Astrophysics Data System (ADS)

    Papadimitriou, K.

    2015-04-01

    The purpose of this paper is to outline a course for the training of divers with a special interest in underwater surveying (e.g. surveyors, archaeologists, biologists, geologists, photographers/videographers). This outline presents: i) the Courses' Standards ii) the Learning Objectives for the related Knowledge Development, iii) the Skills that have to be conducted, iv) the Performance Requirements for the students and v) the Open Water Considerations for the Training Dives. It is expected that the resulting course outline will be used as a reference for the training of certified divers who want to become underwater surveyors, providing them basic knowledge and skills to survey adequate data for the detailed documentation of submerged features. Moreover the combination of knowledge (what) and the skills (how) that are presented during the proposed course attempt to define a protocol for the recording of underwater features in favor of mapping and 3D modeling.

  19. Path analysis of self-efficacy and diving performance revisited.

    PubMed

    Feltz, Deborah L; Chow, Graig M; Hepler, Teri J

    2008-06-01

    The Feltz (1982) path analysis of the relationship between diving efficacy and performance showed that, over trials, past performance was a stronger predictor than self-efficacy of performance. Bandura (1997) criticized the study as statistically "overcontrolling" for past performance by using raw past performance scores along with self-efficacy as predictors of performance. He suggests residualizing past performance by regressing the raw scores on self-efficacy and entering them into the model to remove prior contributions of self-efficacy imbedded in past performance scores. To resolve this controversy, we reanalyzed the Feltz data using three statistical models: raw past performance, residual past performance, and a method that residualizes past performance and self-efficacy. Results revealed that self-efficacy was a stronger predictor of performance in both residualized models than in the raw past performance model. Furthermore, the influence of past performance on future performance was weaker when the residualized methods were conducted.

  20. Virtual Diving in the Underwater Archaeological Site of Cala Minnola

    NASA Astrophysics Data System (ADS)

    Bruno, F.; Lagudi, A.; Barbieri, L.; Muzzupappa, M.; Mangeruga, M.; Pupo, F.; Cozza, M.; Cozza, A.; Ritacco, G.; Peluso, R.; Tusa, S.

    2017-02-01

    The paper presents the application of the technologies and methods defined in the VISAS project for the case study of the underwater archaeological site of Cala Minnola located in the island of Levanzo, in the archipelago of the Aegadian Islands (Sicily, Italy). The VISAS project (http://visas-project.eu) aims to improve the responsible and sustainable exploitation of the Underwater Cultural Heritage by means the development of new methods and technologies including an innovative virtual tour of the submerged archaeological sites. In particular, the paper describes the 3D reconstruction of the underwater archaeological site of Cala Minnola and focus on the development of the virtual scene for its visualization and exploitation. The virtual dive of the underwater archaeological site allows users to live a recreational and educational experience by receiving historical, archaeological and biological information about the submerged exhibits, the flora and fauna of the place.

  1. Saturation and pulsed FEL dynamics

    SciTech Connect

    Giannessi, L.; Mezi, L.

    1995-12-31

    The behavior of a FEL operating in the saturated pulsed regime, may be reproduced by the linear FEL integral equation, suitably modified to include saturation effects through a gain depression coefficient depending on the laser intensity. This simple method allows to evaluate several FEL parameters like gain, efficiency, band-width and optical pulse duration as functions of the optical cavity length, only with a numerical integration. The predictions have been compared with available experimental and numerical data, and the method has been applied to estimate the operating characteristics of some planned FEL experiments.

  2. Growing Evidence about the Relationship between Vessel Dissection and Scuba Diving.

    PubMed

    Brajkovic, Simona; Riboldi, Giulietta; Govoni, Alessandra; Corti, Stefania; Bresolin, Nereo; Comi, Giacomo Pietro

    2013-01-01

    Carotid and vertebral artery dissection are relatively frequent and risky conditions. In the last decade, different patients with extracranial (and in 1 case also intracranial) dissections associated with the practice of scuba diving were reported. The connection between the two conditions has not been fully explained so far. In the present article, we report the case of a patient presenting with Claude Bernard-Horner syndrome and homolateral XII cranial nerve palsy, manifesting a few days after diving in the cold water of a lake. The patient ended up having internal carotid artery dissection associated with the formation of a pseudoaneurysm. Here, we offer a summary of all cases reported in the literature about scuba diving and arterial dissection, and provide a critical discussion about which scuba diving-related factors can trigger the dissection of cervical vessels.

  3. Facial baroparesis: a critical differential diagnosis for scuba diving accidents--case report.

    PubMed

    Iakovlev, E V; Iakovlev, V V

    2014-01-01

    Facial nerve baroparesis is a rare and potentially under-reported complication of scuba diving. A diver, after surfacing from a shallow dive, developed isolated left-sided facial palsy accompanied by pain and decreased hearing in the left ear. No other signs or symptoms attributable to a scuba diving accident were detected. Forty minutes later, he heard a "pop" in the affected ear, after which all symptoms quickly resolved. Repeat neurological and ear examinations were normal. He showed no residual or new symptoms 24 hours later. The differential diagnosis of facial neurological deficit after diving includes decompression sickness, cerebral air embolism due to pulmonary barotrauma, facial nerve barotrauma and common conditions such as stroke and Bell's palsy. It is important to recognize the condition since recompression treatment can further damage the facial nerve.

  4. New records of predaceous diving beetles (Coleoptera:Dytiscidae) in Maine

    USGS Publications Warehouse

    Boobar, L.R.; Gibbs, K.E.; Longcore, J.R.; Perillo, A.M.

    1996-01-01

    Locations, habitat descriptions, and collection dates are listed for new records of 4 genera and 12 species of predaceous diving beetles (Coleoptera: Dytiscidae) in Maine. Previously, 17 genera and 53 species of the aquatic beetle were reported from Maine.

  5. Seal Lungs Collapse during Free Diving: Evidence from Arterial Nitrogen Tensions

    NASA Astrophysics Data System (ADS)

    Falke, Konrad J.; Hill, Roger D.; Qvist, Jesper; Schneider, Robert C.; Guppy, Michael; Liggins, Graham C.; Hochachka, Peter W.; Elliott, Richard E.; Zapol, Warren M.

    1985-08-01

    Arterial blood nitrogen tensions of free-diving Weddell seals (Leptonychotes weddelli) were measured by attaching a microprocessor-controlled blood pump and drawing samples at depth to determine how these marine mammals dive to great depths and ascend rapidly without developing decompression sickness. Forty-seven samples of arterial blood were obtained from four Weddell seals during free dives lasting up to 23 minutes to depths of 230 meters beneath the sea ice of McMurdo Sound, Antarctica. Peak arterial blood nitrogen tensions of between 2000 and 2500 millimeters of mercury were recorded at depths of 40 to 80 meters during descent, indicating that the seal's lung collapses by 25 to 50 meters. Then arterial blood nitrogen tensions slowly decreased to about 1500 millimeters of mercury at the surface. In a single dive, alveolar collapse and redistribution of blood nitrogen allow the seal to avoid nitrogen narcosis and decompression sickness.

  6. Increase of pulmonary arterial pressure in subjects with venous gas emboli after uncomplicated recreational SCUBA diving.

    PubMed

    Marabotti, Claudio; Scalzini, Alessandro; Chiesa, Ferruccio

    2013-04-01

    The presence of circulating gas bubbles has been repeatedly reported after uncomplicated SCUBA dives. The clinical and pathophysiological relevance of this phenomenon is still under debate but some experimental data suggest that silent bubbles may have a damaging potential on pulmonary endothelial cells. The aim of the present study was to evaluate the possible hemodynamic effect on pulmonary circulation of post-dive circulating gas bubbles. To this aim, 16 experienced divers were studied by Doppler-echocardiography in basal conditions and 2.0 ± 0.15 h after an uncomplicated, unrestricted recreational SCUBA dive. At the post-dive examination, circulating bubbles were present in 10/16 subjects (62.5%). Divers with circulating bubbles showed a significant post-dive increase of pulmonary systolic arterial pressure (evaluated by the maximal velocity of the physiological tricuspid regurgitation; P < 0.01)) and right ventricular internal dimension (P < 0.05). Divers without circulating bubbles showed no significant change in cardiac anatomy and pulmonary arterial pressure. Both groups showed a significant post-dive decrease of transmitral E/A ratio (index of left ventricular diastolic function: subjects with bubbles P < 0.01; subjects without bubbles P < 0.05). These results seem to indicate that circulating gas bubbles may lead to a hemodynamically relevant increase of pulmonary arterial pressure, able to induce an acute right ventricular dilation. Post-dive diastolic function changes, observed in both groups, may be explained by a preload reduction due to immersion natriuresis. The results of the present study add some evidence that post-dive circulating bubbles, although symptomless, have an easily detectable pathogenetic potential, inducing unfavorable hemodynamic changes in the lesser circulation.

