Science.gov

Sample records for 14-mev fusion neutrons

  1. LOW VOLTAGE 14 Mev NEUTRON SOURCE

    DOEpatents

    Little, R.N. Jr.; Graves, E.R.

    1959-09-29

    An apparatus yielding high-energy neutrons at the rate of 10/sup 8/ or more per second by the D,T or D,D reactions is described. The deuterium gas filling is ionized by electrons emitted from a filament, and the resulting ions are focused into a beam and accelerated against a fixed target. The apparatus is built in accordance with the relationship V/sub s/ = A--B log pd, where V/sub s/ is the sparking voltage, p the gas pressure, and d the gap length between the high voltage electrodes. Typical parameters to obtain the high neutron yields are 55 to 80 kv, 0.5 to 7.0 ma beam current, 5 to 12 microns D/sub 2/, and a gap length of 1 centimeter.

  2. Material Classification by Analysis of Prompt Photon Spectra Induced by 14-Mev Neutrons

    NASA Astrophysics Data System (ADS)

    Barzilov, Alexander; Novikov, Ivan

    Neutron based technologies are widely used in the field of bulk material analysis. These methods employ characteristic prompt gamma rays induced by a neutron probe for classification of the interrogated object using the elemental parameters extracted from the spectral data. Automatic data analysis and material classification algorithms are required for applications where access to nuclear spectroscopy expertise is limited and/or the autonomous robotic operation is necessary. Data obtained with neutron based systems differ from elemental composition evaluations based on chemical formulae due to statistical nature of nuclear reactions, presence of shielding and cladding, and other environmental conditions. Experimental data that are produced by the spectral decomposition can be expressed graphically as sets of overlapping classes in a multidimensional space of measured elemental intensities. To discriminate between classes of various materials, decision-tree and pattern recognition algorithms were studied. Results of application of these methods to data sets obtained for a pulsed 14-MeV neutron generator based active interrogation system are discussed.

  3. FEASIBILITY OF MEASURING IRON IN VIVO USING FAST 14 MEV NEUTRONS.

    SciTech Connect

    WIELOPOLSKI, L.

    2005-05-01

    In this short report, I reassess the feasibility of measuring iron in vivo in the liver and heart of thalassemia patients undergoing chelation therapy. Despite the multiplicity of analytical methods for analyzing iron, only two, magnetic resonance imaging, and magnetic susceptibility, are suitable for in vivo applications, and these are limited to the liver because of the heart's beat. Previously, a nuclear method, gamma-resonance scattering, offered a quantitative measure of iron in these organs; however, it was abandoned because it necessitated a nuclear reactor to produce the radioactive source. I reviewed and reassessed the status of two alternative nuclear methods, based on iron spectroscopy of gamma rays induced by fast neutron inelastic scattering and delayed activation in iron. Both are quantitative methods with high specificity for iron and adequate penetrating power to measure it in organs sited deep within the human body. My experiments demonstrated that both modalities met the stated qualitative objectives to measure iron. However, neutron dosimetry revealed that the intensity of the neutron radiation field was too weak to reliably assess the minimum detection limits, and to allow quantitative extrapolations to measurements in people. A review of the literature, included in this report, showed that these findings agree qualitatively with the published results, although the doses reported were about three orders-of-magnitude higher than those I used. Reviewing the limitations of the present work, steps were outlined for overcoming some of the shortcomings. Due to a dearth of valid quantitative alternatives for determining iron in vivo, I conclude that nuclear methods remain the only viable option. However, from the lessons learned, further systematic work is required before embarking on clinical studies.

  4. Intense fusion neutron sources

    NASA Astrophysics Data System (ADS)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 1015-1021 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 1020 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  5. Research on fusion neutron sources

    NASA Astrophysics Data System (ADS)

    Gryaznevich, M. P.

    2012-06-01

    The use of fusion devices as powerful neutron sources has been discussed for decades. Whereas the successful route to a commercial fusion power reactor demands steady state stable operation combined with the high efficiency required to make electricity production economic, the alternative approach to advancing the use of fusion is free of many of complications connected with the requirements for economic power generation and uses the already achieved knowledge of Fusion physics and developed Fusion technologies. "Fusion for Neutrons" (F4N), has now been re-visited, inspired by recent progress achieved on comparably compact fusion devices, based on the Spherical Tokamak (ST) concept. Freed from the requirement to produce much more electricity than used to drive it, a fusion neutron source could be efficiently used for many commercial applications, and also to support the goal of producing energy by nuclear power. The possibility to use a small or medium size ST as a powerful or intense steady-state fusion neutron source (FNS) is discussed in this paper in comparison with the use of traditional high aspect ratio tokamaks. An overview of various conceptual designs of compact fusion neutron sources based on the ST concept is given and they are compared with a recently proposed Super Compact Fusion Neutron Source (SCFNS), with major radius as low as 0.5 metres but still able to produce several MW of neutrons in a steady-state regime.

  6. Fusion neutronics experiments and analysis

    SciTech Connect

    Not Available

    1992-01-01

    UCLA has led the neutronics R D effort in the US for the past several years through the well-established USDOE/JAERI Collaborative Program on Fusion Neutronics. Significant contributions have been made in providing solid bases for advancing the neutronics testing capabilities in fusion reactors. This resulted from the hands-on experience gained from conducting several fusion integral experiments to quantify the prediction uncertainties of key blanket design parameters such as tritium production rate, activation, and nuclear heating, and when possible, to narrow the gap between calculational results and measurements through improving nuclear data base and codes capabilities. The current focus is to conduct the experiments in an annular configuration where the test assembly totally surrounds a simulated line source. The simulated line source is the first-of-a-kind in the scope of fusion integral experiments and presents a significant contribution to the world of fusion neutronics. The experiments proceeded through Phase IIIA to Phase IIIC in these line source simulation experiments started in 1989.

  7. Interpreting inertial fusion neutron spectra

    NASA Astrophysics Data System (ADS)

    Munro, David H.

    2016-03-01

    A burning laser fusion plasma produces a neutron spectrum first described by Brysk (1973 Plasma Phys. Control. Fusion 15 611). This and more recent work deals with the spectrum produced by a single fluid element. The distribution of temperatures and velocities in multiple fluid elements combine in any real spectrum; we derive formulas for how the neutron spectrum averages these contributions. The single element momentum spectrum is accurately Gaussian, but the multi-element spectrum exhibits higher moments. In particular, the skew and kurtosis are likely to be large enough to measure. Even the single fluid element spectrum may exhibit measurable directional anisotropy, so that instruments with different lines of sight should see different yields, mean velocities, mean temperatures, and higher moments. Finally, we briefly discuss how scattering in the imploded core modifies the neutron spectrum by changing the relative weighting of fuel regions with different temperatures and velocities.

  8. Neutronic analysis of a fusion hybrid reactor

    SciTech Connect

    Kammash, T.

    2012-07-01

    In a PHYSOR 2010 paper(1) we introduced a fusion hybrid reactor whose fusion component is the gasdynamic mirror (GDM), and whose blanket was made of thorium - 232. The thrust of that study was to demonstrate the performance of such a reactor by establishing the breeding of uranium - 233 in the blanket, and the burning thereof to produce power. In that analysis, we utilized the diffusion equation for one-energy neutron group, namely, those produced by the fusion reactions, to establish the power distribution and density in the system. Those results should be viewed as a first approximation since the high energy neutrons are not effective in inducing fission, but contribute primarily to the production of actinides. In the presence of a coolant, however, such as water, these neutrons tend to thermalize rather quickly, hence a better assessment of the reactor performance would require at least a two group analysis, namely the fast and thermal groups. We follow that approach and write an approximate set of equations for the fluxes of these groups. From these relations we deduce the all-important quantity, k{sub eff}, which we utilize to compute the multiplication factor, and subsequently, the power density in the reactor. We show that k{sub eff} can be made to have a value of 0.99, thus indicating that 100 thermal neutrons are generated per fusion neutron, while allowing the system to function as 'subcritical.' Moreover, we show that such a hybrid reactor can generate hundreds of megawatts of thermal power per cm of length depending on the flux of the fusion neutrons impinging on the blanket. (authors)

  9. Fusion neutronics-streaming, shielding, heating, activation

    NASA Astrophysics Data System (ADS)

    Freiesleben, H.; Richter, D.; Seidel, K.; Unholzer, S.

    2001-07-01

    The International Thermonuclear Experimental Reactor (ITER) represents an important step towards a fusion power plant. Controlled fusion will be realized in a d-t-plasma magnetically confined by a Tokamak configuration. The first wall of the plasma chamber, blanket and vacuum vessel of ITER form a compact assembly for converting the kinetic energy of fusion neutrons into heat while simultaneously shielding the superconducting coils efficiently against neutron and accompanying photon radiation. This shielding system can be investigated with neutrons generated by low-energy accelerators. We report on experiments concerning shielding and streaming properties of a mock-up where energy spectra of both neutrons and protons were measured. They are compared with predictions of Monte Carlo calculations (code MCNP-4A) using various data libraries. The agreement justified the use of measured spectra as basis to calculate design parameters such as neutron and photon heating, radiation damage, gas production, and activation. Some of these parameters were also directly measured. The results validate the ITER design.

  10. Variable control of neutron albedo in toroidal fusion devices

    DOEpatents

    Jassby, Daniel L.; Micklich, Bradley J.

    1986-01-01

    An arrangement is provided for controlling neutron albedo in toroidal fusion devices having inboard and outboard vacuum vessel walls for containment of the neutrons of a fusion plasma. Neutron albedo material is disposed immediately adjacent the inboard wall, and is movable, preferably in vertical directions, so as to be brought into and out of neutron modifying communication with the fusion neutrons. Neutron albedo material preferably comprises a liquid form, but may also take pebble, stringer and curtain-like forms. A neutron flux valve, rotatable about a vertical axis is also disclosed.

  11. Neutron diffraction studies of viral fusion peptides

    NASA Astrophysics Data System (ADS)

    Bradshaw, Jeremy P.; J. M. Darkes, Malcolm; Katsaras, John; Epand, Richard M.

    2000-03-01

    Membrane fusion plays a vital role in a large and diverse number of essential biological processes. Despite this fact, the precise molecular events that occur during fusion are still not known. We are currently engaged on a study of membrane fusion as mediated by viral fusion peptides. These peptides are the N-terminal regions of certain viral envelope proteins that mediate the process of fusion between the viral envelope and the membranes of the host cell during the infection process. As part of this study, we have carried out neutron diffraction measurements at the ILL, BeNSC and Chalk River, on a range of viral fusion peptides. The peptides, from simian immunodeficiency virus (SIV), influenza A and feline leukaemia virus (FeLV), were incorporated into stacked phospholipid bilayers. Some of the peptides had been specifically deuterated at key amino acids. Lamellar diffraction data were collected and analysed to yield information on the peptide conformation, location and orientation relative to the bilayer.

  12. Cherenkov neutron detector for fusion reaction and runaway electron diagnostics.

    PubMed

    Cheon, MunSeong; Kim, Junghee

    2015-08-01

    A Cherenkov-type neutron detector was newly developed and neutron measurement experiments were performed at Korea Superconducting Tokamak Advanced Research. It was shown that the Cherenkov neutron detector can monitor the time-resolved neutron flux from deuterium-fueled fusion plasmas. Owing to the high temporal resolution of the detector, fast behaviors of runaway electrons, such as the neutron spikes, could be observed clearly. It is expected that the Cherenkov neutron detector could be utilized to provide useful information on runaway electrons as well as fusion reaction rate in fusion plasmas. PMID:26329194

  13. Cherenkov neutron detector for fusion reaction and runaway electron diagnostics

    SciTech Connect

    Cheon, MunSeong Kim, Junghee

    2015-08-15

    A Cherenkov-type neutron detector was newly developed and neutron measurement experiments were performed at Korea Superconducting Tokamak Advanced Research. It was shown that the Cherenkov neutron detector can monitor the time-resolved neutron flux from deuterium-fueled fusion plasmas. Owing to the high temporal resolution of the detector, fast behaviors of runaway electrons, such as the neutron spikes, could be observed clearly. It is expected that the Cherenkov neutron detector could be utilized to provide useful information on runaway electrons as well as fusion reaction rate in fusion plasmas.

  14. Fuel cycle for a fusion neutron source

    NASA Astrophysics Data System (ADS)

    Ananyev, S. S.; Spitsyn, A. V.; Kuteev, B. V.

    2015-12-01

    The concept of a tokamak-based stationary fusion neutron source (FNS) for scientific research (neutron diffraction, etc.), tests of structural materials for future fusion reactors, nuclear waste transmutation, fission reactor fuel production, and control of subcritical nuclear systems (fusion-fission hybrid reactor) is being developed in Russia. The fuel cycle system is one of the most important systems of FNS that provides circulation and reprocessing of the deuterium-tritium fuel mixture in all fusion reactor systems: the vacuum chamber, neutral injection system, cryogenic pumps, tritium purification system, separation system, storage system, and tritium-breeding blanket. The existing technologies need to be significantly upgraded since the engineering solutions adopted in the ITER project can be only partially used in the FNS (considering the capacity factor higher than 0.3, tritium flow up to 200 m3Pa/s, and temperature of reactor elements up to 650°C). The deuterium-tritium fuel cycle of the stationary FNS is considered. The TC-FNS computer code developed for estimating the tritium distribution in the systems of FNS is described. The code calculates tritium flows and inventory in tokamak systems (vacuum chamber, cryogenic pumps, neutral injection system, fuel mixture purification system, isotope separation system, tritium storage system) and takes into account tritium loss in the fuel cycle due to thermonuclear burnup and β decay. For the two facility versions considered, FNS-ST and DEMO-FNS, the amount of fuel mixture needed for uninterrupted operation of all fuel cycle systems is 0.9 and 1.4 kg, consequently, and the tritium consumption is 0.3 and 1.8 kg per year, including 35 and 55 g/yr, respectively, due to tritium decay.

  15. Variable control of neutron albedo in toroidal fusion devices

    DOEpatents

    Jassby, D.L.; Micklich, B.J.

    1983-06-01

    This invention pertains to methods of controlling in the steady state, neutron albedo in toroidal fusion devices, and in particular, to methods of controlling the flux and energy distribution of collided neutrons which are incident on an outboard wall of a toroidal fusion device.

  16. Fuel cycle for a fusion neutron source

    SciTech Connect

    Ananyev, S. S. Spitsyn, A. V. Kuteev, B. V.

    2015-12-15

    The concept of a tokamak-based stationary fusion neutron source (FNS) for scientific research (neutron diffraction, etc.), tests of structural materials for future fusion reactors, nuclear waste transmutation, fission reactor fuel production, and control of subcritical nuclear systems (fusion–fission hybrid reactor) is being developed in Russia. The fuel cycle system is one of the most important systems of FNS that provides circulation and reprocessing of the deuterium–tritium fuel mixture in all fusion reactor systems: the vacuum chamber, neutral injection system, cryogenic pumps, tritium purification system, separation system, storage system, and tritium-breeding blanket. The existing technologies need to be significantly upgraded since the engineering solutions adopted in the ITER project can be only partially used in the FNS (considering the capacity factor higher than 0.3, tritium flow up to 200 m{sup 3}Pa/s, and temperature of reactor elements up to 650°C). The deuterium–tritium fuel cycle of the stationary FNS is considered. The TC-FNS computer code developed for estimating the tritium distribution in the systems of FNS is described. The code calculates tritium flows and inventory in tokamak systems (vacuum chamber, cryogenic pumps, neutral injection system, fuel mixture purification system, isotope separation system, tritium storage system) and takes into account tritium loss in the fuel cycle due to thermonuclear burnup and β decay. For the two facility versions considered, FNS-ST and DEMO-FNS, the amount of fuel mixture needed for uninterrupted operation of all fuel cycle systems is 0.9 and 1.4 kg, consequently, and the tritium consumption is 0.3 and 1.8 kg per year, including 35 and 55 g/yr, respectively, due to tritium decay.

  17. Neutron Dosimetry Tokamak Fusion Test Reactor Lithium Blanket Module

    SciTech Connect

    Tsang, F.Y.; Harker, Y.D.; Anderl, R.A.; Nigg, D.W.; Jassby, D.L.

    1986-11-01

    The Tokamak Fusion Test Reactor (TFTR) Lithium Blanket Module (LBM) program is a first-of-kind neutronics experiment involving a toroidal fusion neutron source. Qualification experiments have been conducted to develop primary measurement techniques and verify dosimetry materials that will be used to characterize the neutron environment inside and on the surfaces of the LBM. The deuterium-tritium simulation experiments utilizing a 14-MeV neutron generator and a fusion blanket mockup facility at the Idaho National Engineering Laboratory are described. Results and discussions are presented that identify the quality and limitations of the measured integral reaction data, including the minimum fluence requirement for the TFTR experiment.

  18. Fusion probability for neutron-rich radioactive Sn induced reactions

    SciTech Connect

    Liang, J Felix; Gross, Carl J; Kohley, Zachary W; Shapira, Dan; Varner Jr, Robert L; Allmond, James M; Caraley, Anne L; Lagergren, Karin B; Mueller, Paul Edward

    2012-01-01

    Evaporation residue cross sections for $^{124,126,127,128}$Sn+$^{64}$Ni and $^{132}$Sn+$^{58}$Ni have been measured to study the effects of neutron excess in neutron-rich radioactive nuclei on fusion. For the reactions with $^{64}$Ni, the fusion probability does not decrease with increasing neutron excess in Sn, contrary to the result of the stable beam Sn+Zr measurement. A comparison of the reduced evaporation residue cross sections for $^{126}$Sn+$^{64}$Ni and $^{132}$Sn+$^{58}$Ni, which make the same compound nucleus, shows that the fusion probability is indistinguishable for reactions involving the same atomic elements but different isotope combinations.

  19. Neutron scattering effects on fusion ion temperature measurements.

    SciTech Connect

    Ziegler, Lee; Starner, Jason R.; Cooper, Gary Wayne; Ruiz, Carlos L.; Franklin, James Kenneth; Casey, Daniel T.

    2006-06-01

    To support the nuclear fusion program at Sandia National Laboratories (SNL), a consistent and verifiable method to determine fusion ion temperatures needs to be developed. Since the fusion temperature directly affects the width in the spread of neutron energies produced, a measurement of the neutron energy width can yield the fusion temperature. Traditionally, the spread in neutron energies is measured by using time-of-flight to convert a spread in neutron energies at the source to a spread in time at detector. One potential obstacle to using this technique at the Z facility at SNL is the need to shield the neutron detectors from the intense bremsstrahlung produced. The shielding consists of eight inches of lead and the concern is that neutrons will scatter in the lead, artificially broaden the neutron pulse width and lead to an erroneous measurement. To address this issue, experiments were performed at the University of Rochester's Laboratory for Laser Energetics, which demonstrated that a reliable ion temperature measurement can be achieved behind eight inches of lead shielding. To further expand upon this finding, Monte Carlo N-Particle eXtended (MCNPX) was used to simulate the experimental geometric conditions and perform the neutron transport. MCNPX was able to confidently estimate results observed at the University of Rochester.

  20. Neutron-source characterization for fusion-materials studies

    SciTech Connect

    Greenwood, L.R.

    1981-06-01

    Neutron-flux and energy-spectrum measurements are conducted for all major fusion-materials irradiation facilities, including fission reactors and accelerators. Dosimetry-characterization experiments and integral cross section measurements have been performed. Multiple activation and helium-production measurements are performed routinely to provide materials experimenters with neutron-exposure parameters including fluence, spectrum, displacements, gas production, and transmutation with typical accuracies of 10 to 15%. Such data are crucial to the fusion-materials program in order to correlate materials-property changes between irradiations and facilities and to confidently predict the performance of materials in fusion reactors.

  1. Data fusion in neutron and X-ray computed tomography

    SciTech Connect

    Schrapp, Michael J.; Goldammer, Matthias; Schulz, Michael; Issani, Siraj; Bhamidipati, Suryanarayana; Böni, Peter

    2014-10-28

    We present a fusion methodology between neutron and X-ray computed tomography (CT). On the one hand, the inspection by X-ray CT of a wide class of multimaterials in non-destructive testing applications suffers from limited information of object features. On the other hand, neutron imaging can provide complementary data in such a way that the combination of both data sets fully characterizes the object. In this contribution, a novel data fusion procedure, called Fusion Regularized Simultaneous Algebraic Reconstruction Technique, is developed where the X-ray reconstruction is modified to fulfill the available data from the imaging with neutrons. The experiments, which were obtained from an aluminum profile containing a steel screw, and attached carbon fiber plates demonstrate that the image quality in CT can be significantly improved when the proposed fusion method is used.

  2. Calculating fusion neutron energy spectra from arbitrary reactant distributions

    NASA Astrophysics Data System (ADS)

    Eriksson, J.; Conroy, S.; Andersson Sundén, E.; Hellesen, C.

    2016-02-01

    The Directional Relativistic Spectrum Simulator (DRESS) code can perform Monte-Carlo calculations of reaction product spectra from arbitrary reactant distributions, using fully relativistic kinematics. The code is set up to calculate energy spectra from neutrons and alpha particles produced in the D(d, n)3He and T(d, n)4He fusion reactions, but any two-body reaction can be simulated by including the corresponding cross section. The code has been thoroughly tested. The kinematics calculations have been benchmarked against the kinematics module of the ROOT Data Analysis Framework. Calculated neutron energy spectra have been validated against tabulated fusion reactivities and against an exact analytical expression for the thermonuclear fusion neutron spectrum, with good agreement. The DRESS code will be used as the core of a detailed synthetic diagnostic framework for neutron measurements at the JET and MAST tokamaks.

  3. Fusion-neutron measurements for magnetized liner inertial fusion experiments on the Z accelerator

    NASA Astrophysics Data System (ADS)

    Hahn, K. D.; Chandler, G. A.; Ruiz, C. L.; Cooper, G. W.; Gomez, M. R.; Slutz, S.; Sefkow, A. B.; Sinars, D. B.; Hansen, S. B.; Knapp, P. F.; Schmit, P. F.; Harding, E.; Jennings, C. A.; Awe, T. J.; Geissel, M.; Rovang, D. C.; Torres, J. A.; Bur, J. A.; Cuneo, M. E.; Glebov, V. Yu; Harvey-Thompson, A. J.; Herrman, M. C.; Hess, M. H.; Johns, O.; Jones, B.; Lamppa, D. C.; Lash, J. S.; Martin, M. R.; McBride, R. D.; Peterson, K. J.; Porter, J. L.; Reneker, J.; Robertson, G. K.; Rochau, G. A.; Savage, M. E.; Smith, I. C.; Styron, J. D.; Vesey, R. A.

    2016-05-01

    Several magnetized liner inertial fusion (MagLIF) experiments have been conducted on the Z accelerator at Sandia National Laboratories since late 2013. Measurements of the primary DD (2.45 MeV) neutrons for these experiments suggest that the neutron production is thermonuclear. Primary DD yields up to 3e12 with ion temperatures ∼2-3 keV have been achieved. Measurements of the secondary DT (14 MeV) neutrons indicate that the fuel is significantly magnetized. Measurements of down-scattered neutrons from the beryllium liner suggest ρRliner∼1g/cm2. Neutron bang times, estimated from neutron time-of-flight (nTOF) measurements, coincide with peak x-ray production. Plans to improve and expand the Z neutron diagnostic suite include neutron burn-history diagnostics, increased sensitivity and higher precision nTOF detectors, and neutron recoil-based yield and spectral measurements.

  4. Linear induction accelerators for fusion and neutron production

    SciTech Connect

    Barletta, W.A. |

    1993-08-01

    Linear induction accelerators (LIA) with pulsed power drives can produce high energy, intense beams or electrons, protons, or heavy ions with megawatts of average power. The continuing development of highly reliable LIA components permits the use such accelerators as cost-effective beam sources to drive fusion pellets with heavy ions, to produce intense neutron fluxes using proton beams, and to generate with electrons microwave power to drive magnetic fusion reactors and high gradient, rf-linacs.

  5. Concept of DT fuel cycle for a fusion neutron source

    SciTech Connect

    Anan'ev, S.; Spitsyn, A.V.; Kuteev, B.V.; Cherkez, D.I.; Shirnin, P.N.; Kazakovsky, N.T.

    2015-03-15

    A concept of DT-fusion neutron source (FNS) with the neutron yield higher than 10{sup 18} neutrons per second is under design in Russia. Such a FNS is of interest for many applications: 1) basic and applied research (neutron scattering, etc); 2) testing the structural materials for fusion reactors; 3) control of sub-critical nuclear systems and 4) nuclear waste processing (including transmutation of minor actinides). This paper describes the fuel cycle concept of a compact fusion neutron source based on a small spherical tokamak (FNS-ST) with a MW range of DT fusion power and considers the key physics issues of this device. The major and minor radii are ∼0.5 and ∼0.3 m, magnetic field ∼1.5 T, heating power less than 15 MW and plasma current 1-2 MA. The system provides the fuel mixture with equal fractions of D and T (D:T = 1:1) for all FNS technology systems. (authors)

  6. Diagnostic of fusion neutrons on JET tokamak using diamond detector

    SciTech Connect

    Nemtsev, G.; Amosov, V.; Marchenko, N.; Meshchaninov, S.; Rodionov, R.; Popovichev, S.; Collaboration: JET EFDA Conbributors

    2014-08-21

    In 2011-2012, an experimental campaign with a significant yield of fusion neutrons was carried out on the JET tokamak. During this campaign the facility was equipped with two diamond detectors based on natural and artificial CVD diamond. These detectors were designed and manufactured in State Research Center of Russian Federation TRINITI. The detectors measure the flux of fast neutrons with energies above 0.2 MeV. They have been installed in the torus hall and the distance from the center of plasma was about 3 m. For some of the JET pulses in this experiment, the neutron flux density corresponded to the operational conditions in collimator channels of ITER Vertical Neutron Camera. The main objective of diamond monitors was the measurement of total fast neutron flux at the detector location and the estimation of the JET total neutron yield. The detectors operate as threshold counters. Additionally a spectrometric measurement channel has been configured that allowed us to distinguish various energy components of the neutron spectrum. In this paper we describe the neutron signal measuring and calibration procedure of the diamond detector. Fluxes of DD and DT neutrons at the detector location were measured. It is shown that the signals of total neutron yield measured by the diamond detector correlate with signals measured by the main JET neutron diagnostic based on fission chambers with high accuracy. This experiment can be considered as a successful test of diamond detectors in ITER-like conditions.

  7. Measurements of fusion neutrons from Magnetized Liner Inertial Fusion Experiments on the Z accelerator

    NASA Astrophysics Data System (ADS)

    Hahn, K. D.; Chandler, G. A.; Ruiz, C. L.; Gomez, M. R.; Slutz, S. A.; Sefkow, A. B.; Sinars, D. B.; Hansen, S. B.; Knapp, P. F.; Schmit, P. F.; Harding, E. C.; Awe, T. J.; Torres, J. A.; Jones, B.; Bur, J. A.; Cooper, G. W.; Styron, J. D.; Glebov, V. Yu.

    2015-11-01

    Strong evidence of thermonuclear neutron production has been observed during Magnetized Liner Inertial Fusion (MagLIF) experiments on the Z accelerator. So far, these experiments have utilized deuterium fuel and produced primary DD fusion neutron yields up to 2e12 with electron and ion stagnation temperatures in the 2-3 keV range. We present MagLIF neutron measurements and compare to other data and implosion simulations. In addition to primary DD and secondary DT yields and ion temperatures, other complex physics regarding the degree of fuel magnetization and liner density are elucidated by the neutron measurements. Neutron diagnostic development for deuterium and future deuterium-tritium fuel experiments are also discussed. Sandia is sponsored by the U.S. DOE's NNSA under contract DE-AC04-94AL85000.

  8. Neutron measurements for biomedical and fusion technology applications

    NASA Astrophysics Data System (ADS)

    Barschall, H. H.

    1985-01-01

    Measurements of reaction cross sections of neutrons of energy above 5 MeV yield important information about reaction mechanisms. The main impetus for such measurements has, however, recently come from applications. Measurements on light elements are needed for neutron dosimetry, primarily for radiotherapy. Measurements on heavier nuclides provide information for fusion technology, both for the assessment of radiation damage and for the management of radioactive wastes.

  9. Basics of Fusion-Fissison Research Facility (FFRF) as a Fusion Neutron Source

    SciTech Connect

    Leonid E. Zakharov

    2011-06-03

    FFRF, standing for the Fusion-Fission Research Facility represents an option for the next step project of ASIPP (Hefei, China) aiming to a first fusion-fission multifunctional device [1]. FFRF strongly relies on new, Lithium Wall Fusion plasma regimes, the development of which has already started in the US and China. With R/a=4/1m/m, Ipl=5 MA, Btor=4-6 T, PDT=50- 100 MW, Pfission=80-4000MW, 1 m thick blanket, FFRF has a unique fusion mission of a stationary fusion neutron source. Its pioneering mission of merging fusion and fission consists in accumulation of design, experimental, and operational data for future hybrid applications.

  10. Production of Medical isotope Technecium-99 from DT Fusion neutrons

    NASA Astrophysics Data System (ADS)

    Boguski, John; Gentile, Charles; Ascione, George

    2011-10-01

    High energy neutrons produced in DT fusion reactors have a secondary application for use in the synthesis of valuable man-made isotopes utilized in industry today. One such isotope is metastable Technecium-99 (Tc99m), a low energy gamma emitter used in ~ 85% of all medical imaging diagnostics. Tc99m is created through beta decay of Molybdenum-99 (Mo99), which itself has only a 66 hour half-life and must be created from a neutron capture by the widely available and stable isotope Molydenum-98. Current worldwide production of Tc99m occurs in just five locations and relies on obtaining the fission byproduct Mo99 from highly enriched Uranium reactors. A Tc99m generator using DT fusion neutrons, however, could potentially be operated at individual hospitals and medical facilities without the use of any fissile material. The neutron interaction of the DT neutrons with Molybdenum in a potential device geometry was modeled using Monte Carlo neutron transport code MCNP. Trial experiments were also performed to test the viability of using DT neutrons to create ample quantities of Tc99m. Modeling and test results will follow.

  11. Secondary fusion coupled deuteron/triton transport simulation and thermal-to-fusion neutron convertor measurement

    SciTech Connect

    Wang, G. B.; Wang, K.; Liu, H. G.; Li, R. D.

    2013-07-01

    A Monte Carlo tool RSMC (Reaction Sequence Monte Carlo) was developed to simulate deuteron/triton transportation and reaction coupled problem. The 'Forced particle production' variance reduction technique was used to improve the simulation speed, which made the secondary product play a major role. The mono-energy 14 MeV fusion neutron source was employed as a validation. Then the thermal-to-fusion neutron convertor was studied with our tool. Moreover, an in-core conversion efficiency measurement experiment was performed with {sup 6}LiD and {sup 6}LiH converters. Threshold activation foils was used to indicate the fast and fusion neutron flux. Besides, two other pivotal parameters were calculated theoretically. Finally, the conversion efficiency of {sup 6}LiD is obtained as 1.97x10{sup -4}, which matches well with the theoretical result. (authors)

  12. The first IEC fusion industrial neutron generator and developments

    SciTech Connect

    Sved, John

    1999-06-10

    Inertial Electrostatic Confinement fusion grade plasma containment has been sporadically researched since the early 1960's. In the 1990's the work of G. H. Miley and his team at the University of Illinios, Fusion Studies Laboratory, Champaign-Urbana has stimulated a collaboration with industry. The development and test program for the first industrial IEC neutron generator has progressed to the point where an endurance test is under way to demonstrate at least 10,000 hours of operational life of the sealed chamber device without servicing. The market entry goals of steady 10{sup 7} D-D n/s CW output with an air-cooled system have been achieved. DASA has invested in the development of the industrial product and the continuing basic research at the UI-FSL. The complete DASA FusionStar IEC-PS1 point source neutron generator set is described with emphasis on the interfaces to user NAA systems. The next product developments are pulsed neutron operations and higher fusion reaction rates of up to 10{sup 10} by means of affordable add-ons to the basic IEC-PS system. The production engineering experience gained will next be applied to a more challenging line source variant of the IEC. Beyond neutron and proton sources, several other IEC applications are being developed.

  13. Fission and activation of uranium by fusion-plasma neutrons

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Hohl, F.; Mcfarland, D. R.

    1978-01-01

    Fusion-fission hybrid reactors are discussed in terms of two main purposes: to breed fissile materials (Pu 233 and Th 233 from U 238 or Th 232) for use in low-reactivity breeders, and to produce tritium from lithium to refuel fusion plasma cores. Neutron flux generation is critical for both processes. Various methods for generating the flux are described, with attention to new geometries for multiple plasma focus arrays, e.g., hypocycloidal pinch and staged plasma focus devices. These methods are evaluated with reference to their applicability to D-D fusion reactors, which will ensure a virtually unlimited energy supply. Accurate observations of the neutron flux from such schemes are obtained by using different target materials in the plasma focus.

  14. Neutron irradiation facilities for fission and fusion reactor materials studies

    SciTech Connect

    Rowcliffe, A.F.

    1985-01-01

    The successful development of energy-conversion machines based upon nuclear fission or fusion reactors is critically dependent upon the behavior of the engineering materials used to construct the full containment and primary heat extraction systems. The development of radiation damage-resistant materials requires irradiation testing facilities which reproduce, as closely as possible, the thermal and neutronic environment expected in a power-producing reactor. The Oak Ridge National Laboratory (ORNL) reference core design for the Center for Neutron Research (CNR) reactor provides for instrumented facilities in regions of both hard and mixed neutron spectra, with substantially higher fluxes than are currently available. The benefits of these new facilities to the development of radiation damage resistant materials are discussed in terms of the major US fission and fusion reactor programs.

  15. Neutronics issues and inertial fusion energy: a summary of findings

    SciTech Connect

    Latkowski, J. F., LLNL

    1998-05-29

    We have analyzed and compared five major inertial fusion energy (IFE) and two representative magnetic fusion energy (MFE) power plant designs for their environment, safety, and health (ES&H) characteristics. Our work has focussed upon the neutronics of each of the designs and the resulting radiological hazard indices. The calculation of a consistent set of hazard indices allows comparisons to be made between the designs. Such comparisons enable identification of trends in fusion ES&H characteristics and may be used to increase the likelihood of fusion achieving its full potential with respect to ES&H characteristics. The present work summarizes our findings and conclusions. This work emphasizes the need for more research in low-activation materials and for the experimental measurement of radionuclide release fractions under accident conditions.

  16. Neutron imaging development for inertial confinement fusion experiments

    NASA Astrophysics Data System (ADS)

    Caillaud, Tony; Landoas, Olivier; Thfoin, Isabelle; Philippe, Franck; Casner, Alexis; Bourgade, Jean-Luc; Glebov, Vladimir; Marshall, Frederic J.; Sangster, Craig; Park, Hye Sook; Robey, Harry; Amendt, Peter

    2009-11-01

    Various failure mechanisms may limit fuel compression and ignition during Inertial Confinement Fusion (ICF) experiments with MegaJoule class lasers (e.g., the Laser M'egaJoule: LMJ and the National Ignition Facility: NIF). A Neutron Imaging System (NIS) may be used to determine the asymmetries in the hot core and the surrounding cold fuel shell. To reveal such asymmetries, a NIS must record both a primary (14 MeV) and a down-scattered (5-10 MeV) neutron image with high SNR and an image plane spatial resolution as low as 5 μm. We report on the continuing development of an NIS diagnostic at the OMEGA laser facility, using coded apertures. A new large neutron camera (150 mm entrance diameter: scaled for LMJ/NIF design) has been activated at OMEGA. This camera will allow 5 μm resolution for LMJ neutron source. We have tested a set of three detectors that can be used for various NIS diagnostic experiments on OMEGA from low yield (10^9-10^10 neutrons) low resolution (32 μm) measurements at 4 m from the neutron source to high yield (10^12-10^14 neutrons) high resolution (15 μm) measurements at 13 m. The low yield configuration allowed us to record, the first neutron image on an indirect drive shot with pure deuterium filled capsules.

  17. Damage calculation in fusion ceramics: comparing neutrons and light ions

    NASA Astrophysics Data System (ADS)

    Vladimirov, P. V.; Lizunov, D.; Ryazanov, Yu. A. I.; Möslang, A.

    1998-03-01

    A method developed earlier for displacement damage calculations in compound materials is applied to fusion ceramics irradiated by various neutron sources and light ion accelerators. For protons up to 40 MeV and alpha-particles up to 100 MeV, as well as for several neutron environments (EEF, ITER, HFIR, FFTF), sublattice-specific primary recoil spectra and displacement damage rates have been calculated for α-Al 2O 3, AlN, BeO, MgO, MgAl 2O 4 and SiC. Although the primary recoil spectra can vary significantly for different neutron sources and light ions, the ratios of sublattice-specific damage rates are the same within 5% for BeO, MgO and SiC in all considered environments. For ceramics containing Al, the damage ratio differs up to about 40% between neutron and light ion irradiations.

  18. Fusion-neutron effects on magnetoresistivity of copper stabilizer materials

    SciTech Connect

    Guinan, M.W.; Van Konynenburg, R.A.

    1983-02-24

    The objective of this work is to quantify the changes which occur in the magnetoresistivity of coppers (having various purities and pretreatments, and at magnetic fields up to 12 T during the course of sequential fusion neutron irradiations at about 4/sup 0/K and anneals to room temperature. In conjunction with work in progress by Coltman and Klabunde of ORNL, the results should lead to engineering design data for the stabilizers of superconducting magnets in fusion reactors. These magnets are expected to be irradiated during reactor operation and warmed to room temperature periodically during maintenance.

  19. Fusion-neutron measurements for magnetized liner inertial fusion experiments on the Z accelerator

    DOE PAGESBeta

    Hahn, K. D.; Chandler, G. A.; Ruiz, C. L.; Cooper, G. W.; Gomez, M. R.; Slutz, S.; Sefkow, A. B.; Sinars, D. B.; Hansen, S. B.; Knapp, P. F.; et al

    2016-05-01

    Several magnetized liner inertial fusion (MagLIF) experiments have been conducted on the Z accelerator at Sandia National Laboratories since late 2013. Measurements of the primary DD (2.45 MeV) neutrons for these experiments suggest that the neutron production is thermonuclear. Primary DD yields up to 3e12 with ion temperatures ~2-3 keV have been achieved. Measurements of the secondary DT (14 MeV) neutrons indicate that the fuel is significantly magnetized. Measurements of down-scattered neutrons from the beryllium liner suggest ρRliner ~ 1g/cm2. Neutron bang times, estimated from neutron time-of-flight (nTOF) measurements, coincide with peak x-ray production. Furthermore, plans to improve and expandmore » the Z neutron diagnostic suite include neutron burn-history diagnostics, increased sensitivity and higher precision nTOF detectors, and neutron recoil-based yield and spectral measurements.« less

  20. Muon catalyzed fusion in plasma state and high intensity DT fusion neutron source

    SciTech Connect

    Takahashi, Hiroshi

    1989-01-01

    dt/mu/ molecular formation rates in a plasma state of DT mixture by d and t ions are, respectively, 63 and 77 times higher than the ones by electrons. High plasma oscillation frequency in a high electron density plasma enhances the formation rate in the high temperature dt mixture. The DT muon catalyzed fusion has the ability to produce much higher intensity 14 MeV neutron source (in order of 5 /times/ 10/sup 16/n/cm/sup 2//sec) than other means of stripping and spallation approaches. Such neutrons can be used for testing of first wall material candidates for magnetic fusion reactors, for incinerating fission products (e.g., Cs/sup 137/) and for creating high thermal flux neutron sources, on the order of 10/sup 17/n/cm/sup 2//sec. 12 refs., 2 figs.

  1. Fission-Fusion Neutron Source Progress Report July 31, 2009

    SciTech Connect

    Chapline, G; Daffin, F; Clarke, R

    2010-02-19

    In this report the authors describe progress in evaluating the feasibility of a novel concept for producing intense pulses of 14 MeV neutrons using the DT fusion reaction. In this new scheme the heating of the DT is accomplished using fission fragments rather than ion beams as in conventional magnet fusion schemes or lasers in ICF schemes. This has the great advantage that there is no need for any large auxiliary power source. The scheme does require large magnetic fields, but generating these fields, e.g. with superconducting magnets, requires only a modest power source. As a source of fission fragments they propose using a dusty reactor concept introduced some time ago by one of us (RC). The version of the dusty reactor that they propose using for our neutron source would operate as a thermal neutron reactor and use highly enriched uranium in the form of micron sized pellets of UC. Our scheme for using the fission fragments to produce intense pulses of 14 MeV neutrons is based on the fission fragment rocket idea. In the fission fragment rocket scheme it was contemplated that the fission fragments produced in a low density reactor core would then be guided out of the reactor by large magnetic fields. A simple version of this idea would be to use the fission fragments escaping from one side of a tandem magnet mirror to heat DT gas confined in the adjacent magnetic trap.

  2. A neutron study of the feline leukaemia virus fusion peptide: Implications for biological fusion?

    NASA Astrophysics Data System (ADS)

    Davies, Sarah M. A.; Darkes, Malcolm J. M.; Bradshaw, Jeremy P.

    Neutron diffraction studies were performed on stacked phospholipid bilayers to determine the effects of the feline leukaemia virus (FeLV) fusion peptide on membrane structure. Bilayers were composed of dioleoylphosphatidylcholine with 50% (mol) dioleoylphosphatidylglycerol. Neutron scattering profiles with peptide present showed an increase in scattering density in the lipid-tails region, whilst scattering by the lipid headgroup region was decreased. This is interpreted as a lowering of the packing density of the lipid headgroups and an increase in the packing density of the lipid tails. Modelling studies and experimental evidence have suggested that fusion peptides catalyse fusion by increasing the negative curvature of the target membrane's outer monolayer. Our results presented here add support to this hypothesis for the fusion mechanism. The 2H 2O scattering profile was also slightly perturbed in the lipid headgroup region with 1% (mol)FeLV fusion peptide present. The FeLV peptide had no significant effect on the organisation of bilayers containing only dioleoylphosphatidylcholine.

  3. The neutronics studies of fusion fission hybrid power reactor

    SciTech Connect

    Zheng Youqi; Wu Hongchun; Zu Tiejun; Yang Chao; Cao Liangzhi

    2012-06-19

    In this paper, a series of neutronics analysis of hybrid power reactor is proposed. The ideas of loading different fuels in a modular-type fission blanket is analyzed, fitting different level of fusion developments, i.e., the current experimental power output, the level can be obtained in the coming future and the high-power fusion reactor like ITER. The energy multiplication of fission blankets and tritium breeding ratio are evaluated as the criterion of design. The analysis is implemented based on the D-type simplified model, aiming to find a feasible 1000MWe hybrid power reactor for 5 years' lifetime. Three patterns are analyzed: 1) for the low fusion power, the reprocessed fuel is chosen. The fuel with high plutonium content is loaded to achieve large energy multiplication. 2) For the middle fusion power, the spent fuel from PWRs can be used to realize about 30 times energy multiplication. 3) For the high fusion power, the natural uranium can be directly used and about 10 times energy multiplication can be achieved.

  4. Fission-Fusion Neutron Source Progress Report Sept 30, 2009

    SciTech Connect

    Chapline, G F; Daffin, F; Clark, R

    2010-02-19

    In this report the authors describe the progress made in FY09 in evaluating the feasibility of a new concept for using the DT fusion reaction to produce intense pulses of 14 MeV neutrons. In this new scheme the heating of the DT is accomplished using fission fragments rather than ion beams as in conventional magnet confinement fusion schemes or lasers in inertial confinement schemes. As a source of fission fragments they propose using a dust reactor concept introduced some time ago by one of us (RC). An attractive feature of this approach is that there is no need for a large auxiliary power source to heat the DT plasma to the point where self-sustaining fusion become possible. Their scheme does require pulsed magnetic fields, but generating these fields requires only a modest power source. The dust reactor that they propose using for their neutron source would use micron-sized UC pellets suspended in a vacuum as the reactor fuel. Surrounding the fuel with a moderator such as heavy water (D{sub 2}O) would allow the reactor to operate as a thermal reactor and require only modest amounts of HEU. The scheme for using fission fragments to generate intense pulses of 14 MeV neutrons is based on the fission fragment rocket idea. In the fission fragment rocket scheme it was contemplated that the fission fragments produced in a low density reactor core could be guided out of the reactor by large magnetic fields used to form a 'rocket exhaust'. Their adaptation of this idea for the purposes of making a neutron source involves using the fission fragments escaping from one side of a tandem magnet mirror to heat DT gas confined in the adjacent magnetic trap.

  5. Neutron flux assessment of a neutron irradiation facility based on inertial electrostatic confinement fusion.

    PubMed

    Sztejnberg Gonçalves-Carralves, M L; Miller, M E

    2015-12-01

    Neutron generators based on inertial electrostatic confinement fusion were considered for the design of a neutron irradiation facility for explanted organ Boron Neutron Capture Therapy (BNCT) that could be installed in a health care center as well as in research areas. The chosen facility configuration is "irradiation chamber", a ~20×20×40 cm(3) cavity near or in the center of the facility geometry where samples to be irradiated can be placed. Neutron flux calculations were performed to study different manners for improving scattering processes and, consequently, optimize neutron flux in the irradiation position. Flux distributions were assessed through numerical simulations of several models implemented in MCNP5 particle transport code. Simulation results provided a wide spectrum of combinations of net fluxes and energy spectrum distributions. Among them one can find a group that can provide thermal neutron fluxes per unit of production rate in a range from 4.1·10(-4) cm(-2) to 1.6·10(-3) cm(-2) with epithermal-to-thermal ratios between 0.3% and 13% and fast-to-thermal ratios between 0.01% to 8%. Neutron generators could be built to provide more than 10(10) n s(-1) and, consequently, with an arrangement of several generators appropriate enough neutron fluxes could be obtained that would be useful for several BNCT-related irradiations and, eventually, for clinical practice. PMID:26122974

  6. Laser Intertial Fusion Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    SciTech Connect

    Kramer, Kevin James

    2010-04-08

    This study investigates the neutronics design aspects of a hybrid fusion-fission energy system called the Laser Fusion-Fission Hybrid (LFFH). A LFFH combines current Laser Inertial Confinement fusion technology with that of advanced fission reactor technology to produce a system that eliminates many of the negative aspects of pure fusion or pure fission systems. When examining the LFFH energy mission, a significant portion of the United States and world energy production could be supplied by LFFH plants. The LFFH engine described utilizes a central fusion chamber surrounded by multiple layers of multiplying and moderating media. These layers, or blankets, include coolant plenums, a beryllium (Be) multiplier layer, a fertile fission blanket and a graphite-pebble reflector. Each layer is separated by perforated oxide dispersion strengthened (ODS) ferritic steel walls. The central fusion chamber is surrounded by an ODS ferritic steel first wall. The first wall is coated with 250-500 μm of tungsten to mitigate x-ray damage. The first wall is cooled by Li17Pb83 eutectic, chosen for its neutron multiplication and good heat transfer properties. The Li17Pb83 flows in a jacket around the first wall to an extraction plenum. The main coolant injection plenum is immediately behind the Li17Pb83, separated from the Li17Pb83 by a solid ODS wall. This main system coolant is the molten salt flibe (2LiF-BeF2), chosen for beneficial neutronics and heat transfer properties. The use of flibe enables both fusion fuel production (tritium) and neutron moderation and multiplication for the fission blanket. A Be pebble (1 cm diameter) multiplier layer surrounds the coolant injection plenum and the coolant flows radially through perforated walls across the bed. Outside the Be layer, a fission fuel layer comprised of depleted uranium contained in Tristructural-isotropic (TRISO) fuel particles

  7. Measurements of fusion neutron yields by neutron activation technique: Uncertainty due to the uncertainty on activation cross-sections

    NASA Astrophysics Data System (ADS)

    Stankunas, Gediminas; Batistoni, Paola; Sjöstrand, Henrik; Conroy, Sean

    2015-07-01

    The neutron activation technique is routinely used in fusion experiments to measure the neutron yields. This paper investigates the uncertainty on these measurements as due to the uncertainties on dosimetry and activation reactions. For this purpose, activation cross-sections were taken from the International Reactor Dosimetry and Fusion File (IRDFF-v1.05) in 640 groups ENDF-6 format for several reactions of interest for both 2.5 and 14 MeV neutrons. Activation coefficients (reaction rates) have been calculated using the neutron flux spectra at JET vacuum vessel, both for DD and DT plasmas, calculated by MCNP in the required 640-energy group format. The related uncertainties for the JET neutron spectra are evaluated as well using the covariance data available in the library. These uncertainties are in general small, but not negligible when high accuracy is required in the determination of the fusion neutron yields.

  8. Studies of near-barrier fusion induced by neutron-rich nuclei at HRIBF

    SciTech Connect

    Liang, J Felix

    2011-01-01

    Fusion induced by neutron-rich radioactive beams is a topic of current interest. The findings will be useful for using radioactive beams to produce superheavy elements. Results from recent measurements performed with neutron-rich radioactive Sn and Te beams are presented. Coupled-channels calculations were carried out to study the observed sub-barrier fusion enhancement. The fusion probability in Sn on Ni were probed by comparing the evaporation residue cross sections at high excitation energies.

  9. Swelling of nuclei embedded in neutron-gas and consequences for fusion

    NASA Astrophysics Data System (ADS)

    Umar, A. S.; Oberacker, V. E.; Horowitz, C. J.; Reinhard, P.-G.; Maruhn, J. A.

    2015-08-01

    Fusion of very neutron rich nuclei may be important to determine the composition and heating of the crust of accreting neutron stars. We present an exploratory study of the effect of the neutron-gas environment on the structure of nuclei and the consequences for pycnonuclear fusion cross sections in the neutron drip region. We studied the formation and properties of oxygen and calcium isotopes embedded in varying neutron-gas densities. We observe that the formed isotope is the drip-line nucleus for the given effective interaction. Increasing the neutron-gas density leads to the swelling of the nuclear density. We have used these densities to study the effect of this swelling on the fusion cross sections using the São Paulo potential. At high neutron-gas densities the cross section is substantially increased but at lower densities the modification is minimal.

  10. Calibration of the neutron detectors for the cluster fusion experiment on the Texas Petawatt Laser

    SciTech Connect

    Bang, W.; Quevedo, H. J.; Dyer, G.; Rougk, J.; Kim, I.; McCormick, M.; Bernstein, A. C.; Ditmire, T.

    2012-06-15

    Three types of neutron detectors (plastic scintillation detectors, indium activation detectors, and CR-39 track detectors) were calibrated for the measurement of 2.45 MeV DD fusion neutron yields from the deuterium cluster fusion experiment on the Texas Petawatt Laser. A Cf-252 neutron source and 2.45 MeV fusion neutrons generated from laser-cluster interaction were used as neutron sources. The scintillation detectors were calibrated such that they can detect up to 10{sup 8} DD fusion neutrons per shot in current mode under high electromagnetic pulse environments. Indium activation detectors successfully measured neutron yields as low as 10{sup 4} per shot and up to 10{sup 11} neutrons. The use of a Cf-252 neutron source allowed cross calibration of CR-39 and indium activation detectors at high neutron yields ({approx}10{sup 11}). The CR-39 detectors provided consistent measurements of the total neutron yield of Cf-252 when a modified detection efficiency of 4.6 Multiplication-Sign 10{sup -4} was used. The combined use of all three detectors allowed for a detection range of 10{sup 4} to 10{sup 11} neutrons per shot.

  11. Neutron dosimetry qualification experiments for the Tokamak Fusion Test Reactor Lithium Blanket Module program

    SciTech Connect

    Tsang, F.Y.; Harker, Y.D.; Anderi, R.A.; Nigg, D.W.; Jassby, D.L.

    1986-11-01

    The Tokamak Fusion Test Reactor (TFTR) Lithium Blanket module (LBM) program is a first-of-kind neutronics experiment involving a toroidal fusion neutron source. Qualification experiments have been conducted to develop primary measurement techniques and verify dosimetry materials that will be used to characterize the neutron environment inside and on the surfaces of the LBM. The deuterium-tritium simulation experiments utilizing a 14-MeV neutron generator and a fusion blanket mockup facility at the Idaho National Engineering Laboratory are described. Results and discussions are presented that identify the quality and limitations of the measured integral reaction data, including the minimum fluence requirement for the TFTR experiment and the use of such data in neutron spectrum adjustment and in predicting integral performance parameters, e.g., tritium production.

  12. Conceptual design of a camera system for neutron imaging in low fusion power tokamaks

    NASA Astrophysics Data System (ADS)

    Xie, X.; Yuan, X.; Zhang, X.; Nocente, M.; Chen, Z.; Peng, X.; Cui, Z.; Du, T.; Hu, Z.; Li, T.; Fan, T.; Chen, J.; Li, X.; Zhang, G.; Yuan, G.; Yang, J.; Yang, Q.

    2016-02-01

    The basic principles for designing a camera system for neutron imaging in low fusion power tokamaks are illustrated for the case of the HL-2A tokamak device. HL-2A has an approximately circular cross section, with total neutron yields of about 1012 n/s under 1 MW neutral beam injection (NBI) heating. The accuracy in determining the width of the neutron emission profile and the plasma vertical position are chosen as relevant parameters for design optimization. Typical neutron emission profiles and neutron energy spectra are calculated by Monte Carlo method. A reference design is assumed, for which the direct and scattered neutron fluences are assessed and the neutron count profile of the neutron camera is obtained. Three other designs are presented for comparison. The reference design is found to have the best performance for assessing the width of peaked to broadened neutron emission profiles. It also performs well for the assessment of the vertical position.

  13. Near-barrier fusion of proton- and neutron-halo systems

    NASA Astrophysics Data System (ADS)

    Aguilera, E. F.

    2016-07-01

    It is shown that the behaviour of the fusion excitation functions for proton-halo and neutron-halo systems presents important differences, especially in the energy region slightly above the barrier. Measurements for 6He, 11Li and 11Be projectiles are discussed to exemplify the behaviour of neutron-halo systems, while experiments with 8B beams illustrate the situation for proton-halo nuclei. With respect to a standard benchmark, neutron- (proton-) halo systems show a fusion suppression (enhancement) above the barrier.

  14. No enhancement of fusion probability by the neutron halo of 6He

    NASA Astrophysics Data System (ADS)

    Raabe, R.; Sida, J. L.; Charvet, J. L.; Alamanos, N.; Angulo, C.; Casandjian, J. M.; Courtin, S.; Drouart, A.; Durand, D. J. C.; Figuera, P.; Gillibert, A.; Heinrich, S.; Jouanne, C.; Lapoux, V.; Lepine-Szily, A.; Musumarra, A.; Nalpas, L.; Pierroutsakou, D.; Romoli, M.; Rusek, K.; Trotta, M.

    2004-10-01

    Quantum tunnelling through a potential barrier (such as occurs in nuclear fusion) is very sensitive to the detailed structure of the system and its intrinsic degrees of freedom. A strong increase of the fusion probability has been observed for heavy deformed nuclei. In light exotic nuclei such as 6He, 11Li and 11Be (termed `halo' nuclei), the neutron matter extends much further than the usual nuclear interaction scale. However, understanding the effect of the neutron halo on fusion has been controversial-it could induce a large enhancement of fusion, but alternatively the weak binding energy of the nuclei could inhibit the process. Other reaction channels known as direct processes (usually negligible for ordinary nuclei) are also important: for example, a fragment of the halo nucleus could transfer to the target nucleus through a diminished potential barrier. Here we study the reactions of the halo nucleus 6He with a 238U target, at energies near the fusion barrier. Most of these reactions lead to fission of the system, which we use as an experimental signature to identify the contribution of the fusion and transfer channels to the total cross-section. At energies below the fusion barrier, we find no evidence for a substantial enhancement of fusion. Rather, the (large) fission yield is due to a two-neutron transfer reaction, with other direct processes possibly also involved.

  15. Tensile property changes of metals irradiated to low doses with fission, fusion and spallation neutrons

    SciTech Connect

    Heinisch, H.L.; Hamilton, M.L.; Sommer, W.F.; Ferguson, P.D.

    1991-11-01

    Radiation effects due to low doses of spallation neutrons are compared directly to those produced by fission and fusion neutrons. Yield stress changes of pure Cu, alumina-dispersion-strengthened Cu and AISI 316 stainless steel irradiated at 36--55{degrees}C in the Los Alamos Spallation Radiation Effects Facility (LASREF) are compared with earlier results of irradiations at 90{degrees}C using 14 MeV D-T fusion neutrons at the Rotating Target Neutron Source and fission reactor neutrons in the Omega West Reactor. At doses up to 0.04 displacements per atom (dpa), the yield stress changes due to the three quite different neutron spectra correlate well on the basis of dpa in the stainless steel and the Cu alloy. However, in pure Cu, the measured yield stress changes due to spallation neutrons were anomalously small and should be verified by additional irradiations. With the exception of pure Cu, the low dose, low temperature experiments reveal no fundamental differences in radiation hardening by fission, fusion or spallation neutrons when compared on the basis of dpa.

  16. A Freon-filled bubble chamber for neutron detection in inertial confinement fusion experiments

    SciTech Connect

    Ghilea, M. C.; Meyerhofer, D. D.; Sangster, T. C.

    2011-03-15

    Neutron imaging is one of the main methods used in inertial confinement fusion experiments to measure the core symmetry of target implosions. Previous studies have shown that bubble chambers have the potential to obtain higher resolution images of the targets for a shorter source-to-target distance than typical scintillator arrays. A bubble chamber for neutron imaging with Freon 115 as the active medium was designed and built for the OMEGA laser system. Bubbles resulting from spontaneous nucleation were recorded. Bubbles resulting from neutron-Freon interactions were observed at neutron yields of 10{sup 13} emitted from deuterium-tritium target implosions on OMEGA. The measured column bubble density was too low for neutron imaging on OMEGA but agreed with the model of bubble formation. The recorded data suggest that neutron bubble detectors are a promising technology for the higher neutron yields expected at National Ignition Facility.

  17. Analysis of the neutron time-of-flight spectra from inertial confinement fusion experiments

    DOE PAGESBeta

    Hatarik, R.; Sayre, D. B.; Caggiano, J. A.; Phillips, T.; Eckart, M. J.; Bond, E. J.; Cerjan, C.; Grim, G. P.; Hartouni, E. P.; Knauer, J. P.; et al

    2015-11-12

    For a long time, neutron time-of-flight diagnostics been used to characterize the neutron spectrum produced by inertial confinement fusion experiments. The primary diagnostic goals are to extract the d+t→n+α (DT) and d+d→n+³He (DD) neutron yields and peak widths, and the amount DT scattering relative to its unscattered yield, which is also known as the down-scatter ratio (DSR). These quantities are used to infer yield weighted plasma conditions, such as ion temperature (Tion) and cold fuel areal density. We explain such novel methodologies used to determine neutron yield, apparent Tion and DSR.

  18. Analysis of the neutron time-of-flight spectra from inertial confinement fusion experiments

    SciTech Connect

    Hatarik, R.; Sayre, D. B.; Caggiano, J. A.; Phillips, T.; Eckart, M. J.; Bond, E. J.; Cerjan, C.; Grim, G. P.; Hartouni, E. P.; Knauer, J. P.; Mcnaney, J. M.; Munro, D. H.

    2015-11-12

    For a long time, neutron time-of-flight diagnostics been used to characterize the neutron spectrum produced by inertial confinement fusion experiments. The primary diagnostic goals are to extract the d+t→n+α (DT) and d+d→n+³He (DD) neutron yields and peak widths, and the amount DT scattering relative to its unscattered yield, which is also known as the down-scatter ratio (DSR). These quantities are used to infer yield weighted plasma conditions, such as ion temperature (Tion) and cold fuel areal density. We explain such novel methodologies used to determine neutron yield, apparent Tion and DSR.

  19. Fusion-neutron-yield, activation measurements at the Z accelerator: design, analysis, and sensitivity.

    PubMed

    Hahn, K D; Cooper, G W; Ruiz, C L; Fehl, D L; Chandler, G A; Knapp, P F; Leeper, R J; Nelson, A J; Smelser, R M; Torres, J A

    2014-04-01

    We present a general methodology to determine the diagnostic sensitivity that is directly applicable to neutron-activation diagnostics fielded on a wide variety of neutron-producing experiments, which include inertial-confinement fusion (ICF), dense plasma focus, and ion beam-driven concepts. This approach includes a combination of several effects: (1) non-isotropic neutron emission; (2) the 1/r(2) decrease in neutron fluence in the activation material; (3) the spatially distributed neutron scattering, attenuation, and energy losses due to the fielding environment and activation material itself; and (4) temporally varying neutron emission. As an example, we describe the copper-activation diagnostic used to measure secondary deuterium-tritium fusion-neutron yields on ICF experiments conducted on the pulsed-power Z Accelerator at Sandia National Laboratories. Using this methodology along with results from absolute calibrations and Monte Carlo simulations, we find that for the diagnostic configuration on Z, the diagnostic sensitivity is 0.037% ± 17% counts/neutron per cm(2) and is ∼ 40% less sensitive than it would be in an ideal geometry due to neutron attenuation, scattering, and energy-loss effects. PMID:24784607

  20. Fast neutron spectrometry with organic scintillators applied to magnetic fusion experiments

    NASA Astrophysics Data System (ADS)

    Kaschuck, Yu. A.; Esposito, B.; Trykov, L. A.; Semenov, V. P.

    2002-01-01

    Neutron spectrometry with NE213 liquid scintillators is commonly used in thermonuclear fusion experiments to measure the 2.45 and 14.1 MeV neutron flux. We present the unfolded neutron spectrum, which was accumulated during several ohmic deuterium plasma discharges in the Frascati Tokamak Upgrade using a 2″×2″ NE213 scintillator. In this paper, we review the application of organic scintillator neutron spectrometers to tokamaks, focusing in particular on the comparison between NE213 and stilbene scintillators. Various aspects of the calibration technique and neutron spectra unfolding procedure are considered in the context of their application for fusion neutron spectrometry. Testing and calibration measurements have been carried out using D-D and D-T neutron generator facilities with both NE213 and stilbene scintillators. The main result from these measurements is that stilbene scintillator has better neutron energy resolution than NE213. Our stilbene detector could be used for the determination of the ion temperature ( Ti) from neutron spectrum broadening in tokamak thermonuclear plasmas with Ti=4 keV and higher.

  1. Fusion-neutron-yield, activation measurements at the Z accelerator: Design, analysis, and sensitivity

    SciTech Connect

    Hahn, K. D. Ruiz, C. L.; Fehl, D. L.; Chandler, G. A.; Knapp, P. F.; Smelser, R. M.; Torres, J. A.; Cooper, G. W.; Nelson, A. J.; Leeper, R. J.

    2014-04-15

    We present a general methodology to determine the diagnostic sensitivity that is directly applicable to neutron-activation diagnostics fielded on a wide variety of neutron-producing experiments, which include inertial-confinement fusion (ICF), dense plasma focus, and ion beam-driven concepts. This approach includes a combination of several effects: (1) non-isotropic neutron emission; (2) the 1/r{sup 2} decrease in neutron fluence in the activation material; (3) the spatially distributed neutron scattering, attenuation, and energy losses due to the fielding environment and activation material itself; and (4) temporally varying neutron emission. As an example, we describe the copper-activation diagnostic used to measure secondary deuterium-tritium fusion-neutron yields on ICF experiments conducted on the pulsed-power Z Accelerator at Sandia National Laboratories. Using this methodology along with results from absolute calibrations and Monte Carlo simulations, we find that for the diagnostic configuration on Z, the diagnostic sensitivity is 0.037% ± 17% counts/neutron per cm{sup 2} and is ∼ 40% less sensitive than it would be in an ideal geometry due to neutron attenuation, scattering, and energy-loss effects.

  2. Fusion-neutron-yield, activation measurements at the Z accelerator: Design, analysis, and sensitivity

    NASA Astrophysics Data System (ADS)

    Hahn, K. D.; Cooper, G. W.; Ruiz, C. L.; Fehl, D. L.; Chandler, G. A.; Knapp, P. F.; Leeper, R. J.; Nelson, A. J.; Smelser, R. M.; Torres, J. A.

    2014-04-01

    We present a general methodology to determine the diagnostic sensitivity that is directly applicable to neutron-activation diagnostics fielded on a wide variety of neutron-producing experiments, which include inertial-confinement fusion (ICF), dense plasma focus, and ion beam-driven concepts. This approach includes a combination of several effects: (1) non-isotropic neutron emission; (2) the 1/r2 decrease in neutron fluence in the activation material; (3) the spatially distributed neutron scattering, attenuation, and energy losses due to the fielding environment and activation material itself; and (4) temporally varying neutron emission. As an example, we describe the copper-activation diagnostic used to measure secondary deuterium-tritium fusion-neutron yields on ICF experiments conducted on the pulsed-power Z Accelerator at Sandia National Laboratories. Using this methodology along with results from absolute calibrations and Monte Carlo simulations, we find that for the diagnostic configuration on Z, the diagnostic sensitivity is 0.037% ± 17% counts/neutron per cm2 and is ˜ 40% less sensitive than it would be in an ideal geometry due to neutron attenuation, scattering, and energy-loss effects.

