Science.gov

Sample records for 14-mer cuucgg tetraloop

  1. Free-energy landscape of a hyperstable RNA tetraloop.

    PubMed

    Miner, Jacob C; Chen, Alan A; García, Angel E

    2016-06-14

    We report the characterization of the energy landscape and the folding/unfolding thermodynamics of a hyperstable RNA tetraloop obtained through high-performance molecular dynamics simulations at microsecond timescales. Sampling of the configurational landscape is conducted using temperature replica exchange molecular dynamics over three isochores at high, ambient, and negative pressures to determine the thermodynamic stability and the free-energy landscape of the tetraloop. The simulations reveal reversible folding/unfolding transitions of the tetraloop into the canonical A-RNA conformation and the presence of two alternative configurations, including a left-handed Z-RNA conformation and a compact purine Triplet. Increasing hydrostatic pressure shows a stabilizing effect on the A-RNA conformation and a destabilization of the left-handed Z-RNA. Our results provide a comprehensive description of the folded free-energy landscape of a hyperstable RNA tetraloop and highlight the significant advances of all-atom molecular dynamics in describing the unbiased folding of a simple RNA secondary structure motif.

  2. Structure and assembly of an augmented Sm-like archaeal protein 14-mer.

    PubMed

    Mura, Cameron; Phillips, Martin; Kozhukhovsky, Anna; Eisenberg, David

    2003-04-15

    To better understand the roles of Sm proteins in forming the cores of many RNA-processing ribonucleoproteins, we determined the crystal structure of an atypical Sm-like archaeal protein (SmAP3) in which the conserved Sm domain is augmented by a previously uncharacterized, mixed alpha/beta C-terminal domain. The structure reveals an unexpected SmAP3 14-mer that is perforated by a cylindrical pore and is bound to 14 cadmium (Cd(2+)) ions. Individual heptamers adopt either "apical" or "equatorial" conformations that chelate Cd(2+) differently. SmAP3 forms supraheptameric oligomers (SmAP3)(n = 7,14,28) in solution, and assembly of the asymmetric 14-mer is modulated by differential divalent cation-binding in apical and equatorial subunits. Phylogenetic and sequence analyses substantiate SmAP3s as a unique subset of SmAPs. These results distinguish SmAP3s from other Sm proteins and provide a model for the structure and properties of Sm proteins >100 residues in length, e.g., several human Sm proteins.

  3. Comprehensive features of natural and in vitro selected GNRA tetraloop-binding receptors

    PubMed Central

    Geary, Cody; Baudrey, Stéphanie; Jaeger, Luc

    2008-01-01

    Specific recognitions of GNRA tetraloops by small helical receptors are among the most widespread long-range packing interactions in large ribozymes. However, in contrast to GYRA and GAAA tetraloops, very few GNRA/receptor interactions have yet been identified to involve GGAA tetraloops in nature. A novel in vitro selection scheme based on a rigid self-assembling tectoRNA scaffold designed for isolation of intermolecular interactions with A-minor motifs has yielded new GGAA tetraloop-binding receptors with affinity in the nanomolar range. One of the selected receptors is a novel 12 nt RNA motif, (CCUGUG … AUCUGG), that recognizes GGAA tetraloop hairpin with a remarkable specificity and affinity. Its physical and chemical characteristics are comparable to those of the well-studied ‘11nt’ GAAA tetraloop receptor motif. A second less specific motif (CCCAGCCC … GAUAGGG) binds GGRA tetraloops and appears to be related to group IC3 tetraloop receptors. Mutational, thermodynamic and comparative structural analysis suggests that natural and in vitro selected GNRA receptors can essentially be grouped in two major classes of GNRA binders. New insights about the evolution, recognition and structural modularity of GNRA and A-minor RNA–RNA interactions are proposed. PMID:18158305

  4. Duplex stabilities of phosphorothioate, methylphosphonate, and RNA analogs of two DNA 14-mers.

    PubMed Central

    Kibler-Herzog, L; Zon, G; Uznanski, B; Whittier, G; Wilson, W D

    1991-01-01

    The duplex stabilities of various phosphorothioate, methylphosphonate, RNA and 2'-OCH3 RNA analogs of two self-complementary DNA 14-mers are compared. Phosphorothioate and/or methylphosphonate analogs of the two sequences d(TAATTAATTAATTA) [D1] and d(TAGCTAATTAGCTA) [D2] differ in the number, position, or chirality (at the 5' terminal linkage) of the modified phosphates. Phosphorothioate derivatives of D1 are found to be less destabilized when the linkage modified is between adenines rather than between thymines. Surprisingly, no base sequence effect on duplex stabilization is observed for any methylphosphonate derivatives of D1 or D2. Highly modified phosphorothioates or methylphosphonates are less stable than their partially modified counterparts which are less stable than the unmodified parent compounds. The 'normal' (2'-OH) RNA analog of duplex D1 is slightly destabilized, whereas the 2'-OCH3 RNA derivative is significantly stabilized relative to the unmodified DNA. For the D1 sequence, at approximately physiological salt concentration, the order of duplex stability is 2'-OCH3 RNA greater than unmodified DNA greater than 'normal' RNA greater than methylphosphonate DNA greater than phosphorothioate DNA. D2 and the various D2 methylphosphonate analogs investigated all formed hairpin conformations at low salt concentrations. PMID:1711677

  5. Energy landscapes, folding mechanisms, and kinetics of RNA tetraloop hairpins.

    PubMed

    Chakraborty, Debayan; Collepardo-Guevara, Rosana; Wales, David J

    2014-12-31

    RNA hairpins play a pivotal role in a diverse range of cellular functions, and are integral components of ribozymes, mRNA, and riboswitches. However, the mechanistic and kinetic details of RNA hairpin folding, which are key determinants of most of its biological functions, are poorly understood. In this work, we use the discrete path sampling (DPS) approach to explore the energy landscapes of two RNA tetraloop hairpins, and provide insights into their folding mechanisms and kinetics in atomistic detail. Our results show that the potential energy landscapes have a distinct funnel-like bias toward the folded hairpin state, consistent with efficient structure-seeking properties. Mechanistic and kinetic information is analyzed in terms of kinetic transition networks. We find microsecond folding times, consistent with temperature jump experiments, for hairpin folding initiated from relatively compact unfolded states. This process is essentially driven by an initial collapse, followed by rapid zippering of the helix stem in the final phase. Much lower folding rates are predicted when the folding is initiated from extended chains, which undergo longer excursions on the energy landscape before nucleation events can occur. Our work therefore explains recent experiments and coarse-grained simulations, where the folding kinetics exhibit precisely this dependency on the initial conditions.

  6. Co-conservation of rRNA tetraloop sequences and helix length suggests involvement of the tetraloops in higher-order interactions

    NASA Technical Reports Server (NTRS)

    Hedenstierna, K. O.; Siefert, J. L.; Fox, G. E.; Murgola, E. J.

    2000-01-01

    Terminal loops containing four nucleotides (tetraloops) are common in structural RNAs, and they frequently conform to one of three sequence motifs, GNRA, UNCG, or CUUG. Here we compare available sequences and secondary structures for rRNAs from bacteria, and we show that helices capped by phylogenetically conserved GNRA loops display a strong tendency to be of conserved length. The simplest interpretation of this correlation is that the conserved GNRA loops are involved in higher-order interactions, intramolecular or intermolecular, resulting in a selective pressure for maintaining the lengths of these helices. A small number of conserved UNCG loops were also found to be associated with conserved length helices, consistent with the possibility that this type of tetraloop also takes part in higher-order interactions.

  7. Computer Folding of RNA Tetraloops: Identification of Key Force Field Deficiencies.

    PubMed

    Kührová, Petra; Best, Robert B; Bottaro, Sandro; Bussi, Giovanni; Šponer, Jiří; Otyepka, Michal; Banáš, Pavel

    2016-09-13

    The computer-aided folding of biomolecules, particularly RNAs, is one of the most difficult challenges in computational structural biology. RNA tetraloops are fundamental RNA motifs playing key roles in RNA folding and RNA-RNA and RNA-protein interactions. Although state-of-the-art Molecular Dynamics (MD) force fields correctly describe the native state of these tetraloops as a stable free-energy basin on the microsecond time scale, enhanced sampling techniques reveal that the native state is not the global free energy minimum, suggesting yet unidentified significant imbalances in the force fields. Here, we tested our ability to fold the RNA tetraloops in various force fields and simulation settings. We employed three different enhanced sampling techniques, namely, temperature replica exchange MD (T-REMD), replica exchange with solute tempering (REST2), and well-tempered metadynamics (WT-MetaD). We aimed to separate problems caused by limited sampling from those due to force-field inaccuracies. We found that none of the contemporary force fields is able to correctly describe folding of the 5'-GAGA-3' tetraloop over a range of simulation conditions. We thus aimed to identify which terms of the force field are responsible for this poor description of TL folding. We showed that at least two different imbalances contribute to this behavior, namely, overstabilization of base-phosphate and/or sugar-phosphate interactions and underestimated stability of the hydrogen bonding interaction in base pairing. The first artifact stabilizes the unfolded ensemble, while the second one destabilizes the folded state. The former problem might be partially alleviated by reparametrization of the van der Waals parameters of the phosphate oxygens suggested by Case et al., while in order to overcome the latter effect we suggest local potentials to better capture hydrogen bonding interactions.

  8. A functional relationship between helix 1 and the 900 tetraloop of 16S ribosomal RNA within the bacterial ribosome.

    PubMed

    Bélanger, François; Théberge-Julien, Gabriel; Cunningham, Philip R; Brakier-Gingras, Léa

    2005-06-01

    The conserved 900 tetraloop that caps helix 27 of 16S ribosomal RNA (rRNA) interacts with helix 24 of 16S rRNA and also with helix 67 of 23S rRNA, forming the intersubunit bridge B2c, proximal to the decoding center. In previous studies, we investigated how the interaction between the 900 tetraloop and helix 24 participates in subunit association and translational fidelity. In the present study, we investigated whether the 900 tetraloop is involved in other undetected interactions with different regions of the Escherichia coli 16S rRNA. Using a genetic complementation approach, we selected mutations in 16S rRNA that compensate for a 900 tetraloop mutation, A900G, which severely impairs subunit association and translational fidelity. Mutations were randomly introduced in 16S rRNA, using either a mutagenic XL1-Red E. coli strain or an error-prone PCR strategy. Gain-offunction mutations were selected in vivo with a specialized ribosome system. Two mutations, the deletion of U12 and the U12C substitution, were thus independently selected in helix 1 of 16S rRNA. This helix is located in the vicinity of helix 27, but does not directly contact the 900 tetraloop in the crystal structures of the ribosome. Both mutations correct the subunit association and translational fidelity defects caused by the A900G mutation, revealing an unanticipated functional interaction between these two regions of 16S rRNA.

  9. Highly sampled tetranucleotide and tetraloop motifs enable evaluation of common RNA force fields.

    PubMed

    Bergonzo, Christina; Henriksen, Niel M; Roe, Daniel R; Cheatham, Thomas E

    2015-09-01

    Recent modifications and improvements to standard nucleic acid force fields have attempted to fix problems and issues that have been observed as longer timescale simulations have become routine. Although previous work has shown the ability to fold the UUCG stem-loop structure, until now no group has attempted to quantify the performance of current force fields using highly converged structural populations of the tetraloop conformational ensemble. In this study, we report the use of multiple independent sets of multidimensional replica exchange molecular dynamics (M-REMD) simulations with different initial conditions to generate well-converged conformational ensembles for the tetranucleotides r(GACC) and r(CCCC), as well as the larger UUCG tetraloop motif. By generating what is to our knowledge the most complete RNA structure ensembles reported to date for these systems, we remove the coupling between force field errors and errors due to incomplete sampling, providing a comprehensive comparison between current top-performing MD force fields for RNA. Of the RNA force fields tested in this study, none demonstrate the ability to correctly identify the most thermodynamically stable structure for all three systems. We discuss the deficiencies present in each potential function and suggest areas where improvements can be made. The results imply that although "short" (nsec-μsec timescale) simulations may stay close to their respective experimental structures and may well reproduce experimental observables, inevitably the current force fields will populate alternative incorrect structures that are more stable than those observed via experiment.

  10. Crystal structures of two forms of a 14-mer RNA/DNA chimer duplex with double UU bulges: a novel intramolecular U*(A x U) base triple.

    PubMed

    Deng, J; Xiong, Y; Sudarsanakumar, C; Shi, K; Sundaralingam, M

    2001-10-01

    The RNA/DNA 14-mer, (gguauuucgguaCc)2 with consecutive uridine bulges (underlined) on each strand has been determined in two crystal forms, spermine bound (Sp-form) and spermine free (Sp-free). The former was solved by the MAD method with three-wavelength data collected at Brookhaven National Laboratory (BNL); the later isomorphous structure was solved by the molecular replacement method using data collected on our Raxis IIc imaging plate system. The two crystal forms belong to the space group C2 with one molecule of double-stranded 14 mer in the asymmetric unit. The Sp-form has cell constants, a = 60.06, b = 29.10, c = 52.57 A, beta = 120.79 degrees and was refined to 1.7 A resolution with a final Rwork/Rfree of 19.8%/22.7% using 8,549 independent reflections. The Sp-free structure has cell constants, a = 60.06, b = 29.58, c = 52.50 A, beta = 120.85 degrees and was refined to 1.8 A with a final Rwork/ Rfree of 20.8%/23.2% using 6,285 unique reflections. The two structures are identical, except that the Sp-form has a spermine bound in the major groove, parallel to the RNA helical axis. One of the uridine bulges forms a novel intramolecular U*(A x U) base triple. The helices are in the C3'-endo conformation (A-form), but the bulges adopt the C2'-endo sugar pucker. Furthermore, the bulges induce a kink (30 degrees) in the helix axis and a very large twist (55 degrees) between the base pairs flanking the bulges. The Sp-form has one Mg2+ ion whereas the Sp-free form has two Mg2+ ions.

  11. Study of the functional interaction of the 900 Tetraloop of 16S ribosomal RNA with helix 24 within the bacterial ribosome.

    PubMed

    Bélanger, François; Gagnon, Matthieu G; Steinberg, Sergey V; Cunningham, Philip R; Brakier-Gingras, Léa

    2004-05-01

    The 900 tetraloop that caps helix 27 of 16S ribosomal RNA (rRNA) is amongst the most conserved regions of rRNA. This tetraloop forms a GNRA motif that docks into the minor groove of three base-pairs at the bottom of helix 24 of 16S rRNA in the 30S subunit. Both the tetraloop and its receptor in helix 24 contact the 23S rRNA, forming the intersubunit bridge B2c. Here, we investigated the interaction between the 900 tetraloop and its receptor by genetic complementation. We used a specialized ribosome system in combination with an in vivo instant evolution approach to select mutations in helix 24 compensating for a mutation in the 900 tetraloop (A900G) that severely decreases ribosomal activity, impairing subunit association and translational fidelity. We selected two mutants where the G769-C810 base-pair of helix 24 was substituted with either U-A or C x A. When these mutations in helix 24 were investigated in the context of a wild-type 900 tetraloop, the C x A but not the U-A mutation severely impaired ribosome activity, interfering with subunit association and decreasing translational fidelity. In the presence of the A900G mutation, both mutations in helix 24 increased the ribosome activity to the same extent. Subunit association and translational fidelity were increased to the same level. Computer modeling was used to analyze the effect of the mutations in helix 24 on the interaction between the tetraloop and its receptor. This study demonstrates the functional importance of the interaction between the 900 tetraloop and helix 24.

  12. Structural Variation and Uniformity among Tetraloop-Receptor Interactions and Other Loop-Helix Interactions in RNA Crystal Structures

    PubMed Central

    Wu, Li; Chai, Dinggeng; Fraser, Marie E.; Zimmerly, Steven

    2012-01-01

    Tetraloop-receptor interactions are prevalent structural units in RNAs, and include the GAAA/11-nt and GNRA-minor groove interactions. In this study, we have compiled a set of 78 nonredundant loop-helix interactions from X-ray crystal structures, and examined them for the extent of their sequence and structural variation. Of the 78 interactions in the set, only four were classical GAAA/11-nt motifs, while over half (48) were GNRA-minor groove interactions. The GNRA-minor groove interactions were not a homogeneous set, but were divided into five subclasses. The most predominant subclass is characterized by two triple base pair interactions in the minor groove, flanked by two ribose zipper contacts. This geometry may be considered the “standard” GNRA-minor groove interaction, while the other four subclasses are alternative ways to form interfaces between a minor groove and tetraloop. The remaining 26 structures in the set of 78 have loops interacting with mostly idiosyncratic receptors. Among the entire set, a number of sequence-structure correlations can be identified, which may be used as initial hypotheses in predicting three-dimensional structures from primary sequences. Conversely, other sequence patterns are not predictive; for example, GAAA loop sequences and GG/CC receptors bind to each other with three distinct geometries. Finally, we observe an example of structural evolution in group II introns, in which loop-receptor motifs are substituted for each other while maintaining the larger three-dimensional geometry. Overall, the study gives a more complete view of RNA loop-helix interactions that exist in nature. PMID:23152878

  13. Three-dimensional motifs from the SCOR, structural classification of RNA database: extruded strands, base triples, tetraloops and U-turns.

    PubMed

    Klosterman, Peter S; Hendrix, Donna K; Tamura, Makio; Holbrook, Stephen R; Brenner, Steven E

    2004-01-01

    Release 2.0.1 of the Structural Classification of RNA (SCOR) database, http://scor.lbl.gov, contains a classification of the internal and hairpin loops in a comprehensive collection of 497 NMR and X-ray RNA structures. This report discusses findings of the classification that have not been reported previously. The SCOR database contains multiple examples of a newly described RNA motif, the extruded helical single strand. Internal loop base triples are classified in SCOR according to their three-dimensional context. These internal loop triples contain several examples of a frequently found motif, the minor groove AGC triple. SCOR also presents the predominant and alternate conformations of hairpin loops, as shown in the most well represented tetraloops, with consensus sequences GNRA, UNCG and ANYA. The ubiquity of the GNRA hairpin turn motif is illustrated by its presence in complex internal loops.

  14. Influence of In Vitro IL-2 or IL-15 Alone or in Combination with Hsp 70 Derived 14-Mer Peptide (TKD) on the Expression of NK Cell Activatory and Inhibitory Receptors on Peripheral Blood T Cells, B Cells and NKT Cells

    PubMed Central

    Hromadnikova, Ilona; Li, Shuang; Kotlabova, Katerina; Dickinson, Anne M.