  7. Four-Hour Dives with Exercise While Breathing Oxygen Partial Pressure of 1.3 ATM

    DTIC Science & Technology

    2006-09-01

    carboxyhemoglobin and hemoglobin concentrations, 8 and the samples were chosen to ensure that the analyzer signal was stable when measurements were...exercise to four-hour resting dives where divers breathed oxygen underwater, we measured pulmonary function (flow-volume loops and diffusing capacity... measured changes in pulmonary function and assessed symptoms immediately and for several days after diving exposures. The pulmonary function variables

  8. Pulmonary Effects of Eight-Hour MK 16 MOD 1 Dives

    DTIC Science & Technology

    2007-10-01

    carboxyhemoglobin and hemoglobin concentrations,5 and the samples were chosen to ensure that the analyzer signal was stable when measurements were recorded.6...chose eight-hour dives for testing. We measured changes in pulmonary function and assessed symptoms immediately and for several days after diving...occasional,1 Respiratory allergies, pollen or other (#): 1 (not allergy season) Medication use (#): Anti-inflammatory: 1 To measure pulmonary function, at

  9. Development and Testing of a Datalogging Device for Physiological Measurements of Deep-diving Odontocetes

    DTIC Science & Technology

    2013-09-30

    target species (such as melon-headed whales and false killer whales ) for some of these other projects were unusually low in 2013, so that there were...Science Center is supporting research on false killer whale movements in Hawaiian waters, and the Naval Postgraduate School (with funding from N45) is...determine the normal cardiovascular dive response of deep-diving odontocetes like beaked whales , and to examine how that response might be altered

  10. Predaceous diving beetles in Maine: Faunal list and keys to subfamilies

    USGS Publications Warehouse

    Boobar, L.R.; Spangler, P.J.; Gibbs, K.E.; Longcore, J.R.; Hopkins, K.M.

    1998-01-01

    Records of predaceous diving beetles (Coleoptera: Dytiscidae) collected in Maine are summarized. These records are augmented by field surveys of beetles in Aroostook Co., Maine during 1993-95. Keys to subfamilies are presented with color plates for selected species. A list of diving beetles that have been collected near Maine (state or province) is presented so that investigators will know what additional species might be expected in Maine. Basic taxonomy is presented to facilitate use of keys.

  11. Evaluating the Effects of Stressors on Immune Function during Simulated Dives in Marine Mammals

    DTIC Science & Technology

    2013-09-30

    effects of simulated dive exposures on cellular immune function in beluga whales 2) To evaluate the effects of simulated dive exposures on cellular...immune function following a known stressor event 3) To collect biological samples from wild belugas to compare with aquarium whales and 4) To compare the...exposures will be obtained from beluga whales resident at the Mystic Aquarium. Cells of the immune system will be exposed to increased pressure

  12. An elastic body impacting the water surface; inspired by diving birds

    NASA Astrophysics Data System (ADS)

    Jung, Sunghwan; Ochs, Alex; Gart, Sean

    2013-11-01

    We investigate how a soft elastic body responds to water-entry impact analogous to a bird diving into water to catch prey. Dumbbell shaped objects made of two acrylic spheres connected by an elastic rod are dropped into water. A buckling threshold was found by varying impact force and elastic rod stiffness. This threshold may have implication as to how birds are able to safely dive into water at high speeds and avoid any neck-injury.

  13. A Nonlinear Study of Open Loop Dynamic Stability of Submersible Vehicles in the Dive Plane

    DTIC Science & Technology

    1994-03-01

    Submsersible Vehicles in the Dive Plane by Harilaos I. Papadimitriou March, 1994 Thesis Advisor: Fotis A. Papoulias Approved for public release...Engineers Thesis 4. TITLE AND SUBTITLE * A NONLINEAR STUDY OF OPEN LOOP 5. FUNDING NUMBERS DYNAMIC STABILITY OF SUBMERSIBLE VEHICLES IN THE DIVE PLANE...SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of

  14. Analysis for the Design of a U.S. Navy Diving and Salvage Smart Stage

    DTIC Science & Technology

    2013-06-01

    DESIGN OF A U.S. NAVY DIVING AND SALVAGE SMART STAGE by Puyan A. Kheshti June 2013 Thesis Advisor: Cliff Whitcomb Thesis Second Reader...DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE ANALYSIS FOR THE DESIGN OF A U.S. NAVY DIVING AND SALVAGE SMART STAGE 5. FUNDING NUMBERS 6...stage, called the SMART Stage, which will increase the productivity and safety of its users along with matching their capabilities to that of the

  15. Design of an adaptive controller for dive-plane control of a torpedo-shaped AUV

    NASA Astrophysics Data System (ADS)

    Cao, Jian; Su, Yumin; Zhao, Jinxin

    2011-09-01

    Underwater vehicles operating in complex ocean conditions present difficulties in determining accurate dynamic models. To guarantee robustness against parameter uncertainty, an adaptive controller for dive-plane control, based on Lyapunov theory and back-stepping techniques, was proposed. In the closed-loop system, asymptotic tracking of the reference depth and pitch angle trajectories was accomplished. Simulation results were presented which show effective dive-plane control in spite of the uncertainties in the system parameters.

  16. Pulmonary Effects of Multilevel HeO2 Dives Using the MK 16 MOD 1 UBA

    DTIC Science & Technology

    2011-02-01

    asked about inspiratory burning, cough , shortness of breath, chest tightness, and rapid, shallow breathing. The dives were conducted in the Ocean...intolerance. Specific respiratory symptoms queried were chest tightness, shortness of breath, rapid shallow breathing, and cough . After the dives, the...moderate symptoms. Abbreviations: “c” is cough , “d” is dyspnea (shortness of breath), “i” is inspiratory burning, “r” is rapid shallow breathing, and

  17. Respiration and heart rate at the surface between dives in northern elephant seals.

    PubMed

    Le Boeuf, B J; Crocker, D E; Grayson, J; Gedamke, J; Webb, P M; Blackwell, S B; Costa, D P

    2000-11-01

    All underwater activities of diving mammals are constrained by the need for surface gas exchange. Our aim was to measure respiratory rate (fb) and heart rate (fh) at the surface between dives in free-ranging northern elephant seals Mirounga angustirostris. We recorded fb and fh acoustically in six translocated juveniles, 1.8-2. 4 years old, and three migrating adult males from the rookery at Año Nuevo, California, USA. To each seal, we attached a diving instrument to record the diving pattern, a satellite tag to track movements and location, a digital audio tape recorder or acoustic datalogger with an external hydrophone to record the sounds of respiration and fh at the surface, and a VHF transmitter to facilitate recovery. During surface intervals averaging 2.2+/-0.4 min, adult males breathed a mean of 32.7+/-5.4 times at a rate of 15. 3+/-1.8 breaths min(-)(1) (means +/- s.d., N=57). Mean fh at the surface was 84+/-3 beats min(-)(1). The fb of juveniles was 26 % faster than that of adult males, averaging 19.2+/-2.2 breaths min(-)(1) for a mean total of 41.2+/-5.0 breaths during surface intervals lasting 2.6+/-0.31 min. Mean fh at the surface was 106+/-3 beats min(-)(1). fb and fh did not change significantly over the course of surface intervals. Surface fb and fh were not clearly associated with levels of exertion, such as rapid horizontal transit or apparent foraging, or with measures of immediately previous or subsequent diving performance, such as diving duration, diving depth or swimming speed. Together, surface respiration rate and the duration of the preceding dive were significant predictors of surface interval duration. This implies that elephant seals minimize surface time spent loading oxygen depending on rates of oxygen uptake and previous depletion of stores.

  18. Pulmonary Function in a Diving Population Aged Over 40 Years Old: A Cross-Sectional Study

    DTIC Science & Technology

    2000-08-01

    diving are conditioned by exposure to a number of elements which are inherent in the subject’s - Inversion in the respiratory activity. Among these, we...activity. 13-5 12. LUCIA MULAS A. La ventilaci6n REFERENCES.- pulmonar durante el ejercicio . En L6pez Chicharro J. Fern-ndez Vaquero AX(eds.). 1...ADIVP -2 ALLIED GUIDE TO DIVING Fisiologia del ejercicio . la edicion. Madrid. MEDICAL DISORDERS. Publicacion Editorial Medica Panamericana S.A. 1995

  19. Can foraging ecology drive the evolution of body size in a diving endotherm?

    PubMed

    Cook, Timothée R; Lescroël, Amélie; Cherel, Yves; Kato, Akiko; Bost, Charles-André

    2013-01-01

    Within a single animal species, different morphs can allow for differential exploitation of foraging niches between populations, while sexual size dimorphism can provide each sex with access to different resources. Despite being potentially important agents of evolution, resource polymorphisms, and the way they operate in wild populations, remain poorly understood. In this study, we examine how trophic factors can select for different body sizes between populations and sexes in a diving endotherm. Dive depth and duration are positively related to body size in diving birds and mammals, a relationship explained by a lower mass-specific metabolic rate and greater oxygen stores in larger individuals. Based on this allometry, we predict that selection for exploiting resources situated at different depths can drive the evolution of body size in species of diving endotherms at the population and sexual level. To test this prediction, we studied the foraging ecology of Blue-eyed Shags, a group of cormorants with male-biased sexual size dimorphism from across the Southern Ocean. We found that mean body mass and relative difference in body mass between sexes varied by up to 77% and 107% between neighbouring colonies, respectively. Birds from colonies with larger individuals dived deeper than birds from colonies with smaller individuals, when accounting for sex. In parallel, males dived further offshore and deeper than females and the sexual difference in dive depth reflected the level of sexual size dimorphism at each colony. We argue that body size in this group of birds is under intense selection for diving to depths of profitable benthic prey patches and that, locally, sexual niche divergence selection can exaggerate the sexual size dimorphism of Blue-eyed Shags initially set up by sexual selection. Our findings suggest that trophic resources can select for important geographic micro-variability in body size between populations and sexes.

