Science.gov

Sample records for 140-ghz long-pulsed gyrotron

  1. Spectral Characteristics of a 140-GHz Long-Pulsed Gyrotron

    PubMed Central

    Han, Seong-Tae; Griffin, Robert G.; Hu, Kan-Nian; Joo, Chan-Gyu; Joye, Colin D.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Torrezan, Antonio C.; Woskov, Paul P.

    2008-01-01

    Gyrotrons operating in the millimeter and submillimeter wavelength ranges are the promising sources for applications that are requiring good spectral characteristics and a wide range of output power. We report the precise measurement results of gyrotron spectra. Experiments were conducted using a 140-GHz long-pulse gyrotron that is developed for the dynamic nuclear polarization/nuclear-magnetic-resonance spectroscopy at the Massachusetts Institute of Technology. Transient downshift of the frequency by 12 MHz with a time constant of 3 s was observed. After reaching equilibrium, the frequency was maintained within 1 ppm for over 20 s. The coefficient of the frequency change with cavity temperature was −2.0 MHz/K, which shows that fine tuning of the gyrotron frequency is plausible by cavity-temperature control. Frequency pulling by the beam current was observed, but it was shown to be masked by the downward shift of the gyrotron frequency with temperature. The linewidth was measured to be much less than 1 MHz at 60 dB relative to the carrier power [in decibels relative to carrier (dBc)] and 4.3 MHz at 75 dBc, which is the largest dynamic range to date for the measurement of gyrotron linewidth to our knowledge. PMID:19081779

  2. Experimental results of the 140 GHz, 1 MW long-pulse gyrotron for W7-X

    NASA Astrophysics Data System (ADS)

    Koppenburg, K.; Arnold, A.; Borie, E.; Dammertz, G.; Giguet, E.; Heidinger, R.; Illy, S.; Kuntze, M.; Le Cloarec, G.; Legrand, F.; Leonhardt, W.; Lievin, C.; Neffe, G.; Piosczyk, B.; Schmid, M.; Thumm, M.

    2003-02-01

    Gyrotrons at high frequency with high output power are mainly developed for microwave heating and current drive in plasmas for thermonuclear fusion. For the stellarator Wendelstein 7-X now under construction at IPP Greifswald, Germany, a 10 MW ECRH system is foreseen. A 1 MW, 140 GHz long-pulse gyrotron has been designed and a pre-prototype (Maquette) has been constructed and tested in an European collaboration between FZK Karlsruhe, CRPP Lausanne, IPF Suttgart, IPP Greifswald, CEA Cadarache and TED Vélizy [1]. The cylindrical cavity is designed for operating in the TE28,8 mode. It is a standard tapered cavity with linear input downtaper and a non-linear uptaper. The diameter of the cylindrical part is 40.96 mm. The transitions between tapers and straight section are smoothly rounded to avoid mode conversion. The TE28,8-cavity mode is transformed to a Gaussian TEM0,0 output mode by a mode converter consisting of a rippled-wall waveguide launcher followed by a three mirror system. The output window uses a single, edge cooled CVD-diamond disk with an outer diameter of 106 mm, a window aperture of 88 mm and a thickness of 1.8 mm corresponding to four half wavelengths. The collector is at ground potential, and a depression voltage for energy recovery can be applied to the cavity and to the first two mirrors. Additional normal-conducting coils are employed to the collector in order to produce an axial magnetic field for sweeping the electron beam with a frequency of 7 Hz. A temperature limited magnetron injection gun without intermediate anode ( diode type ) is used. In short pulse operation at the design current of 40 A an output power of 1 MW could be achieved for an accelerating voltage of 82 kV without depression voltage and with a depression voltage of 25 kV an output power of 1.15 MW at an accelerating voltage of 84 kV has been measured. For these values an efficiency of 49% was obtained. At constant accelerating voltages, the output power did not change up to

  3. Long-pulse operation of a 0.5 MW TE{sub 10.4} gyrotron at 140 GHz

    SciTech Connect

    Dammertz, G.; Iatrou, C.T.; Kuntze, M.; Moebius, A.; Piosczyk, B.; Braz, O.; Thumm, M. |

    1996-06-01

    Gyrotron oscillators have proven to be highly efficient sources of coherent mm-wave radiation. They have been used successfully for electron cyclotron resonance heating (ECRH) experiments and electron cyclotron diagnostics (ECD) of plasma fusion for some time. Due to the localized energy deposition, the temperature profile can be modified and the stability of the plasma can be improved. Here, the operation features of a TE{sub 10.4}-mode gyrotron oscillator with a quasi-optical mode converter and a single-stage depressed collector at 140 GHz with an output power of 500 kW in long pulses of 0.2 s are presented. Measurements on long-pulse operation of the tube are described in detail, and the significant differences between short- and long-pulse operation concerning efficiency and output power are pointed out. The variation of frequency during a pulse and an irreversible frequency shift during long-pulse operation were measured and are discussed with respect to gyrotron design.

  4. Studies of novel 140 GHz gyrotrons

    NASA Astrophysics Data System (ADS)

    Hu, Wen

    We have designed, built and tested the world's first mode-selective confocal cavity gyrotron oscillator operating at 140GHz with over 66kW of RF power and up to 23% efficiency. The tube operates at the HE06 mode of the confocal cavity. A Magnetotron Injection Gun (MIG) provides an annular electron beam with up to 70kV and 8A. The confocal gyrotron oscillator is designed to better characterize the confocal cavity's mode spectrum for future amplifier applications. The device utilizes the interaction between an electron beam in cyclotron motion and the cavity mode in an open two-mirror confocal cavity are suppressed, and only gaussian-like modes can propagate with small loss. As a result, the confocal geometry reduces mode indices from two dimensional TEn,m to one dimensional HE0,q in confocal waveguide. The greatly reduced mode density of this structure lowers the risk of spurious mode competition, which is a critical issue in gyrotron development. Several models were formulated for various configurations of gyrotrons. A nonlinear theory for the mirror based quasi-optical Gyrotron Traveling Wave Tube (Gyro-TWT) was developed for the first time. The Gyro-TWT consists of a series of parallel spherical mirrors. A free space Gaussian beam propagates through the structure by bouncing between the mirrors in a serpentine path. A co- propagating electron beam in gyromotion interacts with and the amplifies the wave. The model shows excellent agreement with the well benchmarked linear theory. The phase front distortion effect in the quasi-optical gyro- TWT is revealed by this model. A preliminary confocal waveguide based gyro-TWT amplifier is designed. Cold tests of the quasi-optical input circuit show good gaussian beam transport with low loss. The amplifier performance is theoretically predicted to have a 4dB/cm linear gain, 20% efficiency and 70kW RF power. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  5. Initial Testing of a 140 GHz 1 MW Gyrotron

    NASA Astrophysics Data System (ADS)

    Cauffman, Stephen; Felch, Kevin; Blank, Monica; Borchard, Philipp; Cahalan, Pat; Chu, Sam; Jory, Howard

    2001-10-01

    CPI has completed the fabrication of a 140 GHz 1 MW CW gyrotron to be used on the W7-X stellarator at IPP Greifswald. Testing of the initial build of this gyrotron had just begun when this abstract was prepared, and was expected to finish in September, at which time a planned rebuild of the device was scheduled to begin. This poster will summarize the gyrotron design, present results of initial testing, and outline any design changes planned as a consequence of these results. This gyrotron's design employs a number of advanced features, including a diode electron gun for simplified operation, a single-stage depressed collector to enhance overall efficiency, a CVD diamond output window, an internal mode converter that converts the excited TE28,7 cavity mode to a Gaussian output beam, and a high-voltage layout that locates all external high voltage below the superconducting magnet system without requiring an oil tank for insulation. Similar features are being used for an 84 GHz 500 kW system being built for the KSTAR tokamak program and for a 110 GHz 1.5 MW system being designed in collaboration with MIT, UMd, UW, GA, and Calabazas Creek Research with funding provided by DOE.

  6. Development and Preliminary Commissioning Results of a Long Pulse 140 GHz ECRH System on EAST Tokamak (Invited)

    NASA Astrophysics Data System (ADS)

    Xu, Handong; Wang, Xiaojie; Liu, Fukun; Zhang, Jian; Huang, Yiyun; Shan, Jiafang; Wu, Dajun; Hu, Huaichuan; Li, Bo; Li, Miaohui; Yang, Yong; Feng, Jianqiang; Xu, Weiye; Tang, Yunying; Wei, Wei; Xu, Liqing; Liu, Yong; Zhao, Hailin; Lohr, J.; A. Gorelov, Y.; P. Anderson, J.; Ma, Wendong; Wu, Zege; Wang, Jian; Zhang, Liyuan; Guo, Fei; Sun, Haozhang; Yan, Xinsheng; East Team

    2016-04-01

    A long pulse electron cyclotron resonance heating (ECRH) system has been developed to meet the requirements of steady-state operation for the EAST superconducting tokamak, and the first EC wave was successfully injected into plasma during the 2015 spring campaign. The system is mainly composed of four 140 GHz gyrotron systems, 4 ITER-Like transmission lines, 4 independent channel launchers and corresponding power supplies, a water cooling, control & inter-lock system etc. Each gyrotron is expected to deliver a maximum power of 1 MW and be operated at 100-1000 s pulse lengths. The No.1 and No.2 gyrotron systems have been installed. In the initial commissioning, a series of parameters of 1 MW 1 s, 900 kW 10 s, 800 kW 95 s and 650 kW 753 s have been demonstrated successfully on the No.1 gyrotron system based on calorimetric dummy load measurements. Significant plasma heating and MHD instability suppression effects were observed in EAST experiments. In addition, high confinement (H-mode) discharges triggered by ECRH were obtained. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2011GB102000, 2012GB103000 and 2015GB103000)

  7. Operational Characteristics of a 14-W 140-GHz Gyrotron for Dynamic Nuclear Polarization

    PubMed Central

    Joye, Colin D.; Griffin, Robert G.; Hornstein, Melissa K.; Hu, Kan-Nian; Kreischer, Kenneth E.; Rosay, Melanie; Shapiro, Michael A.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Woskov, Paul P.

    2006-01-01

    The operating characteristics of a 140-GHz 14-W long pulse gyrotron are presented. The device is being used in dynamic nuclear polarization enhanced nuclear magnetic resonance (DNP/NMR) spectroscopy experiments. The gyrotron yields 14 W peak power at 139.65 GHz from the TE(0,3) operating mode using a 12.3-kV 25-mA electron beam. Additionally, up to 12 W peak has been observed in the TE(2,3) mode at 136.90 GHz. A series of mode converters transform the TE(0,3) operating mode to the TE(1,1) mode. Experimental results are compared with nonlinear simulations and show reasonable agreement. The millimeter-wave output beam was imaged in a single shot using a pyroelectric camera. The mode patterns matched reasonably well to theory for both the TE(0,1) mode and the TE(1,1) mode. Repeatable mode patterns were obtained at intervals ranging from 0.8 s apart to 11 min apart at the output of the final mode converter. PMID:17431442

  8. Design and operation of 140 GHz gyrotron oscillators for power levels up to 1 MW CW

    SciTech Connect

    Jory, H.; Bier, R.; Craig, L.J.; Felch, K.; Ives, L.; Lopez, N.; Spang, S.

    1986-12-01

    Varian has designed and tested 140 GHz gyrotron oscillators that have generated output powers of 100 kW CW and 200 kW for 1 ms pulses. Upcoming tubes will be designed to operate at power levels of 200 kW CW and ultimately up to 1 MW CW. The important design considerations which are addressed in the higher power tubes include the design of the electron gun, interaction circuit, and output window. These issues will be discussed and the results of the earlier 140 GHz gyrotron work at Varian will be summarized.

  9. Megawatt Long-Pulse Gyrotrons for ECH and ECCD Applications

    NASA Astrophysics Data System (ADS)

    Cauffman, S.; Felch, K.; Blank, M.; Borchard, P.; Cahalan, P.; Chu, T. S.; Jory, H.; Saraph, G.; Wagner, D.

    2000-10-01

    High-power long-pulse mm-wave sources are required for electron cyclotron heating and current drive in large-scale fusion experiments. Gyrotron oscillator technology has developed considerably in recent years, enabling the generation of Gaussian mm-wave beams at megawatt power levels for pulse durations in excess of 10 seconds from a single unit. This presentation summarizes CPI's recent gyrotron development activities for fusion applications. CPI has fabricated a series of 110 GHz gyrotrons for use in DIII-D ECH experiments. The three most recent gyrotrons in this series employ a diode electron gun, an internal quasi-optical mode converter, and a CVD diamond output window. Further development activities funded by DOE are aimed at incorporating a multi-stage depressed electron beam collector to improve efficiency and optimizing other design components to enable output power levels of 1.5 MW. CPI is also constructing a prototype 140 GHz 1 MW CW gyrotron for use with the W7-X stellarator. This gyrotron employs a single-stage depressed collector and a high-voltage design eliminating the need for oil around the insulating ceramics. A similar configuration was employed successfully in a recently delivered 70 GHz 500 kW gyrotron, and is being used for an 84 GHz 500 kW system under development for the KSTAR tokamak program. Design features of these devices will be compared, and empirical results will be presented for those devices for which test data is available.

  10. Deevelopment of a 1.5 MW, 140 GHz coaxial gyrotron

    SciTech Connect

    Piosczyk, B.; Dammertz, G.; Iatrou, C.T.; Moebius, A.; Zhang, S.C.

    1995-12-31

    A 1.5 MW, 140 GHz, TE{sub 28,16}-coaxial gyrotron with an inverse MIG is under development. Preliminary rf-tests using an axial rf output and a simple cavity with a constant diameter and non-corrugated inner rod gave an rf output power of 1 MW with an efficiency of 23% at 140 GHz (TE{sub 28,16}) and 1.3 MW with an efficiency of 29% at 133 GHz (TE{sup 27,15}). No indications of beam instabilities in the beam tunnel between the IMIG gun and the cavity have been observed. Experiments with an improved cavity and the design of the tube with a radial dual Gaussian beam output and a depressed collector are underway.

  11. The MTX computer control system for the 400 kilowatt 140 GHz gyrotron

    NASA Astrophysics Data System (ADS)

    Jackson, M. C.; Ferguson, S. W.; Petersen, D. E.

    1991-09-01

    A 400 kilowatt, 140 GHz gyrotron is employed on MTX as a source of direct plasma heating and, additionally, as a driver for a free electron laser, which is used for plasma heating. The control system that operates this gyrotron uses a new graphics oriented software system called TACL (Thaumaturgic Automated Control Logic) developed by the Continuous Electron Beam Accelerator Facility (CEBAF) and owned by DOE. This control language does not require a software specialist, but is easily handled by the engineer or technician working on the system. All control logic and custom displays are entered via graphics oriented editors and no actual lines of code need to be written. The graphics displays make the gyrotron operation quite simple and allow individual users to define displays to meet their own needs or develop one for a specific set of tests to be run. The system, additionally, can be used for logging functions, which have been found quite useful in tracking long term trends in vacion current and calorimetry of gyrotron cooling circuits. The system is composed of one computer (HP 9000 series 300) controlling multiple CAMAC crates located at the various components used in the system. A second series 300 computer is used as a supervisor and is located in the main tokamak control room. This supervisory computer provides remote operation of the gyrotron, and also provides a link to the microwave transport vacuum control (also TACL). The supervisory computer, additionally, is used as a subsystem status summary point for permissives to the gyrotron control system.

  12. Development of High Power Gyrotrons at 84, 110, and 140 GHz

    NASA Astrophysics Data System (ADS)

    Cauffman, Stephen; Blank, Monica; Borchard, Philipp; Cahalan, Pat; Chu, Sam; Felch, Kevin; Jory, Howard

    2002-11-01

    High power mm-wave sources are needed for electron cyclotron heating, current drive, and instability suppression in fusion plasmas. CPI has recently developed an 84 GHz, 500 kW, 2 second pulse gyrotron for use on K-STAR; a series of 110 GHz, 1 MW, 10 second pulse gyrotrons (two of which had achieved 1 MW 5 second pulse widths as of the writing of this abstract) for use on DIII-D; and a 140 GHz, 1 MW, CW gyrotron (for which initial tests were conducted, and which is presently being modified in preparation for further testing) for use on W-7X. Each design employs a diode magnetron injection gun, a high-order TE-mode interaction cavity, an internal mode converter to transform the excitation mode into a Gaussian output beam, and a CVD diamond output window to allow low- loss transmission of the output beam. The 84 GHz and 140 GHz systems employ a single-stage depressed voltage beam collector to enhance the overall electrical efficiency of the device and an external high voltage layout that obviates the need for oil insulation. Experimental results for each system will be discussed.

  13. Design considerations for a 100 kW c-w, 140 GHz gyrotron oscillator

    SciTech Connect

    Felch, K.; Bier, R.; Fox, L.; Huey, H.; Ives, L.; Jory, H.; Spang, S.

    1984-01-01

    A gyrotron oscillator capable of generating 100 kW of c-w power is currently under development at Varian. The tube is being designed for operation in the TE/sup 0//sub 031/ cavity mode with the electron beam located at the second radial electric field maximum in the cavity. The electron beam will be produced by a magnetron injection gun and the 56 kG magnetic field required for 140 GHz operation will be provided by a superconducting magnet. Initial design calculations for the important elements of the tube are reported and the various technology issues of the tube design are discussed.

  14. Amplification of picosecond pulses in a 140-GHz gyrotron-traveling wave tube.

    PubMed

    Kim, H J; Nanni, E A; Shapiro, M A; Sirigiri, J R; Woskov, P P; Temkin, R J

    2010-09-24

    An experimental study of picosecond pulse amplification in a gyrotron-traveling wave tube (gyro-TWT) has been carried out. The gyro-TWT operates with 30 dB of small signal gain near 140 GHz in the HE₀₆ mode of a confocal waveguide. Picosecond pulses show broadening and transit time delay due to two distinct effects: the frequency dependence of the group velocity near cutoff and gain narrowing by the finite gain bandwidth of 1.2 GHz. Experimental results taken over a wide range of parameters show good agreement with a theoretical model in the small signal gain regime. These results show that in order to limit the pulse broadening effect in gyrotron amplifiers, it is crucial to both choose an operating frequency at least several percent above the cutoff of the waveguide circuit and operate at the center of the gain spectrum with sufficient gain bandwidth.

  15. Design of Electron Gun for 1.5 MW, 140 GHz Gyrotron

    NASA Astrophysics Data System (ADS)

    Singh, Udaybir; Kumar, Nitin; Purohit, L. P.; Sinha, A. K.

    2011-02-01

    This paper presents the design of the triode type electron gun for a 140 GHz, 1.5 MW gyrotron with the transverse to the axial velocity ratio of the beam 1.4 and the transverse velocity spread 1.28%. The operating mode of the gyrotron is TE24,8 and it is operated in the fundamental harmonic. The analytic trade-off equations for the electron gun design have been used to estimate the initial gun parameters. The electron trajectory tracing program has been used to optimize the electron gun design. The parametric dependences of modulating anode voltage, beam voltage and cathode magnetic field on the beam quality has also been studied.

  16. Development of advanced high-power 140 GHz gyrotrons for ECW applications

    SciTech Connect

    Kuntze, M.; Dammertz, G.; Iatrou, C.; Moebius, A.; Piosczyk, B.; Soudee, G.; Braz, O.; Kern, S.; Thumm, M.; Wien, A.

    1995-11-01

    A main goal of the gyrotron development program at the Research Center Karlsruhe (FZK) is the design, construction and test of high-power gyrotron oscillators for electron cyclotron wave (ECW) applications and diagnostics of magnetically confined plasmas in controlled thermonuclear fusion research. A TE{sub 10,4} gyrotron oscillator with advanced built-in quasi-optical mode converter and radial output coupling, into a Gaussian mode (94.5 % mode purity) has been operated at 0.46 MW with 200 ms pulse duration and total output efficiency 32 % (38 % electronic efficiency). The maximum output power was 0.6 MW (12 ms) at 27 % output efficiency. In first proof of principle experiments this total tube efficiency was improved to 51 % by the use of a single-stage potential depressed collector. In short pulse experiments (10 ms) with a TE{sub 22,6} mode cavity about 1 MW output power was generated at 140.1 GHz with U{sub b}= 85 kV and I{sub b} = 53 A. Modes of type TE{sub m,6} with m = 20 to 26 were excited in the frequency range between 136 GHz and 155 GHz with output powers of 500-600 kW at I{sub b} = 40 A. The measurements were carried out with a single disk output window and a non improved quasi-optical mode converter. First short pulse experiments with a coaxial cavity gyrotron designed for 1.5 MW output power gave 1 MW at 140 GHz (TE{sub 28,16}) and 1.3 MW at 166 GHz (TE{sub 27,15}) with efficiencies of 23 % and 29 %, respectively.

  17. Study on the After Cavity Interaction in a 140 GHz Gyrotron Using 3D CFDTD PIC Simulations

    NASA Astrophysics Data System (ADS)

    Lin, M. C.; Illy, S.; Avramidis, K.; Thumm, M.; Jelonnek, J.

    2016-10-01

    A computational study on after cavity interaction (ACI) in a 140 GHz gryotron for fusion research has been performed using a 3-D conformal finite-difference time-domain (CFDTD) particle-in-cell (PIC) method. The ACI, i.e. beam wave interaction in the non-linear uptaper after the cavity has attracted a lot of attention and been widely investigated in recent years. In a dynamic ACI, a TE mode is excited by the electron beam at the same frequency as in the cavity, and the same mode is also interacting with the spent electron beam at a different frequency in the non-linear uptaper after the cavity while in a static ACI, a mode interacts with the beam both at the cavity and at the uptaper, but at the same frequency. A previous study on the dynamic ACI on a 140 GHz gyrotron has concluded that more advanced numerical simulations such as particle-in-cell (PIC) modeling should be employed to study or confirm the dynamic ACI in addition to using trajectory codes. In this work, we use a 3-D full wave time domain simulation based on the CFDTD PIC method to include the rippled-wall launcher of the quasi-optical output coupler into the simulations which breaks the axial symmetry of the original model employing a symmetric one. A preliminary simulation result has confirmed the dynamic ACI effect in this 140 GHz gyrotron in good agreement with the former study. A realistic launcher will be included in the model for studying the dynamic ACI and compared with the homogenous one.

  18. Innovation on high-power long-pulse gyrotrons

    NASA Astrophysics Data System (ADS)

    Litvak, Alexander; Sakamoto, Keishi; Thumm, Manfred

    2011-12-01

    Progress in the worldwide development of high-power gyrotrons for magnetic confinement fusion plasma applications is described. After technology breakthroughs in research on gyrotron components in the 1990s, significant progress has been achieved in the last decade, in particular, in the field of long-pulse and continuous wave (CW) gyrotrons for a wide range of frequencies. At present, the development of 1 MW-class CW gyrotrons has been very successful; these are applicable for self-ignition experiments on fusion plasmas and their confinement in the tokamak ITER, for long-pulse confinement experiments in the stellarator Wendelstein 7-X (W7-X) and for EC H&CD in the future tokamak JT-60SA. For this progress in the field of high-power long-pulse gyrotrons, innovations such as the realization of high-efficiency stable oscillation in very high order cavity modes, the use of single-stage depressed collectors for energy recovery, highly efficient internal quasi-optical mode converters and synthetic diamond windows have essentially contributed. The total tube efficiencies are around 50% and the purity of the fundamental Gaussian output mode is 97% and higher. In addition, activities for advanced gyrotrons, e.g. a 2 MW gyrotron using a coaxial cavity, multi-frequency 1 MW gyrotrons and power modulation technology, have made progress.

  19. Mode converters for generating the HE11 (near-Gaussian) mode from gyrotron TEOn modes at 140 GHz

    NASA Astrophysics Data System (ADS)

    Thumm, M.; Sturm, H.

    1985-11-01

    The structure of wall perturbations (superposition of 2 or 3 different periods) in rippled wall mode converters and the curvature distribution in bent smooth-walled TEO1-to-TM11 mode transducers were optimized by numerically solving the corresponding coupled-mode differential equations. Computer-aided optimization of circumferentially corrugated mode converters was achieved with a scattering matrix code employing the modal field expansion technique. In all cases the predicted overall efficiency of the complete mode converter system from Sigma TEOn (predominantly TEO3) to HE11 in the desired mode is 90% to 92% (ohmic attenuation is included). Low-power measurements on the efficiency of a 140 GHz TEO1-to-TM11 mode transducer (ao = 13.9 mm) are in excellent agreement with the predicted value of 95.2% (including ohmic attenuation).

  20. Novel 140 GHz Gyro-TWT Amplifier

    NASA Astrophysics Data System (ADS)

    Hu, W.; Kreischer, K. E.; Shapiro, M.; Temkin, R. J.

    1996-11-01

    We have designed and are currently building a novel gyro-twt amplifier to operate at 100 kW and a frequency of 95 GHz. However, due to equipment availability in our laboratory, the amplifier will actually be operated a frequency of 140 GHz. The electron beam will be provided by an existing MIG electron gun which has been previously used in gyrotron oscillator research at the 100 kW power level at 140 GHz. The gun operates at 65 kV and up to 8A with equal to 1.5. The novel wave circuit consists of two facing mirrors with confocal profiles in the transverse direction and flat profiles in the longitudinal direction. The mode is Gaussian-like in the transverse direction. This design effectively reduces the mode competition problem in conventional amplifiers from two dimensional to one dimensional. Another advantage of this circuit is the relatively large cavity size, which improves power capacity. Preliminary calculations indicate that the linear gain is about 2.7dB/cm with an efficiency exceeding 20preliminary experiment using an oscillator configuration has also been designed.

  1. Recent Tests on 500 kW and 1 MW, Multi-Second-Pulsed Gyrotrons

    NASA Astrophysics Data System (ADS)

    Felch, K.; Blank, M.; Borchard, P.; Cahalan, P.; Cauffman, S.; Chu, T. S.; Jory, H.

    2003-02-01

    Long-pulse and CW gyrotrons are being developed at CPI for several electron cyclotron heating experiments. Designs at three different frequencies, 110 GHz, 140 GHz and 84 GHz, have recently been tested. Common features of the three designs include single-anode, magnetron-injection electron guns, internal converters that produce a TEM00 Gaussian output mode and CVD (chemical-vapor deposition) diamond output windows. The three designs use different cavity interaction modes and two of the designs employ collector depression to raise the overall efficiency of the gyrotron installations. Further details of the individual designs and the results of tests on the various gyrotrons are discussed below.

  2. Development of 1 to 1.5 MW CW Gyrotrons

    NASA Astrophysics Data System (ADS)

    Felch, K.; Blank, M.; Borchard, P.; Cahalan, P.; Cauffman, S.; Chu, S.; Jory, H.

    2003-10-01

    High power mm-wave sources provide electron cyclotron heating, current drive, and instability suppression in fusion plasmas. CPI has delivered three 110 GHz, 1 MW gyrotrons for ECH and ECCD experiments on DIII-D, each of which has demonstrated reliable operation at 1 MW for pulse lengths up to 5 seconds. CPI has also delivered a 140 GHz, 1 MW gyrotron to IPP for use on W-7X. This gyrotron has produced a peak output power of 900 kW, and pulse lengths up to 700 seconds at 500 kW. Ten consecutive 500 kW 600 second pulses were demonstrated without fault at 25CPI's test facilities could not support long pulse operation at full power, such operation is planned at IPP. The 140 GHz system employs a diode magnetron injection gun, a TE_28,7 cavity interaction mode, an internal mode converter to produce a Gaussian output beam, a low-loss CVD diamond output window, and a single-stage depressed-voltage beam collector to enhance the overall electrical efficiency of the device. Currently, under a DOE development program, CPI is fabricating a 110 GHz, 1.3-1.5 MW CW depressed-collector gyrotron to deliver improved reliability at power levels above 1 MW.

  3. 140-GHz pulsed Fourier transform microwave spectrometer

    NASA Astrophysics Data System (ADS)

    Kolbe, W. F.; Leskovar, B.

    1985-01-01

    A pulsed microwave spectrometer operating in the vicinity of 140 GHz for the detection of rotational transitions in gaseous molecules is described. The spectrometer incorporates a tunable Fabry-Perot cavity and a subharmonically pumped superheterodyne receiver for the detection of the molecular emission signals. A 70-GHz source supplying a high-efficiency frequency doubler which is pulse modulated at 30 MHz produces sidebands of sufficient power at 140 GHz to excite the molecules. The cavity is tuned to one of the modulation sidebands. The operation of the spectrometer is illustrated by the detection of emission signals from the 6(2, 4)-6(1, 5) transition of SO2 gas. The generation of the electric dipole analog of nuclear-magnetic-resonance (NMR) ``spin-echo'' signals by a π/2-π pulse sequence is also described.

  4. Quasi-optical 140 GHz ECRH system on the advanced W VII-AS stellarator

    SciTech Connect

    Henle, W.; Kasparek, W.; Kumric, H.; Mueller, G.A.; Schueller, P.G.; Thumm, M. ); Erckmann, V. )

    1989-07-01

    A design is presented of a 140 GHz 2nd harmonic electron cyclotron resonance heating (ECRH) system to be used on the advanced stellarator W VII-AS at IPP Garching. The primary objectives of these ECRH experiments will be (1) to extend the density range for ECRH and for combined heating (NBI and/or ICRH), (2) to investigate the local electron heat transport in high density plasmas by the heat-wave technique, (3) to develop new millimeter-wave transmission line concepts and antenna systems for reactor-compatible multi-megawatt heating of future large-size stellarators. The planned 140 GHz ECRH facility will use a 200 kW/100 to 200 ms TEO3-mode gyrotron from KfK Karlsruhe combined with a quasi-optical fundamental Gaussian-mode transmission system employing focusing metallic mirrors as phase correcting elements. The unpolarized gyrotron output mode will be converted directly into the linearly polarized Gaussian free-space beam with the help of a quasi-optical coupler. A universal quasi-optical polarizer will provide the optimum polarization state in order to get the best accessibility conditions to the plasma.

  5. Development of High-Power, Long-Pulse Gyrotrons and Its Application for High Electron Temperature, EBWH and ECCD Experiments on LHD

    NASA Astrophysics Data System (ADS)

    Yoshimura, Y.; Kubo, S.; Shimozuma, T.; Igami, H.; Takahashi, H.; Nishiura, M.; Ito, S.; Kobayashi, S.; Mizuno, Y.; Okada, K.; Takita, Y.; Mutoh, T.; Yamada, H.; Komori, A.; Kariya, T.; Imai, T.; Marushchenko, Nikolai B.; Turkin, Yuri

    2011-12-01

    To sustain plasmas with higher parameters and with longer pulse duration in LHD, ECH system has been upgraded by introducing newly developed 77 GHz gyrotrons. The designed output power and operation duration time are over 1 MW for several seconds and 0.3 MW for continuous operation, respectively. Owing to the upgrade of gyrotrons and improved power supply operation procedure, total injection power of EC-waves to LHD increased up to 3.7 MW at the last LHD experimental campaign in 2010. Application of the high-power 77 GHz EC-waves of 3.4 MW as focused beams to the center of plasma with low line-average electron density of ˜0.2×1019m-3 causes highly steep electron temperature profile and the central electron temperature reached up to 20 keV, which highly exceeds the former record of 15 keV. At higher density region of 1×1019 m-3, central electron temperature reached 8.6 keV. Additional electron Bernstein wave heatings, O-X-B and slow X-B heatings, using a 77 GHz ECH system caused clear increase in plasma stored energy even for the high-density plasmas over plasma cutoff (>7.35×1019 m-3) sustained with NBI. For the O-X-B scenario, the 77 GHz EC-wave was obliquely injected from low-field side in O-mode polarization, aiming at the point where high mode-conversion efficiency was expected. For realizing slow X-B scenario, new inner-vessel mirrors were installed in LHD just close to a helical coil, that is, at the high-field side (HFS) region. Using the inner-vessel mirror, X-mode waves were injected from HFS, showing evident increase in plasma stored energy. Oblique injection of long-pulse 0.77 MW/8 s 77 GHz wave with various N∥ clearly demonstrated ECCD in LHD. The EC-driven current changes its direction with the sign of N∥, and the highest EC-driven current reached up to 42 kA.

  6. Development of High-Power, Long-Pulse Gyrotrons and Its Application for High Electron Temperature, EBWH and ECCD Experiments on LHD

    SciTech Connect

    Yoshimura, Y.; Kubo, S.; Shimozuma, T.; Igami, H.; Takahashi, H.; Nishiura, M.; Ito, S.; Kobayashi, S.; Mizuno, Y.; Okada, K.; Takita, Y.; Mutoh, T.; Yamada, H.; Komori, A.; Kariya, T.; Imai, T.; Marushchenko, Nikolai B.; Turkin, Yuri

    2011-12-23

    To sustain plasmas with higher parameters and with longer pulse duration in LHD, ECH system has been upgraded by introducing newly developed 77 GHz gyrotrons. The designed output power and operation duration time are over 1 MW for several seconds and 0.3 MW for continuous operation, respectively. Owing to the upgrade of gyrotrons and improved power supply operation procedure, total injection power of EC-waves to LHD increased up to 3.7 MW at the last LHD experimental campaign in 2010.Application of the high-power 77 GHz EC-waves of 3.4 MW as focused beams to the center of plasma with low line-average electron density of {approx}0.2x10{sup 19} m{sup -3} causes highly steep electron temperature profile and the central electron temperature reached up to 20 keV, which highly exceeds the former record of 15 keV. At higher density region of 1x10{sup 19} m{sup -3}, central electron temperature reached 8.6 keV.Additional electron Bernstein wave heatings, O-X-B and slow X-B heatings, using a 77 GHz ECH system caused clear increase in plasma stored energy even for the high-density plasmas over plasma cutoff (>7.35x10{sup 19} m{sup -3}) sustained with NBI. For the O-X-B scenario, the 77 GHz EC-wave was obliquely injected from low-field side in O-mode polarization, aiming at the point where high mode-conversion efficiency was expected. For realizing slow X-B scenario, new inner-vessel mirrors were installed in LHD just close to a helical coil, that is, at the high-field side (HFS) region. Using the inner-vessel mirror, X-mode waves were injected from HFS, showing evident increase in plasma stored energy.Oblique injection of long-pulse 0.77 MW/8 s 77 GHz wave with various N{sub ||} clearly demonstrated ECCD in LHD. The EC-driven current changes its direction with the sign of N{sub ||}, and the highest EC-driven current reached up to 42 kA.

  7. Optimized TE01-to-TM11 mode conversion in highly overmoded circular waveguide at 70 and 140 GHz

    NASA Astrophysics Data System (ADS)

    Sturm, H.

    1985-06-01

    Mode coupling in bent, oversized, smoothly walled circular waveguides was studied by numerical integration of coupled-mode equations, to optimize high power TE01-to-TM11 mode transducers at 70 and 140 GHZ. Such transducers are used in the mode conversion sequence TE on to TE01 to TM11 to HE11 to generate the linearly polarized HE11 (Gaussianlike) mode from the circular electric TE on gyrotron mode. The balanced HE11 hydrid mode is ideal for electron cyclotron plasma heating in thermonuclear fusion research and for other technical applications. The lowest level of unwanted spurious modes is achieved with sinusoidal curvature distribution instead of constant curvature. The calculated efficiencies of 98.0% at 70 GHZ and 95.2% at 140 GHZ (inner diameter 27.79 mm, ohmic attenuation included) are in excellent agreement with the measured values (97.6% and 95%) respectively.

  8. Research on long pulse ECRH system of EAST in support of ITER

    NASA Astrophysics Data System (ADS)

    Wang, Xiaojie; Liu, Fukun; Shan, Jiafang; Xu, Handong; Wu, Dajun; Li, Bo; Wei, Wei; Tang, Yunying; Zhang, Liyuan; Xu, Weiye; Hu, Huaichuan; Wang, Jiang; Yang, Yong; Xu, Li; Ma, Wendong; Feng, Jianqiang

    2015-12-01

    Experimental Advanced Superconducting Tokamak (EAST), as a fully superconducting tokamak in China, aims to achieve high performance plasma under steady-state operation. To fulfill the physical objectives of EAST, a program of 4-MW long pulse electron cyclotron resonance heating and current drive (EC H&CD) system, which would offer greater flexibility for plasma shape and plasma stabilization has been launched on EAST since 2011. The system, composed of 4 gyrotrons with nominal 1MW output power and 1000s pulse length each, is designed with the feature of steerable power handling capabilities at 140 GHz, using second harmonic of the extraordinary mode(X2). The missions of the ECRH system are to provide plasma heating, current drive, plasma profile tailoring and control of magneto-hydrodynamic (MHD) instabilities. Presently, the first two 140-GHz 1-MW gyrotrons, provided by GYCOM and CPI, respectively, have been tested at long pulse operation. The tubes, the associated power supplies, cooling system, cryogenic plant, 2 transmission lines and an equatorial launcher are now installed at EAST. The power generated from each tube will be transmitted by an evacuated corrugated waveguide transmission line and injected into plasma from the low field side (radial port) through a front steering equatorial launcher. Considering the diverse applications of the EC system, the beam's launch angles can be continuously varied with the optimized scanning range of over 30° in poloidal direction and ±25° in toroidal, as well as the polarization could be adjusted during the discharge by the orientations of a pair of polarizers in the transmission line to maintain the highest absorption for different operational scenarios. The commissioning of the first 2MW ECRH plant for EAST is under way. The design, R&D activities and recent progress of the long pulse 140-GHz ECRH system are presented in this paper. As the technological requirements for EAST ECRH have many similarities with ITER

  9. 140 GHz microwave FEL experiments using ELF-II

    SciTech Connect

    Throop, A.L.; Jong, R.A.; Atkinson, D.P.; Clark, J.C.; Felker, B.; Ferguson, S.W.; Makowski, M.A.; Nexsen, W.E.; Stallard, B.W.; Stever, R.D.; Turner, W.C.

    1989-09-01

    We describe the modeling, the experimental facility, and the initial operating results for ELF-II, an induction-linac based free-electron laser designed to produce up to 2 GW of peak power at 140 GHz. ELF-II is the initial configuration of an FEL system which will eventually produce up to 2 MW of average power at a frequency of 250 GHz, for use in plasma heating experiments in the Microwave Tokamak Experiment. 6 refs., 9 figs.

  10. Research on long pulse ECRH system of EAST in support of ITER

    SciTech Connect

    Wang, Xiaojie Liu, Fukun; Shan, Jiafang; Xu, Handong; Wu, Dajun; Li, Bo; Tang, Yunying; Zhang, Liyuan; Xu, Weiye; Hu, Huaichuan; Wang, Jiang; Yang, Yong; Xu, Li; Ma, Wendong; Feng, Jianqiang; Wei, Wei

    2015-12-10

    Experimental Advanced Superconducting Tokamak (EAST), as a fully superconducting tokamak in China, aims to achieve high performance plasma under steady-state operation. To fulfill the physical objectives of EAST, a program of 4-MW long pulse electron cyclotron resonance heating and current drive (EC H&CD) system, which would offer greater flexibility for plasma shape and plasma stabilization has been launched on EAST since 2011. The system, composed of 4 gyrotrons with nominal 1MW output power and 1000s pulse length each, is designed with the feature of steerable power handling capabilities at 140 GHz, using second harmonic of the extraordinary mode(X2). The missions of the ECRH system are to provide plasma heating, current drive, plasma profile tailoring and control of magneto-hydrodynamic (MHD) instabilities. Presently, the first two 140-GHz 1-MW gyrotrons, provided by GYCOM and CPI, respectively, have been tested at long pulse operation. The tubes, the associated power supplies, cooling system, cryogenic plant, 2 transmission lines and an equatorial launcher are now installed at EAST. The power generated from each tube will be transmitted by an evacuated corrugated waveguide transmission line and injected into plasma from the low field side (radial port) through a front steering equatorial launcher. Considering the diverse applications of the EC system, the beam’s launch angles can be continuously varied with the optimized scanning range of over 30° in poloidal direction and ±25° in toroidal, as well as the polarization could be adjusted during the discharge by the orientations of a pair of polarizers in the transmission line to maintain the highest absorption for different operational scenarios. The commissioning of the first 2MW ECRH plant for EAST is under way. The design, R&D activities and recent progress of the long pulse 140-GHz ECRH system are presented in this paper. As the technological requirements for EAST ECRH have many similarities with ITER

  11. High power system for ECRH at 140Ghz, 2MW, 0.5s on FTU tokamak

    SciTech Connect

    Sozzi, C.; Bozzi, R.; Bruschi, A.; Cirant, S.; Gandini, F.; Granucci, G.; Mellera, V.; Muzzini, V.; Nardone, A.; Simonetto, A.; Spinicchia, N.; Berardi, B.; Ciccone, G.; DiGiovenale, S.; Iannone, F.; Lupini, S.; Mantovani, S.; Pesci, E.

    1999-09-20

    The 140GHz, 2MW, 0.5s ECRH system on FTU tokamak integrates closed waveguide transmission lines ({approx_equal}30 m) with quasi optical systems at both ends for efficient coupling from the 4 gyrotrons to the 4 waveguides and from these to the plasma through a single access port. Poloidal and toroidal control of the beam's launching angles and polarization is performed without movable components close to the plasma. Most of the components of each generation and transmission system were designed to operate at a power level higher than 0.5 MW, and a possible up-grade to a full 1 MW, 0.5 s capability is discussed.

  12. Progress in producing megawatt gyrotrons for ECR (electron cyclotron resonance) heating

    SciTech Connect

    Felch, K.; Hess, C.; Huey, H.; Jongewaard, E.; Jory, H.; Neilson, J.; Pendleton, R.; Tsirulnikov, M. )

    1990-10-01

    Varian is carrying out the development of high-power, CW gyrotrons at frequencies ranging from 100--500 GHz for use in electron cyclotron resonance (ECR) heating of magnetically-confined plasma. Initial test vehicles at 140 GHz have utilized TE{sub 15,2,1} interaction cavities, and have been designed to generate short-pulse (up to 20 ms) power levels of 1 MW and up to 400 kW CW. Recently, short-pulse power levels of 940 kW at 35% efficiency have been obtained and average powers of 200 kW have been achieved at peak powers of 400 kW. Long-pulse testing is currently underway. Initial test have resulted in output levels of 400 kW for pulse durations of 380 ms. Design work on 110 GHz, 500 kW CW gyrotron oscillators has recently been completed and a prototype tube has been assembled and is currently being tested. The design of a 110 GHz, 1 MW CW gyrotron, using a novel output coupling approach, is nearly complete. Fabrication of the first 1 MW CW experimental tube is in progress.

  13. Components for transmission of very high power mm waves (200 kW at 28, 70 and 140 GHz) in overmoded circular waveguides

    NASA Astrophysics Data System (ADS)

    Thumm, M.; Erckmann, V.; Kasparek, W.; Kumric, H.; Mueller, G. A.; Schueller, P. G.; Wilhelm, R.

    1986-03-01

    Optimized overmoded circular waveguide components of transmission lines developed for high-power (200 kW) millimeter wave applications at 28, 70, and 140 GHz, as e.g., electron cyclotron resonance heating of plasmas for thermonuclear fusion research with gyrotrons, are described. Axisymmetric, narrow, pencil-like beams with well-defined polarization (HE11 hybrid mode) are used at open-ended corrugated waveguide antennas. The HE11 mode is generated from TE0n gyrotron modes by multistep mode conversion: TE0n yields T001 yields TE11 yields HE11 or TE0n yields TE01 yields TM11 yields HE11. Analyses and measurements on mode transducer systems of the first type at 28 and 70 GHz and of the second type at 140 GHz are reported. In all cases the overall efficiency of the complete mode conversion sequence in the desired mode is 92% to 95%. Mode purity in the transmission lines is conserved by using corrugated gradual waveguide bends with optimized curvature distribution and diameter tapers with nonlinear contours. Highly efficient corrugated-wall mode selective filters decouple the different waveguide sections. Mode content and reflected powere are determined by a k-spectrometer. Absolute power calibration is done with calorimetric loads using an organic absorbing fluid.

  14. Continuous-wave Submillimeter-wave Gyrotrons

    PubMed Central

    Han, Seong-Tae; Griffin, Robert G.; Hu, Kan-Nian; Joo, Chan-Gyu; Joye, Colin D.; Mastovsky, Ivan; Shapiro, Michael A.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Torrezan, Antonio C.; Woskov, Paul P.

    2007-01-01

    Recently, dynamic nuclear polarization enhanced nuclear magnetic resonance (DNP/NMR) has emerged as a powerful technique to obtain significant enhancements in spin spectra from biological samples. For DNP in modern NMR systems, a high power continuous-wave source in the submillimeter wavelength range is necessary. Gyrotrons can deliver tens of watts of CW power at submillimeter wavelengths and are well suited for use in DNP/NMR spectrometers. To date, 140 GHz and 250 GHz gyrotrons are being employed in DNP spectrometer experiments at 200 MHz and 380 MHz at MIT. A 460 GHz gyrotron, which has operated with 8 W of CW output power, will soon be installed in a 700 MHz NMR spectrometer. High power radiation with good spectral and spatial resolution from these gyrotrons should provide NMR spectrometers with high signal enhancement through DNP. Also, these tubes operating at submillimeter wavelengths should have important applications in research in physics, chemistry, biology, materials science and medicine. PMID:17404605

  15. Design and Development of Thermistor based Power Meter at 140 GHz Frequency Band

    NASA Astrophysics Data System (ADS)

    Roy, Rajesh; Kush, Abhimanyue Kumar; Dixit, Rajendra Prasad

    2011-12-01

    Design and development of thermistor based power meter at 140 gigahertz (GHz) frequency band have been presented. Power meter comprises power sensor, amplifier circuit and dialog based graphical user interface in visual C++ for the average power measurement. The output power level of a component or system is very critical design factor. Thus there was a need of a power meter for the development of millimeter wave components at 140 GHz frequency band. Power sensor has been designed and developed using NTC (Negative Temperature Coefficient) thermistors. The design aims at developing a direct, simple and inexpensive power meter that can be used to measure absolute power at 140 GHz frequency band. Due to absorption of 140 GHz frequencies, resistance of thermistor changes to a new value. This change in resistance of thermistor can be converted to a dc voltage change and amplified voltage change can be fed to computer through data acquisition card. Dialog based graphical user interface (GUI) has been developed in visual C++ language for average power measurement in dBm. WR6 standard rectangular waveguide is the input port for the sensor of power meter. Temperature compensation has been achieved. Moderate sensor return loss greater than 20 dB has been found over the frequency range 110 to 170 GHz. The response time of the power sensor is 10 second. Average power accuracy is better than ±0.25 dB within the power range from -10 to 10 dBm at 140 GHz frequency band.

  16. A 140 GHz pulsed EPR/212 MHz NMR spectrometer for DNP studies.

    PubMed

    Smith, Albert A; Corzilius, Björn; Bryant, Jeffrey A; DeRocher, Ronald; Woskov, Paul P; Temkin, Richard J; Griffin, Robert G

    2012-10-01

    We described a versatile spectrometer designed for the study of dynamic nuclear polarization (DNP) at low temperatures and high fields. The instrument functions both as an NMR spectrometer operating at 212 MHz ((1)H frequency) with DNP capabilities, and as a pulsed-EPR operating at 140 GHz. A coiled TE(011) resonator acts as both an NMR coil and microwave resonator, and a double balanced ((1)H, (13)C) radio frequency circuit greatly stabilizes the NMR performance. A new 140 GHz microwave bridge has also been developed, which utilizes a four-phase network and ELDOR channel at 8.75 GHz, that is then multiplied and mixed to obtain 140 GHz microwave pulses with an output power of 120 mW. Nutation frequencies obtained are as follows: 6 MHz on S=1/2 electron spins, 100 kHz on (1)H, and 50 kHz on (13)C. We demonstrate basic EPR, ELDOR, ENDOR, and DNP experiments here. Our solid effect DNP results demonstrate an enhancement of 144 and sensitivity gain of 310 using OX063 trityl at 80 K and an enhancement of 157 and maximum sensitivity gain of 234 using Gd-DOTA at 20 K, which is significantly better performance than previously reported at high fields (≥3 T).

  17. A 140 GHz pulsed EPR/212 MHz NMR spectrometer for DNP studies

    NASA Astrophysics Data System (ADS)

    Smith, Albert A.; Corzilius, Björn; Bryant, Jeffrey A.; DeRocher, Ronald; Woskov, Paul P.; Temkin, Richard J.; Griffin, Robert G.

    2012-10-01

    We described a versatile spectrometer designed for the study of dynamic nuclear polarization (DNP) at low temperatures and high fields. The instrument functions both as an NMR spectrometer operating at 212 MHz (1H frequency) with DNP capabilities, and as a pulsed-EPR operating at 140 GHz. A coiled TE011 resonator acts as both an NMR coil and microwave resonator, and a double balanced (1H, 13C) radio frequency circuit greatly stabilizes the NMR performance. A new 140 GHz microwave bridge has also been developed, which utilizes a four-phase network and ELDOR channel at 8.75 GHz, that is then multiplied and mixed to obtain 140 GHz microwave pulses with an output power of 120 mW. Nutation frequencies obtained are as follows: 6 MHz on S = 1/2 electron spins, 100 kHz on 1H, and 50 kHz on 13C. We demonstrate basic EPR, ELDOR, ENDOR, and DNP experiments here. Our solid effect DNP results demonstrate an enhancement of 144 and sensitivity gain of 310 using OX063 trityl at 80 K and an enhancement of 157 and maximum sensitivity gain of 234 using Gd-DOTA at 20 K, which is significantly better performance than previously reported at high fields (⩾3 T).

  18. Progress on Gyrotrons for ITER and Future Fusion Reactors

    SciTech Connect

    Thumm, Manfred K.

    2009-11-26

    The prototype of the Japan 170 GHz ITER gyrotron holds the energy and efficiency world record of 2.88 GJ (0.8 MW, 3600 s, 57%) with 55% efficiency at 1 MW, 800 s, whereas the Russian 170 GHz ITER prototype tube achieved 0.83 MW with a pulse duration of 203 s at 48% efficiency and 1 MW at 116 s and 52%. The record parameters of the European megawatt-class 140 GHz gyrotron for the Stellarator Wendelstein W7-X are: 0.92 MW output power at 1800 s pulse duration, almost 45% efficiency and 97.5% Gaussian mode purity. All these gyrotrons employ a cylindrical cavity, a quasi-optical output coupler, a synthetic diamond window and a single-stage depressed collector (SDC) for energy recovery. In coaxial cavities the existence of the longitudinally corrugated inner conductor reduces the problems of mode competition and limiting current, thus allowing one to use even higher order modes with lower Ohmic attenuation than in cylindrical cavities. Synthetic diamond windows with a transmission capability of 2 MW, continuous wave (CW) are feasible. In order to keep the number of the required gyrotrons and magnets as low as possible, to reduce the costs of the ITER 26 MW, 170 GHz ECRH system and to allow compact upper launchers for plasma stabilization, 2 MW mm-wave power per gyrotron tube is desirable. The FZK pre-prototype tube for an EU 170 GHz, 2 MW ITER gyrotron has achieved 1.8 MW at 28% efficiency (without depressed collector). Design studies for a 4 MW 170 GHz coaxial-cavity gyrotron with two synthetic diamond output windows and two 2 MW mm-wave output beams for future fusion reactors are currently being performed at FZK. The availability of sources with fast frequency tunability (several GHz s{sup -1}, tuning in 1.5-2.5% steps for about ten different frequencies) would permit the use of a simple, fixed, non-steerable mirror antenna for local current drive (ECCD) experiments and plasma stabilization. GYCOM in Russia develops in collaboration with IPP Garching and FZK an

  19. Molecular attenuation and phase dispersion between 40 and 140-GHz for path models from different altitudes

    NASA Technical Reports Server (NTRS)

    Liebe, H. J.; Welch, W. M.

    1973-01-01

    Radio wave propagation in the 40 to 140 GHz band through the first hundred kilometers of the atmosphere is strongly influenced by the microwave spectrum of oxygen (O2-MS). A unified treatment of molecular attenuation and phase dispersion is formulated. Results of molecular physics are translated into frequency, temperature, pressure, and magnetic field dependencies of a complex refractive index. The intensity distribution of the O2-MS undergoes several changes with increasing altitude. The influence of water vapor is discussed. Examples of computer plots are given as a function of altitude for homogeneous, zenith, and tangential path geometries. Molecular resonances of minor atmospheric gases are discussed briefly.

  20. Long Pulse ECH Plasma in LHD

    SciTech Connect

    Kubo, S.; Yoshimura, Y.; Shimozuma, T.; Igami, H.; Notake, T.; Kumazawa, R.; Seki, T.; Saito, K.; Nakamura, Y.; Mutoh, T.; Ohkubo, K.

    2005-09-26

    Demonstration of a long pulse or a steady state operation of ECH and sustainment of non-collapsed plasma only by ECH is important in LHD from both the confinement device and the heating system engineering points of view. A gyrotron with a diamond output window is introduced and operated at the power level of 150 kW for more than 1 hour after modification of the cooling and evacuation system of the ECH transmission line. The power of about 110 kW injected into LHD is used to sustain the plasma with the electron density of 1.5 x 1018 m-3 and central temperature of more than 1.0 keV for 3900 sec. The gas puffing rate is carefully controlled so that the plasma density does not exceed the critical value above which the plasma collapsed for given injection power, magnetic configuration and wall condition of LHD. The results of gyrotron operation, transmission system modification for long pulse and optimizations of the magnetic field configuration of LHD and gas puffing for a given injection condition are discussed.

  1. Long Pulse ECH Plasma in LHD

    NASA Astrophysics Data System (ADS)

    Kubo, S.; Yoshimura, Y.; Shimozuma, T.; Igami, H.; Notake, T.; Kumazawa, R.; Seki, T.; Saito, K.; Nakamura, Y.; Mutoh, T.; LHD Experimental Group

    2005-09-01

    Demonstration of a long pulse or a steady state operation of ECH and sustainment of non-collapsed plasma only by ECH is important in LHD from both the confinement device and the heating system engineering points of view. A gyrotron with a diamond output window is introduced and operated at the power level of 150 kW for more than 1 hour after modification of the cooling and evacuation system of the ECH transmission line. The power of about 110 kW injected into LHD is used to sustain the plasma with the electron density of 1.5 × 1018 m-3 and central temperature of more than 1.0 keV for 3900 sec. The gas puffing rate is carefully controlled so that the plasma density does not exceed the critical value above which the plasma collapsed for given injection power, magnetic configuration and wall condition of LHD. The results of gyrotron operation, transmission system modification for long pulse and optimizations of the magnetic field configuration of LHD and gas puffing for a given injection condition are discussed.

  2. Theory and Modeling of High-Power Gyrotrons

    SciTech Connect

    Nusinovich, Gregory Semeon

    2016-04-29

    This report summarized results of the work performed at the Institute for Research in Electronics and Applied Physics of the University of Maryland (College Park, MD) in the framework of the DOE Grant “Theory and Modeling of High-Power Gyrotrons”. The report covers the work performed in 2011-2014. The research work was performed in three directions: - possibilities of stable gyrotron operation in very high-order modes offering the output power exceeding 1 MW level in long-pulse/continuous-wave regimes, - effect of small imperfections in gyrotron fabrication and alignment on the gyrotron efficiency and operation, - some issues in physics of beam-wave interaction in gyrotrons.

  3. Mean time between failures (MTBF) and availability of the Gyrotron system used on the Microwave Tokamak Experiment at Lawrence Livermore National Laboratory

    SciTech Connect

    Ferguson, S.W.; Jackson, M.C.; Seilhymer, D.B.

    1993-09-03

    This paper presents an analysis of the mean time between failures (MTBF) and availability history of the Varian VGT8140, 400 Watt, 140 GHz Gyrotron that was operated on the Microwave Tokamak Experiment (MTX) at the Lawrence Livermore National Laboratory (LLNL).

  4. Recent result of gyrotron operation in NIFS

    NASA Astrophysics Data System (ADS)

    Ito, Satoshi; Shimozuma, Takashi; Yoshimura, Yasuo; Igami, Hiroe; Takahashi, Hiromi; Nishiura, Masaki; Kobayashi, Sakuji; Mizuno, Yoshinori; Okada, Kota; Kubo, Shin

    2015-03-01

    In the last Large Helical Device (LHD) experimental campaign, a 154GHz gyrotron which had been conditioned to generate 1 MW/2 s, 0.5 MW/CW was installed for LHD experiments. Four high power gyrotrons (three-77 GHz/1~1.5 MW and one-154 GHz/1 MW) and a CW gyrotron (84 GHz/0.2 MW) are ready. Our experiment requires high energy and various injection patterns for Electron Cyclotron Resonance Heating (ECRH). Higher individual injection power and various injection patterns, we developed a power enhancement method by stepped anode acceleration voltage control and operated the gyrotron in the hard excitation region. These operations were realized by a remote controlled waveform generator. However the oscillation map of high power or long pulse operation in the hard excitation region were limited because in order to achieve the hard excitation region by the anode voltage control one must pass through the high anode current phase within a time short enough that the anode or the anode power supply is not overloaded. This limitation becomes more critical when the gyrotron beam current is increased in order to increase the output power. In the long pulse operation it was impossible to reach the hard excitation region in a low beam current (<10A).

  5. Demonstration of a 140-GHz 1-kW Confocal Gyro-Traveling-Wave Amplifier

    PubMed Central

    Joye, Colin D.; Shapiro, Michael A.; Sirigiri, Jagadishwar R.; Temkin, Richard J.

    2009-01-01

    The theory, design, and experimental results of a wideband 140-GHz 1-kW pulsed gyro-traveling-wave amplifier (gyro-TWA) are presented. The gyro-TWA operates in the HE06 mode of an overmoded quasi-optical waveguide using a gyrating electron beam. The electromagnetic theory, interaction theory, design processes, and experimental procedures are described in detail. At 37.7 kV and a 2.7-A beam current, the experiment has produced over 820 W of peak power with a –3-dB bandwidth of 0.8 GHz and a linear gain of 34 dB at 34.7 kV. In addition, the amplifier produced a –3-dB bandwidth of over 1.5 GHz (1.1%) with a peak power of 570 W from a 38.5-kV 2.5-A electron beam. The electron beam is estimated to have a pitch factor of 0.55–0.6, a radius of 1.9 mm, and a calculated perpendicular momentum spread of approximately 9%. The gyro-amplifier was nominally operated at a pulselength of 2 μs but was tested to amplify pulses as short as 4 ns with no noticeable pulse broadening. Internal reflections in the amplifier were identified using these short pulses by time-domain reflectometry. The demonstrated performance of this amplifier shows that it can be applied to dynamic nuclear polarization and electron paramagnetic resonance spectroscopy. PMID:20054451

  6. Excitation of parasitic modes in gyrotrons with fast voltage rise

    SciTech Connect

    Nusinovich, G. S.; Antonsen, T. M. Jr.; Vlasov, A. N.; Lohr, J.; Danly, B. G.; Hogge, J.-P.

    2008-10-15

    Megawatt-class, long-pulse and continuous-wave gyrotrons operate in high-order modes in order to handle the thermal losses in the resonators. The spectral density of neighboring modes in these devices is high; consequently during the beam voltage rise parasitic modes can be excited. If such gyrotrons are used in plasma experiments, these parasites can be dangerous for the receiving channels of numerous diagnostic tools. It is shown that in gyrotrons utilizing diode-type magnetron injection guns the shortening of the voltage rise time to about one microsecond can practically eliminate excitation of parasitic modes even in devices with a 2 MW power level. Some means for realizing such rise times in high-voltage modulators which can be used for megawatt-class gyrotrons are discussed. It is also shown that allowable beam voltage overshoot in such gyrotrons is about 2.5%.

  7. 140 GHz EC waves propagation and absorption for normal/oblique injection on FTU tokamak

    SciTech Connect

    Nowak, S.; Airoldi, A.; Bruschi, A.; Cirant, S.; Gandini, F.; Granucci, G.; Lazzaro, E.; Ramponi, G.; Simonetto, A.; Sozzi, C.; Buratti, P.; Panaccione, L.; Tudisco, O.; Zerbini, M.

    1999-09-20

    Most of the interest in ECRH experiments is linked to the high localization of EC waves absorption in well known portions of the plasma volume. In order to take full advantage of this capability a reliable code has been developed for beam tracing and absorption calculations. The code is particularly important for oblique (poloidal and toroidal) injection, when the absorbing layer is not simply dependent on the position of the EC resonance only. An experimental estimate of the local heating power density is given by the jump in the time derivative of the local electron pressure at the switching ON of the gyrotron power. The evolution of the temperature profile increase (from ECE polychromator) during the nearly adiabatic phase is also considered for ECRH profile reconstruction. An indirect estimate of optical thickness and of the overall absorption coefficient is given by the measure of the residual e.m. power at the tokamak walls. Beam tracing code predictions of the power deposition profile are compared with experimental estimates. The impact of the finite spatial resolution of the temperature diagnostic on profile reconstruction is also discussed.

  8. Study of Cavity and Output Window for High Power Gyrotron

    NASA Astrophysics Data System (ADS)

    Alaria, M. K.; Mukherjee, P.; Das, S.; Sinha, A. K.

    2011-02-01

    In this paper Eigen mode analysis has been carried out using Ansoft HFSS for high frequency 42, 120 and 140 GHz Gyrotron cavity. The design of RF window for 42 GHz, 200 kW Gyrotron has also been carried out using the Ansoft HFSS and CST microwave studio. In 42 GHz gyrotron double disc of diameter 85 mm and thickness 3.2 mm sapphire window and spacing (Coolant FC-75) of discs 2.5 mm has been used in the simulation. The return loss (S11) and transmission loss (S21) of the 42 GHz gyrotron window have been found -47.3 and -0.04 dB, respectively. The return loss and transmission loss of the S-band single disc sapphire window have also been found -27.3 and -0.07 dB, respectively at cylindrical waveguide length 33 mm. The simulated result has been validated through experimental results for pill-box S-band sapphire window.

  9. Soviet Development of Gyrotrons

    DTIC Science & Technology

    1986-05-01

    order to increase gyrotron power , Strelkov noted that "At the present time, highly efficient gyrotrons with weakly relativistic beams have been built...Consequently, the power of vacuum gyrotrons is limited: for examl)le, for a I MeV beam, the max- imum theoretical power of a high- efficiency 3)) percent...45’ and 0.5 kA, producing an output power of 25 MW. Further increase in injection current in the vacuum gyrotron decreased efficiency without

  10. Photonic-Band-Gap Traveling-Wave Gyrotron Amplifier

    PubMed Central

    Nanni, E. A.; Lewis, S. M.; Shapiro, M. A.; Griffin, R. G.; Temkin, R. J.

    2014-01-01

    We report the experimental demonstration of a gyrotron traveling-wave-tube amplifier at 250 GHz that uses a photonic band gap (PBG) interaction circuit. The gyrotron amplifier achieved a peak small signal gain of 38 dB and 45 W output power at 247.7 GHz with an instantaneous −3 dB bandwidth of 0.4 GHz. The amplifier can be tuned for operation from 245–256 GHz. The widest instantaneous −3 dB bandwidth of 4.5 GHz centered at 253.25 GHz was observed with a gain of 24 dB. The PBG circuit provides stability from oscillations by supporting the propagation of transverse electric (TE) modes in a narrow range of frequencies, allowing for the confinement of the operating TE03-like mode while rejecting the excitation of oscillations at nearby frequencies. This experiment achieved the highest frequency of operation for a gyrotron amplifier; at present, there are no other amplifiers in this frequency range that are capable of producing either high gain or high output power. This result represents the highest gain observed above 94 GHz and the highest output power achieved above 140 GHz by any conventional-voltage vacuum electron device based amplifier. PMID:24476286

  11. Photonic-band-gap traveling-wave gyrotron amplifier.

    PubMed

    Nanni, E A; Lewis, S M; Shapiro, M A; Griffin, R G; Temkin, R J

    2013-12-06

    We report the experimental demonstration of a gyrotron traveling-wave-tube amplifier at 250 GHz that uses a photonic band gap (PBG) interaction circuit. The gyrotron amplifier achieved a peak small signal gain of 38 dB and 45 W output power at 247.7 GHz with an instantaneous -3  dB bandwidth of 0.4 GHz. The amplifier can be tuned for operation from 245-256 GHz. The widest instantaneous -3  dB bandwidth of 4.5 GHz centered at 253.25 GHz was observed with a gain of 24 dB. The PBG circuit provides stability from oscillations by supporting the propagation of transverse electric (TE) modes in a narrow range of frequencies, allowing for the confinement of the operating TE03-like mode while rejecting the excitation of oscillations at nearby frequencies. This experiment achieved the highest frequency of operation for a gyrotron amplifier; at present, there are no other amplifiers in this frequency range that are capable of producing either high gain or high output power. This result represents the highest gain observed above 94 GHz and the highest output power achieved above 140 GHz by any conventional-voltage vacuum electron device based amplifier.

  12. Operating experience on six 110 GHz, 1 MW gyrotrons for ECH applications

    NASA Astrophysics Data System (ADS)

    Felch, K.; Blank, M.; Borchard, P.; Cahalan, P.; Cauffman, S.; Jory, H.; Gorelov, Y.; Lohr, J.

    2008-05-01

    Since 1999, CPI has shipped six, 110 GHz, 1 MW, 5 s pulsed gyrotrons to General Atomics (GA) for use in electron cyclotron heating experiments on the DIII-D tokamak. As a result of extensive testing of these gyrotrons at CPI and GA, a wealth of information has been obtained regarding the long-term performance of the original electrical and mechanical design of the tubes. All of the gyrotrons have achieved long-pulse operation and five of the six gyrotrons achieved 1 MW output power levels with the nominal beam voltage and current of 80 kV and 40 A, respectively. Experience with the electron guns and interaction cavities has been quite good, though the low efficiency experienced by one gyrotron may be attributed to a gun or cavity irregularity. The internal converters employed in the gyrotrons have produced high-quality Gaussian output beams with internal diffractions losses of 5-6.5%. After several years of operation, the first three 110 GHz gyrotrons experienced collector failures due to cyclic fatigue. Improved analyses and diagnostics have been employed to avoid these problems in the future. Two problems have been experienced with the diamond output windows. These problems have been eliminated by changing braze techniques and procedures. Based on the experience obtained on these six gyrotrons, recommendations can be made for future gyrotron development work.

  13. ECH by FEL and gyrotron sources on the Microwave Tokamak Experiment (MTX) tokamak

    SciTech Connect

    Stallard, B.W.; Turner, W.C.; Allen, S.L.; Byers, J.A.; Felker, B.; Fenstermacher, M.E.; Ferguson, S.W.; Hooper, E.G.; Thomassen, K.I.; Throop, A.L. ); Makowski, M.A. )

    1990-08-09

    The Microwave Tokamak Experiment (MTX) at LLNL is studying the physics of intense pulse ECH is a high-density tokamak plasma using a microwave FEL. Related technology development includes the FEL, a windowless quasi-optical transmission system, and other microwave components. Initial plasma experiments have been carried out at 140 GHz with single rf pulses generated using the ETA-II accelerator and the ELF wiggler. Peak power levels up to 0.2 GW and pulse durations up to 10 ns were achieved for injection into the plasma using as untapered wiggler. FEL pulses were transmitted over 33 m from the FEL to MTX using six mirrors mounted in a 50-cm-diam evacuated pipe. Measurements of the microwave beam and transmission through the plasma were carried out. For future rapid pulse experiments at high average power (4 GW peak power, 5kHz pulse rate, and {bar P} > 0.5 MW) using the IMP wiggler with tapered magnetic field, a gyrotron (140 GHz, 400 kW cw or up to 1 MW short pulse) is being installed to drive the FEL input or to directly heat the tokamak plasma at full gyrotron power. Quasi-optic techniques will be used to couple the gyrotron power. For direct plasma heating, the gyrotron will couple into the existing mirror transport system. Using both sources of rf generation, experiments are planned to investigate intense pulse absorption and tokamak physics, such as the ECH of a pellet-fueled plasma and plasma control using localized heating. 12 refs., 9 figs.

  14. ECH by FEL and gyrotron sources on the Microwave Tokamak Experiment (MTX) tokamak

    NASA Astrophysics Data System (ADS)

    Stallard, B. W.; Turner, W. C.; Allen, S. L.; Byers, J. A.; Felker, B.; Fenstermacher, M. E.; Ferguson, S. W.; Hooper, E. G.; Thomassen, K. I.; Throop, A. L.

    1990-08-01

    The Microwave Tokamak Experiment (MTX) at LLNL is studying the physics of intense pulse ECH is a high-density tokamak plasma using a microwave FEL. Related technology development includes the FEL, a windowless quasi-optical transmission system, and other microwave components. Initial plasma experiments have been carried out at 140 GHz with single RF pulses generated using the ETA-2 accelerator and the ELF wiggler. Peak power levels up to 0.2 GW and pulse durations up to 10 ns were achieved for injection into the plasma using as untapered wiggler. FEL pulses were transmitted over 33 m from the FEL to MTX using six mirrors mounted in a 50 cm diam evacuated pipe. Measurements of the microwave beam and transmission through the plasma were carried out. For future rapid pulse experiments at high average power (4 GW peak power, 5 kHz pulse rate, and bar P is greater than 0.5 MW) using the IMP wiggler with tapered magnetic field, a gyrotron (140 GHz, 400 kW CW or up to 1 MW short pulse) is being installed to drive the FEL input or to directly heat the tokamak plasma at full gyrotron power. Quasi-optic techniques will be used to couple the gyrotron power. For direct plasma heating, the gyrotron will couple into the existing mirror transport system. Using both sources of RF generation, experiments are planned to investigate intense pulse absorption and tokamak physics, such as the ECH of a pellet-fueled plasma and plasma control using localized heating.

  15. HV-system for CW-gyrotrons at W7-X and the relevance for ITER

    NASA Astrophysics Data System (ADS)

    Braune, H.; Brand, P.; Krampitz, R.; Leonhardt, W.; Mellein, D.; Michel, G.; Mueller, G.; Sachtleben, J.; Winkler, M.; W7-X ECRH Teams at IPP IPF; FZK

    2005-01-01

    Electron Cyclotron Resonance Heating (ECRH) is the main heating method for the Wendelstein 7-X Stellarator (W7-X), which is under construction at IPP-Greifswald. A 10 MW ECRH plant with CW-capability at 140 GHz is under construction to meet the scientific objectives. The microwave power is generated by 10 gyrotrons with 1 MW each two gyrotrons are operational at IPP in Greifswald. The tubes are equipped with a single-stage depressed collector for energy recovery and operate with an output power modulation between 0.3 and 1 MW with a sinusoidal frequency of up to 10 kHz which is achieved by modulating the depression voltage and is an interesting feature for NTM control at ITER. The general features of the ECRH-plant such as frequency power, cw-capability, flexibility and the experimental experience are of high relevance for the ITER system. Each gyrotron is fed by two high-voltage sources. A high-power supply for driving the electron beam and a precision low-power supply for beam acceleration. The high-power facility consists of modular solid state HV-supplies (-65 kV 50/100 A) providing fast power control and high flexibility. The low-power high-voltage source for beam acceleration is realized by a feed back controlled high-voltage servo-amplifier driving the depression voltage. A protection system with a thyratron crowbar for fast power removal in case of gyrotron failure by arcing is installed. Both the high power and low-power high-voltage sources have the capability to supply a 2 MW ITER gyrotron without any modification. Analogue electronic devices control the fast functions of the high-voltage system for each gyrotron and a hierarchy of industrial standard PLCs and computers supervise the whole ECRH-plant.

