Science.gov

Sample records for 140-ghz long-pulsed gyrotron

  1. Spectral Characteristics of a 140-GHz Long-Pulsed Gyrotron

    PubMed Central

    Han, Seong-Tae; Griffin, Robert G.; Hu, Kan-Nian; Joo, Chan-Gyu; Joye, Colin D.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Torrezan, Antonio C.; Woskov, Paul P.

    2008-01-01

    Gyrotrons operating in the millimeter and submillimeter wavelength ranges are the promising sources for applications that are requiring good spectral characteristics and a wide range of output power. We report the precise measurement results of gyrotron spectra. Experiments were conducted using a 140-GHz long-pulse gyrotron that is developed for the dynamic nuclear polarization/nuclear-magnetic-resonance spectroscopy at the Massachusetts Institute of Technology. Transient downshift of the frequency by 12 MHz with a time constant of 3 s was observed. After reaching equilibrium, the frequency was maintained within 1 ppm for over 20 s. The coefficient of the frequency change with cavity temperature was −2.0 MHz/K, which shows that fine tuning of the gyrotron frequency is plausible by cavity-temperature control. Frequency pulling by the beam current was observed, but it was shown to be masked by the downward shift of the gyrotron frequency with temperature. The linewidth was measured to be much less than 1 MHz at 60 dB relative to the carrier power [in decibels relative to carrier (dBc)] and 4.3 MHz at 75 dBc, which is the largest dynamic range to date for the measurement of gyrotron linewidth to our knowledge. PMID:19081779

  2. Experimental results of the 140 GHz, 1 MW long-pulse gyrotron for W7-X

    NASA Astrophysics Data System (ADS)

    Koppenburg, K.; Arnold, A.; Borie, E.; Dammertz, G.; Giguet, E.; Heidinger, R.; Illy, S.; Kuntze, M.; Le Cloarec, G.; Legrand, F.; Leonhardt, W.; Lievin, C.; Neffe, G.; Piosczyk, B.; Schmid, M.; Thumm, M.

    2003-02-01

    Gyrotrons at high frequency with high output power are mainly developed for microwave heating and current drive in plasmas for thermonuclear fusion. For the stellarator Wendelstein 7-X now under construction at IPP Greifswald, Germany, a 10 MW ECRH system is foreseen. A 1 MW, 140 GHz long-pulse gyrotron has been designed and a pre-prototype (Maquette) has been constructed and tested in an European collaboration between FZK Karlsruhe, CRPP Lausanne, IPF Suttgart, IPP Greifswald, CEA Cadarache and TED Vélizy [1]. The cylindrical cavity is designed for operating in the TE28,8 mode. It is a standard tapered cavity with linear input downtaper and a non-linear uptaper. The diameter of the cylindrical part is 40.96 mm. The transitions between tapers and straight section are smoothly rounded to avoid mode conversion. The TE28,8-cavity mode is transformed to a Gaussian TEM0,0 output mode by a mode converter consisting of a rippled-wall waveguide launcher followed by a three mirror system. The output window uses a single, edge cooled CVD-diamond disk with an outer diameter of 106 mm, a window aperture of 88 mm and a thickness of 1.8 mm corresponding to four half wavelengths. The collector is at ground potential, and a depression voltage for energy recovery can be applied to the cavity and to the first two mirrors. Additional normal-conducting coils are employed to the collector in order to produce an axial magnetic field for sweeping the electron beam with a frequency of 7 Hz. A temperature limited magnetron injection gun without intermediate anode ( diode type ) is used. In short pulse operation at the design current of 40 A an output power of 1 MW could be achieved for an accelerating voltage of 82 kV without depression voltage and with a depression voltage of 25 kV an output power of 1.15 MW at an accelerating voltage of 84 kV has been measured. For these values an efficiency of 49% was obtained. At constant accelerating voltages, the output power did not change up to

  3. Long-pulse operation of a 0.5 MW TE{sub 10.4} gyrotron at 140 GHz

    SciTech Connect

    Dammertz, G.; Iatrou, C.T.; Kuntze, M.; Moebius, A.; Piosczyk, B.; Braz, O.; Thumm, M. |

    1996-06-01

    Gyrotron oscillators have proven to be highly efficient sources of coherent mm-wave radiation. They have been used successfully for electron cyclotron resonance heating (ECRH) experiments and electron cyclotron diagnostics (ECD) of plasma fusion for some time. Due to the localized energy deposition, the temperature profile can be modified and the stability of the plasma can be improved. Here, the operation features of a TE{sub 10.4}-mode gyrotron oscillator with a quasi-optical mode converter and a single-stage depressed collector at 140 GHz with an output power of 500 kW in long pulses of 0.2 s are presented. Measurements on long-pulse operation of the tube are described in detail, and the significant differences between short- and long-pulse operation concerning efficiency and output power are pointed out. The variation of frequency during a pulse and an irreversible frequency shift during long-pulse operation were measured and are discussed with respect to gyrotron design.

  4. Studies of novel 140 GHz gyrotrons

    NASA Astrophysics Data System (ADS)

    Hu, Wen

    We have designed, built and tested the world's first mode-selective confocal cavity gyrotron oscillator operating at 140GHz with over 66kW of RF power and up to 23% efficiency. The tube operates at the HE06 mode of the confocal cavity. A Magnetotron Injection Gun (MIG) provides an annular electron beam with up to 70kV and 8A. The confocal gyrotron oscillator is designed to better characterize the confocal cavity's mode spectrum for future amplifier applications. The device utilizes the interaction between an electron beam in cyclotron motion and the cavity mode in an open two-mirror confocal cavity are suppressed, and only gaussian-like modes can propagate with small loss. As a result, the confocal geometry reduces mode indices from two dimensional TEn,m to one dimensional HE0,q in confocal waveguide. The greatly reduced mode density of this structure lowers the risk of spurious mode competition, which is a critical issue in gyrotron development. Several models were formulated for various configurations of gyrotrons. A nonlinear theory for the mirror based quasi-optical Gyrotron Traveling Wave Tube (Gyro-TWT) was developed for the first time. The Gyro-TWT consists of a series of parallel spherical mirrors. A free space Gaussian beam propagates through the structure by bouncing between the mirrors in a serpentine path. A co- propagating electron beam in gyromotion interacts with and the amplifies the wave. The model shows excellent agreement with the well benchmarked linear theory. The phase front distortion effect in the quasi-optical gyro- TWT is revealed by this model. A preliminary confocal waveguide based gyro-TWT amplifier is designed. Cold tests of the quasi-optical input circuit show good gaussian beam transport with low loss. The amplifier performance is theoretically predicted to have a 4dB/cm linear gain, 20% efficiency and 70kW RF power. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  5. Operation Of A 140 GHz Tunable Backward Wave Gyrotron Oscillator

    NASA Astrophysics Data System (ADS)

    Guss, W. C.; Kreischer, K. E.; Temkin, R. J.; Caplan, M.; Pirkle, D.

    1988-11-01

    A tunable backward-wave oscillator (BWO) gyrotron is currently being operated at MIT which is a prototype for a FEL driver at high frequency. Novel features of this design, are the overmoded TE12 cylindrical cavity, a wide band moth-eye window, and the use of a Pierce-wiggler gun. The design objectives are voltage tuning from 130-140 GHz with 10 kW output power. The interaction region is 10λο long where λο is the free space wave length. A linear 2° uptaper is used to maintain mode purity and a broadband motheye window is used for maximum transmission.

  6. Initial Testing of a 140 GHz 1 MW Gyrotron

    NASA Astrophysics Data System (ADS)

    Cauffman, Stephen; Felch, Kevin; Blank, Monica; Borchard, Philipp; Cahalan, Pat; Chu, Sam; Jory, Howard

    2001-10-01

    CPI has completed the fabrication of a 140 GHz 1 MW CW gyrotron to be used on the W7-X stellarator at IPP Greifswald. Testing of the initial build of this gyrotron had just begun when this abstract was prepared, and was expected to finish in September, at which time a planned rebuild of the device was scheduled to begin. This poster will summarize the gyrotron design, present results of initial testing, and outline any design changes planned as a consequence of these results. This gyrotron's design employs a number of advanced features, including a diode electron gun for simplified operation, a single-stage depressed collector to enhance overall efficiency, a CVD diamond output window, an internal mode converter that converts the excited TE28,7 cavity mode to a Gaussian output beam, and a high-voltage layout that locates all external high voltage below the superconducting magnet system without requiring an oil tank for insulation. Similar features are being used for an 84 GHz 500 kW system being built for the KSTAR tokamak program and for a 110 GHz 1.5 MW system being designed in collaboration with MIT, UMd, UW, GA, and Calabazas Creek Research with funding provided by DOE.

  7. Testing of a 3 MW, 140 GHz coaxial cavity gyrotron

    SciTech Connect

    Hogge, J.P.; Kreischer, K.; Read, M.E.; Nusinovich, G.; Dumbrajs, O.

    1995-12-31

    A gyrotron designed to produce 3 MW at 140 GHz has been realized and tested The cavity is coaxial, with a desired operating mode of TE{sub 21,13}. The coaxial cavity was designed to have peak ohmic heating of 2.9 kW/cm{sup 2} with less mode competition, and thus a higher electronic efficiency (45%) than the 37% predicted for a hollow cavity with the same mode number. The efficiency calculations were done by a time dependent, multimode simulation. The results of the code are shown. The electron gun is an inverted MIG, with the ``intermediate`` anode at ground potential. The beam voltage and current are 95 kV and 84 A, and the cathode and beam radii, 4.7 cm and 0.815 cm, respectively. The beam velocity ratio, {alpha}, and perpendicular velocity spread, as predicted by EGUN, are 1.44 and 3.7%, respectively. Measurements of the power and frequency spectrum will be presented.

  8. Series of powerful CW gyrotrons in the range 105 - 140 GHz

    NASA Astrophysics Data System (ADS)

    Denisov, Gregory; Kazansky, Igor; Malygin, Vladimir; Soluyanova, Elena; Tai, Evgeny; Chirkov, Aleksey

    2017-07-01

    GYCOM in collaboration with Institute of Applied Physics (IAP) designed, fabricated and tested two different gyrotrons with similar to ITER parameters at 105 - 140 GHz frequency range. Set of gyrotron system beside the tube includes matching optic unit (MOU) and elements of evacuated transmission lines. One gyrotron system was installed and operates at plasma machines EAST / ASIPP / China, another system is delivered to KSTAR / NFRI / Korea.

  9. Development and Preliminary Commissioning Results of a Long Pulse 140 GHz ECRH System on EAST Tokamak (Invited)

    NASA Astrophysics Data System (ADS)

    Xu, Handong; Wang, Xiaojie; Liu, Fukun; Zhang, Jian; Huang, Yiyun; Shan, Jiafang; Wu, Dajun; Hu, Huaichuan; Li, Bo; Li, Miaohui; Yang, Yong; Feng, Jianqiang; Xu, Weiye; Tang, Yunying; Wei, Wei; Xu, Liqing; Liu, Yong; Zhao, Hailin; Lohr, J.; A. Gorelov, Y.; P. Anderson, J.; Ma, Wendong; Wu, Zege; Wang, Jian; Zhang, Liyuan; Guo, Fei; Sun, Haozhang; Yan, Xinsheng; East Team

    2016-04-01

    A long pulse electron cyclotron resonance heating (ECRH) system has been developed to meet the requirements of steady-state operation for the EAST superconducting tokamak, and the first EC wave was successfully injected into plasma during the 2015 spring campaign. The system is mainly composed of four 140 GHz gyrotron systems, 4 ITER-Like transmission lines, 4 independent channel launchers and corresponding power supplies, a water cooling, control & inter-lock system etc. Each gyrotron is expected to deliver a maximum power of 1 MW and be operated at 100-1000 s pulse lengths. The No.1 and No.2 gyrotron systems have been installed. In the initial commissioning, a series of parameters of 1 MW 1 s, 900 kW 10 s, 800 kW 95 s and 650 kW 753 s have been demonstrated successfully on the No.1 gyrotron system based on calorimetric dummy load measurements. Significant plasma heating and MHD instability suppression effects were observed in EAST experiments. In addition, high confinement (H-mode) discharges triggered by ECRH were obtained. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2011GB102000, 2012GB103000 and 2015GB103000)

  10. Operational Characteristics of a 14-W 140-GHz Gyrotron for Dynamic Nuclear Polarization

    PubMed Central

    Joye, Colin D.; Griffin, Robert G.; Hornstein, Melissa K.; Hu, Kan-Nian; Kreischer, Kenneth E.; Rosay, Melanie; Shapiro, Michael A.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Woskov, Paul P.

    2006-01-01

    The operating characteristics of a 140-GHz 14-W long pulse gyrotron are presented. The device is being used in dynamic nuclear polarization enhanced nuclear magnetic resonance (DNP/NMR) spectroscopy experiments. The gyrotron yields 14 W peak power at 139.65 GHz from the TE(0,3) operating mode using a 12.3-kV 25-mA electron beam. Additionally, up to 12 W peak has been observed in the TE(2,3) mode at 136.90 GHz. A series of mode converters transform the TE(0,3) operating mode to the TE(1,1) mode. Experimental results are compared with nonlinear simulations and show reasonable agreement. The millimeter-wave output beam was imaged in a single shot using a pyroelectric camera. The mode patterns matched reasonably well to theory for both the TE(0,1) mode and the TE(1,1) mode. Repeatable mode patterns were obtained at intervals ranging from 0.8 s apart to 11 min apart at the output of the final mode converter. PMID:17431442

  11. Operational Characteristics of a 14-W 140-GHz Gyrotron for Dynamic Nuclear Polarization.

    PubMed

    Joye, Colin D; Griffin, Robert G; Hornstein, Melissa K; Hu, Kan-Nian; Kreischer, Kenneth E; Rosay, Melanie; Shapiro, Michael A; Sirigiri, Jagadishwar R; Temkin, Richard J; Woskov, Paul P

    2006-06-01

    The operating characteristics of a 140-GHz 14-W long pulse gyrotron are presented. The device is being used in dynamic nuclear polarization enhanced nuclear magnetic resonance (DNP/NMR) spectroscopy experiments. The gyrotron yields 14 W peak power at 139.65 GHz from the TE(0,3) operating mode using a 12.3-kV 25-mA electron beam. Additionally, up to 12 W peak has been observed in the TE(2,3) mode at 136.90 GHz. A series of mode converters transform the TE(0,3) operating mode to the TE(1,1) mode. Experimental results are compared with nonlinear simulations and show reasonable agreement. The millimeter-wave output beam was imaged in a single shot using a pyroelectric camera. The mode patterns matched reasonably well to theory for both the TE(0,1) mode and the TE(1,1) mode. Repeatable mode patterns were obtained at intervals ranging from 0.8 s apart to 11 min apart at the output of the final mode converter.

  12. Design and operation of 140 GHz gyrotron oscillators for power levels up to 1 MW CW

    SciTech Connect

    Jory, H.; Bier, R.; Craig, L.J.; Felch, K.; Ives, L.; Lopez, N.; Spang, S.

    1986-12-01

    Varian has designed and tested 140 GHz gyrotron oscillators that have generated output powers of 100 kW CW and 200 kW for 1 ms pulses. Upcoming tubes will be designed to operate at power levels of 200 kW CW and ultimately up to 1 MW CW. The important design considerations which are addressed in the higher power tubes include the design of the electron gun, interaction circuit, and output window. These issues will be discussed and the results of the earlier 140 GHz gyrotron work at Varian will be summarized.

  13. Deevelopment of a 1.5 MW, 140 GHz coaxial gyrotron

    SciTech Connect

    Piosczyk, B.; Dammertz, G.; Iatrou, C.T.; Moebius, A.; Zhang, S.C.

    1995-12-31

    A 1.5 MW, 140 GHz, TE{sub 28,16}-coaxial gyrotron with an inverse MIG is under development. Preliminary rf-tests using an axial rf output and a simple cavity with a constant diameter and non-corrugated inner rod gave an rf output power of 1 MW with an efficiency of 23% at 140 GHz (TE{sub 28,16}) and 1.3 MW with an efficiency of 29% at 133 GHz (TE{sup 27,15}). No indications of beam instabilities in the beam tunnel between the IMIG gun and the cavity have been observed. Experiments with an improved cavity and the design of the tube with a radial dual Gaussian beam output and a depressed collector are underway.

  14. The MTX computer control system for the 400 kilowatt 140 GHz gyrotron

    NASA Astrophysics Data System (ADS)

    Jackson, M. C.; Ferguson, S. W.; Petersen, D. E.

    1991-09-01

    A 400 kilowatt, 140 GHz gyrotron is employed on MTX as a source of direct plasma heating and, additionally, as a driver for a free electron laser, which is used for plasma heating. The control system that operates this gyrotron uses a new graphics oriented software system called TACL (Thaumaturgic Automated Control Logic) developed by the Continuous Electron Beam Accelerator Facility (CEBAF) and owned by DOE. This control language does not require a software specialist, but is easily handled by the engineer or technician working on the system. All control logic and custom displays are entered via graphics oriented editors and no actual lines of code need to be written. The graphics displays make the gyrotron operation quite simple and allow individual users to define displays to meet their own needs or develop one for a specific set of tests to be run. The system, additionally, can be used for logging functions, which have been found quite useful in tracking long term trends in vacion current and calorimetry of gyrotron cooling circuits. The system is composed of one computer (HP 9000 series 300) controlling multiple CAMAC crates located at the various components used in the system. A second series 300 computer is used as a supervisor and is located in the main tokamak control room. This supervisory computer provides remote operation of the gyrotron, and also provides a link to the microwave transport vacuum control (also TACL). The supervisory computer, additionally, is used as a subsystem status summary point for permissives to the gyrotron control system.

  15. Megawatt Long-Pulse Gyrotrons for ECH and ECCD Applications

    NASA Astrophysics Data System (ADS)

    Cauffman, S.; Felch, K.; Blank, M.; Borchard, P.; Cahalan, P.; Chu, T. S.; Jory, H.; Saraph, G.; Wagner, D.

    2000-10-01

    High-power long-pulse mm-wave sources are required for electron cyclotron heating and current drive in large-scale fusion experiments. Gyrotron oscillator technology has developed considerably in recent years, enabling the generation of Gaussian mm-wave beams at megawatt power levels for pulse durations in excess of 10 seconds from a single unit. This presentation summarizes CPI's recent gyrotron development activities for fusion applications. CPI has fabricated a series of 110 GHz gyrotrons for use in DIII-D ECH experiments. The three most recent gyrotrons in this series employ a diode electron gun, an internal quasi-optical mode converter, and a CVD diamond output window. Further development activities funded by DOE are aimed at incorporating a multi-stage depressed electron beam collector to improve efficiency and optimizing other design components to enable output power levels of 1.5 MW. CPI is also constructing a prototype 140 GHz 1 MW CW gyrotron for use with the W7-X stellarator. This gyrotron employs a single-stage depressed collector and a high-voltage design eliminating the need for oil around the insulating ceramics. A similar configuration was employed successfully in a recently delivered 70 GHz 500 kW gyrotron, and is being used for an 84 GHz 500 kW system under development for the KSTAR tokamak program. Design features of these devices will be compared, and empirical results will be presented for those devices for which test data is available.

  16. Development of High Power Gyrotrons at 84, 110, and 140 GHz

    NASA Astrophysics Data System (ADS)

    Cauffman, Stephen; Blank, Monica; Borchard, Philipp; Cahalan, Pat; Chu, Sam; Felch, Kevin; Jory, Howard

    2002-11-01

    High power mm-wave sources are needed for electron cyclotron heating, current drive, and instability suppression in fusion plasmas. CPI has recently developed an 84 GHz, 500 kW, 2 second pulse gyrotron for use on K-STAR; a series of 110 GHz, 1 MW, 10 second pulse gyrotrons (two of which had achieved 1 MW 5 second pulse widths as of the writing of this abstract) for use on DIII-D; and a 140 GHz, 1 MW, CW gyrotron (for which initial tests were conducted, and which is presently being modified in preparation for further testing) for use on W-7X. Each design employs a diode magnetron injection gun, a high-order TE-mode interaction cavity, an internal mode converter to transform the excitation mode into a Gaussian output beam, and a CVD diamond output window to allow low- loss transmission of the output beam. The 84 GHz and 140 GHz systems employ a single-stage depressed voltage beam collector to enhance the overall electrical efficiency of the device and an external high voltage layout that obviates the need for oil insulation. Experimental results for each system will be discussed.

  17. Design considerations for a 100 kW c-w, 140 GHz gyrotron oscillator

    SciTech Connect

    Felch, K.; Bier, R.; Fox, L.; Huey, H.; Ives, L.; Jory, H.; Spang, S.

    1984-01-01

    A gyrotron oscillator capable of generating 100 kW of c-w power is currently under development at Varian. The tube is being designed for operation in the TE/sup 0//sub 031/ cavity mode with the electron beam located at the second radial electric field maximum in the cavity. The electron beam will be produced by a magnetron injection gun and the 56 kG magnetic field required for 140 GHz operation will be provided by a superconducting magnet. Initial design calculations for the important elements of the tube are reported and the various technology issues of the tube design are discussed.

  18. Operation of a 3 MW, 140 GHz gyrotron with a coaxial cavity

    SciTech Connect

    Advani, R.N.; Pedrozzi, M.; Kreischer, K.E.; Temkin, R.J.; Read, M.E.

    1998-12-31

    Experimental results will be presented here for a high power, high frequency coaxial gyrotron. The designed goal for this experiment is to produce 3 MW, at 140 GHz in the TE 21,13 mode with an efficiency of at least 30%. In the experiment the inner conductor extends from the electron gun to the output. The main advantages of the coaxial conductor are: causes rarefied mode spectrum around the design mode; reduces the quality factor of competing modes; volume modes (higher radial index) can be chosen (which increases the output power); and reduces voltage depression.

  19. Amplification of picosecond pulses in a 140-GHz gyrotron-traveling wave tube.

    PubMed

    Kim, H J; Nanni, E A; Shapiro, M A; Sirigiri, J R; Woskov, P P; Temkin, R J

    2010-09-24

    An experimental study of picosecond pulse amplification in a gyrotron-traveling wave tube (gyro-TWT) has been carried out. The gyro-TWT operates with 30 dB of small signal gain near 140 GHz in the HE₀₆ mode of a confocal waveguide. Picosecond pulses show broadening and transit time delay due to two distinct effects: the frequency dependence of the group velocity near cutoff and gain narrowing by the finite gain bandwidth of 1.2 GHz. Experimental results taken over a wide range of parameters show good agreement with a theoretical model in the small signal gain regime. These results show that in order to limit the pulse broadening effect in gyrotron amplifiers, it is crucial to both choose an operating frequency at least several percent above the cutoff of the waveguide circuit and operate at the center of the gain spectrum with sufficient gain bandwidth.

  20. Design of Electron Gun for 1.5 MW, 140 GHz Gyrotron

    NASA Astrophysics Data System (ADS)

    Singh, Udaybir; Kumar, Nitin; Purohit, L. P.; Sinha, A. K.

    2011-02-01

    This paper presents the design of the triode type electron gun for a 140 GHz, 1.5 MW gyrotron with the transverse to the axial velocity ratio of the beam 1.4 and the transverse velocity spread 1.28%. The operating mode of the gyrotron is TE24,8 and it is operated in the fundamental harmonic. The analytic trade-off equations for the electron gun design have been used to estimate the initial gun parameters. The electron trajectory tracing program has been used to optimize the electron gun design. The parametric dependences of modulating anode voltage, beam voltage and cathode magnetic field on the beam quality has also been studied.

  1. Design of a 3-MW 140-GHz gyrotron with a coaxial cavity

    SciTech Connect

    Read, M.E.; Nusinovich, G.S.; Dumbrajs, O.; Bird, G.; Hogge, J.P.; Kreischer, K.; Blank, M.

    1996-06-01

    Gyrotrons have been developed as sources of high-power millimeter wave radiation for electron cyclotron heating for more than two decades, with orders of magnitude increases in power at frequencies to almost 300 GHz having been achieved. The requirement is for at least 1 MW, essentially CW at 110 GHz, for near-term applications such as plasma heating experiments, and greater than 1 MW CW for the next generation magnetic fusion device, the International Thermonuclear Experimental Reactor (ITER). For increased economy, multimegawatt devices are being considered. In this paper, a design for a 3-MW 140 GHz gyrotron based on the use of a coaxial cavity is given. The cavity mode is TE{sub 21,13}, chosen so that the ohmic heating on both the inner and outer conductors would be low enough for CW operation. The mode selection process, nonlinear, multimode and time-dependent modeling of the beam wave interaction, and gun design are discussed in detail. An inverted magnetron injection gun (MIG) is used to accommodate the inner conductor. The radiation is coupled out via a quasi-optical mode converter, consisting of an irregular cylindrical waveguide section followed by a step-cut launching aperture and a single near-parabolic mirror. The design of these components is also described.

  2. Experimental investigation of a 140 GHz gyrotron-backward wave oscillator

    NASA Astrophysics Data System (ADS)

    Basten, M. A.; Guss, W. C.; Kreischer, K. E.; Temkin, R. T.; Caplan, M.

    1995-05-01

    We report the experimental operation of a voltage tunable gyrotron backward wave oscillator (gyro-BWO) in the frequency range near 140 GHz. Voltage tunability is an important feature of the gyro-BWO for application as a fast tuning source for driving high power free electron lasers or cyclotron autoresonance maser amplifiers. The gyro-BWO operated in an overmoded cylindrical waveguide structure in the TE1,2 mode. The electron beam source was a Pierce-wiggler gun producing an 80 kV, 6.2 A beam. Frequency tuning with voltage between 134 and 147 GHz was achieved in the TE1,2 mode with constant magnetic field. However, this tuning was found to be discontinuous. Output powers of up to 2 kW and 2% efficiency were found, significantly below theoretical predictions for a cold beam. The theoretical beam velocity spread was modeled by a 3D beam transport code. The code results show that space charge forces, coupled with the wiggler-induced helical motion and the short cyclotron wavelength of the beam, produce large increases in velocity spread in the magnetic compression region. A beam with smaller velocity spread would be needed to make the gyro-BWO operate at the desired efficiency.

  3. Study on the After Cavity Interaction in a 140 GHz Gyrotron Using 3D CFDTD PIC Simulations

    NASA Astrophysics Data System (ADS)

    Lin, M. C.; Illy, S.; Avramidis, K.; Thumm, M.; Jelonnek, J.

    2016-10-01

    A computational study on after cavity interaction (ACI) in a 140 GHz gryotron for fusion research has been performed using a 3-D conformal finite-difference time-domain (CFDTD) particle-in-cell (PIC) method. The ACI, i.e. beam wave interaction in the non-linear uptaper after the cavity has attracted a lot of attention and been widely investigated in recent years. In a dynamic ACI, a TE mode is excited by the electron beam at the same frequency as in the cavity, and the same mode is also interacting with the spent electron beam at a different frequency in the non-linear uptaper after the cavity while in a static ACI, a mode interacts with the beam both at the cavity and at the uptaper, but at the same frequency. A previous study on the dynamic ACI on a 140 GHz gyrotron has concluded that more advanced numerical simulations such as particle-in-cell (PIC) modeling should be employed to study or confirm the dynamic ACI in addition to using trajectory codes. In this work, we use a 3-D full wave time domain simulation based on the CFDTD PIC method to include the rippled-wall launcher of the quasi-optical output coupler into the simulations which breaks the axial symmetry of the original model employing a symmetric one. A preliminary simulation result has confirmed the dynamic ACI effect in this 140 GHz gyrotron in good agreement with the former study. A realistic launcher will be included in the model for studying the dynamic ACI and compared with the homogenous one.

  4. Innovation on high-power long-pulse gyrotrons

    NASA Astrophysics Data System (ADS)

    Litvak, Alexander; Sakamoto, Keishi; Thumm, Manfred

    2011-12-01

    Progress in the worldwide development of high-power gyrotrons for magnetic confinement fusion plasma applications is described. After technology breakthroughs in research on gyrotron components in the 1990s, significant progress has been achieved in the last decade, in particular, in the field of long-pulse and continuous wave (CW) gyrotrons for a wide range of frequencies. At present, the development of 1 MW-class CW gyrotrons has been very successful; these are applicable for self-ignition experiments on fusion plasmas and their confinement in the tokamak ITER, for long-pulse confinement experiments in the stellarator Wendelstein 7-X (W7-X) and for EC H&CD in the future tokamak JT-60SA. For this progress in the field of high-power long-pulse gyrotrons, innovations such as the realization of high-efficiency stable oscillation in very high order cavity modes, the use of single-stage depressed collectors for energy recovery, highly efficient internal quasi-optical mode converters and synthetic diamond windows have essentially contributed. The total tube efficiencies are around 50% and the purity of the fundamental Gaussian output mode is 97% and higher. In addition, activities for advanced gyrotrons, e.g. a 2 MW gyrotron using a coaxial cavity, multi-frequency 1 MW gyrotrons and power modulation technology, have made progress.

  5. Mode converters for generating the HE11 (near-Gaussian) mode from gyrotron TEOn modes at 140 GHz

    NASA Astrophysics Data System (ADS)

    Thumm, M.; Sturm, H.

    1985-11-01

    The structure of wall perturbations (superposition of 2 or 3 different periods) in rippled wall mode converters and the curvature distribution in bent smooth-walled TEO1-to-TM11 mode transducers were optimized by numerically solving the corresponding coupled-mode differential equations. Computer-aided optimization of circumferentially corrugated mode converters was achieved with a scattering matrix code employing the modal field expansion technique. In all cases the predicted overall efficiency of the complete mode converter system from Sigma TEOn (predominantly TEO3) to HE11 in the desired mode is 90% to 92% (ohmic attenuation is included). Low-power measurements on the efficiency of a 140 GHz TEO1-to-TM11 mode transducer (ao = 13.9 mm) are in excellent agreement with the predicted value of 95.2% (including ohmic attenuation).

  6. Novel 140 GHz Gyro-TWT Amplifier

    NASA Astrophysics Data System (ADS)

    Hu, W.; Kreischer, K. E.; Shapiro, M.; Temkin, R. J.

    1996-11-01

    We have designed and are currently building a novel gyro-twt amplifier to operate at 100 kW and a frequency of 95 GHz. However, due to equipment availability in our laboratory, the amplifier will actually be operated a frequency of 140 GHz. The electron beam will be provided by an existing MIG electron gun which has been previously used in gyrotron oscillator research at the 100 kW power level at 140 GHz. The gun operates at 65 kV and up to 8A with equal to 1.5. The novel wave circuit consists of two facing mirrors with confocal profiles in the transverse direction and flat profiles in the longitudinal direction. The mode is Gaussian-like in the transverse direction. This design effectively reduces the mode competition problem in conventional amplifiers from two dimensional to one dimensional. Another advantage of this circuit is the relatively large cavity size, which improves power capacity. Preliminary calculations indicate that the linear gain is about 2.7dB/cm with an efficiency exceeding 20preliminary experiment using an oscillator configuration has also been designed.

  7. Novel 140 GHz gyro-TWT amplifier

    SciTech Connect

    Hu, W.; Kreischer, K.E.; Shapiro, M.; Temkin, R.J.

    1996-12-31

    The authors have designed and are currently building a novel gyro-TWT amplifier at powers up to 100 kW at a frequency of 140 GHz. The electron beam will be provided by an existing MIG electron gun which has been previously used in gyrotron oscillator research at the 100 kW power level at 140 GHz. The gun operates at 65 kV and up to 8A with {nu}{sub {perpendicular}}/{nu}{sub {parallel}} equal to 1.5. The novel wave circuit consists of two facing mirrors with confocal profiles in the transverse direction and flat profiles in the longitudinal direction. The mode is Gaussian-like in the transverse direction. This cavity design effectively reduces the mode competition problem in conventional amplifiers from two dimensions to one dimension. Another advantage of this circuit is the relatively large circuit size, which improves power capacity. Preliminary calculations indicate that the linear gain is about 2.7 dB/cm with an efficiency exceeding 20%. The driver of the Gyro-TWT amplifier is a 95 GHz Varian EIO generator with 100 W peak output power. The amplifier also employs a confocal mode converter which launches a gaussian beam along the axis. The slot size of the cavity is optimized to have minimal operating mode loss while maximizing losses of competing modes. A preliminary experiment using an oscillator configuration has also been designed. The device could easily be scaled to 95 GHz to meet D.O.D. needs at that frequency.

  8. HIGH POWER LONG PULSE PERFORMANCE OF THE DIII-D GYROTRON INSTALLATION

    SciTech Connect

    J. LOHR; Y.A. GORELOV; R.W. CALLIS; H.J. GRUNLOH; J.J. PEAVY; R.I. PINSKER; D. PONCE; R. PRATER; R.A. ELLIS,III

    2002-05-01

    At DIII-D, five 110 GHz gyrotrons are operating routinely for 2.0 s pulses at generated power levels {ge}750 kW per gyrotron. A sixth gyrotron is being installed, which should bring the generated power level to >4 MW and the injected power to about 3.0 MW. The output power now can be modulated by the plasma control system to fix T{sub e} at a desired value. The system is being used as a tool for control of current diffusion, for current profile control and other experiments leading to advanced tokamak operation.

  9. Recent Tests on 500 kW and 1 MW, Multi-Second-Pulsed Gyrotrons

    NASA Astrophysics Data System (ADS)

    Felch, K.; Blank, M.; Borchard, P.; Cahalan, P.; Cauffman, S.; Chu, T. S.; Jory, H.

    2003-02-01

    Long-pulse and CW gyrotrons are being developed at CPI for several electron cyclotron heating experiments. Designs at three different frequencies, 110 GHz, 140 GHz and 84 GHz, have recently been tested. Common features of the three designs include single-anode, magnetron-injection electron guns, internal converters that produce a TEM00 Gaussian output mode and CVD (chemical-vapor deposition) diamond output windows. The three designs use different cavity interaction modes and two of the designs employ collector depression to raise the overall efficiency of the gyrotron installations. Further details of the individual designs and the results of tests on the various gyrotrons are discussed below.

  10. 140-GHz pulsed Fourier transform microwave spectrometer

    NASA Astrophysics Data System (ADS)

    Kolbe, W. F.; Leskovar, B.

    1985-01-01

    A pulsed microwave spectrometer operating in the vicinity of 140 GHz for the detection of rotational transitions in gaseous molecules is described. The spectrometer incorporates a tunable Fabry-Perot cavity and a subharmonically pumped superheterodyne receiver for the detection of the molecular emission signals. A 70-GHz source supplying a high-efficiency frequency doubler which is pulse modulated at 30 MHz produces sidebands of sufficient power at 140 GHz to excite the molecules. The cavity is tuned to one of the modulation sidebands. The operation of the spectrometer is illustrated by the detection of emission signals from the 6(2, 4)-6(1, 5) transition of SO2 gas. The generation of the electric dipole analog of nuclear-magnetic-resonance (NMR) ``spin-echo'' signals by a π/2-π pulse sequence is also described.

  11. Development of 1 to 1.5 MW CW Gyrotrons

    NASA Astrophysics Data System (ADS)

    Felch, K.; Blank, M.; Borchard, P.; Cahalan, P.; Cauffman, S.; Chu, S.; Jory, H.

    2003-10-01

    High power mm-wave sources provide electron cyclotron heating, current drive, and instability suppression in fusion plasmas. CPI has delivered three 110 GHz, 1 MW gyrotrons for ECH and ECCD experiments on DIII-D, each of which has demonstrated reliable operation at 1 MW for pulse lengths up to 5 seconds. CPI has also delivered a 140 GHz, 1 MW gyrotron to IPP for use on W-7X. This gyrotron has produced a peak output power of 900 kW, and pulse lengths up to 700 seconds at 500 kW. Ten consecutive 500 kW 600 second pulses were demonstrated without fault at 25CPI's test facilities could not support long pulse operation at full power, such operation is planned at IPP. The 140 GHz system employs a diode magnetron injection gun, a TE_28,7 cavity interaction mode, an internal mode converter to produce a Gaussian output beam, a low-loss CVD diamond output window, and a single-stage depressed-voltage beam collector to enhance the overall electrical efficiency of the device. Currently, under a DOE development program, CPI is fabricating a 110 GHz, 1.3-1.5 MW CW depressed-collector gyrotron to deliver improved reliability at power levels above 1 MW.

  12. Millimeter-wave, megawatt gyrotron development for ECR (electron cyclotron resonance) heating applications

    SciTech Connect

    Jory, H.; Felch, K.; Hess, C.; Huey, H.; Jongewaard, E.; Neilson, J.; Pendleton, R.; Tsirulnikov, M. )

    1990-09-17

    To address the electron cyclotron heating requirements of planned fusion experiments such as the International Thermonuclear Experimental Reactor (ITER) and the Compact Ignition Tokamak (CIT), Varian is developing gyrotrons at frequencies ranging from 100--300 GHz with output power capabilities up to 1 MW CW. Experimental gyrotrons have been built at frequencies between 100--140 GHz, and a study program has addressed the critical elements of designing 280--300 GHz gyrotrons capable of generating CW power levels up to 1 MW. Initial test vehicles at 140 GHz have utilized TE{sub 15,2,1} interaction cavities, and have been designed to generate short-pulse (up to 20 ms) power levels of 1 MW and up to 400 kW CW. Recently, short-pulse power levels of 1040 kW at 38% efficiency have been obtained and average powers of 200 kW have been achieved. Long-pulse operation has been extended to pulse durations of 0.5 seconds at power levels of 400 kW. Gyrotron oscillators capable of generating output powers of 500 kW CW at a frequency of 110 GHz have recently been designed and a prototype is currently being tested. Design work for a 1 MW CW gyrotron at 110 GHz, is in progress. The 1 MW CW tube will employ an output coupling approach where the microwave output is separated from the microwave output. 15 refs., 10 figs., 3 tabs.

  13. Quasi-optical 140 GHz ECRH system on the advanced W VII-AS stellarator

    SciTech Connect

    Henle, W.; Kasparek, W.; Kumric, H.; Mueller, G.A.; Schueller, P.G.; Thumm, M. ); Erckmann, V. )

    1989-07-01

    A design is presented of a 140 GHz 2nd harmonic electron cyclotron resonance heating (ECRH) system to be used on the advanced stellarator W VII-AS at IPP Garching. The primary objectives of these ECRH experiments will be (1) to extend the density range for ECRH and for combined heating (NBI and/or ICRH), (2) to investigate the local electron heat transport in high density plasmas by the heat-wave technique, (3) to develop new millimeter-wave transmission line concepts and antenna systems for reactor-compatible multi-megawatt heating of future large-size stellarators. The planned 140 GHz ECRH facility will use a 200 kW/100 to 200 ms TEO3-mode gyrotron from KfK Karlsruhe combined with a quasi-optical fundamental Gaussian-mode transmission system employing focusing metallic mirrors as phase correcting elements. The unpolarized gyrotron output mode will be converted directly into the linearly polarized Gaussian free-space beam with the help of a quasi-optical coupler. A universal quasi-optical polarizer will provide the optimum polarization state in order to get the best accessibility conditions to the plasma.

  14. Development of High-Power, Long-Pulse Gyrotrons and Its Application for High Electron Temperature, EBWH and ECCD Experiments on LHD

    NASA Astrophysics Data System (ADS)

    Yoshimura, Y.; Kubo, S.; Shimozuma, T.; Igami, H.; Takahashi, H.; Nishiura, M.; Ito, S.; Kobayashi, S.; Mizuno, Y.; Okada, K.; Takita, Y.; Mutoh, T.; Yamada, H.; Komori, A.; Kariya, T.; Imai, T.; Marushchenko, Nikolai B.; Turkin, Yuri

    2011-12-01

    To sustain plasmas with higher parameters and with longer pulse duration in LHD, ECH system has been upgraded by introducing newly developed 77 GHz gyrotrons. The designed output power and operation duration time are over 1 MW for several seconds and 0.3 MW for continuous operation, respectively. Owing to the upgrade of gyrotrons and improved power supply operation procedure, total injection power of EC-waves to LHD increased up to 3.7 MW at the last LHD experimental campaign in 2010. Application of the high-power 77 GHz EC-waves of 3.4 MW as focused beams to the center of plasma with low line-average electron density of ˜0.2×1019m-3 causes highly steep electron temperature profile and the central electron temperature reached up to 20 keV, which highly exceeds the former record of 15 keV. At higher density region of 1×1019 m-3, central electron temperature reached 8.6 keV. Additional electron Bernstein wave heatings, O-X-B and slow X-B heatings, using a 77 GHz ECH system caused clear increase in plasma stored energy even for the high-density plasmas over plasma cutoff (>7.35×1019 m-3) sustained with NBI. For the O-X-B scenario, the 77 GHz EC-wave was obliquely injected from low-field side in O-mode polarization, aiming at the point where high mode-conversion efficiency was expected. For realizing slow X-B scenario, new inner-vessel mirrors were installed in LHD just close to a helical coil, that is, at the high-field side (HFS) region. Using the inner-vessel mirror, X-mode waves were injected from HFS, showing evident increase in plasma stored energy. Oblique injection of long-pulse 0.77 MW/8 s 77 GHz wave with various N∥ clearly demonstrated ECCD in LHD. The EC-driven current changes its direction with the sign of N∥, and the highest EC-driven current reached up to 42 kA.

  15. Development of High-Power, Long-Pulse Gyrotrons and Its Application for High Electron Temperature, EBWH and ECCD Experiments on LHD

    SciTech Connect

    Yoshimura, Y.; Kubo, S.; Shimozuma, T.; Igami, H.; Takahashi, H.; Nishiura, M.; Ito, S.; Kobayashi, S.; Mizuno, Y.; Okada, K.; Takita, Y.; Mutoh, T.; Yamada, H.; Komori, A.; Kariya, T.; Imai, T.; Marushchenko, Nikolai B.; Turkin, Yuri

    2011-12-23

    To sustain plasmas with higher parameters and with longer pulse duration in LHD, ECH system has been upgraded by introducing newly developed 77 GHz gyrotrons. The designed output power and operation duration time are over 1 MW for several seconds and 0.3 MW for continuous operation, respectively. Owing to the upgrade of gyrotrons and improved power supply operation procedure, total injection power of EC-waves to LHD increased up to 3.7 MW at the last LHD experimental campaign in 2010.Application of the high-power 77 GHz EC-waves of 3.4 MW as focused beams to the center of plasma with low line-average electron density of {approx}0.2x10{sup 19} m{sup -3} causes highly steep electron temperature profile and the central electron temperature reached up to 20 keV, which highly exceeds the former record of 15 keV. At higher density region of 1x10{sup 19} m{sup -3}, central electron temperature reached 8.6 keV.Additional electron Bernstein wave heatings, O-X-B and slow X-B heatings, using a 77 GHz ECH system caused clear increase in plasma stored energy even for the high-density plasmas over plasma cutoff (>7.35x10{sup 19} m{sup -3}) sustained with NBI. For the O-X-B scenario, the 77 GHz EC-wave was obliquely injected from low-field side in O-mode polarization, aiming at the point where high mode-conversion efficiency was expected. For realizing slow X-B scenario, new inner-vessel mirrors were installed in LHD just close to a helical coil, that is, at the high-field side (HFS) region. Using the inner-vessel mirror, X-mode waves were injected from HFS, showing evident increase in plasma stored energy.Oblique injection of long-pulse 0.77 MW/8 s 77 GHz wave with various N{sub ||} clearly demonstrated ECCD in LHD. The EC-driven current changes its direction with the sign of N{sub ||}, and the highest EC-driven current reached up to 42 kA.

  16. Optimized TE01-to-TM11 mode conversion in highly overmoded circular waveguide at 70 and 140 GHz

    NASA Astrophysics Data System (ADS)

    Sturm, H.

    1985-06-01

    Mode coupling in bent, oversized, smoothly walled circular waveguides was studied by numerical integration of coupled-mode equations, to optimize high power TE01-to-TM11 mode transducers at 70 and 140 GHZ. Such transducers are used in the mode conversion sequence TE on to TE01 to TM11 to HE11 to generate the linearly polarized HE11 (Gaussianlike) mode from the circular electric TE on gyrotron mode. The balanced HE11 hydrid mode is ideal for electron cyclotron plasma heating in thermonuclear fusion research and for other technical applications. The lowest level of unwanted spurious modes is achieved with sinusoidal curvature distribution instead of constant curvature. The calculated efficiencies of 98.0% at 70 GHZ and 95.2% at 140 GHZ (inner diameter 27.79 mm, ohmic attenuation included) are in excellent agreement with the measured values (97.6% and 95%) respectively.

  17. Preliminary measurement of a novel 140 GHz gyro-TWT amplifier

    SciTech Connect

    Hu, W.; Kreischer, K.E.; Shapiro, M.; Temkin, R.J.

    1997-12-31

    The authors have designed and are currently building a novel gyro-twt amplifier to operate at 100 kW and a frequency of 95 GHz. However, due to equipment availability in their laboratory, the amplifier will actually be operated at a frequency of 140 GHz. The electron beam will be provided by an existing MIG electron gun which has been previously used in gyrotron oscillator research at 100 kW power level at 140 GHz. The gun operates at 65 kV and up to 8A with a velocity ratio of 1.5. The novel wave circuit consists of two facing mirrors with confocal profiles in the transverse direction and flat profiles in the longitudinal direction. The mode is Gaussian-like in the transverse direction. This design effectively reduces the mode competition problem in conventional amplifiers from two dimensional to one dimensional. Another advantage of this circuit is the relatively large cavity size, which improves power capacity. Calculations indicate that the linear gain is about 2.7 dB/cm with an efficiency exceeding 20%. An experiment using an oscillator configuration has also been designed. Preliminary experimental results including cold tests will be presented at the conference.

  18. Research on long pulse ECRH system of EAST in support of ITER

    NASA Astrophysics Data System (ADS)

    Wang, Xiaojie; Liu, Fukun; Shan, Jiafang; Xu, Handong; Wu, Dajun; Li, Bo; Wei, Wei; Tang, Yunying; Zhang, Liyuan; Xu, Weiye; Hu, Huaichuan; Wang, Jiang; Yang, Yong; Xu, Li; Ma, Wendong; Feng, Jianqiang

    2015-12-01

    Experimental Advanced Superconducting Tokamak (EAST), as a fully superconducting tokamak in China, aims to achieve high performance plasma under steady-state operation. To fulfill the physical objectives of EAST, a program of 4-MW long pulse electron cyclotron resonance heating and current drive (EC H&CD) system, which would offer greater flexibility for plasma shape and plasma stabilization has been launched on EAST since 2011. The system, composed of 4 gyrotrons with nominal 1MW output power and 1000s pulse length each, is designed with the feature of steerable power handling capabilities at 140 GHz, using second harmonic of the extraordinary mode(X2). The missions of the ECRH system are to provide plasma heating, current drive, plasma profile tailoring and control of magneto-hydrodynamic (MHD) instabilities. Presently, the first two 140-GHz 1-MW gyrotrons, provided by GYCOM and CPI, respectively, have been tested at long pulse operation. The tubes, the associated power supplies, cooling system, cryogenic plant, 2 transmission lines and an equatorial launcher are now installed at EAST. The power generated from each tube will be transmitted by an evacuated corrugated waveguide transmission line and injected into plasma from the low field side (radial port) through a front steering equatorial launcher. Considering the diverse applications of the EC system, the beam's launch angles can be continuously varied with the optimized scanning range of over 30° in poloidal direction and ±25° in toroidal, as well as the polarization could be adjusted during the discharge by the orientations of a pair of polarizers in the transmission line to maintain the highest absorption for different operational scenarios. The commissioning of the first 2MW ECRH plant for EAST is under way. The design, R&D activities and recent progress of the long pulse 140-GHz ECRH system are presented in this paper. As the technological requirements for EAST ECRH have many similarities with ITER

  19. 140 GHz microwave FEL experiments using ELF-II

    SciTech Connect

    Throop, A.L.; Jong, R.A.; Atkinson, D.P.; Clark, J.C.; Felker, B.; Ferguson, S.W.; Makowski, M.A.; Nexsen, W.E.; Stallard, B.W.; Stever, R.D.; Turner, W.C.

    1989-09-01

    We describe the modeling, the experimental facility, and the initial operating results for ELF-II, an induction-linac based free-electron laser designed to produce up to 2 GW of peak power at 140 GHz. ELF-II is the initial configuration of an FEL system which will eventually produce up to 2 MW of average power at a frequency of 250 GHz, for use in plasma heating experiments in the Microwave Tokamak Experiment. 6 refs., 9 figs.

  20. Research on long pulse ECRH system of EAST in support of ITER

    SciTech Connect

    Wang, Xiaojie Liu, Fukun; Shan, Jiafang; Xu, Handong; Wu, Dajun; Li, Bo; Tang, Yunying; Zhang, Liyuan; Xu, Weiye; Hu, Huaichuan; Wang, Jiang; Yang, Yong; Xu, Li; Ma, Wendong; Feng, Jianqiang; Wei, Wei

    2015-12-10

    Experimental Advanced Superconducting Tokamak (EAST), as a fully superconducting tokamak in China, aims to achieve high performance plasma under steady-state operation. To fulfill the physical objectives of EAST, a program of 4-MW long pulse electron cyclotron resonance heating and current drive (EC H&CD) system, which would offer greater flexibility for plasma shape and plasma stabilization has been launched on EAST since 2011. The system, composed of 4 gyrotrons with nominal 1MW output power and 1000s pulse length each, is designed with the feature of steerable power handling capabilities at 140 GHz, using second harmonic of the extraordinary mode(X2). The missions of the ECRH system are to provide plasma heating, current drive, plasma profile tailoring and control of magneto-hydrodynamic (MHD) instabilities. Presently, the first two 140-GHz 1-MW gyrotrons, provided by GYCOM and CPI, respectively, have been tested at long pulse operation. The tubes, the associated power supplies, cooling system, cryogenic plant, 2 transmission lines and an equatorial launcher are now installed at EAST. The power generated from each tube will be transmitted by an evacuated corrugated waveguide transmission line and injected into plasma from the low field side (radial port) through a front steering equatorial launcher. Considering the diverse applications of the EC system, the beam’s launch angles can be continuously varied with the optimized scanning range of over 30° in poloidal direction and ±25° in toroidal, as well as the polarization could be adjusted during the discharge by the orientations of a pair of polarizers in the transmission line to maintain the highest absorption for different operational scenarios. The commissioning of the first 2MW ECRH plant for EAST is under way. The design, R&D activities and recent progress of the long pulse 140-GHz ECRH system are presented in this paper. As the technological requirements for EAST ECRH have many similarities with ITER

  1. High power system for ECRH at 140Ghz, 2MW, 0.5s on FTU tokamak

    SciTech Connect

    Sozzi, C.; Bozzi, R.; Bruschi, A.; Cirant, S.; Gandini, F.; Granucci, G.; Mellera, V.; Muzzini, V.; Nardone, A.; Simonetto, A.; Spinicchia, N.; Berardi, B.; Ciccone, G.; DiGiovenale, S.; Iannone, F.; Lupini, S.; Mantovani, S.; Pesci, E.

    1999-09-20

    The 140GHz, 2MW, 0.5s ECRH system on FTU tokamak integrates closed waveguide transmission lines ({approx_equal}30 m) with quasi optical systems at both ends for efficient coupling from the 4 gyrotrons to the 4 waveguides and from these to the plasma through a single access port. Poloidal and toroidal control of the beam's launching angles and polarization is performed without movable components close to the plasma. Most of the components of each generation and transmission system were designed to operate at a power level higher than 0.5 MW, and a possible up-grade to a full 1 MW, 0.5 s capability is discussed.

  2. Progress in producing megawatt gyrotrons for ECR (electron cyclotron resonance) heating

    SciTech Connect

    Felch, K.; Hess, C.; Huey, H.; Jongewaard, E.; Jory, H.; Neilson, J.; Pendleton, R.; Tsirulnikov, M. )

    1990-10-01

    Varian is carrying out the development of high-power, CW gyrotrons at frequencies ranging from 100--500 GHz for use in electron cyclotron resonance (ECR) heating of magnetically-confined plasma. Initial test vehicles at 140 GHz have utilized TE{sub 15,2,1} interaction cavities, and have been designed to generate short-pulse (up to 20 ms) power levels of 1 MW and up to 400 kW CW. Recently, short-pulse power levels of 940 kW at 35% efficiency have been obtained and average powers of 200 kW have been achieved at peak powers of 400 kW. Long-pulse testing is currently underway. Initial test have resulted in output levels of 400 kW for pulse durations of 380 ms. Design work on 110 GHz, 500 kW CW gyrotron oscillators has recently been completed and a prototype tube has been assembled and is currently being tested. The design of a 110 GHz, 1 MW CW gyrotron, using a novel output coupling approach, is nearly complete. Fabrication of the first 1 MW CW experimental tube is in progress.

  3. Components for transmission of very high power mm waves (200 kW at 28, 70 and 140 GHz) in overmoded circular waveguides

    NASA Astrophysics Data System (ADS)

    Thumm, M.; Erckmann, V.; Kasparek, W.; Kumric, H.; Mueller, G. A.; Schueller, P. G.; Wilhelm, R.

    1986-03-01

    Optimized overmoded circular waveguide components of transmission lines developed for high-power (200 kW) millimeter wave applications at 28, 70, and 140 GHz, as e.g., electron cyclotron resonance heating of plasmas for thermonuclear fusion research with gyrotrons, are described. Axisymmetric, narrow, pencil-like beams with well-defined polarization (HE11 hybrid mode) are used at open-ended corrugated waveguide antennas. The HE11 mode is generated from TE0n gyrotron modes by multistep mode conversion: TE0n yields T001 yields TE11 yields HE11 or TE0n yields TE01 yields TM11 yields HE11. Analyses and measurements on mode transducer systems of the first type at 28 and 70 GHz and of the second type at 140 GHz are reported. In all cases the overall efficiency of the complete mode conversion sequence in the desired mode is 92% to 95%. Mode purity in the transmission lines is conserved by using corrugated gradual waveguide bends with optimized curvature distribution and diameter tapers with nonlinear contours. Highly efficient corrugated-wall mode selective filters decouple the different waveguide sections. Mode content and reflected powere are determined by a k-spectrometer. Absolute power calibration is done with calorimetric loads using an organic absorbing fluid.

  4. Status of gyrotron developments at Varian Associates

    SciTech Connect

    Jory, H.

    1984-01-01

    The status of gyrotrons developed by Varian for fusion heating applications will be briefly reviewed. Development work started in 1976 with the goal of 200 kW CW at 28 GHz. A more recent program was to develop 200 kW CW at 60 GHz. Pulsed and CW tubes produced by these programs will be briefly described and the scaling of these designs to other frequencies including 53, 56 and 70 GHz will be discussed. A 35 GHz design will also be described. Future efforts for gyrotrons at 120 and 140 GHz will also be discussed.

  5. Continuous-wave Submillimeter-wave Gyrotrons

    PubMed Central

    Han, Seong-Tae; Griffin, Robert G.; Hu, Kan-Nian; Joo, Chan-Gyu; Joye, Colin D.; Mastovsky, Ivan; Shapiro, Michael A.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Torrezan, Antonio C.; Woskov, Paul P.

    2007-01-01

    Recently, dynamic nuclear polarization enhanced nuclear magnetic resonance (DNP/NMR) has emerged as a powerful technique to obtain significant enhancements in spin spectra from biological samples. For DNP in modern NMR systems, a high power continuous-wave source in the submillimeter wavelength range is necessary. Gyrotrons can deliver tens of watts of CW power at submillimeter wavelengths and are well suited for use in DNP/NMR spectrometers. To date, 140 GHz and 250 GHz gyrotrons are being employed in DNP spectrometer experiments at 200 MHz and 380 MHz at MIT. A 460 GHz gyrotron, which has operated with 8 W of CW output power, will soon be installed in a 700 MHz NMR spectrometer. High power radiation with good spectral and spatial resolution from these gyrotrons should provide NMR spectrometers with high signal enhancement through DNP. Also, these tubes operating at submillimeter wavelengths should have important applications in research in physics, chemistry, biology, materials science and medicine. PMID:17404605

  6. Continuous-wave Submillimeter-wave Gyrotrons.

    PubMed

    Han, Seong-Tae; Griffin, Robert G; Hu, Kan-Nian; Joo, Chan-Gyu; Joye, Colin D; Mastovsky, Ivan; Shapiro, Michael A; Sirigiri, Jagadishwar R; Temkin, Richard J; Torrezan, Antonio C; Woskov, Paul P

    2006-01-01

    Recently, dynamic nuclear polarization enhanced nuclear magnetic resonance (DNP/NMR) has emerged as a powerful technique to obtain significant enhancements in spin spectra from biological samples. For DNP in modern NMR systems, a high power continuous-wave source in the submillimeter wavelength range is necessary. Gyrotrons can deliver tens of watts of CW power at submillimeter wavelengths and are well suited for use in DNP/NMR spectrometers. To date, 140 GHz and 250 GHz gyrotrons are being employed in DNP spectrometer experiments at 200 MHz and 380 MHz at MIT. A 460 GHz gyrotron, which has operated with 8 W of CW output power, will soon be installed in a 700 MHz NMR spectrometer. High power radiation with good spectral and spatial resolution from these gyrotrons should provide NMR spectrometers with high signal enhancement through DNP. Also, these tubes operating at submillimeter wavelengths should have important applications in research in physics, chemistry, biology, materials science and medicine.

  7. Design and Development of Thermistor based Power Meter at 140 GHz Frequency Band

    NASA Astrophysics Data System (ADS)

    Roy, Rajesh; Kush, Abhimanyue Kumar; Dixit, Rajendra Prasad

    2011-12-01

    Design and development of thermistor based power meter at 140 gigahertz (GHz) frequency band have been presented. Power meter comprises power sensor, amplifier circuit and dialog based graphical user interface in visual C++ for the average power measurement. The output power level of a component or system is very critical design factor. Thus there was a need of a power meter for the development of millimeter wave components at 140 GHz frequency band. Power sensor has been designed and developed using NTC (Negative Temperature Coefficient) thermistors. The design aims at developing a direct, simple and inexpensive power meter that can be used to measure absolute power at 140 GHz frequency band. Due to absorption of 140 GHz frequencies, resistance of thermistor changes to a new value. This change in resistance of thermistor can be converted to a dc voltage change and amplified voltage change can be fed to computer through data acquisition card. Dialog based graphical user interface (GUI) has been developed in visual C++ language for average power measurement in dBm. WR6 standard rectangular waveguide is the input port for the sensor of power meter. Temperature compensation has been achieved. Moderate sensor return loss greater than 20 dB has been found over the frequency range 110 to 170 GHz. The response time of the power sensor is 10 second. Average power accuracy is better than ±0.25 dB within the power range from -10 to 10 dBm at 140 GHz frequency band.

  8. A 140 GHz pulsed EPR/212 MHz NMR spectrometer for DNP studies

    NASA Astrophysics Data System (ADS)

    Smith, Albert A.; Corzilius, Björn; Bryant, Jeffrey A.; DeRocher, Ronald; Woskov, Paul P.; Temkin, Richard J.; Griffin, Robert G.

    2012-10-01

    We described a versatile spectrometer designed for the study of dynamic nuclear polarization (DNP) at low temperatures and high fields. The instrument functions both as an NMR spectrometer operating at 212 MHz (1H frequency) with DNP capabilities, and as a pulsed-EPR operating at 140 GHz. A coiled TE011 resonator acts as both an NMR coil and microwave resonator, and a double balanced (1H, 13C) radio frequency circuit greatly stabilizes the NMR performance. A new 140 GHz microwave bridge has also been developed, which utilizes a four-phase network and ELDOR channel at 8.75 GHz, that is then multiplied and mixed to obtain 140 GHz microwave pulses with an output power of 120 mW. Nutation frequencies obtained are as follows: 6 MHz on S = 1/2 electron spins, 100 kHz on 1H, and 50 kHz on 13C. We demonstrate basic EPR, ELDOR, ENDOR, and DNP experiments here. Our solid effect DNP results demonstrate an enhancement of 144 and sensitivity gain of 310 using OX063 trityl at 80 K and an enhancement of 157 and maximum sensitivity gain of 234 using Gd-DOTA at 20 K, which is significantly better performance than previously reported at high fields (⩾3 T).

  9. A 140 GHz Pulsed EPR/212 MHz NMR Spectrometer for DNP Studies

    PubMed Central

    Smith, Albert A.; Corzilius, Björn; Bryant, Jeffrey A.; DeRocher, Ronald; Woskov, Paul P.; Temkin, Richard J.; Griffin, Robert G.

    2012-01-01

    We described a versatile spectrometer designed for the study of dynamic nuclear polarization (DNP) at low temperatures and high fields. The instrument functions both as an NMR spectrometer operating at 212 MHz (1H frequency) with DNP capabilities, and as a pulsed-EPR operating at 140 GHz. A coiled TE011 resonator acts as both an NMR coil and microwave resonator, and a double balanced (1H, 13C) radio frequency circuit greatly stabilizes the NMR performance. A new 140 GHz microwave bridge has also been developed, which utilizes a four-phase network and ELDOR channel at 8.75 GHz, that is then multiplied and mixed to obtain 140 GHz microwave pulses with an output power of 120 mW. Nutation frequencies obtained are as follows: 6 MHz on S = ½ electron spins, 100 kHz on 1H, and 50 kHz on 13C. We demonstrate basic EPR, ELDOR, ENDOR, and DNP experiments here. Our solid effect DNP results demonstrate an enhancement of 144 and sensitivity gain of 310 using OX063 trityl at 80 K and an enhancement of 157 and maximum sensitivity gain of 234 using Gd-DOTA at 20 K, which is significantly better performance than previously reported at high fields (>3 T). PMID:22975246

  10. A 140 GHz pulsed EPR/212 MHz NMR spectrometer for DNP studies.

    PubMed

    Smith, Albert A; Corzilius, Björn; Bryant, Jeffrey A; DeRocher, Ronald; Woskov, Paul P; Temkin, Richard J; Griffin, Robert G

    2012-10-01

    We described a versatile spectrometer designed for the study of dynamic nuclear polarization (DNP) at low temperatures and high fields. The instrument functions both as an NMR spectrometer operating at 212 MHz ((1)H frequency) with DNP capabilities, and as a pulsed-EPR operating at 140 GHz. A coiled TE(011) resonator acts as both an NMR coil and microwave resonator, and a double balanced ((1)H, (13)C) radio frequency circuit greatly stabilizes the NMR performance. A new 140 GHz microwave bridge has also been developed, which utilizes a four-phase network and ELDOR channel at 8.75 GHz, that is then multiplied and mixed to obtain 140 GHz microwave pulses with an output power of 120 mW. Nutation frequencies obtained are as follows: 6 MHz on S=1/2 electron spins, 100 kHz on (1)H, and 50 kHz on (13)C. We demonstrate basic EPR, ELDOR, ENDOR, and DNP experiments here. Our solid effect DNP results demonstrate an enhancement of 144 and sensitivity gain of 310 using OX063 trityl at 80 K and an enhancement of 157 and maximum sensitivity gain of 234 using Gd-DOTA at 20 K, which is significantly better performance than previously reported at high fields (≥3 T).

  11. Electron-optical systems for planar gyrotrons

    NASA Astrophysics Data System (ADS)

    Manuilov, V. N.; Zaslavsky, V. Yu.; Ginzburg, N. S.; Glyavin, M. Yu.; Kuftin, A. N.; Zotova, I. V.

    2014-02-01

    The methodology of designing an electron-optical system (EOS) that forms sheet helical electron beams (HEBs) for high-power gyrotrons is developed. As an example, we consider the EOS for a 140-GHz gyrotron operated at the first harmonic of the cyclotron frequency with an accelerating voltage of 50 kV, a beam current of 30 A, and a magnetic field compression of 36. A planar geometry of the magnetron-injection gun (MIG) is suggested. The adiabatic theory of MIGs modified for the planar geometry of EOS is used for preliminary estimations of MIG parameters. Numerical simulation of the HEB properties based on the CST STUDIO SUITE 3D code is performed to find the optimal configuration of a planar MIG. The accuracy of the calculated data is discussed. The main factors that affect the HEB quality are considered. It is shown that a sheet HEB with a pitch-factor of 1.3 and velocity spread not exceeding 25%-30% can be formed; this is quite acceptable for high-efficiency operation of modern gyrotrons. Calculation of the beam-wave interaction with the obtained HEB parameters proved that a high output power with a sufficiently good efficiency of about 20% can be reached. Simulations show the feasibility of the experimental implementation of a novel planar EOS and its use in short-wave planar gyrotrons. The developed technique can be used for the study and optimization of planar gyrotrons of different frequency bands and power levels.

  12. Molecular attenuation and phase dispersion between 40 and 140-GHz for path models from different altitudes

    NASA Technical Reports Server (NTRS)

    Liebe, H. J.; Welch, W. M.

    1973-01-01

    Radio wave propagation in the 40 to 140 GHz band through the first hundred kilometers of the atmosphere is strongly influenced by the microwave spectrum of oxygen (O2-MS). A unified treatment of molecular attenuation and phase dispersion is formulated. Results of molecular physics are translated into frequency, temperature, pressure, and magnetic field dependencies of a complex refractive index. The intensity distribution of the O2-MS undergoes several changes with increasing altitude. The influence of water vapor is discussed. Examples of computer plots are given as a function of altitude for homogeneous, zenith, and tangential path geometries. Molecular resonances of minor atmospheric gases are discussed briefly.

  13. Remote-Steering Antennas for 140 GHz Electron Cyclotron Heating of the Stellarator W7-X

    NASA Astrophysics Data System (ADS)

    Lechte, C.; Kasparek, W.; Plaum, B.; Zeitler, A.; Erckmann, V.; Laqua, H.; Schneider, N.; Weissgerber, M.; Bechtold, A.; Busch, M.; Szepaniak, B.

    2017-07-01

    For electron cyclotron resonance heating of the stellarator W7-X at IPP Greifswald, a 140 GHz/10 MW cw millimeter wave system has been built. Two out of 12 launchers will employ a remote-steering design. This paper describes the overall design of the two launchers, and design issues like input coupling structures, manufacturing of corrugated waveguides, optimization of the steering range, integration of vacuum windows, mitrebends and vacuum valves into the launchers, as well as low power tests of the finished waveguides.

  14. Progress on Gyrotrons for ITER and Future Fusion Reactors

    SciTech Connect

    Thumm, Manfred K.

    2009-11-26

    The prototype of the Japan 170 GHz ITER gyrotron holds the energy and efficiency world record of 2.88 GJ (0.8 MW, 3600 s, 57%) with 55% efficiency at 1 MW, 800 s, whereas the Russian 170 GHz ITER prototype tube achieved 0.83 MW with a pulse duration of 203 s at 48% efficiency and 1 MW at 116 s and 52%. The record parameters of the European megawatt-class 140 GHz gyrotron for the Stellarator Wendelstein W7-X are: 0.92 MW output power at 1800 s pulse duration, almost 45% efficiency and 97.5% Gaussian mode purity. All these gyrotrons employ a cylindrical cavity, a quasi-optical output coupler, a synthetic diamond window and a single-stage depressed collector (SDC) for energy recovery. In coaxial cavities the existence of the longitudinally corrugated inner conductor reduces the problems of mode competition and limiting current, thus allowing one to use even higher order modes with lower Ohmic attenuation than in cylindrical cavities. Synthetic diamond windows with a transmission capability of 2 MW, continuous wave (CW) are feasible. In order to keep the number of the required gyrotrons and magnets as low as possible, to reduce the costs of the ITER 26 MW, 170 GHz ECRH system and to allow compact upper launchers for plasma stabilization, 2 MW mm-wave power per gyrotron tube is desirable. The FZK pre-prototype tube for an EU 170 GHz, 2 MW ITER gyrotron has achieved 1.8 MW at 28% efficiency (without depressed collector). Design studies for a 4 MW 170 GHz coaxial-cavity gyrotron with two synthetic diamond output windows and two 2 MW mm-wave output beams for future fusion reactors are currently being performed at FZK. The availability of sources with fast frequency tunability (several GHz s{sup -1}, tuning in 1.5-2.5% steps for about ten different frequencies) would permit the use of a simple, fixed, non-steerable mirror antenna for local current drive (ECCD) experiments and plasma stabilization. GYCOM in Russia develops in collaboration with IPP Garching and FZK an

  15. Theory and Modeling of High-Power Gyrotrons

    SciTech Connect

    Nusinovich, Gregory Semeon

    2016-04-29

    This report summarized results of the work performed at the Institute for Research in Electronics and Applied Physics of the University of Maryland (College Park, MD) in the framework of the DOE Grant “Theory and Modeling of High-Power Gyrotrons”. The report covers the work performed in 2011-2014. The research work was performed in three directions: - possibilities of stable gyrotron operation in very high-order modes offering the output power exceeding 1 MW level in long-pulse/continuous-wave regimes, - effect of small imperfections in gyrotron fabrication and alignment on the gyrotron efficiency and operation, - some issues in physics of beam-wave interaction in gyrotrons.

  16. Long Pulse ECH Plasma in LHD

    SciTech Connect

    Kubo, S.; Yoshimura, Y.; Shimozuma, T.; Igami, H.; Notake, T.; Kumazawa, R.; Seki, T.; Saito, K.; Nakamura, Y.; Mutoh, T.; Ohkubo, K.

    2005-09-26

    Demonstration of a long pulse or a steady state operation of ECH and sustainment of non-collapsed plasma only by ECH is important in LHD from both the confinement device and the heating system engineering points of view. A gyrotron with a diamond output window is introduced and operated at the power level of 150 kW for more than 1 hour after modification of the cooling and evacuation system of the ECH transmission line. The power of about 110 kW injected into LHD is used to sustain the plasma with the electron density of 1.5 x 1018 m-3 and central temperature of more than 1.0 keV for 3900 sec. The gas puffing rate is carefully controlled so that the plasma density does not exceed the critical value above which the plasma collapsed for given injection power, magnetic configuration and wall condition of LHD. The results of gyrotron operation, transmission system modification for long pulse and optimizations of the magnetic field configuration of LHD and gas puffing for a given injection condition are discussed.

  17. Long Pulse ECH Plasma in LHD

    NASA Astrophysics Data System (ADS)

    Kubo, S.; Yoshimura, Y.; Shimozuma, T.; Igami, H.; Notake, T.; Kumazawa, R.; Seki, T.; Saito, K.; Nakamura, Y.; Mutoh, T.; LHD Experimental Group

    2005-09-01

    Demonstration of a long pulse or a steady state operation of ECH and sustainment of non-collapsed plasma only by ECH is important in LHD from both the confinement device and the heating system engineering points of view. A gyrotron with a diamond output window is introduced and operated at the power level of 150 kW for more than 1 hour after modification of the cooling and evacuation system of the ECH transmission line. The power of about 110 kW injected into LHD is used to sustain the plasma with the electron density of 1.5 × 1018 m-3 and central temperature of more than 1.0 keV for 3900 sec. The gas puffing rate is carefully controlled so that the plasma density does not exceed the critical value above which the plasma collapsed for given injection power, magnetic configuration and wall condition of LHD. The results of gyrotron operation, transmission system modification for long pulse and optimizations of the magnetic field configuration of LHD and gas puffing for a given injection condition are discussed.

  18. Mean time between failures (MTBF) and availability of the Gyrotron system used on the Microwave Tokamak Experiment at Lawrence Livermore National Laboratory

    SciTech Connect

    Ferguson, S.W.; Jackson, M.C.; Seilhymer, D.B.

    1993-09-03

    This paper presents an analysis of the mean time between failures (MTBF) and availability history of the Varian VGT8140, 400 Watt, 140 GHz Gyrotron that was operated on the Microwave Tokamak Experiment (MTX) at the Lawrence Livermore National Laboratory (LLNL).