  20. The daily catch: Flight altitude and diving behavior of northern gannets feeding on Atlantic mackerel

    NASA Astrophysics Data System (ADS)

    Garthe, Stefan; Guse, Nils; Montevecchi, William A.; Rail, Jean-François; Grégoire, François

    2014-01-01

    Predators utilize a variety of behavioral techniques to capture elusive prey. Behavioral flexibility is essential among generalist predators that pursue a diversity of prey types, and capture efficiency is expected to be intense during the breeding season for parents that engage in self- and offspring-provisioning. We studied the foraging behavior of parental northern gannets in the northwestern Atlantic (Gulf of St. Lawrence) when they were feeding on Atlantic mackerel almost exclusively. Data-loggers recorded short (mean duration: 6.3 s), high speed (inferred vertical speeds of up to 54.0 m*s- 1, equivalent to 194 km*h- 1), and shallow dives (mean depth: 4.2 m; maximum: 9.2 m). Dives tended to occur in bouts, varying between 0.3 and 4.6 per hour (mean = 1.6). During foraging, overall flight heights ranged from 0 to 70 m, with no clear preferences for height. Most plunge-dives were initiated at flight altitudes of 11-60 m (mean ± SE = 37.1 ± 2.8 m; range 3-105 m except for 1 of 162 dives that was initiated at the sea surface). Dive depth and flight altitude at plunge-dive initiation were positively and significantly correlated, though it appears that low flight altitudes were sufficient to reach dive depths at which mackerel were present. Almost all dives were V-shaped indicating that a high acceleration attack is the most effective strategy for gannets feeding on large rapid-swimming prey such as mackerel that owing to thermal preferences does not occur below the thermocline and are thus well available and essentially trapped in the water depths exploited by northern gannets.

  1. Can Foraging Ecology Drive the Evolution of Body Size in a Diving Endotherm?

    PubMed Central

    Cook, Timothée R.; Lescroël, Amélie; Cherel, Yves; Kato, Akiko; Bost, Charles-André

    2013-01-01

    Within a single animal species, different morphs can allow for differential exploitation of foraging niches between populations, while sexual size dimorphism can provide each sex with access to different resources. Despite being potentially important agents of evolution, resource polymorphisms, and the way they operate in wild populations, remain poorly understood. In this study, we examine how trophic factors can select for different body sizes between populations and sexes in a diving endotherm. Dive depth and duration are positively related to body size in diving birds and mammals, a relationship explained by a lower mass-specific metabolic rate and greater oxygen stores in larger individuals. Based on this allometry, we predict that selection for exploiting resources situated at different depths can drive the evolution of body size in species of diving endotherms at the population and sexual level. To test this prediction, we studied the foraging ecology of Blue-eyed Shags, a group of cormorants with male-biased sexual size dimorphism from across the Southern Ocean. We found that mean body mass and relative difference in body mass between sexes varied by up to 77% and 107% between neighbouring colonies, respectively. Birds from colonies with larger individuals dived deeper than birds from colonies with smaller individuals, when accounting for sex. In parallel, males dived further offshore and deeper than females and the sexual difference in dive depth reflected the level of sexual size dimorphism at each colony. We argue that body size in this group of birds is under intense selection for diving to depths of profitable benthic prey patches and that, locally, sexual niche divergence selection can exaggerate the sexual size dimorphism of Blue-eyed Shags initially set up by sexual selection. Our findings suggest that trophic resources can select for important geographic micro-variability in body size between populations and sexes. PMID:23409169

  2. Ecological carrying capacity assessment of diving site: A case study of Mabul Island, Malaysia.

    PubMed

    Zhang, Li-Ye; Chung, Shan-Shan; Qiu, Jian-Wen

    2016-12-01

    Despite considered a non-consumptive use of the marine environment, diving-related activities can cause damages to coral reefs. It is imminent to assess the maximum numbers of divers that can be accommodated by a diving site before it is subject to irreversible deterioration. This study aimed to assess the ecological carrying capacity of a diving site in Mabul Island, Malaysia. Photo-quadrat line transect method was used in the benthic survey. The ecological carrying capacity was assessed based on the relationship between the number of divers and the proportion of diver damaged hard corals in Mabul Island. The results indicated that the proportion of diver damaged hard corals occurred exponentially with increasing use. The ecological carrying capacity of Mabul Island is 15,600-16,800 divers per diving site per year at current levels of diver education and training with a quarterly threshold of 3900-4200 per site. Our calculation shows that management intervention (e.g. limiting diving) is justified at 8-14% of hard coral damage. In addition, the use of coral reef dominated diving sites should be managed according to their sensitivity to diver damage and the depth of the reefs.

  3. Temporomandibular disorders in scuba divers-an increased risk during diving certification training.

    PubMed

    Oztürk, Ozmen; Tek, Mustafa; Seven, Hüseyin

    2012-11-01

    The design of a diving regulator's mouthpiece increases the risk of a temporomandibular disorder (TMD) in scuba divers. The total weight of a diving regulator is reflected directly on the temporomandibular joint, causing articular and periarticular disorders. In the current study, the prevalence of TMD in scuba divers triggered during diving certification training is investigated. We also aimed to determine the factors that lead to TMD during diving training and clarify the observation that there is an increased incidence of TMD in inexperienced divers. The study was held between 2006 and 2011. Ninety-seven divers were referred with the complaint of pain around temporomandibular area. The divers were classified according to their diving experience. Symptoms and signs of TMD were graded. Fourteen divers were diagnosed with TMD. Temporomandibular disorder was seen more frequently in inexperienced divers than in experienced divers (P = 0.0434). The most prevalent symptom was an increased effort for mouthpiece gripping. Temporomandibular joint tenderness and trigger point activation were the mostly seen physical signs. Thirteen divers had an improvement with therapy. The increased effort for stabilizing the mouthpiece is a recognized factor in TMD development. Attention must be paid to an association of scuba diving with TMDs, especially in inexperienced divers having a scuba certification training.

  4. Using stimulation of the diving reflex in humans to teach integrative physiology.

    PubMed

    Choate, Julia K; Denton, Kate M; Evans, Roger G; Hodgson, Yvonne

    2014-12-01

    During underwater submersion, the body responds by conserving O2 and prioritizing blood flow to the brain and heart. These physiological adjustments, which involve the nervous, cardiovascular, and respiratory systems, are known as the diving response and provide an ideal example of integrative physiology. The diving reflex can be stimulated in the practical laboratory setting using breath holding and facial immersion in water. Our undergraduate physiology students complete a laboratory class in which they investigate the effects of stimulating the diving reflex on cardiovascular variables, which are recorded and calculated with a Finapres finger cuff. These variables include heart rate, cardiac output, stroke volume, total peripheral resistance, and arterial pressures (mean, diastolic, and systolic). Components of the diving reflex are stimulated by 1) facial immersion in cold water (15°C), 2) breathing with a snorkel in cold water (15°C), 3) facial immersion in warm water (30°C), and 4) breath holding in air. Statistical analysis of the data generated for each of these four maneuvers allows the students to consider the factors that contribute to the diving response, such as the temperature of the water and the location of the sensory receptors that initiate the response. In addition to providing specific details about the equipment, protocols, and learning outcomes, this report describes how we assess this practical exercise and summarizes some common student misunderstandings of the essential physiological concepts underlying the diving response.

  5. Presumed Arterial Gas Embolism After Breath-Hold Diving in Shallow Water.

    PubMed

    Harmsen, Stefani; Schramm, Dirk; Karenfort, Michael; Christaras, Andreas; Euler, Michael; Mayatepek, Ertan; Tibussek, Daniel

    2015-09-01

    Dive-related injuries are relatively common, but almost exclusively occur in recreational or scuba diving. We report 2 children with acute central nervous system complications after breath-hold diving. A 12-year-old boy presented with unilateral leg weakness and paresthesia after diving beneath the water surface for a distance of ∼25 m. After ascent, he suddenly felt extreme thoracic pain that resolved spontaneously. Neurologic examination revealed right leg weakness and sensory deficits with a sensory level at T5. Spinal MRI revealed a nonenhancing T2-hyperintense lesion in the central cord at the level of T1/T2 suggesting a spinal cord edema. A few weeks later, a 13-year-old girl was admitted with acute dizziness, personality changes, confusion, and headache. Thirty minutes before, she had practiced diving beneath the water surface for a distance of ∼25 m. After stepping out, she felt sudden severe thoracic pain and lost consciousness. Shortly later she reported headache and vertigo, and numbness of the complete left side of her body. Neurologic examination revealed reduced sensibility to all modalities, a positive Romberg test, and vertigo. Cerebral MRI revealed no pathologic findings. Both children experienced a strikingly similar clinical course. The chronology of events strongly suggests that both patients were suffering from arterial gas embolism. This condition has been reported for the first time to occur in children after breath-hold diving beneath the water surface without glossopharyngeal insufflation.

