Science.gov

Sample records for 14n nqr spectra

  1. 14 N NQR spectrum of sildenafil citrate

    NASA Astrophysics Data System (ADS)

    Stephenson, David; Singh, Nadia

    2015-04-01

    The 14N nuclear quadrupole resonance (NQR) spectrum of sildenafil citrate tablets has been recorded allowing the quadrupole coupling constants and asymmetry parameters of all six unique nitrogen atoms in its structure to be determined. A density function calculation gives results that are largely in agreement with the experimental values.

  2. Increasing 14N NQR signal by 1H-14N level crossing with small magnetic fields.

    PubMed

    Thurber, Kent R; Sauer, Karen L; Buess, Michael L; Klug, Christopher A; Miller, Joel B

    2005-11-01

    NQR detection of materials, such as TNT, is hindered by the low signal-to-noise ratio at low NQR frequencies. Sweeping small (0-26 mT) magnetic fields to shift the (1)H NMR frequency relative to the (14)N NQR frequencies can provide a significant increase of the (14)N NQR signal-to-noise ratio. Three effects of (1)H-(14)N level crossing are demonstrated in diglycine hydrochloride and TNT. These effects are (1) transferring (1)H polarization to one or more of the (14)N transitions, including the use of an adiabatic flip of the (1)H polarization during the field sweep, (2) shortening the effective (14)N T(1) by the interaction of (1)H with the (14)N transitions, (3) "level transfer" effect where the third (14)N (spin 1) energy level or other (14)N sites with different NQR frequency are used as a reservoir of polarization which is transferred to the measured (14)N transition by the (1)H. The (14)N NQR signal-to-noise ratio can be increased by a factor of 2.5 for one (14)N site in diglycine hydrochloride (and 2.2 in TNT), even though the maximum (1)H frequency used in this work, 111 6 kHz, is only 30% larger than the measured (14)N frequencies (834 kHz for diglycine hydrochloride and 843 kHz for TNT).

  3. Polymorphism and disorder in natural active ingredients. Low and high-temperature phases of anhydrous caffeine: Spectroscopic ((1)H-(14)N NMR-NQR/(14)N NQR) and solid-state computational modelling (DFT/QTAIM/RDS) study.

    PubMed

    Seliger, Janez; Žagar, Veselko; Apih, Tomaž; Gregorovič, Alan; Latosińska, Magdalena; Olejniczak, Grzegorz Andrzej; Latosińska, Jolanta Natalia

    2016-03-31

    The polymorphism of anhydrous caffeine (1,3,7-trimethylxanthine; 1,3,7-trimethyl-1H-purine-2,6-(3H,7H)-dione) has been studied by (1)H-(14)N NMR-NQR (Nuclear Magnetic Resonance-Nuclear Quadrupole Resonance) double resonance and pure (14)N NQR (Nuclear Quadrupole Resonance) followed by computational modelling (Density Functional Theory, supplemented Quantum Theory of Atoms in Molecules with Reduced Density Gradient) in solid state. For two stable (phase II, form β) and metastable (phase I, form α) polymorphs the complete NQR spectra consisting of 12 lines were recorded. The assignment of signals detected in experiment to particular nitrogen sites was verified with the help of DFT. The shifts of the NQR frequencies, quadrupole coupling constants and asymmetry parameters at each nitrogen site due to polymorphic transition were evaluated. The strongest shifts were observed at N(3) site, while the smallest at N(9) site. The commercial pharmaceutical sample was found to contain approximately 20-25% of phase I and 75-80% of phase II. The orientational disorder in phase II with a local molecular arrangement mimics that in phase I. Substantial differences in the intermolecular interaction phases I and II of caffeine were analysed using computational (DFT/QTAIM/RDS) approach. The analysis of local environment of each nitrogen nucleus permitted drawing some conclusions on the topology of interactions in both polymorphs. For the most stable orientations in phase I and phase II the maps of the principal component qz of EFG tensor and its asymmetry parameter at each point of the molecular system were calculated and visualized. The relevant maps calculated for both phases I and II indicates small variation in electrostatic potential upon phase change. Small differences between packings in phases slightly disturb the neighbourhood of the N(1) and N(7) nitrogens, thus are meaningless from the biological point of view. The composition of two phases in pharmaceutical material

  4. Effect of the oxygen protonation on the electronic structure of urea in the solid state: A 14N NQR study

    NASA Astrophysics Data System (ADS)

    Murgich, Juan; Santana R., Magaly

    1981-04-01

    The 14N NQR frequencies of urea complexes with H2O2 (1:1), NH4Cl (1:1), oxalic (2:1), phosphoric (1:1), and nitric acid (1:1) at 77 °K are reported. The analysis of the NQR data indicates that the population of the N nonbonding orbital decreases and that the population of the s N-H and N-C bonds increases as the degree of protonation of the O atom of urea increases. These changes are consistent with a larger weight of structures like C = N+H2 as the protonation increases. The NQR results are in agreement with those obtained from a CNDO/2 calculation for the uronioum ion [Yu. A. Panteleev and A. A. Lipovskii, Zhu. Struk. Khim. 17, 2 (1976)].

  5. Detection of {sup 14}N and {sup 35}Cl in cocaine base and hydrochloride using NQR, NMR, and SQUID techniques

    SciTech Connect

    Yesinowski, J.P.; Buess, M.L.; Garroway, A.N.; Ziegeweid, M.; Pines, A. |

    1995-07-01

    Results from {sup 14}N pure NQR of cocaine in the free base form (cocaine base) yield a nuclear quadrupole coupling constant (NQCC) e{sup 2}Qq/h of 5.0229 ({+-}0.0001) MHz and an asymmetry parameter {eta} of 0.0395 ({+-}0.0001) at 295 K, with corresponding values of 5.0460 ({+-}0.0013) MHz and 0.0353 ({+-}0.0008) at 77 K. Both pure NQR (at 295-77 K) and a superconducting quantum interference device (SQUID) detector (at 4.2 K) were used to measure the very low (<1 MHz) {sup 14}N transition frequencies in cocaine hydrochloride; at 295 K the NQCC is 1.1780 ({+-}0.0014) MHz and the asymmetry parameter is 0.2632 ({+-}0.0034). Stepping the carrier frequency enables one to obtain a powder pattern without the severe intensity distortions that otherwise arise from finite pulse power. A powder pattern simulation using an NQCC value of 5.027 MHz and an asymmetry parameter {eta} of 0.2 agrees reasonably well with the experimental stepped-frequency spectrum. The use of pure NQR for providing nondestructive, quantitative, and highly specific detection of crystalline compounds is discussed, as are experimental strategies. 31 refs., 8 figs., 1 tab.

  6. 14N NQR Studies of Impurity Effects on the Local Structure of NaNO2 -based Mixed Systems

    NASA Astrophysics Data System (ADS)

    Song, S. K.; Park, Y. M.; Jung, J. K.; Seo, Y. M.; Choh, S. H.

    2000-02-01

    The influence of impurities on the 14N NQR lineshape of Na1-xAgxNO2 and [NaNO2]1-x-[BNO3]x (B = Na, K) at room temperature has been investigated. Carrying out spectral analysis in conjunction with classification of the local field inhomogeneities according to the structurally isomorphic, Na1-xAgxNO2 , and anisomorphic [NaNO2]1-x[BNO3]x systems, enabled an under-standing of the microscopic nature of impurity-induced local disorder. The iso-and anisomorphic systems reveal their own unique features of the impurity induced local disorder. They are charac-terized by a static, random distribution of impurities in the isomorphic system and a fast motion of the impurity-induced mobile point defects in the anisomorphic system. However, for both systems, neither a change of the 14N NQR frequency nor a multisplitting of the lines is observed because of the relatively low symmetry.

  7. QUEST-QUadrupolar Exact SofTware: a fast graphical program for the exact simulation of NMR and NQR spectra for quadrupolar nuclei.

    PubMed

    Perras, Frédéric A; Widdifield, Cory M; Bryce, David L

    2012-01-01

    We present a new program for the exact simulation of solid-state NMR spectra of quadrupolar nuclei in stationary powdered samples which employs diagonalization of the combined Zeeman-quadrupolar Hamiltonian. The program, which we call QUEST (QUadrupolar Exact SofTware), can simulate NMR spectra over the full regime of Larmor and quadrupolar frequency ratios, which encompasses scenarios ranging from high-field NMR to nuclear quadrupole resonance (NQR, where the Larmor frequency is zero) and does not make use of approximations when treating the quadrupolar interaction. With the use of the fast powder averaging scheme of Alderman, Solum, and Grant, exact NMR spectral simulations are only marginally slower than the second-order perturbation theory counterpart. The program, which uses a graphical user interface, also incorporates chemical shift anisotropy and non-coincident chemical shift and quadrupolar tensor frames. The program is validated against newly-acquired experimental data through several examples including: the low-field (79/81)Br NMR spectra of CaBr(2), the (14)N overtone NMR spectrum of glycine, the (187)Re NQR spectra of Re(2)(CO)(10), and lastly the (127)I overtone NQR spectrum of SrI(2), which, to the best of our knowledge, represents the first direct acquisition of an overtone NQR spectrum for a powdered sample.

  8. 14N overtone NMR spectra under magic angle spinning: Experiments and numerically exact simulations

    NASA Astrophysics Data System (ADS)

    O'Dell, Luke A.; Brinkmann, Andreas

    2013-02-01

    It was recently shown that high resolution 14N overtone NMR spectra can be obtained directly under magic angle spinning (MAS) conditions [L. A. O'Dell and C. I. Ratcliffe, Chem. Phys. Lett. 514, 168 (2011)], 10.1016/j.cplett.2011.08.030. Preliminary experimental results showed narrowed powder pattern widths, a frequency shift that is dependent on the MAS rate, and an apparent absence of spinning sidebands, observations which appeared to be inconsistent with previous theoretical treatments. Herein, we reproduce these effects using numerically exact simulations that take into account the full nuclear spin Hamiltonian. Under sample spinning, the 14N overtone signal is split into five (0, ±1, ±2) overtone sidebands separated by the spinning frequency. For a powder sample spinning at the magic angle, the +2ωr sideband is dominant while the others show significantly lower signal intensities. The resultant MAS powder patterns show characteristic quadrupolar lineshapes from which the 14N quadrupolar parameters and isotropic chemical shift can be determined. Spinning the sample at other angles is shown to alter both the shapes and relative intensities of the five overtone sidebands, with MAS providing the benefit of averaging dipolar couplings and shielding anisotropy. To demonstrate the advantages of this experimental approach, we present the 14N overtone MAS spectrum obtained from L-histidine, in which powder patterns from all three nitrogen sites are clearly resolved.

  9. An innovative method for the non-destructive identification of photodegradation products in solid state: 1H-14N NMR-NQR and DFT/QTAIM study of photodegradation of nifedipine (anti-hypertensive) to nitrosonifedipine (potential anti-oxidative).

    PubMed

    Latosińska, J N; Latosińska, M; Seliger, J; Zagar, V

    2012-08-30

    Stability of the antihypertensive drug nifedipine (NIF) has been studied experimentally in solid state by (1)H-(14)N NMR-NQR double resonance (NQDR) and theoretically by the Density Functional Theory (DFT). Photodegradation of NIF to its metabolite in vivo nitrosonifedipine, NO-NIF (antioxidative agent) upon long term daylight exposure was detected and the changes in the molecular structure of NIF were analysed. The photoconversion of NIF to NO-NIF in solid was found to be accompanied with the electron density redistribution at nitrogen sites (NH to N and NO(2) to NO) and proved to be successfully detected with identification of photoproducts by (1)H-(14)N NQDR and DFT methods. The increase in the e(2)qQ/h and η describing EFG tendency towards non-spherical symmetry was significantly greater upon the reduction of NO(2) site than upon hydrogen abstraction from NH site. The level of sensitivity of detection of the photodegradation product was about 1% of the original sample. The Quantum Theory of Atoms in Molecules (QTAIM) analysis has been found useful in predicting photoreactive sites in the molecules and finding the explanation of differences in reactivity between parent NIF and its photoproduct NO-NIF. Using NIF as a model, this study demonstrates the suitability of NQDR supported by DFT for non-destructive determination of the photodegradation products in solid state.

  10. 35Cl NQR spectra of phosphorus chlorides and their molecular conformations in crystals. Part 1. Phosphorus (III) chlorides RPCl 2

    NASA Astrophysics Data System (ADS)

    Kozlov, E. S.; Kapustin, E. G.; Soifer, G. B.

    2000-09-01

    For the phosphorus chlorides RPCl 2 (R=Cl, Me, ClCH 2, CF 3, Et, i-Pr, Me 2C=CH, PhCH=CH, Me 2N, Et 2N, Pr 2N, MeO, PhO) and R'PCl 2 (R'=Ar, 2-thienyl) two linear correlations between the 35Cl NQR frequencies and charges on the chlorine atoms of the PCl 2 groups calculated by the MNDO procedure have been found. It was shown that the 35Cl NQR spectra and the relative magnitudes of the charges on the chlorine atoms of the PCl 2 groups can be used to determine conformation of the RPCl 2 molecules in crystal. Ab initio (RHF/6-31 G ∗ and MP2/6-31 G ∗) calculations showed that the gauche conformation of Me 2NPCl 2 molecule is more stable than trans conformation. In light of ab initio calculations electron diffraction results (Vilkov L.V., Khaikin L.S., Dokl. Akad. Nauk SSSR, 168 (1966) 810) are erroneous. The NBO analysis confirmed the presence of donor-acceptor interactions between the lone pair orbital of the nitrogen atom and the antibonding orbitals of the P-Cl bonds.

  11. 14N Quadrupole Coupling in the Microwave Spectra of N-Vinylformamide

    NASA Astrophysics Data System (ADS)

    Kannengießer, Raphaela; Stahl, Wolfgang; Nguyen, Ha Vinh Lam; Bailey, William C.

    2016-06-01

    The microwave spectra of two conformers, trans and cis, of the title compound were recorded using two molecular beam Fourier transform microwave spectrometers operating in the frequency range 2 GHz to 40 GHz, and aimed at analysis of their 14N quadrupole hyperfine structures. Rotational constants, centrifugal distortion constants, and nuclear quadrupole coupling constants (NQCCs) χaa and χbb - χcc, were all determined with very high accuracy. Two fits including 176 and 117 hyperfine transitions were performed for the trans and cis conformers, respectively. Standard deviations of both fits are close to the measurement accuracy of 2 kHz. The NQCCs of the two conformers are almost exactly the same, and are compared with values found for other saturated and unsaturated formamides. Complementary quantum chemical calculations - MP2/6-311++G(d,p) rotational constants, MP2/cc-pVTZ centrifugal distortion constants, and B3PW91/6-311+G(d,p)//MP2/6-311++G(d,p) nuclear quadrupole coupling constants - give spectroscopic parameters in excellent agreement with the experimental parameters. B3PW91/6-311+G(d,p) calculated electric field gradients, in conjunction with eQ/h = 4.599(12) MHz/a.u., yields more reliable NQCCs for formamides possessing conjugated π-electron systems than does the B3PW91/6-311+G(df,pd) model recommended in Ref., whereas this latter performs better for aliphatic formamides. We conclude from this that f-polarization functions on heavy atoms hinder rather than help with modeling of conjugated π-electron systems. W. C. Bailey, Chem. Phys., 2000, 252, 57 W. C. Bailey, Calculation of Nuclear Quadrupole Coupling Constants in Gaseous State Molecules, http://nqcc.wcbailey.net/index.html.

  12. Measurement of the 14N nuclear quadrupole resonance frequencies by the solid effect

    NASA Astrophysics Data System (ADS)

    Seliger, J.; Žagar, V.

    2008-07-01

    1H- 14N nuclear quadrupole double resonance using magnetic field cycling between high and low magnetic field and solid effect in the low magnetic field is analyzed in details. The transition probabilities per unit time for the solid-effect transitions are calculated. The double resonance spectra are calculated in the limiting cases of fast and slow nitrogen spin-lattice relaxation. The double resonance spectra are measured in histamine and quinolinic acid. The experimental spectra are analyzed and the 14N NQR frequencies are determined.

  13. Optical detection of low frequency NQR signals: a step forward from conventional NQR

    NASA Astrophysics Data System (ADS)

    Begus, S.; Pirnat, J.; Jazbinsek, V.; Trontelj, Z.

    2017-03-01

    In searching for the more sensitive 14N nuclear quadrupole resonance (NQR) detecting system for illicit substances, a promising combination of a classic RF pulse NQR spectrometer and a K optically pumped magnetometer was tested. The initial results are encouraging. The principles of such a combination are described, and the detection limits in the low frequency RF region, where the 14N pulse NQR frequencies are usually positioned, are presented. Several illicit substances which are difficult to detect with a classic pulse NQR spectrometer were detected with both types of spectrometers. We noticed that with the proposed combination of classic RF excitation of 14N nuclei, using a pulse NQR spectrometer and subsequent optical detection of the sample’s response, a gain in S/N of up to a factor of 10 was possible.

  14. Explosives detection by nuclear quadrupole resonance (NQR)

    NASA Astrophysics Data System (ADS)

    Garroway, Allen N.; Buess, Michael L.; Yesinowski, James P.; Miller, Joel B.; Krauss, Ronald A.

    1994-10-01

    Pure nuclear quadrupole resonance (NQR) of 14N nuclei is quite promising as a method for detecting explosives such as RDX and contraband narcotics such as cocaine and heroin in quantities of interest. Pure NQR is conducted without an external applied magnetic field, so potential concerns about damage to magnetically encoded data or exposure of personnel to large magnetic fields are not relevant. Because NQR frequencies of different compounds are quite distinct, we do not encounter false alarms from the NQR signals of other benign materials. We have constructed a laboratory prototype NQR explosives detector which interrogates a volume of 300 liters (10 ft3). This paper presents abbreviated results from a demonstration of the laboratory prototype NQR explosives detector conducted at the Federal Aviation Administration Technical Center in May 1994 on RDX-based explosives.

  15. A miniaturized NQR spectrometer for a multi-channel NQR-based detection device.

    PubMed

    Beguš, Samo; Jazbinšek, Vojko; Pirnat, Janez; Trontelj, Zvonko

    2014-10-01

    A low frequency (0.5-5 MHz) battery operated sensitive pulsed NQR spectrometer with a transmitter power up to 5 W and a total mass of about 3 kg aimed at detecting (14)N NQR signals, predominantly of illicit materials, was designed and assembled. This spectrometer uses a standard software defined radio (SDR) platform for the data acquisition unit. Signal processing is done with the LabView Virtual instrument on a personal computer. We successfully tested the spectrometer by measuring (14)N NQR signals from aminotetrazole monohydrate (ATMH), potassium nitrate (PN), paracetamol (PCM) and trinitrotoluene (TNT). Such a spectrometer is a feasible component of a portable single or multichannel (14)N NQR based detection device.

  16. A miniaturized NQR spectrometer for a multi-channel NQR-based detection device

    NASA Astrophysics Data System (ADS)

    Beguš, Samo; Jazbinšek, Vojko; Pirnat, Janez; Trontelj, Zvonko

    2014-10-01

    A low frequency (0.5-5 MHz) battery operated sensitive pulsed NQR spectrometer with a transmitter power up to 5 W and a total mass of about 3 kg aimed at detecting 14N NQR signals, predominantly of illicit materials, was designed and assembled. This spectrometer uses a standard software defined radio (SDR) platform for the data acquisition unit. Signal processing is done with the LabView Virtual instrument on a personal computer. We successfully tested the spectrometer by measuring 14N NQR signals from aminotetrazole monohydrate (ATMH), potassium nitrate (PN), paracetamol (PCM) and trinitrotoluene (TNT). Such a spectrometer is a feasible component of a portable single or multichannel 14N NQR based detection device.

  17. The Fundamental Quadrupole Band of (14)N2: Line Positions from High-Resolution Stratospheric Solar Absorption Spectra

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Zander, R.; Goldman, A.; Murcray, F. J.; Murcray, D. G.; Grunson, M. R.; Farmer, C. B.

    1991-01-01

    The purpose of this note is to report accurate measurements of the positions of O- and S-branch lines of the (1-0) vibration-rotation quadrupole band of molecular nitrogen ((14)N2) and improved Dunham coefficients derived from a simultaneous least-squares analysis of these measurements and selected infrared and far infrared data taken from the literature. The new measurements have been derived from stratospheric solar occultation spectra recorded with Fourier transform spectrometer (FTS) instruments operated at unapodized spectral resolutions of 0.002 and 0.01 /cm. The motivation for the present investigation is the need for improved N2 line parameters for use in IR atmospheric remote sensing investigations. The S branch of the N2 (1-0) quadrupole band is ideal for calibrating the line-of-sight airmasses of atmospheric spectra since the strongest lines are well placed in an atmospheric window, their absorption is relatively insensitive to temperature and is moderately strong (typical line center depths of 10 to 50% in high-resolution ground-based solar spectra and in lower stratospheric solar occultation spectra), and the volume mixing ratio of nitrogen is constant in the atmosphere and well known. However, a recent investigation has'shown the need to improve the accuracies of the N2 fine positions, intensities, air-broadened half-widths, and their temperature dependences to fully exploit this calibration capability (1). The present investigation addresses the problem of improving the accuracy of the N2 line positions.

  18. Conformations and intermolecular interactions pattern in solid chloroxylenol and triclosan (API of anti-infective agents and drugs). A (35)Cl NQR, (1)H-(14)N NQDR, X-ray and DFT/QTAIM study.

    PubMed

    Latosińska, J N; Latosińska, M; Tomczak, M A; Seliger, J; Zagar, V; Maurin, J K

    2012-02-01

    Two antibacterial and antifungal agents, chloroxylenol (4-chloro-3,5-dimethyl-phenol) and triclosan (5-chloro-2-(2',4'-dichlorophenoxy)-phenol), were studied experimentally in solid state with an X-ray, (35)Cl-nuclear quadrupole resonance (NQR) and (17)O-nuclear quadrupole double resonance (NQDR) spectroscopies and, theoretically, with the density functional theory/quantum theory of atoms in molecules (DFT/QTAIM). The crystallographic structure of triclosan, which crystallises in space group P31 with one molecule in the asymmetric unit [a = 12.64100(10), b = 12.64100(10), c = 6.71630(10) Å], was solved with an X-ray and refined to a final R-factor of 2.81% at room temperature. The NQR frequencies of (35)Cl and (17)O were detected with the help of the density functional theory (DFT) assigned to particular chlorine and oxygen sites in the molecules of both compounds. The NQR frequencies at (35)Cl sites in chloroxylenol and triclosan were found to be more differentiated than frequencies at the (17)O site. The former better describes the substituent withdrawing effects connected to π-electron delocalization within the benzene rings and the influence of temperature; whereas, those at the (17)O site provide more information on O-H bond and intermolecular interactions pattern. The conformation adopted by diphenyl ether of triclosan in solid state was found to be typical of diphenyl ethers, but the opposite to those adopted when it was bound to different inhibitors. According to an X-ray study, temperature had no effect on the conformation of the diphenyl ring of triclosan, which was the same at 90 K and at room temperature (RT). The scattering of NQR frequencies reproduced by the DFT under assumption of the X-ray data at 90 K and RT is found to be a good indicator of the quality of resolution of the crystallographic structure.

  19. Broadband quantitative NQR for authentication of vitamins and dietary supplements.

    PubMed

    Chen, Cheng; Zhang, Fengchao; Bhunia, Swarup; Mandal, Soumyajit

    2017-03-24

    We describe hardware, pulse sequences, and algorithms for nuclear quadrupole resonance (NQR) spectroscopy of medicines and dietary supplements. Medicine and food safety is a pressing problem that has drawn more and more attention. NQR is an ideal technique for authenticating these substances because it is a non-invasive method for chemical identification. We have recently developed a broadband NQR front-end that can excite and detect (14)N NQR signals over a wide frequency range; its operating frequency can be rapidly set by software, while sensitivity is comparable to conventional narrowband front-ends over the entire range. This front-end improves the accuracy of authentication by enabling multiple-frequency experiments. We have also developed calibration and signal processing techniques to convert measured NQR signal amplitudes into nuclear spin densities, thus enabling its use as a quantitative technique. Experimental results from several samples are used to illustrate the proposed methods.

  20. Narcotics and explosives detection by 14N pure nuclear quadrupole resonance

    NASA Astrophysics Data System (ADS)

    Garroway, Allen N.; Buess, Michael L.; Yesinowski, James P.; Miller, Joel B.

    1994-03-01

    Pure nuclear quadrupole resonance (NQR) of 14N nuclei is quite promising as a method for detecting explosives such as RDX and contraband narcotics such as cocaine and heroin in quantities of interest. Pure NQR is conducted without an external applied magnetic field, so potential concerns about damage to magnetically encoded data or exposure of personnel to large magnetic fields are not relevant. Because NQR frequencies of different compounds are quite distinct, we do not encounter false alarms from the NQR signals of other benign materials. We have constructed a proof-of-concept NQR explosives detector which interrogates a volume of 300 liters (10 ft3). With minimal modification to the existing explosives detector, we can detect operationally relevant quantities of (free base) cocaine within the 300-liter inspection volume in 6 seconds. We are presently extending this approach to the detection of heroin base and also examining 14N and 35,37Cl pure NQR for detection of the hydrochloride forms of both materials. An adaptation of this NQR approach may be suitable for scanning personnel for externally carried contraband and explosives. We first outline the basics of the NQR approach, highlighting strengths and weaknesses, and then present representative results for RDX and cocaine detection. We also present a partial compendium of relevant NQR parameters measured for some materials of interest.

  1. Frequency selective detection of nuclear quadrupole resonance (NQR) spin echoes

    NASA Astrophysics Data System (ADS)

    Somasundaram, Samuel D.; Jakobsson, Andreas; Smith, John A. S.; Althoefer, Kaspar A.

    2006-05-01

    Nuclear Quadrupole Resonance (NQR) is a radio frequency (RF) technique that can be used to detect the presence of quadrupolar nuclei, such as the 14N nucleus prevalent in many explosives and narcotics. The technique has been hampered by low signal-to-noise ratios and is further aggravated by the presence of RF interference (RFI). To ensure accurate detection, proposed detectors should exploit the rich form of the NQR signal. Furthermore, the detectors should also be robust to any remaining residual interference, left after suitable RFI mitigation has been employed. In this paper, we propose a new NQR data model, particularly for the realistic case where multiple pulse sequences are used to generate trains of spin echoes. Furthermore, we refine two recently proposed approximative maximum likelihood (AML) detectors, enabling the algorithm to optimally exploit the data model of the entire echo train and also incorporate knowledge of the temperature dependent spin-echo decay time. The AML-based detectors ensure accurate detection and robustness against residual RFI, even when the temperature of the sample is not precisely known, by exploiting the dependencies of the NQR resonant lines on temperature. Further robustness against residual interference is gained as the proposed detector is frequency selective; exploiting only those regions of the spectrum where the NQR signal is expected. Extensive numerical evaluations based on both simulated and measured NQR data indicate that the proposed Frequency selective Echo Train AML (FETAML) detector offers a significant improvement as compared to other existing detectors.

  2. (14) N nuclear quadrupole resonance study of piroxicam: confirmation of new polymorphic form V.

    PubMed

    Lavrič, Zoran; Pirnat, Janez; Lužnik, Janko; Puc, Uroš; Trontelj, Zvonko; Srčič, Stane

    2015-06-01

    A new polymorphic crystal form of piroxicam was discovered while preparing crystalline samples of piroxicam for (14) N nuclear quadrupole resonance (NQR) analysis. The new crystal form, designated as V, was prepared by evaporative recrystallization from dichloromethane. Three known polymorphic forms (I, II, and III) were also prepared. Our aim was to apply (14) N NQR to characterize the new polymorphic form of piroxicam and compare the results with those of the other known polymorphic forms. Additional analytical methods used for characterization were X-ray powder diffraction (XRPD), thermal analysis, and vibrational spectroscopy. For the first time, a complete set of nine characteristic (14) N NQR frequencies was found for each prepared polymorph of piroxicam. The consistent set of measured frequencies and calculated characteristic quadrupole parameters found for the new polymorphic form V is a convincing evidence that we are dealing with a new form. The already known piroxicam polymorphic forms were characterized similarly. The XRPD results were in accordance with the conclusions of (14) N NQR analysis. The performed study clearly demonstrates a strong potential of (14) N NQR method to be applied as a highly discriminative spectroscopic analytical tool to characterize polymorphic forms.

  3. Part I. Analyzing the distribution of gas law questions in chemistry textbooks. Part II. Chlorine-35 NQR spectra of group 1 and silver dichloromethanesulfonates

    NASA Astrophysics Data System (ADS)

    Gillette, Gabriel

    Part I. Two studies involving the gas law questions in eight high school and Advanced Placement/college chemistry textbooks were performed using loglinear analysis to look for associations among six variables. These variables included Bloom's Taxonomy (higher-order, lower-order), Book Type (high school, college), Question Format (multiple-choice, problem, short answer), Question Placement (in-chapter, end-of-chapter, test bank), Representation (macroscopic, microscopic, symbolic), and Arkansas Science Standard (conceptual, mathematical; gas laws, pressure conversion, stoichiometry). The first study, involving the conceptual gas law questions, found the Book Type and Question Placement variables had the biggest impact, each appearing in 5 of the 11 significant associations. The second study, involving the mathematical gas law questions, found the Question Placement had the biggest impact, appearing in 7 of the 11 significant associations, followed by Book Type and the Arkansas Science Standard variables, which appeared in 5 of the 11 significant associations. These studies showed that compared to the high school books, college books have fewer multiple-choice questions (compared to short-answer and problem questions), fewer in-chapter questions (compared to end-of-chapter and test bank questions), fewer questions in the chapters and more questions at the end of the chapters and fewer multiple-choice questions in and at the end of the books and more multiple-choice questions in the test banks. Part II. The dichloromethanesulfonate salts of several +1 charged cations, M+Cl2CHSO3 - (M = Li, Na, K, Rb Ag, Cs Tl) were synthesized and studied by 35Cl nuclear quadrupole resonance (NQR). Dichloromethanesulfonic acid was prepared by the methanolysis of dichloromethanesulfonyl chloride, which was neutralized with the metal carbonates to produce the corresponding metal dichloromethanesulfonate salts. This study completed the NQR investigation of the family of chloroacetates

  4. Ferroelastic phase transitions by 14N NMR spectra in [N(CH3)4]2CoCl4 and [N(CH3)4]2ZnCl4 single crystals

    NASA Astrophysics Data System (ADS)

    Lim, Ae Ran

    2016-09-01

    Changes in the structural geometry of [N(CH3)4]2BCl4 (B=Co and Zn) crystals near the phase transition temperatures were studied by analyzing the 14N nuclear magnetic resonance (NMR) spectra. Two physically inequivalent a-N(1)(CH3)4 and b-N(2)(CH3)4 groups were observed in these spectra. Abrupt changes in the resonance frequency and splitting of 14N NMR signals near the phase transition temperatures were attributed to structural phase transitions, and the primary mechanism of these phase transitions exhibited ferroelastic characteristics. In addition, ferroelasticity of [N(CH3)4]2BCl4 was identified at low temperatures using optical polarizing microscopy.

  5. The effects of methyl internal rotation and {sup 14}N quadrupole coupling in the microwave spectra of two conformers of N,N-diethylacetamide

    SciTech Connect

    Kannengießer, Raphaela; Klahm, Sebastian; Vinh Lam Nguyen, Ha Lüchow, Arne; Stahl, Wolfgang

    2014-11-28

    The gas phase structures and internal dynamics of N,N-diethylacetamide were determined with very high accuracy using a combination of molecular beam Fourier-transform microwave spectroscopy and quantum chemical calculations at high levels. Conformational studies yielded five stable conformers with C{sub 1} symmetry. The two most energetically favorable conformers, conformer I and II, could be found in the experimental spectrum. For both conformers, quadrupole hyperfine splittings of the {sup 14}N nucleus and torsional fine splittings due to the internal rotation of the acetyl methyl group occurred in the same order of magnitude and were fully assigned. The rotational constants, centrifugal distortion constants as well as the quadrupole coupling constants of the {sup 14}N nucleus were determined and fitted to experimental accuracy. The V{sub 3} potentials were found to be 517.04(13) cm{sup −1} and 619.48(91) cm{sup −1} for conformer I and II, respectively, and compared to the V{sub 3} potentials found in other acetamides. Highly accurate CCSD(T) and DMC calculations were carried out for calculating the barriers to internal rotation in comparison with the experimentally deduced V{sub 3} values.

  6. An analytical method for estimating the {sup 14}N nuclear quadrupole resonance parameters of organic compounds with complex free induction decays for radiation effects studies

    SciTech Connect

    Iselin, L.H.

    1992-12-31

    The use of {sup 14}N nuclear quadrupole resonance (NQR) as a radiation dosimetry tool has only recently been explored. An analytical method for analyzing {sup 14}N NQR complex free induction decays is presented with the background necessary to conduct pulsed NQR experiments. The {sup 14}N NQR energy levels and possible transitions are derived in step-by-step detail. The components of a pulsed NQR spectrometer are discussed along with the experimental techniques for conducting radiation effects experiments using the spectrometer. Three data analysis techniques -- the power spectral density Fourier transform, state space singular value decomposition (HSVD), and nonlinear curve fitting (using the downhill simplex method of global optimization and the Levenberg-Marquart method) -- are explained. These three techniques are integrated into an analytical method which uses these numerical techniques in this order to determine the physical NQR parameters. Sample data sets of urea and guanidine sulfate data are used to demonstrate how these methods can be employed to analyze both simple and complex free induction decays. By determining baseline values for biologically significant organics, radiation effects on the NQR parameters can be studied to provide a link between current radiation dosimetry techniques and the biological effects of radiation.

  7. 14N nuclear quadrupole resonance of p-nitrotoluene using a high-Tc rf SQUID

    NASA Astrophysics Data System (ADS)

    He, D. F.; Tachiki, M.; Itozaki, H.

    2007-03-01

    Using a high-Tc radio-frequency superconducting quantum interference device (rf SQUID), we successfully detected nuclear quadrupole resonance (NQR) at about 887 kHz for 14N in p-nitrotoluene (PNT). A normal metal transformer made of copper wire was used to improve the sensitivity of the high-Tc rf SQUID and pulse-controlled rf switches and cross diodes were inserted in the transformer to reduce the influence of the strong excitation field. The preliminary results for NQR detection using the high-Tc SQUID had a similar signal-to-noise ratio to that of using a low noise preamplifier.

  8. Scientific Support for NQR Explosive Detection Development

    DTIC Science & Technology

    2006-07-01

    Final 3. DATES COVERED (From - To) 8 March 2004 - 7 March 2006 4. TITLE AND SUBTITLE Scientific Support for NQR Explosive Detection Development...Laboratory (NRL) to improve explosive detection using nuclear quadrupole resonance ( NQR ) is summarized. The work includes studies of the effects...superconducting coils for explosive detection. Additional studies involving slowly rotating NQR measurements were also pursued. 15. SUBJECT TERMS Nuclear

  9. NMR and NQR study of the thermodynamically stable quasicrystals

    SciTech Connect

    Shastri, A.

    1995-02-10

    {sup 27}Al and {sup 61,65}Cu NMR measurements are reported for powder samples of stable AlCuFe and AlCuRu icosahedral quasicrystals and their crystalline approximants, and for a AlPdMn single grain quasicrystal. Furthermore, {sup 27}Al NQR spectra at 4.2 K have been observed in the AlCuFe and AlCuRu samples. From the quadrupole perturbed NMR spectra at different magnetic fields, and from the zero field NQR spectra, a wide distribution of local electric field gradient (EFG) tensor components and principal axis system orientations was found at the Al site. A model EFG calculation based on a 1/1 AlCuFe approximant was successful in explaining the observed NQR spectra. It is concluded that the average local gradient is largely determined by the p-electron wave function at the Al site, while the width of the distribution is due to the lattice contribution to the EFG. Comparison of {sup 63}Cu NMR with {sup 27}Al NMR shows that the EFG distribution at the two sites is similar, but that the electronic contribution to the EFG is considerably smaller at the Cu site, in agreement with a more s-type wave function of the conduction electrons.

  10. SQUID detected NMR and NQR. Superconducting Quantum Interference Device.

    PubMed

    Augustine, M P; TonThat, D M; Clarke, J

    1998-03-01

    The dc Superconducting QUantum Interference Device (SQUID) is a sensitive detector of magnetic flux, with a typical flux noise of the order 1 muphi0 Hz(-1/2) at liquid helium temperatures. Here phi0 = h/2e is the flux quantum. In our NMR or NQR spectrometer, a niobium wire coil wrapped around the sample is coupled to a thin film superconducting coil deposited on the SQUID to form a flux transformer. With this untuned input circuit the SQUID measures the flux, rather than the rate of change of flux, and thus retains its high sensitivity down to arbitrarily low frequencies. This feature is exploited in a cw spectrometer that monitors the change in the static magnetization of a sample induced by radio frequency irradiation. Examples of this technique are the detection of NQR in 27Al in sapphire and 11B in boron nitride, and a level crossing technique to enhance the signal of 14N in peptides. Research is now focused on a SQUID-based spectrometer for pulsed NQR and NMR, which has a bandwidth of 0-5 MHz. This spectrometer is used with spin-echo techniques to measure the NQR longitudinal and transverse relaxation times of 14N in NH4ClO4, 63+/-6 ms and 22+/-2 ms, respectively. With the aid of two-frequency pulses to excite the 359 kHz and 714 kHz resonances in ruby simultaneously, it is possible to obtain a two-dimensional NQR spectrum. As a third example, the pulsed spectrometer is used to study NMR spectrum of 129Xe after polariza-tion with optically pumped Rb. The NMR line can be detected at frequencies as low as 200 Hz. At fields below about 2 mT the longitudinal relaxation time saturates at about 2000 s. Two recent experiments in other laboratories have extended these pulsed NMR techniques to higher temperatures and smaller samples. In the first, images were obtained of mineral oil floating on water at room temperature. In the second, a SQUID configured as a thin film gradiometer was used to detect NMR in a 50 microm particle of 195Pt at 6 mT and 4.2 K.

  11. Methyl quantum tunneling and nitrogen-14 NQR NMR studies using a SQUID magnetic resonance spectrometer

    SciTech Connect

    Black, B.E. |

    1993-07-01

    Nuclear Magnetic Resonance (NMR) and Nuclear Quadrupole Resonance (NQR) techniques have been very successful in obtaining molecular conformation and dynamics information. Unfortunately, standard NMR and NQR spectrometers are unable to adequately detect resonances below a few megahertz due to the frequency dependent sensitivity of their Faraday coil detectors. For this reason a new spectrometer with a dc SQUID (Superconducting Quantum Interference Device) detector, which has no such frequency dependence, has been developed. Previously, this spectrometer was used to observe {sup 11}B and {sup 27}Al NQR resonances. The scope of this study was increased to include {sup 23}Na, {sup 51}V, and {sup 55}Mn NQR transitions. Also, a technique was presented to observe {sup 14}N NQR resonances through cross relaxation of the nitrogen polarization to adjacent proton spins. When the proton Zeeman splitting matches one nitrogen quadrupoler transition the remaining two {sup 14}N transitions can be detected by sweeping a saturating rf field through resonance. Additionally, simultaneous excitation of two nitrogen resonances provides signal enhancement which helps to connect transitions from the same site. In this way, nitrogen-14 resonances were observed in several amino acids and polypeptides. This spectrometer has also been useful in the direct detection of methyl quantum tunneling splittings at 4.2 K. Tunneling, frequencies of a homologous series of carboxylic acids were measured and for solids with equivalent crystal structures, an exponential correlation between the tunneling frequency and the enthalpy of fusion is observed. This correlation provides information about the contribution of intermolecular interactions to the energy barrier for methyl rotation.

  12. Calculations of multipulse sequence in NQR of spins 32.

    PubMed

    Odin, C

    1999-12-01

    The general formalism of the interaction representation with respect to an operator which is its own inverse is developed and applied to pure NQR of spins I = 32. Under the assumption of no relaxation and no dipolar coupling, it is shown that the calculation of the response to pure NQR multipulse sequences can be performed with the same concepts used in high field NMR, such as coherence pathways. All the tools and mathematical expressions to predict the time evolution of the signal created by a pure NQR multipulse sequence are presented explicitly. It takes into account the off-resonance irradiation as well as the angular dependence of the excitation and detection for every value of the electric field gradient asymmetry parameter. Particular attention is devoted to the powder average, which is performed via a probability function derived analytically for the first time, leading to a drastic reduction of simulation times. The theory is illustrated by the study of the optimization and excitation bandwidths of one- to three-pulse sequences and compared to experimental results on Chloranil. We show that the three-pulse "stimulated echo" sequence gives a more uniform excitation profile than the traditional two-pulse echo sequence for powder samples. Thus, the "stimulated echo" sequence could be useful to cover a large spectrum when the experiment duration, or the signal to noise ratio, are not critical parameters. Analytical expressions for the nutation spectra obtained by one or two-pulse sequences are also derived for the first time.

  13. Cu-NQR study for stripe ordering in La-based cuprate

    NASA Astrophysics Data System (ADS)

    Matsumura, M.; Sawa, T.; Tamura, T.; Yamamoto, N.; Sera, M.; Yamagata, H.

    2003-05-01

    Cu-NQR spectra were measured in La 2- x- yM ySr xCuO 4, (M=Nd, Gd, Eu, Pr and Y), and La 2- xBa xCuO 4 with x= {1}/{8}. The low temperature tetragonal (LTT) structure is stabilized below Td2 in all the samples other than M=Pr. The usual NQR spectra observed in T> Td2 in all the samples change to abnormally broad ones after a complete wipeout of NQR signal below Td2 except for the cases of M=Nd, Gd and Pr. In the cases of M=Nd and Gd, the complete wipeout continues to 1.5 K probably due to the extrinsic nuclear relaxation path through the paramagnetic fluctuation of Nd and Gd moment. In the case of M=Pr with no LTT phase, usual NQR spectrum continues to 1.5 K. These results support a pinning model for the static stripe ordering in the LTT phase.

  14. 35Cl NQR and Crystal Structure Studies of Salts of Chlorodifluoro- and Dichloroacetic Acid

    NASA Astrophysics Data System (ADS)

    Basaran, Reha; Dou, Shi-qi; Weiss, Alarich

    1992-02-01

    The 35Cl NQR spectra of several chlorodifluoroacetates were studied as a function of temperature, including the acid ClF2CCOOH. The cations were: Ammonium, guanidinium, paramethylanilinium. Also some acid salts M⊕ClF2CCOO⊖ • n - ClF2CCOOH ( n > l ) were studied by 35Cl NQR. The bleaching temperatures of the NQR signals were determined. In the para-methylanilinium salt and in the guanidinium salt a phase transition has been observed. The crystal structure of guanidinium chlorodifluoroacetate has been determined at room temperature (a = 1089 pm, 6 = 845 pm, c = 832 pm, space group Pnma, Z = 4). For comparison, guanidinium dichloroacetate was studied by 35Cl NQR and by X-ray diffraction, too: P21/c, Z = 4 , a = 804pm, b = 1202 pm, c = 1080 pm, ß = 131.58°. For guanidinium chlorodifluoroacetate and chlorodifluoroacetic acid, the 35Cl spin lattice relaxation time T1 and the line width have been followed up as a function of temperature. Therefrom, the activation energies of the reorientation motion of the group -CF2C1 have been determined to be 14 kJ • mol-1 (from T1) and 12.5 kJ • mol- 1 (from Δv) for the pure acid and 9.2 kJ • mol-1 and 8.8 kJ • mol-1 , respectively, for the guanidinium salt.

  15. Electron configuration and hydrogen-bonding pattern in several thymine and uracil analogues studied by 1H-14N NQDR and DFT/QTAIM.

    PubMed

    Seliger, Janez; Žagar, Veselko; Latosińska, Magdalena; Latosińska, Jolanta Natalia

    2012-08-02

    Some thio- and aza-derivatives of natural nucleobases uracil and thymine: 2-thiouracil, 4-thiouracil, 6-methyl-2-thiouracil, 6-azauracil, and 6-aza-2-thiothymine have been studied experimentally in solid state by (1)H-(14)N NMR-NQR double resonance (NQDR) and theoretically by the Density Functional Theory (DFT)/Quantum Theory of Atoms in Molecules (QTAIM). The (14)N resonance frequencies have been measured at 173 and 295 K and assigned to particular nitrogen sites (-N═ and -NH-). The temperature factor has been found negligible. The changes in the molecular skeletons, electric charge distribution, intermolecular interactions pattern, and molecular aggregations caused by oxygen replacement with sulfur and carbon replacement with nitrogen are discussed in detail. Correlations between all the principal components of the (14)N quadrupole coupling tensor have been found helpful in the search for the experimental (14)N NQR frequencies, their assignment to a particular nitrogen positions and estimation of the strength of the inter- and intramolecular interactions. The variation in the NQR parameters have been mainly related to the variation in the population of π-electron orbital. For thiouracil derivatives a general trend is that the stronger the hydrogen bond is, the lower is the asymmetry parameter, while for thymine and 6-aza-2-thiotymine, the opposite relation holds. Differences in correlations of the principal components of the (14)N quadrupole coupling tensor at the amino and iminonitrogen positions in heterocyclic rings are discussed. The effect of C→H and C→N substitution at the amino nitrogen position and C→N substitution at the iminonitrogen position on the quadrupole coupling tensor is analyzed. This study also demonstrates the advantages of combining NQR and DFT/QTAIM to predict an unsolved crystalline structure of 4-thiouracil.

  16. Investigating a Quadrant Surface Coil Array for NQR Remote Sensing

    DTIC Science & Technology

    2014-10-23

    UNCLASSIFIED 1  Abstract—this paper is on the design and fabrication of a surface coil array in a quadrant layout for NQR (Nuclear Quadrupole...coupling and SNR (Signal-to-Noise Ratio) at standoff distances perpendicular from each coil. Index Terms— Nuclear Quadrupole Resonance, NQR ...Coil Array, probe, Nuclear Magnetic Resonance, tuning, decoupling, RLC, mutual coupling, RLC I. INTRODUCTION N Nuclear quadrupole resonance ( NQR

  17. NQR detection of explosive simulants using RF atomic magnetometers

    NASA Astrophysics Data System (ADS)

    Monti, Mark C.; Alexson, Dimitri A.; Okamitsu, Jeffrey K.

    2016-05-01

    Nuclear Quadrupole Resonance (NQR) is a highly selective spectroscopic method that can be used to detect and identify a number of chemicals of interest to the defense, national security, and law enforcement community. In the past, there have been several documented attempts to utilize NQR to detect nitrogen bearing explosives using induction sensors to detect the NQR RF signatures. We present here our work on the NQR detection of explosive simulants using optically pumped RF atomic magnetometers. RF atomic magnetometers can provide an order of magnitude (or more) improvement in sensitivity versus induction sensors and can enable mitigation of RF interference, which has classically has been a problem for conventional NQR using induction sensors. We present the theory of operation of optically pumped RF atomic magnetometers along with the result of laboratory work on the detection of explosive simulant material. An outline of ongoing work will also be presented along with a path for a fieldable detection system.

  18. 53Cr, 17O and 14N nuclear quadrupole resonance in ammonium dichromate

    NASA Astrophysics Data System (ADS)

    Stephenson, David; Singh, Nadia

    2016-12-01

    The 53Cr resonance frequency in ammonium dichromate has been detected at 4202 kHz giving a Qcc of 8404 kHz (assuming η= 0). Calculations suggest that the value of the 53Cr quadrupole moment is about 84 mB lower that the currently accepted value. The resonance frequencies of two 17O nuclei have also been detected giving Qcc = 2800, 2890 kHz and η = 0.726, 0.780 respectively. The value for coupling and asymmetry parameter for 14N has been refined using zero field NQR giving a value Qcc = 78.8 kHz and η= 0.645 the asymmetry value being considerably lower than the value previous reported.

  19. Crystallization and preliminary analysis of the NqrA and NqrC subunits of the Na+-translocating NADH:ubiquinone oxidoreductase from Vibrio cholerae

    PubMed Central

    Vohl, Georg; Nedielkov, Ruslan; Claussen, Björn; Casutt, Marco S.; Vorburger, Thomas; Diederichs, Kay; Möller, Heiko M.; Steuber, Julia; Fritz, Günter

    2014-01-01

    The Na+-translocating NADH:ubiquinone oxidoreductase (Na+-NQR) from Vibrio cholerae is a membrane protein complex consisting of six different subunits NqrA–NqrF. The major domains of the NqrA and NqrC subunits were heterologously expressed in Escherichia coli and crystallized. The structure of NqrA1–377 was solved in space groups C2221 and P21 by SAD phasing and molecular replacement at 1.9 and 2.1 Å resolution, respectively. NqrC devoid of the transmembrane helix was co-expressed with ApbE to insert the flavin mononucleotide group covalently attached to Thr225. The structure was determined by molecular replacement using apo-NqrC of Parabacteroides distasonis as search model at 1.8 Å resolution. PMID:25005105

  20. Low Frequency NQR using Double Contact Cross-relaxation

    NASA Astrophysics Data System (ADS)

    Stephenson, David; Smith, John A. S.

    2000-02-01

    A cross-relaxation technique is described which involves two spin contacts per double reso-nance cycle. The result is an improvement in signal to noise ratio particularly at low frequencies. Experimental spectra and analyses are presented: 14N in ammonium sulphate showing that the tech-nique gives essentially the same information as previous studies; 14N in ammonium dichromate determining e2Qq/h as (76±3) kHz and η = 0.84±.04; 7Li in lithium acetylacetonate for which the spectrum (corrected for Zeeman distortion) yields e2Qq/h = (152 ±5) kHz and η=.5 ±.2. Calculated spectra are presented to demonstrate the η dependence of the line shapes for 7Li.

  1. NQR in Alanine and Lysine Iodates

    NASA Astrophysics Data System (ADS)

    Petrosyan, A. M.; Burbelo, V. M.; Tamazyan, R. A.; Karapetyan, H. A.; Sukiasyan, R. P.

    2000-02-01

    The structure o f iodates of α- and β-alanine ( Ala) (2(β-Ala • HIO3) • H2O , β-Ala-2HIO3 , D L-Ala• HIO3 • 2H2O, L-Ala • HIO3) and L-lysine (L-Lys) (L-Lys • HIO3, L-Lys • 2HIO3,L-Lys • 3HIO3, L-Lys • 6HIO3) have been investigated by means of iodine-127 NQR, IR spectroscopy and X-ray diffraction

  2. Nitrogen-14 NQR Study of Energetic Materials

    DTIC Science & Technology

    1982-09-01

    Army Research Office Research Triangle Park North Carolina 27709 Contract No. DAAG-29-79-0025 I Submitted by: BLOCK ENGINEERING Division of Bio-Rad...NQR Lines C-i F APPENDIX D Princeton Applied Research Interface D-1 References R-1 BLOCK 󈨑 7T - %. LIST OF TABLES Tables Page 2.2-I Lorentzian FID and...as can be seen by the seemingly incongruous pairing of v and v + lines in Figure 3.1-1. In fact, it will be shown that the chemical inequivalence of "o

  3. 14N15N detectability in Pluto’s atmosphere

    NASA Astrophysics Data System (ADS)

    Jessup, Kandis Lea; Gladstone, G. R.; Heays, A. N.; Gibson, S. T.; Lewis, B. R.; Stark, G.