  19. Long Pulse Homopolar Generator

    DTIC Science & Technology

    1988-08-01

    AD-A205 452 AFWAL-TR-88-2045 LONG PULSE HOMOPOLAR GENERATOR Edward A. Knoth David P. Bauer lAP Research, Inc. 2763 Culver Avenue Dayton OH 45429-3723...TASK WORK UNIT ELEMENT NO. NO. NO ACCESSION NO. 61101F ILIR P3 01 11. TITLE (include Security Classiflcation) Long Pulse Homopolar Generator 12. PERSONAL...FIELD GROUP SUB-GROUP C6 6; y .- o- , -, ’, - 20 07 homopolar , high current, high power, high speed, generator, 19. ABIT!CT (Contkwe on rer if =ray and

  20. Electron-optical systems for planar gyrotrons

    SciTech Connect

    Manuilov, V. N.; Zaslavsky, V. Yu.; Ginzburg, N. S.; Glyavin, M. Yu.; Kuftin, A. N.; Zotova, I. V.

    2014-02-15

    The methodology of designing an electron-optical system (EOS) that forms sheet helical electron beams (HEBs) for high-power gyrotrons is developed. As an example, we consider the EOS for a 140-GHz gyrotron operated at the first harmonic of the cyclotron frequency with an accelerating voltage of 50 kV, a beam current of 30 A, and a magnetic field compression of 36. A planar geometry of the magnetron-injection gun (MIG) is suggested. The adiabatic theory of MIGs modified for the planar geometry of EOS is used for preliminary estimations of MIG parameters. Numerical simulation of the HEB properties based on the CST STUDIO SUITE 3D code is performed to find the optimal configuration of a planar MIG. The accuracy of the calculated data is discussed. The main factors that affect the HEB quality are considered. It is shown that a sheet HEB with a pitch-factor of 1.3 and velocity spread not exceeding 25%–30% can be formed; this is quite acceptable for high-efficiency operation of modern gyrotrons. Calculation of the beam-wave interaction with the obtained HEB parameters proved that a high output power with a sufficiently good efficiency of about 20% can be reached. Simulations show the feasibility of the experimental implementation of a novel planar EOS and its use in short-wave planar gyrotrons. The developed technique can be used for the study and optimization of planar gyrotrons of different frequency bands and power levels.

  1. Recent result of gyrotron operation in NIFS

    NASA Astrophysics Data System (ADS)

    Ito, Satoshi; Shimozuma, Takashi; Yoshimura, Yasuo; Igami, Hiroe; Takahashi, Hiromi; Nishiura, Masaki; Kobayashi, Sakuji; Mizuno, Yoshinori; Okada, Kota; Kubo, Shin

    2015-03-01

    In the last Large Helical Device (LHD) experimental campaign, a 154GHz gyrotron which had been conditioned to generate 1 MW/2 s, 0.5 MW/CW was installed for LHD experiments. Four high power gyrotrons (three-77 GHz/1~1.5 MW and one-154 GHz/1 MW) and a CW gyrotron (84 GHz/0.2 MW) are ready. Our experiment requires high energy and various injection patterns for Electron Cyclotron Resonance Heating (ECRH). Higher individual injection power and various injection patterns, we developed a power enhancement method by stepped anode acceleration voltage control and operated the gyrotron in the hard excitation region. These operations were realized by a remote controlled waveform generator. However the oscillation map of high power or long pulse operation in the hard excitation region were limited because in order to achieve the hard excitation region by the anode voltage control one must pass through the high anode current phase within a time short enough that the anode or the anode power supply is not overloaded. This limitation becomes more critical when the gyrotron beam current is increased in order to increase the output power. In the long pulse operation it was impossible to reach the hard excitation region in a low beam current (<10A).

  2. Demonstration of a 140-GHz 1-kW Confocal Gyro-Traveling-Wave Amplifier

    PubMed Central

    Joye, Colin D.; Shapiro, Michael A.; Sirigiri, Jagadishwar R.; Temkin, Richard J.

    2009-01-01

    The theory, design, and experimental results of a wideband 140-GHz 1-kW pulsed gyro-traveling-wave amplifier (gyro-TWA) are presented. The gyro-TWA operates in the HE06 mode of an overmoded quasi-optical waveguide using a gyrating electron beam. The electromagnetic theory, interaction theory, design processes, and experimental procedures are described in detail. At 37.7 kV and a 2.7-A beam current, the experiment has produced over 820 W of peak power with a –3-dB bandwidth of 0.8 GHz and a linear gain of 34 dB at 34.7 kV. In addition, the amplifier produced a –3-dB bandwidth of over 1.5 GHz (1.1%) with a peak power of 570 W from a 38.5-kV 2.5-A electron beam. The electron beam is estimated to have a pitch factor of 0.55–0.6, a radius of 1.9 mm, and a calculated perpendicular momentum spread of approximately 9%. The gyro-amplifier was nominally operated at a pulselength of 2 μs but was tested to amplify pulses as short as 4 ns with no noticeable pulse broadening. Internal reflections in the amplifier were identified using these short pulses by time-domain reflectometry. The demonstrated performance of this amplifier shows that it can be applied to dynamic nuclear polarization and electron paramagnetic resonance spectroscopy. PMID:20054451

  3. 140 GHz EC waves propagation and absorption for normal/oblique injection on FTU tokamak

    SciTech Connect

    Nowak, S.; Airoldi, A.; Bruschi, A.; Cirant, S.; Gandini, F.; Granucci, G.; Lazzaro, E.; Ramponi, G.; Simonetto, A.; Sozzi, C.; Buratti, P.; Panaccione, L.; Tudisco, O.; Zerbini, M.

    1999-09-20

    Most of the interest in ECRH experiments is linked to the high localization of EC waves absorption in well known portions of the plasma volume. In order to take full advantage of this capability a reliable code has been developed for beam tracing and absorption calculations. The code is particularly important for oblique (poloidal and toroidal) injection, when the absorbing layer is not simply dependent on the position of the EC resonance only. An experimental estimate of the local heating power density is given by the jump in the time derivative of the local electron pressure at the switching ON of the gyrotron power. The evolution of the temperature profile increase (from ECE polychromator) during the nearly adiabatic phase is also considered for ECRH profile reconstruction. An indirect estimate of optical thickness and of the overall absorption coefficient is given by the measure of the residual e.m. power at the tokamak walls. Beam tracing code predictions of the power deposition profile are compared with experimental estimates. The impact of the finite spatial resolution of the temperature diagnostic on profile reconstruction is also discussed.

  4. Study of Cavity and Output Window for High Power Gyrotron

    NASA Astrophysics Data System (ADS)

    Alaria, M. K.; Mukherjee, P.; Das, S.; Sinha, A. K.

    2011-02-01

    In this paper Eigen mode analysis has been carried out using Ansoft HFSS for high frequency 42, 120 and 140 GHz Gyrotron cavity. The design of RF window for 42 GHz, 200 kW Gyrotron has also been carried out using the Ansoft HFSS and CST microwave studio. In 42 GHz gyrotron double disc of diameter 85 mm and thickness 3.2 mm sapphire window and spacing (Coolant FC-75) of discs 2.5 mm has been used in the simulation. The return loss (S11) and transmission loss (S21) of the 42 GHz gyrotron window have been found -47.3 and -0.04 dB, respectively. The return loss and transmission loss of the S-band single disc sapphire window have also been found -27.3 and -0.07 dB, respectively at cylindrical waveguide length 33 mm. The simulated result has been validated through experimental results for pill-box S-band sapphire window.

  5. Soviet Development of Gyrotrons

    DTIC Science & Technology

    1986-05-01

    order to increase gyrotron power , Strelkov noted that "At the present time, highly efficient gyrotrons with weakly relativistic beams have been built...Consequently, the power of vacuum gyrotrons is limited: for examl)le, for a I MeV beam, the max- imum theoretical power of a high- efficiency 3)) percent...45’ and 0.5 kA, producing an output power of 25 MW. Further increase in injection current in the vacuum gyrotron decreased efficiency without

  6. Initial operation of a high-power whispering-gallery-mode gyrotron

    SciTech Connect

    Felch, K.; Ives, L.; Jongewaard, E.; Jory, H.; Spang, S.

    1987-10-01

    Varian has begun the development of a high-power gyrotron based on a whispering-gallery-mode interaction circuit. The first experimental tube has been designed to generate pulsed output powers up to 1 MW at a frequency of 140 GHz. The tube was also designed for CW operation at power levels of several hundred kilowatts. The overall design of the tube is discussed. Fabrication of the tube is nearing completion and initial tests on the tube will be carried out in the near future. 5 refs., 2 figs.

  7. Photonic-band-gap traveling-wave gyrotron amplifier.

    PubMed

    Nanni, E A; Lewis, S M; Shapiro, M A; Griffin, R G; Temkin, R J

    2013-12-06

    We report the experimental demonstration of a gyrotron traveling-wave-tube amplifier at 250 GHz that uses a photonic band gap (PBG) interaction circuit. The gyrotron amplifier achieved a peak small signal gain of 38 dB and 45 W output power at 247.7 GHz with an instantaneous -3  dB bandwidth of 0.4 GHz. The amplifier can be tuned for operation from 245-256 GHz. The widest instantaneous -3  dB bandwidth of 4.5 GHz centered at 253.25 GHz was observed with a gain of 24 dB. The PBG circuit provides stability from oscillations by supporting the propagation of transverse electric (TE) modes in a narrow range of frequencies, allowing for the confinement of the operating TE03-like mode while rejecting the excitation of oscillations at nearby frequencies. This experiment achieved the highest frequency of operation for a gyrotron amplifier; at present, there are no other amplifiers in this frequency range that are capable of producing either high gain or high output power. This result represents the highest gain observed above 94 GHz and the highest output power achieved above 140 GHz by any conventional-voltage vacuum electron device based amplifier.

  8. Photonic-Band-Gap Traveling-Wave Gyrotron Amplifier

    PubMed Central

    Nanni, E. A.; Lewis, S. M.; Shapiro, M. A.; Griffin, R. G.; Temkin, R. J.

    2014-01-01

    We report the experimental demonstration of a gyrotron traveling-wave-tube amplifier at 250 GHz that uses a photonic band gap (PBG) interaction circuit. The gyrotron amplifier achieved a peak small signal gain of 38 dB and 45 W output power at 247.7 GHz with an instantaneous −3 dB bandwidth of 0.4 GHz. The amplifier can be tuned for operation from 245–256 GHz. The widest instantaneous −3 dB bandwidth of 4.5 GHz centered at 253.25 GHz was observed with a gain of 24 dB. The PBG circuit provides stability from oscillations by supporting the propagation of transverse electric (TE) modes in a narrow range of frequencies, allowing for the confinement of the operating TE03-like mode while rejecting the excitation of oscillations at nearby frequencies. This experiment achieved the highest frequency of operation for a gyrotron amplifier; at present, there are no other amplifiers in this frequency range that are capable of producing either high gain or high output power. This result represents the highest gain observed above 94 GHz and the highest output power achieved above 140 GHz by any conventional-voltage vacuum electron device based amplifier. PMID:24476286

  9. Operating experience on six 110 GHz, 1 MW gyrotrons for ECH applications

    NASA Astrophysics Data System (ADS)

    Felch, K.; Blank, M.; Borchard, P.; Cahalan, P.; Cauffman, S.; Jory, H.; Gorelov, Y.; Lohr, J.

    2008-05-01

    Since 1999, CPI has shipped six, 110 GHz, 1 MW, 5 s pulsed gyrotrons to General Atomics (GA) for use in electron cyclotron heating experiments on the DIII-D tokamak. As a result of extensive testing of these gyrotrons at CPI and GA, a wealth of information has been obtained regarding the long-term performance of the original electrical and mechanical design of the tubes. All of the gyrotrons have achieved long-pulse operation and five of the six gyrotrons achieved 1 MW output power levels with the nominal beam voltage and current of 80 kV and 40 A, respectively. Experience with the electron guns and interaction cavities has been quite good, though the low efficiency experienced by one gyrotron may be attributed to a gun or cavity irregularity. The internal converters employed in the gyrotrons have produced high-quality Gaussian output beams with internal diffractions losses of 5-6.5%. After several years of operation, the first three 110 GHz gyrotrons experienced collector failures due to cyclic fatigue. Improved analyses and diagnostics have been employed to avoid these problems in the future. Two problems have been experienced with the diamond output windows. These problems have been eliminated by changing braze techniques and procedures. Based on the experience obtained on these six gyrotrons, recommendations can be made for future gyrotron development work.

  10. Development of a 1.5 MW coaxial gyrotron at 165 GHz

    SciTech Connect

    Iatrou, C.T.; Dammertz, G.; Piosczyk, B.; Zhang, S.C.

    1995-12-31

    The development of a 165 GHz - 1.5 MW coaxial cavity gyrotron operating in the TE{sub 31,17} mode is presented. The selection of the operating frequency and mode are based on the limitations imposed by the maximum field of the existing SC magnet at FZK, the use of the inverse MIG of the 140 GHz-TE{sub 28,16} coaxial gyrotron, and the possibility of transforming the operating mode to a whispering gallery mode (WGM), appropriate for the dual-beam q.o. output coupler and the two output rf windows. The cavity with a tapered and longitudinally corrugated inner rod, the nonlinear uptaper and a new rf window are under construction. First experiments with an axial output tube are foreseen in November 1995.

  11. ECH by FEL and gyrotron sources on the Microwave Tokamak Experiment (MTX) tokamak

    SciTech Connect

    Stallard, B.W.; Turner, W.C.; Allen, S.L.; Byers, J.A.; Felker, B.; Fenstermacher, M.E.; Ferguson, S.W.; Hooper, E.G.; Thomassen, K.I.; Throop, A.L. ); Makowski, M.A. )

    1990-08-09

    The Microwave Tokamak Experiment (MTX) at LLNL is studying the physics of intense pulse ECH is a high-density tokamak plasma using a microwave FEL. Related technology development includes the FEL, a windowless quasi-optical transmission system, and other microwave components. Initial plasma experiments have been carried out at 140 GHz with single rf pulses generated using the ETA-II accelerator and the ELF wiggler. Peak power levels up to 0.2 GW and pulse durations up to 10 ns were achieved for injection into the plasma using as untapered wiggler. FEL pulses were transmitted over 33 m from the FEL to MTX using six mirrors mounted in a 50-cm-diam evacuated pipe. Measurements of the microwave beam and transmission through the plasma were carried out. For future rapid pulse experiments at high average power (4 GW peak power, 5kHz pulse rate, and {bar P} > 0.5 MW) using the IMP wiggler with tapered magnetic field, a gyrotron (140 GHz, 400 kW cw or up to 1 MW short pulse) is being installed to drive the FEL input or to directly heat the tokamak plasma at full gyrotron power. Quasi-optic techniques will be used to couple the gyrotron power. For direct plasma heating, the gyrotron will couple into the existing mirror transport system. Using both sources of rf generation, experiments are planned to investigate intense pulse absorption and tokamak physics, such as the ECH of a pellet-fueled plasma and plasma control using localized heating. 12 refs., 9 figs.

  12. ECH by FEL and gyrotron sources on the Microwave Tokamak Experiment (MTX) tokamak

    NASA Astrophysics Data System (ADS)

    Stallard, B. W.; Turner, W. C.; Allen, S. L.; Byers, J. A.; Felker, B.; Fenstermacher, M. E.; Ferguson, S. W.; Hooper, E. G.; Thomassen, K. I.; Throop, A. L.

    1990-08-01

    The Microwave Tokamak Experiment (MTX) at LLNL is studying the physics of intense pulse ECH is a high-density tokamak plasma using a microwave FEL. Related technology development includes the FEL, a windowless quasi-optical transmission system, and other microwave components. Initial plasma experiments have been carried out at 140 GHz with single RF pulses generated using the ETA-2 accelerator and the ELF wiggler. Peak power levels up to 0.2 GW and pulse durations up to 10 ns were achieved for injection into the plasma using as untapered wiggler. FEL pulses were transmitted over 33 m from the FEL to MTX using six mirrors mounted in a 50 cm diam evacuated pipe. Measurements of the microwave beam and transmission through the plasma were carried out. For future rapid pulse experiments at high average power (4 GW peak power, 5 kHz pulse rate, and bar P is greater than 0.5 MW) using the IMP wiggler with tapered magnetic field, a gyrotron (140 GHz, 400 kW CW or up to 1 MW short pulse) is being installed to drive the FEL input or to directly heat the tokamak plasma at full gyrotron power. Quasi-optic techniques will be used to couple the gyrotron power. For direct plasma heating, the gyrotron will couple into the existing mirror transport system. Using both sources of RF generation, experiments are planned to investigate intense pulse absorption and tokamak physics, such as the ECH of a pellet-fueled plasma and plasma control using localized heating.

  13. Low-voltage gyrotrons

    NASA Astrophysics Data System (ADS)

    Glyavin, M. Yu.; Zavolskiy, N. A.; Sedov, A. S.; Nusinovich, G. S.

    2013-03-01

    For a long time, the gyrotrons were primarily developed for electron cyclotron heating and current drive of plasmas in controlled fusion reactors where a multi-megawatt, quasi-continuous millimeter-wave power is required. In addition to this important application, there are other applications (and their number increases with time) which do not require a very high power level, but such issues as the ability to operate at low voltages and have compact devices are very important. For example, gyrotrons are of interest for a dynamic nuclear polarization, which improves the sensitivity of the nuclear magnetic resonance spectroscopy. In this paper, some issues important for operation of gyrotrons driven by low-voltage electron beams are analyzed. An emphasis is made on the efficiency of low-voltage gyrotron operation at the fundamental and higher cyclotron harmonics. These efficiencies calculated with the account for ohmic losses were, first, determined in the framework of the generalized gyrotron theory based on the cold-cavity approximation. Then, more accurate, self-consistent calculations for the fundamental and second harmonic low-voltage sub-THz gyrotron designs were carried out. Results of these calculations are presented and discussed. It is shown that operation of the fundamental and second harmonic gyrotrons with noticeable efficiencies is possible even at voltages as low as 5-10 kV. Even the third harmonic gyrotrons can operate at voltages about 15 kV, albeit with rather low efficiency (1%-2% in the submillimeter wavelength region).

  14. Development program for a 200 kW, cw gyrotron. Final report

    SciTech Connect

    DeHope, W.J.; Ferguson, P.E.; Hart, S.L.; Matranga, V.A.; Sandoval, J.J.; Schmitt, M.J.; Tancredi, J.J.; Wozniak, M.A.

    1984-02-01

    Development of a millimeter-wave device to produce 200 kW of continuous wave power at 60 GHz is described. The device, a gyrotron oscillator, is intended for electron-cyclotron heating of fusion plasmas. The design philosophy is herein discussed and experimental results, both diagnostic and long pulse, are given.

  15. HV-system for CW-gyrotrons at W7-X and the relevance for ITER

    NASA Astrophysics Data System (ADS)

    Braune, H.; Brand, P.; Krampitz, R.; Leonhardt, W.; Mellein, D.; Michel, G.; Mueller, G.; Sachtleben, J.; Winkler, M.; W7-X ECRH Teams at IPP IPF; FZK

    2005-01-01

    Electron Cyclotron Resonance Heating (ECRH) is the main heating method for the Wendelstein 7-X Stellarator (W7-X), which is under construction at IPP-Greifswald. A 10 MW ECRH plant with CW-capability at 140 GHz is under construction to meet the scientific objectives. The microwave power is generated by 10 gyrotrons with 1 MW each two gyrotrons are operational at IPP in Greifswald. The tubes are equipped with a single-stage depressed collector for energy recovery and operate with an output power modulation between 0.3 and 1 MW with a sinusoidal frequency of up to 10 kHz which is achieved by modulating the depression voltage and is an interesting feature for NTM control at ITER. The general features of the ECRH-plant such as frequency power, cw-capability, flexibility and the experimental experience are of high relevance for the ITER system. Each gyrotron is fed by two high-voltage sources. A high-power supply for driving the electron beam and a precision low-power supply for beam acceleration. The high-power facility consists of modular solid state HV-supplies (-65 kV 50/100 A) providing fast power control and high flexibility. The low-power high-voltage source for beam acceleration is realized by a feed back controlled high-voltage servo-amplifier driving the depression voltage. A protection system with a thyratron crowbar for fast power removal in case of gyrotron failure by arcing is installed. Both the high power and low-power high-voltage sources have the capability to supply a 2 MW ITER gyrotron without any modification. Analogue electronic devices control the fast functions of the high-voltage system for each gyrotron and a hierarchy of industrial standard PLCs and computers supervise the whole ECRH-plant.

  16. Ion Compensation for Space Charge in the Helical Electron Beams of Gyrotrons

    NASA Astrophysics Data System (ADS)

    Manuilov, V. N.; Semenov, V. E.

    2016-06-01

    We solve analytically the problem about ion compensation for the space charge of a helical electron beam in a gyrotron operated in the long-pulse regime. Elementary processes, which take place during ionization of residual gas in the tube under typical pressures of 10-6-10-7 mm Hg, are considered. It is shown that distribution of the space charge is affected mainly by the electrons of the initial beam and slow-moving ions produced by ionization of the residual gas. Steady-state density of ions in the operating space of the gyrotron after the end of the transitional processes is found, as well as the electron density profile in the channel of electron beam transportation. The results obtained allow us to evaluate the pitch-factor variations caused by partial compensations for the potential "sagging" in the gyrotron cavity, thus being useful for analysis of starting currents, efficiency, and mode competition in high-power gyrotrons.

  17. Development of a Compact sub-THz Gyrotron FU CW CI for Application to High Power THz Technologies

    NASA Astrophysics Data System (ADS)

    Idehara, Toshitaka; Mudiganti, Jagadish C.; Agusu, La; Kanemaki, Tomohiro; Ogawa, Isamu; Fujiwara, Toshimichi; Matsuki, Yoh; Ueda, Keisuke

    2012-07-01

    For application of high frequency gyrotron to high power THz technology, Gyrotron FU CW series is being developed in FIR FU. Gyrotron FU CW CI is developed as one of sub-THz gyrotrons included in the series. The advantage of the gyrotron is compactness using a compact superconducting magnet and compact power supply system, which makes the accesses of the gyrotron to applied large-scale devices easier and extends the applications of gyrotron to wider fields. The designed frequency and cavity mode are 394.5 GHz and TE26 mode for application to the 600 MHz DNP-NMR spectroscopy. As the operation results, the frequency and the output power were 394.03 GHz and around 30 W, respectively, which are available for the application to the 600 MHz DNP-NMR measurement. In addition, this gyrotron can operate at many other frequencies and cavity modes for application to high power THz technologies in wide fields. In this paper, the design and the operation results including long pulse or CW mode are presented.

  18. Design considerations in achieving 1 MW CW operation with a whispering-gallery-mode gyrotron

    SciTech Connect

    Felch, K.; Feinstein, J.; Hess, C.; Huey, H.; Jongewaard, E.; Jory, H.; Neilson, J.; Pendleton, R.; Pirkle, D.; Zitelli, L. )

    1989-09-01

    Varian is developing high-power, CW gyrotrons at frequencies in the range 100 GHz to 150 GHz, for use in electron cyclotron heating applications. Early test vehicles have utilized a TE{sub 15,2,1} interaction cavity, have achieved short-pulse power levels of 820 kW and average power levels of 80 kW at 140 GHz. Present tests are aimed at reaching 400 kW under CW operating conditions and up to 1 MW for short pulse durations. Work is also underway on modifications to the present design that will enable power levels of up to 1 MW CW to be achieved. 7 refs., 2 figs.

  19. Progress of long pulse discharges by ECH in LHD

    NASA Astrophysics Data System (ADS)

    Yoshimura, Y.; Kasahara, H.; Tokitani, M.; Sakamoto, R.; Ueda, Y.; Ito, S.; Okada, K.; Kubo, S.; Shimozuma, T.; Igami, H.; Takahashi, H.; Tsujimura, T. I.; Makino, R.; Kobayashi, S.; Mizuno, Y.; Akiyama, T.; Ashikawa, N.; Masuzaki, S.; Motojima, G.; Shoji, M.; Suzuki, C.; Tanaka, H.; Tanaka, K.; Tokuzawa, T.; Tsuchiya, H.; Yamada, I.; Goto, Y.; Yamada, H.; Mutoh, T.; Komori, A.; Takeiri, Y.; the LHD Experiment Group

    2016-04-01

    Using ion cyclotron heating and electron cyclotron heating (ECH), or solo ECH, trials of steady state plasma sustainment have been conducted in the superconducting helical/stellarator, large helical device (LHD) (Ida K et al 2015 Nucl. Fusion 55 104018). In recent years, the ECH system has been upgraded by applying newly developed 77 and 154 GHz gyrotrons. A new gas fueling system applied to the steady state operations in the LHD realized precise feedback control of the line average electron density even when the wall condition varied during long pulse discharges. Owing to these improvements in the ECH and the gas fueling systems, a stable 39 min discharge with a line average electron density n e_ave of 1.1  ×  1019 m-3, a central electron temperature T e0 of over 2.5 keV, and a central ion temperature T i0 of 1.0 keV was successfully performed with ~350 kW EC-waves. The parameters are much improved from the previous 65 min discharge with n e_ave of 0.15  ×  1019 m-3 and T e0 of 1.7 keV, and the 30 min discharge with n e_ave of 0.7  ×  1019 m-3 and T e0 of 1.7 keV.

  20. Operation of a step tunable megawatt gyrotron

    NASA Technical Reports Server (NTRS)

    Kreischer, K. E.; Temkin, R. J.

    1989-01-01

    An electron cyclotron resonance maser; gyrotron fundamental oscillator; advantages of gyrotrons; a schematic of the experiment; gyrotron design theory; 1 MW design parameters; compact ignition tokamak; and a gyrotron with quasi-optical output coupler are briefly presented. This presentation is represented by viewgraphs only.

  1. The 5.8 T Cryogen-Free Gyrotron Superconducting Magnet System on HL-2A

    NASA Astrophysics Data System (ADS)

    Xia, Donghui; Huang, Mei; Zhou, Jun; Bai, Xingyu; Zheng, Tieliu; Rao, Jun; Zhuang, Ge

    2014-04-01

    A 5.8 T cryogen-free superconducting magnet (SCM) system with a warm bore hole of 160 mm in diameter, used for gyrotrons operating in the frequency range from 68 GHz to 140 GHz, is installed on the site of the HL-2A tokamak. The SCM consists of two separate solenoidal magnetic coils connected in series, a 4.2 K Gifford-McMahon (GM) refrigerator, a compressor, a coil power supply and two temperature monitors. The performance, test and preliminary experimental results of this SCM system are described in this paper. The magnetic field distribution was measured along the axis, and a dummy tube was used for adjusting the magnet system. Finally, the magnet was used for the operation of a 68 GHz/500 kW gyrotron, which is part of an electron cyclotron resonance heating (ECRH) system. With an additional auxiliary coil and after adjusting the magnet system, a maximum output power for the ECRH system of up to 400 kW was achieved.

  2. From reactors to long pulse sources

    SciTech Connect

    Mezei, F. |

    1995-12-31

    We will show, that by using an adapted instrumentation concept, the performance of a continuous source can be emulated by one switch on in long pulses for only about 10% of the total time. This 10 fold gain in neutron economy opens up the way for building reactor like sources with an order of magnitude higher flux than the present technological limits. Linac accelerator driven spallation lends itself favorably for the realization of this kind of long pulse sources, which will be complementary to short pulse spallation sources, the same way continuous reactor sources are.

  3. Gyrotron: an ECH system component

    SciTech Connect

    Loring, C.M.; Eason, H.O.; Kimrey, H.D.; White, T.L.; Jory, H.R.; Evans, S.J.

    1981-01-01

    The gyrotron, or electron-cyclotron maser, in the form of a gyromonotron, is being developed as a source of millimeter wave energy for fusion plasma heating. The characteristics of this high power, high efficiency electron tube are described in terms of the requirements for the beam power supply system, the mechanical support system, the cooling system, the focusing and tuning magnets, and the waveguide system. Requirements of power level and transmission efficiency dictate the use of oversize waveguide. The implications, both to the user and to the interaction mechanisms in the gyrotron, of the use of oversize waveguide are treated. The effects of variations of various operating parameters upon the gyrotron's power output and stability are also discussed. Data from gyrotron development and system operation are used where appropriate.

  4. Development of second harmonic gyrotrons, Gyrotron FU CW GII and Gyrotron FU CW GIII, equipped with internal mode converters

    NASA Astrophysics Data System (ADS)

    Tatematsu, Yoshinori; Yamaguchi, Yuusuke; Idehara, Toshitaka; Kawase, Tatsuru; Ichioka, Ryoichi; Ogawa, Isamu; Saito, Teruo; Fujiwara, Toshimichi

    2014-01-01

    Second harmonic gyrotrons, Gyrotron FU CW GII and Gyrotron FU CW GIII, were developed at the Research Center for Development of Far-Infrared Region, University of Fukui, Japan to achieve two goals. Each gyrotron was equipped with an internal quasi-optical mode converter. Using Gyrotron FU CW GII allowed the design of the cavity and mode converter to be validated, which was the first goal. After that, Gyrotron FU CW GIII, which is an improved version of Gyrotron FU CW GII, allowed us to achieve a high power output of up to 420 W, which was the second goal, with a cathode voltage setting of -21 kV and a beam current of 0.57 A. This was achieved using a newly developed electron gun and with the careful sitting of the gyrotron on the magnet.

  5. Nonstationary oscillations in gyrotrons revisited

    SciTech Connect

    Dumbrajs, O.; Kalis, H.

    2015-05-15

    Development of gyrotrons requires careful understanding of different regimes of gyrotron oscillations. It is known that in the planes of the generalized gyrotron variables: cyclotron resonance mismatch and dimensionless current or cyclotron resonance mismatch and dimensionless interaction length complicated alternating sequences of regions of stationary, periodic, automodulation, and chaotic oscillations exist. In the past, these regions were investigated on the supposition that the transit time of electrons through the interaction space is much shorter than the cavity decay time. This assumption is valid for short and/or high diffraction quality resonators. However, in the case of long and/or low diffraction quality resonators, which are often utilized, this assumption is no longer valid. In such a case, a different mathematical formalism has to be used for studying nonstationary oscillations. One example of such a formalism is described in the present paper.

  6. Coaxial cavities with corrugated inner conductor for gyrotrons

    SciTech Connect

    Iatrou, C.T.; Kern, S. |; Pavelyev, A.B.

    1996-01-01

    High-frequency, high-power gyrotron oscillators are under development for plasma heating in future fusion reactors. The main technological constrain in the design of a gyrotron cavity is the thermal wall loading, which must be limited to 2--3 kW/cm{sup 2} for long pulses or CW operation. This paper investigates coaxial gyrotron cavities with longitudinal slots on the inner conductor as a means to reduce the number of possible competing modes. In the analytic theory the corrugated surface is treated as a homogeneous impedance surface (impedance corrugation) to obtain simple formulas for the characteristic equation of the eigenmodes, for the electromagnetic fields and the wall losses. The developed model applies if the number of slots is sufficiently high (cutoff wavelength much larger than the corrugation period). The characteristic equation in terms of the ratio C of the outer wall radius to the inner conductor radius is solved numerically to determine a range of eigenvalues and C where the eigenvalue curves are monotonically decreasing. In such a region a cavity having its inner conductor downtapered (radius decreasing toward the cavity output) can be used to reduce the diffractive quality factors of several modes, leaving the working mode undisturbed and without favoring other modes. In addition the electromagnetic field profiles are investigated, and in particular it is shown that for certain cavity parameters a mode could have its energy concentrated close to the inner conductor. As a check on the validity of the theoretical approximations, simulations with the MAFIA code are carried out. These give good agreement with the results of the analytic equations.

  7. Progress in Increasing Gyrotron Output Power Beyond 1 MW

    NASA Astrophysics Data System (ADS)

    Felch, K.; Blank, M.; Borchard, P.; Cahalan, P.; Cauffman, S.; Jory, H.

    2009-04-01

    A 95 GHz, multi-megawatt continuous-wave (CW) gyrotron oscillator is currently under development at CPI. The gyrotron consists of a single-anode magnetron injection gun designed to operate at 75 A and 90 kV, a TE22,6 mode cylindrical interaction cavity, an internal mode converter to transform the TE22,6 mode to a Gausssian beam, an edge-cooled CVD diamond output window, and a single-stage depressed collector fabricated from a strengthened copper alloy. During the initial experimental campaign, carried out in the Summer of 2007, peak output power levels up to 1 MW at 40 A beam current were demonstrated at pulse lengths up to 5 ms. In addition, pulses up to 15 s in duration at 25 A beam current, the long-pulse limit of the CPI test stand, and 630 kW peak output power were achieved. In the Fall of 2007, modifications to the CPI test stand were made to allow for short-pulse operation up to 75 A. A second test campaign, aimed at demonstrating peak output power in excess of 1 MW, is planned for early in 2008.

  8. Development and Applications of High—Frequency Gyrotrons in FIR FU Covering the sub-THz to THz Range

    NASA Astrophysics Data System (ADS)

    Idehara, Toshitaka; Sabchevski, Svilen Petrov

    2012-07-01

    Powerful sources of coherent radiation in the sub-terahertz and in the terahertz frequency range of the electromagnetic spectrum are necessary for a great and continuously expanding number of applications in the physical research and in various advanced technological processes as well as in radars, communication systems, for remote sensing and inspection etc.. In recent years, a spectacular progress in the development of various gyro-devices and in particular of the powerful high frequency (sub-terahertz and terahertz) gyrotron oscillators has demonstrated a remarkable potential for bridging the so-called terahertz power gap and stimulated many novel and prospective applications. In this review paper we outline two series of such devices, namely the Gyrotron FU Series which includes pulsed gyrotrons and Gyrotron FU CW Series which consist of tubes operated in a CW (continuous wave) or long pulse mode, both developed at the FIR FU Center. We present the most remarkable achievements of these devices and illustrate their applications by some characteristic examples. An outlook for the further extension of the Gyrotron FU CW Series is also provided.

  9. Demonstration of Steady State Operation with 1 MW of 170 GHz gyrotron for ITER

    SciTech Connect

    Kasugai, Atsushi; Takahashi, Koji; Kajiwara, Ken; Kobayashi, Noriyuki; Sakamoto, Keishi

    2007-09-28

    A quasi-steady-state operation of 1 MW/800 s with the efficiency of 55%, which exceeded 1 MW/500 s/50% of the performance required in ITER, was demonstrated in a 170 GHz gyrotron. The oscillation characteristics in the long pulse operation was clarified, and the operation scenario to the hard self-excitation region for the high efficiency oscillation was newly established by controlling a pitch factor of the electron and the cavity magnetic field during the pulse with fixed beam voltage in the triode MIG. The result gives a clear outlook for the success of ECH and ECCD in ITER.

  10. Long pulse chemical laser. Final technical report

    SciTech Connect

    Bardon, R.L.; Breidenthal, R.E.; Buonadonna, V.R.

    1989-02-01

    This report covers the technical effort through February, 1989. This effort was directed towards the technology associated with the development of a large scale, long pulse DF-CO{sub 2} chemical laser. Optics damage studies performed under Task 1 assessed damage thresholds for diamond-turned salt windows. Task 2 is a multi-faceted task involving the use of PHOCL-50 for laser gain measurements, LTI experiments, and detector testing by LANL personnel. To support these latter tests, PHOCL-50 was upgraded with Boeing funding to incorporate a full aperture outcoupler that increased its energy output by over a factor of 3, to a full kilojoule. The PHOCL-50 carbon block calorimeter was also recalibrated and compared with the LANL Scientech meter. Cloud clearing studies under Task 3 initially concentrated on delivering a Boeing built Cloud Simulation Facility to LANL, and currently involves design of a Cold Cloud Simulation Facility. A Boeing IRAD funded theoretical study on cold cloud clearing revealed that ice clouds may be easier to clear then warm clouds. Task 4 involves the theoretical and experimental study of flow system design as related to laser beam quality. Present efforts on this task are concentrating on temperature gradients induced by the gas filling process. General support for the LPCL field effort is listed under Task 5, with heavy emphasis on assuring reliable operation of the Boeing built Large Slide Valve and other device related tests. The modification of the PHOCL-50 system for testing long pulse DF (4{mu}m only) chemical laser operation is being done under Task 6.

  11. Systematic Observation of Time-Dependent Phenomena in the RF Output Spectrum of High Power Gyrotrons

    NASA Astrophysics Data System (ADS)

    Schlaich, Andreas; Gantenbein, Gerd; Kern, Stefan; Thumm, Manfred

    2012-09-01

    At IHM/KIT, high power gyrotrons with conventional cavity (e.g. 1 MW CW at 140 GHz for the stellarator Wendelstein 7-X) and coaxial cavity (2 MW shortpulse at 170 GHz for ITER) for fusion applications are being developed and verified experimentally. Especially with respect to the problem of parasitic RF oscillations in the beam tunnel of some W7-X tubes, investigations of the gyrotron RF output spectrum have proved to be a valuable source of diagnostic information. Signs of transient effects in millisecond pulses, like frequency switching or intermittent low-frequency modulation, have indicated that truly time-dependent measurements with high frequency resolution and dynamic range could give deeper insight into these phenomena. In this paper, an improved measurement system is presented, which employs a fast oscilloscope as receiver. Shorttime Fourier transform (STFT) is applied to the time-domain signal, yielding time-variant spectra with frequency resolutions only limited by acquisition length and STFT segmentation choice. Typical reasonable resolutions are in the range of 100 kHz to 10 MHz with a currently memory-limited maximum acquisition length of 4 ms. A key feature of the system consists in the unambiguity of frequency measurement: The system receives through two parallel channels, each using a harmonic mixer (h = 9 - 12) to convert the signal from RF millimeter wave frequencies (full D-Band, 110 - 170 GHz) to IF (0 - 3 GHz). For each IF output signal of each individual mixer, injection side and receiving harmonic are initially not known. Using accordingly determined LO frequencies, this information is retrieved from the redundancy of the channels, yielding unambiguously reconstructed RF spectra with a total span of twice the usable receiver IF bandwidth, up to ≈ 6 GHz in our case. Using the system, which is still being improved continuously, various transient effects like cavity mode switching, parasitic oscillation frequency variation, and lowfrequency

  12. Long Pulse Fusion Physics Experiments without Superconducting Electromagnets

    SciTech Connect

    Woolley, R.D.

    1998-08-19

    Long-pulse fusion physics experiments can be performed economically via resistive electromagnets designed for thermally steady-state operation. Possible fusion experiments using resistive electromagnets include long-pulse ignition with deuterium-tritium fuel. Long-pulse resistive electromagnets are alternatives to today's delicate and costly superconductors. At any rate, superconducting technology is now evolving independent of fusion, so near-term superconducting experience may not ultimately be useful.

  13. Design considerations for a 1 MW CW gyrotron with an internal converter

    SciTech Connect

    Felch, K.; Chu, T.S.; Huey, H.; Jory, H.; Neilson, J.; Schumacher, R.; Lorbeck, J.A.; Vernon, R.J.

    1993-07-01

    Varian is carrying out the development of high-power, CW gyrotrons at frequencies ranging from 100--140 GHz. Recent experiments, carried out at a frequency of 110 GHz, resulted in the generation of output powers of 500 kW for 2.5-second pulses and 1 MW for 1 ms pulse durations. The output mode of this tube was a whispering-gallery mode, based on the TE{sub 22,2} mode employed in the interaction cavity. Current design activity is aimed at producing a 1 MW CW gryotron at the same frequency, but with a guassian output mode structure. This type of output mode is desirable for low-loss transmission in a corrugated waveguide or mirror transmission line. In addition to the change in output coupling, the cavity mode will be changed to the TE{sub 22,6} mode. The higher order cavity mode is consistent with higher power or higher frequency requirements that will be addressed in subsequent development activities.

  14. 2 MW CW RF load for gyrotrons

    SciTech Connect

    Lawrence Ives, R.; Marsden, David; Mizuhara, Max; Collins, George; Neilson, Jeff; Borchard, Philipp

    2011-07-01

    Final design and assembly are in progress for a 2MW CW RF load for gyrotrons. Such loads are required for testing high power gyrotrons for electron cyclotron heating of fusion plasmas. The research is building on experience with a 1 MW load to increase the power capability, reduce backscattered RF power, and improve the mechanical design. (author)

  15. CW, high power, gyrotron development at 110 GHz for ECH applications

    SciTech Connect

    Chu, T.S.; Borchard, P.; Felch, K.; Jory, H.; Loring, C.M.

    1996-12-31

    Electron cyclotron heating (ECH) is the most promising plasma heating method to achieve fusion. High-power, long-pulse or CW gyrotrons are required in many present and future ECH experiments. For example, the planned experiment at DIII-D, the experimental tokamak at General Atomics, will require 4 MW of RF power at 110 GHz for a pulse duration of 10 seconds. The RF requirement for the planned International Thermonuclear Experimental Reactor (ITER) is 50 MW at 170 GHz and CW operation. CPI is developing high-power, CW gyrotrons at frequencies ranging from 84--170 GHz for various ECH experiments. In particular, the authors are developing a 1 MW, CW gyrotron with an internal converter at 110 GHz. To achieve the goal of 1 MW, CW operation, the authors have designed and begun fabrication of a new tube that has improved cooling to all tube parts which showed signs of overheating during the last experiment. In addition, they are looking at the possibility of using alternate output window designs to increase power handling capability. They summarize the design of the new tube and present initial test data.

  16. CW, high power, gyrotron development at 110 GHz for ECH applications

    SciTech Connect

    Chu, T.S.; Borchard, P.; Felch, K.; Jory, H.; Loring, C.M.

    1996-12-31

    Electron cyclotron heating (ECH) is the most promising plasma heating method to achieve fusion. High-power, long-pulse or CW gyrotrons are required in many present and future ECH experiments. For example, the planned experiment at DIII-D, the experimental tokamak at General Atomics, will require 4 MW of RF power at 110 GHz for a pulse duration of 10 seconds. The RF requirement for the planned International Thermonuclear Experimental Reactor (ITER) is 50 MW at 170 GHz and CW operation. CPI is developing high-power, CW gyrotrons at frequencies ranging from 84--170 GHz for various ECH experiments. In particular, the authors are developing a 1 MW, CW gyrotron with an internal converter at 110 GHz. To achieve the goal of 1 MW, CW operation, they have designed and begun fabrication of a new tube that has improved cooling to all tube parts which showed signs of overheating during the last experiment. In addition, they are looking at the possibility of using alternate output window designs to increase power handling capability. They will summarize the design of the new tube and present initial test data.

  17. High Power Operation of a 170 GHz Gyrotron for ITER

    NASA Astrophysics Data System (ADS)

    Kreischer, Kenneth E.

    1996-11-01

    Recent experiments at MIT (In collaboration with B.G. Danly, T. Kimura, and R.J. Temkin) on a megawatt gyrotron designed for ITER have achieved record powers at 170.1 GHz. Single mode emission with a peak output power of 1.5 MW and an efficiency of 35% has been measured. The MIT gyrotron operates for 3 μsec pulses at 2 Hz but has been designed to model long pulse or cw operation. The experiment is based on a resonant cylindrical cavity operating in the TE_28,8,1 mode that is situated in the bore of a 6.7 T magnet. It is necessary to operate in a very high order mode in order to reduce cavity ohmic losses to levels that can be adequately cooled (about 1 kW/cm^2). The microwaves are generated in the cavity by an 83 kV annular electron beam produced by a triode-type magnetron injection gun that is capable of currents up to 50 A. Megawatt power levels with efficiencies between 30-35% have been measured over a wide range of operating parameters for the TE_28,8,1 mode. Similar results were also achieved in the neighboring TE_27,8,1 mode at 166.6 GHz, and the TE_29,8,1 mode at 173.5 GHz. These results are in good agreement with nonlinear multimode simulations of the cavity. (S.Y. Cai, T.M. Antonsen, G. Saraph, and B. Levush, Int. J. Electronics, Vol. 72, 759-777 (1992).) The high output power is the result of a carefully designed electron gun that is less sensitive than previous guns to misalignment, and a novel cavity that is less prone to mode competition. The gun was built by C.P.I. (formerly Varian Associates), and has a low perpendicular velocity spread (6-10%). The cavity, which was designed in collaboration with the University of Maryland, uses an output iris to increase the diffraction Q while keeping the interaction length short. Future plans include the installation of an internal mode converter that will transform the TE_28,8,1 mode into a Gaussian beam, and the use of a depressed collector to increase the device efficiency above 50%. The successful

  18. Inductively stabilized, long pulse duration transverse discharge apparatus

    DOEpatents

    Sze, Robert C.

    1986-01-01

    An inductively stabilized, long pulse duration transverse discharge apparatus. The use of a segmented electrode where each segment is attached to an inductive element permits high energy, high efficiency, long-pulsed laser outputs to be obtained. The present apparatus has been demonstrated with rare-gas halide lasing media. Orders of magnitude increase in pulse repetition frequency are obtained in lasing devices that do not utilize gas flow.

  19. Mutual synchronization of weakly coupled gyrotrons

    SciTech Connect

    Rozental, R. M.; Glyavin, M. Yu.; Sergeev, A. S.; Zotova, I. V.; Ginzburg, N. S.

    2015-09-15

    The processes of synchronization of two weakly coupled gyrotrons are studied within the framework of non-stationary equations with non-fixed longitudinal field structure. With the allowance for a small difference of the free oscillation frequencies of the gyrotrons, we found a certain range of parameters where mutual synchronization is possible while a high electronic efficiency is remained. It is also shown that synchronization regimes can be realized even under random fluctuations of the parameters of the electron beams.

  20. The First Decade of the Gyrotronics

    NASA Astrophysics Data System (ADS)

    Petelin, M. I.

    2017-07-01

    Our review (Nusinovich et al. Journal of Infrared, Millimeter, and Terahertz Waves, 35, 325, 2014) proved to be of interest for gyrotron researchers, gyrotron users, and specialists in neighboring fields of physics but underwent a fair criticism for a number of historical omissions. So my co-authors G. S. Nusinovich and M. K. A. Thumm advised me to supplement our paper (Nusinovich et al. Journal of Infrared, Millimeter, and Terahertz Waves, 35, 325, 2014) with the following memoir.

  1. The Gyrotron at 50: Historical Overview

    NASA Astrophysics Data System (ADS)

    Nusinovich, Gregory S.; Thumm, Manfred K. A.; Petelin, Michael I.

    2014-04-01

    Gyrotrons form a specific group of devices in the class of fast-wave vacuum electronic sources of coherent electromagnetic wave radiation known as electron cyclotron masers (ECMs) or cyclotron resonance masers (CRMs). The operation of CRMs is based on the cyclotron maser instability which originates from the relativistic dependence of the electron cyclotron frequency on the electron energy. This relativistic effect can be pronounced even at low voltages when the electron kinetic energy is small in comparison with the rest energy. The free energy for generation of electromagnetic (EM) waves is the energy of electron gyration in an external magnetic field. As in any fast-wave device, the EM field in a gyrotron interaction space is not localized near a circuit wall (like in slow-wave devices), but can occupy large volumes. Due to possibilities of using various methods of mode selection (electrodynamical and electronic ones), gyrotrons can operate in very high order modes. Since the use of large, oversized cavities and waveguides reduces the role of ohmic wall losses and breakdown limitations, gyrotrons are capable of producing very high power radiation at millimeter and submillimeter wavelengths. The present review is restricted primarily by the description of the development and the present state-of-the-art of gyrotrons for controlled thermonuclear fusion plasma applications. The first gyrotron was invented, designed and tested in Gorky, USSR (now Nizhny Novgorod, Russia), in 1964.

  2. Linear and nonlinear analysis of a gyro-peniotron oscillator and study of start-up scenario in a high order mode gyrotron

    NASA Astrophysics Data System (ADS)

    Yeddulla, Muralidhar

    linear theory of gyrotrons is extended to include effects of magnetic field tapering, cavity wall profile, finite beam thickness, velocity spread and axially dependent beam coupling to the fields of competing modes. Starting currents are calculated for the operating and the most dangerous competing mode in a 140 GHz gyrotron, which was developed at Communications and Power Industries (CPI). Start-up scenario of this device is also studied using the non-stationary code MAGY, which is a tool for modeling slow and fast microwave sources.

  3. Long-pulse-width narrow-bandwidth solid state laser

    DOEpatents

    Dane, C. Brent; Hackel, Lloyd A.

    1997-01-01

    A long pulse laser system emits 500-1000 ns quasi-rectangular pulses at 527 nm with near diffraction-limited divergence and near transform-limited bandwidth. The system consists of one or more flashlamp-pumped Nd:glass zig-zag amplifiers, a very low threshold stimulated-Brillouin-scattering (SBS) phase conjugator system, and a free-running single frequency Nd:YLF master oscillator. Completely passive polarization switching provides eight amplifier gain passes. Multiple frequency output can be generated by using SBS cells having different pressures of a gaseous SBS medium or different SBS materials. This long pulse, low divergence, narrow-bandwidth, multi-frequency output laser system is ideally suited for use as an illuminator for long range speckle imaging applications. Because of its high average power and high beam quality, this system has application in any process which would benefit from a long pulse format, including material processing and medical applications.

  4. Long-pulse-width narrow-bandwidth solid state laser

    DOEpatents

    Dane, C.B.; Hackel, L.A.

    1997-11-18

    A long pulse laser system emits 500-1000 ns quasi-rectangular pulses at 527 nm with near diffraction-limited divergence and near transform-limited bandwidth. The system consists of one or more flashlamp-pumped Nd:glass zig-zag amplifiers, a very low threshold stimulated-Brillouin-scattering (SBS) phase conjugator system, and a free-running single frequency Nd:YLF master oscillator. Completely passive polarization switching provides eight amplifier gain passes. Multiple frequency output can be generated by using SBS cells having different pressures of a gaseous SBS medium or different SBS materials. This long pulse, low divergence, narrow-bandwidth, multi-frequency output laser system is ideally suited for use as an illuminator for long range speckle imaging applications. Because of its high average power and high beam quality, this system has application in any process which would benefit from a long pulse format, including material processing and medical applications. 5 figs.

  5. Long-pulse plasma discharge on the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Kumazawa, R.; Mutoh, T.; Saito, K.; Seki, T.; Nakamura, Y.; Kubo, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Ohkubo, K.; Takeiri, Y.; Oka, Y.; Tsumori, K.; Osakabe, M.; Ikeda, K.; Nagaoka, K.; Kaneko, O.; Miyazawa, J.; Morita, S.; Narihara, K.; Shoji, M.; Masuzaki, S.; Kobayashi, M.; Ogawa, H.; Goto, M.; Morisaki, T.; Peterson, B. J.; Sato, K.; Tokuzawa, T.; Ashikawa, N.; Nishimura, K.; Funaba, H.; Chikaraishi, H.; Watari, T.; Watanabe, T.; Sakamoto, M.; Ichimura, M.; Takase, Y.; Notake, T.; Takeuchi, N.; Torii, Y.; Shimpo, F.; Nomura, G.; Takahashi, C.; Yokota, M.; Kato, A.; Zhao, Y.; Kwak, J. G.; Yoon, J. S.; Yamada, H.; Kawahata, K.; Ohyabu, N.; Ida, K.; Nagayama, Y.; Noda, N.; Komori, A.; Sudo, S.; Motojima, O.; LHD experiment Group

    2006-03-01

    A long-pulse plasma discharge of more than 30 min duration was achieved on the Large Helical Device (LHD). A plasma of ne = 0.8 × 1019 m-3 and Ti0 = 2.0 keV was sustained with PICH = 0.52 MW, PECH = 0.1 MW and averaged PNBI = 0.067 MW. The total injected heating energy was 1.3 GJ. One of the keys to the success of the experiment was a dispersion of the local plasma heat load to divertors, accomplished by sweeping the magnetic axis inward and outward. Causes limiting the long pulse plasma discharge are discussed. An ion impurity penetration limited further long-pulse discharge in the 8th experimental campaign (2004).

  6. Long pulse, multi-MW operation in Tore Supra

    NASA Astrophysics Data System (ADS)

    Hoang, G. T.

    2005-09-01

    Long pulse operation on Tore Supra has now entered a new phase, characterised by the use of heating power level in excess of 10 MW, during pulses lasting several tens of resistive times. This has been made possible by the combined use of 3 radiofrequency heating and current drive systems, at the ion cyclotron frequency (9 MW coupled to the plasma at 57 MHz), the lower hybrid frequency (3 MW at 3.7 GHz) and the electron cyclotron frequency (0.7 MW at 118 GHz). Key technological and physics issues related to long pulse operation, required for a reactor, are addressed.

  7. 140 GHz pulsed Fourier transform microwave spectrometer

    DOEpatents

    Kolbe, W.F.; Leskovar, B.

    1987-10-27

    A high frequency energy pulsing system suitable for use in a pulsed microwave spectrometer, including means for generating a high frequency carrier signal, and means for generating a low frequency modulating signal is disclosed. The carrier signal is continuously fed to a modulator and the modulating signal is fed through a pulse switch to the modulator. When the pulse switch is on, the modulator will produce sideband signals above and below the carrier signal frequency. A frequency-responsive device is tuned to one of the sideband signals and away from the carrier frequency so that the high frequency energization of the frequency-responsive device is controlled by the pulse switch. 5 figs.

  8. 140 GHz pulsed Fourier transform microwave spectrometer

    DOEpatents

    Kolbe, W.F.; Leskovar, B.

    1985-07-29

    A high frequency energy pulsing system suitable for use in a pulsed microwave spectrometer, including means for generating a high frequency carrier signal, and means for generating a low frequency modulating signal. The carrier signal is continuously fed to a modulator and the modulating signal is fed through a pulse switch to the modulator. When the pulse switch is on, the modulator will produce sideband signals above and below the carrier signal frequency. A frequency-responsive device is tuned to one of the sideband signals and sway from the carrier frequency so that the high frequency energization of the frequency-responsive device is controlled by the pulse switch.

  9. 140 GHz pulsed fourier transform microwave spectrometer

    DOEpatents

    Kolbe, William F.; Leskovar, Branko

    1987-01-01

    A high frequency energy pulsing system suitable for use in a pulsed microwave spectrometer (10), including means (11, 19) for generating a high frequency carrier signal, and means (12) for generating a low frequency modulating signal. The carrier signal is continuously fed to a modulator (20) and the modulating signal is fed through a pulse switch (23) to the modulator. When the pulse switch (23) is on, the modulator (20) will produce sideband signals above and below the carrier signal frequency. A frequency-responsive device (31) is tuned to one of the sideband signals and away from the carrier frequency so that the high frequency energization of the frequency-responsive device (31) is controlled by the pulse switch (23).

  10. Electron-Optical System of the Gyrotron Designed for Operation in the DNP-NMR Spectrometer Cryomagnet ("Gyrotrino")

    NASA Astrophysics Data System (ADS)

    Bratman, V. L.; Fedotov, A. E.; Kalynov, Yu. K.; Manuilov, V. N.

    2017-08-01

    The formation and utilization of a helical electron beam are studied theoretically for a gyrotron with a very low operating voltage in a range 1.5-1.8 kV. Such a gyrotron ("gyrotrino") was earlier proposed for operation inside a magnetic system of an NMR spectrometer with a dynamic nuclear polarization upgrade. Despite the very low voltage, the optimization of the electrode shape can provide velocity and positional electron spreads not exceeding these values for conventional high-voltage gyrotrons. A very small cathode-anode separation makes the gyrotrino very sensitive to thermal expansion of the gun elements that should be compensated by movement of the cathode. Estimations for long-pulse and CW regimes of the gyrotrino operation show that the ion background significantly decreases the reduction of the beam potential and leads to an acceptable drift of the electron cyclotron frequency at the voltage front. A satisfactory thermal load on the waste-beam collector located in a strong uniform magnetic field can be achieved due to the omnidirectional heat flow regime occurring in the case of thin beam footprint.

  11. Linear theory of frequency pulling in gyrotrons

    SciTech Connect

    Nusinovich, Gregory S.; Luo, Li; Liu, Pu-Kun

    2016-05-15

    The effect of the electron beam on the gyrotron operating frequency (the frequency pulling) is studied analytically in the framework of the linear (or small-signal) theory. The theory is applicable for gyrotrons operating at any cyclotron harmonics and in modes with arbitrary axial structures. The present consideration is limited to cases of operation at the fundamental cyclotron resonance and the second harmonic; also two specific axial profiles of the resonator modes are analyzed: the constant and the sinusoidal distributions. In the case of the sinusoidal distribution, we considered the operation in modes with one, two, and three axial variations. It is shown how to use the theory developed for analyzing the frequency tunability due to the frequency pulling effect in a gyrotron with specified parameters of the electron beam.

  12. Megawatt, 330 Hz PRF tunable gyrotron experiments

    NASA Astrophysics Data System (ADS)

    Spark, S. N.; Cross, A. W.; Phelps, A. D. R.; Ronald, K.

    1994-12-01

    Repetitively pulsed and cw gyrotrons have hitherto used thermionic cathodes, whereas cold cathode gyrotrons have normally operated as ‘single shot’ devices. The novel results presented here show that cold cathode gyrotrons can be successfully pulsed repetitively. A tunable gyrotron with a pulse repetition frequency (PRF) of 150Hz is demonstrated. This system developed >4MW mm-wave output pulses at 100GHz. The gyrotron is based on a two-electrode configuration comprising a field-immersed, field emission, cold cathode and a shaped anode cavity. A superconducting magnet was used to produce the homogeneous intra-cavity magnetic field and a cable pulser was used to drive the electron beam. This pulser produced up to a (200±20)kV pulse with 10ns rise time, a 100ns flat top, a 10ns decay with a characteristic impedance of 200Ω. The energy storage capacity of the cable pulser was 35J. The charging unit limited the maximum PRF to 330Hz. Due to spark gap switching limitations 330Hz was only obtainable in 5 to 10 pulse bursts. For substantial periods of the order of 30 seconds, 100Hz PRF was achieved over an oscillating range of 28 to 100GHz and 150Hz PRF was achieved at 80GHz. No degradation effects on the mm-wave output pulse was evident due to diode recovery time throughout this series of results. A subsequent conclusion is that the diode recovery time in our cold cathode gyrotron is less than 3ms.

  13. MTX/ELF II (Microwave Tokamak Experiment/ Electron Laser Facility II) microwave power measurements and calibration for the 2-GW, 140-GHZ, ELF II free-electron laser (FEL)

    SciTech Connect

    Ferguson, S.W.; Stever, R.; Throop, A.; Felker, B.; Franklin, R.

    1989-09-27

    We have developed techniques for measuring the power and frequency of the Electron Laser Facility (ELF) II free-electron laser (FEL) used for plasma heating experiments on the Microwave Tokamak Experiment (MTX). We also have designed a multichannel, 140-GHz receiver capable of measuring FEL power levels from 10 mW to 0.1 {mu}W within an accuracy of {plus minus}1 dB with a 50-dB dynamic range and a 2-ns response time. By using calibrated attenuators, we can measure power levels from 10 GW to 0.1 {mu}W. We sample the microwave output of the FEL in a microwave load tank by using WR-8 or WR-28 stub waveguide antennas. Microwave turning mirrors are used to guide the microwave beam down an evacuated beam tube to the MTX. Stub, WR-8, fundamental-mode, waveguide antennas are used for beam detection on the microwave turning mirrors. Orthogonal, WR-8, stub waveguides are machined into the surfaces of the mirrors and used as directional couplers to measure forward and reflected power from the FEL. The microwave power is then transported to the microwave receiver via a low-loss, over-moded, WR-28 waveguide. A movable modes probe in the microwave load tank is used to scan across the microwave beam to determine the modes content of the beam. Frequency stability of the FEL is measured with a fast, frequency-modulation detector (FFMD) capable of measuring frequency shifts and modulation on a 2- to 4-ns time frame. 2 refs., 14 figs.

  14. Compact, harmonic multiplying gyrotron amplifiers

    SciTech Connect

    Guo, H.Z.; Granatstein, V.L.; Antonsen, T.M. Jr.; Levush, B.; Tate, J.; Chen, S.H.

    1995-12-31

    A compact, harmonic multiplying gyrotron traveling wave amplifier is being developed. The device is a three-stage tube with the output section running as a fourth harmonic gyro-TWT, the input section running as a fundamental gyro-TWT, and the middle operating at the second harmonic of the cyclotron frequency. Radiation is suppressed by servers between the sections. The operating beam of the tube is produced by a magnetron injection gun (MIG). A TE{sub 0n} mode selective interaction circuit consisting of mode converters and a filter waveguide is employed for both input and output sections to solve the mode competition problem, which is pervasive in gyro-TWT operation. The input section has an input coupler designed as a TE{sub 0n} mode launcher. It excites a signal at the fundamental cyclotron frequency (17.5 GHz), which is amplified in the first TWT interaction region. So far the device is similar to a two-stage harmonic gyro-TWT. The distinction is that in the three-stage device the second section will be optimized not for output power but for fourth harmonic bunching of the beam. A gyroklystron amplifier has also been designed. The configuration is similar to the gyro-TWT but with the traveling wave interaction structures replaced by mode selective special complex cavities. Cold test results of the wideband input coupler and the TE{sub 0n} mode selective interaction circuit have been obtained.

  15. Effect of ion compensation of the beam space charge on gyrotron operation

    SciTech Connect

    Fokin, A. P.; Glyavin, M. Yu.; Nusinovich, G. S.

    2015-04-15

    In gyrotrons, the coherent radiation of electromagnetic waves takes place when the cyclotron resonance condition between the wave frequency and the electron cyclotron frequency or its harmonic holds. The voltage depression caused by the beam space charge field changes the relativistic cyclotron frequency and, hence, can play an important role in the beam-wave interaction process. In long pulse and continuous-wave regimes, the beam space charge field can be partially compensated by the ions, which appear due to the beam impact ionization of neutral molecules of residual gases in the interaction space. In the present paper, the role of this ion compensation of the beam space charge on the interaction efficiency is analyzed. We also analyze the effect of the electron velocity spread on the limiting currents and discuss some effects restricting the ion-to-beam electron density ratio in the saturation stage. It is shown that the effect of the ion compensation on the voltage depression caused by the beam space charge field can cause significant changes in the efficiency of gyrotron operation and, in some cases, even result in the break of oscillations.

  16. Upgrade Of The TH1506B 118 GHz Gyrotron Using Modeing Tools

    SciTech Connect

    Darbos, C.; Bouquey, F.; Lambert, R.; Magne, R.; Traisnel, E.; Prinz, H. O.; Thumm, M.; Hogge, J. P.; Lievin, C.

    2007-09-28

    The first TH1506B prototype showing problems of overheating and spurious oscillations, a new modified gyrotron was built. During the tests, the extwo peaks, which was never predicted by simulations. Various low evel tests were performed on the mode converter with different shapes for the launcher but without real improvement. Besides measurements, the use of a new software Surf3D[l] showed that the problem mainly comes from the 3rd mirror whose curvature is too high and not well taken nto account by the calculation. This analysis software is based on ntegral equations and the complete 3D modelling alowed to determine a new profile for the 3rd mirror. An aluminium model of a new mirror was manufactured and thorough low level tests made at FZK showed that there was no double peak.The next step would consist in building a gyrotron based on this new design, to confirm the simulation and to valdate it for long pulses.

  17. Electron gun simulation for 95 GHz gyrotron

    SciTech Connect

    Singh, Udaybir; Kumar, Nitin; Sinha, A.K. E-mail: aksinha@ceeri.ernet.in; Purohit, L.P.

    2011-07-01

    A triode type Magnetron Injection Gun (MIG) for a 2 MW, 95 GHz Gyrotron has been designed by using commercially available code EGUN and another in-house developed code MIGANS. The operating mode of the gyrotron is TE{sub 24.8} and it is operated in the fundamental harmonic. The operating voltages of the modulating anode and the accelerating anode are 61 kV and 85 kV respectively. The parametric dependences of modulating anode voltage and cathode magnetic field on the beam quality have also been studied. (author)

  18. Photorejuvenation using long-pulsed alexandrite and long-pulsed neodymium:yttrium-aluminum-garnet lasers: a pilot study of clinical outcome and patients' satisfaction in Koreans.

    PubMed

    Lee, Young Bok; Shin, Ji Yeon; Cheon, Min Suk; Oh, Shin Taek; Cho, Baik Kee; Park, Hyun Jeong

    2012-05-01

    Long-pulsed 755-nm alexandrite and long-pulsed 1064-nm neodymium:yttrium-aluminum-garnet (Nd:YAG) lasers have been used for photorejuvenation of the face. The aim of this study was to investigate the safety and efficacy of long-pulsed alexandrite and long-pulsed Nd:YAG lasers for photorejuvenation in Korea. One hundred and sixteen Korean patients with photo-aged facial skin were enrolled. Sixty-two patients with facial pigmentation underwent long-pulsed alexandrite laser treatment. Eleven patients that wanted to improve facial pigmentation with minimal pain had quasi-long-pulsed alexandrite laser treatment. Forty three patients had long-pulsed Nd:YAG laser therapy. Outcome assessments included standard photographs and global evaluation by blinded investigators. The self-assessment grade was provided in questionnaires. Forty-four percent of patients reported excellent or good improvement of their pigmentary lesions (>50% improvement) using a long-pulsed alexandrite laser. Of patients who underwent long-pulsed Nd:YAG laser treatment, 36% reported excellent or good improvement in skin tightening, 50% in facial flushing and 45% in pigmentary lesions. We conclude that long-pulsed alexandrite and long-pulsed Nd:YAG lasers are safe and effective for facial photorejuvenation in Koreans.

  19. A review on the sub-THz/THz gyrotrons

    NASA Astrophysics Data System (ADS)

    Kumar, Nitin; Singh, Udaybir; Bera, Anirban; Sinha, A. K.

    2016-05-01

    A review on the sub-THz/THz gyrotrons is performed in this manuscript. The present development status of gyrotrons can be divided into three streams for the sake of better understanding: 1. low frequency (<35 GHz), medium power (<100 kW), small size and easy to handle gyrotrons for industrial applications, 2. very high power (1 MW or more), medium frequency (100-200 GHz) gyrotrons for plasma fusion applications, 3. low power (few tens of watt to kW), high frequency (>200 GHz) gyrotrons for various innovative applications. In this manuscript, the third stream of gyrotron development is reviewed. In last few decades several innovative applications are searched in sub-THz/THz band where the gyrotrons could be used as an efficient source of RF radiation. The applications of sub-THz/THz gyrotrons including the futuristic scope of the device are also discussed in this article. Further, several criticalities arise in the design and development when the gyrotron operation shifts toward the high frequency band. Various such design and technological challenges are also discussed here. Finally the development status of sub-THz/THz gyrotrons as per the use in various scientific and technological applications is also discussed.

  20. Long pulse KrCl excimer laser at 222 nm

    NASA Astrophysics Data System (ADS)

    Hueber, J.-M.; Fontaine, B. L.; Bernard, N.; Forestier, B. M.; Sentis, M. L.; Delaporte, Ph. C.

    1992-11-01

    A long pulse (up to 185 ns FWHM) KrCl laser at lambda = 222 nm has been achieved by combining X-ray preionization and double discharge (spiker/sustainer) with fast ferrite magnetic switch. A relatively low pumping power (0.5 to 1 MW/cu cm) and 25 cm gain length allows a maximum extracted energy of 115 mJ in 135 ns FWHM, with an overall energy efficiency of 0.75 percent.

  1. Long Pulse Narrowband XeCl Laser Studies

    DTIC Science & Technology

    1990-03-15

    longest pulse width obtained with an e-beam pumped excimer laser . The kinetics processes of the long pulse narrowband were investigated by measurements...electrically triggered switch driven by a small Marx bank which produces the high voltage trigger required. This allows a high standoff voltage and...Phys. Lett 45, p. 507 (1984). 13 M. W. Taylor, J. Goldhar, and J. R. Murray, "Dylux: an instant image photographic material suitable for UV laser beam

  2. 100 GHz, 1 MW, CW gyrotron study program. Final report

    SciTech Connect

    Felch, K.; Bier, R.; Caplan, M.; Jory, H.

    1983-09-01

    The results of a study program to investigate the feasibility of various approaches in designing a 100 GHz, 1 MW CW gyrotron are presented. A summary is given of the possible configurations for a high average power, high frequency gyrotron, including an historical survey of experimental results which are relevant to the various approaches. A set of basic scaling considerations which enable qualitative comparisons between particular gyrotron interaction circuits is presented. These calculations are important in understanding the role of various electron beam and circuit parameters in achieving a viable gyrotron design. Following these scaling exercises, a series of design calculations is presented for a possible approach in achieving 100 GHz, 1 MW CW. These calculations include analyses of the electron gun and interaction circuit parts of the gyrotron, and a general analysis of other aspects of a high average power, high frequency gyrotron. Scalability of important aspects of the design to other frequencies is also discussed, as well as key technology issues.

  3. On optimization of sub-THz gyrotron parameters

    SciTech Connect

    Dumbrajs, O.; Nusinovich, G. S.

    2012-10-15

    The theory is developed describing how the optimization of gyrotron parameters should be done taking into account two effects deteriorating the gyrotron efficiency: the spread in electron velocities and the spread in the guiding center radii. The paper starts from qualitative analysis of the problem. This simplified theory is used for making some estimates for a specific gyrotron design. The same design is then studied by using more accurate numerical methods. Results of the latter treatment agree with former qualitative predictions.

  4. Analysis of cavity and window for THz gyrotron

    SciTech Connect

    Alaria, Mukesh Kumar; Mukherjee, P.; Rao, R.R.; Sinha, A.K. E-mail: aksinha@ceeri.ernet.in

    2011-07-01

    In this paper study of cavity and window has been carried out using Ansoft HFSS for Terahertz Gyrotron. Eigen mode analysis of the cavity has been carried out at 1 THz. An idea about the operating modes in the cavity of the Gyrotron and obtained the simulated Eigen frequency and field pattern of the modes. The design of window for 1 THz Gyrotron has also been carried out using HFSS. The simulated results have also been compared with ST microwave studio. (author)

  5. High harmonic terahertz confocal gyrotron with nonuniform electron beam

    SciTech Connect

    Fu, Wenjie; Guan, Xiaotong; Yan, Yang

    2016-01-15

    The harmonic confocal gyrotron with nonuniform electron beam is proposed in this paper in order to develop compact and high power terahertz radiation source. A 0.56 THz third harmonic confocal gyrotron with a dual arc section nonuniform electron beam has been designed and investigated. The studies show that confocal cavity has extremely low mode density, and has great advantage to operate at high harmonic. Nonuniform electron beam is an approach to improve output power and interaction efficiency of confocal gyrotron. A dual arc beam magnetron injection gun for designed confocal gyrotron has been developed and presented in this paper.

  6. Analysis of Aftercavity Interaction in European ITER Gyrotrons and in the Compact Sub-THz Gyrotron FU CW-CI

    NASA Astrophysics Data System (ADS)

    Dumbrajs, Olgierd; Idehara, Toshitaka

    2012-12-01

    Possibilities of arising of aftercavity interaction are analyzed in the ITER 170 GHz 2 MW coaxial cavity gyrotron and the 170 GHz 1 MW cylindrical cavity gyrotron, as well as in the compact 394.5 GHz low power gyrotron FU CW-CI. Also, the simulations for the gyrotron efficiency in the presence of aftercavity interaction are performed in the cold cavity approximation. Results of the analysis illustrate the subtle interplay between the geometry of the output taper and the profile of the magnetic field.

  7. Long pulse, high power operation of the ELISE test facility

    NASA Astrophysics Data System (ADS)

    Wünderlich, D.; Kraus, W.; Fröschle, M.; Riedl, R.; Fantz, U.; Heinemann, B.

    2017-08-01

    The ion source of the ELISE test facility (0.9×1.0 m2 with an extraction area of 0.1 m2) has half the size of the ion source foreseen for the ITER NBI beam lines. Aim of ELISE is to demonstrate that such large RF driven negative ion sources can achieve the following parameters at a filling pressure of 0.3 Pa and for pulse lengths of up to one hour: extracted current densities of 28.5 mA/cm2 in deuterium and 33.0 mA/cm2 in hydrogen, a ratio of co-extracted electrons to extracted ions below one and deviations in the uniformity of the extracted beam of less than 10 %. From the results obtained at ELISE so far it can be deduced that for demonstrating the ITER parameters, an RF power of 80 kW/driver will be necessary, i.e. final aim is to demonstrate long pulses (up to one hour) at this power level and a stable source performance. The most crucial factor limiting the source performance during such pulses - in particular in deuterium - is a steady increase in the co-extracted electron current. This paper reports measures that counteract this steady increase, namely applying a dedicated long pulse caesium conditioning technique and modifying the filter field topology by adding strengthening external permanent magnets. Additionally, RF issues are discussed that prevented increasing the RF power towards the target value. Although it was not possible up to now to perform long pulses at 80 kW/driver, a significant improvement of the source performance and its stability are demonstrated. The latter allowed performing the very first 1 h deuterium pulse in ELISE.