  6. Coming up for air: thermal dependence of dive behaviours and metabolism in sea snakes.

    PubMed

    Udyawer, Vinay; Simpfendorfer, Colin A; Heupel, Michelle R; Clark, Timothy D

    2016-11-01

    Cutaneous gas exchange allows some air-breathing diving ectotherms to supplement their pulmonary oxygen uptake, which may allow prolongation of dives and an increased capacity to withstand anthropogenic and natural threatening processes that increase submergence times. However, little is known of the interplay between metabolism, bimodal oxygen uptake and activity levels across thermal environments in diving ectotherms. Here, we show in two species of sea snake (spine-bellied sea snake, Hydrophis curtus; and elegant sea snake, Hydrophis elegans) that increasing temperature elevates surfacing rate, increases total oxygen consumption and decreases dive duration. The majority of dives observed in both species remained within estimated maximal aerobic limits. While cutaneous gas exchange accounted for a substantial proportion of total oxygen consumption (up to 23%), unexpectedly it was independent of water temperature and activity levels, suggesting a diffusion-limited mechanism. Our findings demonstrate that rising water temperature and a limited capability to up-regulate cutaneous oxygen uptake may compromise the proficiency with which sea snakes perform prolonged dives. This may hinder their capacity to withstand ongoing anthropogenic activities like trawl fishing, and increase their susceptibility to surface predation as their natural environments continue to warm.

  7. Hardware and Procedures for Using the Diveair2 Monitor to Test Diving Air Quality in the Field

    DTIC Science & Technology

    2011-09-01

    sampling hardware, consisting of a. four high-pressure (HP) adaptors to attach to various Navy sources of diving air — scuba , the Lightweight...Compressors and air banks. 2) Scuba bottles that have already been charged. 3) The Navy’s Lightweight Dive System (LWDS), both during and following...of ~150 mL/min. 7. Skip down to DIVING AIR MONITORING (section F). E. TESTING SCUBA BOTTLES (previously charged) or TESTING LWDS AND FADS

  8. How Elephant Seals (Mirounga leonina) Adjust Their Fine Scale Horizontal Movement and Diving Behaviour in Relation to Prey Encounter Rate

    PubMed Central

    Jouma’a, Joffrey; Picard, Baptiste; Guinet, Christophe

    2016-01-01

    Understanding the diving behaviour of diving predators in relation to concomitant prey distribution could have major practical applications in conservation biology by allowing the assessment of how changes in fine scale prey distribution impact foraging efficiency and ultimately population dynamics. The southern elephant seal (Mirounga leonina, hereafter SES), the largest phocid, is a major predator of the southern ocean feeding on myctophids and cephalopods. Because of its large size it can carry bio-loggers with minimal disturbance. Moreover, it has great diving abilities and a wide foraging habitat. Thus, the SES is a well suited model species to study predator diving behaviour and the distribution of ecologically important prey species in the Southern Ocean. In this study, we examined how SESs adjust their diving behaviour and horizontal movements in response to fine scale prey encounter densities using high resolution accelerometers, magnetometers, pressure sensors and GPS loggers. When high prey encounter rates were encountered, animals responded by (1) diving and returning to the surface with steeper angles, reducing the duration of transit dive phases (thus improving dive efficiency), and (2) exhibiting more horizontally and vertically sinuous bottom phases. In these cases, the distance travelled horizontally at the surface was reduced. This behaviour is likely to counteract horizontal displacement from water currents, as they try to remain within favourable prey patches. The prey encounter rate at the bottom of dives decreased with increasing diving depth, suggesting a combined effect of decreased accessibility and prey density with increasing depth. Prey encounter rate also decreased when the bottom phases of dives were spread across larger vertical extents of the water column. This result suggests that the vertical aggregation of prey can regulate prey density, and as a consequence impact the foraging success of SESs. To our knowledge, this is one of

  9. Development of a 14-d test for growth and survival in sediment using the freshwater amphipod, Hyalella azteca

    SciTech Connect

    Day, K.E.; Kirby, R.S.; McLeay, D.J.; Milani, D.

    1995-12-31

    A biological test method is being developed by Environment Canada for a 14-d freshwater sediment toxicity test using 2 to 9 day old amphipods which uses survival and growth as endpoints. The test may be undertaken as either an intermittent renewal assay with twice-daily renewal of the overlying water, or as a static assay with aeration of the overlying water. The performance of the test method using each of these two test options was compared with two types of food and several feeding regimes (ie., a suspension of YCT versus fish food flakes fed daily or thrice weekly). Three field-collected sediments with low, moderate, and high organic carbon content (0.2%, 4% and 12%) were also used as part of the test method developmental studies in order to discern a minimal acceptable level of growth for clean sediments according to each test option. Additionally, the ability of the test to discriminate the effects of contaminants on growth over the 14-day period was determined in dose-response experiments with contaminant-spiked sediment, using tributyltin and copper as contaminants.

  10. Helium Saturation of Liquid Propellants

    NASA Technical Reports Server (NTRS)

    Yavrouian, A. H.; Moran, Clifford M.

    1990-01-01

    The research is in three areas which are: (1) techniques were devised for achieving the required levels of helium (He) saturation in liquid propellants (limited to monomethylhydrazine (MMH) and nitrogen tetroxide (NTO)); (2) the values were evaluated for equilibrium solubilities of He in liquid propellants as currently used in the industry; and (3) the He dissolved in liquid propellants were accurately measured. Conclusions drawn from these studies include: (1) Techniques for dissolving He in liquid propellants depending upon the capabilities of the testing facility (Verification of the quantity of gas dissolved is essential); (2) Until greater accuracy is obtained, the equilibrium solubility values of He in MMH and NTO as cited in the Air Force Propellant Handbooks should be accepted as standard (There are still enough uncertainties in the He saturation values to warrant further basic experimental studies); and (3) The manometric measurement of gas volume from a frozen sample of propellant should be the accepted method for gas analysis.

  11. A BRIEF NOTE ON THE RELATIONSHIP BETWEEN ANXIETY AND PERFORMANCE IN SCUBA DIVING IN ADOLESCENTS: A FIELD STUDY.

    PubMed

    Steinberg, Fabian; Doppelmayr, Michael

    2015-06-01

    This study explored the relationship between anxiety and scuba diving performance of young individuals (N = 44; 16.9 yr., SD = 1.2) participating in an introductory scuba diving activity. The question was whether the well-known negative correlation between anxiety and scuba diving performance found for experienced and middle-aged scuba divers will be observed in young participants in their first dive experience. Diving instructors rated standardized scuba diving skills that were correlated with individual state and trait anxiety. There was no relationship between anxiety and scuba diving performance, neither for state nor for trait anxiety. This non-significant correlation between anxiety and performance was in contrast to recent findings observed for experienced divers or those who participated at a scuba diving training program. Considering the differences in methodological design between this study and recent investigations, further research is needed to reveal possible relations between anxiety, scuba diving performance, and panic behavior in beginner-level youth or adults.

  12. Investigation of Diving Moments of a Pursuit Airplane in the Ames 16-Foot High Speed Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Erickson, Albert L

    1942-01-01

    A pursuit type airplane encountered severe diving moments in high-speed dives which make recovery difficult. For the purpose of investigating these diving moments and finding means for their reduction, a 1/6-scale model of the airplane was tested in the 16-foot high-speed wind tunnel at Ames Aeronautical Laboratory. The test results indicate that up to a Mach number of at least 0.75, the limit of the tests, the dive-recovery difficulties can be alleviated and the longitudinal maneuverability improved by the substitution of a long symmetrical fuselage for the standard fuselage.

  13. Saturation of the turbulent dynamo.

    PubMed

    Schober, J; Schleicher, D R G; Federrath, C; Bovino, S; Klessen, R S

    2015-08-01

    The origin of strong magnetic fields in the Universe can be explained by amplifying weak seed fields via turbulent motions on small spatial scales and subsequently transporting the magnetic energy to larger scales. This process is known as the turbulent dynamo and depends on the properties of turbulence, i.e., on the hydrodynamical Reynolds number and the compressibility of the gas, and on the magnetic diffusivity. While we know the growth rate of the magnetic energy in the linear regime, the saturation level, i.e., the ratio of magnetic energy to turbulent kinetic energy that can be reached, is not known from analytical calculations. In this paper we present a scale-dependent saturation model based on an effective turbulent resistivity which is determined by the turnover time scale of turbulent eddies and the magnetic energy density. The magnetic resistivity increases compared to the Spitzer value and the effective scale on which the magnetic energy spectrum is at its maximum moves to larger spatial scales. This process ends when the peak reaches a characteristic wave number k☆ which is determined by the critical magnetic Reynolds number. The saturation level of the dynamo also depends on the type of turbulence and differs for the limits of large and small magnetic Prandtl numbers Pm. With our model we find saturation levels between 43.8% and 1.3% for Pm≫1 and between 2.43% and 0.135% for Pm≪1, where the higher values refer to incompressible turbulence and the lower ones to highly compressible turbulence.