    2013-11-01

    attained in the key 14N15N absorption bands located between 85 and 90 nm at altitudes ∼1100-1600 km above Pluto’s surface. Additionally, an 14N15N isotope absorption depth ∼4-15% is predicted for observations obtained at these altitudes at a spectral resolution of ∼0.2-0.3 nm, if the N2 isotopologue 15N/14N percent ratio is comparable to the 0.37-0.6% ratio observed at Earth, Titan and Mars. If we presume that the predicted absorption depth must be at least 25% greater than the expected observational uncertainty, then it follows that a statistically significant detection of these signatures and constraint of the N2 isotopologue 14N/15N ratio within Pluto’s atmosphere will be possible if the attainable observational signal-to noise (S/N) ratio is ⩾9. The New Horizons (NH) Mission will be able to obtain high S/N, 0.27-0.35 nm full-width half-max 80-100 nm spectral observations of Pluto using the Alice spectrograph. Based on the NH/Alice specifications we have simulated 0.3 nm spectral resolution solar occultation spectra for the 1100-1600 km altitude range, assuming 30 s integration times. These simulations indicate that NH/Alice will obtain spectral observations within this altitude range with a S/N ratio ∼25-50, and should be able to reliably detect the 14N15N gas absorption signature between 85 and 90 nm if the 14N15N concentration is ∼0.3% or greater. This, additionally, implies that the non-detection of the 14N15N species in the 1100-1600 km range by NH/Alice may be used to reliably establish an upper limit to the N2 isotopologue 15N/14N ratio within Pluto’s atmosphere. Similar results may be derived from 0.2 to 0.3 nm spectral resolution observations of any other N2-rich Solar System or exoplanet atmosphere, provided the observations are attained with similar S/N levels.

  4. A systematic investigation of hydrogen-bonding effects on the 17O, 14N, and 2H nuclear quadrupole resonance parameters of anhydrous and monohydrated cytosine crystalline structures: a density functional theory study.

    PubMed

    Mirzaei, Mahmoud; Elmi, Fatemeh; Hadipour, Nasser L

    2006-06-08

    A systematic computational study was carried out to characterize the 17O, 14N, and 2H nuclear quadrupole resonance (NQR) parameters in the anhydrous and monohydrated cytosine crystalline structures. To include the hydrogen-bonding effects in the calculations, the most probable interacting molecules with the central molecule in the crystalline phase were considered in the pentameric clusters of both structures. To calculate the parameters, couples of the methods B3LYP and B3PW91 and the basis sets 6-311++G** and CC-pVTZ were employed. The mentioned methods calculated reliable values of 17O, 14N, and 2H NQR tensors in the pentameric clusters, which are in good agreements with the experiment. The different influences of various hydrogen-bonding interactions types, N-H...N, N-H...O, and O-H...O, were observed on the 17O, 14N, and 2H NQR tensors. Lower values of quadrupole coupling constants and higher values of asymmetry parameters in the crystalline monohydrated cytosine indicate the presence of stronger hydrogen-bonding interactions in the monohydrated form rather than that of crystalline anhydrous cytosine.

  5. Zero-field NMR and NQR studies of magnetically ordered state in charge-ordered EuPtP

    NASA Astrophysics Data System (ADS)

    Koyama, T.; Maruyama, T.; Ueda, K.; Mito, T.; Mitsuda, A.; Umeda, M.; Sugishima, M.; Wada, H.

    2015-03-01

    EuPtP undergoes two valence transitions and has two kinds of valence states of Eu ions at low temperatures. In the charge-ordered state, this compound shows an antiferromagnetic order ascribed to magnetic divalent Eu ions. We investigated the antiferromagnetically ordered state of EuPtP by nuclear magnetic resonance (NMR) measurement and nuclear quadrupole resonance (NQR) measurement in a zero external magnetic field. The observed 153Eu NMR signals of a magnetic divalent state and Eu,153151 NQR signals of a nonmagnetic trivalent state clearly demonstrate that the spins order in the hexagonal basal plane and the internal magnetic field is not canceled out, even at the Eu3 + layers which are in the middle of magnetic Eu2 + layers. In addition, the observation of 31P and 195Pt NMR spectra allowed us to discuss a possible magnetic structure. We also evaluated the nuclear quadrupole frequencies for both Eu2 + and Eu3 + ion states.

  6. Numerical simulation of NQR/NMR: Applications in quantum computing.

    PubMed

    Possa, Denimar; Gaudio, Anderson C; Freitas, Jair C C

    2011-04-01

    A numerical simulation program able to simulate nuclear quadrupole resonance (NQR) as well as nuclear magnetic resonance (NMR) experiments is presented, written using the Mathematica package, aiming especially applications in quantum computing. The program makes use of the interaction picture to compute the effect of the relevant nuclear spin interactions, without any assumption about the relative size of each interaction. This makes the program flexible and versatile, being useful in a wide range of experimental situations, going from NQR (at zero or under small applied magnetic field) to high-field NMR experiments. Some conditions specifically required for quantum computing applications are implemented in the program, such as the possibility of use of elliptically polarized radiofrequency and the inclusion of first- and second-order terms in the average Hamiltonian expansion. A number of examples dealing with simple NQR and quadrupole-perturbed NMR experiments are presented, along with the proposal of experiments to create quantum pseudopure states and logic gates using NQR. The program and the various application examples are freely available through the link http://www.profanderson.net/files/nmr_nqr.php.

  7. Nuclear Quadrupole Resonance (NQR) Method and Probe for Generating RF Magnetic Fields in Different Directions to Distinguish NQR from Acoustic Ringing Induced in a Sample

    DTIC Science & Technology

    1997-08-01

    77,719 TITLE OF THE INVENTION NUCLEAR QUADRUPOLE RESONANCE ( NQR ) METHOD AND PROBE FOR GENERATING RF MAGNETIC FIELDS IN DIFFERENT DIRECTIONS TO...DISTINGUISH NQR FROM ACOUSTIC RINGING INDUCED IN A SAMPLE BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a...nuclear quadrupole 15 resonance ( NQR ) method and probe for generating RF magnetic fields in different directions towards a sample. More specifically

  8. Relaxation of Lattice Inperfections as Studied by Chlorine NQR

    NASA Astrophysics Data System (ADS)

    Hashimoto, Masao; Adachi, Masahiro; Mano, Koichi

    1986-02-01

    The intensities, linewidths, and frequencies of 35Cl NQR signals in 6-nitro-2,4-bis(trichlorom ethyl)-benzo[1,3]dioxine were found to vary remarkably depending on the crystallization methods and annealing. This finding was correlated to the degree of crystal disorder. For a sample obtained by slow crystallization from an ethanolic solution of the compound, the growth of the height of the NQR absorption signal due to annealing was measured as a function of the isothermal annealing time. A kinetic analysis of the growth process gave an activation energy of approx. 110 kJ/mole for the relaxation process of the imperfection dominating the NQR signals. The dimorphism of the compound and the magnitude of the activation energy suggest the presence of misoriented molecules accompanied by vacancies in the crystal lattice of the stable phase.

  9. Crystal Structures and 35Cl NQR Spectra of the Metastable and the Stable Phase of Guanidinium bis-Monochloroacetate, [C(NH2)3 ]⊕[(ClH2C)COOH ••• OOC(CH2Cl)l⊖

    NASA Astrophysics Data System (ADS)

    Basaran, Reha; Dou, Shi-qi; Weiss, Alarich

    1993-03-01

    From acid aqueous solutions of guanidinium carbonate and monochloroacetic acid, (ClH2C)COOH :H2 NC( = NH)NH2 ≧ 2.5, the compound [C(NH2)3]⊕ [(ClH2C)COOH • • • OOC(CH2Cl)]⊖ crystallizes with the space group Ci1P1¯,Z = 4, a = 1147.4 (5) pm, b= 1113.2 (5) pm, c = 876.5 (4) pm, α = 88.66 (2)°, β = 80.31 (2)°, γ = 84.41 (2)° (metastable phase I). Cooled to 77 K once, phase I transforms at room temperature slowly into the stable phase II, orthorhombic, D2h15 - Pbca, Z = 8, a= 1299.2 (4) pm, b= 1533.7 (4) pm, c= 1073.9 (3) pm. The crystal structure determinations show for both phases an ionic lattice with guanidinium cations [C(NH2)3]⊕ and acid bis-(monochloroacetate) anions [(ClH2C)COOH • • • OOC(CH2Cl)]⊖ in which a monochloroacetic acid molecule and a monochloroacetate ion are bound to the dimer anion by an asymmetric hydrogen bond O-H • • • O. A strong crystal field effect, much dependent on temperature, is observed in the 35Cl NQR quadruplet spectrum of phase I, with a frequency spread of ≈4 MHz at 300 K, whereas in phase II the frequency splitting of the observed 35Cl NQR doublet is almost constant between 77 K and 310 K, about 700 kHz. The phase transition I → II is very sluggish and unidirectional. The transition II → I needs the recrystallization of II from water. Structure and dynamics of the two solid phases are discussed.

  10. Landmine Detection by Nuclear Quadrupole Resonance (NQR)

    DTIC Science & Technology

    2004-12-01

    14N nuclei present in the explosive (Hirshfeld and Klainer, 1980; Grechishkin, 1992; Rowe and Smith, 1996; Garroway et al., 2001; Deas et al., 2002...Mater. Chem., 7 (2), 229-235. Garroway , A.N., Buess, M.L., Miller, J.B., Suits, B.H., Hibbs, A.D., Barrall, G.A., Matthews, R. and Burnett, L.J

  11. Rapid detection of arsenic minerals using portable broadband NQR

    NASA Astrophysics Data System (ADS)

    Lehmann-Horn, J. A.; Miljak, D. G.; O'Dell, L. A.; Yong, R.; Bastow, T. J.

    2014-10-01

    The remote real-time detection of specific arsenic species would significantly benefit in minerals processing to mitigate the release of arsenic into aquatic environments and aid in selective mining. At present, there are no technologies available to detect arsenic minerals in bulk volumes outside of laboratories. Here we report on the first room-temperature broadband 75As nuclear quadrupole resonance (NQR) detection of common and abundant arsenic ores in the Earth crust using a large sample (0.78 L) volume prototype sensor. Broadband excitation aids in detection of natural minerals with low crystallinity. We briefly discuss how the proposed NQR detector could be employed in mining operations.

  12. NqrM (DUF539) Protein Is Required for Maturation of Bacterial Na+-Translocating NADH:Quinone Oxidoreductase

    PubMed Central

    Kostyrko, Vitaly A.; Bertsova, Yulia V.; Serebryakova, Marina V.; Baykov, Alexander A.

    2015-01-01

    ABSTRACT Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) catalyzes electron transfer from NADH to ubiquinone in the bacterial respiratory chain, coupled with Na+ translocation across the membrane. Na+-NQR maturation involves covalent attachment of flavin mononucleotide (FMN) residues, catalyzed by flavin transferase encoded by the nqr-associated apbE gene. Analysis of complete bacterial genomes has revealed another putative gene (duf539, here renamed nqrM) that usually follows the apbE gene and is present only in Na+-NQR-containing bacteria. Expression of the Vibrio harveyi nqr operon alone or with the associated apbE gene in Escherichia coli, which lacks its own Na+-NQR, resulted in an enzyme incapable of Na+-dependent NADH or reduced nicotinamide hypoxanthine dinucleotide (dNADH) oxidation. However, fully functional Na+-NQR was restored when these genes were coexpressed with the V. harveyi nqrM gene. Furthermore, nqrM lesions in Klebsiella pneumoniae and V. harveyi prevented production of functional Na+-NQR, which could be recovered by an nqrM-containing plasmid. The Na+-NQR complex isolated from the nqrM-deficient strain of V. harveyi lacks several subunits, indicating that nqrM is necessary for Na+-NQR assembly. The protein product of the nqrM gene, NqrM, contains a single putative transmembrane α-helix and four conserved Cys residues. Mutating one of these residues (Cys33 in V. harveyi NqrM) to Ser completely prevented Na+-NQR maturation, whereas mutating any other Cys residue only decreased the yield of the mature protein. These findings identify NqrM as the second specific maturation factor of Na+-NQR in proteobacteria, which is presumably involved in the delivery of Fe to form the (Cys)4[Fe] center between subunits NqrD and NqrE. IMPORTANCE Na+-translocating NADH:quinone oxidoreductase complex (Na+-NQR) is a unique primary Na+ pump believed to enhance the vitality of many bacteria, including important pathogens such as Vibrio cholerae, Vibrio

  13. NMR and NQR study of Si-doped (6,0) zigzag single-walled aluminum nitride nanotube as n or P-semiconductors.

    PubMed

    Baei, Mohammad T; Peyghan, Ali Ahmadi; Tavakoli, Khadijeh; Babaheydari, Ali Kazemi; Moghimi, Masoumeh

    2012-09-01

    Density functional theory (DFT) calculations were performed to investigate the electronic structure properties of pristine and Si-doped aluminum nitride nanotubes as n or P-semiconductors at the B3LYP/6-31G* level of theory in order to evaluate the influence of Si-doped in the (6,0) zigzag AlNNTs. We extended the DFT calculation to predict the electronic structure properties of Si-doped aluminum nitride nanotubes, which are very important for production of solid-state devices and other applications. To this aim, pristine and Si-doped AlNNT structures in two models (Si(N) and Si(Al)) were optimized, and then the electronic properties, the isotropic (CS(I)) and anisotropic (CS(A)) chemical shielding parameters for the sites of various (27)Al and (14)N atoms, NQR parameters for the sites of various of (27)Al and (14)N atoms, and quantum molecular descriptors were calculated in the optimized structures. The optimized structures, the electronic properties, NMR and NQR parameters, and quantum molecular descriptors for the Si(N) and Si(Al) models show that the Si(N) model is a more reactive material than the pristine or Si(Al) model.

  14. 127I NQR and spectroscopic investigation of impurity-doped and mixed lithium iodate Li 1- xH xIO 3 crystals

    NASA Astrophysics Data System (ADS)

    Barabash, A.; Gavrilko, T.; Eshimov, K.; Baran, J.; Ratajczak, H.

    2004-12-01

    The 127I NQR, IR absorption and Raman spectra of impurity-doped and mixed lithium iodate Li 1- xH xIO 3 crystals grown from water solutions with different LiIO 3/HIO 3 ratios were investigated depending on the content of the impurity hydrogen x. The NQR results suggested that, at small concentration of doping iodic acid x<0.22, the lattice dynamics of the crystal grown from water solution changes significantly though the crystal retains hexagonal symmetry. Spectroscopic studies are compatible with average hexagonal symmetry of the grown doped crystals. From the results of Raman studies at room temperature and 100 K, the concentration range of hydrogen dopant 0.22< x<0.36 was found where disordered solid solution crystals Li 1- xH xIO 3 are formed.

  15. 35Cl NQR study of geometric isotope effect in hydrogen bonded chlorooctanes

    NASA Astrophysics Data System (ADS)

    Zdanowska-Fraçzek, M.

    1994-05-01

    35Cl NQR spectroscopy was applied to study the geometric isotope effect in a wide range of 2 : 1 salts of chloroacetic, trichloroacetic and difluorochloroacetic acids. The NQR results were correlated with IR spectroscopic studies, which provided information on the potential shape for proton motion. The NQR results were discussed on the basis of a variational correlated ground state wave function theory of a single hydrogen bond.

  16. LINE LISTS FOR THE A {sup 2}Π-X {sup 2}Σ{sup +} (RED) AND B {sup 2}Σ{sup +}-X {sup 2}Σ{sup +} (VIOLET) SYSTEMS OF CN, {sup 13}C{sup 14}N, AND {sup 12}C{sup 15}N, AND APPLICATION TO ASTRONOMICAL SPECTRA

    SciTech Connect

    Sneden, Christopher; Lucatello, Sara; Ram, Ram S.; Brooke, James S. A.; Bernath, Peter E-mail: sara.lucatello@oapd.inaf.it E-mail: jsabrooke@gmail.com

    2014-10-01

    New red and violet system line lists for the CN isotopologues {sup 13}C{sup 14}N and {sup 12}C{sup 15}N have been generated. These new transition data are combined with those previously derived for {sup 12}C{sup 14}N, and applied to the determination of CNO abundances in the solar photosphere and in four red giant stars: Arcturus, the bright, very low-metallicity star HD 122563, and the carbon-enhanced metal-poor stars HD 196944 and HD 201626. When both red and violet system lines are detectable in a star, their derived N abundances are in good agreement. The mean N abundances determined in this work are also generally in accord with published values.

  17. The single NqrB and NqrC subunits in the Na(+)-translocating NADH: quinone oxidoreductase (Na(+)-NQR) from Vibrio cholerae each carry one covalently attached FMN.

    PubMed

    Casutt, Marco S; Schlosser, Andreas; Buckel, Wolfgang; Steuber, Julia

    2012-10-01

    The Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) is the prototype of a novel class of flavoproteins carrying a riboflavin phosphate bound to serine or threonine by a phosphodiester bond to the ribityl side chain. This membrane-bound, respiratory complex also contains one non-covalently bound FAD, one non-covalently bound riboflavin, ubiquinone-8 and a [2Fe-2S] cluster. Here, we report the quantitative analysis of the full set of flavin cofactors in the Na(+)-NQR and characterize the mode of linkage of the riboflavin phosphate to the membrane-bound NqrB and NqrC subunits. Release of the flavin by β-elimination and analysis of the cofactor demonstrates that the phosphate group is attached at the 5'-position of the ribityl as in authentic FMN and that the Na(+)-NQR contains approximately 1.7mol covalently bound FMN per mol non-covalently bound FAD. Therefore, each of the single NqrB and NqrC subunits in the Na(+)-NQR carries a single FMN. Elimination of the phosphodiester bond yields a dehydro-2-aminobutyrate residue, which is modified with β-mercaptoethanol by Michael addition. Proteolytic digestion followed by mass determination of peptide fragments reveals exclusive modification of threonine residues, which carry FMN in the native enzyme. The described reactions allow quantification and localization of the covalently attached FMNs in the Na(+)-NQR and in related proteins belonging to the Rhodobacter nitrogen fixation (RNF) family of enzymes. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).

  18. An electronically tuned wideband probehead for NQR spectroscopy in the VHF range

    NASA Astrophysics Data System (ADS)

    Scharfetter, Hermann

    2016-10-01

    Nuclear quadrupole resonance spectroscopy is an analytical method which allows to characterize materials which contain quadrupolar nuclei, i.e. nuclei with spin ⩾1. The measurement technology is similar to that of NMR except that no static magnetic field is necessary. In contrast to NMR, however, it is frequently necessary to scan spectra with a very large bandwidth with a span of several tens of % of the central frequency so as to localize unknown peaks. Standard NMR probeheads which are typically constructed as resonators must be tuned and matched to comparatively narrow bands and must thus be re-tuned and re-matched very frequently when scanning over a whole NQR spectrum. At low frequencies up to few MHz dedicated circuits without the need for tuning and matching have been developed, but many quadrupole nuclei have transitions in the VHF range between several tens of MHz up to several hundreds of MHz. Currently available commercial NQR probeheads employ stepper motors for setting mechanically tuneable capacitors in standard NMR resonators. These yield high quality factors (Q) and thus high SNR but are relatively large and clumsy and do not allow for fast frequency sweeps. This article presents a new concept for a NQR probehead which combines a previously published no-tune no-match wideband concept for the transmit (TX) pulse with an electronically tuneable receive (RX) part employing varactor diodes. The prototype coil provides a TX frequency range of 57 MHz with a center frequency of 97.5 MHz with a return loss of ⩽-15 dB. During RX the resonator is tuned and matched automatically to the right frequency via control voltages which are read out from a previously generated lookup table, thus providing high SNR. The control voltages which bias the varactors settle very fast and allow for hopping to the next frequency point in the spectrum within less than 100 μs. Experiments with a test sample of ZnBr2 proved the feasibility of the method.

  19. Natural abundance 14N and 15N solid-state NMR of pharmaceuticals and their polymorphs

    DOE PAGES

    Veinberg, Stanislav L.; Johnston, Karen E.; Jaroszewicz, Michael J.; ...

    2016-06-08

    14N ultra-wideline (UW), 1H{15N} indirectly-detected HETCOR (idHETCOR) and 15N dynamic nuclear polarization (DNP) solid-state NMR (SSNMR) experiments, in combination with plane-wave density functional theory (DFT) calculations of 14N EFG tensors, were utilized to characterize a series of nitrogen-containing active pharmaceutical ingredients (APIs), including HCl salts of scopolamine, alprenolol, isoprenaline, acebutolol, dibucaine, nicardipine, and ranitidine. Here, a case study applying these methods for the differentiation of polymorphs of bupivacaine HCl is also presented. All experiments were conducted upon samples with naturally-abundant nitrogen isotopes. For most of the APIs, it was possible to acquire frequency-stepped UW 14N SSNMR spectra of stationarymore » samples, which display powder patterns corresponding to pseudo-tetrahedral (i.e., RR'R"NH+ and RR'NH2+) or other (i.e., RNH2 and RNO2) nitrogen environments.« less

  20. A 2H and 14N NMR study of molecular motion in polycrystalline choline salts

    NASA Astrophysics Data System (ADS)

    Pratum, T. K.; Klein, M. P.

    2H and 14N solid-state NMR spectra of polycrystalline choline chloride, bromide, and iodide indicate that 180° cation flipping motion occurs in all three salts. From the temperature dependence of these spectra, the activation energy for this motion is determined to be 5.8 ± I kcal/mol in the iodide salt and 11 ± 1.5 kcal/mol in the chloride salt. In the bromide salt the reorientation rate is too rapid to be determined from the NMR lineshape, but the temperature dependence of the 2H quadrupole coupling parameters is indicative of a second-order phase transition at approximately 273 K. The spectral distortions in the 14N NMR spectra of the chloride and iodide salts are adequately explained using the motional model derived from the 2H NMR results, while the 14N spectra of the bromide salt show no motional effects. The axis of reorientation which is inferred from these data appears to be consistent with that indicated in a previous X-ray crystallographic study.

  1. 7Li and 14N NMR studies of phase II-III transition in LiNH4SO4 single crystals

    NASA Astrophysics Data System (ADS)

    Lim, Ae Ran

    2016-12-01

    The NMR spectra of 7Li and 14N nuclei in LiNH4SO4 crystals were obtained near the phase transition temperature TC2=284.5 K. Below TC2, the two physically inequivalent Li groups in phase III were distinguished in 7Li NMR spectra. Meanwhile, the 14N NMR spectra in phase II above TC2 showed four pairs of lines, where as those in phase III showed eight pairs. These changes in the resonance frequencies near TC2 were attributed to the structural phase transition. The 7Li and 14N nuclei in the structure are coordinated through the Li-O-H-N skeleton. Therefore, changes in their NMR spectra with temperature are correlated. The displacements of 7Li and 14N in LiNH4SO4 crystals play important roles in the phase transition near TC2.

  2. Low energy scattering cross section ratios of 14N(p ,p ) 14N

    NASA Astrophysics Data System (ADS)

    deBoer, R. J.; Bardayan, D. W.; Görres, J.; LeBlanc, P. J.; Manukyan, K. V.; Moran, M. T.; Smith, K.; Tan, W.; Uberseder, E.; Wiescher, M.; Bertone, P. F.; Champagne, A. E.; Islam, M. S.

    2015-04-01

    Background: The slowest reaction in the first CNO cycle is 14N(p ,γ ) 15O , therefore its rate determines the overall energy production efficiency of the entire cycle. The cross section presents several strong resonance contributions, especially for the ground-state transition. Some of the properties of the corresponding levels in the 15O compound nucleus remain uncertain, which affects the uncertainty in extrapolating the capture cross section to the low energy range of astrophysical interest. Purpose: The 14N(p ,γ ) 15O cross section can be described by using the phenomenological R matrix. Over the energy range of interest, only the proton and γ -ray channels are open. Since resonance capture makes significant contributions to the 14N(p ,γ ) 15O cross section, resonant proton scattering data can be used to provide additional constraints on the R -matrix fit of the capture data. Methods: A 4 MV KN Van de Graaff accelerator was used to bombard protons onto a windowless gas target containing enriched 14N gas over the proton energy range from Ep=1.0 to 3.0 MeV. Scattered protons were detected at θlab=90 , 120∘, 135∘, 150∘, and 160∘ using ruggedized silicon detectors. In addition, a 10 MV FN Tandem Van de Graaff accelerator was used to accelerate protons onto a solid Adenine (C5H5N5 ) target, of natural isotopic abundance, evaporated onto a thin self-supporting carbon backing, over the energy range from Ep=1.8 to 4.0 MeV. Scattered protons were detected at 28 angles between θlab=30 .4∘ and 167 .7∘ by using silicon photodiode detectors. Results: Relative cross sections were extracted from both measurements. While the relative cross sections do not provide as much constraint as absolute measurements, they greatly reduce the dependence of the data on otherwise significant systematic uncertainties, which are more difficult to quantify. The data are fit simultaneously using an R -matrix analysis and level energies and proton widths are extracted. Even

  3. Temperature and baric dependence of nuclear quadruple resonance spectra in indium and gallium monoselenides

    NASA Astrophysics Data System (ADS)

    Khandozhko, Victor; Raranskii, Nikolai; Balazjuk, Vitaly; Samila, Andriy; Kovalyuk, Zahar

    2013-12-01

    Pulsed radiospectroscopy method has been used to study nuclear quadruple resonance (NQR) spectra of 69Ga and 115In isotopes in the layered semiconductors GaSe and InSe. It has been found that in GaSe and InSe there is a considerable temperature dependence of NQR frequency which in the temperature range of 250 to 390 K is practically linear with conversion slope 1.54 kHz/degree for 69Ga and 2.35 kHz/degree for 115In. In the same crystals the effect of uniaxial pressure on NQR spectra applied along the optical axis с up to the values of 500 kg/сm2 has been studied. A strong attenuation of NQR spectra intensity with increase in pressure on layered crystal package has been established. The unvaried multiplicity of resonance spectra indicates the absence of structural transformations in these layered crystals over the investigated range of temperatures and pressures.

  4. Antiferromagnetic properties of a water-vapor-inserted YBa2 Cu3 O6.5 compound studied byNMR, NQR, and μSR

    NASA Astrophysics Data System (ADS)

    Dooglav, A. V.; Egorov, A. V.; Mukhamedshin, I. R.; Savinkov, A. V.; Alloul, H.; Bobroff, J.; Macfarlane, W. A.; Mendels, P.; Collin, G.; Blanchard, N.; Picard, P. G.; King, P. J. C.; Lord, J.

    2004-08-01

    We present a detailed NQR, nuclear magnetic resonance (NMR), and μSR study of the magnetic phase obtained during a topotactic chemical reaction of YBa2Cu3O6.5 high-temperature superconductor with low-pressure water vapor. Cu65 -enriched samples have been used for NQR/NMR studies which allows to get a good resolution in the Cu(1) NQR and Cu(2) zero field NMR (ZFNMR) spectra. It is shown that the NQR spectrum of the starting material transforms progressively under insertion of water, and almost completely disappears when about one H2O molecule is inserted per unit cell. Similarly, a Cu65 ZFNMR signal characteristic of this water inserted material appears and grows with increasing water content, which indicates that the products of the reaction are nonsuperconducting antiferromagnetic phases in which the copper electronic magnetic moments in the CuO2 bilayers are ordered. The use of Cu65 -enriched samples allowed us to reliably resolve three different copper resonances which correspond to different internal magnetic fields. The antiferromagnetic phases are also felt by proton NMR which reveals two sites with static internal fields of 150 and about 15 Gauss, respectively. μSR studies performed on a series of samples prepared in the same way as the C65u -enriched ones reveal two muon sites with the same local fields as the proton sites, which vanish at T≈400K . This indicates that muons preferentially occupy proton vacancy sites, and that the magnetic phases have similar Néel temperatures as the other bilayer undoped cuprate compounds. An analysis of the internal fields on the different spin probes suggests that they can be all assigned to a single magnetic phase at large water content in which the Cu(1) electron spins order with those of the Cu(2) . The detailed evolution of the spectra with the progressive increase of water content is shown to be compatible with a coexistence of phases during the early stages ot the reaction. It appears that even samples packed

  5. Electron paramagnetic resonance study of 14N and 19F superhyperfine interaction in VO 2+ doped propylenediammonium hexafluorozirconate

    NASA Astrophysics Data System (ADS)

    Lakshmi^Kasturi, T.; Krishnan, V. G.

    1998-05-01

    Electron paramagnetic resonance spectra have been recorded at X-band frequencies at room temperature on VO 2+ molecular ion in propylenediammonium hexafluorozirconate, [H 3N(CH 2) 3NH 3]ZrF 6, single crystals. The superhyperfine structure caused by 14N and 19F has been clearly observed in the spectra. The two sets of spectra observed are related to each other by the symmetry operations of the host crystals and represent vanadyl ion at two magnetically distinguishable interstitial sites in the unit cell.

  6. Copper Nqr and NMR Study of Metal-Substituted Yttrium BARIUM(2) COPPER(3) OXYGEN(7) and Yttrium BARIUM(2) COPPER(4) OXYGEN(8)

    NASA Astrophysics Data System (ADS)

    Cheng, Show-Jye

    Pulsed nuclear quadrupole resonance (NQR) and nuclear magnetic resonance (NMR) have been used to investigate the effect of metal-substitution for copper in YBa_2Cu_3O_7 (YBCO123) and YBa_2Cu_4O_8 (YBCO124). Among many metal substitutions, Zn has an especially dramatic effect in suppressing the superconducting temperature T_{c}, and hence superconductivity. More interesting is that Zn and Fe have the same T_{c} suppression effect in YBCO124. This study focuses on the Zn substitutions in YBCO123 and Zn, Fe, and Co substitutions in YBCO124. In Zn doped YBCO123, Cu(2), plane site, NQR spectra and the frequency dependence of the spin-lattice relaxation rates have been measured over a temperature range from 77 K to 300 K to study the correlation of the suppression of the relaxation rate with the distance between the probe Cu nuclei and the impurity. It is found that the relaxation rate is insensitive to the variation of the NQR resonance frequency. However, by comparing the results of the Zn doped YBCO124 with those of YBCO123, it can be concluded that the suppression of the relaxation rate for both YBCO compounds in the normal state is caused by destruction of short-range antiferromagnetic correlation with substitution of nonmagnetic ion Zn on the Cu(2) sites. NQR and NMR measurements were carried out on both Cu(2), plane, and Cu(1), chain sites, for various concentrations of Zn, Fe, and Co dopants in YBCO124 over a temperature range from 77 K to 300 K. A strong correlation of the enhancement of Cu(2) spin lattice relaxation rate and suppression of superconductivity by impurities was found. The temperature dependence of the Cu(2) NMR linewidth exhibits a strong RKKY type exchange interaction below 225 K for Zn and Fe doped samples, which indicates the formation of the local magnetic moment. The enhancement of the relaxation rate is caused by the local magnetic moment Fe^ {+3} ion and the moments on Cu(2) neighbors when Zn^{+2} is substituted on Cu(2). This study gives

  7. Electronic effects in alkyl 4-chlorophenyl sulfone and sulfoxide molecules according to Cl 35 NQR data

    SciTech Connect

    Feshin, V.P.; Voronkov, M.G.; Dolgushin, G.V.; Romanenko, L.S.; Aliev, I.A.; Mirzoeva, M.A.

    1986-11-20

    Compounds of the 4-ClC/sub 6/H/sub 4/S(O)CH/sub n/ x (CH/sub 3/)/sub 3-n/ and 4-ClC/sub 6/H/sub 4/SO/sub 2/R series (R = (CH/sub 2/)/sub n/H and CH/sub n/(CH/sub 3/)/sub 3-n/) were synthesized and studied by the /sup 35/Cl NQR method. It was found that their NQR frequencies change regularly with increase in the number n.

  8. Radiative n 14N capture at astrophysical energies

    NASA Astrophysics Data System (ADS)

    Dubovichenko, S. B.

    2013-06-01

    In the potential cluster model with forbidden states and classification of orbital cluster states according to Young's schemes, the possibility is considered of describing the experimental data for the total cross sections of radiative n 14N capture at energies from 25.0 meV (25•10-3 eV) to 1.0 MeV. It is shown that on the whole it is possible to successfully explain the behavior of these cross sections outside the resonant energy region on the basis of the E1 transition from the 2S1/2 scattering wave with zero phase to the bound 2Р1/2 state of the 15N nucleus in the n14N channel.

  9. Endor, triple resonance and electron spin echo envelope modulation of 14N in sulphur and selenium coordinated copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Böttcher, R.; Kirmse, R.; Stach, J.; Reijerse, E. J.; Keijzers, C. P.

    1986-08-01

    Single-crystal ENDOR and TRIPLE resonance studies on "long-range" coupled 14N nuclei are reported for Cu(II) complexes in four host lattices: bis(diethyldithiocarbamato)Ni(II) and Zn(II), bis(diethyldiselenocarbamato)Zn(II) and tetra- n-butylammonium(maleonitriledithiolato)(diethyldithiocarbamato)Ni(II). The ENDOR spectra are unusual because the 14N nuclear quadrupole interaction exceeds the hyperfine coupling and the nuclear Zeeman interaction. The spectra are analyzed in detail and correlated with the molecular structures of the host compounds. According to the TRIPLE experiments the 14N hyperfine tensor components are negative. The populations of the nitrogen orbitals are evaluated from the quadrupole coupling tensors. In order to compare these double resonance methods with pulsed techniques, electron spin echo envelope modulation (ESEEM) is applied to a powder of one of the systems.

  10. Chlorine Substituted Acetic Acids and Salts. Effect of Salification on Chlorine-35 NQR

    NASA Astrophysics Data System (ADS)

    David, Serge; Gourdji, Michel; Guibé, Lucien; Péneau, Alain

    1996-06-01

    The NQR of a quadrupolar probe nucleus is often used to investigate the effect of substituent in molecules. The inductive effect, based on a partial charge migration along the molecular skeleton is the only one present in saturated aliphatics, the conjugative effect appearing in conjugated molecules, especially aromatics. As the stepwise charge migration mechanism, formerly used to explain the inductive effect, is now believed obsolete, we have wanted to reexamined the case of chlorine substituted acetic acids and salts. The data in literature was extended by observing reso-nances and determining NQR frequencies in several acids and salts. The present analysis of the salification of mono-, di-and tri-chloroacetic acids, which is equivalent to a deprotonation or the substitution of the acid hydrogen by a negative unit charge, shows that a model based on the polarization of the chlorine atom(s) by the carboxyle group is consistent with experimental results: the polarization energy appears to be proportional to the NQR frequency shifts; experimental data show a correlation between the NQR frequency shifts accompanying salification and the variations of the intrinsic acidity measured in the gas phase; this, in turn shows that there is a proportionality between the polarization energy and the variations in the acid free enthalpy of dissociation. From the comparison between fluorine, chlorine, bromine and iodine, it also appears that an alternative mechanism, the polarization of the carboxyl group by the halogen, would be important only in the case of the fluoroacetic acid.

  11. Spin 3/2 Zeeman perturbed NQR in the presence of slow sample rotation.

    PubMed

    Panguluri, R P; Suits, B H

    2006-09-01

    Theoretical and experimental results are presented for the case of Zeeman perturbed nuclear quadrupole resonance (NQR) using spin-3/2 nuclei with a small Zeeman interaction, gammaB0, while the sample is very slowly rotated. It is found that the decay envelope for a simple two-pulse echo measurement can be strongly affected even though the sample may rotate only a few degrees or less during the course of the measurement. To lowest order the decay envelope can be described using a one dimensional function of the product of gammaB0, the rotation rate, and the square of the pulse spacing. Aside from an indirect and weak dependence on the quadrupole asymmetry parameter, eta, the result is independent of the NQR frequency. Identical results are expected for a stationary sample in a small rotating magnetic field. The effect seen here may be used to advantage to measure rotational motion, for example of particles in fluids, or may be an additional complication for some Zeeman perturbed NQR measurements, including some NQR detection and imaging methods.

  12. Suppression of electron correlations in the collapsed tetragonal phase of CaFe2As2 under ambient pressure demonstrated by As75 NMR/NQR measurements

    NASA Astrophysics Data System (ADS)

    Furukawa, Y.; Roy, B.; Ran, S.; Bud'ko, S. L.; Canfield, P. C.

    2014-03-01

    The static and the dynamic spin correlations in the low-temperature collapsed tetragonal and the high-temperature tetragonal phase in CaFe2As2 have been investigated by As75 nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements. Through the temperature (T) dependence of the nuclear spin lattice relaxation rates (1/T1) and the Knight shifts, although stripe-type antiferromagnetic (AFM) spin correlations are realized in the high-temperature tetragonal phase, no trace of the AFM spin correlations can be found in the nonsuperconducting, low-temperature, collapsed tetragonal (cT) phase. Given that there is no magnetic broadening in As75 NMR spectra, together with the T-independent behavior of magnetic susceptibility χ and the T dependence of 1/T1Tχ, we conclude that Fe spin correlations are completely quenched statically and dynamically in the nonsuperconducting cT phase in CaFe2As2.

  13. Temperature variation of ultralow frequency modes and mean square displacements in solid lasamide (diuretic drug) studied by 35Cl-NQR, X-ray and DFT/QTAIM.

    PubMed

    Latosińska, Jolanta Natalia; Latosińska, Magdalena; Kasprzak, Jerzy; Tomczak, Magdalena; Maurin, Jan Krzysztof

    2012-10-25

    displacements at both chlorine sites is derived from the (35)Cl-NQR temperature dependence. The frequencies of torsional vibrations higher for the para site than the ortho site are in good agreement with those obtained from thermal parameters obtained from X-ray studies. The mean square angle displacements are in good agreement with those estimated from X-ray data with the use of the TLS model. The detailed DFT/QTAIM analysis suggests that the interplay between different hydrogen bonds in adjacent molecules forming dimers is responsible for the differences in flexibility of the carboxyl and sulphonamide substituents as well as both C-Cl(1) and C-Cl(2) bonds. Three ultralow wavenumber modes of internal vibrations in Raman and IR spectra obtained at the B3LYP/6-311++G(d,p) level close to those obtained within the TLS model suggest that internal and external modes of vibrations are not well separated.

  14. The Conformational Changes Induced by Ubiquinone Binding in the Na+-pumping NADH:Ubiquinone Oxidoreductase (Na+-NQR) Are Kinetically Controlled by Conserved Glycines 140 and 141 of the NqrB Subunit*

    PubMed Central

    Strickland, Madeleine; Juárez, Oscar; Neehaul, Yashvin; Cook, Darcie A.; Barquera, Blanca; Hellwig, Petra

    2014-01-01

    Na+-pumping NADH:ubiquinone oxidoreductase (Na+-NQR) is responsible for maintaining a sodium gradient across the inner bacterial membrane. This respiratory enzyme, which couples sodium pumping to the electron transfer between NADH and ubiquinone, is not present in eukaryotes and as such could be a target for antibiotics. In this paper it is shown that the site of ubiquinone reduction is conformationally coupled to the NqrB subunit, which also hosts the final cofactor in the electron transport chain, riboflavin. Previous work showed that mutations in conserved NqrB glycine residues 140 and 141 affect ubiquinone reduction and the proper functioning of the sodium pump. Surprisingly, these mutants did not affect the dissociation constant of ubiquinone or its analog HQNO (2-n-heptyl-4-hydroxyquinoline N-oxide) from Na+-NQR, which indicates that these residues do not participate directly in the ubiquinone binding site but probably control its accessibility. Indeed, redox-induced difference spectroscopy showed that these mutations prevented the conformational change involved in ubiquinone binding but did not modify the signals corresponding to bound ubiquinone. Moreover, data are presented that demonstrate the NqrA subunit is able to bind ubiquinone but with a low non-catalytically relevant affinity. It is also suggested that Na+-NQR contains a single catalytic ubiquinone binding site and a second site that can bind ubiquinone but is not active. PMID:25006248

  15. Particle emission in the light heavy-ion fusion reactions: 14N, 16,18O+ 12C

    NASA Astrophysics Data System (ADS)

    Carlin Filho, N.; Coimbra, M. M.; Acquadro, J. C.; Liguori Neto, R.; Szanto, E. M.; Farrelly-Pessoa, E.; Szanto de Toledo, A.

    1985-01-01

    From the energy spectra of light particles produced in light-heavy-ion-induced reactions, level densities of the final nuclei as well as the critical angular momenta for fusion may be obtained. The 14N, 16,18O+ 12C reactions were investigated in the energy range 30 MeVspectra by means of statistical model calculations were used to extract final nuclei level densities. The shape of the spectra and the ratio σ(α)/σ(p) are shown to be sensitive to the fusion critical angular momentum (Jcr), offering an alternative method for the total fusion cross-section determination.

  16. NQR application to the study of hydrogen dynamics in hydrogen-bonded molecular dimers

    NASA Astrophysics Data System (ADS)

    Asaji, Tetsuo

    2016-12-01

    The temperature dependences of 1H NMR as well as 35Cl NQR spin-lattice relaxation times T 1 were investigated in order to study the hydrogen transfer dynamics in carboxylic acid dimers in 3,5-dichloro- and 2,6-dichlorobenzoic acids. The asymmetry energy A/ k B and the activation energy V/ k B for the hydrogen transfer were estimated to be 240 K and 900 K, and 840 K and 2500 K, respectively, for these compounds. In spite of a large asymmetric potential the quantum nature of hydrogen transfer is recognized in the slope of the temperature dependence of T 1 on the low-temperature side of the T 1 minimum. The NQR T 1 measurements was revealed to be a good probe for the hydrogen transfer dynamics.

  17. N-14 NQR using a high-Tc rf SQUID with a normal metal transformer

    NASA Astrophysics Data System (ADS)

    He, D. F.; Tachiki, M.; Itozaki, H.

    2008-01-01

    We have improved our high-Tc SQUID-based N-14 nuclear quadrupole resonance (NQR) detection system. By using a reed relay SIL5-1A72-71L (MEDER electronic) in the normal metal transformer, the isolation to the excitation field was much improved. The high-Tc rf SQUID could operate stably when the rf excitation field was over 20 mT. By optimizing the input coil of the transformer, better sensitivity of 0.5 fT Hz-1/2 was obtained at the resonant frequency of the tuned normal metal transformer. A spin-locking spin-echo (SLSE) multi-pulse sequence was also used in the system to detect the weak NQR signals produced by samples with longer spin-spin relaxation time T2, such as trinitrotoluene (TNT).

  18. Measurement of temperature and temperature gradient in millimeter samples by chlorine NQR

    NASA Astrophysics Data System (ADS)

    Lužnik, Janko; Pirnat, Janez; Trontelj, Zvonko

    2009-09-01

    A mini-thermometer based on the 35Cl nuclear quadrupole resonance (NQR) frequency temperature dependence in the chlorates KClO3 and NaClO3 was built and successfully tested by measuring temperature and temperature gradient at 77 K and higher in about 100 mm3 active volume of a mini Joule-Thomson refrigerator. In the design of the tank-circuit coil, an array of small coils connected in series enabled us (a) to achieve a suitable ratio of inductance to capacity in the NQR spectrometer input tank circuit, (b) to use a single crystal of KClO3 or NaClO3 (of 1-2 mm3 size) in one coil as a mini-thermometer with a resolution of 0.03 K and (c) to construct a system for measuring temperature gradients when the spatial coordinates of each chlorate single crystal within an individual coil are known.

  19. Pressure and temperature dependence of the chlorine NQR in caesium and sodium chlorates.

    PubMed

    Ramesh, K P; Suresh, K S; Raghavendra Rao, C; Ramakrishna, J

    2008-06-01

    The (35)Cl nuclear quadrupole resonance (NQR) frequencies (nu(Q)) in caesium and sodium chlorates were measured as a function of temperature, from 77 to 300 K at different pressures up to 5.1 kbar, and the data were analysed to estimate the volume dependence of the electric field gradient (EFG), torsional frequency and also the contributions to the NQR frequency from static and dynamic effects. The variation of spin-lattice relaxation time with pressure at different temperatures was studied in the case of sodium chlorate and at room temperature in case of caesium chlorate. The pressure dependence of the spin-lattice relaxation time (T(1)) suggests that the relaxation is mainly due to the torsional motions.

  20. The Titan 14N/ 15N and 12C/ 13C isotopic ratios in HCN from Cassini/CIRS

    NASA Astrophysics Data System (ADS)

    Vinatier, Sandrine; Bézard, Bruno; Nixon, Conor A.

    2007-11-01

    We report the detection of H 13CN and HC 15N in mid-infrared spectra recorded by the Composite Infrared Spectrometer (CIRS) aboard Cassini, along with the determination of the 12C/ 13C and 14N/ 15N isotopic ratios. We analyzed two sets of limb spectra recorded near 13-15° S (Tb flyby) and 83° N (T4 flyby) at 0.5 cm -1 resolution. The spectral range 1210-1310 cm -1 was used to retrieve the temperature profile in the range 145-490 km at 13° S and 165-300 km at 83° N. These two temperature profiles were then incorporated in the atmospheric model to retrieve the abundance profile of H 12C 14N, H 13CN and HC 15N from their bands at 713, 706 and 711 cm -1, respectively. The HCN abundance profile was retrieved in the range 90-460 km at 15° S and 165-305 km at 83° N. There is no evidence for vertical variations of the isotopic ratios. Constraining the isotopic abundance profiles to be proportional to the HCN one, we find C12/C13=89-18+22 at 15° S, and 68-12+16 at 83° N, two values that are statistically consistent. A combination of these results yields a 12C/ 13C value equal to 75±12. This global result, as well as the 15° S one, envelop the value in Titan's methane ( 82.3±1) [Niemann, H.B., and 17 colleagues, 2005. Nature 438, 779-784] measured at 10° S and is slightly lower than the terrestrial inorganic standard value (89). The 14N/ 15N isotopic ratio is found equal to 56-13+16 at 15° S and 56-9+10 at 83° N. Combining the two values yields 14N/ 15N = 56 ± 8, which corresponds to an enrichment in 15N of about 4.9 compared with the terrestrial ratio. These results agree with the values obtained from previous ground-based millimeter observations [Hidayat, T., Marten, A., Bézard, B., Gautier, D., Owen, T., Matthews, H.E., Paubert, G., 1997. Icarus 126, 170-182; Marten, A., Hidayat, T., Biraud, Y., Moreno, R., 2002. Icarus 158, 532-544]. The 15N/ 14N ratio found in HCN is ˜3 times higher than in N 2 [Niemann, H.B., and 17 colleagues, 2005. Nature 438, 779

  1. Quadrupole interactions: NMR, NQR, and in between from a single viewpoint.

    PubMed

    Bain, Alex D

    2017-03-01

    Nuclear spins with quantum numbers >1/2 can interact with a static magnetic field, or a local electric field gradient, to produce quantized energy levels. If the magnetic field interaction dominates, we are doing nuclear magnetic resonance (NMR). If the interaction of the nuclear electric quadrupole with electric field gradients is much stronger, this is nuclear quadrupole resonance (NQR). The two are extremes of a continuum, as the ratio of one interaction to the other changes. In this work, we look at this continuum from a single, unified viewpoint based on a Liouville-space approach: the direct method. This method does not require explicit operators and their commutators, unlike Hamiltonian methods. We derive both the quadrupole-perturbed NMR solution and also the Zeeman-perturbed NQR results. Furthermore, we examine the polarization of these signals, because this is different between pure NMR and pure NQR spectroscopy. Spin 3/2 is the focus here, but the approach is perfectly general and can be applied to any spin. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Powder-XRD and (14) N magic angle-spinning solid-state NMR spectroscopy of some metal nitrides.

    PubMed

    Kempgens, Pierre; Britton, Jonathan

    2016-05-01

    Some metal nitrides (TiN, ZrN, InN, GaN, Ca3 N2 , Mg3 N2 , and Ge3 N4 ) have been studied by powder X-ray diffraction (XRD) and (14) N magic angle-spinning (MAS) solid-state NMR spectroscopy. For Ca3 N2 , Mg3 N2 , and Ge3 N4 , no (14) N NMR signal was observed. Low speed (νr  = 2 kHz for TiN, ZrN, and GaN; νr  = 1 kHz for InN) and 'high speed' (νr  = 15 kHz for TiN; νr  = 5 kHz for ZrN; νr  = 10 kHz for InN and GaN) MAS NMR experiments were performed. For TiN, ZrN, InN, and GaN, powder-XRD was used to identify the phases present in each sample. The number of peaks observed for each sample in their (14) N MAS solid-state NMR spectrum matches perfectly well with the number of nitrogen-containing phases identified by powder-XRD. The (14) N MAS solid-state NMR spectra are symmetric and dominated by the quadrupolar interaction. The envelopes of the spinning sidebands manifold are Lorentzian, and it is concluded that there is a distribution of the quadrupolar coupling constants Qcc 's arising from structural defects in the compounds studied.

  3. Strong pH dependence of coupling efficiency of the Na+ - translocating NADH:quinone oxidoreductase (Na+-NQR) of Vibrio cholerae.

    PubMed

    Toulouse, Charlotte; Claussen, Björn; Muras, Valentin; Fritz, Günter; Steuber, Julia

    2017-02-01

    The Na+-translocating NADH:quinone oxidoreductase (NQR) is the entry site for electrons into the respiratory chain of Vibrio cholerae, the causative agent of cholera disease. NQR couples the electron transfer from NADH to ubiquinone to the translocation of sodium ions across the membrane. We investigated the pH dependence of electron transfer and generation of a transmembrane voltage (ΔΨ) by NQR reconstituted in liposomes with Na+ or Li+ as coupling cation. ΔΨ formation was followed with the voltage-sensitive dye oxonol. With Na+, ΔΨ was barely influenced by pH (6.5-8.5), while Q reduction activity exhibited a maximum at pH 7.5-8.0. With Li+, ΔΨ was generally lower, and the pH profile of electron transfer activity did not reveal a pronounced maximum. We conclude that the coupling efficiency of NQR is influenced by the nature of the transported cation, and by the concentration of protons. The 3D structure of NQR reveals a transmembrane channel in subunit NqrB. It is proposed that partial uncoupling of the NQR observed with the smaller Li+, or with Na+ at pH 7.5-8.0, is caused by the backflow of the coupling cation through the channel in NqrB.

  4. Inhibition of the sodium-translocating NADH-ubiquinone oxidoreductase [Na+-NQR] decreases cholera toxin production in Vibrio cholerae O1 at the late exponential growth phase.

    PubMed

    Minato, Yusuke; Fassio, Sara R; Reddekopp, Rylan L; Häse, Claudia C

    2014-01-01

    Two virulence factors produced by Vibrio cholerae, cholera toxin (CT) and toxin-corregulated pilus (TCP), are indispensable for cholera infection. ToxT is the central regulatory protein involved in activation of CT and TCP expression. We previously reported that lack of a respiration-linked sodium-translocating NADH-ubiquinone oxidoreductase (Na(+)-NQR) significantly increases toxT transcription. In this study, we further characterized this link and found that Na(+)-NQR affects toxT expression only at the early-log growth phase, whereas lack of Na(+)-NQR decreases CT production after the mid-log growth phase. Such decreased CT production was independent of toxT and ctxB transcription. Supplementing a respiratory substrate, l-lactate, into the growth media restored CT production in the nqrA-F mutant, suggesting that decreased CT production in the Na(+)-NQR mutant is dependent on electron transport chain (ETC) activity. This notion was supported by the observations that two chemical inhibitors, a Na(+)-NQR specific inhibitor 2-n-Heptyl-4-hydroxyquinoline N-oxide (HQNO) and a succinate dehydrogenase (SDH) inhibitor, thenoyltrifluoroacetone (TTFA), strongly inhibited CT production in both classical and El Tor biotype strains of V. cholerae. Accordingly, we propose the main respiratory enzyme of V. cholerae, as a potential drug target to treat cholera because human mitochondria do not contain Na(+)-NQR orthologs.