  8. Beta limits in long-pulse tokamak discharges

    SciTech Connect

    Sauter, O.; La Haye, R.J.; Chang, Z.; Gates, D.A.; Kamada, Y.; Zohm, H.; Bondeson, A.; Boucher, D.; Callen, J.D.; Chu, M.S.; Gianakon, T.A.; Gruber, O.; Harvey, R.W.; Hegna, C.C.; Lao, L.L.; Monticello, D.A.; Perkins, F.; Pletzer, A.; Reiman, A.H.; Rosenbluth, M.; Strait, E.J.; Taylor, T.S.; Turnbull, A.D.; Waelbroeck, F.; Wesley, J.C.; Wilson, H.R.; Yoshino, R. ||||||||||

    1997-05-01

    The maximum normalized beta achieved in long-pulse tokamak discharges at low collisionality falls significantly below both that observed in short pulse discharges and that predicted by the ideal MHD theory. Recent long-pulse experiments, in particular those simulating the International Thermonuclear Experimental Reactor (ITER) [M. Rosenbluth {ital et al.}, {ital Plasma Physics and Controlled Nuclear Fusion} (International Atomic Energy Agency, Vienna, 1995), Vol. 2, p. 517] scenarios with low collisionality {nu}{sub e{sup {asterisk}}}, are often limited by low-m/n nonideal magnetohydrodynamic (MHD) modes. The effect of saturated MHD modes is a reduction of the confinement time by 10{percent}{endash}20{percent}, depending on the island size and location, and can lead to a disruption. Recent theories on neoclassical destabilization of tearing modes, including the effects of a perturbed helical bootstrap current, are successful in explaining the qualitative behavior of the resistive modes and recent results are consistent with the size of the saturated islands. Also, a strong correlation is observed between the onset of these low-m/n modes with sawteeth, edge localized modes (ELM), or fishbone events, consistent with the seed island required by the theory. We will focus on a quantitative comparison between both the conventional resistive and neoclassical theories, and the experimental results of several machines, which have all observed these low-m/n nonideal modes. This enables us to single out the key issues in projecting the long-pulse beta limits of ITER-size tokamaks and also to discuss possible plasma control methods that can increase the soft {beta} limit, decrease the seed perturbations, and/or diminish the effects on confinement. {copyright} {ital 1997 American Institute of Physics.}

  9. ICRF Heated Long-Pulse Plasma Discharges in LHD

    NASA Astrophysics Data System (ADS)

    Kumazawa, R.; Seki, T.; Mutoh, T.; Saito, K.; Watari, T.; Nakamura, Y.; Sakamoto, M.; Watanabe, T.; Kubo, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Takeiri, Y.; Oka, Y.; Tsumori, K.; Osakabe, M.; Ikeda, K.; Nagaoka, K.; Kaneko, O.; Miyazawa, J.; Morita, S.; Narihara, K.; Shoji, M.; Masuzaki, S.; Goto, M.; Morisaki, T.; Peterson, B. J.; Sato, K.; Tokuzawa, T.; Ashikawa, N.; Nishimura, K.; Funaba, H.; Chikaraishi, H.; Notake, T.; Torii, Y.; Okada, H.; Ichimura, M.; Higaki, H.; Takase, Y.; Kasahara, H.; Shimpo, F.; Nomura, G.; Takahashi, C.; Yokota, M.; Kato, A.; Zhao, Yanping; Yoon, J. S.; Kwak, J. G.; Yamada, H.; Kawahata, K.; Ohyabu, N.; Ida, K.; Nagayama, Y.; Noda, N.; Komori, A.; Sudo, S.; Motojima, O.; LHD Experimental Group

    2006-01-01

    A long-pulse plasma discharge for more than 30 min. was achieved on the Large Helical Device (LHD). A plasma of ne = 0.8× 1019 m-3 and Ti0 = 2.0 keV was sustained with PICH = 0.52 MW, PECH = 0.1 MW and averaged PNBI = 0.067 MW. Total injected heating energy was 1.3 GJ, which was a quarter of the prepared RF heating energy. One of the keys to the success of the experiment was a dispersion of the local plasma heat load to divertors, accomplished by shifting the magnetic axis inward and outward.

  10. Ion-Hose Instability in Long Pulse Induction Accelerators

    SciTech Connect

    Caporaso, G J; McCarrick, J F

    2000-08-02

    The ion-hose (or fast-ion) instability sets limits on the allowable vacuum in a long-pulse, high current accelerator. Beam-induced ionization of the background gas leads to the formation of an ion channel which couples to the transverse motion of the beam. The instability is studied analytically and numerically for several ion frequency distributions. The effects of beam envelope oscillations on the growth of the instability will be discussed. The saturated non-linear growth of the instability is derived analytically and numerically for two different ion frequency distributions.

  11. Gyrotron-Based Microwave Sintering of Ceramics

    NASA Astrophysics Data System (ADS)

    Fliflet, A. W.; Bruce, R. W.; Fischer Lewis, R. P., III; Bender, B. A.; Chow, G.-M.; Rayne, R. J.; Kurihara, L. K.; Schoen, P. E.

    1997-11-01

    The development of powerful gyrotrons has opened up the millimeter-wave regime (>= 28 GHz) for processing ceramic materials. A number of studies of microwave sintering of ceramics have indicated that sintering proceeds much faster in microwave furnaces than in conventional furnaces, however, specific conclusions have been limited by the wide range of materials investigated and measurement difficulties. To assess the potential of high frequency microwave sintering, and to investigate the possibility of a specific microwave mechanism, the Naval Research Laboratory has recently undertaken a systematic study focused on the sintering of fine and ultra-fine grained alumina and titania compacts. This paper presents 35 GHz microwave sintering data obtained using a gyrotron-powered furnace and compares our data with results from other microwave and conventional sintering studies.

  12. Continuously tunable, split-cavity gyrotrons

    NASA Astrophysics Data System (ADS)

    Brand, G. F.; Gross, M.

    1985-12-01

    Attention is given to a gyrotron cavity configuration which is split in halves longitudinally, to allow any frequency lying between the fixed cavity resonance to be assessed by mechanically changing the separation of the two halves. Experimental results are presented which demonstrate that the rate-of-change in resonant frequency with separation is greatest if the minor axis of the cavity cross section is the one undergoing change. Excellent agreement with theory is noted for these results.

  13. Wide Band Gyrotron Traveling Wave Amplifier Analysis.

    DTIC Science & Technology

    1987-12-01

    phase versus frequency characteristics. It is in these aspects that the gyrotron amplifier effort has been less than successful. A C-band gyro- TWT ...proposals were made several years ago, no experimental results have yet been reported. Another concept for increasing the bandwidth of the gyro- TWT is to...including dielectric loading of the waveguide [24], helix loaded waveguide (25]-[26], and disc-loaded waveguide [26]-(27). No experimental results on

  14. Improved Collectors for High Power Gyrotrons

    SciTech Connect

    Ives, R. Lawrence; Singh, Amarjit; Read, Michael; Borchard, Phillipp; Neilson, Jeff

    2009-05-20

    High power gyrotrons are used for electron cyclotron heating, current drive and parasitic mode suppression in tokamaks for fusion energy research. These devices are crucial for successful operation of many research programs around the world, including the ITER program currently being constructed in France. Recent gyrotron failures resulted from cyclic fatigue of the copper material used to fabricated the collectors. The techniques used to collect the spent beam power is common in many gyrotrons produced around the world. There is serious concern that these tubes may also be at risk from cyclic fatigue. This program addresses the cause of the collector failure. The Phase I program successfully demonstrated feasibility of a mode of operation that eliminates the cyclic operation that caused the failure. It also demonstrated that new material can provide increased lifetime under cyclic operation that could increase the lifetime by more than on order of magnitude. The Phase II program will complete that research and develop a collector that eliminates the fatigue failures. Such a design would find application around the world.

  15. Reciprocity in long pulse duration laser interactions with polymers

    NASA Astrophysics Data System (ADS)

    Marchant, A. L.; Snelling, H. V.

    2012-05-01

    The laser irradiation of polyimide Kapton HN (PI), polyetheretherketone (PEEK), polyethyleneterephthalate (PET) and polypropylene (PP) by long pulse, radio frequency excited, CO2 laser radiation has been studied. In the pulse duration range 47-757 µs the minimum pulse energy required to damage the surface is found to be independent of exposure time. Hence, the threshold fluence is also independent of pulse duration; the same effect is achieved through the application of long pulses at low irradiance as shorter ones at higher irradiance. The values of these threshold fluences have been found to be 8.15 J cm-2, 5.36 J cm-2, 3.39 J cm-2 and 9.63 J cm-2 for PI, PEEK, PET and PP, respectively. The details of this behaviour have been analysed through calculations of the laser-induced temperature rise and the application of an Eyring-type rate law for the thermal decomposition of polyimide and PEEK and by considering the melting points of PP and PET.

  16. Residual gas analysis for long-pulse, advanced tokamak operation.

    PubMed

    Klepper, C C; Hillis, D L; Bucalossi, J; Douai, D; Oddon, P; Vartanian, S; Colas, L; Manenc, L; Pégourié, B

    2010-10-01

    A shielded residual gas analyzer (RGA) system on Tore Supra can function during plasma operation and is set up to monitor the composition of the neutral gas in one of the pumping ducts of the toroidal pumped limited. This "diagnostic RGA" has been used in long-pulse (up to 6 min) discharges for continuous monitoring of up to 15 masses simultaneously. Comparison of the RGA-measured evolution of the H(2)/D(2) isotopic ratio in the exhaust gas to that measured by an energetic neutral particle analyzer in the plasma core provides a way to monitor the evolution of particle balance. RGA monitoring of corrective H(2) injection to maintain proper minority heating is providing a database for improved ion cyclotron resonance heating, potentially with RGA-base feedback control. In very long pulses (>4 min) absence of significant changes in the RGA-monitored, hydrocarbon particle pressures is an indication of proper operation of the actively cooled, carbon-based plasma facing components. Also H(2) could increase due to thermodesorption of overheated plasma facing components.

  17. Magnetic field profile analysis for gyrotron experimental investigation

    NASA Astrophysics Data System (ADS)

    Pagonakis, Ioannis Gr.; Avramidis, Konstantinos A.; Gantenbein, Gerd; Rzesnicki, Tomasz; Samartsev, Andrey; Jelonnek, John

    2017-03-01

    The external applied magnetic field plays a main role on the gyrotron operation. Even if the gyrotron design is optimized for the nominal magnetic profile, it is possible the performance to be better for an alternative one. This unexpected result can happen for several reasons, such as the manufacturing imperfections, the misalignment issues, and several unknown factors in gyrotron theory and design. The systematic experimental investigation of the gyrotron in different magnetic profiles is very important for the optimization of the gyrotron operation and for the better understanding of the gyrotron behavior. In this sense, an analytical approach for the definition of the appropriate magnetic profiles based on the beam characteristics instead of the coil currents definition is proposed for a systematic experimental study. Using this technique, operational maps in the space of the important magnetic profile parameters are developed, which are very useful for the characterization of the gyrotron performance. For the demonstration of this idea, the operational maps of the short-pulse prototype of the 170 GHz, 1 MW European ITER gyrotron project are presented.

  18. Small angle slot divertor concept for long pulse advanced tokamaks

    NASA Astrophysics Data System (ADS)

    Guo, H. Y.; Sang, C. F.; Stangeby, P. C.; Lao, L. L.; Taylor, T. S.; Thomas, D. M.

    2017-04-01

    SOLPS-EIRENE edge code analysis shows that a gas-tight slot divertor geometry with a small-angle (glancing-incidence) target, named the small angle slot (SAS) divertor, can achieve cold, dissipative/detached divertor conditions at relatively low values of plasma density at the outside midplane separatrix. SAS exhibits the following key features: (1) strong enhancement of the buildup of neutral density in a localized region near the plasma strike point on the divertor target; (2) spreading of the cooling front across the divertor target with the slot gradually flaring out from the strike point, thus effectively reducing both heat flux and erosion on the entire divertor target surface. Such a divertor may potentially provide a power and particle handling solution for long pulse advanced tokamaks.

  19. Long-pulse magnetic field facility at Zaragoza

    NASA Astrophysics Data System (ADS)

    Algarabel, P. A.; del Moral, A.; Martín, C.; Serrate, D.; Tokarz, W.

    2006-11-01

    The long-pulse magnetic field facility of the Laboratorio de Magnetismo - Instituto de Ciencia de Materiales de Aragón (Universidad de Zaragoza-CSIC) produces magnetic fields up to 31, with a pulse duration of 2.2s. Experimental set-ups for measurements of magnetization, magnetostriction and magnetoresistance are available. The temperature can be controlled between 1.4 and 335 K, being the inner bore of the He cryostat of 22.5 mm. Magnetization is measured using the mutual induction technique, the magnetostriction is determined with the strain-gage and the capacitive cantilever methods, and the magnetoresistance is measured by means of the aclock-in technique in the 4-probes geometry. An overview of the facility will be presented and the presently available experimental techniques will be discussed.

  20. A hybrid digital-analog long pulse integrator

    NASA Astrophysics Data System (ADS)

    Strait, E. J.; Broesch, J. D.; Snider, R. T.; Walker, M. L.

    1997-01-01

    A digital-analog integrator has been developed for use with inductive magnetic sensors in long-pulse tokamaks. Continuous compensation of input offsets is accomplished by alternating analog-to-digital convertor samples from the sensor and a dummy load, while a RC network provides passive integration between samples. Typically a sampling rate of 10 kHz is used. In operational tests on the DIII-D tokamak, digital and analog integration of tokamak data show good agreement. The output drift error during a 1200 s integration interval corresponds to a few percent of the anticipated signal for poloidal field probes in International Thermonuclear Experimental Reactor, and bench tests suggest that the error can be reduced further.

  1. A hybrid digital-analog long pulse integrator

    SciTech Connect

    Strait, E.J.; Broesch, J.D.; Snider, R.T.; Walker, M.L.

    1996-05-01

    A digital-analog integrator has been developed for use with inductive magnetic sensors in long-pulse tokamaks. Continuous compensation of input offsets is accomplished by alternating analog-to-digital convertor samples from the sensor and a dummy load, while an RC network provides passive integration between samples. Typically a sampling rate of 10 kHz is used. In operational tests on the DIII-D tokamak, digital and analog integration of tokamak data show good agreement. The output drift error during a 1200 s integration interval corresponds to a few percent of the anticipated signal for poloidal field probes in International Thermonuclear Experimental Reactor (ITER), and bench tests suggest that the error can be reduced further.

  2. 95 GHz gyrotron with ferroelectric cathode.

    PubMed

    Einat, M; Pilossof, M; Ben-Moshe, R; Hirshbein, H; Borodin, D

    2012-11-02

    Ferroelectric cathodes were reported as a feasible electron source for microwave tubes. However, due to the surface plasma emission characterizing this cathode, operation of millimeter wave tubes based on it remains questionable. Nevertheless, the interest in compact high power sources of millimeter waves and specifically 95 GHz is continually growing. In this experiment, a ferroelectric cathode is used as an electron source for a gyrotron with the output frequency extended up to 95 GHz. Power above a 5 kW peak and ~0.5 μs pulses are reported; a duty cycle of 10% is estimated to be achievable.

  3. Design of Matching Optics Unit (MOU) for coaxial ITER gyrotron

    SciTech Connect

    Jin, Jianbo; Gantenbein, Gerd; Kern, Stefan; Rzesnicki, Tomasz; Thumm, Manfred

    2011-07-01

    The paper presents the design of a MOU for the coaxial ITER gyrotron. Corrugated waveguides are used to transmit the high power mm-waves generated by gyrotrons to the plasma Electron Cyclotron Resonance Heating (ECRH) and Current Drive (CD). The MOU contains two focusing mirrors, which are used to convert the gyrotron output into a Gaussian distribution with optimal parameters to improve the coupling efficiency of the TEM{sub 00} Gaussian distribution to the HE{sub 11} mode of the corrugated wave guide. The calculation results reveal that the coupling efficiency of the Gaussian beam to the HE{sub 11} mode is approximately 96.33%. (author)

  4. 110 GHz, 1 MW Gyrotron Design Upgrades

    NASA Astrophysics Data System (ADS)

    Cauffman, Steve; Felch, Kevin; Borchard, Philipp; Cahalan, Pat; Chu, Sam; Dubrule, Craig

    1999-11-01

    Communications and Power Industries has incorporated a number of design changes into its most recent series of 110 GHz 1 MW gyrotrons, for use in ECH and ECCD experiments on the DIII-D tokamak. Two development gyrotrons previously installed at DIII-D used a modulating-anode electron gun design and output windows consisting of double-disk face-cooled sapphire on one system and an edge-cooled CVD diamond disk on the other. Three new systems presently in fabrication and test employ (a) a single-anode electron gun to avoid excitation of spurious modes during turn-on and turn-off and to simplify power supply requirements, (b) a modified TE_22,6 cavity to reduce competition from neighboring modes, (c) a two inch aperture edge-cooled CVD diamond window to allow transmission of a 1 MW Gaussian output beam, (d) a superconducting magnet system with a cryo-cooler to reduce liquid helium consumption, and (e) a number of internal and external plumbing simplifications to make cooling system connections more straightforward. Initial test results, if available, will be presented.

  5. Supporting technologies for a long-pulse spallation source

    SciTech Connect

    Russell, G.J.; Weinacht, D.J.; Ferguson, P.D.; Pitcher, E.J.; Court, J.D.; Greene, G.L.

    1998-12-31

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project is directed toward the development of the technologies required for a long-pulse, spallation neutron source (LPSS). Traditionally, spallation neutron sources have used proton accelerators that provide intense, short ({le} 1{micro}s) pulses of high-energy protons to a spallation target. A LPSS uses a proton pulse with longer time duration ({approx} 1 ms) and offers the possibility of achieving very high spallation neutron fluxes at substantially lower cost. The performance of a LPSS is very dependent on the neutronic performance of the target-moderator system. A detailed study of this performance has been carried out using Monte Carlo simulations. It should be noted that a LPSS is optimally suited to a fully coupled moderator. Neutron production per proton from such a moderator is a factor of five to seven greater than that produce d by moderators used at short pulse sources. The results of these efforts have been published in a series of articles.

  6. Cryogenic pellet production developments for long-pulse plasma operation

    SciTech Connect

    Meitner, S. J.; Baylor, L. R.; Combs, S. K.; Fehling, D. T.; McGill, J. M.; Duckworth, R. C.; McGinnis, W. D.; Rasmussen, D. A.

    2014-01-29

    Long pulse plasma operation on large magnetic fusion devices require multiple forms of cryogenically formed pellets for plasma fueling, on-demand edge localized mode (ELM) triggering, radiative cooling of the divertor, and impurity transport studies. The solid deuterium fueling and ELM triggering pellets can be formed by extrusions created by helium cooled, twin-screw extruder based injection system that freezes deuterium in the screw section. A solenoid actuated cutter mechanism is activated to cut the pellets from the extrusion, inserting them into the barrel, and then fired by the pneumatic valve pulse of high pressure gas. Fuel pellets are injected at a rate up to 10 Hz, and ELM triggering pellets are injected at rates up to 20 Hz. The radiative cooling and impurity transport study pellets are produced by introducing impurity gas into a helium cooled section of a pipe gun where it deposits in-situ. A pneumatic valve is opened and propellant gas is released downstream where it encounters a passive punch which initially accelerates the pellet before the gas flow around the finishes the pellet acceleration. This paper discusses the various cryogenic pellet production techniques based on the twin-screw extruder, pipe gun, and pellet punch designs.

  7. Fabrication of micro-convex domes using long pulse laser

    NASA Astrophysics Data System (ADS)

    Wang, Xingsheng; Zhang, Yongnian; Wang, Ling; Xian, Jieyu; Jin, Meifu; Kang, Min

    2017-01-01

    Micro-convex domes inspired from nature can be machined by chemical and physical routes to achieve specific functions. Laser surface texturing (LST) is the front runner among the current material micro-processing technologies. However, most of the studies relating to LST dealt with the formation of micro-dimples. In this paper, LST using long pulse laser was used to create micro-convex domes on 304L stainless steel. Spherical-cap-shaped domes with diameters of 30-75 μm and height of 0.9-5.5 μm were created through LST. The effects of laser-processing parameters on surface morphologies of the created convex domes were investigated. The height of the convex dome increased at first and then decreased with the increasing laser power. The change tendency of the height with the pulse duration varied at different laser powers. The diameter of the convex dome increased almost linearly with the laser power or pulse duration. The superior micro-convex domes were achieved at a pulse energy of 5.6 mJ with a laser power of 80 W and pulse duration of 70 μs.

  8. Reflections in gyrotrons with radial output: Consequences for the ITER coaxial gyrotron

    SciTech Connect

    Dumbrajs, O.; Nusinovich, G.S.; Piosczyk, B.

    2004-12-01

    A theory describing the influence of reflections on operation of gyrotrons with radial output is presented. The theory is used for evaluating the effect of reflections on the operation of the 170 GHz ITER coaxial cavity gyrotron, which is under development in cooperation between EUROATOM Associations (CRPP Lausanne, FZK Karlsruhe, and HUT Helsinki) together with European tube industry (Thales Electron Devices, Velizy, France). It is shown that for optimally chosen external magnetic field value and electron beam radius, possible reflections do not change the final steady-state operation, which corresponds to generation of a 2.2 MW millimeter-wave power. The effect of deviation of the magnetic field and the beam radius from optimal values on the device operation is also studied.

  9. Effect of electron beam misalignments on the gyrotron efficiency

    SciTech Connect

    Dumbrajs, O.; Nusinovich, G. S.

    2013-07-15

    The theory describing the operation of gyrotrons with tilted and shifted electron beams has been developed. Effects of the tilt and shift are studied for a 1 MW, 170 GHz gyrotron, which is presently under development in Europe for electron cyclotron resonance plasma heating and current drive in the International Thermonuclear Experimental Reactor. It is shown that one should expect significant deterioration of gyrotron operation in such gyrotrons when the tilt angle exceeds 0.4°–0.5° and the parallel shift of the beam axis with respect to the axis of a microwave circuit is larger than 0.4–0.5 mm. At the same time, simultaneous tilting and shifting in a proper manner can mitigate this deteriorating effect.

  10. The Multiple Gyrotron System on the DIII-D Tokamak

    DOE PAGES

    Lohr, J.; Anderson, J.; Brambila, R.; ...

    2015-08-28

    A major component of the versatile heating systems on the DIII-D tokamak is the gyrotron complex. This system routinely operates at 110 GHz with 4.7 MW generated rf power for electron cyclotron heating and current drive. The complex is being upgraded with the addition of new depressed collector potential gyrotrons operating at 117.5 GHz and generating rf power in excess of 1.0 MW each. The long term upgrade plan calls for 10 gyrotrons at the higher frequency being phased in as resources permit, for an injected power near 10 MW. This article presents a summary of the current status ofmore » the DIII-D gyrotron complex, its performance, individual components, testing procedures, operational parameters, plans, and a brief summary of the experiments for which the system is currently being used.« less

  11. The Multiple Gyrotron System on the DIII-D Tokamak

    SciTech Connect

    Lohr, J.; Anderson, J.; Brambila, R.; Cengher, M.; Chen, X.; Ellis, R. A.; Grosnickle, W.; Moeller, C.; Prater, R.; Ponce, D.; Riford, L.; Torrezan, A. C.

    2015-08-28

    A major component of the versatile heating systems on the DIII-D tokamak is the gyrotron complex. This system routinely operates at 110 GHz with 4.7 MW generated rf power for electron cyclotron heating and current drive. The complex is being upgraded with the addition of new depressed collector potential gyrotrons operating at 117.5 GHz and generating rf power in excess of 1.0 MW each. The long term upgrade plan calls for 10 gyrotrons at the higher frequency being phased in as resources permit, for an injected power near 10 MW. This article presents a summary of the current status of the DIII-D gyrotron complex, its performance, individual components, testing procedures, operational parameters, plans, and a brief summary of the experiments for which the system is currently being used.

  12. Harmonic gyrotrons operating in high-order symmetric modes

    SciTech Connect

    Nusinovich, Gregory S.; Kashyn, Dmytro G.; Antonsen, T. M.

    2015-01-05

    It is shown that gyrotrons operating at cyclotron harmonics can be designed for operation in symmetric TE{sub 0,p}-modes. Such operation in fundamental harmonic gyrotrons is possible only at small radial indices (p≤3) because of the severe mode competition with TE{sub 2,p}-modes, which are equally coupled to annular beams as the symmetric modes. At cyclotron harmonics, however, this “degeneracy” of coupling is absent, and there is a region in the parameter space where harmonic gyrotrons can steadily operate in symmetric modes. This fact is especially important for sub-THz and THz-range gyrotrons where ohmic losses limit the power achievable in continuous-wave and high duty cycle regimes.

  13. The Multiple Gyrotron System on the DIII-D Tokamak

    NASA Astrophysics Data System (ADS)

    Lohr, J.; Anderson, J.; Brambila, R.; Cengher, M.; Chen, X.; Ellis, R. A.; Grosnickle, W.; Moeller, C.; Prater, R.; Ponce, D.; Riford, L.; Torrezan, A. C.

    2016-01-01

    A major component of the versatile heating systems on the DIII-D tokamak is the gyrotron complex. This system routinely operates at 110 GHz with 4.7 MW-generated rf power for electron cyclotron heating and current drive. The complex is being upgraded with the addition of new depressed collector potential gyrotrons operating at 117.5 GHz and generating rf power in excess of 1.0 MW each. The long-term upgrade plan calls for 10 gyrotrons at the higher frequency being phased in as resources permit, for an injected power near 10 MW. This paper presents a summary of the current status of the DIII-D gyrotron complex, its performance, individual components, testing procedures, operational parameters, plans, and a brief summary of the experiments for which the system is currently being used.

  14. Proposal of Mode Selection Criterian for Advanced KDEMO Gyrotron

    NASA Astrophysics Data System (ADS)

    Sawant, Ashwini; Choe, Mun Seok; Choi, EunMi

    2017-07-01

    We proposed the design of a 255 GHz advanced gyrotron for Korea demonstration power plant (KDEMO) operation. Mode selection criterian for this DEMO gyrotron (output power > 1 MW) is discussed and a conventional cavity is designed for selected TE55,13 mode. The designed cavity also excites the TE37,9 mode at 170 GHz frequency. Beam wave interaction at both the frequencies are also analysed in our study.

  15. Review of quasi-optical gyrotron development

    NASA Astrophysics Data System (ADS)

    Fliflet, A. W.; Hargreaves, T. A.; Fischer, R. P.; Manheimer, W. M.; Sprangle, P.

    1990-03-01

    There is currently a need for megawatt average power sources of 100-600 GHz radiation for electron cyclotron heating of fusion plasmas. One of the leading candidates for such a source, the conventional wave guide cavity gyrotron,(1) has produced impressive output powers and efficiencies at frequencies up to about 300 GHz. However, this gyrotron configuration is limited at high frequencies by high ohmic heating and problems with transverse mode competition due to the highly overmoded configuration, and with beam collection, since the beam must be collected along a section of the output waveguide. The quasi-optical gyrotron (QOG), first proposed in 1980 by Sprangle, Vomvoridis, and Manheimer,(3) features an open resonator formed by a pair of spherical mirrors instead of a waveguide resonator and has the potential for overcoming each of these limitations. The resonator mirrors can be well removed from the beam-wave interaction region, allowing a large volume for the interaction and low ohmic heating densities at the mirrors. The beam direction is transverse to the resonator so that beam collection is separate from the output waveguide. This geometry is particularly well suited to the use of a depressed collector for electron beam energy recovery. The QOG operates in the lowest-order transverse (TEMool) Guassian mode of the resonator, higher-order transverse modes being effectively suppressed by higher diffraction losses. This paper reviews recent progress toward the development of high-power quasi-optical gyrotrons for ECRH of fusion plasmas. It includes an overview of gyrotron theory in terms of normalized variables as they apply to the quasi-optical gyrotron for operation both in the fundamental and the higher harmonics. Scaling equations for the output power and resonator mirror heating by the RF are given. The design tradeoffs between annular and sheet electron beams are discussed as is the issue of beam space-charge depression in the open resonator. Recent

  16. Terahertz Gyrotrons at IAP RAS: Status and New Designs

    NASA Astrophysics Data System (ADS)

    Bratman, V. L.; Glyavin, M. Yu.; Kalynov, Yu. K.; Litvak, A. G.; Luchinin, A. G.; Savilov, A. V.; Zapevalov, V. E.

    2011-03-01

    Powerful gyrotrons with radiation frequencies in the range 0.33-0.65 THz were demonstrated at the IAP as early as in the 1970-1980s. This trend has recently been renewed in connection with a significant increase in interest in terahertz frequency range. In the course of new experiments, the radiation frequency of pulsed gyrotrons was increased up to 1.3 THz and 1 THz at the fundamental and third cyclotron harmonics, respectively. In addition, gyrotrons operated in CW regime with a frequency of 0.3 THz for technological applications (in collaboration with the University of Fukui, Japan) and 0.26 THz for the dynamic nuclear polarization at a high-field NMR were implemented. Designs of a pulsed fundamental-harmonic gyrotron with MW-level power at 0.3 THz and a CW kW-level third-harmonic gyrotron with a frequency of 0.4 THz are currently developed. Estimates show that modern techniques for the creation of strong magnetic fields now make it possible to realize gyrotrons with an operating frequency at least up to 1-1.5 THz. Such generators utilize a relatively low particle energy and can provide higher average power than the existing FELs.

  17. Theory and Practice in ICRF Antennas for Long Pulse Operation

    SciTech Connect

    Colas, L.; Bremond, S.; Mitteau, R.; Chantant, M.; Goniche, M.; Basiuk, V.; Bosia, G.; Gunn, J.P.

    2005-09-26

    Long plasma discharges on the Tore Supra (TS) tokamak were extended in 2004 towards higher powers and plasma densities by combined Lower Hybrid (LH) and Ion Cyclotron Range of Frequencies (ICRF) waves. RF pulses of 20sx8MW and 60sx4MW were produced. TS is equipped with 3 ICRF antennas, whose front faces are ready for CW operation. This paper reports on their behaviour over high power long pulses, as observed with infrared (IR) thermography and calorimetric measurements. Edge parasitic losses, although modest, are concentrated on a small surface and can raise surface temperatures close to operational limits. A complex hot spot pattern was revealed with at least 3 physical processes involved : convected power, electron acceleration in the LH near field, and a RF-specific phenomenon compatible with RF sheaths. LH coupling was also perturbed in the antenna shadow. This was attributed to RF-induced DC ExB0 convection. This motivated sheath modelling in two directions. First, the 2D topology of RF potentials was investigated in relation with the RF current distribution over the antenna, via a Green's function formalism and full-wave calculation using the ICANT code. In front of phased arrays of straps, convective cells were interpreted using the RF current profiles of strip line theory. Another class of convective cells, specific to antenna box corners, was evidenced for the first time. Within 1D sheath models assuming independent flux tubes, RF and rectified DC potentials are proportional. 2D fluid models couple nearby flux tubes via transverse polarisation currents. Unexpectedly this does not necessarily smooth RF potential maps. Peak DC potentials can even be enhanced. The experience gained on TS and the numerical tools are valuable for designing steady state high power antennas for next step devices. General rules to reduce RF potentials as well as concrete design options are discussed.

  18. Acousto-optical imaging using a powerful long pulse laser

    NASA Astrophysics Data System (ADS)

    Rousseau, Guy; Blouin, Alain; Monchalin, Jean-Pierre

    2008-06-01

    Acousto-optical imaging is an emerging biodiagnostic technique which provides an optical spectroscopic signature and a spatial localization of an optically absorbing target embedded in a strongly scattering medium. The transverse resolution of the technique is determined by the lateral extent of ultrasound beam focal zone while the axial resolution is obtained by using short ultrasound pulses. Although very promising for medical diagnostic, the practical application of this technique is presently limited by its poor sensitivity. Moreover, any method to enhance the signal-to-noise ratio must obviously satisfy the in vivo safety limits regarding the acceptable power level of both the ultrasonic pressure wave and the laser beam. In this paper, we propose to improve the sensitivity by using a pulsed single-frequency laser source to raise the optical peak power applied to the scattering medium and to collect more ultrasonically tagged photons. Such a laser source also allows illuminating the tissues mainly during the transit time of the ultrasonic wave to maintain the average optical power below the maximum permissible exposure. In our experiment, a single-frequency Nd:YAG laser emitting 500-μs pulses with a peak power superior to 100 W was used. Photons were tagged in few-cm thick optical phantoms with tone bursts generated by an ultrasonic transducer. Tagged photons were detected with a GaAs photorefractive interferometer characterized by a large optical etendue to process simultaneously a large number of speckle grains. When pumped by high intensity laser pulses, such an interferometer also provides the fast response time essential to obtain an apparatus insensitive to the speckle decorrelation due to mechanical vibrations or tissues movements. The use of a powerful long pulse laser appears promising to enhance the signal level in ultrasound modulated optical imaging. When combined with a photorefractive interferometer of large optical etendue, such a source could

  19. Long-pulse stability limits of the ITER baseline scenario

    DOE PAGES

    Jackson, G. L.; Luce, T. C.; Solomon, W. M.; ...

    2015-01-14

    DIII-D has made significant progress in developing the techniques required to operate ITER, and in understanding their impact on performance when integrated into operational scenarios at ITER relevant parameters. We demonstrated long duration plasmas, stable to m/n =2/1 tearing modes (TMs), with an ITER similar shape and Ip/aBT, in DIII-D, that evolve to stationary conditions. The operating region most likely to reach stable conditions has normalized pressure, BN≈1.9–2.1 (compared to the ITER baseline design of 1.6 – 1.8), and a Greenwald normalized density fraction, fGW 0.42 – 0.70 (the ITER design is fGW ≈ 0.8). The evolution of the currentmore » profile, using internal inductance (li) as an indicator, is found to produce a smaller fraction of stable pulses when li is increased above ≈ 1.1 at the beginning of βN flattop. Stable discharges with co-neutral beam injection (NBI) are generally accompanied with a benign n=2 MHD mode. However if this mode exceeds ≈ 10 G, the onset of a m/n=2/1 tearing mode occurs with a loss of confinement. In addition, stable operation with low applied external torque, at or below the extrapolated value expected for ITER has also been demonstrated. With electron cyclotron (EC) injection, the operating region of stable discharges has been further extended at ITER equivalent levels of torque and to ELM free discharges at higher torque but with the addition of an n=3 magnetic perturbation from the DIII-D internal coil set. Lastly, the characterization of the ITER baseline scenario evolution for long pulse duration, extension to more ITER relevant values of torque and electron heating, and suppression of ELMs have significantly advanced the physics basis of this scenario, although significant effort remains in the simultaneous integration of all these requirements.« less

  20. Long-pulse stability limits of the ITER baseline scenario

    SciTech Connect

    Jackson, G. L.; Luce, T. C.; Solomon, W. M.; Turco, F.; Buttery, R. J.; Hyatt, A. W.; deGrassie, J. S.; Doyle, E. J.; Ferron, J. R.; La Haye, R. J.; Politzer, P. A.

    2015-01-14

    DIII-D has made significant progress in developing the techniques required to operate ITER, and in understanding their impact on performance when integrated into operational scenarios at ITER relevant parameters. We demonstrated long duration plasmas, stable to m/n =2/1 tearing modes (TMs), with an ITER similar shape and Ip/aBT, in DIII-D, that evolve to stationary conditions. The operating region most likely to reach stable conditions has normalized pressure, BN≈1.9–2.1 (compared to the ITER baseline design of 1.6 – 1.8), and a Greenwald normalized density fraction, fGW 0.42 – 0.70 (the ITER design is fGW ≈ 0.8). The evolution of the current profile, using internal inductance (li) as an indicator, is found to produce a smaller fraction of stable pulses when li is increased above ≈ 1.1 at the beginning of βN flattop. Stable discharges with co-neutral beam injection (NBI) are generally accompanied with a benign n=2 MHD mode. However if this mode exceeds ≈ 10 G, the onset of a m/n=2/1 tearing mode occurs with a loss of confinement. In addition, stable operation with low applied external torque, at or below the extrapolated value expected for ITER has also been demonstrated. With electron cyclotron (EC) injection, the operating region of stable discharges has been further extended at ITER equivalent levels of torque and to ELM free discharges at higher torque but with the addition of an n=3 magnetic perturbation from the DIII-D internal coil set. Lastly, the characterization of the ITER baseline scenario evolution for long pulse duration, extension to more ITER relevant values of torque and electron heating, and suppression of ELMs have significantly advanced the physics basis of this scenario, although significant effort remains in the simultaneous integration of all these requirements.

  1. Gyrotron and its Electron Beam Source: A Review

    NASA Astrophysics Data System (ADS)

    Singh, Udaybir; Kumar, Nitin; Sinha, AK

    2012-10-01

    Microwave occupies a glorious position in the electromagnetic spectrum and in that there are a number of devices in this frequency regime which are capable of high power operations. Among them, gyrotron has proven to be an efficient source for radio frequency (RF) generation at high power level and up to very high frequency. The gyrotron consists of several components like electron beam source, interaction structure, quasi-optical launcher, collector, RF window, magnet system, etc. All the components have their distinct role in the function of the device. Among them, electron beam source also called magnetron injection gun (MIG) is the generator of electron beam and it is very essential that MIG should produce and provide electron beam suitable for the beam-wave interaction at the interaction structure for the effective power growth. The paper presents the introduction of a microwave tube, gyrotron and its components alongwith review of the previous work, the background and the applications. The functions of various components of a gyrotron are discussed with particular highlighting on the electron beam emission from the electron beam source and the beam-wave interaction for power growth in the device. A review on different types of gyrotron electron beam sources is also presented.

  2. Reliability of High Power Laser Diode Arrays Operating in Long Pulse Mode

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Barnes, Bruce W.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.; Baker, Nathaniel R.

    2006-01-01

    Reliability and lifetime of quasi-CW laser diode arrays are greatly influenced by their thermal characteristics. This paper examines the thermal properties of laser diode arrays operating in long pulse duration regime.

  3. Design and development of mode launcher for high frequency Gyrotron

    NASA Astrophysics Data System (ADS)

    Alaria, Mukesh Kumar; Sinha, A. K.; Khatun, H.

    2016-03-01

    In this paper, we describe the design and development of helical cut smooth wall mode launcher for high frequency and high power Gyrotron. A Vlasov-type helical cut mode launcher for converting TE22,6 mode to a Gaussian mode has been designed for 120 GHz, 1 MW Gyrotron. The initial design of mode launcher has been optimized using LOT/SURF-3D software. The mode launcher diameter and length are optimized considering the minimum return loss and the minimum insertion loss by using CST microwave studio. The return loss (S11) and insertion loss (S21) performance of helical cut smooth wall mode launcher have been obtained using CST-Microwave Studio. The fabrication of Vlasov-type helical cut mode launcher for 120 GHz Gyrotron has also been carried out.

  4. Multimode time-dependent gyrotron equations for different time scales

    NASA Astrophysics Data System (ADS)

    Dumbrajs, O.; Kalis, H.

    2017-09-01

    Development of gyrotrons requires careful understanding of different regimes of gyrotron oscillations. For a long time, the gyrotron theory was developed assuming that the transit time of electrons through the interaction space is much shorter than the cavity fill time. Correspondingly, it was assumed that during this transit time, the amplitude of microwave oscillations remains constant. However, there are situations when this assumption is not fulfilled, or is marginally fulfilled. In such cases, a different mathematical formalism has to be used. The present paper generalizes the new formalism to the multi mode case. The particular example considered indicates that in some cases the results obtained by means of the old and the new formalism differ significantly.

  5. Development of high-power gyrotrons with gradually tapered cavity

    SciTech Connect

    Lei Chaojun; Yu Sheng; Niu Xinjian; Liu Yinghui; Li Hongfu; Li Xiang

    2012-12-15

    In high power gyrotrons, the parasitic modes coupled with the operating mode cannot be avoided in the beam-wave interaction. These parasitic modes will decrease the efficiency of the gyrotrons. The purity of the operating mode affected by different tapers should be carefully studied. The steady-state self-consistent nonlinear theory for gyrotron with gradually tapered cavity is developed in this paper. A steady-state calculation code including 'cold cavity' and 'hot cavity' is designed. By comparison, a time-domain model analysis of gyrotron operation is also studied by particle-in-cell (PIC). It is found that the tapers of gyrotron have different influences on the modes coupling between the operating mode and the parasitic modes. During the study, an example of 94 GHz gyrotron with pure operating mode TE{sub 03} has been designed. The purity of the operating mode in the optimized cavity is up to -77 dB, and in output waveguide of the cavity is up to -76 dB. At the same time, the beam-wave interaction in the designed cavity has been simulated, too. An output power of 120 kW, corresponding to 41.6% efficiency and an oscillation frequency of 94.099 GHz have been achieved with a 50 kV, 6 A helical electron beam at a guiding magnetic field of 3.5485 T. The results show that the power in spurious modes of the optimized cavity may be kept far below than that of the traditional tapered cavity.

  6. Suppression of parasitic space-charge oscillations in a gyrotron

    NASA Astrophysics Data System (ADS)

    Louksha, O. I.; Piosczyk, B.; Sominski, G. G.; Thumm, M.; Samsonov, D. B.

    2006-10-01

    We study the influence of nonuniform electric and magnetic fields in the helical-beam compression region on the low-frequency parasitic space-charge oscillations for a moderate-power (˜ 100 kW) 4-mm gyrotron. Suppression of the oscillations is achieved by optimization of both the cathode-unit geometry in the magnetron-injector gun and the magnetic-field distribution in the region near the cavity input. The obtained data are evidence of possible effective operation of the gyrotron at elevated pitch-factor values α > 1.5 even for emitters with no highest emission uniformity (δje ≈ 30%).

  7. Development of gyrotrons for fusion with power exceeding 1 MW over a wide frequency range

    NASA Astrophysics Data System (ADS)

    Kariya, T.; Imai, T.; Minami, R.; Numakura, T.; Eguchi, T.; Kato, T.; Endo, Y.; Ichimura, M.; Shimozuma, T.; Kubo, S.; Takahashi, H.; Yoshimura, Y.; Igami, H.; Ito, S.; Mutoh, T.; Sakamoto, K.; Idei, H.; Zushi, H.; Nagasaki, K.; Sano, F.; Ono, M.; Mitsunaka, Y.

    2015-09-01

    Megawatt-class gyrotrons covering a wide frequency range (14 GHz-300 GHz) are in increasing demand for nuclear fusion. Recent electron cyclotron heating and electron cyclotron current drive experiments highlight a requirement of megawatt-scale gyrotrons at a relatively lower frequency (14-35 GHz) range of some plasma devices, like GAMMA 10/PDX of the University of Tsukuba, QUEST of Kyushu University, NSTX-U of Princeton Plasma Physics Laboratory, and Heliotron J of Kyoto University. Collaborative studies for designing a new 28 GHz/35 GHz dual-frequency gyrotron and a 14 GHz gyrotron have commenced. Operation above 1 MW of 28 GHz/35 GHz dual oscillation was demonstrated experimentally. Further in the design of dual-frequency gyrotron, operations with 2 MW 3 s and 0.4 MW CW (continuous wave) at 28 GHz, and power exceeding 1 MW for 3 s at 34.8 GHz have been shown to be feasible. The 14 GHz gyrotron is expected to operate above 1 MW. We are also developing higher frequency gyrotrons (77-300 GHz). The joint program of National Institute for Fusion Science and the University of Tsukuba developed two new 154 GHz gyrotrons for the large helical device after the demonstration of three 77 GHz gyrotrons. The 154 GHz gyrotrons achieved a maximum output power of 1.25 MW and quasi-CW operation of 0.35 MW for 30 min.

  8. A Gyrotron-Powered Pellet Accelerator

    NASA Astrophysics Data System (ADS)

    Perkins, F. W.; Parks, P. B.

    2005-10-01

    Plans for fuelling ITER call for accelerated pellets which propagate in guide-tubes. The tubes undergo 90 bends so that the pellets can enter the plasma along the high field-side of the separatrix. Both theory and experiment find that for V>= 500m/s, centrifugal force in the bends will fracture the pellets and elongate the cloud of debris. This contribution outlines the design of a plasma accelerator sufficiently flexible so that 90 bends can be avoided for the high-speed portions of the trajectory. The key element is to recognize that the guide tubes can also serve as a waveguide for millimeter waves. Operation proceeds as follows: A pellet is introduced into a guide tube of diameter 5mm at low velocity ˜10m/s and propagates until the remaining trajectory is straight and normal to separatrix. At this point, a 1 MW gyrotron is energized and power propagates until it encounters the pellet. The pellet has a 4-region structure and acts as a gun. The rear region (5mm) is diamond which passes the millimeter waves and provides inertia. Next is a 2mm region of frozen D doped with lithium which adsorbs the millimeter waves and vaporizes. The third region is a thin lithium layer which is several skin depths in extent and reflects millimeter waves. The 5 mm front region is a frozen DT bullet accelerated by the vaporized absorbing layer. The bullet now has a straight trajectory. 1D simulations of the gun will be presented.

  9. The DIII-D ECH multiple gyrotron control system

    SciTech Connect

    Ponce, D.; Lohr, J.; Tooker, J.F.; Cary, W.P.; Harris, T.E.

    1997-11-01

    DIII-D`s ECH upgrade with 1 MW, 110 GHz gyrotrons is ongoing, and with it, an upgrade of the control system. The ECH Multiple Gyrotron Control System uses software distributed among networked computers, interfaced to a programmable logic controller (PLC), the timing and pulse system, power supplies, vacuum and wave guide controls, and instrumentation. During DIII-D operations, the system will allow a chief and a co-operator to control and monitor a number of gyrotrons from different manufacturers. The software, written using LabVIEW, allows for remote and multiple operator control. Thus any supported computer can become a control station and multiple projects can be simultaneously accommodated. Each operator can be given access to the controls of all gyrotrons or to a subset of controls. Status information is also remotely available. The use of a PLC simplifies the hardware and software design. It reduces interlock and control circuitry, includes monitoring for slow analog signals, and allows one software driver to efficiently interface to a number of systems. In addition, the interlock logic can be easily changed and control points can be forced as needed. The pulse system is designed around arbitrary function generators. Various modulation schemes can be accommodated, including real-time control of the modulation. This discussion will include the hardware and software design of the control system and its current implementation.

  10. High Voltage K sub a -Band Gyrotron Experiment.

    DTIC Science & Technology

    1985-11-20

    N.S. Ginzburg, V.I. Krementsov, M.I. Petelin , P.S. Strelkov, and A.K. Shkvarunets, "Experimental investigation of a high-current relativistic...15. V.L. Bratman, N.S. Ginzburg, G.S. Nusinovich, M.I. Petelin , and P.S. Strelkov, "Relativistic gyrotrons and cyclotron autoresonance masers

  11. System Development and Performance Testing of a W-Band Gyrotron

    NASA Astrophysics Data System (ADS)

    Kim, Sung Gug; Sawant, Ashwini; Lee, Ingeun; Kim, Dongsung; Choe, MunSeok; Won, Jong-Hyo; Kim, Jungho; So, Joonho; Jang, Won; Choi, EunMi

    2016-03-01

    A high-power W-band gyrotron has been designed and performance tested in Korea, with an output power in the range of tens of kilowatts. The gyrotron consists of a diode-type electron gun operating at 40 kV, a TE6,2 mode interaction cavity, and a mode converter for producing a highly Gaussian output mode beam. Presented here are the detailed component design procedure and the experimental results of the gyrotron's performance evaluation. A maximum power of 62 kW was achieved with an efficiency of 22 %, and a highly Gaussian output beam was observed. The gyrotron's output beam is analyzed, and its transmission through an oversized waveguide is discussed. This gyrotron is the first gyrotron developed in Korea with high power greater than 10 kW and high frequency greater than 90 GHz.

  12. Improving Reliability of High Power Quasi-CW Laser Diode Arrays Operating in Long Pulse Mode

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Barnes, Bruce W.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.; Baker, Nathaniel R.

    2006-01-01

    Operating high power laser diode arrays in long pulse regime of about 1 msec, which is required for pumping 2-micron thulium and holmium-based lasers, greatly limits their useful lifetime. This paper describes performance of laser diode arrays operating in long pulse mode and presents experimental data of the active region temperature and pulse-to-pulse thermal cycling that are the primary cause of their premature failure and rapid degradation. This paper will then offer a viable approach for determining the optimum design and operational parameters leading to the maximum attainable lifetime.

  13. Case reports: clearance of lentigines in Japanese men with the long-pulsed alexandrite laser.

    PubMed

    Redbord, Kelley Pagliai; Hanke, C William

    2007-06-01

    Benign pigmented lesions can be effectively treated with multiple modalities including lasers. The treatment of pigmented lesions in phototype IV skin is more complicated and challenging given the risk of pigmentation changes and scarring. We present the novel use of the long-pulsed Alexandrite 755 nm laser for the treatment of solar lentigines in sun-reactive phototype IV skin of patients of Japanese decent. Our Japanese patients cleared with one treatment with no pigmentary changes or scarring. No recurrences were noted to date. The long-pulsed Alexandrite 755-nm laser is a novel, safe, and effective treatment of solar lentigines in Japanese patients.

  14. New Edge Coherent Mode Providing Continuous Transport in Long-Pulse H-mode Plasmas

    NASA Astrophysics Data System (ADS)

    Wang, H. Q.; Xu, G. S.; Wan, B. N.; Ding, S. Y.; Guo, H. Y.; Shao, L. M.; Liu, S. C.; Xu, X. Q.; Wang, E.; Yan, N.; Naulin, V.; Nielsen, A. H.; Rasmussen, J. Juul; Candy, J.; Bravenec, R.; Sun, Y. W.; Shi, T. H.; Liang, Y. F.; Chen, R.; Zhang, W.; Wang, L.; Chen, L.; Zhao, N.; Li, Y. L.; Liu, Y. L.; Hu, G. H.; Gong, X. Z.

    2014-05-01

    An electrostatic coherent mode near the electron diamagnetic frequency (20-90 kHz) is observed in the steep-gradient pedestal region of long pulse H-mode plasmas in the Experimental Advanced Superconducting Tokamak, using a newly developed dual gas-puff-imaging system and diamond-coated reciprocating probes. The mode propagates in the electron diamagnetic direction in the plasma frame with poloidal wavelength of ˜8 cm. The mode drives a significant outflow of particles and heat as measured directly with the probes, thus greatly facilitating long pulse H-mode sustainment. This mode shows the nature of dissipative trapped electron mode, as evidenced by gyrokinetic turbulence simulations.

  15. Note: A 95 GHz mid-power gyrotron for medical applications measurements

    NASA Astrophysics Data System (ADS)

    Pilossof, Moritz; Einat, Moshe

    2015-01-01

    A mid-power 95 GHz gyrotron was built and used for measuring insertion loss of biological tissue. The gyrotron is a compact table-top device that allows convenient measurements in a biological setup. It operates at the fundamental harmonic with TE02 circular mode. A mode converter is used to obtain TE10 rectangular mode in standard WR10 components. Using this gyrotron, beef tissue insertion loss was measured to be about 7-8 dB per millimeter.

  16. Gyrotron FU CW VII for 300 MHz and 600 MHz DNP-NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Idehara, Toshitaka; Kosuga, Kosuke; Agusu, La; Ogawa, Isamu; Takahashi, Hiroki; Smith, Mark E.; Dupree, Ray

    2010-07-01

    Gyrotron FU CW VII, one of the FU CW Series Gyrotrons, has been designed, constructed and completed operational tests successfully in the Research Center for Development of Far Infrared Region, University of Fukui (FIR FU). The gyrotron operates at around 200 GHz for the fundamental cyclotron resonances and at around 400 GHz for the second harmonics. These radiation frequencies will be applied to 300 MHz and 600 MHz DNP enhanced NMR spectroscopy.

  17. Scattering from Snow Backgrounds at 35, 98, and 140 GHz.

    DTIC Science & Technology

    1984-04-01

    reported here were obtained by averaging returns while the scatterometer antenna footprints swept over the snow in a continuous circular motion...assembly rotates around its vertical axis. During such a scan, the scatter area on the snow surface describes a circular arc whose radius is a function...lateral antenna motion over distance d. A more rigorous solution was published by Ruina , 10 who gives a comparable expression for the antenna

  18. Treatment Outcomes of Long-Pulsed Nd: YAG Laser for Two Different Subtypes of Rosacea

    PubMed Central

    Say, Ekin Mese; Gökdemir, Gonca

    2015-01-01

    Background: A variety of lasers have been used for the treatment of rosacea. However, treatment of this condition with long-pulsed neodymium-doped yttrium aluminium garnet laser has not been reported yet. Objective: To assess the efficacy and safety of long-pulsed neodymium-doped yttrium aluminium garnet laser in two different subtypes (erythematotelangiectatic and papulopustular) of rosacea. Methods: A total of 66 patients were enrolled in the study. All of the patients were treated with long-pulsed neodymium-doped yttrium aluminium garnet laser with 3- to 4-week intervals. Rosacea severity score was assessed by using photographs. Improvement in severity was defined as the percentage reduction in severity scores from baseline to the end of treatment. Patients were also asked about their own opinions of improvement at the end of the treatment. Side effects were also documented. Results: Good to excellent improvement was achieved in up to 50 percent of the patients in the erythematotelangiectatic and papulopustular groups. Percent improvement of global severity was significantly greater in the erythematotelangiectatic patients than in the papulopustular patients. The majority of patients from both groups noted a significant improvement of the lesions. Hypopigmented atrophic scars were seen in two patients. Conclusion: The long-pulsed neodymium-doped yttrium aluminium garnet laser is a safe and effective treatment for vascular and inflammatory lesions of rosacea. PMID:26430486

  19. Beneficial effects of early treatment of infantile hemangiomas with a long-pulse Alexandrite laser.

    PubMed

    Su, Wenting; Ke, Youhui; Xue, Jixin

    2014-03-01

    There is an increasing interest in treating vascular lesions with a long-pulse Alexandrite laser. However, it is difficult to search information in the literature about infantile hemangiomas (IH) treated with long-pulse Alexandrite laser. This article aims to determine whether 755 nm long-pulse Alexandrite laser is effective and safe for early intervention of IH and provides some new data on this issue. This is a retrospective study of 48 infants with IH treated with long-pulse Alexandrite laser during a 1.5-year period. Patients received a series of 1-7 treatment sessions with long-pulse Alexandrite laser at settings of 3 milliseconds pulse duration, 6-8 mm spot, 45-70 J/cm(2) fluences, and with dynamic cooling device (DCD) spray duration of 90 milliseconds and delay of 80 milliseconds, given at 4- to 6-week intervals. This study demonstrated that IH responded favorably to the treatment of a long-pulse Alexandrite laser while accompany with relatively few complications. The difference between the original untreated and post-treatment scores of all IH and two subgroups were statistically significant, respectively (P < 0.01). The difference of the degree of improvement between the two subgroups was not significant (P > 0.05). It was observed that IH on the trunk and extremities improved more effectively and more quickly than those on the face, neck, and perineum. Besides, age at the first treatment, the sex of the patients and the presence of proliferation were not significantly correlated with the degree of improvement. Adverse effects were seen in 11 patients (22.91%): blistering (n = 9), marked edema and erosion without subsequent residual scarring (n = 1), and hypopigmentation (n = 1), which improved gradually with time. Fortunately, there was no incidence of scarring or ulceration in this case series of IH. It was clinically effective and safe for early treatment of IH, including the thick/deep ones, with a long-pulse Alexandrite

  20. Therapeutic efficacy of long-pulsed 755-nm alexandrite laser for seborrheic keratoses.

    PubMed

    Kim, Y K; Kim, D-Y; Lee, S J; Chung, W S; Cho, S B

    2014-08-01

    Both ablative and non-ablative laser devices have been used for the cosmetic treatment of seborrheic keratoses. We analysed treatment outcomes and adverse events in the treatment of seborrheic keratoses using a long-pulsed 755-nm alexandrite laser without colour enhancement. A total of 216 seborrheic keratoses in 13 patients were treated with one or three sessions of long-pulsed 755-nm alexandrite laser at 1-month intervals. The lesions were treated with settings of 35 J/cm(2) using a 6-mm spot size, a 3-ms pulse width, and 1-2 passes or until the appearance of fine bubbles on the irradiated lesions. A total of 216 seborrheic keratoses were treated with a mean 1.1 ± 0.4 sessions of long-pulsed 755-nm alexandrite laser and achieved a mean objective improvement score of 3.4 ± 0.7. Morphologic factors significantly impacted the number of treatment sessions required; in particular, papular lesions seemed to require more repetitive long-pulsed 755-nm alexandrite laser treatments than macular lesions. However, objective improvement score was not affected by the type of the seborrheic keratoses. The colour of seborrheic keratoses did not significantly affect the objective improvement score or required treatment sessions. Most of the lesions became crusted within a few days after the laser treatment and spontaneously peeled off within 7 days. The delivery of long-pulsed, high fluence laser energy to seborrheic keratoses with protection of the epidermis by an integrated dynamic cooling device is an effective treatment with low risk of side-effects, even in light-coloured lesions with few target pigments. © 2013 European Academy of Dermatology and Venereology.

  1. Osteoblast behavior on polytetrafluoroethylene modified by long pulse, high frequency oxygen plasma immersion ion implantation.

    PubMed

    Wang, Huaiyu; Kwok, Dixon T K; Wang, Wei; Wu, Zhengwei; Tong, Liping; Zhang, Yumei; Chu, Paul K

    2010-01-01

    Polytetrafluoroethylene (PTFE) is a commonly used medical polymer due to its biological stability and other attractive properties such as high hardness and wear resistance. However, the low surface energy and lack of functional groups to interact with the cellular environment have severely limited its applications in bone or cartilage replacements. Plasma immersion ion implantation (PIII) is a proven effective surface modification technique. However, when conducted on polymeric substrates, conventional PIII experiments typically employ a low pulsing frequency and short pulse duration in order to avoid sample overheating, charging, and plasma sheath extension. In this paper, a long pulse, high frequency O(2) PIII process is described to modify PTFE substrates by implementing a shielded grid in the PIII equipment without these aforementioned adverse effects. X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and contact angle measurements are carried out to reveal the surface effects of PTFE after long pulse, high frequency O(2) PIII and the results are compared to those obtained from conventional short pulse, low frequency O(2) PIII, O(2) plasma immersion, and the untreated control samples. Our results show that less oxygen-containing, rougher, and more hydrophobic surfaces are produced on PTFE after long pulse, high frequency O(2) PIII compared to the other 2 treatments. Cell viability assay, ALP activity test, and real-time PCR analysis are also performed to investigate the osteoblast behavior. It is clear that all 3 surface modification techniques promote osteoblast adhesion and proliferation on the PTFE substrates. Improvements on the ALP, OPN, and ON expression of the seeded osteoblasts are also obvious. However, among these treatments, only long pulse, high frequency O(2) PIII can promote the OCN expression of osteoblasts when the incubation time is 12 days. Our data unequivocally disclose that the long pulse, high frequency O(2) PIII

  2. Optimal parameters of gyrotrons with weak electron-wave interaction

    NASA Astrophysics Data System (ADS)

    Glyavin, M. Yu.; Oparina, Yu. S.; Savilov, A. V.; Sedov, A. S.

    2016-09-01

    In low-power gyrotrons with weak electron-wave interaction, there is a problem of determining the optimal length of the operating cavity, which is found as a result of a tradeoff between the enhancement of the electron efficiency and the increase in the Ohmic loss share with increasing cavity length. In fact, this is the problem of an optimal ratio between the diffraction and Ohmic Q-factors of the operating gyrotron mode, which determines the share of the radiated rf power lost in the cavity wall. In this paper, this problem is studied on the basis of a universal set of equations, which are appropriate for a wide class of electron oscillators with low efficiencies of the electron-wave interaction.

  3. Loaded Q's and field profiles of tapered axisymmetric gyrotron cavities

    SciTech Connect

    Derfler, H.; Grant, T.J.; Stone, D.S.

    1982-12-01

    A theoretical investigation of the vacuum electromagnetic properties of a class of tapered cylindrical resonant cavities employed in gyrotron design is reported. The cavity properties which determine gyrotron interaction efficiency-field profiles and loaded Q's-are predicted as a function of the geometric parameters. The authors show that this resonator geometry is superior to other designs for several reasons: 1) its properties are less sensitive to machining tolerances; 2) it produces negligible mode conversion at the output; and 3) in contrast with the imitations of iris-coupled designs, is capable of providing loaded Q's as low as about 0.3 Q diff where Q diff=4..pi..(L/lambda)/sup 2/ is the ''diffraction limit.'' Cold tests in the millimeter bands are reported which verify these conclusions.

  4. Startup and mode competition in a 420 GHz gyrotron

    NASA Astrophysics Data System (ADS)

    Qixiang Zhao, A.; Sheng Yu, B.; Tianzhong Zhang, C.

    2017-09-01

    In the experiments of a 420 GHz second-harmonic gyrotron, it is found that the electron beam voltage and current ranges for single mode operation of TE17.4 are slightly narrower than those in the simulation. To explain this phenomenon, the startup scenario has been investigated with special emphasis on mode competition. The calculations indicate that the decreases of the operating ranges are caused by the voltage overshoot in the startup scenario.

  5. Self-consistent non-stationary theory of the gyrotron

    SciTech Connect

    Dumbrajs, Olgierd; Nusinovich, Gregory S.

    2016-08-15

    For a long time, the gyrotron theory was developed assuming that the transit time of electrons through the interaction space is much shorter than the cavity fill time. Correspondingly, it was assumed that during this transit time, the amplitude of microwave oscillations remains constant. A recent interest to such additional effects as the after-cavity interaction between electrons and the outgoing wave in the output waveguide had stimulated some studies of the beam-wave interaction processes over much longer distances than a regular part of the waveguide which serves as a cavity in gyrotrons. Correspondingly, it turned out that the gyrotron theory free from the assumption about constant amplitude of microwave oscillations during the electron transit time should be developed. The present paper contains some results obtained in the framework of such theory. The main attention is paid to modification of the boundary between the regions of oscillations with constant amplitude and automodulation in the plane of normalized parameters characterizing the external magnetic field and the beam current. It is shown that the theory free from the assumption about the frozen wave amplitude during the electron transit time predicts some widening of the region of automodulation.

  6. A 670 GHz gyrotron with record power and efficiency

    NASA Astrophysics Data System (ADS)

    Glyavin, M. Yu.; Luchinin, A. G.; Nusinovich, G. S.; Rodgers, J.; Kashyn, D. G.; Romero-Talamas, C. A.; Pu, R.

    2012-10-01

    A 670 GHz gyrotron with record power and efficiency has been developed in joint experiments of the Institute of Applied Physics, Russian Academy of Sciences (Nizhny Novgord, Russia), and the University of Maryland (USA) teams. The magnetic field of 27-28 T required for operation at the 670 GHz at the fundamental cyclotron resonance is produced by a pulsed solenoid. The pulse duration of the magnetic field is several milliseconds. A gyrotron is driven by a 70 kV, 15 A electron beam, so the beam power is on the order of 1 MW in 10-20 ms pulses. The ratio of the orbital to axial electron velocity components is in the range of 1.2-1.3. The gyrotron is designed to operate in the TE31,8-mode. Operation in a so high-order mode results in relatively low ohmic losses (less than 10% of the radiated power). Achieved power of the outgoing radiation (210 kW) and corresponding efficiency (about 20%) represent record numbers for high-power sources of sub-THz radiation.

  7. Self-consistent non-stationary theory of the gyrotron

    NASA Astrophysics Data System (ADS)

    Dumbrajs, Olgierd; Nusinovich, Gregory S.

    2016-08-01

    For a long time, the gyrotron theory was developed assuming that the transit time of electrons through the interaction space is much shorter than the cavity fill time. Correspondingly, it was assumed that during this transit time, the amplitude of microwave oscillations remains constant. A recent interest to such additional effects as the after-cavity interaction between electrons and the outgoing wave in the output waveguide had stimulated some studies of the beam-wave interaction processes over much longer distances than a regular part of the waveguide which serves as a cavity in gyrotrons. Correspondingly, it turned out that the gyrotron theory free from the assumption about constant amplitude of microwave oscillations during the electron transit time should be developed. The present paper contains some results obtained in the framework of such theory. The main attention is paid to modification of the boundary between the regions of oscillations with constant amplitude and automodulation in the plane of normalized parameters characterizing the external magnetic field and the beam current. It is shown that the theory free from the assumption about the frozen wave amplitude during the electron transit time predicts some widening of the region of automodulation.

  8. Investigations and advanced concepts on gyrotron interaction modeling and simulations

    SciTech Connect

    Avramidis, K. A.

    2015-12-15

    In gyrotron theory, the interaction between the electron beam and the high frequency electromagnetic field is commonly modeled using the slow variables approach. The slow variables are quantities that vary slowly in time in comparison to the electron cyclotron frequency. They represent the electron momentum and the high frequency field of the resonant TE modes in the gyrotron cavity. For their definition, some reference frequencies need to be introduced. These include the so-called averaging frequency, used to define the slow variable corresponding to the electron momentum, and the carrier frequencies, used to define the slow variables corresponding to the field envelopes of the modes. From the mathematical point of view, the choice of the reference frequencies is, to some extent, arbitrary. However, from the numerical point of view, there are arguments that point toward specific choices, in the sense that these choices are advantageous in terms of simulation speed and accuracy. In this paper, the typical monochromatic gyrotron operation is considered, and the numerical integration of the interaction equations is performed by the trajectory approach, since it is the fastest, and therefore it is the one that is most commonly used. The influence of the choice of the reference frequencies on the interaction simulations is studied using theoretical arguments, as well as numerical simulations. From these investigations, appropriate choices for the values of the reference frequencies are identified. In addition, novel, advanced concepts for the definitions of these frequencies are addressed, and their benefits are demonstrated numerically.

  9. Multi-Megawatt Operation of a 95 GHz Gyrotron

    NASA Astrophysics Data System (ADS)

    Felch, Kevin; Blank, Monica; Borchard, Philipp; Cahalan, Pat; Cauffman, Steve

    2010-11-01

    A 95 GHz gyrotron capable of generating CW power levels in excess of 2 MW is under development at CPI. The gyrotron employs a single-anode electron gun that produces a 90-kV, 75-A electron beam for interaction with the TE22,6,1 cavity mode. Output power from the cavity is transformed into a Gaussian beam using an internal converter that consists of a waveguide launcher and three focusing and phase-correcting mirrors. The beam exits the tube through a chemical-vapor-deposition diamond window. The spent electron beam is dissipated in a 40.6-cm diameter collector fabricated from a strengthened copper alloy. The collector nominally operates at a voltage of 61 kV relative to the cathode potential to minimize the amount of power absorbed in the collector and to improve efficiency. In tests on the gyrotron the maximum power achieved thus far is 1.72 MW with 33% efficiency at the nominal beam current of 75 A. At a reduced beam current of 45 A, an output power of 1.4 MW is obtained with over 50% efficiency. We are planning tube modifications to increase the output power level where efficiencies of greater than 50% can still be obtained.

  10. Design study of a 0.4 THz 100 kW pulsed gyrotron

    SciTech Connect

    Choi, E.M.

    2011-07-01

    We present a status of development of a 0.4 THz, 100 kW pulsed gyrotron at UNIST 0.4 THz, 100 kW gyrotron is currently under design for a remote radioactive material detection. A magnetic injection gun (MIG) is used for the electron gun with a beam voltage of 70 kV and beam current of 10 A with a pulse duration of 10 usec. A second harmonic cavity for the gyrotron interaction is considered for the high power THz gyrotron. Numerical optimization of the electron gun design and the cavity is performed in the study. In this paper, we briefly report the design study of the gyrotron. (author)

  11. Power Accountability with 1 MW 110 GHz Gyrotron System on the DIII--D Tokamak

    NASA Astrophysics Data System (ADS)

    Zhang, Daqing; Lohr, John; Tooker, J. W.; Ponce, Dan; Callis, R. W.

    1996-11-01

    A new gyrotron system (110 GHz, 1 MW, 2 sec) has been built for the DIII--D tokamak. Before the ECH physics experiments were carried out on DIII--D, the power produced by the gyrotron was measured carefully as well as the power absorbed by parts of the system such as in the gyrotron window, mirror optics unit, miter bends, and dummy loads, for different pulse durations. The maximum output power achieved up to now is 885 kW for 500 msec pulse length. The gyrotron generation efficiency is 37%, very close to the optimum operation parameters, and the whole system's efficiency is 29%. The output mode and frequency of the gyrotron was also measured. Detailed experimental results will be presented.

  12. INFRARED MONITORING OF 110GHz GYROTRON WINDOWS AT DIII-D

    SciTech Connect

    Y. GORELOV; J. LOHR; R.W. CALLIS; D. PONCE

    2002-05-01

    The combination of low millimeter wave losses and excellent thermal conductivity with good mechanical properties make artificial chemical vapor deposition (CVD) diamonds a compelling choice for 1 MW 110 GHz gyrotron windows. Five gyrotrons are currently operating at the DIII-D tokamak. Three Gycom gyrotrons have boron nitride (BN) ceramic windows. Due to temperature increases of the windows up to about 930 C, the pulse duration of these tubes is limited to 2 s for output power near 800 kW. Two Communications and Power Industries (CPI) gyrotrons with diamond windows are also installed and operating. The diamond disks of these windows and the construction of their water-cooling assemblies are different. This paper reviews the infrared (IR) measurements of both types of gyrotron windows, with emphasis on the two diamond designs.

  13. Research on a 170 GHz, 2 MW coaxial cavity gyrotron with inner-outer corrugation

    SciTech Connect

    Hou, Shenyong; Yu, Sheng; Li, Hongfu

    2015-03-15

    In this paper, a coaxial cavity gyrotron with inner-outer corrugation is researched. The electron kineto-equations and the first order transmission line equations of the gyrotron are derived from Lorentz force equation and the transmission line theory, respectively. And then, a 2 MW, 170 GHz coaxial cavity gyrotron with inner-outer corrugation is designed. By means of numerical calculation, the beam-wave interaction of the coaxial cavity gyrotron with inner-outer corrugation is investigated. Results show that the efficient and the outpower of the gyrotron are 42.3% and 2.38 MW, respectively.

  14. Cesium dynamics in long pulse operation of negative hydrogen ion sources for fusion

    SciTech Connect

    Fantz, U.; Wimmer, C.

    2012-02-15

    Large scale negative hydrogen ion sources operating stable for 1 h (cw mode) are required for the neutral beam heating system of the fusion experiment ITER. The formation of negative hydrogen ions relies on the surface effect for which cesium is evaporated into the source. In order to monitor the cesium dynamics the laser absorption spectroscopy technique is applied to the long pulse test facility MANITU. In the vacuum phase, without plasma operation the evaporation of cesium and the built-up of the cesium in the source are measured. Typical neutral cesium densities are 10{sup 15} m{sup -3}. During plasma operation and after the plasma phase a high cesium dynamics is observed, showing also depletion of cesium during long pulses with low cesium amount. The co-extracted electron current decreases with the cesium amount to a certain level whereas the ion current indicates an optimum density range.