  14. Experimental Studies and Dynamics Modeling Analysis of the Swimming and Diving of Whirligig Beetles (Coleoptera: Gyrinidae)

    PubMed Central

    Jia, Xinghua; Zhang, Mingjun

    2012-01-01

    Whirligig beetles (Coleoptera, Gyrinidae) can fly through the air, swiftly swim on the surface of water, and quickly dive across the air-water interface. The propulsive efficiency of the species is believed to be one of the highest measured for a thrust generating apparatus within the animal kingdom. The goals of this research were to understand the distinctive biological mechanisms that allow the beetles to swim and dive, while searching for potential bio-inspired robotics applications. Through static and dynamic measurements obtained using a combination of microscopy and high-speed imaging, parameters associated with the morphology and beating kinematics of the whirligig beetle's legs in swimming and diving were obtained. Using data obtained from these experiments, dynamics models of both swimming and diving were developed. Through analysis of simulations conducted using these models it was possible to determine several key principles associated with the swimming and diving processes. First, we determined that curved swimming trajectories were more energy efficient than linear trajectories, which explains why they are more often observed in nature. Second, we concluded that the hind legs were able to propel the beetle farther than the middle legs, and also that the hind legs were able to generate a larger angular velocity than the middle legs. However, analysis of circular swimming trajectories showed that the middle legs were important in maintaining stable trajectories, and thus were necessary for steering. Finally, we discovered that in order for the beetle to transition from swimming to diving, the legs must change the plane in which they beat, which provides the force required to alter the tilt angle of the body necessary to break the surface tension of water. We have further examined how the principles learned from this study may be applied to the design of bio-inspired swimming/diving robots. PMID:23209398

  15. Specific detection of the floodwater mosquitoes Aedes sticticus and Aedes vexans DNA in predatory diving beetles.

    PubMed

    Vinnersten, Thomas Z Persson; Halvarsson, Peter; Lundström, Jan O

    2015-08-01

    Floodwater mosquitoes (Diptera: Culicidae) are associated with periodically flooded wet meadows, marshes, and swamps in floodplains of major rivers worldwide, and their larvae are abundant in the shallow parts of flooded areas. The nuisance caused by the blood-seeking adult female mosquitoes motivates mosquito control. Larviciding with Bacillus thuringiensis israelensis is considered the most environmentally safe method. However, some concern has been raised whether aquatic predatory insects could be indirectly affected by this reduction in a potential vital prey. Top predators in the temporary wetlands in the River Dalälven floodplains are diving beetles (Coleoptera: Dytiscidae), and Aedes sticticus and Ae. vexans are the target species for mosquito control. For detailed studies on this aquatic predator-prey system, we developed a polymerase chain reaction (PCR) assay for detection of mosquito DNA in the guts of medium-sized diving beetles. Primers were designed for amplifying short mitochondrial DNA fragments of the cytochrome C oxidase subunit I (COI) gene in Ae. sticticus and Ae. vexans, respectively. Primer specificity was confirmed and half-life detectability of Ae. sticticus DNA in diving beetle guts was derived from a feeding and digestion experiment. The Ae. sticticus DNA within diving beetle guts was detected up to 12 h postfeeding, and half-life detectability was estimated to 5.6 h. In addition, field caught diving beetles were screened for Ae. sticticus and Ae. vexans DNA and in 14% of the diving beetles one or both mosquito species were detected, showing that these mosquito species are utilized as food by the diving beetles.

  16. Temporal changes of populations and trophic relationships of wintering diving ducks in Chesapeake Bay

    USGS Publications Warehouse

    Perry, Matthew C.; Wells-Berlin, Alicia M.; Kidwell, David M.; Osenton, Peter C.

    2007-01-01

    Population and trophic relationships among diving ducks in Chesapeake Bay are diverse and complex as they include five species of bay ducks (Aythya spp.), nine species of seaducks (Tribe Mergini), and the Ruddy Duck (Oxyura jamaicensis). Here we considered the relationships between population changes and diet over the past half century to assess the importance of prey changes to wintering waterfowl in the Bay. Food habits of 643 diving ducks collected from Chesapeake Bay during 1999-2006 were determined by analyses of their gullet (esophagus and proventriculus) and gizzard contents and compared to historical data (1885-1979) of 1,541 diving ducks. Aerial waterfowl surveys, in general, suggest that six species of seaducks were more commonly located in the meso- to polyhaline areas of the Bay, whereas five species of bay ducks and Ruddy Ducks were in the oligo- to mesohaline areas. Seaducks fed on a molluscan diet of Hooked Mussel (Ischadium recurvum), Amethyst Gemclam (Gemma gemma), and Dwarf Surfclarn (Mulinia lateralis). Bay ducks and Ruddy Ducks fed more on Baltic Macoma (Macoma balthica), the adventive Atlantic Rangia (Rangia cuneata), and submerged aquatic vegetation (SAV). Mergansers were found over the widest salinity range in the Bay, probably because of their piscivorous diet. Each diving duck species appears to fill a unique foraging niche, although there is much overlap of selected prey. When current food habits are compared to historic data, only the Canvasback (Aythya valisineria) has had major diet changes, although SAV now accounts for less food volume for all diving duck species, except the Redhead (Aythya americana). Understanding the trophic-habitat relationships of diving ducks in coastal wintering areas will give managers a better understanding of the ecological effects of future environmental changes. Intensive restoration efforts on SAV and oyster beds should greatly benefit diving duck populations.

  17. Experimental studies and dynamics modeling analysis of the swimming and diving of whirligig beetles (Coleoptera: Gyrinidae).

    PubMed

    Xu, Zhonghua; Lenaghan, Scott C; Reese, Benjamin E; Jia, Xinghua; Zhang, Mingjun

    2012-01-01

    Whirligig beetles (Coleoptera, Gyrinidae) can fly through the air, swiftly swim on the surface of water, and quickly dive across the air-water interface. The propulsive efficiency of the species is believed to be one of the highest measured for a thrust generating apparatus within the animal kingdom. The goals of this research were to understand the distinctive biological mechanisms that allow the beetles to swim and dive, while searching for potential bio-inspired robotics applications. Through static and dynamic measurements obtained using a combination of microscopy and high-speed imaging, parameters associated with the morphology and beating kinematics of the whirligig beetle's legs in swimming and diving were obtained. Using data obtained from these experiments, dynamics models of both swimming and diving were developed. Through analysis of simulations conducted using these models it was possible to determine several key principles associated with the swimming and diving processes. First, we determined that curved swimming trajectories were more energy efficient than linear trajectories, which explains why they are more often observed in nature. Second, we concluded that the hind legs were able to propel the beetle farther than the middle legs, and also that the hind legs were able to generate a larger angular velocity than the middle legs. However, analysis of circular swimming trajectories showed that the middle legs were important in maintaining stable trajectories, and thus were necessary for steering. Finally, we discovered that in order for the beetle to transition from swimming to diving, the legs must change the plane in which they beat, which provides the force required to alter the tilt angle of the body necessary to break the surface tension of water. We have further examined how the principles learned from this study may be applied to the design of bio-inspired swimming/diving robots.

  18. The effects of depth, temperature and food ingestion on the foraging energetics of a diving endotherm, the double-crested cormorant (Phalacrocorax auritus).

    PubMed

    Enstipp, Manfred R; Grémillet, David; Jones, David R

    2006-03-01

    Avian divers are confronted with a number of physiological challenges when foraging in cold water, especially at depth. Besides the obvious constraint imposed by the necessity to return to the surface for gas exchange, cold water temperatures and a reduction in body insulation due to the increase in pressure with dive depth will elevate the energetic costs of foraging in these endotherm divers. The complex effect that depth has on the diving energetics of aquatic birds has largely been ignored. To date, no study has assessed the impact of depth on diving energetics over a significant depth range, naturally encountered by the diver. We used open-circuit respirometry to study the energetic requirements of a foot-propelled pursuit diver, the double-crested cormorant (Phalacrocorax auritus albociliatus), when diving in a shallow (1 m) and deep (10 m) dive tank and when resting in air and water. We also investigated the modifying effects of air or water temperature and feeding status on the costs associated with diving and resting. Of all factors investigated, dive depth exercised the strongest influence on diving metabolic rate. Diving to 10 m depth increased metabolic rate on average by 22% when compared with shallow diving. Declining temperatures in air and water significantly elevated metabolic rate of cormorants resting in air and water as well as during diving. Feeding before resting in water or diving increased metabolic rate by 5-8% for at least 2 h. Cormorants maintained an elevated stomach temperature (>42 degrees C) when resting in water and during diving, even at cold temperatures. The elevated dive costs during deep diving, when compared with shallow diving, are most likely a consequence of the increased thermoregulatory costs associated with a greater heat loss to the water at depth. Nevertheless, our study shows that dive costs in double-crested cormorants are similar to those of other foot-propelled avian divers.

  19. Code of Practice for Scientific Diving: Principles for the Safe Practice of Scientific Diving in Different Environments. Unesco Technical Papers in Marine Science 53.

    ERIC Educational Resources Information Center

    Flemming, N. C., Ed.; Max, M. D., Ed.