  5. 15N/14N Ratio Determination in the ISM with Herschel with High Resolution Spectroscopy of Nitrogen Radicals

    NASA Astrophysics Data System (ADS)

    Margulès, L.; Bailleux, S.; Wlodarczak, G.; Pirali, O.; Martin-Drumel, M.-A.; Roy, P.; Roueff, E.; Gerin, M.

    2011-06-01

    The very high resolution of the HIFI instrument (134 kHz-1MHz) on board of Herschel needs very accurate laboratory measurements to detect unambiguously the signature of stable and unstable molecular species. Concerning the pure rotation spectra of new species, and particularly of open shell molecules, the first prediction could be far away and up to few hundred MHz. The 15N/14N ratio is not well measured in the ISM. However, the 15N/14N in the isotopomers is a potential tracer of the formation processes and the possible link with cometary molecules. Recent measurements include the detection of 15NH_2D N15NH+ and 15NH_3. The NH and NH_2 species are the simplest nitrogen radicals and are intermediate products in the NH_3 synthesis. They have been easily detected by Herschel and it therefore is interesting to now search for 15NH and 15NH_2. No spectrocopic data have been reported for these two radicals up to now. We present here the studies with high resolution spectroscopy in the THz range. The high sensitivity and the wide range of Synchrotron (0.6-6 THz) was essential to improve the prediction of the spectra of these two species in order to measure them in Lille (0.6-1 THz) with both a higher accuracy and resolution. The combined studies now give the most accurate predictions. ISM searches on these radicals are in progress in the HERSCHEL spectra. This work is supported by the Programme National de Physico-Chimie du Milieu Interstellaire (PCMI-CNRS) M. Gerin, N. Marcellino, N. Biver, et al., Astron. & Astrophys. 498 (2009) 9. L. Bizzochi, P. Caselli, and L. Dore, Astron. & Astrophys. 510 (2010) L5. D. C. Lis, A. Wooten, M. Gerin and E. Roueff, Astrophys. J. 710 (2010) L49.

  6. 35CI NQR Spectroscopy on Salts and Molecular Compounds of Trichloroacetic Acid

    NASA Astrophysics Data System (ADS)

    Fichtner, Winfried; Markworth, Axel; Weiden, Norbert; Weiss, Alarich

    1986-02-01

    The temperature dependence of salts M(1)H(Cl3CCOO)2 and molecular compounds of trichloroacetic acid with amines and benzaldehydes, TCA · X, was studied, The data fit rather well to the known dependence of the mean frequency shift Δ on the pkadifference of X with respect to TCA. A linear relation is observed between the bleaching out temperature Tb of the 35Cl NQR lines and Δ for M(1)H(Cl3CCOO)2 and for TCA · X, X = benzaldehydes.

  7. 14N and 81Br quadrupolar nuclei as sensitive NMR Probes of n-alkyltrimethylammonium bromide crystal structures. An experimental and theoretical study.

    PubMed

    Alonso, Bruno; Massiot, Dominique; Florian, Pierre; Paradies, Henrich H; Gaveau, Philippe; Mineva, Tzonka

    2009-09-03

    This is the first time a comprehensive study has been carried out on n-alkyltrimethylammonium bromide salts using (14)N and (81)Br solid state NMR, X-ray diffraction, and theoretical calculations. The investigation represents a necessary step toward further (14)N and (81)Br NMR characterization of the environment of cationic and anionic groups in materials, accounting for the amphiphilic properties of cationic surfactants. The NMR spectra of five C(x)H(2x+1)(CH(3))(3)N(+)Br(-) polycrystalline samples with different n-alkyl chain lengths (x = 1, 12, 14, 16, 18) were recorded and modeled. The (14)N and (81)Br quadrupolar coupling interaction parameters (C(Q), eta(Q)) were also estimated from spectrum modeling and from computer simulation. The obtained results were discussed in depth making use of the experimental and reoptimized crystal structures. In the study, both (14)N and (81)Br nuclei were found to be sensitive probes for small structural variations. The parameters which influence the NMR properties the most are mobility, deviation of C-N-C bond angles from T(d) angles, and variations in r(N-Br) distances.

  8. Measurement of in-situ stress in salt and rock using NQR techniques

    SciTech Connect

    Schempp, E.; Hirschfeld, T.; Klainer, S.

    1980-12-01

    A discussion of how stress and strain affect the quantities which can be measured in an NQR experiment shows that, for stresses of the magnitude to be expected at depths up to about 10,000 feet, quadrupole coupling constants will fall in the range of 1 to 10 kHz for both the sodium and chloride ions in NaCl. The most promising system involves pulsed nuclear double resonance detection; and alterative is to observe the quadrupolar splitting of the NMR signal. Choices to be made in the measurement and mapping techniques are discussed. The well-known perturbation of the homogenous stress field in the neighborhood of a borehole is shown to be advantageous from the point of view of obtaining directional information on the stress. Construction and operation of a borehole stress sensor are considered. The NQR technique seems feasible for measuring the magnitude and direction of underground stress with a resolution of about 25 psi, or 2.5% at 1000 psi. Downhole instrumentation suitable for in-situ determinations of stress appears within the state of the art. Additional tasks required on the project are identified.

  9. Climate-Dependence of Plant-Soil 15N/14N Interactions Across Tropical Rainforests

    NASA Astrophysics Data System (ADS)

    Houlton, B. Z.; Sigman, D. M.; Hedin, L. O.

    2005-12-01

    In most areas of the world, the 15N/14N of bulk soils is higher than that of plant leaves, and the isotopic signatures of these two ecosystem N pools progressively diverge with increasing rainfall. However, both the cause for this isotopic trend and its implications for understanding interactions between climate and N cycles are largely unknown. We report 15N/14N measurements of nitrate, ammonium, and total dissolved N in soil extracts from a highly constrained rainfall sequence in Hawaii, across which this trend in ecosystem 15N/14N is captured, to examine the competing explanations for plant-soil 15N/14N uncouplings. While the isotopic influences of microbial transfers of N between nitrate and ammonium pools and plant-mycorrhizae interactions have been posited in plant-soil 15N/14N relationships, our data did not support an important role for either of these mechanisms. Instead, preferential regeneration of 14N during the breakdown of DON to ammonium explains why the 15N/14N of plants is lower than that of bulk soils. Fractionation at this step leads to two isotopically distinct N subcycles in each forest, a lower-15N/14N subcycle composed of ammonium, nitrate, and bulk plant biomass N that `spins' rapidly and a higher-15N/14N subcycle composed of bulk soil N and DON that is much less dynamic. The increased difference between soil and plant 15N/14N is due to changes in the impacts of nitrification and denitrification on the 15N/14N of ammonium and nitrate, coupled with a switch from nitrate to ammonium uptake by plants under the wettest conditions. For instance, the particularly large (~6 per mil) 15N/14N difference between plants and soils in the wettest sites is due to the lack of 15N-enrichment of ammonium by nitrification coupled with plant dependence on ammonium uptake only. Our results highlight the importance of interactions between DON breakdown, ecosystem N recycling, and gaseous N losses in the explaining the interactions between the 15N signatures of

  10. I: Low Frequency NMR and NQR Using a dc SQUID. II: Variable-temperature 13C CP/MAS of Organometallics

    SciTech Connect

    Ziegeweid, Marcia A.

    1995-11-01

    NMR and NQR at low frequencies are difficult prospects due to small nuclear spin polarization. Furthermore, the sensitivity of the inductive pickup circuitry of standard spectrometers is reduced as the frequency is lowered. I have used a cw-SQUID (Superconducting Quantum Interference Device) spectrometer, which has no such frequency dependence, to study the local atomic environment of 14N via the quadrupolar interaction. Because 14N has spin I = 1 and a 0-6 MHz frequency range, it is not possible to obtain well-resolved spectra in high magnetic fields. I have used a technique to observe 14N NQR resonances via their effect on neighboring protons mediated by the heteronuclear dipolar interaction to study peptides and narcotics. The sensitivity of the SQUID is not enough to measure low-frequency surface (or other low spin density) systems. The application of spin-polarized xenon has been previously used to enhance polarization in conventional NMR experiments. Because xenon only polarizes spins with which it is in contact, it is surface selective. While differences in chemical shifts between surface and bulk spins are not large, it is expected that the differences in quadrupole coupling constant should be very large due to the drastic change of the electric field gradient surrounding spins at the surface. With this in mind, I have taken preliminary steps to measure SQUID detected polarization transfer from Xe to another spin species at 4.2 K and in small magnetic fields (<50 G). In this regime, the spin-lattice relaxation of xenon is dependent on the applied magnetic field. The results of our efforts to characterize the relaxation of xenon are presented. The final section describes the solid-state variable-temperature (VT) one- and two-dimensional 13C cross polarization (CP)/magic angle spinning (MAS) NMR of Hf(η5-C5H5)21-C5H5)2, Zr

  11. 14N solid-state NMR: a sensitive probe of the local order in zeolites.

    PubMed

    Dib, Eddy; Mineva, Tzonka; Gaveau, Philippe; Alonso, Bruno

    2013-11-14

    Local order in as-synthesised zeolites templated by tetraalkylammonium cations is proven from solid-state (14)N NMR and related quadrupolar parameters, opening new perspectives in the study of porous materials.

  12. Proton-detected 3D 14N/14N/1H isotropic shift correlation experiment mediated through 1H-1H RFDR mixing on a natural abundant sample under ultrafast MAS

    NASA Astrophysics Data System (ADS)

    Pandey, Manoj Kumar; Nishiyama, Yusuke

    2015-09-01

    In this contribution, we have demonstrated a proton detection-based approach on a natural abundant powdered L-Histidine HCl-H2O sample at ultrafast magic angle spinning (MAS) to accomplish 14N/14N correlation from a 3D 14N/14N/1H isotropic shift correlation experiment mediated through 1H finite-pulse radio frequency-driven recoupling (fp-RFDR). Herein the heteronuclear magnetization transfer between 14N and 1H has been achieved by HMQC experiment, whereas 14N/14N correlation is attained through enhanced 1H-1H spin diffusion process due to 1H-1H dipolar recoupling during the RFDR mixing. While the use of ultrafast MAS (90 kHz) provides sensitivity enhancement through increased 1H transverse relaxation time (T2), the use of micro-coil probe which can withstand strong 14N radio frequency (RF) fields further improves the sensitivity per unit sample volume.

  13. Importance of Nitrate Attenuation In A Small Wetland Following Forest Harvest: 18O/16O, 15N/14N in nitrate and 15N/14N) in vegetation

    NASA Astrophysics Data System (ADS)

    Spoelstra, J.; Schiff, S. L.; Semkin, R. G.; Jeffries, D. S.; Elgood, R. J.

    2004-05-01

    Forest harvest can result in elevated nitrate concentrations in streams and groundwater affecting forest regeneration and downstream aquatic ecosystems. Turkey Lakes Watershed, located near Sault Ste Marie, Ontario (TLW), exhibits relatively high nitrate export due to naturally high rates of nitrification. During a forest harvest experiment at the TLW, stable isotope techniques were used to investigate nitrate attenuation in an intermediate position natural wetland receiving high concentrations of nitrate following forest clear-cutting. Isotopic analysis of nitrate (18O/16O, 15N/14N) and vegetation (15N/14N) demonstrated that denitrification and plant uptake of nitrate resulted in significantly lower nitrate concentrations in wetland outflow compared to incoming stream water and groundwater. The 0.2-hectare forested swamp, too small to show up on standard topographic maps, retained 65 to 100 percent of upgradient nitrate inputs, elevated due to increased nitrification in soils. The 15N/14N enrichment factor associated with nitrate attenuation in wetland surface water was lower than observed during denitrification in groundwaters, suggesting that denitrification proceeded to completion in some areas of the wetland. Even small, shallow, carbon rich pockets of organic matter in topographic depressions can significantly affect biogeochemical fluxes of C, N, S and Ca. Future forest management practices designed to recognize and preserve small wetlands could significantly reduce the potentially detrimental effects of forest harvest on aquatic systems.

  14. 35Cl NQR and 1H NMR Studies of Molecular Motions in Guanidinium Salt of Chloroacetic Acid

    NASA Astrophysics Data System (ADS)

    Zdanowska-Fnjczek, Maria; Grottel, Małgorzata; Jakubas, Ryszard

    1998-07-01

    Multinuclear NQR and NMR techniques have been applied in order to study the molecular dynamics in [C(NH2)3](ClH2CCOO). The 35Cl NQR frequency was measured over a wide range of temperature. The experimental results were described by using the theories of Bayer and Brown which take into account the torsional oscillations of the CClH2 -group of the anion. A study of the proton NMR second moment as well as relaxation times T1, and T1p performed in a wide temperature range revealed an onset of the guanidinium cation reorientation around its two-fold symmetry axis. Activation parameters for this motion were determined.

  15. Structural and Functional Investigation of Flavin Binding Center of the NqrC Subunit of Sodium-Translocating NADH:Quinone Oxidoreductase from Vibrio harveyi

    PubMed Central

    Bertsova, Yulia; Polovinkin, Vitaly; Gushchin, Ivan; Ishchenko, Andrii; Kovalev, Kirill; Mishin, Alexey; Kachalova, Galina; Popov, Alexander; Bogachev, Alexander; Gordeliy, Valentin

    2015-01-01

    Na+-translocating NADH:quinone oxidoreductase (NQR) is a redox-driven sodium pump operating in the respiratory chain of various bacteria, including pathogenic species. The enzyme has a unique set of redox active prosthetic groups, which includes two covalently bound flavin mononucleotide (FMN) residues attached to threonine residues in subunits NqrB and NqrC. The reason of FMN covalent bonding in the subunits has not been established yet. In the current work, binding of free FMN to the apo-form of NqrC from Vibrio harveyi was studied showing very low affinity of NqrC to FMN in the absence of its covalent bonding. To study structural aspects of flavin binding in NqrC, its holo-form was crystallized and its 3D structure was solved at 1.56 Å resolution. It was found that the isoalloxazine moiety of the FMN residue is buried in a hydrophobic cavity and that its pyrimidine ring is squeezed between hydrophobic amino acid residues while its benzene ring is extended from the protein surroundings. This structure of the flavin-binding pocket appears to provide flexibility of the benzene ring, which can help the FMN residue to take the bended conformation and thus to stabilize the one-electron reduced form of the prosthetic group. These properties may also lead to relatively weak noncovalent binding of the flavin. This fact along with periplasmic location of the FMN-binding domains in the vast majority of NqrC-like proteins may explain the necessity of the covalent bonding of this prosthetic group to prevent its loss to the external medium. PMID:25734798

  16. Investigation of Some New Nonlinear Optical Crystals by Means of NQR, IR and X-Ray Diffraction Methods

    NASA Astrophysics Data System (ADS)

    Petrosyan, A. M.; Terzyan, S. S.; Burbelo, V. M.; Sukiasyan, R. P.

    1998-07-01

    Some new analogues of the nonlinear optical crystal L-arginine phosphate monohydrate (LAP) (Arg • HIO3 , Arg • 2HIO3 , Lys • HIO3 , Lys • 2HIO3 , Lys • 3HIO3 , Bet • 3HIO3) were obtained and investigated by means of IR, NQR, X-ray diffraction and SHG methods. The importance of this class of crystals for revealing new nonlinear optical crystals is pointed out.

  17. Solid-state NMR/NQR and first-principles study of two niobium halide cluster compounds.

    PubMed

    Perić, Berislav; Gautier, Régis; Pickard, Chris J; Bosiočić, Marko; Grbić, Mihael S; Požek, Miroslav

    2014-01-01

    Two hexanuclear niobium halide cluster compounds with a [Nb6X12](2+) (X=Cl, Br) diamagnetic cluster core, have been studied by a combination of experimental solid-state NMR/NQR techniques and PAW/GIPAW calculations. For niobium sites the NMR parameters were determined by using variable Bo field static broadband NMR measurements and additional NQR measurements. It was found that they possess large positive chemical shifts, contrary to majority of niobium compounds studied so far by solid-state NMR, but in accordance with chemical shifts of (95)Mo nuclei in structurally related compounds containing [Mo6Br8](4+) cluster cores. Experimentally determined δiso((93)Nb) values are in the range from 2,400 to 3,000 ppm. A detailed analysis of geometrical relations between computed electric field gradient (EFG) and chemical shift (CS) tensors with respect to structural features of cluster units was carried out. These tensors on niobium sites are almost axially symmetric with parallel orientation of the largest EFG and the smallest CS principal axes (Vzz and δ33) coinciding with the molecular four-fold axis of the [Nb6X12](2+) unit. Bridging halogen sites are characterized by large asymmetry of EFG and CS tensors, the largest EFG principal axis (Vzz) is perpendicular to the X-Nb bonds, while intermediate EFG principal axis (Vyy) and the largest CS principal axis (δ11) are oriented in the radial direction with respect to the center of the cluster unit. For more symmetrical bromide compound the PAW predictions for EFG parameters are in better correspondence with the NMR/NQR measurements than in the less symmetrical chlorine compound. Theoretically predicted NMR parameters of bridging halogen sites were checked by (79/81)Br NQR and (35)Cl solid-state NMR measurements.

  18. Synthesis, crystal structure, and photocatalytical properties of Ba3Ta5O14N

    NASA Astrophysics Data System (ADS)

    Anke, B.; Bredow, T.; Soldat, J.; Wark, M.; Lerch, M.

    2016-01-01

    Light yellow Ba3TaV5O14N was successfully synthesized as phase-pure material crystallizing isostructurally to well-known mixed-valence Ba3TaV4TaIVO15. The electronic structure of Ba3Ta5O14N was studied theoretically with a hybrid Hartree-Fock-DFT method. The most stable structure was obtained when nitrogen atoms were placed at 4 h sites having fourfold coordination. By incorporating nitrogen, the band gap decreases from ∼3.8 eV commonly known for barium tantalum(V) oxides to 2.8 eV for the oxide nitride, giving rise to an absorption band well in the visible-light region. Ba3Ta5O14N was also tested for photocatalytic hydrogen formation.

  19. Intermolecular interactions in AST zeolites through (14)N NMR and DFT calculations.

    PubMed

    Dib, Eddy; Freire, Mélanie; Pralong, Valérie; Mineva, Tzonka; Alonso, Bruno

    2017-03-01

    The structure of the silica AST zeolites (octadecasil) synthesized in fluoride medium using tetramethylammonium (TMA) as the organic structure-directing agent has been reinvestigated using (14)N NMR quadrupolar parameters and DFT calculations. The value of the experimental (14)N quadrupolar coupling constant (CQ = 27 kHz) is larger than expected for a TMA cation possessing a high degree of motion. The analysis of a DFT-optimized octadecasil cluster along with the comparison between measured and calculated (14)N NMR parameters demonstrate the presence of weak C-H...O hydrogen bonds between the TMA in the [4(6)6(12)] cages and the silica skeleton. These intermolecular interactions can be related to the presence of Si...F tetrel bonds within the [4(6)] cages. These new results provide additional information with regard to the formation mechanisms and structure of the octadecasil zeolites.

  20. Inequality spectra

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo

    2017-03-01

    Inequality indices are widely applied in economics and in the social sciences as quantitative measures of the socioeconomic inequality of human societies. The application of inequality indices extends to size-distributions at large, where these indices can be used as general gauges of statistical heterogeneity. Moreover, as inequality indices are plentiful, arrays of such indices facilitate high-detail quantification of statistical heterogeneity. In this paper we elevate from arrays of inequality indices to inequality spectra: continuums of inequality indices that are parameterized by a single control parameter. We present a general methodology of constructing Lorenz-based inequality spectra, apply the general methodology to establish four sets of inequality spectra, investigate the properties of these sets, and show how these sets generalize known inequality gauges such as: the Gini index, the extended Gini index, the Rényi index, and hill curves.

  1. 14N + 13C fusion cross sections and compound nucleus limitation in 27Al

    NASA Astrophysics Data System (ADS)

    Digregorio, D. E.; Gomez del Campo, J.; Chan, Y. D.; Ford, J. L. C., Jr.; Shapira, D.; Ortiz, M. E.

    1982-10-01

    Fusion cross sections for the 14N + 13C system have been measured by detecting the evaporation residues at five bombarding energies which correspond to high excitation energies in the compound nucleus: E*(27Al)=64-110 MeV. The 27Al nucleus can be populated by four different heavy-ion entrance channels-15N + 12C, 16O + 11B, 14N + 13C, and 17O + 10B-which are accessible to experimental measurements. Comparing the present data with those already existing for the above channels, it is found that for E*>60 MeV the curves E* vs Jcr for each system converge, which may be indicative of a limitation imposed by the compound nucleus. The data are discussed in terms of existing models for entrance channel and statistical yrast line limitations. The highest energy point also suggests the existence of a maximum absolute angular momentum limit of ~28ℏ. NUCLEAR REACTIONS 14N + 13C E(14N)=86.0, 103.8, 149.0, 161.3, and 180.0 MeV; measured d2σdΩdE for reaction products from Z=5 to 12. Extracted σfus, σD, σR.

  2. (1)H-(14)N cross-relaxation spectrum analysis in sildenafil and sildenafil citrate.

    PubMed

    Gregorovič, Alan; Apih, Tomaž; Seliger, Janez

    2016-09-01

    Here we describe a method for the extraction of (14)N quadrupole parameters from a (1)H-(14)N cross-relaxation spectrum by fitting the lineshapes of the (14)N quadrupole transitions. The procedures used typically to fit quadrupole lineshapes are not directly applicable to fit the (1)H-(14)N cross-relaxation spectrum, because the presence of proton homonuclear dipolar interaction broadens the lineshapes considerably and prevents a reliable determination of Cq and η from a single lineshape. Instead, one must fit two or even three lineshapes originating from the same nitrogen site simultaneously. The problem is to identify which lineshapes belong together when many are observed due to the existence of several nitrogen sites. We solve this problem by fitting the spectrum for all possible combinations and find the best-fitting one. This combination then most likely correctly identifies lineshapes belonging to the same nitrogen site. There are two main advantages of our method compared to the typically used method, which relies only on lineshape singularities: (i) the method is "automatic" and does not require knowledge of nitrogen quadrupole parameters in similar environments to aid dip pairing and (ii) the accuracy of quadrupole parameters is better, as proton linewidth is included in the fits. We use sildenafil and sildenafil citrate as model compounds, each with six non-equivalent nitrogen sites.

  3. 35Cl-NQR and DFT study of electronic structure of amlodipine and felodipine vascular-selective drugs from the dihydropyridine Ca ++ antagonists group

    NASA Astrophysics Data System (ADS)

    Latosińska, J. N.; Latosińska, M.; Kasprzak, J.

    2008-09-01

    Amlodipine (AM) and felodipine (FL) have been studied in solid state by the nuclear quadrupole resonance (NQR) and density functional theory (DFT). The results have shown that NQR data do not permit a differentiation between R and S enantiomers, which is a consequence of the symmetry of the 4-aryl ring, whereas they permit a differentiation between free bases and salts. The HOMO-LUMO gap is smaller for AM than for FL, which suggests smaller energy of excitation for AM. The absolute hardness, chemical potential and electrophilicity of both AM enantiomers are lower than the corresponding values for FL enantiomers, suggesting that AM should be more reactive than FL in unimolecular reactions.

  4. 10B+α states with chain-like structures in 14N

    NASA Astrophysics Data System (ADS)

    Kanada-En'yo, Yoshiko

    2015-12-01

    I investigate 10B+α -cluster states of 14N with a 10B+α -cluster model. Near the α -decay threshold energy, I obtain Kπ=3+ and Kπ=1+ rotational bands having 10B(3+) +α and 10B(1+) +α components, respectively. I assign the bandhead state of the Kπ=3+ band to the experimental 3+ at Ex=13.19 MeV of 14N observed in α scattering reactions by 10B and show that the calculated α -decay width is consistent with the experimental data. I discuss an α -cluster motion around the 10B cluster and show that the Kπ=3+ and Kπ=1+ rotational bands contain an enhanced component of a linear-chain 3 α configuration, in which an α cluster is localized in the longitudinal direction around the deformed 10B cluster.

  5. Asymmetric Induction by a Nitrogen (14) N/(15) N Isotopomer in Conjunction with Asymmetric Autocatalysis.

    PubMed

    Matsumoto, Arimasa; Ozaki, Hanae; Harada, Shunya; Tada, Kyohei; Ayugase, Tomohiro; Ozawa, Hitomi; Kawasaki, Tsuneomi; Soai, Kenso

    2016-12-05

    Chirality arising from isotope substitution, especially with atoms heavier than the hydrogen isotopes, is usually not considered a source of chirality in a chemical reaction. An N(2) ,N(2) ,N(3) ,N(3) -tetramethyl-2,3-butanediamine containing nitrogen ((14) N/(15) N) isotope chirality was synthesized and it was revealed that this isotopically chiral diamine compound acts as a chiral initiator for asymmetric autocatalysis.

  6. Asymmetric Induction by a Nitrogen 14N/15N Isotopomer in Conjunction with Asymmetric Autocatalysis

    PubMed Central

    Ozaki, Hanae; Harada, Shunya; Tada, Kyohei; Ayugase, Tomohiro; Ozawa, Hitomi; Kawasaki, Tsuneomi

    2016-01-01

    Abstract Chirality arising from isotope substitution, especially with atoms heavier than the hydrogen isotopes, is usually not considered a source of chirality in a chemical reaction. An N 2 ,N 2 ,N 3 ,N 3‐tetramethyl‐2,3‐butanediamine containing nitrogen (14N/15N) isotope chirality was synthesized and it was revealed that this isotopically chiral diamine compound acts as a chiral initiator for asymmetric autocatalysis. PMID:27754589

  7. Nqrs Data for C9H14N4O3 (Subst. No. 1190)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume A `Substances Containing Ag … C10H15' of Volume 48 `Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III `Condensed Matter'. It contains an extract of Section `3.2 Data tables' of the Chapter `3 Nuclear quadrupole resonance data' providing the NQRS data for C9H14N4O3 (Subst. No. 1190)

  8. Amine templating effect absent in uranyl sulfates synthesized with 1,4-n-butyldiamine

    SciTech Connect

    Jouffret, Laurent J.; Wylie, Ernest M.; Burns, Peter C.

    2013-01-15

    Two new uranyl sulfates, (C{sub 4}H{sub 14}N{sub 2})[(UO{sub 2}){sub 2}(SO{sub 4}){sub 3}(H{sub 2}O)]{center_dot}2H{sub 2}O (NDUS2) and (C{sub 4}H{sub 14}N{sub 2})[(UO{sub 2})(SO{sub 4}){sub 2}(H{sub 2}O)]{center_dot}2H{sub 2}O (NDUS3), were synthesized and their crystal structures determined. NDUS2 was obtained in highly acidic media heat-treated at 373 K and subsequently maintained at 278 K until crystals formed after two months. NDUS3 results from the degradation of NDUS2 over the course of a few days. NDUS2 and NDUS3 crystallize in the monoclinic space group P2{sub 1}/n, a=10.9075(4) A, b=10.4513(4) A, c=17.7881(7) A, {beta}=97.908(2) Degree-Sign , V=2008.52(13) A{sup 3}, Z=4, at 140 K and a=8.8570(4) A, b=7.3299(3) A, c=20.4260(9) A, {beta}=95.140(2) Degree-Sign , V=1320.74(10) A{sup 3}, Z=4, at 140 K, respectively. The compounds contain interlayer 1,4-n-butyldiammonium cations that charge-balance the anionic structural units. - Graphical abstract: Amine templating effect absent in uranyl sulfates synthesized with 1,4-diaminobutane, as shown by the synthesis of two new uranyl sulfates, (C{sub 4}H{sub 14}N{sub 2})[(UO{sub 2}){sub 2}(SO{sub 4}){sub 3}(H{sub 2}O)]{center_dot}2H{sub 2}O (NDUS2) and (C{sub 4}H{sub 14}N{sub 2})[(UO{sub 2})(SO{sub 4}){sub 2}(H{sub 2}O)]{center_dot}2H{sub 2}O (NDUS3). Highlights: Black-Right-Pointing-Pointer Two layered uranyl sulfates were synthesized. Black-Right-Pointing-Pointer Amine molecules are located in the interlayers of the compounds. Black-Right-Pointing-Pointer No templating effect of the amine was observed. Black-Right-Pointing-Pointer Amine molecules are only charge balancing cations in the structures.

  9. Spectroscopic observations of 14N/15N ratios in both NH2 and CN in comet C/2013 US10 (Catalina)

    NASA Astrophysics Data System (ADS)

    Shinnaka, Yoshiharu; Kawakita, Hideyo

    2016-10-01

    Comet is one of the primordial small bodies in the solar system and probably it has kept the information about the evolution of materials from the pre-solar molecular cloud to the solar nebula.Isotopic ratio in volatiles is one of the primordial properties of comets. A heavier isotopes trend to be captured into a molecule by chemical reactions under very low-temperature conditions (called as fractionation). For instance, D/H ratio of water (HDO/H2O) in comet is enriched in D atom than the elemental abundance ratios of D/H in entire solar system [1]. Based on the observed D/H ratios in cometary water, a presumed temperature is ~20-50 K as the formation temperature of water (most abundant volatiles in cometary nucleus), by assuming water formed in gas-phase chemistry [2].Besides, the nitrogen isotopic ratios (14N/15N) have been determined from CN and HCN (which is believed a dominant "parent" species of CN in the coma) in >20 comets [3,4]. They demonstrated cometary HCN and CN show high 15N-fractionation with respect to the proto-solar value by a factor of ~3 and with a small diversity. Moreover, 14N/15N ratios in NH3 in comets has been determined from intensity ratios of NH2 isotopologues [5,6,7], and both 15N-fractionation as much as HCN in comets and a small diversity are seen in those 14N/15N ratios in NH3. However, there is a few reports about 14N/15N ratios in both HCN and NH3 in the same comets, and discussions about the relationship between these 14N/15N ratios have not been yet.We present 14N/15N ratios in both NH2 and CN in comet C/2013 US10 (Catalina). High-resolution optical spectra of the comet were taken with the HDS spectrograph mounted on the Subaru Telescope (Hawaii) on UT 2016 January 2-3. We will discuss about the origins of these volatiles based on the 14N/15N ratios.This work was supported by Graint-in-Aid for JSPS Fellows, 15J10864 (YS).References:[1] Lis et al., 2013, ApJ 774, L3[2] Millar et al., 1989, ApJ 340, 906[3] Bockelée-Morvan et al

  10. Systematic R -matrix analysis of the 13C(p ,γ )14N capture reaction

    NASA Astrophysics Data System (ADS)

    Chakraborty, Suprita; deBoer, Richard; Mukherjee, Avijit; Roy, Subinit

    2015-04-01

    Background: The proton capture reaction 13C(p ,γ )14N is an important reaction in the CNO cycle during hydrogen burning in stars with mass greater than the mass of the Sun. It also occurs in astrophysical sites such as red giant stars: the asymptotic giant branch (AGB) stars. The low energy astrophysical S factor of this reaction is dominated by a resonance state at an excitation energy of around 8.06 MeV (Jπ=1-,T =1 ) in 14N. The other significant contributions come from the low energy tail of the broad resonance with Jπ=0-,T =1 at an excitation of 8.78 MeV and the direct capture process. Purpose: Measurements of the low energy astrophysical S factor of the radiative capture reaction 13C(p ,γ )14N reported extrapolated values of S (0 ) that differ by about 30 % . Subsequent R -matrix analysis and potential model calculations also yielded significantly different values for S (0 ) . The present work intends to look into the discrepancy through a detailed R -matrix analysis with emphasis on the associated uncertainties. Method: A systematic reanalysis of the available decay data following the capture to the Jπ=1-,T =1 resonance state of 14N around 8.06 MeV excitation had been performed within the framework of the R -matrix method. A simultaneous analysis of the 13C(p ,p0 ) data, measured over a similar energy range, was carried out with the capture data. The data for the ground state decay of the broad resonance state (Jπ=0-,T =1 ) around 8.78 MeV excitations was included as well. The external capture model along with the background poles to simulate the internal capture contribution were used to estimate the direct capture contribution. The asymptotic normalization constants (ANCs) for all states were extracted from the capture data. The multichannel, multilevel R -matrix code azure2 was used for the calculation. Results: The values of the astrophysical S factor at zero relative energy, resulting from the present analysis, are found to be consistent within the

  11. On the Nature of the "Bleaching out" Process of the 35Cl NQR Signals in 1,2,3-Trichlorobenzene

    NASA Astrophysics Data System (ADS)

    Wigand, Silvia; Weiden, Norbert; Weiss, Alarich

    1990-04-01

    The 35Cl NQR frequencies, linewidths, and spin-lattice relaxation times T1(35Cl) of 1,2,3-trichlorotrideuterobenzene were measured at various temperatures. The deuterated compound shows the same bleaching out phenomenon as 1,2,3-trichlorobenzene. Single crystal 2H NMR measurements were carried out at 295 and 193 K. The nuclear quadrupole coupling constants at room temperature are in the range of 175.8 ≦ e2qQh-1 (2H)/kHz ≦ 179.5, and the asymmetry parameters η in the range of 0.060 ≦ η (2H) ≦ 0.073. As for the principal axes of the electric field gradient tensor, it was found that Φzz(2H) is parallel to the C - D bond, Φyy (2H) is perpendicular to the benzene ring plane and Φxx(2H) lies in the ring plane. The linewidths of the 2H NMR satellites are idependent of temperature. For the undeuterated compound, the temperature dependence of T1(1H) was also measured. The mechanism leading to the bleaching out of the 35Cl NQR signals is discussed.

  12. Chemical structure and intra-molecular effects on NMR-NQR tensors of harmine and harmaline alkaloids

    NASA Astrophysics Data System (ADS)

    Ahmadinejad, Neda; Tahan, Arezoo; Talebi Tari, Mostafa

    2016-02-01

    Density functional theory (DFT) methods were used to analyze the effects of molecular structure and ring currents on the NMR chemical shielding tensors and NQR frequencies of harmine and harmaline alkaloids in the gas phase. The results demonstrated that NMR tensors and NQR frequencies of 15N nuclei in these compounds depend on chemical environment and resonance interactions. Hence, their values are obviously different in the mentioned structures. The interpretation of natural bond orbital (NBO) data suggests that in harmine structure, the lone pair participation of N9 in π-system electron clouds causes to development of aromaticity nature in pyrrole ring. However, the chemical shielding around N9 atom in harmine structure is higher than in harmaline, while in harmaline structure, lone pair participation of N2 in π-system electron clouds causes to development of aromaticity nature in pyridine ring. Hence, chemical shielding around N2 atom in harmaline structure is higher than in harmine. It can be deduced that by increasing lone pair electrons contribution of nitrogen atoms in ring resonance interactions and aromaticity development, the values of NMR chemical shielding around them increase, while χ and q zz values of these nuclei decrease.

  13. The origin of nitrogen on Jupiter and Saturn from the 15N/14N ratio

    NASA Astrophysics Data System (ADS)

    Fletcher, Leigh N.; Greathouse, T. K.; Orton, G. S.; Irwin, P. G. J.; Mousis, O.; Sinclair, J. A.; Giles, R. S.

    2014-08-01

    The Texas Echelon cross Echelle Spectrograph (TEXES), mounted on NASA’s Infrared Telescope Facility (IRTF), was used to map mid-infrared ammonia absorption features on both Jupiter and Saturn in February 2013. Ammonia is the principle reservoir of nitrogen on the giant planets, and the ratio of isotopologues (15N/14N) can reveal insights into the molecular carrier (e.g., as N2 or NH3) of nitrogen to the forming protoplanets, and hence the source reservoirs from which these worlds accreted. We targeted two spectral intervals (900 and 960 cm-1) that were relatively clear of terrestrial atmospheric contamination and contained close features of 14NH3 and 15NH3, allowing us to derive the ratio from a single spectrum without ambiguity due to radiometric calibration (the primary source of uncertainty in this study). We present the first ground-based determination of Jupiter’s 15N/14N ratio (in the range from 1.4×10-3 to 2.5×10-3), which is consistent with both previous space-based studies and with the primordial value of the protosolar nebula. On Saturn, we present the first upper limit on the 15N/14N ratio of no larger than 2.0×10-3 for the 900-cm-1 channel and a less stringent requirement that the ratio be no larger than 2.8×10-3 for the 960-cm-1 channel (1σ confidence). Specifically, the data rule out strong 15N-enrichments such as those observed in Titan’s atmosphere and in cometary nitrogen compounds. To the extent possible with ground-based radiometric uncertainties, the saturnian and jovian 15N/14N ratios appear indistinguishable, implying that 15N-enriched ammonia ices could not have been a substantial contributor to the bulk nitrogen inventory of either planet. This result favours accretion of primordial N2 on both planets, either in the gas phase from the solar nebula, or as ices formed at very low temperatures. Finally, spatially-resolved TEXES observations are used to derive zonal contrasts in tropospheric temperatures, phosphine and 14NH3 on both

  14. 35Cl NQR and Structural Studies of Chloroacetanilides C6H3Cl2NHCOCH3-xClx, 1 ≤ x ≤ 3

    NASA Astrophysics Data System (ADS)

    Groke, Dirk; Dou, Shi-Qi; Weiss, Alarich

    1992-02-01

    The temperature dependence of 35Cl NQR frequencies and the phase transition behaviour of chloroacetanilides (N-[2,6-dichlorophenyl]-2-chloroacetamide, -2,2-dichloroacetamide, -2,2,2-trichloroacetamide) were investigated. The crystal structure determination of N-[2,6-dichlorophenyl]- 2-chloroacetamide leads to the following: a = 1893.8 pm, b = 1110.7 pm, c = 472.1 pm, space group P212121 = D24 with Z = 4 molecules per unit cell. The arrangement of the molecules and their geometry is comparable to the high temperature phase of the acetyl compound N-[2,6-dichlorophenyl]- acetamide. For N-[2,6-diclorophenyl]-2,2,2-trichloroacetamide it was found: a = 1016.6 pm, b = 1194.3 pm, c = 1006.7 pm, ß= 101.79°, space group P21/c = C52h, Z = 4. The structure is similar to the low temperature phase of N-[2,6-dichlorophenyl]-acetamide. Parallelism between the temperature dependence of the 35C1 NQR lines of the CCl3 group and the X-ray diffraction results concerning the different behaviour of the chlorine atoms was observed. The structures of the compounds show intermolecular hydrogen bonding of the N - H • • • O - C type. The phenyl group and the HNCO function are nearly planar. A bleaching out of several 35Cl NQR lines at a temperature far below the melting point of the substances was observed. The different types of chlorine atoms (aromatic, chloromethyl) can be distinguished by their temperature coefficients of the 35Cl NQR frequencies. All the resonances found show normal "Bayer" temperature behaviour. N-[2,6-dichlorophenyl]-2,2-diehloroacetamide shows several solid phases. One stable low temperature phase and an instable high temperature phase (at room temperature) were observed. The different phases were detected by means of 35Cl NQR spectroscopy and thermal analysis

  15. SU-E-J-142: Prompt Gamma Emission Measurements From a Passively Scattered Proton Beam On Targets Containing 16O, 12C and 14N

    SciTech Connect

    Jeyasugiththan, J; Peterson, S

    2015-06-15

    Purpose: To measure the prompt gamma emission from the important elements found in tissue ({sup 16}O,{sup 12}C and {sup 14}N) in a clinical passive-scatter treatment environment. Methods: The targets (composed of water, Perspex, graphite and liquid nitrogen) were irradiated with a 200 MeV passive-scatter proton beam and the discrete prompt gamma energy spectra was detected by a high resolution 2′ × 2′ LaBr. detector. In order to reduce the high level of radiation produced by the beam line elements, the detector was surrounded by 10 cm of lead to attenuate the scattered gamma-rays entering the detector with an extra 5 cm thick layer of lead added along the beam direction. A 10 cm thick collimator with a 5 cm × 10 cm rectangular opening was also used. Results: The prompt gamma peaks at 6.13 MeV and 4.44 MeV were clearly identified as a Result of the inelastic nuclear reaction between the protons and the 16O atoms found in the water target. The 6.13 MeV peak was 5% higher than the peak at 4.44 MeV for the water target. The 4.44 MeV peak was the only identified emission in the prompt gamma energy spectra from the graphite target ({sup 12}C). The expected 2.313 MeV peak form the{sup 14}N (liquid nitrogen target) was identified, but the other expected {sup 14}N peaks could not be resolved. Conclusion: Prompt gamma measurements with a passive-scatter proton beam are possible, but the presence of a high amount of background radiation from the patient final collimator presents a challenge at the treatment isocenter. The prominent prompt gamma peaks at 6.13 MeV and 4.44 MeV were identified from the water, Perspex and graphite targets. The prompt gammas from the liquid nitrogen target were difficult to see, but may not be significant in the in-vivo verification process.

  16. Storm Spectra

    NASA Technical Reports Server (NTRS)

    2007-01-01

    portion is defined by the day/night boundary (known as the terminator).

    These two images illustrate only a small fraction of the information contained in a single LEISA scan, highlighting just one aspect of the power of infrared spectra for atmospheric studies.

  17. 14N NMR study of the glass transition in (NH4I)0.44(KI)0.56

    NASA Astrophysics Data System (ADS)

    Blinc, R.; Apih, T.; Dolinšek, J.; Šprogar, M.; Zalar, B.

    1995-12-01

    The orientational glass transition in a (NH4I)0.44(KI)0.56 single crystal has been studied by two-dimensional quadrupole perturbed 14N NMR spectroscopy and 14N spin-lattice relaxation time T1 measurements. A 14N T1 minimum was found at 9 K. The 14N inhomogeneous linewidth starts to increase strongly with decreasing T already below 50 K, i.e., on the high-temperature side of the T1 minimum, demonstrating a breaking of the local cubic symmetry and the onset of the orientational glass transition in the fast motion regime. The 14N magnetization recovery also changes from monoexponential to stretched-exponential below 50 K due to the development of spatial inhomogeneities in the sample as a result of a local glassy freeze-out. Both effects can be described by the presence of a local polarization distribution function W(p) with a nonzero second moment M2 below 50 K. The temperature dependence of the 14N M2, which is proportional to the Edwards-Anderson order parameter, shows that the glass transition is of the random-bond-random-field type. The random bond contribution is about three times stronger than the random-field one.

  18. Phase Transitions in CsSnCl3 and CsPbBr3 An NMR and NQR Study

    NASA Astrophysics Data System (ADS)

    Sharma, Surendra; Weiden, Norbert; Weiss, Alarich

    1991-04-01

    The phase transitions in CsSnCl3 and CsPbBr3 have been studied by X-ray powder diffraction, by 81Br-NQR and by 'H-, 119Sn-, and 113Cs-NMR. At room temperature in air CsSnCl3 forms a hydrate which can be dehydrated to the monoclinic phase II of CsSnCl3. The high temperature phase I has the Perovskite structure, as the X-ray and NMR experiments show. The three phases of CsPbBr3, known from literature, have been corroborated. The results are discussed in the framework of the group ABX3, A = alkalimetal ion, B = IV main group ion, and X = Halogen ion

  19. Magnetic correlations in La(2-x)Sr(x)CuO4 from NQR relaxation and specific heat

    NASA Technical Reports Server (NTRS)

    Borsa, F.; Rigamonti, A.

    1991-01-01

    La-139 and Cu-63 Nuclear Quadrupole Resonance (NQR) relaxation measurements in La(2-x)Sr(x)CuO4 for x ranging from 0 up to 0.3, with particular emphasis on the effect of doping on the Cu(2+) magnetic correlations and dynamics, are reviewed. In the low doping limit, x less than or equal to 0.05, the results can be interpreted consistently in terms of a simple phenomenological 'two-fluids' model whereby the effect of thermally-activated mobile O(2p) holes is the one of disrupting locally the Cu(2+) spin correlations. For x greater than or equal to 0.1, the results indicate the onset, as T approaches T(sub c)(+), of a strong coupling between Cu(2+) spins and the Fermi liquid of O(2p) holes leading to the apparent disappearance of localized Cu(2+) moment in connection with the opening of a superconducting gap.

  20. Volovik effect and Fermi-liquid behavior in the s -wave superconductor CaPd2As2: 75As NMR-NQR measurements

    NASA Astrophysics Data System (ADS)

    Ding, Q.-P.; Wiecki, P.; Anand, V. K.; Sangeetha, N. S.; Lee, Y.; Johnston, D. C.; Furukawa, Y.

    2016-04-01

    The electronic and magnetic properties of the collapsed-tetragonal CaPd2As2 superconductor (SC) with a transition temperature of 1.27 K have been investigated by 75As nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements. The temperature (T ) dependence of the nuclear spin lattice relaxation rates (1 /T1) and the Knight shifts indicate the absence of magnetic correlations in the normal state. In the SC state, 1 /T1 measured by 75As NQR shows a clear Hebel-Slichter (HS) peak just below Tc and decreases exponentially at lower T , confirming a conventional s -wave SC. In addition, the Volovik effect, also known as the Doppler shift effect, has been clearly evidenced by the observation of the suppression of the HS peak with applied magnetic field.

  1. Studies of the electronic structure and biological activity of chosen 1,4-benzodiazepines by 35Cl NQR spectroscopy and DFT calculations

    NASA Astrophysics Data System (ADS)

    Bronisz, K.; Ostafin, M.; Poleshchuk, O. Kh.; Mielcarek, J.; Nogaj, B.

    2006-11-01

    Selected derivatives of 1,4-benzodiazepine: lorazepam, lormetazepam, oxazepam and temazepam, used as active substances in anxiolytic drugs, have been studied by 35Cl NQR method in order to find the correlation between electronic structure and biological activity. The 35Cl NQR resonance frequencies ( νQ) measured at 77 K have been correlated with the following parameters characterising their biological activity: biological half-life period ( t0.5), affinity to benzodiazepine receptor (IC 50) and mean dose equivalent. The results of experimental study of some benzodiazepine derivatives by nuclear quadrupole resonance of 35Cl nuclei are compared with theoretical results based on DFT calculations which were carried out by means of Gaussian'98 W software.

  2. Stability and molecular dynamics of chloroxylenol (API of antiseptics and drugs) in solid state studied by 35Cl-NQR spectroscopy and DFT calculations

    NASA Astrophysics Data System (ADS)

    Latosińska, J. N.; Tomczak, M. A.; Kasprzak, J.

    2009-02-01

    Thermal stability of 4-chloro-3,5-dimethyl-phenol (chloroxylenol) in solid state has been studied by 35Cl-NQR spectroscopy. Two NQR resonance lines at the frequencies 34.348 and 34.415 MHz at 77 K have been assigned to chlorine atoms from two crystallographically inequivalent molecules on the basis of the B3LYP/6-311++G∗∗ results. The temperature dependence of the resonance frequency and full width at half maximum suggest the occurrence of small-angle torsional oscillations of the mean activation energy of 3.83 kJ/mol and rotation of both methyl groups around their symmetry axis C3 with the activation energies 12.49 and 11.27 kJ/mol for CH3 in molecule A and B, respectively. B3LYP/6-311++G∗∗ method reproduced very well the activation energies of both motions.

  3. Volovik effect and Fermi-liquid behavior in the s-wave superconductor CaPd2As2: As75 NMR-NQR measurements

    DOE PAGES

    Ding, Q. -P.; Wiecki, P.; Anand, V. K.; ...

    2016-04-07

    The electronic and magnetic properties of the collapsed-tetragonal CaPd2As2 superconductor (SC) with a transition temperature of 1.27 K have been investigated by 75As nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements. The temperature (T) dependence of the nuclear spin lattice relaxation rates (1/T1) and the Knight shifts indicate the absence of magnetic correlations in the normal state. In the SC state, 1/T1 measured by 75As NQR shows a clear Hebel-Slichter (HS) peak just below Tc and decreases exponentially at lower T, confirming a conventional s-wave SC. Additionally, the Volovik effect, also known as the Doppler shift effect, hasmore » been clearly evidenced by the observation of the suppression of the HS peak with applied magnetic field.« less

  4. NMR and NQR study of Ca-substituted superconducting YBa{sub 2}Cu{sub 4}O{sub 8}

    SciTech Connect

    Mali, M.; Roos, J.; Brinkmann, D.

    1996-02-01

    We report a set of nuclear quadrupole resonance (NQR) measurements including a spin-echo double-resonance (SEDOR) experiment which provides convincing evidence that the additional chain Cu NQR line in Ca-substituted YBa{sub 2}Cu{sub 4}O{sub 8} does stem from chain Cu sites disturbed by the {open_quote}{open_quote}impurity{close_quote}{close_quote} Ca ions. From an analysis of signal intensities we conclude that {open_quote}{open_quote}impurity{close_quote}{close_quote} Ca ions, responsible for the additional line, substitute Y{sup 3+}. At high Ca doping, the concentration of the substituted Y sites, {ital x}{sup {prime}}, is appreciably smaller than the nominal Ca concentration, {ital x}. Since it is {ital x}{sup {prime}} which is responsible for a direct increase of the hole charge-carrier concentration, {ital n}, effects connected with the increase of {ital n} such as the planar Cu spin-lattice relaxation rate, the NQR frequency, and the magnetic shift are only weakly dependent on {ital x}. Thus, the substantial increase of {ital T}{sub {ital c}} with {ital x} suggests that, besides the increase of {ital n}, other effects have to play a role in the {ital T}{sub {ital c}} enhancement. One such effect might be the opening of the spin pseudogap. At 150 K, both the main and additional Cu NQR lines in nominal YBa{sub 1.9}Ca{sub 0.1}Cu{sub 4}O{sub 8} show distinctly anomalies not seen in pure YBa{sub 2}Cu{sub 4}O{sub 8} that point out the Ca doping induced structural phase transition recently observed in specific-heat, elastic-neutron-scattering, and x-ray-diffraction measurements. {copyright} {ital 1996 The American Physical Society.}

  5. 35Cl NQR study of lattice dynamic and magnetic property of a crystalline coordination polymer {CuCA(phz)(H 2O) 2} n

    NASA Astrophysics Data System (ADS)

    Gotoh, Kazuma; Terao, Takeshi; Asaji, Tetsuo

    2007-01-01

    Copper(II) compounds {CuCA(phz)(H 2O) 2} n (H 2CA = chloranilic acid, phz = phenazine) having a layer structure of -CuCA(H 2O) 2- polymer chains and phenazine were studied by 35Cl nuclear quadrupole resonance (NQR). The single NQR line observed at 35.635 MHz at 261.5 K increased to 35.918 MHz at 4.2 K. The degree of reduction of electric field gradient due to lattice vibrations was similar to that of chloranilic acid crystal. Temperature dependence of spin-lattice relaxation time, T1, of the 35Cl NQR signal below 20 K, between 20 and 210 K, and above 210 K, was explained by (1) a decrease of effective electron-spin density caused by antiferromagnetic interaction, (2) a magnetic interaction between Cl nuclear-spin and electron-spins on paramagnetic Cu(II) ions, and (3) an increasing contribution from reorientation of ligand molecules, respectively. The electron spin-exchange parameter ∣ J∣ between the neighboring Cu(II) electrons was estimated to be 0.33 cm -1 from the T1 value of the range 20-210 K. Comparing this value with that of J = -1.84 cm -1 estimated from the magnetic susceptibility, it is suggested that the magnetic dipolar coupling with the electron spins on Cu(II) ions must be the principal mechanism for the 35Cl NQR spin-lattice relaxation of {CuCA(phz)(H 2O) 2} n but a delocalization of electron spin over the chloranilate ligand has to be taken into account.