    2016-01-01

    Previous studies from Multhoff and colleagues reported that plasma membrane Hsp70 acts as a tumour-specific recognition structure for activated NK cells, and that the incubation of NK cells with Hsp70 and/or a 14-mer peptide derived from the N-terminal sequence of Hsp70 (TKDNNLLGRFELSG, TKD, aa 450–463) plus a low dose of IL-2 triggers NK cell proliferation and migration, and their capacity to kill cancer cells expressing membrane Hsp70. Herein, we have used flow cytometry to determine the influence of in vitro stimulation of peripheral blood mononuclear cells from healthy individuals with IL-2 or IL-15, either alone or in combination with TKD peptide on the cell surface expression of CD94, NK cell activatory receptors (CD16, NK2D, NKG2C, NKp30, NKp44, NKp46, NKp80, KIR2DL4, DNAM-1 and LAMP1) and NK cell inhibitory receptors (NKG2A, KIR2DL2/L3, LIR1/ILT-2 and NKR-P1A) by CD3+CD56+ (NKT), CD3+CD4+, CD3+CD8+ and CD19+ populations. NKG2D, DNAM-1, LAMP1 and NKR-P1A expression was upregulated after the stimulation with IL-2 or IL-15 alone or in combination with TKD in NKT, CD8+ T cells and B cells. CD94 was upregulated in NKT and CD8+ T cells. Concurrently, an increase in a number of CD8+ T cells expressing LIR1/ILT-2 and CD4+ T cells positive for NKR-P1A was observed. The proportion of CD8+ T cells that expressed NKG2D was higher after IL-2/TKD treatment, when compared with IL-2 treatment alone. In comparison with IL-15 alone, IL-15/TKD treatment increased the proportion of NKT cells that were positive for CD94, LAMP1 and NKRP-1A. The more potent effect of IL-15/TKD on cell surface expression of NKG2D, LIR1/ILT-2 and NKRP-1A was observed in B cells compared with IL-15 alone. However, this increase was not of statistical significance. IL-2/TKD induced significant upregulation of LAMP1 in CD8+ T cells compared with IL-2 alone. Besides NK cells, other immunocompetent cells present within the fraction of peripheral blood mononuclear cells were influenced by the treatment

  15. Influence of In Vitro IL-2 or IL-15 Alone or in Combination with Hsp 70 Derived 14-Mer Peptide (TKD) on the Expression of NK Cell Activatory and Inhibitory Receptors on Peripheral Blood T Cells, B Cells and NKT Cells.

    PubMed

    Hromadnikova, Ilona; Li, Shuang; Kotlabova, Katerina; Dickinson, Anne M

    2016-01-01

    Previous studies from Multhoff and colleagues reported that plasma membrane Hsp70 acts as a tumour-specific recognition structure for activated NK cells, and that the incubation of NK cells with Hsp70 and/or a 14-mer peptide derived from the N-terminal sequence of Hsp70 (TKDNNLLGRFELSG, TKD, aa 450-463) plus a low dose of IL-2 triggers NK cell proliferation and migration, and their capacity to kill cancer cells expressing membrane Hsp70. Herein, we have used flow cytometry to determine the influence of in vitro stimulation of peripheral blood mononuclear cells from healthy individuals with IL-2 or IL-15, either alone or in combination with TKD peptide on the cell surface expression of CD94, NK cell activatory receptors (CD16, NK2D, NKG2C, NKp30, NKp44, NKp46, NKp80, KIR2DL4, DNAM-1 and LAMP1) and NK cell inhibitory receptors (NKG2A, KIR2DL2/L3, LIR1/ILT-2 and NKR-P1A) by CD3+CD56+ (NKT), CD3+CD4+, CD3+CD8+ and CD19+ populations. NKG2D, DNAM-1, LAMP1 and NKR-P1A expression was upregulated after the stimulation with IL-2 or IL-15 alone or in combination with TKD in NKT, CD8+ T cells and B cells. CD94 was upregulated in NKT and CD8+ T cells. Concurrently, an increase in a number of CD8+ T cells expressing LIR1/ILT-2 and CD4+ T cells positive for NKR-P1A was observed. The proportion of CD8+ T cells that expressed NKG2D was higher after IL-2/TKD treatment, when compared with IL-2 treatment alone. In comparison with IL-15 alone, IL-15/TKD treatment increased the proportion of NKT cells that were positive for CD94, LAMP1 and NKRP-1A. The more potent effect of IL-15/TKD on cell surface expression of NKG2D, LIR1/ILT-2 and NKRP-1A was observed in B cells compared with IL-15 alone. However, this increase was not of statistical significance. IL-2/TKD induced significant upregulation of LAMP1 in CD8+ T cells compared with IL-2 alone. Besides NK cells, other immunocompetent cells present within the fraction of peripheral blood mononuclear cells were influenced by the treatment

  16. Detection of an abasic site in RNA with stem-loop DNA beacons: application to an activity assay for Ricin Toxin A-Chain.

    PubMed

    Roday, Setu; Sturm, Matthew B; Blakaj, Dukajgin; Schramm, Vern L

    2008-04-24

    The catalytic ability of Ricin Toxin A-Chain (RTA) to create an abasic site in a 14-mer stem-tetraloop RNA is exploited for its detection. RTA catalyzes the hydrolysis of the N-glycosidic bond of a specific adenosine in the GAGA tetraloop of stem-loop RNA. Thus, a 14-mer stem-loop RNA substrate containing an intact "GAGA" sequence can be discriminated from the product containing an abasic "GabGA" sequence by hybridization with a 14-mer DNA stem-loop probe sequence and following the fluorescent response of the heteroduplexes. Three DNA beacon probe designs are described. Beacon 1 probe is a stem-loop structure and has a fluorophore and a quencher covalently linked to the 5'- and 3'-ends. In this format the probe-substrate heteroduplex gives a fluorescent signal while the probe-product one remains quenched. Beacon 2 is a modified version of 1 and incorporates a pyrene deoxynucleoside for recognition of the abasic site. In this format both the substrate and product heteroduplexes give a fluorescent response. Beacon 3 utilizes a design where the fluorophore is on the substrate RNA sequence at its 5'-end while the quencher is on the probe DNA sequence at its 3'-end. In this format the fluorescence of the substrate-probe heteroduplex is quenched while that of the product-probe one is enhanced. The lower limit of detection with beacons is 14 ng/mL of RTA.

  17. Single molecule analysis of DNA wrapping and looping by a circular 14mer wheel of the bacteriophage 186 CI repressor.

    PubMed

    Wang, Haowei; Dodd, Ian B; Dunlap, David D; Shearwin, Keith E; Finzi, Laura

    2013-06-01

    The lytic-lysogenic decision in bacteriophage 186 is governed by the 186 CI repressor protein in a unique way. The 186 CI is proposed to form a wheel-like oligomer that can mediate either wrapped or looped nucleoprotein complexes to provide the cooperative and competitive interactions needed for regulation. Although consistent with structural, biochemical and gene expression data, many aspects of this model are based on inference. Here, we use atomic force microscopy (AFM) to reveal the various predicted wrapped and looped species, and new ones, for CI regulation of lytic and lysogenic transcription. Automated AFM analysis showed CI particles of the predicted dimensions on the DNA, with CI multimerization favoured by DNA binding. Measurement of the length of the wrapped DNA segments indicated that CI may move on the DNA, wrapping or releasing DNA on either side of the wheel. Tethered particle motion experiments were consistent with wrapping and looping of DNA by CI in solution, where in contrast to λ repressor, the looped species were exceptionally stable. The CI regulatory system provides an intriguing comparison with that of nucleosomes, which share the ability to wrap and release similar sized segments of DNA. PMID:23620280

  18. Involvement of a GNRA tetraloop in long-range RNA tertiary interactions.

    PubMed

    Jaeger, L; Michel, F; Westhof, E

    1994-03-11

    Terminal loops with a GNRA consensus sequence are widespread in RNA. It has been suggested that these loops act as "anchors" during tertiary folding, by interacting in a sequence-specific way with helices at distant locations along the molecule. We now show that a GUGA loop changes state upon disruption of the tertiary architecture of a self-splicing group I intron. Successful replacement of the postulated loop-helix contact by classical base-pairing points to binding of the loop into the shallow (minor) groove of the helix, as also indicated by partial restoration of ribozyme stability upon a specific double nucleotide substitution.

  19. Use of ultra stable UNCG tetraloop hairpins to fold RNA structures: thermodynamic and spectroscopic applications.

    PubMed Central

    Molinaro, M; Tinoco, I

    1995-01-01

    RNA molecules of > 20 nucleotides have been the focus of numerous recent NMR structural studies. Several investigators have used the UNCG family of hairpins to ensure proper folding. We show that th UUCG hairpin has a minimum requirement of a two base-pair stem. Hairpins with a CG loop closing base pair and an initial 5'CG or 5'GC base pair have a melting temperature approximately 55 degrees C in 10 mM sodium phosphate. The high stability of even such small hairpins suggests that the hairpin can serve as a nucleation site for folding. For high resolution NMR work, the UNCG loop family (UACG in particular) provides excellent spectroscopic markers in one-dimensional exchangeable spectra, in two-dimensional COSY spectra and in NOESY spectra that clearly define it as forming a hairpin. This allows straightforward initiation of chemical shift assignments. PMID:7544890

  20. Perturbation of the Hierarchical Folding of a Large RNA by the Destabilization of its Scaffold's Tertiary Structure

    SciTech Connect

    Shcherbakova,I.; Brenowitz, M.

    2005-01-01

    The P4-P6 domain serves as a scaffold against which the periphery and catalytic core organize and fold during Mg{sup 2+}-mediated folding of the Tetrahymena thermophila ribozyme. The most prominent structural motif of the P4-P6 domain is the tetraloop-tetraloop receptor interaction which 'clamps' the distal parts of its hairpin-like structure. Destabilization of the tertiary structure of the P4-P6 domain by perturbation of the tetraloop-tetraloop receptor interaction alters the Mg{sup 2+}-mediated folding pathway. The folding hierarchy of P5c{approx}P4-P6>periphery>catalytic core that is a striking attribute of the folding of the wild-type RNA is abolished. The initial steps in folding of the mutant RNA are {ge}50-fold faster than those of the wild-type ribozyme with the earliest observed tertiary contacts forming around regions known to specifically bind Mg{sup 2+}. The interaction between the mutant tetraloop and the tetraloop receptor appears coincidently with slowly forming catalytic core tertiary contacts. Thus, the stability conferred upon the P4-P6 domain by the tetraloop-tetraloop receptor interaction dictates the preferred folding pathway by stabilizing an early intermediate. A sub-denaturing concentration of urea diminishes the early barrier to folding the wild-type ribozyme along with complex effects on the subsequent steps of folding the wild-type and mutant RNA.

  1. The application of cluster analysis in the intercomparison of loop structures in RNA.

    PubMed

    Huang, Hung-Chung; Nagaswamy, Uma; Fox, George E

    2005-04-01

    We have developed a computational approach for the comparison and classification of RNA loop structures. Hairpin or interior loops identified in atomic resolution RNA structures were intercompared by conformational matching. The root-mean-square deviation (RMSD) values between all pairs of RNA fragments of interest, even if from different molecules, are calculated. Subsequently, cluster analysis is performed on the resulting matrix of RMSD distances using the unweighted pair group method with arithmetic mean (UPGMA). The cluster analysis objectively reveals groups of folds that resemble one another. To demonstrate the utility of the approach, a comprehensive analysis of all the terminal hairpin tetraloops that have been observed in 15 RNA structures that have been determined by X-ray crystallography was undertaken. The method found major clusters corresponding to the well-known GNRA and UNCG types. In addition, two tetraloops with the unusual primary sequence UMAC (M is A or C) were successfully assigned to the GNRA cluster. Larger loop structures were also examined and the clustering results confirmed the occurrence of variations of the GNRA and UNCG tetraloops in these loops and provided a systematic means for locating them. Nineteen examples of larger loops that closely resemble either the GNRA or UNCG tetraloop were found in the large ribosomal RNAs. When the clustering approach was extended to include all structures in the SCOR database, novel relationships were detected including one between the ANYA motif and a less common folding of the GAAA tetraloop sequence.

  2. Conformity of RNAs that interact with tetranucleotide loop binding proteins.

    PubMed Central

    Zwieb, C

    1992-01-01

    A group of RNA binding proteins, termed tetraloop binding proteins, includes ribosomal protein S15 and protein SRP19 of signal recognition particle. They are primary RNA binding proteins, recognize RNA tetranucleotide loops with a GNAR consensus motif, and require a helical region located adjacent to the tetraloop. Closely related RNA structures that fit these criteria appear in helix 6 of SRP RNA, in helices 22 and 23A of 16 S ribosomal RNA, and, as a pseudoknot, in the regulatory region of the rpsO gene. Images PMID:1329024

  3. Structural differences within the loop E motif imply alternative mechanisms of viroid processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Viroids replicate via a rolling circle mechanism, and cleavage/ligation requires extensive rearrangement of the highly base-paired native structure. For Potato spindle tuber viroid (PSTVd), the switch from cleavage to ligation is driven by the change from a multi-branched tetraloop structure to a l...

  4. Vinyl-Deoxyadenosine in a Sarcin/Ricin RNA Loop and its Binding to Ricin Toxin A-Chain

    PubMed Central

    Roday, Setu; Saen-oon, Suwipa; Schramm, Vern L.

    2008-01-01

    8-Vinyl-2’-deoxyadenosine (8vdA) is a fluorophore with a quantum yield comparable to 2-aminopurine nucleoside. 8vdA was incorporated into a 10-mer stem-tetraloop RNA (8vdA-10) structure to characterize the properties of the base, 8-vinyladenine (8-vA), with respect to adenine as a substrate or inhibitor for ribosome inactivating proteins. Ricin Toxin A-chain (RTA) and Pokeweed Antiviral Protein (PAP) catalyze the release of adenine from a specific adenosine on a stem-tetraloop (GAGA) sequence at the elongation factor (eEF2) binding site of the 28S subunit of eukaryotic ribosomes, thereby arresting translation. RTA does not catalyze 8-vinyladenine release from 8vdA-10. Molecular dynamics simulations implicate a role for Arg 180 in oxacarbenium ion destabilization and lack of catalysis. However, 8vdA-10 is an active site analog and inhibits RTA with a Ki value of 2.4 μM. Adenine is also released from the second adenosine in the modified tetraloop demonstrating an alternative mode for the binding of this motif in the RTA active site. The 8vdA analog defines the specificities of RTA for the two adenylate depurination sites in an RNA substrate with a GAGA tetraloop. The rate of non-enzymatic acid-catalyzed solvolysis of 8-vinyladenine from the stem-loop RNA is described. Unlike RTA, PAP catalyzes the slow release of 8-vinyladenine from 8vdA-10. The isolation of 8-vA and its physicochemical characterization is described. PMID:17477546

  5. Single-Molecule Spectroscopic Investigations of RNA Structural Dynamics

    NASA Astrophysics Data System (ADS)

    Fiore, Julie L.; Nesbitt, David J.

    2007-03-01

    To function properly, catalytic RNAs (ribozymes) fold into specific three-dimensional shapes stabilized by multiple tertiary interactions. However, only limited information is available on the contributions of individual tertiary contacts to RNA conformational dynamics. The Tetrahymena ribozymes's P4--P6 domain forms a hinged, ``candy-cane'' structure with parallel helices clamped by two motifs, the GAAA tetraloop-tetraloop receptor and adenosine (A)-rich bulge--P4 helix interactions. Previously, we characterized RNA folding due to a tetraloop-receptor interaction. In this study, we employ time-resolved single-molecule FRET methods to probe A-rich bulge induced structural dynamics. Specifically, fluorescently labeled RNA constructs excited by a pulsed 532 nm laser are detected in the confocal region of an inverted microscope, with each photon sorted by arrival time, color and polarization. We resolve the kinetic dependence of A-rich bulge-P4 helix docking/undocking on cationic environment (e.g. Na^+ and Mg^2+ concentration.) At saturating [Mg^2+], the docked structure appears only weakly stabilized, while only 50% of the molecules exhibit efficient folding.

  6. Non-enzymatic transcription of an oligodeoxynucleotide 14 residues long

    NASA Technical Reports Server (NTRS)

    Acevedo, Oscar L.; Orgel, Leslie E.

    1987-01-01

    Nonenzymatic synthesis of oligodeoxynucleotides up to 14 residues long from 2-MeImpG and 2-MeImpC mononucleotides was demonstrated. The synthesis is primed by 14-mer and 15-mer oligonucleotides d(C3GC3GC3GC2) and d(C3GC3GC3GC3) as templates. The predominant products are a series of 3-prime-5-prime-linked oligonucleotides, complementary to the template, ranging in length from GGC to GGCGGGCGGGCGGG. The 15-mer template directed the synthesis of the same family of products that were formed on the 14-mer template. This finding is explained by the preferential conversion of the dimer GG to GGC rather than to GGG. In the context of molecular evolution, these results suggest that the detailed kinetics of template-directed synthesis could form the basis for the selection of one replicating oligonucleotide from a family of closely related oligonucleotides.

  7. PEI-complexed LNA antiseeds as miRNA inhibitors

    PubMed Central

    Thomas, Maren; Lange-Grünweller, Kerstin; Dayyoub, Eyas; Bakowsky, Udo; Weirauch, Ulrike; Aigner, Achim; Hartmann, Roland K.; Grünweller, Arnold

    2012-01-01

    Antisense inhibition of oncogenic or other disease-related miRNAs and miRNA families in vivo may provide novel therapeutic strategies. However, this approach relies on the development of potent miRNA inhibitors and their efficient delivery into cells. Here, we introduce short seed-directed LNA oligonucleotides (12- or 14-mer antiseeds) with a phosphodiester backbone (PO) for efficient miRNA inhibition. We have analyzed such LNA (PO) antiseeds using a let-7a-controlled luciferase reporter assay and identified them as active miRNA inhibitors in vitro. Moreover, LNA (PO) 14-mer antiseeds against ongogenic miR-17–5p and miR-20a derepress endogenous p21 expression more persistently than corresponding miRNA hairpin inhibitors, which are often used to inhibit miRNA function. Further analysis of the antiseed-mediated derepression of p21 in luciferase reporter constructs - containing the 3′-UTR of p21 and harboring two binding sites for miRNAs of the miR-106b family - provided evidence that the LNA antiseeds inhibit miRNA families while hairpin inhibitors act in a miRNA-specific manner. The derepression caused by LNA antiseeds is specific, as demonstrated via seed mutagenesis of the miR-106b target sites. Importantly, we show functional delivery of LNA (PO) 14-mer antiseeds into cells upon complexation with polyethylenimine (PEI F25-LMW), which leads to the formation of polymeric nanoparticles. In contrast, attempts to deliver a functional seed-directed tiny LNA 8-mer with a phosphorothioate backbone (PS) by formulation with PEI F25-LMW remained unsuccessful. In conclusion, LNA (PO) 14-mer antiseeds are attractive miRNA inhibitors, and their PEI-based delivery may represent a promising new strategy for therapeutic applications. PMID:22894918

  8. Identification of a high affinity nucleocapsid protein binding element within the Moloney murine leukemia virus Psi-RNA packaging signal: implications for genome recognition.