  15. Cesium dynamics in long pulse operation of negative hydrogen ion sources for fusion.

    PubMed

    Fantz, U; Wimmer, C

    2012-02-01

    Large scale negative hydrogen ion sources operating stable for 1 h (cw mode) are required for the neutral beam heating system of the fusion experiment ITER. The formation of negative hydrogen ions relies on the surface effect for which cesium is evaporated into the source. In order to monitor the cesium dynamics the laser absorption spectroscopy technique is applied to the long pulse test facility MANITU. In the vacuum phase, without plasma operation the evaporation of cesium and the built-up of the cesium in the source are measured. Typical neutral cesium densities are 10(15) m(-3). During plasma operation and after the plasma phase a high cesium dynamics is observed, showing also depletion of cesium during long pulses with low cesium amount. The co-extracted electron current decreases with the cesium amount to a certain level whereas the ion current indicates an optimum density range.

  16. Use of a long-pulse alexandrite laser in the treatment of superficial pigmented lesions.

    PubMed

    Trafeli, John Paul; Kwan, Julia M; Meehan, Kenneth J; Domankevitz, Yacov; Gilbert, Sandra; Malomo, Kenneth; Ross, Edward Victor

    2007-12-01

    Although the alexandrite 755-nm-wavelength laser is effective in the treatment of unwanted hair, there are no published studies gauging the efficacy of the variable long-pulse alexandrite laser in the treatment of superficial pigmented lesions. Eighteen patients underwent a single treatment session using a variable pulse-width alexandrite laser. Test sites were performed using a 10-mm spot size and up to four pulse widths (3, 20, 40, 60 ms) with and without epidermal cooling. Full treatments were performed 3 weeks later using optimum test parameters. The patients were evaluated at 3 and 6 weeks. Patients with darker lentigines had greater lesion clearance than those patients with lighter colored lentigines. Shorter pulse widths and treatment without cryogen cooling both, independently, lowered the fluence threshold for lentigo clearance. A long-pulse alexandrite laser is effective in clearing solar lentigines in a single pass with minimal adverse effects.

  17. Investigation of an X-band gigawatt long pulse multi-beam relativistic klystron amplifier

    NASA Astrophysics Data System (ADS)

    Liu, Zhenbang; Huang, Hua; Lei, Lurong; Jin, Xiao; Zhu, Lei; Wang, Ganping; He, Hu; Wu, Yao; Ge, Yi; Yuan, Huan; Chen, Zhaofu

    2015-09-01

    To achieve a gigawatt-level long pulse radiation power in X-band, a multi-beam relativistic klystron amplifier is proposed and studied experimentally. By introducing 18 electron drift tubes and extended interaction cavities, the power capacity of the device is increased. A radiation power of 1.23 GW with efficiency of 41% and amplifier gain of 46 dB is obtained in the particle-in-cell simulation. Under conditions of a 10 Hz repeat frequency and an input RF power of 30 kW, a radiation power of 0.9 GW, frequency of 9.405 GHz, pulse duration of 105 ns, and efficiency of 30% is generated in the experiment, and the amplifier gain is about 45 dB. Both the simulation and the experiment prove that the multi-beam relativistic klystron amplifier can generate a long pulse GW-level radiation power in X-band.

  18. Initial operation of high power ICRF system for long pulse in EAST

    SciTech Connect

    Qin, C. M. Zhao, Y. P.; Zhang, X. J.; Wan, B. N.; Gong, X. Z.; Mao, Y. Z.; Yuan, S.; Chen, G.

    2015-12-10

    The ICRF heating system on EAST upgraded by active cooling aims for long pulse operation. In this paper, the main technical features of the ICRF system are described. One of a major challenges for long pulse operation is RF-edge interactions induced impurity production and heat loading. In EAST, ICRF antenna protections and Faraday screen bars damaged due to LH electron beam are found. Preliminary results for the analysis of the interaction between LHCD and ICRF antenna are discussed. Increase of metal impurities in the plasma during RF pulse and in a larger core radiation are also shown. These RF-edge interactions at EAST and some preliminary results for the optimizing RF performance will be presented.

  19. Initial operation of high power ICRF system for long pulse in EAST

    NASA Astrophysics Data System (ADS)

    Qin, C. M.; Zhao, Y. P.; Zhang, X. J.; Wan, B. N.; Gong, X. Z.; Mao, Y. Z.; Yuan, S.; Chen, G.

    2015-12-01

    The ICRF heating system on EAST upgraded by active cooling aims for long pulse operation. In this paper, the main technical features of the ICRF system are described. One of a major challenges for long pulse operation is RF-edge interactions induced impurity production and heat loading. In EAST, ICRF antenna protections and Faraday screen bars damaged due to LH electron beam are found. Preliminary results for the analysis of the interaction between LHCD and ICRF antenna are discussed. Increase of metal impurities in the plasma during RF pulse and in a larger core radiation are also shown. These RF-edge interactions at EAST and some preliminary results for the optimizing RF performance will be presented.

  20. Long-Pulse Integrator Testing with DIII-D Magnetic Diagnostics

    NASA Astrophysics Data System (ADS)

    Slobodov, Ilia; Miller, Kenneth; Ziemba, Timothy; Prager, James; Carscadden, John; Hanson, Eric

    2016-10-01

    Eagle Harbor Technologies (EHT), Inc. has developed a high-gain integrator for magnetic diagnostics that meets ITER specifications including integration time and integration error limits. EHT has conducted testing of this long-pulse integrator at DIII-D with existing DIII-D magnetic probes. The EHT long-pulse integrator was operated for several hours up to a full day. During a single period of EHT integrator operation, DIII-D was pulsed multiple times. The multiple pulses from the DIII-D magnetic diagnostics can be clearly resolved in the integrator signal output. The results are compared to DIII-D measurements. EHT also operated the long pulse integrator in High Dynamic Range Mode (HDRM), which effectively allows for a dramatic increase in measurement bit depth for higher resolution signal acquisition with the same diagnostic and digitizers presently available on DIII-D. Additionally, EHT has tested a new microprocessor and FPGA-based digitizer, which can be included on the integrator PCB, for a single board magnetic diagnostic solution.

  1. Argon gas-puff radius optimiaztion for Saturn operating in the long-pulse mode.

    SciTech Connect

    Apruzese, John P.; Jackson, S. L.; Commisso, Robert J.; Weber, Bruce V.; Mosher, Daniel A.

    2010-06-01

    Argon gas puff experiments using the long pulse mode of Saturn (230-ns rise time) have promise to increase the coupled energy and simplify operations because the voltage is reduced in vacuum and the forward-going energy is higher for the same Marx charge. The issue addressed in this work is to determine if the 12-cm-diameter triple nozzle used in Saturn long-pulse-mode experiments to date provides maximum K-shell yield, or if a different-radius nozzle provides additional radiation. Long-pulse implosions are modeled by starting with measured density distributions from the existing 12-cm-diameter nozzle, and then varying the outer radius in an implosion-energy-conserving self-similar manner to predict the gas-puff diameter that results in the maximum K-shell yield. The snowplow-implosions and multi-zone radiation transport models used in the analysis are benchmarked against detailed measurements from the 12-cm-diameter experiments. These calculations indicate that the maximum K-shell emission is produced with very nearly the existing nozzle radius.

  2. Laser ion source with long pulse width for RHIC-EBIS

    SciTech Connect

    Kondo, K.; Kanesue, T.; Okamura, M.

    2011-03-28

    The Electron Beam Ion Source (EBIS) at Brookhaven National Laboratory is a new heavy ion-projector for RHIC and NASA Space Radiation Laboratory. Laser Ion Source (LIS) with solenoid can supply many kinds of ion from solid targets and is suitable for long pulse length with low current as ion provider for RHIC-EBIS. In order to understand a plasma behavior for fringe field of solenoid, we measure current, pulse width and total ion charges by a new ion probe. The experimental result indicates that the solenoid confines the laser ablation plasma transversely. Laser ion source needs long pulse length with limited current as primary ion provider for RHIC-EBIS. New ion probe can measure current distribution for the radial positions along z axis. The beam pulse length is not effected by magnetic field strength. However, the currents and charges decay with the distance from the end of solenoid. These results indicate that solenoid field has important role for plasma confinement not longitudinally but transversely and solenoid is able to have long pulse length with sufficient total ion charges. Moreover, the results are useful for a design of the extraction system for RHIC-EBIS.

  3. Hair removal using the long-pulsed ruby laser in children.

    PubMed

    Morley, S; Gault, D

    2000-12-01

    The purpose of this study was to assess the efficacy of laser assisted hair removal in children aged 16 and under using the long pulsed ruby laser. Unwanted hair in the pediatric population can be due to congenital hairy nevi and hypertrichosis. Methods of effecting hair removal include shaving, electrolysis, and laser depilation. The long-pulsed ruby laser is an established treatment modality in adults, but its use specifically in children has not been investigated. Patients aged 16 or under undergoing treatment with the ruby laser for unwanted hair were assessed. Hair counts were determined before and after treatment and an assessment of overall satisfaction was made using a parental questionnaire. Treatment was regarded as successful in 25 out of 28 cases where there was a clear reduction in hair growth at the site treated with an average fall in hair count of 63% at 6 months follow up. There was no scarring or hyperpigmentation in this group and no serious complications. Total suppression of hair growth was not permanent but usually lasted between 3 and 6 months. Few problems were encountered from using the technique specifically in children, and pain was well controlled in most cases. We would recommend the long-pulsed ruby laser as a useful form of hair removal in children that is quick, simple and well tolerated. At present, the technique leads to hair loss that is temporary but most patients and their parents feel the treatment gives worthwhile benefits.

  4. Uncommonly reported side effects of hair removal by long pulsed-alexandrite laser.

    PubMed

    Rasheed, Ahmad I

    2009-12-01

    To provide retrospective clinical review of some uncommonly reported side effects of long-pulsed alexandrite laser treatment for hair removal. Two hundred and fifty female patients suffering from hirsutism of the face were subjected to treatment by long pulse alexandrite laser for a maximum of 15 sessions per patient at 5- to 7-week intervals. Apart from the commonly reported side effects of pigmentary changes, occasional blistering and rare scarring, other untoward effects have been observed. These include - among others - de-novo growth of hair outside the area treated by laser, potentiation of co-existing vellus hair in the treatment area, induction or aggravation of acne, rosacea-like rash, premature grayness of hair, tunneling of hair under the skin, prolonged diffuse redness and edema of the face, focal hypopigmentation of the lip, angular cheilitis, allergic reaction to the cooling gas, and inflammatory and pigmentary changes of pre-existing nevi. Although the efficacy of long-pulsed alexandrite laser seems unmistakable, the short- and long-term untoward effects of such treatment have yet to be carefully delineated and the underlying mechanisms are yet to be adequately clarified.

  5. Treatment of Becker's nevi with a long-pulse alexandrite laser.

    PubMed

    Choi, Jae Eun; Kim, Ji Woong; Seo, Soo Hong; Son, Sang Wook; Ahn, Hyo Hyun; Kye, Young Chul

    2009-07-01

    Becker's nevus (BN) can be a distressing cosmetic handicap for patients and a treatment challenge for physicians. Various treatment modalities have been used, but repigmentation commonly occurs after treatment. To evaluate the efficacy of long-pulse alexandrite laser in the treatment of BN. Eleven Korean patients with Fitzpatrick skin type III to V were included in this study. A long-pulsed alexandrite laser with a wavelength of 755 nm and a pulse duration of 3 ms was used. Patients were treated with a fluence of 20 to 25 J/cm(2) and a spot size of 15 to 18 mm. Cryogen spray cooling was not used. Two patients had excellent responses, five had good responses, and four had fair responses. Hair density simultaneously decreased with treatment in all patients. Although mild hypopigmentation was observed in some patients, and partial hypertrophic scarring was observed in one patient, the outcomes were cosmetically acceptable. No repigmentation was noted during the follow-up period. A long-pulsed alexandrite laser without cryogen spray cooling is an effective and safe alternative in the treatment of BN.

  6. High power 303 GHz gyrotron for CTS in LHD

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Y.; Kasa, J.; Saito, T.; Tatematsu, Y.; Kotera, M.; Kubo, S.; Shimozuma, T.; Tanaka, K.; Nishiura, M.

    2015-10-01

    A high-power pulsed gyrotron is under development for 300 GHz-band collective Thomson scattering (CTS) diagnostics in the Large Helical Device (LHD). High-density plasmas in the LHD require a probe wave with power exceeding 100 kW in the sub-terahertz region to obtain sufficient signal intensity and large scattering angles. At the same time, the frequency bandwidth should be less than several tens of megahertz to protect the CTS receiver using a notch filter against stray radiations. Moreover, duty cycles of ~ 10% are desired for the time domain analysis of the CTS spectrum. At present, a 77 GHz gyrotron for electron cyclotron heating is used as a CTS wave source in the LHD. However, the use of such a low-frequency wave suffers from refraction, cutoff and absorption at the electron cyclotron resonance layer. Additionally, the signal detection is severely affected by background noise from electron cyclotron emission. To resolve those problems, high-power gyrotrons in the 300 GHz range have been developed. In this frequency range, avoiding mode competition is critical to realizing high-power and stable oscillation. A moderately over-moded cavity was investigated to isolate a desired mode from neighbouring modes. After successful tests with a prototype tube, the practical one was constructed with a cavity for TE22,2 operation mode, a triode electron gun forming intense laminar electron beams, and an internal mode convertor. We have experimentally confirmed single mode oscillation of the TE22,2 mode at the frequency of 303.3 GHz. The spectrum peak is sufficiently narrow. The output power of 290 kW has been obtained at the moment.

  7. The Development of 460 GHz gyrotrons for 700 MHz DNP-NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Idehara, T.; Tatematsu, Y.; Yamaguchi, Y.; Khutoryan, E. M.; Kuleshov, A. N.; Ueda, K.; Matsuki, Y.; Fujiwara, T.

    2015-07-01

    Two demountable gyrotrons with internal mode converters were developded as sub-THz radiation sources for 700 MHz DNP (Dynamic Nuclear Polarization) enhanced NMR spectroscopy. Experimental study on the DNP-NMR spectroscopy will be carried out in Osaka University, Institute for Protein Research, as a collaboration with FIR UF. Both gyrotrons operate near 460 GHz and the output CW power measured at the end of transmission system made by circular waveguides is typically 20 to 30 watts. One of them named Gyrotron FU CW GVI (we are using "Gyrotron FU CW GO-1" as an official name in Osaka University) is designed to have a special function of high speed frequency modulation δ f within 100 MHz band. This will expand excitable band width of ESR and increase the number of electron spins contributing to DNP. The other gyrotron, Gyrotron FU CW GVIA ("Gyrotron FU CW GO-II") has a function of frequency tunability Δ f in the range of wider than 1.5 GHz, which is achieved in steady state by changing magnetic field intensity. This function should be used for adjusting the output frequency at the optimal value to achieve the highest enhancement factor of DNP.

  8. Transmission Line for 258 GHz Gyrotron DNP Spectrometry

    NASA Astrophysics Data System (ADS)

    Bogdashov, Alexandr A.; Belousov, Vladimir I.; Chirkov, Alexey V.; Denisov, Gregory G.; Korchagin, Vyacheslav V.; Kornishin, Sergey Yu.; Tai, Evgeny M.

    2011-06-01

    We describe the design and test results of the transmission line for liquid-state (LS) and solid-state (SS) DNP spectrometers with the second-harmonic 258.6 GHz gyrotron at the Institute of the Biophysical Chemistry Center of Goethe University (Frankfurt). The 13-meter line includes a mode converter, HE11 waveguides, 4 mitre bends, a variable polarizer-attenuator, directional couplers, a water-flow calorimeter and a mechanical switch. A microwave power of about 15 W was obtained in the pure HE11 mode at the spectrometer inputs.

  9. Computer simulation of phase locking multi-cavity relativistic gyrotrons

    NASA Astrophysics Data System (ADS)

    Lin, A. T.; Yang, Z. H.; Lin, Chih-Chien

    1989-07-01

    A particle-in-cell model has been employed to investigate the phase-locking phenomenon of multi-cavity relativistic gyrotron oscillators. Simulation results show that a prebunched beam causes the output wave to overshoot, which in turn prolongs the time for establishing phase locking. The beam axial velocity spread is observed to reduce the locking bandwidth. The phenomenon of priming or injection seeding is simulated. The phase locked time depends on the growth rate of the oscillator and the amount of inject frequency deviation from the locking boundary.

  10. Beam-wave interaction analysis of a 42 GHz, 200 kW CW gyrotron

    SciTech Connect

    Ashutosh; Singh, Rupendra; Jain, P.K. E-mail: rupendrasingh04@gmail.com

    2011-07-01

    In this paper, the self-consistent large-signal formulation is used to study the beam-wave interaction mechanism in a gyrotron oscillator. The nonlinear interaction has been computed by solving the set of self-consistent nonlinear equations along the interaction length using numerical method. Consequently, the computation of energy, phase, output power, and efficiency of a gyrotron is made. The computed results were found to be matching with the published results. A 42 GHz, 200 kW output power gyrotron operating in TE{sub 03} mode is analysed using this analysis and results found meeting desired specifications. (author)

  11. Design of a 1-MW, CW coaxial gyrotron with two gaussian beam outputs

    NASA Astrophysics Data System (ADS)

    Hirata, Y.; Hayashi, K.; Mitsunaka, Y.; Itoh, Y.; Sugawara, T.

    1995-04-01

    The design of a 170 GHz, 1 MW-CW gyrotron for electron cyclotron heating of nuclear fusion plasmas is presented. The designed gyrotron incorporates a coaxial cavity to reduce mode competition, and a coaxial electron gun to support the cavity inner conductor. A new mode converter splits the generated wave into two beams and radiates them in different directions. The radiated beams are transmitted to two output windows through two mirror systems, being transformed into Gaussian-like beams. A single-stage depressed collector improves the overall efficiency of the gyrotron and reduces the heat flux to the collector surface.

  12. Nonlinear theory for a terahertz gyrotron with a special cross-section interaction cavity

    SciTech Connect

    Yuan, Xuesong; Han Yu; Yan Yang; Lan Ying

    2012-05-15

    The fully numerical nonlinear theory for a gyrotron with a special cross-section interaction cavity has been developed in this paper. In this theory, the analytical solution to different modes in the special cross-section interaction cavity is replaced by the numerical solution based on electromagnetic simulation results. A 0.4 THz third harmonic gyrotron with an azimuthally corrugated interaction cavity has been investigated by using this theory and simulation results show that this approach has a significant advantage of developing high harmonic terahertz gyrotrons.

  13. Stabilization of Gyrotron Frequency by PID Feedback Control on the Acceleration Voltage

    NASA Astrophysics Data System (ADS)

    Khutoryan, E. M.; Idehara, T.; Kuleshov, A. N.; Tatematsu, Y.; Yamaguchi, Y.; Matsuki, Y.; Fujiwara, T.

    2015-12-01

    The results of frequency stabilization by proportional-integral-derivative (PID) feedback control of acceleration voltage in the 460-GHz Gyrotron FU CW GVI (the official name in Osaka University is Gyrotron FU CW GOI) are presented. The experiment was organized on the basis of the frequency modulation by modulation of acceleration voltage of beam electrons. The frequency stabilization during 10 h experiment was better than 10-6, which is compared with the results of the frequency deviation in free-running gyrotron operation.

  14. Simulation study on thermal effect of long pulse laser interaction with CFRP material

    NASA Astrophysics Data System (ADS)

    Ma, Yao; Jin, Guangyong; Yuan, Boshi

    2016-10-01

    Laser machining is one of most widely used technologies nowadays and becoming a hot industry as well. At the same time, many kinds of carbon fiber material have been used in different area, such as sports products, transportation, microelectronic industry and so on. Moreover, there is lack of the combination research on the laser interaction with Carbon Fiber Reinforced Polymer (CFRP) material with simulation method. In this paper, the temperature status of long pulse laser interaction with CFRP will be simulated and discussed. Firstly, a laser thermal damage model has been built considering the heat conduction theory and thermal-elasto-plastic theory. Then using COMSOL Multiphysics software to build the geometric model and to simulate the mathematic results. Secondly, the functions of long pulse laser interaction with CFRP has been introduced. Material surface temperature increased by time during the laser irradiating time and the increasing speed is faster when the laser fluence is higher. Furthermore, the peak temperature of the center of material surface is increasing by enhanced the laser fluence when the pulse length is a constant value. In this condition, both the ablation depth and the Heat Affected Zone(HAZ) is larger when increased laser fluence. When keep the laser fluence as a constant value, the laser with shorter pulse length is more easier to make the CFRP to the vaporization material. Meanwhile, the HAZ is becoming larger when the pulse length is longer, and the thermal effect depth is as the same trend as the HAZ. As a result, when long pulse laser interaction with CFRP material, the thermal effect is the significant value to analysis the process, which is mostly effect by laser fluence and pulse length. For laser machining in different industries, the laser parameter choose should be different. The shorter pulse length laser is suitable for the laser machining which requires high accuracy, and the longer one is better for the deeper or larger

  15. Treatment of hypertrophic scars using a long-pulsed dye laser with cryogen-spray cooling.

    PubMed

    Kono, Taro; Erçöçen, Ali Rza; Nakazawa, Hiroaki; Nozaki, Motohiro

    2005-05-01

    Hypertrophic scars are common and cause functional and psychologic morbidity. The conventional pulsed dye laser (585 nm) has been shown previously to be effective in the treatment of a variety of traumatic and surgical scars, with improvement in scar texture, color, and pliability, with minimal side effects. This prospective study was performed to determine the effectiveness of the long-pulsed dye laser (595 nm) with cryogen-spray cooling device in the treatment of hypertrophic scars. Fifteen Asian patients with 22 hypertrophic scars were treated by the long-pulsed dye laser (595 nm) with cryogen-spray cooling device. In 5 patients, the scar area was divided into halves, one half of which was treated with the laser, whereas the other half was not treated and was used as a negative control. All patients received 2 treatments at 4-week intervals, and evaluations were done by photographic and clinical assessment and histologic evaluation before the treatment and 1 month after the last laser treatment. Treatment outcome was graded by a blind observer using the Vancouver General Hospital (VGH) Burn Scar Assessment Scale. Symptoms such as pain, pruritus, and burning of the scar improved significantly. VGH scores improved in all treated sites, and there was a significant difference between the baseline and posttreatment scores, corresponding to an improvement of 51.4 +/- 14.7% (P < 0.01). Compared with the baseline, the mean percentage of scar flattening and erythema elimination was 40.7 +/- 20.7 and 65.3 +/- 25.5%, respectively (P < 0.01). The long-pulsed dye laser (595-nm) equipped with cryogen spray cooling device is an effective treatment of hypertrophic scars and can improve scar pliability and texture and decrease scar erythema and associated symptoms.

  16. The performance of neutron scattering spectrometers at a long-pulse spallation source

    SciTech Connect

    Pynn, R.

    1997-06-01

    In this document the author considers the performance of a long pulse spallation source for those neutron scattering experiments that are usually performed with a monochromatic beam at a continuous wave (CW) source such as a nuclear reactor. The first conclusion drawn is that comparison of the performance of neutron scattering spectrometers at CW and pulsed sources is simpler for long-pulsed sources than it is for the short-pulse variety. Even though detailed instrument design and assessment will require Monte Carlo simulations (which have already been performed at Los Alamos for SANS and reflectometry), simple arguments are sufficient to assess the approximate performance of spectrometers at an LPSS and to support the contention that a 1 MW long-pulse source can provide attractive performance, especially for instrumentation designed for soft-condensed-matter science. Because coupled moderators can be exploited at such a source, its time average cold flux is equivalent to that of a research reactor with a power of about 15 MW, so only a factor of 4 gain from source pulsing is necessary to obtain performance that is comparable with the ILL. In favorable cases, the gain from pulsing can be even more than this, approaching the limit set by the peak flux, giving about 4 times the performance of the ILL. Because of its low duty factor, an LPSS provides the greatest performance gains for relatively low resolution experiments with cold neutrons. It should thus be considered complementary to short pulse sources which are most effective for high resolution experiments using thermal or epithermal neutrons.

  17. Long pulse H- beam extraction with a rf driven ion source on a high power level.

    PubMed

    Kraus, W; Fantz, U; Franzen, P

    2010-02-01

    IPP Garching is investigating the applicability of rf driven negative ion sources for the neutral beam injection of International Thermonuclear Experimental Reactor. The setup of the tested source was improved to enable long pulses up to 100 kW rf power. The efficiency of negative ion production decreases at high power. The extracted H(-) currents as well as the symmetry of the plasma density close to the plasma grid and of the beam divergence depend on the magnetic filter field. The pulse duration is limited by the increase in coextracted electrons, which depends on the rf power and the caesium conditions on the plasma grid.

  18. A high-duty-cycle long-pulse electron gun for electron accelerators

    SciTech Connect

    Ebrahim, N.A.; Thrasher, M.H. )

    1990-11-01

    We describe the design and operation of a long-pulse (200--300 {mu}s), high-duty-cycle (5%--6%), 8-mm-diam dispenser cathode, electrically isolated, modulating Wehnelt electron gun for applications in a high-average-power electron linear accelerator. The electron optics design was optimized with computer modeling of the electron trajectories and equipotentials. The gun performance was established in a series of experimental measurements in a test stand. Excellent pulse-to-pulse emission current reproducibility and electron-beam pulse profile stability were obtained.

  19. Characteristics of dual element ultrasonic transducers in the long pulse radiation mode

    NASA Astrophysics Data System (ADS)

    Kazakov, V. V.; Sanin, A. G.

    2017-01-01

    The frequency and transfer characteristics of dual element ultrasonic transducers are theoretically and experimentally investigated in the long pulse radiation mode for the case where one of the piezoelectric elements is connected to a control circuit in the form of an inductance coil or a resistor. For the controlled damper and controlled layer cases, the characteristic features of radiation as functions of the control circuit parameters are determined, as well as the conditions for an increase in ultrasonic wave radiation power. With certain conditions being satisfied, we demonstrate the possibility of amplitude modulation of the emitted ultrasonic wave by periodic switching of control circuit elements.

  20. Generation in electric-discharge XeCl lasers of a high energy long pulses

    NASA Astrophysics Data System (ADS)

    Konovalov, Ivan; Losev, Valery F.; Panchenko, Yury N.

    2004-06-01

    Experimental results of long-pulse generation in X-ray preionized XeCl lasers with a 9 x 7 cm2 and 5.4 x 3 cm2 apertures are described. Lasers operate at Ne-Xe-HCl mixture with pressure up to 4 atm. Paper-oil pulse forming lines and rail-gap switch for discharge pump was used. An 2 - 10 J output with optical pulse duration of 250 - 300 ns (FWHM) have been extracted. Problems and peculiarities of long laser pulse formation are discussed.

  1. Recent experimental results from a long-pulse J-band relativistic klystron amplifier developmental effort

    SciTech Connect

    Kato, K.G.; Crouch, D.D.; Sar, D.R.; Speciale, R.A.; Carlsten, B.E.; Fazio, M.V.; Haynes, W.B.; Stringfield, R.M.

    1994-12-31

    Recent experimental results, supporting simulations, and design modeling are presented from a developmental effort to a produce a long pulse ({approximately}1{mu}s) J-band (5.85-8.2 GHz) relativistic klystron amplifier (RKA) of the high current NRL genealogy. This RKA is designed to operate at approximately 6.6 GHz, with a desired RF output {approximately}700 MW. Conversion of electron beam energy to microwave energy is obtained by a mock magnetically insulated coaxial converter which, in various incarnations, can be made to be either a cavity gap extractor or an inverse cathode.

  2. Efficiency of stone fragmentation by long pulses of a Q-switched Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Helfmann, Juergen; Mikhailov, B. A.; Konov, Vitali I.; Mueller, Gerhard J.; Nikolaev, D. A.; Pak, S. K.; Shcherbakov, Ivan A.; Silenok, Alexander S.

    1992-06-01

    The effect of long pulsed Nd:YAG laser (pulse duration 300 ns) with the fundamental and second harmonic wavelength on the fragmentation of different urological and gall stones has been investigated. With 200 and 400 micrometers fibers in a contact application, all types of stones could be fragmented with energies less than 120 mJ (400 micrometers fiber) or 45 mJ (200 micrometers fiber). By use of a double pulse-simultaneous application of second harmonic and fundamental radiation the efficiency of fragmentation could be increased and the energy threshold decreased.

  3. ICRF mode conversion heating and long-pulse discharges in LHD

    SciTech Connect

    Saito, K.; Mutoh, T.; Kumazawa, R.; Seki, T.; Nakamura, Y.; Ashikawa, N.; Sato, K.; Shoji, M.; Masuzaki, S.; Kasahara, H.; Shimpo, F.; Nomura, G.; Yokota, M.; Takahashi, C.; Komori, A.; Ogawa, H.; Takeuchi, H.

    2007-09-28

    In LHD, long-pulse discharge has been conducted by ICRF minority ion heating. Plasma duration time of 525 seconds was achieved with the heating power of more than 1 MW supported by ECH and NBI. Electron heating by the mode conversion from the fast wave to the ion Bernstein wave was investigated to achieve a longer pulse length with the higher injection power. Plasma was sustained for 88 seconds by the mode conversion heating and ECH. The temperature distribution on divertor plates was less localized than that of minority ion heating.

  4. Electrode-plasma-driven radiation cutoff in long-pulse, high-power microwave devices

    SciTech Connect

    Rose, D. V.; Miller, C. L.; Welch, D. R.; Portillo, S.

    2013-03-15

    The impact of electrode plasma dynamics on the radiation production in a high power microwave device is examined using particle-in-cell simulations. Using the design of a compact 2.4 GHz magnetically insulated line oscillator (MILO) as the basis for numerical simulations, we characterize the time-dependent device power and radiation output over a range of cathode plasma formation rates. These numerical simulations can self-consistently produce radiation characteristics that are similar to measured signals in long pulse duration MILOs. This modeling capability should result in improved assessment of existing high-power microwave devices and lead to new designs for increased radiation pulse durations.

  5. Design of long-pulse fast wave current drive antennas for DIII-D

    NASA Astrophysics Data System (ADS)

    Baity, F. W.; Batchelor, D. B.; Bills, K. C.; Fogelman, C. H.; Jaeger, E. F.; Ping, J. L.; Riemer, B. W.; Ryan, P. M.; Stallings, D. C.; Taylor, D. J.; Yugo, J. J.

    1994-10-01

    Two new long-pulse fast wave current drive (FWCD) antennas will be installed on DIII-D in early 1994. These antennas will increase the available FWCD power from 2 MW to 6 MW for pulse lengths of up to 2 s, and to 4 MW for up to 10 s. Power for the new antennas is from two ASDEX-type 30- to 120-MHz transmitters. When operated at 90° phasing into a low-density plasma (˜4×1019m-3) with hot electrons (˜10 keV), these two new antennas are predicted to drive approximately 1 MA of plasma current.

  6. A Gyrotron-Powered Pellet Accelerator for Tokamak Fueling

    NASA Astrophysics Data System (ADS)

    Parks, P. B.; Perkins, F. W.

    2006-04-01

    A novel pellet acceleration concept [1] using microwave power from MW gyrotron sources has been developed that could pave the way for high-speed >3 km/s inner-wall pellet injection on ITER-class tokamaks. The concept is based on the principal of a gun, where a high-pressure propellant gas drives the projectile down the barrel. In the proposed concept, the high gas pressure is created by evaporative explosion of a composite ``pusher'' medium attached behind the DT fuel pellet. The pusher consists of micron-sized conducting particles, (Li, Be, C) embedded uniformly in a D2 ice slug with <5% volume concentration, thus facilitating microwave energy absorption by dissipation of eddy currents flowing within the conducting particles only. Microwave power is delivered to the pusher along a waveguide, which also serves as the pellet launch tube. A scaling law predicts that a pellet of mass M accelerated over a distance L reaches a velocity v (PL/M)^1/3, where P is the gyrotron power.pard[1] P. Parks & F. Perkins, US patent application ``Microwave-Powered Pellet Accelerator,'' No. 11/256/662, October 21, 2005.

  7. Application of Fusion Gyrotrons to Enhanced Geothermal Systems (EGS)

    NASA Astrophysics Data System (ADS)

    Woskov, P.; Einstein, H.; Oglesby, K.

    2013-10-01

    The potential size of geothermal energy resources is second only to fusion energy. Advances are needed in drilling technology and heat reservoir formation to realize this potential. Millimeter-wave (MMW) gyrotrons and related technologies developed for fusion energy research could contribute to enabling EGS. Directed MMW energy can be used to advance rock penetration capabilities, borehole casing, and fracking. MMWs are ideally suited because they can penetrate through small particulate extraction plumes, can be efficiently guided long distances in borehole dimensions, and continuous megawatt sources are commercially available. Laboratory experiments with a 10 kW, 28 GHz CPI gyrotron have shown that granite rock can be fractured and melted with power intensities of about 1 kW/cm2 and minute exposure times. Observed melted rock MMW emissivity and estimated thermodynamics suggest that penetrating hot, hard crystalline rock formations may be economic with fusion research developed MMW sources. Supported by USDOE, Office of Energy Efficiency and Renewable Energy and Impact Technologies, LLC.

  8. Application of the coded long-pulse technique to plasma line studies of the ionosphere

    NASA Technical Reports Server (NTRS)

    Djuth, Frank T.; Sulzer, Michael P.; Elder, John H.

    1994-01-01

    Recently, the coded long-pulse radar technique was tested at Arecibo Observatory, Puerto Rico using photoelectron-enhanced plasma lines in the daytime ionosphere. The technique immediately proved to be a powerful diagnostic tool for studying natural ionospheric phenomena. Our initial observations indicate that extremely accurate measurements of absolute electron density (0.01 to 0.03% error bars) can be achieved with an altitude resolution of 150 m and a temporal resolution of approx. 2 s. In addition, the technique provides information about electron density structure within a 150-m altitude cell and yields parameters from which the energy spectrum of suprathermal electrons (equal to or greater than 5 eV) can be deduced. Our earliest measurements are used to illustrate applications of the coded long-pulse technique to several aeronomic/ionsospheric areas of current interest. These include studies of neutral wave motions in the lower thermosphere, measurements of ion composition in the F(sub 1) region/upper ionosphere, and investigations of electron-gas thermal balance and photoelectron energy loss processes. The technique can be utilized to examine irregularity formation in the F region, probe electron acceleration processes in ionospheric modification experiments, verify the magnetic field dependence of Langmuir wave damping, and more generally test higher order corrections suggested for the Langmuir dispersion relation. It is anticipated that the latter tests will facilitate measurements of ionospheric currents.

  9. Advances in long pulse operation at high radio frequency power in Tore Supra

    SciTech Connect

    Goniche, M.; Dumont, R.; Bourdelle, C.; Decker, J.; Delpech, L.; Ekedahl, A.; Guilhem, D.; Guimarães-Filho, Z.; Litaudon, X.; Lotte, Ph.; Maget, P.; Mazon, D.; Saoutic, B.

    2014-06-15

    The lower hybrid current drive (LHCD) system of Tore Supra has been upgraded for long pulse operation at higher power (7–8 MW). The two launchers have coupled on plasma 3.8 MW and 2.7 MW separately. This new power capability allows extending the operational domain of Tore Supra for long pulses at higher current and density. 38 long (20 s –155 s) discharges with very low loop voltage (V{sub L} = 30-60 mV) were performed with combined LHCD (5-5.7 MW) and ICRH (1–3 MW) powers, with up to 1 GJ of injected energy. Higher LHCD efficiency, with respect to the previous long discharges, is reported. MHD stability of these discharges is very sensitive to the LHCD power and parallel wave index, in particular in the preforming phase. For theses evanescent loop voltage plasmas, the ICRH power, in excess of 1 MW, is found to have a beneficial effect on the MHD stability.

  10. An 8-GW long-pulse generator based on Tesla transformer and pulse forming network

    SciTech Connect

    Su, Jiancang; Zhang, Xibo; Li, Rui; Zhao, Liang Sun, Xu; Wang, Limin; Zeng, Bo; Cheng, Jie; Wang, Ying; Peng, Jianchang; Song, Xiaoxin

    2014-06-15

    A long-pulse generator TPG700L based on a Tesla transformer and a series pulse forming network (PFN) is constructed to generate intense electron beams for the purpose of high power microwave (HPM) generation. The TPG700L mainly consists of a 12-stage PFN, a built-in Tesla transformer in a pulse forming line, a three-electrode gas switch, a transmission line with a trigger, and a load. The Tesla transformer and the compact PFN are the key technologies for the development of the TPG700L. This generator can output electrical pulses with a width as long as 200 ns at a level of 8 GW and a repetition rate of 50 Hz. When used to drive a relative backward wave oscillator for HPM generation, the electrical pulse width is about 100 ns on a voltage level of 520 kV. Factors affecting the pulse waveform of the TPG700L are also discussed. At present, the TPG700L performs well for long-pulse HPM generation in our laboratory.

  11. Investigation of an X-band gigawatt long pulse multi-beam relativistic klystron amplifier

    SciTech Connect

    Liu, Zhenbang; Huang, Hua; Lei, Lurong; Jin, Xiao; Zhu, Lei; Wang, Ganping; He, Hu; Wu, Yao; Ge, Yi; Yuan, Huan; Chen, Zhaofu

    2015-09-15

    To achieve a gigawatt-level long pulse radiation power in X-band, a multi-beam relativistic klystron amplifier is proposed and studied experimentally. By introducing 18 electron drift tubes and extended interaction cavities, the power capacity of the device is increased. A radiation power of 1.23 GW with efficiency of 41% and amplifier gain of 46 dB is obtained in the particle-in-cell simulation. Under conditions of a 10 Hz repeat frequency and an input RF power of 30 kW, a radiation power of 0.9 GW, frequency of 9.405 GHz, pulse duration of 105 ns, and efficiency of 30% is generated in the experiment, and the amplifier gain is about 45 dB. Both the simulation and the experiment prove that the multi-beam relativistic klystron amplifier can generate a long pulse GW-level radiation power in X-band.

  12. A stationary long-pulse ELM-absent H-mode regime in EAST

    NASA Astrophysics Data System (ADS)

    Ye, Y.; Xu, G. S.; Wan, B. N.; Chen, R.; Yan, N.; Guo, H. Y.; Shao, L. M.; Yang, Q. Q.; Wang, H. Q.; Zhang, W.; Xia, T. Y.; Zhang, T.; Li, Y. Y.; Wang, T. F.; Zang, Q.; Hu, Y. J.; Wu, G. J.; Zhang, L.; Hao, B. L.; Wang, L.; Li, Y. L.; Wu, X. Q.; Chen, L.; Lan, H.; Wang, Y. F.; Xu, J. C.; Hu, G. H.; Ding, S. Y.; Zhang, H.; Zhao, N.; Li, J.; The EAST Team

    2017-08-01

    A stationary edge-localized mode (ELM)-absent H-mode regime, with an electrostatic edge coherent mode (ECM) which resides in the pedestal region, has been achieved in the EAST tokamak recently. This regime allows the operation of a nearly fully noninductive long pulse (>15 s), exhibiting a relatively high pedestal and good global energy confinement with {{H}98,y2} near 1.2, and excellent impurity control. Furthermore, this regime is mostly obtained with a 4.6 GHz lower hybrid current drive (LHCD) or counter-current neutral beam injection (NBI), plus electron cyclotron resonance heating, and an extensive lithium wall coating. This stationary ELM-absent H-mode regime transits to a stationary small ELM H-mode regime, and upon additional heating power from the 2.45 GHz LHCD, an ion cyclotron resonant frequency or co-current NBI is applied (under 4.6 GHz LHCD heating background). A slight change of the plasma configuration also makes the small ELMs reappear. The experimental observations suggest that a long-pulse ELM-absent regime can be induced by the ECM, which exhibits strong electrostatic fluctuations and may provide a channel for continuous particle (especially impurities) and heat exhaust across the pedestal. The ECM exists in the collisionality of ν e*   =  2.5-4 and the pressure gradient |\

  13. A repetitive long-pulse power generator based on pulse forming network and linear transformer driver.

    PubMed

    Li, Mingjia; Kang, Qiang; Tan, Jie; Zhang, Faqiang; Luo, Min; Xiang, Fei

    2016-06-01

    A compact module for long-pulse power generator, based on Blumlein pulse forming network (PFN), was designed. Two Blumlein PFNs with L-type configuration and 20 Ω characteristic impedance were connected symmetrically to the primary coil of the linear transformer driver (LTD) and driven by an identical high voltage spark switch to ensure two Blumlein PFNs synchronizing operation. The output pulse of the module connected with 10 Ω water load is about 135 kV in amplitude and 200 ns in duration with a rise time of ∼50 ns and a flat top of ∼100 ns. On this basis, a repetitive long-pulse power generator based on PFN-LTD has been developed, which was composed of four modules. The following technical parameters of the generator were achieved on planar diode: output voltage amplitude of ∼560 kV, output current amplitude of ∼10 kA at a repetition rate of 25 Hz. The generator operates stable and outputs more than 10(4) pulses. Meanwhile, the continuous operating time of the generator is up to 60 s.

  14. Application of the coded long-pulse technique to plasma line studies of the ionosphere

    SciTech Connect

    Djuth, F.T.; Elder, J.H.; Sulzer, M.P.

    1994-12-01

    Recently, the coded long-pulse radar technique was tested at Arecibo Observatory, Puerto Rico using photoelectron-enhanced plasma lines in the daytime ionosphere. The technique immediately proved to be a powerful diagnostic tool for studying natural ionospheric phenomena. The authors initial observations indicate that extremely accurate measurements of absolute electron density (0.01 to 0.03% error bars) can be achieved with an altitude resolution of 150 m and a temporal resolution of {approximately} 2 s. In addition, the technique provides information about electron density structure within a 150-m altitude cell and yields parameters from which the energy spectrum of suprathermal electrons ({ge} 5 eV) can be deduced. The earliest measurements are used to illustrate applications of the coded long-pulse technique to several aeronomic/ionospheric areas of current interest. These include studies of neutral wave motions in the lower thermosphere, measurements of ion composition in the F{sub 1} region/upper ionosphere, and investigations of electron-gas thermal balance and photoelectron energy loss processes. The technique can be utilized to examine irregularity formation in the F region, probe electron acceleration processes in ionospheric modification experiments, verify the magnetic field dependence of Langmuir wave damping, and more generally test higher order corrections suggested for the Langmuir dispersion relation. It is anticipated that the latter tests will facilitate measurements of ionospheric currents. 14 refs., 4 figs., 1 tab.

  15. The performance of neutron scattering spectrometers at a long-pulse spallation source

    SciTech Connect

    Pynn, R.

    1995-04-01

    The first conclusion the author wants to draw is that comparison of the performance of neutron scattering spectrometers at CW and pulsed sources is simpler for long-pulsed sources than it is for the short-pulse variety. Even though detailed instrument design and assessment will require Monte Carlo simulations (which have already been performed at Los Alamos for SANS and reflectometry), simple arguments are sufficient to assess the approximate performance of spectrometers at an LPSS and to support the contention that a 1 MW long-pulse source can provide attractive performance, especially for instrumentation designed for soft-condensed-matter science. Because coupled moderators can be exploited at such a source, its time average cold flux is equivalent to that of a research reactor with a power of about 15 MW, so only a factor of 4 gain from source pulsing is necessary to obtain performance that is comparable with the ILL. In favorable cases, the gain from pulsing can be even more than this, approaching the limit set by the peak flux, giving about 4 times the performance of the ILL. Because of its low duty factor, an LPSS provides the greatest performance gains for relatively low resolution experiments with cold neutrons. It should thus be considered complementary to short pulse sources which are most effective for high resolution experiments using thermal or epithermal neutrons.

  16. An 8-GW long-pulse generator based on Tesla transformer and pulse forming network.

    PubMed

    Su, Jiancang; Zhang, Xibo; Li, Rui; Zhao, Liang; Sun, Xu; Wang, Limin; Zeng, Bo; Cheng, Jie; Wang, Ying; Peng, Jianchang; Song, Xiaoxin

    2014-06-01

    A long-pulse generator TPG700L based on a Tesla transformer and a series pulse forming network (PFN) is constructed to generate intense electron beams for the purpose of high power microwave (HPM) generation. The TPG700L mainly consists of a 12-stage PFN, a built-in Tesla transformer in a pulse forming line, a three-electrode gas switch, a transmission line with a trigger, and a load. The Tesla transformer and the compact PFN are the key technologies for the development of the TPG700L. This generator can output electrical pulses with a width as long as 200 ns at a level of 8 GW and a repetition rate of 50 Hz. When used to drive a relative backward wave oscillator for HPM generation, the electrical pulse width is about 100 ns on a voltage level of 520 kV. Factors affecting the pulse waveform of the TPG700L are also discussed. At present, the TPG700L performs well for long-pulse HPM generation in our laboratory.

  17. Studies of dust transport in long pulse plasma discharges in the large helical device

    NASA Astrophysics Data System (ADS)

    Shoji, M.; Kasahara, H.; Tokitani, M.; Seki, T.; Saito, K.; Kamio, S.; Seki, R.; Tanaka, Y.; Pigarov, A.; Smirnov, R.; Kawamura, G.; Tanaka, H.; Masuzaki, S.; Uesugi, Y.; Mutoh, T.; The LHD Experiment Group

    2015-05-01

    Three-dimensional trajectories of incandescent dust particles in plasmas were observed with stereoscopic fast framing cameras in a large helical device. It proved that the dust is located in the peripheral plasma and most of the dust moves along the magnetic field lines with acceleration in the direction that corresponds to the plasma flow. ICRF heated long pulse plasma discharges were terminated with the release of large amounts of dust from a closed divertor region. After the experimental campaign, the traces of exfoliation of carbon rich mixed-material deposition layers were found in the divertor region. Transport of carbon dust is investigated using a modified dust transport simulation code, which can explain the observed dust trajectories. It also shows that controlling the radius of the dust particles to less than 1 mm is necessary to prevent the plasma termination by penetration of dust for the long pulse discharges. Dust transport simulation including heavy metal dust particles demonstrates that high heating power operation is effective for shielding the main plasma from dust penetration by an enhanced plasma flow effect and a high heat load onto the dust particles in the peripheral plasma. It shows a more powerful penetration characteristic of tungsten dust particles compared to that of carbon and iron dust particles.

  18. Long pulse and high power density H- ion beam acceleration for ITER

    NASA Astrophysics Data System (ADS)

    Umeda, N.; Hiratsuka, J.; Kojima, A.; Ichikawa, M.; Yoshida, M.; Yamanaka, H.; Tobari, H.; Watanabe, K.; Kashiwagi, M.

    2017-08-01

    A high power density and a long pulse negative ion beam accelerator has been developed in QST to realize the ITER neutral beam accelerator. A main target was the H- ion beam acceleration up to 1 MeV with 200 A/m2 for 60 s. After the achievement of 1 MeV at a short pulse, the pulse length has been gradually extended by modifications of grid configurations to suppress grid heat loads due to negative ions and electrons. However, the beam energy was limited up to 0.7 MeV at 60 s operation. One issue was an unstable negative ion production for a long time due to arcing and excess temperature rise of a plasma grid for optimum negative ion production. To suppress arcing, a cathode filament shape was modified. The plasma grid was modified to have a large heat capacitance in order to suppress temperature rise for 60 s operation at high discharge power required for 1 MeV operation. Another issue is to optimize beam optics more precisely. Fine tuning of the 1st acceleration stage was carried to improve beam optics for high current density beam. With these modifications, high power density beam acceleration of 0.97 MeV, 190 A/m2 has been achieved for 60 s. This is the first long pulse acceleration of ITER class high power density beam.

  19. Long-pulse power-supply system for EAST neutral-beam injectors

    NASA Astrophysics Data System (ADS)

    Liu, Zhimin; Jiang, Caichao; Pan, Junjun; Liu, Sheng; Xu, Yongjian; Chen, Shiyong; Hu, Chundong; NBI Team

    2017-05-01

    The long-pulse power-supply system equipped for the 4 MW beam-power ion source is comprised of three units at ASIPP (Institute of Plasma Physics, Chinese Academy of Sciences): one for the neutral-beam test stand and two for the EAST neutral-beam injectors (NBI-1 and NBI-2, respectively). Each power supply system consists of two low voltage and high current DC power supplies for plasma generation of the ion source, and two high voltage and high current DC power supplies for the accelerator grid system. The operation range of the NB power supply is about 80 percent of the design value, which is the safe and stable operation range. At the neutral-beam test stand, a hydrogen ion beam with a beam pulse of 150 s, beam power of 1.5 MW and beam energy of 50 keV was achieved during the long-pulse testing experiments. The result shows that the power-supply system meets the requirements of the EAST-NBIs fully and lays a basis for achieving plasma heating.

  20. Actively cooled plasma electrode for long pulse operations in a cesium-seeded negative ion source

    NASA Astrophysics Data System (ADS)

    Fujiwara, Yukio; Watanabe, Kazuhiro; Okumura, Yoshikazu; Trainham, Rusty; Jacquot, Claude

    2005-01-01

    An actively cooled plasma electrode has been developed for long pulse operation in a cesium-seeded negative ion source. To keep the electrode temperature at about 300°C, which is the optimum range of temperature to enhance cesium effects, the electrode cooling structure has been designed using three-dimensional numerical simulation assuming that the heat flux from the source plasma was 15W/cm2. Water cooling tubes were brazed to the plasma electrode substrate with spacers made of stainless steel, which acts as a thermal resistance. The fabricated plasma electrode has been tested in a cesium-seeded volume negative ion source called Kamaboko source. The temperature of the electrode reached 280°C for the arc power of 41kW, which is the operating condition required for producing D- beams with current densities exceeding 20mA/cm2. It was demonstrated that the actively cooled plasma electrode is applicable to long pulse operations, meeting the temperature requirement for optimizing the surface-production process of negative ions in the cesium-seeded ion source.

  1. Robust control of long-pulse, high performance plasmas in KSTAR tokamak

    NASA Astrophysics Data System (ADS)

    Jeon, Youngmu; Hahn, S. H.; Han, H. S.; Woo, M. H.; Joung, M.; Kim, Jayhyun; Bae, Y. S.; Kim, H.-S.; Yoon, S. W.; Oh, Y. K.; Na, Y. S.; Eidietis, N. W.; Walker, M. L.; Lanctot, M. J.; Hyatt, A. W.; Mueller, D. A.; Kstar Team

    2016-10-01

    The goal of KSTAR is to achieve and demonstrate high performance, steady state tokamak operations in long pulse up to 300 s. In recent years, we made significant progresses on plasma control and performance for this advanced tokamak (AT) operation. First of all, the plasma equilibrium magnetic control has been substantially improved by applying fully decoupled multi-input-multi-output (MIMO) isoflux shape controllers [1]. The MIMO shape controllers were designed using a newly developed design method by taking the plasma equilibrium response into account self-consistently. More than eight shape control variables including plasma currents are controlled independently on each other with high accuracy (less than 1cm error on average) and with wide variations of plasma shape. By virtue of this robust control, various long pulse H-mode discharges have been operated up to 60 s, which was the maximum pulse length allowable in current KSTAR system. Also, plasma performance has been improved accordingly. A fully non-inductive H-mode operation [1] was achieved for the first time in KSTAR, through the so-called `high betap' operation with betap 3.0. In addition, various experimental attempts for advanced scenario development have been conducted such as the `hybrid' [2] and `high li' scenarios[3].

  2. Temporary hair loss using the long-pulsed alexandrite laser at 20 milliseconds.

    PubMed

    Raulin, C; Greve, B

    2000-03-01

    Facial hypertrichosis presents an enormous psychological burden for women. Temporary hair removal (waxing, plucking, etc.) and electrolysis are prolonged and unsatisfactory methods of treatment. For a few years several laser systems with varying wavelengths, pulse durations and energy fluences have been used successfully in laser epilation. In the retrospective study on hand, we report on results of 30 female patients with hypertrichosis in the facial area treated with the long pulse alexandrite laser at 20 msec (Cynosure PhotoGenica LPIR/Apogee; 755 nm; 20 msec; up to 30 J/cm2; 10 or 12.5 mm beam diameter) over an 18 month treatment period. After an average of 8 treatments, an average clearance rate of 75% could be achieved. Fair hair (white/blond/red) only showed a clearance rate of 10%. Hypo- and hyperpigmentation did not appear. The most frequent adverse effects were the occasional appearance of scattered crusting (17%), which healed without consequences, and folliculitis (13%). The average post-treatment observation time lasted 3.25 months. The long-pulsed alexandrite laser at a pulse duration of 20 msec is an effective and safe method of treatment of hypertrichosis in the facial region of women. Black hair responds considerably better to the laser treatment than fair hair. A longer post-treatment observation time is necessary, though, in order to provide evidence for the permanence of the success of the method.

  3. Numerical study on a 0.4 THz second harmonic gyrotron with high power

    SciTech Connect

    Chaojun, Lei; Sheng, Yu; Hongfu, Li; Yinghui, Liu; Xinjian, Niu; Qixiang, Zhao

    2013-07-15

    Terahertz and sub-terahertz science and technology are promising topics today. However, it is difficult to obtain high power source of terahertz wave. In this paper, the mode competition and beam-wave interaction in a gradually tapered cavity are studied to achieve high efficiency of a 0.4THz second harmonic gyrotron in practice. In order to attain high power and stable radiation, the TE{sub 32,5} mode is selected as the operating mode of the desired gyrotron to realize single mode oscillation. The issues of studying on the high-order mode gyrotrons are solved effectively by transforming the generalized telegraphist's equations. The efficiency and output power of the gyrotron under different conditions have been calculated by the code, which is based on the transformed equations. Consequently, the results show that single mode second harmonic radiation with power of over 150 kW at frequency of 0.4 THz could be achieved.

  4. Development of gyrotron traveling-wave tubes at IAP and GYCOM

    NASA Astrophysics Data System (ADS)

    Samsonov, S. V.; Denisov, G. G.; Gachev, I. G.; Bogdashov, A. A.; Mishakin, S. V.; Manuilov, V. N.; Belousov, V. I.; Sobolev, D. I.; Sokolov, E. V.; Soluyanova, E. A.; Tai, E. M.

    2017-08-01

    A brief review of research activity on gyrotron traveling-wave tube amplifiers (gyro-TWTs) with helically corrugated waveguides developing by the Institute of Applied Physics and GYCOM (Nizhny Novgorod, Russia) will be presented.

  5. A 0.4-THz Second Harmonic Gyrotron with Quasi-Optical Confocal Cavity

    NASA Astrophysics Data System (ADS)

    Guan, Xiaotong; Fu, Wenjie; Yan, Yang

    2017-09-01

    Mode density is very relevant for harmonic gyrotron cavity. Theoretical investigations suggest that quasi-optical confocal waveguide performs low mode density and good mode-selective character. By selecting the appropriate mode and optimizing the cavity parameters, the quasi-optical confocal cavity is suitable for high-harmonic terahertz gyrotron without mode competition. In order to verify the theoretical analysis, a 0.4-THz second harmonic gyrotron has been designed and experimented. Driven by a 40-kV, 4.75-A electron beam and 7.51-T magnetic field, the gyrotron prototype could generate 6.44 kW of output power at 395.35 GHz, which corresponds to an electron efficiency of 3.4%. There is no mode competition between the second harmonic and fundamental observed in the experiments.

  6. High Power Microwave Emission of Large and Small Orbit Gyrotron Devices in Rectangular Interaction Structures

    NASA Astrophysics Data System (ADS)

    Hochman, J. M.; Gilgenbach, R. M.; Jaynes, R. L.; Rintamaki, J. I.; Luginsland, J. W.; Lau, Y. Y.; Spencer, T. A.

    1996-11-01

    Experiments utilize large and small orbit e-beam gyrotron devices in a rectangular-cross-section (RCS) gyrotron. This device is being explored to examine polarization control. Other research issues include pulse shortening, and mode competition. MELBA generates electron beams with parameters of: -800kV, 1-10kA diode current, and 0.5-1.0 μ sec pulselengths. The small orbit gyrotron device is converted to a large orbit experiment by running MELBA's annular electron beam through a magnetic cusp. Initial experiments showed an increase in beam alpha (V_perp/V_par) of a factor of ~ 4 between small and large orbit devices. Experimental results from the RCS gyrotron will be compared for large-orbit and small-orbit electron beams. Beam transport data and frequency measurements will be presented. Computer modeling utilizing the MAGIC and E-gun codes will be shown.

  7. A W-band Third Harmonic Gyrotron with an Iris Cavity

    NASA Astrophysics Data System (ADS)

    Sun, Dimin; Chen, Huaibi; Ma, Guowu; Lei, Wenqiang; Chen, Hongbin; Meng, Fanbao

    2014-05-01

    The design and experimental results of a W-band gyrotron operating at the third cyclotron harmonic are presented. The gyrotron is designed to operate at the TE61 mode, which is significantly distinct from competing modes. An iris cavity is employed for the purpose of trapping the third harmonic mode more effectively and lowering its start current. In the experiment, the gyrotron is drived by a triode magnetron injection gun (MIG) which can produce a 45 kV, 3 A electron beam. When maximum axial magnetic field is 1.22 T, a single mode third harmonic gyrotron radiation is observed with the frequency of 94.86 GHz. The maximum output power is 5.5 kW, corresponding to an efficiency of 4%. Another third harmonic mode TE02 is also detected at 88.8 GHz, with maximum output power of 1.5 kW.

  8. Frequency Locking and Stabilization Regimes in High-Power Gyrotrons with Low-Q Resonators

    NASA Astrophysics Data System (ADS)

    Zotova, I. V.; Ginzburg, N. S.; Denisov, G. G.; Rozental', R. M.; Sergeev, A. S.

    2016-02-01

    Using a nonstationary self-consistent model, we analyze the frequency locking and stabilization regimes arising in gyrotrons with low-Q resonators under the action of an external signal or when reflections from a remote nonresonant load are introduced. In the simulations, we used the parameters of high-power gyrotrons designed for controlled thermonuclear fusion with optimized resonator profile. This approach makes it possible to determine output characteristics of the gyrotrons operated in considered regimes taking into account the effect of the incident wave (external or reflected) on the longitudinal field structure with greater precision compared with the earlier results based on the fixed RF-field structure approximation, while qualitative results of the two approaches coincide. Analysis of the effect of reflections from a remote load has demonstrated a substantial dependence of the efficiency of the gyrotron frequency stabilization on the ratio between the characteristic time scale of the synchronism detuning fluctuations and the signal delay time.

  9. Long-Term Operating Experience with High-Power Gyrotron Oscillators

    NASA Astrophysics Data System (ADS)

    Felch, Kevin

    2005-10-01

    High-power, megawatt-class gyrotron oscillators have now been used in electron cyclotron heating (ECH) experiments for several years. The long periods of sustained operation have provided important information about the design limits that had initially been placed on the key elements of the gyrotron. In particular, observations made on recent 110 GHz, 1 MW gyrotrons used in ECH experiments on DIII-D at General Atomics indicate that several of the important components of the device, including the electron guns, interaction cavities and diamond output windows, have performed quite well, while analyses of the electron beam collectors on some of the devices indicate that design limits have often been exceeded. Observations made on these gyrotrons will be summarized and plans to address problem areas will be discussed.

  10. RF Behavior and Launcher Design for a Fast Frequency Step-tunable 236 GHz Gyrotron for DEMO

    NASA Astrophysics Data System (ADS)

    Kalaria, P. C.; Avramidis, K. A.; Franck, J.; Gantenbein, G.; Illy, S.; Jin, J.; Pagonakis, I. Gr.; Thumm, M.; Jelonnek, J.

    2017-03-01

    As part of the EUROfusion project, the conceptual design of a 1 MW 236 GHz hollow-cavity gyrotron is ongoing at IHM, KIT for a DEMOnstration Power Plant (DEMO), along with a 2 MW coaxial-cavity design concept. Fast frequency-tunable gyrotrons (tuning within a few seconds) are recommended for plasma stabilization using a non-steerable antenna. In this work, the mode-selection approach for such a frequency-tunable gyrotron is presented and suitable operating modes for fast frequency tunability are suggested. Magnetic field tuning has been studied as an effective technique to tune the gyrotron operating frequency. The step-tunability of the 236 GHz gyrotron within the frequency range of ±10 GHz in steps of 2-3 GHz is demonstrated in numerical simulations. A hybrid-type Quasi-Optical Launcher (QOL) has been designed for a step-frequency tunable gyrotron with sufficiently high Fundamental Gaussian Mode Content (FGMC).

  11. Development of frequency step tunable 1 MW gyrotron at 131 to 146.5 GHz

    SciTech Connect

    Samartsev, A.; Gantenbein, G.; Dammertz, G.; Illy, S.; Kern, S.; Leonhardt, W.; Schlaich, A.; Schmid, M.; Thumm, M.

    2011-07-01

    Effective control of power absorption in tokamaks and stellarators could be achieved by the frequency tuning of ECH and CD power delivered by high-power gyrotrons. In this report some results of the development of a frequency tunable gyrotron with fused-silica Brewster window are presented. Excitation of several modes at 1 MW power level in the range of frequencies from 131 to 146.5 GHz is achieved. (author)

  12. Influence of emitter ring manufacturing tolerances on electron beam quality of high power gyrotrons

    SciTech Connect

    Pagonakis, Ioannis Gr.; Illy, Stefan; Thumm, Manfred

    2016-08-15

    A sensitivity analysis of manufacturing imperfections and possible misalignments of the emitter ring in the gyrotron cathode structure on the electron beam quality has been performed. It has been shown that a possible radial displacement of the emitter ring of the order of few tens of microns can cause dramatic effects on the beam quality and therefore the gyrotron operation. Two different design approaches are proposed in order to achieve an electron beam which is less sensitive to manufacturing imperfections.

  13. Development of simulation tools for numerical investigation and computer-aided design (CAD) of gyrotrons

    NASA Astrophysics Data System (ADS)

    Damyanova, M.; Sabchevski, S.; Zhelyazkov, I.; Vasileva, E.; Balabanova, E.; Dankov, P.; Malinov, P.

    2016-10-01

    As the most powerful CW sources of coherent radiation in the sub-terahertz to terahertz frequency range the gyrotrons have demonstrated a remarkable potential for numerous novel and prospective applications in the fundamental physical research and the technologies. Among them are powerful gyrotrons for electron cyclotron resonance heating (ECRH) and current drive (ECCD) of magnetically confined plasma in various reactors for controlled thermonuclear fusion (e.g., tokamaks and most notably ITER), high-frequency gyrotrons for sub-terahertz spectroscopy (for example NMR-DNP, XDMR, study of the hyperfine structure of positronium, etc.), gyrotrons for thermal processing and so on. Modelling and simulation are indispensable tools for numerical studies, computer-aided design (CAD) and optimization of such sophisticated vacuum tubes (fast-wave devices) operating on a physical principle known as electron cyclotron resonance maser (ECRM) instability. During the recent years, our research team has been involved in the development of physical models and problem-oriented software packages for numerical analysis and CAD of different gyrotrons in the framework of a broad international collaboration. In this paper we present the current status of our simulation tools (GYROSIM and GYREOSS packages) and illustrate their functionality by results of numerical experiments carried out recently. Finally, we provide an outlook on the envisaged further development of the computer codes and the computational modules belonging to these packages and specialized to different subsystems of the gyrotrons.

  14. Experimental study of a 1 MW, 170 GHz gyrotron oscillator

    NASA Astrophysics Data System (ADS)

    Kimura, Takuji

    A detailed experimental study is presented of a 1 MW, 170 GHz gyrotron oscillator whose design is consistent with the ECH requirements of the International Thermonuclear Experimental Reactor (ITER) for bulk heating and current drive. This work is the first to demonstrate that megawatt power level at 170 GHz can be achieved in a gyrotron with high efficiency for plasma heating applications. Maximum output power of 1.5 MW is obtained at 170.1 GHz in 85 kV, 50A operation for an efficiency of 35%. Although the experiment at MIT is conducted with short pulses (3 μs), the gyrotron is designed to be suitable for development by industry for continuous wave operation. The peak ohmic loss on the cavity wall for 1 MW of output power is calculated to be 2.3 kW/cm2, which can be handled using present cooling technology. Mode competition problems in a highly over-moded cavity are studied to maximize the efficiency. Various aspects of electron gun design are examined to obtain high quality electron beams with very low velocity spread. A triode magnetron injection gun is designed using the EGUN simulation code. A total perpendicular velocity spread of less than 8% is realized by designing a low- sensitivity, non-adiabatic gun. The RF power is generated in a short tapered cavity with an iris step. The operating mode is the TE28,8,1 mode. A mode converter is designed to convert the RF output to a Gaussian beam. Power and efficiency are measured in the design TE28,8,1 mode at 170.1 GHz as well as the TE27,8,1 mode at 166.6 GHz and TE29,8,1 mode at 173.5 GHz. Efficiencies between 34%-36% are consistently obtained over a wide range of operating parameters. These efficiencies agree with the highest values predicted by the multimode simulations. The startup scenario is investigated and observed to agree with the linear theory. The measured beam velocity ratio is consistent with EGUN simulation. Interception of reflected beam by the mod-anode is measured as a function of velocity ratio

  15. Two-gigawatt burst-mode operation of the intense microwave prototype (IMP) free-electron laser (FEL) for the microwave tokamak experiment (MTX)

    SciTech Connect

    Felker, B.; Allen, S.; Bell, H.

    1993-10-06

    The MTX explored the plasma heating effects of 140 GHz microwaves from both Gyrotrons and from the IMP FEL wiggler. The Gyrotron was long pulse length (0.5 seconds maximum) and the FEL produced short-pulse length, high-peak power, single and burst modes of 140 GHZ microwaves. Full-power operations of the IMP FEL wiggler were commenced in April of 1992 and continued into October of 1992. The Experimental Test Accelerator H (ETA-II) provided a 50-nanosecond, 6-MeV, 2--3 kAmp electron beam that was introduced co-linear into the IMP FEL with a 140 GHz Gyrotron master oscillator (MO). The FEL was able to amplify the MO signal from approximately 7 kW to peaks consistently in the range of 1--2 GW. This microwave pulse was transmitted into the MTX and allowed the exploration of the linear and non-linear effects of short pulse, intense power in the MTX plasma. Single pulses were used to explore and gain operating experience in the parameter space of the IMP FEL, and finally evaluate transmission and absorption in the MTX. Single-pulse operations were repeatable. After the MTX was shut down burst-mode operations were successful at 2 kHz. This paper will describe the IMP FEL, Microwave Transmission System to MTX, the diagnostics used for calorimetric measurements, and the operations of the entire Microwave system. A discussion of correlated and uncorrelated errors that affect FEL performance will be made Linear and non-linear absorption data of the microwaves in the MTX plasma will be presented.

  16. A Retrospective Analysis of the Treatment of Melasma Using a Fractional Long-Pulsed Alexandrite Laser in Korean Patients.

    PubMed

    Lee, Min Kyung; Min, Kyung Sik; Park, Eun Joo; Kim, Kwang Ho; Kim, Kwang Joong

    2016-08-01

    Long-pulsed, 755-nm, alexandrite lasers have been shown to be effective and safe in the treatment of pigmentary lesions. Clinical outcomes and side effects in the treatment of melasma using a fractional, long-pulsed, alexandrite laser were assessed. Forty-eight patients with melasma received 2 to 4 treatment sessions of fractional, long-pulsed, alexandrite laser at 2 to 3 weeks intervals. The parameter of treatment was 60 to 80 J/cm without dynamic cooling device using 15-mm spot size of fractional hand piece, with a 0.5- to 1-millisecond pulse width. The mean modified melasma area and severity index score decreased significantly 2 months after the final treatment compared with baseline (16.5 ± 8.2 vs 11.5 ± 7.0; p = .002). The patients with epidermal type melasma were more effective compared to dermal type (p < .001). Long-pulsed alexandrite lasers using a fractional hand piece are moderately effective in the treatment of melasma with low risk of adverse effects, and it is suggested that fractional, long-pulsed, alexandrite laser with combination of other modalities can be an additional therapeutic option in patients with melasma.

  17. High power microwave generation from a large orbit gyrotron

    SciTech Connect

    Lawson, W.; Destler, W.W.; Striffler, C.D.

    1985-10-01

    A study of the production of high power microwave radiation from a large orbit gyrotron in azimuthally periodic boundary systems has been conducted. Linear growth rates have been calculated for the 2 modes of magnetron-like hole-and-slot resonator (HASR) and vane resonator (VR) systems using a general growth rate formalism. The experiment involves the interaction of a 2.3 MeV, 1-2 kA, 5 ns rotating electron layer with the HASR and VR structures. Maximum power levels are about 300 MW in X band from a 10 slot HASR system; about 500 MW in Ku band from a 20 slot VR system; and about 15 MW in K band from about 30 slot systems. The peak efficiency is about 15%. The radiation characteristics are in reasonably good agreement with the theoretical predictions. The reduced power levels for about 30 slot systems are partially attributed to radial mode competition.

  18. Folded waveguide gyrotron traveling-wave-tube amplifier

    SciTech Connect

    Choi, J.J.; Armstrong, C.M.; Ganguly, A.K.; Calise, F.

    1995-03-01

    A compact, low cost gyrotron traveling-wave-tube (gyro-TWT) amplifier capable of producing high-power, broadband, millimeter wave radiation is reported. The interaction circuit is a periodic, magnetic field plane (H plane) bend, transverse folded waveguide employed with a high-power axis-encircling electron beam. Transverse beam modulation and wave amplification in the folded waveguide gyro-TWT are observed in both linear theory and large signal simulations. Calculations from an equivalent circuit model and a three-dimensional electromagnetic code predict a mode coalescing of the first stop-band in a periodic structure. The mode coalescing is verified from experimental measurements. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  19. Some general reflections on {open_quotes}long pulse{close_quotes} neutron sources

    SciTech Connect

    Bauer, G.S.

    1995-12-31

    A long pulse spallation neutron source (LPSS) having about 20 times more time average thermal flux than its short pulse counterpart (SPSS) at the same proton beam power and featuring a pronounced time structure not available on CW sources (CWNS) of equal time average flux can in principle host instruments typical for both classes of facilities. While the need for additional choppers introduces some restrictions on inverted time of flight techniques typical for SPSS and high incident neutron energies are not easier to use on LPSS than on CWNS, taking advantage of the pulsed nature of the neutron flux can enhance significantly the performance of direct time of flight instruments and of crystal spectrometers or diffractometers. In the paper some of the options are reviewed in a general manner and criteria are discussed which can be used to optimize the performance enhancement.

  20. Inelastic scattering research at a 1 MW long pulse spallation neutron source

    SciTech Connect

    Carlile, C.J.

    1995-12-31

    The brief was, with respect to the LPSS bench mark design supplied (60 Hz, 1 MW, Imsec proton pulse, with a split, non-fissile target and 4 moderators in a flux trap geometry design), to identify a set of instruments, and to assess their performance with respect to existing spectrometers on other sources. Any modifications to the existing instruments which would make them more effective on the bench-mark source, or conversely, any modifications to the source bench-mark required by the proposed instruments were to be identified, as were any uncertainties in the estimated performances, or any R & D needed to make the proposed instruments viable. Any new instrument concepts specifically matched to the long pulse itself were to be identified and assessed. This process was to result in an indicative list of instruments for the source. A figure of around 10 spectrometers was to be aimed for.

  1. Development of a long pulse plasma gun discharge for magnetic turbulence studies

    NASA Astrophysics Data System (ADS)

    Schaffner, David

    2016-10-01

    A long pulse ( 300 μs) plasma gun discharge is in development at the Bryn Mawr College Plasma Laboratory for the production of sustained magnetized plasma injection for magnetohydrodynamic (MHD) turbulence studies. An array of eight 0.5mF parallel capacitors are used to create a pulse-forming-network (PFN) with a plateaued current output of 50kA for at least 200 of the 300 μs pulse. A 24cm inner diameter plasma gun provides stuffing flux fields at the stuffing threshold in order to allow for the continuous injection of magnetic helicity. Plasma is injected into a 24cm diameter flux-conserving aluminum chamber with a high density port array for fine spatial resolution diagnostic access. Fluctuations of magnetic field and saturation current are measured using pickup probes and Langmuir probes respectively.

  2. Long-pulse neutral injector development at the Lawrence Berkeley Laboratory

    SciTech Connect

    Berkner, K.H.; Cooper, W.S.; Ehlers, K.W.; Jacobson, V.L.; Owren, H.M.; Paterson, J.A.; Pyle, R.V.