  6. Cross section measurement of 14N(p ,γ )15O in the CNO cycle

    NASA Astrophysics Data System (ADS)

    Li, Q.; Görres, J.; deBoer, R. J.; Imbriani, G.; Best, A.; Kontos, A.; LeBlanc, P. J.; Uberseder, E.; Wiescher, M.

    2016-05-01

    Background: The CNO cycle is the main energy source in stars more massive than our sun; it defines the energy production and the cycle time that lead to the lifetime of massive stars, and it is an important tool for the determination of the age of globular clusters. In our sun about 1.6% of the total solar neutrino flux comes from the CNO cycle. The largest uncertainty in the prediction of this CNO flux from the standard solar model comes from the uncertainty in the 14N(p ,γ )15O reaction rate; thus, the determination of the cross section at astrophysical temperatures is of great interest. Purpose: The total cross section of the 14N(p ,γ )15O reaction has large contributions from the transitions to the Ex=6.79 MeV excited state and the ground state of 15O. The Ex=6.79 MeV transition is dominated by radiative direct capture, while the ground state is a complex mixture of direct and resonance capture components and the interferences between them. Recent studies have concentrated on cross-section measurements at very low energies, but broad resonances at higher energy may also play a role. A single measurement has been made that covers a broad higher-energy range but it has large uncertainties stemming from uncorrected summing effects. Furthermore, the extrapolations of the cross section vary significantly depending on the data sets considered. Thus, new direct measurements have been made to improve the previous high-energy studies and to better constrain the extrapolation. Methods: Measurements were performed at the low-energy accelerator facilities of the nuclear science laboratory at the University of Notre Dame. The cross section was measured over the proton energy range from Ep=0.7 to 3.6 MeV for both the ground state and the Ex=6.79 MeV transitions at θlab=0∘ , 45∘, 90∘, 135∘, and 150∘. Both TiN and implanted-14N targets were utilized. γ rays were detected by using an array of high-purity germanium detectors. Results: The excitation function as

  7. X-Ray and 35Cl NQR Studies on the Trichloroacetyl Group in Covalent and Ionic Compounds of L-Valine and DL-Valine

    NASA Astrophysics Data System (ADS)

    Ofial, A. R.; Dou, S.-q.; Krishnan, V. G.; Paulus, H.; Fuess, H.; Weiss, Al.

    1997-03-01

    The crystal structures and 35Cl NQR of trichloroacetyl-DL-valine (1), trichloroacetyl-L-valine (2), as well as the salts of trichloroacetic acid with DL-valine (3) and L-valine (4) have been investigated. Crystal data are for (1): Monoclinic, C2/c, a= 15.835(4) Å, b= 10.481 (3) Å, c = 14.046(4) Å, β = 103.28(1), Z = 8; (2): Orthorhombic, P212121, a = 12.117(3) Å, 6=10.896(3) Å, c= 8.718(2) Å, Z = 4; (3): Triclinic, P1¯, a= 17.269(3) Å, 6 = 8.504(3) Å, c = 10.427(4) A, a = 105.38(2), β = 96.98(2), γ = 96.24(2), Z = 2; (4): Monoclinic, P21, a = 10.378(4) Å, b = 20.349(8) Å, c= 11.890(5) Å, β = 95.28(2), Z = 8. The onset of rotational motion within the trichloroacetyl groups bleaches out 35Cl NQR lines between 115 K and 185 K for (1)-(4). While TCA-L-valine (1), TCA-DL-valine (2), and TCA(-) · DL-valine(+) (3) do not show any phase transition in the temperature range 77 K to 295 K, TCA(-) · L-valine(+) (4) shows more than one phase transition above 77 K before the three NQR signals bleach out at 164 K.

  8. Synthesis, crystal structure, and photocatalytical properties of Ba{sub 3}Ta{sub 5}O{sub 14}N

    SciTech Connect

    Anke, B.; Bredow, T.; Soldat, J.; Wark, M.; Lerch, M.

    2016-01-15

    Light yellow Ba{sub 3}Ta{sup V}{sub 5}O{sub 14}N was successfully synthesized as phase-pure material crystallizing isostructurally to well-known mixed-valence Ba{sub 3}Ta{sup V}{sub 4}Ta{sup IV}O{sub 15}. The electronic structure of Ba{sub 3}Ta{sub 5}O{sub 14}N was studied theoretically with a hybrid Hartree–Fock-DFT method. The most stable structure was obtained when nitrogen atoms were placed at 4 h sites having fourfold coordination. By incorporating nitrogen, the band gap decreases from ∼3.8 eV commonly known for barium tantalum(V) oxides to 2.8 eV for the oxide nitride, giving rise to an absorption band well in the visible-light region. Ba{sub 3}Ta{sub 5}O{sub 14}N was also tested for photocatalytic hydrogen formation. - Graphical abstract: Ta(O/N){sub 6} octahedra in Ba{sub 3}Ta{sub 5}O{sub 14}N with the determined bond lengths (Å).

  9. Determination of the 14N quadrupole coupling constant of nitroxide spin probes by W-band ELDOR-detected NMR.

    PubMed

    Florent, Marc; Kaminker, Ilia; Nagarajan, Vijayasarathi; Goldfarb, Daniella

    2011-06-01

    Nitroxide spin probe electron paramagnetic resonance (EPR) has proven to be a very successful method to probe local polarity and solvent hydrogen bonding properties at the molecular level. The g(xx) and the (14)N hyperfine A(zz) principal values are the EPR parameters of the nitroxide spin probe that are sensitive to these properties and are therefore monitored experimentally. Recently, the (14)N quadrupole interaction of nitroxides has been shown to be also highly sensitive to polarity and H-bonding (A. Savitsky et al., J. Phys. Chem. B 112 (2008) 9079). High-field electron spin echo envelope modulation (ESEEM) was used successfully to determine the P(xx) and P(yy) principal components of the (14)N quadrupole tensor. The P(zz) value was calculated from the traceless character of the quadrupole tensor. We introduce here high-field (W-band, 95 GHz, 3.5 T) electron-electron double resonance (ELDOR)-detected NMR as a method to obtain the (14)N P(zz) value directly, together with A(zz). This is complemented by W-band hyperfine sublevel correlation (HYSCORE) measurements carried out along the g(xx) direction to determine the principal P(xx) and P(yy) components. Through measurements of TEMPOL dissolved in solvents of different polarities, we show that A(zz) increases, while |P(zz)| decreases with polarity, as predicted by Savitsky et al.

  10. Determination of the 14N quadrupole coupling constant of nitroxide spin probes by W-band ELDOR-detected NMR

    NASA Astrophysics Data System (ADS)

    Florent, Marc; Kaminker, Ilia; Nagarajan, Vijayasarathi; Goldfarb, Daniella

    2011-06-01

    Nitroxide spin probe electron paramagnetic resonance (EPR) has proven to be a very successful method to probe local polarity and solvent hydrogen bonding properties at the molecular level. The g xx and the 14N hyperfine A zz principal values are the EPR parameters of the nitroxide spin probe that are sensitive to these properties and are therefore monitored experimentally. Recently, the 14N quadrupole interaction of nitroxides has been shown to be also highly sensitive to polarity and H-bonding (A. Savitsky et al., J. Phys. Chem. B 112 (2008) 9079). High-field electron spin echo envelope modulation (ESEEM) was used successfully to determine the P xx and P yy principal components of the 14N quadrupole tensor. The P zz value was calculated from the traceless character of the quadrupole tensor. We introduce here high-field (W-band, 95 GHz, 3.5 T) electron-electron double resonance (ELDOR)-detected NMR as a method to obtain the 14N P zz value directly, together with A zz. This is complemented by W-band hyperfine sublevel correlation (HYSCORE) measurements carried out along the g xx direction to determine the principal P xx and P yy components. Through measurements of TEMPOL dissolved in solvents of different polarities, we show that A zz increases, while | P zz| decreases with polarity, as predicted by Savitsky et al.

  11. Probing hydrogen bonding in cocrystals and amorphous dispersions using (14)N-(1)H HMQC solid-state NMR.

    PubMed

    Tatton, Andrew S; Pham, Tran N; Vogt, Frederick G; Iuga, Dinu; Edwards, Andrew J; Brown, Steven P

    2013-03-04

    Cocrystals and amorphous solid dispersions have generated interest in the pharmaceutical industry as an alternative to more established solid delivery forms. The identification of intermolecular hydrogen bonding interactions in a nicotinamide palmitic acid cocrystal and a 50% w/w acetaminophen-polyvinylpyrrolidone solid dispersion are reported using advanced solid-state magic-angle spinning (MAS) NMR methods. The application of a novel (14)N-(1)H HMQC experiment, where coherence transfer is achieved via through-space couplings, is shown to identify specific hydrogen bonding motifs. Additionally, (1)H isotropic chemical shifts and (14)N electric field gradient (EFG) parameters, both accessible from (14)N-(1)H HMQC experiments, are shown to be sensitive to changes in hydrogen bonding geometry. Numerous indicators of molecular association are accessible from this experiment, including NH cross-peaks occurring from intermolecular hydrogen bonds and changes in proton chemical shifts or electric field gradient parameters. First-principles calculations using the GIPAW approach that yield accurate estimates of isotropic chemical shifts, and EFG parameters were used to assist in assignment. It is envisaged that (14)N-(1)H HMQC solid state NMR experiments could become a valuable screening technique of solid delivery forms in the pharmaceutical industry.

  12. The Effects of Internal Rotation and 14N Quadrupole Coupling in N-Methyldiacetamide

    NASA Astrophysics Data System (ADS)

    Kannengießer, Raphaela; Eibl, Konrad; Nguyen, Ha Vinh Lam; Stahl, Wolfgang

    2015-06-01

    Acetyl- and nitrogen containing substances play an important role in chemical, physical, and especially biological systems. This applies in particular for acetamides, which are structurally related to peptide bonds. In this work, N-methyldiacetamide, CH_3N(COCH_3)_2, was investigated by a combination of molecular beam Fourier transform microwave spectroscopy and quantum chemical calculations. In N-methyldiacetamide, at least three large amplitude motions are possible: (1) the internal rotation of the methyl group attached to the nitrogen atom and (2, 3) the internal rotations of both acetyl methyl groups. This leads to a rather complicated torsional fine structure of all rotational transitions with additional quadrupole hyperfine splittings caused by the 14N nucleus. Quantum chemical calculations were carried out at the MP2/6-311++G(d,p) level of theory to support the spectral assignment. Conformational analysis was performed by calculating a full potential energy surface depending on the orientation of the two acetyl groups. This yielded three stable conformers with a maximum energy difference of 35.2 kJ/mol. The spectrum of the lowest energy conformer was identified in the molecular beam. The quadrupole hyperfine structure as well as the internal rotation of two methyl groups could be assigned. For the N-methyl group and for one of the two acetyl methyl groups, barriers to internal rotation of 147 cm-1 and of 680 cm-1, respectively, were determined. The barrier of the last methyl group seems to be so high that no additional splittings could be resolved. Using the XIAM program, a global fit with a standard deviation on the order of our experimental accuracy could be achieved.

  13. DFT-D study of 14N nuclear quadrupolar interactions in tetra-n-alkyl ammonium halide crystals.

    PubMed

    Dib, Eddy; Alonso, Bruno; Mineva, Tzonka

    2014-05-15

    The density functional theory-based method with periodic boundary conditions and addition of a pair-wised empirical correction for the London dispersion energy (DFT-D) was used to study the NMR quadrupolar interaction (coupling constant CQ and asymmetry parameter ηQ) of (14)N nuclei in a homologous series of tetra-n-alkylammonium halides (C(x)H(2x+1))4N(+)X(-) (x = 1-4), (X = Br, I). These (14)N quadrupolar properties are particularly challenging for the DFT-D computations because of their very high sensitivity to tiny geometrical changes, being negligible for other spectral property calculations as, for example, NMR (14)N chemical shift. In addition, the polarization effect of the halide anions in the considered crystal mesophases combines with interactions of van der Waals type between cations and anions. Comparing experimental and theoretical results, the performance of PBE-D functional is preferred over that of B3LYP-D. The results demonstrated a good transferability of the empirical parameters in the London dispersion formula for crystals with two or more carbons per alkyl group in the cations, whereas the empirical corrections in the tetramethylammonium halides appeared to be inappropriate for the quadrupolar interaction calculation. This is attributed to the enhanced cation-anion attraction, which causes a strong polarization at the nitrogen site. Our results demonstrated that the (14)N CQ and ηQ are predominantly affected by the molecular structures of the cations, adapted to the symmetry of the anion arrangements. The long-range polarization effect of the surrounding anions at the target nitrogen site becomes more important for cells with lower spatial symmetry.

  14. Geological mapping of the Rainbow Massif, Mid-Atlantic Ridge, 36°14'N

    NASA Astrophysics Data System (ADS)

    Ildefonse, B.; Fouquet, Y.; Hoisé, E.; Dyment, J.; Gente, P.; Thibaud, R.; Bissessur, D.; Yatheesh, V.; Momardream 2008 Scientific Party*, T.

    2008-12-01

    The Rainbow hydrothermal field at 36°14'N on the Mid-Atlantic Ridge is one of the few known sites hosted in ultramafic basement. The Rainbow Massif is located along the non-transform offset between the AMAR and South AMAR second-order ridge segments, and presents the characteristic dome morphology of oceanic core complexes, although no corrugated surface has been observed so far. One of the objectives of Cruises MOMAR DREAM (July 2007, R/V Pourquoi Pas ?; Aug-Sept 2008, R/V Atalante) was to study the petrological and structural context of the hydrothermal system at the scale of the Rainbow Massif. Our geological sampling complements previous ones achieved during Cruises FLORES (1997) and IRIS (2001), and consisted in dredge hauls, and submersible dives by manned submersible Nautile and ROV Victor. The tectonics of the Rainbow Massif is dominated by a N-S trending fault pattern on the western flank of the massif, and a series of SW-NW ridges on its northeastern side. The active hydrothermal site is located in the area were these two systems crosscut. The most abundant recovered rock type is peridotite (harzburgite and dunite) that presents a variety of serpentinization styles and intensity, and a variety of deformation styles (commonly undeformed, sometimes displaying ductile or brittle foliations). Serpentinites are frequently oxidized. Some peridotite samples have melt impregnation textures. Massive chromitite was recovered in one dredge haul. Variously evolved gabbroic rocks were collected as discrete samples or as centimeter to decimeter-thick dikes in peridotites. Basalts and fresh basaltic glass were also sampled in talus and sediments on the southwestern and northeastern flanks of the massif. Our sampling is consistent with the lithological variability encountered in oceanic core complexes along the Mid-Atlantic Ridge and Southwest Indian Ridge. The stockwork of the hydrothermal system has been sampled on the western side of the present-day hydrothermal

  15. Reactor Neutrino Spectra

    NASA Astrophysics Data System (ADS)

    Hayes, Anna C.; Vogel, Petr

    2016-10-01

    We present a review of the antineutrino spectra emitted from reactors. Knowledge of these spectra and their associated uncertainties is crucial for neutrino oscillation studies. The spectra used to date have been determined either by converting measured electron spectra to antineutrino spectra or by summing over all of the thousands of transitions that make up the spectra, using modern databases as input. The uncertainties in the subdominant corrections to β-decay plague both methods, and we provide estimates of these uncertainties. Improving on current knowledge of the antineutrino spectra from reactors will require new experiments. Such experiments would also address the so-called reactor neutrino anomaly and the possible origin of the shoulder observed in the antineutrino spectra measured in recent high-statistics reactor neutrino experiments.

  16. Electronic properties of Y-Ba-Cu-O superconductors as seen by Cu and O NMR/NQR

    NASA Technical Reports Server (NTRS)

    Brinkmann, D.

    1995-01-01

    Nuclear Magnetic Resonance (NMR) and Nuclear Quadrupole Resonance (NQR) allow the investigation of electronic properties at the atomic level. We will report on such studies of typical members of the the Y-Ba-Cu-O family such as YBa2Cu30(6 + x) (1-2-3-(6 + x)), YBa2Cu4O8 (1-2-4) and Y2Ba4Cu7015 (2-4-7) with many examples of recent work performed in our laboratory. In particular, we will deal with Knight shift and relaxation studies of copper and oxygen. We will discuss important issues of current studies such as: (1) Existence of a common electronic spin-susceptibility in the planes (and perhaps in the chains) of 1-2-4; (2) Strong evidence for the existence of a pseudo spin-gap of the antiferromagnetic fluctuations in 1-2-4 and 2-4-7; (3) Evidence for d-wave pairing in 1-2-4; (4) Strong coupling of inequivalent Cu-O planes in 2-4-7 and possible origin for the high Tc value of this compound; and (5) The possibility to describe NMR data in the framework of a charge-excitation picture.

  17. Magnetic correlations in La(2-x)Sr(x)CuO4 from NQR relaxation and specific heat

    NASA Technical Reports Server (NTRS)

    Borsa, F.; Rigamonti, A.

    1990-01-01

    La-139 and Cu-63 Nuclear Quadrupole Resonance (NQR) relaxation measurements in La(2-x)Sr(x)CuO4 for O = to or less than 0.3 and in the temperature range 1.6 + 450 K are analyzed in terms of Cu(++) magnetic correlations and dynamics. It is described how the magnetic correlations that would result from Cu-Cu exchange are reduced by mobile charge defects related to x-doping. A comprehensive picture is given which explains satisfactorily the x and T dependence of the correlation time, of the correlation length and of the Neel temperature T(sub n)(x) as well as being consistent with known electrical resistivity and magnetic susceptibility measurements. It is discussed how, in the superconducting samples, the mobile defects also cause the decrease, for T yields T(sub c)(+) of the hyperfine Cu electron-nucleus effective interaction, leading to the coexistence of quasi-localized, reduced magnetic moments from 3d Cu electrons and mobile oxygen p-hole carriers. The temperature dependence of the effective hyperfine field around the superconducting transition yields an activation energy which could be related to the pairing energy. New specific heat measurements are also presented and discussed in terms of the above picture.

  18. Nuclear microprobe analysis of 14N and its application to the study of ammonium-bearing minerals

    NASA Astrophysics Data System (ADS)

    Mosbah, M.; Bastoul, A.; Cuney, M.; Pironon, J.

    1993-05-01

    Nuclear microprobe technique has been applied to the study of ammonium-bearing feldspar, biotite and muscovite crystals selected from metamorphosed black shales and pegmatite veins cross-cutting the shales sampled in the Central Jebilet (Morocco). 14N is easily detected by the nuclear reactions (d, p 0) and (d, α 0) with deuteron energy > 1.6 MeV for a better detection limit ( 14N ⩽ 50 ppm) . The experimental procedure has been developed and is detailed herein. TiN has been used for calibration. The nitrogen content measured in feldspar, biotite and muscovite crystals by the nuclear microprobe is perfectly consistent with quantitative nitrogen analysis by catharometry and semiquantitative analysis by Fourier transform infrared microspectrometry. The nuclear microprobe results can be used to calibrate complementary methods such as ion microprobe and IR microspectrometry.

  19. High resolution topography of the Rainbow hydrothermal area, Mid-Atlantic Ridge, 36° 14 N

    NASA Astrophysics Data System (ADS)

    Gente, P.; Thibaud, R.; Dyment, J.; Fouquet, Y.; Ildefonse, B.; Hoise, E.; Bissessur, D.; Yatheesh, V.; Scientific Party, M.

    2008-12-01

    The Rainbow hydrothermal field at 36° 14 N on the Mid-Atlantic Ridge is one of the few known sites hosted in ultramafic environment. The active site is located on a dome structure in the non-transform offset between the AMAR and South AMAR second-order ridge segments. One of the objectives of Cruise MOMAR DREAM (Aug-Sept 2008, R/V Atalante and ROV Victor) was a near-bottom detailed and exhaustive mapping of the hydrothermal site and its vicinities using the multibeam echosounder Reson SeaBat 7125 (400 Khz) and the high sensitivity photographic camera OTUS installed on ROV Victor. This first high resolution survey of the Rainbow massif has provided bathymetric maps with a resolution of a centimeter in depth and space for the surveys carried out at the altitude of 10 m (close to Site Rainbow), and some ten centimeters for the surveys at 50 m (a larger area, 4x3 km long). The frequency of the pings is 7 cycles by second for 512 beams with an opening of 150° and a speed of the ROV of 0.3-0.4 m/s. The data have been processed with the CARAIBES software of IFREMER. The ROV is positioned with the Posidonia Ultra Short Baseline system (USBL) and an estimated navigation from the loch and heading of the vehicle. The active hydrothermal site extends along an EW direction on about 200 m. It is localized on one important mound, around 20 m in diameter, which displays the highest chimneys like "Thermitiere". Small chimneys are sparse at the east of this mound, and another inactive mound is located 200m in the northeast. The whole hydrothermal area is located just north of a highly fractured domain made of a series of north-south high- angle normal faults making steps at least 40 meters high. This 400 m wide tectonic area extends to the south on about 600-700 m. The faults give access to the stockwork of the hydrothermal system, which has been sampled. North of the hydrothermal area, a 400 m large landslide cut across the serpentinite environment. At a wider scale, the

  20. Static solid-state (14)N NMR and computational studies of nitrogen EFG tensors in some crystalline amino acids.

    PubMed

    O'Dell, Luke A; Schurko, Robert W

    2009-08-28

    The recently reported direct enhancement of integer spin magnetization (DEISM) methodology for signal enhancement in solid-state NMR of integer spins has been used to obtain static (14)N powder patterns from alpha-glycine, L-leucine and L-proline in relatively short experimental times at 9.4 T, allowing accurate determination of the quadrupolar parameters. Proton decoupling and deuteration of the nitrogen sites were used to reduce the (1)H-(14)N dipolar contribution to the transverse relaxation time allowing more echoes to be acquired per scan. In addition, ab initio calculations using molecular clusters (Gaussian 03) and the full crystal lattice (CASTEP) have been employed to confirm these results, to obtain the orientation of the electric field gradient (EFG) tensors in the molecular frame, and also to correctly assign the two sets of parameters for L-leucine. The (14)N EFG tensor is shown to be highly sensitive to the surrounding environment, particularly to nearby hydrogen bonding.

  1. Crack spectra analysis

    SciTech Connect

    Tiernan, M.

    1980-09-01

    Crack spectra derived from velocity data have been shown to exhibit systematics which reflect microstructural and textural differences between samples (Warren and Tiernan, 1980). Further research into both properties and information content of crack spectra have yielded the following: Spectral features are reproducible even at low pressures; certain observed spectral features may correspond to non-in-situ crack populations created during sample retrieval; the functional form of a crack spectra may be diagnostic of the sample's grain texture; hysteresis is observed in crack spectra between up and down pressure runs - it may be due to friction between the faces of closed crack populations.

  2. Photographic spectra of fireballs

    NASA Astrophysics Data System (ADS)

    Borovička, J.

    2016-01-01

    Two methods of spectroscopy of meteors using image intensified video cameras and classical photographic film cameras are compared. Video cameras provide large number of low resolution spectra of meteors of normal brightness, which can be used for statistical studies. Large format film cameras have been used through the history and provide high resolution spectra, which can be used to derive temperature, density and absolute abundances of various elements in the radiating plasma. The sensitivity of films is, however, low and only spectra of bright meteors (fireballs) can be studied. Examples of photographic fireball spectra are provided.

  3. IR spectroscopic analysis of polymorphism in C 13H 14N 4O

    NASA Astrophysics Data System (ADS)

    El-Kabbany, F.; Taha, S.; Hafez, M.

    2011-03-01

    IR analysis is used here to investigate the changes in N-N, N-H, C dbnd O modes of thermally treated diphenyl carbazide (DPC) during the variation of temperature from room temperature up to ≈160 °C. Polymorphism in DPC compound has been studied here by detecting the changes in some IR spectroscopic parameters (e.g., mode shift, band contour) during the elevation of temperature. Also, DSC, X-ray, NMR and atomic mass spectra are used as confirming tools for what is obtained by IR. All of the vibrations of DPC were found to be due to ionic fundamentals 3311 cm -1, 3097 cm -1, 3052 cm -1, 1677 cm -1, 1602 cm -1, 1492 cm -1, 1306 cm -1, 1252 cm -1, 887 cm -1 and 755 cm -1. The results revealed for the first time that the thermally treated DPC traverse four different phase transformations at 50 °C, 90 °C, 125 °C and 140 °C. The crystal structure was found to be amorphous, monoclinic, tetragonal, orthorhombic and amorphous within a temperature range (30 °C-160 °C). X-ray diffraction patterns support the results obtained by IR and DSC.

  4. Unconventional superconductivity near quantum critical point revealed by Co-NQR measurements on Nax(H3O)CoO2·yH2O

    NASA Astrophysics Data System (ADS)

    Ihara, Y.; Takeya, H.; Ishida, K.; Michioka, C.; Yoshimura, K.; Takada, K.; Sasaki, T.; Sakurai, H.; Takayama-Muromachi, E.

    2007-11-01

    The nuclear quadrupole resonance (NQR) frequency of Co nuclei and the nuclear spin lattice relaxation rate 1/T1 were measured on several bilayered hydrate (BLH) Nax(H3O)CoO2·yH2O (y˜1.3) with variety of superconducting (SC) and magnetic transition temperatures, Tc and TM, together with non-SC mono-layered hydrate (MLH) Nax(H3O)CoO2·yH2O (y˜0.7). In the high temperature region above 70 K, 1/T1T in all the samples follows the same temperature dependence which is interpreted as the pseudogap behavior. In the BLH compounds, 1/T1T increases with decreasing temperature below 70 K, and the values of 1/T1T at Tc are large in high-Tc samples. The magnetic ordering is ascertained from the observation of the prominent divergence of 1/T1T at TM in the samples whose NQR frequency is higher than 12.5 MHz. The temperature dependence of 1/T1T is found to be consistently expressed by a unique function with two fitting parameters. We analyze the temperature dependence of 1/T1T on the basis of this function, and investigate the relationship between the magnetic fluctuations and superconductivity in the BLH compounds.

  5. Determination of the delta(15N/14N)of Ammonium (NH4+) in Water: RSIL Lab Code 2898

    USGS Publications Warehouse

    Hannon, Janet E.; Böhlke, John Karl

    2008-01-01

    The purpose of the technique described by Reston Stable Isotope Laboratory (RSIL) lab code 2898 is to determine the N isotopic composition, delta(15N/14N), abbreviated as d15N, of ammonium (NH4+) in water (freshwater and saline water). The procedure involves converting dissolved NH4+ into NH3 gas by raising the pH of the sample to above 9 with MgO and subsequently trapping the gas quantitatively as (NH4)2SO4 on a glass fiber (GF) filter. The GF filter is saturated with NaHSO4 and pressure sealed between two gas-permeable polypropylene filters. The GF filter 'sandwich' floats on the surface of the water sample in a closed bottle. NH3 diffuses from the water through the polypropylene filter and reacts with NaHSO4, forming (NH4)2SO4 on the GF filter. The GF filter containing (NH4)2SO4 is dried and then combusted with a Carlo Erba NC 2500 elemental analyzer (EA), which is used to convert total nitrogen in a solid sample into N2 gas. The EA is connected to a continuous-flow isotope-ratio mass spectrometer (CF-IRMS), which determines the relative difference in ratios of the amounts of the stable isotopes of nitrogen (15N and 14N) of the product N2 gas and a reference N2 gas. The filters containing the samples are compressed in tin capsules and loaded into a Costech Zero-Blank Autosampler on the EA. Under computer control, samples then are dropped into a heated reaction tube that contains an oxidant, where combustion takes place in a He atmosphere containing an excess of O2 gas. To remove S-O gases produced from the NaHSO4, a plug of Ag-coated Cu wool is inserted at the bottom of the reaction tube. Combustion products are transported by a He carrier through a reduction furnace to remove excess O2, toconvert all nitrogen oxides to N2, and to remove any remaining S-O gases. The gases then pass through a drying tube to remove water. The gas-phase products, mainly N2 and a small amount of background CO2, are separated by a gas chromatograph (GC). The gas is then introduced

  6. Rotational Spectra of T-Shaped Cyanoacetylene - Carbon Dioxide Complex, Hcccn - CO2

    NASA Astrophysics Data System (ADS)

    Kang, Lu; Dorell, Ian; Davis, Philip; Oncer, Onur; Kukolich, Stephen G.; Novick, Stewart E.

    2016-06-01

    The rotational spectra of T-shaped cyanoacetylene carbon dioxide complex, HCCCN --- CO2, were measured using two Balle-Flygare type Fourier transform microwave (FTMW) spectrometers between 1.4 GHz and 22 GHz. The low J transitions were recorded using the low frequency FTMW spectrometer at the University of Arizona with a state-of-the-art resolution of "full width at half maximum" (FWHM) 1 kHz. The spectra above 4 GHz were recorded at Wesleyan University. Spectral hyperfine structures due to the 14N nuclear quadrupole coupling interactions can be fully resolved in low frequency bands. Since all Ka = 1 branches were not observed, this implies that HCCCN --- CO2 possesses a rigorous T-shaped structure. Assuming that A0 is the same as that of HCN --- CO2, 11824 MHz, the spectroscopic constants of HCCCN --- CO2 are: B0 = 794.59686(63) MHz, C0 = 715.74488(60) MHz, ΔJ = 0.50067(18) kHz, ΔJK = 120.892(12) kHz, δJ = 0.04253(31) kHz, δK = 65.32(12) kHz, HJ = -0.00117(33) Hz, HJK = 0.034876(21) kHz, HKJ = -0.68254(73) kHz, χaa(14N) = -4.12873(78) MHz, χbb(14N) = 2.110(25) MHz, and χcc(14N) = 2.019(25) MHz.

  7. Resonance Strength Measurement at Astrophysical Energies: The 17O(p,α)14N Reaction Studied via THM

    NASA Astrophysics Data System (ADS)

    Sergi, M. L.; Spitaleri, C.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Rapisarda, G. G.; Mukhamedzhanov, A.; Irgaziev, B.; Tang, X. D.; Wischer, M.; Mrazek, J.; Kroha, V.

    2016-05-01

    In recent years, the Trojan Horse Method (THM) has been used to investigate the low-energy cross sections of proton-induced reactions on 17O nuclei, overcoming extrapolation procedures and enhancement effects due to electron screening. We will report on the indirect study of the 17O(p,α)14N reaction via the Trojan Horse Method by applying the approach developed for extracting the resonance strength of narrow resonance in the ultralow energy region. The mean value of the strengths obtained in the two measurements was calculated and compared with the direct data available in literature.

  8. Resonance strength measurement at astrophysical energies: The 17O(p,α)14N reaction studied via Trojan Horse Method

    NASA Astrophysics Data System (ADS)

    Sergi, M. L.; Spitaleri, C.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Rapisarda, G. G.; Mukhamedzhanov, A.; Irgaziev, B.; Tang, X. D.; Wiescher, M.; Mrazek, J.; Kroha, V.

    2015-10-01

    In recent years, the Trojan Horse Method (THM) has been used to investigate the low-energy cross sections of proton-induced reactions on 17O nuclei, overcoming extrapolation procedures and enhancement effects due to electron screening. We will report on the indirect study of the 17O(p,α)14N reaction via the THM by applying the approach developed for extracting the resonance strength of narrow resonance in the ultralow energy region. Two measurements will be described and the experimental THM cross sections will be shown for both experiments.

  9. Fragmentation of {sup 14}N, {sup 16}O, {sup 20}Ne, and {sup 24}Mg nuclei at 290 to 1000 MeV/nucleon

    SciTech Connect

    Zeitlin, C.; Miller, J.; Guetersloh, S.; Heilbronn, L.; Fukumura, A.; Iwata, Y.; Murakami, T.; Blattnig, S.; Norman, R.; Mashnik, S.

    2011-03-15

    We report fragmentation cross sections measured at 0 deg. for beams of {sup 14}N, {sup 16}O, {sup 20}Ne, and {sup 24}Mg ions, at energies ranging from 290 MeV/nucleon to 1000 MeV/nucleon. Beams were incident on targets of C, CH{sub 2}, Al, Cu, Sn, and Pb, with the C and CH{sub 2} target data used to obtain hydrogen-target cross sections. Using methods established in earlier work, cross sections obtained with both large-acceptance and small-acceptance detectors are extracted from the data and, when necessary, corrected for acceptance effects. The large-acceptance data yield cross sections for fragments with charges approximately half of the beam charge and above, with minimal corrections. Cross sections for lighter fragments are obtained from small-acceptance spectra, with more significant, model-dependent corrections that account for the fragment angular distributions. Results for both charge-changing and fragment production cross sections are compared to the predictions of the Los Alamos version of the quark gluon string model (LAQGSM) as well as the NASA Nuclear Fragmentation (NUCFRG2) model and the Particle and Heavy Ion Transport System (PHITS) model. For all beams and targets, cross sections for fragments as light as He are compared to the models. Estimates of multiplicity-weighted helium production cross sections are obtained from the data and compared to PHITS and LAQGSM predictions. Summary statistics show that the level of agreement between data and predictions is slightly better for PHITS than for either NUCFRG2 or LAQGSM.

  10. Quantitative analysis of Earth's field NMR spectra of strongly-coupled heteronuclear systems.

    PubMed

    Halse, Meghan E; Callaghan, Paul T; Feland, Brett C; Wasylishen, Roderick E

    2009-09-01

    In the Earth's magnetic field, it is possible to observe spin systems consisting of unlike spins that exhibit strongly coupled second-order NMR spectra. Such spectra result when the J-coupling between two unlike spins is of the same order of magnitude as the difference in their Larmor precession frequencies. Although the analysis of second-order spectra involving only spin-(1/2) nuclei has been discussed since the early days of NMR spectroscopy, NMR spectra involving spin-(1/2) nuclei and quadrupolar (I>(1/2)) nuclei have rarely been treated. Two examples are presented here, the tetrahydroborate anion, BH4-, and the ammonium cation, NH4+. For the tetrahydroborate anion, (1)J((11)B,(1)H)=80.9Hz, and in an Earth's field of 53.3microT, nu((1)H)=2269Hz and nu((11)B)=728Hz. The (1)H NMR spectra exhibit features that both first- and second-order perturbation theory are unable to reproduce. On the other hand, second-order perturbation theory adequately describes (1)H NMR spectra of the ammonium anion, (14)NH4+, where (1)J((14)N,(1)H)=52.75Hz when nu((1)H)=2269Hz and nu((14)N)=164Hz. Contrary to an early report, we find that the (1)H NMR spectra are independent of the sign of (1)J((14)N,(1)H). Exact analysis of two-spin systems consisting of quadrupolar nuclei and spin-(1/2) nuclei are also discussed.

  11. Spin coherence and 14N ESEEM effects of nitrogen-vacancy centers in diamond with X-band pulsed ESR

    NASA Astrophysics Data System (ADS)

    Rose, B. C.; Weis, C. D.; Tyryshkin, A. M.; Schenkel, T.; Lyon, S. A.

    2017-02-01

    Pulsed ESR experiments are reported for ensembles of negatively-charged nitrogen-vacancy centers (NV$^-$) in diamonds at X-band magnetic fields (280-400 mT) and low temperatures (2-70 K). The NV$^-$ centers in synthetic type IIb diamonds (nitrogen impurity concentration $<1$~ppm) are prepared with bulk concentrations of $2\\cdot 10^{13}$ cm$^{-3}$ to $4\\cdot 10^{14}$ cm$^{-3}$ by high-energy electron irradiation and subsequent annealing. We find that a proper post-radiation anneal (1000$^\\circ$C for 60 mins) is critically important to repair the radiation damage and to recover long electron spin coherence times for NV$^-$s. After the annealing, spin coherence times of T$_2 = 0.74$~ms at 5~K are achieved, being only limited by $^{13}$C nuclear spectral diffusion in natural abundance diamonds. At X-band magnetic fields, strong electron spin echo envelope modulation (ESEEM) is observed originating from the central $^{14}$N nucleus. The ESEEM spectral analysis allows for accurate determination of the $^{14}$N nuclear hypefine and quadrupole tensors. In addition, the ESEEM effects from two proximal $^{13}$C sites (second-nearest neighbor and fourth-nearest neighbor) are resolved and the respective $^{13}$C hyperfine coupling constants are extracted.

  12. Accumulation of ammonium in Norway spruce (Picea abies) seedlings measured by in vivo 14N-NMR.

    PubMed

    Aarnes, H; Eriksen, A B; Petersen, D; Rise, F

    2007-01-01

    (14)N-NMR and (31)P-NMR have been used to monitor the in vivo pH in roots, stems, and needles from seedlings of Norway spruce, a typical ammonium-tolerant plant. The vacuolar and cytoplasmic pH measured by (31)P-NMR was found to be c. pH 4.8 and 7.0, respectively, with no significant difference between plants growing with ammonium or nitrate as the N-source. The (1)H-coupled (14) NH 4+ resonance is pH-sensitive: at alkaline pH it is a narrow singlet line and below pH 4 it is an increasing multiplet line with five signals. The pH values in ammonium-containing compartments measured by (14)N-NMR ranged from 3.7 to 3.9, notably lower than the estimated pH values of the P(i) pools. This suggests that, in seedlings of Norway spruce, ammonium is stored in vacuoles with low pH possibly to protect the seedlings against the toxic effects of ammonium ( NH 4+) or ammonia (NH3). It was also found that concentrations of malate were 3-6 times higher in stems than in roots and needles, with nitrate-grown plants containing more malate than plants grown with ammonium.

  13. Measurement and R-matrix Analysis of 14N(p,γ)15O for the CNO Cycle

    NASA Astrophysics Data System (ADS)

    Li, Q.; Goerres, J.; Deboer, R. J.; Best, A.; Kontos, A.; Uberseder, E.; Wiescher, M.; Imbriani, G.; Leblanc, P. J.

    2013-10-01

    The CNO cycle is the primary energy source for stars more massive than the Sun during hydrogen burning. The energy producing cycle uses heavy nuclei as catalysts in order to convert four protons into an alpha particle. 14N(p, γ)15O is the slowest reaction in this cycle, thus it governs the time scale and the energy generation rate of the whole cycle. It also plays an important role in the determination of the age of globular clusters. Previous measurements and analysis of this reaction lead to different astrophysical S-factors due to the uncertainties in the R-matrix fit to the cross section data at higher energies. To better constrain the extrapolation, measurements were made of the excitation functions and angular distribution cross sections over a proton beam energy range from 0.5 MeV to 3.6 MeV. A multichannel R-matrix analysis including both the elastic scattering and the 14N(p, γ)15O data has been performed using the code AZURE. The new analysis provides better constraints for the extrapolation of the astrophysical S-factor towards stellar energies. This work was funded by the National Science Foundation through Grant No. Phys-0758100, and the Joint Institute for Nuclear Astrophysics Grant No. Phys-0822648.

  14. Lily Pad Spectra

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The color image on the lower left from the panoramic camera on the Mars Exploration Rover Opportunity shows the 'Lily Pad' bounce-mark area at Meridiani Planum, Mars. This image was acquired on the 3rd sol, or martian day, of Opportunity's mission (Jan.26, 2004). The upper left image is a monochrome (single filter) image from the rover's panoramic camera, showing regions from which spectra were extracted from the 'Lily Pad' area. As noted by the line graph on the right, the green spectra is from the undisturbed surface and the red spectra is from the airbag bounce mark.

  15. Determination of NH proton chemical shift anisotropy with 14N-1H heteronuclear decoupling using ultrafast magic angle spinning solid-state NMR

    NASA Astrophysics Data System (ADS)

    Pandey, Manoj Kumar; Nishiyama, Yusuke

    2015-12-01

    The extraction of chemical shift anisotropy (CSA) tensors of protons either directly bonded to 14N nuclei (I = 1) or lying in their vicinity using rotor-synchronous recoupling pulse sequence is always fraught with difficulty due to simultaneous recoupling of 14N-1H heteronuclear dipolar couplings and the lack of methods to efficiently decouple these interactions. This difficulty mainly arises from the presence of large 14N quadrupolar interactions in comparison to the rf field that can practically be achieved. In the present work it is demonstrated that the application of on-resonance 14N-1H decoupling with rf field strength ∼30 times weaker than the 14N quadrupolar coupling during 1H CSA recoupling under ultrafast MAS (90 kHz) results in CSA lineshapes that are free from any distortions from recoupled 14N-1H interactions. With the use of extensive numerical simulations we have shown the applicability of our proposed method on a naturally abundant L-Histidine HCl·H2O sample.

  16. Cross sections for n+{sup 14}N from an R-matrix analysis of the {sup 15}N system

    SciTech Connect

    Hale, G.M.; Young, P.G.; Chadwick, M.B.

    1994-06-01

    As part of the Hiroshima-Nagasaki Dose Reevaluation Program, a new evaluation of the neutron cross sections for {sup 14}N was made for ENDF/B-VI, based at energies below 2.5 MeV on a multichannel R-matrix analysis of reactions in the {sup 15}N system. The types of data used in the analysis, and the resulting cross sections and resonance structure for {sup 15}N are briefly described. The resonant features of the neutron cross sections were especially well determined by including precise, high-resolution neutron total cross section measurements from ORNL. While the new evaluated cross section appear to be significant improvements over the earlier ones, they still need to be tested more extensively against recent measurements of the differential elastic cross section from Oak Ridge.

  17. Application of rate equations to ELDOR and saturation recovery experiments on 14N: 15N spin-label pairs

    NASA Astrophysics Data System (ADS)

    Yin, Jun-Jie; Hyde, James S.

    Rate equations describing the time dependence of population differences of the five allowed transitions in an 14N 15N spin-label pair problem are set up. Included in the formulation are the three Heisenberg exchange rate constants and different nitrogen nuclear spin-lattice relaxation rates, electron spin-lattice relaxation rates, and populations for the 14N and 15N moieties. Using matrix algebra, stationary and time-dependent solutions are obtained in a unified theoretical framework. The calculations apply to stationary and pulse electron-electron double resonance and to saturation-recovery ESR. Particular emphasis is placed on short pulse initial excitation, where the transverse relaxation processes are sufficiently slow that only the population difference of the irradiated transition departs significantly from Boltzmann equilibrium during the excitation.

  18. On the trimerization of cyanoacetylene: mechanism of formation of tricyanobenzene isomers and laboratory detection of their radio spectra.

    PubMed

    Hopf, Henning; Mlynek, Cornelia; McMahon, Robert J; Menke, Jessica L; Lesarri, Alberto; Rosemeyer, Michael; Grabow, Jens-Uwe

    2010-12-17

    In support of a deeper understanding of the chemistry of cyanoacetylene--a known constituent of planetary atmospheres and interstellar space--theoretical and experimental studies address the chemical mechanism of dimerization and trimerization, and provide high-resolution rotational spectra of two of the trimeric products, 1,2,3- and 1,2,4-tricyanobenzene. Analysis of the rotational spectra is particularly challenging because of quadrupolar coupling from three (14)N nuclei. The laboratory rotational spectra provide the basis for future searches for these polar aromatic compounds in interstellar space by radio astronomy.

  19. Spectra of Surface Waves

    DTIC Science & Technology

    1989-03-22

    with a wave follower during Marsen. J. Gophysical Res. 88, 9844-9849. 11. Hughes, B.A., 1978. The effects on internal waves on surface waves : 2...Spectra of Surface Waves K. Watson March 1989 JSR-88-130 Approved for public release; distribution unlimited. DTIC SELECTE JUN0 11989 0 JASONE The...Arlington, VA 22209 8503Z 11. TITLE (hlde Secvfty Cof.kaftn) SPECTRA OF SURFACE WAVES (U) 12. PERSONAL AUTHOfRS) K. Watson 13a. TYPE OF REPORT 13b. TIME

  20. Shape of the A=14 {beta} spectra

    SciTech Connect

    Garcia, A.; Brown, B.A.

    1995-10-01

    The shape of allowed {Beta} spectra have a small contribution from the interference of the vector, weak-magnetism and axial GT matrix elements. According to CVC plus charge-symmetry of nuclear interactions, in a 0{sup +}{r_arrow} 1{sup +} transition like the {Beta} and {gamma} decays of the A=14 system, the weak-magnetism and electro-magnetic-Ml matrix elements should be equal. A measurement of the shape of the {sup 14}O spectrum, however, disagrees, by a factor of two with naive calculation described above. It has been speculated that because of the high supression of GT matrix element in the A=14 system, one could understand this discrepancy based on small charge-symmetry-effects. We have used shell-model wave functions adjusted to fit {sup 14}N(e,e{sup {prime}}) inelastic scattering, the width of the M1-{gamma} transition, and the {Beta} log f t`s, and show that reasonable assumptions lead to estimates that are very close to the naive CVC estimation. We propose that the {sup 14}O discrepancy is important and that new experiments should be done to measure the shape of the spectrum.

  1. Quantum spectra and dynamics

    NASA Astrophysics Data System (ADS)

    Arce, Julio Cesar

    This work focuses on time-dependent quantum theory and methods for the study of the spectra and dynamics of atomic and molecular systems. Specifically, we have addressed the following two problems: (1) Development of a time-dependent spectral method for the construction of spectra of simple quantum systems. This includes the calculation of eigenenergies, the construction of bound and continuum eigenfunctions, and the calculation of photo cross-sections. Computational applications include the quadrupole photoabsorption spectra and dissociation cross-sections of molecular hydrogen from various vibrational states in its ground electronic potential-energy curve. This method is seen to provide an advantageous alternative, both from the computational and conceptual point of view, to existing standard methods. (2) Explicit time-dependent formulation of photoabsorption processes -- Analytical solutions of the time-dependent Schrodinger equation are constructed and employed for the calculation of probability densities, momentum distributions, fluxes, transition rates, expectation values and correlation functions. These quantities are seen to establish the link between the dynamics and the calculated, or measured, spectra and cross-sections, and to clarify the dynamical nature of the excitation, transition and ejection processes. Numerical calculations on atomic and molecular hydrogen corroborate and complement the previous results, allowing the identification of different regimes during the photoabsorption process.

  2. Quantum Spectra and Dynamics

    NASA Astrophysics Data System (ADS)

    Arce, Julio Cesar

    1992-01-01

    This work focuses on time-dependent quantum theory and methods for the study of the spectra and dynamics of atomic and molecular systems. Specifically, we have addressed the following two problems: (i) Development of a time-dependent spectral method for the construction of spectra of simple quantum systems--This includes the calculation of eigenenergies, the construction of bound and continuum eigenfunctions, and the calculation of photo cross-sections. Computational applications include the quadrupole photoabsorption spectra and dissociation cross-sections of molecular hydrogen from various vibrational states in its ground electronic potential -energy curve. This method is seen to provide an advantageous alternative, both from the computational and conceptual point of view, to existing standard methods. (ii) Explicit time-dependent formulation of photoabsorption processes --Analytical solutions of the time-dependent Schrodinger equation are constructed and employed for the calculation of probability densities, momentum distributions, fluxes, transition rates, expectation values and correlation functions. These quantities are seen to establish the link between the dynamics and the calculated, or measured, spectra and cross-sections, and to clarify the dynamical nature of the excitation, transition and ejection processes. Numerical calculations on atomic and molecular hydrogen corroborate and complement the previous results, allowing the identification of different regimes during the photoabsorption process.

  3. Atomic Spectra Database (ASD)

    National Institute of Standards and Technology Data Gateway

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  4. THM determination of the 65 keV resonance strength intervening in the {sup 17}O(p,α){sup 14}N reaction rate

    SciTech Connect

    Sergi, M. L.; La Cognata, M.; Pizzone, R. G.; Spitaleri, C.; Cherubini, S.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; Burjan, S. V.; Hons, Z.; Kroha, V.; Coc, A.; Hammache, F.; Irgaziev, B.; Kiss, G. G.; Somorjai, E.; Lamia, L.; Mukhamedzhanov, A.; and others

    2015-02-24

    The {sup 17}O(p,α){sup 14}N reaction is of paramount importance for the nucleosynthesis in a number of stellar sites, including red giants (RG), asymptotic giant branch (AGB) stars, massive stars and classical novae. We report on the indirect study of the {sup 17}O(p,α){sup 14}N reaction via the Trojan Horse Method by applying the approach recently developed for extracting the resonance strength of the narrow resonance at E{sub c.m.}{sup R} = 65 keV (E{sub X} =5.673 MeV). The strength of the 65 keV resonance in the {sup 17}O(p,α){sup 14}N reaction, measured by means of the THM, has been used to renormalize the corresponding resonance strength in the {sup 17}O+p radiative capture channel.

  5. Modern comparative approach for carrier transport in InAlN/AlN superlattice device with characteristics and modelling using nitride (14N,15N) isotopes

    NASA Astrophysics Data System (ADS)

    Mazumdar, Kaushik; Ranjan, Rajeev Kumar; Shankar, Ravi; Priyadarshini, Bindu; Ghosal, Aniruddha

    2017-03-01

    As we all know that, the performance and characteristics of any semiconductor device are effected by change in operating temperature. The temperature dependencies of the transport properties of InAlN/Al14N15N have been investigated using theoretical and mathematical study. Here we have considered the Al14N15N with different ratio of 14N and 15N for the analysis owing to considerable interest in superlattice structures of large band gap semiconductors having various favourable material properties such as very high thermal conductivity, high carrier mobility and wide bandwidth operation. This paper deals with analysis of temperature effect on some of the device modelling parameters like carrier mobility and scattering.

  6. Resonance strengths in the {sup 14}N(p,gamma){sup 15}O and {sup 15}N(p,alphagamma){sup 12}C reactions

    SciTech Connect

    Marta, Michele; Trompler, Erik; Bemmerer, Daniel; Beyer, Roland; Grosse, Eckart; Hannaske, Roland; Junghans, Arnd R.; Nair, Chithra; Schwengner, Ronald; Wagner, Andreas; Yakorev, Dmitry; Broggini, Carlo; Caciolli, Antonio; Erhard, Martin; Menegazzo, Roberto; Fueloep, Zsolt; Gyuerky, Gyoergy; Szuecs, Tamas; Vezzu, Simone

    2010-05-15

    The {sup 14}N(p,gamma){sup 15}O reaction is the slowest reaction of the carbon-nitrogen-oxygen cycle of hydrogen burning in stars. As a consequence, it determines the rate of the cycle. The {sup 15}N(p,alphagamma){sup 12}C reaction is frequently used in inverse kinematics for hydrogen depth profiling in materials. The {sup 14}N(p,gamma){sup 15}O and {sup 15}N(p,alphagamma){sup 12}C reactions have been studied simultaneously, using titanium nitride targets of natural isotopic composition and a proton beam. The strengths of the resonances at E{sub p} = 1058 keV in {sup 14}N(p,gamma){sup 15}O and at E{sub p} = 897 and 430 keV in {sup 15}N(p,alphagamma){sup 12}C have been determined with improved precision, relative to the well-known resonance at E{sub p} = 278 keV in {sup 14}N(p,gamma){sup 15}O. The new recommended values are omegagamma=0.353+-0.018, 362+-20, and 21.9+-1.0 eV for their respective strengths. In addition, the branching ratios for the decay of the E{sub p} = 1058 keV resonance in {sup 14}N(p,gamma){sup 15}O have been redetermined. The data reported here should facilitate future studies of off-resonant capture in the {sup 14}N(p,gamma){sup 15}O reaction that are needed for an improved R-matrix extrapolation of the cross section. In addition, the data on the 430 keV resonance in {sup 15}N(p,alphagamma){sup 12}C may be useful for hydrogen depth profiling.