  16. Ion Compensation for Space Charge in the Helical Electron Beams of Gyrotrons

    NASA Astrophysics Data System (ADS)

    Manuilov, V. N.; Semenov, V. E.

    2016-06-01

    We solve analytically the problem about ion compensation for the space charge of a helical electron beam in a gyrotron operated in the long-pulse regime. Elementary processes, which take place during ionization of residual gas in the tube under typical pressures of 10-6-10-7 mm Hg, are considered. It is shown that distribution of the space charge is affected mainly by the electrons of the initial beam and slow-moving ions produced by ionization of the residual gas. Steady-state density of ions in the operating space of the gyrotron after the end of the transitional processes is found, as well as the electron density profile in the channel of electron beam transportation. The results obtained allow us to evaluate the pitch-factor variations caused by partial compensations for the potential "sagging" in the gyrotron cavity, thus being useful for analysis of starting currents, efficiency, and mode competition in high-power gyrotrons.

  17. Design considerations in achieving 1 MW CW operation with a whispering-gallery-mode gyrotron

    SciTech Connect

    Felch, K.; Feinstein, J.; Hess, C.; Huey, H.; Jongewaard, E.; Jory, H.; Neilson, J.; Pendleton, R.; Pirkle, D.; Zitelli, L. )

    1989-09-01

    Varian is developing high-power, CW gyrotrons at frequencies in the range 100 GHz to 150 GHz, for use in electron cyclotron heating applications. Early test vehicles have utilized a TE{sub 15,2,1} interaction cavity, have achieved short-pulse power levels of 820 kW and average power levels of 80 kW at 140 GHz. Present tests are aimed at reaching 400 kW under CW operating conditions and up to 1 MW for short pulse durations. Work is also underway on modifications to the present design that will enable power levels of up to 1 MW CW to be achieved. 7 refs., 2 figs.

  18. Operation of a step tunable megawatt gyrotron

    NASA Technical Reports Server (NTRS)

    Kreischer, K. E.; Temkin, R. J.

    1989-01-01

    An electron cyclotron resonance maser; gyrotron fundamental oscillator; advantages of gyrotrons; a schematic of the experiment; gyrotron design theory; 1 MW design parameters; compact ignition tokamak; and a gyrotron with quasi-optical output coupler are briefly presented. This presentation is represented by viewgraphs only.

  19. From reactors to long pulse sources

    SciTech Connect

    Mezei, F. |

    1995-12-31

    We will show, that by using an adapted instrumentation concept, the performance of a continuous source can be emulated by one switch on in long pulses for only about 10% of the total time. This 10 fold gain in neutron economy opens up the way for building reactor like sources with an order of magnitude higher flux than the present technological limits. Linac accelerator driven spallation lends itself favorably for the realization of this kind of long pulse sources, which will be complementary to short pulse spallation sources, the same way continuous reactor sources are.

  20. The 5.8 T Cryogen-Free Gyrotron Superconducting Magnet System on HL-2A

    NASA Astrophysics Data System (ADS)

    Xia, Donghui; Huang, Mei; Zhou, Jun; Bai, Xingyu; Zheng, Tieliu; Rao, Jun; Zhuang, Ge

    2014-04-01

    A 5.8 T cryogen-free superconducting magnet (SCM) system with a warm bore hole of 160 mm in diameter, used for gyrotrons operating in the frequency range from 68 GHz to 140 GHz, is installed on the site of the HL-2A tokamak. The SCM consists of two separate solenoidal magnetic coils connected in series, a 4.2 K Gifford-McMahon (GM) refrigerator, a compressor, a coil power supply and two temperature monitors. The performance, test and preliminary experimental results of this SCM system are described in this paper. The magnetic field distribution was measured along the axis, and a dummy tube was used for adjusting the magnet system. Finally, the magnet was used for the operation of a 68 GHz/500 kW gyrotron, which is part of an electron cyclotron resonance heating (ECRH) system. With an additional auxiliary coil and after adjusting the magnet system, a maximum output power for the ECRH system of up to 400 kW was achieved.

  1. Gyrotron: an ECH system component

    SciTech Connect

    Loring, C.M.; Eason, H.O.; Kimrey, H.D.; White, T.L.; Jory, H.R.; Evans, S.J.

    1981-01-01

    The gyrotron, or electron-cyclotron maser, in the form of a gyromonotron, is being developed as a source of millimeter wave energy for fusion plasma heating. The characteristics of this high power, high efficiency electron tube are described in terms of the requirements for the beam power supply system, the mechanical support system, the cooling system, the focusing and tuning magnets, and the waveguide system. Requirements of power level and transmission efficiency dictate the use of oversize waveguide. The implications, both to the user and to the interaction mechanisms in the gyrotron, of the use of oversize waveguide are treated. The effects of variations of various operating parameters upon the gyrotron's power output and stability are also discussed. Data from gyrotron development and system operation are used where appropriate.

  2. Development of second harmonic gyrotrons, Gyrotron FU CW GII and Gyrotron FU CW GIII, equipped with internal mode converters

    NASA Astrophysics Data System (ADS)

    Tatematsu, Yoshinori; Yamaguchi, Yuusuke; Idehara, Toshitaka; Kawase, Tatsuru; Ichioka, Ryoichi; Ogawa, Isamu; Saito, Teruo; Fujiwara, Toshimichi

    2014-01-01

    Second harmonic gyrotrons, Gyrotron FU CW GII and Gyrotron FU CW GIII, were developed at the Research Center for Development of Far-Infrared Region, University of Fukui, Japan to achieve two goals. Each gyrotron was equipped with an internal quasi-optical mode converter. Using Gyrotron FU CW GII allowed the design of the cavity and mode converter to be validated, which was the first goal. After that, Gyrotron FU CW GIII, which is an improved version of Gyrotron FU CW GII, allowed us to achieve a high power output of up to 420 W, which was the second goal, with a cathode voltage setting of -21 kV and a beam current of 0.57 A. This was achieved using a newly developed electron gun and with the careful sitting of the gyrotron on the magnet.

  3. Nonstationary oscillations in gyrotrons revisited

    SciTech Connect

    Dumbrajs, O.; Kalis, H.

    2015-05-15

    Development of gyrotrons requires careful understanding of different regimes of gyrotron oscillations. It is known that in the planes of the generalized gyrotron variables: cyclotron resonance mismatch and dimensionless current or cyclotron resonance mismatch and dimensionless interaction length complicated alternating sequences of regions of stationary, periodic, automodulation, and chaotic oscillations exist. In the past, these regions were investigated on the supposition that the transit time of electrons through the interaction space is much shorter than the cavity decay time. This assumption is valid for short and/or high diffraction quality resonators. However, in the case of long and/or low diffraction quality resonators, which are often utilized, this assumption is no longer valid. In such a case, a different mathematical formalism has to be used for studying nonstationary oscillations. One example of such a formalism is described in the present paper.

  4. Progress in Increasing Gyrotron Output Power Beyond 1 MW

    NASA Astrophysics Data System (ADS)

    Felch, K.; Blank, M.; Borchard, P.; Cahalan, P.; Cauffman, S.; Jory, H.

    2009-04-01

    A 95 GHz, multi-megawatt continuous-wave (CW) gyrotron oscillator is currently under development at CPI. The gyrotron consists of a single-anode magnetron injection gun designed to operate at 75 A and 90 kV, a TE22,6 mode cylindrical interaction cavity, an internal mode converter to transform the TE22,6 mode to a Gausssian beam, an edge-cooled CVD diamond output window, and a single-stage depressed collector fabricated from a strengthened copper alloy. During the initial experimental campaign, carried out in the Summer of 2007, peak output power levels up to 1 MW at 40 A beam current were demonstrated at pulse lengths up to 5 ms. In addition, pulses up to 15 s in duration at 25 A beam current, the long-pulse limit of the CPI test stand, and 630 kW peak output power were achieved. In the Fall of 2007, modifications to the CPI test stand were made to allow for short-pulse operation up to 75 A. A second test campaign, aimed at demonstrating peak output power in excess of 1 MW, is planned for early in 2008.

  5. Long pulse chemical laser. Final technical report

    SciTech Connect

    Bardon, R.L.; Breidenthal, R.E.; Buonadonna, V.R.

    1989-02-01

    This report covers the technical effort through February, 1989. This effort was directed towards the technology associated with the development of a large scale, long pulse DF-CO{sub 2} chemical laser. Optics damage studies performed under Task 1 assessed damage thresholds for diamond-turned salt windows. Task 2 is a multi-faceted task involving the use of PHOCL-50 for laser gain measurements, LTI experiments, and detector testing by LANL personnel. To support these latter tests, PHOCL-50 was upgraded with Boeing funding to incorporate a full aperture outcoupler that increased its energy output by over a factor of 3, to a full kilojoule. The PHOCL-50 carbon block calorimeter was also recalibrated and compared with the LANL Scientech meter. Cloud clearing studies under Task 3 initially concentrated on delivering a Boeing built Cloud Simulation Facility to LANL, and currently involves design of a Cold Cloud Simulation Facility. A Boeing IRAD funded theoretical study on cold cloud clearing revealed that ice clouds may be easier to clear then warm clouds. Task 4 involves the theoretical and experimental study of flow system design as related to laser beam quality. Present efforts on this task are concentrating on temperature gradients induced by the gas filling process. General support for the LPCL field effort is listed under Task 5, with heavy emphasis on assuring reliable operation of the Boeing built Large Slide Valve and other device related tests. The modification of the PHOCL-50 system for testing long pulse DF (4{mu}m only) chemical laser operation is being done under Task 6.

  6. Demonstration of Steady State Operation with 1 MW of 170 GHz gyrotron for ITER

    SciTech Connect

    Kasugai, Atsushi; Takahashi, Koji; Kajiwara, Ken; Kobayashi, Noriyuki; Sakamoto, Keishi

    2007-09-28

    A quasi-steady-state operation of 1 MW/800 s with the efficiency of 55%, which exceeded 1 MW/500 s/50% of the performance required in ITER, was demonstrated in a 170 GHz gyrotron. The oscillation characteristics in the long pulse operation was clarified, and the operation scenario to the hard self-excitation region for the high efficiency oscillation was newly established by controlling a pitch factor of the electron and the cavity magnetic field during the pulse with fixed beam voltage in the triode MIG. The result gives a clear outlook for the success of ECH and ECCD in ITER.

  7. Long Pulse Fusion Physics Experiments without Superconducting Electromagnets

    SciTech Connect

    Woolley, R.D.

    1998-08-19

    Long-pulse fusion physics experiments can be performed economically via resistive electromagnets designed for thermally steady-state operation. Possible fusion experiments using resistive electromagnets include long-pulse ignition with deuterium-tritium fuel. Long-pulse resistive electromagnets are alternatives to today's delicate and costly superconductors. At any rate, superconducting technology is now evolving independent of fusion, so near-term superconducting experience may not ultimately be useful.

  8. Systematic Observation of Time-Dependent Phenomena in the RF Output Spectrum of High Power Gyrotrons

    NASA Astrophysics Data System (ADS)

    Schlaich, Andreas; Gantenbein, Gerd; Kern, Stefan; Thumm, Manfred

    2012-09-01

    At IHM/KIT, high power gyrotrons with conventional cavity (e.g. 1 MW CW at 140 GHz for the stellarator Wendelstein 7-X) and coaxial cavity (2 MW shortpulse at 170 GHz for ITER) for fusion applications are being developed and verified experimentally. Especially with respect to the problem of parasitic RF oscillations in the beam tunnel of some W7-X tubes, investigations of the gyrotron RF output spectrum have proved to be a valuable source of diagnostic information. Signs of transient effects in millisecond pulses, like frequency switching or intermittent low-frequency modulation, have indicated that truly time-dependent measurements with high frequency resolution and dynamic range could give deeper insight into these phenomena. In this paper, an improved measurement system is presented, which employs a fast oscilloscope as receiver. Shorttime Fourier transform (STFT) is applied to the time-domain signal, yielding time-variant spectra with frequency resolutions only limited by acquisition length and STFT segmentation choice. Typical reasonable resolutions are in the range of 100 kHz to 10 MHz with a currently memory-limited maximum acquisition length of 4 ms. A key feature of the system consists in the unambiguity of frequency measurement: The system receives through two parallel channels, each using a harmonic mixer (h = 9 - 12) to convert the signal from RF millimeter wave frequencies (full D-Band, 110 - 170 GHz) to IF (0 - 3 GHz). For each IF output signal of each individual mixer, injection side and receiving harmonic are initially not known. Using accordingly determined LO frequencies, this information is retrieved from the redundancy of the channels, yielding unambiguously reconstructed RF spectra with a total span of twice the usable receiver IF bandwidth, up to ≈ 6 GHz in our case. Using the system, which is still being improved continuously, various transient effects like cavity mode switching, parasitic oscillation frequency variation, and lowfrequency

  9. Design considerations for a 1 MW CW gyrotron with an internal converter

    SciTech Connect

    Felch, K.; Chu, T.S.; Huey, H.; Jory, H.; Neilson, J.; Schumacher, R.; Lorbeck, J.A.; Vernon, R.J.

    1993-07-01

    Varian is carrying out the development of high-power, CW gyrotrons at frequencies ranging from 100--140 GHz. Recent experiments, carried out at a frequency of 110 GHz, resulted in the generation of output powers of 500 kW for 2.5-second pulses and 1 MW for 1 ms pulse durations. The output mode of this tube was a whispering-gallery mode, based on the TE{sub 22,2} mode employed in the interaction cavity. Current design activity is aimed at producing a 1 MW CW gryotron at the same frequency, but with a guassian output mode structure. This type of output mode is desirable for low-loss transmission in a corrugated waveguide or mirror transmission line. In addition to the change in output coupling, the cavity mode will be changed to the TE{sub 22,6} mode. The higher order cavity mode is consistent with higher power or higher frequency requirements that will be addressed in subsequent development activities.

  10. Design study of a tunable coaxial gyrotron

    SciTech Connect

    Dumbrajs, O.; Moebius, A.; Muehleisen, M.

    1995-12-31

    A possibility is investigated to tune the frequency of a coaxial gyrotron by means of a nonuniform inner conductor which is movable in the axial direction. A technological gyrotron working in the TE{sub 2,2} mode in the frequency range 24 - 32 GHz is considered as an example.

  11. CW, high power, gyrotron development at 110 GHz for ECH applications

    SciTech Connect

    Chu, T.S.; Borchard, P.; Felch, K.; Jory, H.; Loring, C.M.

    1996-12-31

    Electron cyclotron heating (ECH) is the most promising plasma heating method to achieve fusion. High-power, long-pulse or CW gyrotrons are required in many present and future ECH experiments. For example, the planned experiment at DIII-D, the experimental tokamak at General Atomics, will require 4 MW of RF power at 110 GHz for a pulse duration of 10 seconds. The RF requirement for the planned International Thermonuclear Experimental Reactor (ITER) is 50 MW at 170 GHz and CW operation. CPI is developing high-power, CW gyrotrons at frequencies ranging from 84--170 GHz for various ECH experiments. In particular, the authors are developing a 1 MW, CW gyrotron with an internal converter at 110 GHz. To achieve the goal of 1 MW, CW operation, the authors have designed and begun fabrication of a new tube that has improved cooling to all tube parts which showed signs of overheating during the last experiment. In addition, they are looking at the possibility of using alternate output window designs to increase power handling capability. They summarize the design of the new tube and present initial test data.

  12. CW, high power, gyrotron development at 110 GHz for ECH applications

    SciTech Connect

    Chu, T.S.; Borchard, P.; Felch, K.; Jory, H.; Loring, C.M.

    1996-12-31

    Electron cyclotron heating (ECH) is the most promising plasma heating method to achieve fusion. High-power, long-pulse or CW gyrotrons are required in many present and future ECH experiments. For example, the planned experiment at DIII-D, the experimental tokamak at General Atomics, will require 4 MW of RF power at 110 GHz for a pulse duration of 10 seconds. The RF requirement for the planned International Thermonuclear Experimental Reactor (ITER) is 50 MW at 170 GHz and CW operation. CPI is developing high-power, CW gyrotrons at frequencies ranging from 84--170 GHz for various ECH experiments. In particular, the authors are developing a 1 MW, CW gyrotron with an internal converter at 110 GHz. To achieve the goal of 1 MW, CW operation, they have designed and begun fabrication of a new tube that has improved cooling to all tube parts which showed signs of overheating during the last experiment. In addition, they are looking at the possibility of using alternate output window designs to increase power handling capability. They will summarize the design of the new tube and present initial test data.

  13. High Power Operation of a 170 GHz Gyrotron for ITER

    NASA Astrophysics Data System (ADS)

    Kreischer, Kenneth E.

    1996-11-01

    Recent experiments at MIT (In collaboration with B.G. Danly, T. Kimura, and R.J. Temkin) on a megawatt gyrotron designed for ITER have achieved record powers at 170.1 GHz. Single mode emission with a peak output power of 1.5 MW and an efficiency of 35% has been measured. The MIT gyrotron operates for 3 μsec pulses at 2 Hz but has been designed to model long pulse or cw operation. The experiment is based on a resonant cylindrical cavity operating in the TE_28,8,1 mode that is situated in the bore of a 6.7 T magnet. It is necessary to operate in a very high order mode in order to reduce cavity ohmic losses to levels that can be adequately cooled (about 1 kW/cm^2). The microwaves are generated in the cavity by an 83 kV annular electron beam produced by a triode-type magnetron injection gun that is capable of currents up to 50 A. Megawatt power levels with efficiencies between 30-35% have been measured over a wide range of operating parameters for the TE_28,8,1 mode. Similar results were also achieved in the neighboring TE_27,8,1 mode at 166.6 GHz, and the TE_29,8,1 mode at 173.5 GHz. These results are in good agreement with nonlinear multimode simulations of the cavity. (S.Y. Cai, T.M. Antonsen, G. Saraph, and B. Levush, Int. J. Electronics, Vol. 72, 759-777 (1992).) The high output power is the result of a carefully designed electron gun that is less sensitive than previous guns to misalignment, and a novel cavity that is less prone to mode competition. The gun was built by C.P.I. (formerly Varian Associates), and has a low perpendicular velocity spread (6-10%). The cavity, which was designed in collaboration with the University of Maryland, uses an output iris to increase the diffraction Q while keeping the interaction length short. Future plans include the installation of an internal mode converter that will transform the TE_28,8,1 mode into a Gaussian beam, and the use of a depressed collector to increase the device efficiency above 50%. The successful

  14. Inductively stabilized, long pulse duration transverse discharge apparatus

    DOEpatents

    Sze, Robert C.

    1986-01-01

    An inductively stabilized, long pulse duration transverse discharge apparatus. The use of a segmented electrode where each segment is attached to an inductive element permits high energy, high efficiency, long-pulsed laser outputs to be obtained. The present apparatus has been demonstrated with rare-gas halide lasing media. Orders of magnitude increase in pulse repetition frequency are obtained in lasing devices that do not utilize gas flow.

  15. Mutual synchronization of weakly coupled gyrotrons

    SciTech Connect

    Rozental, R. M.; Glyavin, M. Yu.; Sergeev, A. S.; Zotova, I. V.; Ginzburg, N. S.

    2015-09-15

    The processes of synchronization of two weakly coupled gyrotrons are studied within the framework of non-stationary equations with non-fixed longitudinal field structure. With the allowance for a small difference of the free oscillation frequencies of the gyrotrons, we found a certain range of parameters where mutual synchronization is possible while a high electronic efficiency is remained. It is also shown that synchronization regimes can be realized even under random fluctuations of the parameters of the electron beams.

  16. The Gyrotron at 50: Historical Overview

    NASA Astrophysics Data System (ADS)

    Nusinovich, Gregory S.; Thumm, Manfred K. A.; Petelin, Michael I.

    2014-04-01

    Gyrotrons form a specific group of devices in the class of fast-wave vacuum electronic sources of coherent electromagnetic wave radiation known as electron cyclotron masers (ECMs) or cyclotron resonance masers (CRMs). The operation of CRMs is based on the cyclotron maser instability which originates from the relativistic dependence of the electron cyclotron frequency on the electron energy. This relativistic effect can be pronounced even at low voltages when the electron kinetic energy is small in comparison with the rest energy. The free energy for generation of electromagnetic (EM) waves is the energy of electron gyration in an external magnetic field. As in any fast-wave device, the EM field in a gyrotron interaction space is not localized near a circuit wall (like in slow-wave devices), but can occupy large volumes. Due to possibilities of using various methods of mode selection (electrodynamical and electronic ones), gyrotrons can operate in very high order modes. Since the use of large, oversized cavities and waveguides reduces the role of ohmic wall losses and breakdown limitations, gyrotrons are capable of producing very high power radiation at millimeter and submillimeter wavelengths. The present review is restricted primarily by the description of the development and the present state-of-the-art of gyrotrons for controlled thermonuclear fusion plasma applications. The first gyrotron was invented, designed and tested in Gorky, USSR (now Nizhny Novgorod, Russia), in 1964.

  17. Long-pulse-width narrow-bandwidth solid state laser

    DOEpatents

    Dane, C. Brent; Hackel, Lloyd A.

    1997-01-01

    A long pulse laser system emits 500-1000 ns quasi-rectangular pulses at 527 nm with near diffraction-limited divergence and near transform-limited bandwidth. The system consists of one or more flashlamp-pumped Nd:glass zig-zag amplifiers, a very low threshold stimulated-Brillouin-scattering (SBS) phase conjugator system, and a free-running single frequency Nd:YLF master oscillator. Completely passive polarization switching provides eight amplifier gain passes. Multiple frequency output can be generated by using SBS cells having different pressures of a gaseous SBS medium or different SBS materials. This long pulse, low divergence, narrow-bandwidth, multi-frequency output laser system is ideally suited for use as an illuminator for long range speckle imaging applications. Because of its high average power and high beam quality, this system has application in any process which would benefit from a long pulse format, including material processing and medical applications.

  18. Long-pulse plasma discharge on the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Kumazawa, R.; Mutoh, T.; Saito, K.; Seki, T.; Nakamura, Y.; Kubo, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Ohkubo, K.; Takeiri, Y.; Oka, Y.; Tsumori, K.; Osakabe, M.; Ikeda, K.; Nagaoka, K.; Kaneko, O.; Miyazawa, J.; Morita, S.; Narihara, K.; Shoji, M.; Masuzaki, S.; Kobayashi, M.; Ogawa, H.; Goto, M.; Morisaki, T.; Peterson, B. J.; Sato, K.; Tokuzawa, T.; Ashikawa, N.; Nishimura, K.; Funaba, H.; Chikaraishi, H.; Watari, T.; Watanabe, T.; Sakamoto, M.; Ichimura, M.; Takase, Y.; Notake, T.; Takeuchi, N.; Torii, Y.; Shimpo, F.; Nomura, G.; Takahashi, C.; Yokota, M.; Kato, A.; Zhao, Y.; Kwak, J. G.; Yoon, J. S.; Yamada, H.; Kawahata, K.; Ohyabu, N.; Ida, K.; Nagayama, Y.; Noda, N.; Komori, A.; Sudo, S.; Motojima, O.; LHD experiment Group

    2006-03-01

    A long-pulse plasma discharge of more than 30 min duration was achieved on the Large Helical Device (LHD). A plasma of ne = 0.8 × 1019 m-3 and Ti0 = 2.0 keV was sustained with PICH = 0.52 MW, PECH = 0.1 MW and averaged PNBI = 0.067 MW. The total injected heating energy was 1.3 GJ. One of the keys to the success of the experiment was a dispersion of the local plasma heat load to divertors, accomplished by sweeping the magnetic axis inward and outward. Causes limiting the long pulse plasma discharge are discussed. An ion impurity penetration limited further long-pulse discharge in the 8th experimental campaign (2004).

  19. Long-pulse-width narrow-bandwidth solid state laser

    DOEpatents

    Dane, C.B.; Hackel, L.A.

    1997-11-18

    A long pulse laser system emits 500-1000 ns quasi-rectangular pulses at 527 nm with near diffraction-limited divergence and near transform-limited bandwidth. The system consists of one or more flashlamp-pumped Nd:glass zig-zag amplifiers, a very low threshold stimulated-Brillouin-scattering (SBS) phase conjugator system, and a free-running single frequency Nd:YLF master oscillator. Completely passive polarization switching provides eight amplifier gain passes. Multiple frequency output can be generated by using SBS cells having different pressures of a gaseous SBS medium or different SBS materials. This long pulse, low divergence, narrow-bandwidth, multi-frequency output laser system is ideally suited for use as an illuminator for long range speckle imaging applications. Because of its high average power and high beam quality, this system has application in any process which would benefit from a long pulse format, including material processing and medical applications. 5 figs.

  20. Megawatt, 330 Hz PRF tunable gyrotron experiments

    NASA Astrophysics Data System (ADS)

    Spark, S. N.; Cross, A. W.; Phelps, A. D. R.; Ronald, K.

    1994-12-01

    Repetitively pulsed and cw gyrotrons have hitherto used thermionic cathodes, whereas cold cathode gyrotrons have normally operated as ‘single shot’ devices. The novel results presented here show that cold cathode gyrotrons can be successfully pulsed repetitively. A tunable gyrotron with a pulse repetition frequency (PRF) of 150Hz is demonstrated. This system developed >4MW mm-wave output pulses at 100GHz. The gyrotron is based on a two-electrode configuration comprising a field-immersed, field emission, cold cathode and a shaped anode cavity. A superconducting magnet was used to produce the homogeneous intra-cavity magnetic field and a cable pulser was used to drive the electron beam. This pulser produced up to a (200±20)kV pulse with 10ns rise time, a 100ns flat top, a 10ns decay with a characteristic impedance of 200Ω. The energy storage capacity of the cable pulser was 35J. The charging unit limited the maximum PRF to 330Hz. Due to spark gap switching limitations 330Hz was only obtainable in 5 to 10 pulse bursts. For substantial periods of the order of 30 seconds, 100Hz PRF was achieved over an oscillating range of 28 to 100GHz and 150Hz PRF was achieved at 80GHz. No degradation effects on the mm-wave output pulse was evident due to diode recovery time throughout this series of results. A subsequent conclusion is that the diode recovery time in our cold cathode gyrotron is less than 3ms.

  1. Photorejuvenation using long-pulsed alexandrite and long-pulsed neodymium:yttrium-aluminum-garnet lasers: a pilot study of clinical outcome and patients' satisfaction in Koreans.

    PubMed

    Lee, Young Bok; Shin, Ji Yeon; Cheon, Min Suk; Oh, Shin Taek; Cho, Baik Kee; Park, Hyun Jeong

    2012-05-01

    Long-pulsed 755-nm alexandrite and long-pulsed 1064-nm neodymium:yttrium-aluminum-garnet (Nd:YAG) lasers have been used for photorejuvenation of the face. The aim of this study was to investigate the safety and efficacy of long-pulsed alexandrite and long-pulsed Nd:YAG lasers for photorejuvenation in Korea. One hundred and sixteen Korean patients with photo-aged facial skin were enrolled. Sixty-two patients with facial pigmentation underwent long-pulsed alexandrite laser treatment. Eleven patients that wanted to improve facial pigmentation with minimal pain had quasi-long-pulsed alexandrite laser treatment. Forty three patients had long-pulsed Nd:YAG laser therapy. Outcome assessments included standard photographs and global evaluation by blinded investigators. The self-assessment grade was provided in questionnaires. Forty-four percent of patients reported excellent or good improvement of their pigmentary lesions (>50% improvement) using a long-pulsed alexandrite laser. Of patients who underwent long-pulsed Nd:YAG laser treatment, 36% reported excellent or good improvement in skin tightening, 50% in facial flushing and 45% in pigmentary lesions. We conclude that long-pulsed alexandrite and long-pulsed Nd:YAG lasers are safe and effective for facial photorejuvenation in Koreans.

  2. 140 GHz pulsed Fourier transform microwave spectrometer

    DOEpatents

    Kolbe, W.F.; Leskovar, B.

    1987-10-27

    A high frequency energy pulsing system suitable for use in a pulsed microwave spectrometer, including means for generating a high frequency carrier signal, and means for generating a low frequency modulating signal is disclosed. The carrier signal is continuously fed to a modulator and the modulating signal is fed through a pulse switch to the modulator. When the pulse switch is on, the modulator will produce sideband signals above and below the carrier signal frequency. A frequency-responsive device is tuned to one of the sideband signals and away from the carrier frequency so that the high frequency energization of the frequency-responsive device is controlled by the pulse switch. 5 figs.

  3. 140 GHz pulsed Fourier transform microwave spectrometer

    DOEpatents

    Kolbe, W.F.; Leskovar, B.

    1985-07-29

    A high frequency energy pulsing system suitable for use in a pulsed microwave spectrometer, including means for generating a high frequency carrier signal, and means for generating a low frequency modulating signal. The carrier signal is continuously fed to a modulator and the modulating signal is fed through a pulse switch to the modulator. When the pulse switch is on, the modulator will produce sideband signals above and below the carrier signal frequency. A frequency-responsive device is tuned to one of the sideband signals and sway from the carrier frequency so that the high frequency energization of the frequency-responsive device is controlled by the pulse switch.

  4. 140 GHz pulsed fourier transform microwave spectrometer

    DOEpatents

    Kolbe, William F.; Leskovar, Branko

    1987-01-01

    A high frequency energy pulsing system suitable for use in a pulsed microwave spectrometer (10), including means (11, 19) for generating a high frequency carrier signal, and means (12) for generating a low frequency modulating signal. The carrier signal is continuously fed to a modulator (20) and the modulating signal is fed through a pulse switch (23) to the modulator. When the pulse switch (23) is on, the modulator (20) will produce sideband signals above and below the carrier signal frequency. A frequency-responsive device (31) is tuned to one of the sideband signals and away from the carrier frequency so that the high frequency energization of the frequency-responsive device (31) is controlled by the pulse switch (23).

  5. Effect of ion compensation of the beam space charge on gyrotron operation

    SciTech Connect

    Fokin, A. P.; Glyavin, M. Yu.; Nusinovich, G. S.

    2015-04-15

    In gyrotrons, the coherent radiation of electromagnetic waves takes place when the cyclotron resonance condition between the wave frequency and the electron cyclotron frequency or its harmonic holds. The voltage depression caused by the beam space charge field changes the relativistic cyclotron frequency and, hence, can play an important role in the beam-wave interaction process. In long pulse and continuous-wave regimes, the beam space charge field can be partially compensated by the ions, which appear due to the beam impact ionization of neutral molecules of residual gases in the interaction space. In the present paper, the role of this ion compensation of the beam space charge on the interaction efficiency is analyzed. We also analyze the effect of the electron velocity spread on the limiting currents and discuss some effects restricting the ion-to-beam electron density ratio in the saturation stage. It is shown that the effect of the ion compensation on the voltage depression caused by the beam space charge field can cause significant changes in the efficiency of gyrotron operation and, in some cases, even result in the break of oscillations.

  6. Long Pulse Narrowband XeCl Laser Studies

    DTIC Science & Technology

    1990-03-15

    longest pulse width obtained with an e-beam pumped excimer laser . The kinetics processes of the long pulse narrowband were investigated by measurements...electrically triggered switch driven by a small Marx bank which produces the high voltage trigger required. This allows a high standoff voltage and...Phys. Lett 45, p. 507 (1984). 13 M. W. Taylor, J. Goldhar, and J. R. Murray, "Dylux: an instant image photographic material suitable for UV laser beam

  7. MTX/ELF II (Microwave Tokamak Experiment/ Electron Laser Facility II) microwave power measurements and calibration for the 2-GW, 140-GHZ, ELF II free-electron laser (FEL)

    SciTech Connect

    Ferguson, S.W.; Stever, R.; Throop, A.; Felker, B.; Franklin, R.

    1989-09-27

    We have developed techniques for measuring the power and frequency of the Electron Laser Facility (ELF) II free-electron laser (FEL) used for plasma heating experiments on the Microwave Tokamak Experiment (MTX). We also have designed a multichannel, 140-GHz receiver capable of measuring FEL power levels from 10 mW to 0.1 {mu}W within an accuracy of {plus minus}1 dB with a 50-dB dynamic range and a 2-ns response time. By using calibrated attenuators, we can measure power levels from 10 GW to 0.1 {mu}W. We sample the microwave output of the FEL in a microwave load tank by using WR-8 or WR-28 stub waveguide antennas. Microwave turning mirrors are used to guide the microwave beam down an evacuated beam tube to the MTX. Stub, WR-8, fundamental-mode, waveguide antennas are used for beam detection on the microwave turning mirrors. Orthogonal, WR-8, stub waveguides are machined into the surfaces of the mirrors and used as directional couplers to measure forward and reflected power from the FEL. The microwave power is then transported to the microwave receiver via a low-loss, over-moded, WR-28 waveguide. A movable modes probe in the microwave load tank is used to scan across the microwave beam to determine the modes content of the beam. Frequency stability of the FEL is measured with a fast, frequency-modulation detector (FFMD) capable of measuring frequency shifts and modulation on a 2- to 4-ns time frame. 2 refs., 14 figs.

  8. A review on the sub-THz/THz gyrotrons

    NASA Astrophysics Data System (ADS)

    Kumar, Nitin; Singh, Udaybir; Bera, Anirban; Sinha, A. K.

    2016-05-01

    A review on the sub-THz/THz gyrotrons is performed in this manuscript. The present development status of gyrotrons can be divided into three streams for the sake of better understanding: 1. low frequency (<35 GHz), medium power (<100 kW), small size and easy to handle gyrotrons for industrial applications, 2. very high power (1 MW or more), medium frequency (100-200 GHz) gyrotrons for plasma fusion applications, 3. low power (few tens of watt to kW), high frequency (>200 GHz) gyrotrons for various innovative applications. In this manuscript, the third stream of gyrotron development is reviewed. In last few decades several innovative applications are searched in sub-THz/THz band where the gyrotrons could be used as an efficient source of RF radiation. The applications of sub-THz/THz gyrotrons including the futuristic scope of the device are also discussed in this article. Further, several criticalities arise in the design and development when the gyrotron operation shifts toward the high frequency band. Various such design and technological challenges are also discussed here. Finally the development status of sub-THz/THz gyrotrons as per the use in various scientific and technological applications is also discussed.

  9. A permanent magnet system for gyrotrons

    SciTech Connect

    Moebius, A.

    1995-12-31

    Currently known configurations of permanent magnet systems for gyrotrons create an axial guiding field with a change of direction along the electron beam path causing problems for the beam stability. In this paper a novel configuration is shown leading to an axial magnetic field with no such change of sign and hence being usable for currently existing tubes.

  10. Scaling Calculations for a Relativistic Gyrotron.

    DTIC Science & Technology

    2014-09-26

    relativistic gyrotron is under development 46-N ,an ultra -high power source of millimeter wave radia- tion. The purpose of the present study is to estimate the...to and m0c Xmn ley ( Le. rw° E, . B ....r respecti 2 EB). Unnormalized ’wo’ m c2 xmn o Xmnn quantities are expressed in mks units unless otherwise

  11. Analysis of cavity and window for THz gyrotron

    SciTech Connect

    Alaria, Mukesh Kumar; Mukherjee, P.; Rao, R.R.; Sinha, A.K. E-mail: aksinha@ceeri.ernet.in

    2011-07-01

    In this paper study of cavity and window has been carried out using Ansoft HFSS for Terahertz Gyrotron. Eigen mode analysis of the cavity has been carried out at 1 THz. An idea about the operating modes in the cavity of the Gyrotron and obtained the simulated Eigen frequency and field pattern of the modes. The design of window for 1 THz Gyrotron has also been carried out using HFSS. The simulated results have also been compared with ST microwave studio. (author)

  12. On optimization of sub-THz gyrotron parameters

    SciTech Connect

    Dumbrajs, O.; Nusinovich, G. S.

    2012-10-15

    The theory is developed describing how the optimization of gyrotron parameters should be done taking into account two effects deteriorating the gyrotron efficiency: the spread in electron velocities and the spread in the guiding center radii. The paper starts from qualitative analysis of the problem. This simplified theory is used for making some estimates for a specific gyrotron design. The same design is then studied by using more accurate numerical methods. Results of the latter treatment agree with former qualitative predictions.

  13. Beta limits in long-pulse tokamak discharges

    SciTech Connect

    Sauter, O.; La Haye, R.J.; Chang, Z.; Gates, D.A.; Kamada, Y.; Zohm, H.; Bondeson, A.; Boucher, D.; Callen, J.D.; Chu, M.S.; Gianakon, T.A.; Gruber, O.; Harvey, R.W.; Hegna, C.C.; Lao, L.L.; Monticello, D.A.; Perkins, F.; Pletzer, A.; Reiman, A.H.; Rosenbluth, M.; Strait, E.J.; Taylor, T.S.; Turnbull, A.D.; Waelbroeck, F.; Wesley, J.C.; Wilson, H.R.; Yoshino, R. ||||||||||

    1997-05-01

    The maximum normalized beta achieved in long-pulse tokamak discharges at low collisionality falls significantly below both that observed in short pulse discharges and that predicted by the ideal MHD theory. Recent long-pulse experiments, in particular those simulating the International Thermonuclear Experimental Reactor (ITER) [M. Rosenbluth {ital et al.}, {ital Plasma Physics and Controlled Nuclear Fusion} (International Atomic Energy Agency, Vienna, 1995), Vol. 2, p. 517] scenarios with low collisionality {nu}{sub e{sup {asterisk}}}, are often limited by low-m/n nonideal magnetohydrodynamic (MHD) modes. The effect of saturated MHD modes is a reduction of the confinement time by 10{percent}{endash}20{percent}, depending on the island size and location, and can lead to a disruption. Recent theories on neoclassical destabilization of tearing modes, including the effects of a perturbed helical bootstrap current, are successful in explaining the qualitative behavior of the resistive modes and recent results are consistent with the size of the saturated islands. Also, a strong correlation is observed between the onset of these low-m/n modes with sawteeth, edge localized modes (ELM), or fishbone events, consistent with the seed island required by the theory. We will focus on a quantitative comparison between both the conventional resistive and neoclassical theories, and the experimental results of several machines, which have all observed these low-m/n nonideal modes. This enables us to single out the key issues in projecting the long-pulse beta limits of ITER-size tokamaks and also to discuss possible plasma control methods that can increase the soft {beta} limit, decrease the seed perturbations, and/or diminish the effects on confinement. {copyright} {ital 1997 American Institute of Physics.}

  14. High harmonic terahertz confocal gyrotron with nonuniform electron beam

    SciTech Connect

    Fu, Wenjie; Guan, Xiaotong; Yan, Yang

    2016-01-15

    The harmonic confocal gyrotron with nonuniform electron beam is proposed in this paper in order to develop compact and high power terahertz radiation source. A 0.56 THz third harmonic confocal gyrotron with a dual arc section nonuniform electron beam has been designed and investigated. The studies show that confocal cavity has extremely low mode density, and has great advantage to operate at high harmonic. Nonuniform electron beam is an approach to improve output power and interaction efficiency of confocal gyrotron. A dual arc beam magnetron injection gun for designed confocal gyrotron has been developed and presented in this paper.

  15. ICRF Heated Long-Pulse Plasma Discharges in LHD

    NASA Astrophysics Data System (ADS)

    Kumazawa, R.; Seki, T.; Mutoh, T.; Saito, K.; Watari, T.; Nakamura, Y.; Sakamoto, M.; Watanabe, T.; Kubo, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Takeiri, Y.; Oka, Y.; Tsumori, K.; Osakabe, M.; Ikeda, K.; Nagaoka, K.; Kaneko, O.; Miyazawa, J.; Morita, S.; Narihara, K.; Shoji, M.; Masuzaki, S.; Goto, M.; Morisaki, T.; Peterson, B. J.; Sato, K.; Tokuzawa, T.; Ashikawa, N.; Nishimura, K.; Funaba, H.; Chikaraishi, H.; Notake, T.; Torii, Y.; Okada, H.; Ichimura, M.; Higaki, H.; Takase, Y.; Kasahara, H.; Shimpo, F.; Nomura, G.; Takahashi, C.; Yokota, M.; Kato, A.; Zhao, Yanping; Yoon, J. S.; Kwak, J. G.; Yamada, H.; Kawahata, K.; Ohyabu, N.; Ida, K.; Nagayama, Y.; Noda, N.; Komori, A.; Sudo, S.; Motojima, O.; LHD Experimental Group

    2006-01-01

    A long-pulse plasma discharge for more than 30 min. was achieved on the Large Helical Device (LHD). A plasma of ne = 0.8× 1019 m-3 and Ti0 = 2.0 keV was sustained with PICH = 0.52 MW, PECH = 0.1 MW and averaged PNBI = 0.067 MW. Total injected heating energy was 1.3 GJ, which was a quarter of the prepared RF heating energy. One of the keys to the success of the experiment was a dispersion of the local plasma heat load to divertors, accomplished by shifting the magnetic axis inward and outward.

  16. Ion-Hose Instability in Long Pulse Induction Accelerators

    SciTech Connect

    Caporaso, G J; McCarrick, J F

    2000-08-02

    The ion-hose (or fast-ion) instability sets limits on the allowable vacuum in a long-pulse, high current accelerator. Beam-induced ionization of the background gas leads to the formation of an ion channel which couples to the transverse motion of the beam. The instability is studied analytically and numerically for several ion frequency distributions. The effects of beam envelope oscillations on the growth of the instability will be discussed. The saturated non-linear growth of the instability is derived analytically and numerically for two different ion frequency distributions.

  17. Reciprocity in long pulse duration laser interactions with polymers

    NASA Astrophysics Data System (ADS)

    Marchant, A. L.; Snelling, H. V.

    2012-05-01

    The laser irradiation of polyimide Kapton HN (PI), polyetheretherketone (PEEK), polyethyleneterephthalate (PET) and polypropylene (PP) by long pulse, radio frequency excited, CO2 laser radiation has been studied. In the pulse duration range 47-757 µs the minimum pulse energy required to damage the surface is found to be independent of exposure time. Hence, the threshold fluence is also independent of pulse duration; the same effect is achieved through the application of long pulses at low irradiance as shorter ones at higher irradiance. The values of these threshold fluences have been found to be 8.15 J cm-2, 5.36 J cm-2, 3.39 J cm-2 and 9.63 J cm-2 for PI, PEEK, PET and PP, respectively. The details of this behaviour have been analysed through calculations of the laser-induced temperature rise and the application of an Eyring-type rate law for the thermal decomposition of polyimide and PEEK and by considering the melting points of PP and PET.

  18. Residual gas analysis for long-pulse, advanced tokamak operation.

    PubMed

    Klepper, C C; Hillis, D L; Bucalossi, J; Douai, D; Oddon, P; Vartanian, S; Colas, L; Manenc, L; Pégourié, B

    2010-10-01

    A shielded residual gas analyzer (RGA) system on Tore Supra can function during plasma operation and is set up to monitor the composition of the neutral gas in one of the pumping ducts of the toroidal pumped limited. This "diagnostic RGA" has been used in long-pulse (up to 6 min) discharges for continuous monitoring of up to 15 masses simultaneously. Comparison of the RGA-measured evolution of the H(2)/D(2) isotopic ratio in the exhaust gas to that measured by an energetic neutral particle analyzer in the plasma core provides a way to monitor the evolution of particle balance. RGA monitoring of corrective H(2) injection to maintain proper minority heating is providing a database for improved ion cyclotron resonance heating, potentially with RGA-base feedback control. In very long pulses (>4 min) absence of significant changes in the RGA-monitored, hydrocarbon particle pressures is an indication of proper operation of the actively cooled, carbon-based plasma facing components. Also H(2) could increase due to thermodesorption of overheated plasma facing components.

  19. Gyrotron-Based Microwave Sintering of Ceramics

    NASA Astrophysics Data System (ADS)

    Fliflet, A. W.; Bruce, R. W.; Fischer Lewis, R. P., III; Bender, B. A.; Chow, G.-M.; Rayne, R. J.; Kurihara, L. K.; Schoen, P. E.

    1997-11-01

    The development of powerful gyrotrons has opened up the millimeter-wave regime (>= 28 GHz) for processing ceramic materials. A number of studies of microwave sintering of ceramics have indicated that sintering proceeds much faster in microwave furnaces than in conventional furnaces, however, specific conclusions have been limited by the wide range of materials investigated and measurement difficulties. To assess the potential of high frequency microwave sintering, and to investigate the possibility of a specific microwave mechanism, the Naval Research Laboratory has recently undertaken a systematic study focused on the sintering of fine and ultra-fine grained alumina and titania compacts. This paper presents 35 GHz microwave sintering data obtained using a gyrotron-powered furnace and compares our data with results from other microwave and conventional sintering studies.

  20. Wide Band Gyrotron Traveling Wave Amplifier Analysis.

    DTIC Science & Technology

    1987-12-01

    phase versus frequency characteristics. It is in these aspects that the gyrotron amplifier effort has been less than successful. A C-band gyro- TWT ...proposals were made several years ago, no experimental results have yet been reported. Another concept for increasing the bandwidth of the gyro- TWT is to...including dielectric loading of the waveguide [24], helix loaded waveguide (25]-[26], and disc-loaded waveguide [26]-(27). No experimental results on

  1. Continuously tunable, split-cavity gyrotrons

    NASA Astrophysics Data System (ADS)

    Brand, G. F.; Gross, M.

    1985-12-01

    Attention is given to a gyrotron cavity configuration which is split in halves longitudinally, to allow any frequency lying between the fixed cavity resonance to be assessed by mechanically changing the separation of the two halves. Experimental results are presented which demonstrate that the rate-of-change in resonant frequency with separation is greatest if the minor axis of the cavity cross section is the one undergoing change. Excellent agreement with theory is noted for these results.

  2. Improved Collectors for High Power Gyrotrons

    SciTech Connect

    Ives, R. Lawrence; Singh, Amarjit; Read, Michael; Borchard, Phillipp; Neilson, Jeff

    2009-05-20

    High power gyrotrons are used for electron cyclotron heating, current drive and parasitic mode suppression in tokamaks for fusion energy research. These devices are crucial for successful operation of many research programs around the world, including the ITER program currently being constructed in France. Recent gyrotron failures resulted from cyclic fatigue of the copper material used to fabricated the collectors. The techniques used to collect the spent beam power is common in many gyrotrons produced around the world. There is serious concern that these tubes may also be at risk from cyclic fatigue. This program addresses the cause of the collector failure. The Phase I program successfully demonstrated feasibility of a mode of operation that eliminates the cyclic operation that caused the failure. It also demonstrated that new material can provide increased lifetime under cyclic operation that could increase the lifetime by more than on order of magnitude. The Phase II program will complete that research and develop a collector that eliminates the fatigue failures. Such a design would find application around the world.

  3. Magnetic field profile analysis for gyrotron experimental investigation

    NASA Astrophysics Data System (ADS)

    Pagonakis, Ioannis Gr.; Avramidis, Konstantinos A.; Gantenbein, Gerd; Rzesnicki, Tomasz; Samartsev, Andrey; Jelonnek, John

    2017-03-01

    The external applied magnetic field plays a main role on the gyrotron operation. Even if the gyrotron design is optimized for the nominal magnetic profile, it is possible the performance to be better for an alternative one. This unexpected result can happen for several reasons, such as the manufacturing imperfections, the misalignment issues, and several unknown factors in gyrotron theory and design. The systematic experimental investigation of the gyrotron in different magnetic profiles is very important for the optimization of the gyrotron operation and for the better understanding of the gyrotron behavior. In this sense, an analytical approach for the definition of the appropriate magnetic profiles based on the beam characteristics instead of the coil currents definition is proposed for a systematic experimental study. Using this technique, operational maps in the space of the important magnetic profile parameters are developed, which are very useful for the characterization of the gyrotron performance. For the demonstration of this idea, the operational maps of the short-pulse prototype of the 170 GHz, 1 MW European ITER gyrotron project are presented.

  4. Long-pulse magnetic field facility at Zaragoza

    NASA Astrophysics Data System (ADS)

    Algarabel, P. A.; del Moral, A.; Martín, C.; Serrate, D.; Tokarz, W.

    2006-11-01

    The long-pulse magnetic field facility of the Laboratorio de Magnetismo - Instituto de Ciencia de Materiales de Aragón (Universidad de Zaragoza-CSIC) produces magnetic fields up to 31, with a pulse duration of 2.2s. Experimental set-ups for measurements of magnetization, magnetostriction and magnetoresistance are available. The temperature can be controlled between 1.4 and 335 K, being the inner bore of the He cryostat of 22.5 mm. Magnetization is measured using the mutual induction technique, the magnetostriction is determined with the strain-gage and the capacitive cantilever methods, and the magnetoresistance is measured by means of the aclock-in technique in the 4-probes geometry. An overview of the facility will be presented and the presently available experimental techniques will be discussed.

  5. Small angle slot divertor concept for long pulse advanced tokamaks

    NASA Astrophysics Data System (ADS)

    Guo, H. Y.; Sang, C. F.; Stangeby, P. C.; Lao, L. L.; Taylor, T. S.; Thomas, D. M.

    2017-04-01

    SOLPS-EIRENE edge code analysis shows that a gas-tight slot divertor geometry with a small-angle (glancing-incidence) target, named the small angle slot (SAS) divertor, can achieve cold, dissipative/detached divertor conditions at relatively low values of plasma density at the outside midplane separatrix. SAS exhibits the following key features: (1) strong enhancement of the buildup of neutral density in a localized region near the plasma strike point on the divertor target; (2) spreading of the cooling front across the divertor target with the slot gradually flaring out from the strike point, thus effectively reducing both heat flux and erosion on the entire divertor target surface. Such a divertor may potentially provide a power and particle handling solution for long pulse advanced tokamaks.

  6. A hybrid digital{endash}analog long pulse integrator

    SciTech Connect

    Strait, E.J.; Broesch, J.D.; Snider, R.T.; Walker, M.L.

    1997-01-01

    A digital{endash}analog integrator has been developed for use with inductive magnetic sensors in long-pulse tokamaks. Continuous compensation of input offsets is accomplished by alternating analog-to-digital convertor samples from the sensor and a dummy load, while a RC network provides passive integration between samples. Typically a sampling rate of 10 kHz is used. In operational tests on the DIII-D tokamak, digital and analog integration of tokamak data show good agreement. The output drift error during a 1200 s integration interval corresponds to a few percent of the anticipated signal for poloidal field probes in International Thermonuclear Experimental Reactor, and bench tests suggest that the error can be reduced further. {copyright} {ital 1997 American Institute of Physics.}

  7. A hybrid digital-analog long pulse integrator

    NASA Astrophysics Data System (ADS)

    Strait, E. J.; Broesch, J. D.; Snider, R. T.; Walker, M. L.

    1997-01-01

    A digital-analog integrator has been developed for use with inductive magnetic sensors in long-pulse tokamaks. Continuous compensation of input offsets is accomplished by alternating analog-to-digital convertor samples from the sensor and a dummy load, while a RC network provides passive integration between samples. Typically a sampling rate of 10 kHz is used. In operational tests on the DIII-D tokamak, digital and analog integration of tokamak data show good agreement. The output drift error during a 1200 s integration interval corresponds to a few percent of the anticipated signal for poloidal field probes in International Thermonuclear Experimental Reactor, and bench tests suggest that the error can be reduced further.

  8. 95 GHz gyrotron with ferroelectric cathode.

    PubMed

    Einat, M; Pilossof, M; Ben-Moshe, R; Hirshbein, H; Borodin, D

    2012-11-02

    Ferroelectric cathodes were reported as a feasible electron source for microwave tubes. However, due to the surface plasma emission characterizing this cathode, operation of millimeter wave tubes based on it remains questionable. Nevertheless, the interest in compact high power sources of millimeter waves and specifically 95 GHz is continually growing. In this experiment, a ferroelectric cathode is used as an electron source for a gyrotron with the output frequency extended up to 95 GHz. Power above a 5 kW peak and ~0.5 μs pulses are reported; a duty cycle of 10% is estimated to be achievable.

  9. Supporting technologies for a long-pulse spallation source

    SciTech Connect

    Russell, G.J.; Weinacht, D.J.; Ferguson, P.D.; Pitcher, E.J.; Court, J.D.; Greene, G.L.

    1998-12-31

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project is directed toward the development of the technologies required for a long-pulse, spallation neutron source (LPSS). Traditionally, spallation neutron sources have used proton accelerators that provide intense, short ({le} 1{micro}s) pulses of high-energy protons to a spallation target. A LPSS uses a proton pulse with longer time duration ({approx} 1 ms) and offers the possibility of achieving very high spallation neutron fluxes at substantially lower cost. The performance of a LPSS is very dependent on the neutronic performance of the target-moderator system. A detailed study of this performance has been carried out using Monte Carlo simulations. It should be noted that a LPSS is optimally suited to a fully coupled moderator. Neutron production per proton from such a moderator is a factor of five to seven greater than that produce d by moderators used at short pulse sources. The results of these efforts have been published in a series of articles.

  10. Cryogenic pellet production developments for long-pulse plasma operation

    SciTech Connect

    Meitner, S. J.; Baylor, L. R.; Combs, S. K.; Fehling, D. T.; McGill, J. M.; Duckworth, R. C.; McGinnis, W. D.; Rasmussen, D. A.

    2014-01-29

    Long pulse plasma operation on large magnetic fusion devices require multiple forms of cryogenically formed pellets for plasma fueling, on-demand edge localized mode (ELM) triggering, radiative cooling of the divertor, and impurity transport studies. The solid deuterium fueling and ELM triggering pellets can be formed by extrusions created by helium cooled, twin-screw extruder based injection system that freezes deuterium in the screw section. A solenoid actuated cutter mechanism is activated to cut the pellets from the extrusion, inserting them into the barrel, and then fired by the pneumatic valve pulse of high pressure gas. Fuel pellets are injected at a rate up to 10 Hz, and ELM triggering pellets are injected at rates up to 20 Hz. The radiative cooling and impurity transport study pellets are produced by introducing impurity gas into a helium cooled section of a pipe gun where it deposits in-situ. A pneumatic valve is opened and propellant gas is released downstream where it encounters a passive punch which initially accelerates the pellet before the gas flow around the finishes the pellet acceleration. This paper discusses the various cryogenic pellet production techniques based on the twin-screw extruder, pipe gun, and pellet punch designs.

  11. Fabrication of micro-convex domes using long pulse laser

    NASA Astrophysics Data System (ADS)

    Wang, Xingsheng; Zhang, Yongnian; Wang, Ling; Xian, Jieyu; Jin, Meifu; Kang, Min

    2017-01-01

    Micro-convex domes inspired from nature can be machined by chemical and physical routes to achieve specific functions. Laser surface texturing (LST) is the front runner among the current material micro-processing technologies. However, most of the studies relating to LST dealt with the formation of micro-dimples. In this paper, LST using long pulse laser was used to create micro-convex domes on 304L stainless steel. Spherical-cap-shaped domes with diameters of 30-75 μm and height of 0.9-5.5 μm were created through LST. The effects of laser-processing parameters on surface morphologies of the created convex domes were investigated. The height of the convex dome increased at first and then decreased with the increasing laser power. The change tendency of the height with the pulse duration varied at different laser powers. The diameter of the convex dome increased almost linearly with the laser power or pulse duration. The superior micro-convex domes were achieved at a pulse energy of 5.6 mJ with a laser power of 80 W and pulse duration of 70 μs.

  12. 110 GHz, 1 MW Gyrotron Design Upgrades

    NASA Astrophysics Data System (ADS)

    Cauffman, Steve; Felch, Kevin; Borchard, Philipp; Cahalan, Pat; Chu, Sam; Dubrule, Craig

    1999-11-01

    Communications and Power Industries has incorporated a number of design changes into its most recent series of 110 GHz 1 MW gyrotrons, for use in ECH and ECCD experiments on the DIII-D tokamak. Two development gyrotrons previously installed at DIII-D used a modulating-anode electron gun design and output windows consisting of double-disk face-cooled sapphire on one system and an edge-cooled CVD diamond disk on the other. Three new systems presently in fabrication and test employ (a) a single-anode electron gun to avoid excitation of spurious modes during turn-on and turn-off and to simplify power supply requirements, (b) a modified TE_22,6 cavity to reduce competition from neighboring modes, (c) a two inch aperture edge-cooled CVD diamond window to allow transmission of a 1 MW Gaussian output beam, (d) a superconducting magnet system with a cryo-cooler to reduce liquid helium consumption, and (e) a number of internal and external plumbing simplifications to make cooling system connections more straightforward. Initial test results, if available, will be presented.

  13. Reflections in gyrotrons with radial output: Consequences for the ITER coaxial gyrotron

    SciTech Connect

    Dumbrajs, O.; Nusinovich, G.S.; Piosczyk, B.

    2004-12-01

    A theory describing the influence of reflections on operation of gyrotrons with radial output is presented. The theory is used for evaluating the effect of reflections on the operation of the 170 GHz ITER coaxial cavity gyrotron, which is under development in cooperation between EUROATOM Associations (CRPP Lausanne, FZK Karlsruhe, and HUT Helsinki) together with European tube industry (Thales Electron Devices, Velizy, France). It is shown that for optimally chosen external magnetic field value and electron beam radius, possible reflections do not change the final steady-state operation, which corresponds to generation of a 2.2 MW millimeter-wave power. The effect of deviation of the magnetic field and the beam radius from optimal values on the device operation is also studied.

  14. Harmonic gyrotrons operating in high-order symmetric modes

    SciTech Connect

    Nusinovich, Gregory S.; Kashyn, Dmytro G.; Antonsen, T. M.

    2015-01-05

    It is shown that gyrotrons operating at cyclotron harmonics can be designed for operation in symmetric TE{sub 0,p}-modes. Such operation in fundamental harmonic gyrotrons is possible only at small radial indices (p≤3) because of the severe mode competition with TE{sub 2,p}-modes, which are equally coupled to annular beams as the symmetric modes. At cyclotron harmonics, however, this “degeneracy” of coupling is absent, and there is a region in the parameter space where harmonic gyrotrons can steadily operate in symmetric modes. This fact is especially important for sub-THz and THz-range gyrotrons where ohmic losses limit the power achievable in continuous-wave and high duty cycle regimes.

  15. The Multiple Gyrotron System on the DIII-D Tokamak

    NASA Astrophysics Data System (ADS)

    Lohr, J.; Anderson, J.; Brambila, R.; Cengher, M.; Chen, X.; Ellis, R. A.; Grosnickle, W.; Moeller, C.; Prater, R.; Ponce, D.; Riford, L.; Torrezan, A. C.

    2016-01-01

    A major component of the versatile heating systems on the DIII-D tokamak is the gyrotron complex. This system routinely operates at 110 GHz with 4.7 MW-generated rf power for electron cyclotron heating and current drive. The complex is being upgraded with the addition of new depressed collector potential gyrotrons operating at 117.5 GHz and generating rf power in excess of 1.0 MW each. The long-term upgrade plan calls for 10 gyrotrons at the higher frequency being phased in as resources permit, for an injected power near 10 MW. This paper presents a summary of the current status of the DIII-D gyrotron complex, its performance, individual components, testing procedures, operational parameters, plans, and a brief summary of the experiments for which the system is currently being used.

  16. Acousto-optical imaging using a powerful long pulse laser

    NASA Astrophysics Data System (ADS)

    Rousseau, Guy; Blouin, Alain; Monchalin, Jean-Pierre

    2008-06-01

    Acousto-optical imaging is an emerging biodiagnostic technique which provides an optical spectroscopic signature and a spatial localization of an optically absorbing target embedded in a strongly scattering medium. The transverse resolution of the technique is determined by the lateral extent of ultrasound beam focal zone while the axial resolution is obtained by using short ultrasound pulses. Although very promising for medical diagnostic, the practical application of this technique is presently limited by its poor sensitivity. Moreover, any method to enhance the signal-to-noise ratio must obviously satisfy the in vivo safety limits regarding the acceptable power level of both the ultrasonic pressure wave and the laser beam. In this paper, we propose to improve the sensitivity by using a pulsed single-frequency laser source to raise the optical peak power applied to the scattering medium and to collect more ultrasonically tagged photons. Such a laser source also allows illuminating the tissues mainly during the transit time of the ultrasonic wave to maintain the average optical power below the maximum permissible exposure. In our experiment, a single-frequency Nd:YAG laser emitting 500-μs pulses with a peak power superior to 100 W was used. Photons were tagged in few-cm thick optical phantoms with tone bursts generated by an ultrasonic transducer. Tagged photons were detected with a GaAs photorefractive interferometer characterized by a large optical etendue to process simultaneously a large number of speckle grains. When pumped by high intensity laser pulses, such an interferometer also provides the fast response time essential to obtain an apparatus insensitive to the speckle decorrelation due to mechanical vibrations or tissues movements. The use of a powerful long pulse laser appears promising to enhance the signal level in ultrasound modulated optical imaging. When combined with a photorefractive interferometer of large optical etendue, such a source could

  17. Theory and Practice in ICRF Antennas for Long Pulse Operation

    SciTech Connect

    Colas, L.; Bremond, S.; Mitteau, R.; Chantant, M.; Goniche, M.; Basiuk, V.; Bosia, G.; Gunn, J.P.

    2005-09-26

    Long plasma discharges on the Tore Supra (TS) tokamak were extended in 2004 towards higher powers and plasma densities by combined Lower Hybrid (LH) and Ion Cyclotron Range of Frequencies (ICRF) waves. RF pulses of 20sx8MW and 60sx4MW were produced. TS is equipped with 3 ICRF antennas, whose front faces are ready for CW operation. This paper reports on their behaviour over high power long pulses, as observed with infrared (IR) thermography and calorimetric measurements. Edge parasitic losses, although modest, are concentrated on a small surface and can raise surface temperatures close to operational limits. A complex hot spot pattern was revealed with at least 3 physical processes involved : convected power, electron acceleration in the LH near field, and a RF-specific phenomenon compatible with RF sheaths. LH coupling was also perturbed in the antenna shadow. This was attributed to RF-induced DC ExB0 convection. This motivated sheath modelling in two directions. First, the 2D topology of RF potentials was investigated in relation with the RF current distribution over the antenna, via a Green's function formalism and full-wave calculation using the ICANT code. In front of phased arrays of straps, convective cells were interpreted using the RF current profiles of strip line theory. Another class of convective cells, specific to antenna box corners, was evidenced for the first time. Within 1D sheath models assuming independent flux tubes, RF and rectified DC potentials are proportional. 2D fluid models couple nearby flux tubes via transverse polarisation currents. Unexpectedly this does not necessarily smooth RF potential maps. Peak DC potentials can even be enhanced. The experience gained on TS and the numerical tools are valuable for designing steady state high power antennas for next step devices. General rules to reduce RF potentials as well as concrete design options are discussed.

  18. Review of quasi-optical gyrotron development

    NASA Astrophysics Data System (ADS)

    Fliflet, A. W.; Hargreaves, T. A.; Fischer, R. P.; Manheimer, W. M.; Sprangle, P.

    1990-03-01

    There is currently a need for megawatt average power sources of 100-600 GHz radiation for electron cyclotron heating of fusion plasmas. One of the leading candidates for such a source, the conventional wave guide cavity gyrotron,(1) has produced impressive output powers and efficiencies at frequencies up to about 300 GHz. However, this gyrotron configuration is limited at high frequencies by high ohmic heating and problems with transverse mode competition due to the highly overmoded configuration, and with beam collection, since the beam must be collected along a section of the output waveguide. The quasi-optical gyrotron (QOG), first proposed in 1980 by Sprangle, Vomvoridis, and Manheimer,(3) features an open resonator formed by a pair of spherical mirrors instead of a waveguide resonator and has the potential for overcoming each of these limitations. The resonator mirrors can be well removed from the beam-wave interaction region, allowing a large volume for the interaction and low ohmic heating densities at the mirrors. The beam direction is transverse to the resonator so that beam collection is separate from the output waveguide. This geometry is particularly well suited to the use of a depressed collector for electron beam energy recovery. The QOG operates in the lowest-order transverse (TEMool) Guassian mode of the resonator, higher-order transverse modes being effectively suppressed by higher diffraction losses. This paper reviews recent progress toward the development of high-power quasi-optical gyrotrons for ECRH of fusion plasmas. It includes an overview of gyrotron theory in terms of normalized variables as they apply to the quasi-optical gyrotron for operation both in the fundamental and the higher harmonics. Scaling equations for the output power and resonator mirror heating by the RF are given. The design tradeoffs between annular and sheet electron beams are discussed as is the issue of beam space-charge depression in the open resonator. Recent

  19. Terahertz Gyrotrons at IAP RAS: Status and New Designs

    NASA Astrophysics Data System (ADS)

    Bratman, V. L.; Glyavin, M. Yu.; Kalynov, Yu. K.; Litvak, A. G.; Luchinin, A. G.; Savilov, A. V.; Zapevalov, V. E.

    2011-03-01

    Powerful gyrotrons with radiation frequencies in the range 0.33-0.65 THz were demonstrated at the IAP as early as in the 1970-1980s. This trend has recently been renewed in connection with a significant increase in interest in terahertz frequency range. In the course of new experiments, the radiation frequency of pulsed gyrotrons was increased up to 1.3 THz and 1 THz at the fundamental and third cyclotron harmonics, respectively. In addition, gyrotrons operated in CW regime with a frequency of 0.3 THz for technological applications (in collaboration with the University of Fukui, Japan) and 0.26 THz for the dynamic nuclear polarization at a high-field NMR were implemented. Designs of a pulsed fundamental-harmonic gyrotron with MW-level power at 0.3 THz and a CW kW-level third-harmonic gyrotron with a frequency of 0.4 THz are currently developed. Estimates show that modern techniques for the creation of strong magnetic fields now make it possible to realize gyrotrons with an operating frequency at least up to 1-1.5 THz. Such generators utilize a relatively low particle energy and can provide higher average power than the existing FELs.

  20. Long-pulse stability limits of the ITER baseline scenario

    DOE PAGES

    Jackson, G. L.; Luce, T. C.; Solomon, W. M.; ...

    2015-01-14

    DIII-D has made significant progress in developing the techniques required to operate ITER, and in understanding their impact on performance when integrated into operational scenarios at ITER relevant parameters. We demonstrated long duration plasmas, stable to m/n =2/1 tearing modes (TMs), with an ITER similar shape and Ip/aBT, in DIII-D, that evolve to stationary conditions. The operating region most likely to reach stable conditions has normalized pressure, BN≈1.9–2.1 (compared to the ITER baseline design of 1.6 – 1.8), and a Greenwald normalized density fraction, fGW 0.42 – 0.70 (the ITER design is fGW ≈ 0.8). The evolution of the currentmore » profile, using internal inductance (li) as an indicator, is found to produce a smaller fraction of stable pulses when li is increased above ≈ 1.1 at the beginning of βN flattop. Stable discharges with co-neutral beam injection (NBI) are generally accompanied with a benign n=2 MHD mode. However if this mode exceeds ≈ 10 G, the onset of a m/n=2/1 tearing mode occurs with a loss of confinement. In addition, stable operation with low applied external torque, at or below the extrapolated value expected for ITER has also been demonstrated. With electron cyclotron (EC) injection, the operating region of stable discharges has been further extended at ITER equivalent levels of torque and to ELM free discharges at higher torque but with the addition of an n=3 magnetic perturbation from the DIII-D internal coil set. Lastly, the characterization of the ITER baseline scenario evolution for long pulse duration, extension to more ITER relevant values of torque and electron heating, and suppression of ELMs have significantly advanced the physics basis of this scenario, although significant effort remains in the simultaneous integration of all these requirements.« less

  1. Long-pulse stability limits of the ITER baseline scenario

    SciTech Connect

    Jackson, G. L.; Luce, T. C.; Solomon, W. M.; Turco, F.; Buttery, R. J.; Hyatt, A. W.; deGrassie, J. S.; Doyle, E. J.; Ferron, J. R.; La Haye, R. J.; Politzer, P. A.

    2015-01-14

    DIII-D has made significant progress in developing the techniques required to operate ITER, and in understanding their impact on performance when integrated into operational scenarios at ITER relevant parameters. We demonstrated long duration plasmas, stable to m/n =2/1 tearing modes (TMs), with an ITER similar shape and Ip/aBT, in DIII-D, that evolve to stationary conditions. The operating region most likely to reach stable conditions has normalized pressure, BN≈1.9–2.1 (compared to the ITER baseline design of 1.6 – 1.8), and a Greenwald normalized density fraction, fGW 0.42 – 0.70 (the ITER design is fGW ≈ 0.8). The evolution of the current profile, using internal inductance (li) as an indicator, is found to produce a smaller fraction of stable pulses when li is increased above ≈ 1.1 at the beginning of βN flattop. Stable discharges with co-neutral beam injection (NBI) are generally accompanied with a benign n=2 MHD mode. However if this mode exceeds ≈ 10 G, the onset of a m/n=2/1 tearing mode occurs with a loss of confinement. In addition, stable operation with low applied external torque, at or below the extrapolated value expected for ITER has also been demonstrated. With electron cyclotron (EC) injection, the operating region of stable discharges has been further extended at ITER equivalent levels of torque and to ELM free discharges at higher torque but with the addition of an n=3 magnetic perturbation from the DIII-D internal coil set. Lastly, the characterization of the ITER baseline scenario evolution for long pulse duration, extension to more ITER relevant values of torque and electron heating, and suppression of ELMs have significantly advanced the physics basis of this scenario, although significant effort remains in the simultaneous integration of all these requirements.

  2. Reliability of High Power Laser Diode Arrays Operating in Long Pulse Mode

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Barnes, Bruce W.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.; Baker, Nathaniel R.

    2006-01-01

    Reliability and lifetime of quasi-CW laser diode arrays are greatly influenced by their thermal characteristics. This paper examines the thermal properties of laser diode arrays operating in long pulse duration regime.

  3. Design and development of mode launcher for high frequency Gyrotron

    NASA Astrophysics Data System (ADS)

    Alaria, Mukesh Kumar; Sinha, A. K.; Khatun, H.

    2016-03-01

    In this paper, we describe the design and development of helical cut smooth wall mode launcher for high frequency and high power Gyrotron. A Vlasov-type helical cut mode launcher for converting TE22,6 mode to a Gaussian mode has been designed for 120 GHz, 1 MW Gyrotron. The initial design of mode launcher has been optimized using LOT/SURF-3D software. The mode launcher diameter and length are optimized considering the minimum return loss and the minimum insertion loss by using CST microwave studio. The return loss (S11) and insertion loss (S21) performance of helical cut smooth wall mode launcher have been obtained using CST-Microwave Studio. The fabrication of Vlasov-type helical cut mode launcher for 120 GHz Gyrotron has also been carried out.