    PubMed

    D'Souza, V; Melamed, J; Habib, D; Pullen, K; Wallace, K; Summers, M F

    2001-11-23

    Murine leukemia virus (MLV) is currently the most widely used gene delivery system in gene therapy trials. The simple retrovirus packages two copies of its RNA genome by a mechanism that involves interactions between the nucleocapsid (NC) domain of a virally-encoded Gag polyprotein and a segment of the RNA genome located just upstream of the Gag initiation codon, known as the Psi-site. Previous studies indicated that the MLV Psi-site contains three stem loops (SLB-SLD), and that stem loops SLC and SLD play prominent roles in packaging. We have developed a method for the preparation and purification of large quantities of recombinant Moloney MLV NC protein, and have studied its interactions with a series of oligoribonucleotides that contain one or more of the Psi-RNA stem loops. At RNA concentrations above approximately 0.3 mM, isolated stem loop SLB forms a duplex and stem loops SL-C and SL-D form kissing complexes, as expected from previous studies. However, neither the monomeric nor the dimeric forms of these isolated stem loops binds NC with significant affinity. Longer constructs containing two stem loops (SL-BC and SL-CD) also exhibit low affinities for NC. However, NC binds with high affinity and stoichiometrically to both the monomeric and dimeric forms of an RNA construct that contains all three stem loops (SL-BCD; K(d)=132(+/-55) nM). Titration of SL-BCD with NC also shifts monomer-dimer equilibrium toward the dimer. Mutagenesis experiments demonstrate that the conserved GACG tetraloops of stem loops C and D do not influence the monomer-dimer equilibrium of SL-BCD, that the tetraloop of stem loop B does not participate directly in NC binding, and that the tetraloops of stem loops C and D probably also do not bind to NC. These surprising results differ considerably from those observed for HIV-1, where NC binds to individual stem loops with high affinity via interactions with exposed residues of the tetraloops. The present results indicate that MLV NC binds

  9. Study on the stability of the DNA hairpin d(ATCCAT-GTTA-TAGGAT) employing molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Wu, Sangwook

    2015-03-01

    DNA hairpin plays a critical role in the regulation of gene expression and DNA recombination. We studied the conformation of the DNA hairpin, d(ATCCAT-GTTA-TAGGAT) (PDB id:1AC7), employing molecular dynamics (MD) simulation. Despite the non-canonical Watson-Crick base pair (G:A) in the tetraloop (GTTA), MD simulation reveals that the conformation of the DNA hairpin is remarkably stable. In this study, we discuss about the physical/chemical origin of the stability of the DNA hairpin. Department of Biomedical Engineering, Korea University, Seoul 136-703, Korea.

  10. Strand displacement and duplex invasion into double-stranded DNA by pyrrolidinyl peptide nucleic acids.

    PubMed

    Bohländer, Peggy R; Vilaivan, Tirayut; Wagenknecht, Hans-Achim

    2015-09-21

    The so-called acpcPNA system bears a peptide backbone consisting of 4'-substituted proline units with (2'R,4'R) configuration in an alternating combination with (2S)-amino-cyclopentane-(1S)-carboxylic acids. acpcPNA forms exceptionally stable hybrids with complementary DNA. We demonstrate herein (i) strand displacements by single-stranded DNA from acpcPNA-DNA hybrids, and by acpcPNA strands from DNA duplexes, and (ii) strand invasions by acpcPNA into double-stranded DNA. These processes were studied in vitro using synthetic oligonucleotides and by means of our concept of wavelength-shifting fluorescent nucleic acid probes, including fluorescence lifetime measurements that allow quantifying energy transfer efficiencies. The strand displacements of preannealed 14mer acpcPNA-7mer DNA hybrids consecutively by 10mer and 14mer DNA strands occur with rather slow kinetics but yield high fluorescence color ratios (blue : yellow or blue : red), fluorescence intensity enhancements, and energy transfer efficiencies. Furthermore, 14mer acpcPNA strands are able to invade into 30mer double-stranded DNA, remarkably with quantitative efficiency in all studied cases. These processes can also be quantified by means of fluorescence. This remarkable behavior corroborates the extraordinary versatile properties of acpcPNA. In contrast to conventional PNA systems which require 3 or more equivalents PNA, only 1.5 equivalents acpcPNA are sufficient to get efficient double duplex invasion. Invasions also take place even in the presence of 250 mM NaCl which represents an ionic strength nearly twice as high as the physiological ion concentration. These remarkable results corroborate the extraordinary properties of acpcPNA, and thus acpcPNA represents an eligible tool for biological analytics and antigene applications.

  11. Plasticity of the RNA Kink Turn Structural Motif

    SciTech Connect

    Antonioli, A.; Cochrane, J; Lipchock, S; Strobel, S

    2010-01-01

    The kink turn (K-turn) is an RNA structural motif found in many biologically significant RNAs. While most examples of the K-turn have a similar fold, the crystal structure of the Azoarcus group I intron revealed a novel RNA conformation, a reverse kink turn bent in the direction opposite that of a consensus K-turn. The reverse K-turn is bent toward the major grooves rather than the minor grooves of the flanking helices, yet the sequence differs from the K-turn consensus by only a single nucleotide. Here we demonstrate that the reverse bend direction is not solely defined by internal sequence elements, but is instead affected by structural elements external to the K-turn. It bends toward the major groove under the direction of a tetraloop-tetraloop receptor. The ability of one sequence to form two distinct structures demonstrates the inherent plasticity of the K-turn sequence. Such plasticity suggests that the K-turn is not a primary element in RNA folding, but instead is shaped by other structural elements within the RNA or ribonucleoprotein assembly.

  12. RNA folding pathways in stop motion.

    PubMed

    Bottaro, Sandro; Gil-Ley, Alejandro; Bussi, Giovanni

    2016-07-01

    We introduce a method for predicting RNA folding pathways, with an application to the most important RNA tetraloops. The method is based on the idea that ensembles of three-dimensional fragments extracted from high-resolution crystal structures are heterogeneous enough to describe metastable as well as intermediate states. These ensembles are first validated by performing a quantitative comparison against available solution nuclear magnetic resonance (NMR) data of a set of RNA tetranucleotides. Notably, the agreement is better with respect to the one obtained by comparing NMR with extensive all-atom molecular dynamics simulations. We then propose a procedure based on diffusion maps and Markov models that makes it possible to obtain reaction pathways and their relative probabilities from fragment ensembles. This approach is applied to study the helix-to-loop folding pathway of all the tetraloops from the GNRA and UNCG families. The results give detailed insights into the folding mechanism that are compatible with available experimental data and clarify the role of intermediate states observed in previous simulation studies. The method is computationally inexpensive and can be used to study arbitrary conformational transitions. PMID:27091499

  13. RNA folding pathways in stop motion

    PubMed Central

    Bottaro, Sandro; Gil-Ley, Alejandro; Bussi, Giovanni

    2016-01-01

    We introduce a method for predicting RNA folding pathways, with an application to the most important RNA tetraloops. The method is based on the idea that ensembles of three-dimensional fragments extracted from high-resolution crystal structures are heterogeneous enough to describe metastable as well as intermediate states. These ensembles are first validated by performing a quantitative comparison against available solution nuclear magnetic resonance (NMR) data of a set of RNA tetranucleotides. Notably, the agreement is better with respect to the one obtained by comparing NMR with extensive all-atom molecular dynamics simulations. We then propose a procedure based on diffusion maps and Markov models that makes it possible to obtain reaction pathways and their relative probabilities from fragment ensembles. This approach is applied to study the helix-to-loop folding pathway of all the tetraloops from the GNRA and UNCG families. The results give detailed insights into the folding mechanism that are compatible with available experimental data and clarify the role of intermediate states observed in previous simulation studies. The method is computationally inexpensive and can be used to study arbitrary conformational transitions. PMID:27091499

  14. Sense overlapping transcripts in IS1341-type transposase genes are functional non-coding RNAs in archaea

    PubMed Central

    Gomes-Filho, José Vicente; Zaramela, Livia Soares; Italiani, Valéria Cristina da Silva; Baliga, Nitin S; Vêncio, Ricardo Z N; Koide, Tie

    2015-01-01

    The existence of sense overlapping transcripts that share regulatory and coding information in the same genomic sequence shows an additional level of prokaryotic gene expression complexity. Here we report the discovery of ncRNAs associated with IS1341-type transposase (tnpB) genes, at the 3'-end of such elements, with examples in archaea and bacteria. Focusing on the model haloarchaeon Halobacterium salinarum NRC-1, we show the existence of sense overlapping transcripts (sotRNAs) for all its IS1341-type transposases. Publicly available transcriptome compendium show condition-dependent differential regulation between sotRNAs and their cognate genes. These sotRNAs allowed us to find a UUCA tetraloop motif that is present in other archaea (ncRNA family HgcC) and in a H. salinarum intergenic ncRNA derived from a palindrome associated transposable elements (PATE). Overexpression of one sotRNA and the PATE-derived RNA harboring the tetraloop motif improved H. salinarum growth, indicating that these ncRNAs are functional. PMID:25806405

  15. Modulating RNA Alignment Using Directional Dynamic Kinks: Application in Determining an Atomic-Resolution Ensemble for a Hairpin using NMR Residual Dipolar Couplings.

    PubMed

    Salmon, Loïc; Giambaşu, George M; Nikolova, Evgenia N; Petzold, Katja; Bhattacharya, Akash; Case, David A; Al-Hashimi, Hashim M

    2015-10-14

    Approaches that combine experimental data and computational molecular dynamics (MD) to determine atomic resolution ensembles of biomolecules require the measurement of abundant experimental data. NMR residual dipolar couplings (RDCs) carry rich dynamics information, however, difficulties in modulating overall alignment of nucleic acids have limited the ability to fully extract this information. We present a strategy for modulating RNA alignment that is based on introducing variable dynamic kinks in terminal helices. With this strategy, we measured seven sets of RDCs in a cUUCGg apical loop and used this rich data set to test the accuracy of an 0.8 μs MD simulation computed using the Amber ff10 force field as well as to determine an atomic resolution ensemble. The MD-generated ensemble quantitatively reproduces the measured RDCs, but selection of a sub-ensemble was required to satisfy the RDCs within error. The largest discrepancies between the RDC-selected and MD-generated ensembles are observed for the most flexible loop residues and backbone angles connecting the loop to the helix, with the RDC-selected ensemble resulting in more uniform dynamics. Comparison of the RDC-selected ensemble with NMR spin relaxation data suggests that the dynamics occurs on the ps-ns time scales as verified by measurements of R(1ρ) relaxation-dispersion data. The RDC-satisfying ensemble samples many conformations adopted by the hairpin in crystal structures indicating that intrinsic plasticity may play important roles in conformational adaptation. The approach presented here can be applied to test nucleic acid force fields and to characterize dynamics in diverse RNA motifs at atomic resolution.

  16. Identification of a pKa-regulating motif stabilizing imidazole-modified double-stranded DNA

    PubMed Central

    Buyst, Dieter; Gheerardijn, Vicky; Fehér, Krisztina; Van Gasse, Bjorn; Van Den Begin, Jos; Martins, José C.; Madder, Annemieke

    2015-01-01

    The predictable 3D structure of double-stranded DNA renders it ideally suited as a template for the bottom-up design of functionalized nucleic acid-based active sites. We here explore the use of a 14mer DNA duplex as a scaffold for the precise and predictable positioning of catalytic functionalities. Given the ubiquitous participation of the histidine-based imidazole group in protein recognition and catalysis events, single histidine-like modified duplexes were investigated. Tethering histamine to the C5 of the thymine base via an amide bond, allows the flexible positioning of the imidazole function in the major groove. The mutual interactions between the imidazole and the duplex and its influence on the imidazolium pKaH are investigated by placing a single modified thymine at four different positions in the center of the 14mer double helix. Using NMR and unrestrained molecular dynamics, a structural motif involving the formation of a hydrogen bond between the imidazole and the Hoogsteen side of the guanine bases of two neighboring GC base pairs is established. The motif contributes to a stabilization against thermal melting of 6°C and is key in modulating the pKaH of the imidazolium group. The general features, prerequisites and generic character of the new pKaH-regulating motif are described. PMID:25520197

  17. Incomplete removal of the RNA primer for minus-strand DNA synthesis by human immunodeficiency virus type 1 reverse transcriptase.

    PubMed Central

    Pullen, K A; Ishimoto, L K; Champoux, J J

    1992-01-01

    A synthetic RNA oligonucleotide (15-mer) corresponding to the 3' end of the lysine tRNA primer was hybridized to single-stranded DNA containing the human immunodeficiency virus type 1 (HIV-1) primer-binding site and extended with a DNA polymerase. The resulting structures were used to study primer removal by the RNase H activity of HIV-1 reverse transcriptase. The initial cleavage event removes the RNA primer as a 14-mer and leaves a single ribonucleotide A residue bound to the 5' end of the DNA strand. This result explains the observation by several groups that HIV-1 circle junctions contain 4 bp that are not present in the integrated provirus instead of the predicted 3 bp. Subsequent cleavage events occur at other sites internal to the RNA molecule, and the ribonucleotide A residue on the end of the DNA strand is ultimately removed. Therefore, the biologically relevant cleavage that produces the 14-mer reflects the kinetics of the reaction as well as a specificity for nucleic acid sequence. When the RNA oligonucleotide alone was hybridized to the primer-binding site and tested as a substrate for HIV-1 RNase H, the cleavage pattern near the 3' end of the RNA was altered. Images PMID:1370087

  18. Intermediates in the chaperonin-assisted refolding of rhodanese are trapped at low temperature and show a small stoichiometry.

    PubMed

    Mendoza, J A; Lorimer, G H; Horowitz, P M

    1991-09-15

    In vitro refolding of the urea-unfolded, monomeric, mitochondrial enzyme rhodanese (thiosulfate sulfur-transferase; EC 2.8.1.1) is facilitated by the chaperonin proteins cpn60 and cpn10 from Escherichia coli at 37 degrees C, but the refolding is strongly inhibited at 10 degrees C. In contrast, the unassisted refolding of rhodanese is efficient at 10 degrees C, but the refolding efficiency decreases as the temperature is raised. These observations provided two measures of the cpn60-rhodanese complex. Thus, we monitored either 1) the cpn60-dependent inhibition of spontaneous folding at 10 degrees C or 2) the recovery of active rhodanese in the complete chaperonin system at 25 degrees C, after first forming a cpn60-rhodanese complex at 10 degrees C. These procedures minimized the aggregation of interactive folding intermediates that tend to overestimate the apparent number of cpn60 14-mers in determining the stoichiometry of protein-cpn60 14-mer interactions. Both procedures used here gave results that were consistent with there being 1 rhodanese binding site/cpn60 tetradecamer. This stoichiometry is significantly less than might be expected from the fact that cpn60 is composed of 14 identical subunits, and it may indicate that rhodanese interacts with a restricted region that is formed when the cpn60 tetradecamer is assembled. The ability to stabilize chaperonin-protein complexes that can subsequently be reactivated will aid studies of the mode of action of the ubiquitous chaperonin proteins.

  19. Structural mimicry of the α-helix in aqueous solution with an isoatomic α/β/γ-peptide backbone.

    PubMed

    Sawada, Tomohisa; Gellman, Samuel H

    2011-05-18

    Artificial mimicry of α-helices offers a basis for development of protein-protein interaction antagonists. Here we report a new type of unnatural peptidic backbone, containing α-, β-, and γ-amino acid residues in an αγααβα repeat pattern, for this purpose. This unnatural hexad has the same number of backbone atoms as a heptad of α residues. Two-dimensional NMR data clearly establish the formation of an α-helix-like conformation in aqueous solution. The helix formed by our 12-mer α/β/γ-peptide is considerably more stable than the α-helix formed by an analogous 14-mer α-peptide, presumably because of the preorganized β and γ residues employed.

  20. Bran data of total flavonoid and total phenolic contents, oxygen radical absorbance capacity, and profiles of proanthocyanidins and whole grain physical traits of 32 red and purple rice varieties.

    PubMed

    Chen, Ming-Hsuan; McClung, Anna M; Bergman, Christine J

    2016-09-01

    Phytochemicals in red and purple bran rice have potential health benefit to humans. We determined the phytochemicals in brans of 32 red and purple global rice varieties. The description of the origin and physical traits of the whole grain (color, length, width, thickness and 100-kernel weight) of this germplasm collection are provided along with data of total flavonoid and total phenolic contents, oxygen radical absorbance capacity and total proanthocyanidin contents. The contents and proportions of individual oligomers, from degree of polymerization of monomers to 14-mers, and polymers in bran of these 32 rice varieties are presented (DOI: http://dx.doi.org/10.1016/j.foodchem.2016.04.004) [1]. PMID:27257615

  1. Direct Determination of the Equilibrium Unbinding Potential Profile for a Short DNA Duplex from Force Spectroscopy Data

    SciTech Connect

    Noy, A

    2004-05-04

    Modern force microscopy techniques allow researchers to use mechanical forces to probe interactions between biomolecules. However, such measurements often happen in non-equilibrium regime, which precludes straightforward extraction of the equilibrium energy information. Here we use the work averaging method based on Jarzynski equality to reconstruct the equilibrium interaction potential from the unbinding of a complementary 14-mer DNA duplex from the results of non-equilibrium single-molecule measurements. The reconstructed potential reproduces most of the features of the DNA stretching transition, previously observed only in equilibrium stretching of long DNA sequences. We also compare the reconstructed potential with the thermodynamic parameters of DNA duplex unbinding and show that the reconstruction accurately predicts duplex melting enthalpy.