    1982-01-01

    The program elements for the development of long-pulse deuterium accelerators for neutral-beam injection into fusion plasmas are described. Operational characteristics of a 4-grid, 80-kV, 40-A accelerator, designed for 30-sec operation but limited to 800 msec operation by the test facility, are presented. These pulses are long enough to establish thermal equilibrium of the accelerator grids. Beam divergences of 1.0/sup 0/ x 0.4/sup 0/ have been achieved at 80 kV, 36 A for deuterium; 0.44/sup 0/ x 1.0/sup 0/ at 80 kV, 47 A for hydrogen. Measured heat loads on each grid are of the order of 0.5% of the beam power.

  3. Design Concepts For A Long Pulse Upgrade For The DIII-D Fast Wave Antenna Array

    SciTech Connect

    Ryan, Philip Michael; Baity Jr, F Wallace; Caughman, John B; Goulding, Richard Howell; Hosea, J.; Greenough, Nevell; Nagy, Alex; Pinsker, R.; Rasmussen, David A

    2009-01-01

    A goal in the 5-year plan for the fast wave program on DIII-D is to couple a total of 3.6 MW of RF power into a long pulse, H-mode plasma for central electron heating. The present short-pulse 285/300 antenna array would need to be replaced with one capable of at least 1.2 MW, 10 s operation at 60 MHz into an H-mode (low resistive loading) plasma condition. The primary design under consideration uses a poloidally-segmented strap (3 sections) for reduced strap voltage near the plasma/Faraday screen region. Internal capacitance makes the antenna structure self-resonant at 60 MHz, strongly reducing peak E-fields in the vacuum coax and feed throughs.

  4. Design of long-pulse fast wave current drive antennas for DIII-D

    SciTech Connect

    Baity, F.W.; Batchelor, D.B.; Bills, K.C.; Fogelman, C.H.; Jaeger, E.F.; Ping, J.L.; Riemer, B.W.; Ryan, P.M.; Stallings, D.C.; Taylor, D.J.; Yugo, J.J. )

    1994-10-15

    Two new long-pulse fast wave current drive (FWCD) antennas will be installed on DIII-D in early 1994. These antennas will increase the available FWCD power from 2 MW to 6 MW for pulse lengths of up to 2 s, and to 4 MW for up to 10 s. Power for the new antennas is from two ASDEX-type 30- to 120-MHz transmitters. When operated at 90[degree] phasing into a low-density plasma ([similar to]4[times]10[sup 19]m[sup [minus]3]) with hot electrons ([similar to]10 keV), these two new antennas are predicted to drive approximately 1 MA of plasma current.

  5. A repetitive S-band long-pulse relativistic backward-wave oscillator.

    PubMed

    Jin, Zhenxing; Zhang, Jun; Yang, Jianhua; Zhong, Huihuang; Qian, Baoliang; Shu, Ting; Zhang, Jiande; Zhou, Shengyue; Xu, Liurong

    2011-08-01

    This paper presents both numerical and experimental studies of a repetitive S-band long-pulse relativistic backward-wave oscillator. The dispersion relation curve of the main slow-wave structure is given by the numerical calculation. Experimental results show that a 1 GW microwaves with pulse duration of about 100 ns (full width of half magnitude) under 10 Hz repetitive operation mode are obtained. The microwave frequency is 3.6 GHz with the dominant mode of TM(01), and power conversion efficiency is about 20%. The single pulse energy is about 100 J. The experimental results are in good agreement with the simulation ones. By analyzing the experimental phenomenon, we obtain the conclusion that the explosive emission on the surface of the electrodynamics structure in intense radio frequency field mainly leads to the earlier unexpected termination of microwave output.

  6. Counter-facing plasma focus system as an efficient and long-pulse EUV light source

    NASA Astrophysics Data System (ADS)

    Kuwabara, H.; Hayashi, K.; Kuroda, Y.; Nose, H.; Hotozuka, K.; Nakajima, M.; Horioka, K.

    2011-04-01

    A plasma focus system composed of a pair of counter-facing coaxial plasma guns is proposed as a long-pulse and efficient EUV light source. A proof-of-concept experiment demonstrated that with an assist of breakdown and outer electrode connections, current sheets evolved into a configuration for stable plasma confinement at the center of the electrode. The current sheets could successively compress and confine the high energy density plasma every half period of the discharge current, enabling highly repetitive light emissions in extreme ultraviolet region with time duration in at least ten microseconds for Xe plasma. Also, we confirmed operations of our system for Li plasma. We estimated the highest EUV energy in Li plasma operation at 93mJ/4π sr per 2% bandwidth per pulse.

  7. Magnet Design and Analysis of a 40 Tesla Long Pulse System Energized by a Battery Bank

    NASA Astrophysics Data System (ADS)

    Lv, Y. L.; Peng, T.; Wang, G. B.; Ding, T. H.; Han, X. T.; Pan, Y.; Li, L.

    2013-03-01

    A 40 tesla long pulse magnet and a battery bank as the power supply have been designed. This is now under construction at the Wuhan National High Magnetic Field Center. The 22 mm bore magnet will generate smooth pulses with duration 1 s and rise time 0.5 s. The battery bank consists of 945 12V/200 Ah lead-acid battery cells. The magnet and battery bank were optimized by codes developed in-house and by ANSYS. The coil was made from soft copper with internal reinforcement by fiber-epoxy composite; it is divided into two sections connected in series. The inner section consists of helix coils with each layer reinforced by Zylon composite. The outer section will be wound from copper sheet and externally reinforced by carbon fiber composite.

  8. Effect of electron-cyclotron resonance plasma heating conditions on the low-frequency modulation of the gyrotron power at the L-2M stellarator

    SciTech Connect

    Batanov, G. M.; Borzosekov, V. D.; Kolik, L. V.; Konchekov, E. M. Malakhov, D. V.; Petelin, M. I.; Petrov, A. E.; Sarksyan, K. A.; Skvortsova, N. N.; Stepakhin, V. D.; Kharchev, N. K.

    2015-08-15

    Low-frequency modulation of the gyrotron power at the L-2M stellarator was studied at different modes of plasma confinement. The plasma was heated at the second harmonic of the electron gyrofrequency. The effect of reflection of gyrotron radiation from the region of electron-cyclotron resonance plasma heating, as well as of backscattering of gyrotron radiation from fluctuations of the plasma density, on the modulation of the gyrotron power was investigated.

  9. Development of a plasma generator for a long pulse ion source for neutral beam injectors

    SciTech Connect

    Watanabe, K.; Dairaku, M.; Tobari, H.; Kashiwagi, M.; Inoue, T.; Hanada, M.; Jeong, S. H.; Chang, D. H.; Kim, T. S.; Kim, B. R.; Seo, C. S.; Jin, J. T.; Lee, K. W.; In, S. R.; Oh, B. H.; Kim, J.; Bae, Y. S.

    2011-06-15

    A plasma generator for a long pulse H{sup +}/D{sup +} ion source has been developed. The plasma generator was designed to produce 65 A H{sup +}/D{sup +} beams at an energy of 120 keV from an ion extraction area of 12 cm in width and 45 cm in length. Configuration of the plasma generator is a multi-cusp bucket type with SmCo permanent magnets. Dimension of a plasma chamber is 25 cm in width, 59 cm in length, and 32.5 cm in depth. The plasma generator was designed and fabricated at Japan Atomic Energy Agency. Source plasma generation and beam extraction tests for hydrogen coupling with an accelerator of the KSTAR ion source have been performed at the KSTAR neutral beam test stand under the agreement of Japan-Korea collaborative experiment. Spatial uniformity of the source plasma at the extraction region was measured using Langmuir probes and {+-}7% of the deviation from an averaged ion saturation current density was obtained. A long pulse test of the plasma generation up to 200 s with an arc discharge power of 70 kW has been successfully demonstrated. The arc discharge power satisfies the requirement of the beam production for the KSTAR NBI. A 70 keV, 41 A, 5 s hydrogen ion beam has been extracted with a high arc efficiency of 0.9 -1.1 A/kW at a beam extraction experiment. A deuteron yield of 77% was measured even at a low beam current density of 73 mA/cm{sup 2}.

  10. Assessment of operational space for long-pulse scenarios in ITER

    NASA Astrophysics Data System (ADS)

    Polevoi, A. R.; Loarte, A.; Hayashi, N.; Kim, H. S.; Kim, S. H.; Koechl, F.; Kukushkin, A. S.; Leonov, V. M.; Medvedev, S. Yu.; Murakami, M.; Na, Y. S.; Pankin, A. Y.; Park, J. M.; Snyder, P. B.; Snipes, J. A.; Zhogolev, V. E.; IOS ITPA TG, the

    2015-06-01

    The operational space (Ip - n) for long-pulse scenarios (Δtburn ˜ 1000 s, Q ⩾ 5) of ITER has been assessed by 1.5D core transport modelling with pedestal parameters predicted by the EPED1 code by a set of transport codes under a joint activity carried out by the Integrated Operational Scenario ITPA group. The analyses include the majority of transport models (CDBM, GLF23, Bohm/gyroBohm (BgB), MMM7.1, MMM95, Weiland, scaling-based) presently used for interpretation of experiments and ITER predictions. The EPED1 code was modified to take into account boundary conditions predicted by SOLPS4 for ITER. In contrast to standard EPED1 assumptions, EPED1 with the SOLPS boundary conditions predicts no degradation of the pedestal pressure as density is reduced. Lowering the plasma density to ne ˜ (5-6) × 1019 m-3 leads to an increased plasma temperature (similar pedestal pressure), which reduces the loop voltage and increases the duration of the burn phase to Δtburn ˜ 1000 s with Q ⩾ 5 for Ip ⩾ 13 MA at moderate normalized pressure (βN ˜ 2). These ITER plasmas require the same level of additional heating power as the reference Q = 10 inductive scenario at 15 MA (33 MW NBI and 17-20 MW EC heating and current drive power). However, unlike the ‘hybrid’ scenarios considered previously, these H-mode plasmas do not require specially shaped q profiles nor improved confinement in the core for the transport models considered in this study. Thus, these medium density H-mode plasma scenarios with Ip ⩾ 13 MA present an attractive alternative to hybrid scenarios to achieve ITER's long-pulse Q ⩾ 5 scenario and deserve further analysis and experimental demonstration in present tokamaks.

  11. Treatment of benign pigmented lesions using a long-pulse alexandrite laser.

    PubMed

    Winstanley, Douglas; Blalock, Travis; Houghton, Nancy; Ross, E Victor

    2012-11-01

    To evaluate the efficacy of a novel long-pulse alexandrite laser with contact cooling in the treatment of benign pigmented lesions. Five patients were enrolled in the study. All patients presented with epidermal pigmented lesions on the arms, hands, chest, or legs. Patients were all female with a mean age of 59 years. At the initial evaluation, baseline pigment readings were determined with a pigment meter. Test spots were performed with escalating doses of alexandrite laser (ClearScan ALX, Sciton, Palo Alto, CA) deployed by a 7-mm spot equipped with a 30 mm x 30 mm scanner and a 10-ms pulse duration. Contact cooling was used, and temperature was maintained at 18°C to 20°C. Patients returned 4 to 7 days after test spots for evaluation for the purpose of optimizing settings. The highest settings that allowed for epidermal preservation and crusting of the hyperpigmented lesions were applied for the remainder of the treatment zones. Determinations of improvement were made by evaluation of photographs with standard settings using polarized and nonpolarized images. At each appointment, baseline pigment measurements were made to ensure there were no significant changes between treatment sessions. Two treatment sessions were performed approximately 4 weeks apart, and the final evaluation was 3 months after the final treatment. Evaluation by a panel of blind observers determined a mean improvement of approximately 30%. Darker lesions responded better than lighter lesions. So-called low-contrast lesions performed the poorest. Pain was approximately 2/10 with the use of 5% lidocaine numbing cream applied approximately 45 minutes before each procedure. Pain was most severe where there was underlying hair. A long-pulse alexandrite laser equipped with contact cooling can achieve significant pigmentation improvement.

  12. Dependence of the gyrotron efficiency on the azimuthal index of non-symmetric modes

    SciTech Connect

    Dumbrajs, O.; Nusinovich, G. S.; Antonsen, T. M.

    2014-06-15

    Development of MW-class gyrotrons for future controlled fusion reactors requires careful analysis of the stability of high efficiency operation in very high-order modes. In the present paper, this problem is analyzed in the framework of the non-stationary self-consistent theory of gyrotrons. Two approaches are used: the one based on the wave envelope representation of the resonator field and the second one based on representation of this field as a superposition of eigenmodes, whose fields are determined by a self-consistent set of equations. It is shown that at relatively low beam currents, when the maximum efficiency can be realized in the regime of soft self-excitation, the operation in the desired mode is stable even in the case of a very dense spectrum of competing modes. At higher currents, the maximum efficiency can be realized in the regimes with hard self-excitation; here the operation in the desired mode can be unstable because of the presence of some competing modes with low start currents. Two 170 GHz European gyrotrons for the international thermonuclear experimental reactor are considered as examples. In the first one, which is the 2 MW gyrotron with a coaxial resonator, the stability of operation in a chosen TE{sub 34,19}-mode in the presence of two sideband modes with almost equidistant spectrum is analyzed and the region of magnetic fields in which the oscillations of the central mode are stable is determined. The operation of the second gyrotron, which is the 1 MW gyrotron with a cylindrical cavity currently under development in Europe, is studied by using the wave envelope approach. It is shown that high efficiency operation of this gyrotron in the TE{sub 32,9}-mode should be stable.

  13. 250 GHz CW Gyrotron Oscillator for Dynamic Nuclear Polarization in Biological Solid State NMR

    PubMed Central

    Bajaj, Vikram S.; Hornstein, Melissa K.; Kreischer, Kenneth E.; Sirigiri, Jagadishwar R.; Woskov, Paul P.; Mak-Jurkauskas, Melody L.; Herzfeld, Judith; Temkin, Richard J.; Griffin, Robert G.

    2009-01-01

    In this paper, we describe a 250 GHz gyrotron oscillator, a critical component of an integrated system for magic angle spinning (MAS) dynamic nuclear polarization (DNP) experiments at 9T, corresponding to 380 MHz 1H frequency. The 250 GHz gyrotron is the first gyro-device designed with the goal of seamless integration with an NMR spectrometer for routine DNP-enhanced NMR spectroscopy and has operated under computer control for periods of up to 21 days with a 100% duty cycle. Following a brief historical review of the field, we present studies of the membrane protein bacteriorhodopsin (bR) using DNP-enhanced multidimensional NMR. These results include assignment of active site resonances in [U-13C,15N]-bR and demonstrate the utility of DNP for studies of membrane proteins. Next, we review the theory of gyro-devices from quantum mechanical and classical viewpoints and discuss the unique considerations that apply to gyrotron oscillators designed for DNP experiments. We then characterize the operation of the 250 GHz gyrotron in detail, including its long-term stability and controllability. We have measured the spectral purity of the gyrotron emission using both homodyne and heterodyne techniques. Radiation intensity patterns from the corrugated waveguide that delivers power to the NMR probe were measured using two new techniques to confirm pure mode content: a thermometric approach based on the temperature-dependent color of liquid crystalline media applied to a substrate and imaging with a pyroelectric camera. We next present a detailed study of the mode excitation characteristics of the gyrotron. Exploration of the operating characteristics of several fundamental modes reveals broadband continuous frequency tuning of up to 1.8 GHz as a function of the magnetic field alone, a feature that may be exploited in future tunable gyrotron designs. Oscillation of the 250 GHz gyrotron at the second harmonic of cyclotron resonance begins at extremely low beam currents (as low

  14. 250 GHz CW gyrotron oscillator for dynamic nuclear polarization in biological solid state NMR

    NASA Astrophysics Data System (ADS)

    Bajaj, Vikram S.; Hornstein, Melissa K.; Kreischer, Kenneth E.; Sirigiri, Jagadishwar R.; Woskov, Paul P.; Mak-Jurkauskas, Melody L.; Herzfeld, Judith; Temkin, Richard J.; Griffin, Robert G.

    2007-12-01

    In this paper, we describe a 250 GHz gyrotron oscillator, a critical component of an integrated system for magic angle spinning (MAS) dynamic nuclear polarization (DNP) experiments at 9 T, corresponding to 380 MHz 1H frequency. The 250 GHz gyrotron is the first gyro-device designed with the goal of seamless integration with an NMR spectrometer for routine DNP enhanced NMR spectroscopy and has operated under computer control for periods of up to 21 days with a 100% duty cycle. Following a brief historical review of the field, we present studies of the membrane protein bacteriorhodopsin (bR) using DNP enhanced multidimensional NMR. These results include assignment of active site resonances in [U- 13C, 15N]-bR and demonstrate the utility of DNP for studies of membrane proteins. Next, we review the theory of gyro-devices from quantum mechanical and classical viewpoints and discuss the unique considerations that apply to gyrotron oscillators designed for DNP experiments. We then characterize the operation of the 250 GHz gyrotron in detail, including its long-term stability and controllability. We have measured the spectral purity of the gyrotron emission using both homodyne and heterodyne techniques. Radiation intensity patterns from the corrugated waveguide that delivers power to the NMR probe were measured using two new techniques to confirm pure mode content: a thermometric approach based on the temperature-dependent color of liquid crystalline media applied to a substrate and imaging with a pyroelectric camera. We next present a detailed study of the mode excitation characteristics of the gyrotron. Exploration of the operating characteristics of several fundamental modes reveals broadband continuous frequency tuning of up to 1.8 GHz as a function of the magnetic field alone, a feature that may be exploited in future tunable gyrotron designs. Oscillation of the 250 GHz gyrotron at the second harmonic of cyclotron resonance begins at extremely low beam currents (as

  15. Millimeter wave, 25 kW CW gyrotrons using permanent-magnets

    SciTech Connect

    McDermott, D.B.; Luhmann, N.C. Jr.

    1996-12-31

    Two compact 25 kW cw, low magnetic field gyrotrons have been designed for use in Ka-Band and W-Band systems. Both 50 kV devices have been designed to minimize their size and weight by using a 4.5 kG Samarium cobalt permanent magnet. Their designs are presented. The 35 GHz gyrotron uses a 3 A MIG and operates at the third harmonic in the TE{sub 411} mode of a smooth-bore cylindrical cavity. For an output power of 25 kW, the predicted conversion efficiency is 25%, yielding an output efficiency of 17%. An ideal 33 kV single-stage depressed collector following a magnetic downtaper could increase the device efficiency to 50%. The 94 GHz gyrotron utilizes a Cusp gun and operates at the eight-harmonic in a sixteen-vane slotted cavity. The efficiency of the 95 GHz gyrotron is predicted to be 10%, which could also be boosted to {approximately} 50% with a depressed collector. Either device can be reconfigured as a tunable gyro-BWO. Mode competition will be controlled in both gyrotrons by slicing the cavities to interrupt the azimuthal wall currents of unwanted modes as utilized recently in the successful second-harmonic TE{sub 21} gyro-TWT amplifier experiment.

  16. Testing of an Advanced Internal Mode Converter for a 1.5 MW, 110 GHz Gyrotron

    NASA Astrophysics Data System (ADS)

    Tax, D. S.; Mastovsky, I.; Neilson, J.; Shapiro, M. A.; Sirigiri, J. R.; Temkin, R. J.; Torrezan, A. C.

    2009-11-01

    Megawatt gyrotrons are under development for the electron cyclotron heating (ECH) of plasmas, including ITER. To optimize the efficiency of gyrotrons and of the transmission lines, the internal mode converter (IMC) should output a perfect Gaussian beam. The TE22,6 110 GHz IMC we have implemented consists of a helically-cut launcher and three smooth curved mirrors. The theoretically predicted output beam has waist Wz = Wx = 2.9 cm at the gyrotron window. Cold test measurements using a VNA and a 3-axis scanner were in good agreement with theory with measured beam waists Wz = 2.9 cm and Wx = 2.7 cm. We also installed the IMC in a 110 GHz, 1.5 MW, 3 μs pulsed gyrotron and measured the field pattern with over 40 dB signal to noise accuracy using an rf diode on a 2-axis scanner. Measured beam waists Wz = 4.8 cm and Wx = 4.2 cm compared well with theoretical waists Wz = Wx = 4.7 cm at a plane 124 cm from the gyrotron window.

  17. Development of an Ultra High Frequency Gyrotron with a Pulsed Magnet

    SciTech Connect

    Idehara, T.; Kamada, M.; Tsuchiya, H.; Hayashi, T.; Agusu, La; Mitsudo, S.; Ogawa, I.; Manuilov, V. N.; Naito, K.; Yuyama, T.; Jiang, W.; Yatsui, K.

    2006-01-03

    An ultra-high frequency gyrotron is being developed as a THz radiation source by using a pulsed magnet. We have achieved the highest field intensity of 20.2 T. High frequency operation at the second harmonic will achieve 1.01 THz; the corresponding cavity mode is TE6,11,1. On the other hand, an ultra-high power gyrotron with a pulsed magnet is also being developed as a millimeter to submillimeter wave radiation source. The gyrotron is a large orbit gyrotron (LOG) using an intense relativistic electron beam (IREB). A pulsed power generator 'ETIGO-IV' is applied for generation of the IREB. A prototype relativistic LOG was constructed for fundamental operation. The output of the LOG will achieve 144 GHz and 9 MW; the corresponding cavity mode is TE1,4,1. Cavities for 2nd and 4th harmonic operations were designed by numerical simulation for achievement of higher frequency. The progress of development for prototype high frequency gyrotrons with pulsed magnets is presented.

  18. Corrugated Waveguide and Directional Coupler for CW 250-GHz Gyrotron DNP Experiments

    PubMed Central

    Woskov, Paul P.; Bajaj, Vikram S.; Hornstein, Melissa K.; Temkin, Richard J.; Griffin, Robert G.

    2007-01-01

    A 250-GHz corrugated transmission line with a directional coupler for forward and backward power monitoring has been constructed and tested for use with a 25-W continuous-wave gyrotron for dynamic nuclear polarization (DNP) experiments. The main corrugated line (22-mm internal diameter, 2.4-m long) connects the gyrotron output to the DNP probe input. The directional coupler, inserted approximately midway, is a four-port crossed waveguide beamsplitter design. Two beamsplitters, a quartz plate and ten-wire array, were tested with output coupling of 2.5% (−16 dB) at 250.6 GHz and 1.6% (−18 dB), respectively. A pair of mirrors in the DNP probe transferred the gyrotron beam from the 22-mm waveguide to an 8-mm helically corrugated waveguide for transmission through the final 0.58-m distance inside the NMR magnet to the sample. The transmission-line components were all cold tested with a 248 ± 4-GHz radiometer. A total insertion loss of 0.8 dB was achieved for HE11 -mode propagation from the gyrotron to the sample with only 1% insertion loss for the 22-mm-diameter waveguide. A clean Gaussian gyrotron beam at the waveguide output and reliable forward power monitoring were achieved for many hours of continuous operation. PMID:17901907

  19. Development of negative ion extractor in the high-power and long-pulse negative ion source for fusion application

    SciTech Connect

    Kashiwagi, M. Umeda, N.; Tobari, H.; Kojima, A.; Yoshida, M.; Taniguchi, M.; Dairaku, M.; Maejima, T.; Yamanaka, H.; Watanabe, K.; Inoue, T.; Hanada, M.

    2014-02-15

    High power and long-pulse negative ion extractor, which is composed of the plasma grid (PG) and the extraction grid (EXG), is newly developed toward the neutral beam injector for heating and current drive of future fusion machines such as ITER, JT-60 Super Advanced and DEMO reactor. The PG is designed to enhance surface production of negative ions efficiently by applying the chamfered aperture. The efficiency of the negative ion production for the discharge power increased by a factor of 1.3 against that of the conventional PG. The EXG is also designed with the thermal analysis to upgrade the cooling capability for the long pulse operation of >1000 s required in ITER. Though the magnetic field for electron suppression is reduced to 0.75 of that in the conventional EXG due to this upgrade, it was experimentally confirmed that the extracted electron current can be suppressed to the allowable level for the long pulse operation. These results show that newly developed extractor has the high potential for the long pulse extraction of the negative ions.

  20. Development of negative ion extractor in the high-power and long-pulse negative ion source for fusion application.

    PubMed

    Kashiwagi, M; Umeda, N; Tobari, H; Kojima, A; Yoshida, M; Taniguchi, M; Dairaku, M; Maejima, T; Yamanaka, H; Watanabe, K; Inoue, T; Hanada, M

    2014-02-01

    High power and long-pulse negative ion extractor, which is composed of the plasma grid (PG) and the extraction grid (EXG), is newly developed toward the neutral beam injector for heating and current drive of future fusion machines such as ITER, JT-60 Super Advanced and DEMO reactor. The PG is designed to enhance surface production of negative ions efficiently by applying the chamfered aperture. The efficiency of the negative ion production for the discharge power increased by a factor of 1.3 against that of the conventional PG. The EXG is also designed with the thermal analysis to upgrade the cooling capability for the long pulse operation of >1000 s required in ITER. Though the magnetic field for electron suppression is reduced to 0.75 of that in the conventional EXG due to this upgrade, it was experimentally confirmed that the extracted electron current can be suppressed to the allowable level for the long pulse operation. These results show that newly developed extractor has the high potential for the long pulse extraction of the negative ions.

  1. Treatment of Superficial Cutaneous Vascular Lesions: Experience with the Long-Pulsed 1064 nm Nd:YAG Laser

    PubMed Central

    Ozyurt, Kemal; Colgecen, Emine; Baykan, Halit; Ozturk, Perihan; Ozkose, Mehmet

    2012-01-01

    Recent published studies evaluating the long-pulsed 1064 nm Nd:YAG laser for superficial cutaneous vascular lesions have limited subjects and optimal treatment parameters have not been established. To determine the efficacy and safety of the long-pulsed 1064 nm Nd:YAG laser on superficial cutaneus vascular lesions and analyse retrospectively our experience of a 3-year period are the aims of this study. Over the 3-year period, 255 patients were treated [189 female and 66 male; median age 35 (range 7–65) years; Fitzpatrick skin types II-V]. Twenty-six patients with spider angioma, 130 with facial telangiectasia, and 99 with leg telangiectasia were treated. A long-pulsed 1064 nm Nd:YAG laser was used. A test dose was performed at the initial consultation and thereafter patients were reviewed and treated at 4-week intervals for 5 months. Of those patients who completed treatment and followup, 26/26 (100%) of spider angiomas, 125/130 (97%) of facial telangiectasia, and 80/99 (80,8%) of leg telangiectasia markedly improved or cleared. We suggest that the long pulsed Nd:YAG laser is a safe and effective treatment for common superficial cutaneous vascular lesions. However, it is not the first choise to use to treat superficial vessels on the face where depth is not the concern. PMID:23028248

  2. Numerical simulation of different pulse width of long pulsed laser on aluminum alloy

    NASA Astrophysics Data System (ADS)

    Li, Mingxin; Jin, Guangyong; Zhang, Wei; Chen, Gui-bo; Bi, Juan

    2015-03-01

    Established a physical model to simulate the melt ejection induced by long pulsed laser on aluminum alloy and use the finite element method to simulate the whole process. This simulation is based on the interaction between single pulsed laser with different pulse width and different peak energy and aluminum alloy material. By comparing the theoretical simulation data and the actual test data, we discover that: the theoretical simulation curve is well consistent with the actual experimental curve, this two-dimensional model is with high reliability; when the temperature at the center of aluminum alloy surface increases and evaporation happens after the surface temperature at the center of aluminum alloy surface reaches boiling point and later the aluminum alloy material sustains in the status of equilibrium vaporization; the keyhole appears on the surface of the target, an increment of the keyhole, the maximum temperature at the center of aluminum alloy surface gradually moves inwardly. This research may provide the theoretical references to the understanding of the interaction between millisecond pulsed laser and many kinds of materials, as well as be beneficial to the application of the laser materials processing and military field.

  3. Spectral broadening measurement of the lower hybrid waves during long pulse operation in Tore Supra

    NASA Astrophysics Data System (ADS)

    Berger-By, G.; Decampy, J.; Antar, G. Y.; Goniche, M.; Ekedahl, A.; Delpech, L.; Leroux, F.; Tore Supra Team

    2014-02-01

    On many tokamaks (C-Mod, EAST, FTU, JET, HT-7, TS), a decrease in current drive efficiency of the Lower Hybrid (LH) waves is observed in high electron density plasmas. The cause of this behaviour is believed to be: Parametric Instabilities (PI) and Scattering from Density Fluctuations (SDF). For the ITER LH system, our knowledge must be improved to avoid such effects and to maintain the LH current drive efficiency at high density. The ITPA IOS group coordinates this effort [1] and all experimental data are essential to validate the numerical codes in progress. Usually the broadening of the LH wave frequency spectrum is measured by a probe located in the plasma edge. For this study, the frequency spectrum of a reflected power signal from the LH antenna was used. In addition, the spectrum measurements are compared with the density fluctuations observed on RF probes located at the antenna mouth. Several plasma currents (0.6 to 1.4 MA) and densities up to 5.2 × 1019 m-3 have been realised on Tore Supra (TS) long pulses and with high injected RF power, up to 5.4 MW-30s. This allowed using a spectrum analyser to make several measurements during the plasma pulse. The side lobe amplitude, shifted by 20-30MHz with respect to the main peak, grows with increasing density. Furthermore, for an increase of plasma current at the same density, the spectra broaden and become asymmetric. Some parametric dependencies are shown in this paper.

  4. Investigation of the phase stability of an X-band long pulse multibeam relativistic klystron amplifier

    NASA Astrophysics Data System (ADS)

    Liu, Zhenbang; Huang, Hua; Jin, Xiao; Lei, Lurong; Zhu, Lei; Li, Lele; Li, Shifeng; Yan, Wenkang; He, Hu

    2016-09-01

    To realize coherent high power microwave combining, an X-band long pulse multibeam relativistic klystron amplifier is designed, and the relative phase stability is investigated by three dimensions particle in cell simulation and high power microwave experiment. The simulation shows that the relative phase difference can be stabilized at gigawatt level radiation power. But the relative phase jitter increases in the experiment, then some measures are proposed to improve the stability of relative phase difference and avoid pulse shortening. A 0.98 GW radiation power with pulse duration of 160 ns is obtained in the experiment, the pulse shortening is avoided. The relative phase difference fluctuation between output microwave and input RF signal is less than ±25° in a single shot with duration of 100 ns. Then, the experiment of pulse repetition is carried out, and an output microwave with 0.98 GW radiation power at 25 Hz repetition rate is obtained. The power conversion efficiency is about 35% with pulse duration of 160 ns. The relative phase difference is less than ±30° at 25 Hz repetition rate in 100 ns.

  5. Magnetic-field-assisted fabrication of micro-convex domes using long pulse laser

    NASA Astrophysics Data System (ADS)

    Wang, Xingsheng; Xu, Weiteng; Liu, Lu; Zhang, Zhengwei; Jin, Meifu; Kang, Min

    2017-09-01

    Surfaces with mimic micro-convex domes offer superior functions such as superhydrophobicity, self-cleaning, anti-wear and drag reduction. In this paper, magnetic-filed-assisted laser surface texturing (LST) using long pulse laser was employed to create micro-convex domes on 304L stainless steel. Spherical cap shaped domes with ripples around the bottom were fabricated through LST. The effects of laser power and magnetic flux density on surface morphologies of the created convex domes were investigated. It was found that the height and diameter of the created convex dome increased with the increment of the laser power without magnetic field. Moreover, the height of the created convex dome grew up gradually with the increase of magnetic flux density due to the induced Lorentz force. The height of the convex dome was increased by as much as 14.5% as compared to LST without the applied magnetic field at a laser power of 54 W. However, the applied magnetic field had no evident effect on the diameter of the created convex dome.

  6. 1064 nm long-pulsed Nd:YAG laser treatment of basal cell carcinoma.

    PubMed

    Ortiz, Arisa E; Anderson, R Rox; Avram, Mathew M

    2015-02-01

    Standard surgical and destructive treatments for basal cell carcinoma (BCC) can result in significant morbidity and scarring, stimulating the investigation of alternative non-surgical options. The objective of this study was to determine the safety, clinical, and histological efficacy of pulsed, high-fluence 1064 nm Nd:YAG laser therapy for the treatment of BCC on the trunk and extremities. This was a prospective, non-randomized, open-label clinical trial. Ten subjects with a biopsy-proven BCC less than 1.5 cm in diameter on the trunk or extremities received one treatment with a 10 milliseconds pulsed 1064 nm Nd:YAG laser. Standard excision was performed 1 month after laser treatment to confirm histologic clearance. The laser treatment was quick and well tolerated. There was complete histologic clearance after one treatment in 92% of the BCC tumors, overall. At higher fluences, there was 100% histologic clearance after one treatment. No significant adverse events were seen, including scarring. The 1064 nm long-pulsed Nd:YAG laser may offer a safe alternative for treating BCC off the face. A larger study is highly warranted to confirm these preliminary results. Lasers Surg. Med. 47:106-110, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  7. Long pulse Soft X-ray Emission from Laser Generated Irradiated Gold Foils

    NASA Astrophysics Data System (ADS)

    Davis, Joshua; Frank, Yechiel; Raicher, Erez; Fraenkel, Moshe; Keiter, Paul; Klein, Sallee; Drake, R. P.; Shvarts, Dov

    2016-10-01

    Long pulse soft x-ray sources (SXS) allow for flexibility in high-energy-density experimental designs by providing a means of driving matter to the high temperatures needed, for example to study radiation waves in different materials. SXSs can be made by using lasers to heat a high-Z thin foil, which then acts as a quasi-blackbody emitter. Previous studies of the x-ray emission characteristics of gold foils have focused on laser pulses of 1ns or less. We performed experiments using a 6.0ns laser pulse with energy of 2kJ on the Omega-60 system to generate and characterize multi-ns laser heated Au foils of thicknesses between 0.5-2.0 μm. We measured the 2D spatial profile of the emission with a soft x-ray camera and the time history of the emission with the Dante photodiode array . Effective temperatures for the emission were then calculated using the Dante measurements. Discussion of experimental results and a comparison with 1-D Rad-Hydro NLTE simulations will be presented.

  8. Development of Dual-Frequency Gyrotron with Triode Magnetron Injection Gun

    NASA Astrophysics Data System (ADS)

    Kajiwara, Ken; Oda, Yasuhisa; Kasugai, Atsushi; Takahashi, Koji; Sakamoto, Keishi

    2011-12-01

    A high power dual-frequency gyrotron is designed and tested. The design is based on a 170 GHz single-frequency gyrotron with a triode magnetron injection gun (MIG). The triode MIG enables to choose variety of oscillation modes for different frequencies with suitable pitch factor, which is the great advantage for a multi-frequency gyrotron. Another frequency of 137 GHz is selected in order to use a 1.853-mm-thick single-disk output window. Cavity modes are TE31,11 and TE25,9 for 170 and 137 GHz, respectively, which have high mode conversion efficiency to the RF beam mode with similar radiation angles. In short-pulse experiments, the maximum power of more than 1.3 MW is achieved with high-efficiency for both frequencies.

  9. Influence of emitter surface roughness on high power fusion gyrotron operation

    NASA Astrophysics Data System (ADS)

    Zhang, Jianghua; Illy, Stefan; Pagonakis, Ioannis Gr; Avramidis, Konstantinos A.; Thumm, Manfred; Jelonnek, John

    2016-02-01

    Emitter surface roughness is one of the important factors of electron beam degradation in magnetron injection gun (MIG) and the decrease of gyrotron efficiency. This paper surveys the influence of emitter surface roughness on the operation of the EU 1 MW 170 GHz gyrotron for ITER for two different gun designs. The emitter surface roughness was taken into account using a simple model. The ESRAY code was used for gun simulation and the EURIDICE code for calculation of the RF interaction in the cavity. The degradation of the beam quality due to the surface roughness is quantitatively studied and, furthermore, the influence on the gyrotron efficiency and the mode competition are investigated. Some dramatic phenomena, such as the generation of magnetically trapped electrons, are predicted at a very high level of roughness.

  10. Experimental tests of a 263 GHz gyrotron for spectroscopic applications and diagnostics of various media

    SciTech Connect

    Glyavin, M. Yu. Denisov, G. G.; Zapevalov, V. E.; Chirkov, A. V.; Fokin, A. P.; Kholoptsev, V. V.; Kuftin, A. N.; Luchinin, A. G.; Golubyatnikov, G. Yu.; Malygin, V. I.; Morozkin, M. V.; Manuilov, V. N.; Proyavin, M. D.; Sedov, A. S.; Tsvetkov, A. I.; Sokolov, E. V.; Tai, E. M.

    2015-05-15

    A 263 GHz continuous-wave (CW) gyrotron was developed at the IAP RAS for future applications as a microwave power source in Dynamic Nuclear Polarization / Nuclear magnetic resonance (DNP/NMR) spectrometers. A new experimental facility with a computerized control was built to test this and subsequent gyrotrons. We obtained the maximum CW power up to 1 kW in the 15 kV/0.4 A operation regime. The power about 10 W, which is sufficient for many spectroscopic applications, was realized in the low current 14 kV/0.02 A regime. The possibility of frequency tuning by variation of the coolant temperature about 4 MHz/1 °C was demonstrated. The spectral width of the gyrotron radiation was about 10{sup −6}.

  11. A 250 GHz Gyrotron with a 3 GHz Tuning Bandwidth for Dynamic Nuclear Polarization

    PubMed Central

    Barnes, Alexander B.; Nanni, Emilio A.; Herzfeld, Judith; Griffin, Robert G.; Temkin, Richard J.

    2012-01-01

    We describe the design and implementation of a novel tunable 250 GHz gyrotron oscillator with >10 W output power over most of a 3 GHz band and >35 W peak power. The tuning bandwidth and power are sufficient to generate a >1 MHz nutation frequency across the entire nitroxide EPR lineshape for cross effect DNP, as well as to excite solid effect transitions utilizing other radicals, without the need for sweeping the NMR magnetic field. Substantially improved tunability is achieved by implementing a long (23 mm) interaction cavity that can excite higher order axial modes by changing either the magnetic field of the gyrotron or the cathode potential. This interaction cavity excites the rotating TE5,2,q mode, and an internal mode converter outputs a high-quality microwave beam with >94% Gaussian content. The gyrotron was integrated into a DNP spectrometer, resulting in a measured DNP enhancement of 54 on the membrane protein bacteriorhodopsin. PMID:22743211

  12. A 250 GHz gyrotron with a 3 GHz tuning bandwidth for dynamic nuclear polarization.

    PubMed

    Barnes, Alexander B; Nanni, Emilio A; Herzfeld, Judith; Griffin, Robert G; Temkin, Richard J

    2012-08-01

    We describe the design and implementation of a novel tunable 250 GHz gyrotron oscillator with >10 W output power over most of a 3 GHz band and >35 W peak power. The tuning bandwidth and power are sufficient to generate a >1 MHz nutation frequency across the entire nitroxide EPR lineshape for cross effect DNP, as well as to excite solid effect transitions utilizing other radicals, without the need for sweeping the NMR magnetic field. Substantially improved tunability is achieved by implementing a long (23 mm) interaction cavity that can excite higher order axial modes by changing either the magnetic field of the gyrotron or the cathode potential. This interaction cavity excites the rotating TE(₅,₂,q) mode, and an internal mode converter outputs a high-quality microwave beam with >94% Gaussian content. The gyrotron was integrated into a DNP spectrometer, resulting in a measured DNP enhancement of 54 on the membrane protein bacteriorhodopsin.

  13. A 250 GHz gyrotron with a 3 GHz tuning bandwidth for dynamic nuclear polarization

    NASA Astrophysics Data System (ADS)

    Barnes, Alexander B.; Nanni, Emilio A.; Herzfeld, Judith; Griffin, Robert G.; Temkin, Richard J.

    2012-08-01

    We describe the design and implementation of a novel tunable 250 GHz gyrotron oscillator with >10 W output power over most of a 3 GHz band and >35 W peak power. The tuning bandwidth and power are sufficient to generate a >1 MHz nutation frequency across the entire nitroxide EPR lineshape for cross effect DNP, as well as to excite solid effect transitions utilizing other radicals, without the need for sweeping the NMR magnetic field. Substantially improved tunability is achieved by implementing a long (23 mm) interaction cavity that can excite higher order axial modes by changing either the magnetic field of the gyrotron or the cathode potential. This interaction cavity excites the rotating TE5,2,q mode, and an internal mode converter outputs a high-quality microwave beam with >94% Gaussian content. The gyrotron was integrated into a DNP spectrometer, resulting in a measured DNP enhancement of 54 on the membrane protein bacteriorhodopsin.

  14. Experimental tests of a 263 GHz gyrotron for spectroscopic applications and diagnostics of various media.

    PubMed

    Glyavin, M Yu; Chirkov, A V; Denisov, G G; Fokin, A P; Kholoptsev, V V; Kuftin, A N; Luchinin, A G; Golubyatnikov, G Yu; Malygin, V I; Morozkin, M V; Manuilov, V N; Proyavin, M D; Sedov, A S; Sokolov, E V; Tai, E M; Tsvetkov, A I; Zapevalov, V E

    2015-05-01

    A 263 GHz continuous-wave (CW) gyrotron was developed at the IAP RAS for future applications as a microwave power source in Dynamic Nuclear Polarization / Nuclear magnetic resonance (DNP/NMR) spectrometers. A new experimental facility with a computerized control was built to test this and subsequent gyrotrons. We obtained the maximum CW power up to 1 kW in the 15 kV/0.4 A operation regime. The power about 10 W, which is sufficient for many spectroscopic applications, was realized in the low current 14 kV/0.02 A regime. The possibility of frequency tuning by variation of the coolant temperature about 4 MHz/1 °C was demonstrated. The spectral width of the gyrotron radiation was about 10(-6).

  15. THz Gyrotron and BWO Designed for Operation in DNP-NMR Spectrometer Magnet

    NASA Astrophysics Data System (ADS)

    Bratman, V. L.; Fedotov, A. E.; Kalynov, Yu. K.; Makhalov, P. B.; Samoson, A.

    2013-12-01

    Dynamic nuclear polarization (DNP) in high-field nuclear magnetic resonance (NMR) spectroscopy requires medium-power terahertz radiation, which nowadays can be provided basically by gyrotrons with superconducting magnets. As the electron cyclotron frequency is very close to the frequency of electron paramagnetic resonance for the same magnetic field, under certain conditions the gyrotron can be installed inside the same solenoid used for NMR spectrometer. This eliminates the need for an additional superconducting magnet, results in a shorter terahertz transmission line, and can make DNP systems practical. In addition to an extremely low-voltage gyrotron ("gyrotrino"), we analyze also advantages of strong magnetic field for a slow-wave electron device as an alternative terahertz source.

  16. Novel linear analysis for a gyrotron oscillator based on a spectral approach

    SciTech Connect

    Genoud, J. Tran, T. M.; Alberti, S.; Braunmueller, F.; Hogge, J.-Ph.; Tran, M. Q.; Guss, W. C.; Temkin, R. J.

    2016-04-15

    With the aim of gaining a better physical insight into linear regimes in gyrotrons, a new linear model was developed. This model is based on a spectral approach for solving the self-consistent system of equations describing the wave-particle interaction in the cavity of a gyrotron oscillator. Taking into account the wall-losses self-consistently and including the main system inhomogeneities in the cavity geometry and in the magnetic field, the model is appropriate to consider real system parameters. The main advantage of the spectral approach, compared with a time-dependent approach, is the possibility to describe all of the stable and unstable modes, respectively, with negative and positive growth rates. This permits to reveal the existence of a new set of eigenmodes, in addition to the usual eigenmodes issued from cold-cavity modes. The proposed model can be used for studying other instabilities such as, for instance, backward waves potentially excited in gyrotron beam tunnels.

  17. Development of over-MW gyrotrons for fusion at 14 GHz to sub-THz frequencies

    NASA Astrophysics Data System (ADS)

    Kariya, T.; Imai, T.; Minami, R.; Sakamoto, K.; Oda, Y.; Ikeda, R.; Shimozuma, T.; Kubo, S.; Idei, H.; Numakura, T.; Tsumura, K.; Ebashi, Y.; Okada, M.; Nakashima, Y.; Yoshimura, Y.; Takahashi, H.; Ito, S.; Hanada, K.; Nagasaki, K.; Ono, M.; Eguchi, T.; Mitsunaka, Y.

    2017-06-01

    Megawatt power gyrotrons are being developed for collaborative electron cyclotron heating (ECH) studies of advanced fusion devices and demonstration power plant (DEMO). (1) In the first experiment of a 300 GHz gyrotron, an output power above 0.5 MW in the TE32,18 single mode was achieved with a pulse width of 2 ms. This was the first observation of MW-scale oscillations in a DEMO-relevant gyrotron mode. It was also found that the reflection at the output window affected the determination of the oscillation mode. Furthermore, several single mode oscillations in the 226-254 GHz range were confirmed, which is important for the step-frequency tunable gyrotron in the sub-THz frequency range. (2) Based on the successful results of the 77 and 154 GHz large helical device (LHD) tubes, a new 154/116 GHz dual-frequency gyrotron with an output of over 1.5 MW is being designed. (3) A new record output of 1.38 MW was obtained using an existing 28 GHz gyrotron. A newly designed tube aimed at achieving a dual-frequency output power of 2 MW at 28 GHz (0.4 MW continuous wave) and 1 MW at 35 GHz was built. In the first experimental test, main mode oscillations were observed at the frequencies of 28.036 and 34.831 GHz with Gaussian-like output beams and output power of 1.27 and 0.48 MW, respectively. A total efficiency of 50% was achieved at 28 GHz operation.

  18. RF behavior of triple-frequency high power fusion gyrotron

    NASA Astrophysics Data System (ADS)

    Kumar, Nitin; Singh, Udaybir; Kumar, Anil; Sinha, A. K.

    2014-05-01

    The RF behavior of high power, triple frequency (170-, 127.5-, and 85 GHz) gyrotron for fusion application is presented in this paper. The operating mode selection is discussed in detail for each corresponding frequencies and TE34,10, TE25,8 and TE17,5 modes are selected as the operating mode for 170 GHz, 127.5 GHz and 85 GHz operation of the device, respectively. The interaction cavity geometry and beam parameters are finalized by the cold cavity analysis and beam-wave interaction simulations. Considering the beam parameters and the beam launching positions in cavity (beam radius), the design of Magnetically Tunable MIG (MT-MIG) is also presented. Results of MT-MIG confirm the beam launching with desired beam parameters at the beam radius corresponding to the selected operating modes for all three frequencies. The CVD diamond window is also designed for RF power transmission. The beam-wave interaction simulations confirm more than 1 MW power at all three frequencies (170-, 127.5-, and 85 GHz).

  19. Gyrotron with a sectioned cavity based on excitation of a far-from-cutoff operating mode

    SciTech Connect

    Bandurkin, I. V.; Kalynov, Yu. K.; Osharin, I. V.; Savilov, A. V.

    2016-01-15

    A typical problem of weakly relativistic low-power gyrotrons (especially in the case of operation at high cyclotron harmonics) is the use of long cavities ensuring extremely high diffraction Q-factors for the operating near-cutoff waves. As a result, a great share of the rf power radiated by electrons is spent in Ohmic losses. In this paper, we propose to use a sectioned cavity with π-shifts of the wave phase between sections. In such a cavity, a far-from-cutoff axial mode of the operating cavity having a decreased diffraction Q-factor is excited by the electron beam in a gyrotron-like regime.

  20. Two-wave regime of operation of the high-harmonic gyrotron

    SciTech Connect

    Savilov, A. V.; Denisov, G. G.; Kalynov, Yu. K.; Osharin, I. V.

    2015-04-15

    The use of the two-wave co-generation is proposed as a way to decrease the effective Q-factor of the operating near-cutoff wave of the gyrotron. In this two-wave regime, the operating wave represents a “hot” wave mode formed by two partial “cold” modes (near-cutoff and far-from-cutoff ones) coupled on the electron beam. It is shown that the use of this regime can provide a significant decrease of the Ohmic losses in low-relativistic high-harmonic gyrotrons operating in the THz frequency range.

  1. Influence of Reflections on Frequency Tunability and Mode Competition in the Second-Harmonic THz Gyrotron

    NASA Astrophysics Data System (ADS)

    Khutoryan, Eduard M.; Idehara, Toshitaka; Melnikova, Maria M.; Ryskin, Nikita M.; Dumbrajs, Olgierd

    2017-07-01

    Effect of delayed reflection on operation of a second-harmonic terahertz (THz)-band gyrotron is studied. Theoretical analyses, numerical calculations, and experimental observations for the 0.394-THz Fukui University (FU) and continuous wave (CW) IIB gyrotron are presented. The reflections decrease starting current and expand frequency tunability range owing to excitation of high-order axial modes. They also increase frequency stability, i.e., reduce frequency change due to variation of the magnetic field. In addition, the reflections strongly affect mode competition causing suppress of the second-harmonic mode by the fundamental one and vice versa or, in the case of cooperative mode interaction, mutual power increase.

  2. Continuously Tunable 250 GHz Gyrotron with a Double Disk Window for DNP-NMR Spectroscopy

    PubMed Central

    Jawla, Sudheer; Ni, Qing Zhe; Barnes, Alexander; Guss, William; Daviso, Eugenio; Herzfeld, Judith; Griffin, Robert; Temkin, Richard

    2012-01-01

    In this paper, we describe the design and experimental results from the rebuild of a 250 GHz gyrotron used for Dynamic Nuclear Polarization enhanced Nuclear Magnetic Resonance spectroscopy on a 380 MHz spectrometer. Tuning bandwidth of approximately 2 GHz is easily achieved at a fixed magnetic field of 9.24 T and a beam current of 95 mA producing an average output power of >10 W over the entire tuning band. This tube incorporates a double disk output sapphire window in order to maximize the transmission at 250.58 GHz. DNP Signal enhancement of >125 is achieved on a 13C-Urea sample using this gyrotron. PMID:23539422

  3. Real-time, T-ray imaging using a sub-terahertz gyrotron

    NASA Astrophysics Data System (ADS)

    Han, Seong-Tae; Torrezan, Antonio C.; Sirigiri, Jagadishwar R.; Shapiro, Michael A.; Temkin, Richard J.

    2012-06-01

    We demonstrated real-time, active, T-ray imaging using a 0.46 THz gyrotron capable of producing 16 W in continuous wave operation and a pyroelectric array camera with 124-by-124 pixels. An expanded Gaussian beam from the gyrotron was used to maintain the power density above the detection level of the pyroelectric array over the area of the irradiated object. Real-time imaging at a video rate of 48 Hz was achieved through the use of the built-in chopper of the camera. Potential applications include fast scanning for security purposes and for quality control of dry or frozen foods.

  4. Influence of Reflections on Frequency Tunability and Mode Competition in the Second-Harmonic THz Gyrotron

    NASA Astrophysics Data System (ADS)

    Khutoryan, Eduard M.; Idehara, Toshitaka; Melnikova, Maria M.; Ryskin, Nikita M.; Dumbrajs, Olgierd

    2017-03-01

    Effect of delayed reflection on operation of a second-harmonic terahertz (THz)-band gyrotron is studied. Theoretical analyses, numerical calculations, and experimental observations for the 0.394-THz Fukui University (FU) and continuous wave (CW) IIB gyrotron are presented. The reflections decrease starting current and expand frequency tunability range owing to excitation of high-order axial modes. They also increase frequency stability, i.e., reduce frequency change due to variation of the magnetic field. In addition, the reflections strongly affect mode competition causing suppress of the second-harmonic mode by the fundamental one and vice versa or, in the case of cooperative mode interaction, mutual power increase.

  5. Design of interaction cavity for 170 GHz, 1 MW ITER gyrotron

    SciTech Connect

    Kumar, Anil; Kumar, Nitin; Khatun, Hasina; Singh, Udaybir; Sinha, A.K. E-mail: aksinha@ceeri.ernet.in; Vyas, V.

    2011-07-01

    In this paper the design of interaction cavity for 170 GHz, 1 MW gyrotron is presented. An in-house developed code GCOMS has been used for operating mode selection and mode competition. For 170 GHz, 1 MW gyrotron interaction cavity TE28, 7 mode excite as a operating mode at the fundamental harmonic number. The electromagnetic simulator-MAGIC, a Particle-in-Cell (PIC) code has been used for the cold cavity analysis and the beam-wave interaction. More than 1MW output power has been achieved at guiding cavity magnetic field 6.77 T. (author)

  6. Continuously Tunable 250 GHz Gyrotron with a Double Disk Window for DNP-NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Jawla, Sudheer; Ni, Qing Zhe; Barnes, Alexander; Guss, William; Daviso, Eugenio; Herzfeld, Judith; Griffin, Robert; Temkin, Richard

    2013-01-01

    In this paper, we describe the design and experimental results from the rebuild of a 250 GHz gyrotron used for Dynamic Nuclear Polarization enhanced Nuclear Magnetic Resonance spectroscopy on a 380 MHz spectrometer. Tuning bandwidth of approximately 2 GHz is easily achieved at a fixed magnetic field of 9.24 T and a beam current of 95 mA producing an average output power of >10 W over the entire tuning band. This tube incorporates a double disk output sapphire window in order to maximize the transmission at 250.58 GHz. DNP Signal enhancement of >125 is achieved on a 13C-Urea sample using this gyrotron.

  7. Continuously Tunable 250 GHz Gyrotron with a Double Disk Window for DNP-NMR Spectroscopy.

    PubMed

    Jawla, Sudheer; Ni, Qing Zhe; Barnes, Alexander; Guss, William; Daviso, Eugenio; Herzfeld, Judith; Griffin, Robert; Temkin, Richard

    2013-01-01

    In this paper, we describe the design and experimental results from the rebuild of a 250 GHz gyrotron used for Dynamic Nuclear Polarization enhanced Nuclear Magnetic Resonance spectroscopy on a 380 MHz spectrometer. Tuning bandwidth of approximately 2 GHz is easily achieved at a fixed magnetic field of 9.24 T and a beam current of 95 mA producing an average output power of >10 W over the entire tuning band. This tube incorporates a double disk output sapphire window in order to maximize the transmission at 250.58 GHz. DNP Signal enhancement of >125 is achieved on a (13)C-Urea sample using this gyrotron.

  8. Mode selection and resonator design studies of a 95 GHz, 100 kW, CW gyrotron

    SciTech Connect

    Vamshi Krishna, P.; Kartikeyan, M.V. E-mail: kartik@iitr.ernet.in; Thumm, M.

    2011-07-01

    In this paper, the mode selection procedure leading to the design and the cavity resonator design studies of a 95 GHz, 100 kW, CW Gyrotron will be presented, such a gyrotron will be used for specific ECRH/ECRIS applications. In this course all the suitable modes with design constraints within the limits of design goals are considered and finally the TE{sub 10.4} mode is chosen as the operating mode which is suitable for the design. Design constraints are carefully investigated, and starting currents are computed. (author)

  9. A long-pulse repetitive operation magnetically insulated transmission line oscillator.

    PubMed

    Fan, Yu-Wei; Zhong, Hui-Huang; Zhang, Jian-De; Shu, Ting; Liu, Jin Liang

    2014-05-01

    The improved magnetically insulated transmission line oscillator (MILO) is a gigawatt-class L-band high power microwave tube. It has allowed us to generate 3.1 GW pulse of 40 ns duration in the single-pulse operation and 500 MW pulse of 25 ns duration in the repetition rate operation. However, because of the severe impedance mismatch, the power conversion efficiency is only about 4% in the repetition rate operation. In order to eliminate the impedance mismatch and obtain repetitive long-pulse high-power microwave (HPM), a series of experiments are carried out and the recent progress is presented in this paper. In the single-pulse operation, when the diode voltage is 466 kV and current is 41.6 kA, the radiated microwave power is above 2.2 GW, the pulse duration is above 102 ns, the microwave frequency is about 1.74 GHz, and the power conversion efficiency is about 11.5%. In the repetition rate operation, under the condition of the diode voltage about 400 kV, beam current about 38 kA, the radiated microwave power is about 1.0 GW, the pulse duration is about 85 ns. Moreover, the radiated microwave power and the pulse duration decline little by little when the shot numbers increase gradually. The experimental results show that the impedance matching is a vital factor for HPM systems and one of the major technical challenges is to improve the cathode for the repetition rate operation MILO.

  10. Coherence limits and chirp control in long pulse free electron laser oscillator

    NASA Astrophysics Data System (ADS)

    Socol, Y.; Gover, A.; Eliran, A.; Volshonok, M.; Pinhasi, Y.; Kapilevich, B.; Yahalom, A.; Lurie, Y.; Kanter, M.; Einat, M.; Litvak, B.

    2005-08-01

    We report experimental studies of the spectral linewidth and chirp characteristics of the mm-wave rf radiation of the Israeli Electrostatic-Accelerator free electron laser (EA-FEL), along with theory and numerical simulations. The simulations, matching the experimental data, were carried out using a space-frequency-domain model. EA-FELs have the capacity to generate long pulses of tens microseconds and more, that in principle can be elongated indefinitely (cw operation). Since a cold beam FEL is by nature a “homogeneously broadened laser,” EA-FEL can operate, unlike other kinds of FELs, at a single longitudinal mode (single frequency). This allows the generation of very coherent radiation. The current status of the Israeli Tandem Electrostatic-Accelerator FEL, which is based on an electrostatic Van de Graaff accelerator, allows the generation of pulses of tens microseconds duration. It has been operated recently past saturation, and produced single-mode coherent radiation of record narrow inherent relative linewidth ˜Δf/f=10-6 at frequencies near 100 GHz. A frequency chirp was observed during the pulses of tens of microseconds (0.3-0.5MHz/ms). This is essentially a drifting “frequency-pulling effect,” associated with the accelerator voltage drop during the pulse. Additionally, damped relaxation of the FEL oscillator was experimentally measured at the beginning and the end of the lasing pulse, in good correspondence to our theory and numerical simulations. We propose using the chirped signal of the pulsed EA-FEL for single pulse sweep spectroscopy of very fine resolution. The characteristics of this application are analyzed based on the experimental data.

  11. Long Pulse High Performance Plasma Scenario Development for the National Spherical Torus Experiment

    SciTech Connect

    Kessel, C.E.; Bell, R.E.; Bell, M.G.; Gates, D.A.; Harvey, R.W.

    2006-01-01

    The National Spherical Torus Experiment [Ono et al., Nucl. Fusion, 44, 452 (2004)] is targeting long pulse high performance, noninductive sustained operations at low aspect ratio, and the demonstration of nonsolenoidal startup and current rampup. The modeling of these plasmas provides a framework for experimental planning and identifies the tools to access these regimes. Simulations based on neutral beam injection (NBI)-heated plasmas are made to understand the impact of various modifications and identify the requirements for (1) high elongation and triangularity, (2) density control to optimize the current drive, (3) plasma rotation and/or feedback stabilization to operate above the no-wall limit, and (4) electron Bernstein waves (EBW) for off-axis heating/current drive (H/CD). Integrated scenarios are constructed to provide the transport evolution and H/CD source modeling, supported by rf and stability analyses. Important factors include the energy confinement, Zeff, early heating/H mode, broadening of the NBI-driven current profile, and maintaining q(0) and qmin>1.0. Simulations show that noninductive sustained plasmas can be reached at IP=800 kA, BT=0.5 T, 2.5, N5, 15%, fNI=92%, and q(0)>1.0 with NBI H/CD, density control, and similar global energy confinement to experiments. The noninductive sustained high plasmas can be reached at IP=1.0 MA, BT=0.35 T, 2.5, N9, 43%, fNI=100%, and q(0)>1.5 with NBI H/CD and 3.0 MW of EBW H/CD, density control, and 25% higher global energy confinement than experiments. A scenario for nonsolenoidal plasma current rampup is developed using high harmonic fast wave H/CD in the early low IP and low Te phase, followed by NBI H/CD to continue the current ramp, reaching a maximum of 480 kA after 3.4 s.

  12. A bright and long-pulse illumination for ultrahigh-speed microscopy of living specimens.

    PubMed

    Nakano, Hitoshi; Yokoi, Sayoko; Yoshida, Shigeru; Yamada, Makoto; Takeuchi, Takeshi; Takehara, Kosei; Etoh, T Goji

    2010-01-01

    Ultrahigh-speed microscopy of living specimens requires ultrabright illumination. Moreover, the duration of illumination should be sufficiently long, on the order of at least several tens of milliseconds, in order to investigate the dynamic state of living specimens. However, specimens are exposed to a high risk of damage by the intense illumination. The brightness and pulse duration of illumination have to be continuously controlled for use in the ultrahigh-speed microscopy of living specimens. Commercial or laboratory-made illumination systems do not satisfy the abovementioned requirements. In this paper, the development of a bright and long-pulse illumination system for ultrahigh-speed microscopy of living specimens is presented. A xenon flashlamp with an arc length of 1.5 mm has been used as the light source. The electrical power supply consists of a voltage-regulated circuit, a capacitor bank, and a control circuit including an insulated-gate bipolar transistor as a gating device, which provides a large rectangular current pulse with the duration in the range to the order of several tens of milliseconds. The brightness, pulse duration, and repetition rate can be easily and continuously controlled. The illumination developed in the present study is installed in an inverted fluorescence microscope equipped with a high-speed camera in order to evaluate the performance as an illumination source. A fluorescent image of the living spermatozoa of a mouse obtained at a frame rate of 8 kHz shows good contrast. Such an image cannot be obtained using a commercial illumination system.

  13. Proceedings of the workshop on neutron instrumentation for a long-pulse spallation source

    SciTech Connect

    Alonso, J.; Schroeder, L.; Pynn, R.

    1995-12-31

    This workshop was carried out under the auspices of the Lawrence Berkeley National Laboratory Pulsed Spallation Source activity and its Pulsed Spallation Source Committee (PSSC). One of our activities has been the sponsorship of workshops related to neutron production by pulsed sources. At the Crystal City PSSC meeting a decision was made to hold a workshop on the instrumentation opportunities at a long-pulse spallation source (LPSS). The enclosed material represents the results of deliberations of the three working groups into which the participants were divided, covering elastic scattering, inelastic scattering and fundamental physics, as well as contributions from individual participants. We hope that the material in this report will be useful to the neutron scattering community as it develops a road-map for future neutron sources. The workshop was held at LBNL in mid-April with about sixty very dedicated participants from the US and abroad. This report presents the charge for the workshop: Based on the bench mark source parameters provided by Gary Russell, determine how a suite of spectrometers in each of the three working group`s area of expertise would perform at an LPSS and compare this performance with that of similar spectrometers at a continuous source or a short-pulse source. Identify and discuss modifications to these spectrometers that would enhance their performance at an LPSS. Identify any uncertainties in the analysis of spectrometer performance that require further research. Describe what R & D is needed to resolve these issues. Discuss how the performance of instruments would be affected by changes in source parameters such as repetition rate, proton pulse length, and the characteristic time of pulse tails. Identify beneficial changes that could become goals for target/moderator designers. Identify novel methods that might be applied at an LPSS. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  14. Design of long pulse/steady state negative hydrogen ion sources for fusion applications

    SciTech Connect

    Prelec, K.

    1980-01-01

    By using parameters of ion sources when operating in a pulsed mode and without cooling (pulse length < 0.1 s), requirements have been determined for a long pulse (several seconds) or steady state operating mode and two sources have been designed and fabricated. First of the two is a penning source, designed for a steady state operation with a cathode power density of 1 kW/cm/sup 2/. For the range of cathode power densities between 0.2 kW/cm/sup 2/ and 1 Kw/cm/sup 2/, nucleated boiling has to be used for heat removal; below 0.2 kW/cm/sup 2/ water flow cooling suffices. Although this source should deliver 0.3 to 0.5 A of H/sup -/ ions in a steady state operation and at full power, the other source, which has a magnetron geometry, is more promising. The latter incorporates two new features compared to first designs, geometrical focusing of fast, primary negative hydrogen ions from the cathode into the extraction slit, and a wider discharge gap in the back of the source. These two changes have resulted in an improvement of the power and gas efficiencies by a factor of 3 to 4 and in a reduction of the cathode power density by an order of magnitude. The source has water cooling for all the electrodes, because maximum power densities will not be higher than 0.2 kW/cm/sup 2/. Very recently a modification of this magnetron source is being considered; it consists of plasma injection into the source from a hollow cathode discharge.

  15. A long-pulse repetitive operation magnetically insulated transmission line oscillator

    SciTech Connect

    Fan, Yu-Wei; Zhong, Hui-Huang; Zhang, Jian-De; Shu, Ting; Liu, Jin Liang

    2014-05-15

    The improved magnetically insulated transmission line oscillator (MILO) is a gigawatt-class L-band high power microwave tube. It has allowed us to generate 3.1 GW pulse of 40 ns duration in the single-pulse operation and 500 MW pulse of 25 ns duration in the repetition rate operation. However, because of the severe impedance mismatch, the power conversion efficiency is only about 4% in the repetition rate operation. In order to eliminate the impedance mismatch and obtain repetitive long-pulse high-power microwave (HPM), a series of experiments are carried out and the recent progress is presented in this paper. In the single-pulse operation, when the diode voltage is 466 kV and current is 41.6 kA, the radiated microwave power is above 2.2 GW, the pulse duration is above 102 ns, the microwave frequency is about 1.74 GHz, and the power conversion efficiency is about 11.5%. In the repetition rate operation, under the condition of the diode voltage about 400 kV, beam current about 38 kA, the radiated microwave power is about 1.0 GW, the pulse duration is about 85 ns. Moreover, the radiated microwave power and the pulse duration decline little by little when the shot numbers increase gradually. The experimental results show that the impedance matching is a vital factor for HPM systems and one of the major technical challenges is to improve the cathode for the repetition rate operation MILO.

  16. A long-pulse repetitive operation magnetically insulated transmission line oscillator

    NASA Astrophysics Data System (ADS)

    Fan, Yu-Wei; Zhong, Hui-Huang; Zhang, Jian-De; Shu, Ting; Liu, Jin Liang

    2014-05-01

    The improved magnetically insulated transmission line oscillator (MILO) is a gigawatt-class L-band high power microwave tube. It has allowed us to generate 3.1 GW pulse of 40 ns duration in the single-pulse operation and 500 MW pulse of 25 ns duration in the repetition rate operation. However, because of the severe impedance mismatch, the power conversion efficiency is only about 4% in the repetition rate operation. In order to eliminate the impedance mismatch and obtain repetitive long-pulse high-power microwave (HPM), a series of experiments are carried out and the recent progress is presented in this paper. In the single-pulse operation, when the diode voltage is 466 kV and current is 41.6 kA, the radiated microwave power is above 2.2 GW, the pulse duration is above 102 ns, the microwave frequency is about 1.74 GHz, and the power conversion efficiency is about 11.5%. In the repetition rate operation, under the condition of the diode voltage about 400 kV, beam current about 38 kA, the radiated microwave power is about 1.0 GW, the pulse duration is about 85 ns. Moreover, the radiated microwave power and the pulse duration decline little by little when the shot numbers increase gradually. The experimental results show that the impedance matching is a vital factor for HPM systems and one of the major technical challenges is to improve the cathode for the repetition rate operation MILO.

  17. LONG PULSE ADVANCED TOKAMAK DISCHARGES IN THE DIII-D TOKAMAK

    SciTech Connect

    P.I. PETERSEN

    2002-06-01

    One of the main goals for the DIII-D research program is to establish an advanced tokamak plasma with high bootstrap current fraction that can be sustained in-principle steady-state. Substantial progress has been made in several areas during the last year. The resistive wall mode stabilization has been done with spinning plasmas in which the plasma pressure has been extended well above the no-wall beta limit. The 3/2 neoclassical tearing mode has been stabilized by the injection of ECH into the magnetic islands, which drives current to substitute the missing bootstrap current. In these experiments either the plasma was moved or the toroidal field was changed to overlap the ECCD resonance with the location of the NTMs. Effective disruption mitigation has been obtained by massive noble gas injection into shots where disruptions were deliberately triggered. The massive gas puff causes a fast and clean current quench with essentially all the plasma energy radiated fairly uniformly to the vessel walls. The run-away electrons that are normally seen accompanying disruptions are suppressed by the large density of electrons still bound on the impurity nuclei. Major elements required to establish integrated, long-pulse, advanced tokamak operations have been achieved in DIII-D: {beta}{sub T} = 4.2%, {beta}{sub p} = 2, f{sub BS} = 65%, and {beta}{sub N}H{sub 89} = 10 for 600 ms ({approx} 4{tau}{sub E}). The next challenge is to integrate the different elements, which will be the goal for the next five years when additional control will be available. Twelve resistive wall mode coils are scheduled to be installed in DIII-D during the summer of 2003. The future plans include upgrading the tokamak pulse length capability and increasing the ECH power, to control the current profile evolution.

  18. Non-ablative scar revision using a long pulsed frequency doubled Nd:YAG laser.

    PubMed

    Cassuto, Daniel; Emanuelli, Guglielmo

    2003-12-01

    Unsightly scars often are the only reminder of a previous surgical or traumatic wound. Surgical or ablative scar revision is sought by patients, sometimes unnecessarily. When the aesthetic drawback is mainly a result of hypervascularity or hyperpigmentation, these problems can be specifically targeted with a wavelength that is well absorbed by the two above mentioned chromophores. Some degree of epidermal tightening can also be achieved, which is sometimes useful in slightly atrophic scars. The average improvement after 2-3 sessions was 81% (75%-100%) clearance, as judged by an independent observer who reviewed pre- and post-treatment photographs. No undesired effects were reported. All our patients were satisfied and required no further treatment. Selective photothermolysis by means of a long pulsed frequency doubled Nd:YAG laser (DioLite 532, IRIDEX Corporation, Mountain View, CA, USA) was used to eliminate the unsightly vascular and pigmented components of 23 mature scars (scars older than 2 years) in 22 consecutive patients. Energy densities of 17-22 j/cm2 were used with a 500 micron spot, or 65-90 j/cm2 with a 200 micron spot. overall scar clearance averaged 81% after 2.4 treatments. Facial scars showed the best clearance averaging 94% after 2 treatments. Inframammary scars were the most difficult to clear averaging 46%. Postoperative undesired effects were immediate erythema and swelling that subsided within 2-10 hours and microcrusting on 19/22 (88%) patients that resolved within one week. No other temporary or permanent undesired effects such as purpura, hypo- or hyperpigmentation were noticed, even in patients with darker skin types.

  19. Spectral broadening measurement of the lower hybrid waves during long pulse operation in Tore Supra

    SciTech Connect

    Berger-By, G.; Decampy, J.; Goniche, M.; Ekedahl, A.; Delpech, L.; Leroux, F.; Antar, G. Y.; Collaboration: Tore Supra Team

    2014-02-12

    On many tokamaks (C-Mod, EAST, FTU, JET, HT-7, TS), a decrease in current drive efficiency of the Lower Hybrid (LH) waves is observed in high electron density plasmas. The cause of this behaviour is believed to be: Parametric Instabilities (PI) and Scattering from Density Fluctuations (SDF). For the ITER LH system, our knowledge must be improved to avoid such effects and to maintain the LH current drive efficiency at high density. The ITPA IOS group coordinates this effort [1] and all experimental data are essential to validate the numerical codes in progress. Usually the broadening of the LH wave frequency spectrum is measured by a probe located in the plasma edge. For this study, the frequency spectrum of a reflected power signal from the LH antenna was used. In addition, the spectrum measurements are compared with the density fluctuations observed on RF probes located at the antenna mouth. Several plasma currents (0.6 to 1.4 MA) and densities up to 5.2 × 10{sup 19} m−3 have been realised on Tore Supra (TS) long pulses and with high injected RF power, up to 5.4 MW-30s. This allowed using a spectrum analyser to make several measurements during the plasma pulse. The side lobe amplitude, shifted by 20-30MHz with respect to the main peak, grows with increasing density. Furthermore, for an increase of plasma current at the same density, the spectra broaden and become asymmetric. Some parametric dependencies are shown in this paper.