  4. Development of high-power gyrotrons with gradually tapered cavity

    SciTech Connect

    Lei Chaojun; Yu Sheng; Niu Xinjian; Liu Yinghui; Li Hongfu; Li Xiang

    2012-12-15

    In high power gyrotrons, the parasitic modes coupled with the operating mode cannot be avoided in the beam-wave interaction. These parasitic modes will decrease the efficiency of the gyrotrons. The purity of the operating mode affected by different tapers should be carefully studied. The steady-state self-consistent nonlinear theory for gyrotron with gradually tapered cavity is developed in this paper. A steady-state calculation code including 'cold cavity' and 'hot cavity' is designed. By comparison, a time-domain model analysis of gyrotron operation is also studied by particle-in-cell (PIC). It is found that the tapers of gyrotron have different influences on the modes coupling between the operating mode and the parasitic modes. During the study, an example of 94 GHz gyrotron with pure operating mode TE{sub 03} has been designed. The purity of the operating mode in the optimized cavity is up to -77 dB, and in output waveguide of the cavity is up to -76 dB. At the same time, the beam-wave interaction in the designed cavity has been simulated, too. An output power of 120 kW, corresponding to 41.6% efficiency and an oscillation frequency of 94.099 GHz have been achieved with a 50 kV, 6 A helical electron beam at a guiding magnetic field of 3.5485 T. The results show that the power in spurious modes of the optimized cavity may be kept far below than that of the traditional tapered cavity.

  5. Development of gyrotrons for fusion with power exceeding 1 MW over a wide frequency range

    NASA Astrophysics Data System (ADS)

    Kariya, T.; Imai, T.; Minami, R.; Numakura, T.; Eguchi, T.; Kato, T.; Endo, Y.; Ichimura, M.; Shimozuma, T.; Kubo, S.; Takahashi, H.; Yoshimura, Y.; Igami, H.; Ito, S.; Mutoh, T.; Sakamoto, K.; Idei, H.; Zushi, H.; Nagasaki, K.; Sano, F.; Ono, M.; Mitsunaka, Y.

    2015-09-01

    Megawatt-class gyrotrons covering a wide frequency range (14 GHz-300 GHz) are in increasing demand for nuclear fusion. Recent electron cyclotron heating and electron cyclotron current drive experiments highlight a requirement of megawatt-scale gyrotrons at a relatively lower frequency (14-35 GHz) range of some plasma devices, like GAMMA 10/PDX of the University of Tsukuba, QUEST of Kyushu University, NSTX-U of Princeton Plasma Physics Laboratory, and Heliotron J of Kyoto University. Collaborative studies for designing a new 28 GHz/35 GHz dual-frequency gyrotron and a 14 GHz gyrotron have commenced. Operation above 1 MW of 28 GHz/35 GHz dual oscillation was demonstrated experimentally. Further in the design of dual-frequency gyrotron, operations with 2 MW 3 s and 0.4 MW CW (continuous wave) at 28 GHz, and power exceeding 1 MW for 3 s at 34.8 GHz have been shown to be feasible. The 14 GHz gyrotron is expected to operate above 1 MW. We are also developing higher frequency gyrotrons (77-300 GHz). The joint program of National Institute for Fusion Science and the University of Tsukuba developed two new 154 GHz gyrotrons for the large helical device after the demonstration of three 77 GHz gyrotrons. The 154 GHz gyrotrons achieved a maximum output power of 1.25 MW and quasi-CW operation of 0.35 MW for 30 min.

  6. The DIII-D ECH multiple gyrotron control system

    SciTech Connect

    Ponce, D.; Lohr, J.; Tooker, J.F.; Cary, W.P.; Harris, T.E.

    1997-11-01

    DIII-D`s ECH upgrade with 1 MW, 110 GHz gyrotrons is ongoing, and with it, an upgrade of the control system. The ECH Multiple Gyrotron Control System uses software distributed among networked computers, interfaced to a programmable logic controller (PLC), the timing and pulse system, power supplies, vacuum and wave guide controls, and instrumentation. During DIII-D operations, the system will allow a chief and a co-operator to control and monitor a number of gyrotrons from different manufacturers. The software, written using LabVIEW, allows for remote and multiple operator control. Thus any supported computer can become a control station and multiple projects can be simultaneously accommodated. Each operator can be given access to the controls of all gyrotrons or to a subset of controls. Status information is also remotely available. The use of a PLC simplifies the hardware and software design. It reduces interlock and control circuitry, includes monitoring for slow analog signals, and allows one software driver to efficiently interface to a number of systems. In addition, the interlock logic can be easily changed and control points can be forced as needed. The pulse system is designed around arbitrary function generators. Various modulation schemes can be accommodated, including real-time control of the modulation. This discussion will include the hardware and software design of the control system and its current implementation.

  7. Improving Reliability of High Power Quasi-CW Laser Diode Arrays Operating in Long Pulse Mode

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Barnes, Bruce W.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.; Baker, Nathaniel R.

    2006-01-01

    Operating high power laser diode arrays in long pulse regime of about 1 msec, which is required for pumping 2-micron thulium and holmium-based lasers, greatly limits their useful lifetime. This paper describes performance of laser diode arrays operating in long pulse mode and presents experimental data of the active region temperature and pulse-to-pulse thermal cycling that are the primary cause of their premature failure and rapid degradation. This paper will then offer a viable approach for determining the optimum design and operational parameters leading to the maximum attainable lifetime.

  8. Case reports: clearance of lentigines in Japanese men with the long-pulsed alexandrite laser.

    PubMed

    Redbord, Kelley Pagliai; Hanke, C William

    2007-06-01

    Benign pigmented lesions can be effectively treated with multiple modalities including lasers. The treatment of pigmented lesions in phototype IV skin is more complicated and challenging given the risk of pigmentation changes and scarring. We present the novel use of the long-pulsed Alexandrite 755 nm laser for the treatment of solar lentigines in sun-reactive phototype IV skin of patients of Japanese decent. Our Japanese patients cleared with one treatment with no pigmentary changes or scarring. No recurrences were noted to date. The long-pulsed Alexandrite 755-nm laser is a novel, safe, and effective treatment of solar lentigines in Japanese patients.

  9. New Edge Coherent Mode Providing Continuous Transport in Long-Pulse H-mode Plasmas

    NASA Astrophysics Data System (ADS)

    Wang, H. Q.; Xu, G. S.; Wan, B. N.; Ding, S. Y.; Guo, H. Y.; Shao, L. M.; Liu, S. C.; Xu, X. Q.; Wang, E.; Yan, N.; Naulin, V.; Nielsen, A. H.; Rasmussen, J. Juul; Candy, J.; Bravenec, R.; Sun, Y. W.; Shi, T. H.; Liang, Y. F.; Chen, R.; Zhang, W.; Wang, L.; Chen, L.; Zhao, N.; Li, Y. L.; Liu, Y. L.; Hu, G. H.; Gong, X. Z.

    2014-05-01

    An electrostatic coherent mode near the electron diamagnetic frequency (20-90 kHz) is observed in the steep-gradient pedestal region of long pulse H-mode plasmas in the Experimental Advanced Superconducting Tokamak, using a newly developed dual gas-puff-imaging system and diamond-coated reciprocating probes. The mode propagates in the electron diamagnetic direction in the plasma frame with poloidal wavelength of ˜8 cm. The mode drives a significant outflow of particles and heat as measured directly with the probes, thus greatly facilitating long pulse H-mode sustainment. This mode shows the nature of dissipative trapped electron mode, as evidenced by gyrokinetic turbulence simulations.

  10. System Development and Performance Testing of a W-Band Gyrotron

    NASA Astrophysics Data System (ADS)

    Kim, Sung Gug; Sawant, Ashwini; Lee, Ingeun; Kim, Dongsung; Choe, MunSeok; Won, Jong-Hyo; Kim, Jungho; So, Joonho; Jang, Won; Choi, EunMi

    2016-03-01

    A high-power W-band gyrotron has been designed and performance tested in Korea, with an output power in the range of tens of kilowatts. The gyrotron consists of a diode-type electron gun operating at 40 kV, a TE6,2 mode interaction cavity, and a mode converter for producing a highly Gaussian output mode beam. Presented here are the detailed component design procedure and the experimental results of the gyrotron's performance evaluation. A maximum power of 62 kW was achieved with an efficiency of 22 %, and a highly Gaussian output beam was observed. The gyrotron's output beam is analyzed, and its transmission through an oversized waveguide is discussed. This gyrotron is the first gyrotron developed in Korea with high power greater than 10 kW and high frequency greater than 90 GHz.

  11. Note: A 95 GHz mid-power gyrotron for medical applications measurements

    NASA Astrophysics Data System (ADS)

    Pilossof, Moritz; Einat, Moshe

    2015-01-01

    A mid-power 95 GHz gyrotron was built and used for measuring insertion loss of biological tissue. The gyrotron is a compact table-top device that allows convenient measurements in a biological setup. It operates at the fundamental harmonic with TE02 circular mode. A mode converter is used to obtain TE10 rectangular mode in standard WR10 components. Using this gyrotron, beef tissue insertion loss was measured to be about 7-8 dB per millimeter.

  12. Treatment Outcomes of Long-Pulsed Nd: YAG Laser for Two Different Subtypes of Rosacea

    PubMed Central

    Say, Ekin Mese; Gökdemir, Gonca

    2015-01-01

    Background: A variety of lasers have been used for the treatment of rosacea. However, treatment of this condition with long-pulsed neodymium-doped yttrium aluminium garnet laser has not been reported yet. Objective: To assess the efficacy and safety of long-pulsed neodymium-doped yttrium aluminium garnet laser in two different subtypes (erythematotelangiectatic and papulopustular) of rosacea. Methods: A total of 66 patients were enrolled in the study. All of the patients were treated with long-pulsed neodymium-doped yttrium aluminium garnet laser with 3- to 4-week intervals. Rosacea severity score was assessed by using photographs. Improvement in severity was defined as the percentage reduction in severity scores from baseline to the end of treatment. Patients were also asked about their own opinions of improvement at the end of the treatment. Side effects were also documented. Results: Good to excellent improvement was achieved in up to 50 percent of the patients in the erythematotelangiectatic and papulopustular groups. Percent improvement of global severity was significantly greater in the erythematotelangiectatic patients than in the papulopustular patients. The majority of patients from both groups noted a significant improvement of the lesions. Hypopigmented atrophic scars were seen in two patients. Conclusion: The long-pulsed neodymium-doped yttrium aluminium garnet laser is a safe and effective treatment for vascular and inflammatory lesions of rosacea. PMID:26430486

  13. Osteoblast behavior on polytetrafluoroethylene modified by long pulse, high frequency oxygen plasma immersion ion implantation.

    PubMed

    Wang, Huaiyu; Kwok, Dixon T K; Wang, Wei; Wu, Zhengwei; Tong, Liping; Zhang, Yumei; Chu, Paul K

    2010-01-01

    Polytetrafluoroethylene (PTFE) is a commonly used medical polymer due to its biological stability and other attractive properties such as high hardness and wear resistance. However, the low surface energy and lack of functional groups to interact with the cellular environment have severely limited its applications in bone or cartilage replacements. Plasma immersion ion implantation (PIII) is a proven effective surface modification technique. However, when conducted on polymeric substrates, conventional PIII experiments typically employ a low pulsing frequency and short pulse duration in order to avoid sample overheating, charging, and plasma sheath extension. In this paper, a long pulse, high frequency O(2) PIII process is described to modify PTFE substrates by implementing a shielded grid in the PIII equipment without these aforementioned adverse effects. X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and contact angle measurements are carried out to reveal the surface effects of PTFE after long pulse, high frequency O(2) PIII and the results are compared to those obtained from conventional short pulse, low frequency O(2) PIII, O(2) plasma immersion, and the untreated control samples. Our results show that less oxygen-containing, rougher, and more hydrophobic surfaces are produced on PTFE after long pulse, high frequency O(2) PIII compared to the other 2 treatments. Cell viability assay, ALP activity test, and real-time PCR analysis are also performed to investigate the osteoblast behavior. It is clear that all 3 surface modification techniques promote osteoblast adhesion and proliferation on the PTFE substrates. Improvements on the ALP, OPN, and ON expression of the seeded osteoblasts are also obvious. However, among these treatments, only long pulse, high frequency O(2) PIII can promote the OCN expression of osteoblasts when the incubation time is 12 days. Our data unequivocally disclose that the long pulse, high frequency O(2) PIII

  14. Optimal parameters of gyrotrons with weak electron-wave interaction

    NASA Astrophysics Data System (ADS)

    Glyavin, M. Yu.; Oparina, Yu. S.; Savilov, A. V.; Sedov, A. S.

    2016-09-01

    In low-power gyrotrons with weak electron-wave interaction, there is a problem of determining the optimal length of the operating cavity, which is found as a result of a tradeoff between the enhancement of the electron efficiency and the increase in the Ohmic loss share with increasing cavity length. In fact, this is the problem of an optimal ratio between the diffraction and Ohmic Q-factors of the operating gyrotron mode, which determines the share of the radiated rf power lost in the cavity wall. In this paper, this problem is studied on the basis of a universal set of equations, which are appropriate for a wide class of electron oscillators with low efficiencies of the electron-wave interaction.

  15. Scattering from Snow Backgrounds at 35, 98, and 140 GHz.

    DTIC Science & Technology

    1984-04-01

    reported here were obtained by averaging returns while the scatterometer antenna footprints swept over the snow in a continuous circular motion...assembly rotates around its vertical axis. During such a scan, the scatter area on the snow surface describes a circular arc whose radius is a function...lateral antenna motion over distance d. A more rigorous solution was published by Ruina , 10 who gives a comparable expression for the antenna

  16. Self-consistent non-stationary theory of the gyrotron

    NASA Astrophysics Data System (ADS)

    Dumbrajs, Olgierd; Nusinovich, Gregory S.

    2016-08-01

    For a long time, the gyrotron theory was developed assuming that the transit time of electrons through the interaction space is much shorter than the cavity fill time. Correspondingly, it was assumed that during this transit time, the amplitude of microwave oscillations remains constant. A recent interest to such additional effects as the after-cavity interaction between electrons and the outgoing wave in the output waveguide had stimulated some studies of the beam-wave interaction processes over much longer distances than a regular part of the waveguide which serves as a cavity in gyrotrons. Correspondingly, it turned out that the gyrotron theory free from the assumption about constant amplitude of microwave oscillations during the electron transit time should be developed. The present paper contains some results obtained in the framework of such theory. The main attention is paid to modification of the boundary between the regions of oscillations with constant amplitude and automodulation in the plane of normalized parameters characterizing the external magnetic field and the beam current. It is shown that the theory free from the assumption about the frozen wave amplitude during the electron transit time predicts some widening of the region of automodulation.

  17. Investigations and advanced concepts on gyrotron interaction modeling and simulations

    SciTech Connect

    Avramidis, K. A.

    2015-12-15

    In gyrotron theory, the interaction between the electron beam and the high frequency electromagnetic field is commonly modeled using the slow variables approach. The slow variables are quantities that vary slowly in time in comparison to the electron cyclotron frequency. They represent the electron momentum and the high frequency field of the resonant TE modes in the gyrotron cavity. For their definition, some reference frequencies need to be introduced. These include the so-called averaging frequency, used to define the slow variable corresponding to the electron momentum, and the carrier frequencies, used to define the slow variables corresponding to the field envelopes of the modes. From the mathematical point of view, the choice of the reference frequencies is, to some extent, arbitrary. However, from the numerical point of view, there are arguments that point toward specific choices, in the sense that these choices are advantageous in terms of simulation speed and accuracy. In this paper, the typical monochromatic gyrotron operation is considered, and the numerical integration of the interaction equations is performed by the trajectory approach, since it is the fastest, and therefore it is the one that is most commonly used. The influence of the choice of the reference frequencies on the interaction simulations is studied using theoretical arguments, as well as numerical simulations. From these investigations, appropriate choices for the values of the reference frequencies are identified. In addition, novel, advanced concepts for the definitions of these frequencies are addressed, and their benefits are demonstrated numerically.

  18. A 670 GHz gyrotron with record power and efficiency

    NASA Astrophysics Data System (ADS)

    Glyavin, M. Yu.; Luchinin, A. G.; Nusinovich, G. S.; Rodgers, J.; Kashyn, D. G.; Romero-Talamas, C. A.; Pu, R.

    2012-10-01

    A 670 GHz gyrotron with record power and efficiency has been developed in joint experiments of the Institute of Applied Physics, Russian Academy of Sciences (Nizhny Novgord, Russia), and the University of Maryland (USA) teams. The magnetic field of 27-28 T required for operation at the 670 GHz at the fundamental cyclotron resonance is produced by a pulsed solenoid. The pulse duration of the magnetic field is several milliseconds. A gyrotron is driven by a 70 kV, 15 A electron beam, so the beam power is on the order of 1 MW in 10-20 ms pulses. The ratio of the orbital to axial electron velocity components is in the range of 1.2-1.3. The gyrotron is designed to operate in the TE31,8-mode. Operation in a so high-order mode results in relatively low ohmic losses (less than 10% of the radiated power). Achieved power of the outgoing radiation (210 kW) and corresponding efficiency (about 20%) represent record numbers for high-power sources of sub-THz radiation.

  19. Multi-Megawatt Operation of a 95 GHz Gyrotron

    NASA Astrophysics Data System (ADS)

    Felch, Kevin; Blank, Monica; Borchard, Philipp; Cahalan, Pat; Cauffman, Steve

    2010-11-01

    A 95 GHz gyrotron capable of generating CW power levels in excess of 2 MW is under development at CPI. The gyrotron employs a single-anode electron gun that produces a 90-kV, 75-A electron beam for interaction with the TE22,6,1 cavity mode. Output power from the cavity is transformed into a Gaussian beam using an internal converter that consists of a waveguide launcher and three focusing and phase-correcting mirrors. The beam exits the tube through a chemical-vapor-deposition diamond window. The spent electron beam is dissipated in a 40.6-cm diameter collector fabricated from a strengthened copper alloy. The collector nominally operates at a voltage of 61 kV relative to the cathode potential to minimize the amount of power absorbed in the collector and to improve efficiency. In tests on the gyrotron the maximum power achieved thus far is 1.72 MW with 33% efficiency at the nominal beam current of 75 A. At a reduced beam current of 45 A, an output power of 1.4 MW is obtained with over 50% efficiency. We are planning tube modifications to increase the output power level where efficiencies of greater than 50% can still be obtained.

  20. Cesium dynamics in long pulse operation of negative hydrogen ion sources for fusion.

    PubMed

    Fantz, U; Wimmer, C

    2012-02-01

    Large scale negative hydrogen ion sources operating stable for 1 h (cw mode) are required for the neutral beam heating system of the fusion experiment ITER. The formation of negative hydrogen ions relies on the surface effect for which cesium is evaporated into the source. In order to monitor the cesium dynamics the laser absorption spectroscopy technique is applied to the long pulse test facility MANITU. In the vacuum phase, without plasma operation the evaporation of cesium and the built-up of the cesium in the source are measured. Typical neutral cesium densities are 10(15) m(-3). During plasma operation and after the plasma phase a high cesium dynamics is observed, showing also depletion of cesium during long pulses with low cesium amount. The co-extracted electron current decreases with the cesium amount to a certain level whereas the ion current indicates an optimum density range.

  1. Initial operation of high power ICRF system for long pulse in EAST

    SciTech Connect

    Qin, C. M. Zhao, Y. P.; Zhang, X. J.; Wan, B. N.; Gong, X. Z.; Mao, Y. Z.; Yuan, S.; Chen, G.

    2015-12-10

    The ICRF heating system on EAST upgraded by active cooling aims for long pulse operation. In this paper, the main technical features of the ICRF system are described. One of a major challenges for long pulse operation is RF-edge interactions induced impurity production and heat loading. In EAST, ICRF antenna protections and Faraday screen bars damaged due to LH electron beam are found. Preliminary results for the analysis of the interaction between LHCD and ICRF antenna are discussed. Increase of metal impurities in the plasma during RF pulse and in a larger core radiation are also shown. These RF-edge interactions at EAST and some preliminary results for the optimizing RF performance will be presented.

  2. Investigation of an X-band gigawatt long pulse multi-beam relativistic klystron amplifier

    NASA Astrophysics Data System (ADS)

    Liu, Zhenbang; Huang, Hua; Lei, Lurong; Jin, Xiao; Zhu, Lei; Wang, Ganping; He, Hu; Wu, Yao; Ge, Yi; Yuan, Huan; Chen, Zhaofu

    2015-09-01

    To achieve a gigawatt-level long pulse radiation power in X-band, a multi-beam relativistic klystron amplifier is proposed and studied experimentally. By introducing 18 electron drift tubes and extended interaction cavities, the power capacity of the device is increased. A radiation power of 1.23 GW with efficiency of 41% and amplifier gain of 46 dB is obtained in the particle-in-cell simulation. Under conditions of a 10 Hz repeat frequency and an input RF power of 30 kW, a radiation power of 0.9 GW, frequency of 9.405 GHz, pulse duration of 105 ns, and efficiency of 30% is generated in the experiment, and the amplifier gain is about 45 dB. Both the simulation and the experiment prove that the multi-beam relativistic klystron amplifier can generate a long pulse GW-level radiation power in X-band.

  3. Cesium dynamics in long pulse operation of negative hydrogen ion sources for fusion

    SciTech Connect

    Fantz, U.; Wimmer, C.

    2012-02-15

    Large scale negative hydrogen ion sources operating stable for 1 h (cw mode) are required for the neutral beam heating system of the fusion experiment ITER. The formation of negative hydrogen ions relies on the surface effect for which cesium is evaporated into the source. In order to monitor the cesium dynamics the laser absorption spectroscopy technique is applied to the long pulse test facility MANITU. In the vacuum phase, without plasma operation the evaporation of cesium and the built-up of the cesium in the source are measured. Typical neutral cesium densities are 10{sup 15} m{sup -3}. During plasma operation and after the plasma phase a high cesium dynamics is observed, showing also depletion of cesium during long pulses with low cesium amount. The co-extracted electron current decreases with the cesium amount to a certain level whereas the ion current indicates an optimum density range.

  4. A Free Electron Laser Driven by a Long Pulse Induction Linac.

    DTIC Science & Technology

    1983-03-07

    performed using microtron accelerators at Bell Labs (Shaw and Patel, 1982) and at Frascati (Bizzarri et al., 1982). These accelerators operate at up to...20 MeV with peak current of - 5 A, and the Frascati microtron is being upgraded to ; 30 MeV. Bell Labs is using a 10 a long helical wiggler with a 20...wavelength FEL, the long pulse induction module can be converted into a racetrack accelerator (Roberson, 1981; Mondelli and Roberson, 1982). This takes

  5. Argon gas-puff radius optimiaztion for Saturn operating in the long-pulse mode.

    SciTech Connect

    Apruzese, John P.; Jackson, S. L.; Commisso, Robert J.; Weber, Bruce V.; Mosher, Daniel A.

    2010-06-01

    Argon gas puff experiments using the long pulse mode of Saturn (230-ns rise time) have promise to increase the coupled energy and simplify operations because the voltage is reduced in vacuum and the forward-going energy is higher for the same Marx charge. The issue addressed in this work is to determine if the 12-cm-diameter triple nozzle used in Saturn long-pulse-mode experiments to date provides maximum K-shell yield, or if a different-radius nozzle provides additional radiation. Long-pulse implosions are modeled by starting with measured density distributions from the existing 12-cm-diameter nozzle, and then varying the outer radius in an implosion-energy-conserving self-similar manner to predict the gas-puff diameter that results in the maximum K-shell yield. The snowplow-implosions and multi-zone radiation transport models used in the analysis are benchmarked against detailed measurements from the 12-cm-diameter experiments. These calculations indicate that the maximum K-shell emission is produced with very nearly the existing nozzle radius.

  6. Long-Pulse Integrator Testing with DIII-D Magnetic Diagnostics

    NASA Astrophysics Data System (ADS)

    Slobodov, Ilia; Miller, Kenneth; Ziemba, Timothy; Prager, James; Carscadden, John; Hanson, Eric

    2016-10-01

    Eagle Harbor Technologies (EHT), Inc. has developed a high-gain integrator for magnetic diagnostics that meets ITER specifications including integration time and integration error limits. EHT has conducted testing of this long-pulse integrator at DIII-D with existing DIII-D magnetic probes. The EHT long-pulse integrator was operated for several hours up to a full day. During a single period of EHT integrator operation, DIII-D was pulsed multiple times. The multiple pulses from the DIII-D magnetic diagnostics can be clearly resolved in the integrator signal output. The results are compared to DIII-D measurements. EHT also operated the long pulse integrator in High Dynamic Range Mode (HDRM), which effectively allows for a dramatic increase in measurement bit depth for higher resolution signal acquisition with the same diagnostic and digitizers presently available on DIII-D. Additionally, EHT has tested a new microprocessor and FPGA-based digitizer, which can be included on the integrator PCB, for a single board magnetic diagnostic solution.

  7. Power Accountability with 1 MW 110 GHz Gyrotron System on the DIII--D Tokamak

    NASA Astrophysics Data System (ADS)

    Zhang, Daqing; Lohr, John; Tooker, J. W.; Ponce, Dan; Callis, R. W.

    1996-11-01

    A new gyrotron system (110 GHz, 1 MW, 2 sec) has been built for the DIII--D tokamak. Before the ECH physics experiments were carried out on DIII--D, the power produced by the gyrotron was measured carefully as well as the power absorbed by parts of the system such as in the gyrotron window, mirror optics unit, miter bends, and dummy loads, for different pulse durations. The maximum output power achieved up to now is 885 kW for 500 msec pulse length. The gyrotron generation efficiency is 37%, very close to the optimum operation parameters, and the whole system's efficiency is 29%. The output mode and frequency of the gyrotron was also measured. Detailed experimental results will be presented.

  8. GYROTRON POWER BALANCE BASED ON CALORIMETRIC MEASUREMENTS IN THE DIII-D ECH SYSTEM

    SciTech Connect

    GORELOV,I.A; LOHR,J.M; BAITY,JR.,F.W; CAHALAN,P; CALLIS,R.W; PONCE,D; CHIU,H.K

    2003-10-01

    OAK-B135 A powerful microwave system operating at the second harmonic of the electron cyclotron frequency on the DIII-D tokamak was upgraded up to six assemblies of 110 GHz gyrotrons in 2003. three Gycom gyrotrons nominally generate 750 kW for 2 s pulses, with the pulse length limit resulting from the peak temperature allowed on the boron nitride rf output window. Three Communications and Power Industries (CPI) gyrotrons with diamond windows have been recently installed and have been tested to 0.9-1.0 MW for 5 s pulses. Heat loading on internal parts of the gyrotrons, the matching optics unit and the dummy loads is measured calorimetrically. This paper discusses the calorimetry system and calorimetric measurements of gyrotron performance.

  9. INFRARED MONITORING OF 110GHz GYROTRON WINDOWS AT DIII-D

    SciTech Connect

    Y. GORELOV; J. LOHR; R.W. CALLIS; D. PONCE

    2002-05-01

    The combination of low millimeter wave losses and excellent thermal conductivity with good mechanical properties make artificial chemical vapor deposition (CVD) diamonds a compelling choice for 1 MW 110 GHz gyrotron windows. Five gyrotrons are currently operating at the DIII-D tokamak. Three Gycom gyrotrons have boron nitride (BN) ceramic windows. Due to temperature increases of the windows up to about 930 C, the pulse duration of these tubes is limited to 2 s for output power near 800 kW. Two Communications and Power Industries (CPI) gyrotrons with diamond windows are also installed and operating. The diamond disks of these windows and the construction of their water-cooling assemblies are different. This paper reviews the infrared (IR) measurements of both types of gyrotron windows, with emphasis on the two diamond designs.

  10. Research on a 170 GHz, 2 MW coaxial cavity gyrotron with inner-outer corrugation

    SciTech Connect

    Hou, Shenyong; Yu, Sheng; Li, Hongfu

    2015-03-15

    In this paper, a coaxial cavity gyrotron with inner-outer corrugation is researched. The electron kineto-equations and the first order transmission line equations of the gyrotron are derived from Lorentz force equation and the transmission line theory, respectively. And then, a 2 MW, 170 GHz coaxial cavity gyrotron with inner-outer corrugation is designed. By means of numerical calculation, the beam-wave interaction of the coaxial cavity gyrotron with inner-outer corrugation is investigated. Results show that the efficient and the outpower of the gyrotron are 42.3% and 2.38 MW, respectively.

  11. High power 303 GHz gyrotron for CTS in LHD

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Y.; Kasa, J.; Saito, T.; Tatematsu, Y.; Kotera, M.; Kubo, S.; Shimozuma, T.; Tanaka, K.; Nishiura, M.

    2015-10-01

    A high-power pulsed gyrotron is under development for 300 GHz-band collective Thomson scattering (CTS) diagnostics in the Large Helical Device (LHD). High-density plasmas in the LHD require a probe wave with power exceeding 100 kW in the sub-terahertz region to obtain sufficient signal intensity and large scattering angles. At the same time, the frequency bandwidth should be less than several tens of megahertz to protect the CTS receiver using a notch filter against stray radiations. Moreover, duty cycles of ~ 10% are desired for the time domain analysis of the CTS spectrum. At present, a 77 GHz gyrotron for electron cyclotron heating is used as a CTS wave source in the LHD. However, the use of such a low-frequency wave suffers from refraction, cutoff and absorption at the electron cyclotron resonance layer. Additionally, the signal detection is severely affected by background noise from electron cyclotron emission. To resolve those problems, high-power gyrotrons in the 300 GHz range have been developed. In this frequency range, avoiding mode competition is critical to realizing high-power and stable oscillation. A moderately over-moded cavity was investigated to isolate a desired mode from neighbouring modes. After successful tests with a prototype tube, the practical one was constructed with a cavity for TE22,2 operation mode, a triode electron gun forming intense laminar electron beams, and an internal mode convertor. We have experimentally confirmed single mode oscillation of the TE22,2 mode at the frequency of 303.3 GHz. The spectrum peak is sufficiently narrow. The output power of 290 kW has been obtained at the moment.

  12. Computer simulation of phase locking multi-cavity relativistic gyrotrons

    NASA Astrophysics Data System (ADS)

    Lin, A. T.; Yang, Z. H.; Lin, Chih-Chien

    1989-07-01

    A particle-in-cell model has been employed to investigate the phase-locking phenomenon of multi-cavity relativistic gyrotron oscillators. Simulation results show that a prebunched beam causes the output wave to overshoot, which in turn prolongs the time for establishing phase locking. The beam axial velocity spread is observed to reduce the locking bandwidth. The phenomenon of priming or injection seeding is simulated. The phase locked time depends on the growth rate of the oscillator and the amount of inject frequency deviation from the locking boundary.

  13. Treatment of hypertrophic scars using a long-pulsed dye laser with cryogen-spray cooling.

    PubMed

    Kono, Taro; Erçöçen, Ali Rza; Nakazawa, Hiroaki; Nozaki, Motohiro

    2005-05-01

    Hypertrophic scars are common and cause functional and psychologic morbidity. The conventional pulsed dye laser (585 nm) has been shown previously to be effective in the treatment of a variety of traumatic and surgical scars, with improvement in scar texture, color, and pliability, with minimal side effects. This prospective study was performed to determine the effectiveness of the long-pulsed dye laser (595 nm) with cryogen-spray cooling device in the treatment of hypertrophic scars. Fifteen Asian patients with 22 hypertrophic scars were treated by the long-pulsed dye laser (595 nm) with cryogen-spray cooling device. In 5 patients, the scar area was divided into halves, one half of which was treated with the laser, whereas the other half was not treated and was used as a negative control. All patients received 2 treatments at 4-week intervals, and evaluations were done by photographic and clinical assessment and histologic evaluation before the treatment and 1 month after the last laser treatment. Treatment outcome was graded by a blind observer using the Vancouver General Hospital (VGH) Burn Scar Assessment Scale. Symptoms such as pain, pruritus, and burning of the scar improved significantly. VGH scores improved in all treated sites, and there was a significant difference between the baseline and posttreatment scores, corresponding to an improvement of 51.4 +/- 14.7% (P < 0.01). Compared with the baseline, the mean percentage of scar flattening and erythema elimination was 40.7 +/- 20.7 and 65.3 +/- 25.5%, respectively (P < 0.01). The long-pulsed dye laser (595-nm) equipped with cryogen spray cooling device is an effective treatment of hypertrophic scars and can improve scar pliability and texture and decrease scar erythema and associated symptoms.

  14. Simulation study on thermal effect of long pulse laser interaction with CFRP material

    NASA Astrophysics Data System (ADS)

    Ma, Yao; Jin, Guangyong; Yuan, Boshi

    2016-10-01

    Laser machining is one of most widely used technologies nowadays and becoming a hot industry as well. At the same time, many kinds of carbon fiber material have been used in different area, such as sports products, transportation, microelectronic industry and so on. Moreover, there is lack of the combination research on the laser interaction with Carbon Fiber Reinforced Polymer (CFRP) material with simulation method. In this paper, the temperature status of long pulse laser interaction with CFRP will be simulated and discussed. Firstly, a laser thermal damage model has been built considering the heat conduction theory and thermal-elasto-plastic theory. Then using COMSOL Multiphysics software to build the geometric model and to simulate the mathematic results. Secondly, the functions of long pulse laser interaction with CFRP has been introduced. Material surface temperature increased by time during the laser irradiating time and the increasing speed is faster when the laser fluence is higher. Furthermore, the peak temperature of the center of material surface is increasing by enhanced the laser fluence when the pulse length is a constant value. In this condition, both the ablation depth and the Heat Affected Zone(HAZ) is larger when increased laser fluence. When keep the laser fluence as a constant value, the laser with shorter pulse length is more easier to make the CFRP to the vaporization material. Meanwhile, the HAZ is becoming larger when the pulse length is longer, and the thermal effect depth is as the same trend as the HAZ. As a result, when long pulse laser interaction with CFRP material, the thermal effect is the significant value to analysis the process, which is mostly effect by laser fluence and pulse length. For laser machining in different industries, the laser parameter choose should be different. The shorter pulse length laser is suitable for the laser machining which requires high accuracy, and the longer one is better for the deeper or larger

  15. Generation in electric-discharge XeCl lasers of a high energy long pulses

    NASA Astrophysics Data System (ADS)

    Konovalov, Ivan; Losev, Valery F.; Panchenko, Yury N.

    2004-06-01

    Experimental results of long-pulse generation in X-ray preionized XeCl lasers with a 9 x 7 cm2 and 5.4 x 3 cm2 apertures are described. Lasers operate at Ne-Xe-HCl mixture with pressure up to 4 atm. Paper-oil pulse forming lines and rail-gap switch for discharge pump was used. An 2 - 10 J output with optical pulse duration of 250 - 300 ns (FWHM) have been extracted. Problems and peculiarities of long laser pulse formation are discussed.

  16. Recent experimental results from a long-pulse J-band relativistic klystron amplifier developmental effort

    SciTech Connect

    Kato, K.G.; Crouch, D.D.; Sar, D.R.; Speciale, R.A.; Carlsten, B.E.; Fazio, M.V.; Haynes, W.B.; Stringfield, R.M.

    1994-12-31

    Recent experimental results, supporting simulations, and design modeling are presented from a developmental effort to a produce a long pulse ({approximately}1{mu}s) J-band (5.85-8.2 GHz) relativistic klystron amplifier (RKA) of the high current NRL genealogy. This RKA is designed to operate at approximately 6.6 GHz, with a desired RF output {approximately}700 MW. Conversion of electron beam energy to microwave energy is obtained by a mock magnetically insulated coaxial converter which, in various incarnations, can be made to be either a cavity gap extractor or an inverse cathode.

  17. Efficiency of stone fragmentation by long pulses of a Q-switched Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Helfmann, Juergen; Mikhailov, B. A.; Konov, Vitali I.; Mueller, Gerhard J.; Nikolaev, D. A.; Pak, S. K.; Shcherbakov, Ivan A.; Silenok, Alexander S.

    1992-06-01

    The effect of long pulsed Nd:YAG laser (pulse duration 300 ns) with the fundamental and second harmonic wavelength on the fragmentation of different urological and gall stones has been investigated. With 200 and 400 micrometers fibers in a contact application, all types of stones could be fragmented with energies less than 120 mJ (400 micrometers fiber) or 45 mJ (200 micrometers fiber). By use of a double pulse-simultaneous application of second harmonic and fundamental radiation the efficiency of fragmentation could be increased and the energy threshold decreased.

  18. ICRF mode conversion heating and long-pulse discharges in LHD

    SciTech Connect

    Saito, K.; Mutoh, T.; Kumazawa, R.; Seki, T.; Nakamura, Y.; Ashikawa, N.; Sato, K.; Shoji, M.; Masuzaki, S.; Kasahara, H.; Shimpo, F.; Nomura, G.; Yokota, M.; Takahashi, C.; Komori, A.; Ogawa, H.; Takeuchi, H.

    2007-09-28

    In LHD, long-pulse discharge has been conducted by ICRF minority ion heating. Plasma duration time of 525 seconds was achieved with the heating power of more than 1 MW supported by ECH and NBI. Electron heating by the mode conversion from the fast wave to the ion Bernstein wave was investigated to achieve a longer pulse length with the higher injection power. Plasma was sustained for 88 seconds by the mode conversion heating and ECH. The temperature distribution on divertor plates was less localized than that of minority ion heating.

  19. Characteristics of dual element ultrasonic transducers in the long pulse radiation mode

    NASA Astrophysics Data System (ADS)

    Kazakov, V. V.; Sanin, A. G.

    2017-01-01

    The frequency and transfer characteristics of dual element ultrasonic transducers are theoretically and experimentally investigated in the long pulse radiation mode for the case where one of the piezoelectric elements is connected to a control circuit in the form of an inductance coil or a resistor. For the controlled damper and controlled layer cases, the characteristic features of radiation as functions of the control circuit parameters are determined, as well as the conditions for an increase in ultrasonic wave radiation power. With certain conditions being satisfied, we demonstrate the possibility of amplitude modulation of the emitted ultrasonic wave by periodic switching of control circuit elements.

  20. Nonlinear theory for a terahertz gyrotron with a special cross-section interaction cavity

    SciTech Connect

    Yuan, Xuesong; Han Yu; Yan Yang; Lan Ying

    2012-05-15

    The fully numerical nonlinear theory for a gyrotron with a special cross-section interaction cavity has been developed in this paper. In this theory, the analytical solution to different modes in the special cross-section interaction cavity is replaced by the numerical solution based on electromagnetic simulation results. A 0.4 THz third harmonic gyrotron with an azimuthally corrugated interaction cavity has been investigated by using this theory and simulation results show that this approach has a significant advantage of developing high harmonic terahertz gyrotrons.

  1. Design of a 1-MW, CW coaxial gyrotron with two gaussian beam outputs

    NASA Astrophysics Data System (ADS)

    Hirata, Y.; Hayashi, K.; Mitsunaka, Y.; Itoh, Y.; Sugawara, T.

    1995-04-01

    The design of a 170 GHz, 1 MW-CW gyrotron for electron cyclotron heating of nuclear fusion plasmas is presented. The designed gyrotron incorporates a coaxial cavity to reduce mode competition, and a coaxial electron gun to support the cavity inner conductor. A new mode converter splits the generated wave into two beams and radiates them in different directions. The radiated beams are transmitted to two output windows through two mirror systems, being transformed into Gaussian-like beams. A single-stage depressed collector improves the overall efficiency of the gyrotron and reduces the heat flux to the collector surface.

  2. Application of Fusion Gyrotrons to Enhanced Geothermal Systems (EGS)

    NASA Astrophysics Data System (ADS)

    Woskov, P.; Einstein, H.; Oglesby, K.

    2013-10-01

    The potential size of geothermal energy resources is second only to fusion energy. Advances are needed in drilling technology and heat reservoir formation to realize this potential. Millimeter-wave (MMW) gyrotrons and related technologies developed for fusion energy research could contribute to enabling EGS. Directed MMW energy can be used to advance rock penetration capabilities, borehole casing, and fracking. MMWs are ideally suited because they can penetrate through small particulate extraction plumes, can be efficiently guided long distances in borehole dimensions, and continuous megawatt sources are commercially available. Laboratory experiments with a 10 kW, 28 GHz CPI gyrotron have shown that granite rock can be fractured and melted with power intensities of about 1 kW/cm2 and minute exposure times. Observed melted rock MMW emissivity and estimated thermodynamics suggest that penetrating hot, hard crystalline rock formations may be economic with fusion research developed MMW sources. Supported by USDOE, Office of Energy Efficiency and Renewable Energy and Impact Technologies, LLC.

  3. An 8-GW long-pulse generator based on Tesla transformer and pulse forming network.

    PubMed

    Su, Jiancang; Zhang, Xibo; Li, Rui; Zhao, Liang; Sun, Xu; Wang, Limin; Zeng, Bo; Cheng, Jie; Wang, Ying; Peng, Jianchang; Song, Xiaoxin

    2014-06-01

    A long-pulse generator TPG700L based on a Tesla transformer and a series pulse forming network (PFN) is constructed to generate intense electron beams for the purpose of high power microwave (HPM) generation. The TPG700L mainly consists of a 12-stage PFN, a built-in Tesla transformer in a pulse forming line, a three-electrode gas switch, a transmission line with a trigger, and a load. The Tesla transformer and the compact PFN are the key technologies for the development of the TPG700L. This generator can output electrical pulses with a width as long as 200 ns at a level of 8 GW and a repetition rate of 50 Hz. When used to drive a relative backward wave oscillator for HPM generation, the electrical pulse width is about 100 ns on a voltage level of 520 kV. Factors affecting the pulse waveform of the TPG700L are also discussed. At present, the TPG700L performs well for long-pulse HPM generation in our laboratory.

  4. Investigation of an X-band gigawatt long pulse multi-beam relativistic klystron amplifier

    SciTech Connect

    Liu, Zhenbang; Huang, Hua; Lei, Lurong; Jin, Xiao; Zhu, Lei; Wang, Ganping; He, Hu; Wu, Yao; Ge, Yi; Yuan, Huan; Chen, Zhaofu

    2015-09-15

    To achieve a gigawatt-level long pulse radiation power in X-band, a multi-beam relativistic klystron amplifier is proposed and studied experimentally. By introducing 18 electron drift tubes and extended interaction cavities, the power capacity of the device is increased. A radiation power of 1.23 GW with efficiency of 41% and amplifier gain of 46 dB is obtained in the particle-in-cell simulation. Under conditions of a 10 Hz repeat frequency and an input RF power of 30 kW, a radiation power of 0.9 GW, frequency of 9.405 GHz, pulse duration of 105 ns, and efficiency of 30% is generated in the experiment, and the amplifier gain is about 45 dB. Both the simulation and the experiment prove that the multi-beam relativistic klystron amplifier can generate a long pulse GW-level radiation power in X-band.

  5. Application of the coded long-pulse technique to plasma line studies of the ionosphere

    SciTech Connect

    Djuth, F.T.; Elder, J.H.; Sulzer, M.P.

    1994-12-01

    Recently, the coded long-pulse radar technique was tested at Arecibo Observatory, Puerto Rico using photoelectron-enhanced plasma lines in the daytime ionosphere. The technique immediately proved to be a powerful diagnostic tool for studying natural ionospheric phenomena. The authors initial observations indicate that extremely accurate measurements of absolute electron density (0.01 to 0.03% error bars) can be achieved with an altitude resolution of 150 m and a temporal resolution of {approximately} 2 s. In addition, the technique provides information about electron density structure within a 150-m altitude cell and yields parameters from which the energy spectrum of suprathermal electrons ({ge} 5 eV) can be deduced. The earliest measurements are used to illustrate applications of the coded long-pulse technique to several aeronomic/ionospheric areas of current interest. These include studies of neutral wave motions in the lower thermosphere, measurements of ion composition in the F{sub 1} region/upper ionosphere, and investigations of electron-gas thermal balance and photoelectron energy loss processes. The technique can be utilized to examine irregularity formation in the F region, probe electron acceleration processes in ionospheric modification experiments, verify the magnetic field dependence of Langmuir wave damping, and more generally test higher order corrections suggested for the Langmuir dispersion relation. It is anticipated that the latter tests will facilitate measurements of ionospheric currents. 14 refs., 4 figs., 1 tab.

  6. Advances in long pulse operation at high radio frequency power in Tore Supra

    SciTech Connect

    Goniche, M.; Dumont, R.; Bourdelle, C.; Decker, J.; Delpech, L.; Ekedahl, A.; Guilhem, D.; Guimarães-Filho, Z.; Litaudon, X.; Lotte, Ph.; Maget, P.; Mazon, D.; Saoutic, B.

    2014-06-15

    The lower hybrid current drive (LHCD) system of Tore Supra has been upgraded for long pulse operation at higher power (7–8 MW). The two launchers have coupled on plasma 3.8 MW and 2.7 MW separately. This new power capability allows extending the operational domain of Tore Supra for long pulses at higher current and density. 38 long (20 s –155 s) discharges with very low loop voltage (V{sub L} = 30-60 mV) were performed with combined LHCD (5-5.7 MW) and ICRH (1–3 MW) powers, with up to 1 GJ of injected energy. Higher LHCD efficiency, with respect to the previous long discharges, is reported. MHD stability of these discharges is very sensitive to the LHCD power and parallel wave index, in particular in the preforming phase. For theses evanescent loop voltage plasmas, the ICRH power, in excess of 1 MW, is found to have a beneficial effect on the MHD stability.

  7. Actively cooled plasma electrode for long pulse operations in a cesium-seeded negative ion source

    NASA Astrophysics Data System (ADS)

    Fujiwara, Yukio; Watanabe, Kazuhiro; Okumura, Yoshikazu; Trainham, Rusty; Jacquot, Claude

    2005-01-01

    An actively cooled plasma electrode has been developed for long pulse operation in a cesium-seeded negative ion source. To keep the electrode temperature at about 300°C, which is the optimum range of temperature to enhance cesium effects, the electrode cooling structure has been designed using three-dimensional numerical simulation assuming that the heat flux from the source plasma was 15W/cm2. Water cooling tubes were brazed to the plasma electrode substrate with spacers made of stainless steel, which acts as a thermal resistance. The fabricated plasma electrode has been tested in a cesium-seeded volume negative ion source called Kamaboko source. The temperature of the electrode reached 280°C for the arc power of 41kW, which is the operating condition required for producing D- beams with current densities exceeding 20mA/cm2. It was demonstrated that the actively cooled plasma electrode is applicable to long pulse operations, meeting the temperature requirement for optimizing the surface-production process of negative ions in the cesium-seeded ion source.

  8. Application of the coded long-pulse technique to plasma line studies of the ionosphere

    NASA Technical Reports Server (NTRS)

    Djuth, Frank T.; Sulzer, Michael P.; Elder, John H.

    1994-01-01

    Recently, the coded long-pulse radar technique was tested at Arecibo Observatory, Puerto Rico using photoelectron-enhanced plasma lines in the daytime ionosphere. The technique immediately proved to be a powerful diagnostic tool for studying natural ionospheric phenomena. Our initial observations indicate that extremely accurate measurements of absolute electron density (0.01 to 0.03% error bars) can be achieved with an altitude resolution of 150 m and a temporal resolution of approx. 2 s. In addition, the technique provides information about electron density structure within a 150-m altitude cell and yields parameters from which the energy spectrum of suprathermal electrons (equal to or greater than 5 eV) can be deduced. Our earliest measurements are used to illustrate applications of the coded long-pulse technique to several aeronomic/ionsospheric areas of current interest. These include studies of neutral wave motions in the lower thermosphere, measurements of ion composition in the F(sub 1) region/upper ionosphere, and investigations of electron-gas thermal balance and photoelectron energy loss processes. The technique can be utilized to examine irregularity formation in the F region, probe electron acceleration processes in ionospheric modification experiments, verify the magnetic field dependence of Langmuir wave damping, and more generally test higher order corrections suggested for the Langmuir dispersion relation. It is anticipated that the latter tests will facilitate measurements of ionospheric currents.

  9. An 8-GW long-pulse generator based on Tesla transformer and pulse forming network

    SciTech Connect

    Su, Jiancang; Zhang, Xibo; Li, Rui; Zhao, Liang Sun, Xu; Wang, Limin; Zeng, Bo; Cheng, Jie; Wang, Ying; Peng, Jianchang; Song, Xiaoxin

    2014-06-15

    A long-pulse generator TPG700L based on a Tesla transformer and a series pulse forming network (PFN) is constructed to generate intense electron beams for the purpose of high power microwave (HPM) generation. The TPG700L mainly consists of a 12-stage PFN, a built-in Tesla transformer in a pulse forming line, a three-electrode gas switch, a transmission line with a trigger, and a load. The Tesla transformer and the compact PFN are the key technologies for the development of the TPG700L. This generator can output electrical pulses with a width as long as 200 ns at a level of 8 GW and a repetition rate of 50 Hz. When used to drive a relative backward wave oscillator for HPM generation, the electrical pulse width is about 100 ns on a voltage level of 520 kV. Factors affecting the pulse waveform of the TPG700L are also discussed. At present, the TPG700L performs well for long-pulse HPM generation in our laboratory.

  10. Robust control of long-pulse, high performance plasmas in KSTAR tokamak

    NASA Astrophysics Data System (ADS)

    Jeon, Youngmu; Hahn, S. H.; Han, H. S.; Woo, M. H.; Joung, M.; Kim, Jayhyun; Bae, Y. S.; Kim, H.-S.; Yoon, S. W.; Oh, Y. K.; Na, Y. S.; Eidietis, N. W.; Walker, M. L.; Lanctot, M. J.; Hyatt, A. W.; Mueller, D. A.; Kstar Team

    2016-10-01

    The goal of KSTAR is to achieve and demonstrate high performance, steady state tokamak operations in long pulse up to 300 s. In recent years, we made significant progresses on plasma control and performance for this advanced tokamak (AT) operation. First of all, the plasma equilibrium magnetic control has been substantially improved by applying fully decoupled multi-input-multi-output (MIMO) isoflux shape controllers [1]. The MIMO shape controllers were designed using a newly developed design method by taking the plasma equilibrium response into account self-consistently. More than eight shape control variables including plasma currents are controlled independently on each other with high accuracy (less than 1cm error on average) and with wide variations of plasma shape. By virtue of this robust control, various long pulse H-mode discharges have been operated up to 60 s, which was the maximum pulse length allowable in current KSTAR system. Also, plasma performance has been improved accordingly. A fully non-inductive H-mode operation [1] was achieved for the first time in KSTAR, through the so-called `high betap' operation with betap 3.0. In addition, various experimental attempts for advanced scenario development have been conducted such as the `hybrid' [2] and `high li' scenarios[3].

  11. A repetitive long-pulse power generator based on pulse forming network and linear transformer driver.

    PubMed

    Li, Mingjia; Kang, Qiang; Tan, Jie; Zhang, Faqiang; Luo, Min; Xiang, Fei

    2016-06-01

    A compact module for long-pulse power generator, based on Blumlein pulse forming network (PFN), was designed. Two Blumlein PFNs with L-type configuration and 20 Ω characteristic impedance were connected symmetrically to the primary coil of the linear transformer driver (LTD) and driven by an identical high voltage spark switch to ensure two Blumlein PFNs synchronizing operation. The output pulse of the module connected with 10 Ω water load is about 135 kV in amplitude and 200 ns in duration with a rise time of ∼50 ns and a flat top of ∼100 ns. On this basis, a repetitive long-pulse power generator based on PFN-LTD has been developed, which was composed of four modules. The following technical parameters of the generator were achieved on planar diode: output voltage amplitude of ∼560 kV, output current amplitude of ∼10 kA at a repetition rate of 25 Hz. The generator operates stable and outputs more than 10(4) pulses. Meanwhile, the continuous operating time of the generator is up to 60 s.

  12. Temporary hair loss using the long-pulsed alexandrite laser at 20 milliseconds.

    PubMed

    Raulin, C; Greve, B

    2000-03-01

    Facial hypertrichosis presents an enormous psychological burden for women. Temporary hair removal (waxing, plucking, etc.) and electrolysis are prolonged and unsatisfactory methods of treatment. For a few years several laser systems with varying wavelengths, pulse durations and energy fluences have been used successfully in laser epilation. In the retrospective study on hand, we report on results of 30 female patients with hypertrichosis in the facial area treated with the long pulse alexandrite laser at 20 msec (Cynosure PhotoGenica LPIR/Apogee; 755 nm; 20 msec; up to 30 J/cm2; 10 or 12.5 mm beam diameter) over an 18 month treatment period. After an average of 8 treatments, an average clearance rate of 75% could be achieved. Fair hair (white/blond/red) only showed a clearance rate of 10%. Hypo- and hyperpigmentation did not appear. The most frequent adverse effects were the occasional appearance of scattered crusting (17%), which healed without consequences, and folliculitis (13%). The average post-treatment observation time lasted 3.25 months. The long-pulsed alexandrite laser at a pulse duration of 20 msec is an effective and safe method of treatment of hypertrichosis in the facial region of women. Black hair responds considerably better to the laser treatment than fair hair. A longer post-treatment observation time is necessary, though, in order to provide evidence for the permanence of the success of the method.

  13. High Power Microwave Emission of Large and Small Orbit Gyrotron Devices in Rectangular Interaction Structures

    NASA Astrophysics Data System (ADS)

    Hochman, J. M.; Gilgenbach, R. M.; Jaynes, R. L.; Rintamaki, J. I.; Luginsland, J. W.; Lau, Y. Y.; Spencer, T. A.

    1996-11-01

    Experiments utilize large and small orbit e-beam gyrotron devices in a rectangular-cross-section (RCS) gyrotron. This device is being explored to examine polarization control. Other research issues include pulse shortening, and mode competition. MELBA generates electron beams with parameters of: -800kV, 1-10kA diode current, and 0.5-1.0 μ sec pulselengths. The small orbit gyrotron device is converted to a large orbit experiment by running MELBA's annular electron beam through a magnetic cusp. Initial experiments showed an increase in beam alpha (V_perp/V_par) of a factor of ~ 4 between small and large orbit devices. Experimental results from the RCS gyrotron will be compared for large-orbit and small-orbit electron beams. Beam transport data and frequency measurements will be presented. Computer modeling utilizing the MAGIC and E-gun codes will be shown.

  14. Numerical study on a 0.4 THz second harmonic gyrotron with high power

    SciTech Connect

    Chaojun, Lei; Sheng, Yu; Hongfu, Li; Yinghui, Liu; Xinjian, Niu; Qixiang, Zhao

    2013-07-15

    Terahertz and sub-terahertz science and technology are promising topics today. However, it is difficult to obtain high power source of terahertz wave. In this paper, the mode competition and beam-wave interaction in a gradually tapered cavity are studied to achieve high efficiency of a 0.4THz second harmonic gyrotron in practice. In order to attain high power and stable radiation, the TE{sub 32,5} mode is selected as the operating mode of the desired gyrotron to realize single mode oscillation. The issues of studying on the high-order mode gyrotrons are solved effectively by transforming the generalized telegraphist's equations. The efficiency and output power of the gyrotron under different conditions have been calculated by the code, which is based on the transformed equations. Consequently, the results show that single mode second harmonic radiation with power of over 150 kW at frequency of 0.4 THz could be achieved.

  15. Long-Term Operating Experience with High-Power Gyrotron Oscillators

    NASA Astrophysics Data System (ADS)

    Felch, Kevin

    2005-10-01

    High-power, megawatt-class gyrotron oscillators have now been used in electron cyclotron heating (ECH) experiments for several years. The long periods of sustained operation have provided important information about the design limits that had initially been placed on the key elements of the gyrotron. In particular, observations made on recent 110 GHz, 1 MW gyrotrons used in ECH experiments on DIII-D at General Atomics indicate that several of the important components of the device, including the electron guns, interaction cavities and diamond output windows, have performed quite well, while analyses of the electron beam collectors on some of the devices indicate that design limits have often been exceeded. Observations made on these gyrotrons will be summarized and plans to address problem areas will be discussed.

  16. RF Behavior and Launcher Design for a Fast Frequency Step-tunable 236 GHz Gyrotron for DEMO

    NASA Astrophysics Data System (ADS)

    Kalaria, P. C.; Avramidis, K. A.; Franck, J.; Gantenbein, G.; Illy, S.; Jin, J.; Pagonakis, I. Gr.; Thumm, M.; Jelonnek, J.

    2017-03-01

    As part of the EUROfusion project, the conceptual design of a 1 MW 236 GHz hollow-cavity gyrotron is ongoing at IHM, KIT for a DEMOnstration Power Plant (DEMO), along with a 2 MW coaxial-cavity design concept. Fast frequency-tunable gyrotrons (tuning within a few seconds) are recommended for plasma stabilization using a non-steerable antenna. In this work, the mode-selection approach for such a frequency-tunable gyrotron is presented and suitable operating modes for fast frequency tunability are suggested. Magnetic field tuning has been studied as an effective technique to tune the gyrotron operating frequency. The step-tunability of the 236 GHz gyrotron within the frequency range of ±10 GHz in steps of 2-3 GHz is demonstrated in numerical simulations. A hybrid-type Quasi-Optical Launcher (QOL) has been designed for a step-frequency tunable gyrotron with sufficiently high Fundamental Gaussian Mode Content (FGMC).

  17. Development of frequency step tunable 1 MW gyrotron at 131 to 146.5 GHz

    SciTech Connect

    Samartsev, A.; Gantenbein, G.; Dammertz, G.; Illy, S.; Kern, S.; Leonhardt, W.; Schlaich, A.; Schmid, M.; Thumm, M.

    2011-07-01

    Effective control of power absorption in tokamaks and stellarators could be achieved by the frequency tuning of ECH and CD power delivered by high-power gyrotrons. In this report some results of the development of a frequency tunable gyrotron with fused-silica Brewster window are presented. Excitation of several modes at 1 MW power level in the range of frequencies from 131 to 146.5 GHz is achieved. (author)

  18. Development of simulation tools for numerical investigation and computer-aided design (CAD) of gyrotrons

    NASA Astrophysics Data System (ADS)

    Damyanova, M.; Sabchevski, S.; Zhelyazkov, I.; Vasileva, E.; Balabanova, E.; Dankov, P.; Malinov, P.

    2016-10-01

    As the most powerful CW sources of coherent radiation in the sub-terahertz to terahertz frequency range the gyrotrons have demonstrated a remarkable potential for numerous novel and prospective applications in the fundamental physical research and the technologies. Among them are powerful gyrotrons for electron cyclotron resonance heating (ECRH) and current drive (ECCD) of magnetically confined plasma in various reactors for controlled thermonuclear fusion (e.g., tokamaks and most notably ITER), high-frequency gyrotrons for sub-terahertz spectroscopy (for example NMR-DNP, XDMR, study of the hyperfine structure of positronium, etc.), gyrotrons for thermal processing and so on. Modelling and simulation are indispensable tools for numerical studies, computer-aided design (CAD) and optimization of such sophisticated vacuum tubes (fast-wave devices) operating on a physical principle known as electron cyclotron resonance maser (ECRM) instability. During the recent years, our research team has been involved in the development of physical models and problem-oriented software packages for numerical analysis and CAD of different gyrotrons in the framework of a broad international collaboration. In this paper we present the current status of our simulation tools (GYROSIM and GYREOSS packages) and illustrate their functionality by results of numerical experiments carried out recently. Finally, we provide an outlook on the envisaged further development of the computer codes and the computational modules belonging to these packages and specialized to different subsystems of the gyrotrons.

  19. Experimental study of a 1 MW, 170 GHz gyrotron oscillator

    NASA Astrophysics Data System (ADS)

    Kimura, Takuji

    A detailed experimental study is presented of a 1 MW, 170 GHz gyrotron oscillator whose design is consistent with the ECH requirements of the International Thermonuclear Experimental Reactor (ITER) for bulk heating and current drive. This work is the first to demonstrate that megawatt power level at 170 GHz can be achieved in a gyrotron with high efficiency for plasma heating applications. Maximum output power of 1.5 MW is obtained at 170.1 GHz in 85 kV, 50A operation for an efficiency of 35%. Although the experiment at MIT is conducted with short pulses (3 μs), the gyrotron is designed to be suitable for development by industry for continuous wave operation. The peak ohmic loss on the cavity wall for 1 MW of output power is calculated to be 2.3 kW/cm2, which can be handled using present cooling technology. Mode competition problems in a highly over-moded cavity are studied to maximize the efficiency. Various aspects of electron gun design are examined to obtain high quality electron beams with very low velocity spread. A triode magnetron injection gun is designed using the EGUN simulation code. A total perpendicular velocity spread of less than 8% is realized by designing a low- sensitivity, non-adiabatic gun. The RF power is generated in a short tapered cavity with an iris step. The operating mode is the TE28,8,1 mode. A mode converter is designed to convert the RF output to a Gaussian beam. Power and efficiency are measured in the design TE28,8,1 mode at 170.1 GHz as well as the TE27,8,1 mode at 166.6 GHz and TE29,8,1 mode at 173.5 GHz. Efficiencies between 34%-36% are consistently obtained over a wide range of operating parameters. These efficiencies agree with the highest values predicted by the multimode simulations. The startup scenario is investigated and observed to agree with the linear theory. The measured beam velocity ratio is consistent with EGUN simulation. Interception of reflected beam by the mod-anode is measured as a function of velocity ratio

  20. Counter-facing plasma focus system as an efficient and long-pulse EUV light source

    NASA Astrophysics Data System (ADS)

    Kuwabara, H.; Hayashi, K.; Kuroda, Y.; Nose, H.; Hotozuka, K.; Nakajima, M.; Horioka, K.

    2011-04-01

    A plasma focus system composed of a pair of counter-facing coaxial plasma guns is proposed as a long-pulse and efficient EUV light source. A proof-of-concept experiment demonstrated that with an assist of breakdown and outer electrode connections, current sheets evolved into a configuration for stable plasma confinement at the center of the electrode. The current sheets could successively compress and confine the high energy density plasma every half period of the discharge current, enabling highly repetitive light emissions in extreme ultraviolet region with time duration in at least ten microseconds for Xe plasma. Also, we confirmed operations of our system for Li plasma. We estimated the highest EUV energy in Li plasma operation at 93mJ/4π sr per 2% bandwidth per pulse.

  1. Design Concepts For A Long Pulse Upgrade For The DIII-D Fast Wave Antenna Array

    SciTech Connect

    Ryan, Philip Michael; Baity Jr, F Wallace; Caughman, John B; Goulding, Richard Howell; Hosea, J.; Greenough, Nevell; Nagy, Alex; Pinsker, R.; Rasmussen, David A

    2009-01-01

    A goal in the 5-year plan for the fast wave program on DIII-D is to couple a total of 3.6 MW of RF power into a long pulse, H-mode plasma for central electron heating. The present short-pulse 285/300 antenna array would need to be replaced with one capable of at least 1.2 MW, 10 s operation at 60 MHz into an H-mode (low resistive loading) plasma condition. The primary design under consideration uses a poloidally-segmented strap (3 sections) for reduced strap voltage near the plasma/Faraday screen region. Internal capacitance makes the antenna structure self-resonant at 60 MHz, strongly reducing peak E-fields in the vacuum coax and feed throughs.

  2. Long-pulse neutral injector development at the Lawrence Berkeley Laboratory

    SciTech Connect

    Berkner, K.H.; Cooper, W.S.; Ehlers, K.W.; Jacobson, V.L.; Owren, H.M.; Paterson, J.A.; Pyle, R.V.

    1982-01-01

    The program elements for the development of long-pulse deuterium accelerators for neutral-beam injection into fusion plasmas are described. Operational characteristics of a 4-grid, 80-kV, 40-A accelerator, designed for 30-sec operation but limited to 800 msec operation by the test facility, are presented. These pulses are long enough to establish thermal equilibrium of the accelerator grids. Beam divergences of 1.0/sup 0/ x 0.4/sup 0/ have been achieved at 80 kV, 36 A for deuterium; 0.44/sup 0/ x 1.0/sup 0/ at 80 kV, 47 A for hydrogen. Measured heat loads on each grid are of the order of 0.5% of the beam power.

  3. Development of a long pulse plasma gun discharge for magnetic turbulence studies

    NASA Astrophysics Data System (ADS)

    Schaffner, David

    2016-10-01

    A long pulse ( 300 μs) plasma gun discharge is in development at the Bryn Mawr College Plasma Laboratory for the production of sustained magnetized plasma injection for magnetohydrodynamic (MHD) turbulence studies. An array of eight 0.5mF parallel capacitors are used to create a pulse-forming-network (PFN) with a plateaued current output of 50kA for at least 200 of the 300 μs pulse. A 24cm inner diameter plasma gun provides stuffing flux fields at the stuffing threshold in order to allow for the continuous injection of magnetic helicity. Plasma is injected into a 24cm diameter flux-conserving aluminum chamber with a high density port array for fine spatial resolution diagnostic access. Fluctuations of magnetic field and saturation current are measured using pickup probes and Langmuir probes respectively.

  4. A repetitive S-band long-pulse relativistic backward-wave oscillator.

    PubMed

    Jin, Zhenxing; Zhang, Jun; Yang, Jianhua; Zhong, Huihuang; Qian, Baoliang; Shu, Ting; Zhang, Jiande; Zhou, Shengyue; Xu, Liurong

    2011-08-01

    This paper presents both numerical and experimental studies of a repetitive S-band long-pulse relativistic backward-wave oscillator. The dispersion relation curve of the main slow-wave structure is given by the numerical calculation. Experimental results show that a 1 GW microwaves with pulse duration of about 100 ns (full width of half magnitude) under 10 Hz repetitive operation mode are obtained. The microwave frequency is 3.6 GHz with the dominant mode of TM(01), and power conversion efficiency is about 20%. The single pulse energy is about 100 J. The experimental results are in good agreement with the simulation ones. By analyzing the experimental phenomenon, we obtain the conclusion that the explosive emission on the surface of the electrodynamics structure in intense radio frequency field mainly leads to the earlier unexpected termination of microwave output.

  5. Some general reflections on {open_quotes}long pulse{close_quotes} neutron sources

    SciTech Connect

    Bauer, G.S.

    1995-12-31

    A long pulse spallation neutron source (LPSS) having about 20 times more time average thermal flux than its short pulse counterpart (SPSS) at the same proton beam power and featuring a pronounced time structure not available on CW sources (CWNS) of equal time average flux can in principle host instruments typical for both classes of facilities. While the need for additional choppers introduces some restrictions on inverted time of flight techniques typical for SPSS and high incident neutron energies are not easier to use on LPSS than on CWNS, taking advantage of the pulsed nature of the neutron flux can enhance significantly the performance of direct time of flight instruments and of crystal spectrometers or diffractometers. In the paper some of the options are reviewed in a general manner and criteria are discussed which can be used to optimize the performance enhancement.

  6. Inelastic scattering research at a 1 MW long pulse spallation neutron source

    SciTech Connect

    Carlile, C.J.

    1995-12-31

    The brief was, with respect to the LPSS bench mark design supplied (60 Hz, 1 MW, Imsec proton pulse, with a split, non-fissile target and 4 moderators in a flux trap geometry design), to identify a set of instruments, and to assess their performance with respect to existing spectrometers on other sources. Any modifications to the existing instruments which would make them more effective on the bench-mark source, or conversely, any modifications to the source bench-mark required by the proposed instruments were to be identified, as were any uncertainties in the estimated performances, or any R & D needed to make the proposed instruments viable. Any new instrument concepts specifically matched to the long pulse itself were to be identified and assessed. This process was to result in an indicative list of instruments for the source. A figure of around 10 spectrometers was to be aimed for.

  7. Magnet Design and Analysis of a 40 Tesla Long Pulse System Energized by a Battery Bank

    NASA Astrophysics Data System (ADS)

    Lv, Y. L.; Peng, T.; Wang, G. B.; Ding, T. H.; Han, X. T.; Pan, Y.; Li, L.

    2013-03-01

    A 40 tesla long pulse magnet and a battery bank as the power supply have been designed. This is now under construction at the Wuhan National High Magnetic Field Center. The 22 mm bore magnet will generate smooth pulses with duration 1 s and rise time 0.5 s. The battery bank consists of 945 12V/200 Ah lead-acid battery cells. The magnet and battery bank were optimized by codes developed in-house and by ANSYS. The coil was made from soft copper with internal reinforcement by fiber-epoxy composite; it is divided into two sections connected in series. The inner section consists of helix coils with each layer reinforced by Zylon composite. The outer section will be wound from copper sheet and externally reinforced by carbon fiber composite.

  8. Development of a plasma generator for a long pulse ion source for neutral beam injectors

    SciTech Connect

    Watanabe, K.; Dairaku, M.; Tobari, H.; Kashiwagi, M.; Inoue, T.; Hanada, M.; Jeong, S. H.; Chang, D. H.; Kim, T. S.; Kim, B. R.; Seo, C. S.; Jin, J. T.; Lee, K. W.; In, S. R.; Oh, B. H.; Kim, J.; Bae, Y. S.

    2011-06-15

    A plasma generator for a long pulse H{sup +}/D{sup +} ion source has been developed. The plasma generator was designed to produce 65 A H{sup +}/D{sup +} beams at an energy of 120 keV from an ion extraction area of 12 cm in width and 45 cm in length. Configuration of the plasma generator is a multi-cusp bucket type with SmCo permanent magnets. Dimension of a plasma chamber is 25 cm in width, 59 cm in length, and 32.5 cm in depth. The plasma generator was designed and fabricated at Japan Atomic Energy Agency. Source plasma generation and beam extraction tests for hydrogen coupling with an accelerator of the KSTAR ion source have been performed at the KSTAR neutral beam test stand under the agreement of Japan-Korea collaborative experiment. Spatial uniformity of the source plasma at the extraction region was measured using Langmuir probes and {+-}7% of the deviation from an averaged ion saturation current density was obtained. A long pulse test of the plasma generation up to 200 s with an arc discharge power of 70 kW has been successfully demonstrated. The arc discharge power satisfies the requirement of the beam production for the KSTAR NBI. A 70 keV, 41 A, 5 s hydrogen ion beam has been extracted with a high arc efficiency of 0.9 -1.1 A/kW at a beam extraction experiment. A deuteron yield of 77% was measured even at a low beam current density of 73 mA/cm{sup 2}.

  9. Long pulse laser driven shock wave loading for dynamic materials experiments

    NASA Astrophysics Data System (ADS)

    Luo, S. N.; Greenfield, S. R.; Paisley, D. L.; Johnson, R. P.; Shimada, T.; Byler, D. D.; Loomis, E. N.; DiGiacomo, S. N.; Patterson, B. M.; McClellan, K. J.; Dickerson, R. M.; Peralta, P. D.; Koskelo, A. C.; Tonks, D. L.

    2008-05-01

    We present two laser driven shock wave loading techniques utilizing long pulse lasers, laser-launched flyer plate and confined laser ablation, and their applications to shock physics. The full width at half maximum of the drive laser pulse ranges from 100 ns to 10 μs, and its energy, from 10 J to 1000 J. The drive pulse is smoothed with a holographic optical element to achieve spatial homogeneity in loading. We characterize the flyer plate during flight and dynamically loaded target with temporally and spatially resolved diagnostics. The long duration and high energy of the drive pulse allow for shockless acceleration of thick flyer plates with 8 mm diameter and 0.1-2 mm thickness. With transient imaging displacement interferometry and line-imaging velocimetry, we demonstrate that the planarity (bow and tilt) of the loading is within 2-7 mrad (with an average of 4+/-1 mrad), similar to that in conventional techniques including gas gun loading. Plasma heating of target is negligible in particular when a plasma shield is adopted. For flyer plate loading, supported shock waves can be achieved. Temporal shaping of the drive pulse in confined laser ablation enables flexible loading, e.g., quasi-isentropic, Taylor-wave, and off-Hugoniot loading. These dynamic loading techniques using long pulse lasers (0.1-10 μs) along with short pulse lasers (1-10 ns) can be an accurate, versatile and efficient complement to conventional shock wave loading for investigating such dynamic responses of materials as Hugoniot elastic limit, plasticity, spall, shock roughness, equation of state, phase transition, and metallurgical characteristics of shock-recovered samples, in a wide range of strain rates and pressures at meso- and macroscopic scales.