  3. First downscattered neutron images from Inertial Confinement Fusion experiments at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Guler, Nevzat; Aragonez, Robert J.; Archuleta, Thomas N.; Batha, Steven H.; Clark, David D.; Clark, Deborah J.; Danly, Chris R.; Day, Robert D.; Fatherley, Valerie E.; Finch, Joshua P.; Gallegos, Robert A.; Garcia, Felix P.; Grim, Gary; Hsu, Albert H.; Jaramillo, Steven A.; Loomis, Eric N.; Mares, Danielle; Martinson, Drew D.; Merrill, Frank E.; Morgan, George L.; Munson, Carter; Murphy, Thomas J.; Oertel, John A.; Polk, Paul J.; Schmidt, Derek W.; Tregillis, Ian L.; Valdez, Adelaida C.; Volegov, Petr L.; Wang, Tai-Sen F.; Wilde, Carl H.; Wilke, Mark D.; Wilson, Douglas C.; Atkinson, Dennis P.; Bower, Dan E.; Drury, Owen B.; Dzenitis, John M.; Felker, Brian; Fittinghoff, David N.; Frank, Matthias; Liddick, Sean N.; Moran, Michael J.; Roberson, George P.; Weiss, Paul; Buckles, Robert A.; Cradick, Jerry R.; Kaufman, Morris I.; Lutz, Steve S.; Malone, Robert M.; Traille, Albert

    2013-11-01

    Inertial Confinement Fusion experiments at the National Ignition Facility (NIF) are designed to understand and test the basic principles of self-sustaining fusion reactions by laser driven compression of deuterium-tritium (DT) filled cryogenic plastic (CH) capsules. The experimental campaign is ongoing to tune the implosions and characterize the burning plasma conditions. Nuclear diagnostics play an important role in measuring the characteristics of these burning plasmas, providing feedback to improve the implosion dynamics. The Neutron Imaging (NI) diagnostic provides information on the distribution of the central fusion reaction region and the surrounding DT fuel by collecting images at two different energy bands for primary (13-15 MeV) and downscattered (10-12 MeV) neutrons. From these distributions, the final shape and size of the compressed capsule can be estimated and the symmetry of the compression can be inferred. The first downscattered neutron images from imploding ICF capsules are shown in this paper.

  4. Analysis of the role of neutron transfer in asymmetric fusion reactions at subbarrier energies

    NASA Astrophysics Data System (ADS)

    Ogloblin, A. A.; Zhang, H. Q.; Lin, C. J.; Jia, H. M.; Khlebnikov, S. V.; Kuzmin, E. A.; Danilov, A. N.; Demyanova, A. S.; Trzaska, W. H.; Xu, X. X.; Yang, F.; Sargsyan, V. V.; Adamian, G. G.; Antonenko, N. V.; Scheid, W.

    2015-12-01

    The excitation functions were measured for the 28Si + 208Pb complete-fusion (capture) reaction at deep subbarrier energies. The results were compared with the cross sections predicted within the quantum diffusion approach. The role of neutron transfer in the case of positive Q values in the 28Si + 124Sn, 208Pb; 30Si + 124Sn, 208Pb; 20Ne + 208Pb; 40Ca + 96Zr; and 134Te + 40Ca complete-fusion (capture) reactions is discussed.

  5. Fusion neutronics experiments and analysis. Progress report, November 1, 1991--October 31, 1992

    SciTech Connect

    Not Available

    1992-12-01

    UCLA has led the neutronics R&D effort in the US for the past several years through the well-established USDOE/JAERI Collaborative Program on Fusion Neutronics. Significant contributions have been made in providing solid bases for advancing the neutronics testing capabilities in fusion reactors. This resulted from the hands-on experience gained from conducting several fusion integral experiments to quantify the prediction uncertainties of key blanket design parameters such as tritium production rate, activation, and nuclear heating, and when possible, to narrow the gap between calculational results and measurements through improving nuclear data base and codes capabilities. The current focus is to conduct the experiments in an annular configuration where the test assembly totally surrounds a simulated line source. The simulated line source is the first-of-a-kind in the scope of fusion integral experiments and presents a significant contribution to the world of fusion neutronics. The experiments proceeded through Phase IIIA to Phase IIIC in these line source simulation experiments started in 1989.

  6. A Freon-Filled Bubble Chamber for Neutron Detection in Inertial Confinement Fusion Experiments

    SciTech Connect

    Ghilea, M.C.; Meyerhofer, D.D.; Sangster, T.C.

    2011-03-24

    Neutron imaging is one of the main methods used in inertial confinement fusion experiments to measure the core symmetry of target implosions. Previous studies have shown that bubble chambers have the potential to obtain higher resolution images of the targets for a shorter source-to-target distance than typical scintillator arrays. A bubble chamber for neutron imaging with Freon 115 as the active medium was designed and built for the OMEGA laser system. Bubbles resulting from spontaneous nucleation were recorded. Bubbles resulting from neutron–Freon interactions were observed at neutron yields of 1013 emitted from deuterium–tritium target implosions on OMEGA. The measured column bubble density was too low for neutron imaging on OMEGA but agreed with the model of bubble formation. The recorded data suggest that neutron bubble detectors are a promising technology for the higher neutron yields expected at National Ignition Facility.

  7. Neutron spectroscopy on TFTR (Tokamak Fusion Test Reactor)

    SciTech Connect

    Nishitani, T.; Strachan, J.D.

    1988-05-01

    This paper describes the use of an /sup 3/He ionization chamber for neutron spectroscopy on TFTR during 1987. The ion temperature was measured using neutron spectroscopy for one set of ohmically heated plasmas. The deduced ion temperatures agreed to within 20% with those measured by other diagnostics. 11 refs., 11 figs., 1 tab.

  8. Collimator design for neutron imaging of laser-fusion targets

    SciTech Connect

    Sommargren, G.E.; Lerche, R.A.

    1981-12-15

    Several pinhole collimator geometries for use in neutron imaging experiments have been modeled and compared. Point spread functions are shown for a cylinder, hyperbola, intersecting cones, and a five-zone approximation to the intersecting cones. Of the geometries studied, the intersecting cones appear the most promising with respect to neutron efficiency, field of view, and isoplanatism.

  9. Numerical study of neutron beam divergence in a beam-fusion scenario employing laser driven ions

    NASA Astrophysics Data System (ADS)

    Alejo, A.; Green, A.; Ahmed, H.; Robinson, A. P. L.; Cerchez, M.; Clarke, R.; Doria, D.; Dorkings, S.; Fernandez, J.; McKenna, P.; Mirfayzi, S. R.; Naughton, K.; Neely, D.; Norreys, P.; Peth, C.; Powell, H.; Ruiz, J. A.; Swain, J.; Willi, O.; Borghesi, M.; Kar, S.

    2016-09-01

    The most established route to create a laser-based neutron source is by employing laser accelerated, low atomic-number ions in fusion reactions. In addition to the high reaction cross-sections at moderate energies of the projectile ions, the anisotropy in neutron emission is another important feature of beam-fusion reactions. Using a simple numerical model based on neutron generation in a pitcher-catcher scenario, anisotropy in neutron emission was studied for the deuterium-deuterium fusion reaction. Simulation results are consistent with the narrow-divergence (∼ 70 ° full width at half maximum) neutron beam recently served in an experiment employing multi-MeV deuteron beams of narrow divergence (up to 30° FWHM, depending on the ion energy) accelerated by a sub-petawatt laser pulse from thin deuterated plastic foils via the Target Normal Sheath Acceleration mechanism. By varying the input ion beam parameters, simulations show that a further improvement in the neutron beam directionality (i.e. reduction in the beam divergence) can be obtained by increasing the projectile ion beam temperature and cut-off energy, as expected from interactions employing higher power lasers at upcoming facilities.

  10. Neutron irradiation experiments for fusion reactor materials through JUPITER program

    NASA Astrophysics Data System (ADS)

    Abe, K.; Kohyama, A.; Namba, C.; Wiffen, F. W.; Jones, R. H.

    1998-10-01

    A Japan-USA Program of irradiation experiments for fusion research, "JUPITER", has been established as a 6 year program from 1995 to 2000. The goal is to study "the dynamic behavior of fusion reactor materials and their response to variable and complex irradiation environment". This is phase-three of the collaborative program, which follows RTNS-II Program (Phase-1: 1982-1986) and FFTF/MOTA Program (Phase-2: 1987-1994). This program is to provide a scientific basis for application of materials performance data, generated by fission reactor experiments, to anticipated fusion environments. Following the systematic study on cumulative irradiation effects, done through FFTF/MOTA Program, JUPITER is emphasizing the importance of dynamic irradiation effects on materials performance in fusion systems. The irradiation experiments in this program include low activation structural materials, functional ceramics and other innovative materials. The experimental data are analyzed by theoretical modeling and computer simulation to integrate the above effects.

  11. A D-D/D-T fusion reaction based neutron generator system for liver tumor BNCT

    SciTech Connect

    Koivunoro, H.; Lou, T.P.; Leung, K. N.; Reijonen, J.

    2003-04-02

    Boron-neutron capture therapy (BNCT) is an experimental radiation treatment modality used for highly malignant tumor treatments. Prior to irradiation with low energetic neutrons, a 10B compound is located selectively in the tumor cells. The effect of the treatment is based on the high LET radiation released in the {sup 10}B(n,{alpha}){sup 7}Li reaction with thermal neutrons. BNCT has been used experimentally for brain tumor and melanoma treatments. Lately applications of other severe tumor type treatments have been introduced. Results have shown that liver tumors can also be treated by BNCT. At Lawrence Berkeley National Laboratory, various compact neutron generators based on D-D or D-T fusion reactions are being developed. The earlier theoretical studies of the D-D or D-T fusion reaction based neutron generators have shown that the optimal moderator and reflector configuration for brain tumor BNCT can be created. In this work, the applicability of 2.5 MeV neutrons for liver tumor BNCT application was studied. The optimal neutron energy for external liver treatments is not known. Neutron beams of different energies (1eV < E < 100 keV) were simulated and the dose distribution in the liver was calculated with the MCNP simulation code. In order to obtain the optimal neutron energy spectrum with the D-D neutrons, various moderator designs were performed using MCNP simulations. In this article the neutron spectrum and the optimized beam shaping assembly for liver tumor treatments is presented.

  12. Upgrade of the IGN-14 neutron generator for research on detection of fusion-plasma products

    NASA Astrophysics Data System (ADS)

    Igielski, Andrzej; Kurowski, Arkadiusz; Janik, Władysław; Gabańska, Barbara; Woźnicka, Urszula

    2015-10-01

    The fast neutron generator (IGN-14) at the Institute of Nuclear Physics of the Polish Academy of Sciences (IFJ PAN) in Kraków (Poland) is a laboratory multi-purpose experimental device. Neutrons are produced in a beam-target D-D or D-T reactions. A new vacuum chamber installed directly to the end of the ion guide of IGN-14 makes it possible to measure not only neutrons but also alpha particles in the presence of a mixed radiation field of other accompanying reaction products. The new experimental setup allows test detectors dedicated to spectrometric measurements of thermonuclear fusion reaction products.

  13. Benchmarking of the FENDL-3 Neutron Cross-section Data Starter Library for Fusion Applications

    SciTech Connect

    Fischer, U.; Angelone, M.; Bohm, T.; Kondo, K.; Konno, C.; Sawan, M.; Villari, R.; Walker, B.

    2014-06-15

    This paper summarizes the benchmark analyses performed in a joint effort of ENEA (Italy), JAEA (Japan), KIT (Germany), and the University of Wisconsin (USA) on a computational ITER benchmark and a series of 14 MeV neutron benchmark experiments. The computational benchmark revealed a modest increase of the neutron flux levels in the deep penetration regions and a substantial increase of the gas production in steel components. The comparison to experimental results showed good agreement with no substantial differences between FENDL-3.0 and FENDL-2.1 for most of the responses. In general, FENDL-3 shows an improved performance for fusion neutronics applications.

  14. Fusion-neutron production in the TFTR with deuterium neutral beam injection

    SciTech Connect

    Hendel, H.W.; England, A.C.; Jassby, D.L.; Mirin, A.A.; Nieschmidt, E.B.

    1986-06-01

    We report measurements of the fusion reaction rate in the Tokamak Fusion Test Reactor (TFTR) covering a wide range of plasma conditions and injected neutral beam powers up to 6.3 MW. The fusion-neutron production rate in beam-injected plasmas decreases slightly with increasing plasma density n/sub e/, even though the energy confinement parameter n/sub e/tau/sub E/ generally increases with density. The measurements indicate and Fokker-Planck simulations show that with increasing density the source of fusion neutrons evolves from mainly beam-beam and beam-target reactions at very low n/sub e/ to a combination of beam-target and thermonuclear reactions at high n/sub e/. At a given plasma current, the reduction in neutron source strength at higher n/sub e/ is due to both a decrease in electron temperature and in beam-beam reaction rate. The Fokker-Planck simulations also show that at low n/sub e/, plasma rotation can appreciably reduce the beam-target reaction rate for experiments with co-injection only. The variation of neutron source strength with plasma and beam parameters is as expected for beam-dominated regimes. However, the Fokker-Planck simulations systematically overestimate the measured source strength by a factor of 2 to 3; the source of this discrepancy has not yet been identified.

  15. Compact Intense Neutron Generators Based on Inertial Electrostatic Confinement of D-D Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Masuda, K.; Inoue, K.; Kajiwara, T.; Nakamatsu, R.

    2015-10-01

    A neutron generator based on inertial electrostatic confinement (IEC) of fusion plasmas is being developed for a non-destructive inspection system of special nuclear materials hidden in sea containers. The new IEC device is equipped with a multistage feedthrough which was designed aiming at both capability of a high bias voltage and enhancement of ion recirculation by modification of electric fields in the IEC device. Experimental comparison was made with a conventional single-stage IEC device developed in an earlier work. As the results, both the increase in the applied voltage and the modified field symmetry by the new multistage scheme showed significant enhancement in the neutron output. As a consequence, neutron output per input discharge current was enhanced drastically by a factor of ~30 in total. Also, the first pulsing experiments of the newly developed IEC neutron generator showed pulsed neutron output with a rapid pulse fall-off of ~ 1 μsec successfully.

  16. Optimizing Neutron Production Rates from D-D Fusion in an Inertial Electrostatic Confinement Device

    SciTech Connect

    Wehmeyer, A.L.; Radel, R.F.; Kulcinski, G.L.

    2005-05-15

    Detection of explosives has been identified as a near term commercial opportunity for using a fusion plasma. Typical explosive compositions contain low Z material (C, N, O) which are not easily detected using conventional x-rays or metal detectors. However, 2.45 MeV neutrons produced in a D-D fusion reaction can be used for detection of explosives or other clandestine materials in suitcases, packages, or shipping containers.Steady-state D-D operation is possible using an Inertial Electrostatic Confinement (IEC) fusion device. The University of Wisconsin IEC device has produced D-D neutrons at 1.8 x 10{sup 8} neutrons/second at a true cathode voltage of 166 kV and a meter current of 68 mA. These neutron production rates are approaching the levels required for the detection of explosives. In order to increase and optimize the neutron production rate in the IEC device, experiments were performed altering the cathode's size (diameter), geometry, and material composition. Preliminary results indicate that significant differences in neutron production rates are not achieved by altering the geometry or material composition of the cathode. However, the neutron production rate was found to increase approximately 20% by doubling the cathode's diameter from 10 cm to 20 cm. In addition, increasing the cathode voltage from 34 kV to 94 kV at a meter current of 30 mA increased the neutron production rate from 1.24 x 10{sup 6} n/s to 2.83 x 10{sup 7} n/s.

  17. Analysis of primary damage in silicon carbide under fusion and fission neutron spectra

    NASA Astrophysics Data System (ADS)

    Guo, Daxi; Zang, Hang; Zhang, Peng; Xi, Jianqi; Li, Tao; Ma, Li; He, Chaohui

    2014-12-01

    Irradiation parameters on primary damage states of SiC are evaluated and compared for the first wall of ITER under deuterium-deuterium (DD) and deuterium-tritium (DT) operation, the high temperature gas-cooled reactor (HTGR) and high flux isotope reactor (HFIR). With the same neutron fluence, the studied fusion spectra produce more damage and much higher gas production than the fission spectra. Due to comparable gas production and similar weighted primary recoil spectra, HFIR is considered suitable to simulate the neutron irradiation in an HTGR. In contrast to the significant differences between the weighted primary recoil spectra of the fission and the fusion spectra, the weighted secondary recoil spectra of HFIR and HTGR match those of DD and DT, indicating that displacement cascades by the fission and the fusion irradiation are similar when the damage distribution among damaged regions by secondary recoils is taken into account.

  18. Neutron-induced reactions relevant for Inertial-Cofinement Fusion Experiments

    NASA Astrophysics Data System (ADS)

    Boswell, Melissa; Devlin, Mathew; Fotiadis, Nikolaos; Merrill, Frank; Nelson, Ronald; Tonchev, Anton

    2014-09-01

    The typical ignition experiment at the National Ignition Facility ablatively implodes a plastic capsule filled with DT fuel, generating a high flux of 14-MeV neutrons from the d(t,n) α reaction. There is some spread in the energy of these primary 14-MeV neutrons, which is mainly attributable to Doppler shifting from the relative thermal motion of the burning DT fuel. Neutrons created during this reaction have 5--10% chance of scattering before escaping the fuel assembly, losing some fraction of their energy in the scattering process. Neutrons emerging with an energy greater than the reaction energy are generated by a two-step process where neutrons first transfer momentum to a deuteron or tritium ion, these enhanced energy ions then fuse in flight to produce higher energy neutrons; some of these neutrons have energies in excess of 30 MeV. Measuring the fluencies of both the low- and high-energy neutrons is a powerful mechanism for studying the properties of the fuel assembly, and the various parameters important to inertial confinement fusion. We have developed a number of tools to measure the spectral characteristics of the NIF neutron spectrum. Most of these methods rely on exploiting the energy dependence of (n, γ), (n,2n), (n,3n) and (n,p) reactions on a variety o.

  19. Research and Development of Landmine Detection System by a Compact Fusion Neutron Source

    SciTech Connect

    Yoshikawa, Kiyoshi; Masuda, Kai; Toku, Hisayuki; Nagasaki, Kazunobu; Mizutani, Toshiyuki; Takamatsu, Teruhisa; Imoto, Masaki; Yamamoto, Yasushi; Ohnishi, Masami; Osawa, Hodaka; Hotta, Eiki; Kohno, Toshiyuki; Okino, Akitoshi; Watanabe, Masato; Yamauchi, Kunihito; Yuura, Morimasa; Shiroya, Seiji; Misawa, Tsuyoshi; Mori, Takamasa

    2005-05-15

    Current results are described on the research and development of an advanced anti-personnel landmine detection system by using a compact discharge-type fusion neutron source called IECF (Inertial-Electrostatic Confinement Fusion). Landmines are to be identified through backscattering of neutrons, and specific-energy capture {gamma}-rays by hydrogen and nitrogen atoms in the landmine explosives.For this purpose, improvements in the IECF were made by various methods to achieve a drastic enhancement of neutron yields of more than 10{sup 8} n/s in pulsed operation. This required R and D on the power source, as well as analysis of envisaged detection systems with multi-sensors. The results suggest promising and practical features for humanitarian landmine detection, particularly, in Afghanistan.

  20. 3D Neutronic Analysis in MHD Calculations at ARIES-ST Fusion Reactors Systems

    NASA Astrophysics Data System (ADS)

    Hançerliogulları, Aybaba; Cini, Mesut

    2013-10-01

    In this study, we developed new models for liquid wall (FW) state at ARIES-ST fusion reactor systems. ARIES-ST is a 1,000 MWe fusion reactor system based on a low aspect ratio ST plasma. In this article, we analyzed the characteristic properties of magnetohydrodynamics (MHD) and heat transfer conditions by using Monte-Carlo simulation methods (ARIES Team et al. in Fusion Eng Des 49-50:689-695, 2000; Tillack et al. in Fusion Eng Des 65:215-261, 2003) . In fusion applications, liquid metals are traditionally considered to be the best working fluids. The working liquid must be a lithium-containing medium in order to provide adequate tritium that the plasma is self-sustained and that the fusion is a renewable energy source. As for Flibe free surface flows, the MHD effects caused by interaction with the mean flow is negligible, while a fairly uniform flow of thick can be maintained throughout the reactor based on 3-D MHD calculations. In this study, neutronic parameters, that is to say, energy multiplication factor radiation, heat flux and fissile fuel breeding were researched for fusion reactor with various thorium and uranium molten salts. Sufficient tritium amount is needed for the reactor to work itself. In the tritium breeding ratio (TBR) >1.05 ARIES-ST fusion model TBR is >1.1 so that tritium self-sufficiency is maintained for DT fusion systems (Starke et al. in Fusion Energ Des 84:1794-1798, 2009; Najmabadi et al. in Fusion Energ Des 80:3-23, 2006).

  1. Damage parameter comparison for candidate intense neutron test facilities for fusion materials

    SciTech Connect

    Doran, D.G.; Greenwood, L.R. ); Mann, F.M. )

    1990-07-31

    It is recognized worldwide that an intense source of fusion energy neutrons is needed to evaluate candidate fusion materials. At an International Energy Agency (IEA) workshop held in San Diego in February 1989, an Evaluation Panel recommended that three neutron source concepts be developed further. The panel also recommended that further comparisons were needed of their irradiation environments. In this paper, a comparison is made of damage parameters for beryllium, carbon, silicon, vanadium, iron, copper, molybdenum, and tungsten irradiated in spectra characteristic of di-Li, spallation, and beam-plasma (d-t) neutron sources and in a reference DEMO first wall spectrum. The treatment of neutron-induced displacement reactions is confined to the region below 20 MeV and transmutation reactions to below 50 MeV by the limited availability of calculational tools. The spallation spectrum is relatively soft; less than 2% of the neutrons are above 50 MeV. The transmutation results emphasize the need to define the neutron spectra at low, as well as high, energies; only the DEMO spectrum is adequate in this respect. Recommendations are given for further work to be performed under an international working group. 12 refs., 2 figs., 3 tabs.

  2. Application of deuteron-deuteron (D-D) fusion neutrons to 40Ar/39Ar geochronology.

    PubMed

    Renne, Paul R; Knight, Kim B; Nomade, Sébastien; Leung, Ka-Ngo; Lou, Tak-Pui

    2005-01-01

    Neutron irradiation of samples for 40Ar/39Ar dating in a 235U fission reactor requires error-producing corrections for the argon isotopes created from Ca, K, and, to a lesser extent, Cl. The fission spectrum includes neutrons with energies above 2-3 MeV, which are not optimal for the 39K(n,p)39Ar reaction. These higher-energy neutrons are responsible for the largest recoil displacements, which may introduce age artifacts in the case of fine-grained samples. Both interference corrections and recoil displacements would be significantly reduced by irradiation with 2.45 MeV neutrons, which are produced by the deuteron-deuteron (D-D) fusion reaction 2H(d,n)3He. A new generation of D-D reactors should yield sufficiently high neutron fluxes (>10(12) n cm(-2)s(-1)) to be useful for 40Ar/39Ar dating. Modeling indicates that irradiation with D-D neutrons would result in scientific benefits of improved accuracy and broader applicability to fine-grained materials. In addition, radiological safety would be improved, while both maintenance and operational costs would be reduced. Thus, development of high-flux D-D fusion reactors is a worthy goal for 40Ar/39Ar geochronology. PMID:15498681

  3. High-flux source of fusion neutrons for material and component testing

    SciTech Connect

    Baldwin, D. E.; Hooper, E. B.; Ryutov, D. D.; Thomassen, K. I.

    1999-01-07

    The inner part of a fusion reactor will have to operate at very high neutron loads. In steady-state reactors the minimum fluence before the scheduled replacement of the reactor core should be at least l0-15 Mw.yr/m2. A more frequent replacement of the core is hardly compatible with economic constraints. A most recent summary of the discussions of these issues is presented in Ref. [l]. If and when times come to build a commercial fusion reactor, the availability of information on the behavior of materials and components at such fluences will become mandatory for making a final decision. This makes it necessary an early development and construction of a neutron source for fusion material and component testing. In this paper, we present information on one very attractive concept of such a source: a source based on a so called Gas Dynamic Trap. This neutron source was proposed in the mid 1980s (Ref. [2]; see also a survey [3] with discussion of the early stage of the project). Since then, gradual accumulation of the relevant experimental information on a modest-scale experimental facility GDT at Novosibirsk, together with a continuing design activity, have made initial theoretical considerations much more credible. We believe that such a source can be built within 4 or 5 years. Of course, one should remember that there is a chance for developing steady-state reactors with a liquid (and therefore continuously renewable) first wall [4], which would also serve as a tritium breeder. In this case, the need in the neutron testing will become less pressing. However, it is not clear yet that the concept of the flowing wall will be compatible with all types of steady-state reactors. It seems therefore prudent to be prepared to the need of a quick construction of a neutron source. It should also be mentioned that there exist projects of the accelerator-based neutron sources (e.g., [5]). However, they generally have two major disadvantages: a wrong neutron spectrum

  4. High-performance deuterium-lithium neutron source for fusion materials and technology testing

    SciTech Connect

    Lawrence, G.P.; Bhatia, T.S.; Blind, B.; Guy, F.W.; Krakowski, R.A.; Neuschaefer, G.H.; Schnurr, N.M.; Schriber, S.O.; Varsamis, G.L.; Wangler, T.P.

    1989-01-01

    Advances in high-current linear-accelerator technology since the design of the Fusion Materials Irradiation Test (FMIT) Facility have increased the attractiveness of a deuterium-lithium (D-Li) neutron source for fusion materials and technology testing. This paper discusses a new approach to such a source aimed at meeting the near-term requirements of a high-flux high-energy International Fusion Materials Irradiation Facility (IFMIF). The concept employs multiple accelerator modules providing deuteron beams to two liquid-lithium jet targets oriented at right angles. This beam/target geometry provides much larger test volumes than can be attained with a single beam and target and produces significant regions of low neutron-flux gradient. A preliminary beam-dynamics design has been obtained for a 250-mA reference accelerator module. Neutron-flux levels and irradiation volumes were calculated for a neutron source incorporating two such modules, and interaction of the beam with the lithium jet was studied using a thermal-hydraulic computer simulation. Cost estimates are provided for a range of beam currents and a possible facility staging sequence is suggested. 12 refs., 7 figs., 3 tabs.

  5. Calculation of neutron and gamma ray energy spectra for fusion reactor shield design: comparison with experiment

    SciTech Connect

    Santoro, R.T.; Alsmiller, R.G. Jr.; Barnes, J.M.; Chapman, G.T.

    1980-08-01

    Integral experiments that measure the transport of approx. 14 MeV D-T neutrons through laminated slabs of proposed fusion reactor shield materials have been carried out. Measured and calculated neutron and gamma ray energy spectra are compared as a function of the thickness and composition of stainless steel type 304, borated polyethylene, and Hevimet (a tungsten alloy), and as a function of detector position behind these materials. The measured data were obtained using a NE-213 liquid scintillator using pulse-shape discrimination methods to resolve neutron and gamma ray pulse height data and spectral unfolding methods to convert these data to energy spectra. The calculated data were obtained using two-dimensional discrete ordinates radiation transport methods in a complex calculational network that takes into account the energy-angle dependence of the D-T neutrons and the nonphysical anomalies of the S/sub n/ method.

  6. Fusion neutron generation computations in a stellarator-mirror hybrid with neutral beam injection

    SciTech Connect

    Moiseenko, V. E.; Agren, O.

    2012-06-19

    In the paper [Moiseenko V.E., Noack K., Agren O. 'Stellarator-mirror based fusion driven fission reactor' J Fusion Energy 29 (2010) 65.], a version of a fusion driven system (FDS), i.e. a sub-critical fast fission assembly with a fusion plasma neutron source, is proposed. The plasma part of the reactor is based on a stellarator with a small mirror part. Hot ions with high perpendicular energy are assumed to be trapped in the magnetic mirror part. The stellarator part which connects to the mirror part and provides confinement for the bulk (deuterium) plasma. In the magnetic well of the mirror part, fusion reactions occur from collisions between a of hot ion component (tritium) with cold background plasma ions. RF heating is one option to heat the tritium. A more conventional method to sustain the hot ions is neutral beam injection (NBI), which is here studied numerically for the above-mentioned hybrid scheme. For these studies, a new kinetic code, KNBIM, has been developed. The code takes into account Coulomb collisions between the hot ions and the background plasma. The geometry of the confining magnetic field is arbitrary for the code. It is accounted for via a numerical bounce averaging procedure. Along with the kinetic calculations the neutron generation intensity and its spatial distribution are computed.

  7. A U.S. high-flux neutron facility for fusion materials development

    SciTech Connect

    Rei, Donald J

    2010-01-01

    Materials for a fusion reactor first wall and blanket structure must be able to reliably function in an extreme environment that includes 10-15 MW-year/m{sup 2} neutron and heat fluences. The various materials and structural challenges are as difficult and important as achieving a burning plasma. Overcoming radiation damage degradation is the rate-controlling step in fusion materials development. Recent advances with oxide dispersion strengthened ferritic steels show promise in meeting reactor requirements, while multi-timescale atomistic simulations of defect-grain boundary interactions in model copper systems reveal surprising self-annealing phenomenon. While these results are promising, simultaneous evaluation of radiation effects displacement damage ({le} 200 dpa) and in-situ He generation ({le} 2000 appm) at prototypical reactor temperatures and chemical environments is still required. There is currently no experimental facility in the U.S. that can meet these requirements for macroscopic samples. The E.U. and U.S. fusion communities have recently concluded that a fusion-relevant, high-flux neutron source for accelerated characterization of the effects of radiation damage to materials is a top priority for the next decade. Data from this source will be needed to validate designs for the multi-$B next-generation fusion facilities such as the CTF, ETF, and DEMO, that are envisioned to follow ITER and NIF.

  8. Neutronic analysis of alternative structural materials for fusion reactor blankets

    NASA Astrophysics Data System (ADS)

    Santos, Raul dos

    1988-07-01

    The neutronic performance of the International Tokamak Reactor (INTOR) blanket was studied when several alternative structural materials were used instead of the INTOR reference structural material, type 316 stainless steel. The alternative structural materials included: ferritic-, vanadium-, titanium-, long range ordered-, manganese austenitic-, and nimonic-alloys. All were treated both with and without a first-wall coating of beryllium or graphite. The tritium breeding ratio, the nuclear heating, and the gas (hydrogen and helium) production rates in the structural materials were calculated for the possible combinations of structural material and first-wall coating. These parameters were compared with those obtained by using SS-316. The nimonic alloy was the only one with worse neutronic performance than the SS-316.

  9. Fusion hindrance for Ca+Ca systems: Influence of neutron excess

    NASA Astrophysics Data System (ADS)

    Jiang, C. L.; Stefanini, A. M.; Esbensen, H.; Rehm, K. E.; Corradi, L.; Fioretto, E.; Mason, P.; Montagnoli, G.; Scarlassara, F.; Silvestri, R.; Singh, P. P.; Szilner, S.; Tang, X. D.; Ur, C. A.

    2010-10-01

    The measurement of the excitation function for fusion evaporation reactions in the system Ca40+Ca48 (Q= 4.56 MeV) has been extended downward by two orders of magnitude with respect to previous cross section data. A first indication of an S-factor maximum in a system with a positive Q value has been observed. In addition a correlation between fusion hindrance and neutron excess N-Z has been found for the Ca + Ca, Ni + Ni, and Ca + Zr systems.

  10. Analysis of the role of neutron transfer in asymmetric fusion reactions at subbarrier energies

    SciTech Connect

    Ogloblin, A. A.; Zhang, H. Q.; Lin, C. J.; Jia, H. M.; Khlebnikov, S. V.; Kuzmin, E. A.; Danilov, A. N.; Demyanova, A. S.; Trzaska, W. H.; Xu, X. X.; Yang, F.; Sargsyan, V. V. Adamian, G. G.; Antonenko, N. V.; Scheid, W.

    2015-12-15

    The excitation functions were measured for the {sup 28}Si + {sup 208}Pb complete-fusion (capture) reaction at deep subbarrier energies. The results were compared with the cross sections predicted within the quantum diffusion approach. The role of neutron transfer in the case of positive Q values in the {sup 28}Si + {sup 124}Sn, {sup 208}Pb; {sup 30}Si + {sup 124}Sn, {sup 208}Pb; {sup 20}Ne + {sup 208}Pb; {sup 40}Ca + {sup 96}Zr; and {sup 134}Te + {sup 40}Ca complete-fusion (capture) reactions is discussed.

  11. Quantum coupled-channels model of nuclear fusion with a semiclassical consideration of neutron rearrangement

    NASA Astrophysics Data System (ADS)

    Karpov, A. V.; Rachkov, V. A.; Samarin, V. V.

    2015-12-01

    Background: Significant enhancement of sub-barrier fusion cross sections owing to neutron transfer with positive Q values was observed in many combinations of colliding nuclei. This degree of freedom has not yet been included into the rigorous quantum coupled-channels (QCC) approach. However, the empirical coupled-channels model with neutron rearrangement [Zagrebaev, Phys. Rev. C 67, 061601 (2003), 10.1103/PhysRevC.67.061601] has already been successfully used in several papers to reproduce and predict cross sections for sub-barrier fusion reactions of stable nuclei. Purpose: The objective of this study is to combine the QCC approach and the empirical model to account for additional channels of neutron rearrangement. Method: Coupling of relative motion to collective degrees of freedom (rotation of nuclei and/or their surface vibrations) are taken into account within the QCC approach. The probability of transfer of x neutrons with a given Q value is estimated semiclassically. Results: The proposed new model was successfully tested on a few combinations of fusing nuclei 40Ca+90,96Zr, 32S+96,90, and 60,64Ni+100Mo. The calculated fusion cross sections and barrier distribution functions agree well with experimental data. Conclusions: The model developed in this work confirms all the conclusions previously made within the empirical coupled-channels model with neutron rearrangement [see Rachkov et al., Phys. Rev. C 90, 014614 (2014), 10.1103/PhysRevC.90.014614]. Moreover, it has an advantage of a more reliable microscopic account for the coupling between relative motion and the collective degrees of freedom. The proposed model can also be used to reproduce the structure of the barrier distribution function. This is a step forward to a complete solution of the long-term problem of accounting for neutron transfer channels in the QCC model.

  12. Fusion neutron yield from a laser-irradiated heavy-water spray

    SciTech Connect

    Ter-Avetisyan, S.; Schnuerer, M.; Hilscher, D.; Jahnke, U.; Busch, S.; Nickles, P.V.; Sandner, W.

    2005-01-01

    The fusion neutron yield from a laser-irradiated heavy-water (D{sub 2}O) spray target was studied. Heavy-water droplets of about 150 nm diameter in the spray were exposed to 35 fs laser pulses at an intensity of 1x10{sup 19} W/cm{sup 2}. Due to the 10-50 times bigger size of the spray droplets compared to usual cluster sizes, deuterons are accelerated to considerably higher kinetic energies of up to 1 MeV. Neutrons are generated by the deuterons escaping from the plasma and initiating a fusion reaction within the surrounding cold plume of the spray jet. For each 0.6 J of laser pulse energy, 6x10{sup 3} neutrons are produced by about 10{sup 11} accelerated deuterons. This corresponds to a D(d,n) reaction probability of about 6x10{sup -8}. Compared to cluster targets, the reaction probability in the spray target is found to be two orders of magnitude larger. This finding apparently is due to both the considerably higher deuteron energies and the larger effective target thickness in the spray target. The measured neutron yield per accelerated deuteron [i.e., the D(d,n) reaction probability], is employed to compare and extrapolate the neutron emission characteristics from different target arrangements.

  13. Neutron Induced D Breakup in Inertial Confinement Fusion at the Omega Laser Facility

    NASA Astrophysics Data System (ADS)

    Forrest, C. J.; Glebov, V. Yu.; Knauer, J. P.; Radha, P. B.; Regan, S. P.; Sangster, T. C.; Stoeckl, C.; Schroder, W. U.; Frenje, J. A.; Gatu Johnson, M.

    2015-11-01

    High-resolution neutron spectroscopy is used to study the deuteron breakup reaction D(n,n ') np in the thermonuclear environment created in inertial confinement fusion experiments at the Omega Laser Facility. Neutrons with an energy of 14.1 MeV generated in the primary D-T fusion reactions scatter elastically and inelastically off the dense (cryogenic) D-T fuel assembly surrounding the central hot spot at peak fuel compression. These neutrons also induce a breakup of the fuel deuterons. The corresponding breakup cross section is measured relative to elastic n -D and n -T scattering, i.e., simultaneously in the same environment. Apart from astrophysical and technological interest, the neutron-induced deuteron breakup reaction is of interest to the physics of nucleon -nucleon forces. For example, theoretical calculations predict a noticeable influence of nucleonic three-body forces on the magnitude of the breakup cross section. Preliminary results from measurements of the neutron contribution in the 2- to 6-MeV range show reasonable agreement with the published ENDL 2008.2 semi-empirical cross-section. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  14. Efficient Energy Conversion of the 14 MeV Neutrons in DT Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Winterberg, F.

    2013-02-01

    In DT fusion 80 % of the energy released goes into 14 MeV neutrons, and only the remaining 20 % into charged particles. Unlike the charged particles, the uncharged neutrons cannot be confined by a magnetic field, and for this reason cannot be used for a direct conversion into electric energy. Instead, the neutrons have to be slowed down in some medium, heating this medium to a temperature of less than 103 K, with the heat removed from this medium to drive a turbo-generator. This conversion of nuclear into electric energy has a Carnot efficiency of about 30 %. For the 80 % of the energy released into neutrons, the efficiency is therefore no more than 24 %. While this low conversion efficiency cannot be overcome in magnetic confinement concepts, it can be overcome in inertial confinement concepts, by surrounding the inertial confinement fusion target with a sufficiently thick layer of liquid hydrogen and a thin outer layer of boron, to create a hot plasma fire ball. The hydrogen layer must be chosen just thick and dense enough to be heated by the neutrons to 100,000 K. The thusly generated, fully ionized, and rapidly expanding fire ball can drive a pulsed magnetohydrodynamic generator at an almost 100 % Carnot efficiency, or possibly be used to generate hydrocarbons.

  15. Fusion neutron yield from a laser-irradiated heavy-water spray

    NASA Astrophysics Data System (ADS)

    Ter-Avetisyan, S.; Schnürer, M.; Hilscher, D.; Jahnke, U.; Busch, S.; Nickles, P. V.; Sandner, W.

    2005-01-01

    The fusion neutron yield from a laser-irradiated heavy-water (D2O) spray target was studied. Heavy-water droplets of about 150nm diameter in the spray were exposed to 35fs laser pulses at an intensity of 1×1019W/cm2. Due to the 10-50 times bigger size of the spray droplets compared to usual cluster sizes, deuterons are accelerated to considerably higher kinetic energies of up to 1MeV. Neutrons are generated by the deuterons escaping from the plasma and initiating a fusion reaction within the surrounding cold plume of the spray jet. For each 0.6J of laser pulse energy, 6×103 neutrons are produced by about 1011 accelerated deuterons. This corresponds to a D(d ,n) reaction probability of about 6×10-8. Compared to cluster targets, the reaction probability in the spray target is found to be two orders of magnitude larger. This finding apparently is due to both the considerably higher deuteron energies and the larger effective target thickness in the spray target. The measured neutron yield per accelerated deuteron [i.e., the D(d ,n) reaction probability], is employed to compare and extrapolate the neutron emission characteristics from different target arrangements.

  16. Laser fusion neutron source employing compression with short pulse lasers

    DOEpatents

    Sefcik, Joseph A; Wilks, Scott C

    2013-11-05

    A method and system for achieving fusion is provided. The method includes providing laser source that generates a laser beam and a target that includes a capsule embedded in the target and filled with DT gas. The laser beam is directed at the target. The laser beam helps create an electron beam within the target. The electron beam heats the capsule, the DT gas, and the area surrounding the capsule. At a certain point equilibrium is reached. At the equilibrium point, the capsule implodes and generates enough pressure on the DT gas to ignite the DT gas and fuse the DT gas nuclei.

  17. A diamond based neutron spectrometer for diagnostics of deuterium-tritium fusion plasmas.

    PubMed

    Cazzaniga, C; Nocente, M; Rebai, M; Tardocchi, M; Calvani, P; Croci, G; Giacomelli, L; Girolami, M; Griesmayer, E; Grosso, G; Pillon, M; Trucchi, D M; Gorini, G

    2014-11-01

    Single crystal Diamond Detectors (SDD) are being increasingly exploited for neutron diagnostics in high power fusion devices, given their significant radiation hardness and high energy resolution capabilities. The geometrical efficiency of SDDs is limited by the size of commercially available crystals, which is often smaller than the dimension of neutron beams along collimated lines of sight in tokamak devices. In this work, we present the design and fabrication of a 14 MeV neutron spectrometer consisting of 12 diamond pixels arranged in a matrix, so to achieve an improved geometrical efficiency. Each pixel is equipped with an independent high voltage supply and read-out electronics optimized to combine high energy resolution and fast signals (<30 ns), which are essential to enable high counting rate (>1 MHz) spectroscopy. The response function of a prototype SDD to 14 MeV neutrons has been measured at the Frascati Neutron Generator by observation of the 8.3 MeV peak from the (12)C(n, α)(9)Be reaction occurring between neutrons and (12)C nuclei in the detector. The measured energy resolution (2.5% FWHM) meets the requirements for neutron spectroscopy applications in deuterium-tritium plasmas. PMID:25430280

  18. Analysis of the neutron time-of-flight spectra from inertial confinement fusion experiments

    SciTech Connect

    Hatarik, R. Sayre, D. B.; Caggiano, J. A.; Phillips, T.; Eckart, M. J.; Bond, E. J.; Cerjan, C.; Grim, G. P.; Hartouni, E. P.; Mcnaney, J. M.; Munro, D. H.; Knauer, J. P.

    2015-11-14

    Neutron time-of-flight diagnostics have long been used to characterize the neutron spectrum produced by inertial confinement fusion experiments. The primary diagnostic goals are to extract the d + t → n + α (DT) and d + d → n + {sup 3}He (DD) neutron yields and peak widths, and the amount DT scattering relative to its unscattered yield, also known as the down-scatter ratio (DSR). These quantities are used to infer yield weighted plasma conditions, such as ion temperature (T{sub ion}) and cold fuel areal density. We report on novel methodologies used to determine neutron yield, apparent T{sub ion}, and DSR. These methods invoke a single temperature, static fluid model to describe the neutron peaks from DD and DT reactions and a spline description of the DT spectrum to determine the DSR. Both measurements are performed using a forward modeling technique that includes corrections for line-of-sight attenuation and impulse response of the detection system. These methods produce typical uncertainties for DT T{sub ion} of 250 eV, 7% for DSR, and 9% for the DT neutron yield. For the DD values, the uncertainties are 290 eV for T{sub ion} and 10% for the neutron yield.

  19. Analysis of the neutron time-of-flight spectra from inertial confinement fusion experiments

    NASA Astrophysics Data System (ADS)

    Hatarik, R.; Sayre, D. B.; Caggiano, J. A.; Phillips, T.; Eckart, M. J.; Bond, E. J.; Cerjan, C.; Grim, G. P.; Hartouni, E. P.; Knauer, J. P.; Mcnaney, J. M.; Munro, D. H.

    2015-11-01

    Neutron time-of-flight diagnostics have long been used to characterize the neutron spectrum produced by inertial confinement fusion experiments. The primary diagnostic goals are to extract the d + t → n + α (DT) and d + d → n + 3He (DD) neutron yields and peak widths, and the amount DT scattering relative to its unscattered yield, also known as the down-scatter ratio (DSR). These quantities are used to infer yield weighted plasma conditions, such as ion temperature (Tion) and cold fuel areal density. We report on novel methodologies used to determine neutron yield, apparent Tion, and DSR. These methods invoke a single temperature, static fluid model to describe the neutron peaks from DD and DT reactions and a spline description of the DT spectrum to determine the DSR. Both measurements are performed using a forward modeling technique that includes corrections for line-of-sight attenuation and impulse response of the detection system. These methods produce typical uncertainties for DT Tion of 250 eV, 7% for DSR, and 9% for the DT neutron yield. For the DD values, the uncertainties are 290 eV for Tion and 10% for the neutron yield.

  20. A diamond based neutron spectrometer for diagnostics of deuterium-tritium fusion plasmas

    NASA Astrophysics Data System (ADS)

    Cazzaniga, C.; Nocente, M.; Rebai, M.; Tardocchi, M.; Calvani, P.; Croci, G.; Giacomelli, L.; Girolami, M.; Griesmayer, E.; Grosso, G.; Pillon, M.; Trucchi, D. M.; Gorini, G.

    2014-11-01

    Single crystal Diamond Detectors (SDD) are being increasingly exploited for neutron diagnostics in high power fusion devices, given their significant radiation hardness and high energy resolution capabilities. The geometrical efficiency of SDDs is limited by the size of commercially available crystals, which is often smaller than the dimension of neutron beams along collimated lines of sight in tokamak devices. In this work, we present the design and fabrication of a 14 MeV neutron spectrometer consisting of 12 diamond pixels arranged in a matrix, so to achieve an improved geometrical efficiency. Each pixel is equipped with an independent high voltage supply and read-out electronics optimized to combine high energy resolution and fast signals (<30 ns), which are essential to enable high counting rate (>1 MHz) spectroscopy. The response function of a prototype SDD to 14 MeV neutrons has been measured at the Frascati Neutron Generator by observation of the 8.3 MeV peak from the 12C(n, α)9Be reaction occurring between neutrons and 12C nuclei in the detector. The measured energy resolution (2.5% FWHM) meets the requirements for neutron spectroscopy applications in deuterium-tritium plasmas.

  1. A diamond based neutron spectrometer for diagnostics of deuterium-tritium fusion plasmas

    SciTech Connect

    Cazzaniga, C. Nocente, M.; Gorini, G.; Rebai, M.; Giacomelli, L.; Tardocchi, M.; Croci, G.; Grosso, G.; Calvani, P.; Girolami, M.; Trucchi, D. M.; Griesmayer, E.; Pillon, M.

    2014-11-15

    Single crystal Diamond Detectors (SDD) are being increasingly exploited for neutron diagnostics in high power fusion devices, given their significant radiation hardness and high energy resolution capabilities. The geometrical efficiency of SDDs is limited by the size of commercially available crystals, which is often smaller than the dimension of neutron beams along collimated lines of sight in tokamak devices. In this work, we present the design and fabrication of a 14 MeV neutron spectrometer consisting of 12 diamond pixels arranged in a matrix, so to achieve an improved geometrical efficiency. Each pixel is equipped with an independent high voltage supply and read-out electronics optimized to combine high energy resolution and fast signals (<30 ns), which are essential to enable high counting rate (>1 MHz) spectroscopy. The response function of a prototype SDD to 14 MeV neutrons has been measured at the Frascati Neutron Generator by observation of the 8.3 MeV peak from the {sup 12}C(n, α){sup 9}Be reaction occurring between neutrons and {sup 12}C nuclei in the detector. The measured energy resolution (2.5% FWHM) meets the requirements for neutron spectroscopy applications in deuterium-tritium plasmas.

  2. Computational Challenges of Fusion Neutronics for ITER Ports

    NASA Astrophysics Data System (ADS)

    Serikov, A.; Fischer, U.; Pitcher, C. S.; Suarez, A.; Weinhorst, B.

    2014-06-01

    This paper elaborates computational challenges tackled for providing neutronics service supplied for developing the design of the Diagnostics Equatorial and Upper Port Plugs (EPP and UPP). The aim was to guide and assist the EPP and UPP design developers with optimal shielding solutions which are characterised of maintain the diagnostics purposes of the systems together with adequate radiation shielding performance. The target parameter for the shielding optimization was the minimum of Shut-Down Dose Rate (SDDR) inside the interspace between the port back-side and ITER bioshield. This aim was reached by parametric neutronic analyses of the shielding geometry and material composition, mitigating direct streaming of neutrons from the plasma by arranging the labyrinths and horizontal rails. Variation of many geometrical parameters of the labyrinths was possible only by applying the high performance parallel computations with MCNP5 using pure MPI and hybrid OpenMP/MPI parallelization techniques on several available supercomputers. MCNP5 parallel performance assessments were carried out to find an efficient way to run the code in a parallel regime. It was found a strong scaling (up to 4096 cores) performance of the MCNP5 jobs running with analogue Monte Carlo sampling and weak scaling for the tasks with biased sampling as a variance reduction technique, such as the MCNP5 intrinsic weight window generator. Deep penetrating radiation in the complex ITER tokamak geometry combined blocks of strong attenuation of the radiation together with the void gaps along which the particles are streamed freely contributes to computation challenges of radiation transport.

  3. A high-performance D-lithium neutron source for fusion technology testing

    SciTech Connect

    Lawrence, G.P.; Wangler, T.P.; Schriber, S.O.; Kemp, E.L.; Wilson, M.T.; Bhatia, T.S.; Neuschaefer, G.H.; Guy, F.W.; Armstrong, D.D.

    1989-03-01

    Recent advances in high-current linear accelerator technology have considerably increased the attractiveness of a deuterium-lithium high-energy neutron source for fusion materials and technology testing. This paper describes a new Los Alamos conceptual design for a deuteron accelerator aimed at meeting near-term flux requirements of an International Fusion Materials Irradiation Facility. The new neutron-source driver concept is based on the idea of multiple accelerator modules, with each module consisting of two 125-mA, 175-MHz radio-frequency quadrupoles funneling 3-MeV cw deuteron beams into a 35-MeV, 250-mA, 350-MHz drift-tube linac.

  4. Large area imaging of hydrogenous materials using fast neutrons from a DD fusion generator

    NASA Astrophysics Data System (ADS)

    Cremer, J. T.; Williams, D. L.; Gary, C. K.; Piestrup, M. A.; Faber, D. R.; Fuller, M. J.; Vainionpaa, J. H.; Apodaca, M.; Pantell, R. H.; Feinstein, J.

    2012-05-01

    A small-laboratory fast-neutron generator and a large area detector were used to image hydrogen-bearing materials. The overall image resolution of 2.5 mm was determined by a knife-edge measurement. Contact images of objects were obtained in 5-50 min exposures by placing them close to a plastic scintillator at distances of 1.5 to 3.2 m from the neutron source. The generator produces 109 n/s from the DD fusion reaction at a small target. The combination of the DD-fusion generator and electronic camera permits both small laboratory and field-portable imaging of hydrogen-rich materials embedded in high density materials.

  5. Laser inertial fusion-based energy: Neutronic design aspects of a hybrid fusion-fission nuclear energy system

    NASA Astrophysics Data System (ADS)

    Kramer, Kevin James

    This study investigates the neutronics design aspects of a hybrid fusion-fission energy system called the Laser Fusion-Fission Hybrid (LFFH). A LFFH combines current Laser Inertial Confinement fusion technology with that of advanced fission reactor technology to produce a system that eliminates many of the negative aspects of pure fusion or pure fission systems. When examining the LFFH energy mission, a significant portion of the United States and world energy production could be supplied by LFFH plants. The LFFH engine described utilizes a central fusion chamber surrounded by multiple layers of multiplying and moderating media. These layers, or blankets, include coolant plenums, a beryllium (Be) multiplier layer, a fertile fission blanket and a graphite-pebble reflector. Each layer is separated by perforated oxide dispersion strengthened (ODS) ferritic steel walls. The central fusion chamber is surrounded by an ODS ferritic steel first wall. The first wall is coated with 250-500 mum of tungsten to mitigate x-ray damage. The first wall is cooled by Li17Pb83 eutectic, chosen for its neutron multiplication and good heat transfer properties. The Li17Pb 83 flows in a jacket around the first wall to an extraction plenum. The main coolant injection plenum is immediately behind the Li17Pb83, separated from the Li17Pb83 by a solid ODS wall. This main system coolant is the molten salt flibe (2LiF-BeF2), chosen for beneficial neutronics and heat transfer properties. The use of flibe enables both fusion fuel production (tritium) and neutron moderation and multiplication for the fission blanket. A Be pebble (1 cm diameter) multiplier layer surrounds the coolant injection plenum and the coolant flows radially through perforated walls across the bed. Outside the Be layer, a fission fuel layer comprised of depleted uranium contained in Tristructural-isotropic (TRISO) fuel particles having a packing fraction of 20% in 2 cm diameter fuel pebbles. The fission blanket is cooled by

  6. Nuclear fusion and carbon flashes on neutron stars

    NASA Technical Reports Server (NTRS)

    Taam, R. E.; Picklum, R. E.

    1978-01-01

    This paper reports on detailed calculations of the thermal evolution of the carbon-burning shells in the envelopes of accreting neutron stars for mass-accretion rates of 1 hundred-billionth to 2 billionths of a solar mass per yr and neutron-star masses of 0.56 and 1.41 solar masses. The work of Hansen and Van Horn (1975) is extended to higher densities, and a more detailed treatment of nuclear processing in the hydrogen- and helium-burning regions is included. Results of steady-state calculations are presented, and results of time-dependent computations are examined for accretion rates of 3 ten-billionths and 1 billionth of solar mass per yr. It is found that two evolutionary sequences lead to carbon flashes and that the carbon abundance at the base of the helium shell is a strong function of accretion rate. Upper limits are placed on the accretion rates at which carbon flashes will be important.

  7. Measurement and evaluation of selected 14-MeV neutron cross sections for fusion

    SciTech Connect

    Meadows, J.W.; Smith, D.L.; Cox, S.A.

    1985-01-01

    Experimental neutron-activation cross-section data in the vicinity of 14 MeV are evaluated for several reactions of fusion-related interest using a least-squares method. New experimental measurements are performed at 14.7 MeV for all of these considered reactions and for some commonly-used standard reactions as well. Comparison is made between measured and evaluated results.

  8. Neutron flow between nuclei as the principal enhancement mechanism in heavy-ion subbarrier fusion

    SciTech Connect

    Stelson, P.H.

    1988-01-01

    The observed enhanced cross sections for heavy-ion fusion are interpreted with a model in which the near barrier cross sections are dominated by neck formation initiated by neutron flow between the colliding nuclei. The collective properties of the colliding nuclei are then interpreted as a modulation of the thresholds for neck formation and dominate the cross sections in the region far below the barrier. 12 refs., 12 figs., 2 tabs.

  9. Exciton model analysis of neutron spectra from fusion and quasifusion of two heavy ions

    SciTech Connect

    Fabrici, E.; Gadioli, E.; Gadioli Erba, E.

    1989-07-01

    The pre-equilibrium component to the neutron spectra from fusion andquasifusion of /sup 12/C and /sup 20/Ne with/sup 165/Ho at 20, 25, and 30 MeV/nucleon is evaluated by means ofthe exciton model using for the projectile nucleons an initial energydistribution resulting from the coupling of their translational and internalmomenta. The use of a set of parameters deduced from the analysis oflight-ion-induced reactions allows one to reproduce satisfactorily theexperimental data.

  10. Measurement and analysis of activation induced in titanium with fusion peak neutrons

    NASA Astrophysics Data System (ADS)

    Klix, A.; Domula, A.; Forrest, R.; Zuber, K.

    2011-10-01

    The intense neutron flux densities in fusion reactor blankets produce activation in the blanket materials relevant to operational safety, decommissioning, etc. The aim of the present work is to check the European Activation System EASY-2007 for its capability to predict important gamma activities induced in titanium in a fusion neutron field. Many advanced low-activation materials for fusion applications contain titanium, most notably in the breeder material Li 2TiO 3. In the present work, a small sample of Ti was irradiated with the intense DT neutron generator of Technical University of Dresden. The gamma-radioactivity following irradiation was measured and nuclide activities were derived. For each of the measured gamma activities, the corresponding value was calculated with EASY, and calculation-to-experiment ratios ( C/ E) were determined. EASY predicted the induced gamma activities, isotopes of scandium, well with some overestimation for 47Sc. The results of this measurement together with available EXFOR and validated state-of-the-art activation libraries are discussed.

  11. Novel neutralized-beam intense neutron source for fusion technology development

    SciTech Connect

    Osher, J.E.; Perkins, L.J.

    1983-07-08

    We describe a neutralized-beam intense neutron source (NBINS) as a relevant application of fusion technology for the type of high-current ion sources and neutral beamlines now being developed for heating and fueling of magnetic-fusion-energy confinement systems. This near-term application would support parallel development of highly reliable steady-state higher-voltage neutral D/sup 0/ and T/sup 0/ beams and provide a relatively inexpensive source of fusion neutrons for materials testing at up to reactor-like wall conditions. Beam-target examples described incude a 50-A mixed D-T total (ions plus neutrals) space-charge-neutralized beam at 120 keV incident on a liquid Li drive-in target, or a 50-A T/sup 0/ + T/sup +/ space-charge-neutralized beam incident on either a LiD or gas D/sub 2/ target with calculated 14-MeV neutron yields of 2 x 10/sup 15//s, 7 x 10/sup 15//s, or 1.6 x 10/sup 16//s, respectively. The severe local heat loading on the target surface is expected to limit the allowed beam focus and minimum target size to greater than or equal to 25 cm/sup 2/.

  12. A Subcritical, Gas-Cooled Fast Transmutation Reactor with a Fusion Neutron Source

    SciTech Connect

    Stacey, W.M.; Beavers, V.L.; Casino, W.A.; Cheatham, J.R.; Friis, Z.W.; Green, R.D.; Hamilton, W.R.; Haufler, K.W.; Hutchinson, J.D.; Lackey, W.J.; Lorio, R.A.; Maddox, J.W.; Mandrekas, J.; Manzoor, A.A.; Noelke, C.A.; Oliveira, C. de; Park, M.; Tedder, D.W.; Terry, M.R.; Hoffman, E.A.

    2005-05-15

    A design is presented for a subcritical, He-cooled fast reactor, driven by a tokamak D-T fusion neutron source, for the transmutation of spent nuclear fuel (SNF). The reactor is fueled with coated transuranic (TRU) particles and is intended for the deep-burn (>90%) transmutation of the TRUs in SNF without reprocessing of the coated fuel particles. The reactor design is based on the materials, fuel, and separations technologies under near-term development in the U.S. Department of Energy (DOE) Nuclear Energy Program and on the plasma physics and fusion technologies under near-term development in the DOE Fusion Energy Sciences Program, with the objective of intermediate-term ({approx}2040) deployment. The physical and performance characteristics and research and development requirements of such a reactor are described.

  13. Fusion of neutron-rich systems using time-dependent density-constrained DFT

    NASA Astrophysics Data System (ADS)

    Oberacker, Volker; Umar, A. S.

    2013-04-01

    In connection with experiments at Radioactive Ion Beam Facilities, we study fusion reactions with a new approach [1] which is based on a time-dependent density-constrained density functional theory (DFT). The only input is the Skyrme NN interaction, there are no adjustable parameters. We calculate heavy-ion interaction potentials V(R), mass parameters M(R), and total fusion cross sections. Some of the effects naturally included in these calculations are: neck formation, mass exchange, internal excitations, deformation effects, as well as nuclear alignment for deformed systems. Results will be presented for low-energy fusion reactions of ^12C+^16,24O and for ^16,24O+^16,24,28O which occur in the crust of neutron stars [2]. Finally, we will discuss fusion with neutron-rich halo nuclei, in particular ^11Li+^208Pb.[4pt] [1] Umar and Oberacker, PRC 74, 021601(R) (2006)[0pt] [2] Umar, Oberacker, and Horowitz, PRC 85, 055801 (2012)

  14. Deuteron Acceleration and Fusion Neutron Production in Z-pinch plasmas

    SciTech Connect

    Klir, D.; Kravarik, J.; Kubes, P.; Rezac, K.; Ananeev, S. S.; Bakshaev, Yu. L.; Blinov, P. I.; Chernenko, A. S.; Kazakov, E. D.; Korolev, V. D.; Ustroev, G. I.

    2009-01-21

    Fusion neutron measurements were carried out on the S-300 generator (Kurchatov Institute, Moscow). We tried deuterated fibers, various types of wire arrays imploding onto a deuterated fiber, and deuterium gas puffs as Z-pinch loads. On the current level of 2 MA, the peak neutron yield of 10{sup 10} was achieved with a deuterium gas-puff. The neutron and deuteron energy spectra were quite similar in various types of Z-pinch configurations. The broad width of radial neutron spectra implied a high radial component of deuteron velocity. On the basis of neutron measurements, we concluded that neutron production mechanism is connected with the study of plasma voltage. It means that the acceleration of fast deuterons is not a secondary process but it reflects the global dynamics of Z-pinch plasmas. For this reason it is useful to add deuterium as a 'tracer' in Z-pinch loads more often. For instance, it seems attractive to prepare wire-arrays from deuterated metal wires such as Pd.

  15. Neutronics shielding analysis for the end plug of a tandem mirror fusion reactor

    NASA Astrophysics Data System (ADS)

    Ragheb, Magdi M. H.; Maynard, Charles W.

    1981-10-01

    A neutronics analysis using the Monte Carlo method is carried out for the end-plug penetration and magnet system of a tandem mirror fusion reactor. Detailed penetration and the magnets' three-dimensional configurations are modeled. A method of position dependent angular source biasing is developed to adequately sample the DT fusion source in the central cell region and obtain flux contributions at the penetration components. To assure cryogenic stability, the barrier cylindrical solenoid is identified as needing substantial shielding of about 1 m of a steel-lead-boron-carbide-water mixture. Heating rates there would require a thermal-hydraulic design similar to that in the central cell blanket region. The transition coils, however, need a minimal 0.2 m thickness shield. The leakage neutron flux at the direct converters is estimated at 1.3×1015 n/(m2·s), two orders of magnitude lower than that reported at the neutral beam injectors for tokamaks around 1017 n/(m2·s) for a 1 MW/m2 14 MeV neutron wall loading. This result is obtained through a coupling between the nuclear and plasma physics designs in which hydrogen ions rather than deuterium atoms are used for energy injection at the end plug, to avoid creating a neutron source there. This lower and controllable radiation leakage problem is perceived as a potential major advantage of tandem mirrors compared to tokamaks and laser reactor systems.

  16. Bayesian and maximum entropy methods for fusion diagnostic measurements with compact neutron spectrometers

    NASA Astrophysics Data System (ADS)

    Reginatto, Marcel; Zimbal, Andreas

    2008-02-01

    In applications of neutron spectrometry to fusion diagnostics, it is advantageous to use methods of data analysis which can extract information from the spectrum that is directly related to the parameters of interest that describe the plasma. We present here methods of data analysis which were developed with this goal in mind, and which were applied to spectrometric measurements made with an organic liquid scintillation detector (type NE213). In our approach, we combine Bayesian parameter estimation methods and unfolding methods based on the maximum entropy principle. This two-step method allows us to optimize the analysis of the data depending on the type of information that we want to extract from the measurements. To illustrate these methods, we analyze neutron measurements made at the PTB accelerator under controlled conditions, using accelerator-produced neutron beams. Although the methods have been chosen with a specific application in mind, they are general enough to be useful for many other types of measurements.

  17. A highly efficient neutron time-of-flight detector for inertial confinement fusion experiments

    NASA Astrophysics Data System (ADS)

    Izumi, N.; Yamaguchi, K.; Yamagajo, T.; Nakano, T.; Kasai, T.; Urano, T.; Azechi, H.; Nakai, S.; Iida, T.

    1999-01-01

    We have developed the highly efficient neutron detector system MANDALA for the inertial-confinement-fusion experiment. The MANDALA system consists of 842 elements plastic scintillation detectors and data acquisition electronics. The detection level is the yield of 1.2×105 for 2.5 MeV and 1×105 for 14.1 MeV neutrons (with 100 detected hits). We have calibrated the intrinsic detection efficiencies of the detector elements using a neutron generator facility. Timing calibration and integrity test of the system were also carried out with a 60Co γ ray source. MANDALA system was applied to the implosion experiments at the GEKKO XII laser facility. The integrity test was carried out by implosion experiments.

  18. A fast neutron spectrometer for D-D fusion neutron measurements at the Alcator C tokamak

    NASA Astrophysics Data System (ADS)

    Fisher, W. A.; Chen, S. H.; Gwinn, D.; Parker, R. R.

    1984-01-01

    A neutron spectrometer using a high pressure 3He ionization chamber has been designed and used to measure the neutron spectrum from an ohmically heated deuterium plasma. The resolution of the spectrometer at 2.45 MeV is determine to be 46 keV full width at half-maximum (fwhm). Particular attention has been paid to optimizing the detector shielding and collimation to reject thermal and epithermal neutrons scattered from the tokamak structure. As a result, measurements indicate that the ratio of the number of counts in the 2.45 MeV peak to the total number of detected neutron events is {1}/{67}. For the 8 μs amplifier time constant used, a count rate as high as 44 counts per second has been achieved in the thermonuclear peak. The observed spectra have been compared with calculated spectra using the MCNP Monte Carlo Neutral Particle Transport code and they show good agreement. There is little evidence of neutrons produced from photoneutron reactions or electrodisintegration. It has been possible to confirm that the shape of the thermonuclear peak is consistent with the Gaussian shape predicted and that the ion temperature as determined from the line width is consistent with other Alcator C ion temperature diagnostics, and follows the trends predicted by the theory of Doppler line broadening.

  19. Simultaneous usage of pinhole and penumbral apertures for imaging small scale neutron sources from inertial confinement fusion experiments.