  2. An oligodeoxyribonucleotide that supports catalytic activity in the hammerhead ribozyme domain.

    PubMed Central

    Chartrand, P; Harvey, S C; Ferbeyre, G; Usman, N; Cedergren, R

    1995-01-01

    A study of the activity of deoxyribonucleotide-substituted analogs of the hammerhead domain of RNA catalysis has led to the design of a 14mer oligomer composed entirely of deoxyribonucleotides that promotes the cleavage of an RNA substrate. Characterization of this reaction with sequence variants and mixed DNA/RNA oligomers shows that, although the all-deoxyribonucleotide oligomer is less efficient in catalysis, the DNA/substrate complex shares many of the properties of the all-RNA hammerhead domain such as multiple turnover kinetics and dependence on Mg2+ concentration. On the other hand, the values of kinetic parameters distinguish the DNA oligomer from the all-RNA oligomer. In addition, an analog of the oligomer having a single ribonucleotide in a strongly conserved position of the hammerhead domain is associated with more efficient catalysis than the all-RNA oligomer. Images PMID:7479070

  3. Crystallization of a member of the recFOR DNA repair pathway, RecO, with and without bound oligonucleotide.

    PubMed

    Aono, Shelly; Hartsch, Thomas; Schulze-Gahmen, Ursula

    2003-03-01

    RecFOR proteins are important for DNA repair by homologous recombination in bacteria. The RecO protein from Thermus thermophilus was cloned and purified, and its binding to oligonucleotides was characterized. The protein was crystallized alone and in complex with a 14-mer oligonucleotide. Both crystal forms grow under different crystallization conditions in the same space group, P3(1)21 or P3(2)21, with almost identical unit-cell parameters. Complete data sets were collected to 2.8 and 2.5 A for RecO alone and for the RecO-oligonucleotide complex, respectively. Visual comparison of the diffraction patterns between the two crystal forms and calculation of an R(merge) of 33.9% on F indicate that one of the crystal forms is indeed a complex of RecO with bound oligonucleotide. PMID:12595731

  4. Anti-inflammatory Effect of a Cell-Penetrating Peptide Targeting the Nrf2/Keap1 Interaction

    PubMed Central

    2012-01-01

    Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is increasingly recognized as a central regulator of multiple signaling pathways in inflammation and cancer, and the ability to use chemical biological tools to investigate its biological effects is very attractive. A peptide comprising a TAT-conjugated Nrf2 sequence is shown to activate Nrf2 and its downstream target gene heme-oxygenase-1 (HO-1) in a dose-dependent manner in intact human THP-1 monocytes. Levels of Nrf2 protein peak after 3 h, whereas HO-1 mRNA and protein peak after 6 and 12 h, respectively. The peptide is also shown to inhibit the production of the pro-inflammatory cytokine TNF. The TAT-14mer constitutes a useful chemical biology tool with potential therapeutic applications. PMID:22582137

  5. Comparative hybrid arrest by tandem antisense oligodeoxyribonucleotides or oligodeoxyribonucleoside methylphosphonates in a cell-free system.

    PubMed Central

    Maher, L J; Dolnick, B J

    1988-01-01

    Antisense oligonucleotides containing either anionic diester or neutral methylphosphonate internucleoside linkages were prepared by automated synthesis, and were compared for their ability to arrest translation of human dihydrofolate reductase (DHFR) mRNA in a nuclease treated rabbit reticulocyte lysate. In the case of oligodeoxyribonucleotides, tandem targeting of three 14-mers resulted in synergistic and complete selective inhibition of DHFR synthesis at a total oligomer concentration of 25 microM. Hybrid arrest by three or six tandem oligodeoxyribonucleoside methylphosphonates was dramatically less effective. This difference does not result from preferential recognition of hybrids involving oligodeoxyribonucleotides by endogenous RNaseH activity. A ribonuclease protection assay demonstrated that antisense oligodeoxyribonucleoside methylphosphonates bind selectively to target RNA sequences, but with 275 fold lower affinity than the corresponding oligodeoxyribonucleotides. This low binding affinity results in poor arrest of translation, and may be related to the stereochemistry of the methylphosphonate linkage. Images PMID:2836793

  6. Electron Transfer Dissociation of Oligonucleotide Cations.

    PubMed

    Smith, Suncerae I; Brodbelt, Jennifer S

    2009-06-01

    Electron transfer dissociation (ETD) of multi-protonated 6 - 20-mer oligonucleotides and 12- and 14-mer duplexes is compared to collision activated dissociation (CAD). ETD causes efficient charge reduction of the multi-protonated oligonucleotides in addition to limited backbone cleavages to yield sequence ions of low abundance. Subsequent CAD of the charge-reduced oligonucleotides formed upon electron transfer, in a net process termed electron transfer collision activated dissociation (ETcaD), results in rich fragmentation in terms of w, a, z, and d products, with a marked decrease in the abundance of base loss ions and internal fragments. Complete sequencing was possible for nearly all oligonucleotides studied. ETcaD of an oligonucleotide duplex resulted in specific backbone cleavages, with conservation of weaker non-covalent bonds. PMID:20161288

  7. Direct mass spectrometric determination of the stoichiometry and binding affinity of the complexes between nucleocapsid protein and RNA stem-loop hairpins of the HIV-1 Psi-recognition element.

    PubMed

    Hagan, Nathan; Fabris, Daniele

    2003-09-16

    The formation of noncovalent complexes between the HIV-1 nucleocapsid protein p7 (NC) and RNA hairpins SL2-SL4 of the Psi-recognition element was investigated by direct infusion electrospray ionization-Fourier transform mass spectrometry (ESI-FTMS). The high resolution afforded by this method provided the unambiguous characterization of the stoichiometry and composition of complexes formed by multiple equilibria in solution. For each hairpin, the formation of a 1:1 complex was found to be the primary binding mode in solutions of intermediate salt content (150 mM ammonium acetate). Binding of multiple units of NC was observed with lower affinity and a maximum stoichiometry matching the limit calculated from the number of nucleotides in the construct and the size of the footprint of NC onto single-stranded nucleic acids, thus implying the defolding of the hairpin three-dimensional (3D) structure. Dissociation constants of 62 +/- 22 nM, 178 +/- 64 nM, and 1.3 +/- 0.5 microM were determined for SL2, SL3-2, and SL4, respectively, which are similar to values obtained by spectroscopic and calorimetric methods with the additional confidence offered by a direct, rather than inferred, knowledge of the binding stoichiometry. Competitive binding experiments carried out in solutions of intermediate ionic strength, which has the effect of weakening the electrostatic interactions in solution, provided a direct way of evaluating the stabilizing contributions of H-bonding and hydrophobic interactions that are more sensitive to the sequence and structural context of the different hairpins. The relative scale of binding affinity obtained in this environment reflects the combination of contributions provided by the different structures of both the tetraloop and the double-stranded stem. The importance of the stem 3D structure in modulating the binding activity was tested by a competitive binding experiment that included the SL3-2 RNA construct, a DNA analogue of SL3 (SL3(DNA)), and a

  8. Replication Bypass of the trans-4-Hydroxynonenal-Derived (6S,8R,11S)-1,N[superscript 2]-Deoxyguanosine DNA Adduct by the Sulfolobus solfataricus DNA Polymerase IV

    SciTech Connect

    Banerjee, Surajit; Christov, Plamen P.; Kozekova, Albena; Rizzo, Carmelo J.; Egli, Martin; Stone, Michael P.

    2014-10-02

    trans-4-Hydroxynonenal (HNE) is the major peroxidation product of {omega}-6 polyunsaturated fatty acids in vivo. Michael addition of the N{sub 2}-amino group of dGuo to HNE followed by ring closure of N1 onto the aldehyde results in four diastereomeric 1,N{sub 2}-dGuo (1,N{sub 2}-HNE-dGuo) adducts. The (6S,8R,11S)-HNE-1,N{sub 2}-dGuo adduct was incorporated into the 18-mer templates 5'-d(TCATXGAATCCTTCCCCC)-3' and d(TCACXGAATCCTTCCCCC)-3', where X = (6S,8R,11S)-HNE-1,N{sub 2}-dGuo adduct. These differed in the identity of the template 5'-neighbor base, which was either Thy or Cyt, respectively. Each of these templates was annealed with either a 13-mer primer 5'-d(GGGGGAAGGATTC)-3' or a 14-mer primer 5'-d(GGGGGAAGGATTCC)-3'. The addition of dNTPs to the 13-mer primer allowed analysis of dNTP insertion opposite to the (6S,8R,11S)-HNE-1,N{sub 2}-dGuo adduct, whereas the 14-mer primer allowed analysis of dNTP extension past a primed (6S,8R,11S)-HNE-1,N{sub 2}-dGuo:dCyd pair. The Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) belongs to the Y-family of error-prone polymerases. Replication bypass studies in vitro reveal that this polymerase inserted dNTPs opposite the (6S,8R,11S)-HNE-1,N{sub 2}-dGuo adduct in a sequence-specific manner. If the template 5'-neighbor base was dCyt, the polymerase inserted primarily dGTP, whereas if the template 5'-neighbor base was dThy, the polymerase inserted primarily dATP. The latter event would predict low levels of Gua {yields} Thy mutations during replication bypass when the template 5'-neighbor base is dThy. When presented with a primed (6S,8R,11S)-HNE-1,N{sub 2}-dGuo:dCyd pair, the polymerase conducted full-length primer extension. Structures for ternary (Dpo4-DNA-dNTP) complexes with all four template-primers were obtained. For the 18-mer:13-mer template-primers in which the polymerase was confronted with the (6S,8R,11S)-HNE-1,N{sub 2}-dGuo adduct, the (6S,8R,11S)-1,N{sub 2}-dGuo lesion remained in the ring

  9. Distinct families of cis-acting RNA replication elements epsilon from hepatitis B viruses

    PubMed Central

    Chen, Augustine; Brown, Chris

    2012-01-01

    The hepadnavirus encapsidation signal, epsilon (ε), is an RNA structure located at the 5′ end of the viral pregenomic RNA. It is essential for viral replication and functions in polymerase protein binding and priming. This structure could also have potential regulatory roles in controlling the expression of viral replicative proteins. In addition to its structure, the primary sequence of this RNA element has crucial functional roles in the viral lifecycle. Although the ε elements in hepadnaviruses share common critical functions, there are some significant differences in mammalian and avian hepadnaviruses, which include both sequence and structural variations.   Here we present several covariance models for ε elements from the Hepadnaviridae. The model building included experimentally determined data from previous studies using chemical probing and NMR analysis. These models have sufficient similarity to comprise a clan. The clan has in common a highly conserved overall structure consisting of a lower-stem, bulge, upper-stem and apical-loop. The models differ in functionally critical regions—notably the two types of avian ε elements have a tetra-loop (UGUU) including a non-canonical UU base pair, while the hepatitis B virus (HBV) epsilon has a tri-loop (UGU). The avian epsilon elements have a less stable dynamic structure in the upper stem. Comparisons between these models and all other Rfam models, and searches of genomes, showed these structures are specific to the Hepadnaviridae. Two family models and the clan are available from the Rfam database. PMID:22418844

  10. NMR Localization of Divalent Cations at the Active Site of the Neurospora VS Ribozyme Provides Insights into RNA–Metal-Ion Interactions

    PubMed Central

    2013-01-01

    Metal cations represent key elements of RNA structure and function. In the Neurospora VS ribozyme, metal cations play diverse roles; they are important for substrate recognition, formation of the active site, and shifting the pKa’s of two key nucleobases that contribute to the general acid–base mechanism. Recently, we determined the NMR structure of the A730 loop of the VS ribozyme active site (SLVI) that contributes the general acid (A756) in the enzymatic mechanism of the cleavage reaction. Our studies showed that magnesium (Mg2+) ions are essential to stabilize the formation of the S-turn motif within the A730 loop that exposes the A756 nucleobase for catalysis. In this article, we extend these NMR investigations by precisely mapping the Mg2+-ion binding sites using manganese-induced paramagnetic relaxation enhancement and cadmium-induced chemical-shift perturbation of phosphorothioate RNAs. These experiments identify five Mg2+-ion binding sites within SLVI. Four Mg2+ ions in SLVI are associated with known RNA structural motifs, including the G–U wobble pair and the GNRA tetraloop, and our studies reveal novel insights about Mg2+ ion binding to these RNA motifs. Interestingly, one Mg2+ ion is specifically associated with the S-turn motif, confirming its structural role in the folding of the A730 loop. This Mg2+ ion is likely important for formation of the active site and may play an indirect role in catalysis. PMID:24364590

  11. Secondary structure encodes a cooperative tertiary folding funnel in the Azoarcus ribozyme

    PubMed Central

    Mustoe, Anthony M.; Al-Hashimi, Hashim M.; Brooks, Charles L.

    2016-01-01

    A requirement for specific RNA folding is that the free-energy landscape discriminate against non-native folds. While tertiary interactions are critical for stabilizing the native fold, they are relatively non-specific, suggesting additional mechanisms contribute to tertiary folding specificity. In this study, we use coarse-grained molecular dynamics simulations to explore how secondary structure shapes the tertiary free-energy landscape of the Azoarcus ribozyme. We show that steric and connectivity constraints posed by secondary structure strongly limit the accessible conformational space of the ribozyme, and that these so-called topological constraints in turn pose strong free-energy penalties on forming different tertiary contacts. Notably, native A-minor and base-triple interactions form with low conformational free energy, while non-native tetraloop/tetraloop–receptor interactions are penalized by high conformational free energies. Topological constraints also give rise to strong cooperativity between distal tertiary interactions, quantitatively matching prior experimental measurements. The specificity of the folding landscape is further enhanced as tertiary contacts place additional constraints on the conformational space, progressively funneling the molecule to the native state. These results indicate that secondary structure assists the ribozyme in navigating the otherwise rugged tertiary folding landscape, and further emphasize topological constraints as a key force in RNA folding. PMID:26481360

  12. 'Z-DNA like' fragments in RNA: a recurring structural motif with implications for folding, RNA/protein recognition and immune response.

    PubMed

    D'Ascenzo, Luigi; Leonarski, Filip; Vicens, Quentin; Auffinger, Pascal

    2016-07-01

    Since the work of Alexander Rich, who solved the first Z-DNA crystal structure, we have known that d(CpG) steps can adopt a particular structure that leads to forming left-handed helices. However, it is still largely unrecognized that other sequences can adopt 'left-handed' conformations in DNA and RNA, in double as well as single stranded contexts. These 'Z-like' steps involve the coexistence of several rare structural features: a C2'-endo puckering, a syn nucleotide and a lone pair-π stacking between a ribose O4' atom and a nucleobase. This particular arrangement induces a conformational stress in the RNA backbone, which limits the occurrence of Z-like steps to ≈0.1% of all dinucleotide steps in the PDB. Here, we report over 600 instances of Z-like steps, which are located within r(UNCG) tetraloops but also in small and large RNAs including riboswitches, ribozymes and ribosomes. Given their complexity, Z-like steps are probably associated with slow folding kinetics and once formed could lock a fold through the formation of unique long-range contacts. Proteins involved in immunologic response also specifically recognize/induce these peculiar folds. Thus, characterizing the conformational features of these motifs could be a key to understanding the immune response at a structural level. PMID:27151194

  13. An RNA-aptamer-based two-color CRISPR labeling system

    PubMed Central

    Wang, Siyuan; Su, Jun-Han; Zhang, Feng; Zhuang, Xiaowei

    2016-01-01

    The spatial organization and dynamics of chromatin play important roles in essential biological functions. However, direct visualization of endogenous genomic loci in living cells has proven to be laborious until the recent development of CRISPR-Cas9-based chromatin labeling methods. These methods rely on the recognition of specific DNA sequences by CRISPR single-guide RNAs (sgRNAs) and fluorescent–protein-fused catalytically inactive Cas9 to label specific chromatin loci in cells. Previously, multicolor chromatin labeling has been achieved using orthogonal Cas9 proteins from different bacterial species fused to different fluorescent proteins. Here we report the development of an alternative two-color CRISPR labeling method using only the well-characterized Streptococcus pyogenes Cas9, by incorporating MS2 or PP7 RNA aptamers into the sgRNA. The MS2 or PP7 aptamers then recruit the corresponding MS2 or PP7 coat proteins fused with different fluorescent proteins to the target genomic loci. Here we demonstrate specific and orthogonal two-color labeling of repetitive sequences in living human cells using this method. By attaching the MS2 or PP7 aptamers to different locations on the sgRNA, we found that extending the tetraloop and stem loop 2 of the sgRNA with MS2 or PP7 aptamers enhances the signal-to-background ratio of chromatin imaging. PMID:27229896

  14. The ribotoxin restrictocin recognizes its RNA substrate by selective engagement of active site residues.

    PubMed

    Plantinga, Matthew J; Korennykh, Alexei V; Piccirilli, Joseph A; Correll, Carl C

    2011-04-12

    Restrictocin and related fungal endoribonucleases from the α-sarcin family site-specifically cleave the sarcin/ricin loop (SRL) on the ribosome to inhibit translation and ultimately trigger cell death. Previous studies showed that the SRL folds into a bulged-G motif and tetraloop, with restrictocin achieving a specificity of ∼1000-fold by recognizing both motifs only after the initial binding step. Here, we identify contacts within the protein-RNA interface and determine the extent to which each one contributes to enzyme specificity by examining the effect of protein mutations on the cleavage of the SRL substrate compared to a variety of other RNA substrates. As with other biomolecular interfaces, only a subset of contacts contributes to specificity. One contact of this subset is critical, with the H49A mutation resulting in quantitative loss of specificity. Maximum catalytic activity occurs when both motifs of the SRL are present, with the major contribution involving the bulged-G motif recognized by three lysine residues located adjacent to the active site: K110, K111, and K113. Our findings support a kinetic proofreading mechanism in which the active site residues H49 and, to a lesser extent, Y47 make greater catalytic contributions to SRL cleavage than to suboptimal substrates. This systematic and quantitative analysis begins to elucidate the principles governing RNA recognition by a site-specific endonuclease and may thus serve as a mechanistic model for investigating other RNA modifying enzymes. PMID:21417210

  15. Structural fidelity and NMR relaxation analysis in a prototype RNA hairpin.

    PubMed

    Giambaşu, George M; York, Darrin M; Case, David A

    2015-05-01

    RNA hairpins are widespread and very stable motifs that contribute decisively to RNA folding and biological function. The GTP1G2C3A4C5U6U7C8G9G10U11G12C13C14 construct (with a central UUCG tetraloop) has been extensively studied by solution NMR, and offers and excellent opportunity to evaluate the structure and dynamical description afforded by molecular dynamics (MD) simulations. Here, we compare average structural parameters and NMR relaxation rates estimated from a series of multiple independent explicit solvent MD simulations using the two most recent RNA AMBER force fields (ff99 and ff10). Predicted overall tumbling times are ∼20% faster than those inferred from analysis of NMR data and follow the same trend when temperature and ionic strength is varied. The Watson-Crick stem and the "canonical" UUCG loop structure are maintained in most simulations including the characteristic syn conformation along the glycosidic bond of G9, although some key hydrogen bonds in the loop are partially disrupted. Our analysis pinpoints G9-G10 backbone conformations as a locus of discrepancies between experiment and simulation. In general the results for the more recent force-field parameters (ff10) are closer to experiment than those for the older ones (ff99). This work provides a comprehensive and detailed comparison of state of the art MD simulations against a wide variety of solution NMR measurements.