  10. Two-gigawatt burst-mode operation of the intense microwave prototype (IMP) free-electron laser (FEL) for the microwave tokamak experiment (MTX)

    SciTech Connect

    Felker, B.; Allen, S.; Bell, H.

    1993-10-06

    The MTX explored the plasma heating effects of 140 GHz microwaves from both Gyrotrons and from the IMP FEL wiggler. The Gyrotron was long pulse length (0.5 seconds maximum) and the FEL produced short-pulse length, high-peak power, single and burst modes of 140 GHZ microwaves. Full-power operations of the IMP FEL wiggler were commenced in April of 1992 and continued into October of 1992. The Experimental Test Accelerator H (ETA-II) provided a 50-nanosecond, 6-MeV, 2--3 kAmp electron beam that was introduced co-linear into the IMP FEL with a 140 GHz Gyrotron master oscillator (MO). The FEL was able to amplify the MO signal from approximately 7 kW to peaks consistently in the range of 1--2 GW. This microwave pulse was transmitted into the MTX and allowed the exploration of the linear and non-linear effects of short pulse, intense power in the MTX plasma. Single pulses were used to explore and gain operating experience in the parameter space of the IMP FEL, and finally evaluate transmission and absorption in the MTX. Single-pulse operations were repeatable. After the MTX was shut down burst-mode operations were successful at 2 kHz. This paper will describe the IMP FEL, Microwave Transmission System to MTX, the diagnostics used for calorimetric measurements, and the operations of the entire Microwave system. A discussion of correlated and uncorrelated errors that affect FEL performance will be made Linear and non-linear absorption data of the microwaves in the MTX plasma will be presented.

  11. High power microwave generation from a large orbit gyrotron

    SciTech Connect

    Lawson, W.; Destler, W.W.; Striffler, C.D.

    1985-10-01

    A study of the production of high power microwave radiation from a large orbit gyrotron in azimuthally periodic boundary systems has been conducted. Linear growth rates have been calculated for the 2 modes of magnetron-like hole-and-slot resonator (HASR) and vane resonator (VR) systems using a general growth rate formalism. The experiment involves the interaction of a 2.3 MeV, 1-2 kA, 5 ns rotating electron layer with the HASR and VR structures. Maximum power levels are about 300 MW in X band from a 10 slot HASR system; about 500 MW in Ku band from a 20 slot VR system; and about 15 MW in K band from about 30 slot systems. The peak efficiency is about 15%. The radiation characteristics are in reasonably good agreement with the theoretical predictions. The reduced power levels for about 30 slot systems are partially attributed to radial mode competition.

  12. Folded waveguide gyrotron traveling-wave-tube amplifier

    SciTech Connect

    Choi, J.J.; Armstrong, C.M.; Ganguly, A.K.; Calise, F.

    1995-03-01

    A compact, low cost gyrotron traveling-wave-tube (gyro-TWT) amplifier capable of producing high-power, broadband, millimeter wave radiation is reported. The interaction circuit is a periodic, magnetic field plane (H plane) bend, transverse folded waveguide employed with a high-power axis-encircling electron beam. Transverse beam modulation and wave amplification in the folded waveguide gyro-TWT are observed in both linear theory and large signal simulations. Calculations from an equivalent circuit model and a three-dimensional electromagnetic code predict a mode coalescing of the first stop-band in a periodic structure. The mode coalescing is verified from experimental measurements. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  13. Effect of electron-cyclotron resonance plasma heating conditions on the low-frequency modulation of the gyrotron power at the L-2M stellarator

    SciTech Connect

    Batanov, G. M.; Borzosekov, V. D.; Kolik, L. V.; Konchekov, E. M. Malakhov, D. V.; Petelin, M. I.; Petrov, A. E.; Sarksyan, K. A.; Skvortsova, N. N.; Stepakhin, V. D.; Kharchev, N. K.

    2015-08-15

    Low-frequency modulation of the gyrotron power at the L-2M stellarator was studied at different modes of plasma confinement. The plasma was heated at the second harmonic of the electron gyrofrequency. The effect of reflection of gyrotron radiation from the region of electron-cyclotron resonance plasma heating, as well as of backscattering of gyrotron radiation from fluctuations of the plasma density, on the modulation of the gyrotron power was investigated.

  14. Dependence of the gyrotron efficiency on the azimuthal index of non-symmetric modes

    SciTech Connect

    Dumbrajs, O.; Nusinovich, G. S.; Antonsen, T. M.

    2014-06-15

    Development of MW-class gyrotrons for future controlled fusion reactors requires careful analysis of the stability of high efficiency operation in very high-order modes. In the present paper, this problem is analyzed in the framework of the non-stationary self-consistent theory of gyrotrons. Two approaches are used: the one based on the wave envelope representation of the resonator field and the second one based on representation of this field as a superposition of eigenmodes, whose fields are determined by a self-consistent set of equations. It is shown that at relatively low beam currents, when the maximum efficiency can be realized in the regime of soft self-excitation, the operation in the desired mode is stable even in the case of a very dense spectrum of competing modes. At higher currents, the maximum efficiency can be realized in the regimes with hard self-excitation; here the operation in the desired mode can be unstable because of the presence of some competing modes with low start currents. Two 170 GHz European gyrotrons for the international thermonuclear experimental reactor are considered as examples. In the first one, which is the 2 MW gyrotron with a coaxial resonator, the stability of operation in a chosen TE{sub 34,19}-mode in the presence of two sideband modes with almost equidistant spectrum is analyzed and the region of magnetic fields in which the oscillations of the central mode are stable is determined. The operation of the second gyrotron, which is the 1 MW gyrotron with a cylindrical cavity currently under development in Europe, is studied by using the wave envelope approach. It is shown that high efficiency operation of this gyrotron in the TE{sub 32,9}-mode should be stable.

  15. Treatment of Superficial Cutaneous Vascular Lesions: Experience with the Long-Pulsed 1064 nm Nd:YAG Laser

    PubMed Central

    Ozyurt, Kemal; Colgecen, Emine; Baykan, Halit; Ozturk, Perihan; Ozkose, Mehmet

    2012-01-01

    Recent published studies evaluating the long-pulsed 1064 nm Nd:YAG laser for superficial cutaneous vascular lesions have limited subjects and optimal treatment parameters have not been established. To determine the efficacy and safety of the long-pulsed 1064 nm Nd:YAG laser on superficial cutaneus vascular lesions and analyse retrospectively our experience of a 3-year period are the aims of this study. Over the 3-year period, 255 patients were treated [189 female and 66 male; median age 35 (range 7–65) years; Fitzpatrick skin types II-V]. Twenty-six patients with spider angioma, 130 with facial telangiectasia, and 99 with leg telangiectasia were treated. A long-pulsed 1064 nm Nd:YAG laser was used. A test dose was performed at the initial consultation and thereafter patients were reviewed and treated at 4-week intervals for 5 months. Of those patients who completed treatment and followup, 26/26 (100%) of spider angiomas, 125/130 (97%) of facial telangiectasia, and 80/99 (80,8%) of leg telangiectasia markedly improved or cleared. We suggest that the long pulsed Nd:YAG laser is a safe and effective treatment for common superficial cutaneous vascular lesions. However, it is not the first choise to use to treat superficial vessels on the face where depth is not the concern. PMID:23028248

  16. Development of negative ion extractor in the high-power and long-pulse negative ion source for fusion application

    SciTech Connect

    Kashiwagi, M. Umeda, N.; Tobari, H.; Kojima, A.; Yoshida, M.; Taniguchi, M.; Dairaku, M.; Maejima, T.; Yamanaka, H.; Watanabe, K.; Inoue, T.; Hanada, M.

    2014-02-15

    High power and long-pulse negative ion extractor, which is composed of the plasma grid (PG) and the extraction grid (EXG), is newly developed toward the neutral beam injector for heating and current drive of future fusion machines such as ITER, JT-60 Super Advanced and DEMO reactor. The PG is designed to enhance surface production of negative ions efficiently by applying the chamfered aperture. The efficiency of the negative ion production for the discharge power increased by a factor of 1.3 against that of the conventional PG. The EXG is also designed with the thermal analysis to upgrade the cooling capability for the long pulse operation of >1000 s required in ITER. Though the magnetic field for electron suppression is reduced to 0.75 of that in the conventional EXG due to this upgrade, it was experimentally confirmed that the extracted electron current can be suppressed to the allowable level for the long pulse operation. These results show that newly developed extractor has the high potential for the long pulse extraction of the negative ions.

  17. 250 GHz CW gyrotron oscillator for dynamic nuclear polarization in biological solid state NMR

    NASA Astrophysics Data System (ADS)

    Bajaj, Vikram S.; Hornstein, Melissa K.; Kreischer, Kenneth E.; Sirigiri, Jagadishwar R.; Woskov, Paul P.; Mak-Jurkauskas, Melody L.; Herzfeld, Judith; Temkin, Richard J.; Griffin, Robert G.

    2007-12-01

    In this paper, we describe a 250 GHz gyrotron oscillator, a critical component of an integrated system for magic angle spinning (MAS) dynamic nuclear polarization (DNP) experiments at 9 T, corresponding to 380 MHz 1H frequency. The 250 GHz gyrotron is the first gyro-device designed with the goal of seamless integration with an NMR spectrometer for routine DNP enhanced NMR spectroscopy and has operated under computer control for periods of up to 21 days with a 100% duty cycle. Following a brief historical review of the field, we present studies of the membrane protein bacteriorhodopsin (bR) using DNP enhanced multidimensional NMR. These results include assignment of active site resonances in [U- 13C, 15N]-bR and demonstrate the utility of DNP for studies of membrane proteins. Next, we review the theory of gyro-devices from quantum mechanical and classical viewpoints and discuss the unique considerations that apply to gyrotron oscillators designed for DNP experiments. We then characterize the operation of the 250 GHz gyrotron in detail, including its long-term stability and controllability. We have measured the spectral purity of the gyrotron emission using both homodyne and heterodyne techniques. Radiation intensity patterns from the corrugated waveguide that delivers power to the NMR probe were measured using two new techniques to confirm pure mode content: a thermometric approach based on the temperature-dependent color of liquid crystalline media applied to a substrate and imaging with a pyroelectric camera. We next present a detailed study of the mode excitation characteristics of the gyrotron. Exploration of the operating characteristics of several fundamental modes reveals broadband continuous frequency tuning of up to 1.8 GHz as a function of the magnetic field alone, a feature that may be exploited in future tunable gyrotron designs. Oscillation of the 250 GHz gyrotron at the second harmonic of cyclotron resonance begins at extremely low beam currents (as

  18. 250 GHz CW Gyrotron Oscillator for Dynamic Nuclear Polarization in Biological Solid State NMR

    PubMed Central

    Bajaj, Vikram S.; Hornstein, Melissa K.; Kreischer, Kenneth E.; Sirigiri, Jagadishwar R.; Woskov, Paul P.; Mak-Jurkauskas, Melody L.; Herzfeld, Judith; Temkin, Richard J.; Griffin, Robert G.

    2009-01-01

    In this paper, we describe a 250 GHz gyrotron oscillator, a critical component of an integrated system for magic angle spinning (MAS) dynamic nuclear polarization (DNP) experiments at 9T, corresponding to 380 MHz 1H frequency. The 250 GHz gyrotron is the first gyro-device designed with the goal of seamless integration with an NMR spectrometer for routine DNP-enhanced NMR spectroscopy and has operated under computer control for periods of up to 21 days with a 100% duty cycle. Following a brief historical review of the field, we present studies of the membrane protein bacteriorhodopsin (bR) using DNP-enhanced multidimensional NMR. These results include assignment of active site resonances in [U-13C,15N]-bR and demonstrate the utility of DNP for studies of membrane proteins. Next, we review the theory of gyro-devices from quantum mechanical and classical viewpoints and discuss the unique considerations that apply to gyrotron oscillators designed for DNP experiments. We then characterize the operation of the 250 GHz gyrotron in detail, including its long-term stability and controllability. We have measured the spectral purity of the gyrotron emission using both homodyne and heterodyne techniques. Radiation intensity patterns from the corrugated waveguide that delivers power to the NMR probe were measured using two new techniques to confirm pure mode content: a thermometric approach based on the temperature-dependent color of liquid crystalline media applied to a substrate and imaging with a pyroelectric camera. We next present a detailed study of the mode excitation characteristics of the gyrotron. Exploration of the operating characteristics of several fundamental modes reveals broadband continuous frequency tuning of up to 1.8 GHz as a function of the magnetic field alone, a feature that may be exploited in future tunable gyrotron designs. Oscillation of the 250 GHz gyrotron at the second harmonic of cyclotron resonance begins at extremely low beam currents (as low

  19. Development of an Ultra High Frequency Gyrotron with a Pulsed Magnet

    SciTech Connect

    Idehara, T.; Kamada, M.; Tsuchiya, H.; Hayashi, T.; Agusu, La; Mitsudo, S.; Ogawa, I.; Manuilov, V. N.; Naito, K.; Yuyama, T.; Jiang, W.; Yatsui, K.

    2006-01-03

    An ultra-high frequency gyrotron is being developed as a THz radiation source by using a pulsed magnet. We have achieved the highest field intensity of 20.2 T. High frequency operation at the second harmonic will achieve 1.01 THz; the corresponding cavity mode is TE6,11,1. On the other hand, an ultra-high power gyrotron with a pulsed magnet is also being developed as a millimeter to submillimeter wave radiation source. The gyrotron is a large orbit gyrotron (LOG) using an intense relativistic electron beam (IREB). A pulsed power generator 'ETIGO-IV' is applied for generation of the IREB. A prototype relativistic LOG was constructed for fundamental operation. The output of the LOG will achieve 144 GHz and 9 MW; the corresponding cavity mode is TE1,4,1. Cavities for 2nd and 4th harmonic operations were designed by numerical simulation for achievement of higher frequency. The progress of development for prototype high frequency gyrotrons with pulsed magnets is presented.

  20. PRACTICAL EXERIENCES WITH THE 6 GYROTRON SYSTEM ON THE DIII-D TOKAMAK

    SciTech Connect

    LOHR,J; CARY,W.P; GORELOV,Y.A; GRUNLOH,H.J; KAJIWARA,K; PEAVY,J.J; PONCE,D; TOOKER,J; CALLIS,R.W

    2003-10-01

    OAK-B135 The gyrotron installation on the DIII-D tokamak now comprises six 110 GHz gyrotrons in the 1 MW class, three manufactured by CPI[1] and three by Gycom [2]. Two tetrode rectifier/modulator/regulator power supplies were constructed to provide power for the CPI gyrotrons. A second system uses three mod/reg tetrodes connected in parallel, which are fed by a dual parallel tetrode mod/reg to power the Gycom tubes. the windowless evacuated transmission lines are up to 100 m in length, with 80% transmission efficiency. Engineering solutions were developed in specific problematic areas encountered in the development of this complex system, including: Gyrotron instability; high voltage circuit instability; gyrotron conditioning; rf beam forming and coupling to waveguide; output window vacuum seals; material control; launcher mechanics and diagnosis; polarizer mechanics; dummy loads; power measurements; polarization measurements; cooling; calorimetry; and operating controls. The system is in routine operation in support of tokamak experiments, with peak generated power of about 5 MW at 2 s. pulse length and about 3 MW for 5 s. pulses. This presentation focuses on practical lessons learned in the development and operation of these systems.

  1. Corrugated Waveguide and Directional Coupler for CW 250-GHz Gyrotron DNP Experiments

    PubMed Central

    Woskov, Paul P.; Bajaj, Vikram S.; Hornstein, Melissa K.; Temkin, Richard J.; Griffin, Robert G.

    2007-01-01

    A 250-GHz corrugated transmission line with a directional coupler for forward and backward power monitoring has been constructed and tested for use with a 25-W continuous-wave gyrotron for dynamic nuclear polarization (DNP) experiments. The main corrugated line (22-mm internal diameter, 2.4-m long) connects the gyrotron output to the DNP probe input. The directional coupler, inserted approximately midway, is a four-port crossed waveguide beamsplitter design. Two beamsplitters, a quartz plate and ten-wire array, were tested with output coupling of 2.5% (−16 dB) at 250.6 GHz and 1.6% (−18 dB), respectively. A pair of mirrors in the DNP probe transferred the gyrotron beam from the 22-mm waveguide to an 8-mm helically corrugated waveguide for transmission through the final 0.58-m distance inside the NMR magnet to the sample. The transmission-line components were all cold tested with a 248 ± 4-GHz radiometer. A total insertion loss of 0.8 dB was achieved for HE11 -mode propagation from the gyrotron to the sample with only 1% insertion loss for the 22-mm-diameter waveguide. A clean Gaussian gyrotron beam at the waveguide output and reliable forward power monitoring were achieved for many hours of continuous operation. PMID:17901907

  2. Long pulse Soft X-ray Emission from Laser Generated Irradiated Gold Foils

    NASA Astrophysics Data System (ADS)

    Davis, Joshua; Frank, Yechiel; Raicher, Erez; Fraenkel, Moshe; Keiter, Paul; Klein, Sallee; Drake, R. P.; Shvarts, Dov

    2016-10-01

    Long pulse soft x-ray sources (SXS) allow for flexibility in high-energy-density experimental designs by providing a means of driving matter to the high temperatures needed, for example to study radiation waves in different materials. SXSs can be made by using lasers to heat a high-Z thin foil, which then acts as a quasi-blackbody emitter. Previous studies of the x-ray emission characteristics of gold foils have focused on laser pulses of 1ns or less. We performed experiments using a 6.0ns laser pulse with energy of 2kJ on the Omega-60 system to generate and characterize multi-ns laser heated Au foils of thicknesses between 0.5-2.0 μm. We measured the 2D spatial profile of the emission with a soft x-ray camera and the time history of the emission with the Dante photodiode array . Effective temperatures for the emission were then calculated using the Dante measurements. Discussion of experimental results and a comparison with 1-D Rad-Hydro NLTE simulations will be presented.

  3. Investigation of the phase stability of an X-band long pulse multibeam relativistic klystron amplifier

    NASA Astrophysics Data System (ADS)

    Liu, Zhenbang; Huang, Hua; Jin, Xiao; Lei, Lurong; Zhu, Lei; Li, Lele; Li, Shifeng; Yan, Wenkang; He, Hu

    2016-09-01

    To realize coherent high power microwave combining, an X-band long pulse multibeam relativistic klystron amplifier is designed, and the relative phase stability is investigated by three dimensions particle in cell simulation and high power microwave experiment. The simulation shows that the relative phase difference can be stabilized at gigawatt level radiation power. But the relative phase jitter increases in the experiment, then some measures are proposed to improve the stability of relative phase difference and avoid pulse shortening. A 0.98 GW radiation power with pulse duration of 160 ns is obtained in the experiment, the pulse shortening is avoided. The relative phase difference fluctuation between output microwave and input RF signal is less than ±25° in a single shot with duration of 100 ns. Then, the experiment of pulse repetition is carried out, and an output microwave with 0.98 GW radiation power at 25 Hz repetition rate is obtained. The power conversion efficiency is about 35% with pulse duration of 160 ns. The relative phase difference is less than ±30° at 25 Hz repetition rate in 100 ns.

  4. Spectral broadening measurement of the lower hybrid waves during long pulse operation in Tore Supra

    NASA Astrophysics Data System (ADS)

    Berger-By, G.; Decampy, J.; Antar, G. Y.; Goniche, M.; Ekedahl, A.; Delpech, L.; Leroux, F.; Tore Supra Team

    2014-02-01

    On many tokamaks (C-Mod, EAST, FTU, JET, HT-7, TS), a decrease in current drive efficiency of the Lower Hybrid (LH) waves is observed in high electron density plasmas. The cause of this behaviour is believed to be: Parametric Instabilities (PI) and Scattering from Density Fluctuations (SDF). For the ITER LH system, our knowledge must be improved to avoid such effects and to maintain the LH current drive efficiency at high density. The ITPA IOS group coordinates this effort [1] and all experimental data are essential to validate the numerical codes in progress. Usually the broadening of the LH wave frequency spectrum is measured by a probe located in the plasma edge. For this study, the frequency spectrum of a reflected power signal from the LH antenna was used. In addition, the spectrum measurements are compared with the density fluctuations observed on RF probes located at the antenna mouth. Several plasma currents (0.6 to 1.4 MA) and densities up to 5.2 × 1019 m-3 have been realised on Tore Supra (TS) long pulses and with high injected RF power, up to 5.4 MW-30s. This allowed using a spectrum analyser to make several measurements during the plasma pulse. The side lobe amplitude, shifted by 20-30MHz with respect to the main peak, grows with increasing density. Furthermore, for an increase of plasma current at the same density, the spectra broaden and become asymmetric. Some parametric dependencies are shown in this paper.

  5. Experimental tests of a 263 GHz gyrotron for spectroscopic applications and diagnostics of various media

    SciTech Connect

    Glyavin, M. Yu. Denisov, G. G.; Zapevalov, V. E.; Chirkov, A. V.; Fokin, A. P.; Kholoptsev, V. V.; Kuftin, A. N.; Luchinin, A. G.; Golubyatnikov, G. Yu.; Malygin, V. I.; Morozkin, M. V.; Manuilov, V. N.; Proyavin, M. D.; Sedov, A. S.; Tsvetkov, A. I.; Sokolov, E. V.; Tai, E. M.

    2015-05-15

    A 263 GHz continuous-wave (CW) gyrotron was developed at the IAP RAS for future applications as a microwave power source in Dynamic Nuclear Polarization / Nuclear magnetic resonance (DNP/NMR) spectrometers. A new experimental facility with a computerized control was built to test this and subsequent gyrotrons. We obtained the maximum CW power up to 1 kW in the 15 kV/0.4 A operation regime. The power about 10 W, which is sufficient for many spectroscopic applications, was realized in the low current 14 kV/0.02 A regime. The possibility of frequency tuning by variation of the coolant temperature about 4 MHz/1 °C was demonstrated. The spectral width of the gyrotron radiation was about 10{sup −6}.

  6. A 250 GHz Gyrotron with a 3 GHz Tuning Bandwidth for Dynamic Nuclear Polarization

    PubMed Central

    Barnes, Alexander B.; Nanni, Emilio A.; Herzfeld, Judith; Griffin, Robert G.; Temkin, Richard J.

    2012-01-01

    We describe the design and implementation of a novel tunable 250 GHz gyrotron oscillator with >10 W output power over most of a 3 GHz band and >35 W peak power. The tuning bandwidth and power are sufficient to generate a >1 MHz nutation frequency across the entire nitroxide EPR lineshape for cross effect DNP, as well as to excite solid effect transitions utilizing other radicals, without the need for sweeping the NMR magnetic field. Substantially improved tunability is achieved by implementing a long (23 mm) interaction cavity that can excite higher order axial modes by changing either the magnetic field of the gyrotron or the cathode potential. This interaction cavity excites the rotating TE5,2,q mode, and an internal mode converter outputs a high-quality microwave beam with >94% Gaussian content. The gyrotron was integrated into a DNP spectrometer, resulting in a measured DNP enhancement of 54 on the membrane protein bacteriorhodopsin. PMID:22743211

  7. A 250 GHz gyrotron with a 3 GHz tuning bandwidth for dynamic nuclear polarization.

    PubMed

    Barnes, Alexander B; Nanni, Emilio A; Herzfeld, Judith; Griffin, Robert G; Temkin, Richard J

    2012-08-01

    We describe the design and implementation of a novel tunable 250 GHz gyrotron oscillator with >10 W output power over most of a 3 GHz band and >35 W peak power. The tuning bandwidth and power are sufficient to generate a >1 MHz nutation frequency across the entire nitroxide EPR lineshape for cross effect DNP, as well as to excite solid effect transitions utilizing other radicals, without the need for sweeping the NMR magnetic field. Substantially improved tunability is achieved by implementing a long (23 mm) interaction cavity that can excite higher order axial modes by changing either the magnetic field of the gyrotron or the cathode potential. This interaction cavity excites the rotating TE(₅,₂,q) mode, and an internal mode converter outputs a high-quality microwave beam with >94% Gaussian content. The gyrotron was integrated into a DNP spectrometer, resulting in a measured DNP enhancement of 54 on the membrane protein bacteriorhodopsin.

  8. A 250 GHz gyrotron with a 3 GHz tuning bandwidth for dynamic nuclear polarization

    NASA Astrophysics Data System (ADS)

    Barnes, Alexander B.; Nanni, Emilio A.; Herzfeld, Judith; Griffin, Robert G.; Temkin, Richard J.

    2012-08-01

    We describe the design and implementation of a novel tunable 250 GHz gyrotron oscillator with >10 W output power over most of a 3 GHz band and >35 W peak power. The tuning bandwidth and power are sufficient to generate a >1 MHz nutation frequency across the entire nitroxide EPR lineshape for cross effect DNP, as well as to excite solid effect transitions utilizing other radicals, without the need for sweeping the NMR magnetic field. Substantially improved tunability is achieved by implementing a long (23 mm) interaction cavity that can excite higher order axial modes by changing either the magnetic field of the gyrotron or the cathode potential. This interaction cavity excites the rotating TE5,2,q mode, and an internal mode converter outputs a high-quality microwave beam with >94% Gaussian content. The gyrotron was integrated into a DNP spectrometer, resulting in a measured DNP enhancement of 54 on the membrane protein bacteriorhodopsin.

  9. Long Pulse High Performance Plasma Scenario Development for the National Spherical Torus Experiment

    SciTech Connect

    Kessel, C.E.; Bell, R.E.; Bell, M.G.; Gates, D.A.; Harvey, R.W.

    2006-01-01

    The National Spherical Torus Experiment [Ono et al., Nucl. Fusion, 44, 452 (2004)] is targeting long pulse high performance, noninductive sustained operations at low aspect ratio, and the demonstration of nonsolenoidal startup and current rampup. The modeling of these plasmas provides a framework for experimental planning and identifies the tools to access these regimes. Simulations based on neutral beam injection (NBI)-heated plasmas are made to understand the impact of various modifications and identify the requirements for (1) high elongation and triangularity, (2) density control to optimize the current drive, (3) plasma rotation and/or feedback stabilization to operate above the no-wall limit, and (4) electron Bernstein waves (EBW) for off-axis heating/current drive (H/CD). Integrated scenarios are constructed to provide the transport evolution and H/CD source modeling, supported by rf and stability analyses. Important factors include the energy confinement, Zeff, early heating/H mode, broadening of the NBI-driven current profile, and maintaining q(0) and qmin>1.0. Simulations show that noninductive sustained plasmas can be reached at IP=800 kA, BT=0.5 T, 2.5, N5, 15%, fNI=92%, and q(0)>1.0 with NBI H/CD, density control, and similar global energy confinement to experiments. The noninductive sustained high plasmas can be reached at IP=1.0 MA, BT=0.35 T, 2.5, N9, 43%, fNI=100%, and q(0)>1.5 with NBI H/CD and 3.0 MW of EBW H/CD, density control, and 25% higher global energy confinement than experiments. A scenario for nonsolenoidal plasma current rampup is developed using high harmonic fast wave H/CD in the early low IP and low Te phase, followed by NBI H/CD to continue the current ramp, reaching a maximum of 480 kA after 3.4 s.

  10. A long-pulse repetitive operation magnetically insulated transmission line oscillator.

    PubMed

    Fan, Yu-Wei; Zhong, Hui-Huang; Zhang, Jian-De; Shu, Ting; Liu, Jin Liang

    2014-05-01

    The improved magnetically insulated transmission line oscillator (MILO) is a gigawatt-class L-band high power microwave tube. It has allowed us to generate 3.1 GW pulse of 40 ns duration in the single-pulse operation and 500 MW pulse of 25 ns duration in the repetition rate operation. However, because of the severe impedance mismatch, the power conversion efficiency is only about 4% in the repetition rate operation. In order to eliminate the impedance mismatch and obtain repetitive long-pulse high-power microwave (HPM), a series of experiments are carried out and the recent progress is presented in this paper. In the single-pulse operation, when the diode voltage is 466 kV and current is 41.6 kA, the radiated microwave power is above 2.2 GW, the pulse duration is above 102 ns, the microwave frequency is about 1.74 GHz, and the power conversion efficiency is about 11.5%. In the repetition rate operation, under the condition of the diode voltage about 400 kV, beam current about 38 kA, the radiated microwave power is about 1.0 GW, the pulse duration is about 85 ns. Moreover, the radiated microwave power and the pulse duration decline little by little when the shot numbers increase gradually. The experimental results show that the impedance matching is a vital factor for HPM systems and one of the major technical challenges is to improve the cathode for the repetition rate operation MILO.

  11. A bright and long-pulse illumination for ultrahigh-speed microscopy of living specimens.

    PubMed

    Nakano, Hitoshi; Yokoi, Sayoko; Yoshida, Shigeru; Yamada, Makoto; Takeuchi, Takeshi; Takehara, Kosei; Etoh, T Goji

    2010-01-01

    Ultrahigh-speed microscopy of living specimens requires ultrabright illumination. Moreover, the duration of illumination should be sufficiently long, on the order of at least several tens of milliseconds, in order to investigate the dynamic state of living specimens. However, specimens are exposed to a high risk of damage by the intense illumination. The brightness and pulse duration of illumination have to be continuously controlled for use in the ultrahigh-speed microscopy of living specimens. Commercial or laboratory-made illumination systems do not satisfy the abovementioned requirements. In this paper, the development of a bright and long-pulse illumination system for ultrahigh-speed microscopy of living specimens is presented. A xenon flashlamp with an arc length of 1.5 mm has been used as the light source. The electrical power supply consists of a voltage-regulated circuit, a capacitor bank, and a control circuit including an insulated-gate bipolar transistor as a gating device, which provides a large rectangular current pulse with the duration in the range to the order of several tens of milliseconds. The brightness, pulse duration, and repetition rate can be easily and continuously controlled. The illumination developed in the present study is installed in an inverted fluorescence microscope equipped with a high-speed camera in order to evaluate the performance as an illumination source. A fluorescent image of the living spermatozoa of a mouse obtained at a frame rate of 8 kHz shows good contrast. Such an image cannot be obtained using a commercial illumination system.

  12. A long-pulse repetitive operation magnetically insulated transmission line oscillator

    SciTech Connect

    Fan, Yu-Wei; Zhong, Hui-Huang; Zhang, Jian-De; Shu, Ting; Liu, Jin Liang

    2014-05-15

    The improved magnetically insulated transmission line oscillator (MILO) is a gigawatt-class L-band high power microwave tube. It has allowed us to generate 3.1 GW pulse of 40 ns duration in the single-pulse operation and 500 MW pulse of 25 ns duration in the repetition rate operation. However, because of the severe impedance mismatch, the power conversion efficiency is only about 4% in the repetition rate operation. In order to eliminate the impedance mismatch and obtain repetitive long-pulse high-power microwave (HPM), a series of experiments are carried out and the recent progress is presented in this paper. In the single-pulse operation, when the diode voltage is 466 kV and current is 41.6 kA, the radiated microwave power is above 2.2 GW, the pulse duration is above 102 ns, the microwave frequency is about 1.74 GHz, and the power conversion efficiency is about 11.5%. In the repetition rate operation, under the condition of the diode voltage about 400 kV, beam current about 38 kA, the radiated microwave power is about 1.0 GW, the pulse duration is about 85 ns. Moreover, the radiated microwave power and the pulse duration decline little by little when the shot numbers increase gradually. The experimental results show that the impedance matching is a vital factor for HPM systems and one of the major technical challenges is to improve the cathode for the repetition rate operation MILO.

  13. LONG PULSE ADVANCED TOKAMAK DISCHARGES IN THE DIII-D TOKAMAK

    SciTech Connect

    P.I. PETERSEN

    2002-06-01

    One of the main goals for the DIII-D research program is to establish an advanced tokamak plasma with high bootstrap current fraction that can be sustained in-principle steady-state. Substantial progress has been made in several areas during the last year. The resistive wall mode stabilization has been done with spinning plasmas in which the plasma pressure has been extended well above the no-wall beta limit. The 3/2 neoclassical tearing mode has been stabilized by the injection of ECH into the magnetic islands, which drives current to substitute the missing bootstrap current. In these experiments either the plasma was moved or the toroidal field was changed to overlap the ECCD resonance with the location of the NTMs. Effective disruption mitigation has been obtained by massive noble gas injection into shots where disruptions were deliberately triggered. The massive gas puff causes a fast and clean current quench with essentially all the plasma energy radiated fairly uniformly to the vessel walls. The run-away electrons that are normally seen accompanying disruptions are suppressed by the large density of electrons still bound on the impurity nuclei. Major elements required to establish integrated, long-pulse, advanced tokamak operations have been achieved in DIII-D: {beta}{sub T} = 4.2%, {beta}{sub p} = 2, f{sub BS} = 65%, and {beta}{sub N}H{sub 89} = 10 for 600 ms ({approx} 4{tau}{sub E}). The next challenge is to integrate the different elements, which will be the goal for the next five years when additional control will be available. Twelve resistive wall mode coils are scheduled to be installed in DIII-D during the summer of 2003. The future plans include upgrading the tokamak pulse length capability and increasing the ECH power, to control the current profile evolution.

  14. Spectral broadening measurement of the lower hybrid waves during long pulse operation in Tore Supra

    SciTech Connect

    Berger-By, G.; Decampy, J.; Goniche, M.; Ekedahl, A.; Delpech, L.; Leroux, F.; Antar, G. Y.; Collaboration: Tore Supra Team

    2014-02-12

    On many tokamaks (C-Mod, EAST, FTU, JET, HT-7, TS), a decrease in current drive efficiency of the Lower Hybrid (LH) waves is observed in high electron density plasmas. The cause of this behaviour is believed to be: Parametric Instabilities (PI) and Scattering from Density Fluctuations (SDF). For the ITER LH system, our knowledge must be improved to avoid such effects and to maintain the LH current drive efficiency at high density. The ITPA IOS group coordinates this effort [1] and all experimental data are essential to validate the numerical codes in progress. Usually the broadening of the LH wave frequency spectrum is measured by a probe located in the plasma edge. For this study, the frequency spectrum of a reflected power signal from the LH antenna was used. In addition, the spectrum measurements are compared with the density fluctuations observed on RF probes located at the antenna mouth. Several plasma currents (0.6 to 1.4 MA) and densities up to 5.2 × 10{sup 19} m−3 have been realised on Tore Supra (TS) long pulses and with high injected RF power, up to 5.4 MW-30s. This allowed using a spectrum analyser to make several measurements during the plasma pulse. The side lobe amplitude, shifted by 20-30MHz with respect to the main peak, grows with increasing density. Furthermore, for an increase of plasma current at the same density, the spectra broaden and become asymmetric. Some parametric dependencies are shown in this paper.

  15. A bright and long-pulse illumination for ultrahigh-speed microscopy of living specimens

    NASA Astrophysics Data System (ADS)

    Nakano, Hitoshi; Yokoi, Sayoko; Yoshida, Shigeru; Yamada, Makoto; Takeuchi, Takeshi; Takehara, Kosei; Etoh, T. Goji

    2010-01-01

    Ultrahigh-speed microscopy of living specimens requires ultrabright illumination. Moreover, the duration of illumination should be sufficiently long, on the order of at least several tens of milliseconds, in order to investigate the dynamic state of living specimens. However, specimens are exposed to a high risk of damage by the intense illumination. The brightness and pulse duration of illumination have to be continuously controlled for use in the ultrahigh-speed microscopy of living specimens. Commercial or laboratory-made illumination systems do not satisfy the abovementioned requirements. In this paper, the development of a bright and long-pulse illumination system for ultrahigh-speed microscopy of living specimens is presented. A xenon flashlamp with an arc length of 1.5 mm has been used as the light source. The electrical power supply consists of a voltage-regulated circuit, a capacitor bank, and a control circuit including an insulated-gate bipolar transistor as a gating device, which provides a large rectangular current pulse with the duration in the range to the order of several tens of milliseconds. The brightness, pulse duration, and repetition rate can be easily and continuously controlled. The illumination developed in the present study is installed in an inverted fluorescence microscope equipped with a high-speed camera in order to evaluate the performance as an illumination source. A fluorescent image of the living spermatozoa of a mouse obtained at a frame rate of 8 kHz shows good contrast. Such an image cannot be obtained using a commercial illumination system.

  16. Two-wave regime of operation of the high-harmonic gyrotron

    SciTech Connect

    Savilov, A. V.; Denisov, G. G.; Kalynov, Yu. K.; Osharin, I. V.

    2015-04-15

    The use of the two-wave co-generation is proposed as a way to decrease the effective Q-factor of the operating near-cutoff wave of the gyrotron. In this two-wave regime, the operating wave represents a “hot” wave mode formed by two partial “cold” modes (near-cutoff and far-from-cutoff ones) coupled on the electron beam. It is shown that the use of this regime can provide a significant decrease of the Ohmic losses in low-relativistic high-harmonic gyrotrons operating in the THz frequency range.

  17. Gyrotron with a sectioned cavity based on excitation of a far-from-cutoff operating mode

    SciTech Connect

    Bandurkin, I. V.; Kalynov, Yu. K.; Osharin, I. V.; Savilov, A. V.

    2016-01-15

    A typical problem of weakly relativistic low-power gyrotrons (especially in the case of operation at high cyclotron harmonics) is the use of long cavities ensuring extremely high diffraction Q-factors for the operating near-cutoff waves. As a result, a great share of the rf power radiated by electrons is spent in Ohmic losses. In this paper, we propose to use a sectioned cavity with π-shifts of the wave phase between sections. In such a cavity, a far-from-cutoff axial mode of the operating cavity having a decreased diffraction Q-factor is excited by the electron beam in a gyrotron-like regime.

  18. Influence of Reflections on Frequency Tunability and Mode Competition in the Second-Harmonic THz Gyrotron

    NASA Astrophysics Data System (ADS)

    Khutoryan, Eduard M.; Idehara, Toshitaka; Melnikova, Maria M.; Ryskin, Nikita M.; Dumbrajs, Olgierd

    2017-03-01

    Effect of delayed reflection on operation of a second-harmonic terahertz (THz)-band gyrotron is studied. Theoretical analyses, numerical calculations, and experimental observations for the 0.394-THz Fukui University (FU) and continuous wave (CW) IIB gyrotron are presented. The reflections decrease starting current and expand frequency tunability range owing to excitation of high-order axial modes. They also increase frequency stability, i.e., reduce frequency change due to variation of the magnetic field. In addition, the reflections strongly affect mode competition causing suppress of the second-harmonic mode by the fundamental one and vice versa or, in the case of cooperative mode interaction, mutual power increase.

  19. Real-time, T-ray imaging using a sub-terahertz gyrotron

    NASA Astrophysics Data System (ADS)

    Han, Seong-Tae; Torrezan, Antonio C.; Sirigiri, Jagadishwar R.; Shapiro, Michael A.; Temkin, Richard J.

    2012-06-01

    We demonstrated real-time, active, T-ray imaging using a 0.46 THz gyrotron capable of producing 16 W in continuous wave operation and a pyroelectric array camera with 124-by-124 pixels. An expanded Gaussian beam from the gyrotron was used to maintain the power density above the detection level of the pyroelectric array over the area of the irradiated object. Real-time imaging at a video rate of 48 Hz was achieved through the use of the built-in chopper of the camera. Potential applications include fast scanning for security purposes and for quality control of dry or frozen foods.

  20. Design of interaction cavity for 170 GHz, 1 MW ITER gyrotron

    SciTech Connect

    Kumar, Anil; Kumar, Nitin; Khatun, Hasina; Singh, Udaybir; Sinha, A.K. E-mail: aksinha@ceeri.ernet.in; Vyas, V.

    2011-07-01

    In this paper the design of interaction cavity for 170 GHz, 1 MW gyrotron is presented. An in-house developed code GCOMS has been used for operating mode selection and mode competition. For 170 GHz, 1 MW gyrotron interaction cavity TE28, 7 mode excite as a operating mode at the fundamental harmonic number. The electromagnetic simulator-MAGIC, a Particle-in-Cell (PIC) code has been used for the cold cavity analysis and the beam-wave interaction. More than 1MW output power has been achieved at guiding cavity magnetic field 6.77 T. (author)

  1. Continuously Tunable 250 GHz Gyrotron with a Double Disk Window for DNP-NMR Spectroscopy

    PubMed Central

    Jawla, Sudheer; Ni, Qing Zhe; Barnes, Alexander; Guss, William; Daviso, Eugenio; Herzfeld, Judith; Griffin, Robert; Temkin, Richard

    2012-01-01

    In this paper, we describe the design and experimental results from the rebuild of a 250 GHz gyrotron used for Dynamic Nuclear Polarization enhanced Nuclear Magnetic Resonance spectroscopy on a 380 MHz spectrometer. Tuning bandwidth of approximately 2 GHz is easily achieved at a fixed magnetic field of 9.24 T and a beam current of 95 mA producing an average output power of >10 W over the entire tuning band. This tube incorporates a double disk output sapphire window in order to maximize the transmission at 250.58 GHz. DNP Signal enhancement of >125 is achieved on a 13C-Urea sample using this gyrotron. PMID:23539422

  2. Mode selection and resonator design studies of a 95 GHz, 100 kW, CW gyrotron

    SciTech Connect

    Vamshi Krishna, P.; Kartikeyan, M.V. E-mail: kartik@iitr.ernet.in; Thumm, M.

    2011-07-01

    In this paper, the mode selection procedure leading to the design and the cavity resonator design studies of a 95 GHz, 100 kW, CW Gyrotron will be presented, such a gyrotron will be used for specific ECRH/ECRIS applications. In this course all the suitable modes with design constraints within the limits of design goals are considered and finally the TE{sub 10.4} mode is chosen as the operating mode which is suitable for the design. Design constraints are carefully investigated, and starting currents are computed. (author)

  3. Successful Treatment of Congenital Lymphangioma Circumscriptum of the Vulva with CO2 and Long-Pulsed Nd:YAG Lasers.

    PubMed

    Sasaki, Ryosuke; Negishi, Kei; Akita, Hirotaka; Suzuki, Kayoko; Matsunaga, Kayoko

    2014-01-01

    A 16-year-old girl presented with a 9-year history of vesicles on the vulva. She had initially taken a wait-and-see approach, but required treatment because of bleeding. Histological examination of a biopsied vesicle revealed dilated lymph channels in the upper dermis, suggesting lymphangioma circumscriptum (LC). The challenge for this pathology has been to find a conservative treatment with low morbidity and better results than those reported for surgical excision, which has been the mainstay of therapy. In this case, LC of the vulva was successfully treated using a 10,600-nm CO2 laser and long-pulsed Nd:YAG laser. Use of the 10,600-nm CO2 laser and long-pulsed Nd:YAG laser appeared effective for treating LC.

  4. Preliminary study on heat load using calorimetric measurement during long-pulse high-performance discharges on EAST

    NASA Astrophysics Data System (ADS)

    Liu, Y. K.; Hamada, N.; Hanada, K.; Gao, X.; Liu, H. Q.; Yu, Y. W.; Qian, J. P.; Yang, L.; Xu, T. J.; Jie, Y. X.; Yao, Y.; Wang, S. S.; Xu, J. C.; Yang, Z. D.; Li, G. S.; EAST Team

    2017-04-01

    Experimental Advanced Superconducting Tokamak (EAST) aims to demonstrate steady-state advanced high-performance H-mode plasmas with an ITER-like configuration, plasma control and heating schemes. The plasma-facing components in EAST are actively cooled, providing good conditions for researching long-pulse and high-energy discharges. A long-pulse high-performance plasma discharge (#59892 discharge) of up to 103 s with a core electron temperature of up to 4.5 keV was sustained with an injected energy exceeding 0.22 GJ in the 2015–2016 experimental campaign. A calorimetric measurement utilizing the temperature increment of cooling water is carried out to calculate the heat load on the strike point region of the lower divertor during long-pulse discharges in EAST. For the long-pulse and high-energy discharges, the comparison of the measurement results for the heat load measured by divertor Langmuir probes and the calorimetry diagnostic indicates that most of the heat load is delivered to the divertor panels as plasma, not radiation, and charge exchange neutrals. The ratio of the heat load on the strike point region of the lower divertor to the total injected energy is on average 42.5% per discharge with the lower single null divertor configuration. If the radiated energy loss measured by the fast bolometer diagnostic is taken into consideration, the ratio is found to be 61.6%. The experimental results and the analysis of the physics involved in these discharges are reported and discussed.

  5. Development of long pulse RF heating and current drive for H-mode scenarios with metallic walls in WEST

    SciTech Connect

    Ekedahl, Annika Bourdelle, Clarisse; Artaud, Jean-François; Bernard, Jean-Michel; Bufferand, Hugo; Colas, Laurent; Decker, Joan; Delpech, Léna; Dumont, Rémi; Goniche, Marc; Helou, Walid; Hillairet, Julien; Lombard, Gilles; Magne, Roland; Mollard, Patrick; Nardon, Eric; Peysson, Yves; Tsitrone, Emmanuelle

    2015-12-10

    The longstanding expertise of the Tore Supra team in long pulse heating and current drive with radiofrequency (RF) systems will now be exploited in the WEST device (tungsten-W Environment in Steady-state Tokamak) [1]. WEST will allow an integrated long pulse tokamak programme for testing W-divertor components at ITER-relevant heat flux (10-20 MW/m{sup 2}), while treating crucial aspects for ITER-operation, such as avoidance of W-accumulation in long discharges, monitoring and control of heat fluxes on the metallic plasma facing components (PFCs) and coupling of RF waves in H-mode plasmas. Scenario modelling using the METIS-code shows that ITER-relevant heat fluxes are compatible with the sustainment of long pulse H-mode discharges, at high power (up to 15 MW / 30 s at I{sub P} = 0.8 MA) or high fluence (up to 10 MW / 1000 s at I{sub P} = 0.6 MA) [2], all based on RF heating and current drive using Ion Cyclotron Resonance Heating (ICRH) and Lower Hybrid Current Drive (LHCD). This paper gives a description of the ICRH and LHCD systems in WEST, together with the modelling of the power deposition of the RF waves in the WEST-scenarios.

  6. Development of long pulse RF heating and current drive for H-mode scenarios with metallic walls in WEST

    NASA Astrophysics Data System (ADS)

    Ekedahl, Annika; Bourdelle, Clarisse; Artaud, Jean-François; Bernard, Jean-Michel; Bufferand, Hugo; Colas, Laurent; Decker, Joan; Delpech, Léna; Dumont, Rémi; Goniche, Marc; Helou, Walid; Hillairet, Julien; Lombard, Gilles; Magne, Roland; Mollard, Patrick; Nardon, Eric; Peysson, Yves; Tsitrone, Emmanuelle

    2015-12-01

    The longstanding expertise of the Tore Supra team in long pulse heating and current drive with radiofrequency (RF) systems will now be exploited in the WEST device (tungsten-W Environment in Steady-state Tokamak) [1]. WEST will allow an integrated long pulse tokamak programme for testing W-divertor components at ITER-relevant heat flux (10-20 MW/m2), while treating crucial aspects for ITER-operation, such as avoidance of W-accumulation in long discharges, monitoring and control of heat fluxes on the metallic plasma facing components (PFCs) and coupling of RF waves in H-mode plasmas. Scenario modelling using the METIS-code shows that ITER-relevant heat fluxes are compatible with the sustainment of long pulse H-mode discharges, at high power (up to 15 MW / 30 s at IP = 0.8 MA) or high fluence (up to 10 MW / 1000 s at IP = 0.6 MA) [2], all based on RF heating and current drive using Ion Cyclotron Resonance Heating (ICRH) and Lower Hybrid Current Drive (LHCD). This paper gives a description of the ICRH and LHCD systems in WEST, together with the modelling of the power deposition of the RF waves in the WEST-scenarios.

  7. Generation of 1.5-kW, 1-THz coherent radiation from a gyrotron with a pulsed magnetic field.

    PubMed

    Glyavin, M Yu; Luchinin, A G; Golubiatnikov, G Yu

    2008-01-11

    To cover a so-called terahertz gap in available sources of coherent electromagnetic radiation, the gyrotron with a pulsed solenoid producing up to a 40 T magnetic field has been designed, manufactured, and tested. At a 38.5 T magnetic field, the gyrotron generated coherent radiation at 1.022 THz frequency in 50 musec pulses. The microwave power and energy per pulse were about 1.5 kW and 75 mJ, respectively. Details of the gyrotron design, manufacturing, operation and measurements of output radiation are given.

  8. Design studies of the output system of a 95 GHz, 100 kW, CW gyrotron

    SciTech Connect

    Vamshi Krishna, P.; Kartikeyan, M.V. E-mail: kartik@iitr.ernet.in; Thumm, M.

    2011-07-01

    This paper presents the design studies of the output system of a 95 GHz, 100 kW, CW gyrotron for ECRH7ECRIS applications. During this course, the design studies of an advanced dimpled-wall quasi optical launcher, non-linear taper and RF window will be carried out. (author)

  9. Start-Up Scenario in Gyrotrons with a Nonstationary Microwave-Field Structure

    NASA Astrophysics Data System (ADS)

    Nusinovich, G. S.; Yeddulla, M.; Antonsen, T. M., Jr.; Vlasov, A. N.

    2006-03-01

    Megawatt class gyrotrons operate in very high-order modes. Therefore, control of a gyrotron oscillator’s start-up is important for excitation of the desired mode in the presence of the many undesired modes. Analysis of such scenario using the self-consistent code MAGY [M. Botton , IEEE Trans. Plasma Sci. 26,ITPSBD0093-3813 882 (1998)10.1109/27.700860] reveals that during start-up not only mode amplitudes vary in time, but also their axial structure can be time dependent. Simulations done for a 1.5 MW gyrotron show that the excitation of a single operating TE22,6 mode can exhibit a sort of intermittency when, first, it is excited as a mode whose axial structure extends outside the interaction cavity, then it ceases and then reappears as a mode mostly localized in the cavity. This phenomenon makes it necessary to analyze start-up scenarios in such gyrotrons with the use of codes that account for the possible evolution of field profiles.

  10. To the theory of high-power gyrotrons with uptapered resonators

    SciTech Connect

    Dumbrajs, O.; Nusinovich, G. S.

    2010-05-15

    In high-power gyrotrons it is desirable to combine an optimal resonator length with the optimal value of the resonator quality factor. In resonators with the constant radius of the central part, the possibilities of this combination are limited because the quality factor of the resonator sharply increases with its length. Therefore the attempts to increase the length for maximizing the efficiency leads to such increase in the quality factor which makes the optimal current too small. Resonators with slightly uptapered profiles offer more flexibility in this regard. In such resonators, one can separate optimization of the interaction length from optimization of the quality factor because the quality factor determined by diffractive losses can be reduced by increasing the angle of uptapering. In the present paper, these issues are analyzed by studying as a typical high-power 17 GHz gyrotron which is currently under development in Europe for ITER (http://en.wikipedia.org/wiki/ITER). The effect of a slight uptapering of the resonator wall on the efficiency enhancement and the purity of the radiation spectrum in the process of the gyrotron start-up and power modulation are studied. Results show that optimal modification of the shape of a slightly uptapered resonator may result in increasing the gyrotron power from 1052 to 1360 kW.

  11. A comparative study on the modeling of dynamic after-cavity interaction in gyrotrons

    NASA Astrophysics Data System (ADS)

    Avramidis, K. A.; Ioannidis, Z. C.; Kern, S.; Samartsev, A.; Pagonakis, I. Gr.; Tigelis, I. G.; Jelonnek, J.

    2015-05-01

    There are cases where gyrotron interaction simulations predict dynamic After-Cavity Interaction (ACI). In dynamic ACI, a mode is excited by the electron beam at a dominant frequency in the gyrotron cavity and, at the same time, this mode is also interacting with the beam at a different frequency in the non-linear uptaper after the cavity. In favor of dynamic ACI being a real physical effect, there are some experimental findings that could be attributed to it, as well as some physical rationale indicating the possibility of a mode being resonant with the beam at different frequencies in different regions. However, the interaction codes used in dynamic ACI prediction up to now are based on simplifications that put questions on their capability of correctly simulating this effect. In this work, the shortcomings of the usual simplifications with respect to dynamic ACI modeling, namely, the trajectory approach and the single-frequency boundary condition, are identified. Extensive simulations of dynamic ACI cases are presented, using several "in-house" as well as commercial codes. We report on the comparison and the assessment of different modeling approaches and their results and we discuss whether, in some cases, dynamic ACI can be a numerical artifact or not. Although the possibility of existence of dynamic ACI in gyrotrons is not disputed, it is concluded that the widely used trajectory approach for gyrotron interaction modeling is questionable for simulating dynamic ACI and can lead to misleading results.

  12. Performance history and upgrades for the DIII-D gyrotron complex

    SciTech Connect

    Lohr, J.; Anderson, J. P.; Cengher, M.; Ellis, R. A.; Gorelov, Y. A.; Kolemen, E.; Lambot, T.; Murakami, D. D.; Myrabo, L.; Noraky, S.; Parkin, K. L.; Ponce, D.; Torrezan, A.

    2015-03-12

    The gyrotron installation on the DIII-D tokamak has been in operation at the second harmonic of the electron cyclotron resonance since the mid-1990s. Prior to that a large installation of ten 60 GHz tubes was operated at the fundamental resonance. The system has been upgraded regularly and is an everyday tool for experiments on DIII-D.

  13. A Fully-Sealed Carbon-Nanotube Cold-Cathode Terahertz Gyrotron

    PubMed Central

    Yuan, Xuesong; Zhu, Weiwei; Zhang, Yu; Xu, Ningsheng; Yan, Yang; Wu, Jianqiang; Shen, Yan; Chen, Jun; She, Juncong; Deng, Shaozhi

    2016-01-01

    Gigahertz to terahertz radiation sources based on cold-cathode vacuum electron technology are pursued, because its unique characteristics of instant switch-on and power saving are important to military and space applications. Gigahertz gyrotron was reported using carbon nanotube (CNT) cold-cathode. It is reported here in first time that a fully-sealed CNT cold-cathode 0.22 THz-gyrotron is realized, typically with output power of 500 mW. To achieve this, we have studied mechanisms responsible for CNTs growth on curved shape metal surface, field emission from the sidewall of a CNT, and crystallized interface junction between CNT and substrate material. We have obtained uniform growth of CNTs on and direct growth from cone-cylinder stainless-steel electrode surface, and field emission from both tips and sidewalls of CNTs. It is essential for the success of a CNT terahertz gyrotron to have such high quality, high emitting performance CNTs. Also, we have developed a magnetic injection electron gun using CNT cold-cathode to exploit the advantages of such a conventional gun design, so that a large area emitting surface is utilized to deliver large current for electron beam. The results indicate that higher output power and higher radiation frequency terahertz gyrotron may be made using CNT cold-cathode electron gun. PMID:27609247

  14. CONDITIONING AND PROTECTION CIRCUITRY FOR EXTERNAL MODULATION OF A PREPROGRAMMED GYROTRON CATHODE VOLTAGE COMMAND WAVEFORM

    SciTech Connect

    PONCE,D; FERRON,J.R; LEGG,R.A

    2003-10-01

    OAK-B135 The modulating voltages applied to the DIII-D gyrotrons are controlled by reference signals which are synthesized by arbitrary waveform generators.These generators allow ECH operators to pre-program reference waveforms consisting of ramps, flat tops, and various modulation shapes. This capability is independent of the DIII-D central timing and waveform facilities, which provides the ECH operators operational flexibility. The waveform generators include an amplitude modulation input, providing a means to control the pre-programmed waveform externally. This input is being used to allow the DIII-D plasma control system (PCS) to control gyrotron power in response top selected feedback signals. As the PCS control signal could potentially modulate the gyrotrons beyond operational limits or otherwise in a manner leading to recalcitrant rf generation, the control signal is conditioned so that its effect upon the ECH pre-programmed reference waveform is limited by conditions set by the ECH operators. The design of the circuitry which restricts the range over which the PCS control signal may modulate the reference waveform will be discussed. Test and DIII-D experimental results demonstrating the utility and effectiveness of gyrotron power modulated by the PCS will be presented.

  15. Efficient Low-Voltage Operation of a CW Gyrotron Oscillator at 233 GHz

    PubMed Central

    Hornstein, Melissa K.; Bajaj, Vikram S.; Griffin, Robert G.; Temkin, Richard J.

    2007-01-01

    The gyrotron oscillator is a source of high average power millimeter-wave through terahertz radiation. In this paper, we report low beam power and high-efficiency operation of a tunable gyrotron oscillator at 233 GHz. The low-voltage operating mode provides a path to further miniaturization of the gyrotron through reduction in the size of the electron gun, power supply, collector, and cooling system, which will benefit industrial and scientific applications requiring portability. Detailed studies of low-voltage operation in the TE2,3,1 mode reveal that the mode can be excited with less than 7 W of beam power at 3.5 kV. During CW operation with 3.5-kV beam voltage and 50-mA beam current, the gyrotron generates 12 W of RF power at 233.2 GHz. The EGUN electron optics code describes the low-voltage operation of the electron gun. Using gun-operating parameters derived from EGUN simulations, we show that a linear theory adequately predicts the low experimental starting currents. PMID:17687412

  16. The design of a multi-harmonic step-tunable gyrotron

    NASA Astrophysics Data System (ADS)

    Qi, Xiang-Bo; Du, Chao-Hai; Zhu, Juan-Feng; Pan, Shi; Liu, Pu-Kun

    2017-03-01

    The theoretical study of a step-tunable gyrotron controlled by successive excitation of multi-harmonic modes is presented in this paper. An axis-encircling electron beam is employed to eliminate the harmonic mode competition. Physics images are depicted to elaborate the multi-harmonic interaction mechanism in determining the operating parameters at which arbitrary harmonic tuning can be realized by magnetic field sweeping to achieve controlled multiband frequencies' radiation. An important principle is revealed that a weak coupling coefficient under a high-harmonic interaction can be compensated by a high Q-factor. To some extent, the complementation between the high Q-factor and weak coupling coefficient makes the high-harmonic mode potential to achieve high efficiency. Based on a previous optimized magnetic cusp gun, the multi-harmonic step-tunable gyrotron is feasible by using harmonic tuning of first-to-fourth harmonic modes. Multimode simulation shows that the multi-harmonic gyrotron can operate on the 34 GHz first-harmonic TE11 mode, 54 GHz second-harmonic TE21 mode, 74 GHz third-harmonic TE31 mode, and 94 GHz fourth-harmonic TE41 mode, corresponding to peak efficiencies of 28.6%, 35.7%, 17.1%, and 11.4%, respectively. The multi-harmonic step-tunable gyrotron provides new possibilities in millimeter-terahertz source development especially for advanced terahertz applications.

  17. A Fully-Sealed Carbon-Nanotube Cold-Cathode Terahertz Gyrotron

    NASA Astrophysics Data System (ADS)

    Yuan, Xuesong; Zhu, Weiwei; Zhang, Yu; Xu, Ningsheng; Yan, Yang; Wu, Jianqiang; Shen, Yan; Chen, Jun; She, Juncong; Deng, Shaozhi

    2016-09-01

    Gigahertz to terahertz radiation sources based on cold-cathode vacuum electron technology are pursued, because its unique characteristics of instant switch-on and power saving are important to military and space applications. Gigahertz gyrotron was reported using carbon nanotube (CNT) cold-cathode. It is reported here in first time that a fully-sealed CNT cold-cathode 0.22 THz-gyrotron is realized, typically with output power of 500 mW. To achieve this, we have studied mechanisms responsible for CNTs growth on curved shape metal surface, field emission from the sidewall of a CNT, and crystallized interface junction between CNT and substrate material. We have obtained uniform growth of CNTs on and direct growth from cone-cylinder stainless-steel electrode surface, and field emission from both tips and sidewalls of CNTs. It is essential for the success of a CNT terahertz gyrotron to have such high quality, high emitting performance CNTs. Also, we have developed a magnetic injection electron gun using CNT cold-cathode to exploit the advantages of such a conventional gun design, so that a large area emitting surface is utilized to deliver large current for electron beam. The results indicate that higher output power and higher radiation frequency terahertz gyrotron may be made using CNT cold-cathode electron gun.

  18. Steady-state operation of 170 GHz 1 MW gyrotron for ITER

    NASA Astrophysics Data System (ADS)

    Kasugai, A.; Sakamoto, K.; Takahashi, K.; Kajiwara, K.; Kobayashi, N.

    2008-05-01

    A 170 GHz gyrotron has been developed at JAEA, which has achieved operation of 1 MW/800 s and up to 55% efficiency. This is the first demonstration of a gyrotron achieving and even exceeding the ITER operating requirements of 1 MW/500 s and 50% efficiency. In addition the gyrotron demonstrated operation for 1 h with an output power of 0.6 MW. The oscillation was stable with all cooling water temperatures and vacuum pressure reaching equilibrium conditions during the pulse length at either power level. The successful operation was aided by a very low level of stray radiation (~2% of the output power), which contributed to fast conditioning and stable operation. The output power from the gyrotron was coupled into an ITER sized corrugated waveguide (phi = 63.5 mm) via a matching optics unit with a total of 0.97 MW transmitted to the dummy load after two miter bends and ~7 m of a waveguide without any trouble. These results give an encouraging outlook for the success of the ITER electron cyclotron heating and current drive system.

  19. High power millimeter wave source development program

    NASA Technical Reports Server (NTRS)

    George, T. V.

    1989-01-01

    High power millimeter wave sources for fusion program; ECH source development program strategy; and 1 MW, 140 GHz gyrotron experiment design philosophy are briefly outlined. This presentation is represented by viewgraphs only.

  20. CHARACTERISTICS OF DIAMOND WINDOWS ON THE 1 MW, 110 GHz GYROTRON SYSTEMS ON THE DIII-D TOKAMAK

    SciTech Connect

    Y.A. GORELOV; J. LOHR; R.W. CALLIS; D. PONCE

    2002-08-01

    Diamond disks made using the chemical vapor deposition (CVD) technique are now in common use as gyrotron output windows. The low millimeter wave losses and excellent thermal conductivity of diamond have made it possible to use such windows in gyrotrons with {approx}1 MW output power and pulse length up to and greater than 10 s. A ubiquitous characteristic of diamond gyrotron windows is the presence of apparent hot spots in the infrared images registered during rf pulses. Many of these spots are co-located with bright points seen in visible video images. The spots do not seem to compromise the integrity of the windows. Analysis of the infrared observations on several different gyrotrons operating at the DIII-D tokamak are reported.

  1. Effects of electron beam parameters and velocity spread on radio frequency output of a photonic band gap cavity gyrotron oscillator

    NASA Astrophysics Data System (ADS)

    Singh, Ashutosh; Jain, P. K.

    2015-09-01

    In this paper, the effects of electron beam parameters and velocity spread on the RF behavior of a metallic photonic band gap (PBG) cavity gyrotron operating at 35 GHz with TE041-like mode have been theoretically demonstrated. PBG cavity is used here to achieve a single mode operation of the overmoded cavity. The nonlinear time-dependent multimode analysis has been used to observe the beam-wave interaction behavior of the PBG cavity gyrotron, and a commercially available PIC code "CST Particle Studio" has been reconfigured to obtain 3D simulation results in order to validate the analytical values. The output power for this typical PBG gyrotron has been obtained ˜108 kW with ˜15.5% efficiency in a well confined TE041-like mode, while all other competing modes have significantly low values of power output. The output power and efficiency of a gyrotron depend highly on the electron beam parameters and velocity spread. The influence of several electron beam parameters, e.g., beam voltage, beam current, beam velocity pitch factor, and DC magnetic field, on the PBG gyrotron operations has been investigated. This study would be helpful in optimising the electron beam parameters and estimating accurate RF output power of the high frequency PBG cavity based gyrotron oscillators.

  2. Effects of electron beam parameters and velocity spread on radio frequency output of a photonic band gap cavity gyrotron oscillator

    SciTech Connect

    Singh, Ashutosh; Jain, P. K.

    2015-09-15

    In this paper, the effects of electron beam parameters and velocity spread on the RF behavior of a metallic photonic band gap (PBG) cavity gyrotron operating at 35 GHz with TE{sub 041}–like mode have been theoretically demonstrated. PBG cavity is used here to achieve a single mode operation of the overmoded cavity. The nonlinear time-dependent multimode analysis has been used to observe the beam-wave interaction behavior of the PBG cavity gyrotron, and a commercially available PIC code “CST Particle Studio” has been reconfigured to obtain 3D simulation results in order to validate the analytical values. The output power for this typical PBG gyrotron has been obtained ∼108 kW with ∼15.5% efficiency in a well confined TE{sub 041}–like mode, while all other competing modes have significantly low values of power output. The output power and efficiency of a gyrotron depend highly on the electron beam parameters and velocity spread. The influence of several electron beam parameters, e.g., beam voltage, beam current, beam velocity pitch factor, and DC magnetic field, on the PBG gyrotron operations has been investigated. This study would be helpful in optimising the electron beam parameters and estimating accurate RF output power of the high frequency PBG cavity based gyrotron oscillators.

  3. Design and Realization of the Control and Measurement System of the Long Pulsed High Magnetic Field Facility Supplied by Battery

    NASA Astrophysics Data System (ADS)

    Xie, J. F.; Xiong, Y. D.; Han, X. T.; Ding, T. H.; Shi, J. T.; Li, L.

    2013-03-01

    A Control and Measurement System (CMS) is designed to ensure the reliable operation in the long pulsed high magnetic field facility supplied by lead-acid batteries. The CMS is mainly composed of a Programmable Logic Controller (PLC), a fault monitor and protection circuit, a signal processing and data acquisition unit, a local triggering sequence generator and the main control program. The system architecture and kernel parts of the CMS are analyzed and described in detail. The results prove that the designed CMS could perform efficiently and reliably.

  4. Long-pulse generation with a stable-relaxation-oscillation Nd:YLF laser. [yttrium-lithium-fluoride

    NASA Technical Reports Server (NTRS)

    Harisson, J.; Rines, G. A.; Moulton, P. F.

    1988-01-01

    A simple technique for long-pulse (0.2-2 microsec) generation with neodymium lasers has been demonstrated. Under the proper conditions, a normal-mode oscillator, operated in a single transverse mode, produces well-defined relaxation oscillations from which a single subpulse can be isolated for amplification. The characteristic subpulse temporal profile is ideal for saturated amplification without pulse shortening. Data are presented for a Nd:YLF system consisting of an oscillator followed by a 64-nm-long amplifier. Pulse energies in excess of 100 mJ were achieved with a small-signal gain of 630.

  5. Progress in long-pulse production of powerful negative ion beams for JT-60SA and ITER

    NASA Astrophysics Data System (ADS)

    Kojima, A.; Umeda, N.; Hanada, M.; Yoshida, M.; Kashiwagi, M.; Tobari, H.; Watanabe, K.; Akino, N.; Komata, M.; Mogaki, K.; Sasaki, S.; Seki, N.; Nemoto, S.; Shimizu, T.; Endo, Y.; Ohasa, K.; Dairaku, M.; Yamanaka, H.; Grisham, L. R.

    2015-06-01

    Significant progress in the extension of pulse durations of powerful negative ion beams has been made to realize the neutral beam injectors for JT-60SA and ITER. In order to overcome common issues of the long-pulse production/acceleration of negative ion beams in JT-60SA and ITER, new technologies have been developed in the JT-60SA ion source and the MeV accelerator in Japan Atomic Energy Agency. As for the long-pulse production of high-current negative ions for the JT-60SA ion source, the pulse durations have been successfully increased from 30 s at 13 A on JT-60U to 100 s at 15 A by modifying the JT-60SA ion source, which satisfies the required pulse duration of 100 s and 70% of the rated beam current for JT-60SA. This progress was based on the R&D efforts for the temperature control of the plasma grid and uniform negative ion productions with the modified tent-shaped filter field configuration. Moreover, each parameter of the required beam energy, current and pulse has been achieved individually by these R&D efforts. The developed techniques are useful to design the ITER ion source because the sustainment of the caesium coverage in the large extraction area is one of the common issues between JT-60SA and ITER. As for the long-pulse acceleration of high power density beams in the MeV accelerator for ITER, the pulse duration of MeV-class negative ion beams has been extended by more than 2 orders of magnitude by modifying the extraction grid with a high cooling capability and a high transmission of negative ions. A long-pulse acceleration of 60 s has been achieved at 70 MW m-2 (683 keV, 100 A m-2) which has reached the power density of JT-60SA level of 65 MW m-2. No degradations of the voltage holding capability of the acceleration voltage and the beam optics due to the distortion of the acceleration grids have been observed in this power density level. These results are the longest pulse durations of high-current and high-power-density negative ion beams in the

  6. Online tuning of impedance matching circuit for long pulse inductively coupled plasma source operation--an alternate approach.

    PubMed

    Sudhir, Dass; Bandyopadhyay, M; Kraus, W; Gahlaut, A; Bansal, G; Chakraborty, A

    2014-01-01

    Impedance matching circuit between radio frequency (RF) generator and the plasma load, placed between them, determines the RF power transfer from RF generator to the plasma load. The impedance of plasma load depends on the plasma parameters through skin depth and plasma conductivity or resistivity. Therefore, for long pulse operation of inductively coupled plasmas, particularly for high power (∼100 kW or more) where plasma load condition may vary due to different reasons (e.g., pressure, power, and thermal), online tuning of impedance matching circuit is necessary through feedback. In fusion grade ion source operation, such online methodology through feedback is not present but offline remote tuning by adjusting the matching circuit capacitors and tuning the driving frequency of the RF generator between the ion source operation pulses is envisaged. The present model is an approach for remote impedance tuning methodology for long pulse operation and corresponding online impedance matching algorithm based on RF coil antenna current measurement or coil antenna calorimetric measurement may be useful in this regard.

  7. VERITAS: a high-flux neutron reflectometer with vertical sample geometry for a long pulse spallation source

    NASA Astrophysics Data System (ADS)

    Mattauch, S.; Ioffe, A.; Lott, D.; Menelle, A.; Ott, F.; Medic, Z.

    2016-04-01

    An instrument concept of a reflectometer with a vertical sample geometry fitted to the long pulse structure of a spallation source, called “VERITAS” at the ESS, is presented. It focuses on designing a reflectometer with high intensity at the lowest possible background following the users' demand to investigate thin layers or interfacial areas in the sub-nanometer length scale. The high intensity approach of the vertical reflectometer fits very well to the long pulse structure of the ESS. Its main goal is to deliver as much usable intensity as possible at the sample position and be able to access a reflectivity range of 8 orders of magnitude and more. The concept assures that the reflectivity measurements can be performed in its best way to maximize the flux delivered to the sample. The reflectometer is optimized for studies of (magnetic) layers having thicknesses down to 5Å and a surface area of 1x1cm2. With reflectivity measurements the depth-resolved, laterally averaged chemical and magnetic profile can be investigated. By using polarised neutrons, additional vector information on the in-plane magnetic correlations (off-specular scattering at the pm length scale, GISANS at the nm length scale) can be studied. The full polarisation analysis could be used for soft matter samples to correct for incoherent scattering which is presently limiting neutron reflectivity studies to a reflectivity range on the order of 10-6.