    PubMed

    Guler, N; Volegov, P; Danly, C R; Grim, G P; Merrill, F E; Wilde, C H

    2012-10-01

    Inertial confinement fusion experiments at the National Ignition Facility are designed to understand the basic principles of creating self-sustaining fusion reactions by laser driven compression of deuterium-tritium (DT) filled cryogenic plastic capsules. The neutron imaging diagnostic provides information on the distribution of the central fusion reaction region and the surrounding DT fuel by observing neutron images in two different energy bands for primary (13-17 MeV) and down-scattered (6-12 MeV) neutrons. From this, the final shape and size of the compressed capsule can be estimated and the symmetry of the compression can be inferred. These experiments provide small sources with high yield neutron flux. An aperture design that includes an array of pinholes and penumbral apertures has provided the opportunity to image the same source with two different techniques. This allows for an evaluation of these different aperture designs and reconstruction algorithms. PMID:23126842

  20. (International Panel on 14 MeV Intense Neutron Source Based on Accelerators for Fusion Materials Study)

    SciTech Connect

    Thoms, K.R.; Wiffen, F.W.

    1991-02-14

    Both travelers were members of a nine-person US delegation that participated in an international workshop on accelerator-based 14 MeV neutron sources for fusion materials research hosted by the University of Tokyo. Presentations made at the workshop reviewed the technology developed by the FMIT Project, advances in accelerator technology, and proposed concepts for neutron sources. One traveler then participated in the initial meeting of the IEA Working Group on High Energy, High Flux Neutron Sources in which efforts were begun to evaluate and compare proposed neutron sources; the Fourth FFTF/MOTA Experimenters' Workshop which covered planning and coordination of the US-Japan collaboration using the FFTF reactor to irradiate fusion reactor materials; and held discussions with several JAERI personnel on the US-Japan collaboration on fusion reactor materials.

  1. A fusion algorithm of digital neutron radiation image and digital x-ray image with contourlet transform

    NASA Astrophysics Data System (ADS)

    Feng, Peng; Wei, Biao; Jin, Wei; Mi, De-ling

    2008-12-01

    In this article, the Contourlet-based image fusion method of digital neutron radiation image and X-ray radiograph is proposed. As one of the multi-scale geometric analysis, Contourlet transform is full of application potentials in the field of image process due to its good capability of representing high dimensional singularity of image. Meanwhile, in order to overcome the shortcoming of pixel-based fusion, this method proposed realizes the local adaptive fusion through Neighborhood Homogeneity Measurement (NHM). Experiments show that this fusion method retains more image detail and therefore provides more accurate information than traditional image fusion methods. It is proved to be a novel idea for the complementary application of neutron radiation imaging and X-ray radiograph

  2. Neutron attenuation in the laser ducts of an inertial-confinement fusion reactor

    SciTech Connect

    Augustine, F. Jr.

    1981-11-01

    This report deals with the problem of neutron streaming through the laser beam ducts of an inertial confinement fusion power plant. The neutron flux through these ducts must be attenuated by a factor of 10/sup 12/ to meet radiological safety limits. The problem is dealt with by using mirrors to bend the path of the laser beam while cutting off a line of sight path for neutrons. The Monte Carlo Code MCNP was used to analyze the two mirror SOLASE design, which only attenuated the neutron flux by a factor of 10/sup 3/. The Westinghouse design, initially assuming four mirrors, attenuated the neutron flux by 10/sup 4/ per mirror bend, and hence only three mirror bends were needed. Further studies also revealed that the large length/diameter ratio of the ducts and the thinner mirror design were crucial to the large attenuation. It may also be possible to develop a two mirror system, at 10/sup 6/ attenuation per mirror bend, utilizing improvements such as point cross overs, a second flux trap, and acute column-to-column angles. Further studies are needed to check this possibility.

  3. Response of LaBr3(Ce) scintillators to 14 MeV fusion neutrons

    NASA Astrophysics Data System (ADS)

    Cazzaniga, C.; Nocente, M.; Tardocchi, M.; Rebai, M.; Pillon, M.; Camera, F.; Giaz, A.; Pellegri, L.; Gorini, G.

    2015-04-01

    The response of a 3″×3″ LaBr3(Ce) scintillator to 14 MeV neutron irradiation has been measured at the Frascati Neutron Generator and simulated by means of a dedicated MCNP model. Several reactions are found to contribute to the measured response, with a key role played by neutron inelastic scattering and (n,2n) reactions on 79Br, 81Br and 139La isotopes. An overall 43% efficiency to 14 MeV neutron detection above an experimental threshold of 0.35 MeV is calculated and confirmed by measurements. Post irradiation activation of the crystal has been also observed and is explained in terms of nuclear decays from the short lived 78Br and 80Br isotopes produced in (n,2n) reactions. The results presented in this paper are of relevance for the design of γ-ray detectors in burning plasma fusion experiments of the next generation, such as ITER, where capability to perform measurements in an intense 14 MeV neutron flux is required.

  4. Response of LaBr3(Ce) scintillators to 2.5 MeV fusion neutrons

    NASA Astrophysics Data System (ADS)

    Cazzaniga, C.; Nocente, M.; Tardocchi, M.; Croci, G.; Giacomelli, L.; Angelone, M.; Pillon, M.; Villari, S.; Weller, A.; Petrizzi, L.; Gorini, G.; ASDEX Upgrade Team; JET-EFDA Contributors

    2013-12-01

    Measurements of the response of LaBr3(Ce) to 2.5 MeV neutrons have been carried out at the Frascati Neutron Generator and at tokamak facilities with deuterium plasmas. The observed spectrum has been interpreted by means of a Monte Carlo model. It is found that the main contributor to the measured response is neutron inelastic scattering on 79Br, 81Br, and 139La. An extrapolation of the count rate response to 14 MeV neutrons from deuterium-tritium plasmas is also presented. The results are of relevance for the design of γ-ray diagnostics of fusion burning plasmas.

  5. Response of LaBr{sub 3}(Ce) scintillators to 2.5 MeV fusion neutrons

    SciTech Connect

    Cazzaniga, C.; Nocente, M.; Gorini, G.; Tardocchi, M.; Croci, G.; Giacomelli, L.; Angelone, M.; Pillon, M.; Villari, S.; Weller, A.; Petrizzi, L.; Collaboration: ASDEX Upgrade Team; JET-EFDA Contributors

    2013-12-15

    Measurements of the response of LaBr{sub 3}(Ce) to 2.5 MeV neutrons have been carried out at the Frascati Neutron Generator and at tokamak facilities with deuterium plasmas. The observed spectrum has been interpreted by means of a Monte Carlo model. It is found that the main contributor to the measured response is neutron inelastic scattering on {sup 79}Br, {sup 81}Br, and {sup 139}La. An extrapolation of the count rate response to 14 MeV neutrons from deuterium-tritium plasmas is also presented. The results are of relevance for the design of γ-ray diagnostics of fusion burning plasmas.

  6. Prospects for High Resolution Neutron Spectroscopy on high power fusion devices in view of the recent diagnostic developments at JET

    SciTech Connect

    Ericsson, Goeran; Sunden, E. Andersson; Conroy, S.; Johnson, M. Gatu; Giacomelli, L.; Hellesen, C.; Hjalmarsson, A.; Ronchi, E.; Sjsoetrand, H.; Weiszflog, M.; Kaellne, J.; Gorini, G.; Ognissanto, F.; Tardocchi, M.; Angelone, M.; Popovichev, S.

    2008-03-12

    An evaluation of three different candidate techniques for a 14-MeV High Resolution Neutron Spectrometer for a high power fusion device is presented. The performance is estimated for a modelled neutron emission for ITER plasma scenario 4. As performance indicators we use the estimated time-resolution achieved in measurements of three plasma parameters, namely, the ion temperature, the intensity of neutron emission due to neutral beam--thermal plasma interactions and the intensity of the so-called alpha knock-on neutron tail. It is found that only the MPR technique can deliver results on all three parameters with reasonable time resolution.

  7. Single crystal diamond detector measurements of deuterium-deuterium and deuterium-tritium neutrons in Joint European Torus fusion plasmas

    SciTech Connect

    Cazzaniga, C. Gorini, G.; Nocente, M.; Sundén, E. Andersson; Binda, F.; Ericsson, G.; Croci, G.; Grosso, G.; Cippo, E. Perelli; Tardocchi, M.; Giacomelli, L.; Rebai, M.; Griesmayer, E.; Kaveney, G.; Syme, B.; Collaboration: JET-EFDA Contributors

    2014-04-15

    First simultaneous measurements of deuterium-deuterium (DD) and deuterium-tritium neutrons from deuterium plasmas using a Single crystal Diamond Detector are presented in this paper. The measurements were performed at JET with a dedicated electronic chain that combined high count rate capabilities and high energy resolution. The deposited energy spectrum from DD neutrons was successfully reproduced by means of Monte Carlo calculations of the detector response function and simulations of neutron emission from the plasma, including background contributions. The reported results are of relevance for the development of compact neutron detectors with spectroscopy capabilities for installation in camera systems of present and future high power fusion experiments.

  8. Single crystal diamond detector measurements of deuterium-deuterium and deuterium-tritium neutrons in Joint European Torus fusion plasmas

    NASA Astrophysics Data System (ADS)

    Cazzaniga, C.; Sundén, E. Andersson; Binda, F.; Croci, G.; Ericsson, G.; Giacomelli, L.; Gorini, G.; Griesmayer, E.; Grosso, G.; Kaveney, G.; Nocente, M.; Cippo, E. Perelli; Rebai, M.; Syme, B.; Tardocchi, M.

    2014-04-01

    First simultaneous measurements of deuterium-deuterium (DD) and deuterium-tritium neutrons from deuterium plasmas using a Single crystal Diamond Detector are presented in this paper. The measurements were performed at JET with a dedicated electronic chain that combined high count rate capabilities and high energy resolution. The deposited energy spectrum from DD neutrons was successfully reproduced by means of Monte Carlo calculations of the detector response function and simulations of neutron emission from the plasma, including background contributions. The reported results are of relevance for the development of compact neutron detectors with spectroscopy capabilities for installation in camera systems of present and future high power fusion experiments.

  9. Quantum description of coupling to neutron-rearrangement channels in fusion reactions near the Coulomb barrier

    SciTech Connect

    Samarin, V. V.

    2015-10-15

    The fusion cross sections for the {sup 17,18}O+{sup 27}Al, {sup 18}O+{sup 58}Ni, and {sup 6}He+{sup 197}Au reactions were calculated by the coupled-channel method. The radial dependence of matrices that describe coupling to valence-neutron-rearrangement channels was determined with the aid of two-center wave functions. The coupling-strength parameters were evaluated on the basis of numerically solving the time-dependent Schrödinger equation. Satisfactory agreement with experimental data was obtained.

  10. Measuring the neutron energy spectrum of laser-fusion targets with CR-39

    SciTech Connect

    Lane, S.M.

    1983-09-01

    We are developing a detector capable of measuring the neutron energy spectrum from a laser fusion target containing DT fuel. From such a spectrum the compressed areal density of the DT can be inferred by observing the fraction of 14.1 MeV neutrons down-shifted in energy by elastic scattering. The detector consists of a 0.1 cm thick Ta x-ray and debris shield backed by a 50 to 200 ..mu..m polyethylene radiator followed by layers of CR-39. The energy of each neutron producing a knock-on proton in the radiatior, that in turn creates a damage track in the CR-39, can be derived from the resultant track diameter, location, and orientation. We have analyzed the proton sensitivity and sample readability of 5 types of CR-39 in the energy range 3 to 11 MeV and have found a type fabricated by American Acrylics from a monomer made by a French company, Allymer, to be the most acceptable. Calibration curves were obtained for this plastic at energies of 3 to 15 MeV and dip angles ranging from 75 to 90/sup 0/. These curves were subsequently used to unfold a 14.7 MeV spectrum generated at the Livermore Rotating Target Neutron Source.

  11. ORELA measurements to meet fusion energy neutron cross section needs. [2 to 80 MeV

    SciTech Connect

    Larson, D C

    1980-01-01

    Major neutron cross section measurements made at the Oak Ridge Electron Linear Accelerator (ORELA) that are useful to the fusion energy program are reviewed. Cross sections for production of gamma rays with energies 0.3 < E/sub ..gamma../ < 10.5 MeV were measured as a function of neutron energy over the range 0.1 < E/sub n/ < 20.0 MeV for Li, C, N, O, F, Na, Mg, Al, Si, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Nb, Mo, Ag, Sn, Ta, W, Au, Pb, and Th. Neutron emission cross sections have been measured for /sup 7/Li, Al, Ti, Cu, and Nb for 1 < E/sub n/ < 20 MeV. Some results of recent neutron total cross section measurements from 2 to 80 MeV for eleven materials (C, O, Al, Si, Ca, Cr, Fe, Ni, Cu, Au, and Pb) of interest to the FMIT project are presented. Finally, future directions of the ORELA program are outlined. 4 figures, 3 tables.

  12. Superresolution of a compact neutron spectrometer at energies relevant for fusion diagnostics

    SciTech Connect

    Reginatto, M.; Zimbal, A.

    2011-03-14

    The ability to achieve resolution that is better than the instrument resolution (i.e., superresolution) is well known in optics, where it has been extensively studied. Unfortunately, there are only a handful of theoretical studies concerning superresolution of particle spectrometers, even though experimentalists are familiar with the enhancement of resolution that is achievable when appropriate methods of data analysis are used, such as maximum entropy and Bayesian methods. Knowledge of the superresolution factor is in many cases important. For example, in applications of neutron spectrometry to fusion diagnostics, the temperature of a burning plasma is an important physical parameter which may be inferred from the width of the peak of the neutron energy spectrum, and the ability to determine this width depends on the superresolution factor. Kosarev has derived an absolute limit for resolution enhancement using arguments based on a well known theorem of Shannon. Most calculations of superresolution factors in the literature, however, are based on the assumption of Gaussian, translationally invariant response functions and therefore not directly applicable to neutron spectrometers which typically have response functions not satisfying these requirements. In this work, we develop a procedure that allows us to overcome these difficulties and we derive estimates of superresolution for liquid scintillator spectrometers of a type commonly used for neutron measurements. Theoretical superresolution factors are compared to experimental results.

  13. Modular System for Neutronics Calculations of Fission Reactors, Fusion Blankets, and Other Systems.

    1999-07-23

    AUS is a neutronics code system which may be used for calculations of a wide range of fission reactors, fusion blankets and other neutron applications. The present version, AUS98, has a nuclear cross section library based on ENDF/B-VI and includes modules which provide for reactor lattice calculations, one-dimensional transport calculations, multi-dimensional diffusion calculations, cell and whole reactor burnup calculations, and flexible editing of results. Calculations of multi-region resonance shielding, coupled neutron and photon transport, energymore » deposition, fission product inventory and neutron diffusion are combined within the one code system. The major changes from the previous release, AUS87, are the inclusion of a cross-section library based on ENDF/B-VI, the addition of the POW3D multi-dimensional diffusion module, the addition of the MICBURN module for controlling whole reactor burnup calculations, and changes to the system as a consequence of moving from IBM mainframe computers to UNIX workstations.« less

  14. Research on anisotropy of fusion-produced protons and neutrons emission from high-current plasma-focus discharges.

    PubMed

    Malinowski, K; Skladnik-Sadowska, E; Sadowski, M J; Szydlowski, A; Czaus, K; Kwiatkowski, R; Zaloga, D; Paduch, M; Zielinska, E

    2015-01-01

    The paper concerns fast protons and neutrons from D-D fusion reactions in a Plasma-Focus-1000U facility. Measurements were performed with nuclear-track detectors arranged in "sandwiches" of an Al-foil and two PM-355 detectors separated by a polyethylene-plate. The Al-foil eliminated all primary deuterons, but was penetrable for fast fusion protons. The foil and first PM-355 detector were penetrable for fast neutrons, which were converted into recoil-protons in the polyethylene and recorded in the second PM-355 detector. The "sandwiches" were irradiated by discharges of comparable neutron-yields. Analyses of etched tracks and computer simulations of the fusion-products behavior in the detectors were performed. PMID:25638081

  15. Influence of the neutron numbers of projectile and target on the evaporation residue cross sections in hot fusion reactions

    NASA Astrophysics Data System (ADS)

    Zhu, Long; Su, Jun; Zhang, Feng-Shou

    2016-06-01

    Within the framework of a dinuclear system model, the influence of projectile and target neutron number on capture cross section, fusion probability, and survival probability for the reactions S,3634+238U and 48Ca+Pu 239 ,240 ,242 ,244 are investigated. The calculated excitation functions are in good agreement with the experimental data. To synthesize more unknown neutron-deficient isotopes of already-known superheavy elements, the possibility of using lighter calcium isotopes to induce hot fusion reactions is investigated and the maximal evaporation residual cross sections for Ca 44 ,46 ,48 -induced hot fusion reactions to produce unknown neutron-deficient superheavy nuclei with Z =112 -116 are predicted.

  16. Research on anisotropy of fusion-produced protons and neutrons emission from high-current plasma-focus discharges

    SciTech Connect

    Malinowski, K. Sadowski, M. J.; Szydlowski, A.; Skladnik-Sadowska, E.; Czaus, K.; Kwiatkowski, R.; Zaloga, D.; Paduch, M.; Zielinska, E.

    2015-01-15

    The paper concerns fast protons and neutrons from D-D fusion reactions in a Plasma-Focus-1000U facility. Measurements were performed with nuclear-track detectors arranged in “sandwiches” of an Al-foil and two PM-355 detectors separated by a polyethylene-plate. The Al-foil eliminated all primary deuterons, but was penetrable for fast fusion protons. The foil and first PM-355 detector were penetrable for fast neutrons, which were converted into recoil-protons in the polyethylene and recorded in the second PM-355 detector. The “sandwiches” were irradiated by discharges of comparable neutron-yields. Analyses of etched tracks and computer simulations of the fusion-products behavior in the detectors were performed.

  17. Novel, spherically-convergent ion systems for neutron source and fusion energy production

    NASA Astrophysics Data System (ADS)

    Barnes, D. C.; Nebel, R. A.; Ribe, F. L.; Schauer, M. M.; Schranck, L. S.; Umstadter, K. R.

    1999-06-01

    Combining spherical convergence with electrostatic or electro-magnetostatic confinement of a nonneutral plasma offers the possibility of high fusion gain in a centimeter-sized system. The physics principles, scaling laws, and experimental embodiments of this approach are presented. Steps to development of this approach from its present proof-of-principle experiments to a useful fusion power reactor are outlined. This development path is much less expensive and simpler, compared to that for conventional magnetic confinement and leads to different and useful products at each stage. Reactor projections show both high mass power density and low to moderate wall loading. This approach is being tested experimentally in PFX-I (Penning Fusion eXperiment-Ions), which is based on the following recent advances: 1) Demonstration, in PFX (our former experiment), that it is possible to combine nonneutral electron plasma confinement with nonthermal, spherical focussing; 2) Theoretical development of the POPS (Periodically Oscillating Plasma Sphere) concept, which allows spherical compression of thermal-equilibrium ions; 3) The concept of a massively-modular approach to fusion power, and associated elimination of the critical problem of extremely high first wall loading. PFX-I is described. PFX-I is being designed as a small (<1.5 cm) spherical system into which moderate-energy electrons (up to 100 kV) are injected. These electrons are magnetically insulated from passing to the sphere and their space charge field is then used to spherically focus ions. Results of initial operation with electrons only are presented. Deuterium operation can produce significant neutron output with unprecedented efficiency (fusion gain Q).

  18. Analysis of Induced Gamma Activation by D-T Neutrons in Selected Fusion Reactor Relevant Materials with EAF-2010

    NASA Astrophysics Data System (ADS)

    Klix, Axel; Fischer, Ulrich; Gehre, Daniel

    2016-02-01

    Samples of lanthanum, erbium and titanium which are constituents of structural materials, insulating coatings and tritium breeder for blankets of fusion reactor designs have been irradiated in a fusion peak neutron field. The induced gamma activities were measured and the results were used to check calculations with the European activation system EASY-2010. Good agreement for the prediction of major contributors to the contact dose rate of the materials was found, but for minor contributors the calculation deviated up to 50%.

  19. Possibilities of production of neutron-deficient isotopes of U, Np, Pu, Am, Cm, and Cf in complete fusion reactions

    SciTech Connect

    Adamian, G. G.; Antonenko, N. V.; Zubov, A. S.; Scheid, W.

    2008-10-15

    Within the dinuclear system model we analyze the production of yet unknown neutron-deficient isotopes of U, Np, Pu, Am, Cm, and Cf in various complete fusion reactions. Different deexcitation channels of the excited compound nucleus are treated. The results are obtained without special adjustment to the selected evaporation channel. The fusion probability is an important ingredient of the excitation function. The results are in good agreement with the available experimental data. The alpha decay half-life times in the neutron-deficient actinides are discussed.

  20. Level Density of COBALT-57 in the Energy Region 1 Mev to 14 Mev

    NASA Astrophysics Data System (ADS)

    Mishra, Vivek

    The level density of ^{57 }Co is studied in the energy region of 1-14 MeV using three experimental techniques. Levels are counted in the resolved region, evaporation spectra are measured in the resolved to continuum region, and the coherence width is measured in the region of level overlap. Use of Hauser-Feshbach fits to the evaporation cross sections requires level densities of the residual nucleus. A two -parameter based Fermi gas form is used for the calculation of level density as a function of the nuclear excitation energy. This procedure enables level density calculation beyond the energy region in which the two fixed parameters provide the best fits to the data. A comparison is made between the level density obtained from the above described methods and the predictions of the microscopic model in an energy range of 1-20 MeV. This model utilizes a BCS pairing Hamiltonian and specific sets of single particle states and calculates numerical values of the level density. Comparisons are also made with level density of ^{57 }Co obtained in various other studies. Both the resolved level studies and the fits to the evaporation spectra were conducted using the ^{56}Fe(d,n)^{57 }Co and ^{57}Fe(p,n) ^{57}Co reactions. Standard neutron time-of-flight techniques including pulse shape discrimination for elimination of gamma -rays were employed. An energy resolution as good as 6 keV at 1-1.5 MeV neutron energy was obtained for high resolution measurements. For Ericson fluctuation measurements, the excitation functions corresponding to the ground state and the first two excited states of the residual nucleus in the ^{56}Fe(p,n) ^{56}Co reaction were obtained for lab angles between 0^circ and 150^circ. The ^{56}Fe(d,n) ^{57}Co reaction proves to be very selective in populating resolved states and includes substantial contributions from mechanisms other than the compound nuclear. The ^{57 }Fe(p,n)^{57}Co reaction populated 14 previously unknown levels. The fits to the

  1. Evaluation of two-stage system for neutron measurement aiming at increase in count rate at Japan Atomic Energy Agency-Fusion Neutronics Source

    SciTech Connect

    Shinohara, K. Ochiai, K.; Sukegawa, A.; Ishii, K.; Kitajima, S.; Baba, M.; Sasao, M.

    2014-11-15

    In order to increase the count rate capability of a neutron detection system as a whole, we propose a multi-stage neutron detection system. Experiments to test the effectiveness of this concept were carried out on Fusion Neutronics Source. Comparing four configurations of alignment, it was found that the influence of an anterior stage on a posterior stage was negligible for the pulse height distribution. The two-stage system using 25 mm thickness scintillator was about 1.65 times the count rate capability of a single detector system for d-D neutrons and was about 1.8 times the count rate capability for d-T neutrons. The results suggested that the concept of a multi-stage detection system will work in practice.

  2. Neutron Damage in the Plasma Chamber First Wall of the GCFTR-2 Fusion-Fission Hybrid Reactor

    NASA Astrophysics Data System (ADS)

    Pinto, L. N.; Gonnelli, E.; Rossi, P. C. R.; Carluccio, T.; dos Santos, A.

    2015-07-01

    The successful development of energy-conversion machines based on either nuclear fission or fusion is completely dependent on the behaviour of the engineering materials used to construct the fuel containment and primary heat extraction systems. Such materials must be designed in order to maintain their structural integrity and dimensional stability in an environment involving high temperatures and heat fluxes, corrosive media, high stresses and intense neutron fluxes. However, despite the various others damage issues, such as the effects of plasma radiation and particle flux, the neutron flux is sufficiently energetic to displace atoms from their crystalline lattice sites. It is clear that the understanding of the neutron damage is essential for the development and safe operation of nuclear systems. Considering this context, the work presents a study of neutron damage in the Gas Cooled Fast Transmutation Reactor (GCFTR-2) driven by a Tokamak D-T fusion neutron source of 14.03 MeV. The theoretical analysis was performed by MCNP-5 and the ENDF/B-VII.1 neutron data library. A brief discussion about the determination of the radiation damage is presented, along with an analysis of the total neutron energy deposition in seven points through the material of the plasma source wall (PSW), in which was considered the HT-9 steel. The neutron flux was subdivided into three energy groups and their behaviour through the material was also examined.

  3. BNCT dose distribution in liver with epithermal D-D and D-T fusion-based neutron beams.

    PubMed

    Koivunoro, H; Bleuel, D L; Nastasi, U; Lou, T P; Reijonen, J; Leung, K-N

    2004-11-01

    Recently, a new application of boron neutron capture therapy (BNCT) treatment has been introduced. Results have indicated that liver tumors can be treated by BNCT after removal of the liver from the body. At Lawrence Berkeley National Laboratory, compact neutron generators based on (2)H(d,n)(3)He (D-D) or (3)H(t,n)(4)He (D-T) fusion reactions are being developed. Preliminary simulations of the applicability of 2.45 MeV D-D fusion and 14.1 MeV D-T fusion neutrons for in vivo liver tumor BNCT, without removing the liver from the body, have been carried out. MCNP simulations were performed in order to find a moderator configuration for creating a neutron beam of optimal neutron energy and to create a source model for dose calculations with the simulation environment for radiotherapy applications (SERA) treatment planning program. SERA dose calculations were performed in a patient model based on CT scans of the body. The BNCT dose distribution in liver and surrounding healthy organs was calculated with rectangular beam aperture sizes of 20 cm x 20 cm and 25 cm x 25 cm. Collimator thicknesses of 10 and 15 cm were used. The beam strength to obtain a practical treatment time was studied. In this paper, the beam shaping assemblies for D-D and D-T neutron generators and dose calculation results are presented. PMID:15308157

  4. Development of the large neutron imaging system for inertial confinement fusion experiments.

    PubMed

    Caillaud, T; Landoas, O; Briat, M; Kime, S; Rossé, B; Thfoin, I; Bourgade, J L; Disdier, L; Glebov, V Yu; Marshall, F J; Sangster, T C

    2012-03-01

    Inertial confinement fusion (ICF) requires a high resolution (~10 μm) neutron imaging system to observe deuterium and tritium (DT) core implosion asymmetries. A new large (150 mm entrance diameter: scaled for Laser MégaJoule [P. A. Holstein, F. Chaland, C. Charpin, J. M. Dufour, H. Dumont, J. Giorla, L. Hallo, S. Laffite, G. Malinie, Y. Saillard, G. Schurtz, M. Vandenboomgaerde, and F. Wagon, Laser and Particle Beams 17, 403 (1999)]) neutron imaging detector has been developed for such ICF experiments. The detector has been fully characterized using a linear accelerator and a (60)Co γ-ray source. A penumbral aperture was used to observe DT-gas-filled target implosions performed on the OMEGA laser facility. [T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, Opt. Commun. 133, 495 (1997)] Neutron core images of 14 MeV with a resolution of 15 μm were obtained and are compared to x-ray images of comparable resolution. PMID:22462917

  5. Development of the large neutron imaging system for inertial confinement fusion experiments

    NASA Astrophysics Data System (ADS)

    Caillaud, T.; Landoas, O.; Briat, M.; Kime, S.; Rossé, B.; Thfoin, I.; Bourgade, J. L.; Disdier, L.; Glebov, V. Yu.; Marshall, F. J.; Sangster, T. C.

    2012-03-01

    Inertial confinement fusion (ICF) requires a high resolution (˜10 μm) neutron imaging system to observe deuterium and tritium (DT) core implosion asymmetries. A new large (150 mm entrance diameter: scaled for Laser MégaJoule [P. A. Holstein, F. Chaland, C. Charpin, J. M. Dufour, H. Dumont, J. Giorla, L. Hallo, S. Laffite, G. Malinie, Y. Saillard, G. Schurtz, M. Vandenboomgaerde, and F. Wagon, Laser and Particle Beams 17, 403 (1999), 10.1017/S0263034699173087]) neutron imaging detector has been developed for such ICF experiments. The detector has been fully characterized using a linear accelerator and a 60Co γ-ray source. A penumbral aperture was used to observe DT-gas-filled target implosions performed on the OMEGA laser facility. [T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, Opt. Commun. 133, 495 (1997), 10.1016/S0030-4018(96)00325-2] Neutron core images of 14 MeV with a resolution of 15 μm were obtained and are compared to x-ray images of comparable resolution.

  6. Bayesian and maximum entropy methods for fusion diagnostic measurements with compact neutron spectrometers.

    PubMed

    Reginatto, Marcel; Zimbal, Andreas

    2008-02-01

    In applications of neutron spectrometry to fusion diagnostics, it is advantageous to use methods of data analysis which can extract information from the spectrum that is directly related to the parameters of interest that describe the plasma. We present here methods of data analysis which were developed with this goal in mind, and which were applied to spectrometric measurements made with an organic liquid scintillation detector (type NE213). In our approach, we combine Bayesian parameter estimation methods and unfolding methods based on the maximum entropy principle. This two-step method allows us to optimize the analysis of the data depending on the type of information that we want to extract from the measurements. To illustrate these methods, we analyze neutron measurements made at the PTB accelerator under controlled conditions, using accelerator-produced neutron beams. Although the methods have been chosen with a specific application in mind, they are general enough to be useful for many other types of measurements. PMID:18315297

  7. The Mission and Technology of a Gas Dynamic Trap Neutron Source for Fusion Material and Component Testing and Qualification

    SciTech Connect

    Molvik, A W; Simonen, T C

    2009-07-17

    This report summarizes discussions and conclusions of the workshop to 'Assess The Mission and Technology of a Gas Dynamic Trap Neutron Source for Fusion Material and Component Testing and Qualification'. The workshop was held at LBNL, Berkeley, CA on March 12, 2009. Most workshop attendees have worked on magnetic mirror systems, several have worked on similar neutron source designs, and others are knowledgeable of materials, fusion component, and neutral beams The workshop focused on the gas dynamic trap DT Neutron Source (DTNS) concept being developed at the Budker Institute of Nuclear Physics (BINP) in Novosibirsk, Russia. The DTNS may be described as a line source of neutrons, in contrast to a spallation or a D-Lithium source with neutrons beaming from a point, or a tokamak volume source. The DTNS is a neutral beam driven linear plasma system with magnetic mirrors to confine the energetic deuterium and tritium beam injected ions, which produce the 14 MeV neutrons. The hot ions are imbedded in warm-background plasma, which traps the neutral atoms and provides both MHD and micro stability to the plasma. The 14 MeV neutron flux ranges typically at the level of 1 to 4 MW/m2.

  8. Production of tritium, neutrons, and heat based on the transmission resonance model (TRM) for cold fusion

    NASA Astrophysics Data System (ADS)

    Bush, Robert T.

    1991-05-01

    The TRM has recently been successful in fitting calorimetric data having interesting nonlinear structure. The model appears to provide a natural description for electrolytic cold fusion in terms of ``fractals''. Extended to the time dimension, the model can apparently account for the phenomenon of heat ``bursts''. The TRM combines a transmission condition involving quantized energies and an engergy shift of a Maxwell-Boltzmann energy distribution of deuterons at the cathodic surface that appears related to the concentration overpotential (hydrogen overvoltage). The model suggest three possible regimes vis-a-vis tritium production in terms of this energy shift, and indicates why measurable tritium production in the electrolytic case will tend to be the exception rather than the rule in absence of a recipe: Below a shift of approximately 2.8 meV there is production of both tritium and measureable excess heat, with the possibility of accounting for the Bockris curve indicating about a 1% correlation between excess heat and tritium. However, over the large range from about 2.8 meV to 340 meV energy shift there is a regime of observable excess heat production but little, and probably no measurable, tritium production. The third regime is more hypothetical: It begins at an energy shift of about 1 keV and extends to the boundaries of ``hot'' fusion at about 10 keV. A new type of nucelar reaction, trint (for transmission resonance-induced neutron transfer), is suggested by the model leading to triton and neutron production. A charge distribution ``polarization conjecture'' is the basis for theoretical derivation for the low-energy limit for an energy-dependent branching ratio for D-on-D. When the values of the parameters are inserted, this expression yields an estimate for the ratio of neutron-to-triton production of about 1.64×10-9. The possibility of some three-body reactions is also suggested. A comparison of the TRM's transmission energy levels for palladium deuteride

  9. Development of a gated scintillation fiber neutron detector for areal density measurements of inertial confinement fusion capsules

    NASA Astrophysics Data System (ADS)

    Izumi, N.; Lerche, R. A.; Phillips, T. W.; Schmid, G. J.; Moran, M. J.; Koch, J. A.; Azechi, H.; Sangster, T. C.

    2003-03-01

    A detector for fuel areal density measurements in inertial confinement fusion capsules has been designed. Observation of neutrons scattered in an imploded deuterium capsule (0.27-0.6 MeV) is a promising method for areal density measurements in the National Ignition Facility DD surrogate capsules. In order to detect scattered neutrons, we need to (1) suppress interference due to the strong direct neutron burst and (2) suppress the background produced by neutrons scattering on nontarget material (mainly from the target chamber). In our detector system, we suppress direct neutrons by gating the detector. We suppress the nontarget background neutrons by placing the detector outside the target chamber and limiting the view of the detector with collimators. In addition, we are developing a lithium-glass scintillation-fiber detector (LG-SCIFI) to detect the scattered neutrons. The LG-SCIFI will work as a multichannel scintillator array. The scintillation signal will be amplified by a microchannel plate image intensifier, which is gated to accept signals only in a specific time-of-flight window for the scattered neutrons. The gated scintillation image will be recorded by a charge-coupled device. Since the detector is segmented, neutron detection events will be clearly identified as bright spots in the gated image.

  10. Assessment of radiation shield integrity of DD/DT fusion neutron generator facilities by Monte Carlo and experimental methods

    NASA Astrophysics Data System (ADS)

    Srinivasan, P.; Priya, S.; Patel, Tarun; Gopalakrishnan, R. K.; Sharma, D. N.

    2015-01-01

    DD/DT fusion neutron generators are used as sources of 2.5 MeV/14.1 MeV neutrons in experimental laboratories for various applications. Detailed knowledge of the radiation dose rates around the neutron generators are essential for ensuring radiological protection of the personnel involved with the operation. This work describes the experimental and Monte Carlo studies carried out in the Purnima Neutron Generator facility of the Bhabha Atomic Research Center (BARC), Mumbai. Verification and validation of the shielding adequacy was carried out by measuring the neutron and gamma dose-rates at various locations inside and outside the neutron generator hall during different operational conditions both for 2.5-MeV and 14.1-MeV neutrons and comparing with theoretical simulations. The calculated and experimental dose rates were found to agree with a maximum deviation of 20% at certain locations. This study has served in benchmarking the Monte Carlo simulation methods adopted for shield design of such facilities. This has also helped in augmenting the existing shield thickness to reduce the neutron and associated gamma dose rates for radiological protection of personnel during operation of the generators at higher source neutron yields up to 1 × 1010 n/s.

  11. Results of the Development of Humanitarian Landmine Detection System by a Compact Fusion Neutron Source and Dual Sensors

    SciTech Connect

    Yoshikawa, Kiyoshi; Masuda, Kai; Takamatsu, Teruhisa; Yamamoto, Yasushi; Toku, Hisayuki; Fujimoto, Takashi; Hotta, Eiki; Yamauchi, Kunihito; Ohnishi, Masami; Osawa, Hodaka; Shiroya, Seiji; Misawa, Tsuyoshi; Takahashi, Yoshiyuki; Kubo, Yoshikazu; Doi, Toshiro

    2009-03-10

    A 5-year task is described on the research and development of the advanced humanitarian landmine detection system by using a compact discharge-type fusion neutron source called IECF (Inertial-Electrostatic Confinement Fusion) device and 3 dual sensors made of BGO and NaI(Tl). With 10{sup 7} D-D neutrons/s stably produced in steady-state mode, H-2.2 MeV, N-5.3, 10.8 MeV {gamma} rays from (n,{gamma}) reaction with hydrogen and nitrogen atoms in the explosives are measured for two kinds of explosives (TNT, RDX), under the conditions of three different buried depths, and soil moistures each. Final probabilities of detection for arid soil are found to be 100% in the present tests. The neutron backscattering method is also found to be efficient.

  12. Diagnosing suprathermal ion populations in Z-pinch plasmas using fusion neutron spectra

    SciTech Connect

    Knapp, P. F.; Sinars, D. B.; Hahn, K. D.

    2013-06-15

    The existence of suprathermal ion populations gives rise to significant broadening of and modifications to the fusion neutron spectrum. We show that when this population takes the form of a power-law at high energies, specific changes occur to the spectrum which are diagnosable. In particular, the usual Gaussian spectral shape produced by a thermal plasma is replaced by a Lorentz-like spectrum with broad wings extending far from the spectral peak. Additionally, it is found that the full width at half maximum of the spectrum depends on both the ion temperature and the power-law exponent. This causes the use of the spectral width for determination of the ion temperature to be unreliable. We show that these changes are distinguishable from other broadening mechanisms, such as temporal and motional broadening, and that detailed fitting of the spectral shape is a promising method for extracting information about the state of the ions.

  13. Near and sub-barrier fusion of neutron-rich oxygen and carbon nuclei using low-intensity beams

    NASA Astrophysics Data System (ADS)

    Steinbach, Tracy K.

    Fusion between neutron-rich light nuclei in the crust of an accreting neutron star has been proposed as a heat source that triggers an X-ray superburst. To explore the probability with which such fusion events occur and examine their decay characteristics, an experimental program using beams of neutron-rich light nuclei has been established. Evaporation residues resulting from the fusion of oxygen and 12C nuclei, are directly measured and distinguished from unreacted beam particles on the basis of their energy and time-of-flight. Using an experimental setup developed for measurements utilizing low-intensity (< 105 ions/s) radioactive beams, the fusion excitation functions for 16O + 12C and 18O + 12C have been measured. The fusion excitation function for 18O + 12C has been measured in the sub-barrier domain down to the 820 mub level, a factor of 30 lower than previous direct measurements. This measured fusion excitation function is compared to the predictions of a density constrained time-dependent Hartree-Fock model. This comparison reveals a shape difference in the fusion excitation functions, indicating a larger tunneling probability for the experimental data as compared to the theoretical calculations. In addition to the measured cross-section, the measured angular distribution of the evaporation residues provides insight into the relative importance of the different de-excitation channels. These evaporation residue angular distributions are compared to the predictions of a statistical model code, evapOR, revealing an under-prediction of the de-excitation channels associated with alpha particle emission.

  14. The influence of the 2-neutron elastic transfer on the fusion of 42Ca + 40Ca

    NASA Astrophysics Data System (ADS)

    Stefanini, A. M.; Montagnoli, G.; Corradi, L.; Fioretto, E.; Goasduff, A.; Grebosz, J.; Haas, F.; Mazzocco, M.; Scarlassara, F.; Strano, E.

    2016-05-01

    Strong coupling to a single channel with zero Q-value is predicted to produce a characteristic fusion barrier distribution with two peaks, one on each side of the original uncoupled Coulomb barrier. In practical cases, only coupling to an elastic transfer channel may produce such a distribution which, however, has never been observed sofar, probably because low-lying surface vibrations usually have a dominant role, and this may obscure the two-peak structure. The case of the two-neutron (2n) elastic transfer in 42Ca + 40Ca is particularly attractive, because of the relatively rigid nature of the two nuclei. We have measured the fusion excitation function of this system using the 42Ca beam of the XTU Tandem of LNL on a thin 40Ca target enriched to 99.96% in mass 40. Cross sections have been measured down to ≤1 mb. The extracted barrier distribution shows clearly two main peaks. We have performed preliminary CC calculations where the 2+ coupling strengths have been taken from the literature and the schematic 2n pair transfer form factor has been used, with a deformation length σt= 0.39 fm. The excitation function is well reproduced by the calculation including the 2n transfer channel. However, including the octupole excitations destroys the agreement.

  15. Near-barrier fusion of Sn+Ni and Te+Ni Systems: Examining the influence of neutron transfer couplings

    SciTech Connect

    Liang, J Felix; Kohley, Zachary W; Shapira, Dan; Varner Jr, Robert L; Gross, Carl J; Allmond, J M; Lagergren, Karin B; Mueller, Paul Edward

    2011-01-01

    The fusion excitation functions for radioactive 132Sn+58Ni and stable 130Te+58;64Ni were measured at energies near the Coulomb barrier. The role of transfer couplings in heavy-ion fusion was examined through a comparison of Sn+Ni and Te+Ni systems, which have large variations in the number of positive Q-value nucleon transfer channels. In contrast with previous comparisons, where increased sub-barrier fusion cross sections were observed in the systems with positive Q-value neutron transfer channels, the reduced excitation functions were equivalent for the different Sn+Ni and Te+Ni systems. The present results suggest a significant change in the influence of transfer couplings on the fusion process for the Sn+Ni and Te+Ni systems.

  16. Photo-neutron Cross Section Calculations of Several Structural Fusion Materials

    NASA Astrophysics Data System (ADS)

    Kaplan, A.; Özdoğan, H.; Aydın, A.; Tel, E.

    2013-06-01

    In this study, the theoretical photo-neutron cross-sections produced by (γ,n) reactions for several structural fusion materials such as 51V, 55Mn, 58Ni, 90,91,92,94Zr, and 181Ta have been investigated in the incident energy range of 7-40 MeV. Reaction cross-sections as a function of photon energy have been calculated theoretically using the PCROSS and TALYS 1.2 computer codes. TALYS 1.2 default and pre-equilibrium models have been used to calculate the pre-equilibrium photo-neutron cross-sections. For the reaction equilibrium component, PCROSS Weisskopf-Ewing model calculations have been preferred. The calculated results have been compared with each other and against the experimental data in the existing databases EXFOR and TENDL-2011. PCROSS Weisskopf-Ewing model calculations show a similar structure with experimental data but they are higher than the experimental values for all reactions except for 90Zr(γ,n)89Zr reaction. Generally, TALYS 1.2 default and pre-equilibrium model cross-section calculations are the best agreement with the experimental data for all reactions except for 58Ni(γ,n)57Ni reaction along the incident photon energy in this study. The TALYS 1.2 curves fit the TENDL-2011 data the best. If photo-neutron cross-section data is needed for an isotope where there is no experimental data available for comparison, TALYS 1.2 pre-equilibrium option has been recommended.

  17. Advances in implosion physics, alternative targets design, and neutron effects on heavy ion fusion reactors

    NASA Astrophysics Data System (ADS)

    Velarde, G.; Perlado, J. M.; Alonso, E.; Alonso, M.; Domínguez, E.; Rubiano, J. G.; Gil, J. M.; Gómez del Rio, J.; Lodi, D.; Malerba, L.; Marian, J.; Martel, P.; Martínez-Val, J. M.; Mínguez, E.; Piera, M.; Ogando, F.; Reyes, S.; Salvador, M.; Sanz, J.; Sauvan, P.; Velarde, M.; Velarde, P.

    2001-05-01

    The coupling of a new radiation transport (RT) solver with an existing multimaterial fluid dynamics code (ARWEN) using Adaptive Mesh Refinement named DAFNE, has been completed. In addition, improvements were made to ARWEN in order to work properly with the RT code, and to make it user-friendlier, including new treatment of Equations of State, and graphical tools for visualization. The evaluation of the code has been performed, comparing it with other existing RT codes (including the one used in DAFNE, but in the single-grid version). These comparisons consist in problems with real input parameters (mainly opacities and geometry parameters). Important advances in Atomic Physics, Opacity calculations and NLTE atomic physics calculations, with participation in significant experiments in this area, have been obtained. Early published calculations showed that a DT x fuel with a small tritium initial content ( x<3%) could work in a catalytic regime in Inertial Fusion Targets, at very high burning temperatures (≫100 keV). Otherwise, the cross-section of DT remains much higher than that of DD and no internal breeding of tritium can take place. Improvements in the calculation model allow to properly simulate the effect of inverse Compton scattering which tends to lower Te and to enhance radiation losses, reducing the plasma temperature, Ti. The neutron activation of all natural elements in First Structural Wall (FSW) component of an Inertial Fusion Energy (IFE) reactor for waste management, and the analysis of activation of target debris in NIF-type facilities has been completed. Using an original efficient modeling for pulse activation, the FSW behavior in inertial fusion has been studied. A radiological dose library coupled to the ACAB code is being generated for assessing impact of environmental releases, and atmospheric dispersion analysis from HIF reactors indicate the uncertainty in tritium release parameters. The first recognition of recombination barriers in Si

  18. Decontamination and Decommissioning of the Tokamak Fusion Test Reactor

    SciTech Connect

    E. Perry; J. Chrzanowski; K. Rule; M. Viola; M. Williams; R. Strykowsky

    1999-11-01

    The Tokamak Fusion Test Reactor (TFTR) is a one-of-a-kind, tritium-fueled fusion research reactor that ceased operation in April 1997. The Decontamination and Decommissioning (D and D) of the TFTR is scheduled to occur over a period of three years beginning in October 1999. This is not a typical Department of Energy D and D Project where a facility is isolated and cleaned up by ''bulldozing'' all facility and hardware systems to a greenfield condition. The mission of TFTR D and D is to: (a) surgically remove items which can be re-used within the DOE complex, (b) remove tritium contaminated and activated systems for disposal, (c) clear the test cell of hardware for future reuse, (d) reclassify the D-site complex as a non-nuclear facility as defined in DOE Order 420.1 (Facility Safety) and (e) provide data on the D and D of a large magnetic fusion facility. The 100 cubic meter volume of the donut-shaped reactor makes it the second largest fusion reactor in the world. The record-breaking deuterium-tritium experiments performed on TFTR resulted in contaminating the vacuum vessel with tritium and activating the materials with 14 Mev neutrons. The total tritium content within the vessel is in excess of 7,000 Curies while dose rates approach 75 mRem/hr. These radiological hazards along with the size and shape of the Tokamak present a unique and challenging task for dismantling.

  19. High-spin states in neutron-rich Z ≈ 30 nuclei studied following fusion-evaporation

    NASA Astrophysics Data System (ADS)

    Devlin, M.; Lafosse, D. R.; Lerma, F.; Sarantites, D. G.; Rudolph, D.; Thirolf, P. G.; Clark, R. M.; Lee, I. Y.; Macchiavelli, A. O.

    1997-10-01

    High-spin states in neutron rich nuclei near the closed shell at Z = 28 and N = 40 were studied with the fusion-evaporation reaction 157 MeV ^48Ca + ^26Mg. This region of the Segrè chart is of particular interest, since it is near the beginning of the astrophysical r-process, and little detailed knowledge of the relevant orbitals is available. The experiment was conducted using the Gammasphere Ge detector array in conjunction with the Microball charged-particle detector array, in order to exploit the sensitivity of this combination for multiple-charged particle evaporation channels. High spin states in heavy isotopes of Ge, Ga, Zn, Cu and Ni will be discussed. The sensitivity and usefulness of heavy-ion fusion reactions in the study of neutron-rich nuclei will also be addressed.

  20. How the projectile neutron number influences the evaporation cross section in complete fusion reactions with heavy ions

    SciTech Connect

    Wang Chengbin; Zhang Jinjuan; Ren, Z. Z.; Shen, C. W.

    2010-11-15

    The influence of the projectile neutron number on the evaporation residue cross sections for the reactions {sup 208}Pb({sup 52,54}Cr,n,2n){sup 258-261}Sg and {sup 208}Pb({sup 48,50}Ti,n,2n){sup 254-257}Rf has been studied within the framework of a fusion-fission statistical model. The results obtained with the kewpie2 code are compared with recent experimental data. The excitation functions represent the experimental results well both in the maximum value and the lactation of the peak. The calculations show that the projectile neutron number greatly influences both the capture cross section and the fusion probability.

  1. The Status of Research Regarding Magnetic Mirrors as a Fusion Neutron Source or Power Plant

    SciTech Connect

    Simonen, T

    2008-12-23

    experiments have confirmed the physics of effluent plasma stabilization predicted by theory. The plasma had a mean ion energy of 10 keV and a density of 5e19m-3. If successful, the axisymmetric tandem mirror extension of the GDT idea could lead to a Q {approx} 10 power plant of modest size and would yield important applications at lower Q. In addition to the GDT method, there are four other ways to augment stability that have been demonstrated; including: plasma rotation (MCX), diverter coils (Tara), pondermotive (Phaedrus & Tara), and end wall funnel shape (Nizhni Novgorod). There are also 5 stabilization techniques predicted, but not yet demonstrated: expander kinetic pressure (KSTM-Post), Pulsed ECH Dynamic Stabilization (Post), wall stabilization (Berk), non-paraxial end mirrors (Ryutov), and cusp ends (Kesner). While these options should be examined further together with conceptual engineering designs. Physics issues that need further analysis include: electron confinement, MHD and trapped particle modes, analysis of micro stability, radial transport, evaluation and optimization of Q, and the plasma density needed to bridge to the expansion-region. While promising all should be examined through increased theory effort, university-scale experiments, and through increased international collaboration with the substantial facilities in Russia and Japan The conventional wisdom of magnetic mirrors was that they would never work as a fusion concept for a number of reasons. This conventional wisdom is most probably all wrong or not applicable, especially for applications such as low Q (DT Neutron Source) aimed at materials testing or for a Q {approx} 3-5 fusion neutron source applied to destroying actinides in fission waste and breeding of fissile fuel.

  2. Fusion

    NASA Astrophysics Data System (ADS)

    Herman, Robin

    1990-10-01

    The book abounds with fascinating anecdotes about fusion's rocky path: the spurious claim by Argentine dictator Juan Peron in 1951 that his country had built a working fusion reactor, the rush by the United States to drop secrecy and publicize its fusion work as a propaganda offensive after the Russian success with Sputnik; the fortune Penthouse magazine publisher Bob Guccione sank into an unconventional fusion device, the skepticism that met an assertion by two University of Utah chemists in 1989 that they had created "cold fusion" in a bottle. Aimed at a general audience, the book describes the scientific basis of controlled fusion--the fusing of atomic nuclei, under conditions hotter than the sun, to release energy. Using personal recollections of scientists involved, it traces the history of this little-known international race that began during the Cold War in secret laboratories in the United States, Great Britain and the Soviet Union, and evolved into an astonishingly open collaboration between East and West.

  3. A target station for plasma exposure of neutron irradiated fusion material samples to reactor relevant conditions

    NASA Astrophysics Data System (ADS)

    Rapp, Juergen; Giuliano, Dominic; Ellis, Ronald; Howard, Richard; Lore, Jeremy; Lumsdaine, Arnold; Lessard, Timothy; McGinnis, William; Meitner, Steven; Owen, Larry; Varma, Venugopal

    2015-11-01

    The Material Plasma Exposure eXperiment (MPEX) is a device planned to address scientific and technological gaps for the development of viable plasma facing components for fusion reactor conditions (FNSF, DEMO). It will have to address the relevant plasma conditions in a reactor divertor (electron density, electron temperature, ion fluxes) and it needs to be able to expose a-priori neutron irradiated samples. A pre design of a target station able to handle activated materials will be presented. This includes detailed MCNP as well as SCALE and MAVRIC calculations for all potential plasma-facing materials to estimate dose rates. Details on the remote handling schemes for the material samples will be presented. 2 point modeling of the linear plasma transport has been used to scope out the parameter range of the anticipated power fluxes to the target. This has been used to design the cooling capability of the target. The operational conditions of surface temperatures, plasma conditions, and oblique angle of incidence of magnetic field to target surface will be discussed. ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under contract DE-AC-05-00OR22725.

  4. Measurements and analyses of decay radioactivity induced in simulated deuterium-tritium neutron environments for fusion reactor structural materials

    SciTech Connect

    Ikeda, Y.; Konno, C.; Kosako, K.; Oyama, Y.; Maekawa, F.; Maekawa, H.; Kumar, A.; Youssef, M.Z.; Abdou, M.A.

    1995-08-01

    To meet urgent requirements for data validation, an experimental analysis has been carried out for isotopic radioactivity induced by deuterium-tritium neutron irradiation in structural materials. The primary objective is to examine the adequacy of the activation cross sections implemented in the current activation calculation codes considered for use in fusion reactor nuclear design. Four activation cross-section libraries, namely, JENDL, LIB90, REAC{sup *}63, and REAC{sup *}175 were investigated in this current analysis. The isotopic induced radioactivity calculations using these four libraries are compared with experimental values obtained in the Japan Atomic Energy Research Institute/U.S. Department of Energy collaborative program on fusion blanket neutronics. The nine materials studied are aluminum, silicon, titanium, vanadium, chromium, MnCu alloy, iron, nickel, niobium, and Type 316 stainless steel. The adequacy of the cross sections is investigated through the calculation to experiment analysis. As a result, most of the discrepancies in the calculations from experiments can be explained by inadequate activation cross sections. In addition, uncertainties due to neutron energy groups and neutron transport calculation are considered. The JENDL library gives the best agreement with experiments, followed by REAC{sup *}175, LIB90, and REAC{sup *}63, in this order. 45 refs., 32 figs., 5 tabs.

  5. Measurement of the D-D fusion neutron energy spectrum and variation of the peak width with plasma ion temperature

    NASA Astrophysics Data System (ADS)

    Fisher, W. A.; Chen, S. H.; Gwinn, D.; Parker, R. R.

    1983-11-01

    We report a set of neutron spectrum measurements made at the Alcator-C tokamak under Ohmic-heating conditions. It has been found that the width of the D-D fusion neutron peak increases with the plasma ion temperature consistent with the theoretical prediction. In particular, the neutron spectra resulting from the sum of many plasma discharges with ion temperatures of 780 and 1050 eV have been obtained. The width for the 780-eV case is 64+ 9-11 keV and that of the 1050-eV case, 81+10-14 keV (full width at half maximum), corresponding to ion temperatures of 740 and 1190 eV, respectively.

  6. Examination of the different roles of neutron transfer in the sub-barrier fusion reactions 32S+Zr,9694 and 40Ca +Zr,9694

    NASA Astrophysics Data System (ADS)

    Sargsyan, V. V.; Adamian, G. G.; Antonenko, N. V.; Scheid, W.; Zhang, H. Q.

    2015-01-01

    The sub-barrier capture (fusion) reactions 32S+90,94,96Zr, 36S+Zr,9690 , 40Ca +90,94,96Zr, and 48Ca +Zr,9690 with positive and negative Q values for neutron transfer are studied with the quantum diffusion approach and the universal fusion function representation. For these systems, the s -wave capture probabilities are extracted from the experimental excitation functions and are also analyzed. Different effects of the positive Qx n-value neutron transfer in the fusion enhancement are revealed in the relatively close reactions 32S+Zr,9694 and 40Ca +Zr,9694 .

  7. Neutron Transport and Nuclear Burnup Analysis for the Laser Inertial Confinement Fusion-Fission Energy (LIFE) Engine

    SciTech Connect

    Kramer, K J; Latkowski, J F; Abbott, R P; Boyd, J K; Powers, J J; Seifried, J E

    2008-10-24

    Lawrence Livermore National Laboratory is currently developing a hybrid fusion-fission nuclear energy system, called LIFE, to generate power and burn nuclear waste. We utilize inertial confinement fusion to drive a subcritical fission blanket surrounding the fusion chamber. It is composed of TRISO-based fuel cooled by the molten salt flibe. Low-yield (37.5 MJ) targets and a repetition rate of 13.3 Hz produce a 500 MW fusion source that is coupled to the subcritical blanket, which provides an additional gain of 4-8, depending on the fuel. In the present work, we describe the neutron transport and nuclear burnup analysis. We utilize standard analysis tools including, the Monte Carlo N-Particle (MCNP) transport code, ORIGEN2 and Monteburns to perform the nuclear design. These analyses focus primarily on a fuel composed of depleted uranium not requiring chemical reprocessing or enrichment. However, other fuels such as weapons grade plutonium and highly-enriched uranium are also under consideration. In addition, we have developed a methodology using {sup 6}Li as a burnable poison to replace the tritium burned in the fusion targets and to maintain constant power over the lifetime of the engine. The results from depleted uranium analyses suggest up to 99% burnup of actinides is attainable while maintaining full power at 2GW for more than five decades.

  8. Evaluating and planning the radioactive waste options for dismantling the Tokamak Fusion Test Reactor

    SciTech Connect

    Rule, K.; Scott, J.; Larson, S.

    1995-12-31

    The Tokamak Fusion Test Reactor (TFTR) is a one-of-a kind tritium fusion research reactor, and is planned to be decommissioned within the next several years. This is the largest fusion reactor in the world and as a result of deuterium-tritum reactions is tritium contaminated and activated from 14 Mev neutrons. This presents many unusual challenges when dismantling, packaging and disposing its components and ancillary systems. Special containers are being designed to accommodate the vacuum vessel, neutral beams, and tritium delivery and processing systems. A team of experienced professionals performed a detailed field study to evaluate the requirements and appropriate methods for packaging the radioactive materials. This team focused on several current and innovative methods for waste minimization that provides the oppurtunmost cost effective manner to package and dispose of the waste. This study also produces a functional time-phased schedule which conjoins the waste volume, weight, costs and container requirements with the detailed project activity schedule for the entire project scope. This study and project will be the first demonstration of the decommissioning of a tritium fusion test reactor. The radioactive waste disposal aspects of this project are instrumental in demonstrating the viability of a fusion power reactor with regard to its environmental impact and ultimate success.

  9. DIAMOND WIRE CUTTING OF THE TOKAMAK FUSION TEST REACTOR

    SciTech Connect

    Rule, Keith; Perry, Erik; Parsells, Robert

    2003-02-27

    The Tokamak Fusion Test Reactor (TFTR) is a one-of-a-kind, tritium-fueled fusion research reactor that ceased operation in April 1997. As a result, decommissioning commenced in October 1999. The 100 cubic meter volume of the donut-shaped reactor makes it the second largest fusion reactor in the world. The deuterium-tritium experiments resulted in contaminating the vacuum vessel with tritium and activating the materials with 14 Mev neutrons. The total tritium content within the vessel is in excess of 7,000 Curies while dose rates approach 50 mRem/hr. These radiological hazards along with the size of the Tokamak present a unique and challenging task for dismantling. Engineers at the Princeton Plasma Physics Laboratory (PPPL) decided to investigate an alternate, innovative approach for dismantlement of the TFTR vacuum vessel: diamond wire cutting technology. In August 1999, this technology was successfully demonstrated and evaluated on vacuum vessel surrogates. Subsequently, the techno logy was improved and redesigned for the actual cutting of the vacuum vessel. 10 complete cuts were performed in a 6-month period to complete the removal of this unprecedented type of D&D activity.

  10. Simultaneous neutron and x-ray imaging of inertial confinement fusion experiments along a single line of sight at Omega

    DOE PAGESBeta

    Danly, C. R.; Day, T. H.; Fittinghoff, D. N.; Herrmann, H.; Izumi, N.; Kim, Y. H.; Martinez, J. I.; Merrill, F. E.; Schmidt, D. W.; Simpson, R. A.; et al

    2015-04-16

    Neutron and x-ray imaging provide critical information about the geometry and hydrodynamics of inertial confinement fusion implosions. However, existing diagnostics at Omega and the National Ignition Facility (NIF) cannot produce images in both neutrons and x-rays along the same line of sight. This leads to difficulty comparing these images, which capture different parts of the plasma geometry, for the asymmetric implosions seen in present experiments. Further, even when opposing port neutron and x-ray images are available, they use different detectors and cannot provide positive information about the relative positions of the neutron and x-ray sources. A technique has been demonstratedmore » on implosions at Omega that can capture x-ray images along the same line of sight as the neutron images. Thus, the technique is described, and data from a set of experiments are presented, along with a discussion of techniques for coregistration of the various images. It is concluded that the technique is viable and could provide valuable information if implemented on NIF in the near future.« less

  11. Simultaneous neutron and x-ray imaging of inertial confinement fusion experiments along a single line of sight at Omega

    SciTech Connect

    Danly, C. R.; Day, T. H.; Herrmann, H.; Kim, Y. H.; Martinez, J. I.; Merrill, F. E.; Schmidt, D. W.; Simpson, R. A.; Volegov, P. L.; Wilde, C. H.; Fittinghoff, D. N.; Izumi, N.

    2015-04-15

    Neutron and x-ray imaging provide critical information about the geometry and hydrodynamics of inertial confinement fusion implosions. However, existing diagnostics at Omega and the National Ignition Facility (NIF) cannot produce images in both neutrons and x-rays along the same line of sight. This leads to difficulty comparing these images, which capture different parts of the plasma geometry, for the asymmetric implosions seen in present experiments. Further, even when opposing port neutron and x-ray images are available, they use different detectors and cannot provide positive information about the relative positions of the neutron and x-ray sources. A technique has been demonstrated on implosions at Omega that can capture x-ray images along the same line of sight as the neutron images. The technique is described, and data from a set of experiments are presented, along with a discussion of techniques for coregistration of the various images. It is concluded that the technique is viable and could provide valuable information if implemented on NIF in the near future.

  12. Simultaneous neutron and x-ray imaging of inertial confinement fusion experiments along a single line of sight at Omega.

    PubMed

    Danly, C R; Day, T H; Fittinghoff, D N; Herrmann, H; Izumi, N; Kim, Y H; Martinez, J I; Merrill, F E; Schmidt, D W; Simpson, R A; Volegov, P L; Wilde, C H

    2015-04-01

    Neutron and x-ray imaging provide critical information about the geometry and hydrodynamics of inertial confinement fusion implosions. However, existing diagnostics at Omega and the National Ignition Facility (NIF) cannot produce images in both neutrons and x-rays along the same line of sight. This leads to difficulty comparing these images, which capture different parts of the plasma geometry, for the asymmetric implosions seen in present experiments. Further, even when opposing port neutron and x-ray images are available, they use different detectors and cannot provide positive information about the relative positions of the neutron and x-ray sources. A technique has been demonstrated on implosions at Omega that can capture x-ray images along the same line of sight as the neutron images. The technique is described, and data from a set of experiments are presented, along with a discussion of techniques for coregistration of the various images. It is concluded that the technique is viable and could provide valuable information if implemented on NIF in the near future. PMID:25933858

  13. Simultaneous neutron and x-ray imaging of inertial confinement fusion experiments along a single line of sight at Omega

    SciTech Connect

    Danly, C. R.; Day, T. H.; Fittinghoff, D. N.; Herrmann, H.; Izumi, N.; Kim, Y. H.; Martinez, J. I.; Merrill, F. E.; Schmidt, D. W.; Simpson, R. A.; Volegov, P. L.; Wilde, C. H.

    2015-04-16

    Neutron and x-ray imaging provide critical information about the geometry and hydrodynamics of inertial confinement fusion implosions. However, existing diagnostics at Omega and the National Ignition Facility (NIF) cannot produce images in both neutrons and x-rays along the same line of sight. This leads to difficulty comparing these images, which capture different parts of the plasma geometry, for the asymmetric implosions seen in present experiments. Further, even when opposing port neutron and x-ray images are available, they use different detectors and cannot provide positive information about the relative positions of the neutron and x-ray sources. A technique has been demonstrated on implosions at Omega that can capture x-ray images along the same line of sight as the neutron images. Thus, the technique is described, and data from a set of experiments are presented, along with a discussion of techniques for coregistration of the various images. It is concluded that the technique is viable and could provide valuable information if implemented on NIF in the near future.

  14. Simultaneous neutron and x-ray imaging of inertial confinement fusion experiments along a single line of sight at Omega

    NASA Astrophysics Data System (ADS)

    Danly, C. R.; Day, T. H.; Fittinghoff, D. N.; Herrmann, H.; Izumi, N.; Kim, Y. H.; Martinez, J. I.; Merrill, F. E.; Schmidt, D. W.; Simpson, R. A.; Volegov, P. L.; Wilde, C. H.

    2015-04-01

    Neutron and x-ray imaging provide critical information about the geometry and hydrodynamics of inertial confinement fusion implosions. However, existing diagnostics at Omega and the National Ignition Facility (NIF) cannot produce images in both neutrons and x-rays along the same line of sight. This leads to difficulty comparing these images, which capture different parts of the plasma geometry, for the asymmetric implosions seen in present experiments. Further, even when opposing port neutron and x-ray images are available, they use different detectors and cannot provide positive information about the relative positions of the neutron and x-ray sources. A technique has been demonstrated on implosions at Omega that can capture x-ray images along the same line of sight as the neutron images. The technique is described, and data from a set of experiments are presented, along with a discussion of techniques for coregistration of the various images. It is concluded that the technique is viable and could provide valuable information if implemented on NIF in the near future.

  15. The Mission and Technology of a Gas Dynamic Trap Neutron Source for Fusion Material and Component Testing and Qualification

    SciTech Connect

    Ivanov, A; Kulcinski, J; Molvik, A; Ryutov, D; Santarius, J; Simonen, T; Wirth, B D; Ying, A

    2009-11-23

    The successful operation (with {beta} {le} 60%, classical ions and electrons with Te = 250 eV) of the Gas Dynamic Trap (GDT) device at the Budker Institute of Nuclear Physics (BINP) in Novosibirsk, Russia, extrapolates to a 2 MW/m{sup 2} Dynamic Trap Neutron Source (DTNS), which burns only {approx}100 g of tritium per full power year. The DTNS has no serious physics, engineering, or technology obstacles; the extension of neutral beam lines to steady state can use demonstrated engineering; and it supports near-term tokamaks and volume neutron sources. The DTNS provides a neutron spectrum similar to that of ITER and satisfies the missions specified by the materials community to test fusion materials (listed as one of the top grand challenges for engineering in the 21st century by the U.S. National Academy of Engineering) and subcomponents (including tritium-breeding blankets) needed to construct DEMO. The DTNS could serve as the first Fusion Nuclear Science Facility (FNSF), called for by ReNeW, and could provide the data necessary for licensing subsequent FSNFs.