  7. Rock Outcrop Spectra

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The color image on the lower left shows a rock outcrop at Meridiani Planum, Mars. This image was taken by the panoramic camera on the Mars Exploration Rover Opportunity, looking north, and was acquired on the 4th sol, or martian day, of the rover's mission (Jan. 27, 2004). The yellow box outlines an area detailed in the top left image, which is a monochrome (single filter) image from the rover's panoramic camera. The top image uses solid colors to show several regions on or near the rock outcrop from which spectra were extracted: the dark soil above the outcrop (yellow), the distant horizon surface (aqua), a bright rock in the outcrop (green), a darker rock in the outcrop (red), and a small dark cobblestone (blue). Spectra from these regions are shown in the plot to the right.

  8. 15N/14N variations in Cretaceous Atlantic sedimentary sequences: implication for past changes in marine nitrogen biogeochemistry

    USGS Publications Warehouse

    Rau, G.H.; Arthur, M.A.; Dean, W.E.

    1987-01-01

    At two locations in the Atlantic Ocean (DSDP Sites 367 and 530) early to middle Cretaceous organic-carbon-rich beds ("black shales") were found to have significantly lower ??15N values (lower 15N/14N ratios) than adjacent organic-carbon-poor beds (white limestones or green claystones). While these lithologies are of marine origin, the black strata in particular have ??15N values that are significantly lower than those previously found in the marine sediment record and most contemporary marine nitrogen pools. In contrast, black, organic-carbon-rich beds at a third site (DSDP Site 603) contain predominantly terrestrial organic matter and have C- and N-isotopic compositions similar to organic matter of modern terrestrial origin. The recurring 15N depletion in the marine-derived Cretaceous sequences prove that the nitrogen they contain is the end result of an episodic and atypical biogeochemistry. Existing isotopic and other data indicate that the low 15N relative abundance is the consequence of pelagic rather than post-depositional processes. Reduced ocean circulation, increased denitrification, and, hence, reduced euphotic zone nitrate availability may have led to Cretaceous phytoplankton assemblages that were periodically dominated by N2-fixing blue-green algae, a possible source of this sediment 15N-depletion. Lack of parallel isotopic shifts in Cretaceous terrestrially-derived nitrogen (Site 603) argues that the above change in nitrogen cycling during this period did not extend beyond the marine environment. ?? 1987.

  9. INVESTIGATION OF MOLECULAR CLOUD STRUCTURE AROUND INFRARED BUBBLES: CARMA OBSERVATIONS OF N14, N22, AND N74

    SciTech Connect

    Sherman, Reid A.

    2012-11-20

    We present CARMA observations in 3.3 mm continuum and several molecular lines of the surroundings of N14, N22, and N74, three infrared bubbles from the GLIMPSE catalog. We have discovered 28 compact continuum sources and confirmed their associations with the bubbles using velocity information from HCO{sup +} and HCN. We have also mapped small-scale structures of N{sub 2}H{sup +} emission in the vicinity of the bubbles. By combining our data with survey data from GLIMPSE, MIPSGAL, BGPS, and MAGPIS, we establish about half of our continuum sources as star-forming cores. We also use survey data with the velocity information from our molecular line observations to describe the morphology of the bubbles and the nature of the fragmentation. We conclude from the properties of the continuum sources that N74 likely is at the near kinematic distance, which was previously unconfirmed. We also present tentative evidence of molecular clouds being more fragmented on bubble rims compared to dark clouds, suggesting that triggered star formation may occur, though our findings do not conform to a classic collect-and-collapse model.

  10. RADIATIVE NEUTRON CAPTURE ON 9Be, 14C, 14N, 15N AND 16O AT THERMAL AND ASTROPHYSICAL ENERGIES

    NASA Astrophysics Data System (ADS)

    Dubovichenko, Sergey; Dzhazairov-Kakhramanov, Albert; Afanasyeva, Nadezhda

    2013-10-01

    The total cross-sections of the radiative neutron capture processes on 9Be, 14C, 14N, 15N and 16O are described in the framework of the modified potential cluster model with the classification of orbital states according to Young tableaux. The continued interest in the study of these reactions is due, on the one hand, to the important role played by this process in the analysis of many fundamental properties of nuclei and nuclear reactions, and, on the other hand, to the wide use of the capture cross-section data in the various applications of nuclear physics and nuclear astrophysics, and, also, to the importance of the analysis of primordial nucleosynthesis in the Universe. This article is devoted to the description of results for the processes of the radiative neutron capture on certain light atomic nuclei at thermal and astrophysical energies. The considered capture reactions are not part of stellar thermonuclear cycles, but involve in the reaction chains of inhomogeneous Big Bang models.

  11. Measurement of the Erc .m .=259 keV resonance in the 14N(p ,γ )15O reaction

    NASA Astrophysics Data System (ADS)

    Daigle, S.; Kelly, K. J.; Champagne, A. E.; Buckner, M. Q.; Iliadis, C.; Howard, C.

    2016-08-01

    The 14N(p ,γ )15O reaction regulates the power generated by the CN cycle and thus impacts the structure and evolution of every star at some point in its life. The lowest positive-energy resonance in this reaction is located at Erc .m .=259 keV, too high in energy to strongly influence quiescent stellar burning. However, the strength of this resonance is used as a cross-section normalization for lower-energy measurements of this reaction. We report on new measurements of the energy, strength, and γ -ray branching ratios for the 259-keV resonance, using different detection and data-analysis schemes. We have also reevaluated previous results, where possible. Our new recommended strength of ω γ =12.6 (3 ) meV is in agreement with the previous value of 13.1(6) meV, but is more precise and thus provides a more reliable normalization for low-energy (p ,γ ) measurements.

  12. Barnacle Bill Spectra

    NASA Technical Reports Server (NTRS)

    1997-01-01

    These IMP spectra show the characteristics of the rock surface measured by the Alpha Proton X-Ray Spectrometer (blue), the soil trapped in pits on the rock surface (red), and the deposit of bright drift on the top of the rock. The area measured by the APXS has the properties expected for nearly unweathered igneous rock, and the soil trapped in the pits is intermediate to the unweathered rock and the highly weathered drift material.

  13. Genome Sequence of a Novel H14N7 Subtype Influenza A Virus Isolated from a Blue-Winged Teal (Anas discors) Harvested in Texas, USA

    PubMed Central

    Reeves, Andrew B.; Poulson, Rebecca L.; Carter, Deborah L.; Davis-Fields, Nicholas; Stallknecht, David E.

    2016-01-01

    We report here the complete genome sequence of a novel H14N7 subtype influenza A virus (IAV) isolated from a blue-winged teal (Anas discors) harvested in Texas, USA. The genomic characteristics of this IAV strain with a previously undetected subtype combination suggest recent viral evolution within the New World wild-bird IAV reservoir. PMID:27284136

  14. SPECTRA. September 2011

    DTIC Science & Technology

    2011-09-01

    Transportation Services program with the Dragon capsule. (Credit: SpaceX /Chris Thompson) S p a c e c r a f t e n g in e e r in g spectra NRL...secondary payloads on board a Space Exploration Technologies ( SpaceX ), Inc., Falcon 9 launch vehicle. NRL’s nanosatellites are part of the CubeSat...Maryland. The primary payload launched aboard the SpaceX Falcon 9 was the Dragon capsule. Developed by SpaceX and sponsored by NASA’s Commercial Orbital

  15. Determinations of Photon Spectra

    DTIC Science & Technology

    1989-01-01

    COVERED O14. DATE OF REPORT (Year, Month, Day) 115. PAGE COUNT THESIS/ftFROW*W FROM TO 1989 1 54 16. SUPPLEMENTARY NOTATION A ?RQVk;U kOR 3UB LIC RELEASE...IAW AFR 190- 1 ERNEST A. HAYGOOD, 1st Lt, USAF Executive Officer, Civilian Institution ProQrams 17. COSATI CODES 18. SUBJECT TERMS (Continue on...spectra from measurements obtained with a sodium iodide counting system. A response matrix is computed by combining photon cross sections with

  16. Solving the Tautomeric Equilibrium of Purine Through the Analysis of the Complex Hyperfine Structure of the Four 14N Nuclei

    NASA Astrophysics Data System (ADS)

    Cocinero, Emilio J.; Uriarte, Iciar; Ecija, Patricia; Favero, Laura B.; Spada, Lorenzo; Calabrese, Camilla; Caminati, Walther

    2016-06-01

    Microwave spectroscopy has been restricted to the investigation of small molecules in the last years. However, with the advent of FTMW and CP-FTMW spectroscopies coupled with laser vaporization techniques it has turned into a very competitive methodology in the studies of moderate-size biomolecules. Here, we present the study of purine, characterized by two aromatic rings, one six- and one five-membered, fused together to give a planar aromatic bicycle. Biologically, it is the mainframe of two of the five nucleobases of DNA and RNA. Two tautomers were observed by FTMW spectroscopy coupled to UV ultrafast laser vaporization system. The population ratio of the two main tautomers [N(7)H]/[N(9)H] is about 1/40 in the gas phase. It contrasts with the solid state where only the N(7)H species is present, or in solution where a mixture of both tautomers is observed. For both species, a full quadrupolar hyperfine analysis has been performed. This has led to the determination of the full sets of diagonal quadrupole coupling constants of the four 14N atoms, which have provided crucial information for the unambiguous identification of both species. T. J. Balle and W. H. Flygare Rev. Sci. Instrum. 52, 33-45, 1981 J.-U. Grabow, W. Stahl and H. Dreizler Rev. Sci. Instrum. 67, 4072-4084, 1996 G. G. Brown, B. D. Dian, K. O. Douglass, S. M. Geyer, S. T. Shipman and B. H. Pate Rev. Sci. Instrum. 79, 0531031/1-053103/13, 2008 E. J. Cocinero, A. Lesarri, P. écija, F. J. Basterretxea, J. U. Grabow, J. A. Fernández and F. Castaño Angew. Chem. Int. Ed. 51, 3119-3124, 2012

  17. Properties of the Young Embedded Cluster G287.47-0.54 = Tr14-N4 in NGC 3372

    NASA Astrophysics Data System (ADS)

    Tapia, M.; Roth, M.; Bohigas, J.; Persi, P.

    New deep broad- and narrow-band (JHK and Br Gamma at 2.17 μm and H2 at 2.12 μm) images of the mid-infrared source G287.47-0.54 (Tr14-N4) are presented and analysed along with archive 3.6 to 8 μm Spitzer images. We demonstrate the presence of a compact (0.3 pc) embedded infrared cluster with at least 72 young members. The age of the cluster is around 10^5 years and >= 32% of the sources show significant infrared excess emission. The SEDS of the two most luminous sources indicate that these are Class I young stellar objects. We found a 0.05 pc-long disk with i ~ 40-70 deg around source #902, which is seen directly through the dust disk only at Lambda >= 2.2. Most of its near-IR radiation is scattered light from lobes on both sides of the disk. A second YSO, #438, displays symmetrically elongated features that seem to be caused by scattering, also suggesting the presence of a disk. The young cluster G287.47-0.54 is embedded at the head of a dust pillar where the interaction of a very massive cluster, in this case Tr 16, with a dense molecular core has triggered a new star formation episode. We suggest that the dense cloudlet is sticking out of the remnant giant molecular cloud located at the far side of the northern Carina nebula. Also, five small molecular hydrogen 2.12 μm emission knots with no BrGamma counterpart are found in the vicinity of a nearby CO emission peak. These shock excited knots evince the presence of mass outflows in the region. At present, it is unclear whether the engine of this outflow is a member of the cluster or rather a yet undetected, younger YSO deeply embedded in the molecular core.

  18. Probing the Statistical Decay and α-clustering effects in 12C + 12C and 14N + 10B reactions

    NASA Astrophysics Data System (ADS)

    Morelli, L.; Baiocco, G.; D'Agostino, M.; Bruno, M.; Gulminelli, F.; Cinausero, M.; Degerlier, M.; Fabris, D.; Gramegna, F.; Marchi, T.; Barlini, S.; Bini, M.; Casini, G.; Gelli, N.; Lopez, A.; Pasquali, G.; Piantelli, S.; Valdrè, S.

    2014-03-01

    An experimental campaign has been undertaken at Laboratori Nazionali di Legnaro (LNL INFN), Italy, in order to progress in our understanding of the statistical properties of light nuclei at excitation energies above particle emission threshold, by measuring exclusive data from fusion-evaporation reactions. On the experimental side, a first reaction: 12C+12C at 95 MeV beam energy has been measured, using the GARFIELD + Ring Counter (RCo) apparatuses. Fusion-evaporation events have been exclusively selected out of the entire data set. The comparison to a dedicated Hauser-Feshbach calculation allows us to give constraints on the nuclear level density at high excitation energy for light systems ranging from C up to Mg. Out-of-equilibrium aα emission has been evidenced and attributed both to an entrance channel effect (favoured by the cluster nature of reaction partners), and, in more dissipative events, to the persistence of cluster correlations well above the 24Mg threshold for 6 α's decay. In order to study the same 24Mg compound nucleus at similar excitation energy with respect to this first reaction a new measurement, 14N + 10B at 5.7 A.MeV, was performed at LNL laboratories with the same experimental setup. The comparison between the two systems would allow us to further constrain the level density of light nuclei in the mass-excitation energy range of interest. In this perspective, deviations from a statistical behaviour can be used as a tool to get information on nuclear clustering, both in the ground-state for projectile and target and in the hot source formed in the collision.

  19. Control spectra for Quito

    NASA Astrophysics Data System (ADS)

    Aguiar, Roberto; Rivas-Medina, Alicia; Caiza, Pablo; Quizanga, Diego

    2017-03-01

    The Metropolitan District of Quito is located on or very close to segments of reverse blind faults, Puengasí, Ilumbisí-La Bota, Carcelen-El Inca, Bellavista-Catequilla and Tangahuilla, making it one of the most seismically dangerous cities in the world. The city is divided into five areas: south, south-central, central, north-central and north. For each of the urban areas, elastic response spectra are presented in this paper, which are determined by utilizing some of the new models of the Pacific Earthquake Engineering Research Center (PEER) NGA-West2 program. These spectra are calculated considering the maximum magnitude that could be generated by the rupture of each fault segment, and taking into account the soil type that exists at different points of the city according to the Norma Ecuatoriana de la Construcción (2015). Subsequently, the recurrence period of earthquakes of high magnitude in each fault segment is determined from the physical parameters of the fault segments (size of the fault plane and slip rate) and the pattern of recurrence of type Gutenberg-Richter earthquakes with double truncation magnitude (Mmin and Mmax) is used.

  20. Theoretical Studies of Molecular Spectra

    NASA Technical Reports Server (NTRS)

    McKay, Christopher (Technical Monitor); Freedman, Richard S.

    2002-01-01

    This summary describes the research activities of the principal investigator during the reporting period. The research includes spectroscopy, management of molecular databases, and generation of spectral line profiles and opacity data. The spectroscopy research includes oxygen broadening of nitric oxide (NO), analysis of CO2 spectra, analysis of HNO3 spectra, and analysis of CO spectra.

  1. Rotational Spectra and Analysis of the Argon-Monofluoropyridine Van Der Waals Complexes

    NASA Astrophysics Data System (ADS)

    Kamaee, Mahdi; Sun, Ming; Wijngaarden, Jennifer Van

    2013-06-01

    Chirped pulse Fourier transform microwave (FTMW) spectra of the van der Waals complexes of 2-fluoropyridine and 3-fluoropyridine with argon were serendipitously observed from 8-18 GHz while studying the pyridine monomers in 2011. These initial observations were used as a guide to measure the spectra of the complexes between 4 and 26 GHz using our Balle-Flygare FTMW instrument. With the higher resolution instrument, the ^{14}N quadrupole hyperfine structure was observed and analyzed. Based on our ab initio calculations (MP2/6-311++G(2d 2p)), the observed rotational spectra are consistent with a geometry such that the argon atom lies over the plane of pyridine within several degrees of the c-axis of the ring. The center of mass separation between the two moieties is between 3.5 and 3.6 Å.

  2. Continuum Fitting HST QSO Spectra

    NASA Technical Reports Server (NTRS)

    Tytler, David; Oliversen, Ronald J. (Technical Monitor)

    2002-01-01

    The Principal Component Analysis (PCA) method which we are using to fit and describe QSO spectra relies upon the fact that QSO continuum are generally very smooth and simple except for emission and absorption lines. To see this we need high signal-to-noise (S/N) spectra of QSOs at low redshift which have relatively few absorption lines in the Lyman-a forest. We need a large number of such spectra to use as the basis set for the PCA analysis which will find the set of principal component spectra which describe the QSO family as a whole. We have found that too few HST spectra have the required S/N and hence we need to supplement them with ground based spectra of QSOs at higher redshift. We have many such spectra and we have been working to make them suitable for this analysis. We have concentrated on this topic since 12/15/01.

  3. First Infrared Spectra of Nitrous Oxide Pentamer

    NASA Astrophysics Data System (ADS)

    Rezaei, M.; Oliaee, J. Norooz; Moazzen-Ahmadi, N.; McKellar, A. R. W.

    2012-06-01

    High resolution spectra have previously been studied for N_2O dimers (two isomers), trimers (one isomer), and tetramers (two isomers). Here, we assign two new bands to the N_2O pentamer. The bands are observed in the region of the N_2O νb{1} fundamental using a tunable laser to probe a pulsed supersonic slit jet expansion. They are centered at 2233.9 and 2236.4 wn for 14N_2O, and at 2164.4 and 2166.8 wn for 15N_2O. Attribution to the pentamer is based on comparison of the observed rotational constants with theoretical ones from calculated cluster structures based on two rather different N_2O pair potentials. The first potential function is from a recent high level ab initio study. The second potential is a relatively simple empirical one, based partly on fitting to bulk properties. The likely pentamer structure is a completely unsymmetric one. It can be visualized starting with a highly symmetric oblate tetramer which is attacked by a fifth monomer, locating itself at a favorable distance and breaking the symmetry. Interestingly, analysis of the two bands yields very similar but not quite identical ground state parameters. We believe that they are due to distinct isomers having this same basic structure but differing in the orientation direction of one N_2O monomer. [1] R. Dawes, X.-G. Wang, A.W. Jasper, and T. Carrington, Jr., {J. Chem. Phys.} {133}, 134304 (2010). [2] B. Kutcha, R.D. Etters, and R. LeSar, {J. Chem. Phys.} {97}, 5662 (1992). [3] J.N. Oliaee, M. Dehghany, N. Moazzen-Ahmadi, and A.R.W. McKellar, {J. Chem. Phys.} {134}, 074310 (2011).

  4. The ν 2 and 2ν 2 - ν 2 bands of 14N 16O 2: Electron Spin-Rotation and Hyperfine Contact Resonances in the (010) Vibrational State

    NASA Astrophysics Data System (ADS)

    Perrin, A.; Flaud, J. M.; Camypeyret, C.; Goldman, A.; Murcray, F. J.; Blatherwick, R. D.; Rinsland, C. P.

    1993-08-01

    High-resolution Fourier transform spectra covering the 720-920 cm -1 spectral region have been used to perform a reanalysis of the ν 2 band ((010)-(000) vibrational transition) together with the first analysis of the 2ν 2 - ν 2 hot band of nitrogen dioxide ((020)-(010) vibrational transition). The high-quality spectra show that, for numerous ν 2 lines, the hyperfine structure is easily observable in the case of resonances due to the hyperfine Fermi-type operator. By performing a full treatment of the spin-rotation and of the hyperfine operators, a new line list of the ν 2 band (positions and intensities) has been generated, and it is in excellent agreement with the experimental spectrum. Also, a thorough analysis of the 2ν 2 - ν 2 hot band has been performed leading to an extended set of new (020) spin-rotation levels. These levels, together with the {(100), (020), (001)} spin-rotation levels deduced previously from the analysis of the ν 1, 2ν 2, and ν 3 cold bands performed in the 6.3- to 7.5-μm spectral range [A. Perrin, J.-M. Flaud, C. Camy-Peyret. A.-M. Vasserot, G. Guelachvili, A. Goldman, F. J. Murcray, and R. D. Blatherwick, J. Mol. Spectrosc.154, 391-406 (1992)] were least-squares fitted, allowing one to derive a new set of vibrational band centers and rotational, spin-rotation, and interaction constants for the {(l00)(020)(001)} interacting states of 14N 16O 2.

  5. The AGB star nucleosynthesis in the light of the recent 17O ( p ,α)14N and 18O ( p ,α)15N reaction rate determinations

    NASA Astrophysics Data System (ADS)

    Palmerini, S.; Sergi, M. L.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Spitaleri, C.

    2015-02-01

    Presolar grains form in the cold and dusty envelopes of Asymptotic Giant Branch (AGB) stars. These solides, once that have been ejected by stellar winds, come to us as inclusions in meteorites providing invaluable benchmarks and constraints for our knowledge of low temeperature H-burning in stars. The Trojan Horse Method (THM) has been used to investigate the low-energy cross sections of the 17O ( p ,α)14N and 18O ( p ,α)15N reactions. Moreover, the strength of the 65 keV resonance in the 17O ( p ,α)14N reaction, measured by means of the THM, has been used to renormalize the corresponding resonance strength in the 17O + p radiative capture channel. The new estimates of the reaction rates have been introduced into calculations of AGB star nucleosynthesis and the results have been compared with geochemical analysis of "presolar" grains to determine their impact on astrophysical environments.

  6. [V16Sb4O42(H2O){VO(C6H14N2)2}4]: a terminal expansion to a polyoxovanadate archetype.

    PubMed

    Wutkowski, Adam; Näther, Christian; Kögerler, Paul; Bensch, Wolfgang

    2008-03-17

    The charge-neutral antimonatopolyoxovanadium(IV) cluster [V(IV)16Sb(III)4O42(H2O){V(IV)O(C6H14N2)2}4].10H2O.C6H14N2 was obtained under solvothermal conditions. The central cluster fragment, [V(IV) 16Sb(III)4O42], is a derivative of the [V18O42] archetype and is formed by replacing two VO5 polyhedra by two Sb2O5 units. The {V20Sb4} structure expands the {V16Sb4} motif by the addition of four square-pyramidal, terminal VO(1,2-diaminocyclohexane)2 groups. At low temperatures, the magnetic ground state is characterized by four independent S = 1/2 sites.

  7. Discovery of 1-[4-(N-benzylamino)phenyl]-3-phenylurea derivatives as non-peptidic selective SUMO-sentrin specific protease (SENP)1 inhibitors.

    PubMed

    Uno, Masaharu; Koma, Yosuke; Ban, Hyun Seung; Nakamura, Hiroyuki

    2012-08-15

    We developed 1-[4-(N-benzylamino)phenyl]-3-phenylurea derivative 4 (GN6958) as a non-peptidic selective SUMO-sentrin specific protease (SENP)1 protease inhibitor based on the hypoxia inducible factor (HIF)-1α inhibitor 1 (GN6767). The direct interaction of compound 1 with SENP1 protein in cells was observed by the pull-down experiments using the biotin-tagged compound 2 coated on the streptavidin affinity column. Among the various 1-[4-(N-benzylamino)phenyl]-3-phenylurea derivatives tested, compounds 3 and 4 suppressed HIF-1α accumulation in a concentration-dependent manner without affecting the expression level of tubulin protein in HeLa cells. Both compounds inhibited SENP1 protease activity in a concentration-dependent manner, and compound 4 exhibited more potent inhibition than compound 3. Compound 4 exhibited selective inhibition against SENP1 protease activity without inhibiting other protease enzyme activities in vitro.

  8. A density functional study of (17)O, (14)N and (2)H electric field gradient tensors in the real crystalline structure of alpha-glycine.

    PubMed

    Behzadi, Hadi; Hadipour, Nasser L; Mirzaei, Mahmoud

    2007-01-01

    A density functional theory (DFT) study was carried out to calculate (17)O, (14)N and (2)H electric field gradient (EFG) tensors in accurate neutron diffraction structures of alpha-glycine at 288 and 427 K. B3LYP is the used method and 6-311+G(*) and 6-311++G(**) are the basis sets in the calculations of EFG tensors at the sites of (17)O, (14)N and (2)H nuclei in the monomer and the octameric cluster of alpha-glycine at two temperatures. Quadrupole coupling constants and asymmetry parameters are the converted parameters of calculated EFG tensors to experimentally measurable ones. The calculated results of monomer and the target molecule in octameric cluster reveal that hydrogen-bonding interactions play an important role in the crystalline structure of alpha-glycine where the results of the target molecule in octameric cluster are in good agreement with the experiments.

  9. Sequencing BPS spectra

    NASA Astrophysics Data System (ADS)

    Gukov, Sergei; Nawata, Satoshi; Saberi, Ingmar; Stošić, Marko; Sułkowski, Piotr

    2016-03-01

    This paper provides both a detailed study of color-dependence of link homologies, as realized in physics as certain spaces of BPS states, and a broad study of the behavior of BPS states in general. We consider how the spectrum of BPS states varies as continuous parameters of a theory are perturbed. This question can be posed in a wide variety of physical contexts, and we answer it by proposing that the relationship between unperturbed and perturbed BPS spectra is described by a spectral sequence. These general considerations unify previous applications of spectral sequence techniques to physics, and explain from a physical standpoint the appearance of many spectral sequences relating various link homology theories to one another. We also study structural properties of colored HOMFLY homology for links and evaluate Poincaré polynomials in numerous examples. Among these structural properties is a novel "sliding" property, which can be explained by using (refined) modular S-matrix. This leads to the identification of modular transformations in Chern-Simons theory and 3d {N}=2 theory via the 3d/3d correspondence. Lastly, we introduce the notion of associated varieties as classical limits of recursion relations of colored superpolynomials of links, and study their properties.

  10. Sequencing BPS spectra

    SciTech Connect

    Gukov, Sergei; Nawata, Satoshi; Saberi, Ingmar; Stošić, Marko; Sułkowski, Piotr

    2016-03-02

    In this article, we provide both a detailed study of color-dependence of link homologies, as realized in physics as certain spaces of BPS states, and a broad study of the behavior of BPS states in general. We consider how the spectrum of BPS states varies as continuous parameters of a theory are perturbed. This question can be posed in a wide variety of physical contexts, and we answer it by proposing that the relationship between unperturbed and perturbed BPS spectra is described by a spectral sequence. These general considerations unify previous applications of spectral sequence techniques to physics, and explain from a physical standpoint the appearance of many spectral sequences relating various link homology theories to one another. We also study structural properties of colored HOMFLY homology for links and evaluate Poincar e polynomials in numerous examples. Among these structural properties is a novel "sliding" property, which can be explained by using (re fined) modular S-matrix. This leads to the identi fication of modular transformations in Chern-Simons theory and 3d N = 2 theory via the 3d/3d correspondence. In conclusion, we introduce the notion of associated varieties as classical limits of recursion relations of colored superpolynomials of links, and study their properties.

  11. Sequencing BPS spectra

    DOE PAGES

    Gukov, Sergei; Nawata, Satoshi; Saberi, Ingmar; ...

    2016-03-02

    In this article, we provide both a detailed study of color-dependence of link homologies, as realized in physics as certain spaces of BPS states, and a broad study of the behavior of BPS states in general. We consider how the spectrum of BPS states varies as continuous parameters of a theory are perturbed. This question can be posed in a wide variety of physical contexts, and we answer it by proposing that the relationship between unperturbed and perturbed BPS spectra is described by a spectral sequence. These general considerations unify previous applications of spectral sequence techniques to physics, and explainmore » from a physical standpoint the appearance of many spectral sequences relating various link homology theories to one another. We also study structural properties of colored HOMFLY homology for links and evaluate Poincar e polynomials in numerous examples. Among these structural properties is a novel "sliding" property, which can be explained by using (re fined) modular S-matrix. This leads to the identi fication of modular transformations in Chern-Simons theory and 3d N = 2 theory via the 3d/3d correspondence. In conclusion, we introduce the notion of associated varieties as classical limits of recursion relations of colored superpolynomials of links, and study their properties.« less

  12. Interpreting Chromosome Aberration Spectra

    NASA Technical Reports Server (NTRS)

    Levy, Dan; Reeder, Christopher; Loucas, Bradford; Hlatky, Lynn; Chen, Allen; Cornforth, Michael; Sachs, Rainer

    2007-01-01

    Ionizing radiation can damage cells by breaking both strands of DNA in multiple locations, essentially cutting chromosomes into pieces. The cell has enzymatic mechanisms to repair such breaks; however, these mechanisms are imperfect and, in an exchange process, may produce a large-scale rearrangement of the genome, called a chromosome aberration. Chromosome aberrations are important in killing cells, during carcinogenesis, in characterizing repair/misrepair pathways, in retrospective radiation biodosimetry, and in a number of other ways. DNA staining techniques such as mFISH ( multicolor fluorescent in situ hybridization) provide a means for analyzing aberration spectra by examining observed final patterns. Unfortunately, an mFISH observed final pattern often does not uniquely determine the underlying exchange process. Further, resolution limitations in the painting protocol sometimes lead to apparently incomplete final patterns. We here describe an algorithm for systematically finding exchange processes consistent with any observed final pattern. This algorithm uses aberration multigraphs, a mathematical formalism that links the various aspects of aberration formation. By applying a measure to the space of consistent multigraphs, we will show how to generate model-specific distributions of aberration processes from mFISH experimental data. The approach is implemented by software freely available over the internet. As a sample application, we apply these algorithms to an aberration data set, obtaining a distribution of exchange cycle sizes, which serves to measure aberration complexity. Estimating complexity, in turn, helps indicate how damaging the aberrations are and may facilitate identification of radiation type in retrospective biodosimetry.

  13. Nqrs Data for C6H16I2N4O8 [C6H14N4O2·2(HIO3)] (Subst. No. 0932)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume A `Substances Containing Ag … C10H15' of Volume 48 `Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III `Condensed Matter'. It contains an extract of Section `3.2 Data tables' of the Chapter `3 Nuclear quadrupole resonance data' providing the NQRS data for C6H16I2N4O8 [C6H14N4O2·2(HIO3)] (Subst. No. 0932)

  14. Nqrs Data for C6H16I2N2O8 [C6H14N2O2·2(HIO3)] (Subst. No. 0931)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume A `Substances Containing Ag … C10H15' of Volume 48 `Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III `Condensed Matter'. It contains an extract of Section `3.2 Data tables' of the Chapter `3 Nuclear quadrupole resonance data' providing the NQRS data for C6H16I2N2O8 [C6H14N2O2·2(HIO3)] (Subst. No. 0931)

  15. Nqrs Data for C6H20I6N2O20 [C6H14N2O2·6(HIO3)] (Subst. No. 0939)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume A `Substances Containing Ag … C10H15' of Volume 48 `Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III `Condensed Matter'. It contains an extract of Section `3.2 Data tables' of the Chapter `3 Nuclear quadrupole resonance data' providing the NQRS data for C6H20I6N2O20 [C6H14N2O2·6(HIO3)] (Subst. No. 0939)

  16. Nqrs Data for C6H17I3N2O11 [C6H14N2O2·3(HIO3)] (Subst. No. 0933)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume A `Substances Containing Ag … C10H15' of Volume 48 `Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III `Condensed Matter'. It contains an extract of Section `3.2 Data tables' of the Chapter `3 Nuclear quadrupole resonance data' providing the NQRS data for C6H17I3N2O11 [C6H14N2O2·3(HIO3)] (Subst. No. 0933)

  17. Genome sequence of a novel H14N7 subtype influenza A virus isolated from a blue-winged teal (Anas discors) harvested in Texas, USA

    USGS Publications Warehouse

    Ramey, Andy M.; Reeves, Andrew; Poulson, Rebecca L.; Carter, Deborah L.; Davis-Fields, Nicholas; Stallknecht, David E.

    2016-01-01

    We report here the complete genome sequence of a novel H14N7 subtype influenza A virus (IAV) isolated from a blue-winged teal (Anas discors) harvested in Texas, USA. The genomic characteristics of this IAV strain with a previously undetected subtype combination suggest recent viral evolution within the New World wild-bird IAV reservoir.                   

  18. Carbon-rich Presolar Grains from Massive Stars: Subsolar 12C/13C and 14N/15N Ratios and the Mystery of 15N

    NASA Astrophysics Data System (ADS)

    Pignatari, M.; Zinner, E.; Hoppe, P.; Jordan, C. J.; Gibson, B. K.; Trappitsch, R.; Herwig, F.; Fryer, C.; Hirschi, R.; Timmes, F. X.

    2015-08-01

    Carbon-rich grains with isotopic anomalies compared to the Sun are found in primitive meteorites. They were made by stars, and carry the original stellar nucleosynthesis signature. Silicon carbide grains of Type X and C and low-density (LD) graphites condensed in the ejecta of core-collapse supernovae. We present a new set of models for the explosive He shell and compare them with the grains showing 12C/13C and 14N/15N ratios lower than solar. In the stellar progenitor H was ingested into the He shell and not fully destroyed before the explosion. Different explosion energies and H concentrations are considered. If the supernova shock hits the He-shell region with some H still present, the models can reproduce the C and N isotopic signatures in C-rich grains. Hot-CNO cycle isotopic signatures are obtained, including a large production of 13C and 15N. The short-lived radionuclides 22Na and 26Al are increased by orders of magnitude. The production of radiogenic 22Ne from the decay of 22Na in the He shell might solve the puzzle of the Ne-E(L) component in LD graphite grains. This scenario is attractive for the SiC grains of type AB with 14N/15N ratios lower than solar, and provides an alternative solution for SiC grains originally classified as nova grains. Finally, this process may contribute to the production of 14N and 15N in the Galaxy, helping to produce the 14N/15N ratio in the solar system.

  19. Carbon-rich presolar grains from massive stars. Subsolar 12 C/ 13 C and 14 N/ 15 N ratios and the mystery of 15 N

    DOE PAGES

    Pignatari, M.; Zinner, E.; Hoppe, P.; ...

    2015-07-30

    We compared carbon-rich grains with isotopic anomalies to the Sun are found in primitive meteorites. They were made by stars, and carry the original stellar nucleosynthesis signature. Silicon carbide grains of Type X and C and low-density (LD) graphites condensed in the ejecta of core-collapse supernovae. Furthermore, we present a new set of models for the explosive He shell and compare them with the grains showing 12C/13C and 14N/15N ratios lower than solar. In the stellar progenitor H was ingested into the He shell and not fully destroyed before the explosion. All of the explosion energies and H concentrations aremore » considered. If the supernova shock hits the He-shell region with some H still present, the models can reproduce the C and N isotopic signatures in C-rich grains. Hot-CNO cycle isotopic signatures are obtained, including a large production of 13C and 15N. The short-lived radionuclides 22Na and 26Al are increased by orders of magnitude. The production of radiogenic 22Ne from the decay of 22Na in the He shell might solve the puzzle of the Ne-E(L) component in LD graphite grains. This scenario is attractive for the SiC grains of type AB with 14N/15N ratios lower than solar, and provides an alternative solution for SiC grains originally classified as nova grains. Finally, this process may contribute to the production of 14N and 15N in the Galaxy, helping to produce the 14N/15N ratio in the solar system.« less

  20. Direct measurement of the breakout reaction {sup 11}C({alpha},p){sup 14}N in explosive hydrogen-burning process

    SciTech Connect

    Hayakawa, S.; Kubono, S.; Kahl, D.; Yamaguchi, H.; Binh, Dam N.; Hashimoto, T.; Wakabayashi, Y.; He, J. J.; Iwasa, N.; Kato, S.; Komatsubara, T.; Kwon, Y. K.; Teranishi, T.; Wanajo, S.

    2012-11-12

    We determined the {sup 11}C({alpha},p){sup 14}N reaction rate relevant to the nucleosynthesis in explosive hydrogen-burning stars. The measurement was performed by means of the thick target method in inverse kinematics with {sup 11}C RI beams. We derived the excitation functions for the ground-state transition and excited-state transitions using time-of-flight information for the first time. The present reaction rate is compared to the previous one.

  1. Observation of high energy electromagnetic dipole radiation in 14N+Ni reactions at Elab/A = 35 MeV

    NASA Astrophysics Data System (ADS)

    Alamanos, N.; Braun-Munzinger, P.; Freifelder, R. F.; Paul, P.; Stachel, J.; Awes, T. C.; Ferguson, R. L.; Obenshain, F. E.; Plasil, F.; Young, G. R.

    1986-06-01

    High energy photons (2014N+Ni-->γ+X reactions were unambiguously observed in a Pb-glass detector array. The measured angular distributions exhibit a predominant dipole pattern. This rules out statistical and/or nucleon-nucleon production mechanisms. The data indicate instead a more coherent production mechanism reflecting the direction of relative motion of target and projectile.

  2. Millimeter-Wave Observations of Circumstellar 14N/15N and 12C/13C Ratios: New Insights into J-Type Stars

    NASA Astrophysics Data System (ADS)

    Adande, Gilles; Ziurys, Lucy M.; Woolf, Neville

    2016-06-01

    Measurements of 14N/15N and 12C/13C isotopic ratios have been conducted towards circumstellar envelopes of a sample of evolved stars using the J = 3→2 rotational transitions of the isotopologues of HCN, observed with the Submillimeter Telescope (SMT) of the Arizona Radio Observatory (ARO). Towards the J-type stars Y CVn and RY Dra, where 12C/13C ~ 3, the 14N/15N ratios were found to be 120-180 and 225, respectively. The 14N/15N ratio is thus anomalously low relative to interstellar values and a factor ~100 lower than equilibrium values predicted from the CNO cycle. Combining these results with previous chemical and isotopic prior observations of these stars, we conclude that two anomalous behaviors are likely to have occurred in Y CVn and RY Dra. First, the stellar envelope failed to participate in the normal mixing seen in low mass red giants, in which C and then O are substantially converted to N. Secondly, both the carbon enrichment and anomalous isotopic composition of both 13C and15N could have been caused by a plume of hot gas, hydrogen poor but enriched in 12C, from a helium flash mixing into the envelope.

  3. From Ba3Ta5O14N to LaBa2Ta5O13N2: Decreasing the optical band gap of a photocatalyst

    NASA Astrophysics Data System (ADS)

    Anke, B.; Bredow, T.; Pilarski, M.; Wark, M.; Lerch, M.

    2017-02-01

    Yellow LaBa2Ta5O13N2 was successfully synthesized as phase-pure material crystallizing isostructurally to previously reported Ba3Ta5O14N and mixed-valence Ba3TaV4TaIVO15. The electronic structure of LaBa2Ta5O13N2 was studied theoretically with the range-separated hybrid method HSE06. The most stable structure was obtained when lanthanum was placed on 2a and nitrogen on 4h sites confirming Pauling's second rule. By incorporating nitrogen, the measured band gap decreases from ∼3.8 eV for the oxide via 2.74 eV for Ba3Ta5O14N to 2.63 eV for the new oxide nitride, giving rise to an absorption band well in the visible-light region. Calculated fundamental band gaps confirm the experimental trend. The atom-projected density of states has large contributions from N2p orbitals close to the valence band edge. These are responsible for the observed band gap reduction. Photocatalytic hydrogen formation was investigated and compared with that of Ba3Ta5O14N revealing significantly higher activity for LaBa2Ta5O13N2 under UV-light.

  4. Laboratory simulation of dust spectra

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Sandford, S. A.

    1988-01-01

    Laboratory studies of the IR spectra of interstellar dust are reviewed. Studies of the absorption spectra of dense molecular clouds are discussed, including methods to produce interstellar ice analogues, simulations of astronomical spectra, and IR absorption features caused by ices. Comparisons are made between observational and experimental results of interstellar dust studies. Also, the interstellar emission features associated with dusty regions exposed to UV radiation are examined, including bands related to PAHs and PAH-related materials. It is shown that interstellar spectra are more consistant with emission from free PAHs than with emission from particles.

  5. Catalogue of representative meteor spectra

    NASA Astrophysics Data System (ADS)

    Vojáček, V.; Borovička, J.; Koten, P.; Spurný, P.; Štork, R.

    2016-01-01

    We present a library of low-resolution meteor spectra that includes sporadic meteors, members of minor meteor showers, and major meteor showers. These meteors are in the magnitude range from +2 to -3, corresponding to meteoroid sizes from 1 mm to10 mm. This catalogue is available online at the CDS for those interested in video meteor spectra.

  6. Projecting Spectra for Classroom Investigations.

    ERIC Educational Resources Information Center

    Sadler, Philip

    1991-01-01

    Describes an inexpensive spectrum projector that makes high-dispersion, high-efficiency diffraction gratings using a holographic process. Discusses classroom applications such as transmission spectra, absorption spectra, reflection characteristics of materials, color mixing, florescence and phosphorescence, and break up spectral colors. (MDH)

  7. Phonon spectra of alkali metals

    NASA Astrophysics Data System (ADS)

    Zeković, S.; Vukajlović, F.; Veljković, V.

    1982-10-01

    In this work we used a simple local model pseudopotential which includes screening for the phonon spectra calculations of alkali metals. The results obtained are in very good agreement with experimental data. In some branches of phonon spectra the differences between theoretical and experimental results are within 1-2%, while the maximum error is about 6%. The suggested form of the pseudopotential allows us to describe the phonon spectra of Na, K and Rb with only one, and, at the same time, a unique, parameter. In this case, the maximum disagreements from experiment are 9% for Na, 8% for K and 7% for Rb.

  8. THE EFFECT OF THE {sup 14}N(p, {gamma}){sup 15}O REACTION ON THE BLUE LOOPS IN INTERMEDIATE-MASS STARS

    SciTech Connect

    Halabi, Ghina M.; El Eid, Mounib F.; Champagne, Arthur

    2012-12-10

    We present stellar evolutionary sequences of stars in the mass range 5-12 M{sub Sun }, having solar-like initial composition. The stellar models are obtained using updated input physics, including recent rates of thermonuclear reactions. We investigate the effects of a modification of the {sup 14}N(p, {gamma}){sup 15}O reaction rate, as suggested by recent evaluations, on the formation and extension of the blue loops encountered during the evolution of the stars in the above mass range. We find that a reduced {sup 14}N(p, {gamma}){sup 15}O rate, as described in the text, has a striking impact on the physical conditions of burning and mixing during shell hydrogen burning when the blue loops are formed. In particular, we find that the efficiency of shell hydrogen burning is crucial for the formation of an extended blue loop. We show that a significantly reduced {sup 14}N(p, {gamma}){sup 15}O rate affects severely the extension of the blue loops and the time spent by the star in the blue part of the Hertzsprung-Russell diagram in the mass range 5-7 M{sub Sun} if the treatment of convection is based on the Schwarzschild criterion only. In this case, envelope overshooting helps to restore well-extended blue loops as supported by the observations of the Cepheid stars. If core overshooting is included during the core hydrogen and core helium burning phases, the loop formation and its properties depend on how this overshooting is treated for a given stellar mass range, as well as on its efficiency.

  9. The impact of the revised 17O(p, α)14N reaction rate on 17O stellar abundances and yields

    NASA Astrophysics Data System (ADS)

    Straniero, O.; Bruno, C. G.; Aliotta, M.; Best, A.; Boeltzig, A.; Bemmerer, D.; Broggini, C.; Caciolli, A.; Cavanna, F.; Ciani, G. F.; Corvisiero, P.; Cristallo, S.; Davinson, T.; Depalo, R.; Di Leva, A.; Elekes, Z.; Ferraro, F.; Formicola, A.; Fülöp, Zs.; Gervino, G.; Guglielmetti, A.; Gustavino, C.; Gyürky, G.; Imbriani, G.; Junker, M.; Menegazzo, R.; Mossa, V.; Pantaleo, F. R.; Piatti, D.; Piersanti, L.; Prati, P.; Samorjai, E.; Strieder, F.; Szücs, T.; Takács, M. P.; Trezzi, D.

    2017-02-01

    Context. Material processed by the CNO cycle in stellar interiors is enriched in 17O. When mixing processes from the stellar surface reach these layers, as occurs when stars become red giants and undergo the first dredge up, the abundance of 17O increases. Such an occurrence explains the drop of the 16O/17O observed in RGB stars with mass larger than 1.5M⊙. As a consequence, the interstellar medium is continuously polluted by the wind of evolved stars enriched in 17O. Aims: Recently, the Laboratory for Underground Nuclear Astrophysics (LUNA) collaboration released an improved rate of the 17O(p, α)14N reaction. In this paper we discuss the impact that the revised rate has on the 16O/17O ratio at the stellar surface and on 17O stellar yields. Methods: We computed stellar models of initial mass between 1 and 20 M⊙ and compared the results obtained by adopting the revised rate of the 17O(p, α)14N to those obtained using previous rates. Results: The post-first dredge up 16O/17O ratios are about 20% larger than previously obtained. Negligible variations are found in the case of the second and the third dredge up. In spite of the larger 17O(p, α)14N rate, we confirm previous claims that an extra-mixing process on the red giant branch, commonly invoked to explain the low carbon isotopic ratio observed in bright low-mass giant stars, marginally affects the 16O/17O ratio. Possible effects on AGB extra-mixing episodes are also discussed. As a whole, a substantial reduction of 17O stellar yields is found. In particular, the net yield of stars with mass ranging between 2 and 20 M⊙ is 15 to 40% smaller than previously estimated. Conclusions: The revision of the 17O(p, α)14N rate has a major impact on the interpretation of the 16O/17O observed in evolved giants, in stardust grains and on the 17O stellar yields.

  10. Resonance strength measurement at astrophysical energies: The {sup 17}O(p,α){sup 14}N reaction studied via Trojan Horse Method

    SciTech Connect

    Sergi, M. L. La Cognata, M.; Pizzone, R. G.; Spitaleri, C.; Lamia, L.; Rapisarda, G. G.; Mukhamedzhanov, A.; Irgaziev, B.; Tang, X. D.; Wiescher, M.; Mrazek, J.; Kroha, V.

    2015-10-15

    In recent years, the Trojan Horse Method (THM) has been used to investigate the low-energy cross sections of proton-induced reactions on {sup 17}O nuclei, overcoming extrapolation procedures and enhancement effects due to electron screening. We will report on the indirect study of the {sup 17}O(p,α){sup 14}N reaction via the THM by applying the approach developed for extracting the resonance strength of narrow resonance in the ultralow energy region. Two measurements will be described and the experimental THM cross sections will be shown for both experiments.

  11. Assessment of experimental d-PIGE γ-ray production cross sections for 12C, 14N and 16O and comparison with absolute thick target yields

    NASA Astrophysics Data System (ADS)

    Csedreki, L.; Halász, Z.; Kiss, Á. Z.

    2016-08-01

    Measured differential cross sections for deuteron induced γ-ray emission from the reactions 12C(d,pγ)13C, (Eγ = 3089 keV), 14N(d,pγ)15N (Eγ = 8310 keV) and 16O(d,pγ)17O (Eγ = 871 keV) available in the literature were assessed. In order to cross check the assessed γ-ray production cross section data, thick target γ-yields calculated from the differential cross sections were compared with available measured thick target yields. Recommended differential cross section data for each reaction were deduced for particle induced γ-ray emission (PIGE) applications.

  12. Density functional calculations of (55)Mn, (14)N and (13)C electron paramagnetic resonance parameters support an energetically feasible model system for the S(2) state of the oxygen-evolving complex of photosystem II.

    PubMed

    Schinzel, Sandra; Schraut, Johannes; Arbuznikov, Alexei V; Siegbahn, Per E M; Kaupp, Martin

    2010-09-10

    Metal and ligand hyperfine couplings of a previously suggested, energetically feasible Mn(4)Ca model cluster (SG2009(-1)) for the S(2) state of the oxygen-evolving complex (OEC) of photosystem II (PSII) have been studied by broken-symmetry density functional methods and compared with other suggested structural and spectroscopic models. This was carried out explicitly for different spin-coupling patterns of the S=1/2 ground state of the Mn(III)(Mn(IV))(3) cluster. By applying spin-projection techniques and a scaling of the manganese hyperfine couplings, computation of the hyperfine and nuclear quadrupole coupling parameters allows a direct evaluation of the proposed models in comparison with data obtained from the simulation of EPR, ENDOR, and ESEEM spectra. The computation of (55)Mn hyperfine couplings (HFCs) for SG2009(-1) gives excellent agreement with experiment. However, at the current level of spin projection, the (55)Mn HFCs do not appear sufficiently accurate to distinguish between different structural models. Yet, of all the models studied, SG2009(-1) is the only one with the Mn(III) site at the Mn(C) center, which is coordinated by histidine (D1-His332). The computed histidine (14)N HFC anisotropy for SG2009(-1) gives much better agreement with ESEEM data than the other models, in which Mn(C) is an Mn(IV) site, thus supporting the validity of the model. The (13)C HFCs of various carboxylates have been compared with (13)C ENDOR data for PSII preparations with (13)C-labelled alanine.

  13. Theoretical study of NMR, infrared and Raman spectra on triple-decker phthalocyanines

    SciTech Connect

    Suzuki, Atsushi; Oku, Takeo

    2016-02-01

    Electronic structures and magnetic properties of multi-decker phthalocyanines were studied by theoretical calculation. Electronic structures, excited processes at multi-states, isotropic chemical shifts of {sup 13}C, {sup 14}N and {sup 1}H-nuclear magnetic resonance (NMR), principle V-tensor in electronic field gradient (EFG) tensor and asymmetry parameters (η), vibration mode in infrared (IR) and Raman spectra of triple-decker phthalocyanines were calculated by density functional theory (DFT) and time-dependent DFT using B3LYP as basis function. Electron density distribution was delocalized on the phthalocyanine rings with electron static potential. Considerable separation of chemical shifts in {sup 13}C, {sup 14}N and {sup 1}H-NMR was originated from nuclear spin interaction between nitrogen and carbon atoms, nuclear quadrupole interaction based on EFG and η of central metal under crystal field. Calculated optical absorption at multi-excited process was derived from overlapping π-orbital on the phthalocyanine rings. The vibration modes in IR and Raman spectra were based on in-plane deformation and stretching vibrations of metal-ligand coordination bond on the deformed structure.

  14. Spectra ID of recent SN

    NASA Astrophysics Data System (ADS)

    Challis, Peter

    2013-12-01

    P. Challis, Harvard-Smithsonian Center for Astrophysics (CfA), on behalf of the CfA Supernova Group, report spectra (range 320-860 nm) of various SN obtained during Dec. 24-27 UT by P. Challis, S. Gottilla (MMTO.org), and E. Marin (MMTO.org) with the MMT 6.5-m telescope (+ Blue Channel). Cross-correlation with a library of supernova spectra using the "Supernova Identification" code (SNID; Blondin and Tonry 2007, Ap.J.

  15. Submillimeter Observations of Titan: Global Measures of Stratospheric Temperature, CO, HCN, HC3N, and the Isotopic Ratios 12C/13C and 14N/15N

    NASA Astrophysics Data System (ADS)

    Gurwell, Mark A.