    This publication has been prepared to provide scientific divers with guidance on safe practice under varying experimental and environmental conditions. The Code offers advice and recommendations on administrative practices, insurance, terms of employment, medical standards, training standards, dive planning, safety with different breathing gases…

  20. Evolutionary Genetics of Hypoxia Tolerance in Cetaceans during Diving

    PubMed Central

    Tian, Ran; Wang, Zhengfei; Niu, Xu; Zhou, Kaiya; Xu, Shixia; Yang, Guang

    2016-01-01

    Hypoxia was a major challenge faced by cetaceans during the course of secondary aquatic adaptation. Although physiological traits of hypoxia tolerance in cetaceans have been well characterized, the underlying molecular mechanisms remain unknown. We investigated the sequences of 17 hypoxia-tolerance-related genes in representative cetaceans to provide a comprehensive insight into the genetic basis of hypoxia tolerance in these animals. Genes involved in carrying and transporting oxygen in the blood and muscle (hemoglobin-α and β, myoglobin), and genes involved in the regulation of vasoconstriction (endothelin-1, -2, and -3; endothelin receptor type A and B; adrenergic receptor α-1D; and arginine vasopressin) appear to have undergone adaptive evolution, evidence for positive selection on their particular sites, and radical physiochemical property changes of selected condons. Interestingly, “long-diving” cetaceans had relatively higher ω (dN/dS) values than “short-diving” cetaceans for the hemoglobin β gene, indicating divergent selective pressure presented in cetacean lineages with different diving abilities. Additionally, parallel positive selection or amino acid changes (ADRA1D: P50A, A53G, AVPR1B: I/V270T) among animals exposed to different hypoxia habitats reflect functional convergence or similar genetic mechanisms of hypoxia tolerance. In summary, positive selection, divergent selective pressures, and parallel evolution at the molecular level provided some new insights into the genetic adaptation of hypoxia tolerance. PMID:26912402

  1. Using Advanced Scientific Diving Technologies to Assess the Underwater Environment

    SciTech Connect

    Southard, John A.; Williams, Greg D.; Sargeant, Susan L.; Diefenderfer, Heida L.; Blanton, Michael L.

    2003-03-31

    Scientific diving can provide unique information for addressing complex environmental issues in the marine environment and is applied to a variety of increasingly important issues throughout Puget Sound, including habitat degradation, endangered species, biological availability of contaminants, and the effects of overwater structures and shoreline protection features. The Pacific Northwest National Laboratory, Battelle Marine Sciences Laboratory uses trained scientific divers in conjunction with advanced technologies to collect in-situ information best obtained through direct observation and requiring minimal environmental disturbance. For example, advances in underwater communications allow divers to discuss observations and data collection techniques in real time, both with each other and with personnel on the surface. Other examples include the use of Dual frequency IDentification SONar (DIDSON), an underwater camera used to capture digital images of benthic structures, fish, and organisms during low light and high turbidity levels; the use of voice-narrated underwater video; and the development of sediment collection methods yielding one-meter cores. The combination of using trained scientific SCUBA divers and advanced underwater technologies is a key element in addressing multifaceted environmental problems, resulting in a more comprehensive understanding of the underwater environment and more reliable data with which to make resource management decisions.

  2. Speciation of Iberian diving beetles in Pleistocene refugia (Coleoptera, Dytiscidae).

    PubMed

    Ribera, Ignacio; Vogler, Alfried P

    2004-01-01

    The Mediterranean basin is an area of high diversity and endemicity, but the age and origin of its fauna are still largely unknown. Here we use species-level phylogenies based on approximately 1300 base pairs of the genes 16S rRNA and cytochrome oxidase I to establish the relationships of 27 of the 34 endemic Iberian species of diving beetles in the family Dytiscidae, and to investigate their level of divergence. Using a molecular clock approach, 18-19 of these species were estimated to be of Pleistocene origin, with four to six of them from the Late Pleistocene ( approximately 100 000 years). A second, lower speciation frequency peak was assigned to Late Miocene or Early Pliocene. Analysis of the distributional ranges showed that endemic species placed in the tip nodes of the trees are significantly more likely to be allopatric with their sisters than endemic species at lower node levels. Allopatric sister species are also significantly younger than sympatric clades, in agreement with an allopatric mode of speciation and limited subsequent range movement. These results strongly suggest that for some taxa Iberian populations were isolated during the Pleistocene long enough to speciate, and apparently did not expand their ranges to recolonize areas north of the Pyrenees. This is in contradiction to observations from fossil beetles in areas further north, which document large range movements associated with the Pleistocene glacial cycles hypothesized to suppress population isolation and allopatric speciation.

  3. Three-dimensional robust diving guidance for hypersonic vehicle

    NASA Astrophysics Data System (ADS)

    Zhu, Jianwen; Liu, Luhua; Tang, Guojian; Bao, Weimin

    2016-01-01

    A novel three-dimensional robust guidance law based on H∞ filter and H∞ control is proposed to meet the constraints of the impact accuracy and the flight direction under process disturbances for the dive phase of hypersonic vehicle. Complete three-dimensional coupling relative motion equations are established and decoupled into linear ones by feedback linearization to simplify the design process of the further guidance law. Based on the linearized equations, H∞ filter is introduced to eliminate the measurement noises of line-of-sight angles and estimate the angular rates. Furthermore, H∞ robust control is well employed to design guidance law, and the filtered information is used to generate guidance commands to meet the guidance goal accurately and robustly. The simulation results of CAV-H indicate that the proposed three-dimensional equations can describe the coupling character more clearly than the traditional decoupling guidance, and the proposed guidance strategy can guide the vehicle to satisfy different multiple constraints with high accuracy and robustness.

  4. Efficacy of 14-d vs 7-d moxifloxacin-based triple regimens for second-line Helicobacter pylori eradication

    PubMed Central

    Hwang, Jae Jin; Lee, Dong Ho; Lee, Ae-Ra; Yoon, Hyuk; Shin, Cheol Min; Park, Young Soo; Kim, Nayoung

    2015-01-01

    AIM: To evaluate the efficacy of the 14-d moxifloxacin-based triple therapy for the second-line eradication of Helicobacter pylori (H. pylori) infection. METHODS: Between 2011 and 2013, we conducted a retrospective review of the medical records of 160 patients who had experienced failure of their first-line proton pump inhibitor-based eradication therapy and subsequently received the moxifloxacin-based triple therapy as a second-line eradication treatment regimen. The patients who were treated with the moxifloxacin-based triple therapy (oral 20 mg rabeprazole b.i.d., 1000 mg amoxicillin b.i.d., and 400 mg moxifloxacin q.d.) for 7 d were assigned to the RAM-7 group (n = 79) while those who took them for 14 days were assigned to RAM-14 group (n = 81). The eradication rates for both groups were determined by intention-to-treat (ITT) and per-protocol (PP) analyses. ITT analysis compared the treatment groups as originally allocated while the PP analysis including only those patients who had completed the treatment as originally allocated. Successful eradication therapy for H. pylori infection was defined as the documentation of a negative 13C-urea breath test 4 wk after the end of the eradication treatment. RESULTS: The overall ITT eradication rate was 76.2% (122/160). The final ITT eradication rates were 70.8% (56/79; 95%CI: 63.3%-77.1%) in the RAM-7 group and 81.4% (66/81; 95%CI: 74.6%-88.3%) in the RAM-14 group (P = 0.034). The overall PP eradication rate was 84.1% (122/145), and the final PP eradication rates were 77.7% (56/72; 95%CI: 70.2%-85.3%) in the RAM-7 group and 90.4% (66/73; 95%CI: 82.8%-98.1%) in the RAM-14 group (P = 0.017). The H. pylori-eradication rates in the RAM-14 group were significantly higher compared with that of the RAM-7 group according to both the ITT (P = 0.034) and the PP analyses (P = 0.017). Both groups exhibited good treatment compliance (RAM-7/RAM-14 group: 100%/100%). The adverse event rates were 19.4% (14/72) and 20.5% (15/73) in the

  5. Seasonal, Oceanographic and Atmospheric Drivers of Diving Behaviour in a Temperate Seal Species Living in the High Arctic.

    PubMed

    Blanchet, Marie-Anne; Lydersen, Christian; Ims, Rolf A; Kovacs, Kit M

    2015-01-01

    The harbour seal (Phoca vitulina) population in Svalbard marks the northernmost limit of the species' range. This small population experiences environmental extremes in sea and air temperatures, sea ice cover and also in light regime for this normally temperate species. This study deployed Conductivity Temperature Depth Satellite Relay Data Loggers (CTD-SRDLs) on 30 adult and juvenile harbour seals in 2009 and 2010 to study their foraging behaviour across multiple seasons. A total of 189,104 dives and 16,640 CTD casts (mean depth 72 m ± 59) were recorded. Individuals dove to a mean depth of 41 m ± 24 with a maximum dive depth range of 24 - 403 m. Dives lasted on average 204 sec ± 120 with maximum durations ranging between 240 - 2,220 sec. Average daily depth and duration of dives, number of dives, time spent diving and dive time/surface time were influenced by date, while sex, age, sea-ice concentration and their interactions were not particularly influential. Dives were deeper (~150 m), longer (~480 sec), less numerous (~250 dives/day) and more pelagic during the winter/early spring compared to the fall and animals spent proportionally less time at the bottom of their dives during the winter. Influxes of warm saline water, corresponding to Atlantic Water characteristics, were observed intermittently at depths ~100 m during both winters in this study. The seasonal changes in diving behaviour were linked to average weekly wind stresses from the north or north-east, which induced upwelling events onto the shelf through offshore Ekman transport. During these events the shelf became flooded with AW from the West Spitsbergen Current, which presumably brought Atlantic fish species close to shore and within the seals' foraging depth-range. Predicted increased in the influx of AW in this region are likely going to favour the growth and geographic expansion of this harbour seal population in the future.

  6. Seasonal, Oceanographic and Atmospheric Drivers of Diving Behaviour in a Temperate Seal Species Living in the High Arctic

    PubMed Central

    Blanchet, Marie-Anne; Lydersen, Christian; Ims, Rolf A.; Kovacs, Kit M.