  20. A bright and long-pulse illumination for ultrahigh-speed microscopy of living specimens

    NASA Astrophysics Data System (ADS)

    Nakano, Hitoshi; Yokoi, Sayoko; Yoshida, Shigeru; Yamada, Makoto; Takeuchi, Takeshi; Takehara, Kosei; Etoh, T. Goji

    2010-01-01

    Ultrahigh-speed microscopy of living specimens requires ultrabright illumination. Moreover, the duration of illumination should be sufficiently long, on the order of at least several tens of milliseconds, in order to investigate the dynamic state of living specimens. However, specimens are exposed to a high risk of damage by the intense illumination. The brightness and pulse duration of illumination have to be continuously controlled for use in the ultrahigh-speed microscopy of living specimens. Commercial or laboratory-made illumination systems do not satisfy the abovementioned requirements. In this paper, the development of a bright and long-pulse illumination system for ultrahigh-speed microscopy of living specimens is presented. A xenon flashlamp with an arc length of 1.5 mm has been used as the light source. The electrical power supply consists of a voltage-regulated circuit, a capacitor bank, and a control circuit including an insulated-gate bipolar transistor as a gating device, which provides a large rectangular current pulse with the duration in the range to the order of several tens of milliseconds. The brightness, pulse duration, and repetition rate can be easily and continuously controlled. The illumination developed in the present study is installed in an inverted fluorescence microscope equipped with a high-speed camera in order to evaluate the performance as an illumination source. A fluorescent image of the living spermatozoa of a mouse obtained at a frame rate of 8 kHz shows good contrast. Such an image cannot be obtained using a commercial illumination system.

  1. Successful Treatment of Congenital Lymphangioma Circumscriptum of the Vulva with CO2 and Long-Pulsed Nd:YAG Lasers.

    PubMed

    Sasaki, Ryosuke; Negishi, Kei; Akita, Hirotaka; Suzuki, Kayoko; Matsunaga, Kayoko

    2014-01-01

    A 16-year-old girl presented with a 9-year history of vesicles on the vulva. She had initially taken a wait-and-see approach, but required treatment because of bleeding. Histological examination of a biopsied vesicle revealed dilated lymph channels in the upper dermis, suggesting lymphangioma circumscriptum (LC). The challenge for this pathology has been to find a conservative treatment with low morbidity and better results than those reported for surgical excision, which has been the mainstay of therapy. In this case, LC of the vulva was successfully treated using a 10,600-nm CO2 laser and long-pulsed Nd:YAG laser. Use of the 10,600-nm CO2 laser and long-pulsed Nd:YAG laser appeared effective for treating LC.

  2. Laser-Induced Breakdown Spectroscopy and Plasma Characterization Generated by Long-Pulse Laser on Soil Samples

    NASA Astrophysics Data System (ADS)

    Xu, S.; Duan, W.; Ning, R.; Li, Q.; Jiang, R.

    2017-03-01

    The plasma is generated by focusing a long-pulse (80 μs) Nd:YAG laser on chromium-doped soil samples. The calibration curves are drawn using the intensity ratio of the chromium spectral line at 425.435 nm with the iron spectral line (425.079 nm) as reference. The regression coefficient of the calibration curve is 0.993, and the limit of detection is 16 mg/kg, which is 19% less than that for the case of a Q-switched laser In the method of long-pulse laser-induced breakdown spectroscopy, the laser-induced plasma had a temperature of 15795.907 K and an electron density of 2.988 × 1017 cm-3, which exceeded the corresponding plasma parameters of the Q-switched laser-induced breakdown spectroscopy by 75% and 24% respectively.

  3. Generation of 1.5-kW, 1-THz coherent radiation from a gyrotron with a pulsed magnetic field.

    PubMed

    Glyavin, M Yu; Luchinin, A G; Golubiatnikov, G Yu

    2008-01-11

    To cover a so-called terahertz gap in available sources of coherent electromagnetic radiation, the gyrotron with a pulsed solenoid producing up to a 40 T magnetic field has been designed, manufactured, and tested. At a 38.5 T magnetic field, the gyrotron generated coherent radiation at 1.022 THz frequency in 50 musec pulses. The microwave power and energy per pulse were about 1.5 kW and 75 mJ, respectively. Details of the gyrotron design, manufacturing, operation and measurements of output radiation are given.

  4. Preliminary study on heat load using calorimetric measurement during long-pulse high-performance discharges on EAST

    NASA Astrophysics Data System (ADS)

    Liu, Y. K.; Hamada, N.; Hanada, K.; Gao, X.; Liu, H. Q.; Yu, Y. W.; Qian, J. P.; Yang, L.; Xu, T. J.; Jie, Y. X.; Yao, Y.; Wang, S. S.; Xu, J. C.; Yang, Z. D.; Li, G. S.; EAST Team

    2017-04-01

    Experimental Advanced Superconducting Tokamak (EAST) aims to demonstrate steady-state advanced high-performance H-mode plasmas with an ITER-like configuration, plasma control and heating schemes. The plasma-facing components in EAST are actively cooled, providing good conditions for researching long-pulse and high-energy discharges. A long-pulse high-performance plasma discharge (#59892 discharge) of up to 103 s with a core electron temperature of up to 4.5 keV was sustained with an injected energy exceeding 0.22 GJ in the 2015–2016 experimental campaign. A calorimetric measurement utilizing the temperature increment of cooling water is carried out to calculate the heat load on the strike point region of the lower divertor during long-pulse discharges in EAST. For the long-pulse and high-energy discharges, the comparison of the measurement results for the heat load measured by divertor Langmuir probes and the calorimetry diagnostic indicates that most of the heat load is delivered to the divertor panels as plasma, not radiation, and charge exchange neutrals. The ratio of the heat load on the strike point region of the lower divertor to the total injected energy is on average 42.5% per discharge with the lower single null divertor configuration. If the radiated energy loss measured by the fast bolometer diagnostic is taken into consideration, the ratio is found to be 61.6%. The experimental results and the analysis of the physics involved in these discharges are reported and discussed.

  5. Long-Pulsed Nd:YAG Laser Treatment of Warts: Report on a Series of 369 Cases

    PubMed Central

    Han, Tae Young; Lee, Ji Ho; Lee, Chang Kyun; Ahn, Ji Young; Hong, Chang Kwun

    2009-01-01

    Various treatment methods have been adopted in the management of warts; however, there is still no consensus on first-line treatment. This study was designed to evaluate the efficacy of long-pulsed Nd:YAG laser in the treatment of warts. Over the course of 1 yr, 369 patients with recalcitrant or untreated warts were exposed to a long-pulsed Nd:YAG laser. The following parameters were used: spot size, 5 mm; pulse duration, 20 msec; and fluence, 200 J/cm2. No concomitant topical treatment was used. In all, 21 patients were lost during follow up; hence, the data for 348 patients were evaluated. The clearance rate was 96% (336 of the 348 treated warts were eradicated). The clearance rate of verruca vulgaris after the first treatment was very high (72.6%), whereas the clearance rate of deep palmopantar warts after the first treatment was low (44.1%). During a median follow-up period of 2.24 months (range, 2-10 months), 11 relapses were seen (recurrence rate, 3.27%). In conclusion, long-pulsed Nd:YAG laser is safe and effective for the removal or reduction of warts and is less dependent on patient compliance than are other treatment options. PMID:19794989

  6. Development of long pulse RF heating and current drive for H-mode scenarios with metallic walls in WEST

    SciTech Connect

    Ekedahl, Annika Bourdelle, Clarisse; Artaud, Jean-François; Bernard, Jean-Michel; Bufferand, Hugo; Colas, Laurent; Decker, Joan; Delpech, Léna; Dumont, Rémi; Goniche, Marc; Helou, Walid; Hillairet, Julien; Lombard, Gilles; Magne, Roland; Mollard, Patrick; Nardon, Eric; Peysson, Yves; Tsitrone, Emmanuelle

    2015-12-10

    The longstanding expertise of the Tore Supra team in long pulse heating and current drive with radiofrequency (RF) systems will now be exploited in the WEST device (tungsten-W Environment in Steady-state Tokamak) [1]. WEST will allow an integrated long pulse tokamak programme for testing W-divertor components at ITER-relevant heat flux (10-20 MW/m{sup 2}), while treating crucial aspects for ITER-operation, such as avoidance of W-accumulation in long discharges, monitoring and control of heat fluxes on the metallic plasma facing components (PFCs) and coupling of RF waves in H-mode plasmas. Scenario modelling using the METIS-code shows that ITER-relevant heat fluxes are compatible with the sustainment of long pulse H-mode discharges, at high power (up to 15 MW / 30 s at I{sub P} = 0.8 MA) or high fluence (up to 10 MW / 1000 s at I{sub P} = 0.6 MA) [2], all based on RF heating and current drive using Ion Cyclotron Resonance Heating (ICRH) and Lower Hybrid Current Drive (LHCD). This paper gives a description of the ICRH and LHCD systems in WEST, together with the modelling of the power deposition of the RF waves in the WEST-scenarios.

  7. Development of long pulse RF heating and current drive for H-mode scenarios with metallic walls in WEST

    NASA Astrophysics Data System (ADS)

    Ekedahl, Annika; Bourdelle, Clarisse; Artaud, Jean-François; Bernard, Jean-Michel; Bufferand, Hugo; Colas, Laurent; Decker, Joan; Delpech, Léna; Dumont, Rémi; Goniche, Marc; Helou, Walid; Hillairet, Julien; Lombard, Gilles; Magne, Roland; Mollard, Patrick; Nardon, Eric; Peysson, Yves; Tsitrone, Emmanuelle

    2015-12-01

    The longstanding expertise of the Tore Supra team in long pulse heating and current drive with radiofrequency (RF) systems will now be exploited in the WEST device (tungsten-W Environment in Steady-state Tokamak) [1]. WEST will allow an integrated long pulse tokamak programme for testing W-divertor components at ITER-relevant heat flux (10-20 MW/m2), while treating crucial aspects for ITER-operation, such as avoidance of W-accumulation in long discharges, monitoring and control of heat fluxes on the metallic plasma facing components (PFCs) and coupling of RF waves in H-mode plasmas. Scenario modelling using the METIS-code shows that ITER-relevant heat fluxes are compatible with the sustainment of long pulse H-mode discharges, at high power (up to 15 MW / 30 s at IP = 0.8 MA) or high fluence (up to 10 MW / 1000 s at IP = 0.6 MA) [2], all based on RF heating and current drive using Ion Cyclotron Resonance Heating (ICRH) and Lower Hybrid Current Drive (LHCD). This paper gives a description of the ICRH and LHCD systems in WEST, together with the modelling of the power deposition of the RF waves in the WEST-scenarios.

  8. 3D CFDTD PIC Simulation Study on Low-Frequency Oscillations in a Gyrotron

    NASA Astrophysics Data System (ADS)

    Lin, M. C.; Smithe, D. N.

    2011-10-01

    Low-frequency oscillations (LFOs) have been observed in a high average power gyrotron and the trapped electron population contributing to the oscillation has been measured. As high average power gyrotrons are the most promising millimeter wave source for thermonuclear fusion research, it is important to get a better understanding of this parasitic phenomenon to avoid any deterioration of the electron beam quality thus reducing the gyrotron efficiency. However, understanding of the LFOs remains incomplete and a full picture of this parasitic phenomenon has not been seen yet. In this work, we use a 3D conformal finite-difference time-domain (CFDTD) particle-in-cell (PIC) method to accurately and efficiently study the LFOs in a magnetron injection gun (MIG) of a high average power gyrotron. Employing a highly parallelized computation, the model can be simulated in time domain more realistically. LFOs have been obtained in a 3D time domain simulation for the first time. From our preliminary simulation studies, it is found that not only magnetic compression profile but initial velocity or velocity ratio play an important role in the operation of a MIG electron gun. In addition, the secondary emission effects on the LFOs are also studied. Detailed results will be presented. Work supported by the U.S. Department of Energy under Grant No. DE-SC0004436.

  9. Performance history and upgrades for the DIII-D gyrotron complex

    DOE PAGES

    Lohr, J.; Anderson, J. P.; Cengher, M.; ...

    2015-03-12

    The gyrotron installation on the DIII-D tokamak has been in operation at the second harmonic of the electron cyclotron resonance since the mid-1990s. Prior to that a large installation of ten 60 GHz tubes was operated at the fundamental resonance. The system has been upgraded regularly and is an everyday tool for experiments on DIII-D.

  10. A Fully-Sealed Carbon-Nanotube Cold-Cathode Terahertz Gyrotron

    PubMed Central

    Yuan, Xuesong; Zhu, Weiwei; Zhang, Yu; Xu, Ningsheng; Yan, Yang; Wu, Jianqiang; Shen, Yan; Chen, Jun; She, Juncong; Deng, Shaozhi

    2016-01-01

    Gigahertz to terahertz radiation sources based on cold-cathode vacuum electron technology are pursued, because its unique characteristics of instant switch-on and power saving are important to military and space applications. Gigahertz gyrotron was reported using carbon nanotube (CNT) cold-cathode. It is reported here in first time that a fully-sealed CNT cold-cathode 0.22 THz-gyrotron is realized, typically with output power of 500 mW. To achieve this, we have studied mechanisms responsible for CNTs growth on curved shape metal surface, field emission from the sidewall of a CNT, and crystallized interface junction between CNT and substrate material. We have obtained uniform growth of CNTs on and direct growth from cone-cylinder stainless-steel electrode surface, and field emission from both tips and sidewalls of CNTs. It is essential for the success of a CNT terahertz gyrotron to have such high quality, high emitting performance CNTs. Also, we have developed a magnetic injection electron gun using CNT cold-cathode to exploit the advantages of such a conventional gun design, so that a large area emitting surface is utilized to deliver large current for electron beam. The results indicate that higher output power and higher radiation frequency terahertz gyrotron may be made using CNT cold-cathode electron gun. PMID:27609247

  11. A Fully-Sealed Carbon-Nanotube Cold-Cathode Terahertz Gyrotron

    NASA Astrophysics Data System (ADS)

    Yuan, Xuesong; Zhu, Weiwei; Zhang, Yu; Xu, Ningsheng; Yan, Yang; Wu, Jianqiang; Shen, Yan; Chen, Jun; She, Juncong; Deng, Shaozhi

    2016-09-01

    Gigahertz to terahertz radiation sources based on cold-cathode vacuum electron technology are pursued, because its unique characteristics of instant switch-on and power saving are important to military and space applications. Gigahertz gyrotron was reported using carbon nanotube (CNT) cold-cathode. It is reported here in first time that a fully-sealed CNT cold-cathode 0.22 THz-gyrotron is realized, typically with output power of 500 mW. To achieve this, we have studied mechanisms responsible for CNTs growth on curved shape metal surface, field emission from the sidewall of a CNT, and crystallized interface junction between CNT and substrate material. We have obtained uniform growth of CNTs on and direct growth from cone-cylinder stainless-steel electrode surface, and field emission from both tips and sidewalls of CNTs. It is essential for the success of a CNT terahertz gyrotron to have such high quality, high emitting performance CNTs. Also, we have developed a magnetic injection electron gun using CNT cold-cathode to exploit the advantages of such a conventional gun design, so that a large area emitting surface is utilized to deliver large current for electron beam. The results indicate that higher output power and higher radiation frequency terahertz gyrotron may be made using CNT cold-cathode electron gun.

  12. The design of a multi-harmonic step-tunable gyrotron

    NASA Astrophysics Data System (ADS)

    Qi, Xiang-Bo; Du, Chao-Hai; Zhu, Juan-Feng; Pan, Shi; Liu, Pu-Kun

    2017-03-01

    The theoretical study of a step-tunable gyrotron controlled by successive excitation of multi-harmonic modes is presented in this paper. An axis-encircling electron beam is employed to eliminate the harmonic mode competition. Physics images are depicted to elaborate the multi-harmonic interaction mechanism in determining the operating parameters at which arbitrary harmonic tuning can be realized by magnetic field sweeping to achieve controlled multiband frequencies' radiation. An important principle is revealed that a weak coupling coefficient under a high-harmonic interaction can be compensated by a high Q-factor. To some extent, the complementation between the high Q-factor and weak coupling coefficient makes the high-harmonic mode potential to achieve high efficiency. Based on a previous optimized magnetic cusp gun, the multi-harmonic step-tunable gyrotron is feasible by using harmonic tuning of first-to-fourth harmonic modes. Multimode simulation shows that the multi-harmonic gyrotron can operate on the 34 GHz first-harmonic TE11 mode, 54 GHz second-harmonic TE21 mode, 74 GHz third-harmonic TE31 mode, and 94 GHz fourth-harmonic TE41 mode, corresponding to peak efficiencies of 28.6%, 35.7%, 17.1%, and 11.4%, respectively. The multi-harmonic step-tunable gyrotron provides new possibilities in millimeter-terahertz source development especially for advanced terahertz applications.

  13. Efficient Low-Voltage Operation of a CW Gyrotron Oscillator at 233 GHz

    PubMed Central

    Hornstein, Melissa K.; Bajaj, Vikram S.; Griffin, Robert G.; Temkin, Richard J.

    2007-01-01

    The gyrotron oscillator is a source of high average power millimeter-wave through terahertz radiation. In this paper, we report low beam power and high-efficiency operation of a tunable gyrotron oscillator at 233 GHz. The low-voltage operating mode provides a path to further miniaturization of the gyrotron through reduction in the size of the electron gun, power supply, collector, and cooling system, which will benefit industrial and scientific applications requiring portability. Detailed studies of low-voltage operation in the TE2,3,1 mode reveal that the mode can be excited with less than 7 W of beam power at 3.5 kV. During CW operation with 3.5-kV beam voltage and 50-mA beam current, the gyrotron generates 12 W of RF power at 233.2 GHz. The EGUN electron optics code describes the low-voltage operation of the electron gun. Using gun-operating parameters derived from EGUN simulations, we show that a linear theory adequately predicts the low experimental starting currents. PMID:17687412

  14. Design studies of the output system of a 95 GHz, 100 kW, CW gyrotron

    SciTech Connect

    Vamshi Krishna, P.; Kartikeyan, M.V. E-mail: kartik@iitr.ernet.in; Thumm, M.

    2011-07-01

    This paper presents the design studies of the output system of a 95 GHz, 100 kW, CW gyrotron for ECRH7ECRIS applications. During this course, the design studies of an advanced dimpled-wall quasi optical launcher, non-linear taper and RF window will be carried out. (author)

  15. TESTS AND PERFORMANCE ON THE SIX GYROTRON SYSTEM ON THE DIII-D TOKAMAK

    SciTech Connect

    LOHR,J; GORELOV,YA; KAJIWARA,K; PONCE,D; CALLIS,RW; FERRON,JR; GREENFIELD,CM; LAHAYE,RJ; PINSKER,RI; PRATER,R; WADE,MR; ELLIS,RA

    2002-09-01

    A271 TESTS AND PERFORMANCE ON THE SIX GYROTRON SYSTEM ON THE DIII-D TOKAMAK. The DIII-D gyrotron complex for electron cyclotron heating (ECH) and electron cyclotron current drive (ECCD) has been expanded to include five operational gyrotrons with a sixth being commissioned. The generated rf power exceeds 4.0 MW and the transmission lines deliver about 80% of this power to the tokamak. Among the experiments performed during the most recent campaign, the installation has been used to achieve stabilization of the m/n=2/1 and 3/2 neoclassical tearing modes, to control the rate of current penetration early in the discharge, and to study ECCD contributions to advanced tokamak discharges with high bootstrap fractions. Observations of the thermal performance of CVD diamond output windows have shown good agreement with theoretical predictions, but have revealed a number of interesting phenomena connected with impurities, including points of visible light emission at hot spots identified by infrared measurements. One window was cleaned in situ by alumina grit blasting and Raman spectra verified the removal of some surface contamination. A significant new capability is the simultaneous control of the output power of the entire array of gyrotrons by the DIII-D plasma control system. This allows a predetermined electron temperature evolution to be followed at a specific location in the plasma and opens a new group of experimental possibilities leading to the achievement of higher levels of tokamak performance.

  16. To the theory of high-power gyrotrons with uptapered resonators

    SciTech Connect

    Dumbrajs, O.; Nusinovich, G. S.

    2010-05-15

    In high-power gyrotrons it is desirable to combine an optimal resonator length with the optimal value of the resonator quality factor. In resonators with the constant radius of the central part, the possibilities of this combination are limited because the quality factor of the resonator sharply increases with its length. Therefore the attempts to increase the length for maximizing the efficiency leads to such increase in the quality factor which makes the optimal current too small. Resonators with slightly uptapered profiles offer more flexibility in this regard. In such resonators, one can separate optimization of the interaction length from optimization of the quality factor because the quality factor determined by diffractive losses can be reduced by increasing the angle of uptapering. In the present paper, these issues are analyzed by studying as a typical high-power 17 GHz gyrotron which is currently under development in Europe for ITER (http://en.wikipedia.org/wiki/ITER). The effect of a slight uptapering of the resonator wall on the efficiency enhancement and the purity of the radiation spectrum in the process of the gyrotron start-up and power modulation are studied. Results show that optimal modification of the shape of a slightly uptapered resonator may result in increasing the gyrotron power from 1052 to 1360 kW.

  17. CONDITIONING AND PROTECTION CIRCUITRY FOR EXTERNAL MODULATION OF A PREPROGRAMMED GYROTRON CATHODE VOLTAGE COMMAND WAVEFORM

    SciTech Connect

    PONCE,D; FERRON,J.R; LEGG,R.A

    2003-10-01

    OAK-B135 The modulating voltages applied to the DIII-D gyrotrons are controlled by reference signals which are synthesized by arbitrary waveform generators.These generators allow ECH operators to pre-program reference waveforms consisting of ramps, flat tops, and various modulation shapes. This capability is independent of the DIII-D central timing and waveform facilities, which provides the ECH operators operational flexibility. The waveform generators include an amplitude modulation input, providing a means to control the pre-programmed waveform externally. This input is being used to allow the DIII-D plasma control system (PCS) to control gyrotron power in response top selected feedback signals. As the PCS control signal could potentially modulate the gyrotrons beyond operational limits or otherwise in a manner leading to recalcitrant rf generation, the control signal is conditioned so that its effect upon the ECH pre-programmed reference waveform is limited by conditions set by the ECH operators. The design of the circuitry which restricts the range over which the PCS control signal may modulate the reference waveform will be discussed. Test and DIII-D experimental results demonstrating the utility and effectiveness of gyrotron power modulated by the PCS will be presented.

  18. Start-Up Scenario in Gyrotrons with a Nonstationary Microwave-Field Structure

    NASA Astrophysics Data System (ADS)

    Nusinovich, G. S.; Yeddulla, M.; Antonsen, T. M., Jr.; Vlasov, A. N.

    2006-03-01

    Megawatt class gyrotrons operate in very high-order modes. Therefore, control of a gyrotron oscillator’s start-up is important for excitation of the desired mode in the presence of the many undesired modes. Analysis of such scenario using the self-consistent code MAGY [M. Botton , IEEE Trans. Plasma Sci. 26,ITPSBD0093-3813 882 (1998)10.1109/27.700860] reveals that during start-up not only mode amplitudes vary in time, but also their axial structure can be time dependent. Simulations done for a 1.5 MW gyrotron show that the excitation of a single operating TE22,6 mode can exhibit a sort of intermittency when, first, it is excited as a mode whose axial structure extends outside the interaction cavity, then it ceases and then reappears as a mode mostly localized in the cavity. This phenomenon makes it necessary to analyze start-up scenarios in such gyrotrons with the use of codes that account for the possible evolution of field profiles.

  19. A comparative study on the modeling of dynamic after-cavity interaction in gyrotrons

    NASA Astrophysics Data System (ADS)

    Avramidis, K. A.; Ioannidis, Z. C.; Kern, S.; Samartsev, A.; Pagonakis, I. Gr.; Tigelis, I. G.; Jelonnek, J.

    2015-05-01

    There are cases where gyrotron interaction simulations predict dynamic After-Cavity Interaction (ACI). In dynamic ACI, a mode is excited by the electron beam at a dominant frequency in the gyrotron cavity and, at the same time, this mode is also interacting with the beam at a different frequency in the non-linear uptaper after the cavity. In favor of dynamic ACI being a real physical effect, there are some experimental findings that could be attributed to it, as well as some physical rationale indicating the possibility of a mode being resonant with the beam at different frequencies in different regions. However, the interaction codes used in dynamic ACI prediction up to now are based on simplifications that put questions on their capability of correctly simulating this effect. In this work, the shortcomings of the usual simplifications with respect to dynamic ACI modeling, namely, the trajectory approach and the single-frequency boundary condition, are identified. Extensive simulations of dynamic ACI cases are presented, using several "in-house" as well as commercial codes. We report on the comparison and the assessment of different modeling approaches and their results and we discuss whether, in some cases, dynamic ACI can be a numerical artifact or not. Although the possibility of existence of dynamic ACI in gyrotrons is not disputed, it is concluded that the widely used trajectory approach for gyrotron interaction modeling is questionable for simulating dynamic ACI and can lead to misleading results.

  20. The gyrotron - a natural source of high-power orbital angular momentum millimeter-wave beams

    NASA Astrophysics Data System (ADS)

    Thumm, M.; Sawant, A.; Choe, M. S.; Choi, E. M.

    2017-08-01

    Orbital angular momentum (OAM) of electromagnetic-wave beams provides further diversity to multiplexing in wireless communication. The present report shows that higher-order mode gyrotrons are natural sources of high-power OAM millimeter (mm) wave beams. The well-defined OAM of their rotating cavity modes operating at near cutoff frequency has been derived by photonic and electromagnetic wave approaches.

  1. Steady-state operation of 170 GHz 1 MW gyrotron for ITER

    NASA Astrophysics Data System (ADS)

    Kasugai, A.; Sakamoto, K.; Takahashi, K.; Kajiwara, K.; Kobayashi, N.

    2008-05-01

    A 170 GHz gyrotron has been developed at JAEA, which has achieved operation of 1 MW/800 s and up to 55% efficiency. This is the first demonstration of a gyrotron achieving and even exceeding the ITER operating requirements of 1 MW/500 s and 50% efficiency. In addition the gyrotron demonstrated operation for 1 h with an output power of 0.6 MW. The oscillation was stable with all cooling water temperatures and vacuum pressure reaching equilibrium conditions during the pulse length at either power level. The successful operation was aided by a very low level of stray radiation (~2% of the output power), which contributed to fast conditioning and stable operation. The output power from the gyrotron was coupled into an ITER sized corrugated waveguide (phi = 63.5 mm) via a matching optics unit with a total of 0.97 MW transmitted to the dummy load after two miter bends and ~7 m of a waveguide without any trouble. These results give an encouraging outlook for the success of the ITER electron cyclotron heating and current drive system.

  2. High power millimeter wave source development program

    NASA Technical Reports Server (NTRS)

    George, T. V.

    1989-01-01

    High power millimeter wave sources for fusion program; ECH source development program strategy; and 1 MW, 140 GHz gyrotron experiment design philosophy are briefly outlined. This presentation is represented by viewgraphs only.

  3. Numerical study of the start-up scenario of a 670 GHz gyrotron operation at TE31,8 mode

    NASA Astrophysics Data System (ADS)

    Pu, Ruifeng; Sinitsyn, Oleksandr; Nusinovich, Gregory; Ireap Team

    2011-10-01

    In order to develop a system to detect concealed radioactive materials, we are designing a 670 GHz gyrotron with sufficient power to cause breakdown in the air. Design studies of the cavity and the magnetron injection gun (MIG) of this gyrotron had already been presented. We concluded study of simple start-up regime for this 670GHz gyrotron operating at TE31,8 mode and found that at the fundamental cyclotron harmonics, the operating mode can be excited and the competitor modes will be suppressed. Currently we are studying gyrotron operating on the second cyclotron harmonics using the same electron gun. Preliminary studies show that if the higher harmonics mode is excited first, it will suppress competitors of the fundamental mode. Using available MIG data, we are performing numerical simulation using MAGY. The results of these simulations can be illustrative for our future experiments, and the results of the study will be presented at the conference. Supported by ONR.

  4. CHARACTERISTICS OF DIAMOND WINDOWS ON THE 1 MW, 110 GHz GYROTRON SYSTEMS ON THE DIII-D TOKAMAK

    SciTech Connect

    Y.A. GORELOV; J. LOHR; R.W. CALLIS; D. PONCE

    2002-08-01

    Diamond disks made using the chemical vapor deposition (CVD) technique are now in common use as gyrotron output windows. The low millimeter wave losses and excellent thermal conductivity of diamond have made it possible to use such windows in gyrotrons with {approx}1 MW output power and pulse length up to and greater than 10 s. A ubiquitous characteristic of diamond gyrotron windows is the presence of apparent hot spots in the infrared images registered during rf pulses. Many of these spots are co-located with bright points seen in visible video images. The spots do not seem to compromise the integrity of the windows. Analysis of the infrared observations on several different gyrotrons operating at the DIII-D tokamak are reported.

  5. Effects of electron beam parameters and velocity spread on radio frequency output of a photonic band gap cavity gyrotron oscillator

    NASA Astrophysics Data System (ADS)

    Singh, Ashutosh; Jain, P. K.

    2015-09-01

    In this paper, the effects of electron beam parameters and velocity spread on the RF behavior of a metallic photonic band gap (PBG) cavity gyrotron operating at 35 GHz with TE041-like mode have been theoretically demonstrated. PBG cavity is used here to achieve a single mode operation of the overmoded cavity. The nonlinear time-dependent multimode analysis has been used to observe the beam-wave interaction behavior of the PBG cavity gyrotron, and a commercially available PIC code "CST Particle Studio" has been reconfigured to obtain 3D simulation results in order to validate the analytical values. The output power for this typical PBG gyrotron has been obtained ˜108 kW with ˜15.5% efficiency in a well confined TE041-like mode, while all other competing modes have significantly low values of power output. The output power and efficiency of a gyrotron depend highly on the electron beam parameters and velocity spread. The influence of several electron beam parameters, e.g., beam voltage, beam current, beam velocity pitch factor, and DC magnetic field, on the PBG gyrotron operations has been investigated. This study would be helpful in optimising the electron beam parameters and estimating accurate RF output power of the high frequency PBG cavity based gyrotron oscillators.

  6. Strong yellow emission of high-conductivity bulk ZnO single crystals irradiated with high-power gyrotron beam

    NASA Astrophysics Data System (ADS)

    Kato, Kosaku; Qiu, Hongsong; Khutoryan, Eduard M.; Tatematsu, Yoshinori; Tani, Masahiko; Idehara, Toshitaka; Yamaguchi, Yuusuke; Fukunari, Masafumi; Maeda, Yuto; Takayama, Kyoya; Minami, Yuki; Empizo, Melvin John F.; Kurihara, Takayuki; Yamanoi, Kohei; Shimizu, Toshihiko; Takano, Keisuke; Sarukura, Nobuhiko; Fukuda, Tsuguo; Yoshimura, Masashi; Nakajima, Makoto

    2017-07-01

    We report the strong yellow emission of bulk ZnO single crystals irradiated with the high-power gyrotron beam. Hydrothermally grown bulk crystals with high conductivity are irradiated at room temperature with up to 60-W output of a sub-terahertz gyrotron wave source. During gyrotron irradiation, the high-conductivity crystals exhibit intense emissions with a peak of around 2 eV (600 nm) and a longer-wavelength tail. The sample temperatures were also elevated from room temperature to above 1000 K by irradiation. However, when heated up to 1250 K using a heater without irradiation, the ZnO crystals do not exhibit similar visible emissions. We then use the generalized Planck's radiation in non-equilibrium states as an explanation of our experimental observations. The emission peak intensity can be enhanced by the gyrotron-induced non-equilibrium states, and the emission peak position can be related to the Urbach energy. With high intensities in the visible wavelengths, the emissions of the irradiated crystals can be readily observed with our bare eyes or with inexpensive digital cameras. As the spatial distribution of the yellow emission reflects the gyrotron beam pattern, the bulk ZnO single crystals can then be utilized for the quick diagnosis of gyrotron beam patterns and positions.

  7. Effects of electron beam parameters and velocity spread on radio frequency output of a photonic band gap cavity gyrotron oscillator

    SciTech Connect

    Singh, Ashutosh; Jain, P. K.

    2015-09-15

    In this paper, the effects of electron beam parameters and velocity spread on the RF behavior of a metallic photonic band gap (PBG) cavity gyrotron operating at 35 GHz with TE{sub 041}–like mode have been theoretically demonstrated. PBG cavity is used here to achieve a single mode operation of the overmoded cavity. The nonlinear time-dependent multimode analysis has been used to observe the beam-wave interaction behavior of the PBG cavity gyrotron, and a commercially available PIC code “CST Particle Studio” has been reconfigured to obtain 3D simulation results in order to validate the analytical values. The output power for this typical PBG gyrotron has been obtained ∼108 kW with ∼15.5% efficiency in a well confined TE{sub 041}–like mode, while all other competing modes have significantly low values of power output. The output power and efficiency of a gyrotron depend highly on the electron beam parameters and velocity spread. The influence of several electron beam parameters, e.g., beam voltage, beam current, beam velocity pitch factor, and DC magnetic field, on the PBG gyrotron operations has been investigated. This study would be helpful in optimising the electron beam parameters and estimating accurate RF output power of the high frequency PBG cavity based gyrotron oscillators.

  8. A new MIG-3 gyrotron complex for creation and heating of plasma in the L-2M stellarator and the first experimental results

    NASA Astrophysics Data System (ADS)

    Batanov, G. M.; Belousov, V. I.; Bondar', Yu. F.; Borzosekov, V. D.; Vasil'kov, D. G.; Grebenshchikov, S. E.; Ivannikov, I. A.; Kolik, L. V.; Konchekov, E. M.; Malakhov, D. V.; Matveev, N. V.; Meshcheryakov, A. I.; Petrov, A. E.; Sarksyan, K. A.; Skvortsova, N. N.; Stepakhin, V. D.; Kharchev, N. K.; Khol'nov, Yu. V.; Tai, E. M.

    2013-12-01

    The characteristics of a new MIG-3 gyrotron complex for creating and heating plasma in the L-2M stellarator are presented. The first experimental results using the complex are reported. The complex consists of two three-electrode GYCOM gyrotrons of the new generation with electron beam energy recuperation, a high-voltage modulator that enables both separate and simultaneous operation of the two gyrotrons, and a control/data-recording unit. The total specific power to be inserted into plasma reaches 5 MW/m3 when both gyrotrons in operation.

  9. Long-pulsed Nd: YAG Laser and Intense Pulse Light-755 nm for Idiopathic Facial Hirsutism: A Comparative Study.

    PubMed

    Shrimal, Arpit; Sardar, Souvik; Roychoudhury, Soumyajit; Sarkar, Somenath

    2017-01-01

    Hirsutism means excessive terminal hair growth in a female in male pattern distribution. Perception of hirsutism is subjective. Permanent laser hair reduction is a slow process taking many sessions and tracking of improvement parameters is tedious. Hence, a lot of confusion still exists regarding the type of laser most beneficial for treatment. The aim of this study was to compare the effectiveness and safety profile of long-pulsed Nd: YAG laser (1064 nm) and intense pulse light (IPL)-755 nm in management of idiopathic facial hirsutism. Open-labelled, randomly allocated experimental study. The study included 33 cases of idiopathic facial hirsutism. Patients were randomly divided into Group A, treated with long-pulsed Nd: YAG laser and Group B, treated with IPL-755 for a total of six sessions at 1 month interval. Chi-square test was used in Medcalc(®) version 9.0 and the test of significance was taken to be P < 0.05. Average percentage of improvement in Group A, according to patients at each sessions were 46.33%, 70.66%, 81.66%, 84.67%, 85.33%, 87.33% and that in Group B were 28.06%, 39.72%, 52.22%, 64.72%, 67.78%, 71.11%, respectively. Excellent response (>75% reduction in hair) after six sessions in Group A was seen in fourteen (93.33%) out of fifteen patients, whereas in Group B, it was seen only in three (16.66%) out of eighteen patients. In Group A, erythema was seen in 26.67%, perifollicular edema and hyperpigmentation in 13.33% each. In Group B, erythema was seen in 50% patients, perifollicular edema in 16.67% and hyperpigmentation in 38.89% patients. Long-pulsed Nd: YAG Laser (1064 nm) is better than IPL-755 nm in terms of safety and effectiveness in the management of idiopathic facial hirsutism.

  10. Temperature and thermal stress fields during the pulse train of long-pulse laser irradiating aluminium alloy plate

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Jin, Guangyong; Gu, Xiu-ying

    2014-12-01

    Based on Von Mises yield criterion and elasto-plastic constitutive equations, an axisymmetric finite element model of a Gaussian laser beam irradiating a metal substrate was established. In the model of finite element, the finite difference hybrid algorithm is used to solve the problem of transient temperature field and stress field. Taking nonlinear thermal and mechanical properties into account, transient distributions of temperature field and stress fields generated by the pulse train of long-pulse laser in a piece of aluminium alloy plate were computed by the model. Moreover,distributions as well as histories of temperature and stress fields were obtained. Finite element analysis software COMSOL is used to simulate the Temperature and thermal stress fields during the pulse train of long-pulse laser irradiating 7A04 aluminium alloy plate. By the analysis of the results, it is found that Mises equivalent stress on the target surface distribute within the scope of the center of a certain radius. However, the stress is becoming smaller where far away from the center. Futhermore, the Mises equivalent stress almost does not effect on stress damage while the Mises equivalent stress is far less than the yield strength of aluminum alloy targets. Because of the good thermal conductivity of 7A04 aluminum alloy, thermal diffusion is extremely quick after laser irradiate. As a result, for the multi-pulsed laser, 7A04 aluminum alloy will not produce obvious temperature accumulation when the laser frequency is less than or equal to 10 Hz. The result of this paper provides theoretical foundation not only for research of theories of 7A04 aluminium alloy and its numerical simulation under laser radiation but also for long-pulse laser technology and widening its application scope.

  11. Long-pulse generation with a stable-relaxation-oscillation Nd:YLF laser. [yttrium-lithium-fluoride

    NASA Technical Reports Server (NTRS)

    Harisson, J.; Rines, G. A.; Moulton, P. F.

    1988-01-01

    A simple technique for long-pulse (0.2-2 microsec) generation with neodymium lasers has been demonstrated. Under the proper conditions, a normal-mode oscillator, operated in a single transverse mode, produces well-defined relaxation oscillations from which a single subpulse can be isolated for amplification. The characteristic subpulse temporal profile is ideal for saturated amplification without pulse shortening. Data are presented for a Nd:YLF system consisting of an oscillator followed by a 64-nm-long amplifier. Pulse energies in excess of 100 mJ were achieved with a small-signal gain of 630.

  12. Long-pulse generation with a stable-relaxation-oscillation Nd:YLF laser. [yttrium-lithium-fluoride

    NASA Technical Reports Server (NTRS)

    Harisson, J.; Rines, G. A.; Moulton, P. F.

    1988-01-01

    A simple technique for long-pulse (0.2-2 microsec) generation with neodymium lasers has been demonstrated. Under the proper conditions, a normal-mode oscillator, operated in a single transverse mode, produces well-defined relaxation oscillations from which a single subpulse can be isolated for amplification. The characteristic subpulse temporal profile is ideal for saturated amplification without pulse shortening. Data are presented for a Nd:YLF system consisting of an oscillator followed by a 64-nm-long amplifier. Pulse energies in excess of 100 mJ were achieved with a small-signal gain of 630.

  13. Electron Dynamics and Strong Ion Beam Production in Magnetically Insulated Ion Diode Operated in Long Pulse Mode

    NASA Astrophysics Data System (ADS)

    Nakagawa, Yoshiro

    1983-06-01

    By an annular magnetically insulated ion diode operated in long pulse mode, total ion current of 5 kA and ion current density over 30 times the Child-Langmuir limit are achieved. Average length of electron drift by E×B force in the gap is measured to be about three times the gap length. Based on fundamental theory, the ion production efficiency is estimated by this length consistent with the experimental value (20%). The value of E×B current evaluated from this length is enough to change the applied magnetic field. It is predicted by the theory describing ion flow enhancement.

  14. Counter-facing plasma focus system as a repetitive and/or long-pulse high energy density plasma source

    SciTech Connect

    Aoyama, Yutaka; Nakajima, Mitsuo; Horioka, Kazuhiko

    2009-11-15

    A plasma focus system composed of a pair of counter-facing coaxial plasma guns is proposed as a long-pulse and/or repetitive high energy density plasma source. A proof-of-concept experiment demonstrated that with an assist of breakdown and outer electrode connections, current sheets evolved into a configuration for stable plasma confinement at the center of the electrodes. The current sheets could successively compress and confine the high energy density plasma every half period of the discharge current, enabling highly repetitive light emissions in extreme ultraviolet region with time durations in at least ten microseconds.

  15. Counter-facing plasma focus system as a repetitive and/or long-pulse high energy density plasma source

    NASA Astrophysics Data System (ADS)

    Aoyama, Yutaka; Nakajima, Mitsuo; Horioka, Kazuhiko

    2009-11-01

    A plasma focus system composed of a pair of counter-facing coaxial plasma guns is proposed as a long-pulse and/or repetitive high energy density plasma source. A proof-of-concept experiment demonstrated that with an assist of breakdown and outer electrode connections, current sheets evolved into a configuration for stable plasma confinement at the center of the electrodes. The current sheets could successively compress and confine the high energy density plasma every half period of the discharge current, enabling highly repetitive light emissions in extreme ultraviolet region with time durations in at least ten microseconds.

  16. Design and Realization of the Control and Measurement System of the Long Pulsed High Magnetic Field Facility Supplied by Battery

    NASA Astrophysics Data System (ADS)

    Xie, J. F.; Xiong, Y. D.; Han, X. T.; Ding, T. H.; Shi, J. T.; Li, L.

    2013-03-01

    A Control and Measurement System (CMS) is designed to ensure the reliable operation in the long pulsed high magnetic field facility supplied by lead-acid batteries. The CMS is mainly composed of a Programmable Logic Controller (PLC), a fault monitor and protection circuit, a signal processing and data acquisition unit, a local triggering sequence generator and the main control program. The system architecture and kernel parts of the CMS are analyzed and described in detail. The results prove that the designed CMS could perform efficiently and reliably.

  17. Progress in long-pulse production of powerful negative ion beams for JT-60SA and ITER

    NASA Astrophysics Data System (ADS)

    Kojima, A.; Umeda, N.; Hanada, M.; Yoshida, M.; Kashiwagi, M.; Tobari, H.; Watanabe, K.; Akino, N.; Komata, M.; Mogaki, K.; Sasaki, S.; Seki, N.; Nemoto, S.; Shimizu, T.; Endo, Y.; Ohasa, K.; Dairaku, M.; Yamanaka, H.; Grisham, L. R.

    2015-06-01

    Significant progress in the extension of pulse durations of powerful negative ion beams has been made to realize the neutral beam injectors for JT-60SA and ITER. In order to overcome common issues of the long-pulse production/acceleration of negative ion beams in JT-60SA and ITER, new technologies have been developed in the JT-60SA ion source and the MeV accelerator in Japan Atomic Energy Agency. As for the long-pulse production of high-current negative ions for the JT-60SA ion source, the pulse durations have been successfully increased from 30 s at 13 A on JT-60U to 100 s at 15 A by modifying the JT-60SA ion source, which satisfies the required pulse duration of 100 s and 70% of the rated beam current for JT-60SA. This progress was based on the R&D efforts for the temperature control of the plasma grid and uniform negative ion productions with the modified tent-shaped filter field configuration. Moreover, each parameter of the required beam energy, current and pulse has been achieved individually by these R&D efforts. The developed techniques are useful to design the ITER ion source because the sustainment of the caesium coverage in the large extraction area is one of the common issues between JT-60SA and ITER. As for the long-pulse acceleration of high power density beams in the MeV accelerator for ITER, the pulse duration of MeV-class negative ion beams has been extended by more than 2 orders of magnitude by modifying the extraction grid with a high cooling capability and a high transmission of negative ions. A long-pulse acceleration of 60 s has been achieved at 70 MW m-2 (683 keV, 100 A m-2) which has reached the power density of JT-60SA level of 65 MW m-2. No degradations of the voltage holding capability of the acceleration voltage and the beam optics due to the distortion of the acceleration grids have been observed in this power density level. These results are the longest pulse durations of high-current and high-power-density negative ion beams in the

  18. Theoretical study on a 0.6 THz third harmonic gyrotron

    NASA Astrophysics Data System (ADS)

    Yuan, Xuesong; Lan, Ying; Ma, Chunyan; Han, Yu; Yan, Yang

    2011-10-01

    A theoretical study on a 0.6 THz third harmonic TE37 mode gyrotron oscillator is reported in this paper in order to develop a compact, reliable, and high power terahertz radiation source. An output power of 4 kW can be generated in the TE37 mode (0.6 THz) at a resonant magnetic field of 7.86 T by the gyrotron oscillator operating at 55 kV/2 A with an electron beam radius of 0.32 mm. A magnetron injection gun (MIG) with high compression ratio has been designed. The simulation results of MIG show that the velocity ratio α is 1.37, and the perpendicular velocity spread and parallel velocity spread are 6.1% and 8.9%, respectively.

  19. Theoretical study on a 0.6 THz third harmonic gyrotron

    SciTech Connect

    Yuan Xuesong; Ma Chunyan; Han Yu; Yan Yang; Lan Ying

    2011-10-15

    A theoretical study on a 0.6 THz third harmonic TE{sub 37} mode gyrotron oscillator is reported in this paper in order to develop a compact, reliable, and high power terahertz radiation source. An output power of 4 kW can be generated in the TE{sub 37} mode (0.6 THz) at a resonant magnetic field of 7.86 T by the gyrotron oscillator operating at 55 kV/2 A with an electron beam radius of 0.32 mm. A magnetron injection gun (MIG) with high compression ratio has been designed. The simulation results of MIG show that the velocity ratio {alpha} is 1.37, and the perpendicular velocity spread and parallel velocity spread are 6.1% and 8.9%, respectively.

  20. RF Behavior of Cylindrical Cavity Based 240 GHz, 1 MW Gyrotron for Future Tokamak System

    NASA Astrophysics Data System (ADS)

    Kumar, Nitin; Singh, Udaybir; Bera, Anirban; Sinha, A. K.

    2017-07-01

    In this paper, we present the RF behavior of conventional cylindrical interaction cavity for 240 GHz, 1 MW gyrotron for futuristic plasma fusion reactors. Very high-order TE mode is searched for this gyrotron to minimize the Ohmic wall loading at the interaction cavity. The mode selection process is carried out rigorously to analyze the mode competition and design feasibility. The cold cavity analysis and beam-wave interaction computation are carried out to finalize the cavity design. The detail parametric analyses for interaction cavity are performed in terms of mode stability, interaction efficiency and frequency. In addition, the design of triode type magnetron injection gun is also discussed. The electron beam parameters such as velocity ratio and velocity spread are optimized as per the requirement at interaction cavity. The design studies presented here confirm the realization of CW, 1 MW power at 240 GHz frequency at TE46,17 mode.

  1. Suppression criteria of parasitic mode oscillations in a gyrotron beam tunnel

    SciTech Connect

    Kumar, Nitin; Singh, Udaybir; Sinha, A. K.; Singh, T. P.

    2011-02-15

    This paper presents the design criteria of the parasitic mode oscillations suppression for a periodic, ceramic, and copper loaded gyrotron beam tunnel. In such a type of beam tunnel, the suppression of parasitic mode oscillations is an important design problem. A method of beam-wave coupling coefficient and its mathematical formulation are presented. The developed design criteria are used in the beam tunnel design of a 42 GHz gyrotron to be developed for the Indian TOKAMAK system. The role of the thickness and the radius of the beam tunnel copper rings to obtain the developed design criteria are also discussed. The commercially available electromagnetic code CST and the electron trajectory code EGUN are used for the simulations.

  2. A ferromagnetic shim insert for NMR magnets - Towards an integrated gyrotron for DNP-NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Ryan, Herbert; van Bentum, Jan; Maly, Thorsten

    2017-04-01

    In recent years high-field Dynamic Nuclear Polarization (DNP) enhanced NMR spectroscopy has gained significant interest. In high-field DNP-NMR experiments (⩾400 MHz 1H NMR, ⩾9.4 T) often a stand-alone gyrotron is used to generate high microwave/THz power to produce sufficiently high microwave induced B1e fields at the position of the NMR sample. These devices typically require a second, stand-alone superconducting magnet to operate. Here we present the design and realization of a ferroshim insert, to create two iso-centers inside a commercially available wide-bore NMR magnet. This work is part of a larger project to integrate a gyrotron into NMR magnets, effectively eliminating the need for a second, stand-alone superconducting magnet.

  3. Design of 132 GHz gyrotron with 3 GHz tunability for 200 MHz DNP/NMR spectrometer

    NASA Astrophysics Data System (ADS)

    Kumar, Nitin; Singh, Udaybir; Sinha, Ashok Kumar

    2015-01-01

    A complete design of 132 GHz gyrotron for 200 MHz DNP-NMR spectroscopy application is presented in this article. The design is performed considering a frequency tunability range of 3 GHz and output power around 100 W. A smooth frequency tunability is achieved via the excitation of TE03p modes (p = 1-6) through the variation of cavity magnetic field. The start oscillation current calculation is performed to estimate the required magnetic field for each TE03p mode. Cold cavity analysis and beam-wave interaction computation are carried out for the estimation of quality factor, resonant frequency corresponding to each TE03p mode, axial electric field profile and output power. Other important components of gyrotron such as magnetron injection gun, non-linear taper and RF window are also designed considering the smooth frequency tunability a main design parameter.

  4. Problem-Oriented Simulation Packages and Computational Infrastructure for Numerical Studies of Powerful Gyrotrons

    NASA Astrophysics Data System (ADS)

    Damyanova, M.; Sabchevski, S.; Zhelyazkov, I.; Vasileva, E.; Balabanova, E.; Dankov, P.; Malinov, P.

    2016-05-01

    Powerful gyrotrons are necessary as sources of strong microwaves for electron cyclotron resonance heating (ECRH) and electron cyclotron current drive (ECCD) of magnetically confined plasmas in various reactors (most notably ITER) for controlled thermonuclear fusion. Adequate physical models and efficient problem-oriented software packages are essential tools for numerical studies, analysis, optimization and computer-aided design (CAD) of such high-performance gyrotrons operating in a CW mode and delivering output power of the order of 1-2 MW. In this report we present the current status of our simulation tools (physical models, numerical codes, pre- and post-processing programs, etc.) as well as the computational infrastructure on which they are being developed, maintained and executed.

  5. Generation of high charge state platinum ions on vacuum arc plasma heated by gyrotron radiation.

    PubMed

    Yushkov, G Yu; Vodopyanov, A V; Nikolaev, A G; Izotov, I V; Savkin, K P; Golubev, S V; Oks, E M

    2014-02-01

    The hybrid high charge metal ion source based on vacuum arc plasma heated by gyrotron radiation into simple magnetic trap has been developed. Two types of magnetic traps were used: a mirror configuration and a cusp one with inherent "minimum-B" structure. Pulsed high power (>100 kW) gyrotrons with frequency 37.5 GHz and 75 GHz were used for heating the vacuum arc plasma injected into the traps. Two different ways were used for injecting the metal plasma-axial injection by a miniature arc source located on-axis near the microwave window, and simultaneous radial injection by a number of sources mounted radially at the midplane of the traps. This article represents all data gathered for platinum ions, thus making comparison of the experimental results obtained with different traps and injections convenient and accurate.

  6. A ferromagnetic shim insert for NMR magnets - Towards an integrated gyrotron for DNP-NMR spectroscopy.

    PubMed

    Ryan, Herbert; van Bentum, Jan; Maly, Thorsten

    2017-04-01

    In recent years high-field Dynamic Nuclear Polarization (DNP) enhanced NMR spectroscopy has gained significant interest. In high-field DNP-NMR experiments (⩾400MHz (1)H NMR, ⩾9.4T) often a stand-alone gyrotron is used to generate high microwave/THz power to produce sufficiently high microwave induced B1e fields at the position of the NMR sample. These devices typically require a second, stand-alone superconducting magnet to operate. Here we present the design and realization of a ferroshim insert, to create two iso-centers inside a commercially available wide-bore NMR magnet. This work is part of a larger project to integrate a gyrotron into NMR magnets, effectively eliminating the need for a second, stand-alone superconducting magnet. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Design of 84 GHz 500 kW Gyrotron for Technological Millimeter Wave Applications

    NASA Astrophysics Data System (ADS)

    Singh, Udaybir; Kumar, Nitin; Kumar, Anil; Purohit, L. P.; Sinha, A. K.

    2011-04-01

    In this paper, the design and the numerical simulation of the 84 GHz, 500 kW gyrotron at first harmonic operation for technological applications is described. The operating mode of the gyrotron is TE10, 4. Various in-house developed and commercially available computer codes are used for the design purpose. The triode-type magnetron injection gun with the accelerating voltage 70-kV, the beam current 10-A and the maximum transverse velocity spread less than 5% is designed. The preliminary design is obtained by using some trade-off equations. The mode selection, the cold cavity and the beam-wave interaction analysis are discussed for the design of weakly tapered open resonator type of the interaction cavity. The parametric analysis of the interaction cavity and the electron gun is also presented.

  8. Numerical Simulation of a Double-anode Magnetron Injection Gun for 110 GHz, 1 MW Gyrotron

    NASA Astrophysics Data System (ADS)

    Singh, Udaybir; Kumar, Nitin; Purohit, L. P.; Sinha, Ashok K.

    2010-07-01

    A 40 A double-anode magnetron injection gun for a 1 MW, 110 GHz gyrotron has been designed. The preliminary design has been obtained by using some trade-off equations. The electron beam analysis has been performed by using the commercially available code EGUN and the in-house developed code MIGANS. The operating mode of the gyrotron is TE22,6 and it is operated in the fundamental harmonic. The electron beam with a low transverse velocity spread ( δ {β_{ bot max }} = 2.26% ) and the transverse-to-axial velocity ratio of the electron beam (α) = 1.37 is obtained. The simulated results of the MIG obtained with the EGUN code have been validated with another trajectory code TRAK. The results on the design output parameters obtained by both the codes are in good agreement. The sensitivity analysis has been carried out by changing the different gun parameters to decide the fabrication tolerance.

  9. Gyrotrons for High-Power Terahertz Science and Technology at FIR UF

    NASA Astrophysics Data System (ADS)

    Idehara, Toshitaka; Sabchevski, Svilen Petrov

    2017-01-01

    In this review paper, we present the recent progress in the development of a series of gyrotrons at the Research Center for Development of Far-Infrared Region, University of Fukui, that have opened the road to many novel applications in the high-power terahertz science and technology. The current status of the research in this actively developing field is illustrated by the most representative examples in which the developed gyrotrons are used as powerful and frequency-tunable sources of coherent radiation operating in a continuous-wave regime. Among them are high-precision spectroscopic techniques (most notably dynamic nuclear polarization-nuclear magnetic resonance, electron spin resonance, X-ray detected magnetic resonance, and studies of the hyperfine splitting of the energy levels of positronium), treatment and characterization of advanced materials, and new medical technologies.

  10. Long pulse acceleration of MeV class high power density negative H{sup −} ion beam for ITER

    SciTech Connect

    Umeda, N. Kojima, A.; Kashiwagi, M.; Tobari, H.; Hiratsuka, J.; Watanabe, K.; Dairaku, M.; Yamanaka, H.; Hanada, M.

    2015-04-08

    R and D of high power density negative ion beam acceleration has been carried out at MeV test facility in JAEA to realize ITER neutral beam accelerator. The main target is H{sup −} ion beam acceleration up to 1 MeV with 200 A/m{sup 2} for 60 s whose pulse length is the present facility limit. For long pulse acceleration at high power density, new extraction grid (EXG) has been developed with high cooling capability, which electron suppression magnet is placed under cooling channel similar to ITER. In addition, aperture size of electron suppression grid (ESG) is enlarged from 14 mm to 16 mm to reduce direct interception on the ESG and emission of secondary electron which leads to high heat load on the upstream acceleration grid. By enlarging ESG aperture, beam current increased 10 % at high current beam and total acceleration grid heat load reduced from 13 % to 10 % of input power at long pulse beam. In addition, heat load by back stream positive ion into the EXG is measured for the first time and is estimated as 0.3 % of beam power, while heat load by back stream ion into the source chamber is estimated as 3.5 ~ 4.0 % of beam power. Beam acceleration up to 60 s which is the facility limit, has achieved at 683 keV, 100 A/m{sup 2} of negative ion beam, whose energy density increases two orders of magnitude since 2011.

  11. Fractional Carbon Dioxide, Long Pulse Nd:YAG and Pulsed Dye Laser in the Management of Keloids.

    PubMed

    Annabathula, Ashwini; Sekar, C Shanmuga; Srinivas, C R

    2017-01-01

    Keloids are abnormal wound responses characterised by excessive deposition of collagen and glycoprotein. They are both aesthetically and symptomatically distressing for most of the patients. There are reports of keloid management with pulsed dye laser (PDL), fractional carbon dioxide (CO2) laser and neodymium-doped yttrium aluminium garnet (Nd:YAG) laser individually and also in combination of CO2 with PDL and CO2 with Nd:YAG. Here, we discuss a combination of all the 3 lasers as a therapy for keloids. This study aims to assess the efficacy of fractional CO2 laser, long pulse Nd:YAG laser and PDL in the management of keloids. Fifteen patients with keloids were treated by fractional CO2 laser, followed by PDL and long pulse Nd:YAG laser at monthly intervals. Four patients discontinued the study and were lost for follow-up. Photographs were taken at the beginning of the treatment and at the end of five sessions. Clinical improvement was analysed based on a visual analogue scale graded by three blinded observers after assessing the clinical photographs for the improvement in size, colour and aesthetic impression. Of the 11 patients, one patient had excellent improvement, one patient had good improvement, four patients had moderate improvement, two patients had mild improvement and three had no improvement. Lasers may have a synergistic effect when combined with other modalities of treatment but cannot be used as monotherapy in the treatment of keloids.

  12. Median canaliform nail dystrophy treated with a 1064-nm quasi-long pulsed Nd:YAG laser.

    PubMed

    Choi, Ju-Yeon; Seo, Hyun-Min; Kim, Won-Serk

    2017-08-01

    Median canaliform nail dystrophy (MCND) is an uncommon and idiopathic dystrophic change, which typically appears as central, longitudinal groove or split involving one or both thumbnails. Various treatments including a potent topical steroid, an intralesional injection of triamcinolone 2.5-3 mg/dL, medications for systemic treatment, and topical psoralen plus ultraviolet A (PUVA) have been tried to treat the disease. However, each treatment has limitations including severe pain, inconsistent treatment results, long treatment periods, and dissatisfaction with effects of treatment. In recent years, 1064-nm Nd:YAG laser is used for skin rejuvenation by the effect of collagen synthesis and remodeling via induction of growth factor expression. Therefore, we tried 1064-nm Nd:YAG laser to treat this nail dystrophy. A 53-year-old man presented with median nail dystrophy on both thumbs for 3 years. The nail dystrophy was treated only with 1064-nm quasi-long pulsed Nd:YAG laser. He was offered 10 sessions of treatment, and the right thumbnail showed good response and the left thumbnail showed fair response. He experienced severe pain during the treatment (Numerical rating scale (NRS) 8) and was satisfied moderately with the results (NRS 6.5). We report a case of treatment of MCND with 1064-nm quasi-long pulsed Nd:YAG laser with excellent clinical improvement.

  13. Key issues for long-pulse high-β N operation with the Experimental Advanced Superconducting Tokamak (EAST)

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Yang, Yao; Zhang, Tao; Liu, Haiqing; Li, Guoqiang; Ming, Tingfeng; Liu, Zixi; Wang, Yumin; Zeng, Long; Han, Xiang; Liu, Yukai; Wu, Muquan; Qu, Hao; Shen, Biao; Zang, Qing; Yu, Yaowei; Kong, Defeng; Gao, Wei; Zhang, Ling; Cai, Huishan; Wu, Xuemei; Hanada, K.; Zhong, Fubin; Liang, Yunfeng; Hu, Chundong; Liu, Fukun; Gong, Xianzhu; Xiao, Bingjia; Wan, Baonian; Zhang, Xiaodong; Li, Jiangang; the EAST Team

    2017-05-01

    In the last few years, long-pulse H-mode plasma discharges (with small edge-localized modes and normalized beta, β N ~ 1) have been realized at the Experimental Advanced Superconducting Tokamak (EAST). This paper reports on high-β N (>1.5) discharges in the 2015 EAST campaign. The characteristics of these H-mode plasmas have been presented in a database. Analysis of the experimental limit of β N has revealed several main features of typical discharges. Firstly, efficient, stable high heating power is required. Secondly, control of impurity radiation (partly due to interaction between the plasma and the in-vessel components) is also a critical issue for the maintenance of high-β N discharges. In addition an internal transport barrier (ITB) has recently been observed in EAST, introducing further improvement in confinement surpassing H-mode plasmas. ITB dynamics is another key issue for high-β N plasmas in EAST. Each of these features is discussed in this paper. Study and improvement of these issues could be considered as the key to achieving long-pulse high-β N operation with EAST.

  14. Online tuning of impedance matching circuit for long pulse inductively coupled plasma source operation—An alternate approach

    SciTech Connect

    Sudhir, Dass; Bandyopadhyay, M. Chakraborty, A.; Kraus, W.; Gahlaut, A.; Bansal, G.

    2014-01-15

    Impedance matching circuit between radio frequency (RF) generator and the plasma load, placed between them, determines the RF power transfer from RF generator to the plasma load. The impedance of plasma load depends on the plasma parameters through skin depth and plasma conductivity or resistivity. Therefore, for long pulse operation of inductively coupled plasmas, particularly for high power (∼100 kW or more) where plasma load condition may vary due to different reasons (e.g., pressure, power, and thermal), online tuning of impedance matching circuit is necessary through feedback. In fusion grade ion source operation, such online methodology through feedback is not present but offline remote tuning by adjusting the matching circuit capacitors and tuning the driving frequency of the RF generator between the ion source operation pulses is envisaged. The present model is an approach for remote impedance tuning methodology for long pulse operation and corresponding online impedance matching algorithm based on RF coil antenna current measurement or coil antenna calorimetric measurement may be useful in this regard.

  15. VERITAS: a high-flux neutron reflectometer with vertical sample geometry for a long pulse spallation source

    NASA Astrophysics Data System (ADS)

    Mattauch, S.; Ioffe, A.; Lott, D.; Menelle, A.; Ott, F.; Medic, Z.

    2016-04-01

    An instrument concept of a reflectometer with a vertical sample geometry fitted to the long pulse structure of a spallation source, called “VERITAS” at the ESS, is presented. It focuses on designing a reflectometer with high intensity at the lowest possible background following the users' demand to investigate thin layers or interfacial areas in the sub-nanometer length scale. The high intensity approach of the vertical reflectometer fits very well to the long pulse structure of the ESS. Its main goal is to deliver as much usable intensity as possible at the sample position and be able to access a reflectivity range of 8 orders of magnitude and more. The concept assures that the reflectivity measurements can be performed in its best way to maximize the flux delivered to the sample. The reflectometer is optimized for studies of (magnetic) layers having thicknesses down to 5Å and a surface area of 1x1cm2. With reflectivity measurements the depth-resolved, laterally averaged chemical and magnetic profile can be investigated. By using polarised neutrons, additional vector information on the in-plane magnetic correlations (off-specular scattering at the pm length scale, GISANS at the nm length scale) can be studied. The full polarisation analysis could be used for soft matter samples to correct for incoherent scattering which is presently limiting neutron reflectivity studies to a reflectivity range on the order of 10-6.

  16. Development of a 33 kV, 20 A long pulse converter modulator for high average power klystron.

    PubMed

    Reghu, T; Mandloi, V; Shrivastava, Purushottam

    2014-05-01

    Research, design, and development of high average power, long pulse modulators for the proposed Indian Spallation Neutron Source are underway at Raja Ramanna Centre for Advanced Technology. With this objective, a prototype of long pulse modulator capable of delivering 33 kV, 20 A at 5 Hz repetition rate has been designed and developed. Three Insulated Gate Bipolar Transistors (IGBT) based switching modules driving high frequency, high voltage transformers have been used to generate high voltage output. The IGBT based switching modules are shifted in phase by 120° with respect to each other. The switching frequency is 25 kHz. Pulses of 1.6 ms pulse width, 80 μs rise time, and 70 μs fall time have been achieved at the modulator output. A droop of ±0.6% is achieved using a simple segmented digital droop correction technique. The total fault energy transferred to the load during fault has been measured by conducting wire burn tests and is found to be within 3.5 J.

  17. Efficacy, tolerability, and safety of a long-pulsed ruby laser system in the removal of unwanted hair.

    PubMed

    Polderman, M C; Pavel, S; le Cessie, S; Grevelink, J M; van Leeuwen, R L

    2000-03-01

    Unwanted hair growth is a common, usually physiologic phenomenon. In this study the efficacy and tolerability of a long-pulsed ruby laser system was compared with needle electrolysis and hot wax on three parts of the body. Thirty volunteers were treated three times on the forearm (n = 10), on the face (n = 10), or in the pubic area (n = 10) with 25 J/cm2 laser, 40 J/cm2 laser, needle electrolysis, and hot wax therapy. The 25 J/cm2 and 40 J/cm2 laser treated sites showed a statistically significant decrease (38% and 49%, respectively) in the number of hairs at the first visit after the last treatment compared to the pretreatment hair counts. No significant decrease was observed in the needle electrolysis and hot wax treated sites. Laser therapy yielded better results on the forearm than on the face or pubic area and was scored as the least painful. The long-pulsed ruby laser is a promising, well-tolerated method of epilation.

  18. Development of a 33 kV, 20 A long pulse converter modulator for high average power klystron

    NASA Astrophysics Data System (ADS)

    Reghu, T.; Mandloi, V.; Shrivastava, Purushottam

    2014-05-01

    Research, design, and development of high average power, long pulse modulators for the proposed Indian Spallation Neutron Source are underway at Raja Ramanna Centre for Advanced Technology. With this objective, a prototype of long pulse modulator capable of delivering 33 kV, 20 A at 5 Hz repetition rate has been designed and developed. Three Insulated Gate Bipolar Transistors (IGBT) based switching modules driving high frequency, high voltage transformers have been used to generate high voltage output. The IGBT based switching modules are shifted in phase by 120° with respect to each other. The switching frequency is 25 kHz. Pulses of 1.6 ms pulse width, 80 μs rise time, and 70 μs fall time have been achieved at the modulator output. A droop of ±0.6% is achieved using a simple segmented digital droop correction technique. The total fault energy transferred to the load during fault has been measured by conducting wire burn tests and is found to be within 3.5 J.

  19. Online tuning of impedance matching circuit for long pulse inductively coupled plasma source operation--an alternate approach.

    PubMed

    Sudhir, Dass; Bandyopadhyay, M; Kraus, W; Gahlaut, A; Bansal, G; Chakraborty, A

    2014-01-01

    Impedance matching circuit between radio frequency (RF) generator and the plasma load, placed between them, determines the RF power transfer from RF generator to the plasma load. The impedance of plasma load depends on the plasma parameters through skin depth and plasma conductivity or resistivity. Therefore, for long pulse operation of inductively coupled plasmas, particularly for high power (∼100 kW or more) where plasma load condition may vary due to different reasons (e.g., pressure, power, and thermal), online tuning of impedance matching circuit is necessary through feedback. In fusion grade ion source operation, such online methodology through feedback is not present but offline remote tuning by adjusting the matching circuit capacitors and tuning the driving frequency of the RF generator between the ion source operation pulses is envisaged. The present model is an approach for remote impedance tuning methodology for long pulse operation and corresponding online impedance matching algorithm based on RF coil antenna current measurement or coil antenna calorimetric measurement may be useful in this regard.

  20. Development of a 33 kV, 20 A long pulse converter modulator for high average power klystron

    SciTech Connect

    Reghu, T.; Mandloi, V.; Shrivastava, Purushottam

    2014-05-15

    Research, design, and development of high average power, long pulse modulators for the proposed Indian Spallation Neutron Source are underway at Raja Ramanna Centre for Advanced Technology. With this objective, a prototype of long pulse modulator capable of delivering 33 kV, 20 A at 5 Hz repetition rate has been designed and developed. Three Insulated Gate Bipolar Transistors (IGBT) based switching modules driving high frequency, high voltage transformers have been used to generate high voltage output. The IGBT based switching modules are shifted in phase by 120° with respect to each other. The switching frequency is 25 kHz. Pulses of 1.6 ms pulse width, 80 μs rise time, and 70 μs fall time have been achieved at the modulator output. A droop of ±0.6% is achieved using a simple segmented digital droop correction technique. The total fault energy transferred to the load during fault has been measured by conducting wire burn tests and is found to be within 3.5 J.

  1. Histopathological changes in the hair follicle after irradiation of long-pulse alexandrite laser equipped with a cooling device.

    PubMed

    Ono, I; Tateshita, T

    2000-01-01

    Several laser systems are currently used for epilation. However, the optimal parameters and treatment protocols remain largely unknown. In this study, the histopathological changes in the hair follicles after long pulsed alexandrite laser irradiation are discussed and the clinical application of irradiation energy at the time of treatment is described. The laser used in this study is equipped with a computer controlled cooling device. A histopathological study was performed to compare the differences in the degree of degeneration in the epidermis and follicles treated with and without the cooling device. In comparison with normal hair papilla, in the laser irradiated skin, injury of melanin containing cells and hair shafts and external root-sheaths in the periphery were observed, while the epidermis was completely protected by the cooling device. The condition of the hair papilla of the tissue irradiated at a fluence of 25 J/cm2 with a spot diameter of 15 mm and 20 J/cm2, with a spot diameter of 18 mm were investigated thoroughly. Swollen papilla and selective destruction of the site where melanocytes were present were observed. The results of this study strongly indicate the efficacy of a long-pulsed alexandrite laser equipped with a computer controlled cooling device for clinical depilation.

  2. Successful Treatment of Classic Kaposi Sarcoma With Long-Pulse Neodymium-Doped Yttrium Aluminum Garnet Laser: A Preliminary Study.

    PubMed

    Özdemir, Mustafa; Balevi, Ali

    2017-03-01

    Kaposi sarcoma (KS) is a systemic disease that can present with cutaneous lesions with or without internal involvement, mostly caused by infection with human herpesvirus-8. The treatment options include surgical excision, cryotherapy, radiotherapy, intralesional chemotherapy, laser, and elastic stockings for the prevention of lymphedema. This article presents 7 cases with classic KS treated with the long-pulse neodymium:yttrium-aluminum-garnet (Nd:YAG) laser. Forty-nine lesions of 7 KS patients (5 stage 1, 2 stage 2A) were treated with Nd:YAG laser with a spot size of 4 to 6 mm and a fluence of 180 J/cm increased by 10 J/cm in the neighboring area to a maximum of 260 J/cm. The pulse sequencing was 1.5, and delay time was 5 milliseconds. Sessions were continued at 4-week intervals for 2 to 4 sessions. All patients exhibited clinical and histological improvement. One session was sufficient for small lesions, whereas coalescing and multicentric lesions required up to 4 sessions. All the lesions healed in 2 to 4 weeks, with the only complication being mild atrophic scars. With the advantage of penetrating into deeper sites than other lasers, long-pulse Nd:YAG is an efficient and safe local treatment alternative especially for papulonodular and deeper lesions located on bony structures.