  8. Development of a 33 kV, 20 A long pulse converter modulator for high average power klystron

    NASA Astrophysics Data System (ADS)

    Reghu, T.; Mandloi, V.; Shrivastava, Purushottam

    2014-05-01

    Research, design, and development of high average power, long pulse modulators for the proposed Indian Spallation Neutron Source are underway at Raja Ramanna Centre for Advanced Technology. With this objective, a prototype of long pulse modulator capable of delivering 33 kV, 20 A at 5 Hz repetition rate has been designed and developed. Three Insulated Gate Bipolar Transistors (IGBT) based switching modules driving high frequency, high voltage transformers have been used to generate high voltage output. The IGBT based switching modules are shifted in phase by 120° with respect to each other. The switching frequency is 25 kHz. Pulses of 1.6 ms pulse width, 80 μs rise time, and 70 μs fall time have been achieved at the modulator output. A droop of ±0.6% is achieved using a simple segmented digital droop correction technique. The total fault energy transferred to the load during fault has been measured by conducting wire burn tests and is found to be within 3.5 J.

  9. Development of a 33 kV, 20 A long pulse converter modulator for high average power klystron.

    PubMed

    Reghu, T; Mandloi, V; Shrivastava, Purushottam

    2014-05-01

    Research, design, and development of high average power, long pulse modulators for the proposed Indian Spallation Neutron Source are underway at Raja Ramanna Centre for Advanced Technology. With this objective, a prototype of long pulse modulator capable of delivering 33 kV, 20 A at 5 Hz repetition rate has been designed and developed. Three Insulated Gate Bipolar Transistors (IGBT) based switching modules driving high frequency, high voltage transformers have been used to generate high voltage output. The IGBT based switching modules are shifted in phase by 120° with respect to each other. The switching frequency is 25 kHz. Pulses of 1.6 ms pulse width, 80 μs rise time, and 70 μs fall time have been achieved at the modulator output. A droop of ±0.6% is achieved using a simple segmented digital droop correction technique. The total fault energy transferred to the load during fault has been measured by conducting wire burn tests and is found to be within 3.5 J.

  10. Development of a 33 kV, 20 A long pulse converter modulator for high average power klystron

    SciTech Connect

    Reghu, T.; Mandloi, V.; Shrivastava, Purushottam

    2014-05-15

    Research, design, and development of high average power, long pulse modulators for the proposed Indian Spallation Neutron Source are underway at Raja Ramanna Centre for Advanced Technology. With this objective, a prototype of long pulse modulator capable of delivering 33 kV, 20 A at 5 Hz repetition rate has been designed and developed. Three Insulated Gate Bipolar Transistors (IGBT) based switching modules driving high frequency, high voltage transformers have been used to generate high voltage output. The IGBT based switching modules are shifted in phase by 120° with respect to each other. The switching frequency is 25 kHz. Pulses of 1.6 ms pulse width, 80 μs rise time, and 70 μs fall time have been achieved at the modulator output. A droop of ±0.6% is achieved using a simple segmented digital droop correction technique. The total fault energy transferred to the load during fault has been measured by conducting wire burn tests and is found to be within 3.5 J.

  11. Online tuning of impedance matching circuit for long pulse inductively coupled plasma source operation—An alternate approach

    SciTech Connect

    Sudhir, Dass; Bandyopadhyay, M. Chakraborty, A.; Kraus, W.; Gahlaut, A.; Bansal, G.

    2014-01-15

    Impedance matching circuit between radio frequency (RF) generator and the plasma load, placed between them, determines the RF power transfer from RF generator to the plasma load. The impedance of plasma load depends on the plasma parameters through skin depth and plasma conductivity or resistivity. Therefore, for long pulse operation of inductively coupled plasmas, particularly for high power (∼100 kW or more) where plasma load condition may vary due to different reasons (e.g., pressure, power, and thermal), online tuning of impedance matching circuit is necessary through feedback. In fusion grade ion source operation, such online methodology through feedback is not present but offline remote tuning by adjusting the matching circuit capacitors and tuning the driving frequency of the RF generator between the ion source operation pulses is envisaged. The present model is an approach for remote impedance tuning methodology for long pulse operation and corresponding online impedance matching algorithm based on RF coil antenna current measurement or coil antenna calorimetric measurement may be useful in this regard.

  12. Long pulse acceleration of MeV class high power density negative H{sup −} ion beam for ITER

    SciTech Connect

    Umeda, N. Kojima, A.; Kashiwagi, M.; Tobari, H.; Hiratsuka, J.; Watanabe, K.; Dairaku, M.; Yamanaka, H.; Hanada, M.

    2015-04-08

    R and D of high power density negative ion beam acceleration has been carried out at MeV test facility in JAEA to realize ITER neutral beam accelerator. The main target is H{sup −} ion beam acceleration up to 1 MeV with 200 A/m{sup 2} for 60 s whose pulse length is the present facility limit. For long pulse acceleration at high power density, new extraction grid (EXG) has been developed with high cooling capability, which electron suppression magnet is placed under cooling channel similar to ITER. In addition, aperture size of electron suppression grid (ESG) is enlarged from 14 mm to 16 mm to reduce direct interception on the ESG and emission of secondary electron which leads to high heat load on the upstream acceleration grid. By enlarging ESG aperture, beam current increased 10 % at high current beam and total acceleration grid heat load reduced from 13 % to 10 % of input power at long pulse beam. In addition, heat load by back stream positive ion into the EXG is measured for the first time and is estimated as 0.3 % of beam power, while heat load by back stream ion into the source chamber is estimated as 3.5 ~ 4.0 % of beam power. Beam acceleration up to 60 s which is the facility limit, has achieved at 683 keV, 100 A/m{sup 2} of negative ion beam, whose energy density increases two orders of magnitude since 2011.

  13. Generation of high charge state platinum ions on vacuum arc plasma heated by gyrotron radiation.

    PubMed

    Yushkov, G Yu; Vodopyanov, A V; Nikolaev, A G; Izotov, I V; Savkin, K P; Golubev, S V; Oks, E M

    2014-02-01

    The hybrid high charge metal ion source based on vacuum arc plasma heated by gyrotron radiation into simple magnetic trap has been developed. Two types of magnetic traps were used: a mirror configuration and a cusp one with inherent "minimum-B" structure. Pulsed high power (>100 kW) gyrotrons with frequency 37.5 GHz and 75 GHz were used for heating the vacuum arc plasma injected into the traps. Two different ways were used for injecting the metal plasma-axial injection by a miniature arc source located on-axis near the microwave window, and simultaneous radial injection by a number of sources mounted radially at the midplane of the traps. This article represents all data gathered for platinum ions, thus making comparison of the experimental results obtained with different traps and injections convenient and accurate.

  14. A ferromagnetic shim insert for NMR magnets - Towards an integrated gyrotron for DNP-NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Ryan, Herbert; van Bentum, Jan; Maly, Thorsten

    2017-04-01

    In recent years high-field Dynamic Nuclear Polarization (DNP) enhanced NMR spectroscopy has gained significant interest. In high-field DNP-NMR experiments (⩾400 MHz 1H NMR, ⩾9.4 T) often a stand-alone gyrotron is used to generate high microwave/THz power to produce sufficiently high microwave induced B1e fields at the position of the NMR sample. These devices typically require a second, stand-alone superconducting magnet to operate. Here we present the design and realization of a ferroshim insert, to create two iso-centers inside a commercially available wide-bore NMR magnet. This work is part of a larger project to integrate a gyrotron into NMR magnets, effectively eliminating the need for a second, stand-alone superconducting magnet.

  15. Theoretical study on a 0.6 THz third harmonic gyrotron

    SciTech Connect

    Yuan Xuesong; Ma Chunyan; Han Yu; Yan Yang; Lan Ying

    2011-10-15

    A theoretical study on a 0.6 THz third harmonic TE{sub 37} mode gyrotron oscillator is reported in this paper in order to develop a compact, reliable, and high power terahertz radiation source. An output power of 4 kW can be generated in the TE{sub 37} mode (0.6 THz) at a resonant magnetic field of 7.86 T by the gyrotron oscillator operating at 55 kV/2 A with an electron beam radius of 0.32 mm. A magnetron injection gun (MIG) with high compression ratio has been designed. The simulation results of MIG show that the velocity ratio {alpha} is 1.37, and the perpendicular velocity spread and parallel velocity spread are 6.1% and 8.9%, respectively.

  16. Suppression criteria of parasitic mode oscillations in a gyrotron beam tunnel

    SciTech Connect

    Kumar, Nitin; Singh, Udaybir; Sinha, A. K.; Singh, T. P.

    2011-02-15

    This paper presents the design criteria of the parasitic mode oscillations suppression for a periodic, ceramic, and copper loaded gyrotron beam tunnel. In such a type of beam tunnel, the suppression of parasitic mode oscillations is an important design problem. A method of beam-wave coupling coefficient and its mathematical formulation are presented. The developed design criteria are used in the beam tunnel design of a 42 GHz gyrotron to be developed for the Indian TOKAMAK system. The role of the thickness and the radius of the beam tunnel copper rings to obtain the developed design criteria are also discussed. The commercially available electromagnetic code CST and the electron trajectory code EGUN are used for the simulations.

  17. Design of 84 GHz 500 kW Gyrotron for Technological Millimeter Wave Applications

    NASA Astrophysics Data System (ADS)

    Singh, Udaybir; Kumar, Nitin; Kumar, Anil; Purohit, L. P.; Sinha, A. K.

    2011-04-01

    In this paper, the design and the numerical simulation of the 84 GHz, 500 kW gyrotron at first harmonic operation for technological applications is described. The operating mode of the gyrotron is TE10, 4. Various in-house developed and commercially available computer codes are used for the design purpose. The triode-type magnetron injection gun with the accelerating voltage 70-kV, the beam current 10-A and the maximum transverse velocity spread less than 5% is designed. The preliminary design is obtained by using some trade-off equations. The mode selection, the cold cavity and the beam-wave interaction analysis are discussed for the design of weakly tapered open resonator type of the interaction cavity. The parametric analysis of the interaction cavity and the electron gun is also presented.

  18. Numerical Simulation of a Double-anode Magnetron Injection Gun for 110 GHz, 1 MW Gyrotron

    NASA Astrophysics Data System (ADS)

    Singh, Udaybir; Kumar, Nitin; Purohit, L. P.; Sinha, Ashok K.

    2010-07-01

    A 40 A double-anode magnetron injection gun for a 1 MW, 110 GHz gyrotron has been designed. The preliminary design has been obtained by using some trade-off equations. The electron beam analysis has been performed by using the commercially available code EGUN and the in-house developed code MIGANS. The operating mode of the gyrotron is TE22,6 and it is operated in the fundamental harmonic. The electron beam with a low transverse velocity spread ( δ {β_{ bot max }} = 2.26% ) and the transverse-to-axial velocity ratio of the electron beam (α) = 1.37 is obtained. The simulated results of the MIG obtained with the EGUN code have been validated with another trajectory code TRAK. The results on the design output parameters obtained by both the codes are in good agreement. The sensitivity analysis has been carried out by changing the different gun parameters to decide the fabrication tolerance.

  19. Gyrotrons for High-Power Terahertz Science and Technology at FIR UF

    NASA Astrophysics Data System (ADS)

    Idehara, Toshitaka; Sabchevski, Svilen Petrov

    2017-01-01

    In this review paper, we present the recent progress in the development of a series of gyrotrons at the Research Center for Development of Far-Infrared Region, University of Fukui, that have opened the road to many novel applications in the high-power terahertz science and technology. The current status of the research in this actively developing field is illustrated by the most representative examples in which the developed gyrotrons are used as powerful and frequency-tunable sources of coherent radiation operating in a continuous-wave regime. Among them are high-precision spectroscopic techniques (most notably dynamic nuclear polarization-nuclear magnetic resonance, electron spin resonance, X-ray detected magnetic resonance, and studies of the hyperfine splitting of the energy levels of positronium), treatment and characterization of advanced materials, and new medical technologies.

  20. Time-domain theory of gyrotron traveling wave amplifiers operating at grazing incidence

    SciTech Connect

    Ginzburg, N. S.; Sergeev, A. S.; Zotova, I. V.; Zheleznov, I. V.

    2015-01-15

    Time-domain theory of the gyrotron traveling wave tube (gyro-TWT) operating at grazing incidence has been developed. The theory is based on a description of wave propagation by a parabolic equation. The results of the simulations are compared with experimental results of the observation of subnanosecond pulse amplification in a gyro-TWT consisting of three gain sections separated by severs. The theory developed can also be used successfully for a description of amplification of monochromatic signals.

  1. Time domain analysis of a gyrotron traveling wave amplifier with misaligned electron beam

    SciTech Connect

    Wang, Qiushi Peng, Shuyuan; Luo, Jirun

    2014-08-15

    This article develops a time-domain theory to study the beam-wave interaction in gyrotron traveling wave amplifier (gyro-TWA) with a misaligned electron beam. The effects of beam misalignment on the TE{sub 01} mode gyro-TWA operating at the fundamental are discussed. Numerical results show that the effect of misalignment is less obvious when the input power is larger, and the influences of misalignment on the stable gain and the stable time are basically opposite.

  2. Modelling and simulation of new generation powerful gyrotrons for the fusion research

    NASA Astrophysics Data System (ADS)

    Sabchevski, S.; Zhelyazkov, I.

    2007-04-01

    One of the important issues related with the cyclotron resonance heating (CRH) and current drive of fusion plasmas in thermonuclear reactors (tokamaks and stellarators) is the development of multi-megawatt class gyrotrons. There are generally three stages of the implementation of that task, notably (i) elaborating a novel generation of software tools for the physical modelling and simulation of such kind of gyrotrons, (ii) their computer aided design (CAD) and construction on the basis of the simulation's results, and finally, (iii) gyrotrons' testing in real experimental conditions. This tutorial paper concerns the first item-the development of software tools. In co-operation with the Institute for Pulsed Power and Microwave Technology at the Forschungszentrum Karlsruhe, Germany, and Centre de Recherches en Physique des Plasmas at École Polytechnique Fédérale de Lausanne, Switzerland, we work on the conceptual design of the software tools under development. The basic conclusions are that the numerical codes for gyrotrons' modelling should possess the following essential characteristics: (a) portability, (b) extensibility, (c) to be oriented toward the solution of practical problems (i.e., elaborating of computer programs that can be used in the design process), (d) to be based on self-consistent 3D physical models, which take into account the departure from axial symmetry, and (e) ability to simulate time dependent processes (electrostatic PIC simulation) alongside with a trajectory analysis (ray tracing simulation). Here, we discuss how various existing numerical codes have to be improved and implemented via the advanced programming technologies for state-of-the-art computer systems including clusters, grid, parallel platforms, and supercomputers.

  3. Conceptual design of a Gyrotron-driven superconducting ECR ion source

    SciTech Connect

    Countryman, P.J.; Lyneis, C.M.; Wolgast, R.C.

    1989-03-01

    The conceptual design for a superconducting Electron Cyclotron Resonance Ion Source (ECRIS) is presented. It is designed to take advantage of frequency scaling in ECRIS and be driven at 28 GHz by a laboratory scale gyrotron. The superconducting coils are surrounded by a warm bore iron yoke. Possible applications include cyclotrons, heavy-ion synchrotrons, ion implantation in semiconductors, and experiments in atomic physics. 10 refs., 5 figs., 1 tab.

  4. Final Report for "Gyrotron Design and Evaluation using New Particle-in-Cell Capability"

    SciTech Connect

    David N Smithe

    2008-05-28

    ITER will depend on high power CW gyrotrons to deliver power to the plasma at ECR frequencies. However, gyrotrons can suffer from undesirable low frequency oscillations (LFO’s) which are known to interfere with the gun-region diagnostics and data collection, and are also expected to produce undesirable energy and velocity spread in the beam. The origins and processes leading to these oscillations are poorly understood, and existing gyrotron R&D tools, such as static gun solvers and interaction region models, are not designed to look at time-dependant oscillatory behavior. We have applied a time-domain particle-in-cell method to investigate the LFO phenomenon. Our company is at the forefront of smooth-curved-boundary treatment of the electromagnetic fields and particle emission surfaces, and such methods are necessary to simulate the adiabatically trapped and reflected electrons thought to be driving the oscillations. This approach provides the means for understanding, in microscopic detail, the underlying physical processes driving the low-frequency oscillations. In the Phase I project, an electron gun region from an existing gyrotron, known to observe LFO’s, was selected as a proof-of-principle geometry, and was modeled with the curved-geometry time-domain simulation tool, in order to establish the feasibility of simulating LFO physics with this tool on office-scale, and larger, parallel cluster computers. Generally, it was found to be feasible to model the simulation geometry, emission, and magnetic features of the electron gun. Ultimately, the tool will be used to investigate the origins and life cycle within the trapped particle population. This tool also provides the foundations and validation for potential application of the software to numerous other time-dependant beam and rf source problems in the commercial arena.

  5. Suppression and nonlinear excitation of parasitic modes in second harmonic gyrotrons operating in a very high order mode

    SciTech Connect

    Nusinovich, Gregory S.; Pu, Ruifeng; Granatstein, Victor L.

    2015-07-06

    In recent years, there was an active development of high-power, sub-terahertz (sub-THz) gyrotrons for numerous applications. For example, a 0.67 THz gyrotron delivering more than 200 kW with about 20% efficiency was developed. This record high efficiency was achieved because the gyrotron operated in a high-order TE{sub 31,8}-mode with the power of ohmic losses less than 10% of the power of outgoing radiation. That gyrotron operated at the fundamental cyclotron resonance, and a high magnetic field of about 27 T was created by a pulse solenoid. For numerous applications, it is beneficial to use gyrotrons at cyclotron harmonics which can operate in available cryomagnets with fields not exceeding 15 T. However, typically, the gyrotron operation at harmonics faces severe competition from parasitic modes at the fundamental resonance. In the present paper, we consider a similar 0.67 THz gyrotron designed for operation in the same TE{sub 31,8}-mode, but at the second harmonic. We focus on two nonlinear effects typical for interaction between the fundamental and second harmonic modes, viz., the mode suppression and the nonlinear excitation of the mode at the fundamental harmonic by the second harmonic oscillations. Our study includes both the analytical theory and numerical simulations performed with the self-consistent code MAGY. The simulations show that stable second harmonic operation in the TE{sub 31,8} mode is possible with only modest sacrifice of efficiency and power.

  6. Microwave method for synthesis of micro- and nanostructures with controllable composition during gyrotron discharge

    NASA Astrophysics Data System (ADS)

    Batanov, German M.; Borzosekov, Valentin D.; Golberg, Dmitri; Iskhakova, Ludmila D.; Kolik, Leonid V.; Konchekov, Evgeny M.; Kharchev, Nikolai K.; Letunov, Alexander A.; Malakhov, Dmitry V.; Milovich, Filipp O.; Obraztsova, Ekaterina A.; Petrov, Alexander E.; Ryabikina, Irina G.; Sarksian, Karen A.; Stepakhin, Vladimir D.; Skvortsova, Nina N.

    2016-01-01

    We introduce an approach toward the synthesis of micro- and nanostructures under nonequilibrium microwave discharges within metal-dielectric powder mixtures induced by powerful microwave gyrotron radiation. A new plasma-chemical reactor capable of sustaining a discharge regime with an afterglow phase of an order of magnitude longer than the gyrotron pulse duration was constructed for these experiments. In the nonequilibrium conditions of such a discharge, plasma-induced exothermic chemical reactions leading to the synthesis of various compounds were initiated. The synthesized structures were deposited on the reactor walls and on the impurity particles within the reactor. This method was tested under gyrotron-initiated discharges within various metal-dielectric powder mixtures of titanium-boron, molybdenum-boron, titanium-silicon-boron, molybdenum-boron nitride, molybdenum-tungsten-boron nitride, and so on. Depending on the powder mixture composition, reactor atmosphere, and other parameters, micro- and nanosized particles of boron nitride, titanium diboride, molybdenum boride, titanium boride, molybdenum, and molybdenum oxide, were synthesized, detected, and analyzed.

  7. Experimental Research on a 1.5 MW, 110 GHz Gyrotron

    NASA Astrophysics Data System (ADS)

    Shapiro, M. A.; Hidaka, Y.; Choi, E. M.; Mastovsky, I.; Sirigiri, J. R.; Tax, D. S.; Temkin, R. J.; Neilson, J.

    2008-11-01

    We report experimental research on the after cavity interaction (ACI) in a 1.5-MW, 110-GHz gyrotron with an internal mode converter operating in 3 microsecond pulses. Recent experiments with a single-stage depressed collector revealed the effects of the ACI, a second interaction that occurs after the electron beam passes through the intended primary interaction region. The ACI causes re-absorption of the microwave power and broadening of the spent electron beam energy distribution, thus leading to a significant reduction in gyrotron efficiency. The broadening of the spent electron beam energy spectrum, which results in degraded performance of the depressed collector, has been experimentally verified. Ways to minimize the ACI are currently being investigated. Also, a new internal mode converter, consisting of a helically-cut launcher and four smooth curved mirrors, has been designed and fabricated. The cold test shows a good agreement with the theoretical Gaussian beam pattern. This new converter will be hot tested shortly in the gyrotron.

  8. NRL quasioptical gyrotron program. Final report, November 1, 1991--October 31, 1993

    SciTech Connect

    Fliflet, A.

    1997-06-01

    The quasioptical gyrotron (QOG) has been under development as a high power, tunable source for tokamak plasma heating applications. Given the critical importance of source efficiency for large-scale ESCH applications, understanding the causes of the low QOG efficiency and finding ways of improving it became a top priority for the current NRL program. The importance of the present work is that is represents new insight into the factors controlling the efficiency of quasioptical gyrotrons. The author has demonstrated that the technique of mode priming provides a method for improving efficiency via enhanced mode detuning and leads to more stable single-mode operation of highly over-moded resonators. The latter feature is an important consideration for output coupler and rf transmission system optimization and can make the QOG less sensitive to external influences such as window reflections. He has shown that a prebunching resonator is readily implemented in the quasioptical configuration. It is relatively free of the problems of spurious modes and cross-talk which plague over-moded prebunching cavities in conventional gyrotrons. The observation of almost 18% efficiency represents a doubling of the previous best single-mode results. Further improvements are expected from the optimization of start-up conditions and the study of the effects of the second harmonic interaction.

  9. A 0.33-THz second-harmonic frequency-tunable gyrotron

    NASA Astrophysics Data System (ADS)

    Zheng-Di, Li; Chao-Hai, Du; Xiang-Bo, Qi; Li, Luo; Pu-Kun, Liu

    2016-02-01

    Dynamics of the axial mode transition process in a 0.33-THz second-harmonic gyrotron is investigated to reveal the physical mechanism of realizing broadband frequency tuning in an open cavity circuit. A new interaction mechanism about propagating waves, featured by wave competition and wave cooperation, is presented and provides a new insight into the beam-wave interaction. The two different features revealed in the two different operation regions of low-order axial modes (LOAMs) and high-order axial modes (HOAMs) respectively determine the characteristic of the overall performance of the device essentially. The device performance is obtained by the simulation based on the time-domain nonlinear theory and shows that using a 12-kV/150-mA electron beam and TE-3,4 mode, the second harmonic gyrotron can generate terahertz radiations with frequency-tuning ranges of about 0.85 GHz and 0.60 GHz via magnetic field and beam voltage tuning, respectively. Additionally, some non-stationary phenomena in the mode startup process are also analyzed. The investigation in this paper presents guidance for future developing high-performance frequency-tunable gyrotrons toward terahertz applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 61471007, 61531002, 61522101, and 11275206) and the Seeding Grant for Medicine and Information Science of Peking University, China (Grant No. 2014-MI-01).

  10. Improved performance in long-pulse ELMy H-mode plasmas with internal transport barrier in JT-60U

    NASA Astrophysics Data System (ADS)

    Oyama, N.; Isayama, A.; Suzuki, T.; Koide, Y.; Takenaga, H.; Ide, S.; Nakano, T.; Asakura, N.; Kubo, H.; Takechi, M.; Sakamoto, Y.; Kamada, Y.; Urano, H.; Yoshida, M.; Tsuzuki, K.; Matsunaga, G.; Gormezano, C.; JT-60 Team

    2007-07-01

    After installation of ferritic steel tiles, fast ion losses due to toroidal field ripple have been reduced by 1/2-1/3. The increase in absorbed power at same injection power can reduce the required number of neutral beam injector (NBI) units to sustain a given normalized beta, βN, resulting in a better flexibility of torque input by increasing the available combination of tangential NBI units. By making use of these advantages to sustain an internal transport barrier (ITB), the performance of long-pulse ELMy H-mode plasmas was improved in terms of sustained duration time for both high βN and high thermal confinement enhancement factor (HH98(y,2)). High βN > 2.3 together with HH98(y,2) ~ 1 was sustained for 23.1 s (~12τR, where τR is the current diffusion time) at q95 ~ 3.3, which also provide high βNHH98(y,2) >= 2.2 and a bootstrap current fraction of >=40%. βNHH98(y,2) of 2.0 was sustained for 28.6 s, which is limited by the maximum injection period of 30s for NBI system. These long-pulse plasmas are possible candidates for ITER hybrid operation scenario. Improved confinement is characterized by the larger thermal components at a given density maintained by lower heating power than in previous experiments. The strength of the ITB depends on the pedestal temperature, which varies with edge density while keeping constant the edge pressure (limited by type I ELMs). The fact that co-toroidal rotation as a result of reduced fast ion losses provides better quality of Te-ITB also contributes the improvement of thermal plasma confinement. These long-pulse plasmas indicate that further investigation to establish high performance plasmas longer than the time scale of wall saturation (τW) with active particle control is essential to establish the operational scenarios for next step devices, where the wall pumping does not work.

  11. The 28 GHZ, 10 KW, CW Gyrotron Generator for the VENUS ECR Ion Source at LBNL

    SciTech Connect

    Marks, M.; Evans, S.; Jory, H.; Holstein, D.; Rizzo, R.; Beck, P.; Cisto, B.; Leitner, D.; Lyneis, C.M.; Collins, D.; Dwinell, R.D.

    2005-03-15

    The VIA-301 Heatwave{sup TM} gyrotron generator was specifically designed to meet the requirements of the Venus ECR Ion Source at the Lawrence Berkeley National Laboratory (LBNL). VENUS (Versatile ECR ion source for NUclear Science) is a next generation superconducting ECR ion source, designed to produce high current, high charge state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the RIA (Rare Isotope Accelerator) front end].This VIA-301 Heatwave{sup TM} gyrotron system provides 100 watts to 10 kW continuous wave (CW) RF output at 28 GHz. The RF output level is smoothly controllable throughout this entire range. The power can be set and maintained to within 10 watts at the higher power end of the power range and to within 30 watts at the lower power end of the power range. A dual directional coupler, analog conditioning circuitry, and a 12-bit analog input to the embedded controller are used to provide a power measurement accurate to within 2%. The embedded controller completes a feedback loop using an external command set point for desired power output. Typical control-loop-time is on the order of 500 mS. Hard-wired interlocks are provided for personnel safety and for protection of the generator system. In addition, there are software controlled interlocks for protection of the generator from high ambient temperature, high water temperature, and other conditions that would affect the performance of the generator or reduce the lifetime of the gyrotron. Cooling of the gyrotron and power supply is achieved using both water and forced circulation of ambient air. Water-cooling provides about 80% of the cooling requirement. Input power to the generator from the prime power line is less than 60 kW at full power. The Heatwave{sup TM} may be operated locally via its front panel or remotely via either RS-232 and/or Ethernet connections. Through the RS-232 the forward power, the reflected power

  12. The 28 GHZ, 10 KW, CW Gyrotron Generator for the VENUS ECR Ion Source at LBNL

    NASA Astrophysics Data System (ADS)

    Marks, M.; Evans, S.; Jory, H.; Holstein, D.; Rizzo, R.; Beck, P.; Cisto, B.; Leitner, D.; Lyneis, C. M.; Collins, D.; Dwinell, R. D.

    2005-03-01

    The VIA-301 Heatwave™ gyrotron generator was specifically designed to meet the requirements of the Venus ECR Ion Source at the Lawrence Berkeley National Laboratory (LBNL). VENUS (Versatile ECR ion source for NUclear Science) is a next generation superconducting ECR ion source, designed to produce high current, high charge state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the RIA (Rare Isotope Accelerator) front end [1]. This VIA-301 Heatwave™ gyrotron system provides 100 watts to 10 kW continuous wave (CW) RF output at 28 GHz. The RF output level is smoothly controllable throughout this entire range. The power can be set and maintained to within 10 watts at the higher power end of the power range and to within 30 watts at the lower power end of the power range. A dual directional coupler, analog conditioning circuitry, and a 12-bit analog input to the embedded controller are used to provide a power measurement accurate to within 2%. The embedded controller completes a feedback loop using an external command set point for desired power output. Typical control-loop-time is on the order of 500 mS. Hard-wired interlocks are provided for personnel safety and for protection of the generator system. In addition, there are software controlled interlocks for protection of the generator from high ambient temperature, high water temperature, and other conditions that would affect the performance of the generator or reduce the lifetime of the gyrotron. Cooling of the gyrotron and power supply is achieved using both water and forced circulation of ambient air. Water-cooling provides about 80% of the cooling requirement. Input power to the generator from the prime power line is less than 60 kW at full power. The Heatwave™ may be operated locally via its front panel or remotely via either RS-232 and/or Ethernet connections. Through the RS-232 the forward power, the reflected power, the

  13. Investigation into the electromagnetic impulses from long-pulse laser illuminating solid targets inside a laser facility

    NASA Astrophysics Data System (ADS)

    Yi, Tao; Yang, Jinwen; Yang, Ming; Wang, Chuanke; Yang, Weiming; Li, Tingshuai; Liu, Shenye; Jiang, Shaoen; Ding, Yongkun; Xiao, Shaoqiu

    2016-09-01

    Emission of the electromagnetic pulses (EMP) due to laser-target interaction in laser facility had been evaluated using a cone antenna in this work. The microwave in frequencies ranging from several hundreds of MHz to 2 GHz was recorded when long-pulse lasers with several thousands of joules illuminated the solid targets, meanwhile the voltage signals from 1 V to 4 V were captured as functions of laser energy and backlight laser, where the corresponding electric field strengths were obtained by simulating the cone antenna in combination with conducting a mathematical process (Tiknohov Regularization with L curve). All the typical coupled voltage oscillations displayed multiple peaks and had duration of up to 80 ns before decaying into noise and mechanisms of the EMP generation was schematically interpreted in basis of the practical measuring environments. The resultant data were expected to offer basic know-how to achieve inertial confinement fusion.

  14. Reflection-type single long-pulse solar simulator for high-efficiency crystalline silicon photovoltaic modules.

    PubMed

    Hu, Binxin; Li, Buyin; Zhao, Rixin; Yang, Tiechen

    2011-06-01

    Photovoltaic module measurements are predominantly taken by using pulsed solar simulators. However, significant errors can be generated when the existing simulators are applied to current high-efficiency crystalline silicon photovoltaic modules. This paper presents the design and implementation of a novel solar simulator featuring reflection-type light source and single long-pulse flash. The analysis and experimental study of the capacitance effect and the technical details of the simulator including reflection-type lamp house, xenon flash lamp power supply, and source-measure unit are introduced. The results show that the complete system achieves Class AAA performance in accordance with the international standard. The proposed simulator outperforms other similar products on the market and has been adopted by some well-known photovoltaic module manufacturers. The practical application demonstrates that this high-performance and cost-effective simulator is quite suitable for photovoltaic module production line.

  15. Long-pulsed Nd:YAG laser-assisted hair removal in Fitzpatrick skin types IV-VI.

    PubMed

    Rao, Krishna; Sankar, Thangasamy K

    2011-09-01

    Unwanted hair is a common problem for which a variety of laser treatments is available. Laser treatment in dark-skinned individuals carries a higher risk of complications like hyperpigmentation and burn. The objective of this study was to evaluate efficacy and safety profile of laser-assisted hair removal in individuals with Fitzpatrick type IV-VI skin using long-pulsed Nd:YAG laser. Retrospective data was collected from 150 individuals with Fitzpatrick type IV-VI skin who underwent laser-assisted hair removal. This included area treated, fluence, number of treatments, and outcome. Data was also gathered on patient satisfaction and complications. The most common phototype was type IV (94%). The most frequently treated area was the face (84.7%) followed by the underarms and legs. Among the facial areas, the chin was the most frequently treated area followed by the upper lip and jaw line. The mean number of treatments was 8.9 (range 4-22). The maximum fluence averaged 26.8 Joules/cm(2) and was significantly higher for facial hair. Of the patients, 78.7% felt that their treatment was good or satisfactory. Mean hair reduction was 54.3%. Satisfaction from the treatment was significantly higher in individuals undergoing treatment of non-facial areas. Subsequent hair growth was slower and finer in 79.3% of the patients. There were no complications in 86% of the patients. All the complications were transient, with hyperpigmentation being the most frequent complication. Our results show that laser hair removal using the long-pulsed Nd:YAG laser is safe and effective in dark-skinned individuals with satisfactory results in most patients.

  16. On the dependence of the efficiency of a 240 GHz high-power gyrotron on the displacement of the electron beam and on the azimuthal index

    SciTech Connect

    Dumbrajs, O.; Avramidis, K. A.; Franck, J.; Jelonnek, J.

    2014-01-15

    Two issues in the cavity design for a Megawatt-class, 240 GHz gyrotron are addressed. Those are first, the effect of a misaligned electron beam on the gyrotron efficiency and second, a possible azimuthal instability of the gyrotron. The aforementioned effects are important for any gyrotron operation, but could be more critical in the operation of Megawatt-class gyrotrons at frequencies above 200 GHz, which will be the anticipated requirement of DEMO. The target is to provide some basic trends to be considered during the refinement and optimization of the design. Self-consistent calculations are the base for simulations wherever possible. However, in cases for which self-consistent models were not available, fixed-field results are presented. In those cases, the conservative nature of the results should be kept in mind.

  17. Feasibility study of the EU home team on a 170GHz 1MW CW gyrotron for ECH on ITER

    SciTech Connect

    Iatrou, C.T.; Moebius, A.; Norajitra, P.

    1995-06-01

    The gyrotron system for ECH and burn control on ITER requires at least 50 MW of RF power at frequencies near 170GHz operating in CW. To meet these requirements, high efficiency gyrotron tubes with {ge}1MW power output capability are necessary, as well as simple coupling to either a quasi-optical or waveguide transmission line. The paper reports the feasibility study on the design of an ITER-relevant gyrotron oscillator at 170GHz, 1MW CW employing a diode electron gun, an advanced internal quasi-optical converter, a cryogenically cooled single disk sapphire window, and a depressed potential collector. The operating mode selection and the cavity design is a compromise between many design constraints.

  18. Recent progress in developing a 170 GHz, 500 kW gyrotron for testing ITER transmission line components

    NASA Astrophysics Data System (ADS)

    Felch, Kevin; Blank, Monica; Borchard, Philipp; Cahalan, Pat; Cauffman, Steve

    2011-10-01

    A 170 GHz, 500 kW CW gyrotron has been developed for testing ITER transmission line components. Although specified as a 500 kW source, the electrical design has been conceived with the goal of generating up to 1 MW of continuous output power. The design employs a double-anode electron gun, an interaction cavity operating in the TE31,8 cavity mode, a three-mirror internal converter to produce a fundamental Gaussian output beam, a CVD diamond output window and a depressed collector to safely dissipate the spent electron beam power. Fabrication of the gyrotron is nearly complete and initial high-power tests will soon be carried out. Details of the gyrotron design, results of low-power tests on the internal converter and initial high-power tests will be presented.

  19. Cold tests and high power measurements on an advanced quasi-optical mode converter for a 118 GHz gyrotron

    SciTech Connect

    Braz, O.; Losert, M.; Moebius, A.; Thumm, M. |

    1995-12-31

    This paper reports on cold test and high power measurements of the improved, dimple type quasi-optical mode converter for the 118 GHz, 0.5 MW, 210 s TE{sub 22,6} gyrotron oscillator collaboratively developed by CEA Cadarache, CRPP Lausanne, FZK Karlsruhe and Thomson Tubes Electroniques Velizy. For the low power measurements the required rotating TE{sub 22,6} mode was generated in a coaxial cavity using quasioptical techniques. The high power measurements were performed on the gyrotron output beam using an infrared camera. The evaluated mode purity of the linearly polarized fundamental Gaussian output mode is (96 {plus_minus} 1)% in agreement with calculations.

  20. Simultaneous Stabilization of Gyrotron Frequency and Power by PID Double Feedback Control on the Acceleration and Anode Voltages

    NASA Astrophysics Data System (ADS)

    Khutoryan, E. M.; Idehara, T.; Kuleshov, A. N.; Tatematsu, Y.; Yamaguchi, Y.; Matsuki, Y.; Fujiwara, T.

    2017-03-01

    In this paper, we present the results of simultaneous stabilization of both the frequency and the output power by a double PID feedback control on the acceleration and anode voltages in the 460-GHz gyrotron FU CW GVI, also known as "Gyrotron FU CW GO-1" (according to the nomenclature adopted at Osaka University). The approach used in the experiments is based on the modulation of the cyclotron frequency and the pitch factor (velocity ratio) of the electron beam by varying the acceleration and the anode voltages, respectively. In a long-term experiment, the frequency and power stabilities were made to be better than ±10-6 and ±1%, respectively.

  1. Installation and Testing of a 110 GHz Gyrotron With Depressed Collector Potential on the DIII-D Tokamak

    NASA Astrophysics Data System (ADS)

    Lohr, John; Gorelov, I. A.; Grunloh, H. J.; Kajiwara, K.; Pawley, C.; Ponce, D.; Tooker, J. F.; Chu, T. S.; Blank, M.; Borchard, P.; Cahalan, P.; Cauffman, S.; Felch, K.

    2006-10-01

    A single stage depressed collector gyrotron has been installed for testing on the DIII-D tokamak. The tube has operated at the 1.25 MW level at 44% efficiency for short pulses and at 0.5 MW for 10 s pulses at CPI and now is being tested to full parameters at DIII-D. A two-stage mode conversion dummy load has been built to handle the higher ultimate power from this gyrotron for pulses up to 5 s in length. Modifications to the high voltage power supply system were required to provide 30 kV depression and sequencing of the application of the voltages.

  2. Self-controlled Study of Onychomycosis Treated with Long-pulsed Nd:YAG 1064-nm Laser Combined with Itraconazole

    PubMed Central

    Li, Yan; Xu, Jing; Zhao, Jun-Ying; Zhuo, Feng-Lin

    2016-01-01

    Background: Onychomycosis is a fungal infection of the nail plate and subungual area. In this study, we examined the efficacy of laser treatment using self-controlled study programs involving a long-pulsed Nd:YAG 1064-nm laser combined with oral medication. Methods: Self-controlled strategies were followed in this study. The patients received treatment with oral itraconazole in conjunction with long-pulsed Nd:YAG 1064-nm laser treatment at the nails of the unilateral limb once a week for a total of four times. A total of 84 affected nails were divided into Group A (mild to moderate) and Group B (severe) according to disease severity. Affected nails with the same Scoring Clinical Index for Onychomycosis scores were selected to compare the therapeutic effects of the pure medication treatment group and the combination treatment group with a 24-week follow-up period. Results: In Group A, at the 8th, 16th, and 24th weeks of follow-up, the efficacies in the pure medication treatment group were 81.0%, 81.0%, and 90.5%, respectively, while those in the combination treatment group were 100%, 95.2%, and 90.5%, respectively. The differences between groups were not significant (8th week: χ2 = 4.421, P > 0.05; 16th week: χ2 = 2.043, P > 0.05; 24th week: χ2 = 0.00, P > 0.05). In Group B, at the 8th, 16th, and 24th weeks of follow-up, the efficacies in the pure medication treatment group were 61.9%, 66.7%, and 52.4%, respectively, while those in the combination treatment group were 95.2%, 90.5%, and 100%, respectively. The differences between groups at the 8th and 24th weeks of follow-up were statistically significant (8th week: χ2 = 6.929, P < 0.05; 24th week: χ2 = 13.125, P < 0.05). Conclusions: For patients with mild or moderate onychomycosis, we recommended a pure medication treatment or combination treatment with medication and laser. For those patients with severe onychomycosis, we recommended a combination of medication and laser therapy. PMID:27503017

  3. ECH system using an 88 GHz gyrotron for the WT-3 Tokamak

    SciTech Connect

    Maekawa, T.; Terumichi, Y.; Yoshimura, S.; Matsunaga, K.

    1996-02-01

    A new ECH/ECCD system using an 88GHz gyrotron for the WT-3 Tokamak ({ital R}{sub 0}=65{ital cm}, {ital a}=20{ital cm}, {ital B}{sub {ital T}0}{le}1.75{ital T}) is under making. Taking advantage of a relatively short wavelength and the Gaussian beam output mode, we plan ECH/ECCD experiments with a strongly focused beam in order to achieve local modification of the electron temperature and current profiles for investigation of MHD instabilities. {copyright} {ital 1996 American Institute of Physics.}

  4. Gyrotron Output Power Stabilization by PID Feedback Control of Heater Current and Anode Voltage

    NASA Astrophysics Data System (ADS)

    Khutoryan, E. M.; Idehara, T.; Kuleshov, A. N.; Ueda, K.

    2014-12-01

    To provide stable output power of a gyrotron during long operation time the power stabilization was achieved by two schemes with PID feedback control of heater current and anode voltage. It was based on the dependence of the output power on both the anode voltage and the beam current and also on the dependence of the beam current on the gun heater current. Both schemes provided decrease of the power standard deviation to 0.3-0.5%. The comparison between parameters of both schemes is discussed in the paper.

  5. Feasibility study of a cryogenically cooled window for high-power gyrotrons

    SciTech Connect

    Haste, G.R.; Kimrey, H.D.; Prosise, J.D.

    1986-07-01

    Single-crystal sapphire is currently in use as the material for output windows in high-power microwave tubes, particularly gyrotrons. These windows are currently being cooled by fluorocarbon fluids at near-room temperatures. There are, however, several advantages in operating the window at very low temperatures: less absorption and consequent heating of the window, greater material strength, improved resistance to crack formation, greater thermal conductivity, and reduced thermal expansion. Operation at cryogenic temperatures is shown to be feasible. The output power, which is currently limited by window constraints, could be increased by an order of magnitude or more.

  6. Coupler for coupling gyrotron whispering gallery mode RF into HE11 waveguide

    DOEpatents

    Neilson, Jeffrey M

    2015-02-24

    A cylindrical waveguide with a mode converter transforms a whispering gallery mode from a gyrotron cylindrical waveguide with a helical cut launch edge to a quasi-Gaussian beam suitable for conveyance through a corrugated waveguide. This quasi-Gaussian beam is radiated away from the waveguide using a spiral cut launch edge, which is in close proximity to a first mode converting reflector. The first mode converting reflector is coupled to a second mode converting reflector which provides an output free-space HE11 mode wave suitable for direct coupling into a corrugated waveguide. The radiated beam produced at the output of the second mode converting reflector is substantially circular.

  7. Long-pulse beam acceleration of MeV-class H(-) ion beams for ITER NB accelerator.

    PubMed

    Umeda, N; Kashiwagi, M; Taniguchi, M; Tobari, H; Watanabe, K; Dairaku, M; Yamanaka, H; Inoue, T; Kojima, A; Hanada, M

    2014-02-01

    In order to realize neutral beam systems in International Thermonuclear Experimental Reactor whose target is to produce a 1 MeV, 200 A/m(2) during 3600 s D(-) ion beam, the electrostatic five-stages negative ion accelerator so-called "MeV accelerator" has been developed at Japan Atomic Energy Agency. To extend pulse length, heat load of the acceleration grids was reduced by controlling the ion beam trajectory. Namely, the beam deflection due to the residual magnetic field of filter magnet was suppressed with the newly developed extractor with a 0.5 mm off-set aperture displacement. The new extractor improved the deflection angle from 6 mrad to 1 mrad, resulting in the reduction of direct interception of negative ions from 23% to 15% of the total acceleration power, respectively. As a result, the pulse length of 130 A/m(2), 881 keV H(-) ion beam has been successfully extended from a previous value of 0.4 s to 8.7 s. This is the first long pulse negative ion beam acceleration over 100 MW/m(2).

  8. Analysis and simulation of a small-angle neutron scattering instrument on a 1 MW long pulse spallation source

    SciTech Connect

    Olah, G.A.; Hjelm, R.P.; Lujan, M. Jr.

    1996-12-31

    We studied the design and performance of a small-angle neutron scattering (SANS) instrument for a proposed 1 MW, 60 Hz long pulsed spallation source at the Los Alamos Neutron Science Center (LANSCE). An analysis of the effects of source characteristics and chopper performance combined with instrument simulations using the LANSCE Monte Carlo instrument simulations package shows that the T{sub 0} chopper should be no more than 5 m from the source with the frame overlap and frame definition choppers at 5.6 and greater than 7 m, respectively. The study showed that an optimal pulse structure has an exponential decaying tail with {tau} {approx} 750 {mu}s. The Monte Carlo simulations were used to optimize the LPSS SANS, showing that an optimal length is 18 m. The simulations show that an instrument with variable length is best to match the needs of a given measurement. The performance of the optimized LPSS instrument was found to be comparable with present world standard instruments.

  9. Development of problem-oriented software packages for numerical studies and computer-aided design (CAD) of gyrotrons

    NASA Astrophysics Data System (ADS)

    Damyanova, M.; Sabchevski, S.; Zhelyazkov, I.; Vasileva, E.; Balabanova, E.; Dankov, P.; Malinov, P.

    2016-03-01

    Gyrotrons are the most powerful sources of coherent CW (continuous wave) radiation in the frequency range situated between the long-wavelength edge of the infrared light (far-infrared region) and the microwaves, i.e., in the region of the electromagnetic spectrum which is usually called the THz-gap (or T-gap), since the output power of other devices (e.g., solid-state oscillators) operating in this interval is by several orders of magnitude lower. In the recent years, the unique capabilities of the sub-THz and THz gyrotrons have opened the road to many novel and future prospective applications in various physical studies and advanced high-power terahertz technologies. In this paper, we present the current status and functionality of the problem-oriented software packages (most notably GYROSIM and GYREOSS) used for numerical studies, computer-aided design (CAD) and optimization of gyrotrons for diverse applications. They consist of a hierarchy of codes specialized to modelling and simulation of different subsystems of the gyrotrons (EOS, resonant cavity, etc.) and are based on adequate physical models, efficient numerical methods and algorithms.

  10. A broadband gyrotron backward-wave oscillator with tapered interaction structure and magnetic field

    SciTech Connect

    Li, G. D.; Chang, P. C.; Chiang, W. Y.; Lin, P. N.; Kao, S. H.; Lin, Y. N.; Huang, Y. J.; Barnett, L. R.; Chu, K. R.; Chen, H. Y.; Fan, C. T.

    2015-11-15

    The gyro-monotron and gyrotron backward-wave oscillator (gyro-BWO) are the two oscillator versions of gyrotrons. While serving different functions, they are also radically different in the RF field formation mechanisms. The gyro-monotron RF field profile is essentially fixed by the resonant interaction structure, while the gyro-BWO possesses an extra degree of freedom in that the axial RF field profile is self-determined by the beam-wave interaction in a waveguide structure. The present study examines ways to utilize the latter feature for bandwidth broadening with a tapered magnetic field, while also employing a tapered waveguide to enhance the interaction efficiency. We begin with a mode competition analysis, which suggests the theoretical feasibility of broadband frequency tuning in single-mode operation. It is then shown in theory that, by controlling the RF field profile with an up- or down-tapered magnetic field, the gyro-BWO is capable of efficient operation with a much improved tunable bandwidth.

  11. Beam-wave interaction behavior of a 35 GHz metal PBG cavity gyrotron

    NASA Astrophysics Data System (ADS)

    Singh, Ashutosh; Jain, P. K.

    2014-09-01

    The RF behavior of a 35 GHz photonic band gap (PBG) cavity gyrotron operating in TE041-like mode has been presented to demonstrate its single mode operation capability. In this PBG cavity gyrotron, the conventional tapered cylindrical cavity is replaced by a metal PBG cavity as its RF interaction structure. The beam-wave interaction behavior has been explored using time dependent multimode nonlinear analysis as well as through 3D PIC simulation. Metal PBG cavity is treated here similar to that of a conventional cylindrical cavity for the desired mode confinement. The applied DC magnetic field profile has been considered uniform along the PBG cavity length both in analysis as well as in simulation. Electrons energy and phase along the interaction length of the PBG cavity facilitates bunching mechanism as well as energy transfer phenomena from the electron beam to the RF field. The RF output power for the TE041-like design mode as well as nearby competing modes have been estimated and found above to 100 kW in TE041-like mode with ˜15% efficiency. Results obtained from the analysis and the PIC simulation are found in agreement within 8% variation, and also it supports the single mode operation, as the PBG cavity does not switch into other parasitic modes in considerably large range of varying DC magnetic field, contrary to the conventional cylindrical cavity interaction structure.

  12. Collective scattering of gyrotron radiation for T/sub i/ measurements on EBT

    SciTech Connect

    Bighel, L.; White, T.L.

    1981-02-01

    For T/sub i/ measurements in EBT, 90/sup 0/ Thomson scattering of 110-GHz, cw gyrotron radiation is proposed. Currently measured steady-state plasma parameters are: n/sub e/ = 1.5 x 10/sup 12/ cm/sup -3/, T/sub e/ = 500 eV, and T/sub i/ = 100 eV, with f/sub ce/ = 28 GHz. The measured plasma background at 100 GHz due to synchrotron emission from the relativistic electron rings is 10/sup 3/ times stronger than the expected scattered signal for an input power level to the plasma P/sub i/ = 10 kW. Therefore, gyrotron output modulation and synchronous detection are required. The collectively scattered spectra will be observed with a heterodyne detection system containing eight i.f. channels; each channel consists of a filter, a video detector, and a lock-in amplifier (which synchronously detects the modulated scattered signal). Scattering from low level suprathermal fluctuations and the applicability of the diagnostic to tokamaks are also considered.

  13. Design of the Collective Thomson scattering (CTS) system by using 170-GHz gyrotron in the KSTAR

    NASA Astrophysics Data System (ADS)

    Park, Min; Kim, Sun-Ho; Kim, Sung-Kyu; Lee, Kyu-Dong; Wang, Son-Jong

    2014-10-01

    The physics of energetic ions is one of the primary subjects to be understood toward the realization of a nuclear fusion power plant. Collective Thomson scattering (CTS) offers the possibility to diagnose the fast ions and the alpha particles in burning plasmas. Spatially- and temporally-resolved one-dimensional velocity distributions of the fast ions can be obtained from the scattered radiation with fewer geometric constraints by utilizing millimeter waves from a high-power gyrotron as a probe beam. We studied the feasibility of CTS fast-ion measurements in the KSTAR by calculating the spectral density functions. Based on that, we suggest a design for the CTS system that uses the currently-operating 170-GHz gyrotron for electron cyclotron heating (ECH) and electron cyclotron current drive (ECCD) in the KSTAR. The CTS system is presented as two subsystems: the antenna system and the heterodyne receiver system. The design procedure for an off-axis ellipsoidal mirror is described, and the CTS system requirements are discussed.

  14. High current multicharged metal ion source using high power gyrotron heating of vacuum arc plasma.

    PubMed

    Vodopyanov, A V; Golubev, S V; Khizhnyak, V I; Mansfeld, D A; Nikolaev, A G; Oks, E M; Savkin, K P; Vizir, A V; Yushkov, G Yu

    2008-02-01

    A high current, multi charged, metal ion source using electron heating of vacuum arc plasma by high power gyrotron radiation has been developed. The plasma is confined in a simple mirror trap with peak magnetic field in the plug up to 2.5 T, mirror ratio of 3-5, and length variable from 15 to 20 cm. Plasma formed by a cathodic vacuum arc is injected into the trap either (i) axially using a compact vacuum arc plasma gun located on axis outside the mirror trap region or (ii) radially using four plasma guns surrounding the trap at midplane. Microwave heating of the mirror-confined, vacuum arc plasma is accomplished by gyrotron microwave radiation of frequency 75 GHz, power up to 200 kW, and pulse duration up to 150 micros, leading to additional stripping of metal ions by electron impact. Pulsed beams of platinum ions with charge state up to 10+, a mean charge state over 6+, and total (all charge states) beam current of a few hundred milliamperes have been formed.

  15. Beam-wave interaction behavior of a 35 GHz metal PBG cavity gyrotron

    SciTech Connect

    Singh, Ashutosh; Jain, P. K.

    2014-09-15

    The RF behavior of a 35 GHz photonic band gap (PBG) cavity gyrotron operating in TE{sub 041}-like mode has been presented to demonstrate its single mode operation capability. In this PBG cavity gyrotron, the conventional tapered cylindrical cavity is replaced by a metal PBG cavity as its RF interaction structure. The beam-wave interaction behavior has been explored using time dependent multimode nonlinear analysis as well as through 3D PIC simulation. Metal PBG cavity is treated here similar to that of a conventional cylindrical cavity for the desired mode confinement. The applied DC magnetic field profile has been considered uniform along the PBG cavity length both in analysis as well as in simulation. Electrons energy and phase along the interaction length of the PBG cavity facilitates bunching mechanism as well as energy transfer phenomena from the electron beam to the RF field. The RF output power for the TE{sub 041}-like design mode as well as nearby competing modes have been estimated and found above to 100 kW in TE{sub 041}-like mode with ∼15% efficiency. Results obtained from the analysis and the PIC simulation are found in agreement within 8% variation, and also it supports the single mode operation, as the PBG cavity does not switch into other parasitic modes in considerably large range of varying DC magnetic field, contrary to the conventional cylindrical cavity interaction structure.

  16. Scattering volume in the collective Thomson scattering measurement using high power gyrotron in the LHD

    NASA Astrophysics Data System (ADS)

    Kubo, S.; Nishiura, M.; Tanaka, K.; Moseev, D.; Ogasawara, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Takahashi, H.; Tsujimura, T. I.; Makino, R.

    2016-06-01

    High-power gyrotrons prepared for the electron cyclotron heating at 77 GHz has been used for a collective Thomson scattering (CTS) study in LHD. Due to the difficulty in removing fundamental and/or second harmonic resonance in the viewing line of sight, the subtraction of the background ECE from measured signal was performed by modulating the probe beam power from a gyrotron. The separation of the scattering component from the background has been performed successfully taking into account the response time difference between both high-energy and bulk components. The other separation was attempted by fast scanning the viewing beam across the probing beam. It is found that the intensity of the scattered spectrum corresponding to the bulk and high energy components were almost proportional to the calculated scattering volume in the relatively low density region, while appreciable background scattered component remains even in the off volume in some high density cases. The ray-trace code TRAVIS is used to estimate the change in the scattering volume due to probing and receiving beam deflection effect.

  17. Combined Hyperthermia and Photodynamic Therapy Using a Sub-THz Gyrotron as a Radiation Source

    NASA Astrophysics Data System (ADS)

    Miyoshi, Norio; Idehara, Toshitaka; Khutoryan, Eduard; Fukunaga, Yukihiro; Bibin, Andriana Bintang; Ito, Shinji; Sabchevski, Svilen Petrov

    2016-08-01

    In this paper, we present results of a hyperthermia treatment of malignant tumors using a gyrotron as a radiation source for heating of the cancerous tissue. They clearly demonstrate the efficiency of the irradiation by sub-THz waves, which leads to steady decrease of the volume of the tumor and finally to its disappearance. A combination of hyperthermia and photodynamic therapy (PDT) that utilizes a novel multifunctional photosensitizer has also been explored. In the latter case, the results are even more convincing and promising. In particular, while after a hyperthermia treatment sometimes a regrowth of the tumor is being observed, in the case of combined hyperthermia and PDT such regrowth has never been noticed. Another combined therapy is based on a preheating of the tumor by gyrotron radiation to temperatures lower than the hyperthermia temperature of 43 °C and followed then by PDT. The results show that such combination significantly increases the efficiency of the treatment. We consider this phenomenon as a synergy effect since it is absent when hyperthermia and PDT are applied separately, and manifests itself only when both methods are combined.

  18. Low Noise Amplifiers for 140 Ghz Wide-Band Cryogenic Receivers

    NASA Technical Reports Server (NTRS)

    Larkoski, Patricia V.; Kangaslahti, Pekka; Samoska, Lorene; Lai, Richard; Sarkozy, Stephen

    2013-01-01

    We report S-parameter and noise measurements for three different Indium Phosphide 35-nanometer-gate-length High Electron Mobility Transistor (HEMT) Low Noise Amplifier (LNA) designs operating in the frequency range centered on 140 gigahertz. When packaged in a Waveguide Rectangular-6.1 waveguide housing, the LNAs have an average measured noise figure of 3.0 decibels - 3.6 decibels over the 122-170 gigahertz band. One LNA was cooled to 20 degrees Kelvin and a record low noise temperature of 46 Kelvin, or 0.64 decibels noise figure, was measured at 152 gigahertz. These amplifiers can be used to develop receivers for instruments that operate in the 130-170 gigahertz atmospheric window, which is an important frequency band for ground-based astronomy and millimeter-wave imaging applications.

  19. Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz

    PubMed Central

    Wu, Bian; Tuncer, Hatice M.; Naeem, Majid; Yang, Bin; Cole, Matthew T.; Milne, William I.; Hao, Yang

    2014-01-01

    The development of transparent radio-frequency electronics has been limited, until recently, by the lack of suitable materials. Naturally thin and transparent graphene may lead to disruptive innovations in such applications. Here, we realize optically transparent broadband absorbers operating in the millimetre wave regime achieved by stacking graphene bearing quartz substrates on a ground plate. Broadband absorption is a result of mutually coupled Fabry-Perot resonators represented by each graphene-quartz substrate. An analytical model has been developed to predict the absorption performance and the angular dependence of the absorber. Using a repeated transfer-and-etch process, multilayer graphene was processed to control its surface resistivity. Millimetre wave reflectometer measurements of the stacked graphene-quartz absorbers demonstrated excellent broadband absorption of 90% with a 28% fractional bandwidth from 125–165 GHz. Our data suggests that the absorbers' operation can also be extended to microwave and low-terahertz bands with negligible loss in performance. PMID:24549254

  20. Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz

    NASA Astrophysics Data System (ADS)

    Wu, Bian; Tuncer, Hatice M.; Naeem, Majid; Yang, Bin; Cole, Matthew T.; Milne, William I.; Hao, Yang

    2014-02-01

    The development of transparent radio-frequency electronics has been limited, until recently, by the lack of suitable materials. Naturally thin and transparent graphene may lead to disruptive innovations in such applications. Here, we realize optically transparent broadband absorbers operating in the millimetre wave regime achieved by stacking graphene bearing quartz substrates on a ground plate. Broadband absorption is a result of mutually coupled Fabry-Perot resonators represented by each graphene-quartz substrate. An analytical model has been developed to predict the absorption performance and the angular dependence of the absorber. Using a repeated transfer-and-etch process, multilayer graphene was processed to control its surface resistivity. Millimetre wave reflectometer measurements of the stacked graphene-quartz absorbers demonstrated excellent broadband absorption of 90% with a 28% fractional bandwidth from 125-165 GHz. Our data suggests that the absorbers' operation can also be extended to microwave and low-terahertz bands with negligible loss in performance.

  1. Design of a 75-140 GHz high-pass printed circuit board dichroic filter

    NASA Astrophysics Data System (ADS)

    Kim, Dong Hwi; Mohyuddin, Wahab; Woo, Dong Sik; Choi, Hyun Chul; Kim, Kang Wook

    2017-03-01

    A new high-performing PCB (Printed Circuit Board) dichroic filter, which can be used for the KSTAR (Korea Superconducting Tokamak Advanced Research) electron cyclotron emission imaging system, is proposed. The current dichroic filter consists of a triangular lattice array of circular holes on the 6-mm thick metal plate, while circular hole spacing limitation caused relatively narrow passband (˜20 GHz). On the other hand, the proposed PCB dichroic filter utilizes the inexpensive commercial PCB fabrication process with a flexible adjustment of circular hole spacing. Therefore, the proposed PCB dichroic filter provides significantly wider passband (˜60 GHz with 0.84 dB insertion loss) with much reduced weight and expense. Also, it is shown that a steep skirt property can be obtained with the thick PCB filter substrate. The design process, fabrication, and measurement results of the new PCB dichroic filter are described.

  2. 140-GHz Attenuation and Optical Visibility Measurements of Fog, Rain and Snow

    DTIC Science & Technology

    1977-12-01

    Dr. J. Battles, Code 6014 China Lake , CA 93555 81 DISTRIBUTION LIST No. of Copies Organization Director US Naval Research Laboratory ATTN...Raytheon Company Missiles Systems Division ATTN: Mr. Walter Justice Hartwell Road Bedford, MA 01730 Sperry Rand Corporation Microwave...Hopkins Road Laurel, MD 20810 Georgia Institute of Tech Engineering Experiment Station ATTN: Dr. R. Hayes Dr. Fred Dyer Dr. N. Currie 347 Ferst

  3. Continuous-Wave Operation of a Frequency-Tunable 460-GHz Second-Harmonic Gyrotron for Enhanced Nuclear Magnetic Resonance

    PubMed Central

    Torrezan, Antonio C.; Han, Seong-Tae; Mastovsky, Ivan; Shapiro, Michael A.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Barnes, Alexander B.; Griffin, Robert G.

    2011-01-01

    The design, operation, and characterization of a continuous-wave (CW) tunable second-harmonic 460-GHz gyrotron are reported. The gyrotron is intended to be used as a submillimeter-wave source for 700-MHz nuclear magnetic resonance experiments with sensitivity enhanced by dynamic nuclear polarization. The gyrotron operates in the whispering-gallery mode TE11,2 and has generated 16 W of output power with a 13-kV 100-mA electron beam. The start oscillation current measured over a range of magnetic field values is in good agreement with theoretical start currents obtained from linear theory for successive high-order axial modes TE11,2,q. The minimum start current is 27 mA. Power and frequency tuning measurements as a function of the electron cyclotron frequency have also been carried out. A smooth frequency tuning range of 1 GHz was obtained for the operating second-harmonic mode either by magnetic field tuning or beam voltage tuning. Long-term CW operation was evaluated during an uninterrupted period of 48 h, where the gyrotron output power and frequency were kept stable to within ±0.7% and ±6 ppm, respectively, by a computerized control system. Proper operation of an internal quasi-optical mode converter implemented to transform the operating whispering-gallery mode to a Gaussian-like beam was also verified. Based on the images of the gyrotron output beam taken with a pyroelectric camera, the Gaussian-like mode content of the output beam was computed to be 92% with an ellipticity of 12%. PMID:21243088

  4. Continuous-Wave Operation of a Frequency-Tunable 460-GHz Second-Harmonic Gyrotron for Enhanced Nuclear Magnetic Resonance

    PubMed Central

    Torrezan, Antonio C.; Han, Seong-Tae; Mastovsky, Ivan; Shapiro, Michael A.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Griffin, Robert G.; Barnes, Alexander B.

    2012-01-01

    The design, operation, and characterization of a continuous-wave (CW) tunable second-harmonic 460-GHz gyrotron are reported. The gyrotron is intended to be used as a submillimeter-wave source for 700-MHz nuclear magnetic resonance experiments with sensitivity enhanced by dynamic nuclear polarization. The gyrotron operates in the whispering-gallery mode TE11,2 and has generated 16 W of output power with a 13-kV 100-mA electron beam. The start oscillation current measured over a range of magnetic field values is in good agreement with theoretical start currents obtained from linear theory for successive high-order axial modes TE11,2,q. The minimum start current is 27 mA. Power and frequency tuning measurements as a function of the electron cyclotron frequency have also been carried out. A smooth frequency tuning range of 1 GHz was obtained for the operating second-harmonic mode either by magnetic field tuning or beam voltage tuning. Long-term CW operation was evaluated during an uninterrupted period of 48 h, where the gyrotron output power and frequency were kept stable to within ±0.7% and ±6 ppm, respectively, by a computerized control system. Proper operation of an internal quasi-optical mode converter implemented to transform the operating whispering-gallery mode to a Gaussian-like beam was also verified. Based on the images of the gyrotron output beam taken with a pyroelectric camera, the Gaussian-like mode content of the output beam was computed to be 92% with an ellipticity of 12%. PMID:23761938

  5. Long-pulsed 1064-nm neodymium:yttrium-aluminum-garnet laser treatment for refractory warts on hands and feet.

    PubMed

    Kimura, Utako; Takeuchi, Kaori; Kinoshita, Ayako; Takamori, Kenji; Suga, Yasushi

    2014-03-01

    Common warts (verruca vulgaris) are the most commonly seen benign cutaneous tumors. However, warts in the hands and feet regions often respond poorly to treatment, some are resistant to more than 6 months of treatment with currently available modalities, including cryotherapy, being defined as refractory warts. We investigated the usefulness of long-pulsed neodymium:yttrium-aluminum-garnet (LP-Nd:YAG) treatment for refractory warts. The clinical trial was conducted on 20 subjects (11 male, nine female) with a total of 34 lesions (periungual/subungual areas, plantar areas, fingers and/or toes). All the subjects suffered from refractory warts despite conventional treatments for more than 6 months. The patients were administrated up to six sessions of treatment, at intervals of 4 weeks between sessions, with an LP-Nd:YAG at a spot size of 5 mm, pulse duration of 15 msec and fluence of 150-185 J/cm(2) . Evaluation of the treatment results at 24 weeks after the initial treatment showed complete clearance of the refractory warts in 56% of the patients. Histological evaluation showed separation of the dermis and epidermis at the basement membrane with coagulated necrosis of the wart tissue in the lower epidermis, as well as coagulation and destruction of the blood vessels in the papillary dermis following the laser irradiation. No scarring, post-hyperpigmentary changes or serious adverse events were documented. Our preliminary results show that LP-Nd:YAG treatments are safe and effective for refractory warts of hands and feet, causing minimal discomfort, and is a viable treatment alternative.

  6. The National Spherical Torus Experiment (NSTX) Research Program and Progress Towards High Beta, Long Pulse Operating Scenarios

    SciTech Connect

    E.J. Synakowski; M.G. Bell; R.E. Bell; T. Bigelow; M. Bitter; W. Blanchard; J. Boedo; C. Bourdelle; C. Bush; D.S. Darrow; , P.C. Efthimion; et al.

    2002-10-15

    A major research goal of the National Spherical Torus Experiment is establishing long-pulse, high-beta, high-confinement operation and its physics basis. This research has been enabled by facility capabilities developed over the last two years, including neutral-beam (up to 7 MW) and high-harmonic fast-wave heating (up to 6 MW), toroidal fields up to 6 kG, plasma currents up to 1.5 MA, flexible shape control, and wall preparation techniques. These capabilities have enabled the generation of plasmas with up to 35%. Normalized beta values often exceed the no wall limit, and studies suggest that passive wall mode stabilization is enabling this for broad pressure profiles characteristic of H-mode plasmas. The viability of long, high bootstrap-current fraction operations has been established for ELMing H-mode plasmas with toroidal beta values in excess of 15% and sustained for several current relaxation times. Improvements in wall conditioning and fueling are likely contributing to a reduction in H-mode power thresholds. Electron thermal conduction is the dominant thermal loss channel in auxiliary-heated plasmas examined thus far. High-harmonic fast-wave (HHFW) effectively heats electrons, and its acceleration of fast beam ions has been observed. Evidence for HHFW current drive is by comparing of the loop voltage evolution in plasmas with matched density and temperature profiles but varying phases of launched HHFW waves. A peak heat flux of 10 MW/m superscript ''2'' has been measured in the H-mode, with large asymmetries in the power deposition being observed between the inner and outer strike points. Noninductive plasma start-up studies have focused on coaxial helicity injection. With this technique, toroidal currents up to 400 kA have been driven, and studies to assess flux closure and coupling to other current-drive techniques have begun.

  7. Development of a kW Level-200 GHz Gyrotron FU CW GI with an Internal Quasi-optical Mode Convertor

    NASA Astrophysics Data System (ADS)

    Tatematsu, Yoshinori; Yamaguchi, Yuusuke; Idehara, Toshitaka; Ozeki, Takanori; Ikeda, Ryosuke; Kanemaki, Tomohiro; Ogawa, Isamu; Saito, Teruo

    2012-03-01

    Development of gyrotrons with an internal mode convertor has started in Research Center for Development of Far-Infrared Region, University of Fukui (FIR FU). As the first gyrotron of such a kind, we have designed and manufactured Gyrotron FU CW GI. It operates at 203 GHz at fundamental cyclotron resonance. We have designed a cavity and a mode convertor under some constraints such as reuse of an electron gun and small diameter of a magnet bore. Designed output power is about 1 kW. We have succeeded in observation of a circular radiation pattern. The maximum observed output power is 0.5 kW for the setting cathode voltage of 20 kV and the beam current of 0.5 A. This success makes gyrotron development in FIR FU to proceed to a new stage.

  8. Effect of inclusion matrix model on temperature and thermal stress fields of K9-glass damaged by long-pulse laser

    NASA Astrophysics Data System (ADS)

    Pan, Yunxiang; Wang, Bin; Shen, Zhonghua; Lu, Jian; Ni, Xiaowu

    2013-04-01

    A model containing an inclusion matrix heated by a millisecond laser is proposed to calculate temperature and thermal stress fields of K9-glass using a finite element method. First, the evolution of temperature and thermal stress fields is analyzed. Results show that both the upper and lower surfaces are damaged. K9-glass is primarily damaged by the combination of radial and axial stresses. Calculated damage morphology is mainly determined by radial stress. Then damage morphology evolution with the increase of the incident laser energy is investigated, which shows that damage area spreads inward from both the front and rear surfaces. Finally, experimental results of long-pulse laser damage of K9-glass are analyzed. The comparison of numerical results with experimental observations shows a good correlation in damage morphology, which indicates that the built inclusion matrix model is applicable to long-pulse laser damage in K9-glass.

  9. Flash-lamp-pumped Ho:Tm:Cr:YAG and Ho:Tm:Er:YLF lasers: experimental results of a single, long pulse length comparison.

    PubMed

    Jani, M G; Barnes, N P; Murray, K E

    1997-05-20

    Flash-lamp-pumped, room-temperature Ho:Tm:Cr:YAG and Ho:Tm:Er:YLF are compared for single but long pulse operation, with pulse lengths of approximately 1.0 mus. Under similar operating conditions in normal-mode operation, a slope efficiency of 0.0331 was observed for Ho:Tm:Er:YLF compared with 0.0047 for Ho:Tm:Cr:YAG. For Q-switched operation, Ho:Tm:Er:YLF yielded a slope efficiency of 0.0075. In comparison, a slope efficiency of 0.0012 was obtained for Ho:Tm:Cr:YAG. Two methods of producing long pulse lengths are compared: pulse selection of normal-mode relaxation oscillations and Q-switching in a long resonator. Theoretical models developed in a companion paper for normal-mode relaxation oscillations and Q-switching in quasi-four-level solid-state lasers are in agreement with the experimental results.

  10. Optimization of terahertz range gyrotron self-excitation conditions by increasing the lifetime of cyclotron oscillators in low-voltage interaction space

    NASA Astrophysics Data System (ADS)

    Ginzburg, N. S.; Glyavin, M. Yu.; Zotova, I. V.; Zheleznov, I. V.; Fokin, A. P.

    2017-01-01

    We propose a method of reducing the starting and operating currents of short-wavelength gyrotrons that is based on the application of a decelerating voltage directly to the resonator. The desired effect is achieved due to increasing electron lifetime in the interaction space. At a preset injection current, this circumstance ensures gyrotron self-excitation at a relatively low diffraction Q-factor, which leads to significant reduction in ohmic losses.