    2015-01-01

    The harbour seal (Phoca vitulina) population in Svalbard marks the northernmost limit of the species’ range. This small population experiences environmental extremes in sea and air temperatures, sea ice cover and also in light regime for this normally temperate species. This study deployed Conductivity Temperature Depth Satellite Relay Data Loggers (CTD-SRDLs) on 30 adult and juvenile harbour seals in 2009 and 2010 to study their foraging behaviour across multiple seasons. A total of 189,104 dives and 16,640 CTD casts (mean depth 72 m ± 59) were recorded. Individuals dove to a mean depth of 41 m ± 24 with a maximum dive depth range of 24 – 403 m. Dives lasted on average 204 sec ± 120 with maximum durations ranging between 240 – 2,220 sec. Average daily depth and duration of dives, number of dives, time spent diving and dive time/surface time were influenced by date, while sex, age, sea-ice concentration and their interactions were not particularly influential. Dives were deeper (~150 m), longer (~480 sec), less numerous (~250 dives/day) and more pelagic during the winter/early spring compared to the fall and animals spent proportionally less time at the bottom of their dives during the winter. Influxes of warm saline water, corresponding to Atlantic Water characteristics, were observed intermittently at depths ~100 m during both winters in this study. The seasonal changes in diving behaviour were linked to average weekly wind stresses from the north or north-east, which induced upwelling events onto the shelf through offshore Ekman transport. During these events the shelf became flooded with AW from the West Spitsbergen Current, which presumably brought Atlantic fish species close to shore and within the seals’ foraging depth-range. Predicted increased in the influx of AW in this region are likely going to favour the growth and geographic expansion of this harbour seal population in the future. PMID:26196289

  7. High flight costs, but low dive costs, in auks support the biomechanical hypothesis for flightlessness in penguins

    PubMed Central

    Elliott, Kyle H.; Ricklefs, Robert E.; Gaston, Anthony J.; Hatch, Scott A.; Speakman, John R.; Davoren, Gail K.

    2013-01-01

    Flight is a key adaptive trait. Despite its advantages, flight has been lost in several groups of birds, notably among seabirds, where flightlessness has evolved independently in at least five lineages. One hypothesis for the loss of flight among seabirds is that animals moving between different media face tradeoffs between maximizing function in one medium relative to the other. In particular, biomechanical models of energy costs during flying and diving suggest that a wing designed for optimal diving performance should lead to enormous energy costs when flying in air. Costs of flying and diving have been measured in free-living animals that use their wings to fly or to propel their dives, but not both. Animals that both fly and dive might approach the functional boundary between flight and nonflight. We show that flight costs for thick-billed murres (Uria lomvia), which are wing-propelled divers, and pelagic cormorants (Phalacrocorax pelagicus) (foot-propelled divers), are the highest recorded for vertebrates. Dive costs are high for cormorants and low for murres, but the latter are still higher than for flightless wing-propelled diving birds (penguins). For murres, flight costs were higher than predicted from biomechanical modeling, and the oxygen consumption rate during dives decreased with depth at a faster rate than estimated biomechanical costs. These results strongly support the hypothesis that function constrains form in diving birds, and that optimizing wing shape and form for wing-propelled diving leads to such high flight costs that flying ceases to be an option in larger wing-propelled diving seabirds, including penguins. PMID:23690614

  8. Energetic costs of diving and thermal status in European shags (Phalacrocorax aristotelis).

    PubMed

    Enstipp, Manfred R; Grémillet, David; Lorentsen, Svein-Håkon

    2005-09-01

    Diving is believed to be very costly in cormorants (Phalacrocoracidae) when compared with other avian divers because of their poor insulation and less-efficient foot propulsion. It was therefore suggested that cormorants might employ a behavioural strategy to reduce daily energy expenditure by minimizing the amount of time spent in water. However, European shags (Phalacrocorax aristotelis) have been observed to spend up to 7 h day(-1) diving in water of around 5-6 degrees C. To gain a better understanding of the energetic requirements in European shags, we measured their metabolic rates when resting in air/water and during shallow diving using respirometry. To investigate the effects of water temperature and feeding status on metabolic rate, birds dived at water temperatures ranging from 5 to 13 degrees C in both post-absorptive and absorptive states. In parallel with respirometry, stomach temperature loggers were deployed to monitor body temperature. Basal metabolic rate (BMR) was almost identical to allometric predictions at 4.73 W kg(-1). Metabolic rate when resting on water, during diving and after feeding was significantly elevated when compared with the resting-in-air rate. During diving, the metabolic rate of post-absorptive shags increased to 22.66 W kg(-1), which corresponds to 4.8x BMR. Minimum cost of transport (COT) was calculated at 17.8 J kg(-1) m(-1) at a swim speed of 1.3 m s(-1). Feeding before diving elevated diving metabolic rate by 13% for up to 5 h. There was a significant relationship between diving metabolic rate and water temperature, where metabolic rate increased as water temperature declined. Thermal conductance when resting in air at 10-19 degrees C was 2.05 W m(-2) degrees C(-1) and quadrupled during diving (7.88 W m(-2) degrees C(-1)). Stomach temperature when resting in air during the day was 40.6 degrees C and increased during activity. In dive trials lasting up to 50 min, stomach temperature fluctuated around a peak value of 42

  9. The development of an intermediate-duration tag to characterize the diving behavior of large whales.

    PubMed

    Mate, Bruce R; Irvine, Ladd M; Palacios, Daniel M

    2017-01-01

    The development of high-resolution archival tag technologies has revolutionized our understanding of diving behavior in marine taxa such as sharks, turtles, and seals during their wide-ranging movements. However, similar applications for large whales have lagged behind due to the difficulty of keeping tags on the animals for extended periods of time. Here, we present a novel configuration of a transdermally attached biologging device called the Advanced Dive Behavior (ADB) tag. The ADB tag contains sensors that record hydrostatic pressure, three-axis accelerometers, magnetometers, water temperature, and light level, all sampled at 1 Hz. The ADB tag also collects Fastloc GPS locations and can send dive summary data through Service Argos, while staying attached to a whale for typical periods of 3-7 weeks before releasing for recovery and subsequent data download. ADB tags were deployed on sperm whales (Physeter macrocephalus; N = 46), blue whales (Balaenoptera musculus; N = 8), and fin whales (B. physalus; N = 5) from 2007 to 2015, resulting in attachment durations from 0 to 49.6 days, and recording 31 to 2,539 GPS locations and 27 to 2,918 dives per deployment. Archived dive profiles matched well with published dive shapes of each species from short-term records. For blue and fin whales, feeding lunges were detected using peaks in accelerometer data and matched corresponding vertical excursions in the depth record. In sperm whales, rapid orientation changes in the accelerometer data, often during the bottom phase of dives, were likely related to prey pursuit, representing a relative measure of foraging effort. Sperm whales were documented repeatedly diving to, and likely foraging along, the seafloor. Data from the temperature sensor described the vertical structure of the water column in all three species, extending from the surface to depths >1,600 m. In addition to providing information needed to construct multiweek time budgets, the ADB tag is well

  10. Common metabolic constraints on dive duration in endothermic and ectothermic vertebrates

    PubMed Central

    Hayward, April; Pajuelo, Mariela; Haase, Catherine G.; Anderson, David M.

    2016-01-01

    Dive duration in air-breathing vertebrates is thought to be constrained by the volume of oxygen stored in the body and the rate at which it is consumed (i.e., “oxygen store/usage hypothesis”). The body mass-dependence of dive duration among endothermic vertebrates is largely supportive of this model, but previous analyses of ectothermic vertebrates show no such body mass-dependence. Here we show that dive duration in both endotherms and ectotherms largely support the oxygen store/usage hypothesis after accounting for the well-established effects of temperature on oxygen consumption rates. Analyses of the body mass and temperature dependence of dive duration in 181 species of endothermic vertebrates and 29 species of ectothermic vertebrates show that dive duration increases as a power law with body mass, and decreases exponentially with increasing temperature. Thus, in the case of ectothermic vertebrates, changes in environmental temperature will likely impact the foraging ecology of divers. PMID:27761347

  11. A field study of the ventilatory response to ambient temperature and pressure in sport diving.

    PubMed Central

    Muller, F L

    1995-01-01

    This study reports on the relationship between minute ventilation (VE) and environmental variables of temperature (T) and pressure (P) during open water diving. The author conducted a total of 38 dives involving either a light (20 dives) or a moderate (18 dives) level of physical activity. Within each of these groups, P and T taken together accounted for about two thirds of the variance in the VE data. A very significant increase in VE was observed as T decreased (1 < T(degrees C) < 22), and the magnitude of this increase at a given pressure level was similar in the 'light' and the 'moderate' data sets. A second order observation, particularly notable at lower temperature, was the decrease in VE with increasing pressure under conditions of light work. Empirical functions of the from VE = A+B/P n[1 + exp(T - 8)/10], where A, B, and n are adjustable variables, could accommodate both data sets over the whole range of T and P. These results are the first obtained under actual diving conditions to provide evidence for interactions between P, T, and VE. Understanding the physiological mechanisms by which these interactions occur would assist in appreciation of the limitations imposed on scuba divers by the environmental conditions as they affect their ventilatory responses. PMID:8800853