  16. Fast Pb-glass neutron-to-light converter for ICF (inertial confinement fusion) target burn history measurements

    SciTech Connect

    Lerche, R.A.; Cable, M.D.; Phillion, D.W.

    1990-09-01

    We are developing a streak camera based instrument to diagnose the fusion reaction rate (burn history) within laser-driven ICF targets filled with D-T fuel. Recently, we attempted measurements using the 16.7-MeV gamma ray emitted in the T(d,{gamma}){sup 5}He fusion reaction. Pb glass which has a large cross section for pair production acts as a gamma-ray-to-light converter. Gamma rays interact within the glass to form electron-positron pairs that produce large amounts (1000 photons/gamma ray) of prompt (<10 ps) Cerenkov light as they slow down. In our experimental instrument, an f/10 Cassegrain telescope optically couples light produced within the converter to a streak camera having 20-ps resolution. Experiments using high-yield (10{sup 13} D-T neutrons), direct-drive targets at Nova produced good signals with widths of 200 ps. Time-of-flight measurements show the signals to be induced by neutrons rather than gamma rays. The Pb glass appears to act as a fast neutron-to-light converter. We continue to study the interactions process and the possibility of using the 16.7-MeV gamma rays for burn time measurements.

  17. Dense Plasma Focus Fusion Neutron Sources Progress at NSTec, September 2011

    SciTech Connect

    Hagen, E. C.

    2011-07-02

    A number of dense plasma focus (DPF) sources are introduced, including their operating characteristics and current activities. Neutron resonance spectroscopy is discussed and the feasibility of using DPF for neutron sources is considered.

  18. Neutron irradiation of V-Cr-Ti alloys in the BOR-60 fast reactor: Description of the fusion-1 experiment

    SciTech Connect

    Rowcliffe, A.F.; Tsai, H.C.; Smith, D.L.

    1997-08-01

    The FUSION-1 irradiation capsule was inserted in Row 5 of the BOR-60 fast reactor in June 1995. The capsule contains a collaborative RF/U.S. experiment to investigate the irradiation performance of V-Cr-Ti alloys in the temperature range 310 to 350{degrees}C. This report describes the capsule layout, specimen fabrication history, and the detailed test matrix for the U.S. specimens. A description of the operating history and neutronics will be presented in the next semiannual report.

  19. Effects of low-temperature fusion neutron irradiation on critical properties of a monofilament niobium-tin superconductor

    SciTech Connect

    Guinan, M.W.; Van Konynenburg, R.A.; Mitchell, J.B.

    1984-03-22

    The objective of this work was to irradiate a Nb/sub 3/Sn superconductor with 14.8 MeV neutrons at 4 K and measure critical current in transverse fields of up to 12 T, irradiating up to a fluence sufficient to decrease the critical current to below its initial value. Critical temperatures were also to be measured. The samples were to be kept near 4 K between the irradiation and the measurement of critical properties. This work is directed toward establishing an engineering design fluence limit for Nb/sub 3/Sn when used in fusion reactor superconducting magnets.

  20. Second generation fusion neutron time-of-flight spectrometer at optimized rate for fully digital data acquisition

    SciTech Connect

    Zhang, X. E-mail: jnke1@icloud.com Fan, T.; Yuan, X.; Xie, X.; Chen, Z.; Källne, J.; Gorini, G.; Nocente, M.

    2014-04-15

    The progress on high-rate event recording of data is taken as starting point to revisit the design of fusion neutron spectrometers based on the TOF (time-of-flight) technique. The study performed was aimed at how such instruments for optimized rate (TOFOR) can be further developed to enhance the plasma diagnostic capabilities based on measurement of the 2.5 MeV dd neutron emission from D plasmas, especially the weak spectral components that depend on discrimination of extraneous events. This paper describes a design (TOFOR II) adapted for use with digital wave form recording of all detector pulses providing information on both amplitude (pulse height) and timing. The results of simulations are presented and the performance enhancement is assessed in comparison to the present.

  1. A self-consistent method to analyze the effects of the positive Q-value neutron transfers on fusion

    NASA Astrophysics Data System (ADS)

    Jia, H. M.; Lin, C. J.; Yang, L.; Xu, X. X.; Ma, N. R.; Sun, L. J.; Yang, F.; Wu, Z. D.; Zhang, H. Q.; Liu, Z. H.; Wang, D. X.

    2016-04-01

    Considering the present limitation of the need for external parameters to describe the nucleus-nucleus potential and the couplings in the coupled-channels calculations, this work introduces an improved method without adjustable parameter to overcome the limitation and then sort out the positive Q-value neutron transfers (PQNT) effects based on the CCFULL calculations. The corresponding analysis for Ca +Ca, S ,Ca +Sn, and S ,Ca +Zr provides a reliable proof and a quantitative evaluation for the residual enhancement (RE) related to PQNT. In addition, the RE for 32S ,40Ca +94Zr shows an unexpected larger enhancement than 32S ,40Ca +96Zr despite the similar multi-neutron transfer Q-values. This method should rather strictly test the fusion models and be helpful for excavating the underlying physics.

  2. Moderator design studies for a new neutron reference source based on the D-T fusion reaction

    NASA Astrophysics Data System (ADS)

    Mozhayev, Andrey V.; Piper, Roman K.; Rathbone, Bruce A.; McDonald, Joseph C.

    2016-06-01

    The radioactive isotope Californium-252 (252Cf) is relied upon internationally as a neutron calibration source for ionizing radiation dosimetry because of its high specific activity. The source may be placed within a heavy-water (D2O) moderating sphere to produce a softened spectrum representative of neutron fields common to commercial nuclear power plant environments, among others. Due to termination of the U.S. Department of Energy loan/lease program in 2012, the expense of obtaining 252Cf sources has undergone a significant increase, rendering high output sources largely unattainable. On the other hand, the use of neutron generators in research and industry applications has increased dramatically in recent years. Neutron generators based on deuteriumtritium (D-T) fusion reaction provide high neutron fluence rates and, therefore, could possibly be used as a replacement for 252Cf. To be viable, the 14 MeV D-T output spectrum must be significantly moderated to approximate common workplace environments. This paper presents the results of an effort to select appropriate moderating materials and design a configuration to reshape the primary neutron field toward a spectrum approaching that from a nuclear power plant workplace. A series of Monte-Carlo (MCNP) simulations of single layer high- and low-Z materials are used to identify initial candidate moderators. Candidates are refined through a similar series of simulations involving combinations of 2-5 different materials. The simulated energy distribution using these candidate moderators are rated in comparison to a target spectrum. Other properties, such as fluence preservation and/or enhancement, prompt gamma production and other characteristics are also considered.

  3. Calculation of the absolute detection efficiency of a moderated /sup 235/U neutron detector on the Tokamak Fusion Test Reactor

    SciTech Connect

    Ku, L.P.; Hendel, H.W.; Liew, S.L.

    1989-02-01

    Neutron transport simulations have been carried out to calculate the absolute detection efficiency of a moderated /sup 235/U neutron detector which is used on the TFTR as a part of the primary fission detector diagnostic system for measuring fusion power yields. Transport simulations provide a means by which the effects of variations in various shielding and geometrical parameters can be explored. These effects are difficult to study in calibration experiments. The calculational model, benchmarked against measurements, can be used to complement future detector calibrations, when the high level of radioactivity resulting from machine operation may severely restrict access to the tokamak. We present a coupled forward-adjoint algorithm, employing both the deterministic and Monte Carlo sampling methods, to model the neutron transport in the complex tokamak and detector geometries. Sensitivities of the detector response to the major and minor radii, and angular anisotropy of the neutron emission are discussed. A semi-empirical model based on matching the calculational results with a small set of experiments produces good agreement (+-15%) for a wide range of source energies and geometries. 20 refs., 6 figs., 4 tabs.

  4. Experimental investigation of radioactivity induced in the fusion power plant structural material in Eurofer and in other steels by D?T neutrons

    NASA Astrophysics Data System (ADS)

    Seidel, K.; Forrest, R. A.; Freiesleben, H.; Kovalchuk, V. D.; Markovskij, D. V.; Maximov, D. V.; Unholzer, S.

    2002-12-01

    The low-activation steel Eurofer was irradiated with D-T fusion neutrons. The radioactivity following irradiation was determined several times during decay by γ-spectroscopy. The results were analysed with the European Activation System (EASY-99). Ratios of calculated-to-experimental values for individual activities and for their sums are discussed in connection with the expected low-activation behaviour of the material in fusion power plant conditions.

  5. Pulsed Operation of a Compact Fusion Neutron Source Using a High-Voltage Pulse Generator Developed for Landmine Detection

    SciTech Connect

    Yamauchi, Kunihito; Watanabe, Masato; Okino, Akitoshi; Kohno, Toshiyuki; Hotta, Eiki; Yuura, Morimasa

    2005-05-15

    Preliminary experimental results of pulsed neutron source based on a discharge-type beam fusion called Inertial Electrostatic Confinement Fusion (IECF) for landmine detection are presented. In Japan, a research and development project for constructing an advanced anti-personnel landmine detection system by using IECF, which is effective not only for metal landmines but also for plastic ones, is now in progress. This project consists of some R and D topics, and one of them is R and D of a high-voltage pulse generator system specialized for landmine detection, which can be used in the severe environment such as that in the field in Afghanistan. Thus a prototype of the system for landmine detection was designed and fabricated in consideration of compactness, lightness, cooling performance, dustproof and robustness. By using this prototype pulse generator system, a conventional IECF device was operated as a preliminary experiment. As a result, it was confirmed that the suggested pulse generator system is suitable for landmine detection system, and the results follow the empirical law obtained by the previous experiments. The maximum neutron production rate of 2.0x10{sup 8} n/s was obtained at a pulsed discharge of -51 kV, 7.3 A.

  6. Effects of magnetization on fusion product trapping and secondary neutron spectra

    SciTech Connect

    Knapp, Patrick F.; Schmit, Paul F.; Hansen, Stephanie B.; Gomez, Matthew R.; Hahn, Kelly D.; Sinars, Daniel Brian; Peterson, Kyle J.; Slutz, Stephen A.; Sefkow, Adam B.; Awe, Thomas James; Harding, Eric; Jennings, Christopher A.; Desjarlais, M. P.; Chandler, Gordon A.; Cooper, Gary Wayne; Cuneo, Michael Edward; Geissel, Matthias; Harvey-Thompson, Adam James; Porter, John L.; Rochau, Gregory A.; Rovang, Dean C.; Ruiz, Carlos L.; Savage, Mark E.; Smith, Ian C.; Stygar, William A.; Herrmann, Mark

    2015-05-14

    In magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, we found that the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used to infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner InertialFusion experiments conducted on the Z machine at Sandia National Laboratories. Furthermore, we show that in these experiments BR ≈ 0.34(+0.14/-0.06) MG · cm, a ~ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. Lastly, this is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux.

  7. Effects of magnetization on fusion product trapping and secondary neutron spectra

    DOE PAGESBeta

    Knapp, Patrick F.; Schmit, Paul F.; Hansen, Stephanie B.; Gomez, Matthew R.; Hahn, Kelly D.; Sinars, Daniel Brian; Peterson, Kyle J.; Slutz, Stephen A.; Sefkow, Adam B.; Awe, Thomas James; et al

    2015-05-14

    In magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, we found that the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used tomore » infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner InertialFusion experiments conducted on the Z machine at Sandia National Laboratories. Furthermore, we show that in these experiments BR ≈ 0.34(+0.14/-0.06) MG · cm, a ~ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. Lastly, this is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux.« less

  8. Effects of magnetization on fusion product trapping and secondary neutron spectraa)

    NASA Astrophysics Data System (ADS)

    Knapp, P. F.; Schmit, P. F.; Hansen, S. B.; Gomez, M. R.; Hahn, K. D.; Sinars, D. B.; Peterson, K. J.; Slutz, S. A.; Sefkow, A. B.; Awe, T. J.; Harding, E.; Jennings, C. A.; Desjarlais, M. P.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Geissel, M.; Harvey-Thompson, A. J.; Porter, J. L.; Rochau, G. A.; Rovang, D. C.; Ruiz, C. L.; Savage, M. E.; Smith, I. C.; Stygar, W. A.; Herrmann, M. C.

    2015-05-01

    By magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used to infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner Inertial Fusion experiments conducted on the Z machine at Sandia National Laboratories. We show that in these experiments BR ≈ 0.34(+0.14/-0.06) MG . cm, a ˜ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. This is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux.

  9. Effects of magnetization on fusion product trapping and secondary neutron spectra

    SciTech Connect

    Knapp, P. F.; Schmit, P. F.; Hansen, S. B.; Gomez, M. R.; Hahn, K. D.; Sinars, D. B.; Peterson, K. J.; Slutz, S. A.; Sefkow, A. B.; Awe, T. J.; Harding, E.; Jennings, C. A.; Desjarlais, M. P.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Geissel, M.; Harvey-Thompson, A. J.; Porter, J. L.; Rochau, G. A.; and others

    2015-05-15

    By magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used to infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner Inertial Fusion experiments conducted on the Z machine at Sandia National Laboratories. We show that in these experiments BR ≈ 0.34(+0.14/−0.06) MG · cm, a ∼ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. This is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux.

  10. Fast response neutron emission monitor for fusion reactor using stilbene scintillator and Flash-ADC.

    PubMed

    Itoga, T; Ishikawa, M; Baba, M; Okuji, T; Oishi, T; Nakhostin, M; Nishitani, T

    2007-01-01

    The stilbene neutron detector which has been used for neutron emission profile monitoring in JT-60U has been improved, to respond to the requirement to observe the high-frequency phenomena in megahertz region such as toroidicity-induced Alfvén Eigen mode in burning plasma as well as the spatial profile and the energy spectrum. This high-frequency phenomenon is of great interest and one of the key issues in plasma physics in recent years. To achieve a fast response in the stilbene detector, a Flash-ADC is applied and the wave form of the anode signal stored directly, and neutron/gamma discrimination was carried out via software with a new scheme for data acquisition mode to extend the count rate limit to MHz region from 1.3 x 10(5) neutron/s in the past, and confirmed the adequacy of the method. PMID:17517674

  11. A new aperture for neutron and x-ray imaging of inertial confinement fusion experiments.

    PubMed

    Danly, C R; Grim, G P; Guler, N; Intrator, M H; Merrill, F E; Volegov, P; Wilde, C H

    2012-10-01

    Recent neutron imaging of experiments at the National Ignition Facility has provided useful information about the hotspot shape and cold-fuel distribution and has also given insight into avenues for improvement. Neutron image reconstruction depends on accurate pointing information because the point-spread function of the neutron aperture is not shift invariant. Current pointing techniques are limited in their accuracy and rely upon detailed information about the as-built structure of the array, which is difficult to determine. We present a technique for extracting high-precision pointing information from both neutron and x-ray images, and a new aperture design with features to facilitate this technique, and allow future co-registration of neutron and x-ray images. PMID:23127029

  12. Neutron yield enhancement in laser-induced deuterium-deuterium fusion using a novel shaped target.

    PubMed

    Zhao, J R; Zhang, X P; Yuan, D W; Chen, L M; Li, Y T; Fu, C B; Rhee, Y J; Li, F; Zhu, B J; Li, Yan F; Liao, G Q; Zhang, K; Han, B; Liu, C; Huang, K; Ma, Y; Li, Yi F; Xiong, J; Huang, X G; Fu, S Z; Zhu, J Q; Zhao, G; Zhang, J

    2015-06-01

    Neutron yields have direct correlation with the energy of incident deuterons in experiments of laser deuterated target interaction [Roth et al., Phys. Rev. Lett. 110, 044802 (2013) and Higginson et al., Phys. Plasmas 18, 100703 (2011)], while deuterated plasma density is also an important parameter. Experiments at the Shenguang II laser facility have produced neutrons with energy of 2.45 MeV using d (d, n) He reaction. Deuterated foil target and K-shaped target were employed to study the influence of plasma density on neutron yields. Neutron yield generated by K-shaped target (nearly 10(6)) was two times higher than by foil target because the K-shaped target results in higher density plasma. Interferometry and multi hydro-dynamics simulation confirmed the importance of plasma density for enhancement of neutron yields. PMID:26133837

  13. Neutron yield enhancement in laser-induced deuterium-deuterium fusion using a novel shaped target

    SciTech Connect

    Zhao, J. R.; Chen, L. M. Li, Y. T.; Li, F.; Zhu, B. J.; Li, Yan. F.; Liao, G. Q.; Huang, K.; Ma, Y.; Li, Yi. F.; Zhang, X. P.; Fu, C. B.; Yuan, D. W.; Zhang, K.; Han, B.; Zhao, G.; Rhee, Y. J.; Liu, C.; Xiong, J.; Huang, X. G.; and others

    2015-06-15

    Neutron yields have direct correlation with the energy of incident deuterons in experiments of laser deuterated target interaction [Roth et al., Phys. Rev. Lett. 110, 044802 (2013) and Higginson et al., Phys. Plasmas 18, 100703 (2011)], while deuterated plasma density is also an important parameter. Experiments at the Shenguang II laser facility have produced neutrons with energy of 2.45 MeV using d (d, n) He reaction. Deuterated foil target and K-shaped target were employed to study the influence of plasma density on neutron yields. Neutron yield generated by K-shaped target (nearly 10{sup 6}) was two times higher than by foil target because the K-shaped target results in higher density plasma. Interferometry and multi hydro-dynamics simulation confirmed the importance of plasma density for enhancement of neutron yields.

  14. Role of neutron transfer in asymmetric fusion reactions at sub-barrier energies

    NASA Astrophysics Data System (ADS)

    Ogloblin, A. A.; Zhang, H. Q.; Lin, C. J.; Jia, H. M.; Khlebnikov, S. V.; Kuzmin, E. A.; Trzaska, W. H.; Xu, X. X.; Yan, F.; Sargsyan, V. V.; Adamian, G. G.; Antonenko, N. V.; Scheid, W.

    2014-10-01

    The measured complete fusion (capture) excitation function is presented for the 28Si + 208Pb reaction at deep sub-barrier energies. This excitation function is compared with the one predicted with the quantum diffusion approach.

  15. Fuel ion ratio determination in NBI heated deuterium tritium fusion plasmas at JET using neutron emission spectrometry

    NASA Astrophysics Data System (ADS)

    Hellesen, C.; Eriksson, J.; Binda, F.; Conroy, S.; Ericsson, G.; Hjalmarsson, A.; Skiba, M.; Weiszflog, M.; Contributors, JET-EFDA

    2015-02-01

    The fuel ion ratio (nt/nd) is of central importance for the performance and control of a future burning fusion plasma, and reliable measurements of this quantity are essential for ITER. This paper demonstrates a method to derive the core fuel ion ratio by comparing the thermonuclear and beam-thermal neutron emission intensities, using a neutron spectrometer. The method is applied to NBI heated deuterium tritium (DT) plasmas at JET, using data from the magnetic proton recoil spectrometer. The trend in the results is consistent with Penning trap measurements of the fuel ion ratio at the edge of the plasma, but there is a discrepancy in the absolute values, possibly owing to the fact that the two measurements are weighted towards different parts of the plasma. It is suggested to further validate this method by comparing it to the traditionally proposed method to estimate nt/nd from the ratio of the thermal DD and DT neutron emission components. The spectrometer requirements for measuring nt/nd at ITER are also briefly discussed.

  16. A 14-MeV Intense Neutron Source Based on Muon-Catalyzed Fusion - I: An Advanced Design

    SciTech Connect

    Anisimov, Viatcheslav V.; Arkhangel'sky, Vladimir A.; Ganchuk, Nikolay S.; Yukhimchuk, Arkady A.; Cavalleri, Emanuela; Karmanov, Fedor I.; Konobeyev, Alexander Yu.; Slobodtchouk, Victor I.; Latysheva, Lioudmila N.; Pshenichnov, Igor A.; Ponomarev, Leonid I.; Vecchi, Marcello

    2001-03-15

    The results of the design study of an advanced scheme for the 14-MeV intense neutron source based on muon-catalyzed fusion ({mu}CF) are presented. A pion production target (liquid lithium) and a synthesizer [liquid deuterium-tritium (D-T) mixture] are considered. Negative pions are produced inside a 17/7 T magnetic field by an intense (2-GeV,12-mA) deuteron beam interacting with the 150-cm-long, 0.75-cm-radius lithium target. Muons from the pion decay are collected in the backward direction and stopped in the D-T mixture of the synthesizer. The synthesizer has the shape of a 10-cm-radius sphere surrounded by two 0.03-cm-thick titanium shells. At 100 {mu}CF events/muon, it can produce up to 10{sup 17}n/s of 14-MeV neutrons. A quasi-isotropic neutron flux up to 10{sup 14} n/cm{sup 2}.s{sup -1} can be achieved in the test volume of {approx}2.5 l with an irradiated surface of {approx}350 cm{sup 2}. The thermophysical and thermomechanical analyses show that the technological limits are not exceeded.

  17. Neutron Time-of-Flight Measurements of Charged-Particle Energy Loss in Inertial Confinement Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Sayre, Daniel; Cerjan, Charlie; Berzak Hopkins, Laura; Caggiano, Joseph; Divol, Laurent; Eckart, Mark; Graziani, Frank; Grim, Gary; Hartouni, Ed; Hatarik, Robert; Le Pape, Sebastien; MacKinnon, Andrew; Schneider, Dieter; Sepke, Scott

    2015-11-01

    Neutron time-of-flight measurements of inflight T (d , n) α reactions created during an implosion of a deuterium gas target have been performed at the National Ignition Facility, with order of magnitude improvements in statistics and resolution over past experiments. In the implosion, energetic tritons emitted by thermonuclear fusion within the deuterium plasma produced over 1011 inflight T (d , n) α reactions. The yield and particle spectrum of inflight reactions are sensitive to the triton's energy loss in the plasma, which, in this implosion, consisted of multi-keV temperatures and number densities above 1024 cm-3. Radiation-hydrodynamic simulations of the implosion were adjusted to match the yield and broadening of the D (d , n) 3 He neutron peak. These same simulations give reasonable agreement with the measured T (d , n) α yield and neutron spectrum, and this provides a strong consistency check of the simulated plasma conditions and energy loss model. This research was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  18. Neutronic design studies of a conceptual DCLL fusion reactor for a DEMO and a commercial power plant

    NASA Astrophysics Data System (ADS)

    Palermo, I.; Veredas, G.; Gómez-Ros, J. M.; Sanz, J.; Ibarra, A.

    2016-01-01

    Neutronic analyses or, more widely, nuclear analyses have been performed for the development of a dual-coolant He/LiPb (DCLL) conceptual design reactor. A detailed three-dimensional (3D) model has been examined and optimized. The design is based on the plasma parameters and functional materials of the power plant conceptual studies (PPCS) model C. The initial radial-build for the detailed model has been determined according to the dimensions established in a previous work on an equivalent simplified homogenized reactor model. For optimization purposes, the initial specifications established over the simplified model have been refined on the detailed 3D design, modifying material and dimension of breeding blanket, shield and vacuum vessel in order to fulfil the priority requirements of a fusion reactor in terms of the fundamental neutronic responses. Tritium breeding ratio, energy multiplication factor, radiation limits in the TF coils, helium production and displacements per atom (dpa) have been calculated in order to demonstrate the functionality and viability of the reactor design in guaranteeing tritium self-sufficiency, power efficiency, plasma confinement, and re-weldability and structural integrity of the components. The paper describes the neutronic design improvements of the DCLL reactor, obtaining results for both DEMO and power plant operational scenarios.

  19. Preequilibrium neutron emission in fusion of WVHo+ SC at 25 MeV per nucleon

    SciTech Connect

    Holub, E.; Hilscher, D.; Ingold, G.; Jahnke, U.; Orf, H.; Rossner, H.; Zank, W.P.; Schroeder, W.U.; Gemmeke, H.; Keller, K.

    1986-01-01

    Neutrons were measured in coincidence with evaporation residues from the reaction WVHo+(300 MeV) SC. The evaporation residue velocity distribution is indicative of an average transfer of 80% of the full linear momentum in this reaction. The energy spectra of the coincident neutrons exhibit evaporative and preequilibrium components associated with integral multiplicities of M/sub EV/ = (9.5 +- 0.5) and M/sub PE/ = (1.7 +- 0.3), respectively. The experimental neutron energy and angular distributions are analyzed in terms of multiple-source parametrizations, assuming two or three emitters. The results are compared to those obtained from other inclusive and exclusive associated-particle data. It is observed that the emission patterns of the preequilibrium neutrons are in accord with the predictions of a Fermi-jet model, for neutron angles forward of 35, while this model fails to reproduce the data at angles in the vicinity of 90 and beyond. Various different nucleon momentum distributions have been employed in the model comparison. The insufficiency of the Fermi-jet model to reproduce the data is attributed to the neglect of two-body collisions in this one-body theory. In contrast, the shape of the angle-integrated preequilibrium-neutron energy spectrum is well reproduced with the Harp-Miller-Berne preequilibrium model, if an initial exciton number of n0 = 15 is adopted. This value, as well as the preequilibrium neutron multiplicity, is at variance with systematics established previously.

  20. Neutronics Design of a Thorium-Fueled Fission Blanket for LIFE (Laser Inertial Fusion-based Energy)

    SciTech Connect

    Powers, J; Abbott, R; Fratoni, M; Kramer, K; Latkowski, J; Seifried, J; Taylor, J

    2010-03-08

    The Laser Inertial Fusion-based Energy (LIFE) project at LLNL includes development of hybrid fusion-fission systems for energy generation. These hybrid LIFE engines use high-energy neutrons from laser-based inertial confinement fusion to drive a subcritical blanket of fission fuel that surrounds the fusion chamber. The fission blanket contains TRISO fuel particles packed into pebbles in a flowing bed geometry cooled by a molten salt (flibe). LIFE engines using a thorium fuel cycle provide potential improvements in overall fuel cycle performance and resource utilization compared to using depleted uranium (DU) and may minimize waste repository and proliferation concerns. A preliminary engine design with an initial loading of 40 metric tons of thorium can maintain a power level of 2000 MW{sub th} for about 55 years, at which point the fuel reaches an average burnup level of about 75% FIMA. Acceptable performance was achieved without using any zero-flux environment 'cooling periods' to allow {sup 233}Pa to decay to {sup 233}U; thorium undergoes constant irradiation in this LIFE engine design to minimize proliferation risks and fuel inventory. Vast reductions in end-of-life (EOL) transuranic (TRU) inventories compared to those produced by a similar uranium system suggest reduced proliferation risks. Decay heat generation in discharge fuel appears lower for a thorium LIFE engine than a DU engine but differences in radioactive ingestion hazard are less conclusive. Future efforts on development of thorium-fueled LIFE fission blankets engine development will include design optimization, fuel performance analysis work, and further waste disposal and nonproliferation analyses.

  1. Investigation of X-ray spectral response of D-T fusion produced neutron irradiated PIPS detectors for plasma X-ray diagnostics

    NASA Astrophysics Data System (ADS)

    Vigneshwara Raja, P.; Narasimha Murty, N. V. L.; Rao, C. V. S.; Abhangi, Mitul

    2015-10-01

    This paper describes the fusion-produced neutron irradiation induced changes in the X-ray spectral response of commercially available Passivated Implanted Planar Silicon (PIPS) detectors using the accelerator based D-T generator. After 14.1 MeV neutron irradiation up to a fluence of 3.6× 1010 n/cm2, the energy resolution (i.e. FWHM) of the detectors at room temperature is found to degrade by about 3.8 times that of the pre-irradiated value. From the X-ray spectral characteristics, it has been observed that the room temperature spectral response of PIPS detectors is too poor even at low neutron fluences. Irradiation is also carried out with Am-Be neutron source for studying the effect of scattered neutrons from the reactor walls on the detector performance. Comparative studies of the damage caused by 14.1 MeV neutrons and Am-Be source produced neutrons at the same neutron fluence are carried out by analyzing the irradiated detector characteristics. The degradation in the energy resolution of the detectors is attributed to the radiation induced changes in the detector leakage current. No considerable changes in the full depletion voltage and the effective doping concentration up to the neutron fluence of 3.6× 1010 n/cm2, are observed from the measured C-V characteristics. Partial recovery of the neutron irradiated detector characteristics is discussed.

  2. A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF.

    PubMed

    Zylstra, A B; Gatu Johnson, M; Frenje, J A; Séguin, F H; Rinderknecht, H G; Rosenberg, M J; Sio, H W; Li, C K; Petrasso, R D; McCluskey, M; Mastrosimone, D; Glebov, V Yu; Forrest, C; Stoeckl, C; Sangster, T C

    2014-06-01

    A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility [T. Boehly et al., Opt. Commun. 133, 495 (1997)]. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is currently capable of measuring the yield to ~±10% accuracy, and mean neutron energy to ~±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energy uncertainty to ±15-20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ~±25-40 km/s. PMID:24985814

  3. In-situ calibration of TFTR (Tokamak Fusion Test Reactor) neutron detectors

    SciTech Connect

    Hendel, H.W.; Palladino, R.W.; Barnes, C.W.; Diesso, M.; Felt, J.S.; Jassby, D.L.; Johnson, L.C.; Ku, L.P.; Liu, Q.P.; Motley, R.W.; Murphy, H.B.; Murphy, J.; Nieschmidt, E.B.; Roberts, J.A.; Saito, T.; Strachan, J.D.; Waszazak, R.J.; Young, K.

    1990-03-01

    We report results of the TFTR fission detector calibration performed in December 1988. A NBS-traceable, remotely controlled {sup 252}Cf neutron source was moved toroidally through the TFTR vacuum vessel. Detection efficiencies for two {sup 235}U detectors were measured for 930 locations of the neutron point source in toroidal scans at 16 different major radii and vertical heights. These scans effectively simulated the volume-distributed plasma neutron source, and the volume-integrated detection efficiency was found to be insensitive to plasma position. The Campbell mode is useful due to its large overlap with the count rate mode and large dynamic range. The resulting absolute plasma neutron source calibration has an uncertainty of {plus minus} 13%. 21 refs., 23 figs., 4 tabs.

  4. A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF

    SciTech Connect

    Zylstra, A. B. Gatu Johnson, M.; Frenje, J. A.; Séguin, F. H.; Rinderknecht, H. G.; Rosenberg, M. J.; Sio, H. W.; Li, C. K.; Petrasso, R. D.; McCluskey, M.; Mastrosimone, D.; Glebov, V. Yu.; Forrest, C.; Stoeckl, C.; Sangster, T. C.

    2014-06-15

    A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility [T. Boehly et al., Opt. Commun. 133, 495 (1997)]. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is currently capable of measuring the yield to ∼±10% accuracy, and mean neutron energy to ∼±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energy uncertainty to ±15−20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ∼±25−40 km/s.

  5. A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF

    SciTech Connect

    Zylstra, A. B.; Gatu Johnson, M.; Frenje, J. A.; Séguin, F. H.; Rinderknecht, H. G.; Rosenberg, M. J.; Sio, H. W.; Li, C. K.; Petrasso, R. D.; McCluskey, M.; Mastrosimone, D.; Glebov, V. Yu.; Forrest, C.; Stoeckl, C.; Sangster, T. C.

    2014-06-04

    A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is capable of measuring the yield to ~±10% accuracy, and mean neutron energy to ~±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energy uncertainty to ±15-20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ~±25-40 km/s.

  6. A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF

    DOE PAGESBeta

    Zylstra, A. B.; Gatu Johnson, M.; Frenje, J. A.; Séguin, F. H.; Rinderknecht, H. G.; Rosenberg, M. J.; Sio, H. W.; Li, C. K.; Petrasso, R. D.; McCluskey, M.; et al

    2014-06-04

    A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is capable of measuring the yield to ~±10% accuracy, and mean neutron energy to ~±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energymore » uncertainty to ±15-20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ~±25-40 km/s.« less

  7. A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF

    NASA Astrophysics Data System (ADS)

    Zylstra, A. B.; Gatu Johnson, M.; Frenje, J. A.; Séguin, F. H.; Rinderknecht, H. G.; Rosenberg, M. J.; Sio, H. W.; Li, C. K.; Petrasso, R. D.; McCluskey, M.; Mastrosimone, D.; Glebov, V. Yu.; Forrest, C.; Stoeckl, C.; Sangster, T. C.

    2014-06-01

    A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility [T. Boehly et al., Opt. Commun. 133, 495 (1997)]. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is currently capable of measuring the yield to ˜±10% accuracy, and mean neutron energy to ˜±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energy uncertainty to ±15-20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ˜±25-40 km/s.

  8. A novel method for modeling the neutron time of flight detector response in current mode to inertial confinement fusion experiments (invited)

    SciTech Connect

    Nelson, A. J.; Cooper, G. W.; Ruiz, C. L.; Chandler, G. A.; Fehl, D. L.; Hahn, K. D.; Leeper, R. J.; Smelser, R.; Torres, J. A.

    2012-10-15

    A novel method for modeling the neutron time of flight (nTOF) detector response in current mode for inertial confinement fusion experiments has been applied to the on-axis nTOF detectors located in the basement of the Z-Facility. It will be shown that this method can identify sources of neutron scattering, and is useful for predicting detector responses in future experimental configurations, and for identifying potential sources of neutron scattering when experimental set-ups change. This method can also provide insight on how much broadening neutron scattering contributes to the primary signals, which is then subtracted from them. Detector time responses are deconvolved from the signals, allowing a transformation from dN/dt to dN/dE, extracting neutron spectra at each detector location; these spectra are proportional to the absolute yield.

  9. Design of a target and moderator at the Los Alamos Spallation Radiation Effects Facility (LASREF) as a neutron source for fusion reactor materials development

    SciTech Connect

    Ferguson, P.D.; Mueller, G.E.; Sommer, W.F.; Farnum, E.H.

    1993-10-01

    The LASREF facility is located in the beam stop area at LAMPF. The neutron spectrum is fission-like with the addition of a 3% to 5% component with E > 20 MeV. The present study evaluates the limits on geometry and material selection that will maximize the neutron flux. MCNP and LAHET were used to predict the neutron flux and energy spectrum for a variety of geometries. The problem considers 760 MeV protons incident on tungsten. The resulting neutrons are multiplied in uranium through (n,xn) reactions. Calculations show that a neutron flux greater than 10{sup 19} n/m{sup 2}/s is achievable. The helium to dpa ratio and the transmutation product generation are calculated. These results are compared to expectations for the proposed DEMO fusion reactor and to FFTF.

  10. ORR core re-configuration measurements to increase the fast neutron flux in the Magnetic Fusion Energy (MFE) experiments

    NASA Astrophysics Data System (ADS)

    Hobbs, R. W.; Stinnett, R. M.; Sims, T. M.

    1985-06-01

    The relative increases obtainable in the fast neutron flux in the Magnetic Fusion Energy (MFE) experiment positions were studied by reconfiguring the current ORR core. The percentage increase possible in the current displacement per atom (dpa) rate was examined. The principle methods to increase the fast flux, consisted of reducing the current core size (number of fuel elements), to increase the core average power density and arrangement of the fuel elements in the reduced-size core to tilt the core power distribution towards the MFE positions were investigated. It is concluded that fast fluxes in the E-3 core position can be increased by approximately 15 to 20% over current values and in E-5 by approximately 45 to 55%.

  11. Fast Scintillation Probes For Investigation Of Pulsed Neutron Radiation From Small Fusion Devices

    NASA Astrophysics Data System (ADS)

    Tomaszewski, Krzysztof J.

    2008-04-01

    This paper presents the design as well as laboratory/performance tests results taken by means of the fast scintillation probes. The design of each scintillation probe is based on photomultiplier tube hybrid assembly, which—besides photomultiplier itself—also includes high-voltage divider optimized for recording of fast radiation bursts. Plastic scintillators with short-time response are applied as hard X-ray and neutron radiation detectors. Heavy-duty probe's housing provides efficient shielding against electromagnetic interference and allows carrying out pulsed neutron measurements in a harsh electromagnetic environment. The crucial parameters of scintillation probes have been examined during laboratory tests in which our investigations have been aimed mainly to determine: a time response, an anode radiant sensitivity and an electron transit time dependence on high-voltage supply. During the performance tests, the relative calibration of probes set has been done. It allowed to carry out very accurate measurements of neutron emission anisotropy and investigations of neutron radiation scattering by different materials. The usefulness of presented scintillation probes—embedded in the neutron time-of-flight diagnostic system was proven during experimental campaigns conducted on the plasma-focus PF1000 device.

  12. Determination of Neutron Spectra in a Graphite Sphere for Fusion Reactor Studies

    NASA Astrophysics Data System (ADS)

    Bashter, I. B.; Cooper, P. N.

    Calculated and experimental results for the neutron spectra at different radii in a graphite sphere irradiated with 14.1 MeV neutrons were shown to be in satisfactory agreement over the energy range 14.1 to 1.8 MeV neutrons. A group of curves were constructed which gives the radius of a graphite sphere shield required to attenuate the neutron intensity to a certain value. The data set used in the present work, with carbon-12 cross section, is shown to be useful for spherical calculations.Translated AbstractDie Bestimmung der Neutronenspektren in einer GraphitkugelDie Übereinstimmung experimentell bestimmter und berechneter Neutronenspektren in Abhängigkeit vom Ort in einer Graphitkugel wird in einem Energiebereich von 14,1 bis 1,8 MeV (bei einer Ausgangsenergie von 14,1 MeV je Neutron) gezeigt. Eine Gruppe von Kurven wird konstruiert, die den für eine bestimmte Dämpfung der Neutronenintensität notwendigen Radius einer Graphitkugel angeben. Es wird nachgewiesen, daß die in der Arbeit benutzte Datenbank für den 12C-Wirkungsquerschnitt in sphärischen Geometrien anwendbar ist.

  13. High-resolution spectroscopy used to measure inertial confinement fusion neutron spectra on Omega (invited).

    PubMed

    Forrest, C J; Radha, P B; Glebov, V Yu; Goncharov, V N; Knauer, J P; Pruyne, A; Romanofsky, M; Sangster, T C; Shoup, M J; Stoeckl, C; Casey, D T; Gatu-Johnson, M; Gardner, S

    2012-10-01

    The areal density (ρR) of cryogenic DT implosions on Omega is inferred by measuring the spectrum of neutrons that elastically scatter off the dense deuterium (D) and tritium (T) fuel. Neutron time-of-flight (nTOF) techniques are used to measure the energy spectrum with high resolution. High signal-to-background data has been recorded on cryogenic DT implosions using a well-collimated 13.4-m line of sight and an nTOF detector with an advanced liquid scintillator compound. An innovative method to analyze the elastically scattered neutron spectra was developed using well-known cross sections of the DT nuclear reactions. The estimated areal densities are consistent with alternative ρR measurements and 1-D simulations. PMID:23126921

  14. High-resolution spectroscopy used to measure inertial confinement fusion neutron spectra on Omega (invited)

    SciTech Connect

    Forrest, C. J.; Radha, P. B.; Glebov, V. Yu.; Goncharov, V. N.; Knauer, J. P.; Pruyne, A.; Romanofsky, M.; Sangster, T. C.; Shoup, M. J. III; Stoeckl, C.; Casey, D. T.; Gatu-Johnson, M.; Gardner, S.

    2012-10-15

    The areal density ({rho}R) of cryogenic DT implosions on Omega is inferred by measuring the spectrum of neutrons that elastically scatter off the dense deuterium (D) and tritium (T) fuel. Neutron time-of-flight (nTOF) techniques are used to measure the energy spectrum with high resolution. High signal-to-background data has been recorded on cryogenic DT implosions using a well-collimated 13.4-m line of sight and an nTOF detector with an advanced liquid scintillator compound. An innovative method to analyze the elastically scattered neutron spectra was developed using well-known cross sections of the DT nuclear reactions. The estimated areal densities are consistent with alternative {rho}R measurements and 1-D simulations.

  15. Maximal design basis accident of fusion neutron source DEMO-TIN

    SciTech Connect

    Kolbasov, B. N.

    2015-12-15

    When analyzing the safety of nuclear (including fusion) facilities, the maximal design basis accident at which the largest release of activity is expected must certainly be considered. Such an accident is usually the failure of cooling systems of the most thermally stressed components of a reactor (for a fusion facility, it is the divertor or the first wall). The analysis of safety of the ITER reactor and fusion power facilities (including hybrid fission–fusion facilities) shows that the initial event of such a design basis accident is a large-scale break of a pipe in the cooling system of divertor or the first wall outside the vacuum vessel of the facility. The greatest concern is caused by the possibility of hydrogen formation and the inrush of air into the vacuum chamber (VC) with the formation of a detonating mixture and a subsequent detonation explosion. To prevent such an explosion, the emergency forced termination of the fusion reaction, the mounting of shutoff valves in the cooling systems of the divertor and the first wall or blanket for reducing to a minimum the amount of water and air rushing into the VC, the injection of nitrogen or inert gas into the VC for decreasing the hydrogen and oxygen concentration, and other measures are recommended. Owing to a continuous feed-out of the molten-salt fuel mixture from the DEMO-TIN blanket with the removal period of 10 days, the radioactivity release at the accident will mainly be determined by tritium (up to 360 PBq). The activity of fission products in the facility will be up to 50 PBq.

  16. Maximal design basis accident of fusion neutron source DEMO-TIN

    NASA Astrophysics Data System (ADS)

    Kolbasov, B. N.

    2015-12-01

    When analyzing the safety of nuclear (including fusion) facilities, the maximal design basis accident at which the largest release of activity is expected must certainly be considered. Such an accident is usually the failure of cooling systems of the most thermally stressed components of a reactor (for a fusion facility, it is the divertor or the first wall). The analysis of safety of the ITER reactor and fusion power facilities (including hybrid fission-fusion facilities) shows that the initial event of such a design basis accident is a large-scale break of a pipe in the cooling system of divertor or the first wall outside the vacuum vessel of the facility. The greatest concern is caused by the possibility of hydrogen formation and the inrush of air into the vacuum chamber (VC) with the formation of a detonating mixture and a subsequent detonation explosion. To prevent such an explosion, the emergency forced termination of the fusion reaction, the mounting of shutoff valves in the cooling systems of the divertor and the first wall or blanket for reducing to a minimum the amount of water and air rushing into the VC, the injection of nitrogen or inert gas into the VC for decreasing the hydrogen and oxygen concentration, and other measures are recommended. Owing to a continuous feed-out of the molten-salt fuel mixture from the DEMO-TIN blanket with the removal period of 10 days, the radioactivity release at the accident will mainly be determined by tritium (up to 360 PBq). The activity of fission products in the facility will be up to 50 PBq.

  17. Spectral effects in low-dose fission and fusion neutron irradiated metals and alloys

    SciTech Connect

    Heinisch, H.L.; Atkin, S.D.; Martinez, C.

    1986-04-01

    Flat miniature tensile specimens were irradiated to neutron fluences up to 9 x 10/sup 22/ n/m/sup 2/ in the RTNS-II and in the Omega West Reactor. Specimen temperatures were the same in both environments, with runs being made at both 90/sup 0/C and 290/sup 0/C. The results of tensile tests on AISI 316 stainless steel, A302B pressure vessel steel and pure copper are reported here. The radiation-induced changes in yield strength as a function of neutron dose in each spectrum are compared. The data for 316 stainless steel correlate well on the basis of displacements per atom (dpa), while those for copper and A302B do not. In copper the ratio of fission dpa to 14 MeV neutron dpa for a given yield stress change is about three to one. In A302B pressure vessel steel this ratio is more than three at lower fluences, but the yield stress data for fission and 14 MeV neutron-irradiated A302B steel appears to coalesce or intersect at the higher fluences.

  18. Neutronic Analysis of the Laser Inertial Confinement Fusion-Fission Energy (LIFE) Engine Using Various Thorium Molten Salts

    NASA Astrophysics Data System (ADS)

    Acır, Adem

    2013-08-01

    In this study, a neutronic performance of the Laser Inertial Confinement Fusion Fission Energy (LIFE) molten salt blanket is investigated. Neutronic calculations are performed by using XSDRNPM/SCALE5 codes in S8-P3 approximation. The thorium molten salt composition considered in this calculation is 75 % LiF—25 % ThF4, 75 % LiF—24 % ThF4—1 % 233UF4, 75 % LiF—23 % ThF4—2 % 233UF4. Also, effects of the 6Li enrichment in molten salt are performed for all heavy metal salt. The radiation damage behaviors of SS-304 structural material with respect to higher fissionable fuel content and 6Li enrichment are computed. By higher fissionable fuel content in molten salt and with 6Li enrichment (20 and 50 %) in the coolant in form of 75 % LiF—23 % ThF4—2 % 233UF4, an initial TBR >1.05 can be realized. On the other hand, the 75 % LiF—25 % ThF4 or 75 % LiF—24 % ThF4—1 % 233UF4 molten salt fuel as regards maintained tritium self-sufficiency is not suitable as regards improving neutronic performance of LIFE engine. A high quality fissile fuel with a rate of ~2,850 kg/year of 233U can be produced with 75 % LiF—23 % ThF4—2 % 233UF4. The energy multiplication factor is increased with high rate fission reactions of 233U occurring in the molten salt zone. Major damage mechanisms in SS-304 first wall stell have been computed as DPA = 48 and He = 132 appm per year with 75 % LiF—23 % ThF4—2 % 233UF4. This implies a replacement of the SS-304 first wall stell of every between 3 and 4 years.

  19. From laser particle acceleration to the synthesis of extremely neutron rich isotopes via the novel fission-fusion mechanism

    NASA Astrophysics Data System (ADS)

    Thirolf, P. G.

    2015-02-01

    High-power, short pulse lasers have emerged in the last decade as attractive tools for accelerating charged particles (electrons, ions) to high energies over mm-scale acceleration lengths, thus promising to rival conventional acceleration techniques in the years ahead. In the first part of the article, the principles of laser-plasma interaction as well as the techniques and the current status of the acceleration of electron and ion beams will be briefly introduced. In particular with the upcoming next generation of multi-PW class laser systems, such as the one under construction for the ELI-Nuclear Physics project in Bucharest (ELI-NP), very efficient acceleration mechanisms for brilliant ion beams like radiation pressure acceleration (RPA) come into reach. Here, ultra-dense ion beams reaching solid-state density can be accelerated from thin target foils, exceeding the density of conventionally accelerated ion beams by about 14 orders of magnitude. This unique property of laser-accelerated ion beams can be exploited to explore the scenario of a new reaction mechanism called `fission-fusion', which will be introduced in the second part of the article. Accelerating fissile species (e.g. 232Th ) towards a second layer of the same material will lead to fission both of the beam-like and target-like particles. Due to the close to solid-state density of the accelerated ion bunches, fusion may occur between neutron-rich (light) fission products. This may open an access path towards extremely neutron-rich nuclides in the vicinity of the N=126 waiting point of the astrophysical r process. `Waiting points' at closed nucleon shells play a crucial role in controlling the reaction rates. However, since most of the pathway of heavy-element formation via the rapid-neutron capture process (r-process) runs in `terra incognita' of the nuclear landscape, in particular the waiting point at N=126 is yet unexplored and will remain largely inaccessible to conventional nuclear reaction

  20. Advanced materials characterization and modeling using synchrotron, neutron, TEM, and novel micro-mechanical techniques—A European effort to accelerate fusion materials development

    NASA Astrophysics Data System (ADS)

    Linsmeier, Ch.; Fu, C.-C.; Kaprolat, A.; Nielsen, S. F.; Mergia, K.; Schäublin, R.; Lindau, R.; Bolt, H.; Buffière, J.-Y.; Caturla, M. J.; Décamps, B.; Ferrero, C.; Greuner, H.; Hébert, C.; Höschen, T.; Hofmann, M.; Hugenschmidt, C.; Jourdan, T.; Köppen, M.; Płociński, T.; Riesch, J.; Scheel, M.; Schillinger, B.; Vollmer, A.; Weitkamp, T.; Yao, W.; You, J.-H.; Zivelonghi, A.

    2013-11-01

    For the realization of fusion as an energy source, the development of suitable materials is one of the most critical issues. The required material properties are in many aspects unique compared to the existing solutions, particularly the need for necessary resistance to irradiation with neutrons having energies up to 14 MeV. In addition to withstanding the effects of neutrons, the mechanical stability of structural materials has to be maintained up to high temperatures. Plasma-exposed materials must be compatible with the fusion plasma, both with regard to the generation of impurities injected into the plasma and resistance to erosion and hydrogen isotope retention. The development of materials fulfilling these and other criteria is a large-scale and long-term activity which involves basic materials science, materials development, characterization under both loading conditions and off-line, as well as testing under neutron flux-induced conditions. For the realization of a DEMO power plant, the materials solutions must be available in time. The European initiative FEMaS-CA - Fusion Energy Materials Science - Coordination Action - aims at accelerating materials development by integrating advanced materials characterization techniques, among them the efficient use of neutron and synchrotron-based techniques, into the fusion materials community. Further, high-end transmission electron microscopy and mechanical characterization (also on a microscopic level in order to facilitate tests of small material volumes, such as from neutron irradiation campaigns) are to be more extensively applied in fusion materials research. Finally, irradiation facilities for neutron damage benchmarking are contributing to the understanding of radiation effects. This overview demonstrates by means of a few examples the recent advancements in fusion materials research, e.g. by applying synchrotron X-ray and neutron tomography to novel materials and components. Deeper understanding of radiation

  1. Radiography apparatus using gamma rays emitted by water activated by fusion neutrons

    DOEpatents

    Smith, Donald L.; Ikeda, Yujiro; Uno, Yoshitomo

    1996-01-01

    Radiography apparatus includes an arrangement for circulating pure water continuously between a location adjacent a source of energetic neutrons, such as a tritium target irradiated by a deuteron beam, and a remote location where radiographic analysis is conducted. Oxygen in the pure water is activated via the .sup.16 O(n,p).sup.16 N reaction using .sup.14 -MeV neutrons produced at the neutron source via the .sup.3 H(d,n).sup.4 He reaction. Essentially monoenergetic gamma rays at 6.129 (predominantly) and 7.115 MeV are produced by the 7.13-second .sup.16 N decay for use in radiographic analysis. The gamma rays have substantial penetrating power and are useful in determining the thickness of materials and elemental compositions, particularly for metals and high-atomic number materials. The characteristic decay half life of 7.13 seconds of the activated oxygen is sufficient to permit gamma ray generation at a remote location where the activated water is transported, while not presenting a chemical or radioactivity hazard because the radioactivity falls to negligible levels after 1-2 minutes.

  2. Radiography apparatus using gamma rays emitted by water activated by fusion neutrons

    DOEpatents

    Smith, D.L.; Ikeda, Yujiro; Uno, Yoshitomo

    1996-11-05

    Radiography apparatus includes an arrangement for circulating pure water continuously between a location adjacent a source of energetic neutrons, such as a tritium target irradiated by a deuteron beam, and a remote location where radiographic analysis is conducted. Oxygen in the pure water is activated via the {sup 16}O(n,p){sup 16}N reaction using {sup 14}N-MeV neutrons produced at the neutron source via the {sup 3}H(d,n){sup 4}He reaction. Essentially monoenergetic gamma rays at 6.129 (predominantly) and 7.115 MeV are produced by the 7.13-second {sup 16}N decay for use in radiographic analysis. The gamma rays have substantial penetrating power and are useful in determining the thickness of materials and elemental compositions, particularly for metals and high-atomic number materials. The characteristic decay half life of 7.13 seconds of the activated oxygen is sufficient to permit gamma ray generation at a remote location where the activated water is transported, while not presenting a chemical or radioactivity hazard because the radioactivity falls to negligible levels after 1--2 minutes. 15 figs.

  3. Parameters optimization in a fission-fusion system with a mirror machine based neutron source

    NASA Astrophysics Data System (ADS)

    Yurov, D. V.; Anikeev, A. V.; Bagryansky, P. A.; Brednikhin, S. A.; Frolov, S. A.; Lezhnin, S. I.; Prikhodko, V. V.

    2012-06-01

    Long-lived fission products utilization is a problem of high importance for the modern nuclear reactor technology. BINP jointly with NSI RAS develops a conceptual design of a hybrid sub-critical minor actinides burner with a neutron source based on the gas dynamic mirror machine (GDT) to resolve the stated task. A number of modelling tools was created to calculate the main parameters of the device. First of the codes, GENESYS, is a zero-dimensional code, designed for plasma dynamics numerical investigation in a GDT-based neutron source. The code contains a Monte-Carlo module for the determination of linear neutron emission intensity along the machine axis. Fuel blanket characteristics calculation was implemented by means of a static Monte-Carlo code NMC. Subcritical core, which has been previously analyzed by OECD-NEA, was used as a template for the fuel blanket of the modelled device. This article represents the codes used and recent results of the described system parameters optimization. Particularly, optimum emission zone length of the source and core multiplicity dependence on buffer zone thickness were defined.

  4. Studies of Neutron-Deficient Nuclei Near the Z = 82 Shell Closure via Cold Fusion Reactions

    NASA Astrophysics Data System (ADS)

    Carpenter, M. P.; Kondev, F. G.; Janssens, R. V. F.; Seweryniak, D.; Khoo, T. L.; Lauritsen, T.; Lister, C. J.; Zhu, S.; Camera, F.; Bracco, A.; Million, B.; Leoni, S.; Jenkins, D. G.; Wadsworth, R.

    2009-03-01

    Over the last decade, we have performed in-beam experiments using Gammasphere+FMA to measure excited states in proton-rich Au, Hg, Tl and Pb isotopes. In these studies, the use of the FMA is essential in order to differentiate evaporation residues from the large fission background which dominates the reaction cross-section. In addition, we have found that using near-symmetric reactions at bombarding energies near the Coloumb barrier is beneficial in performing these studies. By keeping the bombarding energy low, fission is minimized and the reaction products are concentrated in only a few channels. New results have recently been obtained using the 90Zr+92Mo reaction to study shape co-existence in 181Tl via the lp evaporation channel. In addition, we have measured the total γ-ray energy and multiplicity associated with the surviving compund system, 179Au, following the fusion reaction, 90Zr+89Y.

  5. Fusion breeder

    SciTech Connect

    Moir, R.W.

    1982-04-20

    The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the US fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the US fusion program and the US nuclear energy program. The purpose of this paper is to suggest this policy change be made and tell why it should be made, and to outline specific research and development goals so that the fusion breeder will be developed in time to meet fissile fuel needs.

  6. Neutronic Model of a Mirror Based Fusion-Fission Hybrid for the Incineration of Spent Nuclear Fuel and with Potential for Energy Amplification

    NASA Astrophysics Data System (ADS)

    Noack, Klaus; Moiseenko, V. E.; Agren, O.; Hagnestall, A.

    2010-11-01

    In the last decade the Georgia Institute of Technology (Georgia Tech) published several design concepts of tokamak based fusion-fission hybrids which use solid fuels consisting of transuranic elements of the spent nuclear fuel from Light-Water-Reactors. The objectives of the hybrids are the incineration of the transuranic elements and an additional net energy production under the condition of tritium self-sufficiency. The present paper presents a preliminary scientific design of the blanket of a mirror based hybrid which was derived from the results of Monte Carlo neutron transport calculations. The main operation parameters of two hybrid options were specified. One is the analog to Georgia Techs first version of a ``fusion transmutation of waste reactor'' (FTWR) and the other is a possible near-term option which requires minimal fusion power. The latter version shows considerably better performance parameters.

  7. From laser particle acceleration to the synthesis of extremely neutron rich isotopes via the novel fission-fusion mechanism

    SciTech Connect

    Thirolf, P. G.

    2015-02-24

    High-power, short pulse lasers have emerged in the last decade as attractive tools for accelerating charged particles (electrons, ions) to high energies over mm-scale acceleration lengths, thus promising to rival conventional acceleration techniques in the years ahead. In the first part of the article, the principles of laser-plasma interaction as well as the techniques and the current status of the acceleration of electron and ion beams will be briefly introduced. In particular with the upcoming next generation of multi-PW class laser systems, such as the one under construction for the ELI-Nuclear Physics project in Bucharest (ELI-NP), very efficient acceleration mechanisms for brilliant ion beams like radiation pressure acceleration (RPA) come into reach. Here, ultra-dense ion beams reaching solid-state density can be accelerated from thin target foils, exceeding the density of conventionally accelerated ion beams by about 14 orders of magnitude. This unique property of laser-accelerated ion beams can be exploited to explore the scenario of a new reaction mechanism called ‘fission-fusion’, which will be introduced in the second part of the article. Accelerating fissile species (e.g. {sup 232}Th) towards a second layer of the same material will lead to fission both of the beam-like and target-like particles. Due to the close to solid-state density of the accelerated ion bunches, fusion may occur between neutron-rich (light) fission products. This may open an access path towards extremely neutron-rich nuclides in the vicinity of the N=126 waiting point of the astrophysical r process. ‘Waiting points’ at closed nucleon shells play a crucial role in controlling the reaction rates. However, since most of the pathway of heavy-element formation via the rapid-neutron capture process (r-process) runs in ‘terra incognita’ of the nuclear landscape, in particular the waiting point at N=126 is yet unexplored and will remain largely inaccessible to conventional

  8. ACCELERATING FUSION REACTOR NEUTRONICS MODELING BY AUTOMATIC COUPLING OF HYBRID MONTE CARLO/DETERMINISTIC TRANSPORT ON CAD GEOMETRY

    SciTech Connect

    Biondo, Elliott D; Ibrahim, Ahmad M; Mosher, Scott W; Grove, Robert E

    2015-01-01

    Detailed radiation transport calculations are necessary for many aspects of the design of fusion energy systems (FES) such as ensuring occupational safety, assessing the activation of system components for waste disposal, and maintaining cryogenic temperatures within superconducting magnets. Hybrid Monte Carlo (MC)/deterministic techniques are necessary for this analysis because FES are large, heavily shielded, and contain streaming paths that can only be resolved with MC. The tremendous complexity of FES necessitates the use of CAD geometry for design and analysis. Previous ITER analysis has required the translation of CAD geometry to MCNP5 form in order to use the AutomateD VAriaNce reducTion Generator (ADVANTG) for hybrid MC/deterministic transport. In this work, ADVANTG was modified to support CAD geometry, allowing hybrid (MC)/deterministic transport to be done automatically and eliminating the need for this translation step. This was done by adding a new ray tracing routine to ADVANTG for CAD geometries using the Direct Accelerated Geometry Monte Carlo (DAGMC) software library. This new capability is demonstrated with a prompt dose rate calculation for an ITER computational benchmark problem using both the Consistent Adjoint Driven Importance Sampling (CADIS) method an the Forward Weighted (FW)-CADIS method. The variance reduction parameters produced by ADVANTG are shown to be the same using CAD geometry and standard MCNP5 geometry. Significant speedups were observed for both neutrons (as high as a factor of 7.1) and photons (as high as a factor of 59.6).

  9. Irradiation creep in austenitic and ferritic steels irradiated in a tailored neutron spectrum to induce fusion reactor levels of helium

    SciTech Connect

    Grossbeck, M.L.; Gibson, L.T.; Jitsukawa, S.

    1996-04-01

    Six austenitic stainless steels and two ferritic alloys were irradiated sequentially in two research reactors where the neutron spectrum was tailored to produce a He production rate typical of a fusion device. Irradiation began in the Oak Ridge Research Reactor where an atomic displacement level of 7.4 dpa was achieved and was then transferred to the High Flux Isotope Reactor for the remainder of the irradiation to a total displacement level of 19 dpa. Temperatures of 60 and 330{degree}C are reported on. At 330{degree}C irradiation creep was found to be linear in stress and fluence with rates in the range of 1.7 - 5.5 x 10{sup -4}% MPa{sup -1} dpa{sup -1}. Annealed and cold-worked materials exhibited similar creep rates. There is some indication that austenitic alloys with TiC or TiO precipitates had a slightly higher irradiation creep rate than those without. The ferritic alloys HT-9 and Fe-16Cr had irradiatoin creep rates about 0.5 x 10{sup -4}% MPa{sup -1} dpa{sup -1}. No meaningful data could be obtained from the tubes irradiated at 60{degree}C because of damage to the tubes.

  10. Response measurement of single-crystal chemical vapor deposition diamond radiation detector for intense X-rays aiming at neutron bang-time and neutron burn-history measurement on an inertial confinement fusion with fast ignition

    SciTech Connect

    Shimaoka, T. Kaneko, J. H.; Tsubota, M.; Arikawa, Y.; Nagai, T.; Kojima, S.; Abe, Y.; Sakata, S.; Fujioka, S.; Nakai, M.; Shiraga, H.; Azechi, H.; Isobe, M.; Sato, Y.; Chayahara, A.; Umezawa, H.; Shikata, S.

    2015-05-15

    A neutron bang time and burn history monitor in inertial confinement fusion with fast ignition are necessary for plasma diagnostics. In the FIREX project, however, no detector attained those capabilities because high-intensity X-rays accompanied fast electrons used for plasma heating. To solve this problem, single-crystal CVD diamond was grown and fabricated into a radiation detector. The detector, which had excellent charge transportation property, was tested to obtain a response function for intense X-rays. The applicability for neutron bang time and burn history monitor was verified experimentally. Charge collection efficiency of 99.5% ± 0.8% and 97.1% ± 1.4% for holes and electrons were obtained using 5.486 MeV alpha particles. The drift velocity at electric field which saturates charge collection efficiency was 1.1 ± 0.4 × 10{sup 7} cm/s and 1.0 ± 0.3 × 10{sup 7} cm/s for holes and electrons. Fast response of several ns pulse width for intense X-ray was obtained at the GEKKO XII experiment, which is sufficiently fast for ToF measurements to obtain a neutron signal separately from X-rays. Based on these results, we confirmed that the single-crystal CVD diamond detector obtained neutron signal with good S/N under ion temperature 0.5–1 keV and neutron yield of more than 10{sup 9} neutrons/shot.

  11. Response measurement of single-crystal chemical vapor deposition diamond radiation detector for intense X-rays aiming at neutron bang-time and neutron burn-history measurement on an inertial confinement fusion with fast ignition

    NASA Astrophysics Data System (ADS)

    Shimaoka, T.; Kaneko, J. H.; Arikawa, Y.; Isobe, M.; Sato, Y.; Tsubota, M.; Nagai, T.; Kojima, S.; Abe, Y.; Sakata, S.; Fujioka, S.; Nakai, M.; Shiraga, H.; Azechi, H.; Chayahara, A.; Umezawa, H.; Shikata, S.

    2015-05-01

    A neutron bang time and burn history monitor in inertial confinement fusion with fast ignition are necessary for plasma diagnostics. In the FIREX project, however, no detector attained those capabilities because high-intensity X-rays accompanied fast electrons used for plasma heating. To solve this problem, single-crystal CVD diamond was grown and fabricated into a radiation detector. The detector, which had excellent charge transportation property, was tested to obtain a response function for intense X-rays. The applicability for neutron bang time and burn history monitor was verified experimentally. Charge collection efficiency of 99.5% ± 0.8% and 97.1% ± 1.4% for holes and electrons were obtained using 5.486 MeV alpha particles. The drift velocity at electric field which saturates charge collection efficiency was 1.1 ± 0.4 × 107 cm/s and 1.0 ± 0.3 × 107 cm/s for holes and electrons. Fast response of several ns pulse width for intense X-ray was obtained at the GEKKO XII experiment, which is sufficiently fast for ToF measurements to obtain a neutron signal separately from X-rays. Based on these results, we confirmed that the single-crystal CVD diamond detector obtained neutron signal with good S/N under ion temperature 0.5-1 keV and neutron yield of more than 109 neutrons/shot.

  12. Fusion neutron detector for time-of-flight measurements in z-pinch and plasma focus experiments.

    PubMed

    Klir, D; Kravarik, J; Kubes, P; Rezac, K; Litseva, E; Tomaszewski, K; Karpinski, L; Paduch, M; Scholz, M

    2011-03-01

    We have developed and tested sensitive neutron detectors for neutron time-of-flight measurements in z-pinch and plasma focus experiments with neutron emission times in tens of nanoseconds and with neutron yields between 10(6) and 10(12) per one shot. The neutron detectors are composed of a BC-408 fast plastic scintillator and Hamamatsu H1949-51 photomultiplier tube (PMT). During the calibration procedure, a PMT delay was determined for various operating voltages. The temporal resolution of the neutron detector was measured for the most commonly used PMT voltage of 1.4 kV. At the PF-1000 plasma focus, a novel method of the acquisition of a pulse height distribution has been used. This pulse height analysis enabled to determine the single neutron sensitivity for various neutron energies and to calibrate the neutron detector for absolute neutron yields at about 2.45 MeV. PMID:21456735

  13. Decay heat measurement of fusion related materials in an ITER-like neutron field

    NASA Astrophysics Data System (ADS)

    Morimoto, Y.; Ochiai, K.; Maekawa, F.; Wada, M.; Nishitani, T.; Takeuchi, H.