  11. Long-pulse production of high current negative ion beam by using actively temperature controlled plasma grid for JT-60SA negative ion source

    SciTech Connect

    Kojima, A.; Hanada, M.; Yoshida, M.; Umeda, N.; Hiratsuka, J.; Kashiwagi, M.; Tobari, H.; Watanabe, K.; Grisham, L. R.

    2015-04-08

    The temperature control system of the large-size plasma grid has been developed to realize the long pulse production of high-current negative ions for JT-60SA. By using this prototype system for the JT-60SA ion source, 15 A negative ions has been sustained for 100 s for the first time, which is three times longer than that obtained in JT-60U. In this system, a high-temperature fluorinated fluid with a high boiling point of 270 degree Celsius is circulated in the cooling channels of the plasma grids (PG) where a cesium (Cs) coverage is formed to enhance the negative ion production. Because the PG temperature control had been applied to only 10% of the extraction area previously, the prototype PG with the full extraction area (110 cm × 45 cm) was developed to increase the negative ion current in this time. In the preliminary results of long pulse productions of high-current negative ions at a Cs conditioning phase, the negative ion production was gradually degraded in the last half of 100 s pulse where the temperature of an arc chamber wall was not saturated. From the spectroscopic measurements, it was found that the Cs flux released from the wall might affect to the negative ion production, which implied the wall temperature should be kept low to control the Cs flux to the PG for the long-pulse high-current production. The obtained results of long-pulse production and the PG temperature control method contributes the design of the ITER ion source.

  12. Synthesis of Current-Voltage Characteristics of 670 GHz Gyrotron Magnetron Injection Gun and Calculation of the Helical Electron Beam Parameters at the Leading Edge of a High-Voltage Pulse

    NASA Astrophysics Data System (ADS)

    Manuilov, V. N.; Glyavin, M. Yu.

    2013-02-01

    A method of synthesis of current-voltage characteristics (CVC) and calculation of the parameters of a helical electron beam (HEB) at the leading edge of the accelerating voltage pulse for gyrotron electron guns is proposed. These data can be used for a study of the gyrotron startup scenario with the mode competition taken into account. As an example, the results of calculations for a pulsed gyrotron with a frequency of 670 GHz are presented.

  13. Long-Pulse Relativistic Electron Beam Generation and Propagation in Gases and in Ultraviolet Laser Ionized Channels.

    NASA Astrophysics Data System (ADS)

    Lucey, Robert Francis, Jr.

    1988-12-01

    Experiments on the propagation of relativistic electron beams (REB) in the ion-focus regime (IFR) are described. A novel feature of the experiments is the long -pulse nature of the electron beam from the Michigan Electron Long Beam Accelerator (MELBA), a Marx generator with voltage compensation (1 MV, 10 kA, 1 microsecond). The REB is extracted from the diode through a 2.5 cm diameter aperture. A cold cathode is used. To reduce voltage droop from diode gap closure, anode-cathode spacings >7 cm are used. A 7.6 cm dia. cotton velvet cathode provides 300 A of injected current for 800 ns before a rapid increase in injected current, attributed to diode instability. Loss of REB transport accompanies this current increase. Conclusions drawn from the empirical diode study are: (1) successful generation of microsecond electron beams without magnetic insulation from cold cathodes requires diode spacing of ~10 cm, (2) cotton velvet gives improved beam quality over carbon fiber "brush" cathodes, (3) velvet cathodes have slower closure velocity of the cathode plasma. In the IFR regime partial neutralization of the space-charge of an REB by an ion background with the magnetic pinch force of the REB current achieves radial force balance. Experiments are performed in neutral gas, and in diethylaniline (DEA), preionized with a KrF laser. A pressure window for propagation is observed. For helium this window is 50-300 mtorr. The longest propagated pulse is 300 ns with a peak transported efficiency of 80%. In air the pressure window is 5-75 mtorr with similar efficiency. In DEA, fractional ionization of 0.004 has been achieved at a laser fluence of 10 mJ per square cm. To provide sufficient preionization for propagation, pressures where impact ionization is not negligible are required. A pressure window for propagation is again observed. For the current density and laser fluence in this experiment the pressure window is 0.2-2 mTorr. Within the pressure window instability, of the REB

  14. 1 megawatt, 100 GHz gyrotron study. Final report, March 21-September 1, 1983

    SciTech Connect

    Dionne, N.J.; Mallavarpu, R.; Palevsky, A.

    1983-11-21

    This report provides the results of a design study on a gyrotron device employing a new type of hollow gyrobeam formation system and having a capability for delivering megawatt CW power at 100 GHz to an ECRH-heated, magnetically-confined plasma. The conceptual basis for the beam formation system is the tilt-angle gun (TAG) in which a conically-shaped electron beam is formed in a magnetically-shielded region and is then injected into the stray-field region of the main magnetic focusing system. Because fluid coolants can be accessed through the central pole of the TAG-type gun, rf interaction can be contemplated with cavity configurations not practical with the conventional MIG-type gyrobeam formation systems.

  15. Analytical theory of low-frequency space charge oscillations in gyrotrons

    SciTech Connect

    Yan Ran; Antonsen, T. M. Jr.; Nusinovich, G. S.

    2008-10-15

    Low-frequency oscillations attributed to reflected electrons bouncing adiabatically between the electron gun and the interaction space have been observed in many gyrotrons. An analytical model is considered which allows one to apply space-charge wave theory to the analysis of these oscillations. In the framework of the small-signal theory, the regions of low-frequency oscillations, the oscillation frequency and the temporal and spatial growth rates of low-frequency oscillations are determined in the relevant parameter space. The mode frequency is determined not only by the particle travel time, but by the travel time of charge waves on the reflected electron beam. This explains the existence of modes with noncommensurate frequencies.

  16. Magnetron injection gun for a broadband gyrotron backward-wave oscillator

    SciTech Connect

    Yuan, C. P.; Chang, T. H.; Chen, N. C.; Yeh, Y. S.

    2009-07-15

    The magnetron injection gun is capable of generating relativistic electron beam with high velocity ratio and low velocity spread for a gyrotron backward-wave oscillator (gyro-BWO). However, the velocity ratio ({alpha}) varies drastically against both the magnetic field and the beam voltage, which significantly limits the tuning bandwidth of a gyro-BWO. This study remedies this drawback by adding a variable trim field to adjust the magnetic compression ratio when changing the operating conditions. Theoretical results obtained by employing a two-dimensional electron gun code (EGUN) demonstrate a constant velocity ratio of 1.5 with a low axial velocity spread of 6% from 3.4-4.8 Tesla. These results are compared with a three-dimensional particle-tracing code (computer simulation technology, CST). The underlying physics for constant {alpha} will be discussed in depth.

  17. Experimental Study of a Gyrotron with a Sectioned Klystron-Type Cavity Operated at Higher Cyclotron Harmonics

    NASA Astrophysics Data System (ADS)

    Bandurkin, I. V.; Kalynov, Yu. K.; Savilov, A. V.

    2016-02-01

    We are planning to use extended cavities in order to excite gyrotrons with large electron orbits, which are operated at higher cyclotron harmonics in the terahertz frequency range. This is determined by both the weakness of the electron-wave interaction, and relatively low operating currents. Since the diffraction Q-factor of such cavities is high, a significant part of the highfrequency power produced by the electron beam is lost due to the ohmic loss in the cavity walls. As a way to solve this problem, we proposed a sectioned klystron-type cavity, where an extended length of the electron-wave interaction region can be combined with a relatively low diffraction Q-factor of the system. This work presents the results of the first experiment on a gyrotron with a sectioned cavity, where selective excitation of higher (second and third) cyclotron harmonics was observed in the terahertz frequency range (0 .55 and 0 .74 THz).

  18. The Electron-Optical System of a Gyrotron with an Operating Frequency of 263 GHz for Spectroscopic Research

    NASA Astrophysics Data System (ADS)

    Kuftin, A. N.; Manuilov, V. N.

    2016-07-01

    We describe specific features of modeling numerically the operation of magnetron-injection guns, which form high-quality helical electron beams in gyrotrons operated in the short-wave part of the millimeter-wave band (at a wavelength of 1 mm). As an example, we consider the gun of a gyrotron having an operating frequency of 263 GHz designed for spectroscopic research. It is shown that there are good reasons to perform calculations and optimization of the magnetroninjection un in two steps. At the first step, a simplest two-dimensional model can be used, which allows only for the influence of the field of the electrodes and the intrinsic space charge of the beam on the beam parameters. At the second, final stage one should allow for such factors as roughness of the emitting surface and thermal velocities of electrons. The electron distribution function in oscillatory velocities and the coefficient of electron reflection from the magnetic mirror should be calculated. It is demonstrated that the magnetron-injection gun, which is optimized by the method presented, is sufficiently universal and can be operated both at the first and second cyclotron-frequency harmonics. This opens up the possibility of developing gyrotrons for spectroscopy applications at frequencies of 263 and 526 GHz, respectively, which are required for biological and medical research.

  19. Comparison of the effectiveness of two fluences using long-pulsed Nd:YAG laser in the treatment of striae distensae. Histological and morphometric evaluation.

    PubMed

    Elsaie, Mohamed L; Hussein, Maha S; Tawfik, Abeer A; Emam, Hanaa M; Badawi, Manal A; Fawzy, Marwa M; Shokeir, Hisham A

    2016-12-01

    Striae distensae are common undesirable skin lesions of significant aesthetic concern. To compare the efficacy of two fluences (75 and 100 J/cm(2)) of long-pulsed Nd:YAG laser in the treatment of striae. Forty-five patients (Fitzpatrick skin types III-V) aged between 11 and 36 years with striae (23 patients with rubra type and 22 with alba type) were enrolled in the study. Each stria was divided into three equal sections, whereby the outer sections were treated with long-pulsed 1064 nm Nd:YAG laser, at a fluence of 75 or 100 J/cm(2), and fixed laser settings of 5 mm spot size and 15 ms pulse duration. The middle section was an untreated control. All subjects received four treatments at 3 weeks interval. Three 2-mm punch biopsies were taken from six subjects, all of the same stria, one before treatment and the other two from the outer sections, 3 months after the last session. Paraffin-embedded skin sections were subjected to histological and quantitative morphometric studies for collagen and elastic fibres. Results were assessed clinically through photographic evaluation and were considered satisfactory for both doctors and patients. A significant improvement in appearance of striae alba using 100 J/cm(2) was found while striae rubra improved more with 75 J/cm(2). Histologically, collagen and elastin fibres increased in posttreatment samples. A satisfactory improvement in striae distensae lesions was seen through clinical and histological evaluation. Thus, long-pulsed Nd:YAG laser is a safe and effective module of laser treatment for these common skin lesions.

  20. The Role of Lithium Conditioning in Achieving High Performance, Long Pulse H-mode Discharges in the NSTX and EAST Devices

    SciTech Connect

    Maingi, Rajesh; Mansfield, D. K.; Gong, X. Z.; Sun, Z.; Bell, M. G.

    2014-10-01

    In this paper, the role of lithium wall conditioning on the achievement of high performance, long pulse discharges in the National Spherical Torus Experiment (NSTX) and the Experimental Advanced Superconducting Tokamak (EAST) is documented. Common observations include recycling reduction and elimination of ELMs. In NSTX, lithium conditioning typically resulted in ELM-free operation with impurity accumulation, which was ameliorated e.g. with pulsed 3D fields to trigger controlled ELMs. Active lithium conditioning in EAST discharges has overcome this problem, producing an ELM-free Hmode with controlled density and impurities.

  1. Theoretical study on mode competition between fundamental and second harmonic modes in a 0.42 THz gyrotron with gradually tapered complex cavity

    SciTech Connect

    Zhao, Qixiang Yu, Sheng; Zhang, Tianzhong; Li, Xiang

    2015-10-15

    In this paper, the nonlinear dynamics of mode competition in the complex cavity gyrotron are studied by using multi-frequency, time-dependent theory with the cold-cavity longitudinal profile approximation. Based on the theory, a code is written to simulate the mode competition in the gradually tapered complex cavity gyrotron operating at second harmonic oscillation. The simulations tracking seven competition modes show that single mode oscillation of the desired mode TE{sub 17.4} at 150 kW level can be expected with proper choice of operating parameters. Through studying on mode competition, it is proved that the complex cavity has a good capability for suppressing the mode competition. Meanwhile, it is found that TE{sub 17.3} could be excited in the first cavity as a competition mode when the gyrotron operating at large beam current, which leads to that TE{sub 17.3} and TE{sub 17.4} with different frequencies can coexist stably in the complex cavity gyrotron with very close amplitudes. Thus, the complex cavity might be used for multi-frequency output gyrotron.

  2. Comparison of long-pulsed alexandrite laser and topical tretinoin-ammonium lactate in axillary acanthosis nigricans: A case series of patients in a before-after trial

    PubMed Central

    Ehsani, Amirhoushang; Noormohammadpour, Pedram; Goodarzi, Azadeh; Mirshams Shahshahani, Mostafa; Hejazi, Seyede Pardis; Hosseini, Elhamsadat; Azizpour, Arghavan

    2016-01-01

    Background: Acanthosis nigricans (AN) is a brown to black, velvety hyperpigmentation of the skin that usually involves cutaneous folds. Treatment of AN is important regarding cosmetic reasons and various therapeutic modalities have been used for these purposes. The goal of this study was to compare the effectiveness of long-pulsed alexandrite laser and topical tretinoin-ammonium lactate for treatment of axillary-AN. Methods: Fifteen patients with bilateral axillary-AN were studied in Razi Hospital, Tehran, Iran. Diagnosis was confirmed by two independent dermatologists. Each side skin lesion was randomly allocated to either topical mixed cream of tretinoin 0.05%- ammonium lactate 12% or long-pulsed alexandrite laser. Duration of treatment was 14 weeks. At endpoint, the mean percent reduction from baseline in pigmentation area was compared between the two groups. Results: The study population consisted of 15 patients three males and 12, females. The mean age of patients was 28.5±4.9 years. The mean percent reduction was 18.3±10.6%, in tretinoin/ammonium lactate group and 25.7±11.8% in laser group (P=0.004). Conclusion: These findings indicate that the application of alexandrite laser is a relative effective method for treatment of axillary-AN. However, this issue requires further studies with prolonged follow-up period. PMID:27999648

  3. Combination of 595-nm pulsed dye laser, long-pulsed 755-nm alexandrite laser, and microdermabrasion treatment for keratosis pilaris: retrospective analysis of 26 Korean patients.

    PubMed

    Lee, Sang Ju; Choi, Min Ju; Zheng, Zhenlong; Chung, Won Soon; Kim, Young Koo; Cho, Sung Bin

    2013-06-01

    Keratosis pilaris (KP) has beenpresented as small keratotic follicular papules with or without surrounding erythema. Various treatments with laser or light therapy have been used for the management of KP with various clinical outcomes. In the present study, we investigated the efficacy and safety of a combination therapy for KP. A total of 29 anatomical sites with KP in 26 patients were treated using a 595-nm pulsed dye laser (PDL) with nonpurpuragenic fluences, a long-pulsed 755-nm alexandrite laser, and microdermabrasion. Clinical improvement was assessed by comparing preand posttreatment clinical photographs and patient satisfaction rates. Evaluation of the clinical results three months after the treatments showed that 12 of the 29 anatomical sites (41.4%) demonstrated Grade 3 clinical improvement, ten (34.5%) had Grade 2 clinical improvement, four (13.8%) showed Grade 1 improvement, and three (10.3%) showed Grade 4 improvement. We observed that KP lesions improved not only in erythema and skin texture, but also in brownish dyschromias. Potential adverse events were not observed, except prolonged posttherapy scaling. Our observations demonstrate that combination therapy using a 595-nm PDL, a long-pulsed 755-nm alexandrite laser, and microdermabrasion can have a positive therapeutic effect on KP.

  4. Stable harmonic multiplying gyrotron traveling-wave amplifier with distributed wall losses and attenuating severs

    SciTech Connect

    Yeh, Y. S.; Cheng, J. H.; Chen, L. K.; Hung, C. W.; Lo, C. Y.; Liao, C. W.

    2008-02-15

    Harmonic multiplying gyrotron traveling-wave amplifiers (gyro-TWTs) provide magnetic field reduction and frequency multiplication. However, spurious oscillations may reduce the amplification of the gyro-TWT. Most distributed-loss structures are stabilized in gyro-TWTs that operate at low beam currents. Attenuating severs are added to the interaction circuit of a distributed-loss gyro-TWT to prevent high beam currents that result in mode competition. This study proposes a Ka-band harmonic multiplying gyro-TWT, using distributed wall losses and attenuating severs, to improve the stability of the amplification and the performance of the amplifier. Simulation results reveal that the absolute instabilities are effectively suppressed by wall losses of the lossy and severed sections, especially in the low-k{sub z} and high-order modes. Meanwhile, the severed section, dividing an interaction circuit into several short sections, reduces the effective interaction lengths of the absolute instabilities. The stable harmonic multiplying gyro-TWT is predicted to yield a peak output power of 230 kW at 33.65 GHz with an efficiency of 30%, a saturated gain of 40 dB, and a 3 dB bandwidth of 0.8 GHz for a 60 kV, 13 A electron beam with an axial velocity spread of {delta}v{sub z}/v{sub z}=8%. The power/gain scaling and phase relation between the drive and the output waves are elucidated.

  5. Low-order-mode harmonic multiplying gyrotron traveling-wave amplifier in W band

    SciTech Connect

    Yeh, Y. S.; Chen, C. H.; Yang, S. J.; Lai, C. H.; Lin, T. Y.; Lo, Y. C.; Hong, J. W.; Hung, C. L.; Chang, T. H.

    2012-09-15

    Harmonic multiplying gyrotron traveling-wave amplifiers (gyro-TWAs) allow for magnetic field reduction and frequency multiplication. To avoid absolute instabilities, this work proposes a W-band harmonic multiplying gyro-TWA operating at low-order modes. By amplifying a fundamental harmonic TE{sub 11} drive wave, the second harmonic component of the beam current initiates a TE{sub 21} wave to be amplified. Absolute instabilities in the gyro-TWA are suppressed by shortening the interaction circuit and increasing wall losses. Simulation results reveal that compared with Ka-band gyro-TWTs, the lower wall losses effectively suppress absolute instabilities in the W-band gyro-TWA. However, a global reflective oscillation occurs as the wall losses decrease. Increasing the length or resistivity of the lossy section can reduce the feedback of the oscillation to stabilize the amplifier. The W-band harmonic multiplying gyro-TWA is predicted to yield a peak output power of 111 kW at 98 GHz with an efficiency of 25%, a saturated gain of 26 dB, and a bandwidth of 1.6 GHz for a 60 kV, 7.5 A electron beam with an axial velocity spread of 8%.

  6. G-band harmonic multiplying gyrotron traveling-wave amplifier with a mode-selective circuit

    SciTech Connect

    Yeh, Y. S.; Chen, Chang-Hong; Wang, Z. W.; Kao, B. H.; Chen, Chien-Hsiang; Lin, T. Y.; Guo, Y. W.

    2014-12-15

    Harmonic multiplying gyrotron traveling-wave amplifiers (gyro-TWAs) permit for magnetic field reduction and frequency multiplication. A high-order-mode harmonic multiplying gyro-TWA with large circuit dimensions and low ohmic loss can achieve a high average power. By amplifying a fundamental harmonic TE{sub 01} drive wave, the second harmonic component of the beam current initiates a TE{sub 02} wave to be amplified. Wall losses can suppress some competing modes because they act as an effective sink of the energy of the modes. However, such wall losses do not suppress all competing modes as the fields are contracted in the copper section in the gyro-TWA. An improved mode-selective circuit, using circular waveguides with the specified radii, can provide the rejection points within the frequency range to suppress the competing modes. The simulated results reveal that the mode-selective circuit can provide an attenuation of more than 10 dB to suppress the competing modes (TE{sub 21}, TE{sub 51}, TE{sub 22}, and TE{sub 03}). A G-band second harmonic multiplying gyro-TWA with the mode-selective circuit is predicted to yield a peak output power of 50 kW at 198.8 GHz, corresponding to a saturated gain of 55 dB at an interaction efficiency of 10%. The full width at half maximum bandwidth is 5 GHz.

  7. Low-voltage harmonic multiplying gyrotron traveling-wave amplifier in G band

    SciTech Connect

    Yeh, Y. S.; Guo, Y. W.; Kao, B. H.; Chen, C. H.; Wang, Z. W.; Hung, C. L.; Chang, T. H.

    2015-12-15

    Harmonic multiplying operation in a gyrotron traveling-wave amplifier (gyro-TWA) permits for magnetic field reduction and frequency multiplication. Lowering a beam voltage is an important step toward miniaturization of a harmonic multiplying gyro-TWA. However, the additional degree of freedom that is provided by the multitude cyclotron harmonics in a low-voltage harmonic multiplying gyro-TWA still easily generates various competing modes. An improved mode-selective circuit, using circular waveguides with various radii, can provide the rejection points within the frequency range to suppress competing modes. Simulated results reveal that the mode-selective circuit can provide an attenuation of more than 14 dB to suppress the competing modes. Furthermore, the performance of the gyro-TWA is analyzed for studying the sensitivity of the saturated output power and full width at half maximum bandwidth of the gyro-TWA to the beam voltage and the magnetic field. A stable low-voltage harmonic multiplying gyro-TWA with the mode-selective circuit is predicted to yield a peak output power of 24 kW at 200.4 GHz, corresponding to a saturated gain of 56 dB at an interaction efficiency of 20%. The full width at half maximum bandwidth is 3.0 GHz.

  8. Harmonic mode competition in a terahertz gyrotron backward-wave oscillator

    SciTech Connect

    Kao, S. H.; Chiu, C. C.; Chang, P. C.; Wu, K. L.; Chu, K. R.

    2012-10-15

    Electron cyclotron maser interactions at terahertz (THz) frequencies require a high-order-mode structure to reduce the wall loss to a tolerable level. To generate THz radiation, it is also essential to employ cyclotron harmonic resonances to reduce the required magnetic field strength to a value within the capability of the superconducting magnets. However, much weaker harmonic interactions in a high-order-mode structure lead to serious mode competition problems. The current paper addresses harmonic mode competition in the gyrotron backward wave oscillator (gyro-BWO). We begin with a comparative study of the mode formation and oscillation thresholds in the gyro-BWO and gyromonotron. Differences in linear features result in far fewer 'windows' for harmonic operation of the gyro-BWO. Nonlinear consequences of these differences are examined in particle simulations of the multimode competition processes in the gyro-BWO, which shed light on the competition criteria between modes of different as well as the same cyclotron harmonic numbers. The viability of a harmonic gyro-BWO is assessed on the basis of the results obtained.

  9. Intense high-frequency gyrotron-based microwave beams for material processing

    SciTech Connect

    Hardek, T.W.; Cooke, W.D.; Katz, J.D.; Perry, W.L.; Rees, D.E.

    1997-03-01

    Microwave processing of materials has traditionally utilized frequencies in the 0.915 and 2.45 GHz regions. Microwave power sources are readily available at these frequencies but the relatively long wavelengths can present challenges in uniformly heating materials. An additional difficulty is the poor coupling of ceramic based materials to the microwave energy. Los Alamos National Laboratory scientists, working in conjunction with the National Center for Manufacturing Sciences (NCMS), have assembled a high-frequency demonstration processing facility utilizing gyrotron based RF sources. The facility is primarily intended to demonstrate the unique features available at frequencies as high as 84 GHz. The authors can readily provide quasi-optical, 37 GHz beams at continuous wave (CW) power levels in the 10 kW range. They have also provided beams at 84 GHz at 10 kW CW power levels. They are presently preparing a facility to demonstrate the sintering of ceramics at 30 GHz. This paper presents an overview of the present demonstration processing facility and describes some of the features they have available now and will have available in the near future.

  10. Low-voltage harmonic multiplying gyrotron traveling-wave amplifier in G band

    NASA Astrophysics Data System (ADS)

    Yeh, Y. S.; Hung, C. L.; Chang, T. H.; Guo, Y. W.; Kao, B. H.; Chen, C. H.; Wang, Z. W.

    2015-12-01

    Harmonic multiplying operation in a gyrotron traveling-wave amplifier (gyro-TWA) permits for magnetic field reduction and frequency multiplication. Lowering a beam voltage is an important step toward miniaturization of a harmonic multiplying gyro-TWA. However, the additional degree of freedom that is provided by the multitude cyclotron harmonics in a low-voltage harmonic multiplying gyro-TWA still easily generates various competing modes. An improved mode-selective circuit, using circular waveguides with various radii, can provide the rejection points within the frequency range to suppress competing modes. Simulated results reveal that the mode-selective circuit can provide an attenuation of more than 14 dB to suppress the competing modes. Furthermore, the performance of the gyro-TWA is analyzed for studying the sensitivity of the saturated output power and full width at half maximum bandwidth of the gyro-TWA to the beam voltage and the magnetic field. A stable low-voltage harmonic multiplying gyro-TWA with the mode-selective circuit is predicted to yield a peak output power of 24 kW at 200.4 GHz, corresponding to a saturated gain of 56 dB at an interaction efficiency of 20%. The full width at half maximum bandwidth is 3.0 GHz.

  11. Design of 95 GHz gyrotron based on continuous operation copper solenoid with water cooling

    SciTech Connect

    Borodin, Dmitri; Ben-Moshe, Roey; Einat, Moshe

    2014-07-15

    The design work for 2nd harmonic 95 GHz, 50 kW gyrotron based on continuous operation copper solenoid is presented. Thermionic magnetron injection gun specifications were calculated according to the linear trade off equation, and simulated with CST program. Numerical code is used for cavity design using the non-uniform string equation as well as particle motion in the “cold” cavity field. The mode TE02 with low Ohmic losses in the cavity walls was chosen as the operating mode. The Solenoid is designed to induce magnetic field of 1.8 T over a length of 40 mm in the interaction region with homogeneity of ±0.34%. The solenoid has six concentric cylindrical segments (and two correction segments) of copper foil windings separated by water channels for cooling. The predicted temperature in continuous operation is below 93 °C. The parameters of the design together with simulation results of the electromagnetic cavity field, magnetic field, electron trajectories, and thermal analyses are presented.

  12. Mechanisms of amplification of ultrashort electromagnetic pulses in gyrotron traveling wave tube with helically corrugated waveguide

    SciTech Connect

    Ginzburg, N. S. Zaslavsky, V. Yu.; Zotova, I. V.; Sergeev, A. S.; Zheleznov, I. V.; Samsonov, S. V.; Mishakin, S. V.

    2015-11-15

    A time-domain self consistent theory of a gyrotron traveling wave tube with a helically corrugated operating waveguide has been developed. Based on this model, the process of short pulse amplification was studied in regimes of grazing and intersection of the dispersion curves of the electromagnetic wave and the electron beam. In the first case, the possibility of amplification without pulse form distortion was demonstrated for the pulse spectrum width of the order of the gain bandwidth. In the second case, when the electrons' axial velocity was smaller than the wave's group velocity, it was shown that the slippage of the incident signal with respect to the electron beam provides feeding of the signal by “fresh” electrons without initial modulation. As a result, the amplitude of the output pulse can exceed the amplitude of its saturated value for the case of the grazing regime, and, for optimal parameters, the peak output power can be even larger than the kinetic power of the electron beam.

  13. Design of 95 GHz gyrotron based on continuous operation copper solenoid with water cooling

    NASA Astrophysics Data System (ADS)

    Borodin, Dmitri; Ben-Moshe, Roey; Einat, Moshe

    2014-07-01

    The design work for 2nd harmonic 95 GHz, 50 kW gyrotron based on continuous operation copper solenoid is presented. Thermionic magnetron injection gun specifications were calculated according to the linear trade off equation, and simulated with CST program. Numerical code is used for cavity design using the non-uniform string equation as well as particle motion in the "cold" cavity field. The mode TE02 with low Ohmic losses in the cavity walls was chosen as the operating mode. The Solenoid is designed to induce magnetic field of 1.8 T over a length of 40 mm in the interaction region with homogeneity of ±0.34%. The solenoid has six concentric cylindrical segments (and two correction segments) of copper foil windings separated by water channels for cooling. The predicted temperature in continuous operation is below 93 °C. The parameters of the design together with simulation results of the electromagnetic cavity field, magnetic field, electron trajectories, and thermal analyses are presented.

  14. Dynamic nuclear polarization at 9 T using a novel 250 GHz gyrotron microwave source

    NASA Astrophysics Data System (ADS)

    Bajaj, V. S.; Farrar, C. T.; Hornstein, M. K.; Mastovsky, I.; Vieregg, J.; Bryant, J.; Eléna, B.; Kreischer, K. E.; Temkin, R. J.; Griffin, R. G.

    2011-12-01

    In this communication, we report enhancements of nuclear spin polarization by dynamic nuclear polarization (DNP) in static and spinning solids at a magnetic field strength of 9 T (250 GHz for g = 2 electrons, 380 MHz for 1H). In these experiments, 1H enhancements of up to 170 ± 50 have been observed in 1- 13C-glycine dispersed in a 60:40 glycerol/water matrix at temperatures of 20 K; in addition, we have observed significant enhancements in 15N spectra of unoriented pf1-bacteriophage. Finally, enhancements of ˜17 have been obtained in two-dimensional 13C- 13C chemical shift correlation spectra of the amino acid U- 13C, 15N-proline during magic angle spinning (MAS), demonstrating the stability of the DNP experiment for sustained acquisition and for quantitative experiments incorporating dipolar recoupling. In all cases, we have exploited the thermal mixing DNP mechanism with the nitroxide radical 4-amino-TEMPO as the paramagnetic dopant. These are the highest frequency DNP experiments performed to date and indicate that significant signal enhancements can be realized using the thermal mixing mechanism even at elevated magnetic fields. In large measure, this is due to the high microwave power output of the 250 GHz gyrotron oscillator used in these experiments.

  15. Gyrotron-driven high current ECR ion source for boron-neutron capture therapy neutron generator

    NASA Astrophysics Data System (ADS)

    Skalyga, V.; Izotov, I.; Golubev, S.; Razin, S.; Sidorov, A.; Maslennikova, A.; Volovecky, A.; Kalvas, T.; Koivisto, H.; Tarvainen, O.

    2014-12-01

    Boron-neutron capture therapy (BNCT) is a perspective treatment method for radiation resistant tumors. Unfortunately its development is strongly held back by a several physical and medical problems. Neutron sources for BNCT currently are limited to nuclear reactors and accelerators. For wide spread of BNCT investigations more compact and cheap neutron source would be much more preferable. In present paper an approach for compact D-D neutron generator creation based on a high current ECR ion source is suggested. Results on dense proton beams production are presented. A possibility of ion beams formation with current density up to 600 mA/cm2 is demonstrated. Estimations based on obtained experimental results show that neutron target bombarded by such deuteron beams would theoretically yield a neutron flux density up to 6·1010 cm-2/s. Thus, neutron generator based on a high-current deuteron ECR source with a powerful plasma heating by gyrotron radiation could fulfill the BNCT requirements significantly lower price, smaller size and ease of operation in comparison with existing reactors and accelerators.

  16. Development program for a 200 kW, CW gyrotron. Quarterly report No. 16, April-June 1983

    SciTech Connect

    DeHope, W.J.; Ferguson, P.E.; Hart, S.L.; Matranga, V.A.; Sandoval, J.J.; Schmitt, M.J.; Tancredi, J.J.

    1983-01-01

    The objective of this program is the design and development of a millimeter-wave device to produce 200 kW of continuous wave power at 60 GHz. The device, a gyrotron oscillator, will be compatible with power delivery to an electron-cyclotron heated plasma. Smooth control of rf power over a 17 dB range is required, and the device should be capable of operation into a severely time-varying load mismatch. Progress is presented in the testing, analyses and understanding of S/N 1B behavior and in preparing S/N 3 for test in the coming report period.

  17. Initial measurements of plasma current and electron density profiles using a polarimeter/interferometer (POINT) for long pulse operation in EAST (invited).

    PubMed

    Liu, H Q; Qian, J P; Jie, Y X; Ding, W X; Brower, D L; Zou, Z Y; Li, W M; Lian, H; Wang, S X; Yang, Y; Zeng, L; Lan, T; Yao, Y; Hu, L Q; Zhang, X D; Wan, B N

    2016-11-01

    A double-pass, radially viewing, far-infrared laser-based POlarimeter-INTerferometer (POINT) system utilizing the three-wave technique has been implemented for diagnosing the plasma current and electron density profiles in the Experimental Advanced Superconducting Tokamak (EAST). POINT has been operated routinely during the most recent experimental campaign and provides continuous 11 chord line-integrated Faraday effect and density measurement throughout the entire plasma discharge for all heating schemes and all plasma conditions (including ITER relevant scenario development). Reliability of both the polarimetric and interferometric measurements is demonstrated in 25 s plasmas with H-mode and 102 s long-pulse discharges. Current density, safety factor (q), and electron density profiles are reconstructed using equilibrium fitting code (EFIT) with POINT constraints for the plasma core.

  18. Initial measurements of plasma current and electron density profiles using a polarimeter/interferometer (POINT) for long pulse operation in EAST (invited)

    NASA Astrophysics Data System (ADS)

    Liu, H. Q.; Qian, J. P.; Jie, Y. X.; Ding, W. X.; Brower, D. L.; Zou, Z. Y.; Li, W. M.; Lian, H.; Wang, S. X.; Yang, Y.; Zeng, L.; Lan, T.; Yao, Y.; Hu, L. Q.; Zhang, X. D.; Wan, B. N.

    2016-11-01

    A double-pass, radially viewing, far-infrared laser-based POlarimeter-INTerferometer (POINT) system utilizing the three-wave technique has been implemented for diagnosing the plasma current and electron density profiles in the Experimental Advanced Superconducting Tokamak (EAST). POINT has been operated routinely during the most recent experimental campaign and provides continuous 11 chord line-integrated Faraday effect and density measurement throughout the entire plasma discharge for all heating schemes and all plasma conditions (including ITER relevant scenario development). Reliability of both the polarimetric and interferometric measurements is demonstrated in 25 s plasmas with H-mode and 102 s long-pulse discharges. Current density, safety factor (q), and electron density profiles are reconstructed using equilibrium fitting code (EFIT) with POINT constraints for the plasma core.

  19. 180 mJ, long-pulse-duration, master-oscillator power amplifier with linewidth less than 25.6 kHz for laser guide stars.

    PubMed

    Wang, Chunhua; Zhang, Xiang; Ye, Zhibin; Liu, Chong; Chen, Jun

    2013-07-01

    A high-energy single-frequency hundred-microsecond long-pulse solid-state laser is demonstrated, which features an electro-optically modulated seed laser and two-stage double-passed pulse-pumped solid-state laser rod amplifier. Laser output with energy of 180 mJ, repetition rate of 50 Hz, and pulse width of 150 μs is achieved. The laser linewidth is measured to be less than 25.52 kHz by a fiber delay self-heterodyne method. In addition, a closed-loop controlling system is adopted to lock the center wavelength. No relaxation oscillation spikes appear in the pulse temporal profile, which is beneficial for further amplification.

  20. Analyses of advanced concepts in multi-stage gyro-amplifiers and startup in high power gyro-oscillators

    NASA Astrophysics Data System (ADS)

    Sinitsyn, Oleksandr V.

    Gyrotrons are well recognized sources of high-power coherent electromagnetic radiation. The power that gyrotrons can radiate in the millimeter- and submillimeter-wavelength regions exceeds the power of classical microwave tubes by many orders of magnitude. In this work, the author considers some problems related to the operation of gyro-devices and methods of their solution. In particular, the self-excitation conditions for parasitic backward waves and effect of distributed losses on the small-signal gain of gyro-TWTs are analyzed. The corresponding small-signal theory describing two-stage gyro-traveling-wave tubes (gyro-TWTs) with the first stage having distributed losses is presented. The theory is illustrated by using it for the description of operation of a Ka-band gyro-TWT designed at the Naval Research Laboratory. Also, the results of nonlinear studies of this tube are presented and compared with the ones obtained by the use of MAGY, a multi-frequency, self-consistent code developed at the University of Maryland. An attempt to build a large signal theory of gyro-TWTs with tapered geometry and magnetic field profile is made and first results are obtained for a 250 GHz gyro-TWT. A comparative small-signal analysis of conventional four-cavity and three-stage clustered-cavity gyroklystrons is performed. The corresponding point-gap models for these devices are presented. The efficiency, gain, bandwidth and gain-bandwidth product are analyzed for each scheme. Advantages of the clustered-cavity over the conventional design are discussed. The startup scenarios in high-power gyrotrons and the most important physical effects associated with them are considered. The work presents the results of startup simulations for a 140 GHz, MW-class gyrotron developed by Communications and Power Industries (CPI) for electron-cyclotron resonance heating (ECRH) and current drive experiments on the "Wendelstein 7-X" stellarator plasma. Also presented are the results for a 110 GHz, 1

  1. First and second harmonic ECRH experience at gyrotron frequencies at LLNL

    SciTech Connect

    Stallard, B.

    1987-11-01

    Plasma heating of electrons in both mirror machines and tokamaks, using mm wave gyrotron sources, have been carried out in many experiments in recent years. The technology for both sources and mode-preserving waveguide transmission systems is well developed at power levels of 200 kW. At LLNL electron heating at 28 GHz in the TMX-U tandem mirror has been used to create hot electrons required for a thermal barrier (potential well). TMX-U, and other devices operating at lower frequency and power (10 GHz, few kW), routinely generates electron populations with mean energies of 100 to 500 keV and densities in the low to mid 10/sup 11/ cm/sup -3/ range. Radial pressure profiles vary from peaked-on-axis to hollow and are dependent on the mod-B resonance surfaces. Experiments on the axisymmetric mirror SM-1 have shown improved heating efficiency using multiple frequencies with narrow frequency separation. The importance of rf diffusion in determining electron confinement has been shown in CONSTANCE B. Fokker-Planck and particle orbit models have been useful for understanding the importance of cavity heating for creating runaway electrons, the sensitivity of hot electron production to cold plasma, the reduction of electron lifetime by rf diffusion, and the effect of multiple frequencies on heating stochasticity. Potential wells generated in plasmas with large fractions of mirror-trapped electrons have been measured in TMX-U. These offer prospects for enhanced confinement of highly stripped ions. 11 refs., 18 figs., 2 tabs.

  2. Neutron generator for BNCT based on high current ECR ion source with gyrotron plasma heating.

    PubMed

    Skalyga, V; Izotov, I; Golubev, S; Razin, S; Sidorov, A; Maslennikova, A; Volovecky, A; Kalvas, T; Koivisto, H; Tarvainen, O

    2015-12-01

    BNCT development nowadays is constrained by a progress in neutron sources design. Creation of a cheap and compact intense neutron source would significantly simplify trial treatments avoiding use of expensive and complicated nuclear reactors and accelerators. D-D or D-T neutron generator is one of alternative types of such sources for. A so-called high current quasi-gasdynamic ECR ion source with plasma heating by millimeter wave gyrotron radiation is suggested to be used in a scheme of D-D neutron generator in the present work. Ion source of that type was developed in the Institute of Applied Physics of Russian Academy of Sciences (Nizhny Novgorod, Russia). It can produce deuteron ion beams with current density up to 700-800 mA/cm(2). Generation of the neutron flux with density at the level of 7-8·10(10) s(-1) cm(-2) at the target surface could be obtained in case of TiD2 target bombardment with deuteron beam accelerated to 100 keV. Estimations show that it is enough for formation of epithermal neutron flux with density higher than 10(9) s(-1) cm(-2) suitable for BNCT. Important advantage of described approach is absence of Tritium in the scheme. First experiments performed in pulsed regime with 300 mA, 45 kV deuteron beam directed to D2O target demonstrated 10(9) s(-1) neutron flux. This value corresponds to theoretical estimations and proofs prospects of neutron generator development based on high current quasi-gasdynamic ECR ion source.

  3. TWANG-PIC, a novel gyro-averaged one-dimensional particle-in-cell code for interpretation of gyrotron experiments

    SciTech Connect

    Braunmueller, F. Tran, T. M.; Alberti, S.; Genoud, J.; Hogge, J.-Ph.; Tran, M. Q.; Vuillemin, Q.

    2015-06-15

    A new gyrotron simulation code for simulating the beam-wave interaction using a monomode time-dependent self-consistent model is presented. The new code TWANG-PIC is derived from the trajectory-based code TWANG by describing the electron motion in a gyro-averaged one-dimensional Particle-In-Cell (PIC) approach. In comparison to common PIC-codes, it is distinguished by its computation speed, which makes its use in parameter scans and in experiment interpretation possible. A benchmark of the new code is presented as well as a comparative study between the two codes. This study shows that the inclusion of a time-dependence in the electron equations, as it is the case in the PIC-approach, is mandatory for simulating any kind of non-stationary oscillations in gyrotrons. Finally, the new code is compared with experimental results and some implications of the violated model assumptions in the TWANG code are disclosed for a gyrotron experiment in which non-stationary regimes have been observed and for a critical case that is of interest in high power gyrotron development.

  4. Structural and Microwave Properties of Silica Xerogel Glass-Ceramic Sintered by Sub-millimeter Wave Heating using a Gyrotron

    NASA Astrophysics Data System (ADS)

    Aripin, H.; Mitsudo, S.; Prima, E. S.; Sudiana, I. N.; Tani, S.; Sako, K.; Fujii, Y.; Saito, T.; Idehara, T.; Sano, S.; Sunendar, B.; Sabchevski, S.

    2012-11-01

    In this paper, we present and discuss experimental results from a microwave sintering of silica glass-ceramics, produced from amorphous silica xerogel extracted from sago waste ash. As a radiation source for a microwave heating a sub-millimeter wave gyrotron (Gyrotron FU CW I) with an output frequency of 300 GHz has been used. The powders of the amorphous silica xerogel have been dry pressed and then sintered at temperatures ranging from 300 °C to 1200 °C. Microwave absorbing properties of the sintered samples were investigated by measuring the dielectric constant, the dielectric loss, and the reflection loss at different frequencies in the interval from 8.2 to 12.4 GHz. Furthermore, the characteristics of the formation process for producing silica glass-ceramics were studied using a Raman Spectroscopy and a Scanning Electron Microscopy (SEM). The results indicate that the samples sintered at 1200 °C are characterized by lower reflection losses and a better transparency due to the formation of a fully crystallized silica glass- ceramic at sufficiently high temperature.

  5. High-power pulsed gyrotron for 300 GHz-band collective Thomson scattering diagnostics in the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Yuusuke; Saito, Teruo; Tatematsu, Yoshinori; Ikeuchi, Shinji; Manuilov, Vladimir N.; Kasa, Jun; Kotera, Masaki; Idehara, Toshitaka; Kubo, Shin; Shimozuma, Takashi; Tanaka, Kenji; Nishiura, Masaki

    2015-01-01

    A high-power pulse gyrotron was developed to generate a probe wave for 300 GHz-band collective Thomson scattering (CTS) diagnostics in the Large Helical Device. In this frequency range, avoiding mode competition is critical to realizing high-power and stable oscillation with a narrow frequency bandwidth. A moderately over-moded cavity was investigated to ensure sufficient isolation of a desired mode from neighbouring modes, and to achieve high power output simultaneously. A cavity with the TE14,2 operation mode, a triode electron gun with an intense laminar electron beam, and an internal mode convertor were designed to construct a prototype tube. It was experimentally observed that oscillation of the TE14,2 mode was strong enough for mode competition, and provided high power with sufficient stability. The oscillation characteristics associated with the electron beam properties were compared with the numerical characteristics to find an optimum operating condition. As a result, single-mode operation with maximum output power of 246 kW was demonstrated at 294 GHz with 65 kV/14 A electron beam, yielding efficiency of ˜27%. The radiation pattern was confirmed to be highly Gaussian. The duration of the 130 kW pulse, which is presently limited by the power supply, was extended up to 30 µs. The experimental results validate our design concept and indicate the potential for realizing a gyrotron with higher power and longer pulse toward practical use in 300 GHz CTS diagnostics.

  6. 60 GHz gyrotron development program. Final report, April 1979-June 1984

    SciTech Connect

    Shively, J.F.; Bier, R.E.; Caplan, M.; Cheng, M.K.; Choi, E.; Conner, C.C.; Craig, L.J.; Evans, S.J.; Evers, S.J.; Felch, K.L.

    1986-01-01

    The original objective of this program was to develop a microwave amplifier or oscillator capable of producing 200 kW CW power output at 110 GHz. The use of cyclotron resonance interaction was pursued, and the design phases of this effort are discussed. Later, however, the program's objective was changed to develop a family of oscillators capable of producing 200 kw of peak output power at 60 GHz. Gyrotron behavior studies were performed at 28 GHz to obtain generic design information as quickly as possible. The first experimental device at 60 GHz produced over 200 kw of peak power at a pulse duration of 20 ..mu..s. Heating problems and mode interference were encountered. The second experimental tube incorporated an optimized gun location but also suffered from mode interference. The third experimental tube included modifications that reduced mode interference. It demonstrated 200 kw of peak output at 100 ms pulse duration. The fourth experimental tube, which used an older rf circuit design but in a CW configuration, produced 71.5 kW CW. The fifth experimental tube incorporated a thinner double-disc output window which improved window bandwidth and reduced window loss. This tube also incorporated modifications to the drift tunnel and cavity coupling, which had proven successful in the third experimental pulse tube tests. It produced 123 kW of CW output power at 60 GHz rf load coolant boiling and tube window failure terminated the tests. A new waterload was designed and constructed, and alternative window designs were explored. A secondary task of developing a 56 GHz CW tube produced in excess of 100 kW CW at this alternate frequency. Testing of the sixth experimental tube resulted in operation at CW output power in the range of 200 to 206 kW for an hour. Output mode purity of the seventh experimental tube was measured at 95% TE/sub 02/. The tube was operated for about forty-five minutes with CW power output over 200 kW.

  7. Design of polarizers for a mega-watt long-pulse millimeter-wave transmission line on the large helical device

    SciTech Connect

    Ii, T. Kubo, S.; Shimozuma, T.; Kobayashi, S.; Okada, K.; Yoshimura, Y.; Igami, H.; Takahashi, H.; Ito, S.; Mizuno, Y.; Okada, K.; Mutoh, T.; Makino, R.; Kobayashi, K.; Goto, Y.

    2015-02-15

    The polarizer is one of the critical components in a high-power millimeter-wave transmission line. It requires full and highly efficient coverage of any polarization states, high-power tolerance, and low-loss feature. Polarizers with rounded shape at the edge of the periodic groove surface are designed and fabricated by the machining process for a mega-watt long-pulse millimeter-wave transmission line of the electron cyclotron resonance heating system in the large helical device. The groove shape of λ/8- and λ/4-type polarizers for an 82.7 GHz transmission line is optimally designed in an integral method developed in the vector theories of diffraction gratings so that the efficiency to realize any polarization state can be maximized. The dependence of the polarization states on the combination of the two polarizer rotation angles (Φ{sub λ/8}, Φ{sub λ/4}) is examined experimentally in a low-power test with the newly developed polarization monitor. The results show that the measured polarization characteristics are in good agreement with the calculated ones.

  8. Towards coherent combining of X-band high power microwaves: phase-locked long pulse radiations by a relativistic triaxial klystron amplifier

    PubMed Central

    Ju, Jinchuan; Zhang, Jun; Qi, Zumin; Yang, Jianhua; Shu, Ting; Zhang, Jiande; Zhong, Huihuang

    2016-01-01

    The radio-frequency breakdown due to ultrahigh electric field strength essentially limits power handling capability of an individual high power microwave (HPM) generator, and this issue becomes more challenging for high frequency bands. Coherent power combining therefore provides an alternative approach to achieve an equivalent peak power of the order of ∼100 GW, which consequently provides opportunities to explore microwave related physics at extremes. The triaxial klystron amplifier (TKA) is a promising candidate for coherent power combing in high frequency bands owing to its intrinsic merit of high power capacity, nevertheless phase-locked long pulse radiation from TKA has not yet been obtained experimentally as the coaxial structure of TKA can easily lead to self-excitation of parasitic modes. In this paper, we present investigations into an X-band TKA capable of producing 1.1 GW HPMs with pulse duration of about 103 ns at the frequency of 9.375 GHz in experiment. Furthermore, the shot-to-shot fluctuation standard deviation of the phase shifts between the input and output microwaves is demonstrated to be less than 10°. The reported achievements open up prospects for accomplishing coherent power combining of X-band HPMs in the near future, and might also excite new development interests concerning high frequency TKAs. PMID:27481661

  9. LGS adaptive optics system with long-pulsed sodium laser on Lijiang 1.8 meter telescope 2014-2016 observation campaign

    NASA Astrophysics Data System (ADS)

    Wei, Kai; Li, Min; Jiang, Changchun; Wei, Ling; Zheng, Wenjia; Li, Wenru; Ma, Xiaoyu; Zhou, Luchun; Jin, Kai; Bo, Yong; Zuo, Junwei; Wang, Pengyuan; Cheng, Feng; Zhang, Xiaojun; Chen, Donghong; Deng, Jijiang; Gao, Yang; Shen, Yu; Bian, Qi; Yao, Ji; Huang, Jiang; Dong, Ruoxi; Deng, Keran; Peng, Qinjun; Rao, Changhui; Xu, Zuyan; Zhang, Yudong

    2016-07-01

    During 2014-2016, the Laser guide star (LGS) adaptive optics (AO) system observation campaign has been carried out on Lijiang 1.8 meter telescope. During the campaign, two generation LGS AO systems have been developed and installed. In 2014, a long-pulsed solid Sodium prototype laser with 20W@400Hz, a beam transfer optical (BTO) system, and a laser launch telescope (LLT) with 300mm diameter were mounted onto the telescope and moved with telescope azimuth journal. At the same time, a 37-elements compact LGS AO system had been mounted on the Bent-Cassegrain focus and got its first light on observing HIP43963 (mV= 8.18mv) and reached Sr=0.27 in J Band after LGS AO compensation. In 2016, the solid Sodium laser has been upgrade to stable 32W@800Hz while D2a plus D2b repumping is used to increase the photon return, and a totally new LGS AO system with 164-elements Deformable Mirror, Linux Real Time Controller, inner closed loop Tip/tilt mirror, Multiple-PMT tracking detector is established and installed on the telescope. And the throughput for the BTO/LLT is improved nearly 20%. The campaign process, the performance of the two LGS AO systems especially the latter one, the characteristics of the BTO/LLT system and the result are present in this paper.

  10. Towards coherent combining of X-band high power microwaves: phase-locked long pulse radiations by a relativistic triaxial klystron amplifier

    NASA Astrophysics Data System (ADS)

    Ju, Jinchuan; Zhang, Jun; Qi, Zumin; Yang, Jianhua; Shu, Ting; Zhang, Jiande; Zhong, Huihuang

    2016-08-01

    The radio-frequency breakdown due to ultrahigh electric field strength essentially limits power handling capability of an individual high power microwave (HPM) generator, and this issue becomes more challenging for high frequency bands. Coherent power combining therefore provides an alternative approach to achieve an equivalent peak power of the order of ∼100 GW, which consequently provides opportunities to explore microwave related physics at extremes. The triaxial klystron amplifier (TKA) is a promising candidate for coherent power combing in high frequency bands owing to its intrinsic merit of high power capacity, nevertheless phase-locked long pulse radiation from TKA has not yet been obtained experimentally as the coaxial structure of TKA can easily lead to self-excitation of parasitic modes. In this paper, we present investigations into an X-band TKA capable of producing 1.1 GW HPMs with pulse duration of about 103 ns at the frequency of 9.375 GHz in experiment. Furthermore, the shot-to-shot fluctuation standard deviation of the phase shifts between the input and output microwaves is demonstrated to be less than 10°. The reported achievements open up prospects for accomplishing coherent power combining of X-band HPMs in the near future, and might also excite new development interests concerning high frequency TKAs.

  11. Extensive angiokeratoma circumscriptum - successful treatment with 595-nm variable-pulse pulsed dye laser and 755-nm long-pulse pulsed alexandrite laser.

    PubMed

    Baumgartner, Ján; Šimaljaková, Mária; Babál, Pavel

    2016-06-01

    Angiokeratomas are rare vascular mucocutaneous lesions characterized by small-vessel ectasias in the upper dermis with reactive epidermal changes. Angiokeratoma circumscriptum (AC) is the rarest among the five types in the current classification of angiokeratoma. We present a case of an extensive AC in 19-year-old women with Fitzpatrick skin type I of the left lower extremity, characterized by a significant morphological heterogeneity of the lesions, intermittent bleeding, and negative psychological impact. Histopathological examination after deep biopsy was consistent with that of angiokeratoma. The association with metabolic diseases (Fabry disease) was excluded by ophthalmological, biochemical, and genetic examinations. Nuclear magnetic resonance imaging has not detected deep vascular hyperplasia pathognomic for verrucous hemangioma. The combined treatment with 595-nm variable-pulse pulsed dye laser (VPPDL) and 755-nm long-pulse pulsed alexandrite laser (LPPAL) with dynamic cooling device led to significant removal of the pathological vascular tissue of AC. Only a slight degree of secondary reactions (dyspigmentations and texture changes) occurred. No recurrence was observed after postoperative interval of 9 months. We recommend VPPDL and LPPAL for the treatment of extensive AC.

  12. Simulation of a suite of generic long-pulse neutron instruments to optimize the time structure of the European Spallation Source

    SciTech Connect

    Lefmann, Kim; Kleno, Kaspar H.; Holm, Sonja L.; Sales, Morten; Birk, Jonas Okkels; Hansen, Britt R.; Knudsen, Erik; Willendrup, Peter K.; Lieutenant, Klaus; Moos, Lars von; Andersen, Ken H.

    2013-05-15

    We here describe the result of simulations of 15 generic neutron instruments for the long-pulsed European Spallation Source. All instruments have been simulated for 20 different settings of the source time structure, corresponding to pulse lengths between 1 ms and 2 ms; and repetition frequencies between 10 Hz and 25 Hz. The relative change in performance with time structure is given for each instrument, and an unweighted average is calculated. The performance of the instrument suite is proportional to (a) the peak flux and (b) the duty cycle to a power of approximately 0.3. This information is an important input to determining the best accelerator parameters. In addition, we find that in our simple guide systems, most neutrons reaching the sample originate from the central 3-5 cm of the moderator. This result can be used as an input in later optimization of the moderator design. We discuss the relevance and validity of defining a single figure-of-merit for a full facility and compare with evaluations of the individual instrument classes.

  13. Development of a long-pulse (30-s), high-energy (120-keV) ion source for neutral-beam applications

    SciTech Connect

    Tsai, C.C.; Barber, G.C.; Blue, C.W.

    1983-01-01

    Multimegawatt neutral beams of hydrogen or deuterium atoms are needed for fusion machine applications such as MFTB-B, TFTR-U, DIII-U, and FED (INTOR or ETR). For these applications, a duoPIGatron ion source is being developed to produce high-brightness deuterium beams at a beam energy of approx. 120 keV for pulse lengths up to 30 s. A long-pulse plasma generator with active water cooling has been operated at an arc level of 1200 A with 30-s pulse durations. The plasma density and uniformity are sufficient for supplying a 60-A beam of hydrogen ions to a 13- by 43-cm accelerator. A 10- by 25-cm tetrode accelerator has been operated to form 120-keV hydrogen ion beams. Using the two-dimensional (2-D) ion extraction code developed at Oak Ridge National Laboratory (ORNL), a 13- by 43-cm tetrode accelerator has been designed and is being fabricated. The aperture shapes of accelerator grids are optimized for 120-keV beam energy.

  14. Long-pulse, high-energy, narrow-linewidth Nd:LGGG laser at 1336.63 nm with reflecting Bragg grating

    NASA Astrophysics Data System (ADS)

    Li, Jia-Jia; Wang, Zhi-Min; Wang, Ming-Qiang; Zhang, Feng-Feng; Xu, Yi-Chen; Guo, Chuan; Zong, Nan; Zhang, Shen-Jin; Yang, Feng; Gao, Hong-Wei; Yuan, Lei; Bo, Yong; Cui, Da-Fu; Peng, Qin-Jun; Xu, Zu-Yan

    2017-04-01

    A long-pulse, high-energy, narrow-linewidth 1336.63 nm laser based on Nd:(Lu x Gd1‑x )3Ga5O12 crystal is demonstrated for the first time. A reflecting volume Bragg grating is used as a cavity mirror of the standing-wave cavity to select the desired wavelength. In order to narrow the linewidth, an 8 mm thick etalon is inserted in the cavity. A maximum output energy of 0.66 J at an operation pulse repetition rate of 5 Hz with a pulse width of 770 µs is obtained. The beam quality factor M 2 is about 1.2. The tuning range is more than 32 pm from 1336.613 to 1336.645 nm through changing the temperature of RVBG. The standard deviation of wavelength stability is about 1.6 pm over 20 min. At the output energy of about 0.59 J, the linewidth is estimated to be 6.79 pm.

  15. Design of polarizers for a mega-watt long-pulse millimeter-wave transmission line on the large helical device.

    PubMed

    Ii, T; Kubo, S; Shimozuma, T; Kobayashi, S; Okada, K; Yoshimura, Y; Igami, H; Takahashi, H; Ito, S; Mizuno, Y; Okada, K; Makino, R; Kobayashi, K; Goto, Y; Mutoh, T

    2015-02-01

    The polarizer is one of the critical components in a high-power millimeter-wave transmission line. It requires full and highly efficient coverage of any polarization states, high-power tolerance, and low-loss feature. Polarizers with rounded shape at the edge of the periodic groove surface are designed and fabricated by the machining process for a mega-watt long-pulse millimeter-wave transmission line of the electron cyclotron resonance heating system in the large helical device. The groove shape of λ/8- and λ/4-type polarizers for an 82.7 GHz transmission line is optimally designed in an integral method developed in the vector theories of diffraction gratings so that the efficiency to realize any polarization state can be maximized. The dependence of the polarization states on the combination of the two polarizer rotation angles (Φλ/8, Φλ/4) is examined experimentally in a low-power test with the newly developed polarization monitor. The results show that the measured polarization characteristics are in good agreement with the calculated ones.

  16. Theoretical and experimental study of the space-charge oscillations in the electron-optical system of a relativistic gyrotron

    SciTech Connect

    Ilyakov, E. V. Kulagin, I. S.; Manuilov, V. N.; Movshevich, B. Z.

    2011-12-15

    A theoretical and experimental study of the oscillations of a space-charge cloud in a magnetron-injection gun of a powerful relativistic gyrotron has been performed. The charge storage occurs via electron-beam magnetic compression of the reflection of a part of the electrons having the highest transverse velocities from a magnetic mirror. It has been established that at high values of the compression coefficient the beam loses its stability that finally leads to the appearance of the beam current modulation at the frequency of the longitudinal oscillations of an electron beam in an adiabatic trap. According to the numerical simulations, the energy spread in the formed beam under these conditions reaches 4.6%, which is higher by an order of magnitude than that due to the space-charge effect in the beam transported along the metal tube.

  17. Effects of tapering structures on the characteristics of a coaxial-waveguide gyrotron backward-wave oscillator

    SciTech Connect

    Hung, C. L.; Chang, T. H.; Yeh, Y. S.

    2011-10-15

    This study analyzes the characteristics of a gyrotron backward-wave oscillator (gyro-BWO) with a longitudinally tapered coaxial-waveguide by using a single-mode, self-consistent nonlinear code. Simulation results indicate that although tapering the inner wall or the outer wall can significantly raise the start-oscillation current, the former is more suitable for mode selection than the latter because an increase of the start-oscillation current by a tapered inner wall heavily depends on the chosen C value (i.e., the average ratio of the outer radius to the inner radius over the axial waveguide length). Selective suppression of the competing mode by tapering the inner wall is numerically demonstrated. Moreover, efficiency of the coaxial gyro-BWO is increased by tapering the outer wall. Properly down-tapering the outer wall ensures that the coaxial gyro-BWO can reach a maximum efficiency over twice that with a uniform one.

  18. Radio-frequency plasma cleaning for mitigation of high-power microwave-pulse shortening in a coaxial gyrotron

    NASA Astrophysics Data System (ADS)

    Cohen, William E.; Gilgenbach, Ronald M.; Jaynes, Reginald L.; Peters, Christopher W.; Lopez, Mike R.; Lau, Y. Y.; Anderson, Scott A.; Brake, Mary L.; Spencer, Thomas A.

    2000-12-01

    Results are reported demonstrating that radio-frequency (rf) plasma cleaning is an effective technique for mitigating microwave-pulse shortening (i.e., lengthening the pulse) in a multimegawatt, large-orbit, coaxial gyrotron. Cleaning plasmas were generated by 50 W of rf power at 13.56 MHz in nitrogen fill gas in the pressure range 15-25 mTorr. Improvements in the averaged microwave energy output of this high-power-microwave device ranged from 15% to 245% for different initial conditions and cleaning protocols. The mechanism for this improvement is believed to be rf plasma sputtering of excess water vapor from the cavity/waveguide and subsequent removal of the contaminant by cryogenic vacuum pumps.

  19. Status of Experiments on the EU 2 MW Coaxial Cavity Iter Gyrotron Pre-Prototype at Fzk

    NASA Astrophysics Data System (ADS)

    Kern, S.; Flamm, J.; Gantenbein, G.; Illy, S.; Jin, J.; Piosczyk, B.; Prinz, O.; Rzesnicki, T.; Thumm, M.; Dumbrajs, O.

    2009-04-01

    A coaxial cavity gyrotron, similar to the EU 2 MW tube for ITER, is under investigation at FZK at reduced magnetic field, which limits the expected RF power to 1.5 MW. While in former experiments only 1.1 MW was obtained, now, after the electron gun was changed, parasitic low frequency oscillations were removed and an RF power of 1.3 MW was reached. The power now seems to be limited by another parasitic high frequency oscillation at 160 GHz, which appears simultaneously to the desired working mode. A second problem of the pre-prototype tube, insufficient Gaussian mode content of the output wave of only 76%, was investigated by verifying the employed tools. The results indicate a problem at the third, phase correcting mirror, while the simulations appear to be acceptable. Finally, to further improve the quasi-optical mode converter a different approach to launcher design using arbitrary wall deformations is underway.

  20. Study on the Before Cavity Interaction in a Second Harmonic Gyrotron Using 3D CFDTD PIC Simulations

    NASA Astrophysics Data System (ADS)

    Lin, M. C.; Illy, S.; Thumm, M.; Jelonnek, J.

    2016-10-01

    A computational study on before cavity interaction (BCI) in a 28 GHz second harmonic (SH) gryotron for industrial applications has been performed using a 3-D conformal finite-difference time-domain (CFDTD) particle-in-cell (PIC) method. On the contrary to the after cavity interaction (ACI), i.e. beam wave interaction in the non-linear uptaper after the cavity, which has been widely investigated, the BCI, i.e. beam wave interaction in the non-linear downtaper before the cavity connected to the beam tunnel with an entrance, is less noticed and discussed. Usually the BCI might be considered easy to be eliminated. However, this is not always the case. As the SH gyrotron had been designed for SH TE12 mode operation, the first harmonic (FH) plays the main competition. In the 3-D CFDTD PIC simulations, a port boundary has been employed for the gyro-beam entrance of the gyrotron cavity instead of a metallic short one which is not reflecting a realistic situation as an FH backward wave oscillation (BWO) is competing with the desired SH generation. A numerical instability has been found and identified as a failure of the entrance port boundary caused by an evanescent wave or mode conversion. This indicates the entrance and downtaper are not fully cut-off for some oscillations. A further study shows that the undesired oscillation is the FH TE11 BWO mode concentrated around the beam tunnel entrance and downtaper. A mitigation strategy has been found to suppress this undesired BCI and avoid possible damage to the gun region.

  1. Control of hair growth using long-pulsed alexandrite laser is an efficient and cost effective therapy for patients suffering from recurrent pilonidal disease.

    PubMed

    Khan, Muhammad Adil Abbas; Javed, Ammar Asrar; Govindan, Karthikeyan Srinivasan; Rafiq, Sadia; Thomas, Kay; Baker, Lynne; Kenealy, John

    2016-07-01

    Pilonidal sinus (PNS) and its surgical management have a profound impact on hospital resources in terms of finances and productive man-hours. Surgical treatment has been the mainstay of treatment of both acute and chronic pilonidal sinus but recurrence is common. The control of hair growth in the sinus region plays an important role in preventing recurrence. Here, we discuss our experience of treating 19 patients suffering from recurrent pilonidal sinus with laser depilation and its long-term cost effectiveness. This is a retrospective study on patients who had recurrence of pilonidal sinus following multiple surgical treatments. They were treated using long-pulsed alexandrite laser for depilation in the sinus area, an outpatient procedure. Their clinical characteristics and outcomes were then evaluated. There was a significant reduction in hair density after laser treatment (p < 0.001). The disease-free period after laser treatment was significantly longer than that one after surgical treatment (p < 0.001). The average cost of repeated surgical treatment per disease-free month was significantly higher than that of laser treatment (p < 0.001). Evidence suggests the role of natal cleft hair growth in the evolution of the pilonidal disease; therefore, control of hair growth should be considered as an adjunct to the initial treatment via surgery. Compared to surgical treatment of recurrences, laser depilation is an efficient and cost-effective method of preventing recurrence and reducing morbidity and loss of man-hours. We suggest that laser depilation of the pilonidal sinus should be funded by clinical commissioning groups.

  2. Efficacy and Safety of Hair Removal with a Long-Pulsed Diode Laser Depending on the Spot Size: A Randomized, Evaluators-Blinded, Left-Right Study

    PubMed Central

    Jo, Seong Jin; Kim, Jin Yong; Ban, Juhee; Lee, Youngjoo

    2015-01-01

    Background The efficacy of the long-pulsed diode laser (LPDL) in hair removal is determined with various physical parameters. Recently, LPDLs with a larger spot size are commercially available; however, the independent effect of spot size on hair removal has not been studied. Objective This study aimed to compare the efficacy of the LPDL in hair removal depending on the spot size. Methods A randomized, evaluators-blind, intrapatient comparison (left vs. right) trial was designed. Ten healthy Korean women received three hair removal treatment sessions on both armpits with the 805-nm LPDL and followed for 3 months. A 10×10 mm handpiece (D1) or a 10×30 mm handpiece (D3) was randomly assigned to the right or left axilla. The fluence, pulse duration, and epidermal cooling temperature were identical for both armpits. Hair clearance was quantified with high-resolution photos taken at each visit. Postprocedural pain was quantified on a visual analogue scale. Adverse events were evaluated by physical examination and the patients' self-report. Results The mean hair clearance at 3 months after three treatment sessions was 38.7% and 50.1% on the armpits treated with D1 and D3, respectively (p=0.028). Procedural pain was significantly greater in the side treated with D3 (p=0.009). Serious adverse events were not observed. Conclusion Given that the pulse duration, fluence, and epidermal cooling were identical, the 805-nm LPDL at the three times larger spot size showed an efficacy improvement of 29.5% in axillary hair removal without serious adverse events. PMID:26512165

  3. Treatment of enlarged pores with the quasi long-pulsed versus Q-switched 1064 nm Nd:YAG lasers: A split-face, comparative, controlled study

    PubMed Central

    Roh, MR; Goo, BC; Jung, JY; Chung, HJ; Chung, KY

    2011-01-01

    Background and Aims: A variety of treatment modalities have been used to reduce the size of en-larged pores. The 1064 nm Nd:YAG laser, in addition to its role in removal of tattoos and age-related dyschromia, depilation and skin rejuvenation, may also play a role in reducing the size of enlarged pores. The present split-face controlled study assessed and compared the efficacy between the quasi long-pulsed (micropulsed) and the Q-switched modes of the Nd:YAG laser in the treatment of enlarged pores. Subjects and Methods: Twenty subjects with enlarged pores were recruited for the micropulsed vs Q-switched study, all treated with the same 1064 nm Nd:YAG laser system. Ten subjects were treated with the 300 µs micropulsed mode and the other ten subjects were treated with the 5 ns Q-switched mode. All subjects were treated on the right half of the face, the left half serving as an untreated control. Five laser sessions were performed. The pore sizes were measured using an image analysis program and the sebum level was measured with a Sebumeter® before and after the treatments. Results: The pore size and sebum level significantly decreased with treatment on the treated side (right cheek and right half of nose) in both the micropulsed and Q-switched modes compared to the control side (p<0.05), but without any statistically significant difference between the modes. Conclusions: The micropulsed and Q-switched Nd:YAG laser treatments reduced pore size and sebum levels with more or less equal efficacy and with no adverse side effects. PMID:24155526

  4. Suppression of spurious mode oscillation in mega-watt 77-GHz gyrotron as a high quality probe beam source for the collective Thomson scattering in LHD

    SciTech Connect

    Ogasawara, S.; Kubo, S.; Nishiura, M.; Tanaka, K.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Takahashi, H.; Ito, S.; Takita, Y.; Kobayashi, S.; Mizuno, Y.; Okada, K.; Tatematsu, Y.; Saito, T.; Minami, R.; Kariya, T.; Imai, T.

    2012-10-15

    Collective Thomson scattering (CTS) diagnostic requires a strong probing beam to diagnose a bulk and fast ion distribution function in fusion plasmas. A mega-watt gyrotron for electron cyclotron resonance heating is used as a probing beam in the large helical device. Spurious mode oscillations are often observed during the turning on/off phase of the modulation. The frequency spectra of the 77-GHz gyrotron output power have been measured, and then one of the spurious modes, which interferes with the CTS receiver system, is identified as the TE{sub 17,6} mode at the frequency of 74.7 GHz. The mode competition calculation indicates that the increase of the magnetic field strength at the gyrotron resonator can avoid such a spurious mode and excite only the main TE{sub 18,6} mode. The spurious radiation at the 74.7 GHz is experimentally demonstrated to be suppressed in the stronger magnetic field than that optimized for the high-power operation.

  5. Absolute measurements of short-pulse, long-pulse, and capsule-implosion backlighter sources at x-ray energies greater than 10 keV

    NASA Astrophysics Data System (ADS)

    Maddox, Brian

    2010-11-01

    Laser-generated x-ray backlighters with x-ray energies > 10 keV are becoming essential diagnostic tools for many high energy density experiments. Examples include studies of high areal density cores for ignition designs, mid- to high-Z capsule implosion experiments, absolute equation of state experiments, dynamic diffraction under extreme pressures, and the study of material strength. Significant progress has been made recently using short pulse lasers, coupled to metal foil targets [1], and imploding capsules for producing high energy backlighters. Measuring the absolute x-ray flux and spectra from these sources is required for quantitative analysis of experimental data and for the design and planning of future experiments. We have performed an extensive series of experiments to measure the absolute x-ray flux and spectra on the Titan, Omega, Omega-EP, and NIF laser systems, employing single-photon-counting detectors, crystal spectrometers, and multichannel differential filtering (Ross-pair) and filter stack bremsstrahlung spectrometers. Calibrations were performed on these instruments [2] enabling absolute measurements of backlighter spectra to be made from 10 keV to 1 MeV. Various backlighter techniques that generate either quasi-monochromatic sources or broadband continuum sources will be presented and compared. For Molybdenum Kα backlighters at x-ray energy of ˜17 keV we measure conversion efficiencies of 1.3x10-4 using 1 μm wavelength short-pulse lasers at an intensity of ˜1x10^17 W/cm^2. This is a factor of ˜2 high than using 0.3 μm wavelength long-pulse lasers at an intensity of ˜1x10^16 W/cm^2. Other types of backlighter targets include capsule implosion backlighters that can generate a very bright ``white-light'' continuum x-ray source and high-Z gas filled capsules that generate a quasi-line-source of x rays. We will present and compare the absolute laser energy to x-ray conversion efficiencies for these different backlighter techniques and give

  6. A point-like source of extreme ultraviolet radiation based on a discharge in a non-uniform gas flow, sustained by powerful gyrotron radiation of terahertz frequency band

    SciTech Connect

    Glyavin, M. Yu.; Golubev, S. V.; Izotov, I. V.; Litvak, A. G.; Luchinin, A. G.; Razin, S. V.; Sidorov, A. V.; Skalyga, V. A.; Vodopyanov, A. V.