  16. Self-assembling RNA square

    SciTech Connect

    Dibrov, Sergey M.; McLean, Jaime; Parsons, Jerod; Hermann, Thomas

    2011-12-22

    The three-dimensional structures of noncoding RNA molecules reveal recurring architectural motifs that have been exploited for the design of artificial RNA nanomaterials. Programmed assembly of RNA nanoobjects from autonomously folding tetraloop-receptor complexes as well as junction motifs has been achieved previously through sequence-directed hybridization of complex sets of long oligonucleotides. Due to size and complexity, structural characterization of artificial RNA nanoobjects has been limited to low-resolution microscopy studies. Here we present the design, construction, and crystal structure determination at 2.2 {angstrom} of the smallest yet square-shaped nanoobject made entirely of double-stranded RNA. The RNA square is comprised of 100 residues and self-assembles from four copies each of two oligonucleotides of 10 and 15 bases length. Despite the high symmetry on the level of secondary structure, the three-dimensional architecture of the square is asymmetric, with all four corners adopting distinct folding patterns. We demonstrate the programmed self-assembly of RNA squares from complex mixtures of corner units and establish a concept to exploit the RNA square as a combinatorial nanoscale platform.

  17. RNA Tertiary Interactions Mediate Native Collapse of a Bacterial Group I Ribozyme

    SciTech Connect

    Chauhan, Seema; Caliskan, Gokhan; Briber, Robert M.; Perez-Salas, Ursula; Rangan, Prashanth; Thirumalai, D.; Woodson, Sarah A.

    2010-07-13

    Large RNAs collapse into compact intermediates in the presence of counterions before folding to the native state. We previously found that collapse of a bacterial group I ribozyme correlates with the formation of helices within the ribozyme core, but occurs at Mg{sup 2+} concentrations too low to support stable tertiary structure and catalytic activity. Here, using small-angle X-ray scattering, we show that Mg{sup 2+}-induced collapse is a cooperative folding transition that can be fit by a two-state model. The Mg{sup 2+} dependence of collapse is similar to the Mg{sup 2+} dependence of helix assembly measured by partial ribonuclease T{sub 1} digestion and of an unfolding transition measured by UV hypochromicity. The correspondence between multiple probes of RNA structure further supports a two-state model. A mutation that disrupts tertiary contacts between the L9 tetraloop and its helical receptor destabilized the compact state by 0.8 kcal/mol, while mutations in the central triplex were less destabilizing. These results show that native tertiary interactions stabilize the compact folding intermediates under conditions in which the RNA backbone remains accessible to solvent.

  18. Crystal structure of a eukaryotic group II intron lariat

    PubMed Central

    Robart, Aaron R.; Chan, Russell T.; Peters, Jessica K.; Rajashankar, Kanagalaghatta R.; Toor, Navtej

    2014-01-01

    The formation of branched lariat RNA is an evolutionarily conserved feature of splicing reactions for both group II and spliceosomal introns. The lariat is important for the fidelity of 5′ splice site selection and consists of a 2′-5′ phosphodiester bond between a bulged adenosine and the 5′ end of the intron. To gain insight into this ubiquitous intramolecular linkage, we determined the crystal structure of a eukaryotic group IIB intron in the lariat form at 3.7 Å. This revealed that two tandem tetraloop-receptor interactions, η-η’ and π-π’, place domain VI in the core to position the lariat bond in the post-catalytic state. Based on structural and biochemical data, we propose that π-π’ is a dynamic interaction that mediates the transition between the two steps of splicing, with η-η’ serving an ancillary role. The structure also reveals a four-magnesium-ion cluster involved in both catalysis and positioning of the 5′ end. Given the evolutionary relationship between group II and nuclear introns, it is likely that this active site configuration exists in the spliceosome as well. PMID:25252982

  19. An RNA-aptamer-based two-color CRISPR labeling system.

    PubMed

    Wang, Siyuan; Su, Jun-Han; Zhang, Feng; Zhuang, Xiaowei

    2016-01-01

    The spatial organization and dynamics of chromatin play important roles in essential biological functions. However, direct visualization of endogenous genomic loci in living cells has proven to be laborious until the recent development of CRISPR-Cas9-based chromatin labeling methods. These methods rely on the recognition of specific DNA sequences by CRISPR single-guide RNAs (sgRNAs) and fluorescent-protein-fused catalytically inactive Cas9 to label specific chromatin loci in cells. Previously, multicolor chromatin labeling has been achieved using orthogonal Cas9 proteins from different bacterial species fused to different fluorescent proteins. Here we report the development of an alternative two-color CRISPR labeling method using only the well-characterized Streptococcus pyogenes Cas9, by incorporating MS2 or PP7 RNA aptamers into the sgRNA. The MS2 or PP7 aptamers then recruit the corresponding MS2 or PP7 coat proteins fused with different fluorescent proteins to the target genomic loci. Here we demonstrate specific and orthogonal two-color labeling of repetitive sequences in living human cells using this method. By attaching the MS2 or PP7 aptamers to different locations on the sgRNA, we found that extending the tetraloop and stem loop 2 of the sgRNA with MS2 or PP7 aptamers enhances the signal-to-background ratio of chromatin imaging. PMID:27229896

  20. ‘Z-DNA like’ fragments in RNA: a recurring structural motif with implications for folding, RNA/protein recognition and immune response

    PubMed Central

    D'Ascenzo, Luigi; Leonarski, Filip; Vicens, Quentin; Auffinger, Pascal

    2016-01-01

    Since the work of Alexander Rich, who solved the first Z-DNA crystal structure, we have known that d(CpG) steps can adopt a particular structure that leads to forming left-handed helices. However, it is still largely unrecognized that other sequences can adopt ‘left-handed’ conformations in DNA and RNA, in double as well as single stranded contexts. These ‘Z-like’ steps involve the coexistence of several rare structural features: a C2’-endo puckering, a syn nucleotide and a lone pair–π stacking between a ribose O4’ atom and a nucleobase. This particular arrangement induces a conformational stress in the RNA backbone, which limits the occurrence of Z-like steps to ≈0.1% of all dinucleotide steps in the PDB. Here, we report over 600 instances of Z-like steps, which are located within r(UNCG) tetraloops but also in small and large RNAs including riboswitches, ribozymes and ribosomes. Given their complexity, Z-like steps are probably associated with slow folding kinetics and once formed could lock a fold through the formation of unique long-range contacts. Proteins involved in immunologic response also specifically recognize/induce these peculiar folds. Thus, characterizing the conformational features of these motifs could be a key to understanding the immune response at a structural level. PMID:27151194

  1. (Structure and stability of nucleic acids)

    SciTech Connect

    Tinoco, I. Jr.

    1991-01-01

    We study the conformations of DNA and RNA oligonucleotides in order to understand their biological roles. We have determined the structure of the most common type of hairpin loop found in ribosomal RNA--the extra-stable tetraloop. It is actually a biloop with the other two bases in the loop forming a non-Watson-Crick base pair. This is the highest resolution structure reported for an RNA molecule in solution so far. We have obtained structures of pseudoknots and we have deduced general rules for their formation. We are presently studying a pseudoknot which is necessary for the replication of a retrovirus. The research done in the laboratory has been reported in 24 publications, plus 7 manuscripts in press or submitted. The research was done by 14 graduate students and 7 postdoctoral fellows. Five graduate students have received their Ph.D.s and 4 postdoctorals have finished their stay here. There are presently 9 graduate students and 3 postdoctorals working on the project; 2 new postdoctorals are expected this summer. One undergraduate student usually participates in the research during the year; this summer two undergraduates are working on the project. 31 refs., 4 figs.

  2. [Structure and stability of nucleic acids]. Progress report, July 1, 1988--June 30, 1991

    SciTech Connect

    Tinoco, I. Jr.

    1991-12-01

    We study the conformations of DNA and RNA oligonucleotides in order to understand their biological roles. We have determined the structure of the most common type of hairpin loop found in ribosomal RNA--the extra-stable tetraloop. It is actually a biloop with the other two bases in the loop forming a non-Watson-Crick base pair. This is the highest resolution structure reported for an RNA molecule in solution so far. We have obtained structures of pseudoknots and we have deduced general rules for their formation. We are presently studying a pseudoknot which is necessary for the replication of a retrovirus. The research done in the laboratory has been reported in 24 publications, plus 7 manuscripts in press or submitted. The research was done by 14 graduate students and 7 postdoctoral fellows. Five graduate students have received their Ph.D.s and 4 postdoctorals have finished their stay here. There are presently 9 graduate students and 3 postdoctorals working on the project; 2 new postdoctorals are expected this summer. One undergraduate student usually participates in the research during the year; this summer two undergraduates are working on the project. 31 refs., 4 figs.

  3. Structural diversity of signal recognition particle RNAs in plastids.

    PubMed

    Rosenblad, Magnus Alm; Träger, Chantal; Schünemann, Danja

    2013-10-01

    One of the pathways for protein targeting to the plasma membrane in bacteria utilizes the co-translationally acting signal recognition particle (SRP), a universally conserved ribonucleoprotein complex consisting of a 54 kDa protein and a functional RNA. An interesting exception is the higher plant chloroplast SRP, which lacks the otherwise essential RNA component. Furthermore, green plant chloroplasts have an additional post-translational SRP-dependent transport system in which the chloroplast-specific cpSRP43 protein binds to imported substrate proteins and to the conserved 54 kDa SRP subunit (cpSRP54). While homologs to the bacterial SRP protein and RNA component previously have been identified in genome sequences of red algae and diatoms, a recent study investigated the evolution of the green plant SRP system.1 Analysis of hundreds of plastid and nuclear genomes showed a surprising pattern of multiple losses of the plastid SRP RNA during evolution and a widespread presence in all non-spermatophyte plants and green algae. Contrary to expectations, all green organisms that have an identified cpSRP RNA also contain a cpSRP43. Notably, the structure of the plastid SRP RNAs is much more diverse than that of bacterial SRP RNAs. The apical GNRA tetraloop is only conserved in organisms of the red lineage and basal organisms of the green lineage, whereas further chloroplast SRP RNAs are characterized by atypical, mostly enlarged apical loops.

  4. Structural Features of a 3′ Splice Site in Influenza A

    PubMed Central

    2015-01-01

    Influenza A is an RNA virus with a genome of eight negative sense segments. Segment 7 mRNA contains a 3′ splice site for alternative splicing to encode the essential M2 protein. On the basis of sequence alignment and chemical mapping experiments, the secondary structure surrounding the 3′ splice site has an internal loop, adenine bulge, and hairpin loop when it is in the hairpin conformation that exposes the 3′ splice site. We report structural features of a three-dimensional model of the hairpin derived from nuclear magnetic resonance spectra and simulated annealing with restrained molecular dynamics. Additional insight was provided by modeling based on 1H chemical shifts. The internal loop containing the 3′ splice site has a dynamic guanosine and a stable imino (cis Watson–Crick/Watson–Crick) GA pair. The adenine bulge also appears to be dynamic with the A either stacked in the stem or forming a base triple with a Watson–Crick GC pair. The hairpin loop is a GAAA tetraloop closed by an AC pair. PMID:25909229

  5. The structural basis of FtsY recruitment and GTPase activation by SRP RNA.

    PubMed

    Voigts-Hoffmann, Felix; Schmitz, Nikolaus; Shen, Kuang; Shan, Shu-Ou; Ataide, Sandro F; Ban, Nenad

    2013-12-12

    The universally conserved signal recognition particle (SRP) system mediates the targeting of membrane proteins to the translocon in a multistep process controlled by GTP hydrolysis. Here we present the 2.6 Å crystal structure of the GTPase domains of the E. coli SRP protein (Ffh) and its receptor (FtsY) in complex with the tetraloop and the distal region of SRP-RNA, trapped in the activated state in presence of GDP:AlF4. The structure reveals the atomic details of FtsY recruitment and, together with biochemical experiments, pinpoints G83 as the key RNA residue that stimulates GTP hydrolysis. Insertion of G83 into the FtsY active site orients a single glutamate residue provided by Ffh (E277), triggering GTP hydrolysis and complex disassembly at the end of the targeting cycle. The complete conservation of the key residues of the SRP-RNA and the SRP protein implies that the suggested chemical mechanism of GTPase activation is applicable across all kingdoms. PMID:24211265

  6. Lock and Key Binding of the HOX YPWM Peptide to the PBX Homeodomain

    SciTech Connect

    Sprules, Tara; Green, N.; Featherstone, M.; Gehring, Kalle

    2003-01-10

    HOX homeodomain proteins bind short core DNA sequences to control very specific developmental processes. DNA binding affinity and sequence selectivity are increased by the formation of cooperative complexes with the PBX homeodomain protein. A conserved YPWM motif in the HOX protein is necessary for cooperative binding with PBX. We have determined the structure of a PBX homeodomain bound to a 14-mer DNA duplex. A relaxation-optimized procedure was developed to measure DNA residual dipolar couplings at natural abundance in the 20-kDa binary complex. When the PBX homeodomain binds to DNA, a fourth alpha-helix is formed in the homeodomain. This helix rigidifies the DNA recognition helix of PBX and forms a hydrophobic binding site for the HOX YPWM peptide. The HOX peptide itself shows some structure in solution and suggests that the interaction between PBX and HOX is an example of "lock and key" binding. The NMR structure explains the requirement of DNA for the PBX-HOX interaction and the increased affinity of DNA binding.

  7. A temperature-jump NMR probe setup using rf heating optimized for the analysis of temperature-induced biomacromolecular kinetic processes

    NASA Astrophysics Data System (ADS)

    Rinnenthal, Jörg; Wagner, Dominic; Marquardsen, Thorsten; Krahn, Alexander; Engelke, Frank; Schwalbe, Harald

    2015-02-01

    A novel temperature jump (T-jump) probe operational at B0 fields of 600 MHz (14.1 Tesla) with an integrated cage radio-frequency (rf) coil for rapid (<1 s) heating in high-resolution (HR) liquid-state NMR-spectroscopy is presented and its performance investigated. The probe consists of an inner 2.5 mm "heating coil" designed for generating rf-electric fields of 190-220 MHz across a lossy dielectric sample and an outer two coil assembly for 1H-, 2H- and 15N-nuclei. High B0 field homogeneities (0.7 Hz at 600 MHz) are combined with high heating rates (20-25 K/s) and only small temperature gradients (<±1.5 K, 3 s after 20 K T-jump). The heating coil is under control of a high power rf-amplifier within the NMR console and can therefore easily be accessed by the pulse programmer. Furthermore, implementation of a real-time setup including synchronization of the NMR spectrometer's air flow heater with the rf-heater used to maintain the temperature of the sample is described. Finally, the applicability of the real-time T-jump setup for the investigation of biomolecular kinetic processes in the second-to-minute timescale is demonstrated for samples of a model 14mer DNA hairpin and a 15N-selectively labeled 40nt hsp17-RNA thermometer.

  8. Structural Basis for piRNA 2-O-methylated 3-end Recognition by Piwi PAZ (Piwi/Argonaute/Awille) Domains

    SciTech Connect

    Y Tian; D Simanshu; J Ma; D Patel

    2011-12-31

    Argonaute and Piwi proteins are key players in the RNA silencing pathway, with the former interacting with micro-RNAs (miRNAs) and siRNAs, whereas the latter targets piwi-interacting RNAs (piRNAs) that are 2'-O-methylated (2'-OCH{sub 3}) at their 3' ends. Germline-specific piRNAs and Piwi proteins play a critical role in genome defense against transposable elements, thereby protecting the genome against transposon-induced defects in gametogenesis and fertility. Humans contain four Piwi family proteins designated Hiwi1, Hiwi2, Hiwi3, and Hili. We report on the structures of Hili-PAZ (Piwi/Argonaute/Zwille) domain in the free state and Hiwi1 PAZ domain bound to self-complementary 14-mer RNAs (12-bp + 2-nt overhang) containing 2'-OCH{sub 3} and 2'-OH at their 3' ends. These structures explain the molecular basis underlying accommodation of the 2'-OCH{sub 3} group within a preformed Hiwi1 PAZ domain binding pocket, whose hydrophobic characteristics account for the preferential binding of 2'-OCH{sub 3} over 2'-OH 3' ends. These results contrast with the more restricted binding pocket for the human Ago1 PAZ domain, which exhibits a reverse order, with preferential binding of 2'-OH over 2'-OCH{sub 3} 3' ends.

  9. Detection of base pair mismatches in duplex DNA and RNA oligonucleotides using electrospray mass spectrometry

    NASA Astrophysics Data System (ADS)

    Griffey, Richard H.; Greig, Michael J.

    1997-05-01

    The identify and location of base pair mismatches in non- covalent DNA:RNA duplexes are established using MS and MS-MS on a quadruple ion trap with electrospray ionization (ESI). MS-MS experiments on a 14mer duplex (D) with a single C:A base pair mismatch using lower activation energy results in selective cleavage of the mismatched A nucleobase, even in the presence of the wild-type duplex. The location of the mismatch base pair can be discerned via presence of the wild-type duplex. The location of the mismatch base pair can be discerned via selection of the (D-5H)5- ion and fragmentation of the backbone at that location in a n additional MS-MS experiment. Selective fragmentation is observed for C in a C-C mismatched base pair, which is very difficult to detect using chemical cleavage or E. coli mismatch binding protein. In an RNA:DNA duplex with a single base pair mismatch, the DNA base is removed without fragmentation of the RNA strand, greatly simplifying the interpretation of the resulting MS spectrum. A method is presented for detecting two DNA strands, for example a point mutation which generates an oncogenic phenotype, and the wild-type message. The results suggest that ESI-MS-MS may provide a rapid and selective method to identify and locate genetic mutations without the need for chemical degradation or protein binding followed by gel electrophoresis.

  10. Host defense peptides in skin secretions of Odorrana tiannanensis: Proof for other survival strategy of the frog than merely anti-microbial.