    2004-11-01

    Interferometric observations of the atmosphere of Titan were performed with the Submillimeter Array on two nights in 2004 February to investigate the global average vertical distributions of several molecular species above the tropopause. Rotational transitions of CO, isomers of HCN, and HC3N were simultaneously recorded. The abundance of CO is determined to be 51+/-4 parts per million (ppm), constant with altitude. The vertical profile of HCN is dependent on the assumed temperature but generally increases from 30 parts per billion at the condensation altitude (~83 km) to 5 ppm at ~300 km. Furthermore, the central core of the HCN emission is strong and can be reproduced only if the upper stratospheric temperature increases with altitude. The isotopic ratios are determined to be 12C/13C=132+/-25 and 14N/15N=94+/-13 assuming the Coustenis & Bézard temperature profile. If the Lellouch temperature profile is assumed, the ratios decrease to 12C/13C=108+/-20 and 14N/15N=72+/-9. The vertical profile of HC3N is consistent with that derived by Marten et al.

  16. Kinetic commitment in the catalysis of glutamine synthesis by GS1 from Arabidopsis using (14)N/(15)N and solvent isotope effects.

    PubMed

    Mauve, Caroline; Giraud, Nicolas; Boex-Fontvieille, Edouard R A; Antheaume, Ingrid; Tea, Illa; Tcherkez, Guillaume

    2016-11-01

    Glutamine synthetase (GS, EC 6.3.1.2) catalyzes the production of glutamine from glutamate, ammonium and ATP. Although being essential in plants for N assimilation and recycling, kinetic commitments and transition states of the reaction have not been clearly established yet. Here, we examined (12)C/(13)C, (14)N/(15)N and H2O/D2O isotope effects in Arabidopsis GS1 catalysis and compared to the prokaryotic (Escherichia coli) enzyme. A(14)N/(15)N isotope effect ((15)V/K ≈ 1.015, with respect to substrate NH4(+)) was observed in the prokaryotic enzyme, indicating that ammonium utilization (deprotonation and/or amidation) was partially rate-limiting. In the plant enzyme, the isotope effect was inverse ((15)V/K = 0.965), suggesting that the reaction intermediate is involved in an amidation-deamidation equilibrium favoring (15)N. There was no (12)C/(13)C kinetic isotope effect ((13)V/K = 1.000), suggesting that the amidation step of the catalytic cycle involves a transition state with minimal alteration of overall force constants at the C-5 carbon. Surprisingly, the solvent isotope effect was found to be inverse, that is, with a higher turn-over rate in heavy water ((D)V ≈ 0.5), showing that restructuration of the active site due to displacement of H2O by D2O facilitates the processing of intermediates.

  17. Accelerator mass spectrometry measurements of the 13C (n ,γ )14C and 14N(n ,p )14C cross sections

    NASA Astrophysics Data System (ADS)

    Wallner, A.; Bichler, M.; Buczak, K.; Dillmann, I.; Käppeler, F.; Karakas, A.; Lederer, C.; Lugaro, M.; Mair, K.; Mengoni, A.; Schätzel, G.; Steier, P.; Trautvetter, H. P.

    2016-04-01

    The technique of accelerator mass spectrometry (AMS), offering a complementary tool for sensitive studies of key reactions in nuclear astrophysics, was applied for measurements of the 13C (n ,γ )14C and the 14N(n ,p )14C cross sections, which act as a neutron poison in s -process nucleosynthesis. Solid samples were irradiated at Karlsruhe Institute of Technology with neutrons closely resembling a Maxwell-Boltzmann distribution for k T =25 keV, and also at higher energies between En=123 and 182 keV. After neutron irradiation the produced amount of 14C in the samples was measured by AMS at the Vienna Environmental Research Accelerator (VERA) facility. For both reactions the present results provide important improvements compared to previous experimental data, which were strongly discordant in the astrophysically relevant energy range and missing for the comparably strong resonances above 100 keV. For 13C (n ,γ ) we find a four times smaller cross section around k T =25 keV than a previous measurement. For 14N(n ,p ), the present data suggest two times lower cross sections between 100 and 200 keV than had been obtained in previous experiments and data evaluations. The effect of the new stellar cross sections on the s process in low-mass asymptotic giant branch stars was studied for stellar models of 2 M⊙ initial mass, and solar and 1 /10th solar metallicity.

  18. Improved Direct Measurement of the 64.5 keV Resonance Strength in the 17O (p ,α )14N Reaction at LUNA

    NASA Astrophysics Data System (ADS)

    Bruno, C. G.; Scott, D. A.; Aliotta, M.; Formicola, A.; Best, A.; Boeltzig, A.; Bemmerer, D.; Broggini, C.; Caciolli, A.; Cavanna, F.; Ciani, G. F.; Corvisiero, P.; Davinson, T.; Depalo, R.; Di Leva, A.; Elekes, Z.; Ferraro, F.; Fülöp, Zs.; Gervino, G.; Guglielmetti, A.; Gustavino, C.; Gyürky, Gy.; Imbriani, G.; Junker, M.; Menegazzo, R.; Mossa, V.; Pantaleo, F. R.; Piatti, D.; Prati, P.; Somorjai, E.; Straniero, O.; Strieder, F.; Szücs, T.; Takács, M. P.; Trezzi, D.; LUNA Collaboration

    2016-09-01

    The 17O (p ,α ) 14N reaction plays a key role in various astrophysical scenarios, from asymptotic giant branch stars to classical novae. It affects the synthesis of rare isotopes such as 17O and 18F, which can provide constraints on astrophysical models. A new direct determination of the ER=64.5 keV resonance strength performed at the Laboratory for Underground Nuclear Astrophysics (LUNA) accelerator has led to the most accurate value to date ω γ =10.0 ±1. 4stat±0. 7syst neV , thanks to a significant background reduction underground and generally improved experimental conditions. The (bare) proton partial width of the corresponding state at Ex=5672 keV in 18F is Γp=35 ±5stat±3syst neV . This width is about a factor of 2 higher than previously estimated, thus leading to a factor of 2 increase in the 17O (p , α ) 14N reaction rate at astrophysical temperatures relevant to shell hydrogen burning in red giant and asymptotic giant branch stars. The new rate implies lower 17O/16O ratios, with important implications on the interpretation of astrophysical observables from these stars.

  19. Vibrational Spectra of Selected Monohalogenated Monocarboxylic Acids.

    DTIC Science & Technology

    HALOGENATED HYDROCARBONS, INFRARED SPECTRA), (*CARBOXYLIC ACIDS, *INFRARED SPECTRA), IODINE COMPOUNDS, CHLORINE COMPOUNDS, BROMINE COMPOUNDS, ACETIC ACID , ACETATES, MOLECULAR STRUCTURE, MOLECULAR ASSOCIATION

  20. Photon spectra from WIMP annihilation

    SciTech Connect

    Cembranos, J. A. R.; Cruz-Dombriz, A. de la; Dobado, A.; Maroto, A. L.; Lineros, R. A.

    2011-04-15

    If the present dark matter in the Universe annihilates into standard model particles, it must contribute to the fluxes of cosmic rays that are detected on the Earth and, in particular, to the observed gamma-ray fluxes. The magnitude of such a contribution depends on the particular dark matter candidate, but certain features of the produced photon spectra may be analyzed in a rather model-independent fashion. In this work we provide the complete photon spectra coming from WIMP annihilation into standard model particle-antiparticle pairs obtained by extensive Monte Carlo simulations. We present results for each individual annihilation channel and provide analytical fitting formulas for the different spectra for a wide range of WIMP masses.

  1. QUALITATIVE INTERPRETATION OF GALAXY SPECTRA

    SciTech Connect

    Sanchez Almeida, J.; Morales-Luis, A. B.; Terlevich, R.; Terlevich, E.; Cid Fernandes, R. E-mail: abml@iac.es E-mail: eterlevi@inaoep.mx

    2012-09-10

    We describe a simple step-by-step guide to qualitative interpretation of galaxy spectra. Rather than an alternative to existing automated tools, it is put forward as an instrument for quick-look analysis and for gaining physical insight when interpreting the outputs provided by automated tools. Though the recipe is for general application, it was developed for understanding the nature of the Automatic Spectroscopic K-means-based (ASK) template spectra. They resulted from the classification of all the galaxy spectra in the Sloan Digital Sky Survey data release 7, thus being a comprehensive representation of the galaxy spectra in the local universe. Using the recipe, we give a description of the properties of the gas and the stars that characterize the ASK classes, from those corresponding to passively evolving galaxies, to H II galaxies undergoing a galaxy-wide starburst. The qualitative analysis is found to be in excellent agreement with quantitative analyses of the same spectra. We compare the mean ages of the stellar populations with those inferred using the code STARLIGHT. We also examine the estimated gas-phase metallicity with the metallicities obtained using electron-temperature-based methods. A number of byproducts follow from the analysis. There is a tight correlation between the age of the stellar population and the metallicity of the gas, which is stronger than the correlations between galaxy mass and stellar age, and galaxy mass and gas metallicity. The galaxy spectra are known to follow a one-dimensional sequence, and we identify the luminosity-weighted mean stellar age as the affine parameter that describes the sequence. All ASK classes happen to have a significant fraction of old stars, although spectrum-wise they are outshined by the youngest populations. Old stars are metal-rich or metal-poor depending on whether they reside in passive galaxies or in star-forming galaxies.

  2. The structure of BPS spectra

    NASA Astrophysics Data System (ADS)

    Longhi, Pietro

    In this thesis we develop and apply novel techniques for analyzing BPS spectra of supersymmetric quantum field theories of class S. By a combination of wall-crossing, spectral networks and quiver methods we explore the BPS spectra of higher rank four-dimensional N = 2 super Yang-Mills, uncovering surprising new phenomena. Focusing on the SU(3) case, we prove the existence of wild BPS spectra in field theory, featuring BPS states of higher spin whose degeneracies grow exponentially with the energy. The occurrence of wild BPS states is surprising because it appears to be in tension with physical expectations on the behavior of the entropy as a function of the energy scale. The solution to this puzzle comes from realizing that the size of wild BPS states grows rapidly with their mass, and carefully analyzing the volume-dependence of the entropy of BPS states. We also find some interesting structures underlying wild BPS spectra, such as a Regge-like relation between the maximal spin of a BPS multiplet and the square of its mass, and the existence of a universal asymptotic distribution of spin-j irreps within a multiplet of given charge. We also extend the spectral networks construction by introducing a refinement in the topological classification of 2d-4d BPS states, and identifying their spin with a topological invariant known as the "writhe of soliton paths". A careful analysis of the 2d-4d wall-crossing behavior of this refined data reveals that it is described by motivic Kontsevich-Soibelman transformations, controlled by the Protected Spin Character, a protected deformation of the BPS index encoding the spin of BPS states. Our construction opens the way for the systematic study of refined BPS spectra in class S theories. We apply it to several examples, including ones featuring wild BPS spectra, where we find an interesting relation between spectral networks and certain functional equations. For class S theories of A 1 type, we derive an alternative technique for

  3. Upper limits to the fractionation of isotopes due to atmospheric escape: Implications for potential 14N/15N in Pluto's atmosphere

    NASA Astrophysics Data System (ADS)

    Mandt, K.; Mousis, O.

    2014-12-01

    Formation and evolution of the solar system is studied in part using stable isotope ratios that are presumed to be primordial, or representative of conditions in the protosolar Nebula. Comets, meteorites and giant planet atmospheres provide measurements that can reasonably be presumed to represent primordial conditions while the terrestrial planets, Pluto and Saturn's moon Titan have atmospheres that have evolved over the history of the solar system. The stable isotope ratios measured in these atmospheres are, therefore, first a valuable tool for evaluating the history of atmospheric escape and once escape is constrained can provide indications of conditions of formation. D/H ratios in the atmosphere of Venus provide indications of the amount of water lost from Venus over the history of the solar system, while several isotope ratios in the atmosphere of Mars provide evidence for long-term erosion of the atmosphere. We have recently demonstrated that the nitrogen ratios, 14N/15N, in Titan's atmosphere cannot evolve significantly over the history of the solar system and that the primordial ratio for Titan must have been similar to the value recently measured for NH3 in comets. This implies that the building blocks for Titan formed in the protosolar nebula rather than in the warmer subnebula surrounding Saturn at the end of its formation. Our result strongly contrasts with works showing that 14N/15N in the atmosphere of Mars can easily fractionate from the terrestrial value to its current value due to escape processes within the lifetime of the solar system. The difference between how nitrogen fractionates in Mars and Titan's atmospheres presents a puzzle for the fractionation of isotopes in an atmosphere due to atmospheric escape. Here, we present a method aiming at determining an upper limit to the amount of fractionation allowed to occur due to escape, which is a function of the escape flux and the column density of the atmospheric constituent. Through this

  4. Unrestricted Hartree-Fock Investigation of the Electron Distribution on the Heme System in Azidohemoglobin-^57mFe and ^14N Hyperfine Interactions.

    NASA Astrophysics Data System (ADS)

    Dubey, Archana; Saha, H. P.; Chow, Lee; Scheicher, R. H.; Sahoo, N.; Pink, R. H.; Mahato, Dip N.; Huang, M. B.; Das, T. P.

    2006-03-01

    We have a program of investigations in progress on the electronic structure of azidohemoglobin by the first-principles Unrestricted Hartree-Fock procedure to understand the substantial amount of magnetic (g-tensor), magnetic hyperfine, and nuclear quadrupole interaction, data available [1] from electron paramagnetic resonance, Mosbauer and electron-nuclear double resonance measurements. Earlier semi-empirical Self-Consistent Charge Extended Huckel investigations have provided semiquantitative results [2] with different degrees of agreement for the available properties and suggested the need for more accurate and quantitative investigations. Results of our investigations will be presented for the ^57mFe and ^14N nuclear quadrupole and magnetic hyperfine interaction properties and compared with experimental data. *Also UCF Orlando [1] See Refs. 2-4 listed in Ref.[2]. [2] Santosh K. Mishra, J.N. Roy, K.C. Mishra and T.P. Das, Theo. Chim. Acta 75, 195(1989).

  5. Proof of principle of a high-spatial-resolution, resonant-response γ-ray detector for Gamma Resonance Absorption in 14N

    NASA Astrophysics Data System (ADS)

    Brandis, M.; Goldberg, M. B.; Vartsky, D.; Friedman, E.; Kreslo, I.; Mardor, I.; Dangendorf, V.; Levi, S.; Mor, I.; Bar, D.

    2011-02-01

    The development of a mm-spatial-resolution, resonant-response detector based on a micrometric glass capillary array filled with liquid scintillator is described. This detector was developed for Gamma Resonance Absorption (GRA) in 14N. GRA is an automatic-decision radiographic screening technique that combines high radiation penetration (the probe is a 9.17 MeV γ-ray) with very good sensitivity and specificity to nitrogenous explosives. Detailed simulation of the detector response to electrons and protons generated by the 9.17 MeV γ-rays was followed by a proof-of-principle experiment, using a mixed γ-ray and neutron source. Towards this, a prototype capillary detector was assembled, including the associated filling and readout systems. Simulations and experimental results indeed show that proton tracks are distinguishable from electron tracks at relevant energies, based on a criterion that combines track length and light intensity per unit length.

  6. NO3- Coordination in Aqueous Solutions by 15N/14N and 18O/natO Isotopic Substitution: What Can We Learn from Molecular Simulation?

    DOE PAGES

    Chialvo, Ariel A.; Vlcek, Lukas

    2014-12-16

    We explore the deconvolution of the water-nitrate correlations by the first-order difference approach involving neutron diffraction of heavy- and null-aqueous solutions of KNO3 under 14N 15N and natON 18ON substitutions to achieve a full characterization of the first water coordination around the nitrate ion. For that purpose we performed isobaric-isothermal simulations of 3.5m KNO3 aqueous solutions at ambient conditions to generate the relevant radial distribution functions (RDF) required in the analysis (a) to identify the individual partial contributions to the total neutron weighted distribution function, (b) to isolate and assess the contribution of NO3 -!K+ pair formation, (c) to testmore » the accuracy of the NDIS-based coordination calculations and XRDbased assumptions, and (d) to describe the water coordination around both the nitrogen and oxygen sites of the nitrate ion.« less

  7. Lifetime Measurement of the 6.79 MeV State in 15O to Help Constrain the 14N(p,gamma)15O Reaction Rate

    NASA Astrophysics Data System (ADS)

    Galinski, Naomi; Sjue, Sky; Davids, Barry; Kanungo, Rituparna; Ruiz, Chris; Hager, Ulrike

    2014-03-01

    The 14N(p, γ)15O reaction is the slowest reaction in the CNO cycle. The rate of this reaction is an important input into calculating the ages of globular cluster stars, determining the primordial core composition of our Sun and affects the amount of He ash produced in H burning shells in red giant stars and hence the nucleosynthesis of heavier elements. The largest remaining uncertainty in calculating the reaction rate is the lifetime of the 6.79 MeV excited state of 15O. We report an upper limit of 1.84 fs on this lifetime. In addition we measured the lifetime of the 6.86 MeV state of 15O to be 13.3-1. 2 + 0 . 8 fs. I am a recipient of a DOC-FFORTE-fellowship of the Austrian Academy of Sciences and thank them for their generous support.

  8. Persistence of singlet fluctuations in the coupled spin tetrahedra system Cu2Te2O5Br2 revealed by high-field magnetization, 79Br NQR, and 125Te NMR

    NASA Astrophysics Data System (ADS)

    Baek, S.-H.; Choi, K.-Y.; Berger, H.; Büchner, B.; Grafe, H.-J.

    2012-11-01

    We present high-field magnetization and 79Br nuclear quadrupole resonance (NQR) and 125Te nuclear magnetic resonance (NMR) studies in the weakly coupled Cu2+ (S=1/2) tetrahedral system Cu2Te2O5Br2. The field-induced level crossing effects were observed by the magnetization measurements in a long-ranged magnetically ordered state which was confirmed by a strong divergence of the spin-lattice relaxation rate T1-1 at T0=13.5 K. In the paramagnetic state, T1-1 reveals an effective singlet-triplet spin gap much larger than that observed by static bulk measurements. Our results imply that the inter- and the intratetrahedral interactions compete, but at the same time they cooperate strengthening effectively the local intratetrahedral exchange couplings. We discuss that the unusual feature originates from the frustrated intertetrahedral interactions.

  9. Computer Simulation of NMR Spectra.

    ERIC Educational Resources Information Center

    Ellison, A.

    1983-01-01

    Describes a PASCAL computer program which provides interactive analysis and display of high-resolution nuclear magnetic resonance (NMR) spectra from spin one-half nuclei using a hard-copy or monitor. Includes general and theoretical program descriptions, program capability, and examples of its use. (Source for program/documentation is included.)…

  10. Classical Trajectories and Quantum Spectra

    NASA Technical Reports Server (NTRS)

    Mielnik, Bogdan; Reyes, Marco A.

    1996-01-01

    A classical model of the Schrodinger's wave packet is considered. The problem of finding the energy levels corresponds to a classical manipulation game. It leads to an approximate but non-perturbative method of finding the eigenvalues, exploring the bifurcations of classical trajectories. The role of squeezing turns out decisive in the generation of the discrete spectra.

  11. Discrimination of petroleum fluorescence spectra.

    PubMed

    Stelmaszewski, Adam

    2007-01-01

    This paper presents studies of the total spectra (fluorescence-excitation matrix) of petroleum with regard to the utilization of fluorescence for determining petroleum pollutants. Thorough testing of one group, comprising almost forty lubricating oils in the form of their hexane solutions, points out their discrimination.

  12. Anisotropic Fermi couplings due to large unquenched orbital angular momentum: Q-band (1)H, (14)N, and (11)B ENDOR of bis(trispyrazolylborate) cobalt(II).

    PubMed

    Myers, William K; Scholes, Charles P; Tierney, David L

    2009-08-05

    We report Q-band ENDOR of (1)H, (14)N, and (11)B at the g( parallel) extreme of the EPR spectrum of bis(trispyrazolylborate) cobalt(II) [Co(Tp)(2)] and two structural analogs. This trigonally symmetric, high-spin (hs) S = 3/2 Co(II) complex shows large unquenched ground-state orbital angular momentum, which leads to highly anisotropic electronic g-values (g( parallel) = 8.48, g( perpendicular) = 1.02). The large g-anisotropy is shown to result in large dipolar couplings near g( parallel) and uniquely anisotropic (14)N Fermi couplings, which arise from spin transferred to the nitrogen 2s orbital (2.2%) via antibonding interactions with singly occupied metal d(x(2)-y(2)) and d(z(2)) orbitals. Large, well-resolved (1)H and (11)B dipolar couplings were also observed. Taken in concert with our previous X-band ENDOR measurements at g( perpendicular) ( Myers, W. K.; et al. Inorg. Chem. 2008, 47, 6701-6710 ), the present data allow a detailed analysis of the dipolar hyperfine tensors of two of the four symmetry distinct protons in the parent molecule. In the substituted analogs, changes in hyperfine coupling due to altered metal-proton distances give further evidence of an anisotropic Fermi contact interaction. For the pyrazolyl 3H proton, the data indicate a 0.2 MHz anisotropic contact interaction and approximately 4% transfer of spin away from Co(II). Dipolar coupling also dominates for the axial boron atoms, consistent with their distance from the Co(II) ion, and resolved (11)B quadrupolar coupling showed approximately 30% electronic inequivalence between the B-H and B-C sp(3) bonds. This is the first comprehensive ENDOR study of any hs Co(II) species and lays the foundation for future development.

  13. In-phantom dosimetry for the 13C(d,n)14N reaction as a source for accelerator-based BNCT.

    PubMed

    Burlon, A A; Kreiner, A J; White, S M; Blackburn, B W; Gierga, D P; Yanch, J C

    2001-05-01

    The use of the 13C(d,n) 14N reaction at Ed=1.5 MeV for accelerator-based boron neutron capture therapy (AB-BNCT) is investigated. Among the deuteron-induced reactions at low incident energy, the 3C(d,n)14N reaction turns out to be one of the best for AB-BNCT because of beneficial materials properties inherent to carbon and its relatively large neutron production cross section. The deuteron beam was produced by a tandem accelerator at MIT's Laboratory for Accelerator Beam Applications (LABA) and the neutron beam shaping assembly included a heavy water moderator and a lead reflector. The resulting neutron spectrum was dosimetrically evaluated at different depths inside a water-filled brain phantom using the dual ionization chamber technique for fast neutrons and photons and bare and cadmium-covered gold foils for the thermal neutron flux. The RBE doses in tumor and healthy tissue were calculated from experimental data assuming a tumor 10B concentration of 40 ppm and a healthy tissue 10B concentration of 11.4 ppm (corresponding to a reported ratio of 3.5:1). All results were simulated using the code MCNP, a general Monte Carlo radiation transport code capable of simulating electron, photon, and neutron transport. Experimental and simulated results are presented at 1, 2, 3, 4, 6, 8, and 10 cm depths along the brain phantom centerline. An advantage depth of 5.6 cm was obtained for a treatment time of 56 min assuming a 4 mA deuteron current and a maximum healthy tissue dose of 12.5 RBE Gy.

  14. Shape effects on asteroid spectra

    NASA Astrophysics Data System (ADS)

    Davalos, J.; Carvano, J.

    2014-07-01

    The objective of this work is to probe how the shape of a body like an asteroid could be modifying its observed spectra and the derived mineralogical interfaces based on spectral modeling. To model this effect, we construct an oblate ellipsoid with triangular facets, where each facet contributes to the overall reflectance. The synthetic spectra is generated by the isotropic multiple-scattering approximation (IMSA) reflectance model of Hapke (1993). First, we obtained optical constants by inverting the spectra of meteorites, obtained from the RELAB spectral database. These optical constants were found inverting the reflectance bidirectional equation of Hapke; this is made in two steps: (i) The first inversion is to find the single-scattering albedo π (ii) in the model of Hapke, this albedo is found under the regime of the geometric optics, where the particle size is much larger than the wavelength of the incident radiation. Here we assumed a constant value for the real part of the optical constant n=1.5. With these optical constants, we can construct synthetic spectra for any particle size. The phase function used is the double Henyey-Greenstein phase function and an accurate expression for the H-functions. We started with the ellipsoidal shape a=1.0, b=c=0.5 for two particle size 50 and 250 μ m, in this part, we found good differences in the BAR parameter between the two geometric models, this was done for 100 Eucrite meteorites spectra. In this first study, we found that the BAR parameter between the two models is bigger when the particle size increases. In the second part, we started with different ellipsoidal shapes and produced synthetic spectra for material with eucrite and diogenite composition with a phase angle of 20 degrees, incidence and emission angles of 10 degrees, and particle size at 250 μ m. All spectra was generated for four parameters of phase angle b=[0.2,0.4,0.6,0.8] taking the empirical relation between the phase constants of Hapke (2012

  15. Phobos surface spectra mineralogical modeling

    NASA Astrophysics Data System (ADS)

    Pajola, M.; Lazzarin, M.; Dalle Ore, C. M.; Cruikshank, D. P.; Roush, T. L.; Pendleton, Y.; Bertini, I.; Magrin, S.; Carli, C.; La Forgia, F.; Barbieri, C.

    2014-04-01

    A mineralogical model composed of a mixture of Tagish Lake meteorite (TL) and Pyroxene Glass (PM80) was presented in [1] to explain the surface reflectance of Phobos from 0.25 to 4.0 μm. The positive results we obtained, when comparing the OSIRIS data [2] extended in wavelength to include the [3,4] spectra, forced us to perform a wider comparison between our TL-PM80 model and the CRISM and OMEGA Phobos spectra presented in [5]. Such spectra cover three different regions of interest (ROIs) situated in the Phobos sub-Mars hemisphere: the interior of the Stickney crater, its eastern rim, and its proximity terrain southeast of the Reldresal crater. We decided to vary the percentage mixture of the components of our model (80% TL, 20% PM80), between pure TL and pure PM80, by means of the radiative transfer code based on the [6] formulation of the slab approximation. Once this spectral range was derived, see Fig. 1, we attempted to compare it with the [5] spectra between 0.4 and 2.6 μm, i.e. below the thermal emitted radiation, to see if any spectral match was possible. We observed that CRISM scaled spectra above 1.10 μm fall within pure Tagish Lake composition and the [1] model. The CRISM data below 1.10 μm present more discrepancies with our models, in particular for the Stickney's rim spectrum. Nevertheless the TL and PM80 components seem to be good mineralogical candidates on Phobos. We performed the same analysis with the OMEGA data and, again, we found out that the Stickney's rim spectrum lies out of our model range, while the two remaining spectra still lie between pure TL and 80% TL - 20% PM80, but indicating that a different, more complicated mixture is expected in order to explain properly both the spectral trend and the possible absorption bands located above 2.0 μm. Within this analysis, we point out that a big fraction of TL material (modeled pure or present with a minimum percentage of 80% mixed together with 20% PM80) seems to explain Phobos spectral

  16. Volovik effect and Fermi-liquid behavior in the s-wave superconductor CaPd2As2: As75 NMR-NQR measurements

    SciTech Connect

    Ding, Q. -P.; Wiecki, P.; Anand, V. K.; Sangeetha, N. S.; Lee, Y.; Johnston, D. C.; Furukawa, Y.

    2016-04-07

    The electronic and magnetic properties of the collapsed-tetragonal CaPd2As2 superconductor (SC) with a transition temperature of 1.27 K have been investigated by 75As nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements. The temperature (T) dependence of the nuclear spin lattice relaxation rates (1/T1) and the Knight shifts indicate the absence of magnetic correlations in the normal state. In the SC state, 1/T1 measured by 75As NQR shows a clear Hebel-Slichter (HS) peak just below Tc and decreases exponentially at lower T, confirming a conventional s-wave SC. Additionally, the Volovik effect, also known as the Doppler shift effect, has been clearly evidenced by the observation of the suppression of the HS peak with applied magnetic field.

  17. Intermolecular triple proton and deuteron transfer in crystalline 3,5-dimethylpyrazole studied by NMR, NQR, and x-ray methods

    SciTech Connect

    Wehrle, B.; Aguilar-Parrilla, F.; Limbach, H.H. ); de la Concepcion Foces-Foces, M.; Cano, F.H. ); Elguero, J. ); Baldy, A.; Pierrot, M. ); Khurshid, M.M.T.; Larcombe-McDouall, J.B.; Smith, J.A.S. )

    1989-09-13

    A combination of {sup 13}C, {sup 15}N magnetic resonance, {sup 14}N quadrupole double resonance, and x-ray studies of solid 3,5-dimethylpyrazole between 270 and 350 K has shown that the NH...N hydrogen bond units present in the crystal are dynamically disordered, so that each nitrogen atom is on average attached to half a hydrogen atom. The molecules form discrete hydrogen-bonded cyclic trimers, in which the hydrogen atoms move in a double minimum potential energy surface which is symmetrical, to within experimental error. The experimental evidence in this temperature range is consistent with disorder by means of correlated triple hydrogen jumps with an activation energy of 45 kJ mol{sup {minus}1}. There is a large kinetic hydrogen (HHH)/deuterium (DDD) isotope effort of >20 at 299 K and equal to 8 at 347 K.

  18. Hierarchical analysis of molecular spectra

    SciTech Connect

    Davis, M.J.

    1996-03-01

    A novel representation of molecular spectra in terms of hierarchical trees has proven to be an important aid for the study of many significant problems in gas-phase chemical dynamics. Trees are generated from molecular spectra by monitoring the changes that occur in a spectrum as resolution is changed in a continuous manner. A tree defines a genealogy among all lines of a spectrum. This allows for a detailed understanding of the assignment of features of a spectrum that may be difficult to obtain any other way as well as an understanding of intramolecular energy transfer time scales, mechanisms, and pathways. The methodology has been applied to several problems: transition state spectroscopy, intramolecular energy transfer in highly excited molecules, high-resolution overtone spectroscopy, and the nature of the classical-quantum correspondence when there is classical chaos (``quantum chaos``).

  19. Eigenvectors of optimal color spectra.

    PubMed

    Flinkman, Mika; Laamanen, Hannu; Tuomela, Jukka; Vahimaa, Pasi; Hauta-Kasari, Markku

    2013-09-01

    Principal component analysis (PCA) and weighted PCA were applied to spectra of optimal colors belonging to the outer surface of the object-color solid or to so-called MacAdam limits. The correlation matrix formed from this data is a circulant matrix whose biggest eigenvalue is simple and the corresponding eigenvector is constant. All other eigenvalues are double, and the eigenvectors can be expressed with trigonometric functions. Found trigonometric functions can be used as a general basis to reconstruct all possible smooth reflectance spectra. When the spectral data are weighted with an appropriate weight function, the essential part of the color information is compressed to the first three components and the shapes of the first three eigenvectors correspond to one achromatic response function and to two chromatic response functions, the latter corresponding approximately to Munsell opponent-hue directions 9YR-9B and 2BG-2R.

  20. Accelerated Fitting of Stellar Spectra

    NASA Astrophysics Data System (ADS)

    Ting, Yuan-Sen; Conroy, Charlie; Rix, Hans-Walter

    2016-07-01

    Stellar spectra are often modeled and fitted by interpolating within a rectilinear grid of synthetic spectra to derive the stars’ labels: stellar parameters and elemental abundances. However, the number of synthetic spectra needed for a rectilinear grid grows exponentially with the label space dimensions, precluding the simultaneous and self-consistent fitting of more than a few elemental abundances. Shortcuts such as fitting subsets of labels separately can introduce unknown systematics and do not produce correct error covariances in the derived labels. In this paper we present a new approach—Convex Hull Adaptive Tessellation (chat)—which includes several new ideas for inexpensively generating a sufficient stellar synthetic library, using linear algebra and the concept of an adaptive, data-driven grid. A convex hull approximates the region where the data lie in the label space. A variety of tests with mock data sets demonstrate that chat can reduce the number of required synthetic model calculations by three orders of magnitude in an eight-dimensional label space. The reduction will be even larger for higher dimensional label spaces. In chat the computational effort increases only linearly with the number of labels that are fit simultaneously. Around each of these grid points in the label space an approximate synthetic spectrum can be generated through linear expansion using a set of “gradient spectra” that represent flux derivatives at every wavelength point with respect to all labels. These techniques provide new opportunities to fit the full stellar spectra from large surveys with 15-30 labels simultaneously.

  1. Optical Spectra of Triggered Lightning

    NASA Astrophysics Data System (ADS)

    Walker, T. D.; Biagi, C. J.; Hill, J. D.; Jordan, D. M.; Uman, M. A.; Christian, H. J., Jr.

    2009-12-01

    In August 2009, the first optical spectra of triggered lightning flashes were acquired. Data from two triggered lightning flashes were obtained at the International Center for Lightning Research and Testing in north-central Florida. The spectrometer that was used has an average dispersion of 260 Å/mm resulting in an average resolution of 5 Å when mated to a Photron (SA1.1) high-speed camera. The spectra captured with this system had a free spectral range of 3800-8000 Å. The spectra were captured at 300,000 frames per second. The spectrometer's vertical field of view was 3 m at an altitude 50 m above the launch tower, intended to view the middle of the triggering wire. Preliminary results show that the copper spectrum dominated the earliest part of the flash and copper lines persisted during the total lifetime of the detectable spectrum. Animations over the lifetime of the stroke from the initial wire illumination to multiple return strokes show the evolution of the spectrum. In addition, coordinated high speed channel base current, electric field and imagery measurements of the exploding wire, downward leaders, and return strokes were recorded. Quantitative analysis of the spectral evolution will be discussed in the context of the overall flash development.

  2. Ultraviolet Spectra of Uranian Satellites

    NASA Astrophysics Data System (ADS)

    Roush, Ted

    1996-07-01

    The ultraviolet reflectance spectra of the icy satellites ofUranus are largely unknown. We propose to use the HubbleSpace Telescope Faint Object Spectrograph in order to obtainthe first high S/N UV spectra of Ariel, Titania, and Oberon.Because of our innovative targeting approach, we have alsobeen able to include Umbriel in our observational plans.These satellites sample almost the full range of UV albedosand UV/VIS colors exhibited by the large Uranian satellites.The spectral resolution and range will overlap with earth-based telescopic and spacecraft observations of these objectsallowing for comparisons of the UV data with existing visualand near-infrared spectra of these objects. These comparisonswill ultimately provide greater constraints on the relativelylow albedo spectrally neutral non-ice component on the Uraniansatellites. The existance of UV spectral features due tospecies such as O_3, H_2O_2 or carbon-rich macromolecules(e.g. polycyclic aromatic hydrocarbons) can provide evidencefor modification of the surfaces via plasma or meteoriticbombardment, alteration by high-energy ultraviolet radiation,or accretion of particles from nearby sources such asplanetary rings or dust bands.

  3. Foliar and fungal 15N:14N ratios reflect development of mycorrhizae and nitrogen supply during primary succession: testing analytical models.

    PubMed

    Hobbie, Erik A; Jumpponen, Ari; Trappe, Jim

    2005-12-01

    Nitrogen isotopes (15N/14N ratios, expressed as delta15N values) are useful markers of the mycorrhizal role in plant nitrogen supply because discrimination against 15N during creation of transfer compounds within mycorrhizal fungi decreases the 15N/14N in plants (low delta15N) and increases the 15N/14N of the fungi (high delta15N). Analytical models of 15N distribution would be helpful in interpreting delta15N patterns in fungi and plants. To compare different analytical models, we measured nitrogen isotope patterns in soils, saprotrophic fungi, ectomycorrhizal fungi, and plants with different mycorrhizal habits on a glacier foreland exposed during the last 100 years of glacial retreat and on adjacent non-glaciated terrain. Since plants during early primary succession may have only limited access to propagules of mycorrhizal fungi, we hypothesized that mycorrhizal plants would initially be similar to nonmycorrhizal plants in delta15N and then decrease, if mycorrhizal colonization were an important factor influencing plant delta15N. As hypothesized, plants with different mycorrhizal habits initially showed similar delta15N values (-4 to -6 per thousand relative to the standard of atmospheric N2 at 0 per thousand), corresponding to low mycorrhizal colonization in all plant species and an absence of ectomycorrhizal sporocarps. In later successional stages where ectomycorrhizal sporocarps were present, most ectomycorrhizal and ericoid mycorrhizal plants declined by 5-6 per thousand in delta15N, suggesting transfer of 15N-depleted N from fungi to plants. The values recorded (-8 to -11 per thousand) are among the lowest yet observed in vascular plants. In contrast, the delta15N of nonmycorrhizal plants and arbuscular mycorrhizal plants declined only slightly or not at all. On the forefront, most ectomycorrhizal and saprotrophic fungi were similar in delta15N (-1 to -3 per thousand), but the host-specific ectomycorrhizal fungus Cortinarius tenebricus had values of up to 7

  4. Mutagenesis of S-Adenosyl-l-Methionine-Binding Residues in Coronavirus nsp14 N7-Methyltransferase Demonstrates Differing Requirements for Genome Translation and Resistance to Innate Immunity

    PubMed Central

    Case, James Brett; Ashbrook, Alison W.; Dermody, Terence S.

    2016-01-01

    ABSTRACT Eukaryotic mRNAs possess a methylated 5′-guanosine cap that is required for RNA stability, efficient translation, and protection from cell-intrinsic defenses. Many viruses use 5′ caps or other mechanisms to mimic a cap structure to limit detection of viral RNAs by intracellular innate sensors and to direct efficient translation of viral proteins. The coronavirus (CoV) nonstructural protein 14 (nsp14) is a multifunctional protein with N7-methyltransferase (N7-MTase) activity. The highly conserved S-adenosyl-l-methionine (SAM)-binding residues of the DxG motif are required for nsp14 N7-MTase activity in vitro. However, the requirement for CoV N7-MTase activity and the importance of the SAM-binding residues during viral replication have not been determined. Here, we engineered mutations in murine hepatitis virus (MHV) nsp14 N7-MTase at residues D330 and G332 and determined the effects of these mutations on viral replication, sensitivity to mutagen, inhibition by type I interferon (IFN), and translation efficiency. Virus encoding a G332A substitution in nsp14 displayed delayed replication kinetics and decreased peak titers relative to wild-type (WT) MHV. In addition, replication of nsp14 G332A virus was diminished following treatment of cells with IFN-β, and nsp14 G332A genomes were translated less efficiently both in vitro and during viral infection. In contrast, substitution of alanine at MHV nsp14 D330 did not affect viral replication, sensitivity to mutagen, or inhibition by IFN-β compared to WT MHV. Our results demonstrate that the conserved MHV N7-MTase SAM-binding-site residues are not required for MHV viability and suggest that the determinants of CoV N7-MTase activity differ in vitro and during virus infection. IMPORTANCE Human coronaviruses, most notably severe acute respiratory syndrome (SARS)-CoV and Middle East respiratory syndrome (MERS)-CoV, cause severe and lethal human disease. Since specific antiviral therapies are not available for the

  5. Lifetime Measurement of the 6.79 MeV Excited State of 15O to Help Constrain the 14N(p,gamma)15O Reaction Rate

    NASA Astrophysics Data System (ADS)

    Galinski, Naomi

    2013-12-01

    In main sequence stars such as our Sun, the source of energy comes from converting hydrogen into helium. There are two competing mechanisms via which this can happen: the pp chain and CNO cycle. The latter is a cycle of reactions involving carbon, nitrogen and oxygen which are catalysts for the conversion of hydrogen into helium. The slowest reaction 14N(p, gamma) 15O in the cycle will affect the energy generation timescale and the amount of helium ash produced via the CNO cycle. This has several astrophysical impacts. It affects the evolutionary timescale of main sequence stars from which the ages of globular clusters can be calculated, the nucleosynthesis of heavier elements in H burning shells of red giant stars, and the fraction of energy produced by the CNO cycle compared to the pp chain in our Sun which helps determine the interior composition of the Sun. For main sequence stars the CNO cycle dominates over the pp chain for core temperatures T ≳ 0.02 GK. For the 14N(p, gamma)15O reaction this corresponds to a low center of mass energy Ecm = 30 keV. This is lower than the low energy limit of the reaction rate measurable in the laboratory. This means that we need to extrapolate down to low energy using theory. The largest remaining uncertainty in the theoretical calculations is due to the lifetime tau of the 6.79 MeV state of 15O. In this work the lifetimes of three excited states of 15O were measured using the Doppler shift attenuation method (DSAM) populating the states via the 3He(16O,alpha)15O reaction at a beam energy of 50 MeV. The low lifetime limit measurable using the DSAM is ˜1 fs. The lifetime of the 6.79 MeV state is near that limit, making this measurement challenging. A 1.8 fs upper limit (68.3% C.L.) on this lifetime is reported here. In addition we measured the lifetimes of the 6.17 and 6.86 MeV state in 15O which were < 2.5 fs and 13.3+0.8-1.2 fs (68.3% C.L.) respectively. iii Acknowledgments

  6. Pulse Electron Double Resonance Detected Multinuclear NMR Spectra of Distant and Low Sensitivity Nuclei and Its Application to the Structure of Mn(II) Centers in Organisms.

    PubMed

    Bruch, Eduardo M; Warner, Melissa T; Thomine, Sébastien; Tabares, Leandro C; Un, Sun

    2015-10-29

    The ability to characterize the structure of metal centers beyond their primary ligands is important to understanding their chemistry. High-magnetic-field pulsed electron double resonance detected NMR (ELDOR-NMR) is shown to be a very sensitive approach to measuring the multinuclear NMR spectra of the nuclei surrounding Mn(II) ions. Resolved spectra of intact organisms with resonances arising from (55)Mn, (31)P, (1)H, (39)K, (35)Cl, (23)Na, and (14)N nuclei surrounding Mn(2+) centers were obtained. Naturally abundant cellular (13)C could be routinely measured as well. The amplitudes of the (14)N and (2)H ELDOR-NMR spectra were found to be linearly dependent on the number of nuclei in the ligand sphere. The evolution of the Mn(II) ELDOR-NMR spectra as a function of excitation time was found to be best described by a saturation phenomenon rather than a coherently driven process. Mn(II) ELDOR-NMR revealed details about not only the immediate ligands to the Mn(II) ions but also more distant nuclei, providing a view of their extended structures. This will be important for understanding the speciation and chemistry of the manganese complexes as well as other metals found in organisms.

  7. Two-dimensional (14)N HYSCORE spectroscopy of the coordination geometry of ligands in dimanganese di-μ-oxo mimics of the oxygen evolving complex of photosystem II.

    PubMed

    Chatterjee, Ruchira; Milikisiyants, Sergey; Lakshmi, K V

    2012-05-21

    We use two-dimensional hyperfine sublevel correlation (HYSCORE) spectroscopy to investigate the coordination geometry of the nitrogen ligands of biomimetic models of the oxygen-evolving complex of photosystem II. In the 2D HYSCORE spectroscopy study, [(bpy)2Mn(III)(μ-O)2Mn(IV)(bpy)2](ClO4)3 (bpy, 2,2'-bipyridine) (1) and [H2O(terpy)Mn(III)(μ-O)2Mn(IV)(terpy)OH2](NO3)3 (terpy = 2,2':6',2″-terpyridine) (2) exhibit electron-nuclear hyperfine interactions that depend on both the oxidation state of the manganese ion and the geometry of the nitrogen ligand. We observe four types of (14)N hyperfine interactions corresponding to the Mn(iii) and Mn(iv) ion of each mixed-valence complex and the equatorial and axial geometry of the ligand, respectively. The strongest and the weakest hyperfine interactions arise from the axial and equatorial ligands of the Mn(iii) ion, respectively. The hyperfine interactions of intermediate strength are due to the axial and equatorial ligands of the Mn(iv) ion. Based on the results of this study, we assign the location and ligand geometry of the Mn(iii) ion of the tetranuclear manganese-calcium-oxo cluster in the S2 state of photosystem II.

  8. Earth's magnetic field enabled scalar coupling relaxation of 13C nuclei bound to fast-relaxing quadrupolar 14N in amide groups.

    PubMed

    Chiavazza, Enrico; Kubala, Eugen; Gringeri, Concetta V; Düwel, Stephan; Durst, Markus; Schulte, Rolf F; Menzel, Marion I

    2013-02-01

    Scalar coupling relaxation, which is usually only associated with closely resonant nuclei (e.g., (79)Br-(13)C), can be a very effective relaxation mechanism. While working on hyperpolarized [5-(13)C]glutamine, fast liquid-state polarization decay during transfer to the MRI scanner was observed. This behavior could hypothetically be explained by substantial T(1) shortening due to a scalar coupling contribution (type II) to the relaxation caused by the fast-relaxing quadrupolar (14)N adjacent to the (13)C nucleus in the amide group. This contribution is only effective in low magnetic fields (i.e., less than 800 μT) and prevents the use of molecules bearing the (13)C-amide group as hyperpolarized MRS/MRI probes. In the present work, this hypothesis is explored both theoretically and experimentally. The results show that high hyperpolarization levels can be retained using either a (15)N-labeled amide or by applying a magnetic field during transfer of the sample from the polarizer to the MRI scanner.

  9. Action spectra for photosynthetic inhibition

    NASA Technical Reports Server (NTRS)

    Caldwell, M. M.; Flint, S.; Camp, L. B.

    1981-01-01

    The ultraviolet action spectrum for photosynthesis inhibition was determined to fall between that of the general DNA action spectrum and the generalized plant action spectrum. The characteristics of this action spectrum suggest that a combination of pronounced increase in effectiveness with decreasing wavelength, substantial specificity for the UV-B waveband, and very diminished response in the UV-A waveband result in large radiation amplification factors when the action spectra are used as weighting functions. Attempted determination of dose/response relationships for leaf disc inhibition provided inconclusive data from which to deconvolute an action spectrum.

  10. Two slow meteors with spectra

    NASA Astrophysics Data System (ADS)

    Dubs, Martin; Sposetti, Stefano; Spinner, Roger; Booz, Beat

    2017-01-01

    On January 2, 2017 two peculiar meteors (M20170102_001216 and M20170102_015202) were observed by several stations in Switzerland. Both had a long duration, slow velocity, similar brightness and a very similar radiant. As they appeared in a time interval of 100 minutes, a satellite was suspected as a possible origin of these two observations. A closer inspection however showed that this interpretation was incorrect. The two objects were slow meteors. Spectra were taken from both objects, which were nearly identical. Together this points to a common origin of the two meteors.

  11. The Optical Spectra of Aerosols.

    DTIC Science & Technology

    1983-10-01

    espressione dell’ampiezza di diffusione in * avanti vengono fattorizzati. In questo modo la somma delle am- piezze di diftusione di "cluster" con...F1D-Ali35 687 THE OPTICAL SPECTRA OF REROSOLSOU) MESSINA UNIV (ITALY) i/i 1ST DI STRIJTTURA DELLA IIATERIA F BORIIHESE OCT 83 UNCLASSIFIED DRR78--85F...ELEMENT PROJECT, TASK AREA & WORK UNIT NUMBERS * Istituto di Struttura della Materia 61102A-1T161102-BH57-01 Un iversita di Messina V~nina. Ttalv St

  12. Method of processing positron lifetime spectra

    SciTech Connect

    Valuev, N.P.; Klimov, A.B.; Zhikharev, A.N.

    1985-05-01

    This paper describes a method for the processing of spectra of positron annihilation which permits a much more relaible determination of the lifetime during numerical processing of spectra by computer.

  13. Infrared Spectra of Polycyclic Aromatic Hydrocarbons (PAHs)

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Bakes, E. L. O.

    2000-01-01

    We have computed the synthetic infrared spectra of some polycyclic aromatic hydrocarbons containing up to 54 carbon atoms. The species studied include ovalene, circumcoronene, dicoronylene, and hexabenzocoronene. We report spectra for anions, neutrals, cations, and multiply charged cations.

  14. Visible Spectra of Titanium Dioxide

    NASA Astrophysics Data System (ADS)

    Gupta, V.; Nagarajan, R.; Maier, J. P.; Zhuang, X.; Le, A.; Steimle, T. C.

    2011-05-01

    Titanium oxide (TiO) has been extensively studied spectroscopically due to its astrophysical relevance. TiO is the main opacity source in the atmospheres of cool M-type stars in the visible and near infrared. In view of the high cosmic abundance of Ti and O, titanium dioxide (TiO2) is believed to play an important role in dust formation processes from the gas-phase in circumstellar shells of oxygen-rich stars. The electronic spectra of a cold molecular beam of TiO2 have been investigated using mass-resolved resonance enhanced multi-photon ionization and laser induced fluorescence spectroscopy. TiO2 was produced by laser ablation of a pure titanium rod in the presence of a supersonic expanding mixture of approximately 5% O2 in either helium or argon. The spectra were recorded in the region 17500 cm-1 to 22500 cm-1 and the bands assigned to the A1B2 ← X1A1 transition. The origin and harmonic vibrational constants for the A1B2 state were determined to be: T000 = 17593(5) cm-1, ω1 = 876(3) cm-1, ω2 = 184(1) cm-1, and ω3 = 316(2) cm-1. Further, the dispersed fluorescence of a few bands were recorded to obtain vibrational parameters for the X1A1 state.

  15. Neutron and photon spectra in LINACs.

    PubMed

    Vega-Carrillo, H R; Martínez-Ovalle, S A; Lallena, A M; Mercado, G A; Benites-Rengifo, J L

    2012-12-01

    A Monte Carlo calculation, using the MCNPX code, was carried out in order to estimate the photon and neutron spectra in two locations of two linacs operating at 15 and 18 MV. Detailed models of both linac heads were used in the calculations. Spectra were estimated below the flattening filter and at the isocenter. Neutron spectra show two components due to evaporation and knock-on neutrons. Lethargy spectra under the filter were compared to the spectra calculated from the function quoted by Tosi et al. that describes reasonably well neutron spectra beyond 1 MeV, though tends to underestimate the energy region between 10(-6) and 1 MeV. Neutron and the Bremsstrahlung spectra show the same features regardless of the linac voltage.

  16. Spectra from pair-equilibrium plasmas

    NASA Technical Reports Server (NTRS)

    Zdziarski, A. A.

    1984-01-01

    A numerical model of relativistic nonmagnetized plasma with uniform temperature and electron density distributions is considered, and spectra from plasma in pair equilibrium are studied. A range of dimensionless temperature (T) greater than about 0.2 is considered. The spectra from low pair density plasmas in pair equilibrium vary from un-Comptonized bremsstrahlung spectra at Thomson cross section tau(N) much less than one to Comptonized bremsstrahlung spectra with tau(N) over one. For high pair density plasmas the spectra are flat for T greater than about one, and have broad intensity peaks at energy roughly equal to 3T for T less than one. In the latter region the total luminosity is approximately twice the annihilation luminosity. All spectra are flat in the X-ray region, in contradiction to observed AGN spectra. For dimensionless luminosity greater than about 100, the cooling time becomes shorter than the Thomson time.

  17. [Vibrational spectra of Corallium elatius].

    PubMed

    Fan, Lu-wei; Zhang, Yan; Hu, Yang

    2013-09-01

    Corallium elatius, which has unique color distribution characteristic, is the most important species of Taiwan precious corals. EPMA, XRD, FTIR and Laser Raman detective methods were used to study the chemical, mineral composition and spectra characteristics of Corallium elatius. The result of EPMA, XRD and FTIR shows the high-Mg calcite mineral componentand the stable minor chemical constituents of the samples. Meanwhile, the cell parameter indicates the lattice distortion and the preferred orientation of calcite grain caused by organic matter. The red part of the samples shows a different Raman spectrum from that of the white part, located at 1517/1128 cm(-1) and 1296/1016 cm(-1). Raman scattering measurement reveals the relationship between the organic matter and color.