    2014-10-27

    The possibility and prospects of extreme ultraviolet (UV) point-like source development are discussed in the present paper. The UV source is based on the discharge sustained by powerful gyrotron radiation of terahertz (THz) frequency band in non-uniform gas flow injected into vacuum volume through a nozzle with diameter less than 1 mm. Recent developments of THz-band gyrotrons with appropriate power level made such discharges possible. First experimental results on a point-like plasma creation by 100 kW radiation of 0.67 THz gyrotron are presented. The possibility of discharge localization within the area less than 1 mm is demonstrated. The discharge emission within the wavelength range from 112 nm to 650 nm was studied. The measured power of light emission in the range of 112–180 nm was measured to be up to 10 kW.

  7. Comparative analysis of fourth-harmonic multiplying gyrotron traveling-wave amplifiers operating at different frequency multiplications

    NASA Astrophysics Data System (ADS)

    Yeh, Y. S.; Kao, W. J.; Li, L. J.; Guo, Y. W.

    2017-01-01

    The harmonic multiplying operation in a gyrotron traveling-wave amplifier (gyro-TWA) permits magnetic field reduction and frequency multiplication. This study presents a comparative analysis of fourth-harmonic multiplying gyro-TWAs with three schemes of operation. An improved mode-selective circuit using circular waveguides with various radii provides the rejection points within the range of operating frequencies to suppress the competing modes of gyro-TWAs. The simulated results reveal that gyro-TWAs are the most susceptible to the fundamental-harmonic TE11 competing mode, regardless of the operating scheme, and that the mode-selective circuit can provide an attenuation of more than 20 dB to suppress the competing modes. The amplification of the waves in a gyro-TWA depends on the lengths of the sections, and the simulated results show that the gain increases for all schemes, as the length of the lossy section or the length of the copper section increases. All schemes exhibit nearly the same saturated output powers and bandwidths; however, the saturated gain of the scheme at a high frequency multiplication ratio is less than that of the scheme at a low frequency multiplication ratio. Extensive numerical calculations of power and gain scaling are conducted for all schemes.

  8. Design and Implementation of a 200kW, 28GHz gyrotron system for the Compact Toroidal Hybrid Experiment

    NASA Astrophysics Data System (ADS)

    Hartwell, G. J.; Knowlton, S. F.; Ennis, D. A.; Maurer, D. A.; Bigelow, T.

    2016-10-01

    The Compact Toroidal Hybrid (CTH) is an l = 2 , m = 5 torsatron/tokamak hybrid (R0 = 0.75 m, ap 0.2 m, and | B | <= 0.7 T). It can generate its highly configurable confining magnetic fields solely with external coils, but typically operates with up to 80 kA of ohmically-generated plasma current for heating. New studies of edge plasma transport in stellarator geometries will benefit from CTH operating as a pure torsatron with a high temperature edge plasma. Accordingly, a 28 GHz, 200 kW gyrotron operating at 2nd harmonic for ECRH is being installed to supplement the existing 15 kW klystron system operating at the fundamental frequency; the latter will be used to initially generate the plasma. Ray-tracing calculations that guide the selection of launching position, antenna focal length, and beam-steering characteristics of the ECRH have been performed with the TRAVIS code [ 1 ] . The calculated absorption is up to 95.7% for vertically propagating rays, however, the absorption is more sensitive to magnetic field variations than for a side launch where the field gradient is tokamak-like. The design of the waveguide path and components for the top-launch scenario will be presented. This work is supported by U.S. Department of Energy Grant No. DE-FG02-00ER54610.

  9. A Stable 0.2-THz Coaxial-Waveguide Gyrotron Traveling-Wave-Tube Amplifier with Distributed Losses

    NASA Astrophysics Data System (ADS)

    Hung, C. L.; Yeh, Y. S.; Chang, T. H.; Fang, R. S.

    2017-01-01

    For high-power operation, a THz gyrotron traveling-wave-tube (gyro-TWT) amplifier must operate in a high-order waveguide mode to enlarge the transverse dimension of an interaction waveguide. However, a gyro-TWT amplifier operating in a high-order waveguide mode is susceptible to spurious oscillations. To improve the device stability, in this study, we investigate the possibility of using a coaxial waveguide with distributed losses as the interaction structure. For the same required attenuation, all threatening oscillating modes can be suppressed using different combinations of losses of inner and outer cylinders. This provides flexibility in designing distributed losses when considering the ohmic loading of the interaction structure. We predict that the 0.2-THz gyro-TWT can stably produce a peak power of 14 kW with an efficiency of 23 %, a 3-dB bandwidth of 3.5 GHz, and a saturated gain of 50 dB for a 20-kV 3-A electron beam with a 5 % velocity spread and 1.0 velocity ratio.

  10. Design and measurement of a TE13 input converter for high order mode gyrotron travelling wave amplifiers

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Liu, Guo; Shu, Guoxiang; Yan, Ran; Wang, Li; Agurgo Balfour, E.; Fu, Hao; Luo, Yong; Wang, Shafei

    2016-03-01

    A technique to launch a circular TE13 mode to interact with the helical electron beam of a gyrotron travelling wave amplifier is proposed and verified by simulation and cold test in this paper. The high order (HOM) TE13 mode is excited by a broadband Y-type power divider with the aid of a cylindrical waveguide system. Using grooves and convex strips loaded at the lateral planes of the output cylindrical waveguide, the electric fields of the potential competing TE32 and TE71 modes are suppressed to allow the transmission of the dominant TE13 mode. The converter performance for different structural dimensions of grooves and convex strips is studied in detail and excellent results have been achieved. Simulation predicts that the average transmission is ˜-1.8 dB with a 3 dB bandwidth of 7.2 GHz (91.5-98.7 GHz) and port reflection is less than -15 dB. The conversion efficiency to the TE32 and TE71 modes are, respectively, under -15 dB and -24 dB in the operating frequency band. Such an HOM converter operating at W-band has been fabricated and cold tested with the radiation boundary. Measurement from the vector network analyzer cold test and microwave simulations show a good reflection performance for the converter.

  11. Study of hydrogen ECR plasma in a simple mirror magnetic trap heated by 75 GHz pulsed gyrotron radiation

    NASA Astrophysics Data System (ADS)

    Skalyga, V. A.; Izotov, I. V.; Sidorov, A. V.; Golubev, S. V.; Razin, S. V.

    2017-03-01

    Plasma of electron cyclotron resonance (ECR) discharge sustained by millimeter wave radiation is widely used for production of ion beams of different kind. The main trend in ECR ion sources development nowadays is an increase of frequency and power of microwave heating. The most advanced systems use gyrotrons in 24-60 GHz frequency range. In previous studies at IAP RAS it was demonstrated that ECR source SMIS 37 (Simple Mirror Ion Source) with 37.5 GHz heating operating in quasigasdynamic regime of plasma confinement is able to produce proton and deuteron beams with ion current density about 700 mA/cm2. As the next step of these investigations plasma properties of the discharge sustained by 75 GHz radiation have been studied. Plasma density and electron temperature were determined using spectroscopic and Langmuir probe techniques. It was demonstrated that plasma density could reach values close to 1014 cm-3 and that is of great interest for further development of high current ion sources for various applications.

  12. Status of ECRH project on EAST Tokamak

    SciTech Connect

    Wang, Xiaojie; Liu, Fukun; Shan, Jiafang; Xu, Handong; Wu, Dajun; Li, Bo; Zhang, Jiang; Huang, Yiyun; Tang, Yunying; Xu, Weiye; Hu, Huaichuan; Wang, Jian; Xu, Li; Wei, Wei

    2014-02-12

    A 140GHz electron cyclotron resonance heating and current drive (EC H and CD) project for EAST Tokamak is launched in 2011 with a total power of 4MW and pulse length of 100 s. The main objectives of the system are to provide central H and CD, assist start-up and control of MHD activities. The system comprises four gyrotrons each with nominal output power of 1MW at 140GHz. The RF power, transmitted through four evacuated corrugated waveguides will be injected into plasma from the low field side (radial port). The front steering equatorial launcher directs the RF beam over ±25° toroidally and scans over 38° poloidally. At present, the construction of the first 1MW system is undergoing for the expected campaign in the end of 2013. In this paper, the current status of the development and the design of the 140-GHz ECRH system are presented.

  13. Automated Microwave Complex on the Basis of a Continuous-Wave Gyrotron with an Operating Frequency of 263 GHz and an Output Power of 1 kW

    NASA Astrophysics Data System (ADS)

    Glyavin, M. Yu.; Morozkin, M. V.; Tsvetkov, A. I.; Lubyako, L. V.; Golubiatnikov, G. Yu.; Kuftin, A. N.; Zapevalov, V. E.; V. Kholoptsev, V.; Eremeev, A. G.; Sedov, A. S.; Malygin, V. I.; Chirkov, A. V.; Fokin, A. P.; Sokolov, E. V.; Denisov, G. G.

    2016-02-01

    We study experimentally the automated microwave complex for microwave spectroscopy and diagnostics of various media, which was developed at the Institute of Applied Physics of the Russian Academy of Sciences in cooperation with GYCOM Ltd. on the basis of a gyrotron with a frequency of 263 GHz and operated at the first gyrofrequency harmonic. In the process of the experiments, a controllable output power of 0 .1 -1 kW was achieved with an efficiency of up to 17 % in the continuous-wave generation regime. The measured radiation spectrum with a relative width of about 10 -6 and the frequency values measured at various parameters of the device are presented. The results of measuring the parameters of the wave beam, which was formed by a built-in quasioptical converter, as well as the data obtained by measuring the heat loss in the cavity and the vacuum output window are analyzed.

  14. Status, Operation, and Extension of the ECRH System at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Wagner, D.; Stober, J.; Leuterer, F.; Monaco, F.; Müller, S.; Münich, M.; Rapson, C. J.; Reich, M.; Schubert, M.; Schütz, H.; Treutterer, W.; Zohm, H.; Thumm, M.; Scherer, T.; Meier, A.; Gantenbein, G.; Jelonnek, J.; Kasparek, W.; Lechte, C.; Plaum, B.; Goodman, T.; Litvak, A. G.; Denisov, G. G.; Chirkov, A.; Zapevalov, V.; Malygin, V.; Popov, L. G.; Nichiporenko, V. O.; Myasnikov, V. E.; Tai, E. M.; Solyanova, E. A.; Malygin, S. A.

    2016-01-01

    The upgraded electron cyclotron resonance heating (ECRH) system at ASDEX Upgrade (AUG) has been routinely used with eight gyrotrons during the last experimental campaign. A further upgrade will replace the existing system of four short-pulse (140 GHz, 2 s, 500 kW) gyrotrons. The final goal is to have around 6.5-7 MW at 140 GHz (or 5.5 MW at 105 GHz) from eight units available in the plasma during the whole AUG discharge (10 s). The system operates at 140 and 105 GHz with X2, O2 and X3 schemes. For B > 3 T also an ITER-like O1-scenario can be run using the 105 GHz option. Four of the eight launching antennas are capable of fast poloidal movements necessary for real-time control of the location of power deposition.

  15. Research on Gyrotrons.

    DTIC Science & Technology

    1985-04-15

    Substituting tAW into Eq. (30) we obtain Berstein Mode Quasi-Optical Gyroklystron 427 If we assume w 2 n /y and note that to lowest order d /dt = /y, Eq...Radiofiz., vol. 15, No. 8, 1247, 1972. [44] V. K. Lygin and S. E. Tsimring, Isv. VUZ, Radiofizika, 21, 1363, 1978. [45] S. D. Conte and Carl de Boor

  16. Electron Cyclotron Resonance Heating for W7-X

    SciTech Connect

    Michel, G.; Braune, H.; Erckmann, V.; Laqua, H. P.; Marushchenko, N.; Oosterbeek, J. W.; Brand, P.; Kasparek, W.; Gantenbein, G.; Thumm, M.; Weissgerber, M.

    2009-11-26

    The HELIAS-type Stellarator Wendelstein 7-X, which is currently under construction in Greifswald, Germany, will be equipped with a 140 GHz, 10 MW, CW ECRH system. It will be the main plasma heating system for W7-X. The key features and capabilities of the ECRH plant will be discussed together with the envisaged start-up and heating scenarios. We also report on the ECRH stray radiation test facility MISTRAL and on the extension of the gyrotron frequency range.

  17. Prospective Comparison of Dual Wavelength Long-Pulsed 755-nm Alexandrite/1,064-nm Neodymium:Yttrium-Aluminum-Garnet Laser versus 585-nm Pulsed Dye Laser Treatment for Rosacea

    PubMed Central

    Seo, Hyun-Min; Kim, Jung-In; Kim, Han-Saem; Choi, Young-Jun

    2016-01-01

    Background Rosacea treatments including oral/topical medications and laser therapy are numerous but unsatisfactory. Objective To compare the effectiveness of the dual wavelength long-pulsed 755-nm alexandrite/1,064-nm neodymium: yttrium-aluminum-garnet laser (LPAN) with that of 585-nm pulsed dye laser (PDL) for rosacea. Methods This was a randomized, single-blinded, comparative study. Full face received four consecutive monthly treatments with LPAN or PDL, followed-up for 6 months after the last treatment. Erythema index was measured by spectrophotometer, and digital photographs were evaluated by consultant dermatologists for physician's global assessment. Subjective satisfaction surveys and adverse effects were recorded. Results Forty-nine subjects with rosacea enrolled and 12 dropped out. There were no significant differences between LPAN and PDL in the mean reduction of the erythema index (p=0.812; 3.6% vs. 2.8%), improvement of physician's global assessment (p=1.000; 88.9% vs. 89.5%), and subject-rated treatment satisfaction (p=0.842; 77.8% vs. 84.2%). PDL showed more adverse effects including vesicles than LPAN (p=0.046; 26.3% vs. 0.0%). No other serious or permanent adverse events were observed in both treatments. Conclusion Both LPAN and PDL may be effective and safe treatments for rosacea. PMID:27746641

  18. The W7-X ECRH Plant: Recent Achievements

    SciTech Connect

    Erckmann, V.; Braune, H.; Laqua, H. P.; Michel, G.; Weissgerber, M.; Brand, P.; Kasparek, W.; Dammertz, G.; Gantenbein, G.; Schmid, M.; Thumm, M.

    2007-09-28

    The 10 MW, 140 GHz, CW ECRH-plant for W7-X is in an advanced state of commissioning and the installation was used to investigate advanced applications for extended heating- and current drive scenarios. The operation of the TED gyrotrons was recently extended to a 2nd frequency of 103.6 GHz at reduced output power and first results are presented. An improved collector sweep system for the W7-X gyrotrons with enhanced power capability and smooth power distribution was developed, results are reported.

  19. Long pulse production from short pulses

    DOEpatents

    Toeppen, J.S.

    1994-08-02

    A method of producing a long output pulse from a short pump pulse is disclosed, using an elongated amplified fiber having a doped core that provides an amplifying medium for light of one color when driven into an excited state by light of a shorter wavelength and a surrounding cladding. A seed beam of the longer wavelength is injected into the core at one end of the fiber and a pump pulse of the shorter wavelength is injected into the cladding at the other end of the fiber. The counter-propagating seed beam and pump pulse will produce an amplified output pulse having a time duration equal to twice the transit time of the pump pulse through the fiber plus the length of the pump pulse. 3 figs.

  20. Long pulse production from short pulses

    DOEpatents

    Toeppen, John S.

    1994-01-01

    A method of producing a long output pulse (SA) from a short pump pulse (P), using an elongated amplified fiber (11) having a doped core (12) that provides an amplifying medium for light of one color when driven into an excited state by light of a shorter wavelength and a surrounding cladding 13. A seed beam (S) of the longer wavelength is injected into the core (12) at one end of the fiber (11) and a pump pulse (P) of the shorter wavelength is injected into the cladding (13) at the other end of the fiber (11). The counter-propagating seed beam (S) and pump pulse (P) will produce an amplified output pulse (SA) having a time duration equal to twice the transit time of the pump pulse (P) through the fiber (11) plus the length of the pump pulse (P).

  1. A Long Pulse Solid State Induction Modulator

    SciTech Connect

    Cassel, R

    2004-05-04

    The Next Linear Collider accelerator is developing a high efficiency, highly reliable, and low cost pulsed-power modulator to drive the NLC 500KV, 230A X band klystrons. The induction of fractional turn transformer is most applicable for short pulse width of less than 1.5 microseconds due to the size of the induction cores involved. This paper will cover the techniques SLAC is developing to use the induction modulator in longer pulse operation of up to 15 microseconds. The 3 microseconds SLAC design as will, as the proposals for wider pulse application will be discussed.

  2. Comparison of Epidermal/Dermal Damage Between the Long-Pulsed 1064 nm Nd:YAG and 755 nm Alexandrite Lasers Under Relatively High Fluence Conditions: Quantitative and Histological Assessments

    PubMed Central

    Lee, Ju Hwan; Park, So Ra; Jo, Jeong Ho; Park, Sung Yun; Seo, Young Kwon

    2014-01-01

    Abstract Objective: The purpose of this study was to compare degrees of epidermal/dermal tissue damage quantitatively and histologically after laser irradiation, to find ideal treatment conditions with relatively high fluence for skin rejuvenation. Background data: A number of recent studies have evaluated the clinical efficacy and safety of therapeutic lasers under relatively low fluence conditions. Methods: We transmitted the long-pulsed 1064 nm Nd:YAG and 755 nm Alexandrite lasers into pig skin according to different fluences and spot diameters, and estimated epidermal/dermal temperatures. Pig skin specimens were stained with hematoxylin and eosin for histological assessments. The fluence conditions comprised 26, 30, and 36 J/cm2, and the spot diameter conditions were 5, 8, and 10 mm. Pulse duration was 30 ms for all experiments. Results: Both lasers produced reliable thermal damage on the dermis without any serious epidermal injuries, under relatively high fluence conditions. The 1064 nm laser provided more active fibrous formations than the 755 nm laser, while higher risks for tissue damages simultaneously occurred. Conclusions: The ideal treatment conditions for skin rejuvenation were 8 mm diameter with 30 J/cm2 and 10 mm diameter with 26 J/cm2 for the 1064 nm laser, and 8 mm diameter with 36 J/cm2 and 10 mm diameter with 26 J/cm2 for the 755 nm laser. PMID:24992273

  3. Two-tier calibrated electro-optic sensing system for intense field characterization of high-power W-band gyrotron.

    PubMed

    Kim, Seok; Hong, Young-Pyo; Yang, Jong-Won; Lee, Dong-Joon

    2016-05-16

    We present a field-calibrated electro-optic sensing system for measurement of the electric field radiating from a high-power vacuum oscillator at ~95 GHz. The intense electric field is measured in absolute scale via two probe-calibration steps, associated with a photonic heterodyne scheme. First, a micro-electro-optic probe, fabricated to less than one-tenth the oscillation wavelength scale to minimize field-perturbation due to the probe, is placed on the aperture of a field-calculable WR-10 waveguide to calibrate the probe in V/m scale. Then, using this arrangement as a calibrated reference probe at the first-tier position, another probe-bulkier, and thus more robust and sensitive but not accessible to the aperture-is calibrated at the second-tier position away from the waveguide aperture. This two-tier calibrated probe was utilized to diagnose the sub-MV/m scale of intense electric fields and emissions from a high-power W-band gyrotron. The experimental results obtained proved consistent with calculated analytical results-verifying the efficacy of the developed system.

  4. Nonlinear full-wave-interaction analysis of a gyrotron-traveling-wave-tube amplifier based on a lossy dielectric-lined circuit

    SciTech Connect

    Du Chaohai; Liu Pukun

    2010-03-15

    The stability of the millimeter-wave gyrotron-traveling-wave-tube (gyro-TWT) amplifier can be effectively improved via controlling the propagation characteristics of the operating modes using lossy dielectric-lined (DL) waveguide. Self-consistent nonlinear theory of the electron cyclotron maser (ECM) interaction in lossy DL circuit is developed based on a full-wave study of the propagation characteristics of the DL waveguide. This nonlinear theory fully takes into consideration the waveguide structure and the lossy dielectric characteristics. It is capable of accurately calculating the ECM instability between a cyclotron harmonic and a circular polarized mode, and effectively predicting the nonlinear stability of the DL waveguide-based gyro-TWT. Systematic investigation of a Ka-band TE{sub 01} mode DL waveguide-based gyro-TWT is carried out, and numerical calculation reveals a series of interesting results. This work provides a basic theoretical tool for further exploring the application of the lossy DL waveguide in millimeter-wave gyro-TWTs.

  5. Further Characterization of 394-GHz Gyrotron FU CW GII with Additional PID Control System for 600-MHz DNP-SSNMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ueda, Keisuke; Matsuki, Yoh; Fujiwara, Toshimichi; Tatematsu, Yoshinori; Ogawa, Isamu; Idehara, Toshitaka

    2016-09-01

    A 394-GHz gyrotron, FU CW GII, has been designed at the University of Fukui, Japan, for dynamic nuclear polarization (DNP)-enhanced solid-state nuclear magnetic resonance (SSNMR) experiments at 600-MHz 1H resonant frequency. After installation at the Institute for Protein Research (IPR), Osaka University, Japan, a PID feedback control system was equipped to regulate the electron gun heater current for stabilization of the electron beam current, which ultimately achieved stabilization of output power when operating in continuous wave (CW) mode. During exploration to further optimize operating conditions, a continuous tuning bandwidth of approximately 1 GHz was observed by varying the operating voltage at a fixed magnetic field. In the frequency range required for positive DNP enhancement, the output power was improved by increasing the magnetic field and the operating voltage from their initial operational settings. In addition, fine tuning of output frequency by varying the cavity cooling water temperature was demonstrated. These operating conditions and ancillary enhancements are expected to contribute to further enhancement of SSNMR signal.

  6. Observation of dynamic interactions between fundamental and second-harmonic modes in a high-power sub-terahertz gyrotron operating in regimes of soft and hard self-excitation.

    PubMed

    Saito, Teruo; Tatematsu, Yoshinori; Yamaguchi, Yuusuke; Ikeuchi, Shinji; Ogasawara, Shinya; Yamada, Naoki; Ikeda, Ryosuke; Ogawa, Isamu; Idehara, Toshitaka

    2012-10-12

    Dynamic mode interaction between fundamental and second-harmonic modes has been observed in high-power sub-terahertz gyrotrons [T. Notake et al., Phys. Rev. Lett. 103, 225002 (2009); T. Saito et al. Phys. Plasmas 19, 063106 (2012)]. Interaction takes place between a parasitic fundamental or first-harmonic (FH) mode and an operating second-harmonic (SH) mode, as well as among SH modes. In particular, nonlinear excitation of the parasitic FH mode in the hard self-excitation regime with assistance of a SH mode in the soft self-excitation regime was clearly observed. Moreover, both cases of stable two-mode oscillation and oscillation of the FH mode only were observed. These observations and theoretical analyses of the dynamic behavior of the mode interaction verify the nonlinear hard self-excitation of the FH mode.

  7. Pulse-Periodic Regimes of Kinetic Instabilities in the Non-Equilibrium Plasma of an Electron Cyclotron Resonance Discharge Maintained by Continuous-Wave Radiation of a 24 GHz Gyrotron

    NASA Astrophysics Data System (ADS)

    Mansfeld, D. A.; Viktorov, M. E.; Vodopyanov, A. V.

    2017-01-01

    We have experimentally discovered an instability, which manifests itself as precipitations of hot electrons occurring synchronously with generation of bursts of electromagnetic radiation, in the plasma of an electron cyclotron resonance discharge maintained by a high-power, continuous-wave radiation of a 24 GHz gyrotron, for the first time. The observed instability has the kinetic nature and is determined by the formation of the non-equilibrium velocity distribution of hot particles. Two possible explanations are proposed for the mechanism of wave excitation in a two-component plasma with a stationary source of non-equilibrium particles. The results of the studies performed are of interest for modeling of the dynamics of magnetospheric cyclotron masers.

  8. Emittance of short-pulsed high-current ion beams formed from the plasma of the electron cyclotron resonance discharge sustained by high-power millimeter-wave gyrotron radiation

    NASA Astrophysics Data System (ADS)

    Razin, S.; Zorin, V.; Izotov, I.; Sidorov, A.; Skalyga, V.

    2014-02-01

    We present experimental results on measuring the emittance of short-pulsed (≤100 μs) high-current (80-100 mA) ion beams of heavy gases (Nitrogen, Argon) formed from a dense plasma of an ECR source of multiply charged ions (MCI) with quasi-gas-dynamic mode of plasma confinement in a magnetic trap of simple mirror configuration. The discharge was created by a high-power (90 kW) pulsed radiation of a 37.5-GHz gyrotron. The normalized emittance of generated ion beams of 100 mA current was (1.2-1.3) π mm mrad (70% of ions in the beams). Comparing these results with those obtained using a cusp magnetic trap, it was concluded that the structure of the trap magnetic field lines does not exert a decisive influence on the emittance of ion beams in the gas-dynamic ECR source of MCI.

  9. New Frequency Step-Tunable Ecrh System for Asdex Upgrade

    NASA Astrophysics Data System (ADS)

    Wagner, D.; Leuterer, F.; Manini, A.; Monaco, F.; Münich, M.; Ryter, F.; Schütz, H.; Zohm, H.; Franke, T.; Heidinger, R.; Thumm, M.; Kasparek, W.; Gantenbein, G.; Litvak, A. G.; Popov, L. G.; Nichiporenko, V. O.; Myasnikov, V. E.; Denisov, G. G.; Tai, E. M.; Solyanova, E. A.; Malygin, S. A.

    2006-02-01

    A new broadband ECRH (Electron Cyclotron Resonance Heating) system is currently under construction at the ASDEX Upgrade tokamak. This system will employ multi-frequency gyrotrons step-tunable in the range 105 140 GHz. In its final stage the system will consist of 4 gyrotrons with a total power of 4 MW and a pulse length of 10 s. It employs a fast steerable launcher for feedback controlled deposition that allows for poloidal steering of 10° within 100 ms. Transmission line elements, such as corrugated waveguides, polarizer mirrors and vacuum windows, are designed to cope for this frequency band.

  10. Long Pulse EBW Start-up Experiments in MAST

    SciTech Connect

    Shevchenko, V. F.; Caughman, J. B. O.; Diem, Stephanie J; Mailloux, J.; Peng, Yueng Kay Martin; Saveliev, A. N.; Takase, Y.; Taylor, G.

    2015-01-01

    Start-up technique reported here relies on a double mode conversion (MC) for electron Bernstein wave (EBW) excitation. It consists of MC of the ordinary (0) mode, entering the plasma from the low field side of the tokamak, into the extraordinary (X) mode at a mirror-polarizer located at the high field side. The X mode propagates back to the plasma, passes through electron cyclotron resonance (ECR) and experiences a subsequent X to EBW MC near the upper hybrid resonance (UHR). Finally the excited EBW mode is totally absorbed at the Doppler shifted ECR. The absorption of EBW remains high even in cold rarefied plasmas. Furthermore, EBW can generate significant plasma current giving the prospect of a fully solenoid-free plasma start-up. First experiments using this scheme were carried out on MAST [1]. Plasma currents up to 33 kA have been achieved using 28 GHz 100kW 90ms RF pulses. Recently experimental results were extended to longer RF pulses showing further increase of plasma currents generated by RF power alone. A record current of 73kA has been achieved with 450ms RF pulse of similar power. The current drive enhancement was mainly achieved due to RF pulse extension and further optimisation of the start-up scenario.

  11. Long pulse EBW start-up experiments in MAST

    SciTech Connect

    Shevchenko, V. F.; Baranov, Y. F.; Bigelow, T.; Caughman, J. B.; Diem, S.; Dukes, C.; Finburg, P.; Hawes, J.; Gurl, C.; Griffiths, J.; Mailloux, J.; Peng, M.; Saveliev, A. N.; Takase, Y.; Tanaka, H.; Taylor, G.

    2015-03-12

    Start-up technique reported here relies on a double mode conversion (MC) for electron Bernstein wave (EBW) excitation. It consists of MC of the ordinary (O) mode, entering the plasma from the low field side of the tokamak, into the extraordinary (X) mode at a mirror-polarizer located at the high field side. The X mode propagates back to the plasma, passes through electron cyclotron resonance (ECR) and experiences a subsequent X to EBW MC near the upper hybrid resonance (UHR). Finally the excited EBW mode is totally absorbed at the Doppler shifted ECR. The absorption of EBW remains high even in cold rarefied plasmas. Furthermore, EBW can generate significant plasma current giving the prospect of a fully solenoid-free plasma start-up. First experiments using this scheme were carried out on MAST [1]. Plasma currents up to 33 kA have been achieved using 28 GHz 100kW 90ms RF pulses. Recently experimental results were extended to longer RF pulses showing further increase of plasma currents generated by RF power alone. A record current of 73kA has been achieved with 450ms RF pulse of similar power. The current drive enhancement was mainly achieved due to RF pulse extension and further optimisation of the start-up scenario.

  12. Long pulse EBW start-up experiments in MAST

    DOE PAGES

    Shevchenko, V. F.; Baranov, Y. F.; Bigelow, T.; ...

    2015-03-12

    Start-up technique reported here relies on a double mode conversion (MC) for electron Bernstein wave (EBW) excitation. It consists of MC of the ordinary (O) mode, entering the plasma from the low field side of the tokamak, into the extraordinary (X) mode at a mirror-polarizer located at the high field side. The X mode propagates back to the plasma, passes through electron cyclotron resonance (ECR) and experiences a subsequent X to EBW MC near the upper hybrid resonance (UHR). Finally the excited EBW mode is totally absorbed at the Doppler shifted ECR. The absorption of EBW remains high even inmore » cold rarefied plasmas. Furthermore, EBW can generate significant plasma current giving the prospect of a fully solenoid-free plasma start-up. First experiments using this scheme were carried out on MAST [1]. Plasma currents up to 33 kA have been achieved using 28 GHz 100kW 90ms RF pulses. Recently experimental results were extended to longer RF pulses showing further increase of plasma currents generated by RF power alone. A record current of 73kA has been achieved with 450ms RF pulse of similar power. The current drive enhancement was mainly achieved due to RF pulse extension and further optimisation of the start-up scenario.« less

  13. High efficiency long pulse gigawatt sources of HPM radiation

    NASA Astrophysics Data System (ADS)

    Arman, M. Joseph

    1999-05-01

    The High Power Microwave (HPM) technology has advanced tremendously in the last five decades. What started out as a mere passive tool in the form of radar for detecting airborne objects during the second world war, has grown to be an active vehicle that can influence and impact its target. Progress has been made in all fronts. The peak radiated power has gone up several orders of magnitude to several gigawatts, the efficiency has grown by a wide margin, and the total energy radiated for pulsed sources has grown to several hundreds of Jules per pulse. Major obstacles still exist. The number of sources that have already achieved one gigawatt or higher is too great to cover here. In what follows, we will briefly describe the sources that have radiated one gigawatt or higher with a pulselength of 300 ns or longer, and an rms efficiency of 10% or higher. We also address the obstacles lying ahead and suggest possible means of overcoming them. The sources presented are the Relativistic Klystron Oscillator (RKO), the Magnetically Insulated Line Oscillator (MILO), and the Tapered Magnetically Insulated Line Oscillator (TMILO).

  14. Event recognition using signal spectrograms in long pulse experiments

    SciTech Connect

    Gonzalez, J.; Ruiz, M.; Barrera, E.; Arcas, G.; Lopez, J. M.; Vega, J.

    2010-10-15

    As discharge duration increases, real-time complex analysis of the signal becomes more important. In this context, data acquisition and processing systems must provide models for designing experiments which use event oriented plasma control. One example of advanced data analysis is signal classification. The off-line statistical analysis of a large number of discharges provides information to develop algorithms for the determination of the plasma parameters from measurements of magnetohydrodinamic waves, for example, to detect density fluctuations induced by the Alfven cascades using morphological patterns. The need to apply different algorithms to the signals and to address different processing algorithms using the previous results necessitates the use of an event-based experiment. The Intelligent Test and Measurement System platform is an example of architecture designed to implement distributed data acquisition and real-time processing systems. The processing algorithm sequence is modeled using an event-based paradigm. The adaptive capacity of this model is based on the logic defined by the use of state machines in SCXML. The Intelligent Test and Measurement System platform mixes a local multiprocessing model with a distributed deployment of services based on Jini.

  15. Event recognition using signal spectrograms in long pulse experiments.

    PubMed

    González, J; Ruiz, M; Vega, J; Barrera, E; Arcas, G; López, J M

    2010-10-01

    As discharge duration increases, real-time complex analysis of the signal becomes more important. In this context, data acquisition and processing systems must provide models for designing experiments which use event oriented plasma control. One example of advanced data analysis is signal classification. The off-line statistical analysis of a large number of discharges provides information to develop algorithms for the determination of the plasma parameters from measurements of magnetohydrodinamic waves, for example, to detect density fluctuations induced by the Alfvén cascades using morphological patterns. The need to apply different algorithms to the signals and to address different processing algorithms using the previous results necessitates the use of an event-based experiment. The Intelligent Test and Measurement System platform is an example of architecture designed to implement distributed data acquisition and real-time processing systems. The processing algorithm sequence is modeled using an event-based paradigm. The adaptive capacity of this model is based on the logic defined by the use of state machines in SCXML. The Intelligent Test and Measurement System platform mixes a local multiprocessing model with a distributed deployment of services based on Jini.

  16. Analysis of melt ejection during long pulsed laser drilling

    NASA Astrophysics Data System (ADS)

    Ting-Zhong, Zhang; Zhi-Chao, Jia; Hai-Chao, Cui; De-Hua, Zhu; Xiao-Wu, Ni; Jian, Lu

    2016-05-01

    In pulsed laser drilling, melt ejection greatly influences the keyhole shape and its quality as well, but its mechanism has not been well understood. In this paper, numerical simulation and experimental investigations based on 304 stainless steel and aluminum targets are performed to study the effects of material parameters on melt ejection. The numerical method is employed to predict the temperatures, velocity fields in the solid, liquid, and vapour front, and melt pool dynamics of targets as well. The experimental methods include the shadow-graphic technique, weight method, and optical microscope imaging, which are applied to real-time observations of melt ejection phenomena, measurements of collected melt and changes of target mass, observations of surface morphology and the cross-section of the keyhole, respectively. Numerical and experimental results show that the metallic material with high thermal diffusivity like aluminum is prone to have a thick liquid zone and a large quantity of melt ejection. Additionally, to the best of our knowledge, the liquid zone is used to illustrate the relations between melt ejection and material thermal diffusivity for the first time. The research result in this paper is useful for manufacturing optimization and quality control in laser-material interaction. Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. KYLX_0341) and the National Natural Science Foundation of China (Grant No. 61405147).

  17. Beam dynamics in a long-pulse linear induction accelerator

    SciTech Connect

    Ekdahl, Carl; Abeyta, Epifanio O; Aragon, Paul; Archuleta, Rita; Cook, Gerald; Dalmas, Dale; Esquibel, Kevin; Gallegos, Robert A; Garnett, Robert; Harrison, James F; Johnson, Jeffrey B; Jacquez, Edward B; Mc Cuistian, Brian T; Montoya, Nicholas A; Nath, Subrato; Nielsen, Kurt; Oro, David; Prichard, Benjamin; Rose, Chris R; Sanchez, Manolito; Schauer, Martin M; Seitz, Gerald; Schulze, Martin; Bender, Howard A; Broste, William B; Carlson, Carl A; Frayer, Daniel K; Johnson, Douglas E; Tom, C Y; Trainham, C; Williams, John; Scarpetti, Raymond; Genoni, Thomas; Hughes, Thomas; Toma, Carsten

    2010-01-01

    The second axis of the Dual Axis Radiography of Hydrodynamic Testing (DARHT) facility produces up to four radiographs within an interval of 1.6 microseconds. It accomplishes this by slicing four micro-pulses out of a long 1.8-kA, 16.5-MeV electron beam pulse and focusing them onto a bremsstrahlung converter target. The long beam pulse is created by a dispenser cathode diode and accelerated by the unique DARHT Axis-II linear induction accelerator (LIA). Beam motion in the accelerator would be a problem for radiography. High frequency motion, such as from beam breakup instability, would blur the individual spots. Low frequency motion, such as produced by pulsed power variation, would produce spot to spot differences. In this article, we describe these sources of beam motion, and the measures we have taken to minimize it.

  18. ECH Technology Development

    SciTech Connect

    Temkin, Richard

    2014-12-24

    Electron Cyclotron Heating (ECH) is needed for plasma heating, current drive, plasma stability control, and other applications in fusion energy sciences research. The program of fusion energy sciences supported by U. S. DOE, Office of Science, Fusion Energy Sciences relies on the development of ECH technology to meet the needs of several plasma devices working at the frontier of fusion energy sciences research. The largest operating ECH system in the world is at DIII-D, consisting of six 1 MW, 110 GHz gyrotrons capable of ten second pulsed operation, plus two newer gyrotrons. The ECH Technology Development research program investigated the options for upgrading the DIII-D 110 GHz ECH system. Options included extending present-day 1 MW technology to 1.3 – 1.5 MW power levels or developing an entirely new approach to achieve up to 2 MW of power per gyrotron. The research consisted of theoretical research and designs conducted by Communication and Power Industries of Palo Alto, CA working with MIT. Results of the study would be validated in a later phase by research on short pulse length gyrotrons at MIT and long pulse / cw gyrotrons in industry. This research follows a highly successful program of development that has led to the highly reliable, six megawatt ECH system at the DIII-D tokamak. Eventually, gyrotrons at the 1.5 megawatt to multi-megawatt power level will be needed for heating and current drive in large scale plasmas including ITER and DEMO.

  19. The 10 MW ECRH and CD System for W7-X

    NASA Astrophysics Data System (ADS)

    Erckmann, V.; Braune, H.; Laqua, H. P.; Michel, G.; Dammertz, G.; Thumm, M.; Gantenbein, G.; Kasparek, W.; Mueller, G. A.

    2003-12-01

    Electron Cyclotron Resonance Heating (ECRH) is the main heating method for the Wendelstein 7-X Stellarator (W7-X), which is the next step device in the stellarator line of IPP and is presently under construction in the Greifswald branch of IPP. The experiment aims at demonstrating the inherent steady state capability of stellarators at reactor relevant plasma parameters. W7-X (major radius 5.5 m, minor radius 0.55 m) is equipped with a superconducting coil system operating at 3 T for steady state operation and a divertor for 10 MW steady state heat removal. A 10 MW ECRH plant with CW-capability at 140 GHz is under construction to meet the scientific objectives. The microwave power is generated by 10 gyrotrons with 1 MW each. A European R&D program aiming at the development of a prototype gyrotron for W7-X has been successfully terminated by fall of 2002. A prototype gyrotron with the same specifications was developed for W7-X at CPI (USA). Test results and limitations are reported. The distinct microwave beams from each gyrotron are combined and transmitted to the W7-X Stellarator ports by an open quasi-optical transmission system with high transmission efficiency, which runs at normal pressure and consists of water cooled imaging mirrors. Cold tests of a full size, uncooled prototype line and the related RF-diagnostics are presented. The microwave power is launched to the plasma through 10 synthetic diamond barrier windows and in-vessel quasi-optical plug-in launchers, which allow an independent steering of each beam. The commissioning of the ECRH plant is well under way and the status is presented.

  20. Design of Electron Cyclotron Heating and Current Drive System of ITER

    SciTech Connect

    Kobayashi, N.; Bigelow, T.; Rasmussen, D.; Bonicelli, T.; Ramponi, G.; Saibene, G.; Cirant, S.; Denisov, G.; Heidinger, R.; Piosczyk, B.; Henderson, M.; Hogge, J.-P.; Thumm, M.; Tran, M. Q.; Rao, S. L.; Sakamoto, K.; Takahashi, K.; Temkin, R. J.; Verhoeven, A. G. A.; Zohm, H.

    2007-09-28

    Since the end of EDA, the design of the Electron Cyclotron Heating and Current Drive (ECH and CD) system has been modified to respond to progress in physics understanding and change of interface conditions. Nominal RF power of 20 MW is shared by four upper launchers or one equatorial launcher RF beams are steered by front steering mirrors providing wide sweeping angle for the RF beam. DC high voltage power supply may be composed of IGBT pulse step modulators because of high frequency modulation and design flexibility to three different types of 170 GHz gyrotrons provided by three parties. The RF power from the 170 GHz gyrotron is transmitted to the launcher by 63.5 mm{phi} corrugated waveguide line and remotely switched by a waveguide switch between the upper launcher and the equatorial launcher. The ECH and CD system has also a start-up sub-system for assist of initial discharge composed of three 127.5 GHz gyrotrons and a dedicated DC high voltage power supply. Three of transmission lines are shared between 170 GHz gyrotron and 127.5 GHz gyrotron so as to inject RF beam for the start-up through the equatorial launcher. R and Ds of components for high power long pulse and mirror steering mechanism have been on-going in the parties to establish a reliable ITER ECH and CD system.

  1. PCI data acquisition and signal processing hardware modules for long pulse operation

    SciTech Connect

    Sousa, J.; Batista, A.J.N.; Combo, A.; Pereira, R.; Correia, Miguel; Cruz, N.; Carvalho, P.; Correia, Carlos; Varandas, C.A.F.

    2004-10-01

    A set of PCI instrumentation modules was developed at the EURATOM/IST Association. The modules were engineered around a reconfigurable hardware core which permits one to reduce the development time of instrument for new applications, provide support for long time or even continuous operation, and is able to perform real-time digital signal processing. The core was engineered at low cost and the modules incorporate a high number of channels, which contribute to reduce the total cost per channel. Field results are as expected in terms of performance both in data throughput and input characteristics. Currently, a 2 MSPS, 14-bit, eight channel galvanic isolated transient recorder; a 200 MSPS, 8-bit, four channel pulse digitizer; an eight channel time-to-digital-converter with a resolution of 0.4 ns, and a reconfigurable hardware expandable board, are implemented.

  2. 10-J long-pulse electric-discharge XeCl laser

    NASA Astrophysics Data System (ADS)

    Losev, Valery F.; Konovalov, Ivan; Liu, Jingru; Panchenko, Yury

    2003-11-01

    An X-ray preionized XeCl laser with a large aperture (9x7 cm) is described. Laser operates at Ne-Xe-HCl mixture with pressure up to 4 atm. Paper-oil pulse forming lines and rail-gap switch for discharge pump was used. 10 J output with optical pulse duration up to 300 ns (FWHM) have been extracted from active volume 5.4 l with an electric efficiency 1.2%.

  3. Temperature dependence of quasi-three level laser transition for long pulse Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Bidin, Noriah; Pourmand, Seyed Ebrahim; Sidi Ahmad, Muhamad Fakaruddin; Khrisnan, Ganesan; Mohd Taib, Nur Athirah; Nadia Adnan, Nurul; Bakhtiar, Hazri

    2013-02-01

    The influence of temperature and pumping energy on stimulated emission cross section and the laser output of quasi-three level laser transition are reported. Flashlamp is used to pump Nd:YAG laser rod. Distilled water is mixed with ethylene glycol to vary the temperature of the cooling system between -30 and 60 °C. The capacitor voltage of flashlamp driver is verified to manipulate the input energy within the range of 10-70 J. The line of interest in quasi-three level laser comprised of 938.5 and 946 nm. The stimulated emission cross section of both lines is found to be inversely proportional to the temperature but directly proportional to the input energy. This is attributed from thermal broadening effect. The changes of stimulated emission cross section and the output laser with respect to the temperature and input energy on line 946 nm are realized to be more dominant in comparison to 938.5 nm.

  4. Long pulse behavior of the avalanche/self-sustained discharge pumped XeCl laser

    NASA Astrophysics Data System (ADS)

    Levatter, J. I.; Robertson, K. L.; Lin, S.-C.

    1981-08-01

    Experimental results are reported from a study on XeCl excimer laser generation in avalanche/self-sustained discharges at pulse durations greater than 100 nsec. The pulse forming network (PFN) makes possible an extension of the water dielectric double-parallel-plate transmission line to an electric length of 200 nsec. The optical cavity is a low-Q, low-magnification (1.4) unstable resonator consisting of a concave total reflector of 10-m radius of curvature and a convex partial reflector of 6.68-m radius of curvature. The laser output power is measured using a biplanar photodiode and an oscilloscope. The PFN charging voltage is 50 kV. The observed waveforms show that the discharge is stable, and that the laser power is nearly constant over a time period comparable to the electrical length of the PFN in each case. The observed laser output power of approximately 24 MW implies an intrinsic efficiency of about 4%.

  5. RF system developments for CW and/or long pulse linacs

    SciTech Connect

    Lynch, M.

    1998-12-31

    High Power Proton Linacs are under development or proposed for development at Los Alamos and elsewhere. By current standards these linacs all require very large amounts of RF power. The Accelerator for Production of Tritium (APT) is a CW accelerator with an output current and energy of 100 mA and 1,700 MeV, respectively. The Spallation Neutron Source (SNS), in its ultimate configuration, is a pulsed accelerator with an average output power of 4 MW of beam. Other accelerators such as those that address transmutation and upgrades to LANSCE have similar requirements. For these high average power applications, the RF systems represent approximately half of the total cost of the linac and are thus key elements in the design and configuration of the accelerator. Los Alamos is fortunate to be actively working on both APT and SNS. For these programs the author is pursuing a number of component developments which are aimed at one or more of the key issues for large RF systems: technical performance, capital cost, reliability, and operating efficiency. This paper briefly describes some of the linac applications and then provides updates on the key RF developments being pursued.

  6. Particle Simulations of a Long Pulse Electron Beam in a Bend

    SciTech Connect

    Poole, B.R.; Chen, Y.J.

    2000-08-15

    Advanced x-ray radiography machines require that multiple electron beam pulses be delivered to x-ray converter targets over several lines of sight. This can be accomplished using a single accelerator by using a fast kicker to deliver the electron beam pulses to several beamlines. This type of radiography machine requires transport lines with several large achromatic bends in the individual transport lines. To maintain a small spot size and a large dose for an x-ray pulse created at the converter target at each transport line requires that emittance growth be kept to a minimum on each beamline. Emittance growth can arise from nonlinear forces associated with the external focusing elements, nonlinear image forces, and non-linear space charge fields associated with the curvature of the beam and the transport line. We have used a multi-slice, particle-in-cell code to study the emittance growth in a bend. The code uses the beam slice's local coordinates. Typically, the radius of curvature, R for such a beam and the transport line is much larger than the pipe radius, b. The space charge fields can be approximated as that in a straight beam with correction terms to first order in b/R. To include the effects of the bend geometry on the space charge fields, these correction terms are implemented in the code. The relative importance of emittance growth due to nonlinear image forces associated with envelope oscillations of a non-round beam in the bend and due to nonlinear space charge fields associated with the bend geometry will be quantified. Simulation results for the baseline design orbit as well as off-energy transport will be presented.

  7. Non-Thermionic Cathode for High Power Long Pulse, Long Lifetime Magnetrons

    DTIC Science & Technology

    2010-11-18

    explore electron emission in a planar, non magnetized geometry. This planar geometry makes it possible to analyze and test a variety of configurations...phase-1 effort was also dedicated to coaxial, magnetized extraction. Experimentally, the hardware was designed and constructed for coaxial... magnetized extraction tests. In addition the simulation effort was completely dedicated to this geometry. It was anticipated that the planar geometry would

  8. Speech perception with interaction-compensated simultaneous stimulation and long pulse durations in cochlear implant users.

    PubMed

    Schatzer, Reinhold; Koroleva, Inna; Griessner, Andreas; Levin, Sergey; Kusovkov, Vladislav; Yanov, Yuri; Zierhofer, Clemens

    2015-04-01

    Early multi-channel designs in the history of cochlear implant development were based on a vocoder-type processing of frequency channels and presented bands of compressed analog stimulus waveforms simultaneously on multiple tonotopically arranged electrodes. The realization that the direct summation of electrical fields as a result of simultaneous electrode stimulation exacerbates interactions among the stimulation channels and limits cochlear implant outcome led to the breakthrough in the development of cochlear implants, the continuous interleaved (CIS) sampling coding strategy. By interleaving stimulation pulses across electrodes, CIS activates only a single electrode at each point in time, preventing a direct summation of electrical fields and hence the primary component of channel interactions. In this paper we show that a previously presented approach of simultaneous stimulation with channel interaction compensation (CIC) may also ameliorate the deleterious effects of simultaneous channel interaction on speech perception. In an acute study conducted in eleven experienced MED-EL implant users, configurations involving simultaneous stimulation with CIC and doubled pulse phase durations have been investigated. As pairs of electrodes were activated simultaneously and pulse durations were doubled, carrier rates remained the same. Comparison conditions involved both CIS and fine structure (FS) strategies, either with strictly sequential or paired-simultaneous stimulation. Results showed no statistical difference in the perception of sentences in noise and monosyllables for sequential and paired-simultaneous stimulation with doubled phase durations. This suggests that CIC can largely compensate for the effects of simultaneous channel interaction, for both CIS and FS coding strategies. A simultaneous stimulation paradigm has a number of potential advantages over a traditional sequential interleaved design. The flexibility gained when dropping the requirement of interleaving pulses across electrodes may be instrumental in designing coding strategies for a more accurate transmission of stimulus features such as temporal fine structure or interaural time delays to the auditory nerve. Also, longer pulse phase durations may be implemented while maintaining relatively high stimulation pulse rates. Utilizing longer pulse durations may relax requirements on implant compliance and facilitate the design of more energy-efficient implant receivers for a longer battery lifetime or a reduction in implant size. This article is part of a Special Issue entitled .

  9. Single and double long pulse laser ablation of aluminum induced in air and water ambient

    NASA Astrophysics Data System (ADS)

    Akbari Jafarabadi, Marzieh; Mahdieh, Mohammad Hossein

    2017-02-01

    In this paper, single pulse and double pulse laser ablation of an aluminum target in two interaction ambient was investigated experimentally. The interaction was performed by nanosecond Nd:YAG laser beam in air and four depths (i.e. 9, 13, 17, and 21 mm) of distilled water ambient. The irradiation was carried out in single and collinear double pulse configurations in both air and liquid ambient. Crater geometry (depth and diameter) was measured by an optical microscope. The results indicated that the crater geometry strongly depends on both single pulse and double pulse configurations and interaction ambient. In single pulse regime, the crater diameter is higher for all water depths compared to that of air. However, the crater depth, depend on water depth, is higher or lower than the crater depth in air. In double pulse laser ablation, there are greater values for both crater diameters and crater depths in the water.

  10. Long pulse compact and high-brightness near 1-kW QCW diode laser stack

    NASA Astrophysics Data System (ADS)

    Wilson, Stewart; Altshuler, Gregory; Erofeev, Andrey; Inochkin, Mikhail; Khloponin, Leonid; Khramov, Valery; Feldchtein, Felix

    2012-03-01

    A custom designed compact, high brightness diode laser array stack was designed and manufactured using proprietary methods that are robust and suitable for low cost manufacturing. The diode laser stack consisted of four 10 mm-wide diode laser bars having lasing wavelength of 970 - 980 nm mounted onto high performance submounts separated by approximately 1mm. Each diode laser bar had a 50% fill factor. The cooling methodology employed used a combined passive and active scheme and not the traditional more expensive and more complicated standard microchannel coolers used for high duty cycle applications. The total combined optical power attained from the diode array stack was close to 1 kW for current levels up to 220 A, limited only by the capability of the power supply. In this paper, we summarize the performance results for this diode laser array and analyze the maximum expected optical performance as a function of operating current and pulse width and junction temperature limit.

  11. Ultrasound-modulated optical imaging using a powerful long pulse laser.

    PubMed

    Rousseau, Guy; Blouin, Alain; Monchalin, Jean-Pierre

    2008-08-18

    Ultrasound-modulated optical imaging (or tomography) is an emerging biodiagnostic technique which provides the optical spectroscopic signature and the localization of an absorbing object embedded in a strongly scattering medium. We propose to improve the sensitivity of the technique by using a pulsed single-frequency laser to raise the optical peak power applied to the scattering medium and thereby collect more ultrasonically tagged photons. Moreover, when the detection of tagged photons is done with a photorefractive interferometer, the high optical peak power reduces the response time of the photorefractive crystal below the speckle field decorrelation time. Results obtained with a GaAs photorefractive interferometer are presented for 30- and 60-mm thick scattering media.

  12. A long pulse high-power diode based on a microelectronic emitter

    SciTech Connect

    Marder, B.; Clark, C.; Walko, R.; Fleming, J.

    1995-11-01

    Microelectronic cathode emitter technology being developed at Sandia for supplying continuous low current for flat panel displays appears to be a promising technology for providing high currents when operated in a pulsed, higher voltage mode. If currents in excess of one amp per square centimeter could be produced for tens of microseconds at several kilohertz repetition rate, important applications in such as large volume food or waste sterilization in situ detection, and high power microwave production could be achieved. A testbed was built to perform the experiments. The desired current densities have been demonstrated using small emitter arrays.

  13. Use of Helical Fields to Allow a Long Pulse Reversed Field Pinch

    SciTech Connect

    A. Boozer and N. Pomphrey

    2008-11-20

    The maintenance of the magnetic configuration of a Reversed Field Pinch (RFP) is an unsolved problem. Even a toroidal loop voltage does not suffice to maintain the magnetic configuration in axisymmetry but could if the plasma had helical shaping. The theoretical tools for plasma optimization using helical shaping have advanced, so an RFP could be relatively easily designed for optimal performance with a spatially constant toroidal loop voltage. A demonstration that interesting solutions exist is given.

  14. Stable-relaxation-oscillation Nd lasers for long-pulse generation

    NASA Technical Reports Server (NTRS)

    Harrison, James; Rines, Glen A.; Moulton, Peter F.

    1988-01-01

    A simple method to produce high-energy neodymium (Nd) laser pulses with durations on the order of 1 microsec is described. Solid-state lasers can be pumped by relatively short flashlamp pulses to produce well-behaved relaxation oscillations in a diffraction-limited beam. Under the right conditons, each output laser pulse consists of a series of discrete subpulses that are ideally suited to efficient, high-energy amplification. Experimental results for an Nd:LiYF4 oscillator/amplifier system are presented along with numerical simulations. These demonstrate that the system operation is predictable and well behaved. Data are also included for a Nd:glass tunable oscillator based on this concept.

  15. Suppressing beam-centroid motion in a long-pulse linear induction accelerator

    NASA Astrophysics Data System (ADS)

    Ekdahl, Carl; Abeyta, E. O.; Archuleta, R.; Bender, H.; Broste, W.; Carlson, C.; Cook, G.; Frayer, D.; Harrison, J.; Hughes, T.; Johnson, J.; Jacquez, E.; McCuistian, B. Trent; Montoya, N.; Nath, S.; Nielsen, K.; Rose, C.; Schulze, M.; Smith, H. V.; Thoma, C.; Tom, C. Y.

    2011-12-01

    The second axis of the dual-axis radiography of hydrodynamic testing (DARHT) facility produces up to four radiographs within an interval of 1.6μs. It does this by slicing four micropulses out of a 2-μs long electron beam pulse and focusing them onto a bremsstrahlung converter target. The 1.8-kA beam pulse is created by a dispenser cathode diode and accelerated to more than 16 MeV by the unique DARHT Axis-II linear induction accelerator (LIA). Beam motion in the accelerator would be a problem for multipulse flash radiography. High-frequency motion, such as from beam-breakup (BBU) instability, would blur the individual spots. Low-frequency motion, such as produced by pulsed-power variation, would produce spot-to-spot differences. In this article, we describe these sources of beam motion, and the measures we have taken to minimize it. Using the methods discussed, we have reduced beam motion at the accelerator exit to less than 2% of the beam envelope radius for the high-frequency BBU, and less than 1/3 of the envelope radius for the low-frequency sweep.

  16. Beam breakup growth and reduction experiments in long-pulse electron beam transport

    NASA Astrophysics Data System (ADS)

    Menge, P. R.; Gilgenbach, R. M.; Lau, Y. Y.; Bosch, R. A.

    1994-02-01

    The results of an experimental program whose sole objective is to investigate the cumulative beam breakup instability (BBU) in electron beam accelerators are presented. The BBU growth rate scalings are examined with regard to beam current, focusing field, cavity Q, and propagation distance. A microwave cavity array was designed and fabricated to excite and measure the cumulative BBU resulting from beam interactions with the deflecting TM110 cavity mode. One phase of this experiment used high Q(≊1000) cavities with relatively large frequency spread (Δf/f0≊0.1%). The observed TM110 mode microwave growth between an upstream (second) and a downstream (tenth) cavity indicated BBU growth of 26 dB for an electron beam of kinetic energy of 750 keV, 45 A, and focused by a 1.1 kG solenoidal field. At beam currents of less than 100 A the experiments agreed well with a two-dimensional continuum theory; the agreement was worse at higher beam currents (≳100 A) due to beam loading. The second-phase experiments used lower Q(≊200) cavities with relatively low frequency spread (Δf/f0≊0.03%). Theory and experiment agreed well for beam currents up to 220 A. Distance scaling experiments were also performed by doubling the propagation length. Instability growth reduction experiments using the technique of external cavity coupling resulted in a factor of four decrease in energy in BBU growth when seven internal beam cavities were coupled by microwave cable to seven identical external dummy cavities. A theory invoking power sharing between the internal beam cavities and the external dummy cavities was used to explain the experimental reduction with excellent agreement using an equivalent circuit model.

  17. Cloud hole boring with long pulse CO(2) lasers: theory and experiment.

    PubMed

    Quigley, G P; Webster, R B; Caramana, E J; Morse, R L; York, G W

    1991-07-20

    Chemically generated CO(2) laser pulses at 10.6 microm have been used to clear a 5-cm diameter hole through a stratus-like cloud in a laboratory cloud chamber. The results show that 100% clearing can be achieved. The mechanism is shown to be droplet shattering followed by evaporation. In the experimental conditions, the channel closure is effected by turbulent mixing and droplet recondensation.

  18. Progress Towards Plasma Pulse Compression of High Energy, Long Pulse Laser Beams

    SciTech Connect

    Kirkwood, R K; Ping, Y; Rygg, R; Wilks, S; Meezan, N; Niemann, C; Landen, O; Fisch, N; Malkin, V; Valeo, E; Wurtele, J

    2008-06-19

    Compression of laser pulses to < {approx} 1-10 ps duration using stimulated Raman scattering (SRS) in a plasma promises to provide unprecedented power and intensity for a variety of applications, by avoiding the limits to fluence and intensity that are needed to avoid damage to the solid state optics that are used in conventional approaches. In particular, the ability to compress pump beam pulses of {approx} ns duration will allow present facilities with 10's kJ to over a MJ of energy to produce ultra short pulses efficiently, advancing applications in; fusion by fast ignition, x-ray production of high energy density experiments, as well as laser driven particle accelerators. We will discuss a series of experiments to demonstrate the needed beam amplification rate, and focal spot quality in a < 3mm plasma with the properties needed for compression of these pulses (n{sub e} {approx} 10{sup 19}/cm{sup 3}, T{sub e} 200 to 300 eV) when the plasma is extended. The experiments use He plasmas produced with a 300 J, 1 ns, beam at the Jupiter Laser facility to amplify a counter-propagating, ultra-short pulse (USP) seed by a factor of 10x to 37x and study the dependence of the amplification, the associated non-linear wave response, and the resulting beam quality and energy, on the intensity of both seed and pump beam. In particular, a regime in which amplification of USP beams is achieved while maintaining a low angular divergence of the beam consistent with good focal spot quality will be discussed.

  19. Elastic scattering research at a 1 MW long pulse spallation neutron source

    SciTech Connect

    Crawford, R.K.

    1995-12-31

    The elastic scattering working group investigated instrumentation for powder diffraction, single-crystal diffraction, small-angle diffraction, and reflectometry. For this purpose, three subgroups were formed; one for powder diffraction and single-crystal diffraction, one for small-angle diffraction, and one for reflectometry. For the most part these subgroups worked separately, but for part of the time the reflectometry and small-angle diffraction subgroups met together to discuss areas of common interest. Contributors in each of these subgroups are indicated below along with the discussion of these subgroup deliberations.

  20. Fundamental neutron physics at a 1 MW long pulse spallation neutron source

    SciTech Connect

    Greene, G.L.

    1995-12-31

    Modern neutron sources and modern neutron science share a common origin in mid twentieth century scientific investigations concerned with the study of the fundamental interactions between elementary particles. Since the time of that common origin, neutron science and the study of elementary particles have evolved into quite disparate disciplines. The neutron became recognized as a powerful tool for the study of condensed matter with modern neutron sources being primarily used (and primarily justified) as tools for condensed matter research. The study of elementary particles has, of course, led to the development of rather different tools and is now dominated by activities carried out at extremely high energies. Notwithstanding this trend, the study of fundamental interactions using neutrons has continued and remains a vigorous activity at many contemporary neutron sources. This research, like neutron scattering research, has benefited enormously by the development of modern high flux neutron facilities. Future sources, particularly high power spallation sources, offer exciting possibilities for the continuation of this program of research.

  1. Ultrasound-modulated optical imaging using a photorefractive interferometer and a powerful long pulse laser

    NASA Astrophysics Data System (ADS)

    Rousseau, Guy; Blouin, Alain; Monchalin, Jean-Pierre

    2009-02-01

    Ultrasound-modulated optical imaging is an emerging biodiagnostic technique which provides the optical spectroscopic signature and the spatial localization of an optically absorbing object embedded in a strongly scattering medium. The transverse resolution of the technique is determined by the lateral extent of ultrasound beam focal zone while the axial resolution is obtained by using short ultrasound pulses. The practical application of this technique is presently limited by its poor sensitivity. Moreover, any method to enhance the signal-to-noise ratio must satisfy the biomedical safety limits. In this paper, we propose to use a pulsed single-frequency laser source to raise the optical peak power applied to the scattering medium and to collect more ultrasonically tagged photons. Such a laser source allows illuminating the tissues mainly during the transit time of the ultrasonic wave. A single-frequency Nd:YAG laser emitting 500-μs pulses with a peak power superior to 100 W was used. Tagged photons were detected with a GaAs photorefractive interferometer characterized by a large optical etendue. When pumped by high intensity laser pulses, such an interferometer provides the fast response time essential to obtain an apparatus insensitive to the speckle decorrelation encountered in biomedical applications. Consequently, the combination of a large-etendue photorefractive interferometer with a high-power pulsed laser could allow obtaining both the sensitivity and the fast response time necessary for biomedical applications. Measurements performed in 30- and 60-mm thick optical phantoms made of titanium dioxide particles dispersed in sunflower oil are presented. Results obtained in 30- and 60-mm thick chicken breast samples are also reported.

  2. Atmospheric Impact on Long Pulse Laser Detection and Ranging (LADAR) Systems

    DTIC Science & Technology

    2013-03-21

    Flows and Transport, Hemisphere, cambridge (1988). [6] Goodman , J. W. Introduction to Fourier Optics . Roberts & Company Publishers, Greenwood...Village CO, 2005. [7] Goodman , J. W. Statistical Optics . John Wiley and Sons, Inc., New York NY, 1985 [8] E. P. Goodwin, and J. C. Wyant. Field...accurately predict the temporal development of optical phase. Additionally, wavefront phase aberrations introduced by the atmosphere are dominated by

  3. The impact of microwave stray radiation to in-vessel diagnostic components

    SciTech Connect

    Hirsch, M.; Laqua, H. P.; Hathiramani, D.; Baldzuhn, J.; Biedermann, C.; Cardella, A.; Erckmann, V.; König, R.; Köppen, M.; Zhang, D.; Oosterbeek, J.; Brand, H. von der; Parquay, S.; Jimenez, R. [Centro de Investigationes Energeticas, Medioambientales y Technológicas, Association EURATOM Collaboration: W7-X Teasm

    2014-08-21

    Microwave stray radiation resulting from unabsorbed multiple reflected ECRH / ECCD beams may cause severe heating of microwave absorbing in-vessel components such as gaskets, bellows, windows, ceramics and cable insulations. In view of long-pulse operation of WENDELSTEIN-7X the MIcrowave STray RAdiation Launch facility, MISTRAL, allows to test in-vessel components in the environment of isotropic 140 GHz microwave radiation at power load of up to 50 kW/m{sup 2} over 30 min. The results show that both, sufficient microwave shielding measures and cooling of all components are mandatory. If shielding/cooling measures of in-vessel diagnostic components are not efficient enough, the level of stray radiation may be (locally) reduced by dedicated absorbing ceramic coatings on cooled structures.

  4. High-power microwave transmission and launching systems for fusion plasma heating systems

    SciTech Connect

    Bigelow, T.S.

    1989-01-01

    Microwave power in the 30- to 300-GHz frequency range is becoming widely used for heating of plasma in present-day fusion energy magnetic confinement experiments. Microwave power is effective in ionizing plasma and heating electrons through the electron cyclotron heating (ECH) process. Since the power is absorbed in regions of the magnetic field where resonance occurs and launching antennas with narrow beam widths are possible, power deposition location can be highly controlled. This is important for maximizing the power utilization efficiency and improving plasma parameters. Development of the gyrotron oscillator tube has advanced in recent years so that a 1-MW continuous-wave, 140-GHz power source will soon be available. Gyrotron output power is typically in a circular waveguide propagating a circular electric mode (such as TE/sub 0,2/) or a whispering-gallery mode (such as TE/sub 15,2/), depending on frequency and power level. An alternative high-power microwave source currently under development is the free-electron laser (FEL), which may be capable of generating 2-10 MW of average power at frequencies of up to 500 GHz. The FEL has a rectangular output waveguide carrying the TE/sub 0,1/ mode. Because of its higher complexity and cost, the high-average-power FEL is not yet as extensively developed as the gyrotron. In this paper, several types of operating ECH transmission systems are discussed, as well systems currently being developed. The trend in this area is toward higher power and frequency due to the improvements in plasma density and temperature possible. Every system requires a variety of components, such as mode converters, waveguide bends, launchers, and directional couplers. Some of these components are discussed here, along with ongoing work to improve their performance. 8 refs.

  5. High Peak Power Ka-Band Gyrotron Oscillator Experiment.

    DTIC Science & Technology

    1987-09-21

    has also demonstrated frequency tuning over the range 28 to 49 GHz by operating in a family of TE.’ modes, with the azimuthal index m ranging from 4 to...10, by Varia- tion of the guide magnetic field. Operation is in general agrement with the predictions of theory. 1% 20. DISTRIBUTION /AVAILABIUTY OF...proved to be highly efficient, exceptionally high average power millimeter-wave sources.1 Operating at moderate currents and voltages (typically, S50

  6. Development of Quasi-Optical Gyrotrons for Fusion Plasma Heating

    DTIC Science & Technology

    1988-07-11

    1987 - NRL Invention Award May 1987 - Elected to Sigma Xi 158 W Scientific Projects Managed 1) Toroidal Plasma Modeling, Department of Energy ...OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ORGANIZATION (If applicable) DeDartment of Energy 8c. ADDRESS (City, State, and ZIP Code) 10...Introduction The High Power Electromagnetic Radiation Branch (Code 4740) of the U. S. Naval Research Laboratory analyzes here for the Department of Energy a

  7. Multi-stage depressed collector for small orbit gyrotrons

    DOEpatents

    Singh, Amarjit; Ives, R. Lawrence; Schumacher, Richard V.; Mizuhara, Yosuke M.

    1998-01-01

    A multi-stage depressed collector for receiving energy from a small orbit gyrating electron beam employs a plurality of electrodes at different potentials for sorting the individual electrons on the basis of their total energy level. Magnetic field generating coils, for producing magnetic fields and magnetic iron for magnetic field shaping produce adiabatic and controlled non-adiabatic transitions of the incident electron beam to further facilitate the sorting.

  8. Multi-stage depressed collector for small orbit gyrotrons

    DOEpatents

    Singh, A.; Ives, R.L.; Schumacher, R.V.; Mizuhara, Y.M.

    1998-07-14

    A multi-stage depressed collector for receiving energy from a small orbit gyrating electron beam employs a plurality of electrodes at different potentials for sorting the individual electrons on the basis of their total energy level. Magnetic field generating coils, for producing magnetic fields and magnetic iron for magnetic field shaping produce adiabatic and controlled non-adiabatic transitions of the incident electron beam to further facilitate the sorting. 9 figs.

  9. Investigations of Cavity Designs for a High Power Gyrotron.

    DTIC Science & Technology

    1982-05-20

    WGM in a coaxial resonator, one has to work with very small annulus spacing, thus making electron beam alignment difficult and, more importantly...are shown in Table 1. In order to operate with a low order mode, one has to work with a small annulus spacing (making beam alignment critical) and

  10. Diode-Pumped Long-Pulse-Length Ho:Tm:YLiF4 Laser at 10 Hz

    NASA Technical Reports Server (NTRS)

    Jani, Mahendra G.; Naranjo, Felipe L.; Barnes, Norman P.; Murray, Keith E.; Lockard, George E.

    1995-01-01

    An optical efficiency of 0.052 under normal mode operation for diode-pumped Ho:Tm:YLiF4 at a pulse repetition frequency of 10 Hz has been achieved. Laser output energy of 30 mJ in single Q-switched pulses with 600-ns pulse length were obtained for an input energy of 3 J. A diffusion-bonded birefringent laser rod consisting of Ho:Tm-doped and undoped pieces of YLF was utilized for 10-Hz operation.

  11. High-power CW and long-pulse lasers in the green wavelength regime for copper welding

    NASA Astrophysics Data System (ADS)

    Pricking, Sebastian; Huber, Rudolf; Klausmann, Konrad; Kaiser, Elke; Stolzenburg, Christian; Killi, Alexander

    2016-03-01

    We report on industrial high-power lasers in the green wavelength regime. By means of a thin disk oscillator and a resonator-internal nonlinear crystal for second harmonic generation we are able to extract up to 8 kW pulse power in the few-millisecond range at a wavelength of 515 nm with a duty cycle of 10%. Careful shaping and stabilization of the polarization and spectral properties leads to a high optical-to-optical efficiency larger than 55%. The beam parameter product is designed and measured to be below 5 mm·mrad which allows the transport by a fiber with a 100 μm core diameter. The fiber and beam guidance optics are adapted to the green wavelength, enabling low transmission losses and stable operation. Application tests show that this laser is perfectly suited for copper welding due to the superior absorption of the green wavelength compared to IR, which allows us to produce weld spots with an unprecedented reproducibility in diameter and welding depth. With an optimized set of parameters we could achieve a splatter-free welding process of copper, which is crucial for welding electronic components. Furthermore, the surface condition does not influence the welding process when the green wavelength is used, which allows to skip any expensive preprocessing steps like tin-coating. With minor changes we could operate the laser in cw mode and achieved up to 1.7 kW of cw power at 515 nm with a beam parameter product of 2.5 mm·mrad. These parameters make the laser perfectly suitable for additional applications such as selective laser melting of copper.