    PubMed

    He, Weiyu; Feng, Feifei; Huang, Yong; Guo, Huanhuan; Zhang, Songyan; Li, Zheng; Liu, Jingze; Wang, Yipeng; Yu, Haining

    2012-03-01

    Genus Odorrana, among all amphibians studied, is generally reported to have the most abundant and diversified anti-microbial peptides even from a single individual frog. In our previous work, 46 cDNA sequences encoding precursors of 22 different anti-microbial peptides (AMPs) were characterized from the skin of frog, Odorrana tiannanensis. In this work, we reported the purification of three AMPs from skin secretions of O. tiannanensis. Their amino acid sequences matched well with the sequences deduced from cDNAs and they were designated as Odorranain-C7HSa, Brevinin-1-OT2 and Odorranain-G-OT, respectively. Furthermore, we selected to analyze the four most structurally diversified sequences among the 22 AMPs that are significantly different from all reported AMPs. By structural characterization, three of them were designated as pleurain-E-OT, odorranain-G-OT, odorranain-A-OT, belonging to AMP families already identified. The forth one with a unique 14-mer sequence of AILTTLANWARKFLa and C-terminal amidation represents the prototypes of a new class of amphibian AMP, and thereby named tiannanensin. Such broad diversity in sequences and structures are consistent with other species in Genus Odorrana. Multi-functions of the synthesized four special AMPs were screened, including anti-microbial, antioxidant, cytotoxic and hemolytic activities. The results suggest that these AMPs may employ sophisticated mechanisms of action in host defense in addition to anti-microbial, although their precise contribution to host defense still seems unclear. PMID:21963433

  11. Expanding the amino acid repertoire of ribosomal polypeptide synthesis via the artificial division of codon boxes

    NASA Astrophysics Data System (ADS)

    Iwane, Yoshihiko; Hitomi, Azusa; Murakami, Hiroshi; Katoh, Takayuki; Goto, Yuki; Suga, Hiroaki

    2016-04-01

    In ribosomal polypeptide synthesis the library of amino acid building blocks is limited by the manner in which codons are used. Of the proteinogenic amino acids, 18 are coded for by multiple codons and therefore many of the 61 sense codons can be considered redundant. Here we report a method to reduce the redundancy of codons by artificially dividing codon boxes to create vacant codons that can then be reassigned to non-proteinogenic amino acids and thereby expand the library of genetically encoded amino acids. To achieve this, we reconstituted a cell-free translation system with 32 in vitro transcripts of transfer RNASNN (tRNASNN) (S = G or C), assigning the initiator and 20 elongator amino acids. Reassignment of three redundant codons was achieved by replacing redundant tRNASNNs with tRNASNNs pre-charged with non-proteinogenic amino acids. As a demonstration, we expressed a 32-mer linear peptide that consists of 20 proteinogenic and three non-proteinogenic amino acids, and a 14-mer macrocyclic peptide that contains more than four non-proteinogenic amino acids.

  12. Structural basis for piRNA 2'-O-methylated 3'-end recognition by Piwi PAZ (Piwi/Argonaute/Zwille) domains.

    PubMed

    Tian, Yuan; Simanshu, Dhirendra K; Ma, Jin-Biao; Patel, Dinshaw J

    2011-01-18

    Argonaute and Piwi proteins are key players in the RNA silencing pathway, with the former interacting with micro-RNAs (miRNAs) and siRNAs, whereas the latter targets piwi-interacting RNAs (piRNAs) that are 2'-O-methylated (2(')-OCH(3)) at their 3' ends. Germline-specific piRNAs and Piwi proteins play a critical role in genome defense against transposable elements, thereby protecting the genome against transposon-induced defects in gametogenesis and fertility. Humans contain four Piwi family proteins designated Hiwi1, Hiwi2, Hiwi3, and Hili. We report on the structures of Hili-PAZ (Piwi/Argonaute/Zwille) domain in the free state and Hiwi1 PAZ domain bound to self-complementary 14-mer RNAs (12-bp + 2-nt overhang) containing 2(')-OCH(3) and 2'-OH at their 3' ends. These structures explain the molecular basis underlying accommodation of the 2(')-OCH(3) group within a preformed Hiwi1 PAZ domain binding pocket, whose hydrophobic characteristics account for the preferential binding of 2(')-OCH(3) over 2'-OH 3' ends. These results contrast with the more restricted binding pocket for the human Ago1 PAZ domain, which exhibits a reverse order, with preferential binding of 2'-OH over 2(')-OCH(3) 3' ends.

  13. Possible participation of pICln in the regulation of angiogenesis through alternative splicing of vascular endothelial growth factor receptor mRNAs.

    PubMed

    Li, Hui; Yonekura, Hideto; Kim, Chul-Hee; Sakurai, Shigeru; Yamamoto, Yasuhiko; Takiya, Toshiyuki; Futo, Satoshi; Watanabe, Takuo; Yamamoto, Hiroshi

    2004-01-01

    In this study, the authors applied a modified Antisense Display method to human vascular endothelial cells (ECs) in culture to isolate new angiostatic genes. Screening of a 10mer antisense oligodeoxyribonucleotide (oligo) repertoire identified a subpool that consistently stimulated EC growth. Subsequent screening of oligos with increasing chain length led to the isolation of a unique growth-stimulatory 14mer, 5'-TTCCACATCATATT-3'. cDNA/EST data-base search and expression analyses in ECs indicated pICln as the corresponding gene. A longer unique antisense oligo against a different region of pICln mRNA was found to also enhance EC growth and tube formation and to decrease mRNAs for soluble Flt-1 and neuropilin-1 vascular endothelial growth factor (VEGF) receptors, the angiostatic factors that are generated by alternative RNA splicing. Conversely,pICln overexpression suppressed EC growth and increased the mRNAs for both soluble Flt-1 and soluble neuropilin-1. The present findings thus suggest that pICln plays a role in autocrine regulation of angiogenesis, probably through alternative splicing. PMID:15763949

  14. A Distinct Class of Internal Ribosomal Entry Site in Members of the Kobuvirus and Proposed Salivirus and Paraturdivirus Genera of the Picornaviridae

    PubMed Central

    Sweeney, Trevor R.; Dhote, Vidya; Yu, Yingpu

    2012-01-01

    The 5′-untranslated regions (5′ UTRs) of picornavirus genomes contain an internal ribosomal entry site (IRES) that promotes the end-independent initiation of translation. Picornavirus IRESs are classified into four structurally distinct groups, each with different initiation factor requirements. Here, we identify a fifth IRES class in members of Kobuvirus, Salivirus, and Paraturdivirus genera of Picornaviridae: Aichi virus (AV), bovine kobuvirus (BKV), canine kobuvirus (CKoV), mouse kobuvirus (MKoV), sheep kobuvirus (SKV), salivirus A (SV-A), turdivirus 2 (TV2), and TV3. The 410-nucleotide (nt)-long AV IRES comprises four domains (I to L), including a hairpin (L) that overlaps a Yn-Xm-AUG (pyrimidine tract/spacer/initiation codon) motif. SV-A, CKoV, and MKoV also contain these four domains, whereas BKV, SKV, and TV2/TV3 5′ UTRs contain domains that are related to domain I and equivalent to domains J and K but lack an AV-like domain L. These IRESs are located at different relative positions between a conserved 5′-terminal origin of replication and divergent coding sequences. Elements in these IRESs also occur elsewhere: domain J's apical subdomain, which contains a GNRA tetraloop, matches an element in type 1 IRESs, and eIF4G-binding motifs in domain K and in type 2 IRESs are identical. Other elements are unique, and their presence leads to unique initiation factor requirements. In vitro reconstitution experiments showed that like AV, but in contrast to other currently characterized IRESs, SV-A requires the DExH-box protein DHX29 during initiation, which likely ensures that the initiation codon sequestered in domain L is properly accommodated in the ribosomal mRNA-binding cleft. PMID:22114340

  15. The Runt domain of AML1 (RUNX1) binds a sequence-conserved RNA motif that mimics a DNA element

    PubMed Central

    Fukunaga, Junichi; Nomura, Yusuke; Tanaka, Yoichiro; Amano, Ryo; Tanaka, Taku; Nakamura, Yoshikazu; Kawai, Gota; Sakamoto, Taiichi; Kozu, Tomoko

    2013-01-01

    AML1 (RUNX1) is a key transcription factor for hematopoiesis that binds to the Runt-binding double-stranded DNA element (RDE) of target genes through its N-terminal Runt domain. Aberrations in the AML1 gene are frequently found in human leukemia. To better understand AML1 and its potential utility for diagnosis and therapy, we obtained RNA aptamers that bind specifically to the AML1 Runt domain. Enzymatic probing and NMR analyses revealed that Apt1-S, which is a truncated variant of one of the aptamers, has a CACG tetraloop and two stem regions separated by an internal loop. All the isolated aptamers were found to contain the conserved sequence motif 5′-NNCCAC-3′ and 5′-GCGMGN′N′-3′ (M:A or C; N and N′ form Watson–Crick base pairs). The motif contains one AC mismatch and one base bulged out. Mutational analysis of Apt1-S showed that three guanines of the motif are important for Runt binding as are the three guanines of RDE, which are directly recognized by three arginine residues of the Runt domain. Mutational analyses of the Runt domain revealed that the amino acid residues used for Apt1-S binding were similar to those used for RDE binding. Furthermore, the aptamer competed with RDE for binding to the Runt domain in vitro. These results demonstrated that the Runt domain of the AML1 protein binds to the motif of the aptamer that mimics DNA. Our findings should provide new insights into RNA function and utility in both basic and applied sciences. PMID:23709277

  16. Stem-loop SL4 of the HIV-1 psi RNA packaging signal exhibits weak affinity for the nucleocapsid protein. structural studies and implications for genome recognition.

    PubMed

    Amarasinghe, G K; Zhou, J; Miskimon, M; Chancellor, K J; McDonald, J A; Matthews, A G; Miller, R R; Rouse, M D; Summers, M F

    2001-12-14

    Encapsidation of the genome of the human immunodeficiency virus type-1 (HIV-1) during retrovirus assembly is mediated by interactions between the nucleocapsid (NC) domains of assembling Gag polyproteins and a approximately 110 nucleotide segment of the genome known as the Psi-site. The HIV-1 Psi-site contains four stem-loops (SL1 through SL4), all of which are important for genome packaging. Recent isothermal titration calorimetry (ITC) studies have demonstrated that SL2 and SL3 are capable of binding NC with high affinity (K(d) approximately 140 nM), consistent with proposals for protein-interactive functions during packaging. To determine if SL4 may have a similar function, NC-interactive studies were conducted by NMR and gel-shift methods. In contrast to previous reports, we find that SL4 binds weakly to NC (K(d)=(+/-14 microM), suggesting an alternative function. NMR studies indicate that the GAGA tetraloop of SL4 adopts a classical GNRA-type fold (R=purine, N=G, C, A or U), a motif that stabilizes RNA tertiary structures in other systems. In combination with previously reported gel mobility studies of Psi-site deletion mutants, these findings suggest that SL4 functions in genome recognition not by binding to Gag, but by stabilizing the structure of the Psi-site. Differences in the affinities of NC for SL2, SL3 and SL4 stem-loops can now be rationalized in terms of the different structural properties of stem loops that contain GGNG (SL2 and SL3) and GNRA (SL4) sequences.

  17. Microsecond-Scale MD Simulations of HIV-1 DIS Kissing-Loop Complexes Predict Bulged-In Conformation of the Bulged Bases and Reveal Interesting Differences between Available Variants of the AMBER RNA Force Fields.

    PubMed

    Havrila, Marek; Zgarbová, Marie; Jurečka, Petr; Banáš, Pavel; Krepl, Miroslav; Otyepka, Michal; Šponer, Jiří

    2015-12-10

    We report an extensive set of explicit solvent molecular dynamics (MD) simulations (∼25 μs of accumulated simulation time) of the RNA kissing-loop complex of the HIV-1 virus initiation dimerization site. Despite many structural investigations by X-ray, NMR, and MD techniques, the position of the bulged purines of the kissing complex has not been unambiguously resolved. The X-ray structures consistently show bulged-out positions of the unpaired bases, while several NMR studies show bulged-in conformations. The NMR studies are, however, mutually inconsistent regarding the exact orientations of the bases. The earlier simulation studies predicted the bulged-out conformation; however, this finding could have been biased by the short simulation time scales. Our microsecond-long simulations reveal that all unpaired bases of the kissing-loop complex stay preferably in the interior of the kissing-loop complex. The MD results are discussed in the context of the available experimental data and we suggest that both conformations are biochemically relevant. We also show that MD provides a quite satisfactory description of this RNA system, contrasting recent reports of unsatisfactory performance of the RNA force fields for smaller systems such as tetranucleotides and tetraloops. We explain this by the fact that the kissing complex is primarily stabilized by an extensive network of Watson-Crick interactions which are rather well described by the force fields. We tested several different sets of water/ion parameters but they all lead to consistent results. However, we demonstrate that a recently suggested modification of van der Waals interactions of the Cornell et al. force field deteriorates the description of the kissing complex by the loss of key stacking interactions stabilizing the interhelical junction and excessive hydrogen-bonding interactions.

  18. Fluorescence and solution NMR study of the active site of a 160-kDa group II intron ribozyme

    PubMed Central

    Gumbs, Orlando H.; Padgett, Richard A.; Dayie, Kwaku T.

    2006-01-01

    We have reconstructed the group II intron from Pylaiella littoralis (PL) into a hydrolytic ribozyme, comprising domains 1–3 (D123) connected in cis plus domain 5 (D5) supplied in trans that efficiently cleaves spliced exon substrates. Using a novel gel-based fluorescence assay and nuclear magnetic resonance (NMR) spectroscopy, we monitored the direct binding of D5 to D123, characterized the kinetics of the spliced exon hydrolysis reaction (which is mechanistically analogous to the reverse of the second catalytic step of splicing), and identified the binding surface of D123 on D5. This PL ribozyme acts as an RNA endonuclease even at low monovalent (100 mM KCl) and divalent ion concentrations (1–10 mM MgCl2). This is in contrast to other group II intron ribozyme systems that require high levels of salt, making NMR analysis problematic. D5 binds tightly to D123 with a K d of 650 ± 250 nM, a K m of ∼300 nM, and a K cat of 0.02 min−1 under single turnover conditions. Within the ∼160-kDa D123–D5 binary complex, site-specific binding to D123 leads to dramatic chemical shift perturbation of residues localized to the tetraloop and internal bulge within D5, suggesting a structural switch model for D5-assisted splicing. This minimal ribozyme thus recapitulates the essential features of the reverse of the second catalytic step and represents a well-behaved system for ongoing high-resolution structural work to complement folding and catalytic functional studies. PMID:16894219

  19. RNA backbone: Consensus all-angle conformers and modular string nomenclature (an RNA Ontology Consortium contribution)

    PubMed Central

    Richardson, Jane S.; Schneider, Bohdan; Murray, Laura W.; Kapral, Gary J.; Immormino, Robert M.; Headd, Jeffrey J.; Richardson, David C.; Ham, Daniela; Hershkovits, Eli; Williams, Loren Dean; Keating, Kevin S.; Pyle, Anna Marie; Micallef, David; Westbrook, John; Berman, Helen M.

    2008-01-01

    A consensus classification and nomenclature are defined for RNA backbone structure using all of the backbone torsion angles. By a consensus of several independent analysis methods, 46 discrete conformers are identified as suitably clustered in a quality-filtered, multidimensional dihedral angle distribution. Most of these conformers represent identifiable features or roles within RNA structures. The conformers are given two-character names that reflect the seven-angle δεζαβγδ combinations empirically found favorable for the sugar-to-sugar “suite” unit within which the angle correlations are strongest (e.g., 1a for A-form, 5z for the start of S-motifs). Since the half-nucleotides are specified by a number for δεζ and a lowercase letter for αβγδ, this modular system can also be parsed to describe traditional nucleotide units (e.g., a1) or the dinucleotides (e.g., a1a1) that are especially useful at the level of crystallographic map fitting. This nomenclature can also be written as a string with two-character suite names between the uppercase letters of the base sequence (N1aG1gN1aR1aA1cN1a for a GNRA tetraloop), facilitating bioinformatic comparisons. Cluster means, standard deviations, coordinates, and examples are made available, as well as the Suitename software that assigns suite conformer names and conformer match quality (suiteness) from atomic coordinates. The RNA Ontology Consortium will combine this new backbone system with others that define base pairs, base-stacking, and hydrogen-bond relationships to provide a full description of RNA structural motifs. PMID:18192612

  20. The role of short RNA loops in recognition of a single-hairpin exon derived from a mammalian-wide interspersed repeat

    PubMed Central

    Kralovicova, Jana; Patel, Alpa; Searle, Mark; Vorechovsky, Igor

    2015-01-01

    Splice-site selection is controlled by secondary structure through sequestration or approximation of splicing signals in primary transcripts but the exact role of even the simplest and most prevalent structural motifs in exon recognition remains poorly understood. Here we took advantage of a single-hairpin exon that was activated in a mammalian-wide interspersed repeat (MIR) by a mutation stabilizing a terminal triloop, with splice sites positioned close to each other in a lower stem of the hairpin. We first show that the MIR exon inclusion in mRNA correlated inversely with hairpin stabilities. Employing a systematic manipulation of unpaired regions without altering splice-site configuration, we demonstrate a high correlation between exon inclusion of terminal tri- and tetraloop mutants and matching tri-/tetramers in splicing silencers/enhancers. Loop-specific exon inclusion levels and enhancer/silencer associations were preserved across primate cell lines, in 4 hybrid transcripts and also in the context of a distinct stem, but only if its loop-closing base pairs were shared with the MIR hairpin. Unlike terminal loops, splicing activities of internal loop mutants were predicted by their intramolecular Watson-Crick interactions with the antiparallel strand of the MIR hairpin rather than by frequencies of corresponding trinucleotides in splicing silencers/enhancers. We also show that splicing outcome of oligonucleotides targeting the MIR exon depend on the identity of the triloop adjacent to their antisense target. Finally, we identify proteins regulating MIR exon recognition and reveal a distinct requirement of adjacent exons for C-terminal extensions of Tra2α and Tra2β RNA recognition motifs. PMID:25826413

  1. Evidence of Liquid Crystal-Assisted Abiotic Ligation of Nucleic Acids

    NASA Astrophysics Data System (ADS)

    Fraccia, Tommaso P.; Zanchetta, Giuliano; Rimoldi, Valeria; Clark, Noel A.; Bellini, Tommaso

    2015-06-01

    The emergence of early life must have been marked by the appearance in the prebiotic era of complex molecular structures and systems, motivating the investigation of conditions that could not only facilitate appropriate chemical synthesis, but also provide the mechanisms of molecular selection and structural templating necessary to pilot the complexification toward specific molecular patterns. We recently proposed and demonstrated that these functions could be afforded by the spontaneous ordering of ultrashort nucleic acids oligomers into Liquid Crystal (LC) phases. In such supramolecular assemblies, duplex-forming oligomers are held in average end-to-end contact to form chemically discontinuous but physically continuous double helices. Using blunt ended duplexes, we found that LC formation could both provide molecular selection mechanisms and boost inter-oligomer ligation. This paper provides an essential extension to this notion by investigating the catalytic effects of LC ordering in duplexes with mutually interacting overhangs. Specifically, we studied the influence of LC ordering of 5'-hydroxy-3'-phosphate partially self-complementary DNA 14mers with 3'-CG sticky-ends, on the efficiency of non-enzymatic ligation reaction induced by water-soluble carbodiimide EDC as condensing agent. We investigated the ligation products in mixtures of DNA with poly-ethylene glycol (PEG) at three PEG concentrations at which the system phase separates creating DNA-rich droplets that organize into isotropic, nematic LC and columnar LC phases. We observe remarkable LC-enhanced chain lengthening, and we demonstrate that such lengthening effectively promotes and stabilizes LC domains, providing the kernel of a positive feedback cycle by which LC ordering promotes elongation, in turn stabilizing the LC ordering.