  18. Power spectra of solar convection

    NASA Technical Reports Server (NTRS)

    Chou, D.-Y.; Labonte, B. J.; Braun, D. C.; Duvall, T. L., Jr.

    1991-01-01

    The properties of convective motions on the sun are studied using Kitt Peak Doppler images and power spectra of convection. The power peaks at a scale of about 29,000 km and drops off smoothly with wavenumber. There is no evidence of apparent energy excess at the scale of the mesogranulation proposed by other authors. The vertical and horizontal power for each wavenumber are obtained and used to calculate the vertical and horizontal velocities of the supergranulation. The amplitude of vertical and horizontal velocities of the supergranulation are 0.034 (+ or - 0.002) km/s and 0.38 (+ or - 0.01) km/s, respectively. The corresponding rms values are 0.024 (+ or - 0.002) km/s and 0.27 (+ or - 0.01) km/s.

  19. Reflectance spectra of primitive chondrites

    NASA Astrophysics Data System (ADS)

    Trigo-Rodríguez, J. M.; Moyano-Cambero, C. E.; Llorca, J.

    2013-05-01

    We are studying a wide sample of pristine carbonaceous chondrites from the NASA Antarctic collection in order to get clues on the physico-chemical processes occurred in the parent bodies of these meteorites. We are obtaining laboratory reflectance spectra of different groups of carbonaceous chondrites, but here we focus in CM and CI chondrites. We discuss the main spectral features that can be used to identify primitive carbonaceous asteroids by remote sensing techniques. Two different spectrometers were used covering the entire 0.3 to 30 μm electromagnetic window. Only a handful of Near Earth Objects (NEOs) exhibit bands or features clearly associated with aqueous alteration. Among them are the target asteroids of Osiris Rex and Marco Polo-R missions.

  20. Optimized enrichment and purification of ferrocyanide for 13/12C and 15/14N isotope analysis of aqueous solutions.

    PubMed

    Schulte, Ulrike; Weihmann, Jenny; Mansfeldt, Tim

    2010-10-01

    The occurrence of ferrocyanide, Fe(CN)(6)(4-), in aqueous environments is of concern, since it is potentially hazardous. For tracing the source of ferrocyanide in contaminated water we developed a method that relies on the determination of the stable isotope ratios of (13)C/(12)C and (15)N/(14)N of this complexed cyanide (CN) after precipitating it as cupric ferrocyanide, Cu(2)[Fe(CN)(6)] · 7H(2)O. The precipitate was combusted and the isotope ratios were determined by continuous flow isotope ratio mass spectrometry. At first, ferrocyanide enrichment from synthetic water containing cyanide with known isotopic composition was studied by using six commercial anion-exchange resins. Five resins revealed a quick and complete sorption of ferrocyanide. A nearly quantitative desorption was achieved using NaCl solutions of 5 and 10% by weight for four resins. Subsequent determination of the δ(13)C(CN) and δ(15)N(CN) values of the ferrocyanide revealed that no significant isotope fractionation occurred during this procedure. These results were reproduced even in column experiments using larger water volumes. Potential interferences were also addressed. Sulfate in excess competes for exchange sites but can be precipitated as BaSO(4) prior to ferrocyanide enrichment. Non-cyanide carbon compounds may co-precipitate with cupric ferrocyanide, thus possibly modifying the isotope ratios. However, neither dissolved inorganic carbon nor highly soluble organic compounds did interfere with the method. Poorly soluble organics like BTEX and PAH can be eliminated by passing the samples through appropriate adsorber resins in a prior step. The proposed method is an excellent way of precise determination of the stable cyanide-carbon and cyanide-nitrogen isotope ratios in ferrocyanide-containing aqueous samples, which was successfully applied to four contaminated groundwater samples since measured aqueous isotopes ratios match those of corresponding cyanide-bearing solid wastes.

  1. 13C/12C and 15N/14N Isotope Analysis to Characterize Natural Degradation of Atrazine: Evidence from Parent and Daughter Compound Values

    NASA Astrophysics Data System (ADS)

    Elsner, Martin; Meyer, Armin

    2013-04-01

    The mobile and still herbicidal metabolites desethylatrazine (DEA) and desisopropylatrazine (DIA) are frequently detected together with its parent compound atrazine (Atz) in the aquatic environment. Interpretation of their transformation state is often difficult with current methods, which are mainly measuring concentrations. Alternatively, compound specific isotope analyses (CSIA) has become a novel tool to detect degradation processes of contaminants in groundwater. The aim of our study was to investigate on the lab scale 13C/12C and 15N/14N isotope trends in parent and daughter compounds associated with different degradation scenarios of atrazine likely to occur in the environment. Thus atrazine was dealkylated with (i) permanganate and (ii) the bacterium Rhodococcus sp. NI86/21. In both transformations, 13C/12C ratios of atrazine increased strongly (epsilon carbon/permanganate = -4.6 ± 0.6 ‰ and epsilon carbon/Rhodoccoccus = -3.8 ± 0.2 ‰) whereas nitrogen isotope fractionation was small. 13C/12C ratios of DEA showed the following trends. (i) When DEA was formed as only product (Atz + permanganate) 13C/12C remained constant, close to the initial value of Atz. (ii) When DEA was formed together with deisopropylatrazine (biodegradation of Atz) 13C/12C increased, but only within 2‰. (iii) When DEA and DIA was further biodegraded, 13C/12C increased for both metabolites up to 9‰. Thus strong enrichment of 13C/12C in the metabolites in comparison to Atz can give strong testimony for further breakdown of the metabolite.

  2. Analysis of microearthquakes at the non-transform offset of the Mid-Atlantic Ridge hosting the Rainbow hydrothermal system (36°14'N)

    NASA Astrophysics Data System (ADS)

    Horning, G.; Canales, J. P.; Sohn, R. A.; Dunn, R. A.

    2015-12-01

    The Rainbow hydrothermal field is an active, ultramafic-hosted system located on the Mid-Atlantic Ridge (MAR) at 36° 14'N. It is located at a non-transform discontinuity (NTD) of the MAR at the AMAR-AMAR minor segment intersection [German et al., 1996]. Rainbow, in contrast to other ultramafic-hosted systems such as Lost City, is a high-temperature site with fluids up to 365 °C [Douville et al., 2002]. A magmatic heat source must be present to account for the long-lived, high-temperature, heat flux of 1-5 GW [Thurnherr and Richards, 2001], but the nearest, known neovolcanic activity is 15-20 km away on the AMAR segment [German and Parson, 1998]. In 2013, a long-term, ocean bottom seismometer (OBS) microearthquake network of 13 instruments was deployed as part of the MARINER geophysical experiment [Dunn et al., 2013]. Over 40,000 events were detected and located within ~16 km of the active hydrothermal field during the ~200 day deployment. We present hypocenters estimated using P- and S-wave arrival times and a crustal velocity model derived from the active-source tomography component of the MARINER experiment. Moment/magnitude estimates from spectral methods indicate that the majority of events have local magnitudes (ML) of 0-1, with the largest events approaching ML ~2. First arrival polarity data demonstrate that many of the events have non-double couple source mechanisms, and we explore the use of P/S-wave amplitude ratios to constrain these focal mechanisms. The detection of predominantly non-double events indicates processes other than simple fault slip (e.g., serpentinization) are contributing to the observed seismicity and deformation. We use the spatial distribution, magnitudes, rate, and source mechanisms of the seismic events to constrain the coupled processes of hydrothermal circulation and deformation at the Rainbow massif.

  3. Pressure spectra and cross spectra at an area contraction in a ducted combustion system

    NASA Technical Reports Server (NTRS)

    Miles, J. H.; Raftopoulos, D. D.

    1980-01-01

    Pressure spectra and cross-spectra at an area contraction in a liquid fuel, ducted, combustion noise test facility are analyzed. Measurements made over a range of air and fuel flows are discussed. Measured spectra are compared with spectra calculated using a simple analytical model.

  4. Line Coupling in Atmospheric Spectra

    NASA Technical Reports Server (NTRS)

    Tipping, R. H.

    1996-01-01

    The theoretical modeling of atmospheric spectra is important for a number of different applications: for instance, in the determination of minor atmospheric constituents such as ozone, carbon dioxide, CFC's etc.; in monitoring the temperature profile for climate studies; and in measuring the incoming and outgoing radiation to input into global climate models. In order to accomplish the above mentioned goal, one needs to know the spectral parameters characterizing the individual spectral lines (frequency, width, strength, and shape) as well as the physical parameters of the atmosphere (temperature, abundances, and pressure). When all these parameters are known, it is usually assumed that the resultant spectra and concomitant absorption coefficient can then be calculated by a superposition of individual profiles of appropriate frequency, strength and shape. However, this is not true if the lines are 'coupled'. Line coupling is a subtle effect that takes place when lines of a particular molecule overlap in frequency. In this case when the initial states and the final states of two transitions are connected by collisions, there is a quantum interference resulting in perturbed shapes. In general, this results in the narrowing of Q-branches (those in which the rotational quantum number does not change), and vibration-rotational R- and P branches (those in which the rotational quantum number changes by +/- 1), and in the spectral region beyond band heads (regions where the spectral lines pile up due to centrifugal distortion). Because these features and spectral regions are often those of interest in the determination of the abundances and pressure-temperature profiles, one must take this effect into account in atmospheric models.

  5. MILLIMETER-WAVE OBSERVATIONS OF CN AND HNC AND THEIR {sup 15}N ISOTOPOLOGUES: A NEW EVALUATION OF THE {sup 14}N/{sup 15}N RATIO ACROSS THE GALAXY

    SciTech Connect

    Adande, G. R.; Ziurys, L. M.

    2012-01-10

    The N = 1 {yields} 0 transitions of CN and C{sup 15}N (X{sup 2}{Sigma}{sup +}), as well as the J = 1 {yields} 0 lines of HN{sup 13}C and H{sup 15}NC, have been observed toward 11 molecular clouds using the new 3 mm ALMA-type receiver of the 12 m telescope of the Arizona Radio Observatory. These sources span a wide range of distances from the Galactic center and are all regions of star formation. From these observations, {sup 14}N/{sup 15}N ratios have been determined using two independent methods. First, the measurements of C{sup 14}N and C{sup 15}N were directly compared to establish this ratio, correcting for high opacities when needed, as indicated by the nitrogen hyperfine intensities. Second, the ratio was calculated from the quantity [HN{sup 13}C]/[H{sup 15}NC], determined from the HNC data, and then scaled by {sup 12}C/{sup 13}C ratios previously established, i.e., the so-called double isotope method. Values from both methods are in reasonable agreement, and fall in the range {approx}120-400, somewhat lower than previous {sup 14}N/{sup 15}N ratios derived from HCN. The ratios exhibit a distinct positive gradient with distance from the Galactic center, following the relationship{sup 14}N/{sup 15}N = 21.1 (5.2) kpc{sup -1} D{sub GC} + 123.8 (37.1). This gradient is consistent with predictions of Galactic chemical evolution models in which {sup 15}N has a secondary origin in novae, while primary and secondary sources exist for {sup 14}N. The local interstellar medium value was found to be {sup 4}N/{sup 15}N = 290 {+-} 40, in agreement with the ratio found in nearby diffuse clouds and close to the value of 272 found in Earth's atmosphere.

  6. OVI absorbers in SDSS spectra

    NASA Astrophysics Data System (ADS)

    Frank, Stephan

    We conducted a systematic search for signatures of the Intergalactic Medium (IGM) in Quasar spectra of the Sloan Digital Sky Survey (SDSS) Data Release 3 (DR3), focusing on finding intervening absorbers via detection of their O VI doublet. We present a search algorithm, and criteria for distinguishing candidates from spurious Lyman a forest lines. In addition, we compare our findings with simulations of the Lyman a forest in order to estimate the detectability of O VI doublets over various redshift intervals. We obtain a sample of 1866 O VI doublet candidates with rest-frame equivalent width >= 0.05 λ in 855 AGN spectra (out of 3702 objects with redshifts in the range accessible for O VI detection). This sample is subdivided into 3 groups according to the likelihood of being real and the potential for follow-up observation of the candidate. The group with the cleanest and most secure candidates is comprised of 145 candidates. 69 of these reside at a velocity separation >= 5000 km/s from the QSO, and can therefore be classified tentatively as intervening absorbers. Most of these absorbers have not been picked up by earlier, automated QSO absorption line detection algorithms. This sample increases the number of known O VI absorbers at redshifts beyond z abs >= 2.7 substantially. We propose to obtain observations of some of the candidates with the best signatures for O VI doublets with high signal-to-noise and high resolution in order to better constrain the physical state of the absorbers. We then focused on a subsample of 387 AGN sightlines with an average S/N >= 5: 0, allowing for the detection of absorbers above a rest-frame equivalent width limit of W r >= 0:19 ? A for the O VI 1032 λ component. Accounting for random interlopers mimicking an O VI doublet, we derive for the first time a secure lower limit for the redshift number density DN/Dz for redshifts z abs >= 2:8. With extensive Monte Carlo simulations we quantify the losses of absorbers due to blending

  7. Blind extraction of exoplanetary spectra

    NASA Astrophysics Data System (ADS)

    Morello, Giuseppe; Waldmann, Ingo P.; Tinetti, Giovanna

    2016-06-01

    In the last decade, remote sensing spectroscopy enabled characterization of the atmospheres of extrasolar planets. Transmission and emission spectra of tens of transiting exoplanets have been measured with multiple instruments aboard Spitzer and Hubble Space Telescopes as well as ground-based facilities, revealing the presence of atomic, ionic and molecular species in their atmospheres, and constraining their temperature and pressure profiles.Early analyses were somehow heuristic both in measuring the spectra and in their interpretation, leading to some controversies in the literature.A photometric precision of 0.01% is necessary to detect the atmospheric spectral modulations. Current observatories, except Kepler, were not designed to achieve this precision. Data reduction is necessary to minimize the effect of instrument systematics in order to achieve the target precision. In the past, parametric models have extensively been used by most teams to remove correlated noise with the aid of auxiliary information of the instrument, the so-called optical state vectors (OSVs). Such OSVs can include inter- and intra-pixel position of the star or its spectrum, instrument temperatures and inclinations, and/or other parameters. In some cases, different parameterizations led to discrepant results.We recommend the use of blind non-parametric data detrending techniques to overcome those issues. In particular, we adopt Independent Component Analysis (ICA), i.e. a blind source separation (BSS) technique to disentangle the multiple instrument systematics and astrophysical signals in transit/eclipse light curves. ICA does not require a model for the systematics, and for this reason, it can be applied to any instrument with little changes, if any. ICA-based algorithms have been applied to Spitzer/IRAC and synthetic observations in photometry (Morello et al. 2014, 2015, 2016; Morello 2015) and to Hubble/NICMOS and Spitzer/IRS in spectroscopy (Waldmann 2012, 2014, Waldmann et al. 2013

  8. Interpretation of Nitroindolinospirobenzothiopyran Vibrational Spectra

    NASA Astrophysics Data System (ADS)

    Gladkov, L. L.; Khamchukov, Yu. D.; Lyubimov, A. V.

    2016-05-01

    The structures of four possible stereoisomers of the closed form of photochromic nitroindolinospirobenzothiopyran (NISTP) {1',3'-dihydro-1',3',3'-trimethyl-6-nitrospiro[2H-1-benzothiopyran-2,2'-(2H)-indoline]} were determined by the DFT method. The geometry of the most stable isomer was defined. Nitro-substitution changes mainly the lengths of bonds formed by S and N with spiro-atom Cs. According to the calculations, the CsS bond changes most and lengthens by 0.019 Å. It is shown that the S atom has large displacement amplitudes in normal modes assigned to Raman lines at 230, 285, 360, and 575 cm-1 and weak IR bands at 467 and 577 cm-1. Oscillations involving the nitro group are very active in Raman and IR spectra. Their frequencies are slightly lower than similar frequencies of nitrobenzene and nitroindolinospirobenzopyran, indicating a higher degree of vibrational coupling of the NO2 group with the NISTP molecular skeleton.

  9. Reflectance spectra of subarctic lichens

    NASA Technical Reports Server (NTRS)

    Petzold, Donald E.; Goward, Samuel N.

    1988-01-01

    Lichens constitute a major portion of the ground cover of high latitude environments, but little has been reported concerning their in situ solar spectral reflectance properties. Knowledge of these properties is important for the interpretation of remotely sensed observations from high latitude regions, as well as in studies of high latitude ecology and energy balance climatology. The spectral reflectance of common boreal vascular plants is similar to that of vascular plants of the midlatitudes. The dominant lichens, in contrast, display variable reflectance patterns in visible wavelengths. The relative reflectance peak at 0.55 microns, common to green vegetation, is absent or indistinct in spectra of pervasive boreal forest and tundra lichens, despite the presence of chlorophyll in the inner algal cells. Lichens of the dominant genus, Cladina, display strong absorption of ultraviolet energy and short-wavelength blue light relative to their absorption in other visible wavelengths. Since the Cladinae dominate both the surface vegetation in open woodlands of the boreal forest and the low arctic tundra, their unusual spectral reflectance patterns will enable accurate monitoring of the boreal forest-tundra ecotone and detection of its vigor and movement in the future.

  10. Single-spin fluid, spin gap, and [ital d]-wave pairing in YBa[sub 2]Cu[sub 4]O[sub 8]: A NMR and NQR study

    SciTech Connect

    Bankay, M.; Mali, M.; Roos, J.; Brinkmann, D. )

    1994-09-01

    We present results of [sup 17]O and [sup 63,65]Cu nuclear magnetic resonance (NMR) and nuclear quadrupolar resonance (NQR) studies in the normal and superconducting state of the 82-K superconductor YBa[sub 2]Cu[sub 4]O[sub 8]. The various components of the Cu and O Knight-shift tensors show strong but similar temperature dependences over the temperature range from 8.5 to 300 K in both the CuO[sub 2] planes and the chains, supporting the picture that there is only one spin component in the planes and the chains, although with different susceptibilities. The oxygen data obey the Korringa relation. This may be interpreted as Fermi-liquid behavior of the electronic system far away from the antiferromagnetic wave vector. The temperature dependence of both the planar Cu and O shift tensors and the planar Cu spin-lattice relaxation rate suggest the opening of a pseudo-spin-gap well above [ital T][sub [ital c

  11. Effect of Spin-Orbit Interaction in Spin-Triplet Superconductor: Structure of d-Vector and Anomalous 17O-NQR Relaxation in Sr2RuO4

    NASA Astrophysics Data System (ADS)

    Miyake, Kazumasa

    2010-02-01

    Supposing the spin-triplet superconducting state of Sr2RuO4, the spin-orbit (SO) coupling associated with relative motion in Cooper pairs is calculated by extending the method for the dipole-dipole coupling given by Leggett in the superfluid 3He. It is shown that the SO coupling works only in the equal-spin pairing (ESP) state to make the pair angular momentum \\hbarL and the pair spin angular momentum id×d* parallel with each other. The SO coupling gives rise to the internal Josephson effect in a chiral ESP state as in superfluid A-phase of 3He with a help of an additional anisotropy arising from SO coupling of atomic origin which works to direct the d-vector into ab-plane. This resolves the problem of the anomalous relaxation of 17O-NQR and the structure of d-vector in Sr2RuO4.

  12. X-ray spectra of supernova remnants

    NASA Technical Reports Server (NTRS)

    Szymkowiak, A. E.

    1985-01-01

    X-ray spectra were obtained from fields in three supernova remnants with the solid state spectrometer of the HEAO 2 satellite. These spectra, which contain lines from K-shell transitions of several abundant elements with atomic numbers between 10 and 22, were compared with various models, including some of spectra that would be produced by adiabatic phase remnants when the time-dependence of the ionization is considered.

  13. A Bayesian method for analysing relaxation spectra

    NASA Astrophysics Data System (ADS)

    Ciocci Brazzano, L.; Pellizza, L. J.; Matteo, C. L.; Sorichetti, P. A.

    2016-01-01

    The knowledge of electrical and mechanical properties of material, relies on a precise analysis of the relaxation spectra. We explore the ability of a Bayesian method to achieve an accurate estimation of spectral parameters. We implemented a parallel-tempering Markov-chain Monte Carlo algorithm and used it to fit simulated and measured spectra. An exhaustive testing of the code shows that it presents an extremely good performance, accurately fitting complex spectra under strong noise and overlapping components. We conclude that this technique is quite suitable for relaxation spectra analysis, complementing classical methods.

  14. ALIEN: A nebular spectra analysis software

    NASA Astrophysics Data System (ADS)

    Cook, R.; Vazquez, R.

    2000-11-01

    A new C-coded software, designed to analyze nebular spectra, is presented. T his software is able to read the fluxes of the most important ions directly from IRAF's output file (splot.log). Spectra can be dereddened using the Balmer lines ratio and the Seaton's extinction law. Electron temperature and density, as well as ionic abundances by number are estimated by means of numeric calculations based on the five-level atom model. The dereddened spectra and the table containing the ionic abundances can be saved in a LaTex formatted file. This software has been initially designed to work with a low dispersion spectra.

  15. Near-Infrared Spectra of Uranian Satellites

    NASA Astrophysics Data System (ADS)

    Venturini, C. C.; Lynch, D. K.; Rudy, R. J.; Mazuk, S.; Puetter, R. C.

    2001-05-01

    We present 0.8 to 2.5 micron spectra taken on June 21 & 22, 1998 UT of the Uranian satellites Miranda, Titania, Ariel, Oberon, and Umbriel. The spectra were taken using The Aerospace Corporation's Near-Infrared Imaging Spectragraph (NIRIS) on the University of California's Lick Observatory 3 meter Shane telescope. These spectra will be compared with previous work including Brown, R.H. and Cruikshank, D.P. (1983) as well as more recent spectra and analysis by Grundy, W. et al. (1999). Support for this research was provided by The Aerospace Corporation's Independent Research and Development Program.

  16. [Describing language of spectra and rough set].

    PubMed

    Qiu, Bo; Hu, Zhan-yi; Zhao, Yong-heng

    2002-06-01

    It is the traditional way to analyze spectra by experiences in astronomical field. And until now there has never been a suitable theoretical frame to describe spectra, which is may be owing to small spectra datasets that astronomers can get by low-level instruments. With the high-speed development of telescopes, especially on behalf of LAMOST, a large telescope which can collect more than 20,000 spectra in an observing night, spectra datasets are becoming larger and larger very fast. Facing these voluminous datasets, the traditional spectra-processing way simply depending on experiences becomes unfit. In this paper, we develop a brand-new language--describing language of spectra (DLS) to describe spectra of celestial bodies by defining BE (Basic element). And based on DLS, we introduce the method of RSDA (Rough set and data analysis), which is a technique of data mining. By RSDA we extract some rules of stellar spectra, and this experiment can be regarded as an application of DLS.

  17. High-resolution spectra of comet C/2013 R1 (Lovejoy)

    NASA Astrophysics Data System (ADS)

    Rousselot, P.; Decock, A.; Jehin, E.; Manfroid, J.; Hutsemékers, D.

    2014-07-01

    Comet C/2013 R1 (Lovejoy) is a long-period comet discovered on 7 September 2013 by Terry Lovejoy with a 0.2-m telescope (Guido et al., 2013), it passed its perihelion (0.81 au) on 22 December 2013. It was a bright comet visible to the naked eye. We obtained high-resolution spectra of this comet immediately after its perihelion passage during 4 nights in the period 23-26 December 2013. These spectra have been obtained with the 3.5-m Telescopio Nazionale Galileo (TNG) and the High Accuracy Radial velocity Planet Searcher in North hemisphere (HARPS-N) echelle spectrograph. HARPS-N is an echelle spectrograph covering the spectral range from 383 to 693 nm, with a spectral resolution of R=115000 (Cosentino et al., 2012). It is designed to measure stellar radial velocities in view of detecting extrasolar planets. Our observations are the first successful cometary observations performed with this instrument. They demonstrate that this spectrograph can also be efficient for getting cometary spectra, even if the sensitivity of this instrument is low in the blue part of its spectral coverage. We will present the results of our data analysis for these spectra. This analysis is focused on isotopic ratios, mainly ^{12}C/^{13}C with C_2 emission lines (with the method described in Rousselot et al. 2012) and ^{14}N/^{15}N with ^{14}NH_2 and ^{15}NH_2 emission lines (with the line wavelengths given in Rousselot et al. 2014), atomic oxygen emission lines at 557.7, 630.0 and 636.4 nm (intensity ratios and widths, see Decock et al. 2013) and relative production rates of the detected species.

  18. The Radio Spectra and - Inertial Defects Behavior of Planar Aromatic Heterocycles

    NASA Astrophysics Data System (ADS)

    McNaughton, Don; Jahn, Michaela K.; Grabow, Jens-Uwe; Godfrey, Peter; Travers, Michael; Wachsmuth, Dennis

    2016-06-01

    The simplest tricyclic aromatic nitrogen heterocyclic molecules 5,6 benzoquinoline and 7,8 benzoquinoline are possible candidates for detection of aromatic systems in the interstellar medium. Therefore the pure rotational spectra have been recorded using frequency-scanned Stark modulated, jet-cooled millimetre wave absorption spectroscopy (48-87 GHz) and Fourier Transform Microwave (FT MW) spectroscopy (2-26 GHz) of a supersonic rotationally cold molecular jet. Guided by ab initio molecular orbital predictions, spectral analysis of mm wave spectra, and higher resolution FT MW spectroscopy provided accurate rotational and centrifugal distortion constants together with 14N nuclear quadrupole coupling constants for both species. The determined inertial defects, along with those of similar species are used to develop an empirical formula for calculation of inertial defects of aromatic ring systems. The predictive ability of the formula is shown to be excellent for planar species with a number of pronounced out of plane vibrations. The resultant constants are of sufficient accuracy to be used in potential astrophysical searches. We gratefully acknowledge support from the Deutsche Forschungsgemeinschaft, the Deutsche Akademische Austauschdienst, as well as the Land Niedersachsen (J.-U.G). DMcN also thanks the Royal Society of Chemistry for their generous travel support.

  19. Resolution enhancement in second-derivative spectra.

    PubMed

    Czarnecki, Mirosław A

    2015-01-01

    Derivative spectroscopy is a powerful tool for the resolution enhancement in infrared, near-infrared, Raman, ultraviolet-visible, nuclear magnetic resonance, electron paramagnetic resonance, and fluorescence spectroscopy. Despite its great significance in analytical chemistry, not all aspects of the applications of this method have been explored as yet. This is the first systematic study of the parameters that influence the resolution enhancement in the second derivative spectra. The derivative spectra were calculated with the Savitzky-Golay method with different window size (5, 15, 25) and polynomial order (2, 4). The results obtained in this work show that the resolution enhancement in the second derivative spectra strongly depends on the data spacing in the original spectra, window size, polynomial order, and peak profile. As shown, the resolution enhancement is related to variations in the width of the peaks upon the differentiation. The present study reveals that in order to maximize the separation of the peaks in the second derivative spectra, the original spectra should be recorded at high resolution and differentiated using a small window size and high polynomial order. However, working with the real spectra one has to compromise between the noise reduction and optimization of the resolution enhancement in the second derivative spectra.

  20. Spectra of the Jovian ring and Amalthea

    NASA Technical Reports Server (NTRS)

    Neugebauer, G.; Becklin, E. E.; Jewitt, D. C.; Danielson, G. E.; Terrile, R. J.

    1981-01-01

    Measurements made between 0.887 and 2.4 microns demonstrate that the Jovian ring and Amalthea have similar reflection spectra. The spectra, in particular the ratio of the 0.9- to 2.2-micron reflectivities, are inconsistent with those expected from water, ammonia, or methane frosts, but are consistent with reflection from large rock bodies.

  1. Blind extraction of exoplanetary spectra

    NASA Astrophysics Data System (ADS)

    Morello, Giuseppe; Waldmann, Ingo; Damiano, Mario; Tinetti, Giovanna

    2016-10-01

    In the last decade, remote sensing spectroscopy enabled characterization of the atmospheres of extrasolar planets. Transmission and emission spectra of tens of transiting exoplanets have been measured with multiple instruments aboard Spitzer and Hubble Space Telescopes as well as ground-based facilities, revealing the presence of chemical species in their atmospheres, and constraining their temperature and pressure profiles.Early analyses were somehow heuristic, leading to some controversies in the literature.A photometric precision of 0.01% is necessary to detect the atmospheric spectral modulations. Current observatories, except Kepler, were not designed to achieve this precision. Data reduction is necessary to minimize the effect of instrument systematics in order to achieve the target precision. In the past, parametric models have extensively been used by most teams to remove correlated noise with the aid of auxiliary information of the instrument, the so-called optical state vectors (OSVs). Such OSVs can include inter- and intra-pixel position of the star or its spectrum, instrument temperatures and inclinations, and/or other parameters. In some cases, different parameterizations led to discrepant results.We recommend the use of blind non-parametric data detrending techniques to overcome those issues. In particular, we adopt Independent Component Analysis (ICA), i.e. a powerful blind source separation (BSS) technique to disentangle the multiple instrument systematics and astrophysical signals in transit/eclipse light curves. ICA does not require a model for the systematics, thence it can be applied to any instrument with little changes, if any. ICA-based algorithms have been applied to Spitzer/IRAC and synthetic observations in photometry (Morello et al. 2014, 2015, 2016; Morello 2015) and to Hubble/WFC3, Hubble/NICMOS and Spitzer/IRS and Hubble/WFC3 in spectroscopy (Damiano, Morello et al., in prep., Waldmann 2012, 2014, Waldmann et al. 2013) with excellent

  2. A Method for Heat Treatment of Maraging Steels 08Kh15N5D2T, 06Kh14N6D2MBT, and 07Kh16N6

    NASA Astrophysics Data System (ADS)

    Il'in, A. A.; Krikushenko, E. S.; Alekseev, V. V.; Silina, V. I.; Belousov, V. V.

    2013-07-01

    A mode for heat treatment of maraging steels 08Kh15N5D2T, 06Kh14N6D2MBT and 07Kh16N6 is developed for critical parts and high-duty structures of "MiG" aircrafts operating under conditions of a complex stress state. The use of the method has made it possible to eliminate rejects and to raise the operational reliability of expensive articles.

  3. Dual element ((15)N/(14)N, (13)C/(12)C) isotope analysis of glyphosate and AMPA by derivatization-gas chromatography isotope ratio mass spectrometry (GC/IRMS) combined with LC/IRMS.

    PubMed

    Mogusu, Emmanuel O; Wolbert, J Benjamin; Kujawinski, Dorothea M; Jochmann, Maik A; Elsner, Martin

    2015-07-01

    To assess sources and degradation of the herbicide glyphosate [N-(phosphonomethyl) glycine] and its metabolite AMPA (aminomethylphosphonic acid), concentration measurements are often inconclusive and even (13)C/(12)C analysis alone may give limited information. To advance isotope ratio analysis of an additional element, we present compound-specific (15)N/(14)N analysis of glyphosate and AMPA by a two step derivatization in combination with gas chromatography/isotope ratio mass spectrometry (GC/IRMS). The N-H group was derivatized with isopropyl chloroformate (iso-PCF), and remaining acidic groups were subsequently methylated with trimethylsilyldiazomethane (TMSD). Iso-PCF treatment at pH <10 gave too low (15)N/(14)N ratios indicating an incomplete derivatization; in contrast, too high (15)N/(14)N ratios at pH >10 indicated decomposition of the derivative. At pH 10, and with an excess of iso-PCF by 10-24, greatest yields and accurate (15)N/(14)N ratios were obtained (deviation from elemental analyzer-IRMS: -0.2 ± 0.9% for glyphosate; -0.4 ± 0.7% for AMPA). Limits for accurate δ(15)N analysis of glyphosate and AMPA were 150 and 250 ng injected, respectively. A combination of δ(15)N and δ(13)C analysis by liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) (1) enabled an improved distinction of commercial glyphosate products and (2) showed that glyphosate isotope values during degradation by MnO2 clearly fell outside the commercial product range. This highlights the potential of combined carbon and nitrogen isotopes analysis to trace sources and degradation of glyphosate.

  4. CARBON-RICH PRESOLAR GRAINS FROM MASSIVE STARS: SUBSOLAR {sup 12}C/{sup 13}C AND {sup 14}N/{sup 15}N RATIOS AND THE MYSTERY OF {sup 15}N

    SciTech Connect

    Pignatari, M.; Zinner, E.; Hoppe, P.; Jordan, C. J.; Gibson, B. K.; Trappitsch, R.; Herwig, F.; Fryer, C.; Hirschi, R.; Timmes, F. X.

    2015-08-01

    Carbon-rich grains with isotopic anomalies compared to the Sun are found in primitive meteorites. They were made by stars, and carry the original stellar nucleosynthesis signature. Silicon carbide grains of Type X and C and low-density (LD) graphites condensed in the ejecta of core-collapse supernovae. We present a new set of models for the explosive He shell and compare them with the grains showing {sup 12}C/{sup 13}C and {sup 14}N/{sup 15}N ratios lower than solar. In the stellar progenitor H was ingested into the He shell and not fully destroyed before the explosion. Different explosion energies and H concentrations are considered. If the supernova shock hits the He-shell region with some H still present, the models can reproduce the C and N isotopic signatures in C-rich grains. Hot-CNO cycle isotopic signatures are obtained, including a large production of {sup 13}C and {sup 15}N. The short-lived radionuclides {sup 22}Na and {sup 26}Al are increased by orders of magnitude. The production of radiogenic {sup 22}Ne from the decay of {sup 22}Na in the He shell might solve the puzzle of the Ne-E(L) component in LD graphite grains. This scenario is attractive for the SiC grains of type AB with {sup 14}N/{sup 15}N ratios lower than solar, and provides an alternative solution for SiC grains originally classified as nova grains. Finally, this process may contribute to the production of {sup 14}N and {sup 15}N in the Galaxy, helping to produce the {sup 14}N/{sup 15}N ratio in the solar system.

  5. Mid-Infrared Spectra of Mercury

    NASA Technical Reports Server (NTRS)

    Cooper, B.; Potter, A. E.; Killen, R. M.; Morgan, T. H.

    2001-01-01

    Mid-infrared (8-13 microns) spectra of radiation emitted from the surface of solar system objects can be interpreted in terms of surface composition. However, the spectral features are weak, and require exceptionally high signal-to-noise ratio spectra to detect them. Ground-based observations of spectra in this region are plagued by strong atmospheric absorptions from water and ozone. High-altitude balloon measurements that avoid atmospheric absorptions can be affected by contamination of the optics by dust. We have developed a technique to obtain mid-infrared spectra of Mercury that minimizes these problems. The resulting spectra show evidence of transparency features that can be used to qualitatively characterize the surface composition. Additional information is contained in the original extended abstract.

  6. Isotope shifts in spectra of molecular liquids

    NASA Astrophysics Data System (ADS)

    Dubrovskaya, E. V.; Kolomiitsova, T. D.; Shurukhina, A. V.; Shchepkin, D. N.

    2016-02-01

    In the IR absorption spectra of low-temperature molecular liquids, we have observed anomalously large isotope shifts of frequencies of vibrational bands that are strong in the dipole absorption. The same effect has also been observed in their Raman spectra. At the same time, in the spectra of cryosolutions, the isotope shifts of the same bands coincide with a high accuracy (±(0.1-0.5) cm-1) with the shifts that are observed in the spectra of the gas phase. The difference between the spectra of examined low-temperature systems is caused by the occurrence of resonant dipole-dipole interactions between spectrally active identical molecules. The calculation of the band contour in the spectrum of liquid freon that we have performed in this work taking into account the resonant interaction between states of simultaneous transitions in isotopically substituted molecules can explain this effect.

  7. PCA: Principal Component Analysis for spectra modeling

    NASA Astrophysics Data System (ADS)

    Hurley, Peter D.; Oliver, Seb; Farrah, Duncan; Wang, Lingyu; Efstathiou, Andreas

    2012-07-01

    The mid-infrared spectra of ultraluminous infrared galaxies (ULIRGs) contain a variety of spectral features that can be used as diagnostics to characterize the spectra. However, such diagnostics are biased by our prior prejudices on the origin of the features. Moreover, by using only part of the spectrum they do not utilize the full information content of the spectra. Blind statistical techniques such as principal component analysis (PCA) consider the whole spectrum, find correlated features and separate them out into distinct components. This code, written in IDL, classifies principal components of IRS spectra to define a new classification scheme using 5D Gaussian mixtures modelling. The five PCs and average spectra for the four classifications to classify objects are made available with the code.

  8. Handbook of Monochromatic XPS Spectra, Semiconductors

    NASA Astrophysics Data System (ADS)

    Crist, B. Vincent

    2000-10-01

    This handbook is one of three containing an invaluable collection of research grade XPS Spectra. Each handbook concentrates on a specific family of materials (the elements and their native oxides, semiconductors and polymers) and is entirely self-contained. The introductory section to each handbook includes comprehensive information about the XPS instrument used, the materials and the advanced methods used to collect the spectra. Energy resolution settings, instrument characteristics, energy referencing methods, traceability, energy scale calibration details and transmission function are all reported. Among the many valuable features included in each of these handbooks are: ? All spectra were measured by using AlK monochromatic X-rays ? All spectra were collected in a self-consistent manner to maximise data reliability and quality ? All peaks in the wide spectra are fully annotated and accompanied by detailed atom % tables that report BEs for each of the labelled peaks ? Each high-energy resolution spectrum is peak-fitted and accompanied by detailed tables containing binding energies, FWHMs and relative percentages. In this volume 'Semiconductors' are contained XPS Spectra from a wide range of semiconductive materials and related materials, a rare tool for scientists and analysts in this area. Exclusive features of this volume include: ? Binding energies are accurate to +/- 0.08eV ? Charge compensation was done with a flood-gun mesh-screen system ? Valence band spectra document the occupied density of states (DOS) and the fundamental electronic nature of the semi-conductive materials analysed ? Analyses were done: "as received", "freshly fractured in air", "ion etched" and "chemically treated" ? Alphabetically organised by chemical abbreviations for ease of locating each material This handbook is an invaluable reference for materials scientists and electrical engineers in industry, academia and government laboratories interested in the analysis of semiconductors

  9. Computer processing of tunable diode laser spectra

    NASA Technical Reports Server (NTRS)

    May, Randy D.

    1989-01-01

    A computer-controlled tunable diode laser spectrometer and spectral analysis software are described. The three-channel system records simultaneously the transmission of a subject gas, a temperature-stabilized etalon, and a calibration gas. The software routines are applied to diode laser spectra of HNO3 and NO2 to illustrate the procedures adopted for conversion of raw spectral data to useful transmission and harmonic spectra. Extraction of line positions, absorption intensities, collisional broadening coefficients, and gas concentrations from recorded spectra is also described.

  10. Analysis of atmospheric spectra for trace gases

    NASA Technical Reports Server (NTRS)

    Rinsland, Curtis P.; Seals, Robert K., Jr.; Smith, Mary Ann H.; Goldman, Aaron; Murcray, David G.; Murcray, Frank J.

    1990-01-01

    The objective is the comprehensive analysis of high resolution atmospheric spectra recorded in the middle-infrared region to obtain simultaneous measurements of coupled parameters (gas concentrations of key trace constituents, total column amounts, pressure, and temperature) in the stratosphere and upper troposphere. Solar absorption spectra recorded at 0.002 and 0.02 cm exp -1 resolutions with the University of Denver group's balloon-borne, aircraft borne, and ground-based interferometers and 0.005 to 0.01 cm exp -1 resolution solar spectra from Kitt Peak are used in the analyses.

  11. Vibrational spectra and structure of isopropylbenzene

    NASA Astrophysics Data System (ADS)

    Fishman, A. I.; Noskov, A. I.; Remizov, A. B.; Chachkov, D. V.

    2008-12-01

    Infrared spectra (4000-400 cm -1) and Raman spectra (1700-40 cm -1) of the liquid and two crystalline solids of isopropylbenzene (cumene) and isopropylbenzene-d 12 have been recorded. The spectra indicate that in the liquid and crystalline solids isopropylbenzene exists in planar conformation only (C sbnd H bond is in the plane of the benzene ring). An assignment of the observed band wave numbers both isopropylbenzene and isopropylbenzene-d 12 is discussed by comparison with normal mode wave numbers and IR intensities calculated from ab initio 6-31G (d) force fields.

  12. High-resolution spectra of comet C/2013 R1 (Lovejoy)

    NASA Astrophysics Data System (ADS)

    Rousselot, P.; Decock, A.; Korsun, P. P.; Jehin, E.; Kulyk, I.; Manfroid, J.; Hutsemékers, D.

    2015-08-01

    Context. High-resolution spectra of comets permit deriving the physical properties of the coma. In the optical range, relative production rates can be computed, and information about isotopic ratios and the origin of oxygen atoms can be obtained. Aims: The main objective of the work presented here was to obtain information about the chemical composition of comet C/2013 R1 (Lovejoy), a bright and long-period comet that passed perihelion (0.81 au) on 22 December 2013. Methods: We used the HARPS-North echelle spectrograph at the 3.5 m telescope TNG to obtain high-resolution spectra of comet C/2013 R1 (Lovejoy) in the optical range immediately after its perihelion passage during four consecutive nights in the period December 23 to 26, 2013. Results: Our results demonstrate the ability of HARPS-North to efficiently obtain cometary spectra. Very faint emission lines, such as those of 15NH2, have been detected, leading to a rough estimate of the 14N/15N ratio in NH2. The 12C/13C ratio was measured in the C2 lines and is equal to 80 ± 30. The oxygen lines were studied as well (green to red line intensity ratios and widths), confirming that H2O is the main parent molecule that photodissociates to produce oxygen atoms. This suggests that this comet has a high CO2 abundance. Relative production rates for C2 and NH2 were computed, but we found no significant deviation from a typical NH2/C2 ratio. Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias.

  13. Classification of dry-cured hams according to the maturation time using near infrared spectra and artificial neural networks.

    PubMed

    Prevolnik, M; Andronikov, D; Žlender, B; Font-i-Furnols, M; Novič, M; Škorjanc, D; Čandek-Potokar, M

    2014-01-01

    An attempt to classify dry-cured hams according to the maturation time on the basis of near infrared (NIR) spectra was studied. The study comprised 128 samples of biceps femoris (BF) muscle from dry-cured hams matured for 10 (n=32), 12 (n=32), 14 (n=32) or 16 months (n=32). Samples were minced and scanned in the wavelength range from 400 to 2500 nm using spectrometer NIR System model 6500 (Silver Spring, MD, USA). Spectral data were used for i) splitting of samples into the training and test set using 2D Kohonen artificial neural networks (ANN) and for ii) construction of classification models using counter-propagation ANN (CP-ANN). Different models were tested, and the one selected was based on the lowest percentage of misclassified test samples (external validation). Overall correctness of the classification was 79.7%, which demonstrates practical relevance of using NIR spectroscopy and ANN for dry-cured ham processing control.

  14. Investigation of Raman spectra of polyethylene terephthalate

    NASA Astrophysics Data System (ADS)

    Zhu, Changjun; Tong, Na; Song, Lixin; Zhang, Guoqing

    2015-08-01

    Raman spectrometry was employed to study the characteristics of Raman spectra of polyethylene terephthalate (PET), which were treated with sodium hydroxide, sulfuric acid and copper sulfate, respectively. Raman spectra under different conditions were obtained and the characteristics of the Raman spectra were analyzed. The morphology structures were observed under different conditions using Atomic Force Microscope. The results show that the spectral intensity of PET treated with sodium hydroxide is higher than that untreated between 200-1750 cm-1, while the intensity of PET treated with sodium hydroxide is lower than that untreated beyond 1750 cm-1 and the fluorescence background of Raman spectra is decreased. The spectral intensity of PET treated with sulfuric acid is remarkably reduced than that untreated, and the intensity of PET treated with copper sulphate is much higher than that untreated.

  15. Spectra: Time series power spectrum calculator

    NASA Astrophysics Data System (ADS)

    Gallardo, Tabaré

    2017-01-01

    Spectra calculates the power spectrum of a time series equally spaced or not based on the Spectral Correlation Coefficient (Ferraz-Mello 1981, Astron. Journal 86 (4), 619). It is very efficient for detection of low frequencies.

  16. Spatial evolution of ocean wave spectra

    NASA Technical Reports Server (NTRS)

    Beal, R. C.

    1981-01-01

    The spatially evolving deep water synthetic aperture radar (SAR) directional spectra of a mixed ocean wave system are compared with a comprehensive set of surface and aircraft measurements. The evolution of the SAR spectra, at least for ocean wavelengths greater than 80 m, is seen as generally consistent with the auxiliary data set in both time and space. From the spatial evolution of the angular component of the spectra, it is possible to project back to an apparent remote storm source that is also consistent with the storm location via GOES satellite imagery. The data provide compelling evidence that the spatial evolution of SAR ocean wave spectra can be a useful tool in global ocean wave monitoring and forecasting.

  17. Synthesis and Spectra of Vanadium Complexes.

    ERIC Educational Resources Information Center

    Ophardt, Charles E.; Stupgia, Sean

    1984-01-01

    Describes an experiment which illustrates simple synthetic techniques, redox principles in synthesis reactions, interpretation of visible spectra using Orgel diagrams, and the spectrochemical series. The experiment is suitable for the advanced undergraduate inorganic chemistry laboratory. (JN)

  18. An analysis of middle ultraviolet dayglow spectra

    NASA Astrophysics Data System (ADS)

    Walden, Billie S.

    1991-12-01

    Middle ultraviolet spectra from 1800 to 3400A are analyzed. These spectra were obtained from the March 1990 rocket flight of the NPS MUSTANG instrument over the altitudes 105km to 315km. The data were compared with computer generated synthetic spectra. A least squares fitting procedure was developed for this purpose. Each data point was weighted using the standard deviation of the means. Synthetic spectra were generated for the following emissions: N2 Vegard-Kaphan; N2 Lyman-Birge-Hopfield; NO gamma, delta, and epsilon; OI 2972A, OII 2470A; and NII 2143A. Altitude profiles for the emissions were obtained. Tentative identification was made of the OIII 2853A emission. A comparison of VK and LBH profiles demonstrates the process of N2 A-state quenching by atomic oxygen.

  19. [Spectra of dark green jade from Myanmar].

    PubMed

    Mao, Jian; Chai, Lin-Tao; Guo, Shou-Guo; Fan, Jian-Liang; Bao, Feng

    2013-05-01

    Chemical compositions and spectral characteristics of one type of dark green jades assumed from omphacite jadeite from Myanmar jadeite mining area were studied by X-ray powder diffraction(XRD), X-ray fluorescence spectra(XRF), Raman spectra(RM) and UV-Vis Spectroscopy, etc. Based on testing by XRD and XRF, it was shown that it belongs to iron-enriched plagioclase, including albite and anorthite. The compositions range is between Ab0.731 An0.264 Or0.004 and Ab0.693 An0.303 Or0.004. Raman spectra of samples, albite jade and anorthite were collected and analyzed. Additionally, the distributions of Si, Al in the crystal structure were also discussed. UV-Vis spectra showed that dark green hue of this mineral is associated with d--d electronic transition of Fe3+ and Cr3+.

  20. Microwave spectra of some volatile organic compounds

    NASA Technical Reports Server (NTRS)

    White, W. F.

    1975-01-01

    A computer-controlled microwave (MRR) spectrometer was used to catalog reference spectra for chemical analysis. Tables of absorption frequency, peak absorption intensity, and integrated intensity are included for 26 volatile organic compounds, all but one of which contain oxygen.

  1. Frequency Spectra of Magnetoacoustic Emission in Meteorites

    NASA Astrophysics Data System (ADS)

    Ivanchenko, S. V.; Grokhovsky, V. I.; Kolchanov, N. N.

    2016-08-01

    We analyzed the magnetoacoustic emission spectra of iron meteorites and their industrial analogs. The revealed differences in signal amplitude, position and width of the peaks are associated with the features of structure and the magnetic texture.

  2. Contribution to the study of turbulence spectra

    NASA Technical Reports Server (NTRS)

    Dumas, R.

    1979-01-01

    An apparatus suitable for turbulence measurement between ranges of 1 to 5000 cps and from 6 to 16,000 cps was developed and is described. Turbulence spectra downstream of the grills were examined with reference to their general characteristics, their LF qualities, and the effects of periodic turbulence. Medium and HF are discussed. Turbulence spectra in the boundary layers are similarly examined, with reference to their fluctuations at right angles to the wall, and to lateral fluctuations. Turbulence spectra in a boundary layer with suction to the wall is discussed. Induced turbulence, and turbulence spectra at high Reynolds numbers. Calculations are presented relating to the effect of filtering on the value of the correlations in time and space.

  3. Comparing Ultraviolet Spectra Against Calculations: First Results

    NASA Technical Reports Server (NTRS)

    Peterson, Ruth C.

    2003-01-01

    The five-year goal of this effort is to calculate high fidelity mid-UV spectra for individual stars and stellar systems for a wide range of ages, abundances, and abundance ratios. In this first year, the emphasis was placed on revising the list of atomic line parameters used to calculate mid-UV spectra. First, new identifications of atomic lines and measurements of their transition probabilities were obtained for lines of the first and second ionization stages of iron-peak elements. Second, observed mid-UV and optical spectra for standard stars were re-analyzed and compared to new calculations, to refine the determination of transition probabilities and to estimate the identity of lines still missing from the laboratory lists. As evidenced by the figures, a dramatic improvement has resulted in the reproduction of the spectra of standard stars by the calculations.

  4. POLLUX: a database of synthetic stellar spectra

    NASA Astrophysics Data System (ADS)

    Palacios, A.; Gebran, M.; Josselin, E.; Martins, F.; Plez, B.; Belmas, M.; Lèbre, A.

    2010-06-01

    Aims: Synthetic spectra are needed to determine fundamental stellar and wind parameters of all types of stars. They are also used for the construction of theoretical spectral libraries helpful for stellar population synthesis. Therefore, a database of theoretical spectra is required to allow rapid and quantitative comparisons to spectroscopic data. We provide such a database offering an unprecedented coverage of the entire Hertzsprung-Russell diagram. Methods: We present the POLLUX database of synthetic stellar spectra. For objects with Teff ≤ 6000 K, MARCS atmosphere models are computed and the program TURBOSPECTRUM provides the synthetic spectra. ATLAS12 models are computed for stars with 7000 K ≤ Teff ≤ 15 000 K. SYNSPEC gives the corresponding spectra. Finally, the code CMFGEN provides atmosphere models for the hottest stars (Teff > 25 000 K). Their spectra are computed with CMF_FLUX. Both high resolution (R > 150 000) optical spectra in the range 3000 to 12 000 Å and spectral energy distributions extending from the UV to near-IR ranges are presented. These spectra cover the HR diagram at solar metallicity. Results: We propose a wide variety of synthetic spectra for various types of stars in a format that is compliant with the Virtual Observatory standards. A user-friendly web interface allows an easy selection of spectra and data retrieval. Upcoming developments will include an extension to a large range of metallicities and to the near-IR high resolution spectra, as well as a better coverage of the HR diagram, with the inclusion of models for Wolf-Rayet stars and large datasets for cool stars. The POLLUX database is accessible at http://pollux.graal.univ-montp2.fr/ and through the Virtual Observatory. Copy of database is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb

  5. Diffuse emission and pathological Seyfert spectra

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.