  12. CO and CO2 analysis in the diving gas of the fishermen of the Yucatan Peninsula.

    PubMed

    Chin, Walter; Huchim, Oswaldo; Wegrzyn, Grace H; Sprau, Susan E; Salas, Silvia; Markovitz, Gerald H

    2015-01-01

    It is reported that more than 75% of 400 artisanal fisherman divers working off the Yucatan Peninsula experience decompression sickness (DCS) each year, making DCS an epidemic in this region. These divers use primitive hookah diving support systems (HDSS). Breathing air is supplied from inadequately filtered and poorly maintained gasoline-powered air compressors. We hypothesized that air supplies could be contaminated. Air contamination could produce symptoms consistent with some presentations of DCS. This could confound and falsely elevate the true incidence of DCS. A cross-sectional study was undertaken in a fishing community. Ten fishermen from a single cohort participated. Fishermen were instructed not to drain volume tanks following their last dive of the day before their diving air was sampled. Dräger carbon monoxide (CO) 5/a-P and carbon dioxide (CO2) 100/a Short-term Tubes were used to measure 1.0 liters (L) of gas through a Visi-Float flow meter at 0.2 L/minute. Average CO value was 42 ppm (8-150 ppm). Average CO2 was 663 ppm (600-800). Measurements exceeded recommended diving norms for CO of 20 ppm. CO2 exceeded one diving organization recommendation of 500 ppm. Separation of engine exhaust from compressor intake could decrease CO values in HDSS to acceptable standards thus eliminating one possible confounder from this DCS epidemic.

  13. Measurement of flying and diving metabolic rate in wild animals: Review and recommendations.

    PubMed

    Elliott, Kyle H

    2016-12-01

    Animals' abilities to fly long distances and dive to profound depths fascinate earthbound researchers. Due to the difficulty of making direct measurements during flying and diving, many researchers resort to modeling so as to estimate metabolic rate during each of those activities in the wild, but those models can be inaccurate. Fortunately, the miniaturization, customization and commercialization of biologgers has allowed researchers to increasingly follow animals on their journeys, unravel some of their mysteries and test the accuracy of biomechanical models. I provide a review of the measurement of flying and diving metabolic rate in the wild, paying particular attention to mass loss, doubly-labelled water, heart rate and accelerometry. Biologgers can impact animal behavior and influence the very measurements they are designed to make, and I provide seven guidelines for the ethical use of biologgers. If biologgers are properly applied, quantification of metabolic rate across a range of species could produce robust allometric relationships that could then be generally applied. As measuring flying and diving metabolic rate in captivity is difficult, and often not directly translatable to field conditions, I suggest that applying multiple techniques in the field to reinforce one another may be a viable alternative. The coupling of multi-sensor biologgers with biomechanical modeling promises to improve precision in the measurement of flying and diving metabolic rate in wild animals.

  14. Diving physiology of seabirds and marine mammals: Relevance, challenges and some solutions for field studies.

    PubMed

    Andrews, Russel D; Enstipp, Manfred R

    2016-12-01

    To fully understand how diving seabirds and marine mammals balance the potentially conflicting demands of holding their breath while living their lives underwater (and maintaining physiological homeostasis during exercise, feeding, growth, and reproduction), physiological studies must be conducted with animals in their natural environments. The purpose of this article is to review the importance of making physiological measurements on diving animals in field settings, while acknowledging the challenges and highlighting some solutions. The most extreme divers are great candidates for study, especially in a comparative and mechanistic context. However, physiological data are also required of a wide range of species for problems relating to other disciplines, in particular ecology and conservation biology. Physiological data help with understanding and predicting the outcomes of environmental change, and the direct impacts of anthropogenic activities. Methodological approaches that have facilitated the development of field-based diving physiology include the isolated diving hole protocol and the translocation paradigm, and while there are many techniques for remote observation, animal-borne biotelemetry, or "biologging", has been critical. We discuss issues related to the attachment of instruments, the retrieval of data and sensing of physiological variables, while also considering negative impacts of tagging. This is illustrated with examples from a variety of species, and an in-depth look at one of the best studied and most extreme divers, the emperor penguin (Aptenodytes forsteri). With a variety of approaches and high demand for data on the physiology of diving seabirds and marine mammals, the future of field studies is bright.

  15. Drift diving by hooded seals (Cystophora cristata) in the Northwest Atlantic Ocean.

    PubMed

    Andersen, Julie M; Stenson, Garry B; Skern-Maurizen, Mette; Wiersma, Yolanda F; Rosing-Asvid, Aqqalu; Hammill, Mike O; Boehme, Lars

    2014-01-01

    Many pinniped species perform a specific dive type, referred to as a 'drift dive', where they drift passively through the water column. This dive type has been suggested to function as a resting/sleeping or food processing dive, and can be used as an indication of feeding success by calculating the daily change in vertical drift rates over time, which reflects the relative fluctuations in buoyancy of the animal as the proportion of lipids in the body change. Northwest Atlantic hooded seals perform drift dives at regular intervals throughout their annual migration across the Northwest Atlantic Ocean. We found that the daily change in drift rate varied with geographic location and the time of year and that this differed between sexes. Positive changes in buoyancy (reflecting increased lipid stores) were evident throughout their migration range and although overlapping somewhat, they were not statistically associated with high use areas as indicated by First Passage Time (FPT). Differences in the seasonal fluctuations of buoyancy between males and females suggest that they experience a difference in patterns of energy gain and loss during winter and spring, associated with breeding. The fluctuations in buoyancy around the moulting period were similar between sexes.

  16. The influence of preceding dive cycles on the foraging decisions of Antarctic fur seals

    PubMed Central

    Iwata, T.; Sakamoto, K. Q.; Edwards, E. W. J.; Staniland, I. J.; Trathan, P. N.; Goto, Y.; Sato, K.; Naito, Y.; Takahashi, A.

    2015-01-01

    The foraging strategy of many animals is thought to be determined by their past experiences. However, few empirical studies have investigated whether this is true in diving animals. We recorded three-dimensional movements and mouth-opening events from three Antarctic fur seals during their foraging trips to examine how they adapt their behaviour based on past experience—continuing to search for prey in the same area or moving to search in a different place. Each dive cycle was divided into a transit phase and a feeding phase. The linear horizontal distance travelled after feeding phases in each dive was affected by the mouth-opening rate during the previous 244 s, which typically covered two to three dive cycles. The linear distance travelled tended to be shorter when the mouth-opening rate in the previous 244 s was higher, i.e. seals tended to stay in the same areas with high prey-encounter rates. These results indicate that Antarctic fur seals follow decision-making strategies based on the past foraging experience over time periods longer than the immediately preceding dive. PMID:26156132

  17. Gluon Evolution and Saturation Proceedings

    SciTech Connect

    McLerran, L.D.

    2010-05-26

    Almost 40 years ago, Gribov and colleagues at the Leningrad Nuclear Physics Institute developed the ideas that led to the Dokhsitzer-Gribov-Altarelli-Parisi the Baltisky-Fadin-Kuraev-Lipatov equations. These equations describe the evolution of the distributions for quarks and gluon inside a hadron to increased resolution scale of a probe or to smaller values of the fractional momentum of a hadronic constituent. I motivate and discuss the generalization required of these equations needed for high energy processes when the density of constituents is large. This leads to a theory of saturation realized by the Color Glass Condensate

  18. Pulmonary Effects of Six-Hour Dives: In-Water or Dry Chamber Exposure to an Oxygen Partial Pressure of 1.6 ATM

    DTIC Science & Technology

    2005-10-01

    dives: After the dives: Vision changes Inspiratory burning Ringing or roaring in ears Cough Nausea Chest pain or tightness Tingling or twitching...Rapid shallow breathing Ear problems Burning on inspiration I Cough EQUIPMENT AND INSTRUMENTATION The Collins CPL and Collins GS Modular Pulmonary...after surfacing from his wet dive when he did not have measurable changes in pulmonary function. Subject C had a cough immediately after the dry dive

  19. Saturated High Permeability Magnetic Shields

    NASA Astrophysics Data System (ADS)

    Trenkel, Christian

    2016-05-01

    High permeability magnetic shields can be used in space to mitigate the effect of magnetic sources by several orders of magnitude. Nevertheless, the presence of significant amounts of ferromagnetic material on-board a spacecraft carries, by itself, a certain risk in terms of meeting magnetic cleanliness requirements. One possibility is that the shield is accidentally magnetised irreversibly, either by a strong external field, or mechanical shock. A second possibility is that the shield will acquire an induced moment in the presence of external fields (DC or AC), and could potentially amplify them.Here, we propose the use of high permeability shields which are driven into their fully saturated state - by the source that is being shielded. This approach limits the shielding effect to perhaps one or two orders of magnitude, but is expected to mitigate the above risks substantially. We present extensive numerical simulations describing the design principle behind optimised, fully saturated shields, as well as some results to substantiate the above claims.

  20. Moderator and Mediator Effects of Scuba Diving Specialization on Marine-Based Environmental Knowledge-Behavior Contingency

    ERIC Educational Resources Information Center

    Thapa, Brijesh; Graefe, Alan R.; Meyer, Louisa A.

    2005-01-01

    Given the growth in scuba diving activities and the importance of environmental education programs to alleviate the potential impacts on coral reef ecosystems, there is a need to better understand the diving community, its environmental knowledge, and subsequent behavioral actions. The purpose of this study was to explore the role or influence of…