  2. The small peptide OGP(10-14) reduces proliferation and induces differentiation of TPO-primed M07-e cells through RhoA/TGFβ1/SFK pathway

    PubMed Central

    Battolla, Barbara; Bernardini, Nunzia; Petrini, Mario; Mattii, Letizia

    2011-01-01

    Summary Background Osteogenic growth peptide (OGP) is a 14-mer peptide found in relevant concentration in blood, and its carboxy-terminal fragment [OGP(10-14)] represents the active portion of the full-length peptide. In addition to stimulating bone formation, OGP(10-14) shows hematological activity. In fact, it highly enhances hematopoiesis-affecting stem progenitors. Moreover, OGP(10-14) reduces the growth and induces the differentiation of the hematological tumour cell line trombophoietin(TPO)-primed M07-e by interfering with RhoA and Src kinase pathways. In the present report, we went deeper into this mechanism and evaluated the possible interference of the OGP(10-14) signal pathway with TGFβ1 and TPO receptor Mpl. Material/Methods In OGP(10-14)-treated M07-e cells cultured with or without RhoA and Src kinases inhibitors (C3 and PP2), expression of TGFβ1, Mpl, and Src kinases was analyzed by immunoperoxidase technique. Activated RhoA expression was studied using the G-LISA™ quantitative test. Results In M07-e cells, both OGP(10-14) and PP2 activate RhoA, inhibit Src kinases, reduce Mpl expression and increase TGFβ1 expression. OGP(10-14) and PP2 show the same behavior, causing an additive effect when associated. Conclusions OGP(10-14) induces TPO-primed M07-e cells differentiation through RhoA/TGFβ1/SFKs signalling pathway. In particular OGP(10-14) acts as a Src inhibitor, showing the same effects of PP2. PMID:21169922

  3. Predicted Coverage and Immuno-Safety of a Recombinant C-Repeat Region Based Streptococcus pyogenes Vaccine Candidate.

    PubMed

    McNeilly, Celia; Cosh, Samantha; Vu, Therese; Nichols, Jemma; Henningham, Anna; Hofmann, Andreas; Fane, Anne; Smeesters, Pierre R; Rush, Catherine M; Hafner, Louise M; Ketheesan, Natkuman; Sriprakash, Kadaba S; McMillan, David J

    2016-01-01

    The C-terminal region of the M-protein of Streptococcus pyogenes is a major target for vaccine development. The major feature is the C-repeat region, consisting of 35-42 amino acid repeat units that display high but not perfect identity. SV1 is a S. pyogenes vaccine candidate that incorporates five 14mer amino acid sequences (called J14i variants) from differing C-repeat units in a single recombinant construct. Here we show that the J14i variants chosen for inclusion in SV1 are the most common variants in a dataset of 176 unique M-proteins. Murine antibodies raised against SV1 were shown to bind to each of the J14i variants present in SV1, as well as variants not present in the vaccine. Antibodies raised to the individual J14i variants were also shown to bind to multiple but different combinations of J14i variants, supporting the underlying rationale for the design of SV1. A Lewis Rat Model of valvulitis was then used to assess the capacity of SV1 to induce deleterious immune response associated with rheumatic heart disease. In this model, both SV1 and the M5 positive control protein were immunogenic. Neither of these antibodies were cross-reactive with cardiac myosin or collagen. Splenic T cells from SV1/CFA and SV1/alum immunized rats did not proliferate in response to cardiac myosin or collagen. Subsequent histological examination of heart tissue showed that 4 of 5 mice from the M5/CFA group had valvulitis and inflammatory cell infiltration into valvular tissue, whereas mice immunised with SV1/CFA, SV1/alum showed no sign of valvulitis. These results suggest that SV1 is a safe vaccine candidate that will elicit antibodies that recognise the vast majority of circulating GAS M-types. PMID:27310707

  4. Molecular recognition of DNA by ligands: Roughness and complexity of the free energy profile

    NASA Astrophysics Data System (ADS)

    Zheng, Wenwei; Vargiu, Attilio Vittorio; Rohrdanz, Mary A.; Carloni, Paolo; Clementi, Cecilia

    2013-10-01

    Understanding the molecular mechanism by which probes and chemotherapeutic agents bind to nucleic acids is a fundamental issue in modern drug design. From a computational perspective, valuable insights are gained by the estimation of free energy landscapes as a function of some collective variables (CVs), which are associated with the molecular recognition event. Unfortunately the choice of CVs is highly non-trivial because of DNA's high flexibility and the presence of multiple association-dissociation events at different locations and/or sliding within the grooves. Here we have applied a modified version of Locally-Scaled Diffusion Map (LSDMap), a nonlinear dimensionality reduction technique for decoupling multiple-timescale dynamics in macromolecular systems, to a metadynamics-based free energy landscape calculated using a set of intuitive CVs. We investigated the binding of the organic drug anthramycin to a DNA 14-mer duplex. By performing an extensive set of metadynamics simulations, we observed sliding of anthramycin along the full-length DNA minor groove, as well as several detachments from multiple sites, including the one identified by X-ray crystallography. As in the case of equilibrium processes, the LSDMap analysis is able to extract the most relevant collective motions, which are associated with the slow processes within the system, i.e., ligand diffusion along the minor groove and dissociation from it. Thus, LSDMap in combination with metadynamics (and possibly every equivalent method) emerges as a powerful method to describe the energetics of ligand binding to DNA without resorting to intuitive ad hoc reaction coordinates.

  5. Predicted Coverage and Immuno-Safety of a Recombinant C-Repeat Region Based Streptococcus pyogenes Vaccine Candidate

    PubMed Central

    McNeilly, Celia; Cosh, Samantha; Vu, Therese; Nichols, Jemma; Henningham, Anna; Hofmann, Andreas; Fane, Anne; Smeesters, Pierre R.; Rush, Catherine M.; Hafner, Louise M.; Ketheesan, Natkuman; Sriprakash, Kadaba S.; McMillan, David J.

    2016-01-01

    The C-terminal region of the M-protein of Streptococcus pyogenes is a major target for vaccine development. The major feature is the C-repeat region, consisting of 35–42 amino acid repeat units that display high but not perfect identity. SV1 is a S. pyogenes vaccine candidate that incorporates five 14mer amino acid sequences (called J14i variants) from differing C-repeat units in a single recombinant construct. Here we show that the J14i variants chosen for inclusion in SV1 are the most common variants in a dataset of 176 unique M-proteins. Murine antibodies raised against SV1 were shown to bind to each of the J14i variants present in SV1, as well as variants not present in the vaccine. Antibodies raised to the individual J14i variants were also shown to bind to multiple but different combinations of J14i variants, supporting the underlying rationale for the design of SV1. A Lewis Rat Model of valvulitis was then used to assess the capacity of SV1 to induce deleterious immune response associated with rheumatic heart disease. In this model, both SV1 and the M5 positive control protein were immunogenic. Neither of these antibodies were cross-reactive with cardiac myosin or collagen. Splenic T cells from SV1/CFA and SV1/alum immunized rats did not proliferate in response to cardiac myosin or collagen. Subsequent histological examination of heart tissue showed that 4 of 5 mice from the M5/CFA group had valvulitis and inflammatory cell infiltration into valvular tissue, whereas mice immunised with SV1/CFA, SV1/alum showed no sign of valvulitis. These results suggest that SV1 is a safe vaccine candidate that will elicit antibodies that recognise the vast majority of circulating GAS M-types. PMID:27310707

  6. Assembly and Structure of alpha-helical Peptide Films on Hydrophobic Fluorocarbon Surfaces

    SciTech Connect

    Weidner, T.; Samual, N; McCrea, K; Gamble, L; Ward, R; Castner, D

    2010-01-01

    The structure, orientation, and formation of amphiphilic {alpha}-helix model peptide films on fluorocarbon surfaces has been monitored with sum frequency generation (SFG) vibrational spectroscopy, near-edge x-ray absorption fine structure (NEXAFS) spectroscopy, and x-ray photoelectron spectroscopy (XPS). The {alpha}-helix peptide is a 14-mer of hydrophilic lysine and hydrophobic leucine residues with a hydrophobic periodicity of 3.5. This periodicity yields a rigid amphiphilic peptide with leucine and lysine side chains located on opposite sides. XPS composition analysis confirms the formation of a peptide film that covers about 75% of the surface. NEXAFS data are consistent with chemically intact adsorption of the peptides. A weak linear dichroism of the amide {pi}* is likely due to the broad distribution of amide bond orientations inherent to the {alpha}-helical secondary structure. SFG spectra exhibit strong peaks near 2865 and 2935 cm{sup -1} related to aligned leucine side chains interacting with the hydrophobic surface. Water modes near 3200 and 3400 cm{sup -1} indicate ordering of water molecules in the adsorbed-peptide fluorocarbon surface interfacial region. Amide I peaks observed near 1655 cm{sup -1} confirm that the secondary structure is preserved in the adsorbed peptide. A kinetic study of the film formation process using XPS and SFG showed rapid adsorption of the peptides followed by a longer assembly process. Peptide SFG spectra taken at the air-buffer interface showed features related to well-ordered peptide films. Moving samples through the buffer surface led to the transfer of ordered peptide films onto the substrates.

  7. The Impact of Chain Length and Flexibility in the Interaction between Sulfated Alginates and HGF and FGF-2.

    PubMed

    Arlov, Øystein; Aachmann, Finn L; Feyzi, Emadoldin; Sundan, Anders; Skjåk-Bræk, Gudmund

    2015-11-01

    Alginate is a promising polysaccharide for use in biomaterials as it is biologically inert. One way to functionalize alginate is by chemical sulfation to emulate sulfated glycosaminoglycans, which interact with a variety of proteins critical for tissue development and homeostasis. In the present work we studied the impact of chain length and flexibility of sulfated alginates for interactions with FGF-2 and HGF. Both growth factors interact with defined sequences of heparan sulfate (HS) at the cell surface or in the extracellular matrix. Whereas FGF-2 interacts with a pentasaccharide sequence containing a critical 2-O-sulfated iduronic acid, HGF has been suggested to require a highly sulfated HS/heparin octasaccharide. Here, oligosaccharides of alternating mannuronic and guluronic acid (MG) were sulfated and assessed by their relative efficacy at releasing growth factor bound to the surface of myeloma cells. 8-mers of sulfated MG (SMG) alginate showed significant HGF release compared to shorter fragments, while the maximum efficacy was achieved at a chain length average of 14 monosaccharides. FGF-2 release required a higher concentration of the SMG fragments, and the 14-mer was less potent compared to an equally sulfated high-molecular weight SMG. Sulfated mannuronan (SM) was subjected to periodate oxidation to increase chain flexibility. To assess the change in flexibility, the persistence length was estimated by SEC-MALLS analysis and the Bohdanecky approach to the worm-like chain model. A high degree of oxidation of SM resulted in approximately twice as potent HGF release compared to the nonoxidized SM alginate. The release of FGF-2 also increased with the degree of oxidation, but to a lower degree compared to that of HGF. It was found that the SM alginates were more efficient at releasing FGF-2 than the SMG alginates, indicating a greater dependence on monosaccharide identity and charge orientation over chain flexibility and charge density. PMID:26406104

  8. Delivery of antisense oligodeoxyribonucleotides against the human epidermal growth factor receptor into cultured KB cells with liposomes conjugated to folate via polyethylene glycol.

    PubMed Central

    Wang, S; Lee, R J; Cauchon, G; Gorenstein, D G; Low, P S

    1995-01-01

    Antisense oligodeoxyribonucleotides targeted to the epidermal growth factor (EGF) receptor were encapsulated into liposomes linked to folate via a polyethylene glycol spacer (folate-PEG-liposomes) and efficiently delivered into cultured KB cells via folate receptor-mediated endocytosis. The oligonucleotides were a phosphodiester 15-mer antisense to the EGF receptor (EGFR) gene stop codon (AEGFR2), the same sequence with three phosphorothioate linkages at each terminus (AEGFR2S), a randomized 15-mer control of similar base composition to AEGFR2 (RC15), a 14-mer control derived from a symmetrized Escherichia coli lac operator (LACM), and the 5'-fluorescein-labeled homologs of several of the above. Cellular uptake of AEGFR2 encapsulated in folate-PEG-liposomes was nine times higher than AEGFR2 encapsulated in nontargeted liposomes and 16 times higher than unencapsulated AEGFR2. Treatment of KB cells with AEGFR2 in folate-PEG-liposomes resulted in growth inhibition and significant morphological changes. Curiously, AEGFR2 and AEGFR2S encapsulated in folate-PEG-liposomes exhibited virtually identical growth inhibitory effects, reducing KB cell proliferation by > 90% 48 hr after the cells were treated for 4 hr with 3 microM oligonucleotide. Free AEGFR2 caused almost no growth inhibition, whereas free AEGFR2S was only one-fifth as potent as the folate-PEG-liposome-encapsulated oligonucleotide. Growth inhibition of the oligonucleotide-treated cells was probably due to reduced EGFR expression because indirect immunofluorescence staining of the cells with a monoclonal antibody against the EGFR showed an almost quantitative reduction of the EGFR in cells treated with folate-PEG-liposome-entrapped AEGFR2. These results suggest that antisense oligonucleotide encapsulation in folate-PEG-liposomes promise efficient and tumor-specific delivery and that phosphorothioate oligonucleotides appear to offer no major advantage over native phosphodiester DNA when delivered by this route

  9. Solution NMR characterization of chemokine CXCL8/IL-8 monomer and dimer binding to glycosaminoglycans: structural plasticity mediates differential binding interactions.

    PubMed

    Joseph, Prem Raj B; Mosier, Philip D; Desai, Umesh R; Rajarathnam, Krishna

    2015-11-15

    Chemokine CXCL8/interleukin-8 (IL-8) plays a crucial role in directing neutrophils and oligodendrocytes to combat infection/injury and tumour cells in metastasis development. CXCL8 exists as monomers and dimers and interaction of both forms with glycosaminoglycans (GAGs) mediate these diverse cellular processes. However, very little is known regarding the structural basis underlying CXCL8-GAG interactions. There are conflicting reports on the affinities, geometry and whether the monomer or dimer is the high-affinity GAG ligand. To resolve these issues, we characterized the binding of a series of heparin-derived oligosaccharides [heparin disaccharide (dp2), heparin tetrasaccharide (dp4), heparin octasaccharide (dp8) and heparin 14-mer (dp14)] to the wild-type (WT) dimer and a designed monomer using solution NMR spectroscopy. The pattern and extent of binding-induced chemical shift perturbation (CSP) varied between dimer and monomer and between longer and shorter oligosaccharides. NMR-based structural models show that different interaction modes coexist and that the nature of interactions varied between monomer and dimer and oligosaccharide length. MD simulations indicate that the binding interface is structurally plastic and provided residue-specific details of the dynamic nature of the binding interface. Binding studies carried out under conditions at which WT CXCL8 exists as monomers and dimers provide unambiguous evidence that the dimer is the high-affinity GAG ligand. Together, our data indicate that a set of core residues function as the major recognition/binding site, a set of peripheral residues define the various binding geometries and that the structural plasticity of the binding interface allows multiplicity of binding interactions. We conclude that structural plasticity most probably regulates in vivo CXCL8 monomer/dimer-GAG interactions and function.