    2002-12-01

    Decay heat is one of the most important factors for the safety aspect of ITER. Especially, the prediction of decay heat with an uncertainty less than 15% for the three most important materials, i.e., copper, type-316 stainless steel (SS316) and tungsten, is strongly requested by designers of ITER. To provide experimental decay heat data needed for validation of decay heat calculations for SS316 and copper, an experiment was conducted as the ITER/EDA task T-426. An ITER-like neutron field was constructed, and decay heat source distributions in thick copper and SS316 plates were measured with the whole energy absorption spectrometer. The measured decay heat distributions in the thick sample plates were compared with the predicted values by MCNP calculations. It was found that the use of an effective activation cross-section calculated by MCNP was needed to consider the self-shielding effects and, for both cases, MCNP calculations could predict the decay heat adequately.

  14. HIGH SPATIAL RESOLUTION IMAGING OF INERTIAL FUSION TARGET PLASMAS USING BUBBLE NEUTRON DETECTORS, Final Report for the Period November 1, 1999 - February 28, 2001

    SciTech Connect

    FISHER,RK

    2003-02-01

    OAK B202 HIGH SPATIAL RESOLUTION IMAGING OF INERTIAL FUSION TARGET PLASMAS USING BUBBLE NEUTRON DETECTORS. Bubble detectors, which can detect neutrons with a spatial 5 to 30 {micro}, are the most promising approach to imaging NIF target plasmas with the desired 5 {micro} spatial resolution in the target plane. Gel bubble detectors are being tested to record neutron images of ICF implosions in OMEGA experiments. By improving the noise reduction techniques used in analyzing the data taken in June 2000, we have been able to image the neutron emission from 6 {center_dot} 10{sup 13} yield DT target plasmas with a target plane spatial resolution of {approx} 140 {micro}. As expected, the spatial resolution was limited by counting statistics as a result of the low neutron detection efficiency of the easy-to-use gel bubble detectors. The results have been submitted for publication and will be the subject of an invited talk at the October 2001 Meeting of the Division of Plasma Physics of the American Physical Society. To improve the counting statistics, data was taken in May 2001 using a stack of four gel detectors and integrated over a series of up to seven high-yield DT shots. Analysis of the 2001 data is still in its early stages. Gel detectors were chosen for these initial tests since the bubbles can be photographed several hours after the neutron exposure. They consist of {approx} 5000 drops ({approx} 100 {micro} in diameter) of bubble detector liquid/cm{sup 3} suspended in an inactive support gel that occupies {approx} 99% of the detector volume. Using a liquid bubble chamber detector and a light scattering system to record the bubble locations a few microseconds after the neutron exposure when the bubbles are {approx} 10 {micro} in diameter, should result in {approx} 1000 times higher neutron detection efficiency and a target plane resolution on OMEGA of {approx} 10 to 50 {micro}.

  15. Fusion of time-dependent gamma production spectra from thermal neutron capture and fast neutron inelastic scattering to improve material detection

    NASA Astrophysics Data System (ADS)

    Gozani, T.; Elsalim, M.; Strellis, D.; Brown, D.

    2003-06-01

    Neutron-based inspection techniques are unique in their ability to provide material specific signatures, thus offering very high performance and automatic detection of explosives and other contraband. Thermal neutron capture gamma spectroscopy provides excellent sensitivities to hydrogen, nitrogen, chlorine, and other elements, which are characteristic to most explosives, drugs and other contraband that may be smuggled into the country. Fast neutron gamma production (mostly through inelastic scattering) provides good sensitivity to carbon and oxygen. When necessary, these two types of complementary interactions can be combined to yield a more accurate material determination inside small to medium size containers. Standard pulsed 14 MeV electronic neutron generators offer an efficient way to obtain these two types of interactions. Fast (14 MeV) neutrons are produced during the pulse. After the pulse, only the decaying thermal neutron population exists, and thus pure neutron capture gamma-rays are produced. Unfortunately, during the pulse (which is normally much longer than the neutron thermalization time) the fast neutron interactions are highly "contaminated" by the interactions of thermal neutrons within the object and the nearby gamma-ray detectors. This creates high background and spectral interferences in the common medium resolution detectors, such as NaI, BGO, etc. The use of an appropriate shielding, neutron spectrum tailoring, full spectral feature analysis as well as temporal information ("die-away" time) resulted in significant performance enhancements in detection of explosives, drugs and other contraband in difficult geometries.

  16. The systematic study of N/Z dependence on surface diffuseness parameter in the fusion of heavy neutron-rich colliding nuclei

    NASA Astrophysics Data System (ADS)

    Mittal, Suman; Dutt, Ishwar

    2016-05-01

    Surface diffuseness parameter used in Woods-Saxon form of potential have been extracted from a large number of experimentally studied neutron-rich fusion cross sections at near barrier energies. The results of our systematic study reveals that the extracted diffuseness parameter depend linearly on the N/Z ratio of the fusing nuclei. Further, we demonstrated that the extracted values of surface diffuseness parameter lies within the range a = 0.40 to 0.77 fm as compared to commonly accepted value form scattering i.e. 0.63 fm.

  17. Response measurement of single-crystal chemical vapor deposition diamond radiation detector for intense X-rays aiming at neutron bang-time and neutron burn-history measurement on an inertial confinement fusion with fast ignition.

    PubMed

    Shimaoka, T; Kaneko, J H; Arikawa, Y; Isobe, M; Sato, Y; Tsubota, M; Nagai, T; Kojima, S; Abe, Y; Sakata, S; Fujioka, S; Nakai, M; Shiraga, H; Azechi, H; Chayahara, A; Umezawa, H; Shikata, S

    2015-05-01

    A neutron bang time and burn history monitor in inertial confinement fusion with fast ignition are necessary for plasma diagnostics. In the FIREX project, however, no detector attained those capabilities because high-intensity X-rays accompanied fast electrons used for plasma heating. To solve this problem, single-crystal CVD diamond was grown and fabricated into a radiation detector. The detector, which had excellent charge transportation property, was tested to obtain a response function for intense X-rays. The applicability for neutron bang time and burn history monitor was verified experimentally. Charge collection efficiency of 99.5% ± 0.8% and 97.1% ± 1.4% for holes and electrons were obtained using 5.486 MeV alpha particles. The drift velocity at electric field which saturates charge collection efficiency was 1.1 ± 0.4 × 10(7) cm/s and 1.0 ± 0.3 × 10(7) cm/s for holes and electrons. Fast response of several ns pulse width for intense X-ray was obtained at the GEKKO XII experiment, which is sufficiently fast for ToF measurements to obtain a neutron signal separately from X-rays. Based on these results, we confirmed that the single-crystal CVD diamond detector obtained neutron signal with good S/N under ion temperature 0.5-1 keV and neutron yield of more than 10(9) neutrons/shot. PMID:26026521

  18. NE-213-scintillator-based neutron detection system for diagnostic measurements of energy spectra for neutrons having energies greater than or equal to 0. 8 MeV created during plasma operations at the Princeton Tokamak Fusion Test Reactor

    SciTech Connect

    Dickens, J.K.; Hill, N.W.; Hou, F.S.; McConnell, J.W.; Spencer, R.R.; Tsang, F.Y.

    1985-08-01

    A system for making diagnostic measurements of the energy spectra of greater than or equal to 0.8-MeV neutrons produced during plasma operations of the Princeton Tokamak Fusion Test Reactor (TFTR) has been fabricated and tested and is presently in operation in the TFTR Test Cell Basement. The system consists of two separate detectors, each made up of cells containing liquid NE-213 scintillator attached permanently to RCA-8850 photomultiplier tubes. Pulses obtained from each photomultiplier system are amplified and electronically analyzed to identify and separate those pulses due to neutron-induced events in the detector from those due to photon-induced events in the detector. Signals from each detector are routed to two separate Analog-to-Digital Converters, and the resulting digitized information, representing: (1) the raw neutron-spectrum data; and (2) the raw photon-spectrum data, are transmited to the CICADA data-acquisition computer system of the TFTR. Software programs have been installed on the CICADA system to analyze the raw data to provide moderate-resolution recreations of the energy spectrum of the neutron and photon fluences incident on the detector during the operation of the TFTR. A complete description of, as well as the operation of, the hardware and software is given in this report.

  19. NE-213-scintillator-based neutron detection system for diagnostic measurements of energy spectra for neutrons having energies greater than or equal to 0.8 MeV created during plasma operations at the Princeton Tokamak Fusion Test Reactor

    NASA Astrophysics Data System (ADS)

    Dickens, J. K.; Hill, N. W.; Hou, F. S.; McConnell, J. W.; Spencer, R. R.; Tsang, F. Y.

    1985-08-01

    A system for making diagnostic measurements of the energy spectra of greater than or equal to 0.8-MeV neutrons produced during plasma operations of the Princeton Tokamak Fusion Test Reactor (TFTR) has been fabricated and tested and is presently in operation in the TFTR Test Cell Basement. The system consists of two separate detectors, each made up of cells containing liquid NE-213 scintillator attached permanently to RCA-8850 photomultiplier tubes. Pulses obtained from each photomultiplier system are amplified and electronically analyzed to identify and separate those pulses due to neutron-induced events in the detector from those due to photon-induced events in the detector. Signals from each detector are routed to two separate Analog-to-Digital Converters, and the resulting digitized information, representing: (1) the raw neutron-spectrum data; and (2) the raw photon-spectrum data, are transmited to the CICADA data-acquisition computer system of the TFTR. Software programs have been installed on the CICADA system to analyze the raw data to provide moderate-resolution recreations of the energy spectrum of the neutron and photon fluences incident on the detector during the operation of the TFTR. A complete description of, as well as the operation of, the hardware and software is given in this report.

  20. Ultrafast neutron detector

    DOEpatents

    Wang, C.L.

    1985-06-19

    A neutron detector of very high temporal resolution is described. It may be used to measure distributions of neutrons produced by fusion reactions that persist for times as short as about 50 picoseconds.

  1. The tokamak as a neutron source

    SciTech Connect

    Hendel, H.W.; Jassby, D.L.

    1989-11-01

    This paper describes the tokamak in its role as a neutron source, with emphasis on experimental results for D-D neutron production. The sections summarize tokamak operation, sources of fusion and non-fusion neutrons, principal neutron detection methods and their calibration, neutron energy spectra and fluxes outside the tokamak plasma chamber, history of neutron production in tokamaks, neutron emission and fusion power gain from JET and TFTR (the largest present-day tokamaks), and D-T neutron production from burnup of D-D tritons. This paper also discusses the prospects for future tokamak neutron production and potential applications of tokamak neutron sources. 100 refs., 16 figs., 4 tabs.

  2. Positron Annihilation Lifetime Spectroscopy Study of Neutron Irradiated High Temperature Superconductors YBa2Cu3O7-δ for Application in Fusion Facilities

    NASA Astrophysics Data System (ADS)

    Veterníková, J.; Chudý, M.; Slugeň, V.; Eisterer, M.; Weber, H. W.; Sojak, S.; Petriska, M.; Hinca, R.; Degmová, J.; Sabelová, V.

    2012-02-01

    This study focuses on the crystallographic defects introduced by neutron irradiation and the resulting changes of the superconducting properties in the high temperature superconductor YBa2Cu3O7-δ. This material is considered to be most promising for magnet systems in future fusion reactors. Two different bulk samples, pure non-doped YBa2Cu3O7-δ (YBCO) and multi-seed YBa2Cu3O7-δ doped by platinum (MS2F) were studied prior to and after irradiation in the TRIGA MARK II reactor in Vienna. Neutron irradiation is responsible for a significant enhancement of the critical current densities as well as for a reduction in critical temperature. The accumulation of small open volume defects (<0.5 nm) partially causes those changes. These defects were studied by positron annihilation lifetime spectroscopy at room temperature. A high concentration of Cu-O di-vacancies was found in both samples, which increased with neutron fluence. The defect concentration was significantly reduced after a heat treatment.

  3. Laser fusion

    SciTech Connect

    Smit, W.A.; Boskma, P.

    1980-12-01

    Unrestricted laser fusion offers nations an opportunity to circumvent arms control agreements and develop thermonuclear weapons. Early laser weapons research sought a clean radiation-free bomb to replace the fission bomb, but this was deceptive because a fission bomb was needed to trigger the fusion reaction and additional radioactivity was induced by generating fast neutrons. As laser-implosion experiments focused on weapons physics, simulating weapons effects, and applications for new weapons, the military interest shifted from developing a laser-ignited hydrogen bomb to more sophisticated weapons and civilian applications for power generation. Civilian and military research now overlap, making it possible for several countries to continue weapons activities and permitting proliferation of nuclear weapons. These countries are reluctant to include inertial confinement fusion research in the Non-Proliferation Treaty. 16 references. (DCK)

  4. Materials research for fusion

    NASA Astrophysics Data System (ADS)

    Knaster, J.; Moeslang, A.; Muroga, T.

    2016-05-01

    Fusion materials research started in the early 1970s following the observation of the degradation of irradiated materials used in the first commercial fission reactors. The technological challenges of fusion energy are intimately linked with the availability of suitable materials capable of reliably withstanding the extremely severe operational conditions of fusion reactors. Although fission and fusion materials exhibit common features, fusion materials research is broader. The harder mono-energetic spectrum associated with the deuterium-tritium fusion neutrons (14.1 MeV compared to <2 MeV on average for fission neutrons) releases significant amounts of hydrogen and helium as transmutation products that might lead to a (at present undetermined) degradation of structural materials after a few years of operation. Overcoming the historical lack of a fusion-relevant neutron source for materials testing is an essential pending step in fusion roadmaps. Structural materials development, together with research on functional materials capable of sustaining unprecedented power densities during plasma operation in a fusion reactor, have been the subject of decades of worldwide research efforts underpinning the present maturity of the fusion materials research programme.

  5. Fusion and neutron transfer reactions with weakly bound nuclei within time-dependent and coupled channel approaches

    NASA Astrophysics Data System (ADS)

    Samarin, V. V.

    2016-05-01

    The time-dependent Schrödinger equation and the coupled channel approach based on the method of perturbed stationary two-center states are used to describe nucleon transfers and fusion in low-energy nuclear reactions. Results of the cross sections calculation for the formation of the 198Au and fusion in the 6He+197Au reaction and for the formation of the 65Zn in 6He+64Zn reaction agree satisfactorily with the experimental data near the barrier. The Feynman's continual integrals calculations for a few-body systems were used for the proposal of the new form of the shell model mean field for helium isotopes.

  6. Demonstration of a time-integrated short line of sight neutron imaging system for inertial confinement fusion

    SciTech Connect

    Simpson, R. Danly, C.; Fatherley, V. E.; Merrill, F. E.; Volegov, P.; Wilde, C.; Christensen, K.; Fittinghoff, D.; Grim, G. P.; Izumi, N.; Jedlovec, D.; Skulina, K.

    2015-12-15

    The Neutron Imaging System (NIS) is an important diagnostic for understanding implosions of deuterium-tritium capsules at the National Ignition Facility. While the detectors for the existing system must be positioned 28 m from the source to produce sufficient imaging magnification and resolution, recent testing of a new short line of sight neutron imaging system has shown sufficient resolution to allow reconstruction of the source image with quality similar to that of the existing NIS on a 11.6 m line of sight. The new system used the existing pinhole aperture array and a stack of detectors composed of 2 mm thick high-density polyethylene converter material followed by an image plate. In these detectors, neutrons enter the converter material and interact with protons, which recoil and deposit energy within the thin active layer of the image plate through ionization losses. The described system produces time-integrated images for all neutron energies passing through the pinhole. We present details of the measurement scheme for this novel technique to produce energy-integrated neutron images as well as source reconstruction results from recent experiments at NIF.

  7. Demonstration of a time-integrated short line of sight neutron imaging system for inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Simpson, R.; Christensen, K.; Danly, C.; Fatherley, V. E.; Fittinghoff, D.; Grim, G. P.; Izumi, N.; Jedlovec, D.; Merrill, F. E.; Skulina, K.; Volegov, P.; Wilde, C.

    2015-12-01

    The Neutron Imaging System (NIS) is an important diagnostic for understanding implosions of deuterium-tritium capsules at the National Ignition Facility. While the detectors for the existing system must be positioned 28 m from the source to produce sufficient imaging magnification and resolution, recent testing of a new short line of sight neutron imaging system has shown sufficient resolution to allow reconstruction of the source image with quality similar to that of the existing NIS on a 11.6 m line of sight. The new system used the existing pinhole aperture array and a stack of detectors composed of 2 mm thick high-density polyethylene converter material followed by an image plate. In these detectors, neutrons enter the converter material and interact with protons, which recoil and deposit energy within the thin active layer of the image plate through ionization losses. The described system produces time-integrated images for all neutron energies passing through the pinhole. We present details of the measurement scheme for this novel technique to produce energy-integrated neutron images as well as source reconstruction results from recent experiments at NIF.

  8. Demonstration of a time-integrated short line of sight neutron imaging system for inertial confinement fusion.

    PubMed

    Simpson, R; Christensen, K; Danly, C; Fatherley, V E; Fittinghoff, D; Grim, G P; Izumi, N; Jedlovec, D; Merrill, F E; Skulina, K; Volegov, P; Wilde, C

    2015-12-01

    The Neutron Imaging System (NIS) is an important diagnostic for understanding implosions of deuterium-tritium capsules at the National Ignition Facility. While the detectors for the existing system must be positioned 28 m from the source to produce sufficient imaging magnification and resolution, recent testing of a new short line of sight neutron imaging system has shown sufficient resolution to allow reconstruction of the source image with quality similar to that of the existing NIS on a 11.6 m line of sight. The new system used the existing pinhole aperture array and a stack of detectors composed of 2 mm thick high-density polyethylene converter material followed by an image plate. In these detectors, neutrons enter the converter material and interact with protons, which recoil and deposit energy within the thin active layer of the image plate through ionization losses. The described system produces time-integrated images for all neutron energies passing through the pinhole. We present details of the measurement scheme for this novel technique to produce energy-integrated neutron images as well as source reconstruction results from recent experiments at NIF. PMID:26724078

  9. Current-carrying element based on second-generation high-temperature superconductor for the magnet system of a fusion neutron source

    NASA Astrophysics Data System (ADS)

    Novikov, M. S.; Ivanov, D. P.; Novikov, S. I.; Shuvaev, S. A.

    2015-12-01

    Application of current-carrying elements (CCEs) made of second-generation high-temperature superconductor (2G HTS) in magnet systems of a fusion neutron source (FNS) and other fusion devices will allow their magnetic field and thermodynamic stability to be increased substantially in comparison with those of low-temperature superconductor (LTS) magnets. For a toroidal magnet of the FNS, a design of a helical (partially transposed) CCE made of 2G HTS is under development with forced-flow cooling by helium gas, a current of 20-30 kA, an operating temperature of 10-20 K, and a magnetic field on the winding of 12-15 T (prospectively ~20 T). Short-sized samples of the helical flexible heavy-current CCE are being fabricated and investigated; a pilot-line unit for production of long-sized CCE pieces is under construction. The applied fabrication technique allows the CCE to be produced which combines a high operating current, thermal and mechanical stability, manufacturability, and low losses in the alternating modes. The possibility of fabricating the CCE with the outer dimensions and values of the operating parameter required for the FNS (and with a significant margin) using already available serial 2G HTS tapes is substantiated. The maximum field of toroidal magnets with CCEs made of 2G HTS will be limited only by mechanical properties of the magnet's casing and structure, while the thermal stability will be approximately two orders of magnitude higher than that of toroidal magnets with LTS-based CCEs. The helical CCE made of 2G HTS is very promising for fusion and hybrid electric power plants, and its design and technologies of production, as well as the prototype coils made of it for the FNS and other tokamaks, are worth developing now.

  10. Three-dimensional neutronics optimization of helium-cooled blanket for multi-functional experimental fusion-fission hybrid reactor (FDS-MFX)

    SciTech Connect

    Jiang, J.; Yuan, B.; Jin, M.; Wang, M.; Long, P.; Hu, L.

    2012-07-01

    Three-dimensional neutronics optimization calculations were performed to analyse the parameters of Tritium Breeding Ratio (TBR) and maximum average Power Density (PDmax) in a helium-cooled multi-functional experimental fusion-fission hybrid reactor named FDS (Fusion-Driven hybrid System)-MFX (Multi-Functional experimental) blanket. Three-stage tests will be carried out successively, in which the tritium breeding blanket, uranium-fueled blanket and spent-fuel-fueled blanket will be utilized respectively. In this contribution, the most significant and main goal of the FDS-MFX blanket is to achieve the PDmax of about 100 MW/m3 with self-sustaining tritium (TBR {>=} 1.05) based on the second-stage test with uranium-fueled blanket to check and validate the demonstrator reactor blanket relevant technologies based on the viable fusion and fission technologies. Four different enriched uranium materials were taken into account to evaluate PDmax in subcritical blanket: (i) natural uranium, (ii) 3.2% enriched uranium, (iii) 19.75% enriched uranium, and (iv) 64.4% enriched uranium carbide. These calculations and analyses were performed using a home-developed code VisualBUS and Hybrid Evaluated Nuclear Data Library (HENDL). The results showed that the performance of the blanket loaded with 64.4% enriched uranium was the most attractive and it could be promising to effectively obtain tritium self-sufficiency (TBR-1.05) and a high maximum average power density ({approx}100 MW/m{sup 3}) when the blanket was loaded with the mass of {sup 235}U about 1 ton. (authors)

  11. Current-carrying element based on second-generation high-temperature superconductor for the magnet system of a fusion neutron source

    SciTech Connect

    Novikov, M. S. Ivanov, D. P. E-mail: denis.ivanov30@mail.ru; Novikov, S. I. Shuvaev, S. A. E-mail: sergey.shuvaev@phystech.edu

    2015-12-15

    Application of current-carrying elements (CCEs) made of second-generation high-temperature superconductor (2G HTS) in magnet systems of a fusion neutron source (FNS) and other fusion devices will allow their magnetic field and thermodynamic stability to be increased substantially in comparison with those of low-temperature superconductor (LTS) magnets. For a toroidal magnet of the FNS, a design of a helical (partially transposed) CCE made of 2G HTS is under development with forced-flow cooling by helium gas, a current of 20–30 kA, an operating temperature of 10–20 K, and a magnetic field on the winding of 12–15 T (prospectively ∼20 T). Short-sized samples of the helical flexible heavy-current CCE are being fabricated and investigated; a pilot-line unit for production of long-sized CCE pieces is under construction. The applied fabrication technique allows the CCE to be produced which combines a high operating current, thermal and mechanical stability, manufacturability, and low losses in the alternating modes. The possibility of fabricating the CCE with the outer dimensions and values of the operating parameter required for the FNS (and with a significant margin) using already available serial 2G HTS tapes is substantiated. The maximum field of toroidal magnets with CCEs made of 2G HTS will be limited only by mechanical properties of the magnet’s casing and structure, while the thermal stability will be approximately two orders of magnitude higher than that of toroidal magnets with LTS-based CCEs. The helical CCE made of 2G HTS is very promising for fusion and hybrid electric power plants, and its design and technologies of production, as well as the prototype coils made of it for the FNS and other tokamaks, are worth developing now.

  12. Fusion pumped laser

    DOEpatents

    Pappas, D.S.

    1987-07-31

    The apparatus of this invention may comprise a system for generating laser radiation from a high-energy neutron source. The neutron source is a tokamak fusion reactor generating a long pulse of high-energy neutrons and having a temperature and magnetic field effective to generate a neutron flux of at least 10/sup 15/ neutrons/cm/sup 2//center dot/s. Conversion means are provided adjacent the fusion reactor at a location operable for converting the high-energy neutrons to an energy source with an intensity and energy effective to excite a preselected lasing medium. A lasing medium is spaced about and responsive to the energy source to generate a population inversion effective to support laser oscillations for generating output radiation. 2 figs., 2 tabs.

  13. Frascati neutron generator (FNG)

    NASA Astrophysics Data System (ADS)

    Martone, M.; Angelone, M.; Pillon, Mario

    1995-03-01

    The 14 MeV neutron generator (FNG), in operation at the ENEA Energy Center of Frascati, Italy, is described. It produces up to 1 X 1011 neutrons per second and consists essentially of a deuterium-ion accelerator, a beam transport system, and a target of titanium tritide, where neutrons are produced by the T(d,n)4He fusion reactions. An application of FNG in the context of research activity on controlled thermonuclear fusion research is also briefly described.

  14. A 14 MeV neutron generator as a source of various charged particles produced in fusion reactions

    NASA Astrophysics Data System (ADS)

    Drozdowicz, Krzysztof; Dankowski, Jan; Gabańska, Barbara; Igielski, Andrzej; Janik, Władysław; Kurowski, Arkadiusz; Woźnicka, Urszula

    2014-05-01

    Measuring the energy of ions from the thermonuclear reaction in future energetic tokamaks (like ITER) is important in order to obtain information on the energetic balance in a plasma toroidal column. Detectors made of synthetic diamond can be used for the spectrometry of ions which accompany burning plasma. A fast neutron (14 MeV) generator, which is a linear accelerator of deuterons, is based on the nuclear reaction T(d,n)α in a tritium target. The energy of alpha particles produced in the D-T reaction in the neutron generator is the same (maximum 3.5 MeV) as the energy of alpha particles present in the hot D-T plasma in tokamaks. Other reactions in the target also occur and the energy spectra of various created ions can be also measured. The experiments have been performed with an ion spectrometry made possible with the use of scCVD diamond detectors at the fast neutron generator (IGN-14) at the Institute of Nuclear Physics in Kraków, Poland.

  15. The impact of pulsed irradiation upon neutron activation calculations for inertial and magnetic fusion energy power plants

    SciTech Connect

    Latkowski, J.F.; Sanz, J.; Vujic, J.L.

    1996-06-26

    Inertial fusion energy (IFE) and magnetic fusion energy (MFE) power plants will probably operate in a pulsed mode. The two different schemes, however, will have quite different time periods. Typical repetition rates for IFE power plants will be 1-5 Hz. MFE power plants will ramp up in current for about 1 hour, shut down for several minutes, and repeat the process. Traditionally, activation calculations for IFE and MFE power plants have assumed continuous operation and used either the ``steady state`` (SS) or ``equivalent steady state`` (ESS) approximations. It has been suggested recently that the SS and ESS methods may not yield accurate results for all radionuclides of interest. The present work expands that of Sisolak, et al. by applying their formulae to conditions which might be experienced in typical IFE and MFE power plants. In addition, complicated, multi-step reaction/decay chains are analyzed using an upgraded version of the ACAB radionuclide generation/depletion code. Our results indicate that the SS method is suitable for application to MFE power plant conditions. We also find that the ESS method generates acceptable results for radionuclides with half-lives more than a factor of three greater than the time between pulses. For components that are subject to 0.05 Hz (or more frequent) irradiation (such as coolant), use of the ESS method is recommended. For components or materials that are subject to less frequent irradiation (such as high-Z target materials), pulsed irradiation calculations should be used.

  16. Spatiotemporal characterization of soil moisture fields in agricultural areas using cosmic-ray neutron probes and data fusion

    NASA Astrophysics Data System (ADS)

    Franz, Trenton; Wang, Tiejun

    2015-04-01

    Approximately 40% of global food production comes from irrigated agriculture. With the increasing demand for food even greater pressures will be placed on water resources within these systems. In this work we aimed to characterize the spatial and temporal patterns of soil moisture at the field-scale (~500 m) using the newly developed cosmic-ray neutron rover near Waco, NE USA. Here we mapped soil moisture of 144 quarter section fields (a mix of maize, soybean, and natural areas) each week during the 2014 growing season (May to September). The 12 by 12 km study domain also contained three stationary cosmic-ray neutron probes for independent validation of the rover surveys. Basic statistical analysis of the domain indicated a strong relationship between the mean and variance of soil moisture at several averaging scales. The relationships between the mean and higher order moments were not significant. Scaling analysis indicated strong power law behavior between the variance of soil moisture and averaging area with minimal dependence of mean soil moisture on the slope of the power law function. In addition, we combined the data from the three stationary cosmic-ray neutron probes and mobile surveys using linear regression to derive a daily soil moisture product at 1, 3, and 12 km spatial resolutions for the entire growing season. The statistical relationships derived from the rover dataset offer a novel set of observations that will be useful in: 1) calibrating and validating land surface models, 2) calibrating and validating crop models, 3) soil moisture covariance estimates for statistical downscaling of remote sensing products such as SMOS and SMAP, and 4) provide daily center-pivot scale mean soil moisture data for optimal irrigation timing and volume amounts.

  17. Measurement of the dmud quartet-to-doublet molecular formation rate ratio (lambdaq : lambdad) and the mu d hyperfine rate (lambdaqd) using the fusion neutrons from mu- stops in D2 gas

    NASA Astrophysics Data System (ADS)

    Raha, Nandita

    The MuSun experiment will determine the microd capture rate (micro - + d → n + n + nue) from the doublet hyperfine state Lambdad, of the muonic deuterium atom in the 1S ground state to a precision of 1.5%. Modern effective field theories (EFT) predict that an accurate measurement of Lambdad would determine the two-nucleon weak axial current. This will help in understanding all weak nuclear interactions such as the stellar thermonuclear proton-proton fusion reactions, the neutrino reaction nu + d (which explores the solar neutrino oscillation problem). It will also help us understand weak nuclear interactions involving more than two nucleons---double beta decay---as they do involve a two-nucleon weak axial current term. The experiment took place in the piE3 beam-line of Paul Scherrer Institute (PSI) using a muon beam generated from 2.2 mA proton beam---which is the highest intensity beam in the world. The muons first passed through entrance scintillator and multiwire proportional chamber for determining thier entrance timing and position respectively. Then they were stopped in a cryogenic time projection chamber (cryo-TPC) filled with D2 gas. This was surrounded by plastic scintillators and multiwire proportional chambers for detecting the decay electrons and an array of eight liquid scintillators for detecting neutrons. Muons in deuterium get captured to form microd atoms in the quartet and doublet spin states. These atoms undergo nuclear capture from these hyperfine states respectively. There is a hyperfine transition rate from quartet-to-doublet state---lambdaqd along with dmicrod molecular formation which further undergoes a fusion reaction with the muon acting as a catalyst (MCF). The goal of this dissertation is to measure the dmicro d quartet-to-doublet rate ratio (lambdaq : lambdad) and microd hyperfine rate (lambda qd) using the fusion neutrons from micro. stops in D2 gas. The dmicrod molecules undergo MCF reactions from the doublet and the quartet state

  18. Extending studies of the fusion of heavy nuclei to the neutron rich region using accelerated radioactive ion beams.

    SciTech Connect

    Shapira, Dan

    2011-01-01

    One of the stated goals for proposed and existing facilities that produce and accelerate radioactive ion beams is to explore and achieve a new understanding of the reactions mechanisms leading to the synthesis of the heaviest nuclei. Nuclear synthesis of two large nuclei into a single entity is a complex multistep process. The beam intensities of radioactive ions accelerated at present day facilities are not sufficient to synthesize super heavy elements. However the study of the iso-spin dependence of nuclear synthesis and the many processes competing with it can be carried out at present day facilities. Of special interest are cases where the interacting nuclei and the synthesized product are extremely neutron-rich. The effects of neutron excess on the reaction processes leading to the formation of the synthesized nucleus that emerged in earlier studies are poorly understood and sometimes counter intuitive. Results from measurements performed at HRIBF, as well as our plans for future measurements and the equipment being prepared will be presented.

  19. Optimizing pulse shaping and zooming for acceleration to high velocities and fusion neutron production on the Nike laser

    NASA Astrophysics Data System (ADS)

    Karasik, Max; Weaver, J. L.; Aglitskiy, Y.; Zalesak, S. T.; Velikovich, A. L.; Oh, J.; Obenschain, S. P.; Arikawa, Y.; Watari, T.

    2010-11-01

    We will present results from follow-on experiments to the record-high velocities of 1000 km/s achieved on Nike [Karasik et al., Phys. Plasmas 17, 056317 (2010) ], in which highly accelerated planar foils of deuterated polystyrene were made to collide with a witness foil to produce extreme shock pressures and result in heating of matter to thermonuclear temperatures. Still higher velocities and higher target densities are required for impact fast ignition. The aim of these experiments is shaping the driving pulse to minimize shock heating of the accelerated target and using the focal zoom capability of Nike to achieve higher densities and velocities. Spectroscopic measurements of electron temperature achieved upon impact will complement the neutron time-of-flight ion temperature measurement. Work is supported by US DOE and Office of Naval Research.

  20. Use of zooming and pulseshaping for acceleration to high velocities and fusion neutron production on the Nike laser

    NASA Astrophysics Data System (ADS)

    Karasik, Max; Weaver, J. L.; Aglitskiy, Y.; Kehne, D. M.; Zalesak, S. T.; Velikovich, A. L.; Oh, J.; Obenschain, S. P.; Arikawa, Y.

    2011-10-01

    We will present results from follow-on experiments to the record-high velocities of 1000 km/s achieved on Nike [Karasik et al, Phys. Plasmas 17, 056317(2010)], in which highly accelerated planar foils of deuterated polystyrene were made to collide with a witness foil to produce ~ 1 Gbar shock pressures and result in heating of matter to thermonuclear temperatures. Still higher velocities and higher target densities are required for impact fast ignition. The aim of these experiments is using the focal zoom capability of Nike and shaping the driving pulse to minimize shock heating of the accelerated target to achieve higher densities and velocities. In-flight target density is inferred from target heating upon collision via DD neutron time-of-flight ion temperature measurement. Work is supported by US DOE (NNSA) and Office of Naval Research. SAIC

  1. Fusion reactor pumped laser

    DOEpatents

    Jassby, Daniel L.

    1988-01-01

    A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam.

  2. Spinal fusion

    MedlinePlus

    ... Anterior spinal fusion; Spine surgery - spinal fusion; Low back pain - fusion; Herniated disk - fusion ... If you had chronic back pain before surgery, you will likely still have some pain afterward. Spinal fusion is unlikely to take away all your pain ...

  3. Improvement of the Neutronic Performance of the PACER Fusion Concept Using Thorium Molten Salt with Reactor Grade Plutonium

    NASA Astrophysics Data System (ADS)

    Acır, Adem

    2013-02-01

    In this study, the improvement of neutronic performance of a dual purpose modified PACER concept has been investigated. Flibe as the main constituent are fixed as 92% coolant. ThF4 is mixed with increased mole-fractions of RG-PuF4 starting by 0 mol % up to 1 mol %. TBR variations for all the investigated salts with respect to the RG-PuF4 contents are computed. Tritium self-sufficiency is provided with the ThF4 when the adding RG-PuF4 content is higher than 0.75%. The energy multiplication of the blanket is increased as 70% with adding RG-PuF4 contents to ThF4. High quality fissile isotope 233U are produced with increasing RG-PuF4. DPA and helium production increases with increased RG-PuF4 content in molten salt. Radiation damage with dpa <1.7 and He <3.3 ppm after a plant operation period of 30 years will be well below the damage limit values.

  4. The fusion breeder

    NASA Astrophysics Data System (ADS)

    Moir, Ralph W.

    1982-10-01

    The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the U.S. fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the U.S. fusion program and the U.S. nuclear energy program. There is wide agreement that many approaches will work and will produce fuel for five equal-sized LWRs, and some approach as many as 20 LWRs at electricity costs within 20% of those at today's price of uranium (30/lb of U3O8). The blankets designed to suppress fissioning, called symbiotes, fusion fuel factories, or just fusion breeders, will have safety characteristics more like pure fusion reactors and will support as many as 15 equal power LWRs. The blankets designed to maximize fast fission of fertile material will have safety characteristics more like fission reactors and will support 5 LWRs. This author strongly recommends development of the fission suppressed blanket type, a point of view not agreed upon by everyone. There is, however, wide agreement that, to meet the market price for uranium which would result in LWR electricity within 20% of today's cost with either blanket type, fusion components can cost severalfold more than would be allowed for pure fusion to meet the goal of making electricity alone at 20% over today's fission costs. Also widely agreed is that the critical-path-item for the fusion breeder is fusion development itself; however, development of fusion breeder specific items (blankets, fuel cycle) should be started now in order to have the fusion breeder by the time the rise in uranium prices forces other more costly choices.

  5. Characterization of a Pulse Neutron Source Yield under Field Conditions

    SciTech Connect

    Barzilov, Alexander; Novikov, Ivan; Womble, Phillip C.; Hopper, Lindsay

    2009-03-10

    Technique of rapid evaluation of a pulse neutron sources such as neutron generators under field conditions has been developed. The phoswich sensor and pulse-shape discrimination techniques have been used for the simultaneous measurements of fast neutrons, thermal neutrons, and photons. The sensor has been calibrated using activation neutron detectors and a pulse deuterium-tritium fusion neutron source.

  6. Neutron scatter camera

    DOEpatents

    Mascarenhas, Nicholas; Marleau, Peter; Brennan, James S.; Krenz, Kevin D.

    2010-06-22

    An instrument that will directly image the fast fission neutrons from a special nuclear material source has been described. This instrument can improve the signal to background compared to non imaging neutron detection techniques by a factor given by ratio of the angular resolution window to 4.pi.. In addition to being a neutron imager, this instrument will also be an excellent neutron spectrometer, and will be able to differentiate between different types of neutron sources (e.g. fission, alpha-n, cosmic ray, and D-D or D-T fusion). Moreover, the instrument is able to pinpoint the source location.

  7. Fusion pumped laser

    DOEpatents

    Pappas, Daniel S.

    1989-01-01

    Apparatus is provided for generating energy in the form of laser radiation. A tokamak fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The tokamak design provides a temperature and a magnetic field which is effective to generate a neutron flux of at least 10.sup.15 neutrons/cm.sup.2.s. A conversion medium receives neutrons from the tokamak and converts the high-energy neutrons to an energy source with an intensity and an energy effective to excite a preselected lasing medium. The energy source typically comprises fission fragments, alpha particles, and radiation from a fission event. A lasing medium is provided which is responsive to the energy source to generate a population inversion which is effective to support laser oscillations for generating output radiation.

  8. FOREWORD: Neutron metrology Neutron metrology

    NASA Astrophysics Data System (ADS)

    Thomas, David J.; Nolte, Ralf; Gressier, Vincent

    2011-12-01

    industry, from the initial fuel enrichment and fabrication processes right through to storage or reprocessing, and neutron metrology is clearly important in this area. Neutron fields do, however, occur in other areas, for example where neutron sources are used in oil well logging and moisture measurements. They also occur around high energy accelerators, including photon linear accelerators used for cancer therapy, and are expected to be a more serious problem around the new hadron radiation therapy facilities. Roughly 50% of the cosmic ray doses experienced by fliers at the flight altitudes of commercial aircraft are due to neutrons. Current research on fusion presents neutron metrology with a whole new range of challenges because of the very high fluences expected. One of the most significant features of neutron fields is the very wide range of possible neutron energies. In the nuclear industry, for example, neutrons occur with energies from those of thermal neutrons at a few meV to the upper end of the fission spectrum at perhaps 10 MeV. For cosmic ray dosimetry the energy range extends into the GeV region. This enormous range sets a challenge for designing measuring devices and a parallel challenge of developing measurement standards for characterizing these devices. One of the major considerations when deciding on topics for this special issue was agreeing on what not to include. Modelling, i.e. the use of radiation transport codes, is now a very important aspect of neutron measurements. These calculations are vital for shielding and for instrument design; nevertheless, the topic has only been included here where it has a direct bearing on metrology and the development of standards. Neutron spectrometry is an increasingly important technique for unravelling some of the problems of dose equivalent measurements and for plasma diagnostics in fusion research. However, this topic is at least one step removed from primary metrology and so it was felt that it should not be

  9. Fusion power demonstration

    SciTech Connect

    Henning, C.D.; Logan, B.G.

    1983-09-01

    As a satellite to the MARS (Mirror Advanced Reactor Study) a smaller, near-term device has been scoped, called the FPD (Fusion Power Demonstration). Envisioned as the next logical step toward a power reactor, it would advance the mirror fusion program beyond MFTF-B and provide an intermediate step toward commercial fusion power. Breakeven net electric power capability would be the goal such that no net utility power would be required to sustain the operation. A phased implementation is envisioned, with a deuterium checkout first to verify the plasma systems before significant neutron activation has occurred. Major tritium-related facilities would be installed with the second phase to produce sufficient fusion power to supply the recirculating power to maintain the neutral beams, ECRH, magnets and other auxiliary equipment.

  10. Fusion reactor pumped laser

    DOEpatents

    Jassby, D.L.

    1987-09-04

    A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam. 10 figs.

  11. ACDOS1: a computer code to calculate dose rates from neutron activation of neutral beamlines and other fusion-reactor components

    SciTech Connect

    Keney, G.S.

    1981-08-01

    A computer code has been written to calculate neutron induced activation of neutral-beam injector components and the corresponding dose rates as a function of geometry, component composition, and time after shutdown. The code, ACDOS1, was written in FORTRAN IV to calculate both activity and dose rates for up to 30 target nuclides and 50 neutron groups. Sufficient versatility has also been incorporated into the code to make it applicable to a variety of general activation problems due to neutrons of energy less than 20 MeV.

  12. FOREWORD: Neutron metrology Neutron metrology

    NASA Astrophysics Data System (ADS)

    Thomas, David J.; Nolte, Ralf; Gressier, Vincent

    2011-12-01

    industry, from the initial fuel enrichment and fabrication processes right through to storage or reprocessing, and neutron metrology is clearly important in this area. Neutron fields do, however, occur in other areas, for example where neutron sources are used in oil well logging and moisture measurements. They also occur around high energy accelerators, including photon linear accelerators used for cancer therapy, and are expected to be a more serious problem around the new hadron radiation therapy facilities. Roughly 50% of the cosmic ray doses experienced by fliers at the flight altitudes of commercial aircraft are due to neutrons. Current research on fusion presents neutron metrology with a whole new range of challenges because of the very high fluences expected. One of the most significant features of neutron fields is the very wide range of possible neutron energies. In the nuclear industry, for example, neutrons occur with energies from those of thermal neutrons at a few meV to the upper end of the fission spectrum at perhaps 10 MeV. For cosmic ray dosimetry the energy range extends into the GeV region. This enormous range sets a challenge for designing measuring devices and a parallel challenge of developing measurement standards for characterizing these devices. One of the major considerations when deciding on topics for this special issue was agreeing on what not to include. Modelling, i.e. the use of radiation transport codes, is now a very important aspect of neutron measurements. These calculations are vital for shielding and for instrument design; nevertheless, the topic has only been included here where it has a direct bearing on metrology and the development of standards. Neutron spectrometry is an increasingly important technique for unravelling some of the problems of dose equivalent measurements and for plasma diagnostics in fusion research. However, this topic is at least one step removed from primary metrology and so it was felt that it should not be

  13. Superconducting magnets for fusion applications

    SciTech Connect

    Henning, C.D.

    1987-07-02

    Fusion magnet technology has made spectacular advances in the past decade; to wit, the Mirror Fusion Test Facility and the Large Coil Project. However, further advances are still required for advanced economical fusion reactors. Higher fields to 14 T and radiation-hardened superconductors and insulators will be necessary. Coupled with high rates of nuclear heating and pulsed losses, the next-generation magnets will need still higher current density, better stability and quench protection. Cable-in-conduit conductors coupled with polyimide insulations and better steels seem to be the appropriate path. Neutron fluences up to 10/sup 19/ neutrons/cm/sup 2/ in niobium tin are achievable. In the future, other amorphous superconductors could raise these limits further to extend reactor life or decrease the neutron shielding and corresponding reactor size.

  14. Experimental test of the system of vertical and longitudinal lithium limiters on T-11M tokamak as a prototype of plasma facing components of a steady-state fusion neutron source

    NASA Astrophysics Data System (ADS)

    Mirnov, S. V.; Belov, A. M.; Djigailo, N. T.; Dzhurik, A. S.; Kravchuk, S. I.; Lazarev, V. B.; Lyublinski, I. E.; Vertkov, A. V.; Zharkov, M. Yu.; Shcherbak, A. N.

    2015-11-01

    A new functional model of the prototype of closed Li circuit for protection of the chamber wall was tested in T-11M tokamak by simultaneous use of the vertical Li limiter as an emitter of Li and a new longitudinal Li limiter as its collector. Such technological scheme can be suggested for the steady-state fusion neutron source on the tokamak basis. During plasma shots the cryogenic target of T-11M collected Li flow emitted by the vertical capillary Li limiter almost completely (up to 80%). These Li and hydrogen isotopes were captured and extracted outside the tokamak vacuum chamber without venting of the vessel which is a key requirement for the use of Li in the steady-state tokamak reactor.

  15. Magnetized Target Fusion

    NASA Technical Reports Server (NTRS)

    Griffin, Steven T.

    2002-01-01

    Magnetized target fusion (MTF) is under consideration as a means of building a low mass, high specific impulse, and high thrust propulsion system for interplanetary travel. This unique combination is the result of the generation of a high temperature plasma by the nuclear fusion process. This plasma can then be deflected by magnetic fields to provide thrust. Fusion is initiated by a small traction of the energy generated in the magnetic coils due to the plasma's compression of the magnetic field. The power gain from a fusion reaction is such that inefficiencies due to thermal neutrons and coil losses can be overcome. Since the fusion reaction products are directly used for propulsion and the power to initiate the reaction is directly obtained from the thrust generation, no massive power supply for energy conversion is required. The result should be a low engine mass, high specific impulse and high thrust system. The key is to successfully initiate fusion as a proof-of-principle for this application. Currently MSFC is implementing MTF proof-of-principle experiments. This involves many technical details and ancillary investigations. Of these, selected pertinent issues include the properties, orientation and timing of the plasma guns and the convergence and interface development of the "pusher" plasma. Computer simulations of the target plasma's behavior under compression and the convergence and mixing of the gun plasma are under investigation. This work is to focus on the gun characterization and development as it relates to plasma initiation and repeatability.

  16. ITER Fusion Energy

    ScienceCinema

    Dr. Norbert Holtkamp

    2010-01-08

    ITER (in Latin ?the way?) is designed to demonstrate the scientific and technological feasibility of fusion energy. Fusion is the process by which two light atomic nuclei combine to form a heavier over one and thus release energy. In the fusion process two isotopes of hydrogen ? deuterium and tritium ? fuse together to form a helium atom and a neutron. Thus fusion could provide large scale energy production without greenhouse effects; essentially limitless fuel would be available all over the world. The principal goals of ITER are to generate 500 megawatts of fusion power for periods of 300 to 500 seconds with a fusion power multiplication factor, Q, of at least 10. Q ? 10 (input power 50 MW / output power 500 MW). The ITER Organization was officially established in Cadarache, France, on 24 October 2007. The seven members engaged in the project ? China, the European Union, India, Japan, Korea, Russia and the United States ? represent more than half the world?s population. The costs for ITER are shared by the seven members. The cost for the construction will be approximately 5.5 billion Euros, a similar amount is foreseen for the twenty-year phase of operation and the subsequent decommissioning.

  17. Investigation of condensed matter fusion

    SciTech Connect

    Jones, S.E.; Berrondo, M.; Czirr, J.B.; Decker, D.L.; Harrison, K.; Jensen, G.L.; Palmer, E.P.; Rees, L.B.; Taylor, S.; Vanfleet, H.B.; Wang, J.C.; Bennion, D.N.; Harb, J.N.; Pitt, W.G.; Thorne, J.M.; Anderson, A.N.; McMurtry, G.; Murphy, N.; Goff, F.E.

    1990-12-01

    Work on muon-catalyzed fusion led to research on a possible new type of fusion occurring in hydrogen isotopes embedded in metal lattices. While the nuclear-product yields observed to date are so small as to require careful further checking, rates observed over short times appear sufficiently large to suggest that significant neutrons and triton yields could be realized -- if the process could be understood and controlled. During 1990, we have developed two charged-particle detection systems and three new neutron detectors. A segmented, high-efficiency neutron counter was taken into 600 m underground in a mine in Colorado for studies out of the cosmic-ray background. Significant neutron emissions were observed in this environment in both deuterium-gas-loaded metals and in electrolytic cells, confirming our earlier observations.

  18. Ceramics for fusion applications

    SciTech Connect

    Clinard, F.W. Jr.

    1986-01-01

    Ceramics are required for a variety of uses in both near-term fusion devices and in commercial powerplants. These materials must retain adequate structural and electrical properties under conditions of neutron, particle, and ionizing irradiation; thermal and applied stresses; and physical and chemical sputtering. Ceramics such as Al/sub 2/O/sub 3/, MgAl/sub 2/O/sub 4/, BeO, Si/sub 3/N/sub 4/ and SiC are currently under study for fusion applications, and results to date show widely-varying response to the fusion environment. Materials can be identified today which will meet initial operating requirements, but improvements in physical properties are needed to achieve satisfactory lifetimes for critical applications.

  19. US/Japan collaborative program on fusion reactor materials: Summary of the tenth DOE/JAERI Annex I technical progress meeting on neutron irradiation effects in first wall and blanket structural materials

    SciTech Connect

    Rowcliffe, A.F.

    1989-03-17

    This meeting was held at Oak Ridge National Laboratory on March 17, 1989, to review the technical progress on the collaborative DOE/JAERI program on fusion reactor materials. The purpose of the program is to determine the effects of neutron irradiation on the mechanical behavior and dimensional stability of US and Japanese austenitic stainless steels. Phase I of the program focused on the effects of high concentrations of helium on the tensile, fatigue, and swelling properties of both US and Japanese alloys. In Phase II of the program, spectral and isotropic tailoring techniques are fully utilized to reproduce the helium:dpa ratio typical of the fusion environment. The Phase II program hinges on a restart of the High Flux Isotope Reactor by mid-1989. Eight target position capsules and two RB* position capsules have been assembled. The target capsule experiments will address issues relating to the performance of austenitic steels at high damage levels including an assessment of the performance of a variety of weld materials. The RB* capsules will provide a unique and important set of data on the behavior of austenitic steels irradiated under conditions which reproduce the damage rate, dose, temperature, and helium generation rate expected in the first wall and blanket structure of the International Thermonuclear Experimental Reactor.

  20. Neutron and Gamma-ray Measurements

    NASA Astrophysics Data System (ADS)

    Krasilnikov, Anatoly V.; Sasao, Mamiko; Kaschuck, Yuri A.; Kiptily, Vasily G.; Nishitani, Takeo; Popovichev, Sergey V.; Bertalot, Luciano

    2008-03-01

    Due to high neutron and gamma-ray yields and large size plasmas many future fusion reactor plasma parameters such as fusion power, fusion power density, ion temperature, fuel mixture, fast ion energy and spatial distributions can be well measured by various fusion product diagnostics. Neutron diagnostics provide information on fusion reaction rate, which indicates how close is the plasma to the ultimate goal of nuclear fusion and fusion power distribution in the plasma core, which is crucial for optimization of plasma breakeven and burn. Depending on the plasma conditions neutron and gamma-ray diagnostics can provide important information, namely about dynamics of fast ion energy and spatial distributions during neutral beam injection, ion cyclotron heating and generated by fast ions MHD instabilities. The influence of the fast particle population on the 2-D neutron source profile was clearly demonstrated in JET experiments. 2-D neutron and gamma-ray source measurements could be important for driven plasma heating profile optimization in fusion reactors. To meat the measurement requirements in ITER the planned set of neutron and gamma ray diagnostics includes radial and vertical neutron and gamma cameras, neutron flux monitors, neutron activation systems and neutron spectrometers. The necessity of using massive radiation shielding strongly influences the diagnostic designs in fusion reactor, determines angular fields of view of neutron and gamma-ray cameras and spectrometers and gives rise to unavoidable difficulties in the absolute calibration. The development, testing in existing tokomaks and a possible engineering integration of neuron and gamma-ray diagnostic systems into ITER are presented.

  1. Fusion breeder: its potential role and prospects

    SciTech Connect

    Lee, J.D.

    1981-01-01

    The fusion breeder is a concept that utilizes 14 MeV neutrons from D + T ..-->.. n(14.1 MeV) + ..cap alpha..(3.5 MeV) fusion reactions to produce more fuel than the tritium (T) needed to sustain the fusion process. This excess fuel production capacity is used to produce fissile material (Pu-239 or U-233) for subsequent use in fission reactors. We are concentrating on a class of blankets we call fission suppressed. The blanket is the region surrounding the fusion plasma in which fusion neutrons interact to produce fuel and heat. The fission-suppressed blanket uses non-fission reactions (mainly (n,2n) or (n,n't)) to generate excess neutrons for the production of net fuel. This is in contrast to the fast fission class of blankets which use (n,fiss) reactions to generate excess neutrons. Fusion reactors with fast fission blankets are commony known as fusion-fission hybrids because they combine fusion and fission in the same device.

  2. Fluidized wall for protecting fusion chamber walls

    SciTech Connect

    Maniscalco, J.A.; Meier, W.R.

    1982-08-17

    Apparatus for protecting the inner wall of a fusion chamber from microexplosion debris, x-rays, neutrons, etc. Produced by deuterium-tritium (DT) targets imploded within the fusion chamber. The apparatus utilizes a fluidized wall similar to a waterfall comprising liquid lithium or solid pellets of lithiumceramic, the waterfall forming a blanket to prevent damage of the structural materials of the chamber.

  3. A novel method for modeling the neutron time of flight (nTOF) detector response in current mode to inertial confinement fusion experiments.

    SciTech Connect

    Nelson, Alan J.; Cooper, Gary Wayne; Ruiz, Carlos L.; Chandler, Gordon Andrew; Fehl, David Lee; Hahn, Kelly Denise; Leeper, Ramon Joe; Smelser, Ruth Marie; Torres, Jose A.

    2013-09-01

    There are several machines in this country that produce short bursts of neutrons for various applications. A few examples are the Zmachine, operated by Sandia National Laboratories in Albuquerque, NM; the OMEGA Laser Facility at the University of Rochester in Rochester, NY; and the National Ignition Facility (NIF) operated by the Department of Energy at Lawrence Livermore National Laboratory in Livermore, California. They all incorporate neutron time of flight (nTOF) detectors which measure neutron yield, and the shapes of the waveforms from these detectors contain germane information about the plasma conditions that produce the neutrons. However, the signals can also be %E2%80%9Cclouded%E2%80%9D by a certain fraction of neutrons that scatter off structural components and also arrive at the detectors, thereby making analysis of the plasma conditions more difficult. These detectors operate in current mode - i.e., they have no discrimination, and all the photomultiplier anode charges are integrated rather than counted individually as they are in single event counting. Up to now, there has not been a method for modeling an nTOF detector operating in current mode. MCNPPoliMiwas developed in 2002 to simulate neutron and gammaray detection in a plastic scintillator, which produces a collision data output table about each neutron and photon interaction occurring within the scintillator; however, the postprocessing code which accompanies MCNPPoliMi assumes a detector operating in singleevent counting mode and not current mode. Therefore, the idea for this work had been born: could a new postprocessing code be written to simulate an nTOF detector operating in current mode? And if so, could this process be used to address such issues as the impact of neutron scattering on the primary signal? Also, could it possibly even identify sources of scattering (i.e., structural materials) that

  4. Accelerators for Fusion Materials Testing

    NASA Astrophysics Data System (ADS)

    Knaster, Juan; Okumura, Yoshikazu

    Fusion materials research is a worldwide endeavor as old as the parallel one working toward the long term stable confinement of ignited plasma. In a fusion reactor, the preservation of the required minimum thermomechanical properties of the in-vessel components exposed to the severe irradiation and heat flux conditions is an indispensable factor for safe operation; it is also an essential goal for the economic viability of fusion. Energy from fusion power will be extracted from the 14 MeV neutron freed as a product of the deuterium-tritium fusion reactions; thus, this kinetic energy must be absorbed and efficiently evacuated and electricity eventually generated by the conventional methods of a thermal power plant. Worldwide technological efforts to understand the degradation of materials exposed to 14 MeV neutron fluxes >1018 m-2s-1, as expected in future fusion power plants, have been intense over the last four decades. Existing neutron sources can reach suitable dpa (“displacement-per-atom”, the figure of merit to assess materials degradation from being exposed to neutron irradiation), but the differences in the neutron spectrum of fission reactors and spallation sources do not allow one to unravel the physics and to anticipate the degradation of materials exposed to fusion neutrons. Fusion irradiation conditions can be achieved through Li (d, xn) nuclear reactions with suitable deuteron beam current and energy, and an adequate flowing lithium screen. This idea triggered in the late 1970s at Los Alamos National Laboratory (LANL) a campaign working toward the feasibility of continuous wave (CW) high current linacs framed by the Fusion Materials Irradiation Test (FMIT) project. These efforts continued with the Low Energy Demonstrating Accelerator (LEDA) (a validating prototype of the canceled Accelerator Production of Tritium (APT) project), which was proposed in 2002 to the fusion community as a 6.7MeV, 100mA CW beam injector for a Li (d, xn) source to bridge

  5. Accelerators for Fusion Materials Testing

    NASA Astrophysics Data System (ADS)

    Knaster, Juan; Okumura, Yoshikazu

    Fusion materials research is a worldwide endeavor as old as the parallel one working toward the long term stable confinement of ignited plasma. In a fusion reactor, the preservation of the required minimum thermomechanical properties of the in-vessel components exposed to the severe irradiation and heat flux conditions is an indispensable factor for safe operation; it is also an essential goal for the economic viability of fusion. Energy from fusion power will be extracted from the 14 MeV neutron freed as a product of the deuterium-tritium fusion reactions; thus, this kinetic energy must be absorbed and efficiently evacuated and electricity eventually generated by the conventional methods of a thermal power plant. Worldwide technological efforts to understand the degradation of materials exposed to 14 MeV neutron fluxes > 1018 m-2s-1, as expected in future fusion power plants, have been intense over the last four decades. Existing neutron sources can reach suitable dpa ("displacement-per-atom", the figure of merit to assess materials degradation from being exposed to neutron irradiation), but the differences in the neutron spectrum of fission reactors and spallation sources do not allow one to unravel the physics and to anticipate the degradation of materials exposed to fusion neutrons. Fusion irradiation conditions can be achieved through Li (d, xn) nuclear reactions with suitable deuteron beam current and energy, and an adequate flowing lithium screen. This idea triggered in the late 1970s at Los Alamos National Laboratory (LANL) a campaign working toward the feasibility of continuous wave (CW) high current linacs framed by the Fusion Materials Irradiation Test (FMIT) project. These efforts continued with the Low Energy Demonstrating Accelerator (LEDA) (a validating prototype of the canceled Accelerator Production of Tritium (APT) project), which was proposed in 2002 to the fusion community as a 6.7MeV, 100mA CW beam injector for a Li (d, xn) source to bridge

  6. Implications of polarized DT plasmas for toroidal fusion reactors

    SciTech Connect

    Micklich, B.J.; Jassby, D.L.

    1983-05-01

    Spin polarization of the deuterons and tritons in a reacting plasma can result in an increase in the fusion reactivity and variation of the angular distribution of emission of the fusion neutrons. The increased fusion reactivity relaxes the confinement-temperature conditions for breakeven and ignition. We have determined the effect of varying the angular distribution of the fusion neutrons on the spatial distribution of fusion neturon current and flux at the first wall, on the global tritium breeding ratio, and on the first-wall radiation damage in low-aspect-ratio toroidal geometry.

  7. Technical issues for beryllium use in fusion blanket applications

    SciTech Connect

    McCarville, T.J.; Berwald, D.H.; Wolfer, W.; Fulton, F.J.; Lee, J.D.; Maninger, R.C.; Moir, R.W.; Beeston, J.M.; Miller, L.G.

    1985-01-01

    Beryllium is an excellent non-fissioning neutron multiplier for fusion breeder and fusion electric blanket applications. This report is a compilation of information related to the use of beryllium with primary emphasis on the fusion breeder application. Beryllium resources, production, fabrication, properties, radiation damage and activation are discussed. A new theoretical model for beryllium swelling is presented.

  8. Fusion energy calorimeter for the tokamak fusion test reactor

    SciTech Connect

    Jassby, D.L.; Imel, G.R.

    1981-04-01

    One and two-dimensional neutronic analyses treating the transport and scattering of neutrons and the production and transport of gamma rays in the TFTR demonstrate that the fusion energy production in a D-T pulse in the TFTR can be determined with an uncertainty of +- 15% or less, simply by integrating the measured profile of temperature increase along the central radial axis of a large hydrocarbon moderator that fills the bay between adjacent toroidal-field coils, just outside the vacuum vessel. Limitations in thermopile temperature measurements dictate a minimum fusion-neutron fluence at the vacuum vessel of the order of 10/sup 12/ n/cm/sup 2/ per pulse (a source strength of 10/sup 18/ n/pulse in TFTR), in order that this simple calorimeter can provide useful accuracy.

  9. Systematic analysis of advanced fusion fuel in inertial fusion energy

    NASA Astrophysics Data System (ADS)

    Velarde, G.; Eliezer, S.; Henis, Z.; Piera, M.; Martinez-Val, J. M.

    1997-04-01

    Aneutronic fusion reactions can be considered as the cleanest way to exploit nuclear energy. However, these reactions present in general two main drawbacks.—very high temperatures are needed to reach relevant values of their cross sections—Moderate (and even low) energy yield per reaction. This value is still lower if measured in relation to the Z number of the reacting particles. It is already known that bremsstrahlung overruns the plasma reheating by fusion born charged-particles in most of the advanced fuels. This is for instance the case for proton-boron-11 fusion in a stoichiometric plasma and is also so in lithium isotopes fusion reactions. In this paper, the use of deuterium-tritium seeding is suggested to allow to reach higher burnup fractions of advanced fuels, starting at a lower ignition temperature. Of course, neutron production increases as DT contents does. Nevertheless, the ratio of neutron production to energy generation is much lower in DT-advanced fuel mixtures than in pure DT plasmas. One of the main findings of this work is that some natural resources (as D and Li-7) can be burned-up in a catalytic regime for tritium. In this case, neither external tritium breeding nor tritium storage are needed, because the tritium inventory after the fusion burst is the same as before it. The fusion reactor can thus operate on a pure recycling of a small tritium inventory.

  10. Ultrafast neutron detector

    DOEpatents

    Wang, Ching L.

    1987-01-01

    The invention comprises a neutron detector (50) of very high temporal resolution that is particularly well suited for measuring the fusion reaction neutrons produced by laser-driven inertial confinement fusion targets. The detector comprises a biased two-conductor traveling-wave transmission line (54, 56, 58, 68) having a uranium cathode (60) and a phosphor anode (62) as respective parts of the two conductors. A charge line and Auston switch assembly (70, 72, 74) launch an electric field pulse along the transmission line. Neutrons striking the uranium cathode at a location where the field pulse is passing, are enabled to strike the phosphor anode and produce light that is recorded on photographic film (64). The transmission line may be variously configured to achieve specific experimental goals.

  11. Analysis of fusion neutron spectra and the importance of 6 dimensional effects in ``high-foot'' implosions at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Hartouni, Edward P.; Caggiano, Joseph A.; Callahan, Debbie; Casey, Daniel T.; Cerjan, Charlie; Clarke, Dan; Doeppner, Tilo; Eckart, Mark J.; Field, John E.; Frenje, Johan; Gatu-Johnson, Maria; Grim, Gary P.; Hatarik, Robert; Hurricane, Omar A.; Kilkenny, Joseph; Knauer, James; Ma, Tammy; Mannion, Owen M.; Munro, David M.; Sayre, Daniel B.; Spears, Brian K.; Yeamans, Charles B.

    2015-11-01

    High convergence implosions introduce a number of factors having significant effects on the analysis of high precision reactant neutron time-of-flight (TOF) spectra at the NIF. Low mode perturbations of both the spatial and velocity distributions of the hot-spot and the cold-fuel are measurable in this data set. We report on the analysis performed to date including the line-of-sight (LOS) variation of ``standard observables'' (e.g. the yield and ion temperature) as well as new analysis extracting the bulk hot-spot velocity and the hot-spot velocity variance. These observations indicate that the assumption of isotropy of reactant neutrons can no longer provide an accurate description of the data. Preliminary analysis of the NIF ``high foot'' campaign data will be reported. We will describe the direction of future nuclear diagnostic techniques. Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  12. The accomplishment of the Engineering Design Activities of IFMIF/EVEDA: The European-Japanese project towards a Li(d,xn) fusion relevant neutron source

    NASA Astrophysics Data System (ADS)

    Knaster, J.; Ibarra, A.; Abal, J.; Abou-Sena, A.; Arbeiter, F.; Arranz, F.; Arroyo, J. M.; Bargallo, E.; Beauvais, P.-Y.; Bernardi, D.; Casal, N.; Carmona, J. M.; Chauvin, N.; Comunian, M.; Delferriere, O.; Delgado, A.; Diaz-Arocas, P.; Fischer, U.; Frisoni, M.; Garcia, A.; Garin, P.; Gobin, R.; Gouat, P.; Groeschel, F.; Heidinger, R.; Ida, M.; Kondo, K.; Kikuchi, T.; Kubo, T.; Le Tonqueze, Y.; Leysen, W.; Mas, A.; Massaut, V.; Matsumoto, H.; Micciche, G.; Mittwollen, M.; Mora, J. C.; Mota, F.; Nghiem, P. A. P.; Nitti, F.; Nishiyama, K.; Ogando, F.; O'hira, S.; Oliver, C.; Orsini, F.; Perez, D.; Perez, M.; Pinna, T.; Pisent, A.; Podadera, I.; Porfiri, M.; Pruneri, G.; Queral, V.; Rapisarda, D.; Roman, R.; Shingala, M.; Soldaini, M.; Sugimoto, M.; Theile, J.; Tian, K.; Umeno, H.; Uriot, D.; Wakai, E.; Watanabe, K.; Weber, M.; Yamamoto, M.; Yokomine, T.