  3. Evaluation of a long pulsed 1064-nm Nd:YAG laser for improvement in appearance of cellulite.

    PubMed

    Truitt, Anne; Elkeeb, Laila; Ortiz, Arisa; Saedi, Nazanin; Echague, Agustina; Kelly, Kristen M

    2012-06-01

    Cellulite is a common, unwanted condition, which is challenging to treat. The objective of this investigation was to evaluate safety and effectiveness of a long-pulsed 1064 Nd:YAG laser as a method for improvement in cellulite appearance and to evaluate parameter selection. Twenty-two female subjects with posterior leg cellulite were randomly assigned to treatment of left or right thigh with higher energy treatment with cryogen spray cooling (CSC) (10-mm spot size; 50 J/cm(2); 50-ms pulse duration and CSC settings of 30-ms duration with a 20-ms delay) or lower energy treatment with no CSC (10 mm; 20 J/cm(2); 50 ms). Subjects received three treatments at 4 weeks intervals. Digital photographs and circumference measurements were taken pre-treatment and up to 6 months post-treatment. Nineteen subjects completed three treatments and 16 subjects completed 6-month follow-up. Circumference measurements pre- and post-treatment were not significantly different. Blinded evaluators noted mild improvement in three of seven subjects in high energy group and moderate improvement in two of nine subjects in low energy group. Multiple passes with a long-pulsed 1064 Nd:YAG achieved mild or moderate improvement in some subjects as rated by blinded evaluators.

  4. Time-domain theory of gyrotron traveling wave amplifiers operating at grazing incidence

    SciTech Connect

    Ginzburg, N. S.; Sergeev, A. S.; Zotova, I. V.; Zheleznov, I. V.

    2015-01-15

    Time-domain theory of the gyrotron traveling wave tube (gyro-TWT) operating at grazing incidence has been developed. The theory is based on a description of wave propagation by a parabolic equation. The results of the simulations are compared with experimental results of the observation of subnanosecond pulse amplification in a gyro-TWT consisting of three gain sections separated by severs. The theory developed can also be used successfully for a description of amplification of monochromatic signals.

  5. Time domain analysis of a gyrotron traveling wave amplifier with misaligned electron beam

    SciTech Connect

    Wang, Qiushi Peng, Shuyuan; Luo, Jirun

    2014-08-15

    This article develops a time-domain theory to study the beam-wave interaction in gyrotron traveling wave amplifier (gyro-TWA) with a misaligned electron beam. The effects of beam misalignment on the TE{sub 01} mode gyro-TWA operating at the fundamental are discussed. Numerical results show that the effect of misalignment is less obvious when the input power is larger, and the influences of misalignment on the stable gain and the stable time are basically opposite.

  6. Final Report for "Gyrotron Design and Evaluation using New Particle-in-Cell Capability"

    SciTech Connect

    David N Smithe

    2008-05-28

    ITER will depend on high power CW gyrotrons to deliver power to the plasma at ECR frequencies. However, gyrotrons can suffer from undesirable low frequency oscillations (LFO’s) which are known to interfere with the gun-region diagnostics and data collection, and are also expected to produce undesirable energy and velocity spread in the beam. The origins and processes leading to these oscillations are poorly understood, and existing gyrotron R&D tools, such as static gun solvers and interaction region models, are not designed to look at time-dependant oscillatory behavior. We have applied a time-domain particle-in-cell method to investigate the LFO phenomenon. Our company is at the forefront of smooth-curved-boundary treatment of the electromagnetic fields and particle emission surfaces, and such methods are necessary to simulate the adiabatically trapped and reflected electrons thought to be driving the oscillations. This approach provides the means for understanding, in microscopic detail, the underlying physical processes driving the low-frequency oscillations. In the Phase I project, an electron gun region from an existing gyrotron, known to observe LFO’s, was selected as a proof-of-principle geometry, and was modeled with the curved-geometry time-domain simulation tool, in order to establish the feasibility of simulating LFO physics with this tool on office-scale, and larger, parallel cluster computers. Generally, it was found to be feasible to model the simulation geometry, emission, and magnetic features of the electron gun. Ultimately, the tool will be used to investigate the origins and life cycle within the trapped particle population. This tool also provides the foundations and validation for potential application of the software to numerous other time-dependant beam and rf source problems in the commercial arena.

  7. Conceptual design of a Gyrotron-driven superconducting ECR ion source

    SciTech Connect

    Countryman, P.J.; Lyneis, C.M.; Wolgast, R.C.

    1989-03-01

    The conceptual design for a superconducting Electron Cyclotron Resonance Ion Source (ECRIS) is presented. It is designed to take advantage of frequency scaling in ECRIS and be driven at 28 GHz by a laboratory scale gyrotron. The superconducting coils are surrounded by a warm bore iron yoke. Possible applications include cyclotrons, heavy-ion synchrotrons, ion implantation in semiconductors, and experiments in atomic physics. 10 refs., 5 figs., 1 tab.

  8. Modelling and simulation of new generation powerful gyrotrons for the fusion research

    NASA Astrophysics Data System (ADS)

    Sabchevski, S.; Zhelyazkov, I.

    2007-04-01

    One of the important issues related with the cyclotron resonance heating (CRH) and current drive of fusion plasmas in thermonuclear reactors (tokamaks and stellarators) is the development of multi-megawatt class gyrotrons. There are generally three stages of the implementation of that task, notably (i) elaborating a novel generation of software tools for the physical modelling and simulation of such kind of gyrotrons, (ii) their computer aided design (CAD) and construction on the basis of the simulation's results, and finally, (iii) gyrotrons' testing in real experimental conditions. This tutorial paper concerns the first item-the development of software tools. In co-operation with the Institute for Pulsed Power and Microwave Technology at the Forschungszentrum Karlsruhe, Germany, and Centre de Recherches en Physique des Plasmas at École Polytechnique Fédérale de Lausanne, Switzerland, we work on the conceptual design of the software tools under development. The basic conclusions are that the numerical codes for gyrotrons' modelling should possess the following essential characteristics: (a) portability, (b) extensibility, (c) to be oriented toward the solution of practical problems (i.e., elaborating of computer programs that can be used in the design process), (d) to be based on self-consistent 3D physical models, which take into account the departure from axial symmetry, and (e) ability to simulate time dependent processes (electrostatic PIC simulation) alongside with a trajectory analysis (ray tracing simulation). Here, we discuss how various existing numerical codes have to be improved and implemented via the advanced programming technologies for state-of-the-art computer systems including clusters, grid, parallel platforms, and supercomputers.

  9. Cold cavity analysis for 35 GHz gyrotron interaction cavity using free space method

    SciTech Connect

    Kumar, Nitin; Saran, Sudeep; Singh, Udaybir; Yadav, Vivek; Sinha, Ashok K.; Jha, B.; Jain, P.K.; Singh, T.P.

    2011-07-01

    The interaction cavity simulated, designed and fabricated for the 35 GHz gyrotron is verified experimentally. Free space method for the Q value and resonant frequency measurement is used in the experiments. The WR22 waveguide based antenna system, Agilent Vector Network Analyzer are used as the experimental set-up in the cavity measurement. The simulation results for the same cavity are also obtained by using the electromagnetic simulator MAGIC for the comparison. (author)

  10. Nd-Fe-B permanent magnet circuit for a 28 GHz CW gyrotron

    SciTech Connect

    Takada, Takeo; Ohashi, Ken; Honshima, Masakatsu; Kikunaga, Toshiyuki

    1995-12-31

    The magnetic circuit using Nd-Fe-B permanent magnets (PMs, in short) was designed and constructed for a 28 GHz CW gyrotron. The PM dimensions were calculated by an optimization algorithm in order to produce a desired axial field of 5150 G and uniformity less than 0.5 %. It was found that the measured axial field on-axis after fabricating is in a good agreement with the calculated field.

  11. Evaluation of Cathode Heater Assembly for 42 GHz, 200 kW Gyrotron

    NASA Astrophysics Data System (ADS)

    Sharma, S. K.; Singh, Narendra Kumar; Singh, Udaybir; Khatun, Hasina; Kumar, Nitin; Alaria, M. K.; Raju, R. S.; Jain, P. K.; Sinha, A. K.

    2014-09-01

    In this paper, the evaluation of cathode-heater assembly of magnetron injection gun (MIG) for 42 GHz, 200 kW gyrotron is presented. The cathode-heater assembly is purchased from M/S SEMICON.The cathode-heater assembly is experimentally studied in three different conditions; in a belljar system, during vacuum processing of MIG and during MIG testing to ensure the required rise of cathode surface temperature for pre-set heater power.

  12. Suppression and nonlinear excitation of parasitic modes in second harmonic gyrotrons operating in a very high order mode

    SciTech Connect

    Nusinovich, Gregory S.; Pu, Ruifeng; Granatstein, Victor L.

    2015-07-06

    In recent years, there was an active development of high-power, sub-terahertz (sub-THz) gyrotrons for numerous applications. For example, a 0.67 THz gyrotron delivering more than 200 kW with about 20% efficiency was developed. This record high efficiency was achieved because the gyrotron operated in a high-order TE{sub 31,8}-mode with the power of ohmic losses less than 10% of the power of outgoing radiation. That gyrotron operated at the fundamental cyclotron resonance, and a high magnetic field of about 27 T was created by a pulse solenoid. For numerous applications, it is beneficial to use gyrotrons at cyclotron harmonics which can operate in available cryomagnets with fields not exceeding 15 T. However, typically, the gyrotron operation at harmonics faces severe competition from parasitic modes at the fundamental resonance. In the present paper, we consider a similar 0.67 THz gyrotron designed for operation in the same TE{sub 31,8}-mode, but at the second harmonic. We focus on two nonlinear effects typical for interaction between the fundamental and second harmonic modes, viz., the mode suppression and the nonlinear excitation of the mode at the fundamental harmonic by the second harmonic oscillations. Our study includes both the analytical theory and numerical simulations performed with the self-consistent code MAGY. The simulations show that stable second harmonic operation in the TE{sub 31,8} mode is possible with only modest sacrifice of efficiency and power.

  13. Towards a 1 MW, 170 GHz gyrotron design for fusion application

    NASA Astrophysics Data System (ADS)

    Kumar, Anil; Kumar, Nitin; Singh, Udaybir; Bhattacharya, Ranajoy; Yadav, Vivek; Sinha, A. K.

    2013-03-01

    The electrical design of different components of 1 MW, 170 GHz gyrotron such as, magnetron injection gun, cylindrical interaction cavity and collector and RF window is presented in this article. Recently, a new project related to the development of 170 GHz, 1 MW gyrotron has been started for the Indian Tokamak. TE34,10 mode is selected as the operating mode after studied the problem of mode competition. The triode type geometry is selected for the design of magnetron injection gun (MIG) to achieve the required beam parameters. The maximum transverse velocity spread of 3.28% at the velocity ratio of 1.34 is obtained in simulations for a 40 A, 80 kV electron beam. The RF output power of more than 1 MW with 36.5% interaction efficiency without depressed collector is predicted by simulation in single-mode operation at 170 GHz frequency. The simulated single-stage depressed collector of the gyrotron predicted the overall device efficiencies >55%. Due to the very good thermal conductivity and very weak dependency of the dielectric parameters on temperature, PACVD diamond is selected for window design for the transmission of RF power. The in-house developed code MIGSYN and GCOMS are used for initial geometry design of MIG and mode selection respectively. Commercially available simulation tools MAGIC and ANSYS are used for beam-wave interaction and mechanical analysis respectively.

  14. NRL quasioptical gyrotron program. Final report, November 1, 1991--October 31, 1993

    SciTech Connect

    Fliflet, A.

    1997-06-01

    The quasioptical gyrotron (QOG) has been under development as a high power, tunable source for tokamak plasma heating applications. Given the critical importance of source efficiency for large-scale ESCH applications, understanding the causes of the low QOG efficiency and finding ways of improving it became a top priority for the current NRL program. The importance of the present work is that is represents new insight into the factors controlling the efficiency of quasioptical gyrotrons. The author has demonstrated that the technique of mode priming provides a method for improving efficiency via enhanced mode detuning and leads to more stable single-mode operation of highly over-moded resonators. The latter feature is an important consideration for output coupler and rf transmission system optimization and can make the QOG less sensitive to external influences such as window reflections. He has shown that a prebunching resonator is readily implemented in the quasioptical configuration. It is relatively free of the problems of spurious modes and cross-talk which plague over-moded prebunching cavities in conventional gyrotrons. The observation of almost 18% efficiency represents a doubling of the previous best single-mode results. Further improvements are expected from the optimization of start-up conditions and the study of the effects of the second harmonic interaction.

  15. Analysis and Alignment of a Gyrotron RF Beam on the DIII-D ECH System

    NASA Astrophysics Data System (ADS)

    Gorelov, Y. A.; Lohr, J.; Torrezan, A.; Anderson, J. P.; Ponce, D.; Cengher, M.

    2014-10-01

    The DIII-D ECH transmission line installation comprises seven runs of up to 80 meters of 31.75 mm diameter waveguide, with transmission efficiencies from 69%-79%. The efficiency depends on the purity of the HE1,1 mode in the waveguide. The Gaussian rf beam from a gyrotron is converted to the HE1,1 waveguide mode with a single focusing mirror in the matching optics unit (MOU) that places a waist, w0 = 19 mm, at the input of the waveguide. At tilt angles Θ of less than two degrees and small offsets Δ of less than 3 mm, the mode conversion from a pure HE1,1 mode increases as Θ2 and Δ2 respectively. The rf beam from the newest gyrotron was recorded in free space propagation at 10 cm intervals from the gyrotron window using an infrared camera. These data were used for phase retrieval calculations to optimize the design of the focusing mirror in the MOU. The mirror position was then set to align the rf beam with the waveguide axis. The measurement was repeated for the rf beam radiated from a short length of waveguide and the HE1,1 content was 87%. This is slightly low compared to the measurements of the other waveguides. Work supported by the US DOE under DE-FC02-04ER54698.

  16. Update on the DIII-D ECH system: experiments, gyrotrons, advanced diagnostics, and controls

    NASA Astrophysics Data System (ADS)

    Lohr, John; Brambila, Rigoberto; Cengher, Mirela; Gorelov, Yuri; Grosnickle, William; Moeller, Charles; Ponce, Dan; Torrezan, Antonio; Ives, Lawrence; Reed, Michael; Blank, Monica; Felch, Kevin; Parisuaña, Claudia; LeViness, Alexandra

    2017-08-01

    The ECH system on DIII-D is continuing to be upgraded, while simultaneously being operated nearly daily for plasma experiments. The latest major hardware addition is a new 117.5 GHz gyrotron, which generated 1.7 MW for short pulses during factory testing. A new gyrotron control system based on Field Programmable Gate Array (FPGA) technology with very high speed system data acquisition has significantly increased the flexibility and reliability of individual gyrotron operation. We have improved the performance of the fast mirror scanning, both by increasing the scan speeds and by adding new algorithms for controlling the aiming using commands generated by the Plasma Control System (PCS). The system is used for transport studies, ELM control, current profile control, non-inductive current generation, suppression of MHD modes, startup assist, plasma density control, and other applications. A program of protective measures, which has been in place for more than two years, has eliminated damage to hardware and diagnostics caused by overdense operation. Other activities not directly related to fusion research have used the ECH system to test components, study methods for improving production of semiconductor junctions and materials, and test the feasibility of using ground based microwave systems to power satellites into orbit.

  17. Microwave method for synthesis of micro- and nanostructures with controllable composition during gyrotron discharge

    NASA Astrophysics Data System (ADS)

    Batanov, German M.; Borzosekov, Valentin D.; Golberg, Dmitri; Iskhakova, Ludmila D.; Kolik, Leonid V.; Konchekov, Evgeny M.; Kharchev, Nikolai K.; Letunov, Alexander A.; Malakhov, Dmitry V.; Milovich, Filipp O.; Obraztsova, Ekaterina A.; Petrov, Alexander E.; Ryabikina, Irina G.; Sarksian, Karen A.; Stepakhin, Vladimir D.; Skvortsova, Nina N.

    2016-01-01

    We introduce an approach toward the synthesis of micro- and nanostructures under nonequilibrium microwave discharges within metal-dielectric powder mixtures induced by powerful microwave gyrotron radiation. A new plasma-chemical reactor capable of sustaining a discharge regime with an afterglow phase of an order of magnitude longer than the gyrotron pulse duration was constructed for these experiments. In the nonequilibrium conditions of such a discharge, plasma-induced exothermic chemical reactions leading to the synthesis of various compounds were initiated. The synthesized structures were deposited on the reactor walls and on the impurity particles within the reactor. This method was tested under gyrotron-initiated discharges within various metal-dielectric powder mixtures of titanium-boron, molybdenum-boron, titanium-silicon-boron, molybdenum-boron nitride, molybdenum-tungsten-boron nitride, and so on. Depending on the powder mixture composition, reactor atmosphere, and other parameters, micro- and nanosized particles of boron nitride, titanium diboride, molybdenum boride, titanium boride, molybdenum, and molybdenum oxide, were synthesized, detected, and analyzed.

  18. Experimental Research on a 1.5 MW, 110 GHz Gyrotron

    NASA Astrophysics Data System (ADS)

    Shapiro, M. A.; Hidaka, Y.; Choi, E. M.; Mastovsky, I.; Sirigiri, J. R.; Tax, D. S.; Temkin, R. J.; Neilson, J.

    2008-11-01

    We report experimental research on the after cavity interaction (ACI) in a 1.5-MW, 110-GHz gyrotron with an internal mode converter operating in 3 microsecond pulses. Recent experiments with a single-stage depressed collector revealed the effects of the ACI, a second interaction that occurs after the electron beam passes through the intended primary interaction region. The ACI causes re-absorption of the microwave power and broadening of the spent electron beam energy distribution, thus leading to a significant reduction in gyrotron efficiency. The broadening of the spent electron beam energy spectrum, which results in degraded performance of the depressed collector, has been experimentally verified. Ways to minimize the ACI are currently being investigated. Also, a new internal mode converter, consisting of a helically-cut launcher and four smooth curved mirrors, has been designed and fabricated. The cold test shows a good agreement with the theoretical Gaussian beam pattern. This new converter will be hot tested shortly in the gyrotron.

  19. A 0.33-THz second-harmonic frequency-tunable gyrotron

    NASA Astrophysics Data System (ADS)

    Zheng-Di, Li; Chao-Hai, Du; Xiang-Bo, Qi; Li, Luo; Pu-Kun, Liu

    2016-02-01

    Dynamics of the axial mode transition process in a 0.33-THz second-harmonic gyrotron is investigated to reveal the physical mechanism of realizing broadband frequency tuning in an open cavity circuit. A new interaction mechanism about propagating waves, featured by wave competition and wave cooperation, is presented and provides a new insight into the beam-wave interaction. The two different features revealed in the two different operation regions of low-order axial modes (LOAMs) and high-order axial modes (HOAMs) respectively determine the characteristic of the overall performance of the device essentially. The device performance is obtained by the simulation based on the time-domain nonlinear theory and shows that using a 12-kV/150-mA electron beam and TE-3,4 mode, the second harmonic gyrotron can generate terahertz radiations with frequency-tuning ranges of about 0.85 GHz and 0.60 GHz via magnetic field and beam voltage tuning, respectively. Additionally, some non-stationary phenomena in the mode startup process are also analyzed. The investigation in this paper presents guidance for future developing high-performance frequency-tunable gyrotrons toward terahertz applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 61471007, 61531002, 61522101, and 11275206) and the Seeding Grant for Medicine and Information Science of Peking University, China (Grant No. 2014-MI-01).

  20. The 28 GHZ, 10 KW, CW Gyrotron Generator for the VENUS ECR Ion Source at LBNL

    NASA Astrophysics Data System (ADS)

    Marks, M.; Evans, S.; Jory, H.; Holstein, D.; Rizzo, R.; Beck, P.; Cisto, B.; Leitner, D.; Lyneis, C. M.; Collins, D.; Dwinell, R. D.

    2005-03-01

    The VIA-301 Heatwave™ gyrotron generator was specifically designed to meet the requirements of the Venus ECR Ion Source at the Lawrence Berkeley National Laboratory (LBNL). VENUS (Versatile ECR ion source for NUclear Science) is a next generation superconducting ECR ion source, designed to produce high current, high charge state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the RIA (Rare Isotope Accelerator) front end [1]. This VIA-301 Heatwave™ gyrotron system provides 100 watts to 10 kW continuous wave (CW) RF output at 28 GHz. The RF output level is smoothly controllable throughout this entire range. The power can be set and maintained to within 10 watts at the higher power end of the power range and to within 30 watts at the lower power end of the power range. A dual directional coupler, analog conditioning circuitry, and a 12-bit analog input to the embedded controller are used to provide a power measurement accurate to within 2%. The embedded controller completes a feedback loop using an external command set point for desired power output. Typical control-loop-time is on the order of 500 mS. Hard-wired interlocks are provided for personnel safety and for protection of the generator system. In addition, there are software controlled interlocks for protection of the generator from high ambient temperature, high water temperature, and other conditions that would affect the performance of the generator or reduce the lifetime of the gyrotron. Cooling of the gyrotron and power supply is achieved using both water and forced circulation of ambient air. Water-cooling provides about 80% of the cooling requirement. Input power to the generator from the prime power line is less than 60 kW at full power. The Heatwave™ may be operated locally via its front panel or remotely via either RS-232 and/or Ethernet connections. Through the RS-232 the forward power, the reflected power, the

  1. Design, Development & Functional Validation of Magnets system in support of 42 GHz Gyrotron in India

    NASA Astrophysics Data System (ADS)

    Pradhan, S.; Raj, P.; Prasad, U.; Ghate, M.; Khristi, Y.; Panchal, A.; Bhavsar, D.; Banudha, M.; Kedia, S.; Sharma, A. N.; Kanabar, D.; Parghi, B.

    2017-07-01

    A multi institutional initiative is underway towards the development of 42 GHz, 200 kW gyrotron system in India under the frame work of Department of Science and Technology, Government of India. Indigenous realization comprising of design, fabrication, prototypes and functional validations of an appropriate Magnet System is one of the primary technological objective of these initiatives. The 42 GHz gyrotron magnet system comprises of a warm gun magnet, a NbTi/Cu based high homogenous superconducting cavity magnet and three warm collector magnets. The superconducting cavity magnet has been housed inside a low loss cryostat. The magnet system has been designed in accordance with gyrotron physics and engineering considerations respecting highly homogenous spatial field profile as well as maintaining steep gradient as per the compression and velocity ratios between the emission and resonator regions. The designed magnet system further ensures the co-linearity of the magnetic axis with that of the beam axis with custom winding techniques apart from a smooth collection of beam with the collector magnet profiles. The designed magnets have been wound after several R & D validations. The superconducting magnet has been housed inside a low loss designed cryostat with in-built radial and axial alignment flexibilities to certain extent. The cryostat further houses liquid helium port, liquid nitrogen ports, current communication ports, ports for monitoring helium level and other instrumentations apart from over-pressure safety intensive burst disks etc. The entire magnet system comprising of warm and superconducting magnets has been installed and integrated in the Gyrotron test set-up. The magnet system has been aligned in both warm and when the superconducting cavity magnet is cold. The integrated geometric axes have been experimentally ensured as well as the field profiles have been measured with the magnets being charged. Under experimental conditions, all magnets including

  2. The 28 GHZ, 10 KW, CW Gyrotron Generator for the VENUS ECR Ion Source at LBNL

    SciTech Connect

    Marks, M.; Evans, S.; Jory, H.; Holstein, D.; Rizzo, R.; Beck, P.; Cisto, B.; Leitner, D.; Lyneis, C.M.; Collins, D.; Dwinell, R.D.

    2005-03-15

    The VIA-301 Heatwave{sup TM} gyrotron generator was specifically designed to meet the requirements of the Venus ECR Ion Source at the Lawrence Berkeley National Laboratory (LBNL). VENUS (Versatile ECR ion source for NUclear Science) is a next generation superconducting ECR ion source, designed to produce high current, high charge state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the RIA (Rare Isotope Accelerator) front end].This VIA-301 Heatwave{sup TM} gyrotron system provides 100 watts to 10 kW continuous wave (CW) RF output at 28 GHz. The RF output level is smoothly controllable throughout this entire range. The power can be set and maintained to within 10 watts at the higher power end of the power range and to within 30 watts at the lower power end of the power range. A dual directional coupler, analog conditioning circuitry, and a 12-bit analog input to the embedded controller are used to provide a power measurement accurate to within 2%. The embedded controller completes a feedback loop using an external command set point for desired power output. Typical control-loop-time is on the order of 500 mS. Hard-wired interlocks are provided for personnel safety and for protection of the generator system. In addition, there are software controlled interlocks for protection of the generator from high ambient temperature, high water temperature, and other conditions that would affect the performance of the generator or reduce the lifetime of the gyrotron. Cooling of the gyrotron and power supply is achieved using both water and forced circulation of ambient air. Water-cooling provides about 80% of the cooling requirement. Input power to the generator from the prime power line is less than 60 kW at full power. The Heatwave{sup TM} may be operated locally via its front panel or remotely via either RS-232 and/or Ethernet connections. Through the RS-232 the forward power, the reflected power

  3. Improved performance in long-pulse ELMy H-mode plasmas with internal transport barrier in JT-60U

    NASA Astrophysics Data System (ADS)

    Oyama, N.; Isayama, A.; Suzuki, T.; Koide, Y.; Takenaga, H.; Ide, S.; Nakano, T.; Asakura, N.; Kubo, H.; Takechi, M.; Sakamoto, Y.; Kamada, Y.; Urano, H.; Yoshida, M.; Tsuzuki, K.; Matsunaga, G.; Gormezano, C.; JT-60 Team

    2007-07-01

    After installation of ferritic steel tiles, fast ion losses due to toroidal field ripple have been reduced by 1/2-1/3. The increase in absorbed power at same injection power can reduce the required number of neutral beam injector (NBI) units to sustain a given normalized beta, βN, resulting in a better flexibility of torque input by increasing the available combination of tangential NBI units. By making use of these advantages to sustain an internal transport barrier (ITB), the performance of long-pulse ELMy H-mode plasmas was improved in terms of sustained duration time for both high βN and high thermal confinement enhancement factor (HH98(y,2)). High βN > 2.3 together with HH98(y,2) ~ 1 was sustained for 23.1 s (~12τR, where τR is the current diffusion time) at q95 ~ 3.3, which also provide high βNHH98(y,2) >= 2.2 and a bootstrap current fraction of >=40%. βNHH98(y,2) of 2.0 was sustained for 28.6 s, which is limited by the maximum injection period of 30s for NBI system. These long-pulse plasmas are possible candidates for ITER hybrid operation scenario. Improved confinement is characterized by the larger thermal components at a given density maintained by lower heating power than in previous experiments. The strength of the ITB depends on the pedestal temperature, which varies with edge density while keeping constant the edge pressure (limited by type I ELMs). The fact that co-toroidal rotation as a result of reduced fast ion losses provides better quality of Te-ITB also contributes the improvement of thermal plasma confinement. These long-pulse plasmas indicate that further investigation to establish high performance plasmas longer than the time scale of wall saturation (τW) with active particle control is essential to establish the operational scenarios for next step devices, where the wall pumping does not work.

  4. On the dependence of the efficiency of a 240 GHz high-power gyrotron on the displacement of the electron beam and on the azimuthal index

    SciTech Connect

    Dumbrajs, O.; Avramidis, K. A.; Franck, J.; Jelonnek, J.

    2014-01-15

    Two issues in the cavity design for a Megawatt-class, 240 GHz gyrotron are addressed. Those are first, the effect of a misaligned electron beam on the gyrotron efficiency and second, a possible azimuthal instability of the gyrotron. The aforementioned effects are important for any gyrotron operation, but could be more critical in the operation of Megawatt-class gyrotrons at frequencies above 200 GHz, which will be the anticipated requirement of DEMO. The target is to provide some basic trends to be considered during the refinement and optimization of the design. Self-consistent calculations are the base for simulations wherever possible. However, in cases for which self-consistent models were not available, fixed-field results are presented. In those cases, the conservative nature of the results should be kept in mind.

  5. Treatment of recalcitrant plantar warts with long-pulsed Nd:YAG laser versus cantharidin-podophylline resin-salicylic acid.

    PubMed

    Ghonemy, Soheir

    2017-10-01

    Treatment for recalcitrant plantar warts remains a continuing challenge as the options for treatment have differing levels of success. long-pulsed Nd:YAG laser is considered a good treatment modality in resistant plantar warts. On the other hand, high cure rates have been reported with a topical proprietary formulation consisting of 1% cantharidin, 5% podophyllotoxin, 30% salicylic acid. To compare the efficacy of 1% cantharidin, 20% podophylline resin and 30% salicylic acid (CPS) versus long-pulsed Nd:YAG laser in the treatment of recalcitrant plantar warts. This study included 30 patients with single or multiple recalcitrant plantar warts; patients were assigned to two groups: the first group included 15 patients with 71 recalcitrant plantar warts who were treated by long-pulsed Nd:YAG laser (group I) and the second group included 15 patients with 78 recalcitrant plantar warts who received CPS (group II). The diagnosis of plantar warts was made by clinical examination. Fourteen patients (93%) were completely cleared of their warts with topical CPS, while 11 patients (73%) showed complete clearance with long-pulsed Nd:YAG laser with statistically significant difference between the two groups. Topical CPS is safe and efficacious and represents a promising therapeutic modality than long-pulsed Nd:YAG laser in the treatment of recalcitrant plantar warts.

  6. Demonstrated 3600 s Integrator Operation with 5.4 μV-s Drift Error for ITER Long Pulse Applications

    NASA Astrophysics Data System (ADS)

    Miller, Kenneth; Ziemba, Timothy; Prager, James; Slobodov, Ilia

    2013-10-01

    Eagle Harbor Technologies has developed a high gain and frequency ultra-stable integrator for small scale concept experiments and long pulse ITER applications. The integrator has a 10 μs RC time with a frequency response greater than 10 MHz. The device has been operated for the 3600 s with a drift error less than 5.4 μV-s, which exceeds the ITER specification. Longer period operation has also been demonstrated (72 hours). Additionally, this integrator has an extremely large dynamic range thereby increasing the effective bit depth of a digitizer. These integrators allow for both the fast and slow magnetic/plasma dynamics to be resolved with a single diagnostic. Software has been written for fast, real-time data acquisition and processing using a field programmable gate array (FPGA). This work is supported by the DOE SBIR/STTR Program.

  7. Measurement of the composition change in Al5754 alloy during long pulsed Nd : YAG laser welding based on LIBS

    NASA Astrophysics Data System (ADS)

    Jandaghi, M.; Parvin, P.; Torkamany, M. J.; Sabbaghzadeh, J.

    2009-10-01

    Weld metal composition change in aluminium alloy 5754 in keyhole mode welding, using a long pulsed Nd : YAG laser, was investigated theoretically and supported with experimental measurements. A comprehensive model for the calculation of vaporization rates was developed based on the kinetic theory of gases and the thermodynamic laws. During the laser welding process, the significant variables were pulse duration and power density. It was predicted in the model and concurred experimentally that the concentration of magnesium in the weld metal decreases with an increase in the laser pulse duration, while the aluminium concentration increases. Moreover, the concentrations of aluminium and magnesium elements in the weld metal were determined by laser induced breakdown spectroscopy for different welding conditions.

  8. Investigation into the electromagnetic impulses from long-pulse laser illuminating solid targets inside a laser facility

    NASA Astrophysics Data System (ADS)

    Yi, Tao; Yang, Jinwen; Yang, Ming; Wang, Chuanke; Yang, Weiming; Li, Tingshuai; Liu, Shenye; Jiang, Shaoen; Ding, Yongkun; Xiao, Shaoqiu

    2016-09-01

    Emission of the electromagnetic pulses (EMP) due to laser-target interaction in laser facility had been evaluated using a cone antenna in this work. The microwave in frequencies ranging from several hundreds of MHz to 2 GHz was recorded when long-pulse lasers with several thousands of joules illuminated the solid targets, meanwhile the voltage signals from 1 V to 4 V were captured as functions of laser energy and backlight laser, where the corresponding electric field strengths were obtained by simulating the cone antenna in combination with conducting a mathematical process (Tiknohov Regularization with L curve). All the typical coupled voltage oscillations displayed multiple peaks and had duration of up to 80 ns before decaying into noise and mechanisms of the EMP generation was schematically interpreted in basis of the practical measuring environments. The resultant data were expected to offer basic know-how to achieve inertial confinement fusion.

  9. Reflection-type single long-pulse solar simulator for high-efficiency crystalline silicon photovoltaic modules.

    PubMed

    Hu, Binxin; Li, Buyin; Zhao, Rixin; Yang, Tiechen

    2011-06-01

    Photovoltaic module measurements are predominantly taken by using pulsed solar simulators. However, significant errors can be generated when the existing simulators are applied to current high-efficiency crystalline silicon photovoltaic modules. This paper presents the design and implementation of a novel solar simulator featuring reflection-type light source and single long-pulse flash. The analysis and experimental study of the capacitance effect and the technical details of the simulator including reflection-type lamp house, xenon flash lamp power supply, and source-measure unit are introduced. The results show that the complete system achieves Class AAA performance in accordance with the international standard. The proposed simulator outperforms other similar products on the market and has been adopted by some well-known photovoltaic module manufacturers. The practical application demonstrates that this high-performance and cost-effective simulator is quite suitable for photovoltaic module production line.

  10. Nanosecond rise time air-core current transformer for long-pulse current measurement in pulsed power

    NASA Astrophysics Data System (ADS)

    Shukla, R.; Shyam, A.; Chaturvedi, S.; Kumar, R.; Lathi, D.; Chaudhary, V.; Verma, R.; Debnath, K.; Sharma, S.; Sonara, J.; Shah, K.; Adhikary, B.

    2005-12-01

    A slow-wave delay line type air-core (nonmagnetic Nylon former) current transformer fabricated using silver epoxy for the measurement of currents of long pulse durations and few nanoseconds rise times is reported in this article. The advantage of using silver epoxy is that it fills all the voids between coil and shield and enhances the proximity of the coil to the shield, leading to a high value of distributed capacitance. Thus the transit time of the coil increases and it can measure fast current pulses of longer durations. Increasing the inductance of the coil can compensate for the resulting reduction in the sensitivity of the coil for matched termination. An easy experimental technique to find the value of the matched terminating resistor is also reported in this article. We have also done simulations of the slow wave current transformer using PSPICE.

  11. Present status of the negative ion based NBI system for long pulse operation on JT-60U

    NASA Astrophysics Data System (ADS)

    Ikeda, Y.; Umeda, N.; Akino, N.; Ebisawa, N.; Grisham, L.; Hanada, M.; Honda, A.; Inoue, T.; Kawai, M.; Kazawa, M.; Kikuchi, K.; Komata, M.; Mogaki, K.; Noto, K.; Okano, F.; Ohga, T.; Oshima, K.; Takenouchi, T.; Tanai, Y.; Usui, K.; Yamazaki, H.; Yamamoto, T.

    2006-06-01

    The 500 keV negative-ion based neutral beam injector for JT-60U started operations in 1996. The availability of the negative ion based neutral beam injection system has been improved gradually by modifying the ion source and optimizing its operation parameters. Recently, the extension of the pulse duration up to 30 s has been intended to study quasi-steady state plasma on JT-60U. The most serious issue is to reduce the heat load on the grids for long pulse operation. Two modifications have been proposed to reduce the heat load. One is to suppress the spread of beamlet-bundle which may be caused by beamlet-beamlet interaction in the multi-aperture grid due to the space charge force. Indeed, the investigation of the beam deflection, which was measured by the infrared camera on the target plate set 3.5 m away from the grid, indicates that the spread of beamlet-bundle is in proportion to the current density. Field-shaping plates were attached on the extraction grid to modify the local electric field. The plate thickness was optimized to steer the beamlet deflection. The other is to reduce the stripping loss, where the electron of the negative ion beam is stripped and accelerated in the accelerator and then collides with the grids. The ion source was modified to reduce the pressure in the accelerator column to suppress the beam-ion stripping loss. To date, long pulse injection of 19 s of 1.5-1.6 MW at a high energy beam of 360 keV, 9-10 A for D- has been obtained by one ion source with these modifications.

  12. Long-pulsed Nd:YAG laser-assisted hair removal in Fitzpatrick skin types IV-VI.

    PubMed

    Rao, Krishna; Sankar, Thangasamy K

    2011-09-01

    Unwanted hair is a common problem for which a variety of laser treatments is available. Laser treatment in dark-skinned individuals carries a higher risk of complications like hyperpigmentation and burn. The objective of this study was to evaluate efficacy and safety profile of laser-assisted hair removal in individuals with Fitzpatrick type IV-VI skin using long-pulsed Nd:YAG laser. Retrospective data was collected from 150 individuals with Fitzpatrick type IV-VI skin who underwent laser-assisted hair removal. This included area treated, fluence, number of treatments, and outcome. Data was also gathered on patient satisfaction and complications. The most common phototype was type IV (94%). The most frequently treated area was the face (84.7%) followed by the underarms and legs. Among the facial areas, the chin was the most frequently treated area followed by the upper lip and jaw line. The mean number of treatments was 8.9 (range 4-22). The maximum fluence averaged 26.8 Joules/cm(2) and was significantly higher for facial hair. Of the patients, 78.7% felt that their treatment was good or satisfactory. Mean hair reduction was 54.3%. Satisfaction from the treatment was significantly higher in individuals undergoing treatment of non-facial areas. Subsequent hair growth was slower and finer in 79.3% of the patients. There were no complications in 86% of the patients. All the complications were transient, with hyperpigmentation being the most frequent complication. Our results show that laser hair removal using the long-pulsed Nd:YAG laser is safe and effective in dark-skinned individuals with satisfactory results in most patients.

  13. Successful Treatment of Becker's Nevus With Long-Pulsed 1064nm Nd:YAG and 755nm Alexandrite Laser and Review of the Literature.

    PubMed

    Wulkan, Adam J; McGraw, Timothy; Taylor, Mark

    2017-05-12

    Becker's Nevus is an aesthetically troublesome condition secondary to hyperpigmentation and hypertrichosis. Although several lasers have been employed with varying degrees of success, the exact devices and treatment parameters have yet to be elucidated. To assess the combination Nd:Yag and alexandrite laser as a safe and efficacious treatment for Becker's Nevus. In a 20-year-old Fitzpatrick Skin Type IV male, a Becker's Nevus was treated with six sessions of long-pulsed 1,064nm Nd:Yag laser at six-week intervals followed by five sessions of long-pulsed 755nm alexandrite laser at three-month intervals. This patient experienced a significant reduction in both hyperpigmentation and hypertrichosis after these treatment sessions. No serious adverse events were reported. This case supports the use of combination long-pulsed 1,064nm laser and 755nm laser as a safe and efficacious treatment for Becker's Nevus.

  14. A double-beam magnetron-injection gun for third-harmonic continuous wave 1-THz gyrotron

    NASA Astrophysics Data System (ADS)

    Glyavin, M.; Manuilov, V.; Idehara, T.

    2013-12-01

    The concept of a continuous wave 1-kW/1-THz gyrotron operated at the third cyclotron harmonic of the transverse electric TE9,7 operating mode has been developed. To suppress the mode competition effects in a terahertz gyrotron, we propose a scheme with two generating helical electron beams (HEBs) formed in a double-beam triode magnetron-injection gun (MIG), where both emitters of the electron beams are located on a common cathode of the conventional MIG. An optimal geometry of the MIG electrodes is found. It is shown that in a proposed scheme two HEBs having close pitch factors and a moderate velocity spread can be formed. This makes them suitable for high-efficiency single-mode generation in the high frequency gyrotron at high harmonic.

  15. A double-beam magnetron-injection gun for third-harmonic continuous wave 1-THz gyrotron

    SciTech Connect

    Glyavin, M.; Manuilov, V.; Idehara, T.

    2013-12-15

    The concept of a continuous wave 1-kW/1-THz gyrotron operated at the third cyclotron harmonic of the transverse electric TE{sub 9,7} operating mode has been developed. To suppress the mode competition effects in a terahertz gyrotron, we propose a scheme with two generating helical electron beams (HEBs) formed in a double-beam triode magnetron-injection gun (MIG), where both emitters of the electron beams are located on a common cathode of the conventional MIG. An optimal geometry of the MIG electrodes is found. It is shown that in a proposed scheme two HEBs having close pitch factors and a moderate velocity spread can be formed. This makes them suitable for high-efficiency single-mode generation in the high frequency gyrotron at high harmonic.

  16. Detailed Consideration of Experimental Results of Gyrotron FU CW II Developed as a Radiation Source for DNP-NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Agusu, La; Idehara, T.; Ogawa, I.; Saito, T.; Kanemaki, T.; Takahashi, H.; Fujiwara, T.

    2007-07-01

    A CW gyrotron for the sensitivity enhancement of NMR spectroscopy through dynamic nuclear polarization has been designed. The gyrotron operates at the second harmonic and frequency of 394.6 GHz with the main operating mode TE0,6. Operating conditions of other neighboring cavity modes such as TE2,6 at frequency of 392.6 GHz and TE2,3 at frequency of 200.7 GHz were also considered. The experimental conditions of the gyrotron at low and high voltages are simulated. The output power of 56 watts corresponds to the efficiency of 2 percent at low voltage operation and frequency of 394.6 GHz is expected.

  17. Recent progress in developing a 170 GHz, 500 kW gyrotron for testing ITER transmission line components

    NASA Astrophysics Data System (ADS)

    Felch, Kevin; Blank, Monica; Borchard, Philipp; Cahalan, Pat; Cauffman, Steve

    2011-10-01

    A 170 GHz, 500 kW CW gyrotron has been developed for testing ITER transmission line components. Although specified as a 500 kW source, the electrical design has been conceived with the goal of generating up to 1 MW of continuous output power. The design employs a double-anode electron gun, an interaction cavity operating in the TE31,8 cavity mode, a three-mirror internal converter to produce a fundamental Gaussian output beam, a CVD diamond output window and a depressed collector to safely dissipate the spent electron beam power. Fabrication of the gyrotron is nearly complete and initial high-power tests will soon be carried out. Details of the gyrotron design, results of low-power tests on the internal converter and initial high-power tests will be presented.

  18. Power-Stabilization of High Frequency Gyrotrons Using a Double PID Feedback Control for Applications to High Power THz Spectroscopy

    NASA Astrophysics Data System (ADS)

    Idehara, Toshitaka; Kuleshov, Alexei; Ueda, Keisuke; Khutoryan, Eduard

    2013-11-01

    High stabilization of the output power of high frequency gyrotrons for high power THz spectroscopy is an important issue in order to extend the applications of gyrotrons to wider subjects. For this objective, we tried a PID feedback control on a heater current of a triode magnetron injection gun (MIG) for stabilization of an electron beam current and an additional PID control of an anode voltage of the gun for direct stabilization of output power. This double PID control achieved effective responses for the stabilization of output power in both slow (from several tens seconds to several minutes) and fast (from milliseconds to seconds) time scales.

  19. Simultaneous Stabilization of Gyrotron Frequency and Power by PID Double Feedback Control on the Acceleration and Anode Voltages

    NASA Astrophysics Data System (ADS)

    Khutoryan, E. M.; Idehara, T.; Kuleshov, A. N.; Tatematsu, Y.; Yamaguchi, Y.; Matsuki, Y.; Fujiwara, T.

    2017-03-01

    In this paper, we present the results of simultaneous stabilization of both the frequency and the output power by a double PID feedback control on the acceleration and anode voltages in the 460-GHz gyrotron FU CW GVI, also known as "Gyrotron FU CW GO-1" (according to the nomenclature adopted at Osaka University). The approach used in the experiments is based on the modulation of the cyclotron frequency and the pitch factor (velocity ratio) of the electron beam by varying the acceleration and the anode voltages, respectively. In a long-term experiment, the frequency and power stabilities were made to be better than ±10-6 and ±1%, respectively.

  20. A method for suppression of spurious fundamental-harmonic waves in gyrotrons operating at the second cyclotron harmonic

    SciTech Connect

    Kalynov, Yu. K.; Osharin, I. V.; Savilov, A. V.

    2016-05-15

    A typical problem of gyrotrons operating at high harmonics of the electron cyclotron frequency is the suppression of parasitic near-cutoff waves excited at lower harmonics. In this paper, a method for a significant improvement of the selectivity of the second-harmonic gyrotrons is proposed. This method is based on the use of quasi-regular cavities with short irregularities, which provide different effects on the process of excitation of the operating second-harmonic wave and the spurious fundamental-harmonic wave by the electron beam.

  1. Simultaneous Stabilization of Gyrotron Frequency and Power by PID Double Feedback Control on the Acceleration and Anode Voltages

    NASA Astrophysics Data System (ADS)

    Khutoryan, E. M.; Idehara, T.; Kuleshov, A. N.; Tatematsu, Y.; Yamaguchi, Y.; Matsuki, Y.; Fujiwara, T.

    2017-07-01

    In this paper, we present the results of simultaneous stabilization of both the frequency and the output power by a double PID feedback control on the acceleration and anode voltages in the 460-GHz gyrotron FU CW GVI, also known as "Gyrotron FU CW GO-1" (according to the nomenclature adopted at Osaka University). The approach used in the experiments is based on the modulation of the cyclotron frequency and the pitch factor (velocity ratio) of the electron beam by varying the acceleration and the anode voltages, respectively. In a long-term experiment, the frequency and power stabilities were made to be better than ±10-6 and ±1%, respectively.

  2. Design of 28 GHz, 200 kW Gyrotron for ECRH Applications

    NASA Astrophysics Data System (ADS)

    Yadav, Vivek; Singh, Udaybir; Kumar, Nitin; Kumar, Anil; Deorani, S. C.; Sinha, A. K.

    2013-01-01

    This paper presents the design of 28 GHz, 200 kW gyrotron for Indian TOKAMAK system. The paper reports the designs of interaction cavity, magnetron injection gun and RF window. EGUN code is used for the optimization of electron gun parameters. TE03 mode is selected as the operating mode by using the in-house developed code GCOMS. The simulation and optimization of the cavity parameters are carried out by using the Particle-in-cell, three dimensional (3-D)-electromagnetic simulation code MAGIC. The output power more than 250 kW is achieved.

  3. Gyrotron Output Power Stabilization by PID Feedback Control of Heater Current and Anode Voltage

    NASA Astrophysics Data System (ADS)

    Khutoryan, E. M.; Idehara, T.; Kuleshov, A. N.; Ueda, K.

    2014-12-01

    To provide stable output power of a gyrotron during long operation time the power stabilization was achieved by two schemes with PID feedback control of heater current and anode voltage. It was based on the dependence of the output power on both the anode voltage and the beam current and also on the dependence of the beam current on the gun heater current. Both schemes provided decrease of the power standard deviation to 0.3-0.5%. The comparison between parameters of both schemes is discussed in the paper.

  4. Scaling of an 85 GHz Gyrotron to Operate at 94 GHz

    DTIC Science & Technology

    1989-09-06

    Laboratory P.O. Box Y Mail Stop 3 Building 9201 -2 Oak Ridge , TN 37830 Attn: Dr. A. England 1 copy Office of Naval Research 800 N. Quincy Street Arlington...observed up to 135 kW at high current ( 12 A). Efficiency was 32% at low current ( 4 A), in agreement with the theoretically predicted value. Lower...the gyrotron was expected to operate, 3.57 - 3.78 Tesla. The theoretically predicted maximum efficiency is at 12 A. Figure 4 shows the calculated power

  5. Measurement of Plasma-Neutralized Super-Vacuum Currents in a Gyrotron Configuration

    DTIC Science & Technology

    1990-02-16

    Ridge National Laboratory P.O. Box Y Mail Stop 3 Building 9201 -2 Oak Ridge , TN 37830 Attn: Dr. A. England 1 copy Office of Naval Research 800 N...public release; distribution 2b. DECLASSIFICATION /DOWNGRADING SCHEDULE unlimited. 4 . PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING...Neutralized Super-Vacuum Currents in a Gyrotron Configuration 12 . PERSONAL AUTHOR(S) Kirkpatrick, D.A.*, Gold, S.H., Manheimer, W.M., Black, W.M., Kinkead. A.K

  6. Design and Operating Characteristics of a CW Relevant Quasi-Optical Gyrotron with Variable Mirror Separation

    DTIC Science & Technology

    1989-06-26

    Division 600 Hicks Rd. Rolling Meadows, Illinois 60008 Attn: Dr. Gunter Dohler 1 copy Oak Ridge National Laboratory P.O. Box Y Mail Stop 3 Building 9201 -2...Gyrotron with Variable Mirror Separation 12 . PERSONAL AUTHOR(S) (See page ii) 13a. TYPE OF REPORT 13b TIME COVERED . 4 DATE OF REPORT (Year, Month. Day) ,S...approximately 4 % over the 12 /sec flat top of the cathode voltage pulse. The 10-90% rise time of the cathode pulse was 3.5 psec, and the 90-10% fall time

  7. ECH system using an 88 GHz gyrotron for the WT-3 Tokamak

    SciTech Connect

    Maekawa, T.; Terumichi, Y.; Yoshimura, S.; Matsunaga, K.

    1996-02-01

    A new ECH/ECCD system using an 88GHz gyrotron for the WT-3 Tokamak ({ital R}{sub 0}=65{ital cm}, {ital a}=20{ital cm}, {ital B}{sub {ital T}0}{le}1.75{ital T}) is under making. Taking advantage of a relatively short wavelength and the Gaussian beam output mode, we plan ECH/ECCD experiments with a strongly focused beam in order to achieve local modification of the electron temperature and current profiles for investigation of MHD instabilities. {copyright} {ital 1996 American Institute of Physics.}

  8. Megavolt, multi-kiloamp K(sub )a-band gyrotron oscillator experiment

    NASA Astrophysics Data System (ADS)

    Black, W. M.; Gold, S. H.; Fliflet, A. W.; Kirkpatrick, D. A.; Manheimer, W. M.; Lee, R. C.; Granatstein, V. L.; Hardesty, D. L.; Kinkead, A. K.; Sucy, M.

    1989-03-01

    High peak power K sub a band gyrotron oscillator experiment is reported. This experiment operated at 35 GHz in a sub a TE sub 62 mode, using a 1 to 1.35 MeV, multi-kiloamp beam from the VEBA pulseline accelerator. The use of an apertured anode configuration provided improved beam quality compared to earlier experiments that were carried out in a foilless diode geometry. As a result, the peak power has increased to approximately 275 MW with peak efficiencies exceeding 10 percent. The experimental results are in reasonable agreement with the predictions of theory.

  9. Coupler for coupling gyrotron whispering gallery mode RF into HE11 waveguide

    DOEpatents

    Neilson, Jeffrey M

    2015-02-24

    A cylindrical waveguide with a mode converter transforms a whispering gallery mode from a gyrotron cylindrical waveguide with a helical cut launch edge to a quasi-Gaussian beam suitable for conveyance through a corrugated waveguide. This quasi-Gaussian beam is radiated away from the waveguide using a spiral cut launch edge, which is in close proximity to a first mode converting reflector. The first mode converting reflector is coupled to a second mode converting reflector which provides an output free-space HE11 mode wave suitable for direct coupling into a corrugated waveguide. The radiated beam produced at the output of the second mode converting reflector is substantially circular.

  10. Feasibility study of a cryogenically cooled window for high-power gyrotrons

    SciTech Connect

    Haste, G.R.; Kimrey, H.D.; Prosise, J.D.

    1986-07-01

    Single-crystal sapphire is currently in use as the material for output windows in high-power microwave tubes, particularly gyrotrons. These windows are currently being cooled by fluorocarbon fluids at near-room temperatures. There are, however, several advantages in operating the window at very low temperatures: less absorption and consequent heating of the window, greater material strength, improved resistance to crack formation, greater thermal conductivity, and reduced thermal expansion. Operation at cryogenic temperatures is shown to be feasible. The output power, which is currently limited by window constraints, could be increased by an order of magnitude or more.

  11. Design of a 75-140 GHz high-pass printed circuit board dichroic filter

    NASA Astrophysics Data System (ADS)

    Kim, Dong Hwi; Mohyuddin, Wahab; Woo, Dong Sik; Choi, Hyun Chul; Kim, Kang Wook

    2017-03-01

    A new high-performing PCB (Printed Circuit Board) dichroic filter, which can be used for the KSTAR (Korea Superconducting Tokamak Advanced Research) electron cyclotron emission imaging system, is proposed. The current dichroic filter consists of a triangular lattice array of circular holes on the 6-mm thick metal plate, while circular hole spacing limitation caused relatively narrow passband (˜20 GHz). On the other hand, the proposed PCB dichroic filter utilizes the inexpensive commercial PCB fabrication process with a flexible adjustment of circular hole spacing. Therefore, the proposed PCB dichroic filter provides significantly wider passband (˜60 GHz with 0.84 dB insertion loss) with much reduced weight and expense. Also, it is shown that a steep skirt property can be obtained with the thick PCB filter substrate. The design process, fabrication, and measurement results of the new PCB dichroic filter are described.

  12. Low Noise Amplifiers for 140 Ghz Wide-Band Cryogenic Receivers

    NASA Technical Reports Server (NTRS)

    Larkoski, Patricia V.; Kangaslahti, Pekka; Samoska, Lorene; Lai, Richard; Sarkozy, Stephen

    2013-01-01

    We report S-parameter and noise measurements for three different Indium Phosphide 35-nanometer-gate-length High Electron Mobility Transistor (HEMT) Low Noise Amplifier (LNA) designs operating in the frequency range centered on 140 gigahertz. When packaged in a Waveguide Rectangular-6.1 waveguide housing, the LNAs have an average measured noise figure of 3.0 decibels - 3.6 decibels over the 122-170 gigahertz band. One LNA was cooled to 20 degrees Kelvin and a record low noise temperature of 46 Kelvin, or 0.64 decibels noise figure, was measured at 152 gigahertz. These amplifiers can be used to develop receivers for instruments that operate in the 130-170 gigahertz atmospheric window, which is an important frequency band for ground-based astronomy and millimeter-wave imaging applications.

  13. Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz

    NASA Astrophysics Data System (ADS)

    Wu, Bian; Tuncer, Hatice M.; Naeem, Majid; Yang, Bin; Cole, Matthew T.; Milne, William I.; Hao, Yang

    2014-02-01

    The development of transparent radio-frequency electronics has been limited, until recently, by the lack of suitable materials. Naturally thin and transparent graphene may lead to disruptive innovations in such applications. Here, we realize optically transparent broadband absorbers operating in the millimetre wave regime achieved by stacking graphene bearing quartz substrates on a ground plate. Broadband absorption is a result of mutually coupled Fabry-Perot resonators represented by each graphene-quartz substrate. An analytical model has been developed to predict the absorption performance and the angular dependence of the absorber. Using a repeated transfer-and-etch process, multilayer graphene was processed to control its surface resistivity. Millimetre wave reflectometer measurements of the stacked graphene-quartz absorbers demonstrated excellent broadband absorption of 90% with a 28% fractional bandwidth from 125-165 GHz. Our data suggests that the absorbers' operation can also be extended to microwave and low-terahertz bands with negligible loss in performance.

  14. Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz

    PubMed Central

    Wu, Bian; Tuncer, Hatice M.; Naeem, Majid; Yang, Bin; Cole, Matthew T.; Milne, William I.; Hao, Yang

    2014-01-01

    The development of transparent radio-frequency electronics has been limited, until recently, by the lack of suitable materials. Naturally thin and transparent graphene may lead to disruptive innovations in such applications. Here, we realize optically transparent broadband absorbers operating in the millimetre wave regime achieved by stacking graphene bearing quartz substrates on a ground plate. Broadband absorption is a result of mutually coupled Fabry-Perot resonators represented by each graphene-quartz substrate. An analytical model has been developed to predict the absorption performance and the angular dependence of the absorber. Using a repeated transfer-and-etch process, multilayer graphene was processed to control its surface resistivity. Millimetre wave reflectometer measurements of the stacked graphene-quartz absorbers demonstrated excellent broadband absorption of 90% with a 28% fractional bandwidth from 125–165 GHz. Our data suggests that the absorbers' operation can also be extended to microwave and low-terahertz bands with negligible loss in performance. PMID:24549254

  15. Design of a 75-140 GHz high-pass printed circuit board dichroic filter.

    PubMed

    Kim, Dong Hwi; Mohyuddin, Wahab; Woo, Dong Sik; Choi, Hyun Chul; Kim, Kang Wook

    2017-03-01

    A new high-performing PCB (Printed Circuit Board) dichroic filter, which can be used for the KSTAR (Korea Superconducting Tokamak Advanced Research) electron cyclotron emission imaging system, is proposed. The current dichroic filter consists of a triangular lattice array of circular holes on the 6-mm thick metal plate, while circular hole spacing limitation caused relatively narrow passband (∼20 GHz). On the other hand, the proposed PCB dichroic filter utilizes the inexpensive commercial PCB fabrication process with a flexible adjustment of circular hole spacing. Therefore, the proposed PCB dichroic filter provides significantly wider passband (∼60 GHz with 0.84 dB insertion loss) with much reduced weight and expense. Also, it is shown that a steep skirt property can be obtained with the thick PCB filter substrate. The design process, fabrication, and measurement results of the new PCB dichroic filter are described.

  16. 140-GHz Attenuation and Optical Visibility Measurements of Fog, Rain and Snow

    DTIC Science & Technology

    1977-12-01

    Dr. J. Battles, Code 6014 China Lake , CA 93555 81 DISTRIBUTION LIST No. of Copies Organization Director US Naval Research Laboratory ATTN...Raytheon Company Missiles Systems Division ATTN: Mr. Walter Justice Hartwell Road Bedford, MA 01730 Sperry Rand Corporation Microwave...Hopkins Road Laurel, MD 20810 Georgia Institute of Tech Engineering Experiment Station ATTN: Dr. R. Hayes Dr. Fred Dyer Dr. N. Currie 347 Ferst

  17. Self-controlled Study of Onychomycosis Treated with Long-pulsed Nd:YAG 1064-nm Laser Combined with Itraconazole

    PubMed Central

    Li, Yan; Xu, Jing; Zhao, Jun-Ying; Zhuo, Feng-Lin

    2016-01-01

    Background: Onychomycosis is a fungal infection of the nail plate and subungual area. In this study, we examined the efficacy of laser treatment using self-controlled study programs involving a long-pulsed Nd:YAG 1064-nm laser combined with oral medication. Methods: Self-controlled strategies were followed in this study. The patients received treatment with oral itraconazole in conjunction with long-pulsed Nd:YAG 1064-nm laser treatment at the nails of the unilateral limb once a week for a total of four times. A total of 84 affected nails were divided into Group A (mild to moderate) and Group B (severe) according to disease severity. Affected nails with the same Scoring Clinical Index for Onychomycosis scores were selected to compare the therapeutic effects of the pure medication treatment group and the combination treatment group with a 24-week follow-up period. Results: In Group A, at the 8th, 16th, and 24th weeks of follow-up, the efficacies in the pure medication treatment group were 81.0%, 81.0%, and 90.5%, respectively, while those in the combination treatment group were 100%, 95.2%, and 90.5%, respectively. The differences between groups were not significant (8th week: χ2 = 4.421, P > 0.05; 16th week: χ2 = 2.043, P > 0.05; 24th week: χ2 = 0.00, P > 0.05). In Group B, at the 8th, 16th, and 24th weeks of follow-up, the efficacies in the pure medication treatment group were 61.9%, 66.7%, and 52.4%, respectively, while those in the combination treatment group were 95.2%, 90.5%, and 100%, respectively. The differences between groups at the 8th and 24th weeks of follow-up were statistically significant (8th week: χ2 = 6.929, P < 0.05; 24th week: χ2 = 13.125, P < 0.05). Conclusions: For patients with mild or moderate onychomycosis, we recommended a pure medication treatment or combination treatment with medication and laser. For those patients with severe onychomycosis, we recommended a combination of medication and laser therapy. PMID:27503017

  18. Effects of long-pulsed 1,064-nm neodymium-doped yttrium aluminum garnet laser on dermal collagen remodeling in hairless mice.

    PubMed

    Lee, Young Bok; Kang, Na Hyeon; Eun, Young Sun; Cheon, Min Seok; Kim, Kyung Moon; Cho, Baik Kee; Park, Hyun Jeong

    2012-07-01

    Nonablative lasers are used for dermal collagen remodeling. Although clinical improvements have been reported using various laser devices, the mechanism of dermal collagen remodeling remains unknown. To investigate the effects of energy fluences of the long-pulsed neodymium-doped yttrium aluminum garnet (Nd:YAG) nonablative laser on dermal collagen remodeling and evaluate the dermal collagen remodeling mechanism. Hairless mice were pretreated with ultraviolet B irradiation to produce photo-damage. The laser treatment used a long-pulse 1,064-nm Nd:YAG laser at energy fluences of 20, 40, and 60 J/cm(2) . The amount of dermal collagen and expressions of transforming growth factor beta (TGF-β), matrix metalloproteinase-1 (MMP-1), and tissue inhibitor of metalloproteinase-1 (TIMP-1) of laser treated skin were compared with those of nontreated control skin. The long-pulse Nd:YAG laser treatment increased dermal collagen and significantly increased TGF-β expression. The expression of MMP-1 decreased with low energy fluence. The expression of TIMP-1 was not significantly different. Long-pulsed 1,064-nm Nd:YAG laser increases the dermal collagen in association with the increased expression of TGF-β. © 2012 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.

  19. Effective treatment for infantile hemangioma with long-pulsed dye laser with oral propranolol medication: a preliminary report.

    PubMed

    Furuta, Shigeyuki; Sato, Hideaki; Tsuji, Shiho; Murakami, Fumiko; Kitagawa, Hiroaki

    2016-09-01

    To investigate the efficacy of our treatment of infantile hemangioma (IH)s retrospectively presenting as disfiguring or functionally threatening lesions. 25 infants with IH treated with long-pulsed dye laser or laser with or without propranolol. Tumor fading after treatment was evaluated using both color and size rating scales, before, during and after treatment. 6 infants were treated by laser, 11, oral propranolol and 8 using both treatments. Each treatment was effective for most IH with a median treatment duration of 7.7 months for laser, and 13.3 months for the latter two. Combination therapy was the most effective in both color-fading and size reduction by the 3rd month. Laser alone was most effective in color-fading with almost complete disappearance of most tumors. Oral propranolol to the three site-specific IHs was effective with disappearance of tumors. There were no apparent side effects related to laser treatment, but one infant suffered from allergy and another from bronchial asthma due to propranolol medication. Most IHs discolored and regressed considerably with these treatments, including complete disappearance of the three functionally threatening lesions. This combined approach is quite useful for accelerating tumor regression.

  20. Studies of craters’ dimension for long-pulse laser ablation of metal targets at various experimental conditions

    NASA Astrophysics Data System (ADS)

    Margarone, D.; Láska, L.; Torrisi, L.; Gammino, S.; Krása, J.; Krouský, E.; Parys, P.; Pfeifer, M.; Rohlena, K.; Rosiñski, M.; Ryc, L.; Skála, J.; Ullschmied, J.; Velyhan, A.; Wolowski, J.

    2008-02-01

    Long pulse laser shots of the PALS iodine laser in Prague have been used to obtain metal target ablation at various experimental conditions. Attention is paid mainly to the dependencies of the crater diameter on the position of minimum laser-focus spot with regard to the target surface, by using different laser wavelengths and laser energies. Not only a single one, but two minima, independently of the wavelength, of the target irradiation angle and of the target material, were recorded. Significant asymmetries, ascribed to the non-linear effects of intense laser beam with pre-formed plasma, were found, too. Estimations of ejected mass per laser pulse are reported and used to calculate the efficiency of laser-driven loading. Results on metal target ablation and crater formation at high intensities (from 2 × 10 13 to 3 × 10 16 W/cm 2) are presented and compared. Crater depth, crater diameter and etching yield are reported versus the laser energy, in order to evaluate the ablation threshold fluence.

  1. Long-pulse beam acceleration of MeV-class H(-) ion beams for ITER NB accelerator.

    PubMed

    Umeda, N; Kashiwagi, M; Taniguchi, M; Tobari, H; Watanabe, K; Dairaku, M; Yamanaka, H; Inoue, T; Kojima, A; Hanada, M

    2014-02-01

    In order to realize neutral beam systems in International Thermonuclear Experimental Reactor whose target is to produce a 1 MeV, 200 A/m(2) during 3600 s D(-) ion beam, the electrostatic five-stages negative ion accelerator so-called "MeV accelerator" has been developed at Japan Atomic Energy Agency. To extend pulse length, heat load of the acceleration grids was reduced by controlling the ion beam trajectory. Namely, the beam deflection due to the residual magnetic field of filter magnet was suppressed with the newly developed extractor with a 0.5 mm off-set aperture displacement. The new extractor improved the deflection angle from 6 mrad to 1 mrad, resulting in the reduction of direct interception of negative ions from 23% to 15% of the total acceleration power, respectively. As a result, the pulse length of 130 A/m(2), 881 keV H(-) ion beam has been successfully extended from a previous value of 0.4 s to 8.7 s. This is the first long pulse negative ion beam acceleration over 100 MW/m(2).

  2. Long pulsed 1064 nm Nd:YAG laser treatment for wrinkle reduction and skin laxity: evaluation of new parameters.

    PubMed

    Hong, Jong Soo; Park, Song Youn; Seo, Kyle K; Goo, Boncheol L; Hwang, Eun Jung; Park, Gyeong Yul; Eun, Hee Chul

    2015-09-01

    Among non-ablative devices for wrinkle reduction and skin laxity, long pulsed 1064 nm Nd:YAG laser (LPND) has considerable effectiveness. It can penetrate to deep dermis due to its longer wavelength. This study assesses the efficacy and safety of LPND applying new parameters for skin rejuvenation in Korean subjects. A prospective randomized split-faced study was done (n = 20). Half of the face was treated with three passes of LPND at a spot size of 12 mm, 20-24 J/cm(2) fluence, 12 ms width, and frequency of 2 Hz, for three sessions, every four weeks. Outcomes were measured by wrinkle evaluation of blinded investigators, subjects' self-assessment, objective measurements of elasticity, and skin biopsy. Four weeks after the final treatment sessions, the average wrinkle grades of the treated side were reduced by 45.1%. Skin elasticity was significantly increased. The increment of collagen and elastic fiber in papillary dermis was confirmed histologically. No adverse reaction was reported. Pain on the treated side was mild without needing anesthesia. The authors studied new parameters for LPND for improvement of wrinkles and skin laxity with fewer treatment sessions without serious complications. Histologic findings corresponded to clinical improvement. New parameters of LPND can achieve wrinkle improvement with few side effects. © 2014 The International Society of Dermatology.

  3. Analysis and simulation of a small-angle neutron scattering instrument on a 1 MW long pulse spallation source

    SciTech Connect

    Olah, G.A.; Hjelm, R.P.; Lujan, M. Jr.

    1996-12-31

    We studied the design and performance of a small-angle neutron scattering (SANS) instrument for a proposed 1 MW, 60 Hz long pulsed spallation source at the Los Alamos Neutron Science Center (LANSCE). An analysis of the effects of source characteristics and chopper performance combined with instrument simulations using the LANSCE Monte Carlo instrument simulations package shows that the T{sub 0} chopper should be no more than 5 m from the source with the frame overlap and frame definition choppers at 5.6 and greater than 7 m, respectively. The study showed that an optimal pulse structure has an exponential decaying tail with {tau} {approx} 750 {mu}s. The Monte Carlo simulations were used to optimize the LPSS SANS, showing that an optimal length is 18 m. The simulations show that an instrument with variable length is best to match the needs of a given measurement. The performance of the optimized LPSS instrument was found to be comparable with present world standard instruments.

  4. Development of problem-oriented software packages for numerical studies and computer-aided design (CAD) of gyrotrons

    NASA Astrophysics Data System (ADS)

    Damyanova, M.; Sabchevski, S.; Zhelyazkov, I.; Vasileva, E.; Balabanova, E.; Dankov, P.; Malinov, P.

    2016-03-01

    Gyrotrons are the most powerful sources of coherent CW (continuous wave) radiation in the frequency range situated between the long-wavelength edge of the infrared light (far-infrared region) and the microwaves, i.e., in the region of the electromagnetic spectrum which is usually called the THz-gap (or T-gap), since the output power of other devices (e.g., solid-state oscillators) operating in this interval is by several orders of magnitude lower. In the recent years, the unique capabilities of the sub-THz and THz gyrotrons have opened the road to many novel and future prospective applications in various physical studies and advanced high-power terahertz technologies. In this paper, we present the current status and functionality of the problem-oriented software packages (most notably GYROSIM and GYREOSS) used for numerical studies, computer-aided design (CAD) and optimization of gyrotrons for diverse applications. They consist of a hierarchy of codes specialized to modelling and simulation of different subsystems of the gyrotrons (EOS, resonant cavity, etc.) and are based on adequate physical models, efficient numerical methods and algorithms.

  5. Near Real-Time Gyrotron Data Streaming and Data Acquisition with ns Resolution on the DIII-D ECH System

    NASA Astrophysics Data System (ADS)

    Torrezan, A. C.; Ponce, D.; Gorelov, Y. A.; Cengher, M.; Lohr, J.

    2014-10-01

    As part of the expansion and upgrade of the electron cyclotron heating (ECH) systen on DIII-D, a new data acquisition setup has been implemented to acquire and display waveform data from all gyrotrons in near real time with high time resolution. The data acquisition for each gyrotron system is based on a fast digitizer with 8 channels running at 2 MS/s/channel and a resolution of 14 bits. This enables the operator to monitor all gyrotron-relevant variables as well as fast diagnostic signals such as window arcs. The data are transferred to a local computer through a 132 MB/s PCI bus, and then are streamed to the ECH operator and to a local network attached storage using 1 GB Ethernet links. The data are displayed to the ECH operator by means of a graphical user interface developed in LabVIEW, replacing physical scopes. Acquired gyrotron data are accessible at DIII-D through a local database (PTDATA) connected to the ECH data acquisition system by an Ethernet line, a configuration that eliminates the need for legacy CAMAC hardware in the data link. Work supported by the US Department of Energy under DE-FC02-04ER54698.

  6. Solid-state nitrogen-14 nuclear magnetic resonance enhanced by dynamic nuclear polarization using a gyrotron.

    PubMed

    Vitzthum, Veronika; Caporini, Marc A; Bodenhausen, Geoffrey

    2010-07-01

    By combining indirect detection of 14N with dynamic nuclear polarization (DNP) using a gyrotron, the signal-to-noise ratio can be dramatically improved and the recovery delay between subsequent experiments can be shortened. Spectra of glassy samples of the amino acid proline doped with the stable bi-radical TOTAPOL rotating at 15.625 kHz at 110K were obtained in a 400 MHz solid-state NMR spectrometer equipped with a gyrotron for microwave irradiation at 263 GHz. DNP enhancement factors on the order of epsilon approximately 40 were achieved. The recovery delays can be reduced from 60 s without radicals at 300 K to 6 s with radicals at 110 K. In the absence of radicals at room temperature, the proton relaxation in proline is inefficient due to the absence of rotating methyl groups and other heat sinks, thus making long recovery delays mandatory. DNP allows one to reduce the acquisition times of 13C-detected 14N spectra from several days to a few hours. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  7. High current multicharged metal ion source using high power gyrotron heating of vacuum arc plasma.

    PubMed

    Vodopyanov, A V; Golubev, S V; Khizhnyak, V I; Mansfeld, D A; Nikolaev, A G; Oks, E M; Savkin, K P; Vizir, A V; Yushkov, G Yu

    2008-02-01

    A high current, multi charged, metal ion source using electron heating of vacuum arc plasma by high power gyrotron radiation has been developed. The plasma is confined in a simple mirror trap with peak magnetic field in the plug up to 2.5 T, mirror ratio of 3-5, and length variable from 15 to 20 cm. Plasma formed by a cathodic vacuum arc is injected into the trap either (i) axially using a compact vacuum arc plasma gun located on axis outside the mirror trap region or (ii) radially using four plasma guns surrounding the trap at midplane. Microwave heating of the mirror-confined, vacuum arc plasma is accomplished by gyrotron microwave radiation of frequency 75 GHz, power up to 200 kW, and pulse duration up to 150 micros, leading to additional stripping of metal ions by electron impact. Pulsed beams of platinum ions with charge state up to 10+, a mean charge state over 6+, and total (all charge states) beam current of a few hundred milliamperes have been formed.