  10. Solution NMR characterization of chemokine CXCL8/IL-8 monomer and dimer binding to glycosaminoglycans: structural plasticity mediates differential binding interactions

    PubMed Central

    Joseph, Prem Raj B.; Mosier, Philip D.; Desai, Umesh R.; Rajarathnam, Krishna

    2015-01-01

    Chemokine CXCL8/interleukin-8 (IL-8) plays a crucial role in directing neutrophils and oligodendrocytes to combat infection/injury and tumour cells in metastasis development. CXCL8 exists as monomers and dimers and interaction of both forms with glycosaminoglycans (GAGs) mediate these diverse cellular processes. However, very little is known regarding the structural basis underlying CXCL8–GAG interactions. There are conflicting reports on the affinities, geometry and whether the monomer or dimer is the high-affinity GAG ligand. To resolve these issues, we characterized the binding of a series of heparin-derived oligosaccharides [heparin disaccharide (dp2), heparin tetrasaccharide (dp4), heparin octasaccharide (dp8) and heparin 14-mer (dp14)] to the wild-type (WT) dimer and a designed monomer using solution NMR spectroscopy. The pattern and extent of binding-induced chemical shift perturbation (CSP) varied between dimer and monomer and between longer and shorter oligosaccharides. NMR-based structural models show that different interaction modes coexist and that the nature of interactions varied between monomer and dimer and oligosaccharide length. MD simulations indicate that the binding interface is structurally plastic and provided residue-specific details of the dynamic nature of the binding interface. Binding studies carried out under conditions at which WT CXCL8 exists as monomers and dimers provide unambiguous evidence that the dimer is the high-affinity GAG ligand. Together, our data indicate that a set of core residues function as the major recognition/binding site, a set of peripheral residues define the various binding geometries and that the structural plasticity of the binding interface allows multiplicity of binding interactions. We conclude that structural plasticity most probably regulates in vivo CXCL8 monomer/dimer–GAG interactions and function. PMID:26371375

  11. Structure Activity Relationships of α-L-LNA Modified Phosphorothioate Gapmer Antisense Oligonucleotides in Animals.

    PubMed

    Seth, Punit P; Jazayeri, Ali; Yu, Jeff; Allerson, Charles R; Bhat, Balkrishen; Swayze, Eric E

    2012-01-01

    We report the structure activity relationships of short 14-mer phosphorothioate gapmer antisense oligonucleotides (ASOs) modified with α-L-locked nucleic acid (LNA) and related modifications targeting phosphatase and tensin homologue (PTEN) messenger RNA in mice. α-L-LNA represents the α-anomer of enantio-LNA and modified oligonucleotides show LNA like binding affinity for complementary RNA. In contrast to sequence matched LNA gapmer ASOs which showed elevations in plasma alanine aminotransferase (ALT) levels indicative of hepatotoxicity, gapmer ASOs modified with α-L-LNA and related analogs in the flanks showed potent downregulation of PTEN messenger RNA in liver tissue without producing elevations in plasma ALT levels. However, the α-L-LNA ASO showed a moderate dose-dependent increase in liver and spleen weights suggesting a higher propensity for immune stimulation. Interestingly, replacing α-L-LNA nucleotides in the 3'- and 5'-flanks with R-5'-Me-α-L-LNA but not R-6'-Me- or 3'-Me-α-L-LNA nucleotides, reversed the drug induced increase in organ weights. Examination of structural models of dinucleotide units suggested that the 5'-Me group increases steric bulk in close proximity to the phosphorothioate backbone or produces subtle changes in the backbone conformation which could interfere with recognition of the ASO by putative immune receptors. Our data suggests that introducing steric bulk at the 5'-position of the sugar-phosphate backbone could be a general strategy to mitigate the immunostimulatory profile of oligonucleotide drugs. In a clinical setting, proinflammatory effects manifest themselves as injection site reactions and flu-like symptoms. Thus, a mitigation of these effects could increase patient comfort and compliance when treated with ASOs.Molecular Therapy - Nucleic Acids (2012) 1, e47; doi:10.1038/mtna.2012.34; published online 18 September 2012. PMID:23344239

  12. CENP-B box and pJalpha sequence distribution in human alpha satellite higher-order repeats (HOR).

    PubMed

    Rosandić, Marija; Paar, Vladimir; Basar, Ivan; Gluncić, Matko; Pavin, Nenad; Pilas, Ivan

    2006-01-01

    Using our Key String Algorithm (KSA) to analyze Build 35.1 assembly we determined consensus alpha satellite higher-order repeats (HOR) and consensus distributions of CENP-B box and pJalpha motif in human chromosomes 1, 4, 5, 7, 8, 10, 11, 17, 19, and X. We determined new suprachromosomal family (SF) assignments: SF5 for 13mer (2211 bp), SF5 for 13mer (2214 bp), SF2 for 11mer (1869 bp), SF1 for 18mer (3058 bp), SF3 for 12mer (2047 bp), SF3 for 14mer (2379 bp), and SF5 for 17mer (2896 bp) in chromosomes 4, 5, 8, 10, 11, 17, and 19, respectively. In chromosome 5 we identified SF5 13mer without any CENP-B box and pJalpha motif, highly homologous (96%) to 13mer in chromosome 19. Additionally, in chromosome 19 we identified new SF5 17mer with one CENP-B box and pJalpha motif, aligned to 13mer by deleting four monomers. In chromosome 11 we identified SF3 12mer, homologous to 12mer in chromosome X. In chromosome 10 we identified new SF1 18mer with eight CENP-B boxes in every other monomer (except one). In chromosome 4 we identified new SF5 13mer with CENP-B box in three consecutive monomers. We found four exceptions to the rule that CENP-B box belongs to type B and pJalpha motif to type A monomers. PMID:17115329

  13. Solution structure of GCCAAT recognition motif by 2D NMR, spectral simulation, molecular modeling, and distance geometry calculations.

    PubMed

    Nibedita, R; Kumar, R A; Majumdar, A; Hosur, R V; Govil, G; Majumder, K; Chauhan, V S

    1993-09-01

    Solution conformation of a self-complementary 14-mer DNA duplex (d-GGATTGGCCAATCC) containing the GCCAAT recognition motif of several transcription factors has been investigated by NMR spectroscopy. Complete resonance assignment of all the protons (except H5',H5'' protons) has been obtained following standard procedures based on two-dimensional NMR techniques. Three-bond coupling constants have been determined by spectral simulation procedures. New strategies have been described and employed for quantifying NOE intensities from the structural point of view. Approximate ranges of gamma torsion angles have been obtained from a selective NOESY experiment, by estimating the J(4'-5'), J(4'-5''), or their sum in the H1'-H4' cross peaks of the spectrum. Likewise, ranges of epsilon torsion angles have been obtained by monitoring the H3' multiplicities in the H8/H6-H3' cross peaks in selective NOESY spectra. With the help of such a total of 73 coupling constraints, 79 NOE intensity constraints, and 108 H-bond constraints, model building has been carried out to obtain a structure which satisfies the constraints. Starting from such a structure, an expanded distance constraint set has been created which has been used for the distance geometry calculations using the program TANDY. In the best structure thus derived, interesting irregularities similar to a BI-BII transition have been observed in the center. The molecule exhibits a bend. The overall base stacking is different from that in either B- or A-DNA models. The base pairs are tilted with respect to the local helix axes. The observed structural features are likely to have important implications for the recognition mechanism of the GCCAAT motif.

  14. Solution NMR characterization of chemokine CXCL8/IL-8 monomer and dimer binding to glycosaminoglycans: structural plasticity mediates differential binding interactions.

    PubMed

    Joseph, Prem Raj B; Mosier, Philip D; Desai, Umesh R; Rajarathnam, Krishna

    2015-11-15

    Chemokine CXCL8/interleukin-8 (IL-8) plays a crucial role in directing neutrophils and oligodendrocytes to combat infection/injury and tumour cells in metastasis development. CXCL8 exists as monomers and dimers and interaction of both forms with glycosaminoglycans (GAGs) mediate these diverse cellular processes. However, very little is known regarding the structural basis underlying CXCL8-GAG interactions. There are conflicting reports on the affinities, geometry and whether the monomer or dimer is the high-affinity GAG ligand. To resolve these issues, we characterized the binding of a series of heparin-derived oligosaccharides [heparin disaccharide (dp2), heparin tetrasaccharide (dp4), heparin octasaccharide (dp8) and heparin 14-mer (dp14)] to the wild-type (WT) dimer and a designed monomer using solution NMR spectroscopy. The pattern and extent of binding-induced chemical shift perturbation (CSP) varied between dimer and monomer and between longer and shorter oligosaccharides. NMR-based structural models show that different interaction modes coexist and that the nature of interactions varied between monomer and dimer and oligosaccharide length. MD simulations indicate that the binding interface is structurally plastic and provided residue-specific details of the dynamic nature of the binding interface. Binding studies carried out under conditions at which WT CXCL8 exists as monomers and dimers provide unambiguous evidence that the dimer is the high-affinity GAG ligand. Together, our data indicate that a set of core residues function as the major recognition/binding site, a set of peripheral residues define the various binding geometries and that the structural plasticity of the binding interface allows multiplicity of binding interactions. We conclude that structural plasticity most probably regulates in vivo CXCL8 monomer/dimer-GAG interactions and function. PMID:26371375

  15. Sequence-Specific, RNA–Protein Interactions Overcome Electrostatic Barriers Preventing Assembly of Satellite Tobacco Necrosis Virus Coat Protein

    PubMed Central

    Ford, Robert J.; Barker, Amy M.; Bakker, Saskia E.; Coutts, Robert H.; Ranson, Neil A.; Phillips, Simon E.V.; Pearson, Arwen R.; Stockley, Peter G.

    2013-01-01

    We have examined the roles of RNA–coat protein (CP) interactions in the assembly of satellite tobacco necrosis virus (STNV). The viral genomic RNA encodes only the CP, which comprises a β-barrel domain connected to a positively charged N-terminal extension. In the previous crystal structures of this system, the first 11 residues of the protein are disordered. Using variants of an RNA aptamer sequence isolated against the CP, B3, we have studied the sequence specificity of RNA-induced assembly. B3 consists of a stem–loop presenting the tetra-loop sequence ACAA. There is a clear preference for RNAs encompassing this loop sequence, as measured by the yield of T = 1 capsids, which is indifferent to sequences within the stem. The B3-containing virus-like particle has been crystallised and its structure was determined to 2.3 Å. A lower-resolution map encompassing density for the RNA has also been calculated. The presence of B3 results in increased ordering of the N-terminal helices located at the particle 3-fold axes, which extend by roughly one and a half turns to encompass residues 8–11, including R8 and K9. Under assembly conditions, STNV CP in the absence of RNA is monomeric and does not self-assemble. These facts suggest that a plausible model for assembly initiation is the specific RNA-induced stabilisation of a trimeric capsomere. The basic nature of the helical extension suggests that electrostatic repulsion between CPs prevents assembly in the absence of RNA and that this barrier is overcome by correct placement of appropriately orientated helical RNA stems. Such a mechanism would be consistent with the data shown here for assembly with longer RNA fragments, including an STNV genome. The results are discussed in light of a first stage of assembly involving compaction of the genomic RNA driven by multiple RNA packaging signal–CP interactions. PMID:23318955

  16. Cleavage of Model Substrates by Arabidopsis thaliana PRORP1 Reveals New Insights into Its Substrate Requirements.

    PubMed

    Mao, Guanzhong; Chen, Tien-Hao; Srivastava, Abhishek S; Kosek, David; Biswas, Pradip K; Gopalan, Venkat; Kirsebom, Leif A

    2016-01-01

    Two broad classes of RNase P trim the 5' leader of precursor tRNAs (pre-tRNAs): ribonucleoprotein (RNP)- and proteinaceous (PRORP)-variants. These two RNase P types, which use different scaffolds for catalysis, reflect independent evolutionary paths. While the catalytic RNA-based RNP form is present in all three domains of life, the PRORP family is restricted to eukaryotes. To obtain insights on substrate recognition by PRORPs, we examined the 5' processing ability of recombinant Arabidopsis thaliana PRORP1 (AtPRORP1) using a panel of pre-tRNASer variants and model hairpin-loop derivatives (pATSer type) that consist of the acceptor-T-stem stack and the T-/D-loop. Our data indicate the importance of the identity of N-1 (the residue immediately 5' to the cleavage site) and the N-1:N+73 base pair for cleavage rate and site selection of pre-tRNASer and pATSer. The nucleobase preferences that we observed mirror the frequency of occurrence in the complete suite of organellar pre-tRNAs in eight algae/plants that we analyzed. The importance of the T-/D-loop in pre-tRNASer for tight binding to AtPRORP1 is indicated by the 200-fold weaker binding of pATSer compared to pre-tRNASer, while the essentiality of the T-loop for cleavage is reflected by the near-complete loss of activity when a GAAA-tetraloop replaced the T-loop in pATSer. Substituting the 2'-OH at N-1 with 2'-H also resulted in no detectable cleavage, hinting at the possible role of this 2'-OH in coordinating Mg2+ ions critical for catalysis. Collectively, our results indicate similarities but also key differences in substrate recognition by the bacterial RNase P RNP and AtPRORP1: while both forms exploit the acceptor-T-stem stack and the elbow region in the pre-tRNA, the RNP form appears to require more recognition determinants for cleavage-site selection. PMID:27494328

  17. Multiple conformational states of the hammerhead ribozyme, broad time range of relaxation and topology of dynamics

    PubMed Central

    Menger, Marcus; Eckstein, Fritz; Porschke, Dietmar

    2000-01-01

    The dynamics of a hammerhead ribozyme was analyzed by measurements of fluorescence-detected temperature jump relaxation. The ribozyme was substituted at different positions by 2-aminopurine (2-AP) as fluorescence indicator; these substitutions do not inhibit catalysis. The general shape of relaxation curves reported from different positions of the ribozyme is very similar: a fast decrease of fluorescence, mainly due to physical quenching, is followed by a slower increase of fluorescence due to conformational relaxation. In most cases at least three relaxation time constants in the time range from a few microseconds to ~200 ms are required for fitting. Although the relaxation at different positions of the ribozyme is similar in general, suggesting a global type of ribozyme dynamics, a close examination reveals differences, indicating an individual local response. For example, 2-AP in a tetraloop reports mainly the local loop dynamics known from isolated loops, whereas 2-AP located at the core, e.g. at the cleavage site or its vicinity, also reports relatively large amplitudes of slower components of the ribozyme dynamics. A variant with an A→G substitution in domain II, resulting in an inactive form, leads to the appearance of a particularly slow relaxation process (τ ≈200 ms). Addition of Mg2+ ions induces a reduction of amplitudes and in most cases a general increase of time constants. Differences between the hammerhead variants are clearly demonstrated by subtraction of relaxation curves recorded under corresponding conditions. The changes induced in the relaxation response by Mg2+ are very similar to those induced by Ca2+. The relaxation data do not provide any evidence for formation of Mg2+-inner sphere complexes in hammerhead ribozymes, because a Mg2+-specific relaxation effect was not visible. However, a Mg2+-specific effect was found for a dodeca-riboadenylate substituted with 2-AP, showing that the fluorescence of 2-AP is able to indicate inner sphere

  18. Cleavage of Model Substrates by Arabidopsis thaliana PRORP1 Reveals New Insights into Its Substrate Requirements

    PubMed Central

    Srivastava, Abhishek S.; Kosek, David; Biswas, Pradip K.; Gopalan, Venkat; Kirsebom, Leif A.

    2016-01-01

    Two broad classes of RNase P trim the 5' leader of precursor tRNAs (pre-tRNAs): ribonucleoprotein (RNP)- and proteinaceous (PRORP)-variants. These two RNase P types, which use different scaffolds for catalysis, reflect independent evolutionary paths. While the catalytic RNA-based RNP form is present in all three domains of life, the PRORP family is restricted to eukaryotes. To obtain insights on substrate recognition by PRORPs, we examined the 5' processing ability of recombinant Arabidopsis thaliana PRORP1 (AtPRORP1) using a panel of pre-tRNASer variants and model hairpin-loop derivatives (pATSer type) that consist of the acceptor-T-stem stack and the T-/D-loop. Our data indicate the importance of the identity of N-1 (the residue immediately 5' to the cleavage site) and the N-1:N+73 base pair for cleavage rate and site selection of pre-tRNASer and pATSer. The nucleobase preferences that we observed mirror the frequency of occurrence in the complete suite of organellar pre-tRNAs in eight algae/plants that we analyzed. The importance of the T-/D-loop in pre-tRNASer for tight binding to AtPRORP1 is indicated by the 200-fold weaker binding of pATSer compared to pre-tRNASer, while the essentiality of the T-loop for cleavage is reflected by the near-complete loss of activity when a GAAA-tetraloop replaced the T-loop in pATSer. Substituting the 2'-OH at N-1 with 2'-H also resulted in no detectable cleavage, hinting at the possible role of this 2'-OH in coordinating Mg2+ ions critical for catalysis. Collectively, our results indicate similarities but also key differences in substrate recognition by the bacterial RNase P RNP and AtPRORP1: while both forms exploit the acceptor-T-stem stack and the elbow region in the pre-tRNA, the RNP form appears to require more recognition determinants for cleavage-site selection. PMID:27494328

  19. Probing the Orientation and Conformation of alpha-Helix and beta-Strand Model Peptides on Self-Assembled Monolayers Using Sum Frequency Generation and NEXAFS Spectroscopy

    SciTech Connect

    Weidner, T.; Apte, J; Gamble, L; Castner, D

    2010-01-01

    The structure and orientation of amphiphilic {alpha}-helix and {beta}-strand model peptide films on self-assembled monolayers (SAMs) have been studied with sum frequency generation (SFG) vibrational spectroscopy and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. The {alpha}-helix peptide is a 14-mer, and the {beta}-strand is a 15-mer of hydrophilic lysine and hydrophobic leucine residues with hydrophobic periodicities of 3.5 and 2, respectively. These periodicities result in the leucine side chains located on one side of the peptides and the lysine side chains on the other side. The SAMs were prepared from the assembly of either carboxylic acid- or methyl-terminated alkyl thiols onto gold surfaces. For SFG studies, the deuterated analog of the methyl SAM was used. SFG vibrational spectra in the C-H region of air-dried peptides films on both SAMs exhibit strong peaks near 2965, 2940, and 2875 cm{sup -1} related to ordered leucine side chains. The orientation of the leucine side chains was determined from the phase of these features relative to the nonresonant gold background. The relative phase for both the {alpha}-helix and {beta}-strand peptides showed that the leucine side chains were oriented away from the carboxylic acid SAM surface and oriented toward the methyl SAM surface. Amide I peaks observed near 1656 cm{sup -1} for the {alpha}-helix peptide confirm that the secondary structure is preserved on both SAMs. Strong linear dichroism related to the amide {pi}* orbital at 400.8 eV was observed in the nitrogen K-edge NEXAFS spectra for the adsorbed {beta}-strand peptides, suggesting that the peptide backbones are oriented parallel to the SAM surface with the side chains pointing toward or away from the interface. For the {alpha}-helix the dichroism of the amide {pi}* is significantly weaker, probably because of the broad distribution of amide bond orientations in the {alpha}-helix secondary structure.

  20. Probing Adenine Rings and Backbone Linkages Using Base Specific Isotope-Edited Raman Spectroscopy: Application to Group II Intron Ribozyme Domain V†

    PubMed Central

    Chen, Yuanyuan; Eldho, Nadukkudy V.

    2010-01-01

    Raman difference spectroscopy is used to probe the properties of a 36-nt RNA molecule, “D5”, which lies at the heart of the catalytic apparatus in group II introns. For D5 that has all its adenine residues labeled with 13C and 15N, and utilizing Raman difference spectroscopy, we identify the conformational sensitive -C-O-P-O-C- stretching modes of the unlabeled bonds adjacent to adenine bases, as well as the adenine ring modes themselves. The phosphodiester modes can be assigned to individual adenine residues based on earlier NMR data. The effect of Mg2+ binding was explored by analyzing the Raman difference spectra for [D5 + Mg2+] minus [D5 no Mg2+], for D5 unlabeled, or D5 labeled with 13C/15N-enriched adenine. In both sets of data we assign differential features to G ring modes perturbed by Mg2+ binding at the N7 position. In the A labeled spectra we attribute a Raman differential near 1450 cm−1 and changes of intensity at 1296 cm−1 to Mg binding at the N7 position of adenine bases. The A and G bases involved in Mg2+ binding again can be identified using earlier NMR results. For the unlabeled D5, a change in the C-O-P-O-C stretch profile at 811 cm−1 upon magnesium binding is due to a “tightening up” (in the sense of a more rigid molecule with less dynamic interchange among competing ribose conformers) of the D5 structure. For adenine labeled D5, small changes in the adenine backbone bond signatures in the 810 – 830 cm−1 region suggest small conformational changes occur in the tetraloop and bulge regions upon binding of Mg2+. The PO2− stretching vibration, near 1100 cm−1, from the non-bridging phosphate groups, probes the effect of Mg2+-hydrate inner-sphere interactions that cause an up-shift. In turn, the up-shift is modulated by the presence of monovalent cations since in the presence of Na+ and Li+ the up-shift is (23±2 cm−1) while in the presence of K+ and Cs+ it is (13±3 cm−1), a finding that correlates with the differences in