    2015-08-01

    The International Fusion Materials Irradiation Facility (IFMIF), presently in its Engineering Validation and Engineering Design Activities (EVEDA) phase under the frame of the Broader Approach Agreement between Europe and Japan, accomplished in summer 2013, on schedule, its EDA phase with the release of the engineering design report of the IFMIF plant, which is here described. Many improvements of the design from former phases are implemented, particularly a reduction of beam losses and operational costs thanks to the superconducting accelerator concept, the re-location of the quench tank outside the test cell (TC) with a reduction of tritium inventory and a simplification on its replacement in case of failure, the separation of the irradiation modules from the shielding block gaining irradiation flexibility and enhancement of the remote handling equipment reliability and cost reduction, and the water cooling of the liner and biological shielding of the TC, enhancing the efficiency and economy of the related sub-systems. In addition, the maintenance strategy has been modified to allow a shorter yearly stop of the irradiation operations and a more careful management of the irradiated samples. The design of the IFMIF plant is intimately linked with the EVA phase carried out since the entry into force of IFMIF/EVEDA in June 2007. These last activities and their on-going accomplishment have been thoroughly described elsewhere (Knaster J et al [19]), which, combined with the present paper, allows a clear understanding of the maturity of the European-Japanese international efforts. This released IFMIF Intermediate Engineering Design Report (IIEDR), which could be complemented if required concurrently with the outcome of the on-going EVA, will allow decision making on its construction and/or serve as the basis for the definition of the next step, aligned with the evolving needs of our fusion community.

  13. Fusion Implementation

    SciTech Connect

    J.A. Schmidt

    2002-02-20

    If a fusion DEMO reactor can be brought into operation during the first half of this century, fusion power production can have a significant impact on carbon dioxide production during the latter half of the century. An assessment of fusion implementation scenarios shows that the resource demands and waste production associated with these scenarios are manageable factors. If fusion is implemented during the latter half of this century it will be one element of a portfolio of (hopefully) carbon dioxide limiting sources of electrical power. It is time to assess the regional implications of fusion power implementation. An important attribute of fusion power is the wide range of possible regions of the country, or countries in the world, where power plants can be located. Unlike most renewable energy options, fusion energy will function within a local distribution system and not require costly, and difficult, long distance transmission systems. For example, the East Coast of the United States is a prime candidate for fusion power deployment by virtue of its distance from renewable energy sources. As fossil fuels become less and less available as an energy option, the transmission of energy across bodies of water will become very expensive. On a global scale, fusion power will be particularly attractive for regions separated from sources of renewable energy by oceans.

  14. Progress in bright ion beams for industry, medicine and fusion at LBNL

    SciTech Connect

    Kwan, Joe W.

    2002-05-31

    Recent progresses at LBNL in developing ion beams for industry, radiation therapy and inertial fusion applications were discussed. The highlights include ion beam lithography, boron neutron capture therapy (BNCT), and heavy ion fusion (HIF) drivers using multiple linacs.

  15. Fusion power and the environment.

    PubMed

    Flakus, F N

    1975-09-01

    Fusion reactor design concepts are being pursued in the research and development programme of various countries and studies are being undertaken on the possible environmental impact of fusion power reactors. The paper reviews and summarizes the results of such environmental impact studies. Attention is restricted to deuterium-tritium fusion reactor concepts and a preliminary environmental impact assessment is presented. The possible inventory tritium and radioactive materials in the neutron-activated blanket structure of fusion power reactors is described and potential hazards posed by this radioactive materials inventory are discussed. Non-radiological implications and accident considerations are outlined. In conclusion, various areas still awaiting further investigation and research work are identified. The paper contains 8 tables and 50 references. PMID:1212270

  16. Fusion pumped light source

    DOEpatents

    Pappas, Daniel S.

    1989-01-01

    Apparatus is provided for generating energy in the form of light radiation. A fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The neutron flux is coupled directly with the lasing medium. The lasing medium includes a first component selected from Group O of the periodic table of the elements and having a high inelastic scattering cross section. Gamma radiation from the inelastic scattering reactions interacts with the first component to excite the first component, which decays by photon emission at a first output wavelength. The first output wavelength may be shifted to a second output wavelength using a second liquid component responsive to the first output wavelength. The light outputs may be converted to a coherent laser output by incorporating conventional optics adjacent the laser medium.

  17. Image fusion

    NASA Technical Reports Server (NTRS)

    Pavel, M.

    1993-01-01

    The topics covered include the following: a system overview of the basic components of a system designed to improve the ability of a pilot to fly through low-visibility conditions such as fog; the role of visual sciences; fusion issues; sensor characterization; sources of information; image processing; and image fusion.

  18. Diagnosing magnetized liner inertial fusion experiments on Za)

    NASA Astrophysics Data System (ADS)

    Hansen, S. B.; Gomez, M. R.; Sefkow, A. B.; Slutz, S. A.; Sinars, D. B.; Hahn, K. D.; Harding, E. C.; Knapp, P. F.; Schmit, P. F.; Awe, T. J.; McBride, R. D.; Jennings, C. A.; Geissel, M.; Harvey-Thompson, A. J.; Peterson, K. J.; Rovang, D. C.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Herrmann, M. C.; Hess, M. H.; Johns, O.; Lamppa, D. C.; Martin, M. R.; Porter, J. L.; Robertson, G. K.; Rochau, G. A.; Ruiz, C. L.; Savage, M. E.; Smith, I. C.; Stygar, W. A.; Vesey, R. A.; Blue, B. E.; Ryutov, D.; Schroen, D. G.; Tomlinson, K.

    2015-05-01

    Magnetized Liner Inertial Fusion experiments performed at Sandia's Z facility have demonstrated significant thermonuclear fusion neutron yields (˜1012 DD neutrons) from multi-keV deuterium plasmas inertially confined by slow (˜10 cm/μs), stable, cylindrical implosions. Effective magnetic confinement of charged fusion reactants and products is signaled by high secondary DT neutron yields above 1010. Analysis of extensive power, imaging, and spectroscopic x-ray measurements provides a detailed picture of ˜3 keV temperatures, 0.3 g/cm3 densities, gradients, and mix in the fuel and liner over the 1-2 ns stagnation duration.

  19. Diagnosing magnetized liner inertial fusion experiments on Z

    SciTech Connect

    Hansen, S. B. Gomez, M. R.; Sefkow, A. B.; Slutz, S. A.; Sinars, D. B.; Hahn, K. D.; Harding, E. C.; Knapp, P. F.; Schmit, P. F.; Awe, T. J.; McBride, R. D.; Jennings, C. A.; Geissel, M.; Harvey-Thompson, A. J.; Peterson, K. J.; Rovang, D. C.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Hess, M. H.; and others

    2015-05-15

    Magnetized Liner Inertial Fusion experiments performed at Sandia's Z facility have demonstrated significant thermonuclear fusion neutron yields (∼10{sup 12} DD neutrons) from multi-keV deuterium plasmas inertially confined by slow (∼10 cm/μs), stable, cylindrical implosions. Effective magnetic confinement of charged fusion reactants and products is signaled by high secondary DT neutron yields above 10{sup 10}. Analysis of extensive power, imaging, and spectroscopic x-ray measurements provides a detailed picture of ∼3 keV temperatures, 0.3 g/cm{sup 3} densities, gradients, and mix in the fuel and liner over the 1–2 ns stagnation duration.

  20. Diagnosing magnetized liner inertial fusion experiments on Z

    SciTech Connect

    Hansen, Stephanie B.; Gomez, Matthew R.; Sefkow, Adam B.; Slutz, Stephen A.; Sinars, Daniel Brian; Hahn, Kelly; Harding, Eric; Knapp, Patrick; Schmit, Paul; Awe, Thomas James; McBride, Ryan D.; Jennings, Christopher; Geissel, Matthias; Harvey-Thompson, Adam James; Peterson, K. J.; Rovang, Dean C.; Chandler, Gordon A.; Cooper, Gary Wayne; Cuneo, Michael Edward; Herrmann, Mark C.; Mark Harry Hess; Johns, Owen; Lamppa, Derek C.; Martin, Matthew; Porter, J. L.; Robertson, G. K.; Rochau, G. A.; Ruiz, C. L.; Savage, M. E.; Smith, I. C.; Stygar, W. A.; Vesey, R. A.; Blue, B. E.; Ryutov, D.; Schroen, Diana; Tomlinson, K.

    2015-05-14

    The Magnetized Liner Inertial Fusion experiments performed at Sandia's Z facility have demonstrated significant thermonuclear fusion neutron yields (~1012 DD neutrons) from multi-keV deuterium plasmasinertially confined by slow (~10 cm/μs), stable, cylindrical implosions. Moreover, effective magnetic confinement of charged fusion reactants and products is signaled by high secondary DT neutron yields above 1010. Further analysis of extensive power, imaging, and spectroscopicx-ray measurements provides a detailed picture of ~3 keV temperatures, 0.3 g/cm3 densities, gradients, and mix in the fuel and liner over the 1–2 ns stagnation duration.

  1. Diagnosing magnetized liner inertial fusion experiments on Z

    DOE PAGESBeta

    Hansen, Stephanie B.; Gomez, Matthew R.; Sefkow, Adam B.; Slutz, Stephen A.; Sinars, Daniel Brian; Hahn, Kelly; Harding, Eric; Knapp, Patrick; Schmit, Paul; Awe, Thomas James; et al

    2015-05-14

    The Magnetized Liner Inertial Fusion experiments performed at Sandia's Z facility have demonstrated significant thermonuclear fusion neutron yields (~1012 DD neutrons) from multi-keV deuterium plasmasinertially confined by slow (~10 cm/μs), stable, cylindrical implosions. Moreover, effective magnetic confinement of charged fusion reactants and products is signaled by high secondary DT neutron yields above 1010. Further analysis of extensive power, imaging, and spectroscopicx-ray measurements provides a detailed picture of ~3 keV temperatures, 0.3 g/cm3 densities, gradients, and mix in the fuel and liner over the 1–2 ns stagnation duration.

  2. Dynamical effects in fusion with exotic nuclei

    NASA Astrophysics Data System (ADS)

    Vo-Phuoc, K.; Simenel, C.; Simpson, E. C.

    2016-08-01

    Background: Reactions with stable beams have demonstrated strong interplay between nuclear structure and fusion. Exotic beam facilities open new perspectives to understand the impact of neutron skin, large isospin, and weak binding energies on fusion. Microscopic theories of fusion are required to guide future experiments. Purpose: To investigate new effects of exotic structures and dynamics in near-barrier fusion with exotic nuclei. Method: Microscopic approaches based on the Hartree-Fock (HF) mean-field theory are used for studying fusion barriers in -54Ca40+116Sn reactions for even isotopes. Bare potential barriers are obtained assuming frozen HF ground-state densities. Dynamical effects on the barrier are accounted for in time-dependent Hartree-Fock (TDHF) calculations of the collisions. Vibrational couplings are studied in the coupled-channel framework and near-barrier nucleon transfer is investigated with TDHF calculations. Results: The development of a neutron skin in exotic calcium isotopes strongly lowers the bare potential barrier. However, this static effect is not apparent when dynamical effects are included. On the contrary, a fusion hindrance is observed in TDHF calculations with the most neutron-rich calcium isotopes which cannot be explained by vibrational couplings. Transfer reactions are also important in these systems due to charge equilibration processes. Conclusions: Despite its impact on the bare potential, the neutron skin is not seen as playing an important role in the fusion dynamics. However, the charge transfer with exotic projectiles could lead to an increase of the Coulomb repulsion between the fragments, suppressing fusion. The effects of transfer and dissipative mechanisms on fusion with exotic nuclei deserve further studies.

  3. Can 250 fusions per muon be achieved

    SciTech Connect

    Jones, S.E.

    1987-01-01

    Nuclear fusion of hydrogen isotopes can be induced by negative muons ( ) in reactions such as: + d + t + n + . This reaction is analagous to the nuclear fusion reaction achieved in stars in which hydrogen isotopes (such as deuterium, d, and tritium, t) at very high temperatures first penetrate the Coulomb repulsive barrier and then fuse together to produce an alpha particle ( ) and a neutron (n), releasing energy. The muon in general reappears after inducing fusion so that the reaction can be repeated many (N) times. Thus, the muon may serve as an effective catalyst for nuclear fusion. Muon-catalozed fusion is unique in that it proceeds rapidly in deuterium-tritium mixtures at relatively cold temperatures, e.g., room temperature. The need for plasma temperatures to initiate fusion is overcome by the presence of the muon.

  4. Measurement of sub threshold resonance contributions to fusion reactions: the case of the 13C(α, n)16O astrophysical neutron source

    NASA Astrophysics Data System (ADS)

    La Cognata, M.; Spitaleri, C.; Trippella, O.; Kiss, G. G.; Rogachev, G. V.; Mukhamedzhanov, A. M.; Avila, M.; Guardo, G. L.; Koshchiy, E.; Kuchera, A.; Lamia, L.; Puglia, S. M. R.; Romano, S.; Santiago, D.; Spartà, R.

    2015-01-01

    The 13C(α, n)16O reaction is the neutron source for the main component of the s-process. It is is active inside the helium-burning shell of asymptotic giant branch stars, at temperatures ≲ 108 K. In this temperature region, corresponding to an energy interval of 140 - 230 keV, the 13C(α, n)16O cross section is dominated by the -3 keV sub-threshold resonance due to the 6.356 MeV level in 17O. Direct measurements could not establish its contribution owing to the Coulomb barrier between interacting nuclei, strongly reducing the cross section at astrophysical energies. Similarly, indirect measurements and extrapolations yielded inconsistent results, calling for further investigations. The Trojan Horse Method was applied to the 13C(6Li, n16O)d quasi-free reaction to access the low as well as the negative energy region of the 13C(α, n)16O reaction. By using the generalized R-matrix approach, the asymptotic normalization coefficient (C˜17O(1/2+)α13C)2 of the 6.356 MeV level was deduced. For the first time, the Trojan Horse Method and the asymptotic normalization coefficient were used in synergy. Our indirect approach lead to (C˜17O(1/2+)α13C)2 = 7.7-1.5+1.6 fm-1, slightly larger than the values in the literature, determining a 13C(α, n)16O reaction rate slightly larger than the one in the literature at temperatures lower than 108 K, with enhanced accuracy.

  5. Modulating the Neutron Flux from a Mirror Neutron Source

    SciTech Connect

    Ryutov, D D

    2011-09-01

    A 14-MeV neutron source based on a Gas-Dynamic Trap will provide a high flux of 14 MeV neutrons for fusion materials and sub-component testing. In addition to its main goal, the source has potential applications in condensed matter physics and biophysics. In this report, the author considers adding one more capability to the GDT-based neutron source, the modulation of the neutron flux with a desired frequency. The modulation may be an enabling tool for the assessment of the role of non-steady-state effects in fusion devices as well as for high-precision, low-signal basic science experiments favoring the use of the synchronous detection technique. A conclusion is drawn that modulation frequency of up to 1 kHz and modulation amplitude of a few percent is achievable. Limitations on the amplitude of modulations at higher frequencies are discussed.

  6. Cold Fusion Production and Decay of Neutron-Deficient Isotopes of Dubnium and Development of Extraction Systems for Group V Elements

    SciTech Connect

    Gates, Jacklyn M.

    2008-07-31

    Excitation functions for the 1n and 2n exit channels of the 208Pb(51V,xn)259-xDb reaction were measured. A maximum cross section of the 1n exit channel of 2070$+1100\\atop{-760}$ pb was measured at an excitation energy of 16.0 ± 1.8 MeV. For the 2n exit channel, a maximum cross section of 1660$+450\\atop{-370}$ pb was measured at 22.0 ± 1.8 MeV excitation energy. The 1n excitation function for the 209Bi(50Ti,n)258Db reaction was remeasured, resulting in a cross section of 5480$+1730\\atop{-1370}$ pb at an excitation energy of 16.0 ± 1.6 MeV. Differences in cross section maxima are discussed in terms of the fusion probability below the barrier. The extraction of niobium (Nb) and tantalum (Ta) from hydrochloric acid and mixed hydrochloric acid/lithium chloride media by bis(2-ethylhexyl) hydrogen phosphate (HDEHP) and bis(2-ethylhexyl) hydrogen phosphite (BEHP) was studied. The goal of the experiments was to find a system that demonstrates selectivity among the members of group five of the Periodic Table and is also suitable for the study of dubnium (Db, Z = 105). Experiments with niobium and tantalum were performed with carrier (10-6 M), carrier free (10-10 M) and trace (10-16 M) concentrations of metal using hydrochloric acid solution with concentrations ranging from 1 - 11 M. The extraction of niobium and tantalum from mixed hydrochloric acid/lithium chloride media by HDEHP and BEHP as a function of hydrogen ion (H+) concentration was also investigated. The data obtained are used as the basis to discuss the speciation of niobium and tantalum under the conditions studied and to evaluate possible extraction mechanisms. The 74Se(18O,p3n)88gNb excitation function was measured to determine the best energy for producing the 88Nb used in chemistry experiments. A maximum cross section of 495 +- 5 mb was observed at an 18O energy of 74.0 Me

  7. Measurements of double-differential cross sections of charged-particle emission reactions for several structural elements of fusion power reactors by 14.1-MeV incident neutrons

    SciTech Connect

    Kokooo; Murata, Isao; Takahashi, Akito

    1999-05-01

    A two-dimensional energy and time-of-flight charged-particle spectrometer has been developed and used to measure the double-differential cross-section (DDX) data of (n,xp) and (n,x{alpha}) reactions for several elements with 14.1-MeV incident neutrons at OKTAVIAN, the Intense 14-MeV Neutron Source Facility of Osaka University. The DDX data of the {sup 51}V(n, xp), {sup 51}V(n, x{alpha}), {sup nat}Fe(n, xp), {sup nat}Fe(n,x{alpha}), {sup 59}Co(n, xp), {sup 59}Co(n, x{alpha}), {sup nat}Ni(n, x{alpha}), {sup nat}Cu(n, x{alpha}), {sup 93}Nb(n, xp), {sup 93}Nb(n, x{alpha}), and {sup nat}Mo(n, xp) reactions are measured. The angle-integrated energy differential cross-section (EDX) data were deduced from the measured DDX data and compared with other experimental results [except for the {sup 59}Co(n, xp) reaction] and evaluated nuclear data of JENDL fusion file (JENDL-FF). A comparison was also done with the ENDF/B-VI for the total reaction cross sections of all measured reactions except for the {sup nat}Mo(n, xp) reaction and the EDX of the {sup nat}Ni(n, x{alpha}) and {sup nat}Cu(n, x{alpha}) reactions. The theoretical calculations were done by using the SINCROS-II code. The measured data agreed fairly well with other data for almost all the reactions. the JENDL-FF and SINCROS-II data underestimate the measured EDX data for the reactions of {sup 93}Nb(n, x{alpha}) and {sup nat}Mo(n, xp). For the {sup nat}Fe(n, xp), {sup nat}Fe(n, x{alpha}), {sup 59}Co(n, x{alpha}), and {sup nat}Ni(n, x{alpha}) reactions, smaller data are given than other data, i.e., other experimental data, JENDL-FF, and ENDF/B-VI. The SINCROS-II code can reproduce well for both the proton and alpha-particle emission cross-section values.

  8. Fusion Power.

    ERIC Educational Resources Information Center

    Dingee, David A.

    1979-01-01

    Discusses the extraordinary potential, the technical difficulties, and the financial problems that are associated with research and development of fusion power plants as a major source of energy. (GA)

  9. Seeking the Limits of Low-Temperature Nuclear Fusion: Sticking in Muon-Catalyzed Fusion, and Piezonuclear Fusion in Deuterium/condensed Matter Systems

    NASA Astrophysics Data System (ADS)

    Taylor, Stuart F.

    Studies seeking an upper limit of two types of low temperature nuclear fusion is presented. The upper limit for muon catalyzed fusion is generally considered to be the number of fusions per muon obtainable. The limiting factor has been found to be how often the muon remains bound to the alpha produced by the fusion, known as the "sticking fraction." Experiments directly measuring the sticking and determining the sticking using high tritium fractions are presented. In deuterium/condensed matter systems the question is nearly whether nuclear fusion proceeds at all. Experiments where neutrons around deuterided titanium and palladium are measured are presented.

  10. Cold fusion studies

    NASA Astrophysics Data System (ADS)

    Hembree, D. M.; Burchfield, L. A.; Fuller, E. L., Jr.; Perey, F. G.; Mamantov, G.

    1990-06-01

    A series of experiments designed to detect the by-products expected from deuterium fusion occurring in the palladium and titanium cathodes of heavy water, D2O, electrolysis cells is reported. The primary purpose of this account is to outline the integrated experimental design developed to test the cold fusion hypothesis and to report preliminary results that support continuing the investigation. Apparent positive indicators of deuterium fusion were observed, but could not be repeated or proved to originate from the electrochemical cells. In one instance, two large increases in the neutron count rate, the largest of which exceeded the background by 27 standard deviations, were observed. In a separate experiment, one of the calorimetry cells appeared to be producing approximately 18 percent more power that the input value, but thermistor failure prevented an accurate recording of the event as a function of time. In general, the tritium levels in most cells followed the slow enrichment expected from the electrolysis of D2O containing a small amount of tritium. However, after 576 hours of electrolysis, one cell developed a tritium concentration approximately seven times greater than expected level.

  11. Ch. 37, Inertial Fusion Energy Technology

    SciTech Connect

    Moses, E

    2010-06-09

    hydrogen (deuterium and tritium), are derived from water and the metal lithium, a relatively abundant resource. The fuels are virtually inexhaustible and they are available worldwide. Deuterium from one gallon of seawater would provide the equivalent energy of 300 gallons of gasoline, or over a half ton of coal. This energy is released when deuterium and tritium nuclei are fused together to form a helium nucleus and a neutron. The neutron is used to breed tritium from lithium. The energy released is carried by the helium nucleus (3.5 MeV) and the neutron (14 MeV). The energetic helium nucleus heats the fuel, helping to sustain the fusion reaction. Once the helium cools, it is collected and becomes a useful byproduct. A fusion power plant would produce no climate-changing gases.

  12. Fluidized wall for protecting fusion chamber walls

    SciTech Connect

    Maniscalco, James A.; Meier, Wayne R.

    1982-01-01

    Apparatus for protecting the inner wall of a fusion chamber from microexplosion debris, x-rays, neutrons, etc. produced by deuterium-tritium (DT) targets imploded within the fusion chamber. The apparatus utilizes a fluidized wall similar to a waterfall comprising liquid lithium or solid pellets of lithium-ceramic, the waterfall forming a blanket to prevent damage of the structural materials of the chamber.

  13. Control of a laser inertial confinement fusion-fission power plant

    DOEpatents

    Moses, Edward I.; Latkowski, Jeffery F.; Kramer, Kevin J.

    2015-10-27

    A laser inertial-confinement fusion-fission energy power plant is described. The fusion-fission hybrid system uses inertial confinement fusion to produce neutrons from a fusion reaction of deuterium and tritium. The fusion neutrons drive a sub-critical blanket of fissile or fertile fuel. A coolant circulated through the fuel extracts heat from the fuel that is used to generate electricity. The inertial confinement fusion reaction can be implemented using central hot spot or fast ignition fusion, and direct or indirect drive. The fusion neutrons result in ultra-deep burn-up of the fuel in the fission blanket, thus enabling the burning of nuclear waste. Fuels include depleted uranium, natural uranium, enriched uranium, spent nuclear fuel, thorium, and weapons grade plutonium. LIFE engines can meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the highly undesirable stockpiles of depleted uranium, spent nuclear fuel and excess weapons materials.

  14. Enhanced subbarrier fusion for proton halo nuclei

    NASA Astrophysics Data System (ADS)

    Kumar, Raj; Lay, J. A.; Vitturi, A.

    2014-02-01

    In this Brief Report we use a simple model to describe the dynamical effects of break-up processes in the subbarrier fusion involving weakly bound nuclei. We model two similar cases involving either a neutron or a proton halo nucleus, both schematically coupled to the break-up channels. We find that the decrease of the Coulomb barrier in the proton break-up channel leads, ceteris paribus, to a larger enhancement of the subbarrier fusion probabilities with respect to the neutron halo case.

  15. (Meeting on fusion reactor materials)

    SciTech Connect

    Jones, R.H. ); Klueh, R.L.; Rowcliffe, A.F.; Wiffen, F.W. ); Loomis, B.A. )

    1990-11-01

    During his visit to the KfK, Karlsruhe, F. W. Wiffen attended the IEA 12th Working Group Meeting on Fusion Reactor Materials. Plans were made for a low-activation materials workshop at Culham, UK, for April 1991, a data base workshop in Europe for June 1991, and a molecular dynamics workshop in the United States in 1991. At the 11th IEA Executive Committee on Fusion Materials, discussions centered on the recent FPAC and Colombo panel review in the United States and EC, respectively. The Committee also reviewed recent progress toward a neutron source in the United States (CWDD) and in Japan (ESNIT). A meeting with D. R. Harries (consultant to J. Darvas) yielded a useful overview of the EC technology program for fusion. Of particular interest to the US program is a strong effort on a conventional ferritic/martensitic steel for fist wall/blanket operation beyond NET/ITER.

  16. Neutronic reactor

    DOEpatents

    Wende, Charles W. J.; Babcock, Dale F.; Menegus, Robert L.

    1983-01-01

    A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.

  17. The Neutron Imaging System Fielded at the National Ignition Facility

    SciTech Connect

    Fittinghoff, D N; Atkinson, D P; Bower, D E; Drury, O B; Dzenitis, J M; Felker, B; Frank, M; Liddick, S N; Moran, M J; Roberson, G P; Weiss, P B; Grim, G P; Aragonez, R J; Archuleta, T N; Batha, S H; Clark, D D; Clark, D J; Danly, C R; Day, R D; Fatherley, V E; Finch, J P; Garcia, F P; Gallegos, R A; Guler, N; Hsu, A H; Jaramillo, S A; Loomis, E N; Mares, D; Martinson, D D; Merrill, F E; Morgan, G L; Munson, C; Murphy, T J; Oertel, J A; Polk, P J; Schmidt, D W; Tregillis, I L; Valdez, A C; Volegov, P L; Wang, T F; Wilde, C H; Wilke, M D; Wilson, D C; Buckles, R A; Cradick, J R; Kaufman, M I; Lutz, S S; Malone, R M; Traille, A

    2011-10-24

    We have fielded a neutron imaging system at the National Ignition Facility to collect images of fusion neutrons produced in the implosion of inertial confinement fusion experiments and scattered neutrons from (n, n') reactions of the source neutrons in the surrounding dense material. A description of the neutron imaging system will be presented, including the pinhole array aperture, the line-of-sight collimation, the scintillator-based detection system and the alignment systems and methods. Discussion of the alignment and resolution of the system will be presented. We will also discuss future improvements to the system hardware.

  18. The neutron imaging system fielded at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Fittinghoff, D. N.; Atkinson, D. P.; Bower, D. E.; Drury, O. B.; Dzenitis, J. M.; Frank, M.; Liddick, S. N.; Moran, M. J.; Roberson, G. P.; Weiss, P. B.; Grim, G. P.; Aragonez, R. J.; Archuleta, T. N.; Batha, S. H.; Clark, D. D.; Clark, D. J.; Danly, C. R.; Day, R. D.; Fatherley, V. E.; Finch, J. P.; Garcia, F. P.; Gallegos, R. A.; Guler, N.; Hsu, A. H.; Jaramillo, S. A.; Loomis, E. N.; Mares, D.; Martinson, D. D.; Merrill, F. E.; Morgan, G. L.; Munson, C.; Murphy, T. J.; Oertel, J. A.; Polk, P. J.; Schmidt, D. W.; Tregillis, I. L.; Valdez, A. C.; Volegov, P. L.; Wang, T. F.; Wilde, C. H.; Wilke, M. D.; Wilson, D. C.; Buckles, R. A.; Cradick, J. R.; Kaufman, M. I.; Lutz, S. S.; Malone, R. M.; Traille, A.

    2013-11-01

    We have fielded a neutron imaging system at the National Ignition Facility to collect images of fusion neutrons produced in the implosion of inertial confinement fusion experiments and scattered neutrons from (n, n') reactions of the source neutrons in the surrounding dense material. A description of the neutron imaging system is presented, including the pinhole array aperture, the line-of-sight collimation, the scintillator-based detection system and the alignment systems and methods. Discussion of the alignment and resolution of the system is presented. We also discuss future improvements to the system hardware.

  19. Observed Multi-Decade DD and DT Z-Pinch Fusion Rate Scaling in 5 Dense Plasma Focus Fusion Machines

    SciTech Connect

    Hagen, E. C.; Lowe, D. R.; O'Brien, R.; Meehan, B. T.

    2013-06-18

    Dense Plasma Focus (DPF) machines are in use worldwide or a wide variety of applications; one of these is to produce intense, short bursts of fusion via r-Z pinch heating and compression of a working gas. We have designed and constructed a series of these, ranging from portable to a maximum energy storage capacity of 2 MJ. Fusion rates from 5 DPF pulsed fusion generators have been measured in a single laboratory using calibrated activation detectors. Measured rates range from ~ 1015 to more than 1019 fusions per second have been measured. Fusion rates from the intense short (20 – 50 ns) periods of production were inferred from measurement of neutron production using both calibrated activation detectors and scintillator-PMT neutron time of flight (NTOF) detectors. The NTOF detectors are arranged to measure neutrons versus time over flight paths of 30 Meters. Fusion rate scaling versus energy and current will be discussed. Data showing observed fusion cutoff at D-D fusion yield levels of approximately 1*1012, and corresponding tube currents of ~ 3 MA will be shown. Energy asymmetry of product neutrons will also be discussed. Data from the NTOF lines of sight have been used to measure energy asymmetries of the fusion neutrons. From this, center of mass energies for the D(d,n)3He reaction are inferred. A novel re-entrant chamber that allows extremely high single pulse neutron doses (> 109 neutrons/cm2 in 50 ns) to be supplied to samples will be described. Machine characteristics and detector types will be discussed.

  20. Neutron and Gamma-Ray Kerma Factors Based on LLNL Nuclear Data Files.

    1991-07-08

    Version 00 Kerma factors are used extensively in biomedical applications. Specifically, neutron kerma factors are used in determining heating in materials of interest from neutron-induced reactions in fission or fusion power applications.

  1. RTNS-II fusion materials irradiation facility

    SciTech Connect

    Heikkinen, D.W.; Tuckerman, D.B.; Davis, J.C.; Massoletti, D.J.; Short, D.W.

    1986-01-01

    The Rotating Target Neutron Source (RTNS-II) facility provides an intense source of 14-MeV neutrons for the fusion energy programs of Japan and the United States. Each of the two identical accelerator-based neutron sources is capable of providing source strengths in excess of 3 x 10/sup 13/ n/s using deuteron beam currents up to 150 mA. The present status of the facility, as well as the various upgrade options, will be described in detail.

  2. Fusion in Magnetically Compressed Targets

    NASA Astrophysics Data System (ADS)

    Mokhov, V. N.

    2004-11-01

    A comparative analysis is presented of the positive and negative features of systems using magnetic compression of the thermonuclear fusion target (MAGO/MTF) aimed at solving the controlled thermonuclear fusion (CTF) problem. The niche for the MAGO/MTF system, among the other CTF systems, in the parameter space of the energy delivered to the target, and its input time to the target, is shown. This approach was investigated at RFNC-VNIIEF for more than 15 years using the unique technique of applying explosive magnetic generators (EMG) as the energy source to preheat fusion plasma, and accelerate a liner to compress the preheated fusion plasma to the parameters required for ignition. EMG based systems produce already fusion neutrons, and their relatively low cost and record energy yield enable full scale experiments to study the possibility of achieving ignition threshold without constructing expensive stationary installations. A short review of the milestone results on the road to solving the CTF problem in the MAGO/MTF system is given.

  3. Neutron dosimetry for the Lithium-Blanket-Module program

    SciTech Connect

    Harker, Y.D.; Tsang, F.Y.; Caffrey, A.J.; Homeyer, W.G.; Engholm, B.A.; Schultz, E.K.

    1982-01-01

    The Lithium Blanket Module (LBM) program is a first-of-a-kind neutronics experiment involving a prototypical fusion reactor blanket module with a distributed neutron source from the plasma of the Tokamak fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory. The objectives of the LBM program are: (1) to test the capabilities of neutron transport codes when applied to prototypical fusion reactor blanket conditions, and (2) to obtain tritium breeding and power production performance data on a typical design concept of a fusion-reactor blanket. This paper addresses the issues relative to the measurement of neutron fields in the LBM, presents the results of preliminary design studies concerning neutron measurements and also presents the results of blanket mockup experiments performed at the Idaho National Engineering Laboratory.

  4. Neutron dosimetry for the TFTR Lithium-Blanket-Module program

    SciTech Connect

    Harker, Y.D.; Tsang, F.Y.; Caffrey, A.J.; Homeyer, W.G.; Engholm, B.A.

    1981-01-01

    The Tokamak Fusion Test Reactor (TFTR) Lithium Blanket Module (LBM) program is a first-of-a-kind neutronics experiment involving a prototypical fusion reactor blanket module with a distributed neutron source from the plasma of the TFTR at Princeton Plasma Physics Laboratory. The objectives of the LBM program are: (1) to test the capabilities of neutron transport codes when applied to fusion test reactor blanket conditions, and (2) to obtain tritium breeding performance data on a typical design concept of a fusion-reactor blanket. This paper addresses the issues relative to the measurement of neutron fields in the LBM, presents the results of preliminary design studies concerning neutron measurements and also presents the results of blanket mockup experiments performed at the Idaho National Engineering Laboratory (INEL).

  5. Fusion reaction of halo nuclei: A real-time wave-packet method for three-body tunneling dynamics

    SciTech Connect

    Nakatsukasa, Takashi; Yabana, Kazuhiro; Ito, Makoto; Ueda, Manabu

    2006-08-14

    We investigate fusion cross section of a nucleus with a valence neutron, using the time-dependent wave-packet method. For a stable projectile, in which the valence neutron is tightly bound ({epsilon}n < -3 MeV), the neutron could enhance the fusion probability when the matching condition of orbital energies are satisfied. In contrast, for a halo nucleus, in which the binding energy of the neutron is very small ({epsilon}n > -1 MeV), the fusion probability is hindered by the presence of the weakly bound neutron.

  6. Fusion Energy Division annual progress report, period ending December 31, 1988

    SciTech Connect

    Sheffield, J.; Berry, L.A.; Saltmarsh, M.J.

    1990-02-01

    This report discusses the following topics on fusion research: toroidal confinement activities; atomic physics and plasma diagnostics development; fusion theory and computation; plasma technology; superconducting magnet development; advanced systems program; fusion materials research; neutron transport; and management services, quality assurance, and safety.

  7. Issues in radioactive-waste management for fusion power

    SciTech Connect

    Maninger, R.C.; Dorn, D.W.

    1982-10-12

    Analysis of recent conceptual designs reveals that commercial fusion power systems will raise issues of occupational and public health and safety. This paper focuses on radioactive wastes from fusion reactor materials activated by neutrons. The analysis shows that different selections of materials and neutronic designs can make differences in orders-of-magnitude of the kinds and amounts of radioactivity to be expected. By careful and early evaluation of the impacts of the selections on waste management, designers can produce fusion power systems with radiation from waste well below today's limits for occupational and public health and safety.

  8. Cold fusion, Alchemist's dream

    SciTech Connect

    Clayton, E.D.

    1989-09-01

    In this report the following topics relating to cold fusion are discussed: muon catalysed cold fusion; piezonuclear fusion; sundry explanations pertaining to cold fusion; cosmic ray muon catalysed cold fusion; vibrational mechanisms in excited states of D{sub 2} molecules; barrier penetration probabilities within the hydrogenated metal lattice/piezonuclear fusion; branching ratios of D{sub 2} fusion at low energies; fusion of deuterons into {sup 4}He; secondary D+T fusion within the hydrogenated metal lattice; {sup 3}He to {sup 4}He ratio within the metal lattice; shock induced fusion; and anomalously high isotopic ratios of {sup 3}He/{sup 4}He.

  9. Characterization of pulsed (plasma focus) neutron source with image plate and application to neutron radiography

    SciTech Connect

    Andola, Sanjay; Niranjan, Ram; Rout, R. K.; Kaushik, T. C.; Gupta, S. C.; Shaikh, A. M.

    2013-02-05

    Plasma focus device of Mather type developed in house has been used first time for neutron radiography of different objects. The device gives (1.2{+-}0.3) Multiplication-Sign 10{sup 9} neutrons per pulse produced by D-D fusion reaction with a pulse width of 50{+-}5 ns. The method involves exposing sample to be radiographed to thermalized D-D neutrons and recording the image on Fuji-film BAS-ND image plates. The thermal neutron component of the moderated beam was estimated using two image plates: a conventional IP for X-rays and gamma rays, and an IP doped with Gd for detecting neutrons.

  10. Laser-cluster interaction for nuclear fusion

    NASA Astrophysics Data System (ADS)

    Kishimoto, Y.; Masaki, T.; Tajima, T.

    2002-04-01

    The key physical processes of laser-cluster interaction essential to understand and opimize the cluster fusion are investigated by using numerical simulation. By properly choosing the cluster size, spatial packing fraction, and laser field amplitude, cluster ions are efficiently accelerated in a controlled manner to high energy in such a way for the fusion cross-section to be maximized. The production of fusion neutrons is expected to be enhanced by taking into account the spatial propagation of explosion front toward the surrounding fuel cluster region. It is also found that the average ion energy can exceed the Coulomb energy stored originally in the cluster by obtaining the laser energy through ambi-polar electrostatic field around the vacuum-medium interface. Such high energy ion generation may enhance the neutron yield by introducing the solid fuel collar that surrounds the cluster medium. Although the area of neutron irradiation is tiny, the resultant neutron intensity with this method may rival that of the conventional much larger system of neutron sources. .

  11. Determination of neutron absorbed doses in lithium aluminates.

    PubMed

    Delfín Loya, A; Carrera, L M; Ureña-Núñez, F; Palacios, O; Bosch, P

    2003-04-01

    Lithium-based ceramics have been proposed as tritium breeders for fusion reactors. The lithium aluminate (gamma phase) seems to be thermally and structurally stable, the damages produced by neutron irradiation depend on the absorbed dose. A method based on the measurement of neutron activation of foils through neutron capture has been developed to obtain the neutron absorbed dose in lithium aluminates irradiated in the thermal column facility and in the fixed irradiation system of a Triga Mark III Nuclear Reactor. PMID:12672632

  12. Neutron emission from fission fragments during acceleration p

    SciTech Connect

    Hinde, D.J.; Charity, R.J.; Foote, G.S.; Leigh, J.R.; Newton, J.O.; Ogaza, S.; Chatterjee, A.

    1984-03-19

    Fission-neutron angular correlations following fusion of /sup 19/F and /sup 232/Th have been measured. Conventional analysis, based on the approximation that post-fission neutrons originate only from fully accelerated fission fragments, gives unexpectedly large numbers of ''prefission'' neutrons. Comparison with the considerably less fissile system /sup 200/Pb gives the first convincing evidence that this approach is inadequate. Consideration of neutron emission from the accelerating fragments gives results consistent with expectations.

  13. Observation of nuclear fusion driven by a pyroelectric crystal.

    PubMed

    Naranjo, B; Gimzewski, J K; Putterman, S

    2005-04-28

    While progress in fusion research continues with magnetic and inertial confinement, alternative approaches--such as Coulomb explosions of deuterium clusters and ultrafast laser-plasma interactions--also provide insight into basic processes and technological applications. However, attempts to produce fusion in a room temperature solid-state setting, including 'cold' fusion and 'bubble' fusion, have met with deep scepticism. Here we report that gently heating a pyroelectric crystal in a deuterated atmosphere can generate fusion under desktop conditions. The electrostatic field of the crystal is used to generate and accelerate a deuteron beam (> 100 keV and >4 nA), which, upon striking a deuterated target, produces a neutron flux over 400 times the background level. The presence of neutrons from the reaction D + D --> 3He (820 keV) + n (2.45 MeV) within the target is confirmed by pulse shape analysis and proton recoil spectroscopy. As further evidence for this fusion reaction, we use a novel time-of-flight technique to demonstrate the delayed coincidence between the outgoing alpha-particle and the neutron. Although the reported fusion is not useful in the power-producing sense, we anticipate that the system will find application as a simple palm-sized neutron generator. PMID:15858570

  14. Neutron measurements in ITER using the Radial Neutron Camera

    NASA Astrophysics Data System (ADS)

    Marocco, D.; Esposito, B.; Moro, F.

    2012-03-01

    The Radial Neutron Camera (RNC) is one of the key diagnostic systems of the ITER international fusion experiment. It is designed to measure the uncollided 14 MeV and 2.5 MeV neutrons from deuterium-tritium (DT) and deuterium-deuterium (DD) fusion reactions taking place in the ITER plasma through an array of 45 detectors positioned along collimated lines of sight. Scintillators and diamonds coupled to fast digital acquisition electronics are among the detectors presently considered for the RNC. The RNC will provide spatially resolved measurements of several plasma parameters needed for fusion power estimation, plasma control and plasma physics studies. The line-integrated RNC neutron fluxes are used to evaluate the local profile of the neutron emission (neutron emissivity, s-1m-3) and therefore the total neutron yield and the birth profile of the alpha particles. The temperature profile of the bulk ions can be derived from the Doppler broadened widths of the RNC line-integrated spectra, that also provide insight on the supra-thermal ions produced by the injection in the plasma of electromagnetic waves and neutral particles. The RNC emissivity and temperature measurements can be employed to estimate the composition of the ITER fuel, namely the ratio between the tritium and deuterium densities. Data processing techniques involving spatial inversion and spectra unfolding are necessary to deduce the profile quantities from the line-integrated RNC measurements. The expected performances of the RNC as a diagnostic for the neutron emissivity/ion temperature/fuel ratio profile (measurement range, time resolution, accuracy, precision) have been estimated by means of synthetic data simulating actual RNC measurements. The results of the simulations, together with an overall description of the diagnostic and of the measurement techniques, are presented.

  15. Compact neutron generator development at LBNL

    SciTech Connect

    Reijonen, J.; English, G.; Firestone, R.; Giquel, F.; King, M.; Leung, K-N.; Sun, M.

    2003-12-31

    A wide variety of applications ranging from medical (BNCT, Boron Neutron Capture Therapy) and basic science (neutron imaging, material studies) to homeland security (explosive detection and nuclear material non-proliferation) are in need of compact, high flux neutron generators. The Plasma and Ion Source Technology Group in the Lawrence Berkeley National Laboratory is developing various neutron generators for these applications. These neutron generators employed either the D-D or the D-T fusion reaction for the neutron production. The deuterium or deuterium-tritium gas mixture is ionized in an RF-driven plasma source. The ions are then accelerated to {approx}100 keV energy using high current, high voltage DC-power supply to a target where the 2.45 MeV (for D-D reaction) or 14 MeV (for the D-T reaction) neutrons are generated. The development of two different types of neutron tubes are being discussed in this presentation, namely compact, pulsed operation neutron generators and cw, high yield neutron generators. These generators are currently operating at D-D neutron yields of 108 n/s and 109 n/s respectively. A facility, incorporating the larger neutron generator, has been constructed for Prompt Gamma Activation Analysis (PGAA) and Neutron Activation Analysis (NAA) measurements.

  16. Autocatalytic fission-fusion microexplosions for nuclear pulse propulsion

    NASA Astrophysics Data System (ADS)

    Winterberg, F.

    2000-12-01

    Autocatalytic fission-fusion microexplosions, mutually amplifying fission and fusion reactions, are proposed for propulsion. Autocatalytic fission-fusion microexplosions can be realized by imploding a shell of uranium 235 (or plutonium) onto a magnetized deuterium-tritium (DT) plasma. After having reached a high temperature, the DT plasma releases fusion neutrons making fission reactions in the fissile shell increasing the implosion velocity which in turn increases the fusion reaction rate until full ignition of the DT plasma. To implode the fissile shell a small amount of high explosive and to magnetize the DT plasma a small auxiliary electric discharge are required. In comparison to nuclear bomb pulse propulsion, the energy released per pulse is much smaller and the efficiency higher. And in comparison to laser- or particle-beam-ignited fusion microexplosions, there is no need for a massive fusion ignition driver.

  17. Chamber Design for the Laser Inertial Fusion Energy (LIFE) Engine

    SciTech Connect

    Latkowski, J F; Abbott, R P; Aceves, S; Anklam, T; Badders, D; Cook, A W; DeMuth, J; Divol, L; El-Dasher, B; Farmer, J C; Flowers, D; Fratoni, M; ONeil, R G; Heltemes, T; Kane, J; Kramer, K J; Kramer, R; Lafuente, A; Loosmore, G A; Morris, K R; Moses, G A; Olson, B; Pantano, C; Reyes, S; Rhodes, M; Roe, K; Sawicki, R; Scott, H; Spaeth, M; Tabak, M; Wilks, S

    2010-11-30

    The Laser Inertial Fusion Energy (LIFE) concept is being designed to operate as either a pure fusion or hybrid fusion-fission system. The present work focuses on the pure fusion option. A key component of a LIFE engine is the fusion chamber subsystem. It must absorb the fusion energy, produce fusion fuel to replace that burned in previous targets, and enable both target and laser beam transport to the ignition point. The chamber system also must mitigate target emissions, including ions, x-rays and neutrons and reset itself to enable operation at 10-15 Hz. Finally, the chamber must offer a high level of availability, which implies both a reasonable lifetime and the ability to rapidly replace damaged components. An integrated design that meets all of these requirements is described herein.

  18. Neutron activation for ITER

    SciTech Connect

    Barnes, C.W.; Loughlin, M.J.; Nishitani, Takeo

    1996-04-29

    There are three primary goals for the Neutron Activation system for ITER: maintain a robust relative measure of fusion power with stability and high dynamic range (7 orders of magnitude); allow an absolute calibration of fusion power (energy); and provide a flexible and reliable system for materials testing. The nature of the activation technique is such that stability and high dynamic range can be intrinsic properties of the system. It has also been the technique that demonstrated (on JET and TFTR) the highest accuracy neutron measurements in DT operation. Since the gamma-ray detectors are not located on the tokamak and are therefore amenable to accurate characterization, and if material foils are placed very close to the ITER plasma with minimum scattering or attenuation, high overall accuracy in the fusion energy production (7--10%) should be achievable on ITER. In the paper, a conceptual design is presented. A system is shown to be capable of meeting these three goals, also detailed design issues remain to be solved.

  19. Elastic scattering, fusion, and breakup of light exotic nuclei

    NASA Astrophysics Data System (ADS)

    Kolata, J. J.; Guimarães, V.; Aguilera, E. F.

    2016-05-01

    The present status of fusion reactions involving light ( A < 20) radioactive projectiles at energies around the Coulomb barrier ( E < 10 MeV per nucleon) is reviewed, emphasizing measurements made within the last decade. Data on elastic scattering (providing total reaction cross section information) and breakup channels for the involved systems, demonstrating the relationship between these and the fusion channel, are also reviewed. Similarities and differences in the behavior of fusion and total reaction cross section data concerning halo nuclei, weakly-bound but less exotic projectiles, and strongly-bound systems are discussed. One difference in the behavior of fusion excitation functions near the Coulomb barrier seems to emerge between neutron-halo and proton-halo systems. The role of charge has been investigated by comparing the fusion excitation functions, properly scaled, for different neutron- and proton-rich systems. Possible physical explanations for the observed differences are also reviewed.

  20. Fusion - A potential power source

    SciTech Connect

    Jensen, T.H. )

    1994-10-01

    Duplicating the fusion process of the sun and the stars for energy production on earth would present many difficulties. The state of matter at such temperatures--the plasma state--may be considered a gas of electrons and nuclei, so one problem is the need to confine a hot, reacting plasma. Because the plasma is an electric conductor, it is subject to magnetic forces. Thus, one approach is to confine the hot plasma by a magnetic field. Another approach is to heat the matter so rapidly that the fusion reactions take place before the matter has had time to fly apart, that is, to use inertial confinement. At the United Nations' Atoms for Peace Conference in 1958, a remarkably cooperative, international research effort began. In spite of many difficulties, substantial progress has been made. Initially, many tokamaks were built with circular cross sections. However, shaped plasmas were shown to have clear advantages. The cross sections of some of the larger ones are illustrated here. The two largest devices in the US are the Tokamak Fusion Test Reactor (TFTR) at Princeton and the Doublet III-D (DIII-D) at General Atomics in San Diego. The TFTR device is constructed with neutron shielding and equipped to handle the superheavy hydrogen isotope tritium, which is radioactive. This makes it possible to operate the device with the optimum fuel mixture: an equal mixture of deuterium and tritium. This mixture is optimal because the cross section for the DT reaction has by far the largest cross section of the fusion reactions mentioned above. A large effort is presently under way to design the International Thermonuclear Experimental Reactor (ITER). This is a joint effort by the European Community, Japan, Russia, and the US. Goals include the production of fusion power in excess of 1,000 MW for studying the physics of igniting plasmas, and the integrated demonstration of fusion-reactor technologies.

  1. Open-ended fusion devices and reactors

    SciTech Connect

    Kawabe, T.; Nariai, H.

    1983-12-01

    Conceptual design studies on fusion reactors based upon open-ended confinement schemes, such as the tandem mirror and rf plugged cusp, have been carried out in Japan. These studies may be classified into two categories: near-term devices (Fusion Engineering Test Facility), and long-term fusion power recators. In the first category, a two-component cusp neutron source was proposed. In the second category, the GAMMA-R, a tandem-mirror power reactor, and the RFC-R, an axisymetric mirror and cusp, reactor studies are being conducted at the University of Tsukuba and the Institute of Plasma Physics. Mirror Fusion Engineering Facility parameters and a schematic are shown. The GAMMA-R central-cell design schematic is also shown.

  2. Laser fusion target illumination system.

    PubMed

    Thomas, C E

    1975-06-01

    Laser fusion experiments require the focusing of very intense pulsed laser beams onto very small fuel pellets. All reported experiments to date have used lenses to focus one or more laser beams onto the target. This paper describes a combined refractive/reflective illumination system that provides nearly uniform irradiance with nearly orthogonal incidence over the complete spherical target, with only two laser beams. This illumination system was used in the experiments that produced the first known symmetric target implosions. Furthermore, these experiments produced what we believe were the first thermonuclear neutrons generated by a laser-driven implosion. PMID:20154815

  3. Neutron spectrometry for radiation protection: Three examples

    SciTech Connect

    Goldhagen, P.

    1995-12-31

    Workers and the general public are exposed to neutron radiation from a variety of sources, including fission and fusion reactors, accelerators, the nuclear fuel and nuclear weapons cycles, and cosmic rays in space, in aircraft and on the earth. Because the health effects of neutrons depend strongly on their energy, neutron spectrometry is essential for accurate risk-related neutron dosimetry. In addition, the penetration of neutrons through protective shielding changes their energy and can be difficult to calculate reliably, so the measurement of energy spectra is often needed to verify neutron transport calculations. The Environmental Measurements Laboratory has been measuring neutron energy spectra for over 20 years, primarily with multisphere (or Bonner sphere) spectrometers. Because of this experience, the Laboratory has responded to a number of requests to provide reference neutron energy spectra at critical locations in or near nuclear facilities and radiation fields. This talk will describe the author`s instruments and three recent examples of their use: outside the Princeton Tokamak Fusion Test Reactor (TFTR), up to two kilometers from the Army Pulse Radiation Facility (APRF) bare reactor, and in a Canadian Forces jet aircraft at commercial aviation altitudes. All of these studies have implications beyond routine occupational radiation protection. For example, the APRF measurements are part of the broad effort to resolve the discrepancy between measured and calculated thermal neutron activation at Hiroshima, one of the most important unsolved problems in radiation dosimetry.

  4. Laser-driven fusion reactor

    DOEpatents

    Hedstrom, J.C.

    1973-10-01

    A laser-driven fusion reactor consisting of concentric spherical vessels in which the thermonuclear energy is derived from a deuterium-tritium (D + T) burn within a pellet'', located at the center of the vessels and initiated by a laser pulse. The resulting alpha -particle energy and a small fraction of the neutron energy are deposited within the pellet; this pellet energy is eventually transformed into sensible heat of lithium in a condenser outside the vessels. The remaining neutron energy is dissipated in a lithium blanket, located within the concentric vessels, where the fuel ingredient, tritium, is also produced. The heat content of the blanket and of the condenser lithium is eventually transferred to a conventional thermodynamic plant where the thermal energy is converted to electrical energy in a steam Rankine cycle. (Official Gazette)

  5. Fusion Nuclear Science Pathways Assessment

    SciTech Connect

    C.E. Kessel, et. al.

    2012-02-23

    With the strong commitment of the US to the success of the ITER burning plasma mission, and the project overall, it is prudent to consider how to take the most advantage of this investment. The production of energy from fusion has been a long sought goal, and the subject of several programmatic investigations and time line proposals [1]. The nuclear aspects of fusion research have largely been avoided experimentally for practical reasons, resulting in a strong emphasis on plasma science. Meanwhile, ITER has brought into focus how the interface between the plasma and engineering/technology, presents the most challenging problems for design. In fact, this situation is becoming the rule and no longer the exception. ITER will demonstrate the deposition of 0.5 GW of neutron heating to the blanket, deliver a heat load of 10-20 MW/m2 or more on the divertor, inject 50-100 MW of heating power to the plasma, all at the expected size scale of a power plant. However, in spite of this, and a number of other technologies relevant power plant, ITER will provide a low neutron exposure compared to the levels expected to a fusion power plant, and will purchase its tritium entirely from world reserves accumulated from decades of CANDU reactor operations. Such a decision for ITER is technically well founded, allowing the use of conventional materials and water coolant, avoiding the thick tritium breeding blankets required for tritium self-sufficiency, and allowing the concentration on burning plasma and plasma-engineering interface issues. The neutron fluence experienced in ITER over its entire lifetime will be ~ 0.3 MW-yr/m2, while a fusion power plant is expected to experience 120-180 MW-yr/m2 over its lifetime. ITER utilizes shielding blanket modules, with no tritium breeding, except in test blanket modules (TBM) located in 3 ports on the midplane [2], which will provide early tests of the fusion nuclear environment with very low tritium production (a few g per year).

  6. Neutron counter based on beryllium activation

    SciTech Connect

    Bienkowska, B.; Prokopowicz, R.; Kaczmarczyk, J.; Paducha, M.; Scholz, M.; Igielski, A.; Karpinski, L.; Pytel, K.

    2014-08-21

    The fusion reaction occurring in DD plasma is followed by emission of 2.45 MeV neutrons, which carry out information about fusion reaction rate and plasma parameters and properties as well. Neutron activation of beryllium has been chosen for detection of DD fusion neutrons. The cross-section for reaction {sup 9}Be(n, α){sup 6}He has a useful threshold near 1 MeV, which means that undesirable multiple-scattered neutrons do not undergo that reaction and therefore are not recorded. The product of the reaction, {sup 6}He, decays with half-life T{sub 1/2} = 0.807 s emitting β{sup −} particles which are easy to detect. Large area gas sealed proportional detector has been chosen as a counter of β–particles leaving activated beryllium plate. The plate with optimized dimensions adjoins the proportional counter entrance window. Such set-up is also equipped with appropriate electronic components and forms beryllium neutron activation counter. The neutron flux density on beryllium plate can be determined from the number of counts. The proper calibration procedure needs to be performed, therefore, to establish such relation. The measurements with the use of known β–source have been done. In order to determine the detector response function such experiment have been modeled by means of MCNP5–the Monte Carlo transport code. It allowed proper application of the results of transport calculations of β{sup −} particles emitted from radioactive {sup 6}He and reaching proportional detector active volume. In order to test the counter system and measuring procedure a number of experiments have been performed on PF devices. The experimental conditions have been simulated by means of MCNP5. The correctness of simulation outcome have been proved by measurements with known radioactive neutron source. The results of the DD fusion neutron measurements have been compared with other neutron diagnostics.

  7. Picosecond Neutron Yields from Ultra-Intense Laser-Target Interactions

    NASA Astrophysics Data System (ADS)

    Ellison, C. Leland; Fuchs, Julien

    2009-11-01

    High-flux neutron sources for neutron imaging and materials analysis applications have typically been provided by accelerator-based (Spallation Neutron Source) and reactor-based (High Flux Isotope Reactor) neutron sources. A novel approach is to use ultra-intense (> 10^18 W/cm^2) laser-target interactions to generate picosecond, collimated neutrons. Here we examine the feasibility of a source based on current (LULI) and upcoming laser facility capabilities. A Monte-Carlo code calculates angular and energy distributions of neutrons generated by D-D fusion events occurring within a deuterated target for a given incident beam of D+ ions. The parameters of the deuteron beam are well understood from laser-plasma and laser-target studies relevant to fast-ignition fusion. Expected neutron yields are presented in comparison to conventional neutron sources, previous experimental neutron yields, and within the context of neutron shielding safety requirements.

  8. Engineering Challenges in Antiproton Triggered Fusion Propulsion

    SciTech Connect

    Cassenti, Brice; Kammash, Terry

    2008-01-21

    During the last decade antiproton triggered fusion propulsion has been investigated as a method for achieving high specific impulse, high thrust in a nuclear pulse propulsion system. In general the antiprotons are injected into a pellet containing fusion fuel with a small amount of fissionable material (i.e., an amount less than the critical mass) where the products from the fission are then used to trigger a fusion reaction. Initial calculations and simulations indicate that if magnetically insulated inertial confinement fusion is used that the pellets should result in a specific impulse of between 100,000 and 300,000 seconds at high thrust. The engineering challenges associated with this propulsion system are significant. For example, the antiprotons must be precisely focused. The pellet must be designed to contain the fission and initial fusion products and this will require strong magnetic fields. The fusion fuel must be contained for a sufficiently long time to effectively release the fusion energy, and the payload must be shielded from the radiation, especially the excess neutrons emitted, in addition to many other particles. We will review the recent progress, possible engineering solutions and the potential performance of these systems.

  9. Atmospheric neutrons

    NASA Technical Reports Server (NTRS)

    Korff, S. A.; Mendell, R. B.; Merker, M.; Light, E. S.; Verschell, H. J.; Sandie, W. S.

    1979-01-01

    Contributions to fast neutron measurements in the atmosphere are outlined. The results of a calculation to determine the production, distribution and final disappearance of atmospheric neutrons over the entire spectrum are presented. An attempt is made to answer questions that relate to processes such as neutron escape from the atmosphere and C-14 production. In addition, since variations of secondary neutrons can be related to variations in the primary radiation, comment on the modulation of both radiation components is made.

  10. Neutron guide

    DOEpatents

    Greene, Geoffrey L.

    1999-01-01

    A neutron guide in which lengths of cylindrical glass tubing have rectangular glass plates properly dimensioned to allow insertion into the cylindrical glass tubing so that a sealed geometrically precise polygonal cross-section is formed in the cylindrical glass tubing. The neutron guide provides easier alignment between adjacent sections than do the neutron guides of the prior art.

  11. Neutron dosimetry

    DOEpatents

    Quinby, Thomas C.

    1976-07-27

    A method of measuring neutron radiation within a nuclear reactor is provided. A sintered oxide wire is disposed within the reactor and exposed to neutron radiation. The induced radioactivity is measured to provide an indication of the neutron energy and flux within the reactor.

  12. Development of Measurement Methods for Detection of Special Nuclear Materials using D-D Pulsed Neutron Source

    NASA Astrophysics Data System (ADS)

    Misawa, Tsuyoshi; Takahashi, Yoshiyuki; Yagi, Takahiro; Pyeon, Cheol Ho; Kimura, Masaharu; Masuda, Kai; Ohgaki, Hideaki

    2015-10-01

    For detection of hidden special nuclear materials (SNMs), we have developed an active neutron-based interrogation system combined with a D-D fusion pulsed neutron source and a neutron detection system. In the detection scheme, we have adopted new measurement techniques simultaneously; neutron noise analysis and neutron energy spectrum analysis. The validity of neutron noise analysis method has been experimentally studied in the Kyoto University Critical Assembly (KUCA), and was applied to a cargo container inspection system by simulation.

  13. Neutron tube design study for boron neutron capture therapy application

    SciTech Connect

    Verbeke, J.M.; Lee, Y.; Leung, K.N.; Vujic, J.; Williams, M.D.; Wu, L.K.; Zahir, N.

    1999-05-06

    Radio-frequency (RF) driven ion sources are being developed in Lawrence Berkeley National Laboratory (LBNL) for sealed-accelerator-tube neutron generator application. By using a 5-cm-diameter RF-driven multicusp source H{sup +} yields over 95% have been achieved. These experimental findings will enable one to develop compact neutron generators based on the D-D or D-T fusion reactions. In this new neutron generator, the ion source, the accelerator and the target are all housed in a sealed metal container without external pumping. Recent moderator design simulation studies have shown that 14 MeV neutrons could be moderated to therapeutically useful energy ranges for boron neutron capture therapy (BNCT). The dose near the center of the brain with optimized moderators is about 65% higher than the dose obtained from a typical neutron spectrum produced by the Brookhaven Medical Research Reactor (BMRR), and is comparable to the dose obtained by other accelerator-based neutron sources. With a 120 keV and 1 A deuteron beam, a treatment time of {approx}35 minutes is estimated for BNCT.

  14. International strategy for fusion materials development

    NASA Astrophysics Data System (ADS)

    Ehrlich, Karl; Bloom, E. E.; Kondo, T.

    2000-12-01

    In this paper, the results of an IEA-Workshop on Strategy and Planning of Fusion Materials Research and Development (R&D), held in October 1998 in Risø Denmark are summarised and further developed. Essential performance targets for materials to be used in first wall/breeding blanket components have been defined for the major materials groups under discussion: ferritic-martensitic steels, vanadium alloys and ceramic composites of the SiC/SiC-type. R&D strategies are proposed for their further development and qualification as reactor-relevant materials. The important role of existing irradiation facilities (mainly fission reactors) for materials testing within the next decade is described, and the limits for the transfer of results from such simulation experiments to fusion-relevant conditions are addressed. The importance of a fusion-relevant high-intensity neutron source for the development of structural as well as breeding and special purpose materials is elaborated and the reasons for the selection of an accelerator-driven D-Li-neutron source - the International Fusion Materials Irradiation Facility (IFMIF) - as an appropriate test bed are explained. Finally the necessity to execute the materials programme for fusion in close international collaboration, presently promoted by the International Energy Agency, IEA is emphasised.

  15. Production of exotic isotopes in complete fusion reactions with radioactive beams

    NASA Astrophysics Data System (ADS)

    Sargsyan, V. V.; Zubov, A. S.; Adamian, G. G.; Antonenko, N. V.; Heinz, S.

    2013-11-01

    The isotopic dependence of the complete fusion (capture) cross section is analyzed in the reactions 130,132,134,136,138,140,142,144,146,148,150Xe+48Ca with stable and radioactive beams. It is shown for the first time that the very neutron-rich nuclei 186-191W can be reached with relatively large cross sections by complete fusion reactions with radioactive ion beams at incident energies near the Coulomb barrier. A comparison between the complete fusion and fragmentation reactions for the production of neutron-rich W and neutron-deficient Rn isotopes is performed.

  16. Materials issues in fusion reactors

    NASA Astrophysics Data System (ADS)

    Suri, A. K.; Krishnamurthy, N.; Batra, I. S.

    2010-02-01

    The world scientific community is presently engaged in one of the toughest technological tasks of the current century, namely, exploitation of nuclear fusion in a controlled manner for the benefit of mankind. Scientific feasibility of controlled fusion of the light elements in plasma under magnetic confinement has already been proven. International efforts in a coordinated and co-operative manner are presently being made to build ITER - the International Thermonuclear Experimental Reactor - to test, in this first step, the concept of 'Tokamak' for net fusion energy production. To exploit this new developing option of making energy available through the route of fusion, India too embarked on a robust fusion programme under which we now have a working tokamak - the Aditya and a steady state tokamak (SST-1), which is on the verge of functioning. The programme envisages further development in terms of making SST-2 followed by a DEMO and finally the fusion power reactor. Further, with the participation of India in the ITER program in 2005, and recent allocation of half - a - port in ITER for placing our Lead - Lithium Ceramic Breeder (LLCB) based Test Blanket Module (TBM), meant basically for breeding tritium and extracting high grade heat, the need to understand and address issues related to materials for these complex systems has become all the more necessary. Also, it is obvious that with increasing power from the SST stages to DEMO and further to PROTOTYPE, the increasing demands on performance of materials would necessitate discovery and development of new materials. Because of the 14.1 MeV neutrons that are generated in the D+T reaction exploited in a tokamak, the materials, especially those employed for the construction of the first wall, the diverter and the blanket segments, suffer crippling damage due to the high He/dpa ratios that result due to the high energy of the neutrons. To meet this challenge, the materials that need to be developed for the tokamaks

  17. Compact ion source neutron generator

    SciTech Connect

    Schenkel, Thomas; Persaud, Arun; Kapadia, Rehan; Javey, Ali; Chang-Hasnain, Constance; Rangelow, Ivo; Kwan, Joe

    2015-10-13

    A neutron generator includes a conductive substrate comprising a plurality of conductive nanostructures with free-standing tips and a source of an atomic species to introduce the atomic species in proximity to the free-standing tips. A target placed apart from the substrate is voltage biased relative to the substrate to ionize and accelerate the ionized atomic species toward the target. The target includes an element capable of a nuclear fusion reaction with the ionized atomic species to produce a one or more neutrons as a reaction by-product.