  8. Scattering volume in the collective Thomson scattering measurement using high power gyrotron in the LHD

    NASA Astrophysics Data System (ADS)

    Kubo, S.; Nishiura, M.; Tanaka, K.; Moseev, D.; Ogasawara, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Takahashi, H.; Tsujimura, T. I.; Makino, R.

    2016-06-01

    High-power gyrotrons prepared for the electron cyclotron heating at 77 GHz has been used for a collective Thomson scattering (CTS) study in LHD. Due to the difficulty in removing fundamental and/or second harmonic resonance in the viewing line of sight, the subtraction of the background ECE from measured signal was performed by modulating the probe beam power from a gyrotron. The separation of the scattering component from the background has been performed successfully taking into account the response time difference between both high-energy and bulk components. The other separation was attempted by fast scanning the viewing beam across the probing beam. It is found that the intensity of the scattered spectrum corresponding to the bulk and high energy components were almost proportional to the calculated scattering volume in the relatively low density region, while appreciable background scattered component remains even in the off volume in some high density cases. The ray-trace code TRAVIS is used to estimate the change in the scattering volume due to probing and receiving beam deflection effect.

  9. A broadband gyrotron backward-wave oscillator with tapered interaction structure and magnetic field

    SciTech Connect

    Li, G. D.; Chang, P. C.; Chiang, W. Y.; Lin, P. N.; Kao, S. H.; Lin, Y. N.; Huang, Y. J.; Barnett, L. R.; Chu, K. R.; Chen, H. Y.; Fan, C. T.

    2015-11-15

    The gyro-monotron and gyrotron backward-wave oscillator (gyro-BWO) are the two oscillator versions of gyrotrons. While serving different functions, they are also radically different in the RF field formation mechanisms. The gyro-monotron RF field profile is essentially fixed by the resonant interaction structure, while the gyro-BWO possesses an extra degree of freedom in that the axial RF field profile is self-determined by the beam-wave interaction in a waveguide structure. The present study examines ways to utilize the latter feature for bandwidth broadening with a tapered magnetic field, while also employing a tapered waveguide to enhance the interaction efficiency. We begin with a mode competition analysis, which suggests the theoretical feasibility of broadband frequency tuning in single-mode operation. It is then shown in theory that, by controlling the RF field profile with an up- or down-tapered magnetic field, the gyro-BWO is capable of efficient operation with a much improved tunable bandwidth.

  10. Beam-wave interaction behavior of a 35 GHz metal PBG cavity gyrotron

    NASA Astrophysics Data System (ADS)

    Singh, Ashutosh; Jain, P. K.

    2014-09-01

    The RF behavior of a 35 GHz photonic band gap (PBG) cavity gyrotron operating in TE041-like mode has been presented to demonstrate its single mode operation capability. In this PBG cavity gyrotron, the conventional tapered cylindrical cavity is replaced by a metal PBG cavity as its RF interaction structure. The beam-wave interaction behavior has been explored using time dependent multimode nonlinear analysis as well as through 3D PIC simulation. Metal PBG cavity is treated here similar to that of a conventional cylindrical cavity for the desired mode confinement. The applied DC magnetic field profile has been considered uniform along the PBG cavity length both in analysis as well as in simulation. Electrons energy and phase along the interaction length of the PBG cavity facilitates bunching mechanism as well as energy transfer phenomena from the electron beam to the RF field. The RF output power for the TE041-like design mode as well as nearby competing modes have been estimated and found above to 100 kW in TE041-like mode with ˜15% efficiency. Results obtained from the analysis and the PIC simulation are found in agreement within 8% variation, and also it supports the single mode operation, as the PBG cavity does not switch into other parasitic modes in considerably large range of varying DC magnetic field, contrary to the conventional cylindrical cavity interaction structure.

  11. Collective scattering of gyrotron radiation for T/sub i/ measurements on EBT

    SciTech Connect

    Bighel, L.; White, T.L.

    1981-02-01

    For T/sub i/ measurements in EBT, 90/sup 0/ Thomson scattering of 110-GHz, cw gyrotron radiation is proposed. Currently measured steady-state plasma parameters are: n/sub e/ = 1.5 x 10/sup 12/ cm/sup -3/, T/sub e/ = 500 eV, and T/sub i/ = 100 eV, with f/sub ce/ = 28 GHz. The measured plasma background at 100 GHz due to synchrotron emission from the relativistic electron rings is 10/sup 3/ times stronger than the expected scattered signal for an input power level to the plasma P/sub i/ = 10 kW. Therefore, gyrotron output modulation and synchronous detection are required. The collectively scattered spectra will be observed with a heterodyne detection system containing eight i.f. channels; each channel consists of a filter, a video detector, and a lock-in amplifier (which synchronously detects the modulated scattered signal). Scattering from low level suprathermal fluctuations and the applicability of the diagnostic to tokamaks are also considered.

  12. Design of the Collective Thomson scattering (CTS) system by using 170-GHz gyrotron in the KSTAR

    NASA Astrophysics Data System (ADS)

    Park, Min; Kim, Sun-Ho; Kim, Sung-Kyu; Lee, Kyu-Dong; Wang, Son-Jong

    2014-10-01

    The physics of energetic ions is one of the primary subjects to be understood toward the realization of a nuclear fusion power plant. Collective Thomson scattering (CTS) offers the possibility to diagnose the fast ions and the alpha particles in burning plasmas. Spatially- and temporally-resolved one-dimensional velocity distributions of the fast ions can be obtained from the scattered radiation with fewer geometric constraints by utilizing millimeter waves from a high-power gyrotron as a probe beam. We studied the feasibility of CTS fast-ion measurements in the KSTAR by calculating the spectral density functions. Based on that, we suggest a design for the CTS system that uses the currently-operating 170-GHz gyrotron for electron cyclotron heating (ECH) and electron cyclotron current drive (ECCD) in the KSTAR. The CTS system is presented as two subsystems: the antenna system and the heterodyne receiver system. The design procedure for an off-axis ellipsoidal mirror is described, and the CTS system requirements are discussed.

  13. The NRL (Naval Research Laboratory) Phase-Locked gyrotron oscillator program for SDIO/IST

    NASA Astrophysics Data System (ADS)

    Manheimer, W. M.; Fliflet, A. W.; Gold, S. H.; Burke, J.; Black, W. M.; Barnett, L.

    1988-07-01

    This report is on the phase locked gyrotron oscillator program for SDIO/IST. The introduction summarizes the program as well as possible SDIO applications for high power phase locked microwave and millimeter wave sources. It considers the different possible architectures for a phased array for an SDIO mission. Section 2 summarizes results in theory. The main accomplishment was the development of a slow time scale code which examines phase locking in time varying situations. Section 3 summarizes the experimental design of the low power experiment which will examine phase locking in overmode cavities. Section 4 summarizes the results of the slotted cavity experiments. The axial slots allow for mode control. With a slotted cavity, a gyrotron oscillator has reliably generated 35 MW at 35 GHz in a standing TE Sub 13 mode. Section 5 summarizes results on the VEBA driven free running oscillator. This experiment has succeeded in generating 200 MW at 35 GHz in a TE sub 62 mode. Section 6 discusses experimental design of the VEBA fundamental mode three cavity phase-locked oscillator at 35 GHz. This experiment is expected to produce phase-locked power at the 5 MW level. Section 7 discusses the experimental results up to now on this experiment. Section 8 discusses the experimental design of the strongly coupled phase-locked oscillator experiment.

  14. Combined Hyperthermia and Photodynamic Therapy Using a Sub-THz Gyrotron as a Radiation Source

    NASA Astrophysics Data System (ADS)

    Miyoshi, Norio; Idehara, Toshitaka; Khutoryan, Eduard; Fukunaga, Yukihiro; Bibin, Andriana Bintang; Ito, Shinji; Sabchevski, Svilen Petrov

    2016-08-01

    In this paper, we present results of a hyperthermia treatment of malignant tumors using a gyrotron as a radiation source for heating of the cancerous tissue. They clearly demonstrate the efficiency of the irradiation by sub-THz waves, which leads to steady decrease of the volume of the tumor and finally to its disappearance. A combination of hyperthermia and photodynamic therapy (PDT) that utilizes a novel multifunctional photosensitizer has also been explored. In the latter case, the results are even more convincing and promising. In particular, while after a hyperthermia treatment sometimes a regrowth of the tumor is being observed, in the case of combined hyperthermia and PDT such regrowth has never been noticed. Another combined therapy is based on a preheating of the tumor by gyrotron radiation to temperatures lower than the hyperthermia temperature of 43 °C and followed then by PDT. The results show that such combination significantly increases the efficiency of the treatment. We consider this phenomenon as a synergy effect since it is absent when hyperthermia and PDT are applied separately, and manifests itself only when both methods are combined.

  15. Conceptual designs of E × B multistage depressed collectors for gyrotrons

    NASA Astrophysics Data System (ADS)

    Wu, Chuanren; Pagonakis, Ioannis Gr.; Gantenbein, Gerd; Illy, Stefan; Thumm, Manfred; Jelonnek, John

    2017-04-01

    Multistage depressed collectors are challenges for high-power, high-frequency fusion gyrotrons. Two concepts exist in the literature: (1) unwinding the spent electron beam cyclotron motion utilizing non-adiabatic transitions of magnetic fields and (2) sorting and collecting the electrons using the E × B drift. To facilitate the collection by the drift, the hollow electron beam can be transformed to one or more thin beams before applying the sorting. There are many approaches, which can transform the hollow electron beam to thin beams; among them, two approaches similar to the tilted electric field collectors of traveling wave tubes are conceptually studied in this paper: the first one transforms the hollow circular electron beam to an elongated elliptic beam, and then the thin elliptic beam is collected by the E × B drift; the second one splits an elliptic or a circular electron beam into two arc-shaped sheet beams; these two parts are collected individually. The functionality of these concepts is proven by CST simulations. A model of a three-stage collector for a 170 GHz, 1 MW gyrotron using the latter approach shows 76% collector efficiency while taking secondary electrons and realistic electron beam characteristics into account.

  16. Beam-wave interaction behavior of a 35 GHz metal PBG cavity gyrotron

    SciTech Connect

    Singh, Ashutosh; Jain, P. K.

    2014-09-15

    The RF behavior of a 35 GHz photonic band gap (PBG) cavity gyrotron operating in TE{sub 041}-like mode has been presented to demonstrate its single mode operation capability. In this PBG cavity gyrotron, the conventional tapered cylindrical cavity is replaced by a metal PBG cavity as its RF interaction structure. The beam-wave interaction behavior has been explored using time dependent multimode nonlinear analysis as well as through 3D PIC simulation. Metal PBG cavity is treated here similar to that of a conventional cylindrical cavity for the desired mode confinement. The applied DC magnetic field profile has been considered uniform along the PBG cavity length both in analysis as well as in simulation. Electrons energy and phase along the interaction length of the PBG cavity facilitates bunching mechanism as well as energy transfer phenomena from the electron beam to the RF field. The RF output power for the TE{sub 041}-like design mode as well as nearby competing modes have been estimated and found above to 100 kW in TE{sub 041}-like mode with ∼15% efficiency. Results obtained from the analysis and the PIC simulation are found in agreement within 8% variation, and also it supports the single mode operation, as the PBG cavity does not switch into other parasitic modes in considerably large range of varying DC magnetic field, contrary to the conventional cylindrical cavity interaction structure.

  17. Continuous-Wave Operation of a Frequency-Tunable 460-GHz Second-Harmonic Gyrotron for Enhanced Nuclear Magnetic Resonance

    PubMed Central

    Torrezan, Antonio C.; Han, Seong-Tae; Mastovsky, Ivan; Shapiro, Michael A.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Barnes, Alexander B.; Griffin, Robert G.

    2011-01-01

    The design, operation, and characterization of a continuous-wave (CW) tunable second-harmonic 460-GHz gyrotron are reported. The gyrotron is intended to be used as a submillimeter-wave source for 700-MHz nuclear magnetic resonance experiments with sensitivity enhanced by dynamic nuclear polarization. The gyrotron operates in the whispering-gallery mode TE11,2 and has generated 16 W of output power with a 13-kV 100-mA electron beam. The start oscillation current measured over a range of magnetic field values is in good agreement with theoretical start currents obtained from linear theory for successive high-order axial modes TE11,2,q. The minimum start current is 27 mA. Power and frequency tuning measurements as a function of the electron cyclotron frequency have also been carried out. A smooth frequency tuning range of 1 GHz was obtained for the operating second-harmonic mode either by magnetic field tuning or beam voltage tuning. Long-term CW operation was evaluated during an uninterrupted period of 48 h, where the gyrotron output power and frequency were kept stable to within ±0.7% and ±6 ppm, respectively, by a computerized control system. Proper operation of an internal quasi-optical mode converter implemented to transform the operating whispering-gallery mode to a Gaussian-like beam was also verified. Based on the images of the gyrotron output beam taken with a pyroelectric camera, the Gaussian-like mode content of the output beam was computed to be 92% with an ellipticity of 12%. PMID:21243088

  18. Continuous-Wave Operation of a Frequency-Tunable 460-GHz Second-Harmonic Gyrotron for Enhanced Nuclear Magnetic Resonance

    PubMed Central

    Torrezan, Antonio C.; Han, Seong-Tae; Mastovsky, Ivan; Shapiro, Michael A.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Griffin, Robert G.; Barnes, Alexander B.

    2012-01-01

    The design, operation, and characterization of a continuous-wave (CW) tunable second-harmonic 460-GHz gyrotron are reported. The gyrotron is intended to be used as a submillimeter-wave source for 700-MHz nuclear magnetic resonance experiments with sensitivity enhanced by dynamic nuclear polarization. The gyrotron operates in the whispering-gallery mode TE11,2 and has generated 16 W of output power with a 13-kV 100-mA electron beam. The start oscillation current measured over a range of magnetic field values is in good agreement with theoretical start currents obtained from linear theory for successive high-order axial modes TE11,2,q. The minimum start current is 27 mA. Power and frequency tuning measurements as a function of the electron cyclotron frequency have also been carried out. A smooth frequency tuning range of 1 GHz was obtained for the operating second-harmonic mode either by magnetic field tuning or beam voltage tuning. Long-term CW operation was evaluated during an uninterrupted period of 48 h, where the gyrotron output power and frequency were kept stable to within ±0.7% and ±6 ppm, respectively, by a computerized control system. Proper operation of an internal quasi-optical mode converter implemented to transform the operating whispering-gallery mode to a Gaussian-like beam was also verified. Based on the images of the gyrotron output beam taken with a pyroelectric camera, the Gaussian-like mode content of the output beam was computed to be 92% with an ellipticity of 12%. PMID:23761938

  19. Continuously Frequency Tunable High Power Sub-THz Radiation Source—Gyrotron FU CW VI for 600 MHz DNP-NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Idehara, Toshitaka; Kosuga, Kosuke; Agusu, La; Ikeda, Ryosuke; Ogawa, Isamu; Saito, Teruo; Matsuki, Yoh; Ueda, Keisuke; Fujiwara, Toshimichi

    2010-07-01

    A high frequency gyrotron with a 15 T superconducting magnet named Gyrotron FU CW VI has achieved continuous frequency tuning through the relatively wide range of 1.5 GHz near 400 GHz. The operation is at the fundamental cyclotron resonance of the TE06 cavity mode with many higher order axial modes. The output power measured at the end of the circular waveguide system ranges from 10 to 50 watts at the low acceleration voltage of 12 kV for beam electrons. The beam current is also low. It is around 250 mA. This gyrotron is designed as a demountable radiation source for the 600 MHz DNP-NMR spectroscopy. The design and operation results of the gyrotron FU CW VI are presented.

  20. Development of a kW Level-200 GHz Gyrotron FU CW GI with an Internal Quasi-optical Mode Convertor

    NASA Astrophysics Data System (ADS)

    Tatematsu, Yoshinori; Yamaguchi, Yuusuke; Idehara, Toshitaka; Ozeki, Takanori; Ikeda, Ryosuke; Kanemaki, Tomohiro; Ogawa, Isamu; Saito, Teruo

    2012-03-01

    Development of gyrotrons with an internal mode convertor has started in Research Center for Development of Far-Infrared Region, University of Fukui (FIR FU). As the first gyrotron of such a kind, we have designed and manufactured Gyrotron FU CW GI. It operates at 203 GHz at fundamental cyclotron resonance. We have designed a cavity and a mode convertor under some constraints such as reuse of an electron gun and small diameter of a magnet bore. Designed output power is about 1 kW. We have succeeded in observation of a circular radiation pattern. The maximum observed output power is 0.5 kW for the setting cathode voltage of 20 kV and the beam current of 0.5 A. This success makes gyrotron development in FIR FU to proceed to a new stage.

  1. Long-pulsed 1064-nm neodymium:yttrium-aluminum-garnet laser treatment for refractory warts on hands and feet.

    PubMed

    Kimura, Utako; Takeuchi, Kaori; Kinoshita, Ayako; Takamori, Kenji; Suga, Yasushi

    2014-03-01

    Common warts (verruca vulgaris) are the most commonly seen benign cutaneous tumors. However, warts in the hands and feet regions often respond poorly to treatment, some are resistant to more than 6 months of treatment with currently available modalities, including cryotherapy, being defined as refractory warts. We investigated the usefulness of long-pulsed neodymium:yttrium-aluminum-garnet (LP-Nd:YAG) treatment for refractory warts. The clinical trial was conducted on 20 subjects (11 male, nine female) with a total of 34 lesions (periungual/subungual areas, plantar areas, fingers and/or toes). All the subjects suffered from refractory warts despite conventional treatments for more than 6 months. The patients were administrated up to six sessions of treatment, at intervals of 4 weeks between sessions, with an LP-Nd:YAG at a spot size of 5 mm, pulse duration of 15 msec and fluence of 150-185 J/cm(2) . Evaluation of the treatment results at 24 weeks after the initial treatment showed complete clearance of the refractory warts in 56% of the patients. Histological evaluation showed separation of the dermis and epidermis at the basement membrane with coagulated necrosis of the wart tissue in the lower epidermis, as well as coagulation and destruction of the blood vessels in the papillary dermis following the laser irradiation. No scarring, post-hyperpigmentary changes or serious adverse events were documented. Our preliminary results show that LP-Nd:YAG treatments are safe and effective for refractory warts of hands and feet, causing minimal discomfort, and is a viable treatment alternative.

  2. Long-pulsed dye laser vs. intense pulsed light for the treatment of facial telangiectasias: a randomized controlled trial.

    PubMed

    Nymann, P; Hedelund, L; Haedersdal, M

    2010-02-01

    This study aims to compare the efficacy and adverse effects of long-pulsed dye laser (LPDL) and intense pulsed light (IPL) in the treatment of facial telangiectasias. We used intra-individual, randomized, controlled trial with split-face treatments and single-blind outcome evaluations in this study. Forty patients with symmetrically located facial telangiectasias received a series of three LPDL (V-beam, 595 nm, Candela Laser Corp.) and three IPL treatments (Ellipse Flex, PR and VL2 applicators, Danish Dermatologic Development) at 6-week intervals. Patients were evaluated 3 months after the final treatment. Outcome measures were clinical efficacy (five-point ordinal scale), pain (10-point numerical scale), adverse effects, patient satisfaction (10-point numerical scale) and preferred treatment. Thirty-nine of 40 patients completed the study. All but 2 patients obtained a reduction in facial telangiectasias from both IPL and LPDL treatments. Both treatments were effective with good or excellent response in 30 of 39 patients. The LPDL was superior in the overall reduction of telangiectasias by blinded photographic evaluations: Excellent clearance (75% to 100% vessel clearance) was found in 18 patients treated with LPDL (46%) and in 11 patients treated with IPL (28%) (P = 0.01). Patients experienced less pain from LPDL [4 (2-6)] than IPL treatments [7 (3-9)] (P < 0.001). No adverse effects (hypo-/hyperpigmentation or scarring) were seen from any of the treatments. Patients were satisfied with both LPDL [8 (2-10)] and IPL treatments [7 (2-10)] (P = 0.05). Twenty-five patients preferred the LPDL (64%), 8 patients preferred IPL (21%) and 6 patients had no preference (15%) (P < 0.001). This study was based on two specific types of laser and IPL equipment, which effectively clear telangiectasias; however, the most beneficial outcome was from the LPDL.

  3. The National Spherical Torus Experiment (NSTX) Research Program and Progress Towards High Beta, Long Pulse Operating Scenarios

    SciTech Connect

    E.J. Synakowski; M.G. Bell; R.E. Bell; T. Bigelow; M. Bitter; W. Blanchard; J. Boedo; C. Bourdelle; C. Bush; D.S. Darrow; , P.C. Efthimion; et al.

    2002-10-15

    A major research goal of the National Spherical Torus Experiment is establishing long-pulse, high-beta, high-confinement operation and its physics basis. This research has been enabled by facility capabilities developed over the last two years, including neutral-beam (up to 7 MW) and high-harmonic fast-wave heating (up to 6 MW), toroidal fields up to 6 kG, plasma currents up to 1.5 MA, flexible shape control, and wall preparation techniques. These capabilities have enabled the generation of plasmas with up to 35%. Normalized beta values often exceed the no wall limit, and studies suggest that passive wall mode stabilization is enabling this for broad pressure profiles characteristic of H-mode plasmas. The viability of long, high bootstrap-current fraction operations has been established for ELMing H-mode plasmas with toroidal beta values in excess of 15% and sustained for several current relaxation times. Improvements in wall conditioning and fueling are likely contributing to a reduction in H-mode power thresholds. Electron thermal conduction is the dominant thermal loss channel in auxiliary-heated plasmas examined thus far. High-harmonic fast-wave (HHFW) effectively heats electrons, and its acceleration of fast beam ions has been observed. Evidence for HHFW current drive is by comparing of the loop voltage evolution in plasmas with matched density and temperature profiles but varying phases of launched HHFW waves. A peak heat flux of 10 MW/m superscript ''2'' has been measured in the H-mode, with large asymmetries in the power deposition being observed between the inner and outer strike points. Noninductive plasma start-up studies have focused on coaxial helicity injection. With this technique, toroidal currents up to 400 kA have been driven, and studies to assess flux closure and coupling to other current-drive techniques have begun.

  4. Optimization of terahertz range gyrotron self-excitation conditions by increasing the lifetime of cyclotron oscillators in low-voltage interaction space

    NASA Astrophysics Data System (ADS)

    Ginzburg, N. S.; Glyavin, M. Yu.; Zotova, I. V.; Zheleznov, I. V.; Fokin, A. P.

    2017-01-01

    We propose a method of reducing the starting and operating currents of short-wavelength gyrotrons that is based on the application of a decelerating voltage directly to the resonator. The desired effect is achieved due to increasing electron lifetime in the interaction space. At a preset injection current, this circumstance ensures gyrotron self-excitation at a relatively low diffraction Q-factor, which leads to significant reduction in ohmic losses.

  5. Spectra of low-frequency modulation of gyrotron radiation during electron-cyclotron resonance heating of plasma in the L-2M stellarator

    SciTech Connect

    Batanov, G. M.; Kolik, L. V.; Konchekov, E. M.; Malakhov, D. V.; Novozhilova, Yu. V.; Petelin, M. I.; Petrov, A. E.; Pshenichnikov, A. A.; Sarksyan, K. A.; Skvortsova, N. N.; Kharchev, N. K.

    2011-05-15

    Results from experimental studies of the modulation of the gyrotron power during electron cyclotron resonance heating of plasma L-2M stellarator are presented. It is shown that the modulation spectrum consists of separate spectral bands, among which a 20-kHz peak with a spectral density exceeding by one order of magnitude the spectral density of the other peaks is observed. This can be explained by the gyrotron operation being affected by the wave reflected from long-wavelength plasma fluctuations.

  6. Synthesis of Current-Voltage Characteristics of 670 GHz Gyrotron Magnetron Injection Gun and Calculation of the Helical Electron Beam Parameters at the Leading Edge of a High-Voltage Pulse

    NASA Astrophysics Data System (ADS)

    Manuilov, V. N.; Glyavin, M. Yu.

    2013-02-01

    A method of synthesis of current-voltage characteristics (CVC) and calculation of the parameters of a helical electron beam (HEB) at the leading edge of the accelerating voltage pulse for gyrotron electron guns is proposed. These data can be used for a study of the gyrotron startup scenario with the mode competition taken into account. As an example, the results of calculations for a pulsed gyrotron with a frequency of 670 GHz are presented.

  7. Flash-lamp-pumped Ho:Tm:Cr:YAG and Ho:Tm:Er:YLF lasers: experimental results of a single, long pulse length comparison.

    PubMed

    Jani, M G; Barnes, N P; Murray, K E

    1997-05-20

    Flash-lamp-pumped, room-temperature Ho:Tm:Cr:YAG and Ho:Tm:Er:YLF are compared for single but long pulse operation, with pulse lengths of approximately 1.0 mus. Under similar operating conditions in normal-mode operation, a slope efficiency of 0.0331 was observed for Ho:Tm:Er:YLF compared with 0.0047 for Ho:Tm:Cr:YAG. For Q-switched operation, Ho:Tm:Er:YLF yielded a slope efficiency of 0.0075. In comparison, a slope efficiency of 0.0012 was obtained for Ho:Tm:Cr:YAG. Two methods of producing long pulse lengths are compared: pulse selection of normal-mode relaxation oscillations and Q-switching in a long resonator. Theoretical models developed in a companion paper for normal-mode relaxation oscillations and Q-switching in quasi-four-level solid-state lasers are in agreement with the experimental results.

  8. Effect of inclusion matrix model on temperature and thermal stress fields of K9-glass damaged by long-pulse laser

    NASA Astrophysics Data System (ADS)

    Pan, Yunxiang; Wang, Bin; Shen, Zhonghua; Lu, Jian; Ni, Xiaowu

    2013-04-01

    A model containing an inclusion matrix heated by a millisecond laser is proposed to calculate temperature and thermal stress fields of K9-glass using a finite element method. First, the evolution of temperature and thermal stress fields is analyzed. Results show that both the upper and lower surfaces are damaged. K9-glass is primarily damaged by the combination of radial and axial stresses. Calculated damage morphology is mainly determined by radial stress. Then damage morphology evolution with the increase of the incident laser energy is investigated, which shows that damage area spreads inward from both the front and rear surfaces. Finally, experimental results of long-pulse laser damage of K9-glass are analyzed. The comparison of numerical results with experimental observations shows a good correlation in damage morphology, which indicates that the built inclusion matrix model is applicable to long-pulse laser damage in K9-glass.

  9. Experimental study of a 200--300 GHz megawatt gyrotron oscillator

    SciTech Connect

    Grimm, T.L.

    1992-01-01

    An experimental study is presented of a pulsed megawatt gyrotron oscillator operating in the 200-300 GHz range whose design is consistent with continuous operation for ECRH of fusion plasmas. A cylindrical waveguide cavity over 20 free space wavelengths in diameter was designed to limit ohmic wall losses in the copper cavity to < 2 kW/cm[sup 2]. The frequency spacing between TE waveguide modes in this highly overmoded cavity is < 2%. The cavity is positioned at the peak magnetic field of a 14 T Bitter magnet. Two different radii beams produced by magnetron injection guns (MIGs) were used to excite the cavity. The large and small MIG guns produced annual beams of 0.75 cm and 0.45 cm radius. The guns operate with beam currents approaching 60 A and voltages as high as 100 kV. The voltage is produced by a line-type modulator with a pulse length of 3 [mu]s at a repetition rate of up to 4 Hz. Megawatt power levels can be generated in CW gyrotron oscillators at 200-300 GHz with efficiencies approaching 20%. The emission is single mode, single frequency with a single rotation which can easily be mode converted for transmission. No multimoding was observed at the high powers and efficiencies. The highest power reached with the large MIG gun was 0.97 MW at 230 GHz in the TE[sub 34,6] mode with an efficiency of 18% and beam parameters of 59 A and 90kV. This was the peak efficiency which was also obtained at 290 GHz in the TE[sub 41,8] mode with a power of 0.89 MW and beam parameters of 54 A and 93 kV. The highest power with the small MIG gun was 0.78 MW at 280 GHz in the TE[sub 25,13] mode with an efficiency of 17% and beam parameters of 51 A and 92 kV. The small MIG gun peak efficiency was 18% at 0.72 MW, 290 GHz in the TE[sub 25,14] mode. Efficiencies are about half of less highly overmoded gyrotrons. Mode competition is the main cause of the low efficiency, with voltage depression, beam thickness and velocity spread contributing only a fraction to the decrease.

  10. Long-pulse production of high current negative ion beam by using actively temperature controlled plasma grid for JT-60SA negative ion source

    SciTech Connect

    Kojima, A.; Hanada, M.; Yoshida, M.; Umeda, N.; Hiratsuka, J.; Kashiwagi, M.; Tobari, H.; Watanabe, K.; Grisham, L. R.

    2015-04-08

    The temperature control system of the large-size plasma grid has been developed to realize the long pulse production of high-current negative ions for JT-60SA. By using this prototype system for the JT-60SA ion source, 15 A negative ions has been sustained for 100 s for the first time, which is three times longer than that obtained in JT-60U. In this system, a high-temperature fluorinated fluid with a high boiling point of 270 degree Celsius is circulated in the cooling channels of the plasma grids (PG) where a cesium (Cs) coverage is formed to enhance the negative ion production. Because the PG temperature control had been applied to only 10% of the extraction area previously, the prototype PG with the full extraction area (110 cm × 45 cm) was developed to increase the negative ion current in this time. In the preliminary results of long pulse productions of high-current negative ions at a Cs conditioning phase, the negative ion production was gradually degraded in the last half of 100 s pulse where the temperature of an arc chamber wall was not saturated. From the spectroscopic measurements, it was found that the Cs flux released from the wall might affect to the negative ion production, which implied the wall temperature should be kept low to control the Cs flux to the PG for the long-pulse high-current production. The obtained results of long-pulse production and the PG temperature control method contributes the design of the ITER ion source.

  11. Pulsed dye laser versus long pulsed Nd:YAG laser in the treatment of angiokeratoma of Fordyce: A randomized, comparative, observer-blinded study.

    PubMed

    Ibrahim, S M

    2016-01-01

    Angiokeratoma of Fordyce is typically asymptomatic, blue-to-red papules with a scaly surface located on the scrotum, shaft of penis or labia majora. They can be treated with some locally destructive treatment modalities such as excision, electrocoagulation, cryotherapy and laser. To compare the effects of the pulsed dye laser versus long pulsed Nd:YAG laser in the treatment of angiokeratoma of Fordyce. Twenty tow patients with angiokeratoma of Fordyce were included in this study. All participants received three sessions of pulsed dye laser on the selected side or part of lesional area and long pulsed Nd:YAG laser on the other side or part of lesional area. Two dermatologists independently evaluated the photographs of the baseline and two-month follow-up after last session using a grade system in which treatment response was categorized into six grades. Both PDL and long pulsed Nd:YAG laser revealed statistically significant improvements in angiokeratoma of fordyce. Comparatively, there was a statistical difference between them (overall mean improvement with PDL, 61.8%, versus Nd:YAG, 77.63%; p < 0.005). Both PDL and 1064-nm Nd:YAG laser are effective and safe in the treatment of angiokeratoma of Fordyce with better response in Nd:YAG laser than pulsed dye laser.

  12. Pulsed dye laser versus long-pulsed Nd:YAG laser in the treatment of hypertrophic scars and keloid: A comparative randomized split-scar trial.

    PubMed

    Al-Mohamady, Abd El-Shakour Abd El-Hafiz; Ibrahim, Shady Mahmoud Attia; Muhammad, Muhammad Mohsen

    2016-08-01

    Keloids and hypertrophic scars are benign fibrous growths that occur after trauma or wounding of the skin and present a major therapeutic problem. The purpose of this study is to evaluate and compare the effectiveness of pulsed dye laser (PDL) versus Nd:YAG laser in hypertrophic scar and keloid. Twenty patients with hypertrophic scars and keloid were included in this prospective, randomized, split-scar study. Half of each scar was randomized to treatment with a 595-nm PDL and the contralateral half with the 1064-nm Nd:YAG. Each patient received 6 laser treatment sessions at 1-month intervals. The scars were evaluated at baseline and one month after the last laser session using the Vancouver scar scale (VSS). One month after the last laser treatment, final total VSS analysis of treated sites by PDL and long-pulsed Nd:YAG laser revealed significant improvements (p < 0.001), whereas the average percentage of improvement in the total VSS was 55.14% for PDL and 65.44% for Nd:YAG laser. However, there were no statistically significant differences between PDL- and long-pulsed Nd:YAG laser-treated sites for total VSS (p = 0.074). This was a single-center non-controlled trial, which included a small number of patients and subjective outcome measures. PDL and long-pulsed Nd:YAG laser treatments for keloid and hypertrophic scar provide significant improvement with insignificant difference between both modalities.

  13. A new imaging technique for assessment of the effectiveness of long pulse Nd:YAG 532 nm laser in treatment of facial port wine stain.

    PubMed

    Al-Janabi, Murtadha Hashim; Ismaeel Ali, Noor Taha; Mohamed Al-Sabti, Karrar Deiaa; Al-Dhalimi, Muhsin A; Abdul Wahid, Sahib Neamh

    2017-11-01

    PWS is a vascular malformation presented at birth and associated with a psychological problem to the patients. Many types of laser systems were used to solve this problem. To assess the efficacy of long-pulsed Nd:YAG 532-nm laser in the treatment of port wine stain both clinically and by imaging technique. This is an interventional therapeutic clinical study for the treatment of facial port-twine stain with long-pulsed, 532-nm, Nd:YAG laser. The treatment sessions were done every 4 weeks for 12 sessions and follow-up after 3 months of the last session. The assessment of the response was done before and at the end of follow-up period, both objectively (percent of improvement, photo comparison by using PSNR) and subjectively (patient satisfaction). Sixteen patients completed all sessions of the treatment. The improvement score for the PWS were failure = 0%, mild = 6.25%, moderate = 12.5%, good = 31.25%, and excellent = 50%. The values of PSNR for all the patients have been recorded and were fewer than 25 which means that the response for the treated lesions was very good. The long-pulsed Nd:YAG laser 532 nm is an effective and safe method of treatment of facial PWSs without significant residue. The PSNR was a new, simple, cheap and noninvasive method for assessment of the response of PWSs to laser therapy.

  14. Comparison and sequential study of long pulsed Nd:YAG 1,064 nm laser and sclerotherapy in leg telangiectasias treatment.

    PubMed

    Levy, Jean Luc; Elbahr, Chantal; Jouve, Elisabeth; Mordon, Serge

    2004-01-01

    Millisecond pulsed 1,064 nm Nd:YAG lasers have been developed for the treatment of leg telangiectasias. To date there have been very few side by side comparison studies of laser versus the gold standard sclerotherapy in treating small leg veins. This study aims to compare a long pulsed Nd:YAG laser with contact cooling to sclerotherapy for treating small diameter leg telangiectasias by evaluating objective and subjective clinical effects. Fourteen patients were selected with leg telangiectasias ranging from 0.5 to 2 mm at four comparable sites. One site was treated with long pulsed Nd:YAG alone, the second received sclerotherapy alone, the third laser then sclerotherapy, and the last one sclerotherapy then laser. The patients were followed up at 3 months after the last treatment. Photographs were taken pre-operatively and at 3 months after the last session. They were used for objective and comparative analysis. Statistical analysis was performed using Friedman's test controlling for subject. Improvement was tabulated from the photographic assessment on an improvement scale from 0 (no change) to 4 (greater than 75% clearing). There were clinical improvements in the laser group than sclerotherapy without statistical significance. Side effects were minimal and included hyperpigmentation. This pilot study demonstrates that the Smartepil LS long pulse Nd:YAG 1,064 nm laser can yield results similar to sclerotherapy in the treatment of small leg telangiectasias. Combination of both methods could increase response to treatment. Copyright 2004 Wiley-Liss, Inc.

  15. Treatment of acquired and small congenital melanocytic nevi with combined Er: YAG laser and long-pulsed alexandrite laser in Asian skin.

    PubMed

    Lee, Sang Eun; Choi, Ji Young; Hong, Kyung Tai; Lee, Kyung Real

    2015-04-01

    There is no gold standard for the treatment of benign melanocytic nevi for cosmetic purposes. To investigate the efficacy and safety of combined treatment with the short-pulsed erbium:yttrium-aluminum-garnet (Er:YAG) and long-pulsed alexandrite laser for acquired melanocytic nevi (AMN) and small congenital melanocytic nevi (CMN). Fifty-eight AMN and 7 small CMN in 24 Korean patients were treated with Er:YAG laser followed by long-pulsed alexandrite laser at 1-month intervals. At 8 weeks after the final treatment, all treated nevi showed complete removal of pigmentation, and the mean overall improvement score assessed by physicians, with a quartile grading scale, was 3.6 ± 0.7. The mean number of treatment sessions required to treat CMN (1.5 ± 0.3) was significantly greater than that for junctional (1.1 ± 0.2) or compound (1.2 ± 0.5) AMN. Postinflammatory hyperpigmentation (4.6%), erythema (9.2%), hypertrophic scars (1.5%), and mild atrophic scars (10.8%) were observed, but all resolved within 6 months, except for hypertrophic scars and 1 atrophic scar. Recurrence of pigmentation was observed in 1 CMN (1.5%) during 6 months of follow-up. Combined treatment with Er:YAG laser and long-pulsed alexandrite laser is effective for the removal of small benign melanocytic nevi with minimal adverse effects and low recurrence rates.

  16. Experiments on a Ku-band gyrotron traveling-wave-tube amplifier with a tapered waveguide

    NASA Astrophysics Data System (ADS)

    Jung, Sang Wook; Lee, Han Seul; Jang, Kwang Ho; Choi, Jin Joo; So, Joon Ho

    2015-09-01

    A Ku-band gyrotron traveling-wave-tube (gyro-TWT) amplifier was investigated. To obtain a wide operating bandwidth, we used a two-stage tapered rectangular waveguide interaction circuit. An electron beam of 27 keV and 3.56 A was produced from a double-anode magnetron-injection-gun (MIG). The measured frequency bandwidth over 10 dB gain in the linear operation region was found to be 18%. The gyro-TWT's saturated output power was 14.9 kW at 14.4 GHz, corresponding to a saturated output power gain of 27.4 dB and an efficiency of 15.5%. The measured experimental results were in agreement with those of non-linear numerical simulations.

  17. Numerical Design of Megawatt Gyrotron with 120 GHz Frequency and 50% Efficiency for Plasma Fusion Application

    NASA Astrophysics Data System (ADS)

    Kumar, Nitin; Singh, Udaybir; Kumar, Anil; Bhattacharya, Ranajoy; Singh, T. P.; Sinha, A. K.

    2013-02-01

    The design of 120 GHz, 1 MW gyrotron for plasma fusion application is presented in this paper. The mode selection is carried out considering the aim of minimum mode competition, minimum cavity wall heating, etc. On the basis of the selected operating mode, the interaction cavity design and beam-wave interaction computation are carried out by using the PIC code. The design of triode type Magnetron Injection Gun (MIG) is also presented. Trajectory code EGUN, synthesis code MIGSYN and data analysis code MIGANS are used in the MIG designing. Further, the design of MIG is also validated by using the another trajectory code TRAK. The design results of beam dumping system (collector) and RF window are also presented. Depressed collector is designed to enhance the overall tube efficiency. The design study confirms >1 MW output power with tube efficiency around 50% (with collector efficiency).

  18. Design of a double-anode magnetron-injection gun for the W-band gyrotron

    NASA Astrophysics Data System (ADS)

    Jang, Kwang Ho; Choi, Jin Joo; So, Joon Ho

    2015-07-01

    A double-anode magnetron-injection gun (MIG) was designed. The MIG is for a W-band 10-kW gyrotron. Analytic equations based on adiabatic theory and angular momentum conservation were used to examine the initial design parameters such as the cathode angle, and the radius of the beam emitting surface. The MIG's performances were predicted by using an electron trajectory code, the EGUN code. The beam spread of the axial velocity, Δvz/vz, obtained from the EGUN code was observed to be 1.34% at α = 1.3. The cathode edge emission and the thermal effect were modeled. The cathode edge emission was found to have a major effect on the velocity spread. The electron beam's quality was significantly improved by affixing non-emissive cylinders to the cathode.

  19. 1 megawatt, 100 GHz gyrotron study. Final report, March 21-September 1, 1983

    SciTech Connect

    Dionne, N.J.; Mallavarpu, R.; Palevsky, A.

    1983-11-21

    This report provides the results of a design study on a gyrotron device employing a new type of hollow gyrobeam formation system and having a capability for delivering megawatt CW power at 100 GHz to an ECRH-heated, magnetically-confined plasma. The conceptual basis for the beam formation system is the tilt-angle gun (TAG) in which a conically-shaped electron beam is formed in a magnetically-shielded region and is then injected into the stray-field region of the main magnetic focusing system. Because fluid coolants can be accessed through the central pole of the TAG-type gun, rf interaction can be contemplated with cavity configurations not practical with the conventional MIG-type gyrobeam formation systems.

  20. Analytical theory of low-frequency space charge oscillations in gyrotrons

    SciTech Connect

    Yan Ran; Antonsen, T. M. Jr.; Nusinovich, G. S.

    2008-10-15

    Low-frequency oscillations attributed to reflected electrons bouncing adiabatically between the electron gun and the interaction space have been observed in many gyrotrons. An analytical model is considered which allows one to apply space-charge wave theory to the analysis of these oscillations. In the framework of the small-signal theory, the regions of low-frequency oscillations, the oscillation frequency and the temporal and spatial growth rates of low-frequency oscillations are determined in the relevant parameter space. The mode frequency is determined not only by the particle travel time, but by the travel time of charge waves on the reflected electron beam. This explains the existence of modes with noncommensurate frequencies.

  1. Magnetron injection gun for a broadband gyrotron backward-wave oscillator

    SciTech Connect

    Yuan, C. P.; Chang, T. H.; Chen, N. C.; Yeh, Y. S.

    2009-07-15

    The magnetron injection gun is capable of generating relativistic electron beam with high velocity ratio and low velocity spread for a gyrotron backward-wave oscillator (gyro-BWO). However, the velocity ratio ({alpha}) varies drastically against both the magnetic field and the beam voltage, which significantly limits the tuning bandwidth of a gyro-BWO. This study remedies this drawback by adding a variable trim field to adjust the magnetic compression ratio when changing the operating conditions. Theoretical results obtained by employing a two-dimensional electron gun code (EGUN) demonstrate a constant velocity ratio of 1.5 with a low axial velocity spread of 6% from 3.4-4.8 Tesla. These results are compared with a three-dimensional particle-tracing code (computer simulation technology, CST). The underlying physics for constant {alpha} will be discussed in depth.

  2. Computations of VSWR and mode conversion for complex gyrotron window geometries

    SciTech Connect

    Salop, A.; Caplan, M.

    1984-01-01

    A computational method is described for determining VSWR and mode conversion for complex gyrotron window geometries. Assuming symmetric TE/sub on/ modes propagating in a circular cross-section guide, containing the window, one can write the total solution to the wave equation as the sum of the incident wave plus a wave scattered from the dielectric window region. The equations can be reformulated in terms of the scattered wave, resulting in a Helmholtz wave equation with an inhomogeneous driving term corresponding to the polarization current of the dielectric. Solutions are obtained using a suitable modification of the wave equation solver OPNCAV, and reflection coefficients, VSWR's and mode conversion information are then derived from an analysis of the reflected and transmitted powers. VSWR computations for typical single- and double-disk windows agree with conventional impedance calculations to within about 1%. Results for more complicated curved-boundary windows which cannot be treated by the standard methods are discussed.

  3. Long Pulse Enhanced Confinement Discharges in the HT-7 Superconducting Tokamak by IBW Heating and LH Wave Current Drive

    NASA Astrophysics Data System (ADS)

    Li, Jiangang

    2002-11-01

    Significant progress has been made on the HT-7 superconducting tokamak in the past year toward obtaining advanced operating modes in steady state. By combining IBW and LHCD, ELM-free limiter H-mode discharges with H_89 2, β _N*H_89 > 3 have been obtained that lasted for 53% τE . A well boronized wall prevented the further impurity accumulation and the large pumping kept the recycling at a very low level. The density kept almost constant with the feedback control. The non-inductive driven current fraction is about 60% and bootstrap fraction is about 18%. The central electron temperature is about 2.6 keV and density above 2 X 10^19 m-3. With reduced plasma parameters of central Te 1.5 keV and n_e0 2 X 10^19 m-3, H_89 1.45, βN 1.1, the improved confinement phase lasts for more than 100τE with the non-inductive driven current fraction 70%. Several technical improvements, especially suitable for teady-state operation, have been made to get these long pulse, enhanced confinement discharges. The new GBST1308 doped graphite coated with a 100 μ m functional gradient coating of SiC film was used as limiter material. The tiles can withstand 5 MW/m^2 heat loads for 30 seconds with water-cooling. Twenty-four pieces of a ferromagnetic material -- ferritic steel -- have been installed to reduce the ripple at the limiter radius from 4% to less than 1.6%. Two large cry-pumps were installed to control particle exhaust. New RF wall coating techniques suitable for superconducting operation, such as RF boronization, siliconization and long-life Li coating, have been developed and routinely used in the HT-7 tokamak. This contributes to the significant reduction of the impurity radiation and edge recycling. Edge turbulence measured by Langmuir probes has been suppressed either by IBW or by LHCD for a low recycling and boronized wall. The edge electric field shear has been modified by IBW and LHCD. Transport analysis of sawtooth heat pulse propagation shows very low electron heat

  4. Long-Pulse Relativistic Electron Beam Generation and Propagation in Gases and in Ultraviolet Laser Ionized Channels.

    NASA Astrophysics Data System (ADS)

    Lucey, Robert Francis, Jr.

    1988-12-01

    Experiments on the propagation of relativistic electron beams (REB) in the ion-focus regime (IFR) are described. A novel feature of the experiments is the long -pulse nature of the electron beam from the Michigan Electron Long Beam Accelerator (MELBA), a Marx generator with voltage compensation (1 MV, 10 kA, 1 microsecond). The REB is extracted from the diode through a 2.5 cm diameter aperture. A cold cathode is used. To reduce voltage droop from diode gap closure, anode-cathode spacings >7 cm are used. A 7.6 cm dia. cotton velvet cathode provides 300 A of injected current for 800 ns before a rapid increase in injected current, attributed to diode instability. Loss of REB transport accompanies this current increase. Conclusions drawn from the empirical diode study are: (1) successful generation of microsecond electron beams without magnetic insulation from cold cathodes requires diode spacing of ~10 cm, (2) cotton velvet gives improved beam quality over carbon fiber "brush" cathodes, (3) velvet cathodes have slower closure velocity of the cathode plasma. In the IFR regime partial neutralization of the space-charge of an REB by an ion background with the magnetic pinch force of the REB current achieves radial force balance. Experiments are performed in neutral gas, and in diethylaniline (DEA), preionized with a KrF laser. A pressure window for propagation is observed. For helium this window is 50-300 mtorr. The longest propagated pulse is 300 ns with a peak transported efficiency of 80%. In air the pressure window is 5-75 mtorr with similar efficiency. In DEA, fractional ionization of 0.004 has been achieved at a laser fluence of 10 mJ per square cm. To provide sufficient preionization for propagation, pressures where impact ionization is not negligible are required. A pressure window for propagation is again observed. For the current density and laser fluence in this experiment the pressure window is 0.2-2 mTorr. Within the pressure window instability, of the REB

  5. Retarding Field Analysis of Long Pulse Electron Beams Through Combined Bifurcated Bifilar Wiggler and Guide Magnetic Fields.

    NASA Astrophysics Data System (ADS)

    Pearce, Kelly Douglas

    In the past several years, the free electron laser (FEL) has been used to produce frequency tunable coherent radiation in the millimeter to submillimeter wavelength range. The reasonably high efficiency and power levels already achieved have spurred further work to refine and improve the FEL, particularly for lower wavelength applications. In a free electron laser, the electron beam is given a substantial transverse velocity component by passing it through a transverse periodic magnetic field commonly referred to as a wiggler. Recent work includes analytical and experimental investigations of beam propagation dynamics in the wiggler field. The present investigation is an experimental and numerical study of a type of wiggler called the bifurcated bifilar wiggler. In the present investigation a retarding field energy analysis is performed upon a long-pulse, mildly relativistic electron beam after it passes through combined bifurcated bifilar wiggler and axial magnetic fields. A 5-mus, 75-kV, 0-20 A, square output pulse electron beam is generated by a 3-stage, crowbarred Marx generator with a 10-90% risetime of less than 1 mus. The electron gun contains a lanthanum hexaboride (LaB6) cathode which is heated by electron bombardment in a Pierce electron-gun geometry. The cathode is immersed in a collimating axial guide field of 1.1 kG which extends over the length of the beam. The variable pitch wiggler has an entrance pitch of 5.65 cm and is 30 cm long. Diagnostics include a resistive-divider beam voltage monitor, a Pearson coil cathode current monitor, and a post-wiggler current collector. An aperture in the current collector allows part of the beam to enter a newly-developed retarding potential velocity analyzer. This analyzer is able to operate at full beam voltage of up to 85 kV. Numerical methods were used to produce computer generated retarding potential curves for operation at various combinations of system parameters. It was shown by simulation that the analyzer

  6. The national spherical torus experiment (NSTX) research programme and progress towards high beta, long pulse operating scenarios

    NASA Astrophysics Data System (ADS)

    Synakowski, E. J.; Bell, M. G.; Bell, R. E.; Bigelow, T.; Bitter, M.; Blanchard, W.; Boedo, J.; Bourdelle, C.; Bush, C.; Darrow, D. S.; Efthimion, P. C.; Fredrickson, E. D.; Gates, D. A.; Gilmore, M.; Grisham, L. R.; Hosea, J. C.; Johnson, D. W.; Kaita, R.; Kaye, S. M.; Kubota, S.; Kugel, H. W.; LeBlanc, B. P.; Lee, K.; Maingi, R.; Manickam, J.; Maqueda, R.; Mazzucato, E.; Medley, S. S.; Menard, J.; Mueller, D.; Nelson, B. A.; Neumeyer, C.; Ono, M.; Paoletti, F.; Park, H. K.; Paul, S. F.; Peng, Y.-K. M.; Phillips, C. K.; Ramakrishnan, S.; Raman, R.; Roquemore, A. L.; Rosenberg, A.; Ryan, P. M.; Sabbagh, S. A.; Skinner, C. H.; Soukhanovskii, V.; Stevenson, T.; Stutman, D.; Swain, D. W.; Taylor, G.; Von Halle, A.; Wilgen, J.; Williams, M.; Wilson, J. R.; Zweben, S. J.; Akers, R.; Barry, R. E.; Beiersdorfer, P.; Bialek, J. M.; Blagojevic, B.; Bonoli, P. T.; Budny, R.; Carter, M. D.; Chang, C. S.; Chrzanowski, J.; Davis, W.; Deng, B.; Doyle, E. J.; Dudek, L.; Egedal, J.; Ellis, R.; Ferron, J. R.; Finkenthal, M.; Foley, J.; Fredd, E.; Glasser, A.; Gibney, T.; Goldston, R. J.; Harvey, R.; Hatcher, R. E.; Hawryluk, R. J.; Heidbrink, W.; Hill, K. W.; Houlberg, W.; Jarboe, T. R.; Jardin, S. C.; Ji, H.; Kalish, M.; Lawrance, J.; Lao, L. L.; Lee, K. C.; Levinton, F. M.; Luhmann, N. C.; Majeski, R.; Marsala, R.; Mastravito, D.; Mau, T. K.; McCormack, B.; Menon, M. M.; Mitarai, O.; Nagata, M.; Nishino, N.; Okabayashi, M.; Oliaro, G.; Pacella, D.; Parsells, R.; Peebles, T.; Peneflor, B.; Piglowski, D.; Pinsker, R.; Porter, G. D.; Ram, A. K.; Redi, M.; Rensink, M.; Rewoldt, G.; Robinson, J.; Roney, P.; Schaffer, M.; Shaing, K.; Shiraiwa, S.; Sichta, P.; Stotler, D.; Stratton, B. C.; Takase, Y.; Tang, X.; Vero, R.; Wampler, W. R.; Wurden, G. A.; Xu, X. Q.; Yang, J. G.; Zeng, L.; Zhu, W.

    2003-12-01

    A major research goal of the national spherical torus experiment is establishing long-pulse, high beta, high confinement operation and its physics basis. This research has been enabled by facility capabilities developed during 2001 and 2002, including neutral beam (up to 7 MW) and high harmonic fast wave (HHFW) heating (up to 6 MW), toroidal fields up to 6 kG, plasma currents up to 1.5 MA, flexible shape control, and wall preparation techniques. These capabilities have enabled the generation of plasmas with \\beta _T \\equiv \\langle p \\rangle /(B_{T0}^{2}/2\\mu_{0}) of up to 35%. Normalized beta values often exceed the no-wall limit, and studies suggest that passive wall mode stabilization enables this for H mode plasmas with broad pressure profiles. The viability of long, high bootstrap current fraction operations has been established for ELMing H mode plasmas with toroidal beta values in excess of 15% and sustained for several current relaxation times. Improvements in wall conditioning and fuelling are likely contributing to a reduction in H mode power thresholds. Electron thermal conduction is the dominant thermal loss channel in auxiliary heated plasmas examined thus far. HHFW effectively heats electrons, and its acceleration of fast beam ions has been observed. Evidence for HHFW current drive is obtained by comparision of the loop voltage evolution in plasmas with matched density and temperature profiles but varying phases of launched HHFW waves. Studies of emissions from electron Bernstein waves indicate a density scale length dependence of their transmission across the upper hybrid resonance near the plasma edge that is consistent with theoretical predictions. A peak heat flux to the divertor targets of 10 MW m-2 has been measured in the H mode, with large asymmetries being observed in the power deposition between the inner and outer strike points. Non-inductive plasma startup studies have focused on coaxial helicity injection. With this technique

  7. Development program for a 200 kW, cw gyrotron. Quarterly report No. 11, January-March 1982

    SciTech Connect

    Tancredi, J.J.; Caplan, M.; Sandoval, J.J.; Matranga, V.A.

    1982-01-01

    The objective of this program is the design and development of a millimeter wave device to produce 200 kW of continuous-wave power at 60 GHz. The device, a gyrotron oscillator, will be compatible with power delivery to an electron-cyclotron plasma. Smooth control of RF power output over a 17 dB range is required, and the device should be capable of operation into a severe time-varying load mismatch. During this report period, the beam instability problem which plagued S/N 1 testing was evaluated in more detail. Separate tests were conducted on the gun tester and the lossy drift section, as well as both of these combined, and the results were compared to gyrotron tests on S/N 1. The instability problem now appears to be associated with RF leakage from the cavity.

  8. Experimental Study of a Gyrotron with a Sectioned Klystron-Type Cavity Operated at Higher Cyclotron Harmonics

    NASA Astrophysics Data System (ADS)

    Bandurkin, I. V.; Kalynov, Yu. K.; Savilov, A. V.

    2016-02-01

    We are planning to use extended cavities in order to excite gyrotrons with large electron orbits, which are operated at higher cyclotron harmonics in the terahertz frequency range. This is determined by both the weakness of the electron-wave interaction, and relatively low operating currents. Since the diffraction Q-factor of such cavities is high, a significant part of the highfrequency power produced by the electron beam is lost due to the ohmic loss in the cavity walls. As a way to solve this problem, we proposed a sectioned klystron-type cavity, where an extended length of the electron-wave interaction region can be combined with a relatively low diffraction Q-factor of the system. This work presents the results of the first experiment on a gyrotron with a sectioned cavity, where selective excitation of higher (second and third) cyclotron harmonics was observed in the terahertz frequency range (0 .55 and 0 .74 THz).

  9. Systematic cavity design approach for a multi-frequency gyrotron for DEMO and study of its RF behavior

    SciTech Connect

    Kalaria, P. C. Avramidis, K. A.; Franck, J.; Gantenbein, G.; Illy, S.; Pagonakis, I. Gr.; Thumm, M.; Jelonnek, J.

    2016-09-15

    High frequency (>230 GHz) megawatt-class gyrotrons are planned as RF sources for electron cyclotron resonance heating and current drive in DEMOnstration fusion power plants (DEMOs). In this paper, for the first time, a feasibility study of a 236 GHz DEMO gyrotron is presented by considering all relevant design goals and the possible technical limitations. A mode-selection procedure is proposed in order to satisfy the multi-frequency and frequency-step tunability requirements. An effective systematic design approach for the optimal design of a gradually tapered cavity is presented. The RF-behavior of the proposed cavity is verified rigorously, supporting 920 kW of stable output power with an interaction efficiency of 36% including the considerations of realistic beam parameters.

  10. The Electron-Optical System of a Gyrotron with an Operating Frequency of 263 GHz for Spectroscopic Research

    NASA Astrophysics Data System (ADS)

    Kuftin, A. N.; Manuilov, V. N.

    2016-07-01

    We describe specific features of modeling numerically the operation of magnetron-injection guns, which form high-quality helical electron beams in gyrotrons operated in the short-wave part of the millimeter-wave band (at a wavelength of 1 mm). As an example, we consider the gun of a gyrotron having an operating frequency of 263 GHz designed for spectroscopic research. It is shown that there are good reasons to perform calculations and optimization of the magnetroninjection un in two steps. At the first step, a simplest two-dimensional model can be used, which allows only for the influence of the field of the electrodes and the intrinsic space charge of the beam on the beam parameters. At the second, final stage one should allow for such factors as roughness of the emitting surface and thermal velocities of electrons. The electron distribution function in oscillatory velocities and the coefficient of electron reflection from the magnetic mirror should be calculated. It is demonstrated that the magnetron-injection gun, which is optimized by the method presented, is sufficiently universal and can be operated both at the first and second cyclotron-frequency harmonics. This opens up the possibility of developing gyrotrons for spectroscopy applications at frequencies of 263 and 526 GHz, respectively, which are required for biological and medical research.

  11. Theoretical study on mode competition between fundamental and second harmonic modes in a 0.42 THz gyrotron with gradually tapered complex cavity

    SciTech Connect

    Zhao, Qixiang Yu, Sheng; Zhang, Tianzhong; Li, Xiang

    2015-10-15

    In this paper, the nonlinear dynamics of mode competition in the complex cavity gyrotron are studied by using multi-frequency, time-dependent theory with the cold-cavity longitudinal profile approximation. Based on the theory, a code is written to simulate the mode competition in the gradually tapered complex cavity gyrotron operating at second harmonic oscillation. The simulations tracking seven competition modes show that single mode oscillation of the desired mode TE{sub 17.4} at 150 kW level can be expected with proper choice of operating parameters. Through studying on mode competition, it is proved that the complex cavity has a good capability for suppressing the mode competition. Meanwhile, it is found that TE{sub 17.3} could be excited in the first cavity as a competition mode when the gyrotron operating at large beam current, which leads to that TE{sub 17.3} and TE{sub 17.4} with different frequencies can coexist stably in the complex cavity gyrotron with very close amplitudes. Thus, the complex cavity might be used for multi-frequency output gyrotron.

  12. Comparison of the effectiveness of two fluences using long-pulsed Nd:YAG laser in the treatment of striae distensae. Histological and morphometric evaluation.

    PubMed

    Elsaie, Mohamed L; Hussein, Maha S; Tawfik, Abeer A; Emam, Hanaa M; Badawi, Manal A; Fawzy, Marwa M; Shokeir, Hisham A

    2016-12-01

    Striae distensae are common undesirable skin lesions of significant aesthetic concern. To compare the efficacy of two fluences (75 and 100 J/cm(2)) of long-pulsed Nd:YAG laser in the treatment of striae. Forty-five patients (Fitzpatrick skin types III-V) aged between 11 and 36 years with striae (23 patients with rubra type and 22 with alba type) were enrolled in the study. Each stria was divided into three equal sections, whereby the outer sections were treated with long-pulsed 1064 nm Nd:YAG laser, at a fluence of 75 or 100 J/cm(2), and fixed laser settings of 5 mm spot size and 15 ms pulse duration. The middle section was an untreated control. All subjects received four treatments at 3 weeks interval. Three 2-mm punch biopsies were taken from six subjects, all of the same stria, one before treatment and the other two from the outer sections, 3 months after the last session. Paraffin-embedded skin sections were subjected to histological and quantitative morphometric studies for collagen and elastic fibres. Results were assessed clinically through photographic evaluation and were considered satisfactory for both doctors and patients. A significant improvement in appearance of striae alba using 100 J/cm(2) was found while striae rubra improved more with 75 J/cm(2). Histologically, collagen and elastin fibres increased in posttreatment samples. A satisfactory improvement in striae distensae lesions was seen through clinical and histological evaluation. Thus, long-pulsed Nd:YAG laser is a safe and effective module of laser treatment for these common skin lesions.

  13. The Role of Lithium Conditioning in Achieving High Performance, Long Pulse H-mode Discharges in the NSTX and EAST Devices

    SciTech Connect

    Maingi, Rajesh; Mansfield, D. K.; Gong, X. Z.; Sun, Z.; Bell, M. G.

    2014-10-01

    In this paper, the role of lithium wall conditioning on the achievement of high performance, long pulse discharges in the National Spherical Torus Experiment (NSTX) and the Experimental Advanced Superconducting Tokamak (EAST) is documented. Common observations include recycling reduction and elimination of ELMs. In NSTX, lithium conditioning typically resulted in ELM-free operation with impurity accumulation, which was ameliorated e.g. with pulsed 3D fields to trigger controlled ELMs. Active lithium conditioning in EAST discharges has overcome this problem, producing an ELM-free Hmode with controlled density and impurities.

  14. Split lesion randomized comparative study between long pulsed Nd:YAG laser 532 and 1,064 nm in treatment of facial port-wine stain.

    PubMed

    Al-Dhalimi, Muhsin A; Al-Janabi, Murtadha H

    2016-11-01

    Lasers have been the treatment of choice for Port-wine stain (PWS). However, only one type of laser is not a panacea for all PWS malformations. This is may be due to the great heterogeneity of phenotypic presentation of this congenital anomaly as color, depth, and the site of the lesion. For the treatment of PWS, flash lamp-pumped pulsed dye laser, carbon dioxide, argon, krypton, copper bromide, frequency-doubled neodymium:yttrium-aluminum-garnet (Nd:YAG), and also intense pulsed light sources can be used. To assess and compare the effectiveness of wavelength 532 and 1,064 nanometers (nm) long pulse Nd:YAG laser in the treatment of facial port-wine stain. This was a comparative therapeutic study for the treatment of facial port-wine stain. We divided the lesion into two halves, medial and lateral, and then each half was treated by 532 or 1,064 nm Nd:YAG. The sessions were done every 4 weeks for six sessions and follow-up after 3 months, then assess the response before and after the sessions and at the end follow-up period objectively (degree of improvement, Photo comparison) and subjectively (Patient satisfaction). Fourteen out of nineteen patients completed all sessions of the treatment, and the other five patients were defaulted from the study due to different causes, including marriage, poor compliance for treatment, and for unknown causes. They were 13 (92.85%) females and 1 (7.15%) male. The mean age of patients was 22.07 ± 9.003 years (range 8-44 years). Three patients (21.4%) were Fitzpatrick's skin type III and four patients (78.6%) were typed IV. There was no hypertrophy in any of the lesions. All facial PWSs lie along the distribution of the trigeminal nerve. Four patients (28.6%) have V1 (ophthalmic), 12 patients (85.7%) have V2 (maxillary), and 9 (64.3%) have V3 (mandibular). The color of PWSs was pink-red in eight patients (57.1%), dark-red in four patients (28.6%), and purple-dark two patients (14.3%). The improvement score for the halves of

  15. A highly efficient and compact long pulse Nd:YAG rod laser with 540 J of pulse energy for welding application.

    PubMed

    Choubey, Ambar; Vishwakarma, S C; Misra, Pushkar; Jain, R K; Agrawal, D K; Arya, R; Upadhyaya, B N; Oak, S M

    2013-07-01

    We have developed an efficient and high average power flash lamp pumped long pulse Nd:YAG laser capable of generating 1 kW of average output power with maximum 540 J of single pulse energy and 20 kW of peak power. The laser pulse duration can be varied from 1 to 40 ms and repetition rate from 1 to 100 Hz. A compact and robust laser pump chamber and resonator was designed to achieve this high average and peak power. It was found that this laser system provides highest single pulse energy as compared to other long pulsed Nd:YAG laser systems of similar rating. A slope efficiency of 5.4% has been achieved, which is on higher side for typical lamp pumped solid-state lasers. This system will be highly useful in laser welding of materials such as aluminium and titanium. We have achieved 4 mm deep penetration welding of these metals under optimized conditions of output power, pulse energy, and pulse duration. The laser resonator was optimized to provide stable operation from single shot to 100 Hz of repetition rate. The beam quality factor was measured to be M(2) ~ 91 and pulse-to-pulse stability of ±3% for the multimode operation. The laser beam was efficiently coupled through an optical fiber of 600 μm core diameter and 0.22 numerical aperture with power transmission of 90%.

  16. Comparison of long-pulsed alexandrite laser and topical tretinoin-ammonium lactate in axillary acanthosis nigricans: A case series of patients in a before-after trial

    PubMed Central

    Ehsani, Amirhoushang; Noormohammadpour, Pedram; Goodarzi, Azadeh; Mirshams Shahshahani, Mostafa; Hejazi, Seyede Pardis; Hosseini, Elhamsadat; Azizpour, Arghavan

    2016-01-01

    Background: Acanthosis nigricans (AN) is a brown to black, velvety hyperpigmentation of the skin that usually involves cutaneous folds. Treatment of AN is important regarding cosmetic reasons and various therapeutic modalities have been used for these purposes. The goal of this study was to compare the effectiveness of long-pulsed alexandrite laser and topical tretinoin-ammonium lactate for treatment of axillary-AN. Methods: Fifteen patients with bilateral axillary-AN were studied in Razi Hospital, Tehran, Iran. Diagnosis was confirmed by two independent dermatologists. Each side skin lesion was randomly allocated to either topical mixed cream of tretinoin 0.05%- ammonium lactate 12% or long-pulsed alexandrite laser. Duration of treatment was 14 weeks. At endpoint, the mean percent reduction from baseline in pigmentation area was compared between the two groups. Results: The study population consisted of 15 patients three males and 12, females. The mean age of patients was 28.5±4.9 years. The mean percent reduction was 18.3±10.6%, in tretinoin/ammonium lactate group and 25.7±11.8% in laser group (P=0.004). Conclusion: These findings indicate that the application of alexandrite laser is a relative effective method for treatment of axillary-AN. However, this issue requires further studies with prolonged follow-up period. PMID:27999648

  17. Combination of 595-nm pulsed dye laser, long-pulsed 755-nm alexandrite laser, and microdermabrasion treatment for keratosis pilaris: retrospective analysis of 26 Korean patients.

    PubMed

    Lee, Sang Ju; Choi, Min Ju; Zheng, Zhenlong; Chung, Won Soon; Kim, Young Koo; Cho, Sung Bin

    2013-06-01

    Keratosis pilaris (KP) has beenpresented as small keratotic follicular papules with or without surrounding erythema. Various treatments with laser or light therapy have been used for the management of KP with various clinical outcomes. In the present study, we investigated the efficacy and safety of a combination therapy for KP. A total of 29 anatomical sites with KP in 26 patients were treated using a 595-nm pulsed dye laser (PDL) with nonpurpuragenic fluences, a long-pulsed 755-nm alexandrite laser, and microdermabrasion. Clinical improvement was assessed by comparing preand posttreatment clinical photographs and patient satisfaction rates. Evaluation of the clinical results three months after the treatments showed that 12 of the 29 anatomical sites (41.4%) demonstrated Grade 3 clinical improvement, ten (34.5%) had Grade 2 clinical improvement, four (13.8%) showed Grade 1 improvement, and three (10.3%) showed Grade 4 improvement. We observed that KP lesions improved not only in erythema and skin texture, but also in brownish dyschromias. Potential adverse events were not observed, except prolonged posttherapy scaling. Our observations demonstrate that combination therapy using a 595-nm PDL, a long-pulsed 755-nm alexandrite laser, and microdermabrasion can have a positive therapeutic effect on KP.

  18. Plasma wall interaction in long-pulse helium discharge in LHD - Microscopic modification of the wall surface and its impact on particle balance and impurity generation

    NASA Astrophysics Data System (ADS)

    Tokitani, M.; Kasahara, H.; Masuzaki, S.; Motojima, G.; Shoji, M.; Ueda, Y.; Yoshida, N.; Yoshimura, Y.; Nagasaki, K.; Ashikawa, N.; Mutoh, T.; Yamada, H.; Nagata, S.

    2015-08-01

    Ultra-long-pulse helium discharge with ion and electron cyclotron heating (ICH + ECH) in the Large Helical Device (LHD) was achieved in a 48 min plasma (ne ∼ 1.2 × 1019 m-3, Ti,e ∼ 2 keV) with an average heating power of 1.2 MW. The temperature of the first-wall surface during discharges remained at nearly room temperature. However, even in ultra-long-pulse helium discharge, the discharge conditions cannot be said to be in a steady-state, because of two major issues interrupting the steady-state condition. One is the "dynamic change of the wall pumping rate" and the other is the "termination of the discharge with the exfoliation of the mixed-material deposition layers." Microscopic modifications, such as helium radiation damage and the formation of the mixed-material deposition layers composed of C (∼98%) and Fe (∼2%), on the plasma facing components (PFMs) were clarified to possibly influence the major issues.

  19. Comparison of long-pulsed alexandrite laser and topical tretinoin-ammonium lactate in axillary acanthosis nigricans: A case series of patients in a before-after trial.

    PubMed

    Ehsani, Amirhoushang; Noormohammadpour, Pedram; Goodarzi, Azadeh; Mirshams Shahshahani, Mostafa; Hejazi, Seyede Pardis; Hosseini, Elhamsadat; Azizpour, Arghavan

    2016-01-01

    Acanthosis nigricans (AN) is a brown to black, velvety hyperpigmentation of the skin that usually involves cutaneous folds. Treatment of AN is important regarding cosmetic reasons and various therapeutic modalities have been used for these purposes. The goal of this study was to compare the effectiveness of long-pulsed alexandrite laser and topical tretinoin-ammonium lactate for treatment of axillary-AN. Fifteen patients with bilateral axillary-AN were studied in Razi Hospital, Tehran, Iran. Diagnosis was confirmed by two independent dermatologists. Each side skin lesion was randomly allocated to either topical mixed cream of tretinoin 0.05%- ammonium lactate 12% or long-pulsed alexandrite laser. Duration of treatment was 14 weeks. At endpoint, the mean percent reduction from baseline in pigmentation area was compared between the two groups. The study population consisted of 15 patients three males and 12, females. The mean age of patients was 28.5±4.9 years. The mean percent reduction was 18.3±10.6%, in tretinoin/ammonium lactate group and 25.7±11.8% in laser group (P=0.004). These findings indicate that the application of alexandrite laser is a relative effective method for treatment of axillary-AN. However, this issue requires further studies with prolonged follow-up period.

  20. Mechanisms of amplification of ultrashort electromagnetic pulses in gyrotron traveling wave tube with helically corrugated waveguide

    SciTech Connect

    Ginzburg, N. S. Zaslavsky, V. Yu.; Zotova, I. V.; Sergeev, A. S.; Zheleznov, I. V.; Samsonov, S. V.; Mishakin, S. V.

    2015-11-15

    A time-domain self consistent theory of a gyrotron traveling wave tube with a helically corrugated operating waveguide has been developed. Based on this model, the process of short pulse amplification was studied in regimes of grazing and intersection of the dispersion curves of the electromagnetic wave and the electron beam. In the first case, the possibility of amplification without pulse form distortion was demonstrated for the pulse spectrum width of the order of the gain bandwidth. In the second case, when the electrons' axial velocity was smaller than the wave's group velocity, it was shown that the slippage of the incident signal with respect to the electron beam provides feeding of the signal by “fresh” electrons without initial modulation. As a result, the amplitude of the output pulse can exceed the amplitude of its saturated value for the case of the grazing regime, and, for optimal parameters, the peak output power can be even larger than the kinetic power of the electron beam.