  12. Tokamak burn cycle study: a data base for comparing long pulse and steady-state power reactors

    SciTech Connect

    Ehst, D.A.; Brooks, J.N.; Cha, Y.; Evans, K. Jr.; Hassanein, A.; Kim, S.; Majumdar, S.; Misra, B.; Stevens, H.C.

    1983-11-01

    Several distinct operating modes (conventional ohmic, noninductive steady state, internal transformer, etc.) have been proposed for tokamaks. Our study focuses on capital costs and lifetime limitations of reactor subsystems in an attempt to quantify sensitivity to pulsed operation. Major problem areas considered include: thermal fatigue on first wall, limiter/divertor; thermal energy storage; fatigue and eddy current heating in toroidal field coils; electric power supply costs; and noninductive driver costs. We assume a high availability and low cost of energy will be mandatory for a commercial fusion reactor, and we characterize improvements in physics (current drive efficiency) and engineering (superior materials) which will help achieve these goals for different burn cycles.

  13. Design and development of a prototype 25 kV, 10 A long pulse Marx modulator for high power klystron

    NASA Astrophysics Data System (ADS)

    Acharya, Mahesh; Shrivastava, Purushottam

    2016-02-01

    Research, design, and development of high average power modulators for the proposed Indian Spallation Neutron Source are in progress at Raja Ramanna Centre for Advanced Technology. With this objective, a prototype of 25 kV, 10 A, 1 ms Marx modulator at repetition rate of 1 Hz has been designed and developed which serves as a proof of principle and technology assessment stage for further development of high repetition rate high voltage high average power modulators. Insulated Gate Bipolar Transistor (IGBT) based modules of 2.8 kV switching capability have been used as main modules. The modulator had 8.2% droop in output voltage pulse without any droop compensation circuit. A droop compensation involving 15 corrector modules has been used to reduce the droop up to 1%. We have used IGBT based 250 V switches to realize the corrector module. A microcontroller based control unit was designed and developed for triggering the main and corrector modules. With this control unit, programmable output pulse has been achieved. Electrical isolation between high voltage circuits and control circuit has been achieved by the use of fiber optic based control signal transmission. Output pulses of 1 ms pulse width, 800 ns rise time, and 5 μs fall time have been achieved. The modulator has advantages of modular design, adjustable pulse width, adjustable rise time, and fall time.

  14. Electron beam dynamics in the long-pulse, high-current DARHT-II linear induction accelerator

    SciTech Connect

    Ekdahl, Carl A; Abeyta, Epifanio O; Aragon, Paul; Archuleta, Rita; Cook, Gerald; Dalmas, Dale; Esquibel, Kevin; Gallegos, Robert A; Garnett, Robert; Harrison, James F; Johnson, Jeffrey B; Jacquez, Edward B; Mccuistian, Brian T; Montoya, Nicholas A; Nath, Subrato; Nielsen, Kurt; Oro, David; Prichard, Benjamin; Rowton, Lawrence; Sanchez, Manolito; Scarpetti, Raymond; Schauer, Martin M; Seitz, Gerald; Schulze, Martin; Bender, Howard A; Broste, William B; Carlson, Carl A; Frayer, Daniel K; Johnson, Douglas E; Tom, C Y; Williams, John; Hughes, Thomas; Anaya, Richard; Caporaso, George; Chambers, Frank; Chen, Yu - Jiuan; Falabella, Steve; Guethlein, Gary; Raymond, Brett; Richardson, Roger; Trainham, C; Weir, John; Genoni, Thomas; Toma, Carsten

    2009-01-01

    The DARHT-II linear induction accelerator (LIA) now accelerates 2-kA electron beams to more than 17 MeV. This LIA is unique in that the accelerated current pulse width is greater than 2 microseconds. This pulse has a flat-top region where the final electron kinetic energy varies by less than 1% for more than 1.5 microseconds. The long risetime of the 6-cell injector current pulse is 0.5 {micro}s, which can be scraped off in a beam-head cleanup zone before entering the 68-cell main accelerator. We discuss our experience with tuning this novel accelerator; and present data for the resulting beam transport and dynamics. We also present beam stability data, and relate these to previous stability experiments at lower current and energy.

  15. OPO performance with a long pulse length, single frequency Nd:YAG laser pump. [Optical Parametric Oscillators

    NASA Technical Reports Server (NTRS)

    Kozlovsky, W. J.; Gustafson, E. K.; Eckardt, R. C.; Byer, R. L.

    1988-01-01

    With the advent of new nonlinear materials and single-frequency pump sources, there is renewed interest in optical parametric oscillators (OPOs). A single-mode diode-laser-pumped monolithic Nd:YAG nonplanar ring laser that is both amplified and frequency doubled is used to pump a monolithic MgO:LiNbO3 pulsed singly resonant OPO. The OPO signal output was temperature tuned from 834 to 958 nm, producing an idler tuning from 1.47 to 1.2 microns. Efforts toward a CW all-solid-state doubly resonant OPO are also described.

  16. Design and development of a prototype 25 kV, 10 A long pulse Marx modulator for high power klystron.

    PubMed

    Acharya, Mahesh; Shrivastava, Purushottam

    2016-02-01

    Research, design, and development of high average power modulators for the proposed Indian Spallation Neutron Source are in progress at Raja Ramanna Centre for Advanced Technology. With this objective, a prototype of 25 kV, 10 A, 1 ms Marx modulator at repetition rate of 1 Hz has been designed and developed which serves as a proof of principle and technology assessment stage for further development of high repetition rate high voltage high average power modulators. Insulated Gate Bipolar Transistor (IGBT) based modules of 2.8 kV switching capability have been used as main modules. The modulator had 8.2% droop in output voltage pulse without any droop compensation circuit. A droop compensation involving 15 corrector modules has been used to reduce the droop up to 1%. We have used IGBT based 250 V switches to realize the corrector module. A microcontroller based control unit was designed and developed for triggering the main and corrector modules. With this control unit, programmable output pulse has been achieved. Electrical isolation between high voltage circuits and control circuit has been achieved by the use of fiber optic based control signal transmission. Output pulses of 1 ms pulse width, 800 ns rise time, and 5 μs fall time have been achieved. The modulator has advantages of modular design, adjustable pulse width, adjustable rise time, and fall time.

  17. Long-pulsed Nd:YAG laser in the treatment of facial hypertrichosis during topical minoxidil therapy.

    PubMed

    Benmously Mlika, Rym; Ben Hamida, Myriam; Hammami, Houda; Dorbani Ben Thabet, Imen; Rouatbi, Mondher; Mokhtar, Inçaf

    2013-08-01

    Hypertrichosis is a well-recognized adverse effect of therapy with either oral or topical minoxidil. We report a case of fronto-temporal hypertrichosis occurring in an 8-year-old girl treated for patchy alopecia areata of the frontal area of the scalp with 2% minoxidil solution. After failure of 5-months minoxidil-discontinuation, hair removal with Nd:YAG laser (1064 nm line) (Smartepil II, Deka) was tested leading to complete resolution within 2 sessions.

  18. Double-Null Divertor Design for JT-60SU, A 10-MA Class Long-Pulse Tokamak

    SciTech Connect

    West, W.P.; Friend, M.E.; Baxi, C.B.; Humphreys, D.A.; Leuer, J.A.; Petrie, T.W.; Reis, E.E.; Ishida, S.; Kurita, G.; Neyatani, Y.; Sakasai, A.

    2001-01-15

    The design of a double-null divertor for use in JT-60SU is presented. The free-boundary equilibrium code EFIT is used to establish a symmetric highly triangular double-null plasma shape. The baffle shapes are highly contoured to match the equilibrium, with the plasma-facing surfaces intersecting the flux surfaces at steep angles in the regions of high heat flux. These contoured surfaces also provide a tightly baffled design with small-aperture pumping gaps near both the inner and outer divertor strike points. The gaps provide adequate throughput of D{sub 2} gas for active control of impurity entrainment at reasonable pressures. The structural design is shown to be consistent with both forces from disruptions and thermal stress during vacuum vessel bakeout.

  19. Generation of Initial Kinetic Distributions for Simulation of Long-Pulse Charged Particle Beams with High Space-Charge intensity

    SciTech Connect

    Lund, Steven M.; Kikuchi, Takashi; Davidson, Ronald C.

    2007-04-03

    Self-consistent Vlasov-Poisson simulations of beams with high space-charge intensity often require specification of initial phase-space distributions that reflect properties of a beam that is well adapted to the transport channel--both in terms of low-order rms (envelope) properties as well as the higher-order phase-space structure. Here, we first review broad classes of kinetic distributions commonly in use as initial Vlasov distributions in simulations of unbunched or weakly bunched beams with intense space-charge fields including: the Kapchinskij-Vladimirskij (KV) equilibrium, continuous-focusing equilibria with specific detailed examples, and various non-equilibrium distributions, such as the semi-Gaussian distribution and distributions formed from specified functions of linear-field Courant-Snyder invariants. Important practical details necessary to specify these distributions in terms of usual accelerator inputs are presented in a unified format. Building on this presentation, a new class of approximate initial kinetic distributions are constructed using transformations that preserve linear-focusing single-particle Courant-Snyder invariants to map initial continuous-focusing equilibrium distributions to a form more appropriate for non-continuous focusing channels. Self-consistent particle-in-cell simulations are employed to show that the approximate initial distributions generated in this manner are better adapted to the focusing channels for beams with high space-charge intensity. This improved capability enables simulation applications that more precisely probe intrinsic stability properties and machine performance.

  20. ECRH and ECCD Experiments at the Wendelstein7-X Stellarator

    NASA Astrophysics Data System (ADS)

    Laqua, Heinrich; Braune, Harald; Hirsch, Matthias; Hoefel, Udo; Marsen, Stefan; Moseev, Dmitry; Stange, Torsten; Wolf, Robert; Wauters, Tom; W7-X Team

    2016-10-01

    Plasmas in the first operation phase OP1.1 of W7-X were exclusively heated by ECRH. 6 gyrotrons with up to 4.3 MW power at 140 GHz and a quasi-optical transmission line generated plasma start-up, heating and wall conditioning with a very high reliability. The central ECRH power deposition enabled highly peaked electron temperature (Te) profiles with a peak Te above 8 keV, ne of 41019m-3 and flat ion temperatures profiles reaching 2 keV. By off-axis ECRH, the absence of core Te profile resilience in W7-X was demonstrated. With ECRH-power modulation heat waves for transport analysis have been generated on a regular basis. First ECCD experiments demonstrated a strong sensitivity of the confinement with sawtooth-like crashes of the central Te profile when central ECCD was applied. The high Te enabled successful demonstration of ECRH in O2-mode only. This scenario is foreseen for high-density operation above the X2-mode cut-off density in the next operation phase. The density control could be recovered by ECRH discharges in helium, which substituted glow discharge when the supra-conducting field coils were charged. The efficiency of ECRH absorption was monitored by diagnostics that measured the unabsorbed part of the ECRH. These also served as plasma interlock, preventing damages by unabsorbed ECRH power.

  1. Start-effect measurement of high FEL (Free-Electron Laser) electric fields in MTX (Microwave Tokamak Experiment) by laser-aided particle-probe spectroscopy

    NASA Astrophysics Data System (ADS)

    Oda, T.; Takiyama, K.; Odajima, K.; Ohasa, K.; Shiho, M.; Mizuno, K.; Foote, J. H.

    1990-05-01

    We are constructing a diagnostic system to measure the electric field (greater than 100 kV/cm) of a free-electron laser (FEL) beam when injected into the plasma of the Microwave Tokamak Experiment (MTX). The apparatus allows a crossed-beam measurement, with 2-cm spatial resolution in the plasma, involving the FEL beam (with 140-GHz, approximately 1-GW ECH pulses), a neutral-helium beam, and a dye-laser beam. After the laser beam pumps metastable helium atoms to higher excited states, their decay light is detected by an efficient optical system. Because of the Stark effect arising from the FEL electric field (E), a forbidden transition can be strongly induced. The intensity of emitted light resulting from the forbidden transition is proportional to E(exp 2). Because photon counting rates are estimated to be low, extra effort is made to minimize background and noise levels. It is possible that the lower E of an MTX gyrotron-produced ECH beam with its longer-duration pulses can also be measured using this method. Other applications of the apparatus described here may include measurements of ion temperature (using charge-exchange recombination), edge-density fluctuations, and core impurity concentrations.

  2. High power millimeter wave experiment of ITER relevant electron cyclotron heating and current drive system.

    PubMed

    Takahashi, K; Kajiwara, K; Oda, Y; Kasugai, A; Kobayashi, N; Sakamoto, K; Doane, J; Olstad, R; Henderson, M

    2011-06-01

    High power, long pulse millimeter (mm) wave experiments of the RF test stand (RFTS) of Japan Atomic Energy Agency (JAEA) were performed. The system consists of a 1 MW/170 GHz gyrotron, a long and short distance transmission line (TL), and an equatorial launcher (EL) mock-up. The RFTS has an ITER-relevant configuration, i.e., consisted by a 1 MW-170 GHz gyrotron, a mm wave TL, and an EL mock-up. The TL is composed of a matching optics unit, evacuated circular corrugated waveguides, 6-miter bends, an in-line waveguide switch, and an isolation valve. The EL-mock-up is fabricated according to the current design of the ITER launcher. The Gaussian-like beam radiation with the steering capability of 20°-40° from the EL mock-up was also successfully proved. The high power, long pulse power transmission test was conducted with the metallic load replaced by the EL mock-up, and the transmission of 1 MW/800 s and 0.5 MW/1000 s was successfully demonstrated with no arcing and no damages. The transmission efficiency of the TL was 96%. The results prove the feasibility of the ITER electron cyclotron heating and current drive system.

  3. Recent progress of high-power millimeter wavelength gyrodevices

    NASA Astrophysics Data System (ADS)

    Goldenberg, A. L.; Litvak, A. G.

    1995-06-01

    This presentation reviews recent progress of Russian physicists in developing electronic devices of the gyroresonance type, which are so far the most advanced sources of millimeter microwaves. It deals with the concept of the gyrotron as a device operating at higher volume resonator modes with a built-in quasioptical converter of the output radiation into a wave beam. That concept made it possible to create comparatively simple and reliable long-pulse and quasicontinuous devices with a power level of 0.5 MW in the frequency band 30-160 GHz. Analysis of the principal problems of projects for continuous-wave (CW) gyrotrons of near 1 MW output power (choice of an operating mode, requirements to an electron beam, peculiarities of built-in converters) is included, as well as the results of model experiments. For amplifying millimeter wavelength gyroklystrons, a level of several hundreds of kW at the frequency 35 GHz, and up to 65 kW at frequency 94 GHz were also achieved. Some modifications of gyrotrons for material processing and special research are described.

  4. Quasioptical study of antiferromagnetic resonance in YFeO3 at submillimeter wavelength under high pulsed magnetic fields.

    PubMed

    Mukhin, A A; Lobanov, A N; Goiran, M; Leotin, J; Volkov, A A

    2008-11-01

    Transmission spectra, T(H), of linearly polarized electromagnetic waves through YFeO(3), weak ferromagnet, measured at frequencies nu=96-1000 GHz in long-pulsed magnetic fields (H||k||c-axis, Faraday geometry) exhibit strong rotation of the polarization plane near the quasiferromagnetic AFMR as well as low frequency impurity modes. New ascending impurity branch including five lines was observed at high magnetic field (10-30 T) at 96 GHz and 140 GHz in addition to the known low-field descending impurity branch. Behavior of all the impurity modes assigned to transitions in (6)S(5/2) multiplet of Fe(3+) "impurity" ions in c-sites was described self-consistently by one spin-Hamiltonian. A theoretical calculation of dynamical magnetic susceptibility at AFMR and impurity modes and further simulation of transmission spectra made it possible to describe the main features of the observed spectra T(H). It was found that the T(H) behavior is determined at resonances not only by non-diagonal components of the magnetic susceptibility but also by the anisotropy of the dielectric permittivity (epsilon(xx)(') not equal epsilon(yy)(')), i.e. birefringence.

  5. Nonlinear Theory of Phase Locking Gyrotron Oscillators Driven by an External Signal

    DTIC Science & Technology

    1988-07-15

    1709 (1974) (Radio Phys. Quant. Electron. 17, 1305 (1976)]. 12. N.S. Ginzburg , G.S. Nusinovich, and N.A. Zavolsky, Int. J. Electron. 61, 881 (1986...Attn: Dr. H. Jory 1 copy Dr. David Stone 1 copy Dr. Kevin Felch 1 copy Dr. A. Salop 1 copy Varian Eimac San Carlos Division 301 Industrial Way San... Carlos , California 94070 Attn: C. Marshall Loring 1 copy Yale University Applied Physics Madison Lab P.O. Box 2159 Yale Station New Haven, Connecticut

  6. New Radiation Input/Output Systems for Millimeter-Wave Gyrotron Traveling-Wave Tubes

    NASA Astrophysics Data System (ADS)

    Denisov, G. G.; Bogdashov, A. A.; Gachev, I. G.; Mishakin, S. V.; Samsonov, S. V.

    2016-03-01

    We consider in detail the method allowing one to input and output the microwave radiation produced by an elecrovacuum amplifier through the same barrier window, which was proposed earlier, in the context of its application in a traveling-wave tube based on a waveguide with a helically corrugated surface. Special attention is given to the splitter of differently polarized radiation, and the results of studying this splitter at wavelengths of about 6 and 1 mm theoretically and experimentally are presented.

  7. 60 GHz gyrotron development program. Quarterly report No. 5, July-September 1980

    SciTech Connect

    Shively, J.F.; Grant, T.J.; Nordquist, A.L.; Stone, D.S.; Wendell, G.E.

    1980-01-01

    The objective of this program is to develop a microwave oscillator capable of producing 200 kW of CW output power at 60 GHz. The use of cyclotron resonance interaction is being pursued. The design, procurement and early construction phases of this program are discussed.

  8. Simulation Study of Gyrotron Traveling Wave Amplifier with Distributed-Loss in Facilities for Aquaculture

    NASA Astrophysics Data System (ADS)

    Hua, Xufeng; Chen, Chengxun; Xu, Dawei; Xing, Kezhi

    In this paper, we introduce a W-band gyro-traveling wave (gyro-TWT) tube to suppress spurious oscillations, which is used in facilities for Aquaculture. The spurious oscillations block achieving high gain and high power in high-power broadband millimeter amplifier. In order to suppress spurious oscillations, we study the interaction circuit including input coupler and output section, design the gyro-traveling wave tube with distributed-loss based on MIG. The results of simulation show that high power and broad-band capabilities.

  9. On a Wide-Band Fast Wave Gyrotron Travelling Wave Amplifier.

    DTIC Science & Technology

    1980-12-10

    Wagner On-Site Contractors: Code: 4740 - Dr. J.M. Baird (B-K Dynamics ) 4740 - Dr. L. Barnett (B-K Dynamics ) 4740 - Dr. D. Dialetis (SAI) 4740 - A.J. Dudes...Co. Dr. J.J. Tancredi Attn: K. Arnold Electron Dynamics Division K. Amboss 3100 Lomita Boulevard Torrance, California 90509 (1) Los Alamos Scientific...Addressee (1) TFR Group DPH - PFC Attn: Dr. A. Cavallo 92260 Fontenay-auix Roses France (1 ) Thompson C.S.F./DET/ TDH Attn: Dr. G. Mourier 2 Rue

  10. The Intense Microwave Prototype (IMP) free electron laser, 140 gigahertz microwave system for the microwave tokamak experiment (MTX)

    NASA Astrophysics Data System (ADS)

    Felker, B.; Ferguson, S. W.

    1991-09-01

    This paper will present the design, construction, and magnetic test results of the Intense Microwave Prototype (IMP) Free Electron Laser and all of the Microwave System special hardware developed for operation as a plasma heating source for the Microwave Tokamak Experiment. The test results presented will not include electron beam data for the FEL. Those tests will begin in November 1991. The master oscillator for the FEL is a 140 GHz, 400 kW gyrotron. Microwave power will be transmitted to the entrance to the wiggler by waveguide, miter bends, a waveguide-to-free-space vlasov mode convertor, and aluminum quasi-optical mirrors. The electron beam of approx. 2.5 k amps up to 7.5 MeV, and greater than 10(exp 8) A/ sq m-rad brightness will be introduced colinear with the microwave beam into the FEL. The IMP FEL is tunable and made up to both permanent and electromagnets. It is 5.5 meters long with a 10 cm period between shaped steel pole tips. The electromagnets are water cooled, carry up to 140 amps continuously and can be adjusted to vary the wiggler fields from 600 to 5500 gauss. The spent electron beam will be dumped into a water cooled, lead shielded carbon dump. The microwave pulses, at up to 5 GW power levels, will be transmitted through a series of mirrors to the Microwave Tokamak Experiment. Another swinging mirror will reflect the microwave power into a microwave dump/calorimeter for accelerator and FEL conditioning.

  11. Control of sawtooth periods by pulsed ECH/ECCD in the FTU tokamak

    NASA Astrophysics Data System (ADS)

    Nowak, S.; Buratti, P.; Cirant, S.; Esposito, B.; Granucci, G.; Lazzaro, E.; Marocco, D.; Sozzi, C.; Tuccillo, A. A.; Alessi, E.; Frigione, D.; Pucella, G.; Romano, A.; Tudisco, O.; FTU Team

    2014-03-01

    It is well known that fusion plasma operations can be limited in standard scenarios at high β by resistive instabilities, called neoclassical tearing modes (NTMs), which degrade the plasma confinement leading to a loss of plasma energy, and in some cases to disruption. The avoidance of their onset is a very important issue that has been largely investigated in many tokamaks. In particular, it has been shown that these modes, shaped as magnetic islands, can be triggered by finite seed perturbations associated with long sawtooth crashes. The control of the sawtooth periods is then a key step in the physics of plasma confinement in fusion devices: the shortening of these periods can reduce any triggered large seed island below the NTMs' growth threshold allowing maximum β values and high plasma performances to be achieved. A powerful tool for sawtooth control is the use of high localized electron cyclotron heating (ECH) and current drive (ECCD), capable of modifying the plasma current density and effecting the sawtooth period. Modulated ECH and ECCD have been used as triggers of sawtooth crashes to test conditions for an a priori constant sawtooth period. In the FTU high magnetic field compact tokamak (R0 = 0.93 m, a = 0.3 m, B0 = 4-8 T) similar experiments have been performed with an ECRH system of four gyrotrons operating at 140 GHz and delivering 0.5 MW each. Repetitive pulses of EC power from 1 to 2 gyrotrons up to 0.8 MW for 500 ms have been used to investigate the sensitivity of sawtooth periods during long and short EC switching on and off phases in view of a real time EC control system soon to be working in FTU. A new type of locking of the sawtooth periods to the EC modulation has been observed for deposition inside the q = 1 radius for EC on phase smaller than the ohmic period. In this paper, sawtooth period shortening and locking by ECH and co-ECCD inside the q = 1 radius is investigated and reproduced by numeric simulations.

  12. Highly ionized plasma plume generation by long-pulse CO/sub 2/ laser irradiation of solid targets in strong axial magnetic fields

    SciTech Connect

    Hoffman, A L; Crawford, E A

    1982-01-01

    The present work utilizes high f number optics and is directed primarily at controlling the conditions in the magnetically confined plume. Typically, fully ionized carbon plasmas have been produced with 10/sup 18/ cm/sup -3/ electron densities and 100 to 150 eV electron temperatures. These carbon plasmas have been doped with high Z atoms in order to study ionization and emission rates at the above conditions.

  13. Basic concept for an accelerator-driven subcritical system to be used as a long-pulse neutron source for Condensed Matter research

    NASA Astrophysics Data System (ADS)

    Vivanco, R.; Ghiglino, A.; de Vicente, J. P.; Sordo, F.; Terrón, S.; Magán, M.; Perlado, J. M.; Bermejo, F. J.

    2014-12-01

    A model for an accelerator-driven subcritical system to be operated as a source of cold neutrons for Condensed Matter research is developed at the conceptual level. Its baseline layout relies upon proven accelerator, spalattion target and fuel array technologies, and consists in a proton accelerator able to deliver some 67.5 mA of proton beam with kinetic energy 0.6 GeV, a pulse length of 2.86 ms, and repetition rate of 14 Hz. The particle beam hits a target of conventional design that is surrounded by a multiplicative core made of fissile/fertile material, composed by a subcritical array of fuel bars made of aluminium Cermet cooled by light water poisoned with boric acid. Relatively low enriched uranium is chosen as fissile material. An optimisation of several parameters is carried out, using as components of the objective function several characteristics pertaining the cold neutron pulse. The results show that the optimal device will deliver up to 80% of the cold neutron flux expected for some of the ongoing projects using a significantly lower proton beam power than that managed in such projects. The total power developed within the core rises up to 22.8 MW, and the criticality range shifts to a final keff value of around 0.9 after the 50 days cycle.

  14. Control of energy sweep and transverse beam motion in induction linacs

    NASA Astrophysics Data System (ADS)

    Turner, W. C.

    1991-05-01

    Recent interest in the electron induction accelerator has focussed on its application as a driver for high power radiation sources; free electron laser (FEL), relativistic klystron (RK) and cyclotron autoresonance maser (CARM). In the microwave regime where many successful experiments have been carried out, typical beam parameters are: beam energy 1 to 10 MeV, current 1 to 3 kA and pulse width 50 nsec. Radiation source applications impose conditions on electron beam quality, as characterized by three parameters; energy sweep, transverse beam motion and brightness. These conditions must be maintained for the full pulse duration to assure high efficiency conversion of beam power to radiation. The microwave FEL that has been analyzed in the greatest detail requires energy sweep less than (+ or -) 1 pct., transverse beam motion less than (+ or -) 1 mm and brightness approx. 1 x 10(exp 8)A/sq m sq rad. In the visible region the requirements on these parameters become roughly an order of magnitude more strigent. With the ETAII accelerator at LLNL the requirements were achieved for energy sweep, transverse beam motion and brightness. The recent data and the advances that have made the improved beam quality possible are discussed. The most important advances are: understanding of focussing magnetic field errors and improvements in alignment of the magnetic axis, a redesign of the high voltage pulse distribution system between the magnetic compression modulators and the accelerator cells, and exploitation of a beam tuning algorithm for minimizing transverse beam motion. The prospects are briefly described for increasing the pulse repetition frequency to the range of 5 kHz and a delayed feedback method of regulating beam energy over very long pulse bursts, thus making average power megawatt level microwave sources at 140 GHz and above a possibility.

  15. Study on statistical breakdown delay time in argon gas using a W-band millimeter-wave gyrotron

    NASA Astrophysics Data System (ADS)

    Kim, Dongsung; Kim, Sung Gug; Sawant, Ashwini; Yu, Dongho; Choe, MunSeok; Choi, EunMi

    2016-04-01

    In this study, we investigated plasma initiation delay times for argon volume breakdown at the W-band frequency regime. The threshold electric field is defined as the minimum electric field amplitude needed for plasma breakdown at various pressures. The measured statistical delay time showed an excellent agreement with the theoretical Gaussian distribution and the theoretically estimated formative delay time. Also, we demonstrated that the normalized effective electric field as a function of the product of pressure and formative time shows an outstanding agreement to that of 1D particle-in-cell simulation coupled with a Monte Carlo collision model [H. C. Kim and J. P. Verboncoeur, Phys. Plasmas 13, 123506 (2006)].

  16. Effects of Velocity Spread and Wall Resistivity on the Gain and Bandwidth of the Gyrotron Travelling-Wave Amplifier.

    DTIC Science & Technology

    1980-11-12

    this Report) Appo7 fo bi e~s.dsn on unlimited, OITI7. UTOt hi Roer’) IS. SUPPLEMENTARY MOTES oScience Applications, Inc., McLean, VA **B-K Dynamics ...Resistive Wall on the Dynamics of the Electron Beam..................................................................18 I Ac~cession For NTIS DDC TAB Jui...part by NAVELEX, Task XF54581007. REFERENCES " Science Applications, Inc. 00 B.-K. Dynamics 1. J.L. Seftor, V.L. Granatstein, K.R. Chu, P. Sprangle

  17. Test and Commissioning of 82.6 GHz ECRH system on SST-1

    NASA Astrophysics Data System (ADS)

    Bora, D.; Sathyanarayana, K.; Shukla, B. K.; Chattopadhyay, Prabal; Srinivas, Y. S. S.; Khilar, P. L.; Kushwah, Mahesh; Rajnish, Kumar; Sugandhi, Ritesh; Singh, Manoj; Babu, Rajan; P, Jatin; G, Agrajit; Biswas, Prabal; D, Pragnesh; Kadia, B. R.; V, Chetan; Patel, Harshida; P, Dharmesh; Kirit, P.; Parmar, K. G.; Makwana, A. R.; Harsha, M.; Soni, Jignesh; Yadav, Vipin; Shmelev, M.; Belousov, V.; Kurbatov, V.; Belov, Yu; Tai, E.

    2005-01-01

    Electron Cyclotron Resonance Heating (ECRH) system will play an important role in plasma formation, heating and current drive in the Superconducting Steady state Tokamak (SST-1). Commissioning activity of the machine has been initiated. Many of the sub-systems have been prepared for the first plasma discharge. A radial and a top port have been allotted for low field side (LFS) and high field side (HFS) launch of O and X- modes in the plasma. The system is based on a gyrotron source operating at a frequency of 82.6±0.1GHz (GLGD-82.6/0.2) and capable of delivering 0.2 MW / 1000s with 17% duty cycle. The transmission line consisting of ~15 meters length 63.5mm corrugated wave guide, DC break, wave guide switch, mitre bend, polariser, bellows that terminates with a vacuum barrier CVD window. A beam launching system used to steer the microwave beam in the plasma volume is connected between the end of the transmission line and the tokamak radial and top ports. A VME based real time data acquisition and control (DAC) system is used for monitoring, acquisition and control. Hard-wired interlock operates a rail-gap based crowbar system in less than 10µs under any fault condition. Burn patterns are recorded at various stages in the transmission line. The gyrotron is tested for ~200 kW / 1000s operation on a water dummy load. Transmission line is tested at various power levels for long pulse operation. The paper highlights the experimental results of successful commissioning of the system.

  18. IV INTERNATIONAL CONFERENCE ON ATOM AND MOLECULAR PULSED LASERS (AMPL'99): Efficient long-pulse XeCl laser with a prepulse formed by an inductive energy storage device

    NASA Astrophysics Data System (ADS)

    Baksht, E. Kh; Panchenko, Aleksei N.; Tarasenko, Viktor F.

    2000-06-01

    An efficient electric-discharge XeCl laser is developed, which is pumped by a self-sustained discharge with a prepulse formed by a generator with an inductive energy storage device and a semiconductor current interrupter on a basis of semiconductor opening switch (SOS) diodes. An output energy up to 800 mJ, a pulse length up to 450 ns, and a total laser efficiency of 2.2% were attained by using spark UV preionisation.

  19. Non-Inductive Current Drive Modeling Extending Advanced Tokamak Operation to Steady State

    SciTech Connect

    Casper, T.A.; Lodestro, L.L.; Pearlstein, L.D.; Porter, G.D.; Murakami, M.; Lao, L.L.; Lin-Lui, Y.R.; St. John, H.E.

    2000-06-06

    A critical issue for sustaining high performance, negative central shear (NCS) discharges is the ability to maintain current distributions that are maximum off axis. Sustaining such hollow current profiles in steady state requires the use of non-inductively driven current sources. On the DIII-D experiment, a combination of neutral beam current drive (NBCD) and bootstrap current have been used to create transient NCS discharges. The electron cyclotron heating (ECH) and current drive (ECCD) system is currently being upgraded from three gyrotrons to six to provide more than 3MW of absorbed power in long-pulse operation to help sustain the required off-axis current drive. This upgrade SuPporrs the long range goal of DIII-D to sustain high performance discharges with high values of normalized {beta}, {beta}{sub n} = {beta}/(I{sub p}/aB{sub T}), confinement enhancement factor, H, and neutron production rates while utilizing bootstrap current fraction, f{sub bs}, in excess of 50%. At these high performance levels, the likelihood of onset of MHD modes that spoil confinement indicates the need to control plasma profiles if we are to extend this operation to long pulse or steady state. To investigate the effectiveness of the EC system and to explore operating scenarios to sustain these discharges, we use time-dependent simulations of the equilibrium, transport and stability. We explore methods to directly alter the safety factor profile, q, through direct current drive or by localized electron heating to modify the bootstrap current profile. Time dependent simulations using both experimentally determined [1] and theory-based [2] energy transport models have been done. Here, we report on simulations exploring parametric dependencies of the heating, current drive, and profiles that affect our ability to sustain stable discharges.

  20. Status of RF Heating and Current Drive Systems for KSTAR

    NASA Astrophysics Data System (ADS)

    Bae, Young-Soon; Jeong, Jin-Hyun; Park, Seung-Il; Cho, Moo-Hyun; Namkung, Won; Kwak, Jong-Gu; Yoon, Jae-Sung; Bae, Yeong-Duk; Wang, Son-Jong; Kim, Suk-Kwon; Hwang, Chul-Kew; Kim, Sung-Kyu

    2007-11-01

    The heating and current drive systems consisting of neutral beam injection (NBI) and radio frequency (RF) systems will be used for the KSTAR whose construction will be completed by August, 2007. The KSTAR RF heating and current drive systems are composed of ion cyclotron range of frequencies (ICRF), lower hybrid current drive (LHCD) system, and electron cyclotron heating (ECH) system. The KSTAR adopts the ECH-assisted start-up for the flexibility and reliability of the operation regime using 84 GHz, 500 kW gyrotron. For the KSTAR first plasma scheduled at June, 2008, two RF heating systems, 84 GHz ECH and 25-60 MHz ICRF systems, will be used for the pre-ionization to reduce the loop voltage and the wall discharge cleaning, respectively. This paper describes the status of the KSTAR RF heating and current drive systems and the initial test results using dummy load. Also, the upgrade plan of the KSTAR RF heating and current drive systems will be presented as well as the key features and the relevant technological issues for the long pulse operation.

  1. Cyclotron resonance heating systems for SST-1

    NASA Astrophysics Data System (ADS)

    Bora, D.; Kumar, Sunil; Singh, Raj; Sathyanarayana, K.; Kulkarni, S. V.; Mukherjee, A.; Shukla, B. K.; Singh, J. P.; Srinivas, Y. S. S.; Khilar, P.; Kushwah, M.; Kumar, Rajnish; Sugandhi, R.; Chattopadhyay, P.; Raghuraj, Singh; Jadav, H. M.; Kadia, B.; Singh, Manoj; Babu, Rajan; Jatin, P.; Agrajit, G.; Biswas, P.; Bhardwaj, A.; Rathi, D.; Siju, G.; Parmar, K.; Varia, A.; Dani, S.; Pragnesh, D.; Virani, C.; Patel, Harsida; Dharmesh, P.; Makwana, A. R.; Kirit, P.; Harsha, M.; Soni, J.; Yadav, V.; Bhattacharya, D. S.; Shmelev, M.; Belousov, V.; Kurbatov, V.; Belov, Yu.; Tai, E.

    2006-03-01

    RF systems in the ion cyclotron resonance frequency (ICRF) range and electron cyclotron resonance frequency (ECRF) range are in an advanced stage of commissioning, to carry out pre-ionization, breakdown, heating and current drive experiments on the steady-state superconducting tokamak SST-1. Initially the 1.5 MW continuous wave ICRF system would be used to heat the SST-1 plasma to 1.0 keV during a pulse length of 1000 s. For different heating scenarios at 1.5 and 3.0 T, a wide band of operating frequencies (20-92 MHz) is required. To meet this requirement two CW 1.5 MW rf generators are being developed in-house. A pressurized as well as vacuum transmission line and launcher for the SST-1-ICRF system has been commissioned and tested successfully. A gyrotron for the 82.6 GHz ECRF system has been tested for a 200 kW/1000 s operation on a water dummy load with 17% duty cycle. High power tests of the transmission line have been carried out and the burn pattern at the exit of transmission line shows a gaussian nature. Launchers used to focus and steer the microwave beam in plasma volume are characterized by a low power microwave source and tested for UHV compatibility. Long pulse operation has been made feasible by actively cooling both the systems. In this paper detailed test results and the present status of both the systems are reported.

  2. Radiation Sources at Electron Cyclotron Harmonic Frequencies.

    DTIC Science & Technology

    1983-01-28

    KEY WORDS (Continue on reverse side it necesear and Identify by block number) Radiation source, electron cyclotron frequency, gyrotron, travelling ...investigation of gyrotron devices operating in cylindrical geometry. Specific topics include an analysis of oscillations in a gyrotron travelling wave...amplifier, the study of the effects of velocity spread and wall resistivity on gain and bandwidth in a gyrotron travell - ing wave amplifier, an

  3. Novel aspects of plasma control in ITER

    NASA Astrophysics Data System (ADS)

    Humphreys, D.; Ambrosino, G.; de Vries, P.; Felici, F.; Kim, S. H.; Jackson, G.; Kallenbach, A.; Kolemen, E.; Lister, J.; Moreau, D.; Pironti, A.; Raupp, G.; Sauter, O.; Schuster, E.; Snipes, J.; Treutterer, W.; Walker, M.; Welander, A.; Winter, A.; Zabeo, L.

    2015-02-01

    ITER plasma control design solutions and performance requirements are strongly driven by its nuclear mission, aggressive commissioning constraints, and limited number of operational discharges. In addition, high plasma energy content, heat fluxes, neutron fluxes, and very long pulse operation place novel demands on control performance in many areas ranging from plasma boundary and divertor regulation to plasma kinetics and stability control. Both commissioning and experimental operations schedules provide limited time for tuning of control algorithms relative to operating devices. Although many aspects of the control solutions required by ITER have been well-demonstrated in present devices and even designed satisfactorily for ITER application, many elements unique to ITER including various crucial integration issues are presently under development. We describe selected novel aspects of plasma control in ITER, identifying unique parts of the control problem and highlighting some key areas of research remaining. Novel control areas described include control physics understanding (e.g., current profile regulation, tearing mode (TM) suppression), control mathematics (e.g., algorithmic and simulation approaches to high confidence robust performance), and integration solutions (e.g., methods for management of highly subscribed control resources). We identify unique aspects of the ITER TM suppression scheme, which will pulse gyrotrons to drive current within a magnetic island, and turn the drive off following suppression in order to minimize use of auxiliary power and maximize fusion gain. The potential role of active current profile control and approaches to design in ITER are discussed. Issues and approaches to fault handling algorithms are described, along with novel aspects of actuator sharing in ITER.

  4. High frequency CARM driver for rf linacs. Final report, September 15, 1989--March 15, 1993

    SciTech Connect

    Danly, B.G.

    1993-09-23

    This CARM program has successfully demonstrated the first ever long-pulse CARM oscillator operation; these results demonstrate the potential of CARMs as an alternative source of millimeter waves to the gyrotron for ECRH plasma heating. The result of 1.8 MW at 27.8 GHz and 0.5 {mu}s pulse width in the TE{sub 11} mode represent a clear demonstration of the capabilities of the CARM oscillator for the production of high powers with large frequency upshift. It is hoped that this successful proof-of-principle demonstration.will lead to further development of the CARM as an ECRH source by the DOE Office of Fusion Energy, Development and Technology Division. This success is a direct outcome of this support of the Advanced Energy Projects Office of DOE in the form of this program. The CARM amplifier component of the program, although unsuccessful at obtaining CARM amplifier operation at 17 GHz, has succeeded by furthering the understanding of the limitations and difficulties that lie ahead for continued CARM amplifier development. The amplifier component of the program has successfully demonstrated a high power second and third harmonic gyro-TWT amplifier. Up to 5 MW of power at 17.1 GHz and >50dB gain have been obtained. These results should be viewed as an important contribution of this program to the development of viable microwave sources for powering the next linear collider. Indeed, the present gyro-amplifier, which resulted from this program, is presently being used in ongoing high-gradient accelerator research at MIT under a DOE High Energy Physics grant. As a result of both the oscillator and amplifier advances made during this program, the CARM and harmonic gyro-TWT have reached a significantly more mature level; their future role in specific applications of benefit to DOEs OFE and HEP offices may now be pursued.

  5. Novel aspects of plasma control in ITER

    DOE PAGES

    Humphreys, David; Ambrosino, G.; de Vries, Peter; ...

    2015-02-12

    ITER plasma control design solutions and performance requirements are strongly driven by its nuclear mission, aggressive commissioning constraints, and limited number of operational discharges. In addition, high plasma energy content, heat fluxes, neutron fluxes, and very long pulse operation place novel demands on control performance in many areas ranging from plasma boundary and divertor regulation to plasma kinetics and stability control. Both commissioning and experimental operations schedules provide limited time for tuning of control algorithms relative to operating devices. Although many aspects of the control solutions required by ITER have been well-demonstrated in present devices and even designed satisfactorily formore » ITER application, many elements unique to ITER including various crucial integration issues are presently under development. We describe selected novel aspects of plasma control in ITER, identifying unique parts of the control problem and highlighting some key areas of research remaining. Novel control areas described include control physics understanding (e.g. current profile regulation, tearing mode suppression (TM)), control mathematics (e.g. algorithmic and simulation approaches to high confidence robust performance), and integration solutions (e.g. methods for management of highly-subscribed control resources). We identify unique aspects of the ITER TM suppression scheme, which will pulse gyrotrons to drive current within a magnetic island, and turn the drive off following suppression in order to minimize use of auxiliary power and maximize fusion gain. The potential role of active current profile control and approaches to design in ITER are discussed. Finally, issues and approaches to fault handling algorithms are described, along with novel aspects of actuator sharing in ITER.« less

  6. Demonstration of the Microwave Ice Protection Concept

    DTIC Science & Technology

    1978-05-01

    wave (cw) power at 22 GHz with efficiencies between 20 and 30%. Higher efficiency is reasonable to expect in the future. On the horizon, to be...Adminis- tration (ERDA) has an outstanding contract to develop a 200-Kw contin- uous wave Gyrotron at 28 GHz with a maximum efficiency of 44%. The... GYROTRON In the gyrotron , constructed in the Soviet Union, Reference 18 an output power of 10 kw at an efficiency of 40% was obtained. An out- line drawing

  7. Millimeter Wave Generation by Relativistic Electron Beams and Microwave- Plasma Interaction

    DTIC Science & Technology

    1990-12-04

    there has been considerable effort in generating powerful microwave radiations by relativistic electron beams. Various devices including gyrotrons ... power high-frequency sources motivates the search for many other novel ways of improving the operation of high harmonic gyrotrons . Further, it is also...either in the CW range or the step range. Destler et al. (1981) showed that the efficiency of a gyrotron operating at higher harmonics can be

  8. Theoretical and Experimental Investigation of Electron Beam Acceleration and Sub-Millimeter Wave Generation

    DTIC Science & Technology

    1992-10-01

    art fundamental frequency gyrotrons , has been fullv designed and construction is well underway. (4) The interaction strength in our high-harmonic CARM...compact generators of submillimeter-wave radiation. Our efforts have focussed on gyrotron devices because they have proven to be efficient generators...High frequency gyrotrons can be made more compact by reducing the cathode voltage and by operating at harmonics of the cyclotron frequency which

  9. [Pain relief by low-intensity frequency-modulated millimeter waves acting on the acupuncture points].

    PubMed

    Samosiuk, I Z; Kulikovich, Iu N; Tamarova, Z A; Samosiuk, N I; Kazhanova, A K

    2000-01-01

    Analgetic effect of low-intensive frequency-modulated millimetric waves (MW) was studied in mice with formalin induced nociceptive behavior reaction (licking of defeat hindpaw). MW were applied to the acupoint E 36 of the defeat hindpaw. The following MW were used: 60 GHz (1) and 118 GHz (2) which were modulated by 4 Hz; noise MW within the range of 42-95 GHz (3) and 90-140 GHz (4) which were modulated in accidental order by frequencies 1-60 Hz; combinations of fixed frequencies with noise - 60 GHz + noise 42-95 GHz (5) and 118 GHz + noise 90-140 GHz (6). All used MW combinations suppressed licking of the defeat hindpaw and increased duration of sleep and eating. The strongest analgesia was achieved in series 1-3 (42.4-69.7%), the weakest in series 6 and 4 of the experiment (12.2-19.7%).

  10. Millimeter-wave narrow-gap uncooled hot-carrier detectors for active imaging

    NASA Astrophysics Data System (ADS)

    Sizov, Fedir F.; Zabudsky, Vyacheslav V.; Golenkov, Aleksandr G.; Shevchik-Shekera, Ann

    2013-03-01

    It is shown that electron heating by electromagnetic radiation in mercury-cadmium-telluride (MCT) layers can be used for designing of uncooled terahertz (THz)/sub-THz detectors with appropriate for active imaging characteristics (noise equivalent power ˜2.6×10-10 W/Hz at ν˜140 GHz) and these detectors can be manufactured within well established MCT technologies. This narrow-gap semiconductor can be considered as a material for THz/sub-THz detectors with possibility to be assembled into arrays. The characteristics of those detectors can be controlled and improved by selection of parameters of initial layers, substrate properties, and antenna configuration. For field effect transistor detectors, even for transistors with rather long channels (˜1 μm), rather similar characteristics at ν˜140 GHz can also be obtained.

  11. Millimeter Wave Attenuation in Moist Air: Laboratory Measurements and Analysis.

    DTIC Science & Technology

    1984-03-01

    san-filled the vapor source. Electropolished stainless steel was used tesonator is excisively as construction aterial. Various hydrophobc coatings...stainless steel vessel, which houses a temperature-controlled mini-lake (10 cm across) and the radio test path. MMW signals around 35 and 140 GHz have...conversion,. sulphur dioxide. for example, nuciratee with wsar vapor to form sulfuric acid primary, particles in large numbers (am high me 1015 0,3

  12. MMIC Amplifiers for 90 to 130 GHz

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Pukala, David; Peralta, Alejandro; Bryerton, Eric; Morgan, Matt; Boyd, T.; Hu, Ming; Schmitz, Adele

    2007-01-01

    This brief describes two monolithic microwave integrated-circuit (MMIC) amplifier chips optimized to function in the frequency range of 90 to 130 GHz, covering nearly all of F-band (90 - 140 GHz). These amplifiers were designed specifically for local-oscillator units in astronomical radio telescopes such as the Atacama Large Millimeter Array (ALMA). They could also be readily adapted for use in electronic test equipment, automotive radar systems, and communications systems that operate between 90 and 130 GHz.

  13. Advanced Solid-State Lasers/Compact Blue-Green Lasers. 1993 Technical Digest Series. Volume 2. Organization of the 1993 Photonics Science Topical Meetings held in New Orleans, Louisiana on 1 - 4 February 1993

    DTIC Science & Technology

    1993-02-04

    Fourier with bandwidths up to 140 GHz (fwhm). provides accurate predictions of eigenmode spectra (500 to 22,000 cm-1 at 1 cmŕ resolu- (p. 58) properties ...Francois Salin, University of Paris, overall) conversion efficiency. (p. 131) Presider 4:30 pm AMF3 Optical parametric frequency conversion properties of...ATuCi Subpicosecond pulse genera- my Adelphi Laboratory Center. Bruce H T and properties are discussed (p. 188) tlon from a laser-diode-pumped, self

  14. Millimeter and sub-millimeter wave detection of hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Kolbe, W. F.; Leskovar, B.

    1987-08-01

    The measurement of small concentrations of hydrogen peroxide through the detection of rotational transitions in the millimeter and sub-millimeter wave regions is discussed. Calculated transition frequencies and absorption coefficients of H2O2 for frequencies up to 2000 GHz are presented. The reliability of the calculated values is illustrated by measurements of the linewidths and absorption coefficients of transitions in the 140 GHz range. Finally, methods for the detection of trace quantities of the peroxide molecule are briefly described.

  15. The Real-Time system for MHD activity control in the FTU tokamak

    NASA Astrophysics Data System (ADS)

    Sozzi, C.; Alessi, E.; Boncagni, L.; Galperti, C.; Marchetto, C.; Nowak, S.; Bin, W.; Botrugno, A.; Bruschi, A.; Cirant, S.; D'Antona, G.; D'Arcangelo, O.; Davoudi, M.; Farina, D.; Ferrero, R.; Figini, L.; Garavaglia, S.; Granucci, G.; Grosso, A.; Iannone, F.; Lazzaro, E.; Moro, A.; Nardone, A.; Mellera, V.; Minelli, D.; Panella, M.; Piergotti, V.; Platania, P.; Ramponi, G.; Simonetto, A.; Tilia, B.; Vitale, E.; Tudisco, O.

    2012-09-01

    The Real-Time system for the control of the magnetohydrodynamics instabilities in FTU tokamak is presented. It is based on both a-priori information derived from statistical treatment of a database and Real-Time elaboration of live diagnostics data. The analysis codes are executed in different time threads based on multi-processors machines. The actuator is the 2×0.4MW 140 GHz ECRH system equipped with the new fast quasi-optical steerable launcher.

  16. A millimeter-wave radiometer technique for measuring ice thickness on the surface of the Space Shuttle's external fueltank

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Kendra, J. R.; Haddock, T.; Wu, Steve

    1991-01-01

    The presence of ice on the outside surface of the external tanks of a Space Shuttle can be detrimental to the launch and it is important to detect its presence and measure its thickness. A description is given of the design of a millimeter-wave radiometer system developed for this purpose. The design is based on model calculations and measurements of the emission properties of an external tank panel, performed at 35, 94 and 140 GHz.

  17. Upgrades and Additions for the ECH System on DIII-D

    NASA Astrophysics Data System (ADS)

    Gorelov, Y. A.; Lohr, J.; Cengher, M.; Ponce, D.

    2013-10-01

    Six MW-class, 110 GHz gyrotrons have been in routine operation on DIII-D since 2008. One of these gyrotrons, which had low rf production and higher than normal collector power loading, failed due to a collector water leak. Nevertheless, the number of 110 GHz gyrotrons remained the same, as the first new 110 GHz CPI gyrotron with depressed collector potential design was installed and used in the 2013 experimental campaign. The DIII-D ECH transmission line system now comprises seven evacuated transmission lines up to 80 meters in length with transmission efficiencies from 69%-79% and four dual launchers. New stands are being fabricated and installed for two additional depressed collector gyrotrons, one with designed power of 1.2 MW at 110 GHz and the other with 1.5 MW at 117.5 GHz. One gyrotron was relocated to accommodate the new additions. High voltage power supplies, the water-cooling system and new waveguide lines for these gyrotrons are being built. One of the 110 GHz 1.0 MW gyrotrons in DIII-D was used as a source for heat exchanger tests. The rf beam was routed to a mobile test unit (MTU) trailer and shows expected expansion of beam radius vs distance from the waveguide end. Experiments were completed using 50-500 kW injected into the MTU lab at pulse lengths from 5-300 ms. Work supported by the US DOE under DE-FC02-04ER54698.

  18. High order mode beam waveguide for technological medium power millimeter wave applications

    SciTech Connect

    Rio, C. del; Gonzalo, R.; Marin, M.; Sorolla, M.; Moebius, A.; Thumm, M.

    1995-12-31

    The use of medium power millimeter CW gyrotrons (10-30 kW and 30-100 GHz) has several potential applications in advanced materials processing. Since a stochastic field distribution in the applicator is desirable no pencil beam is necessary. Then the possibility to couple the circular symmetric gyrotron output to a higher order free space mode can be considered. Beam waveguides based on iterative reflection of such high order beams on properly disigned mirrors opens the possibility to increase the efficiency and to reduce costs of present compact transmission lines in gyrotron technological systems.

  19. EC-5 fifth international workshop on electron cyclotron emission and electron cyclotron heating

    SciTech Connect

    Prater, R.; Lohr, J.

    1985-12-31

    This report contains papers on the following topics: electron cyclotron emission measurements; electron cyclotron emission theory; electron cyclotron heating; gyrotron development; and ECH systems and waveguide development. These paper have been indexed separately elsewhere. (LSP).

  20. Intense Electron Beam Cyclotron Masers with Microsecond Pulselengths

    DTIC Science & Technology

    1991-12-20

    undesired oscillations, M412l absolute instability, TB1 Igyro-BWO, TESI second and Oird harmonic), were te most serious competing modes in the prsent Bragg...high harmonic interactions such as the second harmonic TESI gyrotron interaction and the third harmonic TE51 absolute instability interaction. We...We ruled out the TE31 CARM and high harmonic gyrotron modes such as a second harmonic TBE5 or third harmonic TESI in interpreting the breakdown pattern

  1. High power millimeter wave ECRH source needs for fusion program

    SciTech Connect

    Not Available

    1984-06-01

    This document stems from the four-day Gyrotron Symposium held at the US Department of Energy (DOE) Headquarters on June 13-16, 1983, and serves as a position paper for the Office of Fusion Energy, DOE, on high-power millimeter wave source development for Electron Cyclotron Heating (ECH) of plasmas. It describes the fusion program needs for gyrotron as ECH sources, their current status, and desirable development strategies.

  2. Progress of microwave collective Thomson scattering in LHD

    NASA Astrophysics Data System (ADS)

    Tanaka, K.; Nishiura, M.; Kubo, S.; Shimozuma, T.; Saito, T.

    2015-12-01

    Microwave collective Thomson scattering (CTS) by using a 77 GHz gyrotron is routinely working in LHD and the improvements of the system is now underway. The targets of this diagnostic are measurements of energetic fast ion distribution and ion ratio. In the present system, 800kW 77 GHz gyrotron is injected horizontally and scattered radiation is received changing scattering angle. The system works with existence of electron cyclotron resonance layer. Thus, most of the power is absorbed at the layer like beam damping and stray radiation dramatically decreases. Gyrotron is modulated at 40 Hz, then, background ECE, which is signal in gyrotron off phase, is subtracted from scattered signal in gyrotron on phase. The perturbation of electron temperature due to the gyrotron injection is almost negligible. Temporal evolution of CTS spectrum is obtained by 32ch filter bank receiver through discharge and fine spectrum is obtained by 10 GHz sampling fast digitizer for 80 ms. Change of the width and asymmetry of CTS spectrum is observed after turning off of tangentially injected neutral beam (NB). This is qualitatively consistent with reduction of fast ion density. Preliminary data of ion ratio between hydrogen and helium are also obtained.

  3. Polarization Issues with High Power Injection and Low Power Emission in Fusion Experiments

    SciTech Connect

    Goodman, T. P.; Felici, F.; Udintsev, V. S.

    2009-11-26

    All tokamak experiments using ECCD require setting of the beam elliptical polarization for proper coupling to the plasma. This is done either in the matching optics unit (MOU) at the output of the gyrotron, or in a couple of miter bends of the transmission line. Similarly, oblique ECE receivers require selection of the correct elliptical polarization to provide localized measurements. For the TCV tokamak at the CRPP, gyrotron and oblique-ECE polarizers are characterized during either high- or low- power testing of equipment: for the gyrotrons the behaviour is determined at a single frequency, but for the oblique-ECE the broadband response is needed. These characteristics are included in the calibration database and used during subsequent analysis of the power coupling to, or from, the sources (gyrotron, plasma, or low power transmitting antenna). A more detailed characterization has been carried out (at low power) with the MOU for the EU, 170 GHz, 2 MW, gyrotron prototype for ITER. This paper discusses the methodology and results of these measurements, as well as a review of nearly a decade's worth of experimental data from the 6 gyrotron, 3 MW, 82.6 GHz TCV system. In particular, the consistency between the calibrations and the subsequent data from tokamak experiments is analysed.

  4. Microwave properties of ferromagnetic nanostructures.

    PubMed

    Valenzuela, R; Alvarez, G; Mata-Zamora, M E

    2008-06-01

    A review of the dynamic properties of nanostructured ferromagnetic materials at microwave frequencies (1-40 GHz) is presented. Since some confusion has recently appeared between giant magnetoimpedance (GMI) and ferromagnetic resonance (FMR), a detailed analysis is made in order to establish their differences. A brief review of a novel microwave absorption mode, the low-field microwave absorption (LFA) is then presented, together with a discussion about its similarities with GMI. Recent results on high-frequency measurements on nanogranular thin films and FMR in nanowire arrays are finally addressed.

  5. [ital H] mode of the W 7-AS stellarator

    SciTech Connect

    Erckmann, V.; Wagner, F.; Baldzuhn, J.; Brakel, R.; Burhenn, R.; Gasparino, U.; Grigull, P.; Hartfuss, H.J.; Hofmann, J.V.; Jaenicke, R.; Niedermeyer, H.; Ohlendorf, W.; Rudyj, A.; Weller, A.; Bogdanov, S.D.; Bomba, B.; Borschegovsky, A.A.; Cattanei, G.; Dodhy, A.; Dorst, D.; Elsner, A.; Endler, M.; Geist, T.; Giannone, L.; Hacker, H.; Heinrich, O.; Herre, G.; Hildebrandt, D.; Hiznyak, V.I.; Il'in, V.I.; Kasparek, W.; Karger, F.; Kick, M.; Kubo, S.; Kuftin, A.N.; Kurbatov, V.I.; Lazaros, A.; Malygin, S.A.; Malygin, V.I.; McCormick, K.; Mueller, G.A.; Orlov, V.B.; Pech, P.; Roi, I.N.; Sardei, F.; Sattler, S.; Schneider, F.; Schneider, U.; Schueller, P.G.; Siller, G.; Stroth, U.; Tutter, M.; Unger, E.; Wolff, H.; Wuersching, E.; Zoepfel, S. )

    1993-04-05

    In W 7-AS the [ital H] mode has been observed for the first time in a currentless stellarator plasma. [ital H] modes are achieved with 0.4 MW electron cyclotron resonance heating at 140 GHz at high density. The [ital H] phases display all characteristics known from tokamak [ital H] modes including edge localized modes (ELMs). The achievement of the [ital H] mode in a shear-free stellarator without toroidal current has consequences on [ital H]-mode transition and ELM theories.

  6. A selective pyroelectric detector of millimeter-wave radiation with an ultrathin resonant meta-absorber

    NASA Astrophysics Data System (ADS)

    Paulish, A. G.; Kuznetsov, S. A.

    2016-11-01

    The results of experimental investigations of spectral and amplitude-frequency characteristics for a discrete wavelength-selective pyroelectric detector operating in the millimetric band are presented. The high spectral selectivity is attained due to integrating the detector with a resonant meta-absorber designed for a close-to-unity absorptivity at 140 GHz. It is demonstrated that the use of this meta-absorber provides an opportunity to construct small-sized and inexpensive multispectral polarization-sensitive systems for radiation detection in the range of millimeter and submillimeter waves.

  7. Figure of merit studies of beam power concepts for advanced space exploration

    NASA Technical Reports Server (NTRS)

    Miller, Gabriel; Kadiramangalam, Murali N.

    1990-01-01

    Surface to surface, millimeter wavelength beam power systems for power transmission on the lunar base were investigated. Qualitative/quantitative analyses and technology assessment of 35, 110 and 140 GHz beam power systems were conducted. System characteristics including mass, stowage volume, cost and efficiency as a function of range and power level were calculated. A simple figure of merit analysis indicates that the 35 GHz system would be the preferred choice for lunar base applications, followed closely by the 110 GHz system. System parameters of a 35 GHz beam power system appropriate for power transmission on a recent lunar base concept studied by NASA-Johnson and the necessary deployment sequence are suggested.

  8. Passive millimeter-wave imaging - A tool for remote sensing

    NASA Technical Reports Server (NTRS)

    Suess, Helmut; Gruener, Konrad; Wilson, William J.

    1989-01-01

    This paper describes a program of airborne radiometric imaging at 90 GHz and 140 GHz. Using high sensitivity (below 1 K) and high angular resolution (0.5-1.0 degree), high quality images have been made. The following measurements are discussed: cloud and fog penetration at 90 GHz, discrimination between agricultural and urban areas, discrimination between different vegetation types, detection of vehicles on roads, detection and classification of airports and airplanes, ship detection and quantitative oil spill sensing. The application of information enhancement techniques with automatic and real time application aspects is also described, and results of applied techniques for contrast and contour enhancement are shown.

  9. 146-GHz millimeter-wave radio-over-fiber photonic wireless transmission system.

    PubMed

    Fice, M J; Rouvalis, E; van Dijk, F; Accard, A; Lelarge, F; Renaud, C C; Carpintero, G; Seeds, A J

    2012-01-16

    We report the experimental implementation of a wireless transmission system with a 146-GHz carrier frequency which is generated by optical heterodyning the two modes from a monolithically integrated quantum dash dual-DFB source. The monolithic structure of the device and the inherent low noise characteristics of quantum dash gain material allow us to demonstrate the transmission of a 1 Gbps ON-OFF keyed data signal with the two wavelengths in a free-running state at 146-GHz carrier wave frequency. The tuning range of the device fully covers the W-band (75 - 110 GHz) and the F-band (90 - 140 GHz).

  10. Photothermoelectric response in asymmetric carbon nanotube devices exposed to sub-terahertz radiation

    NASA Astrophysics Data System (ADS)

    Fedorov, G.; Kardakova, A.; Gayduchenko, I.; Charayev, I.; Voronov, B. M.; Finkel, M.; Klapwijk, T. M.; Morozov, S.; Presniakov, M.; Bobrinetskiy, I.; Ibragimov, R.; Goltsman, G.

    2013-10-01

    We report on the voltage response of carbon nanotube devices to sub-terahertz (THz) radiation. The devices contain carbon nanotubes (CNTs), which are over their length partially suspended and partially Van der Waals bonded to a SiO2 substrate, causing a difference in thermal contact. We observe a DC voltage upon exposure to 140 GHz radiation. Based on the observed gate voltage and power dependence, at different temperatures, we argue that the observed signal is both thermal and photovoltaic. The room temperature responsivity in the microwave to THz range exceeds that of CNT based devices reported before.

  11. Large area TES spiderweb bolometer for multi-mode cavity microwave detect

    NASA Astrophysics Data System (ADS)

    Biasotti, M.; Bagliani, D.; Ceriale, V.; Corsini, D.; De Bernardis, P.; Gatti, F.; Gualtieri, R.; Lamagna, L.; Masi, S.; Pizzigoni, G.; Schillaci, A.

    2014-07-01

    Large area spiderweb bolometers of 8 mm diameter and a mesh size of 250 μm are fabricated in order to couple with approximately the first 20 modes of a multimode EM cavity at about 140 GHz. The sensor is a Ti/Au/Ti 3 layer TES with Tc tuned in the 330-380 mK and 2 mK transition width. We describe the detector design and the fabrication process, early TES electro-thermal measurements. We also report optical coupling measurement and show the multimode coupling.

  12. Floating data acquisition system for microwave calorimeter measurements on MTX

    SciTech Connect

    Sewall, N.R.; Meassick, S. )

    1989-09-13

    A microwave calorimeter has been designed for making 140-GHz absorption measurements on the MTX. Measurement of the intensity and spatial distribution of the FEL-generated microwave beam on the inner wall will indicate the absorption characteristics of the plasma when heated with a 140 GHz FEL pulse. The calorimeter works by monitoring changes of temperature in silicon carbide tiles located on the inner wall of the tokamak. Thermistors are used to measure the temperature of each tile. The tiles are located inside the tokamak about 1 cm outside of the limiter radius at machine potential. The success of this measurement depends on our ability to float the data acquisition system near machine potential and isolate it from the rest of the vault ground system. Our data acquisition system has 48 channels of thermistor signal conditioning, a multiplexer and digitizer section, a serial data formatter, and a fiber-optic transmitter to send the data out. Additionally, we bring timing signals to the interface through optical fibers to tell it when to begin measurement, while maintaining isolation. The receiver is an HP 200 series computer with a serial data interface; the computer provides storage and local display for the shot temperature profile. Additionally, the computer provides temporary storage of the data until it can be passed to a shared resource management system for archiving. 2 refs., 6 figs.

  13. H-mode characterisation for dominant ECRH and comparison to dominant NBI or ICRF heating at ASDEX Upgrade

    SciTech Connect

    Sommer, F.; Stober, J.; Angioni, C.; Fable, E.; Bernert, M.; Burckhart,; Bobkov, V.; Fischer, R.; Fuchs, C.; McDermott, R. M.; Suttrop, W.; Viezzer, E.; Collaboration: ASDEX Upgrade Team

    2014-02-12

    At ASDEX Upgrade the ECRH system has been upgraded to provide up to 4 MW of heating power at 140 GHz (or 2.2 MW at 105 GHz). The power at 140 GHz exceeds the minimum H-mode power threshold for typical high I{sub p}, B{sub t} conditions by approximately a factor of two. The upgrade allows H-modes with dominant electron heating and significant electron-ion heat exchange to be studied, i.e. the situation expected in ITER. This paper reports on systematic studies varying the heating mix with NBI, ICRF and ECRH and its effect on pedestal parameters and core transport. The H-mode pedestal is hardly affected by the choice of heating mix, but the ion temperature in the plasma center is found to vary significantly. The ion channel dominates heat transport and ion temperature gradient modes (ITG) are found to be the most unstable microinstability in all the scenarios considered. R/L{sub Ti} at half radius reduces by a factor of two when T{sub e}/T{sub i} increases from 0.9 to 1.5. TGLF modelling of the electron and ion temperature and electron density profiles shows very good agreement with the experimental data when applying a realistic sawtooth model.

  14. Initial results for a 170 GHz high power ITER waveguide component test stand

    NASA Astrophysics Data System (ADS)

    Bigelow, Timothy; Barker, Alan; Dukes, Carl; Killough, Stephen; Kaufman, Michael; White, John; Bell, Gary; Hanson, Greg; Rasmussen, Dave

    2014-10-01

    A high power microwave test stand is being setup at ORNL to enable prototype testing of 170 GHz cw waveguide components being developed for the ITER ECH system. The ITER ECH system will utilize 63.5 mm diameter evacuated corrugated waveguide and will have 24 >150 m long runs. A 170 GHz 1 MW class gyrotron is being developed by Communications and Power Industries and is nearing completion. A HVDC power supply, water-cooling and control system has been partially tested in preparation for arrival of the gyrotron. The power supply and water-cooling system are being designed to operate for >3600 second pulses to simulate the operating conditions planned for the ITER ECH system. The gyrotron Gaussian beam output has a single mirror for focusing into a 63.5 mm corrugated waveguide in the vertical plane. The output beam and mirror are enclosed in an evacuated duct with absorber for stray radiation. Beam alignment with the waveguide is a critical task so a combination of mirror tilt adjustments and a bellows for offsets will be provided. Analysis of thermal patterns on thin witness plates will provide gyrotron mode purity and waveguide coupling efficiency data. Pre-prototype waveguide components and two dummy loads are available for initial operational testing of the gyrotron. ORNL is managed by UT-Battelle, LLC, for the U.S. Dept. of Energy under Contract DE-AC-05-00OR22725.

  15. Advanced tokamak operating modes in TPX and ITER

    SciTech Connect

    Nevins, W.M.

    1994-12-31

    A program is described to develop the advanced tokamak physics required for an economic steady-state fusion reactor on existing (short-pulse) tokamak experiments; to extend these operating modes to long-pulse on TPX; and finally to demonstrate them in a long-pulse D-T plasma on ITER.

  16. The Compact Ignition Tokamak and electron cyclotron heating: Description of need; assessment of prospects

    SciTech Connect

    Ignat, D.W.; Cohn, D.R.; Woskov, P.P.

    1989-01-01

    The CIT will benefit from auxiliary heating of 10 to 40 MW. The schedules of both the CIT construction project and the operating plan contain adequate time to develop and implement ECH systems based on the gyrotron and the induction free electron laser (IFEL). Each approach has advantages and is the object of R and D at the level of many millions of dollars per year. While the gyrotron is further advanced in terms of power and pulse length achieved, rapid progress is scheduled for the IFEL, including experiments on tokamaks. Plans of CIT, gyrotron, and IFEL make 1992 an appropriate time frame to commit to one or both systems. 12 refs., 8 figs., 2 tabs.

  17. Fundamental mode rectangular waveguide system for electron-cyclotron resonant heating (ECRH) for tandem mirror experiment-upgrade (TMX-U)

    SciTech Connect

    Rubert, R.R.; Felker, B.; Stallard, B.W.; Williams, C.W.

    1983-12-01

    We present a brief history of TMX-U's electron cyclotron resonant heating (ECRH) progress. We emphasize the 2-year performance of the system, which is composed of four 200-kW pulsed gyrotrons operated at 28 GHz. This system uses WR42 waveguide inside the vacuum vessel, and includes barrier windows, twists, elbows, and antennas, as well as custom-formed waveguides. Outside the TMX-U vessel are directional couplers, detectors, elbows, and waveguide bends in WR42 rectangular waveguide. An arc detector, mode filter, eight-arm mode converter, and water load in the 2.5-in. circular waveguide are attached directly to the gyrotron. Other specific areas discussed include the operational performance of the TMX-U pulsed gyrotrons, windows and component arcing, alignment, mode generation, and extreme temperature variations. Solutions for a number of these problems are described.

  18. Optical apparatus for conversion of whispering-gallery modes into a free space gaussian like beam

    DOEpatents

    Stallard, Barry W.; Makowski, Michael A.; Byers, Jack A.

    1992-01-01

    An optical converter for efficient conversion of millimeter wavelength whispering-gallery gyrotron output into a linearly polarized, free-space Gaussian-like beam. The converter uses a mode-converting taper and three mirror optics. The first mirror has an azimuthal tilt to eliminate the k.sub..phi. component of the propagation vector of the gyrotron output beam. The second mirror has a twist reflector to linearly polarize the beam. The third mirror has a constant phase surface so the converter output is in phase.

  19. High power local ECH in CHS

    SciTech Connect

    Kubo, S.; Idei, H.; Iwase, M.; Ohkubo, K.; Minami, T.; Yamada, I.; Narihara, K.; Tanaka, K.; Wilgen, J.B.; Murakami, M.; Rasumussen, D.A.; Nishimura, K.; Okamura, S.; Matsuoka, K.

    1996-02-01

    Electron cyclotron heating (ECH) experiments with 200 kW and 400 kW gyrotrons at the frequency of 53.2 GHz have been performed in Compact Helical System (CHS). Microwave power from both gyrotrons is transmitted with quasi-optical transmission line and highly focused on the mid-plane of CHS. The main purpose of these experiments is to understand the heating and energy transport mechanisms in CHS at the low collisional regime. The combination of the magnetic field, focal position and polarization enables the investigation of the on/off axis local heating effect with fundamental and second harmonic ECH. {copyright} {ital 1996 American Institute of Physics.}

  20. High Power, Millimeter-Wavelength, Coherent Radiation Sources.

    DTIC Science & Technology

    1986-09-25

    Electronics and Electron Physics (Academic, New York. 19801, put power at longer wavelengths is comparable to that of Vol. 55. other sources, such as gyrotrons ...and the peak efficiency 6J. L. Hirshfield, " Gyrotrons ," in Infrared and Millimeter Waves (Aca- demic, New York. 1979), Vol. 1.( 1-10%) is what...would be expected for a nonoptimized trav - ’A. A. Andronov, V. A. Flyagin, A. V. Gapanov, A. L. Gol’denberg, M. 1. eling wave device. It also performs