  18. Absolute determination of the neutron source yield using melamine as a neutron detector

    NASA Astrophysics Data System (ADS)

    Ciechanowski, M.; Bolewski, A., Jr.; Kreft, A.

    2015-01-01

    A new approach to absolute determination of the neutron source yield is presented. It bases on the application of melamine (C3H6N6) to neutron detection combined with Monte Carlo simulations of neutron transport. Melamine has the ability to detect neutrons via 14N(n, p)14C reaction and subsequent determination of 14C content. A cross section for this reaction is relatively high for thermal neutrons (1.827 b) and much lower for fast neutrons. A concentration of 14C nuclei created in the irradiated sample of melamine can be reliably measured with the aid of the accelerator mass spectrometry (AMS). The mass of melamine sufficient for this analysis is only 10 mg. Neutron detection is supported by Monte Carlo simulations of neutron transport carried out with the use of MCNP-4C code. These simulations are aimed at computing the probability of 14C creation in the melamine sample per the source neutron. The result of AMS measurements together with results of MCNP calculations enable us to determine the number of neutrons emitted from the source during the irradiation of melamine. The proposed method was applied for determining the neutron emission from a commercial 252Cf neutron source which was independently calibrated. The measured neutron emission agreed with the certified one within uncertainty limits. The relative expanded uncertainty (k=2) of the absolute neutron source yield determination was estimated at 2.6%. Apart from calibration of radionuclide neutron sources the proposed procedure could facilitate absolute yield measurements for more complex sources. Potential applications of this methodology as it is further developed include diagnostics of inertial confinement fusion and plasma-focus experiments, calibration of neutron measurement systems at tokamaks and accelerator-based neutron sources as well as characterization of neutron fields generated in large particle detectors during collisions of hadron beams.

  19. High Intensity, Pulsed, D-D Neutron Generator

    NASA Astrophysics Data System (ADS)

    Williams, D. L.; Vainionpaa, J. H.; Jones, G.; Piestrup, M. A.; Gary, C. K.; Harris, J. L.; Fuller, M. J.; Cremer, J. T.; Ludewigt, B. A.; Kwan, J. W.; Reijonen, J.; Leung, K.-N.; Gough, R. A.

    2009-03-01

    Single ion-beam RF-plasma neutron generators are presented as a laboratory source of intense neutrons. The continuous and pulsed operations of such a neutron generator using the deuterium-deuterium fusion reaction are reported. The neutron beam can be pulsed by switching the RF plasma and/or a gate electrode. These generators are actively vacuum pumped so that a continuous supply of deuterium gas is present for the production of ions and neutrons. This contributes to the generator's long life. These single-beam generators are capable of producing up to 1010 n/s. Previously, Adelphi and LBNL have demonstrated these generators' applications in fast neutron radiography, Prompt Gamma Neutron Activation Analysis (PGNAA) and Neutron Activation Analysis (NAA). Together with an inexpensive compact moderator, these high-output neutron generators extend useful applications to home laboratory operations.

  20. High Intensity, Pulsed, D-D Neutron Generator

    SciTech Connect

    Williams, D. L.; Vainionpaa, J. H.; Jones, G.; Piestrup, M. A.; Gary, C. K.; Harris, J. L.; Fuller, M. J.; Cremer, J. T.; Ludewigt, Bernhard A.; Kwan, J. W.; Reijonen, J.; Leung, K.-N.; Gough, R. A.

    2008-08-01

    Single ion-beam RF-plasma neutron generators are presented as a laboratory source of intense neutrons. The continuous and pulsed operations of such a neutron generator using the deuterium-deuterium fusion reaction are reported. The neutron beam can be pulsed by switching the RF plasma and/or a gate electrode. These generators are actively vacuum pumped so that a continuous supply of deuterium gas is present for the production of ions and neutrons. This contributes to the generator's long life. These single-beam generators are capable of producing up to 1E10 n/s. Previously, Adelphi and LBNL have demonstrated these generators' applications in fast neutron radiography, Prompt Gamma Neutron Activation Analysis (PGNAA) and Neutron Activation Analysis (NAA). Together with an inexpensive compact moderator, these high-output neutron generators extend useful applications to home laboratory operations.

  1. Neutron Spectroscopy on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Knauer, J. P.

    2012-10-01

    The performance of cryogenic fuel implosion experiments in progress at the National Ignition Facility (NIF) is measured by an experimental threshold factorfootnotetextM. J. Edwards et al., Phys. Plasmas 18, 051003 (2011). (ITFX) and a generalized Lawson Criterion.footnotetextC. D. Zhou and R. Betti, Phys. Plasmas 15, 102707 (2008); P. Y. Chang et al., Phys. Rev. Lett. 104, 135002 (2010); and R. Betti et al., Phys. Plasmas 17, 058102 (2010). The ITFX metric is determined by the fusion yield and the areal density of an assembled deuterium-tritium (DT) fuel mass. Typical neutron yields from NIF implosions are greater than 10^14 allowing the neutron energy spectrum to be measured with unprecedented precision. A NIF spectrum is composed of neutrons created by fusion (DT, DD, and TT reactions) and neutrons scattered by the dense, cold fuel layer. Neutron scattering is used to determine the areal density of a NIF implosion and is measured along four lines of sight by two neutron time-of-flight detectors, a neutron imaging system, and the magnetic recoil spectrometer. An accurate measurement of the instrument response function for these detectors allows for the routine production of neutron spectra showing DT fuel areal densities up to 1.3 g/cm^2. Spectra over neutron energies of 10 to 17 MeV show areal-density asymmetries of 20% that are inconsistent with simulations. New calibrations and analyses have expended the spectral coverage down to energies less than the deuterium backscatter edge (1.5 MeV for 14 MeV neutrons). These data and analyses are presented along with a compilation of other nuclear diagnostic data that show a larger-than-expected variation in the areal density over the cold fuel mass. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No DE-FC52-08NA28302. In collaboration with NIC.

  2. Advanced Neutron Source: The users' perspective

    SciTech Connect

    Peretz, F.J.

    1990-01-01

    User experiments will cover fields such as activation analysis of pollutants, irradiation of materials for the fusion program, and neutron scattering studies of materials as diverse as viruses, aerospace composites, and superconductors. Production capabilities must also be provided for the production of isotopes, especially of transuranic elements. The different ways in which these research areas and their required infrastructure influence the design of the Advanced Neutron Source will be the subject of this paper.

  3. Waste management for JAERI fusion reactors

    NASA Astrophysics Data System (ADS)

    Tobita, K.; Nishio, S.; Konishi, S.; Jitsukawa, S.

    2004-08-01

    In the fusion reactor design study at Japan Atomic Energy Institute (JAERI), several waste management strategies were assessed. The assessed strategies are: (1) reinforced neutron shield to clear the massive ex-shielding components from regulatory control; (2) low aspect ratio tokamak to reduce the total waste; (3) reuse of liquid metal breeding material and neutron shield. Combining these strategies, the weight of disposal waste from a low aspect ratio reactor VECTOR is expected to be comparable with the metal radwaste from a light water reactor (˜4000 t).

  4. Neutron activation diagnostics at the National Ignition Facility (invited).

    PubMed

    Bleuel, D L; Yeamans, C B; Bernstein, L A; Bionta, R M; Caggiano, J A; Casey, D T; Cooper, G W; Drury, O B; Frenje, J A; Hagmann, C A; Hatarik, R; Knauer, J P; Johnson, M Gatu; Knittel, K M; Leeper, R J; McNaney, J M; Moran, M; Ruiz, C L; Schneider, D H G

    2012-10-01

    Neutron yields are measured at the National Ignition Facility (NIF) by an extensive suite of neutron activation diagnostics. Neutrons interact with materials whose reaction cross sections threshold just below the fusion neutron production energy, providing an accurate measure of primary unscattered neutrons without contribution from lower-energy scattered neutrons. Indium samples are mounted on diagnostic instrument manipulators in the NIF target chamber, 25-50 cm from the source, to measure 2.45 MeV deuterium-deuterium fusion neutrons through the (115)In(n,n')(115 m) In reaction. Outside the chamber, zirconium and copper are used to measure 14 MeV deuterium-tritium fusion neutrons via (90)Zr(n,2n), (63)Cu(n,2n), and (65)Cu(n,2n) reactions. An array of 16 zirconium samples are located on port covers around the chamber to measure relative yield anisotropies, providing a global map of fuel areal density variation. Neutron yields are routinely measured with activation to an accuracy of 7% and are in excellent agreement both with each other and with neutron time-of-flight and magnetic recoil spectrometer measurements. Relative areal density anisotropies can be measured to a precision of less than 3%. These measurements reveal apparent bulk fuel velocities as high as 200 km/s in addition to large areal density variations between the pole and equator of the compressed fuel. PMID:23126840

  5. Fusion energy

    NASA Astrophysics Data System (ADS)

    1990-09-01

    The main purpose of the International Thermonuclear Experimental Reactor (ITER) is to develop an experimental fusion reactor through the united efforts of many technologically advanced countries. The ITER terms of reference, issued jointly by the European Community, Japan, the USSR, and the United States, call for an integrated international design activity and constitute the basis of current activities. Joint work on ITER is carried out under the auspices of the International Atomic Energy Agency (IAEA), according to the terms of quadripartite agreement reached between the European Community, Japan, the USSR, and the United States. The site for joint technical work sessions is at the Max Planck Institute of Plasma Physics. Garching, Federal Republic of Germany. The ITER activities have two phases: a definition phase performed in 1988 and the present design phase (1989 to 1990). During the definition phase, a set of ITER technical characteristics and supporting research and development (R and D) activities were developed and reported. The present conceptual design phase of ITER lasts until the end of 1990. The objectives of this phase are to develop the design of ITER, perform a safety and environmental analysis, develop site requirements, define future R and D needs, and estimate cost, manpower, and schedule for construction and operation. A final report will be submitted at the end of 1990. This paper summarizes progress in the ITER program during the 1989 design phase.

  6. Fusion energy

    SciTech Connect

    Not Available

    1990-09-01

    The main purpose of the International Thermonuclear Experimental Reactor (ITER) is to develop an experimental fusion reactor through the united efforts of many technologically advanced countries. The ITER terms of reference, issued jointly by the European Community, Japan, the USSR, and the United States, call for an integrated international design activity and constitute the basis of current activities. Joint work on ITER is carried out under the auspices of the International Atomic Energy Agency (IAEA), according to the terms of quadripartite agreement reached between the European Community, Japan, the USSR, and the United States. The site for joint technical work sessions is at the MaxPlanck Institute of Plasma Physics. Garching, Federal Republic of Germany. The ITER activities have two phases: a definition phase performed in 1988 and the present design phase (1989--1990). During the definition phase, a set of ITER technical characteristics and supporting research and development (R D) activities were developed and reported. The present conceptual design phase of ITER lasts until the end of 1990. The objectives of this phase are to develop the design of ITER, perform a safety and environmental analysis, develop site requirements, define future R D needs, and estimate cost, manpower, and schedule for construction and operation. A final report will be submitted at the end of 1990. This paper summarizes progress in the ITER program during the 1989 design phase.

  7. Continuum Response and Reaction in Neutron-Rich Be Nuclei

    SciTech Connect

    Nakatsukasa, Takashi; Ueda, Manabu; Yabana, Kazuhiro

    2004-02-27

    We study E1 resonances, breakup and fusion reactions for weakly bound Be nuclei. The absorbing-boundary condition (ABC) is used to describe both the outgoing and incoming boundary conditions. The neutron continuum plays important roles in response and reaction of neutron drip-line nuclei.

  8. Fission fusion hybrids- recent progress

    NASA Astrophysics Data System (ADS)

    Kotschenreuther, M.; Valanju, P.; Mahajan, S.; Covele, B.

    2012-03-01

    Fission-fusion hybrids enjoy unique advantages for addressing long standing societal acceptability issues of nuclear fission power, and can do this at a much lower level of technical development than a competitive fusion power plant- so it could be a nearer term application. For waste incineration, hybrids can burn intransigent transuranic residues (with the long lived biohazard) from light water reactors (LWRs) with far fewer hybrid reactors than a comparable system within the realm of fission alone. For fuel production, hybrids can produce fuel for ˜4 times as many LWRs with NO fuel reprocessing. For both waste incineration or fuel production, the most severe kind of nuclear accident- runaway criticality- can be excluded, unlike either fast reactors or typical accelerator based reactors. The proliferation risks for hybrid fuel production are, we strongly believe, far less than any other fuel production method, including today's gas centrifuges. US Thorium reserves could supply the entire US electricity supply for centuries. The centerpiece of the fuel cycle is a high power density Compact Fusion Neutron Source (major+minor radius ˜ 2.5-3.5 m), which is made feasible by the super-X divertor.

  9. Neutron detector

    DOEpatents

    Stephan, Andrew C.; Jardret; Vincent D.

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  10. Choice of coils for a fusion reactor

    PubMed Central

    Alexander, Romeo; Garabedian, Paul R.

    2007-01-01

    In a fusion reactor a hot plasma of deuterium and tritium is confined by a strong magnetic field to produce helium ions and release energetic neutrons. The 3D geometry of a stellarator provides configurations for such a device that reduce net toroidal current that might lead to disruptions. We construct smooth coils generating an external magnetic field designed to prevent the plasma from deteriorating. PMID:17640879

  11. Choice of coils for a fusion reactor.

    PubMed

    Alexander, Romeo; Garabedian, Paul R

    2007-07-24

    In a fusion reactor a hot plasma of deuterium and tritium is confined by a strong magnetic field to produce helium ions and release energetic neutrons. The 3D geometry of a stellarator provides configurations for such a device that reduce net toroidal current that might lead to disruptions. We construct smooth coils generating an external magnetic field designed to prevent the plasma from deteriorating. PMID:17640879

  12. Performance characteristics of a compact D-T neutron generator system

    NASA Astrophysics Data System (ADS)

    Pfutzner, H. G.; Groves, J. L.; Mahdavi, M.

    1995-05-01

    A new pulsed neutron generator system has been introduced which uses the deuterium-tritium fusion reaction to produce 14 MeV neutrons. The new system incorporates the latest technology in its electronics, sealed tube neutron head and computer control. The system is extremely flexible and adaptable to a wide range of applications in the field of materials non-destructive analysis.

  13. Efficient neutron generation from solid-nanoparticle explosions driven by DPSSL-pumped high-repetition rate femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Watari, T.; Matsukado, K.; Sekine, T.; Takeuchi, Y.; Hatano, Y.; Yoshimura, R.; Satoh, N.; Nishihara, K.; Takagi, M.; Kawashima, T.

    2016-03-01

    We propose novel neutron source using high-intensity laser based on the cluster fusion scheme. We developed DPSSL-pumped high-repetition-rate 20-TW laser system and solid nanoparticle target for neutron generation demonstration. In our neutron generation experiment, high-energy deuterons were generated from coulomb explosion of CD solid- nanoparticles and neutrons were generated by DD fusion reaction. Efficient and stable neutron generation was obtained by irradiating an intense femtosecond laser pulse of >2×1018 W/cm2. A yield of ∼105 neutrons per shot was stably observed during 0.1-1 Hz continuous operation.

  14. Disassembly time of deuterium-cluster-fusion plasma irradiated by an intense laser pulse

    DOE PAGESBeta

    Bang, W.

    2015-07-02

    Energetic deuterium ions from large deuterium clusters (>10 nm diameter) irradiated by an intense laser pulse (>10¹⁶ W/cm²) produce DD fusion neutrons for a time interval determined by the geometry of the resulting fusion plasma. We show an analytical solution of this time interval, the plasma disassembly time, for deuterium plasmas that are cylindrical in shape. Assuming a symmetrically expanding deuterium plasma, we calculate the expected fusion neutron yield and compare with an independent calculation of the yield using the concept of a finite confinement time at a fixed plasma density. The calculated neutron yields agree quantitatively with the availablemore » experimental data. Our one-dimensional simulations indicate that one could expect a tenfold increase in total neutron yield by magnetically confining a 10 - keV deuterium fusion plasma for 10 ns.« less

  15. Disassembly time of deuterium-cluster-fusion plasma irradiated by an intense laser pulse

    SciTech Connect

    Bang, W.

    2015-07-02

    Energetic deuterium ions from large deuterium clusters (>10 nm diameter) irradiated by an intense laser pulse (>10¹⁶ W/cm²) produce DD fusion neutrons for a time interval determined by the geometry of the resulting fusion plasma. We show an analytical solution of this time interval, the plasma disassembly time, for deuterium plasmas that are cylindrical in shape. Assuming a symmetrically expanding deuterium plasma, we calculate the expected fusion neutron yield and compare with an independent calculation of the yield using the concept of a finite confinement time at a fixed plasma density. The calculated neutron yields agree quantitatively with the available experimental data. Our one-dimensional simulations indicate that one could expect a tenfold increase in total neutron yield by magnetically confining a 10 - keV deuterium fusion plasma for 10 ns.

  16. Fusion at near-barrier energies within the quantum diffusion approach

    NASA Astrophysics Data System (ADS)

    Sargsyan, V. V.; Adamian, G. G.; Antonenko, N. V.; Scheid, W.; Zhang, H. Q.

    2014-04-01

    Within the quantum diffusion approach, the role of neutron transfer in fusion (capture) reactions with tightly and weakly bound nuclei is discussed. The breakup process is analyzed. New methods for the study of the breakup probability are suggested.

  17. Disassembly time of deuterium-cluster-fusion plasma irradiated by an intense laser pulse.

    PubMed

    Bang, W

    2015-07-01

    Energetic deuterium ions from large deuterium clusters (>10nm diameter) irradiated by an intense laser pulse (>10(16)W/cm(2)) produce DD fusion neutrons for a time interval determined by the geometry of the resulting fusion plasma. We present an analytical solution of this time interval, the plasma disassembly time, for deuterium plasmas that are cylindrical in shape. Assuming a symmetrically expanding deuterium plasma, we calculate the expected fusion neutron yield and compare with an independent calculation of the yield using the concept of a finite confinement time at a fixed plasma density. The calculated neutron yields agree quantitatively with the available experimental data. Our one-dimensional simulations indicate that one could expect a tenfold increase in total neutron yield by magnetically confining a 10-keV deuterium fusion plasma for 10ns. PMID:26274289

  18. Compact neutron generator developement and applications

    SciTech Connect

    Leung, Ka-Ngo; Reijonen, Jani; Gicquel, Frederic; Hahto, Sami; Lou, Tak-Pui

    2004-01-18

    The Plasma and Ion Source Technology Group at the Lawrence Berkeley National Laboratory has been engaging in the development of high yield compact neutron generators for the last ten years. Because neutrons in these generators are formed by using either D-D, T-T or D-T fusion reaction, one can produce either mono-energetic (2.4 MeV or 14 MeV) or white neutrons. All the neutron generators being developed by our group utilize 13.5 MHz RF induction discharge to produce a pure deuterium or a mixture of deuterium-tritium plasma. As a result, ion beams with high current density and almost pure atomic ions can be extracted from the plasma source. The ion beams are accelerated to {approx}100 keV and neutrons are produced when the beams impinge on a titanium target. Neutron generators with different configurations and sizes have been designed and tested at LBNL. Their applications include neutron activation analysis, oil-well logging, boron neutron capture therapy, brachytherapy, cargo and luggage screening. A novel small point neutron source has recently been developed for radiography application. The source size can be 2 mm or less, making it possible to examine objects with sharper images. The performance of these neutron generators will be described in this paper.

  19. Generic Magnetic Fusion Reactor Revisited

    NASA Astrophysics Data System (ADS)

    Sheffield, John; Milora, Stanley

    2015-11-01

    The original Generic Magnetic Fusion Reactor paper was published in 1986. This update describes what has changed in 30 years. Notably, the construction of ITER is providing important benchmark numbers for technologies and costs. In addition, we use a more conservative neutron wall flux and fluence. But these cost-increasing factors are offset by greater optimism on the thermal-electric conversion efficiency and potential availability. The main examples show the cost of electricity (COE) as a function of aspect ratio and neutron flux to the first wall. The dependence of the COE on availability, thermo-electric efficiency, electrical power output, and the present day's low interest rates is also discussed. Interestingly, at fixed aspect ratio there is a shallow minimum in the COE at neutron flux around 2.5 MW/m2. The possibility of operating with only a small COE penalty at even lower wall loadings (to 1.0 MW/m2 at larger plant size) and the use of niobium-titanium coils are also investigated. J. Sheffield was supported by ORNL subcontract 4000088999 with the University of Tennessee.

  20. Relativistically correct DD and DT neutron spectra

    NASA Astrophysics Data System (ADS)

    Appelbe, B.; Chittenden, J.

    2014-06-01

    We use relativistic kinematics to derive an expression for the energy spectrum of neutrons produced by fusion reactions in deuterium and deuterium-tritium thermal plasmas. The derivation does not require approximations and the obtained expression gives the exact shape of the spectrum. It is shown that the high-energy tail of the neutron spectrum is highly sensitive to the plasma temperature. Simple expressions for the plasma temperature as a function of the neutron spectrum full width at half maximum (FWHM) are given.

  1. Generic Stellarator-like Magnetic Fusion Reactor

    NASA Astrophysics Data System (ADS)

    Sheffield, John; Spong, Donald

    2015-11-01

    The Generic Magnetic Fusion Reactor paper, published in 1985, has been updated, reflecting the improved science and technology base in the magnetic fusion program. Key changes beyond inflation are driven by important benchmark numbers for technologies and costs from ITER construction, and the use of a more conservative neutron wall flux and fluence in modern fusion reactor designs. In this paper the generic approach is applied to a catalyzed D-D stellarator-like reactor. It is shown that an interesting power plant might be possible if the following parameters could be achieved for a reference reactor: R/ < a > ~ 4 , confinement factor, fren = 0.9-1.15, < β > ~ 8 . 0 -11.5 %, Zeff ~ 1.45 plus a relativistic temperature correction, fraction of fast ions lost ~ 0.07, Bm ~ 14-16 T, and R ~ 18-24 m. J. Sheffield was supported under ORNL subcontract 4000088999 with the University of Tennessee.

  2. Development of multichannel low-energy neutron spectrometer.

    PubMed

    Arikawa, Y; Nagai, T; Abe, Y; Kojima, S; Sakata, S; Inoue, H; Utsugi, M; Iwasa, Y; Murata, T; Sarukura, N; Nakai, M; Shiraga, H; Fujioka, S; Azechi, H

    2014-11-01

    A multichannel low-energy neutron spectrometer for down-scattered neutron (DSN) measurements in inertial confinement fusion (ICF) experiments has been developed. Our compact-size 256-channel lithium-glass-scintillator-based spectrometer has been implemented and tested in ICF experiments with the GEKKO XII laser. We have performed time calibration of the 256-channel analog-to-digital convertor system used for DSN measurements via X-ray pulse signals. We have clearly observed the DD-primary fusion neutron signal and have successfully studied the detector's impulse response. Our detector is soon to be implemented in future ICF experiments. PMID:25430304

  3. Development of multichannel low-energy neutron spectrometer

    SciTech Connect

    Arikawa, Y. Nagai, T.; Abe, Y.; Kojima, S.; Sakata, S.; Inoue, H.; Utsugi, M.; Iwasa, Y.; Sarukura, N.; Nakai, M.; Shiraga, H.; Fujioka, S.; Azechi, H.; Murata, T.

    2014-11-15

    A multichannel low-energy neutron spectrometer for down-scattered neutron (DSN) measurements in inertial confinement fusion (ICF) experiments has been developed. Our compact-size 256-channel lithium-glass-scintillator-based spectrometer has been implemented and tested in ICF experiments with the GEKKO XII laser. We have performed time calibration of the 256-channel analog-to-digital convertor system used for DSN measurements via X-ray pulse signals. We have clearly observed the DD-primary fusion neutron signal and have successfully studied the detector's impulse response. Our detector is soon to be implemented in future ICF experiments.

  4. Enhanced NIF neutron activation diagnostics

    SciTech Connect

    Yeamans, C. B.; Bleuel, D. L.; Bernstein, L. A.

    2012-10-15

    The NIF neutron activation diagnostic suite relies on removable activation samples, leading to operational inefficiencies and a fundamental lower limit on the half-life of the activated product that can be observed. A neutron diagnostic system measuring activation of permanently installed samples could remove these limitations and significantly enhance overall neutron diagnostic capabilities. The physics and engineering aspects of two proposed systems are considered: one measuring the {sup 89}Zr/{sup 89m}Zr isomer ratio in the existing Zr activation medium and the other using potassium zirconate as the activation medium. Both proposed systems could improve the signal-to-noise ratio of the current system by at least a factor of 5 and would allow independent measurement of fusion core velocity and fuel areal density.

  5. Fusion cross sections measurements with MUSIC

    NASA Astrophysics Data System (ADS)

    Carnelli, P. F. F.; Fernández Niello, J. O.; Almaraz-Calderon, S.; Rehm, K. E.; Albers, M.; Digiovine, B.; Esbensen, H.; Henderson, D.; Jiang, C. L.; Nusair, O.; Palchan-Hazan, T.; Pardo, R. C.; Ugalde, C.; Paul, M.; Alcorta, M.; Bertone, P. F.; Lai, J.; Marley, S. T.

    2014-09-01

    The interaction between exotic nuclei plays an important role for understanding the reaction mechanism of the fusion processes as well as for the energy production in stars. With the advent of radioactive beams new frontiers for fusion reaction studies have become accessible. We have performed the first measurements of the total fusion cross sections in the systems 10 , 14 , 15C + 12C using a newly developed active target-detector system (MUSIC). Comparison of the obtained cross sections with theoretical predictions show a good agreement in the energy region accessible with existing radioactive beams. This type of comparison allows us to calibrate the calculations for cases that cannot be studied in the laboratory with the current experimental capabilities. The high efficiency of this active detector system will allow future measurements with even more neutron-rich isotopes. The interaction between exotic nuclei plays an important role for understanding the reaction mechanism of the fusion processes as well as for the energy production in stars. With the advent of radioactive beams new frontiers for fusion reaction studies have become accessible. We have performed the first measurements of the total fusion cross sections in the systems 10 , 14 , 15C + 12C using a newly developed active target-detector system (MUSIC). Comparison of the obtained cross sections with theoretical predictions show a good agreement in the energy region accessible with existing radioactive beams. This type of comparison allows us to calibrate the calculations for cases that cannot be studied in the laboratory with the current experimental capabilities. The high efficiency of this active detector system will allow future measurements with even more neutron-rich isotopes. This work is supported by the U.S. DOE Office of Nuclear Physics under Contract No. DE-AC02-06CH11357 and the Universidad Nacional de San Martin, Argentina, Grant SJ10/39.

  6. Neutron irradiation of superconductors and damage energy scaling of different neutron spectra

    NASA Astrophysics Data System (ADS)

    Hahn, P. A.; Weber, H. W.; Guinan, M. W.; Birtcher, R. C.; Brown, B. S.; Greenwood, L. R.

    1985-08-01

    Three different neutron sources were used to irradiate identical sets of NbTi superconductors up to about half the lifetime dose of a superconducting magnet in a fusion reactor. Based on a careful source characterization of the TRIGA Mark-II reactor in Vienna, the spallation neutron source IPNS at Argonne and the 14 MeV neutron source RTNS-II at Livermore, the damage energy cross sections were calculated for four different types of NbTi alloys (42, 46.5, 49 and 54 wt % Ti). The experimental results on the variations of critical current densities j sub c with neutron dose are found to scale within the experimental uncertainties with the appropriate damage energy cross sections. This first explicit proof of damage energy scaling for j sub c-variations in superconductors is considered to be most valuable for the evaluation of radiation damage in superconductors under fusion reactor conditions.

  7. Micromegas neutron beam monitor neutronics.

    PubMed

    Stephan, Andrew C; Miller, Laurence F

    2005-01-01

    The Micromegas is a type of ionising radiation detector that consists of a gas chamber sandwiched between two parallel plate electrodes, with the gas chamber divided by a Frisch grid into drift and amplification gaps. Investigators have applied it to a number of different applications, such as charged particle, X-ray and neutron detection. A Micromegas device has been tested as a neutron beam monitor at CERN and is expected to be used for that purpose at the Spallation Neutron Source (SNS) under construction in Oak Ridge, TN. For the Micromegas to function effectively as neutron beam monitor, it should cause minimal disruption to the neutron beam in question. Specifically, it should scatter as few neutrons as possible and avoid neutron absorption when it does not contribute to generating useful information concerning the neutron beam. Here, we present the results of Monte Carlo calculations of the effect of different types of wall materials and detector gases on neutron beams and suggest methods for minimising disruption to the beam. PMID:16381746

  8. Neutronic reactor

    DOEpatents

    Wende, Charles W. J.

    1976-08-17

    A safety rod for a nuclear reactor has an inner end portion having a gamma absorption coefficient and neutron capture cross section approximately equal to those of the adjacent shield, a central portion containing materials of high neutron capture cross section and an outer end portion having a gamma absorption coefficient at least equal to that of the adjacent shield.

  9. NEUTRONIC REACTOR

    DOEpatents

    Fermi, E.; Zinn, W.H.; Anderson, H.L.

    1958-09-16

    Means are presenied for increasing the reproduction ratio of a gaphite- moderated neutronic reactor by diminishing the neutron loss due to absorption or capture by gaseous impurities within the reactor. This means comprised of a fluid-tight casing or envelope completely enclosing the reactor and provided with a valve through which the casing, and thereby the reactor, may be evacuated of atmospheric air.

  10. Calculations of ( n, α) Cross Sections on Some Structural Fusion Materials for Fusion Reactor Technology

    NASA Astrophysics Data System (ADS)

    Yiğit, M.; Tel, E.; Tanır, G.

    2013-06-01

    The knowledge of cross section for emission of light charged particles ( p, d, t, and α) induced by fast neutrons on structural fusion materials has a critical importance on fusion reactors. The gas production arising from ( n, p) and ( n, α) reactions causes seriously radiation damage in fusion reactor structure. The radiation damage in fusion related materials is a large problem need to be overcome for development of fusion reactor technology. Particularly, the ( n, α) reaction cross section data are required to estimation of the radiation damage effects on structural fusion materials. Therefore, the cross section data for ( n, α) reaction induced by fast neutrons are of increasing importance for the success of future fusion reactors. In this study, reaction model calculations of the cross sections of neutron induced reactions on structural fusion materials such as 29 Si, 30 Si, 48 Ti, 50 Ti, 50 Cr, 54 Cr, 54 Fe and 58 Fe have been investigated. The new calculations on the excitation functions of 29 Si ( n, α) 26 Mg, 30 Si ( n, α) 27 Mg, 48 Ti ( n, α) 45 Ca, 50 Ti ( n, α) 47 Ca, 50 Cr ( n, α) 47 Ti, 54 Cr ( n, α) 51 Ti, 54 Fe ( n, α) 51 Cr and 58 Fe ( n, α) 55 Cr have been carried out for incident neutron energies up to 30 MeV. In these calculations, the pre-equilibrium and equilibrium effects for ( n, α) reactions have been investigated. The pre-equilibrium calculations involve the new evaluated the geometry dependent hybrid model, hybrid model and the cascade exciton model. The equilibrium effects of the excitation functions for the investigated reactions are calculated according to the Weisskopf-Ewing model. Also in the present work, the ( n, α) reaction cross sections have calculated by using evaluated empirical formulas developed by Tel et al. at 14-15 MeV energy. The calculated results have been discussed and compared with the available experimental data and found agreement with each other.

  11. Interactions between fusion materials R&D and other technologies

    NASA Astrophysics Data System (ADS)

    Kohyama, A.; Seki, M.; Abe, K.; Muroga, T.; Matsui, H.; Jitsukawa, S.; Matsuda, S.

    2000-12-01

    The importance of interactions between fusion materials research and development (R&D) and other technologies is emphasized to make attractive and realistic fusion technology integration activities. The focuses are on: (1) materials design and processing, (2) safety issues relating to materials and (3) material performance evaluation methodologies, including 14 MeV neutron source utilization for fusion material R&D. As typical examples, material design activities on reduced activation ferritic steels, vanadium alloys and SiC/SiC composite materials are provided. The safety assessment of reactor systems and reactor design code consideration including prediction methodologies of materials performance are also discussed.

  12. Neutron source

    DOEpatents

    Cason, J.L. Jr.; Shaw, C.B.

    1975-10-21

    A neutron source which is particularly useful for neutron radiography consists of a vessel containing a moderating media of relatively low moderating ratio, a flux trap including a moderating media of relatively high moderating ratio at the center of the vessel, a shell of depleted uranium dioxide surrounding the moderating media of relatively high moderating ratio, a plurality of guide tubes each containing a movable source of neutrons surrounding the flux trap, a neutron shield surrounding one part of each guide tube, and at least one collimator extending from the flux trap to the exterior of the neutron source. The shell of depleted uranium dioxide has a window provided with depleted uranium dioxide shutters for each collimator. Reflectors are provided above and below the flux trap and on the guide tubes away from the flux trap.

  13. Neutron tubes

    DOEpatents

    Leung, Ka-Ngo; Lou, Tak Pui; Reijonen, Jani

    2008-03-11

    A neutron tube or generator is based on a RF driven plasma ion source having a quartz or other chamber surrounded by an external RF antenna. A deuterium or mixed deuterium/tritium (or even just a tritium) plasma is generated in the chamber and D or D/T (or T) ions are extracted from the plasma. A neutron generating target is positioned so that the ion beam is incident thereon and loads the target. Incident ions cause D-D or D-T (or T-T) reactions which generate neutrons. Various embodiments differ primarily in size of the chamber and position and shape of the neutron generating target. Some neutron generators are small enough for implantation in the body. The target may be at the end of a catheter-like drift tube. The target may have a tapered or conical surface to increase target surface area.

  14. Integrated Chamber Design for the Laser Inertial Fusion Energy (LIFE) Engine

    SciTech Connect

    Latkowski, J F; Kramer, K J; Abbott, R P; Morris, K R; DeMuth, J; Divol, L; El-Dasher, B; Lafuente, A; Loosmore, G; Reyes, S; Moses, G A; Fratoni, M; Flowers, D; Aceves, S; Rhodes, M; Kane, J; Scott, H; Kramer, R; Pantano, C; Scullard, C; Sawicki, R; Wilks, S; Mehl, M

    2010-12-07

    The Laser Inertial Fusion Energy (LIFE) concept is being designed to operate as either a pure fusion or hybrid fusion-fission system. A key component of a LIFE engine is the fusion chamber subsystem. The present work details the chamber design for the pure fusion option. The fusion chamber consists of the first wall and blanket. This integrated system must absorb the fusion energy, produce fusion fuel to replace that burned in previous targets, and enable both target and laser beam transport to the ignition point. The chamber system also must mitigate target emissions, including ions, x-rays and neutrons and reset itself to enable operation at 10-15 Hz. Finally, the chamber must offer a high level of availability, which implies both a reasonable lifetime and the ability to rapidly replace damaged components. An integrated LIFE design that meets all of these requirements is described herein.

  15. Viral membrane fusion

    PubMed Central

    Harrison, Stephen C.

    2015-01-01

    Membrane fusion is an essential step when enveloped viruses enter cells. Lipid bilayer fusion requires catalysis to overcome a high kinetic barrier; viral fusion proteins are the agents that fulfill this catalytic function. Despite a variety of molecular architectures, these proteins facilitate fusion by essentially the same generic mechanism. Stimulated by a signal associated with arrival at the cell to be infected (e.g., receptor or co-receptor binding, proton binding in an endosome), they undergo a series of conformational changes. A hydrophobic segment (a “fusion loop” or “fusion peptide”) engages the target-cell membrane and collapse of the bridging intermediate thus formed draws the two membranes (virus and cell) together. We know of three structural classes for viral fusion proteins. Structures for both pre- and postfusion conformations of illustrate the beginning and end points of a process that can be probed by single-virion measurements of fusion kinetics. PMID:25866377

  16. Highlights of papers presented at the workshop on cold fusion phenomena

    SciTech Connect

    Not Available

    1989-09-01

    This report contains highlights of formal oral papers presented at the Workshop on Cold Fusion Phenomena, hosted by Los Alamos National Laboratory and held May 23--25, 1989, in Santa Fe, New Mexico. General topics covered are: physics of fusion reactions; neutron and gamma-ray spectroscopy; colorimetry; and applicable condensed-matter physics, electrochemistry, and analytical chemistry.

  17. Fusion Energy Division annual progress report period ending December 31, 1986

    SciTech Connect

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1987-10-01

    This annual report on fusion energy discusses the progress on work in the following main topics: toroidal confinement experiments; atomic physics and plasma diagnostics development; plasma theory and computing; plasma-materials interactions; plasma technology; superconducting magnet development; fusion engineering design center; materials research and development; and neutron transport. (LSP)

  18. Contribution to fusion research from IAEA coordinated research projects and joint experiments

    NASA Astrophysics Data System (ADS)

    Gryaznevich, M.; Van Oost, G.; Stöckel, J.; Kamendje, R.; Kuteev, B. N.; Melnikov, A.; Popov, T.; Svoboda, V.; The IAEA CRP Teams

    2015-10-01

    The paper presents objectives and activities of IAEA Coordinated Research Projects ‘Conceptual development of steady-state compact fusion neutron sources’ and ‘Utilisation of a network of small magnetic confinement fusion devices for mainstream fusion research’. The background and main projects of the CRP on FNS are described in detail, as this is a new activity at IAEA. Recent activities of the second CRP, which continues activities of previous CRPs, are overviewed.

  19. Magneto-Inertial Fusion

    DOE PAGESBeta

    Wurden, G. A.; Hsu, S. C.; Intrator, T. P.; Grabowski, T. C.; Degnan, J. H.; Domonkos, M.; Turchi, P. J.; Campbell, E. M.; Sinars, D. B.; Herrmann, M. C.; et al

    2015-11-17

    In this community white paper, we describe an approach to achieving fusion which employs a hybrid of elements from the traditional magnetic and inertial fusion concepts, called magneto-inertial fusion (MIF). The status of MIF research in North America at multiple institutions is summarized including recent progress, research opportunities, and future plans.

  20. Slow liner fusion

    SciTech Connect

    Shaffer, M.J.

    1997-08-01

    {open_quotes}Slow{close_quotes} liner fusion ({approximately}10 ms compression time) implosions are nondestructive and make repetitive ({approximately} 1 Hz) pulsed liner fusion reactors possible. This paper summarizes a General Atomics physics-based fusion reactor study that showed slow liner feasibility, even with conservative open-line axial magnetic field confinement and Bohm radial transport.

  1. Cold fusion research

    SciTech Connect

    1989-11-01

    I am pleased to forward to you the Final Report of the Cold Fusion Panel. This report reviews the current status of cold fusion and includes major chapters on Calorimetry and Excess Heat, Fusion Products and Materials Characterization. In addition, the report makes a number of conclusions and recommendations, as requested by the Secretary of Energy.

  2. Cluster-impact fusion

    SciTech Connect

    Echenique, P.M.; Manson, J.R.; Ritchie, R.H. )

    1990-03-19

    We present a model for the cluster-impact-fusion experiments of Buehler, Friedlander, and Friedman, Calculated fusion rates as a function of bombarding energy for constant cluster size agree well with experiment. The dependence of the fusion rate on cluster size at fixed bombarding energy is explained qualitatively. The role of correlated, coherent collisions in enhanced energy loss by clusters is emphasized.

  3. European Neutron Activation System.

    2013-01-11

    Version 03 EASY-2010 (European Activation System) consists of a wide range of codes, data and documentation all aimed at satisfying the objective of calculating the response of materials irradiated in a neutron flux. The main difference from the previous version is the upper energy limit, which has increased from 20 to 60 MeV. It is designed to investigate both fusion devices and accelerator based materials test facilities that will act as intense sources of high-energymore » neutrons causing significant activation of the surrounding materials. The very general nature of the calculational method and the data libraries means that it is applicable (with some reservations) to all situations (e.g. fission reactors or neutron sources) where materials are exposed to neutrons below 60 MeV. EASY can be divided into two parts: data and code development tools and user tools and data. The former are required to develop the latter, but EASY users only need to be able to use the inventory code FISPACT and be aware of the contents of the EAF library (the data source). The complete EASY package contains the FISPACT-2007 inventory code, the EAF-2003, EAF-2005, EAF-2007 and EAF-2010 libraries, and the EASY User Interface for the Window version. The activation package EASY-2010 is the result of significant development to extend the upper energy range from 20 to 60 MeV so that it is capable of being used for IFMIF calculations. The EAF-2010 library contains 66,256 reactions, almost five times more than in EAF-2003 (12,617). Deuteron-induced and proton-induced cross section libraries are also included, and can be used with EASY to enable calculations of the activation due to deuterons and proton [2].« less

  4. Neutron flux monitoring system for ITER-FEAT (abstract)

    NASA Astrophysics Data System (ADS)

    Kaschuck, Yu.; Krasilnikov, A.; Alekseyev, A.; Amosov, V.; Frunze, V.

    2001-01-01

    The concept of the neutron flux measurements for International Thermonuclear Experimental Reactor ITER-FEAT is discussed. In spite of the fact that ITER-FEAT has reduced fusion power with respect to ITER-FDR, the requirements for neutron flux monitors are similar—wide dynamic range (seven orders), good temporal resolution (1 ms), and high accuracy (10%). It is clear that fission chambers are the most suitable detectors for this application. However high neutron intensity of the fusion plasma and hard requirements lead to a more sophisticated detection system than the ordinary fission chamber. Another problem is an absolute calibration of the detectors. We propose a neutron flux monitoring system, which consist of microfission chambers placed inside the ITER vacuum chamber, three wide range fission chambers placed outside the vacuum chamber, natural diamond detector based compact neutron monitors placed inside the channels of the neutron cameras, and a compact neutron generator for calibration. Microfission chambers could be installed in the standard plugs with other detectors (vacuum x-ray diode, magnetic probe). 235U could be used as well as threshold fission materials (238U, 237Np, 232Th). In the last case the fission chamber will be covered by a boron shield to reduce the changes in the sensitivity. Wide range fission chambers will operate in both pulse count mode and Campbell mode. High linearity is provided by count mode. Temporal resolution of 1 ms is provided by the count mode at low neutron flux and by the Campbell mode at high flux. The nonlinearity of the fission chamber during the switch from count mode to Campbell mode will be corrected by another fission chamber with low sensitivity operating in count mode. Compact neutron flux monitors placed inside neutron cameras will consist of up to ten natural diamond neutron counters with sensitivity to DT neutrons doubled by properly installed poliethilen radiators. Such monitors provide DT neutron flux

  5. Scintillating-fiber imaging detector for 14-MeV neutrons

    SciTech Connect

    Ress, D.; Lerche, R.A.; Ellis, R.J.; Heaton, G.W.; Nelson, M.B.; Mant, G.; Lehr, D.E.

    1994-07-25

    The authors have created a detector to image the neutrons emitted by imploded inertial-confinement fusion targets. The 14-MeV neutrons, which are produced by deuterium-tritium fusion events in the target, pass through an aperture to create an image on the detector. The neutron radiation is converted to blue light (430 nm) with a 20-cm-square array of plastic scintillating fibers. Each fiber is 10-cm long with a 1-mm-square cross section; approximately 35-thousand fibers make up the array. The resulting blue-light image is reduced and amplified by a sequence of fiber-optic tapers and image intensifiers, then acquired by a CCD camera. The fiber-optic readout system was tested optically for overall throughput the resolution. The authors plan to characterize the scintillator array reusing an ion-beam neutron source as well as DT-fusion neutrons emitted by inertial confinement targets. Characterization experiments will measure the light-production efficiency, spatial resolution, and neutron scattering within the detector. Several neutron images of laser-fusion targets have been obtained with the detector. Several neutron images of laser-fusion targets have been obtained with the detector. They describe the detector and their characterization methods, present characterization results, and give examples of the neutron images.

  6. Realizing Technologies for Magnetized Target Fusion

    SciTech Connect

    Wurden, Glen A.

    2012-08-24

    Researchers are making progress with a range of magneto-inertial fusion (MIF) concepts. All of these approaches use the addition of a magnetic field to a target plasma, and then compress the plasma to fusion conditions. The beauty of MIF is that driver power requirements are reduced, compared to classical inertial fusion approaches, and simultaneously the compression timescales can be longer, and required implosion velocities are slower. The presence of a sufficiently large Bfield expands the accessibility to ignition, even at lower values of the density-radius product, and can confine fusion alphas. A key constraint is that the lifetime of the MIF target plasma has to be matched to the timescale of the driver technology (whether liners, heavy ions, or lasers). To achieve sufficient burn-up fraction, scaling suggests that larger yields are more effective. To handle the larger yields (GJ level), thick liquid wall chambers are certainly desired (no plasma/neutron damage materials problem) and probably required. With larger yields, slower repetition rates ({approx}0.1-1 Hz) for this intrinsically pulsed approach to fusion are possible, which means that chamber clearing between pulses can be accomplished on timescales that are compatible with simple clearing techniques (flowing liquid droplet curtains). However, demonstration of the required reliable delivery of hundreds of MJ of energy, for millions of pulses per year, is an ongoing pulsed power technical challenge.

  7. Role of neutron transfer and deformation effect in capture process at sub-barrier energies

    NASA Astrophysics Data System (ADS)

    Sargsyan, V. V.; Adamian, G. G.; Antonenko, N. V.; Scheid, W.; Zhang, H. Q.

    2012-12-01

    The roles of nuclear deformation and neutron transfer in sub-barrier capture process are studied within the quantum diffusion approach. The change of the deformations of colliding nuclei with neutron exchange can crucially influence the sub-barrier fusion. The sub-barrier capture reactions following the neutron pair transfer are used for the indirect study of neutron-neutron correlation in the surface region of nucleus. The strong surface enhancement of the neutron pairing in nuclei 48Ca, 64Ni, and 116,124,132Sn is demonstrated. Comparing the capture cross sections calculated without the breakup effect and experimental complete fusion cross sections, the breakup was analyzed in reactions with weakly bound projectiles 6,7,9Li and 9Be. A trend of a systematic behavior for the complete fusion suppression as a function of the target charge and bombarding energy is not achieved.

  8. NEUTRON SOURCE

    DOEpatents

    Bernander, N.K. et al.

    1960-10-18

    An apparatus is described for producing neutrons through target bombardment with deuterons. Deuterium gas is ionized by electron bombardment and the deuteron ions are accelerated through a magnetic field to collimate them into a continuous high intensity beam. The ion beam is directed against a deuteron pervious metal target of substantially the same nnaterial throughout to embed the deuterous therein and react them to produce neutrons. A large quantity of neutrons is produced in this manner due to the increased energy and quantity of ions bombarding the target.

  9. Design considerations for neutron activation and neutron source strength monitors for ITER

    SciTech Connect

    Barnes, C.W.; Jassby, D.L.; LeMunyan, G.; Roquemore, A.L.; Walker, C.

    1997-12-31

    The International Thermonuclear Experimental Reactor will require highly accurate measurements of fusion power production in time, space, and energy. Spectrometers in the neutron camera could do it all, but experience has taught us that multiple methods with redundancy and complementary uncertainties are needed. Previously, conceptual designs have been presented for time-integrated neutron activation and time-dependent neutron source strength monitors, both of which will be important parts of the integrated suite of neutron diagnostics for this purpose. The primary goals of the neutron activation system are: to maintain a robust relative measure of fusion energy production with stability and wide dynamic range; to enable an accurate absolute calibration of fusion power using neutronic techniques as successfully demonstrated on JET and TFTR; and to provide a flexible system for materials testing. The greatest difficulty is that the irradiation locations need to be close to plasma with a wide field of view. The routing of the pneumatic system is difficult because of minimum radius of curvature requirements and because of the careful need for containment of the tritium and activated air. The neutron source strength system needs to provide real-time source strength vs. time with {approximately}1 ms resolution and wide dynamic range in a robust and reliable manner with the capability to be absolutely calibrated by in-situ neutron sources as done on TFTR, JT-60U, and JET. In this paper a more detailed look at the expected neutron flux field around ITER is folded into a more complete design of the fission chamber system.

  10. Performance characteristics of the Schlumberger sealed tube neutron-generator system

    NASA Astrophysics Data System (ADS)

    Pfutzner, Harold G.; Mahdavi, Mehrzad

    1995-03-01

    A new pulsed neutron generator system has been introduced. It is based on a sealed tube neutron generator using the deuterium-tritium fusion reaction. The new system incorporates latest technology features in its electronics, neutron head configuration, and computer control. These address common concerns about neutron generators such as economics, ease of use, and safety. The system is extremely flexible and adaptable to a very wide range of applications in the field of materials non-destructive analysis.

  11. Thermal neutron detection system

    DOEpatents

    Peurrung, Anthony J.; Stromswold, David C.

    2000-01-01

    According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

  12. Viral membrane fusion

    SciTech Connect

    Harrison, Stephen C.

    2015-05-15

    Membrane fusion is an essential step when enveloped viruses enter cells. Lipid bilayer fusion requires catalysis to overcome a high kinetic barrier; viral fusion proteins are the agents that fulfill this catalytic function. Despite a variety of molecular architectures, these proteins facilitate fusion by essentially the same generic mechanism. Stimulated by a signal associated with arrival at the cell to be infected (e.g., receptor or co-receptor binding, proton binding in an endosome), they undergo a series of conformational changes. A hydrophobic segment (a “fusion loop” or “fusion peptide”) engages the target-cell membrane and collapse of the bridging intermediate thus formed draws the two membranes (virus and cell) together. We know of three structural classes for viral fusion proteins. Structures for both pre- and postfusion conformations of illustrate the beginning and end points of a process that can be probed by single-virion measurements of fusion kinetics. - Highlights: • Viral fusion proteins overcome the high energy barrier to lipid bilayer merger. • Different molecular structures but the same catalytic mechanism. • Review describes properties of three known fusion-protein structural classes. • Single-virion fusion experiments elucidate mechanism.

  13. NEUTRONIC REACTOR

    DOEpatents

    Wade, E.J.

    1958-09-16

    This patent relates to a reflector means for a neutronic reactor. A reflector comprised of a plurality of vertically movable beryllium control members is provided surrounding the sides of the reactor core. An absorber of fast neutrons comprised of natural uramum surrounds the reflector. An absorber of slow neutrons surrounds the absorber of fast neutrons and is formed of a plurality of beryllium blocks having natural uranium members distributcd therethrough. in addition, a movable body is positioned directly below the core and is comprised of a beryllium reflector and an absorbing member attached to the botiom thereof, the absorbing member containing a substance selected from the goup consisting of natural urantum and Th/sup 232/.

  14. Isotopic dependence of fusion cross sections in reactions with heavy nuclei

    NASA Astrophysics Data System (ADS)

    Adamian, G. G.; Antonenko, N. V.; Scheid, W.

    2000-09-01

    The dependence of fusion cross section on the isotopic composition of colliding nuclei is analysed within the dinuclear system concept for compound nucleus formation. Probabilities of fusion and surviving probabilities, ingredients of the evaporation residue cross sections, depend decisively on the neutron numbers of the dinuclear system. Evaporation residue cross sections for the production of actinides and superheavy nuclei, listed in table form, are discussed and compared with existing experimental data. In the Pb-based reactions neutron-rich radioactive projectiles are shown to lead to similar fusion cross sections as stable projectiles.

  15. General Cavity Theories for Photon and Neutron Dosimetry.

    NASA Astrophysics Data System (ADS)

    Kearsley, Eric Edward

    1982-03-01

    The aim of a general cavity theory is to predict the energy deposition from a source of ionizing radiation in a cavity of arbitrary size and composition. This thesis proposes two new general cavity theories. The first is intended for cavities in photon fields. The second is for spherical cavities in fast neutron fields. Both models can be written in the familiar form of the Burlin cavity theory. The proposed photon model takes into account the effect of secondary electron scattering at the cavity boundaries. The model can be used to calculate the average cavity dose, the dose distribution inside the cavity, as well as the relative contributions of the wall and the cavity to the cavity response. A comparison is made between the proposed model, the well known Burlin model, and experimental data. The second model discussed is a calculation of the response of a sphere of arbitrary size in a fast neutron field. The dose deposited in the cavity is calculated taking into account the energy dependence of the stopping power, the secondary starting energy distribution, and the cavity volume. An analytical solution is derived. From this a simple three parameter power function is fitted which accurately predicts cavity doses to within 0.1% of the values predicted by the analytical model. Results of the calculation are given in a table for TE/TE, TE/air, and C/CO2 wall-gas combinations for neutron energies between 0.76 Mev and 14 Mev and cavity sizes between 0.01 cm('3) and 10 cm('3). These results are compared with a more detailed calculation. There is good agreement between the two methods under 5 MeV in all cases and up to 14 MeV in the hydrogenous cases. That is, the model works well when elastic scattering interactions dominate the cavity response.

  16. NEUTRONIC REACTOR

    DOEpatents

    Fraas, A.P.; Mills, C.B.

    1961-11-21

    A neutronic reactor in which neutron moderation is achieved primarily in its reflector is described. The reactor structure consists of a cylindrical central "island" of moderator and a spherical moderating reflector spaced therefrom, thereby providing an annular space. An essentially unmoderated liquid fuel is continuously passed through the annular space and undergoes fission while contained therein. The reactor, because of its small size, is particularly adapted for propulsion uses, including the propulsion of aircraft. (AEC)

  17. NEUTRON SOURCES

    DOEpatents

    Richmond, J.L.; Wells, C.E.

    1963-01-15

    A neutron source is obtained without employing any separate beryllia receptacle, as was formerly required. The new method is safer and faster, and affords a source with both improved yield and symmetry of neutron emission. A Be container is used to hold and react with Pu. This container has a thin isolating layer that does not obstruct the desired Pu--Be reaction and obviates procedures previously employed to disassemble and remove a beryllia receptacle. (AEC)

  18. Development of neutron spectrometer toward deuterium plasma diagnostics in LHD

    SciTech Connect

    Tomita, H.; Iwai, H.; Iguchi, T.; Kawarabayashi, J.; Isobe, M.; Konno, C.

    2010-10-15

    Neutron spectrometer based on coincident counting of associated particles has been developed for deuterium plasma diagnostics on Large Helical Device (LHD) at the National Institute for Fusion Science. Efficient detection of 2.5 MeV neutron with high energy resolution would be achievable by coincident detection of a scattered neutron and a recoiled proton associated with an elastic scattering of incident neutron in a plastic scintillator as a radiator. The calculated neutron spectra from deuterium plasma heated by neutral beam injection indicate that the energy resolution of better than 7% is required for the spectrometer to evaluate energetic deuterium confinement. By using a prototype of the proposed spectrometer, the energy resolution of 6.3% and the detection efficiency of 3.3x10{sup -7} count/neutron were experimentally demonstrated for 2.5 MeV monoenergetic neutron, respectively.

  19. Development of neutron spectrometer toward deuterium plasma diagnostics in LHD.

    PubMed

    Tomita, H; Iwai, H; Iguchi, T; Isobe, M; Kawarabayashi, J; Konno, C

    2010-10-01

    Neutron spectrometer based on coincident counting of associated particles has been developed for deuterium plasma diagnostics on Large Helical Device (LHD) at the National Institute for Fusion Science. Efficient detection of 2.5 MeV neutron with high energy resolution would be achievable by coincident detection of a scattered neutron and a recoiled proton associated with an elastic scattering of incident neutron in a plastic scintillator as a radiator. The calculated neutron spectra from deuterium plasma heated by neutral beam injection indicate that the energy resolution of better than 7% is required for the spectrometer to evaluate energetic deuterium confinement. By using a prototype of the proposed spectrometer, the energy resolution of 6.3% and the detection efficiency of 3.3×10(-7) count/neutron were experimentally demonstrated for 2.5 MeV monoenergetic neutron, respectively. PMID:21033835

  20. A neutron sensor based on synthetic single crystal diamond

    SciTech Connect

    Schmid, G J; Koch, J A; Lerche, R A; Moran, M J

    2003-10-17

    We report the first neutron data for a single crystal Chemical Vapor Deposition (CVD) diamond sensor. Results are presented for 2.5, 14.1, and 14.9 MeV incident neutrons. We show that the energy resolution for 14.1 MeV neutrons is at least 2.9% (as limited by the energy spread of the incident neutrons), and perhaps as good as 0.4% (as extrapolated from high resolution {alpha} particle data). This result could be relevant to fusion neutron spectroscopy at machines like the International Thermonuclear Experimental Reactor (ITER). We also show that our sensor has a high neutron linear attenuation coefficient, due to the high atomic density of diamond, and this could lead to applications in fission neutron detection.

  1. Neutron range spectrometer

    DOEpatents

    Manglos, S.H.

    1988-03-10

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are colliminated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. 1 fig.

  2. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.

    1958-04-22

    A nuclear reactor for isotope production is described. This reactor is designed to provide a maximum thermal neutron flux in a region adjacent to the periphery of the reactor rather than in the center of the reactor. The core of the reactor is generally centrally located with respect tn a surrounding first reflector, constructed of beryllium. The beryllium reflector is surrounded by a second reflector, constructed of graphite, which, in tune, is surrounded by a conventional thermal shield. Water is circulated through the core and the reflector and functions both as a moderator and a coolant. In order to produce a greatsr maximum thermal neutron flux adjacent to the periphery of the reactor rather than in the core, the reactor is designed so tbat the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the materials in the reflector is approximately twice the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the material of the core of the reactor.

  3. Comparative breeding characteristics of fusion and fast reactors.

    PubMed

    Fortescue, P

    1977-06-17

    Expressions are developed to allow ready comparison of a hybrid fission-fusion plant and a fast breeder with respect to the number of thermal reactors that their fissile production could support, both for their feed requirements and for the new inventory needs of an expanding industry. These relations are expressed in terms of the neutron multiplication factor obtained in the fusion blanket, and the analogous quantities represented by the conversion ratios of the fast and thermal fission associated with the comparison. Results are presented graphically both for the steady state and for industries of arbitrary growth rate, and include the influence of tritium production requirements. Even a modest blanket neutron multiplication factor could enable the hybrid fusion system greatly to outperform the fast breeder on this simple basis of material balances. PMID:17831749

  4. Strategy for the absolute neutron emission measurement on ITER

    SciTech Connect

    Sasao, M.; Bertalot, L.; Ishikawa, M.; Popovichev, S.

    2010-10-15

    Accuracy of 10% is demanded to the absolute fusion measurement on ITER. To achieve this accuracy, a functional combination of several types of neutron measurement subsystem, cross calibration among them, and in situ calibration are needed. Neutron transport calculation shows the suitable calibration source is a DT/DD neutron generator of source strength higher than 10{sup 10} n/s (neutron/second) for DT and 10{sup 8} n/s for DD. It will take eight weeks at the minimum with this source to calibrate flux monitors, profile monitors, and the activation system.

  5. Optimisation of the neutron source based on gas dynamic trap for transmutation of radioactive wastes

    NASA Astrophysics Data System (ADS)

    Anikeev, Andrey V.

    2012-06-01

    The Budker Institute of Nuclear Physics in collaboration with the Russian and foreign organizations develop the project of 14 MeV neutron source, which can be used for fusion material studies and for other application. The projected neutron source of plasma type is based on the plasma Gas Dynamic Trap (GDT), which is a special magnetic mirror system for plasma confinement. Presented work continues the subject of development the GDT-based neutron source (GDT-NS) for hybrid fusion-fission reactors. The paper presents the results of recent numerical optimization of such neutron source for transmutation of the long-lives radioactive wastes in spent nuclear fuel.

  6. Is Deuterium Nuclear Fusion Catalyzed by Antineutrinos?

    NASA Astrophysics Data System (ADS)

    Shomer, Isaac

    2010-02-01

    The hypothesis of Fischbach and Jenkins that neutrinos emitted from the sun accelerate radioactive decay is noted. It is thought that neutrinos accelerate beta decay by reacting with neutron-rich nuclides to form a beta particle and a daughter product, with no antineutrino emitted. Conversely, it is proposed that antineutrinos can react with proton-rich nuclides to cause positron decay, with no neutrino emitted. It is also proposed that the nuclear fusion of the hydrogen bomb is triggered not only by the energy of the igniting fission bomb, but by the antineutrinos created by the rapid beta decay of the daughter products in the fission process. The contemplated mechanism for antineutrino initiated fusion is the following: 1. The antineutrinos from the fission daughter products cause positron decay of deuterium by the process outlined above. 2. In a later fusion step, these positrons subsequently react with neutrons in deuterium to create antineutrinos. Electrons are unavailable to annihilate positrons in the plasma of the hydrogen bomb. 3. These antineutrinos thereafter react with more deuterium to form positrons, thereby propagating a chain reaction. )

  7. Experimental Test of the Polarization Persistence in Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Didelez, J. P.; Deutsch, C.; Fujiwara, M.; Nakai, M.; Utsuro, M.

    2016-03-01

    The complete deuteron and triton polarization in the DT fusion increases the reactivity by 50%. For Inertial Confinement Fusion (ICF), due to the dynamics of the fusion reaction process, the fusion rate could even be further increased. It has been argued that the polarization would survive as well in magnetic as in inertial confinements. Recently, we have proposed an experiment to test the persistence of the polarization in a fusion process, using a powerful laser hitting a polarized HD target.The polarized deuterons heated in the plasma induced by the laser can fuse. The corresponding reaction is: D + D → 3He + n. The angular distribution of the emitted neutrons and the change in the corresponding total cross section are signatures to estimate the polarization persistency. A proposal to test the persistence of the polarization in ICF has been accepted at ILE: the POLAF project (POlarization in LAser Fusion Process). It uses the polarized HD targets produced at RCNP and the powerful ILE lasers, as well as the neutron detectors existing there. Both institutions are on the same campus at Osaka University. The description of the POLAF experiment and of the corresponding set-up is given.

  8. Muon Catalyzed Fusion

    NASA Technical Reports Server (NTRS)

    Armour, Edward A.G.

    2007-01-01

    Muon catalyzed fusion is a process in which a negatively charged muon combines with two nuclei of isotopes of hydrogen, e.g, a proton and a deuteron or a deuteron and a triton, to form a muonic molecular ion in which the binding is so tight that nuclear fusion occurs. The muon is normally released after fusion has taken place and so can catalyze further fusions. As the muon has a mean lifetime of 2.2 microseconds, this is the maximum period over which a muon can participate in this process. This article gives an outline of the history of muon catalyzed fusion from 1947, when it was first realised that such a process might occur, to the present day. It includes a description of the contribution that Drachrnan has made to the theory of muon catalyzed fusion and the influence this has had on the author's research.

  9. Neutron and deuteron activation calculations for IFMIF

    NASA Astrophysics Data System (ADS)

    Forrest, R. A.; Loughlin, M. J.

    2007-08-01

    The materials for future fusion devices such as DEMO require testing to high neutron fluence. Such testing is planned to be carried out in IFMIF, an accelerator based facility where the neutrons will have maximum energy of about 55 MeV, but with a broad peak near 14 MeV. In order that activation calculations for IFMIF can be carried out, the nuclear data must contain cross sections covering a similar energy range. A description of the EASY-2005 system is given and it is noted that a new library has been added to EASY to cover another significant source of activation from deuteron-induced reactions. Calculations of the neutron activation of materials in many regions of IFMIF have been carried out. These calculations are reported, and the contribution of neutrons above 20 MeV to the activation is discussed. Preliminary calculations using the deuteron library have been made and the activation from deuterons is discussed.

  10. Effect of neutron energy and fluence on deuterium retention behaviour in neutron irradiated tungsten

    NASA Astrophysics Data System (ADS)

    Fujita, Hiroe; Yuyama, Kenta; Li, Xiaochun; Hatano, Yuji; Toyama, Takeshi; Ohta, Masayuki; Ochiai, Kentaro; Yoshida, Naoaki; Chikada, Takumi; Oya, Yasuhisa

    2016-02-01

    Deuterium (D) retention behaviours for 14 MeV neutron irradiated tungsten (W) and fission neutron irradiated W were evaluated by thermal desorption spectroscopy (TDS) to elucidate the correlation between D retention and defect formation by different energy distributions of neutrons in W at the initial stage of fusion reactor operation. These results were compared with that for Fe2+ irradiated W with various damage concentrations. Although dense vacancies and voids within the shallow region near the surface were introduced by Fe2+ irradiation, single vacancies with low concentration were distributed throughout the sample for 14 MeV neutron irradiated W. Only the dislocation loops were introduced by fission neutron irradiation at low neutron fluence. The desorption peak of D for fission neutron irradiated W was concentrated at low temperature region less than 550 K, but that for 14 MeV neutron irradiated W was extended toward the higher temperature side due to D trapping by vacancies. It can be said that the neutron energy distribution could have a large impact on irradiation defect formation and the D retention behaviour.

  11. Evaluation of irradiation facility options for fusion materials research and development

    SciTech Connect

    Zinkle, Steven J; Möslang, Anton

    2013-01-01

    Successful development of fusion energy will require the design of high-performance structural materials that exhibit dimensional stability and good resistance to fusion neutron degradation of mechanical and physical properties. The high levels of gaseous (H, He) transmutation products associated with deuterium-tritium (D-T) fusion neutron transmutation reactions, along with displacement damage dose requirements up to 50-200 displacements per atom (dpa) for a fusion demonstration reactor (DEMO), pose an extraordinary challenge. The intense neutron source(s) is needed to address two complimentary missions: 1) Scientific investigations of radiation degradation phenomena and microstructural evolution under fusion-relevant irradiation conditions (to provide the foundation for designing improved radiation resistant materials), and 2) Engineering database development for design and licensing of next-step fusion energy machines such as a fusion DEMO. A wide variety of irradiation facilities have been proposed to investigate materials science phenomena and to test and qualify materials for a DEMO reactor. Currently available and proposed facilities include fission reactors (including isotopic and spectral tailoring techniques to modify the rate of H and He production per dpa), dual- and triple-ion accelerator irradiation facilities that enable greatly accelerated irradiation studies with fusion-relevant H and He production rates per dpa within microscopic volumes, D-Li stripping reaction and spallation neutron sources, and plasma-based sources. The advantages and limitations of the main proposed fusion materials irradiation facility options are reviewed. Evaluation parameters include irradiation volume, potential for performing accelerated irradiation studies, capital and operating costs, similarity of neutron irradiation spectrum to fusion reactor conditions, temperature and irradiation flux stability/control, ability to perform multiple-effect tests (e.g., irradiation in

  12. Reactor prospects of muon-catalyzed fusion of deuterium and tritium concentrated in transition metals

    SciTech Connect

    Stacey, W.M. Jr. . Fusion Research Center )

    1989-09-01

    It is conjectured that the number of fusion events catalyzed by a single muon is orders of magnitude greater for deuterium and tritium concentrated in a transition metal than in gaseous form and that the recent observation of 2.5-MeV neutrons from a D/sub 2/O electrolytic cell with palladium and titanium cathodes can thereby be interpreted in terms of cosmic muon-catalyzed deuterium-deuterium fusion. This suggests a new fusion reactor reactor consisting of deuterium and tritium concentrated in transition metal fuel elements in a fusion core that surrounds an accelerator-produced muon source. The feasibility of net energy production in such a reactor is established in terms of requirements on the number of fusion events catalyzed per muon. The technological implications for a power reactor based on this concept are examined. The potential of such a concept as a neutron source for materials testing and tritium and plutonium production is briefly discussed.

  13. Possibilities for synthesis of new isotopes of superheavy nuclei in cold fusion reactions

    NASA Astrophysics Data System (ADS)

    Bao, X. J.; Gao, Y.; Li, J. Q.; Zhang, H. F.

    2016-04-01

    In order to find a way to produce superheavy nuclei (SHN), which appear in the gap between the SHN synthesized by cold fusion and those by hot fusion, or those so far not yet been produced in the laboratory, we tried to make use of a set of projectile isotopic chains, to use a radioactive beam projectile, and to test symmetric fusion reactions for gaining more neutrons to synthesize neutron-richer SHN based on the dinuclear system (DNS) model via cold fusion reactions. It is found that the nuclei 265Mt,Ds,272268,273Rg, and 274,275,276Cn may be produced with the detectable evaporation residual cross sections. The intensities of radioactive beams are significantly less than those of the stable beams, therefore using a stable beam is predicted to be the most favorable method for producing SHN. From the symmetric reaction system 136Xe+136Xe , no fusion event was found.

  14. Energetic ion diagnostics using neutron flux measurements during pellet injection

    SciTech Connect

    Heidbrink, W.W.

    1986-01-01

    Neutron measurements during injection of deuterium pellets into deuterium plasmas on the Tokamak Fusion Test Reactor (TFTR) indicate that the fractional increase in neutron emission about 0.5 msec after pellet injection is proportional to the fraction of beam-plasma reactions to total fusion reactions in the unperturbed plasma. These observations suggest three diagnostic applications of neutron measurements during pellet injection: (1) measurement of the beam-plasma reaction rate in deuterium plasmas for use in determining the fusion Q in an equivalent deuterium-tritium plasma, (2) measurement of the radial profile of energetic beam ions by varying the pellet size and velocity, and (3) measurement of the ''temperature'' of ions accelerated during wave heating. 18 refs., 3 figs.

  15. Magnetic-confinement fusion

    NASA Astrophysics Data System (ADS)

    Ongena, J.; Koch, R.; Wolf, R.; Zohm, H.

    2016-05-01

    Our modern society requires environmentally friendly solutions for energy production. Energy can be released not only from the fission of heavy nuclei but also from the fusion of light nuclei. Nuclear fusion is an important option for a clean and safe solution for our long-term energy needs. The extremely high temperatures required for the fusion reaction are routinely realized in several magnetic-fusion machines. Since the early 1990s, up to 16 MW of fusion power has been released in pulses of a few seconds, corresponding to a power multiplication close to break-even. Our understanding of the very complex behaviour of a magnetized plasma at temperatures between 150 and 200 million °C surrounded by cold walls has also advanced substantially. This steady progress has resulted in the construction of ITER, a fusion device with a planned fusion power output of 500 MW in pulses of 400 s. ITER should provide answers to remaining important questions on the integration of physics and technology, through a full-size demonstration of a tenfold power multiplication, and on nuclear safety aspects. Here we review the basic physics underlying magnetic fusion: past achievements, present efforts and the prospects for future production of electrical energy. We also discuss questions related to the safety, waste management and decommissioning of a future fusion power plant.

  16. NEUTRONIC REACTOR

    DOEpatents

    Hurwitz, H. Jr.; Brooks, H.; Mannal, C.; Payne, J.H.; Luebke, E.A.

    1959-03-24

    A reactor of the heterogeneous, liquid cooled type is described. This reactor is comprised of a central region of a plurality of vertically disposed elongated tubes surrounded by a region of moderator material. The central region is comprised of a central core surrounded by a reflector region which is surrounded by a fast neutron absorber region, which in turn is surrounded by a slow neutron absorber region. Liquid sodium is used as the primary coolant and circulates through the core which contains the fuel elements. Control of the reactor is accomplished by varying the ability of the reflector region to reflect neutrons back into the core of the reactor. For this purpose the reflector is comprised of moderator and control elements having varying effects on reactivity, the control elements being arranged and actuated by groups to give regulation, shim, and safety control.

  17. Neutron therapy of cancer

    NASA Technical Reports Server (NTRS)

    Frigerio, N. A.; Nellans, H. N.; Shaw, M. J.

    1969-01-01

    Reports relate applications of neutrons to the problem of cancer therapy. The biochemical and biophysical aspects of fast-neutron therapy, neutron-capture and neutron-conversion therapy with intermediate-range neutrons are presented. Also included is a computer program for neutron-gamma radiobiology.

  18. Tandem mirrors for neutron production

    SciTech Connect

    Doggett, J.N.

    1983-03-31

    Two mirror machine concepts are being studied as early-time, low-cost, neutron-producing devices for testing and demonstrating reactor-relevant fusion technology. The first of these concepts is for a new, small, driven, steady-state, D-T reactor, called the Technology Demonstration Facility (TDF). The second concept is for upgrades to the MFTF-B machine that burn tritium and run for pulse lengths of some hours. Both devices operate in the Kelley mode in order to provide high-wall loadings of 14-MeV neutrons, thereby providing a valuable test bed for reactor-relevant hardware and subsystems. Either one of these devices could be running in the early 1990's with first wall fluxes between 1.4 and 2.0 MW m/sup -2/.

  19. NEUTRON SOURCE

    DOEpatents

    Foster, J.S. Jr.

    1960-04-19

    A compact electronic device capable of providing short time high density outputs of neutrons is described. The device of the invention includes an evacuated vacuum housing adapted to be supplied with a deuterium, tritium, or other atmosphere and means for establishing an electrical discharge along a path through the gas. An energized solenoid is arranged to constrain the ionized gas (plasma) along the path. An anode bearing adsorbed or adherent target material is arranged to enclose the constrained plasma. To produce neutrons a high voltage is applied from appropriate supply means between the plasma and anode to accelerate ions from the plasma to impinge upcn the target material, e.g., comprising deuterium.

  20. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.; Weinberg, A.W.; Young, G.J.

    1958-04-15

    A nuclear reactor which uses uranium in the form of elongated tubes as fuel elements and liquid as a coolant is described. Elongated tubular uranium bodies are vertically disposed in an efficient neutron slowing agent, such as graphite, for example, to form a lattice structure which is disposed between upper and lower coolant tanks. Fluid coolant tubes extend through the uranium bodies and communicate with the upper and lower tanks and serve to convey the coolant through the uranium body. The reactor is also provided with means for circulating the cooling fluid through the coolant tanks and coolant tubes, suitable neutron and gnmma ray shields, and control means.

  1. Fusion gamma diagnostics for D-T and D-/sup 3/He plasmas

    SciTech Connect

    Medley, S.S.; Hendel, H.

    1982-11-01

    Nuclear reactions of interest in controlled thermonuclear fusion research often possess a branch yielding prompt emission of gamma radiation. In principle, the gamma emission can be exploited to provide a new fusion diagnostic offering measurements comparable to those obtained by the well established neutron diagnostics methods. The conceptual aspects for a fusion gamma diagnostic are discussed in this paper and the feasibility for application to the Tokamak Fusion Test Reactor during deuterium neutral beam heating of a D-T plasma and minority ion cyclotron resonance heating of a D-/sup 3/He plasma is examined.

  2. ICF burn-history measurments using 17-MeV fusion gamma rays

    SciTech Connect

    Lerche, R.A.; Cable, M.D.; Dendooven, P.G.

    1995-04-12

    Fusion reaction rate for inertial-confinement fusion (ICF) experiments at the Nova Laser Facility is measured with 30-ps resolution using a high-speed neutron detector. We are investigating a measurement technique based on the 16.7-MeV gamma rays that are released in deuterium-tritium fusion. Our concept is to convert gamma-ray energy into a fast burst of Cerenkov light that can be recorded with a high-speed optical detector. We have detected fusion gamma rays in preliminary experiments conducted at Nova where we used a tungsten/aerogel converter to generate Cerenkov light and an optical streak camera to record the signal.

  3. Study of fusion probabilities with halo nuclei using different proximity based potentials

    NASA Astrophysics Data System (ADS)

    Kumari, Raj

    2013-11-01

    We study fusion of halo nuclei with heavy targets using proximity based potentials due to Aage Winther (AW) 95, Bass 80 and Proximity 2010. In order to consider the extended matter distribution of halo nuclei, the nuclei radii borrowed from cross section measurements are included in these potentials. Our study reveals that the barrier heights are effectively reduced and fusion cross sections are appreciably enhanced by including extended radii of these nuclei. We also find that the extended sizes of halos contribute towards enhancement of fusion probabilities in case of proton halo nuclei, but, contribute to transfer or break-up process rather than fusion yield in case of neutron halo nuclei.

  4. Fusion-power demonstration. [Next step beyond MFTF-B

    SciTech Connect

    Henning, C.D.; Logan, B.G.; Carlson, G.A.; Neef, W.S.; Moir, R.W.; Campbell, R.B.; Botwin, R.; Clarkson, I.R.; Carpenter, T.J.

    1983-03-29

    As a satellite to the MARS (Mirror Advanced Reactor Study) a smaller, near-term device has been scoped, called the FPD (Fusion Power Demonstration). Envisioned as the next logical step toward a power reactor, it would advance the mirror fusion program beyond MFTF-B and provide an intermediate step toward commercial fusion power. Breakeven net electric power capability would be the goal such that no net utility power would be required to sustain the operation. A phased implementation is envisioned, with a deuterium checkout first to verify the plasma systems before significant neutron activation has occurred. Major tritium-related facilities would be installed with the second phase to produce sufficient fusion power to supply the recirculating power to maintain the neutral beams, ECRH, magnets and other auxiliary equipment.

  5. Materials needs for compact fusion reactors

    SciTech Connect

    Krakowski, R.A.

    1983-01-01

    The economic prospects for magnetic fusion energy can be dramatically improved if for the same total power output the fusion neutron first-wall (FW) loading and the system power density can be increased by factors of 3 to 5 and 10 to 30, respectively. A number of compact fusion reactor embodiments have been proposed, all of which would operate with increased FW loadings, would use thin (0.5 to 0.6 m) blankets, and would confine quasi-steady-state plasma with resistive, water-cooled copper or aluminum coils. Increased system power density (5 to 15 MWt/m/sup 3/ versus 0.3 to 0.5 MW/m/sup 3/), considerably reduced physical size of the fusion power core (FPC), and appreciably reduced economic leverage exerted by the FPC and associated physics result. The unique materials requirements anticipated for these compact reactors are outlined against the well documented backdrop provided by similar needs for the mainline approaches. Surprisingly, no single materials need that is unique to the compact systems is identified; crucial uncertainties for the compact approaches must also be addressed by the mainline approaches, particularly for in-vacuum components (FWs, limiters, divertors, etc.).

  6. Fusion excitation functions involving transitional nuclei

    SciTech Connect

    Rehm, K.E.; Jiang, C.L.; Esbensen, H.

    1995-08-01

    Measurements of fusion excitation functions involving transitional nuclei {sup 78}Kr and {sup 100}Mo showed a different behavior at low energies, if compared to measurements with {sup 86}Kr and {sup 92}Mo. This points to a possible influence of nuclear structure on the fusion process. One way to characterize the structure of vibrational nuclei is via their restoring force parameters C{sub 2} which can be calculated from the energy of the lowest 2{sup +} state and the corresponding B(E2) value. A survey of the even-even nuclei between A = 28-150 shows strong variations in C{sub 2} values spanning two orders of magnitude. The lowest values for C{sub 2} are observed for {sup 78}Kr, {sup 104}Ru and {sup 124}Xe followed by {sup 74,76}Ge, {sup 74,76}Se, {sup 100}Mo and {sup 110}Pd. In order to learn more about the influence of {open_quotes}softness{close_quotes} on the sub-barrier fusion enhancement, we measured cross sections for evaporation residue production for the systems {sup 78}Kr + {sup 104}Ru and {sup 78}Kr + {sup 76}Ge with the gas-filled magnet technique. For both systems, fusion excitation functions involving the closed neutron shell nucleus {sup 86}Kr were measured previously. The data are presently being analyzed.

  7. From Nucleons To Nuclei To Fusion Reactions

    SciTech Connect

    Quaglioni, S; Navratil, P; Roth, R; Horiuchi, W

    2012-02-15

    Nuclei are prototypes of many-body open quantum systems. Complex aggregates of protons and neutrons that interact through forces arising from quantum chromo-dynamics, nuclei exhibit both bound and unbound states, which can be strongly coupled. In this respect, one of the major challenges for computational nuclear physics, is to provide a unified description of structural and reaction properties of nuclei that is based on the fundamental underlying physics: the constituent nucleons and the realistic interactions among them. This requires a combination of innovative theoretical approaches and high-performance computing. In this contribution, we present one of such promising techniques, the ab initio no-core shell model/resonating-group method, and discuss applications to light nuclei scattering and fusion reactions that power stars and Earth-base fusion facilities.

  8. Beryllium for fusion application - recent results

    NASA Astrophysics Data System (ADS)

    Khomutov, A.; Barabash, V.; Chakin, V.; Chernov, V.; Davydov, D.; Gorokhov, V.; Kawamura, H.; Kolbasov, B.; Kupriyanov, I.; Longhurst, G.; Scaffidi-Argentina, F.; Shestakov, V.

    2002-12-01

    The main issues for the application of beryllium in fusion reactors are analyzed taking into account the latest results since the ICFRM-9 (Colorado, USA, October 1999) and presented at 5th IEA Be Workshop (10-12 October 2001, Moscow Russia). Considerable progress has been made recently in understanding the problems connected with the selection of the beryllium grades for different applications, characterization of the beryllium at relevant operational conditions (irradiation effects, thermal fatigue, etc.), and development of required manufacturing technologies. The key remaining problems related to the application of beryllium as an armour in near-term fusion reactors (e.g. ITER) are discussed. The features of the application of beryllium and beryllides as a neutron multiplier in the breeder blanket for power reactors (e.g. DEMO) in pebble-bed form are described.

  9. A. Sakharov and Fusion Research

    NASA Astrophysics Data System (ADS)

    Coppi, Bruno

    2012-02-01

    In the landmark paper by Tamm and Sakharov [1], a controlled nuclear fusion reactor based on an axisymmetric magnetic confinement configuration whose principles remain valid to this day, was proposed. In the light of present understanding of plasma physics the virtues (e.g. that of considering the D-D reaction) and the shortcomings of this paper are pointed out. In fact, relatively recent results of theoretical plasma physics (e.g. discovery of the so called second stability region) and advances in high field magnet technology have made it possible to identify the parameters of meaningful experiments capable of exploring D-D and D-^3He burn conditions. At the same time an experimental program (IGNIR) has been undertaken through a (funded) collaboration between Italy and Russia to investigate D-T plasmas close to ignition conditions based on an advanced high field toroidal confinement configuration. A. Sakharov envisioned a bolder approach to fusion research than that advocated by some of his contemporaries. The time taken to design and decide to fabricate the first experiment capable of reaching ignition conditions is due in part to the problem of gaining an adequate understanding the expected physics of fusion burning plasmas. However, most of the relevant financial effort has gone in the pursuit of slow and indirect enterprises complying with the ``playing it safe'' tendencies of large organizations or motivated by the purpose to develop technologies or maintain a high level of expertise in plasma physics to the expected benefit of other kinds of endeavors. The creativity demonstrated by A. Sakharov in dealing with civil rights and disarmament issues is needed, while maintaining our concerns for energy and the environment on a global scale, to orient the funding for fusion research toward a direct and well based scientific effort on concepts for which a variety of developments can be envisioned. These can span from uncovering new physics relevant, for instance

  10. Radioactivity measurements of ITER materials using the TFTR D-T neutron field

    SciTech Connect

    Kumar, A.; Abdou, M.A.; Barnes, C.W.; Kugel, H.W.; Loughlin, M.J.

    1994-08-01

    The availability of high D-T fusion neutron yields at TFTR has provided a useful opportunity to directly measure D-T neutron-induced radioactivity in a realistic tokamak fusion reactor environment for materials of vital interest to ITER. These measurements are valuable for characterizing radioactivity in various ITER candidate materials. for validating complex neutron transport calculations, and for meeting fusion reactor licensing requirements. The radioactivity measurements at TFTR involve potential ITER materials including stainless steel 316, vanadium, titanium, chromium, silicon, iron, cobalt, nickel, molybdenum, aluminum, copper, zinc. zirconium, niobium, and tungsten. Small samples of these materials were irradiated close to the plasma and just outside the vacuum vessel wall of TFTR, locations of different neutron energy spectra. Saturation activities for both threshold and capture reactions were measured. Data from dosimetric reactions have been used to obtain preliminary neutron energy spectra. Spectra from the first wall were compared to calculations from ITER and to measurements from accelerator-based tests.

  11. Compact neutron source development at LBNL

    SciTech Connect

    Reijonen, Jani; Lou, Tak Pui; Tolmachoff, Bryan; Leung, K.N.

    2001-07-25

    A compact neutron generator based on D-D or D-T fusion reactions is being developed at the Lawrence Berkeley National Laboratory. The deuterium or tritium ions are produced in a radio-frequency (RF) driven multicusp plasma source. Seven beamlets are extracted and are accelerated to energy of 100 keV by means of a three-electrode electrostatic accelerator column. The ion beam then impinges on a titanium coated copper target where either the 2.4 MeV D-D or 14 MeV D-T neutrons are generated by fusion reaction. The development of the neutron tube is divided into three phases. First, the accelerator column is operated at hydrogen beam intensity of 15 mA. Second phase consists of deuterium beam runs at pulsed, low duty cycle 150 mA operation. The third phase consists of deuterium or tritium operation at 1.5 A beam current. Phase one is completed and the results of hydrogen beam testing are discussed. Low duty cycle 150 mA deuterium operation is being investigated. Neutron flux will be measured. Finally the phase three operation and the advance neutron generator designs are described.

  12. Compact neutron source development at LBNL

    NASA Astrophysics Data System (ADS)

    Reijonen, Jani; Lou, Tak P.; Tolmachoff, Bryan; Leung, Ka-Ngo

    2001-12-01

    A compact neutron generator based on D-D or D-T fusion reactions is being developed at the Lawrence Berkeley National laboratory. The deuterium or tritium ions are produced in a radio-frequency (RF) driven multicusp plasma source. Seven beamlets are extracted and are accelerated to energy of 100 keV by means of a three-electrode electrostatic accelerator column. The ion beam then impinges on a titanium coated copper target where either the 2.4 MeV D-D or 13 MeV D-T neutrons are generated by fusion reaction. The development of the neutron tube is divided into three phases. First, the accelerator column is operated at hydrogen beam intensity of 15 mA. Second phase consists of deuterium beam runs at pulsed, low duty cycle 150 mA operation. The third phase consists of deuterium or tritium operation at 1.5 A beam current. Phase one is completed and the results of hydrogen beam testing are discussed. Low duty cycle 150 mA deuterium operation is being investigated. Neutron flux will be measured. Finally the phase three operation and the advance neutron generator designs are described.

  13. Note: Fast neutron efficiency in CR-39 nuclear track detectors

    SciTech Connect

    Cavallaro, S.

    2015-03-15

    CR-39 samples are commonly employed for fast neutron detection in fusion reactors and in inertial confinement fusion experiments. The literature reported efficiencies are strongly depending on experimental conditions and, in some cases, highly dispersed. The present note analyses the dependence of efficiency as a function of various parameters and experimental conditions in both the radiator-assisted and the stand-alone CR-39 configurations. Comparisons of literature experimental data with Monte Carlo calculations and optimized efficiency values are shown and discussed.

  14. Packed fluidized bed blanket for fusion reactor

    DOEpatents

    Chi, John W. H.

    1984-01-01

    A packed fluidized bed blanket for a fusion reactor providing for efficient radiation absorption for energy recovery, efficient neutron absorption for nuclear transformations, ease of blanket removal, processing and replacement, and on-line fueling/refueling. The blanket of the reactor contains a bed of stationary particles during reactor operation, cooled by a radial flow of coolant. During fueling/refueling, an axial flow is introduced into the bed in stages at various axial locations to fluidize the bed. When desired, the fluidization flow can be used to remove particles from the blanket.

  15. Environmental and safety aspects of fusion

    SciTech Connect

    Crocker, J.G.

    1980-01-01

    In any deuterium-tritium burning fusion reactor there are several safety and environmental issues that must be addressed. The major issues involve: (1) use of tritium in the fuel cycle, (2) activation of structural materials, corrosion products in fluid streams, and reactor hall environment by high-energy neutrons, (3) the requirement for use of lithium to breed tritium and the attendant fire potential, and (4) the handling and disposal of radioactive waste. Also, a major concern with the magnetic systems is the presence of large superconducting magnets and magnetic fields and their potential effects on personnel, structures, and equipment. Each of these issues is discussed.

  16. Organic materials for fusion-reactor applications

    SciTech Connect

    Hurley, G.F.; Coltman, R.R. Jr.

    1983-09-01

    Organic materials requirements for fusion-reactor magnets are described with reference to the temperature, radiation, and electrical and mechanical stress environment expected in these magnets. A review is presented of the response to gamma-ray and neutron irradiation at low temperatures of candidate organic materials; i.e. laminates, thin films, and potting compounds. Lifetime-limiting features of this response as well as needed testing under magnet operating conditions not yet adequately investigated are identified and recomendations for future work are made.

  17. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.

    1960-09-27

    A unit assembly is described for a neutronic reactor comprising a tube and plurality of spaced parallel sandwiches in the tube extending lengthwise thereof, each sandwich including a middle plate having a central opening for plutonium and other openings for fertile material at opposite ends of the plate.

  18. Neutronic reactor

    DOEpatents

    Carleton, John T.

    1977-01-25

    A graphite-moderated nuclear reactor includes channels between blocks of graphite and also includes spacer blocks between adjacent channeled blocks with an axis of extension normal to that of the axis of elongation of the channeled blocks to minimize changes in the physical properties of the graphite as a result of prolonged neutron bombardment.

  19. Two Horizons of Fusion

    ERIC Educational Resources Information Center

    Lo, Mun Ling; Chik, Pakey Pui Man

    2016-01-01

    In this paper, we aim to differentiate the internal and external horizons of "fusion." "Fusion" in the internal horizon relates to the structure and meaning of the object of learning as experienced by the learner. It clarifies the interrelationships among an object's critical features and aspects. It also illuminates the…

  20. Fusion Science Education Outreach

    NASA Astrophysics Data System (ADS)

    Danielson, C. A.; DIII-D Education Group

    1996-11-01

    This presentation will focus on education outreach activities at General Atomics that have been expanded to include the general population on science education with a focus on fusion energy. Outreach materials are distributed upon request both nationally and internationally. These materials include a notebook containing copies of DIII--D tour panels, fusion poster, new fusion energy video, new fusion energy brochure, and the electromagnetic spectrum curriculum. The 1996 Fusion Forum (held in the House Caucus Room) included a student/ teacher lunch with Energy Secretary Hazel O'Leary and a private visit to the Forum exhibits. The continuing partnership with Kearny High School includes lectures, job shadowing, internship, equipment donations and an award-winning electric car-racing program. Development of distribution by CD of the existing interactive fusion energy kiosk and a virtual reality tour of the DIII--D facility are underway. The DIII--D fusion education WWW site includes e-mail addresses to ``Ask the Wizard,'' and/or receive GA's outreach materials. Steve Rodecker, a local science teacher, aided by DIII--D fusion staff, won his second Tapestry Award; he also was named the ``1995 National Science Teacher of the Year'' and will be present to share his experiences with the DIII--D educational outreach program.

  1. Controlled Nuclear Fusion.

    ERIC Educational Resources Information Center

    Glasstone, Samuel

    This publication is one of a series of information booklets for the general public published by The United States Atomic Energy Commission. Among the topics discussed are: Importance of Fusion Energy; Conditions for Nuclear Fusion; Thermonuclear Reactions in Plasmas; Plasma Confinement by Magnetic Fields; Experiments With Plasmas; High-Temperature…

  2. Development of a sealed-accelerator-tube neutron generator

    PubMed

    Verbeke; Leung; Vujic

    2000-10-01

    Sealed-accelerator-tube neutron generators are being developed in Lawrence Berkeley National Laboratory (LBNL) for applications ranging from neutron radiography to boron neutron capture therapy and neutron activation analysis. The new generation of high-output neutron generators is based on the D-T fusion reaction, producing 14.1-MeV neutrons. The main components of the neutron tube--the ion source, the accelerator and the target--are all housed in a sealed metal container without external pumping. Thick-target neutron yield computations are performed in this paper to estimate the neutron yield of titanium and scandium targets. With an average deuteron beam current of 1 A and an energy of 120 keV, a time-averaged neutron production of approximately 10(14) n/s can be estimated for a tritiated target, for both pulsed and cw operations. In mixed deuteron/triton beam operation, a beam current of 2 A at 150 keV is required for the same neutron output. Recent experimental results on ion sources and accelerator columns are presented and discussed. PMID:11003523

  3. Decomposition of incomplete fusion

    SciTech Connect

    Sobotka, L.B.; Sarantities, D.G.; Stracener, D.W.; Majka, Z.; Abenante, V.; Semkow, T.M.; Hensley, D.C.; Beene, J.R.; Halbert, M.L.

    1989-01-01

    The velocity distribution of fusion-like products formed in the reaction 701 MeV /sup 28/Si+/sup 100/Mo is decomposed into 26 incomplete fusion channels. The momentum deficit of the residue per nonevaporative mass unit is approximately equal to the beam momentum per nucleon. The yields of the incomplete fusion channels correlate with the Q-value for projectile fragmentation rather than that for incomplete fusion. The backward angle multiplicities of light particles and heavy ions increase with momentum transfer, however, the heavy ion multiplicities also depend on the extent of the fragmentation of the incomplete fusion channel. These data indicate that at fixed linear momentum transfer, increased fragmentation of the unfused component is related to a reduced transferred angular momentum. 22 refs., 6 figs., 1 tab.

  4. Research on stellarator-mirror fission-fusion hybrid

    NASA Astrophysics Data System (ADS)

    Moiseenko, V. E.; Kotenko, V. G.; Chernitskiy, S. V.; Nemov, V. V.; Ågren, O.; Noack, K.; Kalyuzhnyi, V. N.; Hagnestål, A.; Källne, J.; Voitsenya, V. S.; Garkusha, I. E.

    2014-09-01

    The development of a stellarator-mirror fission-fusion hybrid concept is reviewed. The hybrid comprises of a fusion neutron source and a powerful sub-critical fast fission reactor core. The aim is the transmutation of spent nuclear fuel and safe fission energy production. In its fusion part, neutrons are generated in deuterium-tritium (D-T) plasma, confined magnetically in a stellarator-type system with an embedded magnetic mirror. Based on kinetic calculations, the energy balance for such a system is analyzed. Neutron calculations have been performed with the MCNPX code, and the principal design of the reactor part is developed. Neutron outflux at different outer parts of the reactor is calculated. Numerical simulations have been performed on the structure of a magnetic field in a model of the stellarator-mirror device, and that is achieved by switching off one or two coils of toroidal field in the Uragan-2M torsatron. The calculations predict the existence of closed magnetic surfaces under certain conditions. The confinement of fast particles in such a magnetic trap is analyzed.

  5. Methods for absorbing neutrons

    DOEpatents

    Guillen, Donna P.; Longhurst, Glen R.; Porter, Douglas L.; Parry, James R.

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  6. Multivariable optimization of fusion reactor blankets

    SciTech Connect

    Meier, W.R.

    1984-04-01

    The optimization problem consists of four key elements: a figure of merit for the reactor, a technique for estimating the neutronic performance of the blanket as a function of the design variables, constraints on the design variables and neutronic performance, and a method for optimizing the figure of merit subject to the constraints. The first reactor concept investigated uses a liquid lithium blanket for breeding tritium and a steel blanket to increase the fusion energy multiplication factor. The capital cost per unit of net electric power produced is minimized subject to constraints on the tritium breeding ratio and radiation damage rate. The optimal design has a 91-cm-thick lithium blanket denatured to 0.1% /sup 6/Li. The second reactor concept investigated uses a BeO neutron multiplier and a LiAlO/sub 2/ breeding blanket. The total blanket thickness is minimized subject to constraints on the tritium breeding ratio, the total neutron leakage, and the heat generation rate in aluminum support tendons. The optimal design consists of a 4.2-cm-thick BeO multiplier and 42-cm-thick LiAlO/sub 2/ breeding blanket enriched to 34% /sup 6/Li.

  7. Activation Characteristics of Fuel Breeding Blanket Module in Fusion Driven Subcritical System

    NASA Astrophysics Data System (ADS)

    Huang, Qun-Ying; Li, Jian-Gang; Chen, Yi-Xue

    2004-12-01

    Shortage of energy resources and production of long-lived radioactivity wastes from fission reactors are among the main problems which will be faced in the world in the near future. The conceptual design of a fusion driven subcritical system (FDS) is underway in Institute of Plasma Physics, Chinese Academy of Sciences. There are alternative designs for multi-functional blanket modules of the FDS, such as fuel breeding blanket module (FBB) to produce fuels for fission reactors, tritium breeding blanket module to produce the fuel, i.e. tritium, for fusion reactor and waste transmutation blanket module to try to permanently dispose of long-lived radioactivity wastes from fission reactors, etc. Activation of the fuel breeding blanket of the fusion driven subcritical system (FDS-FBB) by D-T fusion neutrons from the plasma and fission neutrons from the hybrid blanket are calculated and analysed under the neutron wall loading 0.5 MW/m2 and neutron fluence 15 MW.yr/m2. The neutron spectrum is calculated with the worldwide-used transport code MCNP/4C and activation calculations are carried out with the well known European inventory code FISPACT/99 with the latest released IAEA Fusion Evaluated Nuclear Data Library FENDL-2.0 and the ENDF/B-V uranium evaluated data. Induced radioactivities, dose rates and afterheats, etc, for different components of the FDS-FBB are compared and analysed.

  8. Fusion Breeding for Sustainable, Mid Century, Carbon Free Power

    NASA Astrophysics Data System (ADS)

    Manheimer, Wallace

    2015-11-01

    If ITER achieves Q ~10, it is still very far from useful fusion. The fusion power, and the driver power will allow only a small amount of power to be delivered, <~50MW for an ITER scale tokamak. It is unlikely, considering ``conservative design rules'' that tokamaks can ever be economical pure fusion power producers. Considering the status of other magnetic fusion concepts, it is also very unlikely that any alternate concept will either. Laser fusion does not seem to be constrained by any conservative design rules, but considering the failure of NIF to achhieve ignition, at this point it has many more obstacles to overcome than magnetic fusion. One way out of this dilemma is to use an ITER size tokamak, or a NIF size laser, as a fuel breeder for searate nuclear reactors. Hence ITER and NIF become ends in themselves, instead of steps to who knows what DEMO decades later. Such a tokamak can easily live within the consrtaints of conservative design rules. This has led the author to propose ``The Energy Park'' a sustainable, carbon free, economical, and environmently viable power source without prolifertion risk. It is one fusion breeder fuels 5 conventional nuclear reactors, and one fast neutron reactor burns the actinide wastes.

  9. Mini-fission fusion explosive devices (mini-nukes) for nuclear pulse propulsion

    NASA Astrophysics Data System (ADS)

    Winterberg, F.

    2005-11-01

    Nuclear pulse propulsion demands low-yield nuclear explosive devices. Because the critical mass of a fission explosive is rather large, this leads to extravagant fission devices with a very low fuel burn-up. For non-fission ignited pure fusion microexplosions the problem is the large ignition apparatus (laser, particle beam, etc.). Fission ignited large fusion explosive devices are for obvious reasons even less desirable. A third category (mini-nukes) are devices where the critical mass of the fission explosive is substantially reduced by its coupling to a DT fusion reaction, with the DT fusion neutrons increasing the fission rate. Whereas in pure fission devices a reduction of the critical mass is achieved by the implosive compression of the fissile core with a chemical high explosive, in the third category the implosion must at the same time heat the DT surrounding the fissile core to a temperature of ⩾107K, at which enough fusion neutrons are generated to increase the fission rate which in turn further increases the temperature and fusion neutron production rate. As has been shown by the author many years ago, such mini-nukes lead to astonishingly small critical masses. In their application to nuclear pulse propulsion the combustion products from the chemical high explosive are further heated by the neutrons and are becoming part of the propellant.

  10. Design of a backscatter 14-MeV neutron time-of-flight spectrometer for experiments at ITER

    SciTech Connect

    Dzysiuk, N.; Hellesen, C.; Conroy, S.; Ericsson, G.; Hjalmarsson, A.; Skiba, M.

    2014-08-21

    Neutron energy spectrometry diagnostics play an important role in present-day experiments related to fusion energy research. Measurements and thorough analysis of the neutron emission from the fusion plasma give information on a number of basic fusion performance quantities, on the condition of the neutron source and plasma behavior. Here we discuss the backscatter Time-of-Flight (bTOF) spectrometer concept as a possible instrument for performing high resolution measurements of 14 MeV neutrons. The instrument is based on two sets of scintillators, a first scatterer exposed to a collimated neutron beam and a second detector set placed in the backward direction. The scintillators of the first set are enriched in deuterium to achieve neutron backscattering. The energy resolution and efficiency of a bTOF instrument have been determined for various geometrical configurations. A preliminary design of optimal geometry for the two scintillator sets has been obtained by Monte Carlo simulations based on the MCNPX code.

  11. Neutron reflecting supermirror structure

    DOEpatents

    Wood, James L.

    1992-01-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources.

  12. Neutron reflecting supermirror structure

    DOEpatents

    Wood, J.L.

    1992-12-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. 2 figs.

  13. Recent Advances in Neutron Physics

    ERIC Educational Resources Information Center

    Feshbach, Herman; Sheldon, Eric

    1977-01-01

    Discusses new studies in neutron physics within the last decade, such as ultracold neutrons, neutron bottles, resonance behavior, subthreshold fission, doubly radiative capture, and neutron stars. (MLH)

  14. Neutron emission profiles and energy spectra measurements at JET

    SciTech Connect

    Giacomelli, L.; Conroy, S.; Belli, F.; Riva, M.; Gorini, G.; Horton, L.; Joffrin, E.; Lerche, E.; Murari, A.; Popovichev, S.; Syme, B.; Collaboration: JET EFDA Contributors

    2014-08-21

    The Joint European Toras (JET, Culham, UK) is the largest tokamak in the world. It is devoted to nuclear fusion experiments of magnetic confined Deuterium (D) or Deuterium-Tritium (DT) plasmas. JET has been upgraded over the years and recently it has also become a test facility of the components designed for ITER, the next step fusion machine under construction in Cadarache (France). JET makes use of many different diagnostics to measure the physical quantities of interest in plasma experiments. Concerning D or DT plasmas neutron production, various types of detectors are implemented to provide information upon the neutron total yield, emission profile and energy spectrum. The neutron emission profile emitted from the JET plasma poloidal section is reconstructed using the neutron camera (KN3). In 2010 KN3 was equipped with a new digital data acquisition system capable of high rate neutron measurements (<0.5 MCps). A similar instrument will be implemented on ITER and it is currently in its design phase. Various types of neutron spectrometers with different view lines are also operational on JET. One of them is a new compact spectrometer (KM12) based on organic liquid scintillating material which was installed in 2010 and implements a similar digital data acquisition system as for KN3. This article illustrates the measurement results of KN3 neutron emission profiles and KM 12 neutron energy spectra from the latest JET D experimental campaign C31.

  15. Neutron emission profiles and energy spectra measurements at JET

    NASA Astrophysics Data System (ADS)

    Giacomelli, L.; Conroy, S.; Belli, F.; Gorini, G.; Horton, L.; Joffrin, E.; Lerche, E.; Murari, A.; Popovichev, S.; Riva, M.; Syme, B.; JET EFDA Contributors

    2014-08-01

    The Joint European Toras (JET, Culham, UK) is the largest tokamak in the world. It is devoted to nuclear fusion experiments of magnetic confined Deuterium (D) or Deuterium-Tritium (DT) plasmas. JET has been upgraded over the years and recently it has also become a test facility of the components designed for ITER, the next step fusion machine under construction in Cadarache (France). JET makes use of many different diagnostics to measure the physical quantities of interest in plasma experiments. Concerning D or DT plasmas neutron production, various types of detectors are implemented to provide information upon the neutron total yield, emission profile and energy spectrum. The neutron emission profile emitted from the JET plasma poloidal section is reconstructed using the neutron camera (KN3). In 2010 KN3 was equipped with a new digital data acquisition system capable of high rate neutron measurements (<0.5 MCps). A similar instrument will be implemented on ITER and it is currently in its design phase. Various types of neutron spectrometers with different view lines are also operational on JET. One of them is a new compact spectrometer (KM12) based on organic liquid scintillating material which was installed in 2010 and implements a similar digital data acquisition system as for KN3. This article illustrates the measurement results of KN3 neutron emission profiles and KM 12 neutron energy spectra from the latest JET D experimental campaign C31.

  16. Fusion Nuclear Science Facility (FNSF) motivation and required capabilities

    NASA Astrophysics Data System (ADS)

    Peng, Y. K. M.; Park, J. M.; Canik, J. M.; Diem, S. J.; Sontag, A. C.; Lumsdaine, A.; Murakami, M.; Katoh, Y.; Burgess, T. W.; Korsah, K.; Patton, B. D.; Wagner, J. C.; Yoder, G. L.; Cole, M. J.; Fogarty, P. J.; Sawan, M.

    2011-10-01

    A compact (R0 ~ 1.2-1.3m), low aspect ratio, low-Q (<3) Fusion Nuclear Science Facility (FNSF) was recently assessed to provide a fully integrated, D-T-fueled, continuously driven plasma, volumetric nuclear environment of copious neutrons. This environment would be used to carry out, for the first time, discovery-driven research in fusion nuclear science and materials, in parallel with and complementary to ITER. This research would aim to test, discover, and understand new nuclear-nonnuclear synergistic interactions involving plasma material interactions, neutron material interactions, tritium fuel breeding and transport, and power extraction, and innovate and develop solutions for DEMO components. Progress will be reported on the fusion nuclear-nonnuclear coupling effects identified that motivate research on such an FNSF, and on the required capabilities in fusion plasma, device operation, and fusion nuclear science and engineering to fulfill its mission. Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. DOE under contract DE-AC05-00OR22725.

  17. Performance improvement of neutron flux monitor at KSTAR

    NASA Astrophysics Data System (ADS)

    Kim, Y.-K.; Lee, S.-K.; Kang, B.-H.; Son, J.-B.; Kim, G.-D.

    2012-06-01

    The evaluation of plasma performance in fusion reactors is carried out by various particle or ion detection systems. Neutron diagnostic systems are used to evaluate different aspects of plasma performance and are very important tools because they can directly detect the neutrons of D-D or D-T fusion reactions. Among them, the stilbene scintillator has good Pulse Shape Discrimination (PSD), a fast response of 10 ns and it can also evaluate neutron energy using an unfolding method. Because of these properties, it was proposed as a neutron flux monitor in the Korea Superconducting Tokamak Advanced Research magnetic fusion reactor (KSTAR). Under high radiation fields, specially designed electronics are necessary to measure only fast neutron spectra and to reject background gamma rays. In order to increase the data transfer rate for real-time evaluation of plasma performance, we have developed a Flash Analog to Digital Convertor (FADC) with a Field-Programmable Gate Array (FPGA) that implements a Digital Charge Comparison (DCC) algorithm. Performance evaluation of stilbene was conducted in a 2011 KSTAR campaign and it showed good results for measuring real-time neutron flux with temporal resolution of 1 ms, and it operated well under high magnetic field conditions.

  18. Commercial objectives, technology transfer, and systems analysis for fusion power development

    NASA Technical Reports Server (NTRS)

    Dean, Stephen O.

    1988-01-01

    Fusion is an inexhaustible source of energy that has the potential for economic commercial applications with excellent safety and environmental characteristics. The primary focus for the fusion energy development program is the generation of central station electricity. Fusion has the potential, however, for many other applications. The fact that a large fraction of the energy released in a DT fusion reaction is carried by high energy neutrons suggests potentially unique applications. In addition, fusion R and D will lead to new products and new markets. Each fusion application must meet certain standards of economic and safety and environmental attractiveness. For this reason, economics on the one hand, and safety and environment and licensing on the other, are the two primary criteria for setting long range commercial fusion objectives. A major function of systems analysis is to evaluate the potential of fusion against these objectives and to help guide the fusion R and D program toward practical applications. The transfer of fusion technology and skills from the national labs and universities to industry is the key to achieving the long range objective of commercial fusion applications.

  19. Neutron beam imaging with GEM detectors

    NASA Astrophysics Data System (ADS)

    Albani, G.; Croci, G.; Cazzaniga, C.; Cavenago, M.; Claps, G.; Muraro, A.; Murtas, F.; Pasqualotto, R.; Perelli Cippo, E.; Rebai, M.; Tardocchi, M.; Gorini, G.

    2015-04-01

    Neutron GEM-based detectors represent a new frontier of devices in neutron physics applications where a very high neutron flux must be measured such as future fusion experiments (e.g. ITER Neutral beam Injector) and spallation sources (e.g. the European Spallation source). This kind of detectors can be properly adapted to be used both as beam monitors but also as neutron diffraction detectors that could represent a valid alternative for the 3He detectors replacement. Fast neutron GEM detectors (nGEM) feature a cathode composed by one layer of polyethylene and one of aluminium (neutron scattering on hydrogen generates protons that are detected in the gas) while thermal neutron GEM detectors (bGEM) are equipped with a borated aluminium cathode (charged particles are generated through the 10B(n,α)7Li reaction). GEM detectors can be realized in large area (1 m2) and their readout can be pixelated. Three different prototypes of nGEM and one prototype of bGEM detectors of different areas and equipped with different types of readout have been built and tested. All the detectors have been used to measure the fast and thermal neutron 2D beam image at the ISIS-VESUVIO beamline. The different kinds of readout patterns (different areas of the pixels) have been compared in similar conditions. All the detectors measured a width of the beam profile consitent with the expected one. The imaging property of each detector was then tested by inserting samples of different material and shape in the beam. All the samples were correctly reconstructed and the definition of the reconstruction depends on the type of readout anode. The fast neutron beam profile reconstruction was then compared to the one obtained by diamond detectors positioned on the same beamline while the thermal neutron one was compared to the imaged obtained by cadmium-coupled x-rays films. Also efficiency and the gamma background rejection have been determined. These prototypes represent the first step towards the

  20. Fusion Studies in Japan

    NASA Astrophysics Data System (ADS)

    Ogawa, Yuichi

    2016-05-01

    A new strategic energy plan decided by the Japanese Cabinet in 2014 strongly supports the steady promotion of nuclear fusion development activities, including the ITER project and the Broader Approach activities from the long-term viewpoint. Atomic Energy Commission (AEC) in Japan formulated the Third Phase Basic Program so as to promote an experimental fusion reactor project. In 2005 AEC has reviewed this Program, and discussed on selection and concentration among many projects of fusion reactor development. In addition to the promotion of ITER project, advanced tokamak research by JT-60SA, helical plasma experiment by LHD, FIREX project in laser fusion research and fusion engineering by IFMIF were highly prioritized. Although the basic concept is quite different between tokamak, helical and laser fusion researches, there exist a lot of common features such as plasma physics on 3-D magnetic geometry, high power heat load on plasma facing component and so on. Therefore, a synergetic scenario on fusion reactor development among various plasma confinement concepts would be important.

  1. Fusion Power Demonstration (FPD) maintenance and disassembly considerations

    SciTech Connect

    Spampinato, P.T.

    1985-01-01

    The Fusion Power Demonstration study is the development of a tandem mirror reactor design that follows the operation of the Mirror Fusion Test Facility. It is a power-producing device utilizing the deuterium-tritium fuel cycle; hence, much of its maintenance must be accomplished remotely because of neutron-induced gamma activation. This paper discusses the maintenance philosophy adopted and its impact on the device configuration and examines some of the specific requirements of scheduled and unscheduled component replacements. This work is being used for the next phase of mirror reactor concepts: the Mini-Mars reactor study.

  2. Fusion yield enhancement in magnetized laser-driven implosions.

    PubMed

    Chang, P Y; Fiksel, G; Hohenberger, M; Knauer, J P; Betti, R; Marshall, F J; Meyerhofer, D D; Séguin, F H; Petrasso, R D

    2011-07-15

    Enhancement of the ion temperature and fusion yield has been observed in magnetized laser-driven inertial confinement fusion implosions on the OMEGA Laser Facility. A spherical CH target with a 10 atm D2 gas fill was imploded in a polar-drive configuration. A magnetic field of 80 kG was embedded in the target and was subsequently trapped and compressed by the imploding conductive plasma. As a result of the hot-spot magnetization, the electron radial heat losses were suppressed and the observed ion temperature and neutron yield were enhanced by 15% and 30%, respectively. PMID:21838372

  3. Fusion Yield Enhancement in Magnetized Laser-Driven Implosions

    NASA Astrophysics Data System (ADS)

    Chang, P. Y.; Fiksel, G.; Hohenberger, M.; Knauer, J. P.; Betti, R.; Marshall, F. J.; Meyerhofer, D. D.; Séguin, F. H.; Petrasso, R. D.

    2011-07-01

    Enhancement of the ion temperature and fusion yield has been observed in magnetized laser-driven inertial confinement fusion implosions on the OMEGA Laser Facility. A spherical CH target with a 10 atm D2 gas fill was imploded in a polar-drive configuration. A magnetic field of 80 kG was embedded in the target and was subsequently trapped and compressed by the imploding conductive plasma. As a result of the hot-spot magnetization, the electron radial heat losses were suppressed and the observed ion temperature and neutron yield were enhanced by 15% and 30%, respectively.

  4. Calibration of neutron-yield diagnostics in attenuating and scattering environments

    SciTech Connect

    Hahn, K. D.; Ruiz, C. L.; Chandler, G. A.; Leeper, R. J.; McWatters, B. R.; Smelser, R. M.; Torres, J. A.; Cooper, G. W.; Nelson, A. J.

    2012-10-15

    We have performed absolute calibrations of a fusion-neutron-yield copper-activation diagnostic in environments that significantly attenuate and scatter neutrons. We have measured attenuation and scattering effects and have compared the measurements to Monte Carlo simulations using the Monte Carlo N-Particle code. We find that measurements and simulations are consistent within 10%.

  5. Determination of TFTR far-field neutron detector efficiencies by local neutron flux spectrum measurement

    NASA Astrophysics Data System (ADS)

    Jassby, D. L.; Ascione, G.; Kugel, H. W.; Roquemore, A. L.; Barcelo, T. W.; Kumar, A.

    1997-01-01

    Neutron detectors have often been located on the tokamak fusion test reactor (TFTR) test cell floor 3 m or more from the vacuum vessel for ease of detector access, to reduce radiation damage, minimize count saturation problems, and to avoid high magnetic fields. These detectors include Si surface-barrier diodes, fission chambers, natural diamond detectors, and T2 production in a moderated 3He cell. To evaluate the performance of these detectors during deuterium-tritium (D-T) operation, we determined the neutron flux spectrum incident on the principal detector enclosure using nuclide sample sets containing Al, Ti, Fe, Co, Cu, Zn, Ni, Zr, Nb, In, and Au activation foils. Foils were installed and then removed after ample exposure to TFTR D-T neutrons. High efficiency, high purity Ge detectors were used for gamma spectroscopy of the irradiated foils. The incident neutron fluence and spectral distribution were unfolded from the measured results, and used to derive absolute detector efficiencies.

  6. A Sealed-Accelerator-Tube Neutron Generator for Boron Neutron Capture Therapy Application

    SciTech Connect

    Leung, K.-N.; Leung, K.N.; Lee, Y.; Verbeke, J.M.; Vurjic, J.; Williams, M.D.; Wu, L.K.; Zahir, N.

    1998-06-01

    Radio-frequency (RF) driven ion sources are being developed in Lawrence Berkeley National Laboratory (LBNL) for sealed-accelerator-tube neutron generator applications. By using a 2.5-cm-diameter RF-driven multicusp source and a computer designed 100 keV accelerator column, peak extractable hydrogen current exceeding 1 A from a 3-mm-diameter aperture, together with H{sup +} yields over 94% have been achieved. These experimental findings together with recent moderator design will enable one to develop compact 14 MeV neutron generators based on the D-T fusion reaction. In this new neutron generator, the ion source, the accelerator and the target are all housed in a sealed metal container without pumping. With a 120 keV and 1 A deuteron beam, it is estimated that a treatment time of {approx} 45 minutes is needed for boron neutron capture therapy.

  7. Deuterium density profile determination at JET using a neutron camera and a neutron spectrometer

    SciTech Connect

    Eriksson, J. Castegnetti, G.; Conroy, S.; Ericsson, G.; Hellesen, C.; Giacomelli, L.

    2014-11-15

    In this work we estimate the fuel ion density profile in deuterium plasmas at JET, using the JET neutron camera, the neutron time-of-flight spectrometer TOFOR, and fusion reactivities modeled by the transport code TRANSP. The framework has been tested using synthetic data, which showed that the density profile could be reconstructed with an average accuracy of the order of 10 %. The method has also been applied to neutron measurements from a neutral beam heated JET discharge, which gave n{sub d}/n{sub e} ≈ 0.6 ± 0.3 in the plasma core and n{sub d}/n{sub e} ≈ 0.4 ± 0.3 towards the edge. Correction factors for detector efficiencies, neutron attenuation, and back-scattering are not yet included in the analysis; future work will aim at refining the estimated density.

  8. Optimal Neutron Source & Beam Shaping Assembly for Boron Neutron Capture Therapy

    SciTech Connect

    J. Vujic; E. Greenspan; W.E. Kastenber; Y. Karni; D. Regev; J.M. Verbeke, K.N. Leung; D. Chivers; S. Guess; L. Kim; W. Waldron; Y. Zhu

    2003-04-30

    There were three objectives to this project: (1) The development of the 2-D Swan code for the optimization of the nuclear design of facilities for medical applications of radiation, radiation shields, blankets of accelerator-driven systems, fusion facilities, etc. (2) Identification of the maximum beam quality that can be obtained for Boron Neutron Capture Therapy (BNCT) from different reactor-, and accelerator-based neutron sources. The optimal beam-shaping assembly (BSA) design for each neutron source was also to e obtained. (3) Feasibility assessment of a new neutron source for NCT and other medical and industrial applications. This source consists of a state-of-the-art proton or deuteron accelerator driving and inherently safe, proliferation resistant, small subcritical fission assembly.

  9. Deuterium density profile determination at JET using a neutron camera and a neutron spectrometer

    NASA Astrophysics Data System (ADS)

    Eriksson, J.; Castegnetti, G.; Conroy, S.; Ericsson, G.; Giacomelli, L.; Hellesen, C.

    2014-11-01

    In this work we estimate the fuel ion density profile in deuterium plasmas at JET, using the JET neutron camera, the neutron time-of-flight spectrometer TOFOR, and fusion reactivities modeled by the transport code TRANSP. The framework has been tested using synthetic data, which showed that the density profile could be reconstructed with an average accuracy of the order of 10 %. The method has also been applied to neutron measurements from a neutral beam heated JET discharge, which gave nd/ne ≈ 0.6 ± 0.3 in the plasma core and nd/ne ≈ 0.4 ± 0.3 towards the edge. Correction factors for detector efficiencies, neutron attenuation, and back-scattering are not yet included in the analysis; future work will aim at refining the estimated density.

  10. Spherical torus fusion reactor

    DOEpatents

    Martin Peng, Y.K.M.

    1985-10-03

    The object of this invention is to provide a compact torus fusion reactor with dramatic simplification of plasma confinement design. Another object of this invention is to provide a compact torus fusion reactor with low magnetic field and small aspect ratio stable plasma confinement. In accordance with the principles of this invention there is provided a compact toroidal-type plasma confinement fusion reactor in which only the indispensable components inboard of a tokamak type of plasma confinement region, mainly a current conducting medium which carries electrical current for producing a toroidal magnet confinement field about the toroidal plasma region, are retained.

  11. Fusion for Space Propulsion

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Schafer, Charles (Technical Monitor)

    2001-01-01

    There is little doubt that humans will attempt to explore and develop the solar system in this century. A large amount of energy will be required for accomplishing this. The need for fusion propulsion is discussed. For a propulsion system, there are three important thermodynamical attributes: (1) The absolute amount of energy available, (2) the propellant exhaust velocity, and (3) the jet power per unit mass of the propulsion system (specific power). For human exploration and development of the solar system, propellant exhaust velocity in excess of 100 km/s and specific power in excess of 10 kW/kg are required. Chemical combustion can produce exhaust velocity up to about 5 km/s. Nuclear fission processes typically result in producing energy in the form of heat that needs to be manipulated at temperatures limited by materials to about 2,800 K. Using the energy to heat a hydrogen propellant increases the exhaust velocity by only a factor of about two. Alternatively the energy can be converted into electricity which is then used to accelerate particles to high exhaust velocity. The necessary power conversion and conditioning equipment, however, increases the mass of the propulsion system for the same jet power by more than two orders of magnitude over chemical system, thus greatly limits the thrust-to-weight ratio attainable. The principal advantage of the fission process is that its development is relatively mature and is available right now. If fusion can be developed, fusion appears to have the best of all worlds in terms of propulsion - it can provide the absolute amount, the propellant exhaust velocity, and the high specific jet power. An intermediate step towards pure fusion propulsion is a bimodal system in which a fission reactor is used to provide some of the energy to drive a fusion propulsion unit. The technical issues related to fusion for space propulsion are discussed. The technical priorities for developing and applying fusion for propulsion are

  12. Nuclear Fusion Award 2009 speech Nuclear Fusion Award 2009 speech

    NASA Astrophysics Data System (ADS)

    Sabbagh, Steven Anthony

    2011-01-01

    This is an exceptional moment in my career, and so I want to thank all of my teachers, colleagues and mentors who have made this possible. From my co-authors and myself, many thanks to the International Atomic Energy Agency, IOP Publishing, the Nuclear Fusion journal team, and the selection committee for the great honor of receiving this award. Also gratitude to Kikuchi-sensei, not only for the inventive and visionary creation of this award, but also for being a key mentor dating back to his efforts in producing high neutron output in JT-60U. It was also a great honor to receive the award directly from IAEA Deputy Director General Burkart during the 23rd IAEA Fusion Energy Conference in Daejeon. Receiving the award at this venue is particularly exciting as Daejeon is home to the new, next-generation KSTAR tokamak device that will lead key magnetic fusion research areas going forward. I would also like to thank the mayor of Daejeon, Dr Yum Hong-Chul, and all of the meeting organizers for giving us all a truly spectacular and singular welcoming event during which the award was presented. The research leading to the award would not have been possible without the support of the US Department of Energy, and I thank the Department for the continued funding of this research. Special mention must be made to a valuable co-author who is no longer with us, Professor A. Bondeson, who was a significant pioneer in resistive wall mode (RWM) research. I would like to thank my wife, Mary, for her infinite patience and encouragement. Finally, I would like to personally thank all of you that have approached and congratulated me directly. There are no units to measure how important your words have been in this regard. When notified that our paper had been shortlisted for the 2009 Nuclear Fusion Award, my co-authors responded echoing how I felt—honored to be included in such a fine collection of research by colleagues. It was unfathomable—would this paper follow the brilliant work

  13. Study on in situ calibration for neutron flux monitor in the Large Helical Device based on Monte Carlo calculations

    SciTech Connect

    Nakano, Y. Yamazaki, A.; Watanabe, K.; Uritani, A.; Ogawa, K.; Isobe, M.

    2014-11-15

    Neutron monitoring is important to manage safety of fusion experiment facilities because neutrons are generated in fusion reactions. Monte Carlo simulations play an important role in evaluating the influence of neutron scattering from various structures and correcting differences between deuterium plasma experiments and in situ calibration experiments. We evaluated these influences based on differences between the both experiments at Large Helical Device using Monte Carlo simulation code MCNP5. A difference between the both experiments in absolute detection efficiency of the fission chamber between O-ports is estimated to be the biggest of all monitors. We additionally evaluated correction coefficients for some neutron monitors.

  14. Neutron wall loading of Tokamak reactors

    NASA Astrophysics Data System (ADS)

    Wong, C. P. C.

    2000-12-01

    Neutron wall loading (Γn) is a key parameter for the selection of fusion power core component materials. It also impacts the economic, performance, design, safety and environmental aspect of the fusion power plant. This paper reports the determination of the range of Γn for economically competitive fusion power plants based on the analysis that couples the MHD stability physics results to a system design code. Cost of electricity (COE) was selected as the parameter to be minimized. For both normal conducting and superconducting coil options, at thermal efficiency of 46% and at the power output range of 1-2 GW(e) the average neutron wall loading is 4-7 MW/m2. For a given power output, higher thermal efficiency will allow lower Γn. At the above range of Γn, in order to have economical fusion power reactors, for the solid first wall design option, high thermal efficiency of 46% to 57.5% requires the use of alloys like V and W-alloy, respectively. The corresponding COE can be projected to be in the economically competitive range of 62-54.6 mill/kWh.

  15. What we should do for transition from current tokamaks to fusion-fission reactor

    NASA Astrophysics Data System (ADS)

    Mirnov, S.

    2012-06-01

    The Russian fission community places several heavy demands to quality of fusion neutron source for the first step of investigation of minority transmutations ("burning") and breading of nuclear fuel. They are: the steady state regime of neutron production (not rare 80% of main operation time), the total power on neutron flux should be not lower than 20MW with surface neutron load not lower than 0.2MW/m2. Between the current fusion devices: mirror traps, reverse field pinches, stellarators, spherical torus and tokamaks only lasts have today the some probability to fulfill in the near future these hard demands. Two well known DT-tokamaks with neutron power production higher 10MW - TFTR and JET-had maximal neutron load approximately 0.1MW/m2 only in transient (with time scale lower 1s) regimes. The quasi steady state neutron emission regime (˜5MW, 5sec) was performed in JET with mean surface neutron load lower than 0.025MW/m2 only. In this communication it will be discussed the main needs of JET scale tokamak improvement for increase on neutron load up to 0.2MW/m2. They are: decrease of Zeff by ECRH and lithium use as plasma facing components, the increase of energy of steady state neutral injectors up to 150-170keV (tritium), the He removal and creation of closed loop of DT fuel circulation.

  16. Commercial fusion power in the next decade

    SciTech Connect

    Bussard, R.

    1984-01-01

    The tokamak is a concept first invented by the Russians in 1966, which permits the stable and efficient confinement of a hot ''plasma'' in a toroidal or ''doughnut-shaped'' magnetic ''bottle''. The tokamak configuration is the world standard for all major national fusion research programs. The RIGGATRON is a very small high-field tokamak, which employs unique thermal and mechanical designs for appropriate energy extraction. The hot and densely confined ''plasma'' gas is composed of ions of the heavy hydrogen isotopes, deuterium (D) and tritium (T) which are ''fusing together'' to form helium and neutrons. The toroidal magnetic bottle confines and contains the heavy hydrogen fuel and the helium by-product, while it permits the energetic neutrons to escape. The tokamak is a special type of magnetic bottle, and the RIGGATRON is a special type of tokamak. Work conducted to date has led to conceptual design of the first fusion test units, and to the successful development of basic materials and fabrication techniques required to assure performance and engineering integrity of these units. Simultaneously, initial specifications for the test site, electrical power supply, water cooling supply and other auxiliary sub-systems have been defined.

  17. D-D neutron generator development at LBNL.

    PubMed

    Reijonen, J; Gicquel, F; Hahto, S K; King, M; Lou, T-P; Leung, K-N

    2005-01-01

    The plasma and ion source technology group in Lawrence Berkeley National Laboratory is developing advanced, next generation D-D neutron generators. There are three distinctive developments, which are discussed in this presentation, namely, multi-stage, accelerator-based axial neutron generator, high-output co-axial neutron generator and point source neutron generator. These generators employ RF-induction discharge to produce deuterium ions. The distinctive feature of RF-discharge is its capability to generate high atomic hydrogen species, high current densities and stable and long-life operation. The axial neutron generator is designed for applications that require fast pulsing together with medium to high D-D neutron output. The co-axial neutron generator is aimed for high neutron output with cw or pulsed operation, using either the D-D or D-T fusion reaction. The point source neutron generator is a new concept, utilizing a toroidal-shaped plasma generator. The beam is extracted from multiple apertures and focus to the target tube, which is located at the middle of the generator. This will generate a point source of D-D, T-T or D-T neutrons with high output flux. The latest development together with measured data will be discussed in this article. PMID:15975804

  18. Multi-axis neutron imaging at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Fittinghoff, D. N.; Bettencourt, R.; Christensen, K.; Grim, G. P.; Hibbard, R. L.; Jedlovec, D. R.; Shingleton, N.; Merrill, F. E.; Fatherley, V. E.; Simpson, R.; Volegov, P. L.; Wilde, C. H.

    2015-08-01

    Inertial confinement fusion experiments at the National Ignition Facility (NIF) rely on a neutron imager to measure the 2D size and shape of the neutron-producing region in the burning deuterium-tritium plasma. Since the existing neutron imager is located on the equator of the NIF chamber, it provides only one view of the plasma, which complicates understanding the inherently three-dimensional nature of the implosion. Attempts to use x-ray images combined with the neutron image to improve our understanding of the 3D neutron-burn volume have proved to be inconsistent with the fuel mass. This result is understandable since neutrons and x-rays are not produced or propagated in the same manner. Thus, it is desirable to use multiple neutron imagers, and we are designing two neutron imagers on lines of sight that are nearly orthogonal to the current imager, one near the pole of the chamber and one near the equator, for fielding on the NIF in the next five years. In this paper, we will discuss the current designs, including the resolution, field of view and placement in the facility that will be required to use the three orthogonal neutron imagers to measure the neutron burn volume of plasmas at NIF. Prepared by LLNL under Contract DE-AC52-07NA27344.

  19. Behavior of structural and target materials irradiated in spallation neutron environments

    SciTech Connect

    Stubbins, J.F.; Wechsler, M.; Borden, M.; Sommer, W.F.

    1995-05-01

    This paper describes considerations for selection of structural and target materials for accelerator-driven neutron sources. Due to the operating constraints of proposed accelerator-driven neutron sources, the criteria for selection are different than those commonly applied to fission and fusion systems. Established irradiation performance of various alloy systems is taken into account in the selection criteria. Nevertheless, only limited materials performance data are available which specifically related to neutron energy spectra anticipated for spallation sources.

  20. Photo-fusion reactions in a new compact device for ELI

    NASA Astrophysics Data System (ADS)

    Moustaizis, S. D.; Auvray, P.; Hora, H.; Lalousis, P.; Larour, J.; Mourou, G.

    2012-07-01

    In the last few years significant progress on technological, experimental and numerical studies on fusion process in high density and high temperature plasmas produced by a high intensity laser pulse interaction with clusters in a high external applied magnetic field, enable us to propose a compact photo-fusion magnetic device for high neutron production. For the purpose of the project a pulsed magnetic field driver with values up to 110 Tesla has been developed which allows increasing the trapping time of the high density plasma in the device and improving the neutron yield. Numerical simulations show that the proposed device is capable of producing up to 109-1010 neutrons per laser shot with an external magnetic field of 150 Tesla. The proposed device can be used for experiments and numerical code validation concerning different conventional and (or) exotic fusion fuels.