    1995-01-01

    In this annual ROSAT status report, the diffuse emission and spectra from Seyfert galaxies are examined. Three papers are presented and their contents include the soft x-ray properties and spectra of a binary millisecond pulsar, the PSPC and HRI observations of a Starburst/Seyfert 2 Galaxy, and an analysis of the possibility of x-ray luminous starbursts in the Einstein Medium Sensitivity Survey.

  6. On the Photoelectron Spectra of Li4

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Arnold, James O. (Technical Monitor)

    1996-01-01

    The most stable structure for Li4(-) is found to be the rhombus. Electron detachment from this structure does not seem able to fully explain the photoelectron spectra. The computed results are consistent with those Rao, Jena, and Ray who have proposed that the experimental spectra consists of a superposition of detachment from the Li4(-) rhombus and tetrahedron, forming the singlet and triplet states of Li4, respectively.

  7. New atlas of IR solar spectra

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Blatherwick, R. D.; Murcray, F. H.; Vanallen, J. W.; Bradford, C. M.; Cook, G. R.; Murcray, D. G.

    1980-01-01

    Over 4500 absorption lines have been marked on the spectra and the corresponding line positions tabulated. The associated absorbing telluric or solar species for more than 90% of these lines have been identified and only a fraction of the unidentified lines have peak absorptions greater than a few percent. The high resolution and the low Sun spectra greatly enhance the sensitivity limits for identification of trace constituents.

  8. Trigonometric Polynomials For Estimation Of Spectra

    NASA Technical Reports Server (NTRS)

    Greenhall, Charles A.

    1990-01-01

    Orthogonal sets of trigonometric polynomials used as suboptimal substitutes for discrete prolate-spheroidal "windows" of Thomson method of estimation of spectra. As used here, "windows" denotes weighting functions used in sampling time series to obtain their power spectra within specified frequency bands. Simplified windows designed to require less computation than do discrete prolate-spheroidal windows, albeit at price of some loss of accuracy.

  9. Analytical calculation of two-dimensional spectra.

    PubMed

    Bell, Joshua D; Conrad, Rebecca; Siemens, Mark E

    2015-04-01

    We demonstrate an analytical calculation of two-dimensional (2D) coherent spectra of electronic or vibrational resonances. Starting with the solution to the optical Bloch equations for a two-level system in the 2D time domain, we show that a fully analytical 2D Fourier transform can be performed if the projection-slice and Fourier-shift theorems of Fourier transforms are applied. Results can be fit to experimental 2D coherent spectra of resonances with arbitrary inhomogeneity.

  10. THE SPITZER ATLAS OF STELLAR SPECTRA (SASS)

    SciTech Connect

    Ardila, David R.; Van Dyk, Schuyler D.; Makowiecki, Wojciech; Stauffer, John; Rho, Jeonghee; Fajardo-Acosta, Sergio; Hoard, D. W.; Wachter, Stefanie; Song, Inseok

    2010-12-15

    We present the Spitzer Atlas of Stellar Spectra, which includes 159 stellar spectra (5-32 {mu}m; R {approx} 100) taken with the Infrared Spectrograph on the Spitzer Space Telescope. This Atlas gathers representative spectra of a broad section of the Hertzsprung-Russell diagram, intended to serve as a general stellar spectral reference in the mid-infrared. It includes stars from all luminosity classes, as well as Wolf-Rayet (WR) objects. Furthermore, it includes some objects of intrinsic interest, such as blue stragglers and certain pulsating variables. All of the spectra have been uniformly reduced, and all are available online. For dwarfs and giants, the spectra of early-type objects are relatively featureless, characterized by the presence of hydrogen lines in A spectral types. Besides these, the most noticeable photospheric features correspond to water vapor and silicon monoxide in late-type objects and methane and ammonia features at the latest spectral types. Most supergiant spectra in the Atlas present evidence of circumstellar gas and/or dust. The sample includes five M supergiant spectra, which show strong dust excesses and in some cases polycyclic aromatic hydrocarbon features. Sequences of WR stars present the well-known pattern of lines of He I and He II, as well as forbidden lines of ionized metals. The characteristic flat-top shape of the [Ne III] line is evident even at these low spectral resolutions. Several Luminous Blue Variables and other transition stars are present in the Atlas and show very diverse spectra, dominated by circumstellar gas and dust features. We show that the [8]-[24] Spitzer colors (IRAC and MIPS) are poor predictors of spectral type for most luminosity classes.

  11. On optimization of absorption-dispersion spectra

    NASA Astrophysics Data System (ADS)

    Hawranek, J. P.; Grabska, J.; Beć, K. B.

    2016-12-01

    A modified approach to the analysis of spectra of the complex electric permittivity of liquids in the Infrared region is presented. These spectra are derived from experimental spectra of the complex refractive index. Subsequently they are used to determine important secondary quantities, e.g. spectra of complex molecular polarizabilities and an integral property - the molar vibrational polarization. The accuracy of these quantities depends essentially on the accuracy of both components of the complex electric permittivity spectrum. In the proposed procedure, the spectra of the complex electric permittivity are approximated using the Classical Damped Harmonic Oscillator (CDHO) model for the description of individual bandshapes. The CDHO model defines both the real and imaginary part of the complex permittivity. The fitting procedure includes a simultaneous optimization of both the real and imaginary parts of the complex permittivity spectrum. A comparison of absorption-only curve fitting and the novel absorption-dispersion double curve fitting is presented; advantages of the new approach in accuracy, reliability and convergence time are pointed out. Due to the complexity of the problem, the choice was restricted to non-gradient methods of optimization. The performance of several gradientless algorithms was tested. Among numerous procedures the Powell General Least Squares Method Without Derivatives was found to be the most efficient. The reliability of obtained results of the band separatiovn process was tested on several simulated spectra of increasing complexity. The applicability of the developed approach to the analysis of exemplary experimental data was evaluated and discussed.

  12. The origin of the band at around 730 cm(-1) in the SERS spectra of bacteria: a stable isotope approach.

    PubMed

    Kubryk, Patrick; Niessner, Reinhard; Ivleva, Natalia P

    2016-05-10

    Raman microspectroscopy is an emerging tool to analyze the molecular and isotopic composition of single microbial cells. It can be used to achieve an in situ understanding of metabolic processes. Due to the low sensitivity of the Raman effect, surface-enhanced Raman scattering (SERS) is utilized to enhance the Raman signal. The SERS spectra of bacteria are usually characterized by a pronounced band at around 730 cm(-1), which is assigned to glycosidic ring vibrations or to adenine or even to CH2 deformation in different studies. In order to clarify the origin of this band, we employed a stable isotope approach and performed a SERS analysis of Escherichia coli bacteria using in situ prepared Ag nanoparticles. The cells were grown on unlabeled ((12)C, (14)N) and labeled ((13)C, (15)N) carbon and nitrogen sources in different combinations. The SERS band of the stable isotope labeled microorganisms showed a characteristic red-shift in the SERS spectra, which solely depends on the isotopic composition. It was therefore possible to confidently assign this band to adenine-related compounds. Furthermore, by utilizing the fingerprint area of single-cell SERS spectra as the input for the principal component analysis, one can clearly differentiate between E. coli bacteria incorporating different stable isotopes.

  13. Parameterizing Stellar Spectra Using Deep Neural Networks

    NASA Astrophysics Data System (ADS)

    Li, Xiang-Ru; Pan, Ru-Yang; Duan, Fu-Qing

    2017-03-01

    Large-scale sky surveys are observing massive amounts of stellar spectra. The large number of stellar spectra makes it necessary to automatically parameterize spectral data, which in turn helps in statistically exploring properties related to the atmospheric parameters. This work focuses on designing an automatic scheme to estimate effective temperature ({T}{eff}), surface gravity ({log}g) and metallicity [Fe/H] from stellar spectra. A scheme based on three deep neural networks (DNNs) is proposed. This scheme consists of the following three procedures: first, the configuration of a DNN is initialized using a series of autoencoder neural networks; second, the DNN is fine-tuned using a gradient descent scheme; third, three atmospheric parameters {T}{eff}, {log}g and [Fe/H] are estimated using the computed DNNs. The constructed DNN is a neural network with six layers (one input layer, one output layer and four hidden layers), for which the number of nodes in the six layers are 3821, 1000, 500, 100, 30 and 1, respectively. This proposed scheme was tested on both real spectra and theoretical spectra from Kurucz’s new opacity distribution function models. Test errors are measured with mean absolute errors (MAEs). The errors on real spectra from the Sloan Digital Sky Survey (SDSS) are 0.1477, 0.0048 and 0.1129 dex for {log}g, {log}{T}{eff} and [Fe/H] (64.85 K for {T}{eff}), respectively. Regarding theoretical spectra from Kurucz’s new opacity distribution function models, the MAE of the test errors are 0.0182, 0.0011 and 0.0112 dex for {log}g, {log}{T}{eff} and [Fe/H] (14.90 K for {T}{eff}), respectively.

  14. Charge fluctuations and nodeless superconductivity in quasi-one-dimensional Ta4Pd3Te16 revealed by 125Te-NMR and 181Ta-NQR

    NASA Astrophysics Data System (ADS)

    Li, Z.; Jiao, W. H.; Cao, G. H.; Zheng, Guo-qing

    2016-11-01

    We report 125Te nuclear magnetic resonance and 181Ta nuclear quadrupole resonance studies on single-crystal Ta4Pd3Te16 , which has a quasi-one-dimensional structure and superconducts below Tc=4.3 K. 181Ta with spin I =7 /2 is sensitive to quadrupole interactions, while 125Te with spin I =1 /2 can only relax by magnetic interactions. By comparing the spin-lattice relaxation rate (1 /T1 ) of 181Ta and 125Te, we found that electric-field-gradient (EFG) fluctuations develop below 80 K. The EFG fluctuations are enhanced with decreasing temperature due to the fluctuations of a charge density wave that sets in at TCDW=20 K, below which the spectra are broadened and 1 /T1T drops sharply. In the superconducting state, 1 /T1 shows a Hebel-Slichter coherence peak just below Tc for 125Te, indicating that Ta4Pd3Te16 is a full-gap superconductor without nodes in the gap function. The coherence peak is absent in the 1 /T1 of 181Ta due to the strong EFG fluctuations.

  15. Specific features of magnetic order in a multiferroic compound CuCrO2 determined using NMR and NQR data for 63, 65Cu nuclei

    NASA Astrophysics Data System (ADS)

    Smol'nikov, A. G.; Ogloblichev, V. V.; Verkhovskii, S. V.; Mikhalev, K. N.; Yakubovskii, A. Yu.; Furukawa, Y.; Piskunov, Yu. V.; Sadykov, A. F.; Barilo, S. N.; Shiryaev, S. V.

    2017-02-01

    Results of studying the paramagnetic and ordered phases of a CuCrO2 single crystal using nuclear magnetic and nuclear quadrupole resonances on 63,65Cu nuclei are presented. The measurements have been carried out in wide ranges of temperature ( T = 4.2-300 K) and magnetic-field strength ( H = 0-94 kOe), with the magnetic fields being directed along a and c axes of the crystal. The components of the electric-field gradient tensor and the magnetic-shift tensor ( K a,c) have been determined. The temperature dependences K a( H || a) and K c( H || c) for the paramagnetic phase are described by the Curie-Weiss law and reproduce the behavior of the magnetic susceptibility (χa,c). The hyperfine field on a copper nucleus has been determined, which is equal to h hf a,c = 33 kOe/μB. Below the temperature T N = 23.6 K, nuclear magnetic resonance and nuclear quadrupole resonance spectra for 63,65Cu nuclei have been recorded typical of helical magnetic structures, which are incommensurable with the lattice period.

  16. Disk-Averaged Synthetic Spectra of Mars

    NASA Astrophysics Data System (ADS)

    Tinetti, Giovanna; Meadows, Victoria S.; Crisp, David; Fong ,William; Velusamy, Thangasamy; Snively, Heather

    2005-08-01

    The principal goal of the NASA Terrestrial Planet Finder (TPF) and European Space Agency's Darwin mission concepts is to directly detect and characterize extrasolar terrestrial (Earthsized) planets. This first generation of instruments is expected to provide disk-averaged spectra with modest spectral resolution and signal-to-noise. Here we use a spatially and spectrally resolved model of a Mars-like planet to study the detectability of a planet's surface and atmospheric properties from disk-averaged spectra. We explore the detectability as a function of spectral resolution and wavelength range, for both the proposed visible coronograph (TPFC) and mid-infrared interferometer (TPF-I/Darwin) architectures. At the core of our model is a spectrum-resolving (line-by-line) atmospheric/surface radiative transfer model. This model uses observational data as input to generate a database of spatially resolved synthetic spectra for a range of illumination conditions and viewing geometries. The model was validated against spectra recorded by the Mars Global Surveyor-Thermal Emission Spectrometer and the Mariner 9-Infrared Interferometer Spectrometer. Results presented here include disk-averaged synthetic spectra, light curves, and the spectral variability at visible and mid-infrared wavelengths for Mars as a function of viewing angle, illumination, and season. We also considered the differences in the spectral appearance of an increasingly ice-covered Mars, as a function of spectral resolution, signal-to-noise and integration time for both TPF-C and TPFI/ Darwin.

  17. H. N. Russell and Atomic Spectra

    NASA Astrophysics Data System (ADS)

    Devorkin, David

    2001-04-01

    “I would rather analyze spectra than do cross-word puzzles or do almost anything else” Henry Norris Russell wrote to William F. Meggers in 1927. Meggers, chief of the spectroscopy division at the NBS, had been surprised that an astrophysicist could be so keen about the analysis of complex spectra. But Russell was a new type of astrophysicist, one who made physics the core of his research. Spectra, for Russell, held the "master key" to knowledge about the universe, and of the atom. He was first attracted by the challenge of detecting and explaining anomalies, which he hoped would lead to new knowledge about the structure of matter. Then, influenced by physicists such as Meggers, he devoted himself to filling in the picture of the structure of atoms from their characteristic spectra as completely as possible. In this talk I will review how Russell worked with Meggers and became the nucleus of an ever-widening circle of spectroscopists devoted to the analysis of complex spectra.

  18. Improving Algorithm for Automatic Spectra Processing

    NASA Astrophysics Data System (ADS)

    Rackovic, K.; Nikolic, S.; Kotrc, P.

    2009-09-01

    Testing and improving of the computer program for automatic processing (flat-fielding) of a great number of solar spectra obtained with the horizontal heliospectrograph HSFA2 has been done. This program was developed in the Astronomical Institute of Academy of Sciences of the Czech Republic in Ondřejov. An irregularity in its work has been discovered, i.e. the program didn't work for some of the spectra. To discover a cause of this error an algorithm has been developed, and a program for examination of the parallelism of reference hairs crossing the spectral slit on records of solar spectra has been made. The standard methods for data processing have been applied-calculating and analyzing higher-order moments of distribution of radiation intensity. The spectra with the disturbed parallelism of the reference hairs have been eliminated from further processing. In order to improve this algorithm of smoothing of spectra, isolation and removal of the harmonic made by a sunspot with multiple elementary transformations of ordinates (Labrouste's transformations) are planned. This project was accomplished at the first summer astronomy practice of students of the Faculty of Mathematics, University of Belgrade, Serbia in 2007 in Ondřejov.

  19. Cloud supersaturations from CCN spectra Hoppel minima

    NASA Astrophysics Data System (ADS)

    Hudson, James G.; Noble, Stephen; Tabor, Samantha

    2015-04-01

    High-resolution cloud condensation nucleus (CCN) spectral measurements in two aircraft field projects, Marine Stratus/Stratocumulus Experiment (MASE) and Ice in Clouds Experiment-Tropical (ICE-T), often showed bimodality that had previously been observed in submicrometer aerosol size distributions obtained by differential mobility analyzers. However, a great deal of spectral shape variability from very bimodal to very monomodal was observed in close proximity. Cloud supersaturation (S) estimates based on critical S, Sc, at minimal CCN concentrations between two modes (Hoppel minima) were ascertained for 63% of 325 measured spectra. These cloud S were lower than effective S (Seff) determined by comparing ambient CCN spectra with nearby cloud droplet concentrations (Nc). Averages for the polluted MASE stratus were 0.15 and 0.23% and for the cumulus clouds of ICE-T 0.44 and 1.03%. This cloud S disagreement between the two methods might in part be due to the fact that Hoppel minima include the effects of cloud processing, which push CCN spectra toward lower S. Furthermore, there is less cloud processing by the smaller cloud droplets, which might be related to smaller droplets evaporating more readily. Significantly lower concentrations within the more bimodal spectra compared with the monomodal spectra indicated active physical processes: Brownian capture of interstitial CCN and droplet coalescence. Chemical cloud processing also contributed to bimodality, especially in MASE.

  20. Disk-averaged synthetic spectra of Mars

    NASA Technical Reports Server (NTRS)

    Tinetti, Giovanna; Meadows, Victoria S.; Crisp, David; Fong, William; Velusamy, Thangasamy; Snively, Heather

    2005-01-01

    The principal goal of the NASA Terrestrial Planet Finder (TPF) and European Space Agency's Darwin mission concepts is to directly detect and characterize extrasolar terrestrial (Earthsized) planets. This first generation of instruments is expected to provide disk-averaged spectra with modest spectral resolution and signal-to-noise. Here we use a spatially and spectrally resolved model of a Mars-like planet to study the detectability of a planet's surface and atmospheric properties from disk-averaged spectra. We explore the detectability as a function of spectral resolution and wavelength range, for both the proposed visible coronograph (TPFC) and mid-infrared interferometer (TPF-I/Darwin) architectures. At the core of our model is a spectrum-resolving (line-by-line) atmospheric/surface radiative transfer model. This model uses observational data as input to generate a database of spatially resolved synthetic spectra for a range of illumination conditions and viewing geometries. The model was validated against spectra recorded by the Mars Global Surveyor-Thermal Emission Spectrometer and the Mariner 9-Infrared Interferometer Spectrometer. Results presented here include disk-averaged synthetic spectra, light curves, and the spectral variability at visible and mid-infrared wavelengths for Mars as a function of viewing angle, illumination, and season. We also considered the differences in the spectral appearance of an increasingly ice-covered Mars, as a function of spectral resolution, signal-to-noise and integration time for both TPF-C and TPFI/ Darwin.

  1. Disk-averaged synthetic spectra of Mars.

    PubMed

    Tinetti, Giovanna; Meadows, Victoria S; Crisp, David; Fong, William; Velusamy, Thangasamy; Snively, Heather

    2005-08-01

    The principal goal of the NASA Terrestrial Planet Finder (TPF) and European Space Agency's Darwin mission concepts is to directly detect and characterize extrasolar terrestrial (Earthsized) planets. This first generation of instruments is expected to provide disk-averaged spectra with modest spectral resolution and signal-to-noise. Here we use a spatially and spectrally resolved model of a Mars-like planet to study the detectability of a planet's surface and atmospheric properties from disk-averaged spectra. We explore the detectability as a function of spectral resolution and wavelength range, for both the proposed visible coronograph (TPFC) and mid-infrared interferometer (TPF-I/Darwin) architectures. At the core of our model is a spectrum-resolving (line-by-line) atmospheric/surface radiative transfer model. This model uses observational data as input to generate a database of spatially resolved synthetic spectra for a range of illumination conditions and viewing geometries. The model was validated against spectra recorded by the Mars Global Surveyor-Thermal Emission Spectrometer and the Mariner 9-Infrared Interferometer Spectrometer. Results presented here include disk-averaged synthetic spectra, light curves, and the spectral variability at visible and mid-infrared wavelengths for Mars as a function of viewing angle, illumination, and season. We also considered the differences in the spectral appearance of an increasingly ice-covered Mars, as a function of spectral resolution, signal-to-noise and integration time for both TPF-C and TPFI/ Darwin.

  2. EXPLORING THE MORPHOLOGY OF RAVE STELLAR SPECTRA

    SciTech Connect

    Matijevic, G.; Zwitter, T.; Bienayme, O.; Siebert, A.; Bland-Hawthorn, J.; Boeche, C.; Grebel, E. K.; Freeman, K. C.; Gibson, B. K.; Gilmore, G.; Helmi, A.; Munari, U.; Navarro, J.; Parker, Q. A.; Reid, W.; Seabroke, G.; Siviero, A.; Steinmetz, M.; Williams, M.; Watson, F. G.; and others

    2012-06-01

    The RAdial Velocity Experiment (RAVE) is a medium-resolution (R {approx} 7500) spectroscopic survey of the Milky Way that has already obtained over half a million stellar spectra. They present a randomly selected magnitude-limited sample, so it is important to use a reliable and automated classification scheme that identifies normal single stars and discovers different types of peculiar stars. To this end, we present a morphological classification of {approx}350, 000 RAVE survey stellar spectra using locally linear embedding, a dimensionality reduction method that enables representing the complex spectral morphology in a low-dimensional projected space while still preserving the properties of the local neighborhoods of spectra. We find that the majority of all spectra in the database ({approx} 90%-95%) belong to normal single stars, but there is also a significant population of several types of peculiars. Among them, the most populated groups are those of various types of spectroscopic binary and chromospherically active stars. Both of them include several thousands of spectra. Particularly the latter group offers significant further investigation opportunities since activity of stars is a known proxy of stellar ages. Applying the same classification procedure to the sample of normal single stars alone shows that the shape of the projected manifold in two-dimensional space correlates with stellar temperature, surface gravity, and metallicity.

  3. Cleaning HI Spectra Contaminated by GPS RFI

    NASA Astrophysics Data System (ADS)

    Sylvia, Kamin; Hallenbeck, Gregory L.; Undergraduate ALFALFA Team

    2016-01-01

    The NUDET systems aboard GPS satellites utilize radio waves to communicate information regarding surface nuclear events. The system tests appear in spectra as RFI (radio frequency interference) at 1381MHz, which contaminates observations of extragalactic HI (atomic hydrogen) signals at 50-150 Mpc. Test durations last roughly 20-120 seconds and can occur upwards of 30 times during a single night of observing. The disruption essentially renders the corresponding HI spectra useless.We present a method that automatically removes RFI in HI spectra caused by these tests. By capitalizing on the GPS system's short test durations and predictable frequency appearance we are able to devise a method of identifying times containing compromised data records. By reevaluating the remaining data, we are able to recover clean spectra while sacrificing little in terms of sensitivity to extragalactic signals. This method has been tested on 500+ spectra taken by the Undergraduate ALFALFA Team (UAT), in which it successfully identified and removed all sources of GPS RFI. It will also be used to eliminate RFI in the upcoming Arecibo Pisces-Perseus Supercluster Survey (APPSS).This work has been supported by NSF grant AST-1211005.

  4. Background noise spectra of global seismic stations

    SciTech Connect

    Wada, M.M.; Claassen, J.P.

    1996-08-01

    Over an extended period of time station noise spectra were collected from various sources for use in estimating the detection and location performance of global networks of seismic stations. As the database of noise spectra enlarged and duplicate entries became available, an effort was mounted to more carefully select station noise spectra while discarding others. This report discusses the methodology and criteria by which the noise spectra were selected. It also identifies and illustrates the station noise spectra which survived the selection process and which currently contribute to the modeling efforts. The resulting catalog of noise statistics not only benefits those who model network performance but also those who wish to select stations on the basis of their noise level as may occur in designing networks or in selecting seismological data for analysis on the basis of station noise level. In view of the various ways by which station noise were estimated by the different contributors, it is advisable that future efforts which predict network performance have available station noise data and spectral estimation methods which are compatible with the statistics underlying seismic noise. This appropriately requires (1) averaging noise over seasonal and/or diurnal cycles, (2) averaging noise over time intervals comparable to those employed by actual detectors, and (3) using logarithmic measures of the noise.

  5. Red spectra from white and blue noise

    PubMed Central

    Balmforth, N. J.; Provenzale, A.; Spiegel, E. A.; Martens, M.; Tresser, C.; Wu, C. W.

    1999-01-01

    The value of maps of the interval in modelling population dynamics has recently been called into question because temporal variations from such maps have blue or white power spectra, whereas many observations of real populations show time-series with red spectra. One way to deal with this discrepancy is to introduce chaotic or stochastic fluctuations in the parameters of the map. This leads to on–off intermittency and can markedly redden the spectrum produced by a model that does not by itself have a red spectrum. The parameter fluctuations need not themselves have a red spectrum in order to achieve this effect. Because the power spectrum is not invariant under a change of variable, another way to redden the spectrum is by a suitable transformation of the variables used. The question this poses is whether spectra are the best means of characterizing a fluctuating variable.

  6. Crystal field spectra of lunar pyroxenes.

    NASA Technical Reports Server (NTRS)

    Burns, R. G.; Abu-Eid, R. M.; Huggins, F. E.

    1972-01-01

    Absorption spectra in the visible and near infrared regions have been obtained for pyroxene single crystals in rocks from the Apollo 11, 12, 14, and 15 missions. The polarized spectra are compared with those obtained from terrestrial calcic clinopyroxenes, subcalcic augites, pigeonites, and orthopyroxenes. The lunar pyroxenes contain several broad, intense absorption bands in the near infrared, the positions of which are related to bulk composition, Fe(2+) site occupancy and structure type of the pyroxene. The visible spectra contain several sharp, weak peaks mainly due to spin-forbidden transitions in Fe(2+). Additional weak bands in this region in Apollo 11 pyroxenes are attributed to Ti(3+) ions. Spectral features from Fe(3+), Mn(2+), Cr(3+), and Cr(2+) were not observed.

  7. Vibrational spectra of molecular fluids in nanopores

    NASA Astrophysics Data System (ADS)

    Arakcheev, V. G.; Morozov, V. B.

    2012-12-01

    Coherent anti-Stokes Raman spectroscopy (CARS) is applied for quantitative analysis of carbon dioxide phase composition in pores of nanoporous glass samples at nearcritical temperatures. Measurements of the 1388 1/cm Q-branch were made in a wide pressure range corresponding to coexistence of gas (gas-like), adsorbed and condensed phases within pores. At temperatures several degrees below the critical value, CARS spectra behavior is easy to interpret in terms of thermodynamic model of surface adsorption and capillary condensation. It allows estimating mass fractions of different phase components. Moreover, spectra measured at near critical temperatures 30.5 and 33°C have pronounced inhomogeneous shapes and indicate the presence of condensed phase in the volume of pores. The effect obviously reflects the fluid behaviour near the critical point in nanopores. Pores with smaller radii are filled with condensed phase at lower pressures. The analysis of the CARS spectra is informative for quantitative evaluation of phase composition in nanopores.

  8. Janus Spectra in Two-Dimensional Flows

    NASA Astrophysics Data System (ADS)

    Liu, Chien-Chia; Cerbus, Rory T.; Chakraborty, Pinaki

    2016-09-01

    In large-scale atmospheric flows, soap-film flows, and other two-dimensional flows, the exponent of the turbulent energy spectra, α , may theoretically take either of two distinct values, 3 or 5 /3 , but measurements downstream of obstacles have invariably revealed α =3 . Here we report experiments on soap-film flows where downstream of obstacles there exists a sizable interval in which α transitions from 3 to 5 /3 for the streamwise fluctuations but remains equal to 3 for the transverse fluctuations, as if two mutually independent turbulent fields of disparate dynamics were concurrently active within the flow. This species of turbulent energy spectra, which we term the Janus spectra, has never been observed or predicted theoretically. Our results may open up new vistas in the study of turbulence and geophysical flows.

  9. FAST INVERSION OF SOLAR Ca II SPECTRA

    SciTech Connect

    Beck, C.; Choudhary, D. P.; Rezaei, R.; Louis, R. E.

    2015-01-10

    We present a fast (<<1 s per profile) inversion code for solar Ca II lines. The code uses an archive of spectra that are synthesized prior to the inversion under the assumption of local thermodynamic equilibrium (LTE). We show that it can be successfully applied to spectrograph data or more sparsely sampled spectra from two-dimensional spectrometers. From a comparison to a non-LTE inversion of the same set of spectra, we derive a first-order non-LTE correction to the temperature stratifications derived in the LTE approach. The correction factor is close to unity up to log τ ∼ –3 and increases to values of 2.5 and 4 at log τ = –6 in the quiet Sun and the umbra, respectively.

  10. Molecular dynamics and spectra. II. Diatomic Raman

    NASA Astrophysics Data System (ADS)

    Berens, Peter H.; White, Steven R.; Wilson, Kent R.

    1981-07-01

    This paper and paper I in this series [P.H. Berens and K.R. Wilison, J. Chem. Phys. 74, 4872 (1981)] indicate that infrared and Raman rotational and fundamental vibrational-rotational spectra of dense systems (high pressure gases, liquids, and solids) are essentially classical, in that they can be computed and understood from a basically classical mechanical viewpoint, with some caveats for features in which anharmonicity is important, such as the detailed shape of Q branches. It is demonstrated here, using the diatomic case as an example, that ordinary, i.e., nonresonant, Raman band contours can be computed from classical mechanics plus simple quantum corrections. Classical versions of molecular dynamics, linear response theory, and ensemble averaging, followed by straightforward quantum corrections, are used to compute the pure rotational and fundamental vibration-rotational Raman band contours of N2 for the gas phase and for solutions of N2 in different densities of gas phase Ar and in liquid Ar. The evolution is seen from multiple peaked line shapes characteristic of free rotation in the gas phase to single peaks characteristic of hindered rotation in the liquid phase. Comparison is made with quantum and correspondence principle classical gas phase spectral calculations and with experimental measurements for pure N2 and N2 in liquid Ar. Three advantages are pointed out for a classical approach to infrared and Raman spectra. First, a classical approach can be used to compute the spectra of complex molecular systems, e.g., of large molecules, clusters, liquids, solutions, and solids. Second, this classical approach can be extended to compute the spectra of nonequilibrium and time-dependent systems, e.g., infrared and Raman spectra during the course of chemical reactions. Third, a classical viewpoint allows experimental infrared and Raman spectra to be understood and interpreted in terms of atomic motions with the considerable aid of classical models and of our

  11. Infrared spectra of cesium chloride aqueous solutions

    NASA Astrophysics Data System (ADS)

    Max, Jean-Joseph; Chapados, Camille

    2000-10-01

    The aqueous solutions of CsCl were studied at room temperature by infrared (IR) spectroscopy in the entire solubility range, 0-1200 g/L, using attenuated total reflection (ATR) sampling. The influence of anomalous dispersion on the IR-ATR spectra was evaluated by calculating the imaginary refractive index, k(ν), of each sample. Factor analysis (FA) was used to determine the number and abundance of species in the solutions. FA applied to both k(ν) spectra and IR-ATR spectra produced two principal spectra with a similar abundance of species. This result indicates that, even at high salt concentration, the optical effects do not influence the chemical analysis of IR-ATR spectra. The spectral modifications related to the salt concentrations are mainly first order. Second order effects were observed, but being weak, were not investigated. The two principal spectra are related to the two species present in the solution: pure water and CsCl-solvated water. From the latter, 2.8±0.4 water molecules were calculated to be associated with each close-bound Cs+/Cl- ion pair. In the case of KCl and NaCl aqueous solutions, both of which showed the same number of species, the number of water molecules associated to an ion pair was 5.0±0.4. That the latter number is different from that of CsCl indicates that the interaction between water molecules and ion pairs is different when cation Na or K in the chloride salt is replaced by Cs.

  12. Observed and theoretical spectra in the 10-100 A interval. [of solar spectra

    NASA Technical Reports Server (NTRS)

    Brown, W. A.; Bruner, M. E.; Acton, L. W.

    1988-01-01

    The soft X-ray spectra recorded in two sounding-rocket flights in 1982 and 1985 are compared with predicted spectra. The processed densitometer trace of the full spectrum is presented, together with the new spectrum from the 1985 experiment. The intensities of the lines are then compared with predictions.

  13. Experimental Constraints on Neutrino Spectra Following Fission

    NASA Astrophysics Data System (ADS)

    Napolitano, Jim; Daya Bay Collaboration

    2016-09-01

    We discuss new initiatives to constrain predictions of fission neutrino spectra from nuclear reactors. These predictions are germane to the understanding of reactor flux anomalies; are needed to reduce systematic uncertainty in neutrino oscillation spectra; and inform searches for the diffuse supernova neutrino background. The initiatives include a search for very high- Q beta decay components to the neutrino spectrum from the Daya Bay power plant; plans for a measurement of the β- spectrum from 252Cf fission products; and precision measurements of the 235U fission neutrino spectrum from PROSPECT and other very short baseline reactor experiments.

  14. A data base of geologic field spectra

    NASA Technical Reports Server (NTRS)

    Kahle, A. B.; Goetz, A. F. H.; Paley, H. N.; Alley, R. E.; Abbott, E. A.

    1981-01-01

    It is noted that field samples measured in the laboratory do not always present an accurate picture of the ground surface sensed by airborne or spaceborne instruments because of the heterogeneous nature of most surfaces and because samples are disturbed and surface characteristics changed by collection and handling. The development of new remote sensing instruments relies on the analysis of surface materials in their natural state. The existence of thousands of Portable Field Reflectance Spectrometer (PFRS) spectra has necessitated a single, all-inclusive data base that permits greatly simplified searching and sorting procedures and facilitates further statistical analyses. The data base developed at JPL for cataloging geologic field spectra is discussed.

  15. Separating Peaks in X-Ray Spectra

    NASA Technical Reports Server (NTRS)

    Nicolas, David; Taylor, Clayborne; Wade, Thomas

    1987-01-01

    Deconvolution algorithm assists in analysis of x-ray spectra from scanning electron microscopes, electron microprobe analyzers, x-ray fluorescence spectrometers, and like. New algorithm automatically deconvolves x-ray spectrum, identifies locations of spectral peaks, and selects chemical elements most likely producing peaks. Technique based on similarities between zero- and second-order terms of Taylor-series expansions of Gaussian distribution and of damped sinusoid. Principal advantage of algorithm: no requirement to adjust weighting factors or other parameters when analyzing general x-ray spectra.

  16. Vibrational spectra study on quinolones antibiotics

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Yu, Ke; Wang, Sihuan

    2006-09-01

    In order to be able to fully understand and easily identify the quilonoles, we collected IR and Raman spectra of six quinolones, and attempted to assign the attribution of the observed frequencies and their association with specific modes of vibration. According to the structure, the compounds were divided into the groups, and the similarities and differences were further studied by comparing. The result of the study shows that the frequency and intensity are comparable to the corresponding structure. The spectra not only have the commonness but also the individualities.

  17. Hadron rapidity spectra within a hybrid model

    NASA Astrophysics Data System (ADS)

    Khvorostukhin, A. S.; Toneev, V. D.

    2017-01-01

    A 2-stage hybrid model is proposed that joins the fast initial state of interaction, described by the hadron string dynamics (HSD) model, to subsequent evolution of the expanding system at the second stage, treated within ideal hydrodynamics. The developed hybrid model is assigned to describe heavy-ion collisions in the energy range of the NICA collider under construction in Dubna. Generally, the model is in reasonable agreement with the available data on proton rapidity spectra. However, reproducing proton rapidity spectra, our hybrid model cannot describe the rapidity distributions of pions. The model should be improved by taking into consideration viscosity effects at the hydrodynamical stage of system evolution.

  18. Four years of meteor spectra patrol

    NASA Technical Reports Server (NTRS)

    Harvey, G. A.

    1974-01-01

    The development of the NASA-Langley Research Center meteor spectra patrol is described in general terms. The recording of very faint meteors was made possible by three great strides in optical and photographic technology in the 1960's: (1) the availability of optical-grade fused silica at modest cost, (2) the development of large transmission gratings with high blaze efficiency, and (3) the development of a method for avoiding plate fogging due to background skylight, which consisted of using a photoelectric meteor detector which actuates the spectrograph shutter when a meteor occurs in the field. The classification scheme for meteor spectra developed by Peter M. Millman is described.

  19. Micro-Raman spectra of ugrandite garnet.

    PubMed

    Moroz, T; Ragozin, A; Salikhov, D; Belikova, G; Puchkov, V; Kagi, H

    2009-08-01

    The natural garnets from chromite ores associated with pegmatoid pyroxenites of Sangalyk area (Uchaly ore district, southern Urals, Russia) were studied by means of micro-Raman spectroscopy. The compositions of these garnets were close to ugrandite, an isomorphous intermediate group of uvarovite-grossularite-andradite, X(3)Y(2)(SiO(4))(3), X = Ca(2+), Y = Al(3+), Fe(3+), Cr(3+), according to Raman spectra and X-ray microprobe analyses. An assignment of most of the observed bands in visible and near infrared Raman spectra is reported.

  20. Micro-Raman spectra of ugrandite garnet

    NASA Astrophysics Data System (ADS)

    Moroz, T.; Ragozin, A.; Salikhov, D.; Belikova, G.; Puchkov, V.; Kagi, H.

    2009-08-01

    The natural garnets from chromite ores associated with pegmatoid pyroxenites of Sangalyk area (Uchaly ore district, southern Urals, Russia) were studied by means of micro-Raman spectroscopy. The compositions of these garnets were close to ugrandite, an isomorphous intermediate group of uvarovite-grossularite-andradite, X 3Y 2(SiO 4) 3, X = Ca 2+, Y = Al 3+, Fe 3+, Cr 3+, according to Raman spectra and X-ray microprobe analyses. An assignment of most of the observed bands in visible and near infrared Raman spectra is reported.

  1. Gravitational effects on planetary neutron flux spectra

    NASA Astrophysics Data System (ADS)

    Feldman, W. C.; Drake, D. M.; O'dell, R. D.; Brinkley, F. W.; Anderson, R. C.

    1989-01-01

    The effects of gravity on the planetary neutron flux spectra for planet Mars, and the lifetime of the neutron, were investigated using a modified one-dimensional diffusion accelerated neutral-particle transport code, coupled with a multigroup cross-section library tailored specifically for Mars. The results showed the presence of a qualitatively new feature in planetary neutron leakage spectra in the form of a component of returning neutrons with kinetic energies less than the gravitational binding energy (0.132 eV for Mars). The net effect is an enhancement in flux at the lowest energies that is largest at and above the outermost layer of planetary matter.

  2. Algorithms for classification of astronomical object spectra

    NASA Astrophysics Data System (ADS)

    Wasiewicz, P.; Szuppe, J.; Hryniewicz, K.

    2015-09-01

    Obtaining interesting celestial objects from tens of thousands or even millions of recorded optical-ultraviolet spectra depends not only on the data quality but also on the accuracy of spectra decomposition. Additionally rapidly growing data volumes demands higher computing power and/or more efficient algorithms implementations. In this paper we speed up the process of substracting iron transitions and fitting Gaussian functions to emission peaks utilising C++ and OpenCL methods together with the NOSQL database. In this paper we implemented typical astronomical methods of detecting peaks in comparison to our previous hybrid methods implemented with CUDA.

  3. Parallel Genetic Algorithm for Alpha Spectra Fitting

    NASA Astrophysics Data System (ADS)

    García-Orellana, Carlos J.; Rubio-Montero, Pilar; González-Velasco, Horacio

    2005-01-01

    We present a performance study of alpha-particle spectra fitting using parallel Genetic Algorithm (GA). The method uses a two-step approach. In the first step we run parallel GA to find an initial solution for the second step, in which we use Levenberg-Marquardt (LM) method for a precise final fit. GA is a high resources-demanding method, so we use a Beowulf cluster for parallel simulation. The relationship between simulation time (and parallel efficiency) and processors number is studied using several alpha spectra, with the aim of obtaining a method to estimate the optimal processors number that must be used in a simulation.

  4. The effect of the recent 17O(p,α)14N and 18O(p,α)15N fusion cross section measurements in the nucleosynthesis of AGB stars

    NASA Astrophysics Data System (ADS)

    Palmerini, S.; Sergi, M. L.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Spitaleri, C.

    2015-01-01

    The Trojan Horse Method (THM) has been used to investigate the low-energy cross sections of the 17O(p,α)14N and 18O(p,α)15N fusion reactions and to extract the strengths of the resonances that more contribute to the reaction rates at astrophysical energies. Moreover, the strength of the 65 keV resonance in the 17O(p,α)14N reaction, measured by means of the THM, has been used to renormalize the corresponding resonance strength in the 17O + p radiative capture channel. Since, proton-induced fusion reactions on 17O and 18O belong to the CNO cycle network for H-burning in stars, the new estimates of the cross sections have been introduced into calculations of Asymptotic giant branch (AGB) star nucleosynthesis to determine their impact on astrophysical environments. Results of nucleosynthesis calculations have been compared with geochemical analysis of "presolar" grains. These solids form in the cold and dusty envelopes that surround AGB stars and once that have been ejected by stellar winds, come to us as inclusions in meteorites providing invaluable benchmarks and constraints for our knowledge of fusion reactions in astrophysical environments.

  5. Elastic and inelastic scattering of 15N ions by 7Li at 81 MeV versus that of 14N ions by 7Li at 80 and 110 MeV

    NASA Astrophysics Data System (ADS)

    Rudchik, A. T.; Rudchik, A. A.; Muravynets, L. M.; Kemper, K. W.; Rusek, K.; Piasecki, E.; Trzcińska, A.; Koshchy, E. I.; Pirnak, Val. M.; Ponkratenko, O. A.; Strojek, I.; Stolarz, A.; Herashchenko, O. V.; Stepanenko, Yu. M.; Plujko, V. A.; Sakuta, S. B.; Siudak, R.; Szczurek, A.

    2017-02-01

    Angular distributions of the elastic and inelastic scattering of 15N ions by 7Li nuclei were measured at the energy Elab (15N) = 81 MeV (Ec.m. = 25.77 MeV). The data were analyzed within the coupled-reaction-channels method. The elastic and inelastic scattering, spin reorientations of 7Li as well as the more important one- and two-step transfer reactions were included in the channels-coupling scheme. The parameters of 7Li +15N optical potential of Woods-Saxon form as well as deformation parameters of these nuclei were deduced. The analysis showed that the forward angle elastic scattering is dominated by pure potential scattering whereas the middle and large angle scattering gets a contribution from the ground state reorientation of 7Li. Contributions from particle transfers were negligible for the present scattering system. The 7Li +15N elastic scattering was compared with that of 7Li +14N at the energies Elab (14N) = 80 MeV and 110 MeV. Different contributions to the elastic scatterings from other nuclear processes are shown to be responsible for the isotopic difference observed in the large angle scattering.

  6. The AGB star nucleosynthesis in the light of the recent {sup 17}O(p,α){sup 14}N and {sup 18}O(p,α){sup 15}N reaction rate determinations

    SciTech Connect

    Palmerini, S.; Sergi, M. L.; La Cognata, M.; Pizzone, R. G.; Lamia, L.; Spitaleri, C.

    2015-02-24

    Presolar grains form in the cold and dusty envelopes of Asymptotic Giant Branch (AGB) stars. These solides, once that have been ejected by stellar winds, come to us as inclusions in meteorites providing invaluable benchmarks and constraints for our knowledge of low temeperature H-burning in stars. The Trojan Horse Method (THM) has been used to investigate the low-energy cross sections of the {sup 17}O(p,α){sup 14}N and {sup 18}O(p,α){sup 15}N reactions. Moreover, the strength of the 65 keV resonance in the {sup 17}O(p,α){sup 14}N reaction, measured by means of the THM, has been used to renormalize the corresponding resonance strength in the {sup 17}O+p radiative capture channel. The new estimates of the reaction rates have been introduced into calculations of AGB star nucleosynthesis and the results have been compared with geochemical analysis of 'presolar' grains to determine their impact on astrophysical environments.

  7. Lifetime measurement of the 6792 keV state in {sup 15}O, important for the astrophysical S factor extrapolation in {sup 14}N(p,{gamma}){sup 15}O

    SciTech Connect

    Schuermann, D.; Kunz, R.; Lingner, I.; Rolfs, C.; Schuemann, F.; Strieder, F.; Trautvetter, H.-P.

    2008-05-15

    We report on a new lifetime measurement of the E{sub x}=6792 keV state in {sup 15}O via the Doppler-shift attenuation method at the E=259 keV resonance in the reaction {sup 14}N(p,{gamma}){sup 15}O. This subthreshold state is of particular importance for the determination of the ground state astrophysical S factor of {sup 14}N(p,{gamma}){sup 15}O at stellar energies. The measurement technique has been significantly improved over that used in previous work. The conclusion of a finite lifetime drawn there cannot be confirmed with the present data. In addition, the lifetimes of the two states at E{sub x}=5181 and 6172 keV have been measured with the same technique in order to verify the experimental method. We observe an attenuation factor F({tau})>0.98 for the E{sub x}=6172 and 6792 keV states, respectively, corresponding to {tau}<0.77 fs. The attenuation factor for the E{sub x}=5181 keV state results in F({tau})=0.78{+-}0.02 corresponding to {tau}=8.4{+-}1.0 fs, which is in excellent agreement with literature.

  8. Thermal Emission and Reflected Light Spectra of Super Earths with Flat Transmission Spectra

    NASA Astrophysics Data System (ADS)

    Morley, Caroline V.; Fortney, Jonathan J.; Marley, Mark S.; Zahnle, Kevin; Line, Michael; Kempton, Eliza; Lewis, Nikole; Cahoy, Kerri

    2015-12-01

    Planets larger than Earth and smaller than Neptune are some of the most numerous in the galaxy, but observational efforts to understand this population have proved challenging because optically thick clouds or hazes at high altitudes obscure molecular features. We present models of super Earths that include thick clouds and hazes and predict their transmission, thermal emission, and reflected light spectra. Very thick, lofted clouds of salts or sulfides in high metallicity (1000× solar) atmospheres create featureless transmission spectra in the near-infrared. Photochemical hazes with a range of particle sizes also create featureless transmission spectra at lower metallicities. Cloudy thermal emission spectra have muted features more like blackbodies, and hazy thermal emission spectra have emission features caused by an inversion layer at altitudes where the haze forms. Close analysis of reflected light from warm (˜400-800 K) planets can distinguish cloudy spectra, which have moderate albedos (0.05-0.20), from hazy models, which are very dark (0.0-0.03). Reflected light spectra of cold planets (˜200 K) accessible to a space-based visible light coronagraph will have high albedos and large molecular features that will allow them to be more easily characterized than the warmer transiting planets. We suggest a number of complementary observations to characterize this population of planets, including transmission spectra of hot (≳ 1000 K) targets, thermal emission spectra of warm targets using the James Webb Space Telescope, high spectral resolution (R ˜ 105) observations of cloudy targets, and reflected light spectral observations of directly imaged cold targets. Despite the dearth of features observed in super Earth transmission spectra to date, different observations will provide rich diagnostics of their atmospheres.

  9. Rotational Spectra of Adrenaline and Noradrenaline

    NASA Astrophysics Data System (ADS)

    Cortijo, V.; López, J. C.; Alonso, J. L.

    2009-06-01

    The emergence of Laser Ablation Molecular Beam Fourier Transform Microwave (LA-MB-FTMW) spectroscopy has rendered accessible the gas-phase study of solid biomolecules with high melting points. Among the biomolecules to benefit from this technique, neurotransmitters have received special attention due to the lack of experimental information and their biological relevance. As a continuation of the we present the study of adrenaline and noradrenaline. The comparison between the experimental rotational and ^{14}N nuclear quadrupole coupling constants and those calculated ab initio provide a definitive test for molecular structures and confirm unambiguously the identification of four conformers of adrenaline and three conformers of noradrenaline. Their relative population in the jet has been evaluated by relative intensity measurements of selected rotational transitions. The most abundant conformer in both neurotransmitters present an extended AG configuration with a O-H\\cdotsN hydrogen bond in the side chain. J.L. Alonso, M.E. Sanz, J.C. López and V. Cortijo, J. Am. Chem. Soc. (in press), 2009

  10. Fourier smoothing of digital photographic spectra

    NASA Astrophysics Data System (ADS)

    Anupama, G. C.

    1990-03-01

    Fourier methods of smoothing one-dimensional data are discussed with particular reference to digital photographic spectra. Data smoothed using lowpass filters with different cut-off frequencies are intercompared. A method to scale densities in order to remove the dependence of grain noise on density is described. Optimal filtering technique which models signal and noise in Fourier domain is also explained.

  11. Rotational and Vibrational Spectra of Molecular Clusters.

    DTIC Science & Technology

    1986-06-30

    3 I D ’- 2095 205 209 2105 i k (c),,.-..0 WavenumbersHCN/Av ixture .Pekarlbld asM -mnmr dmr 6 9014 CARS spectra ofthe v, region of HCN in...shown above, the bond stretching constants below the structure. Values shown in parentheses were held fixed. %% -.. .4 .. 0 Table 8 Sumawy of norma

  12. Laboratory millimeter and submillimeter spectra of CO/+/

    NASA Technical Reports Server (NTRS)

    Sastry, K. V. L. N.; Helminger, P.; Herbst, E.; De Lucia, F. C.

    1981-01-01

    The strong electric dipole-allowed transitions of the molecular ion CO(+) in the region 235-470 GHz have been measured in the laboratory. The laboratory spectra at 235 GHz appear to confirm the claim by Erickson et al. (1981) to have observed CO(+) in OMC-1.

  13. Principal component analysis of phenolic acid spectra

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phenolic acids are common plant metabolites that exhibit bioactive properties and have applications in functional food and animal feed formulations. The ultraviolet (UV) and infrared (IR) spectra of four closely related phenolic acid structures were evaluated by principal component analysis (PCA) to...

  14. Variations on supersymmetry breaking and neutrino spectra

    SciTech Connect

    Borzumati, F.; Hamaguchi, K.; Nomura, Y.; Yanagida, T.

    2000-12-11

    The problem of generating light neutrinos within supersymmetric models is discussed. It is shown that the hierarchy of scales induced by supersymmetry breaking can give rise to suppression factors of the correct order of magnitude to produce experimentally allowed neutrino spectra.

  15. Chaotic spectra: How to extract dynamic information

    SciTech Connect

    Taylor, H.S.; Gomez Llorente, J.M.; Zakrzewski, J.; Kulander, K.C.

    1988-10-01

    Nonlinear dynamics is applied to chaotic unassignable atomic and molecular spectra with the aim of extracting detailed information about regular dynamic motions that exist over short intervals of time. It is shown how this motion can be extracted from high resolution spectra by doing low resolution studies or by Fourier transforming limited regions of the spectrum. These motions mimic those of periodic orbits (PO) and are inserts into the dominant chaotic motion. Considering these inserts and the PO as a dynamically decoupled region of space, resonant scattering theory and stabilization methods enable us to compute ladders of resonant states which interact with the chaotic quasi-continuum computed in principle from basis sets placed off the PO. The interaction of the resonances with the quasicontinuum explains the low resolution spectra seen in such experiments. It also allows one to associate low resolution features with a particular PO. The motion on the PO thereby supplies the molecular movements whose quantization causes the low resolution spectra. Characteristic properties of the periodic orbit based resonances are discussed. The method is illustrated on the photoabsorption spectrum of the hydrogen atom in a strong magnetic field and on the photodissociation spectrum of H/sub 3//sup +/. Other molecular systems which are currently under investigation using this formalism are also mentioned. 53 refs., 10 figs., 2 tabs.

  16. Correlation Functions Aid Analyses Of Spectra

    NASA Technical Reports Server (NTRS)

    Beer, Reinhard; Norton, Robert H., Jr.

    1989-01-01

    New uses found for correlation functions in analyses of spectra. In approach combining elements of both pattern-recognition and traditional spectral-analysis techniques, spectral lines identified in data appear useless at first glance because they are dominated by noise. New approach particularly useful in measurement of concentrations of rare species of molecules in atmosphere.

  17. EEG Power Spectra of Adolescent Poor Readers.

    ERIC Educational Resources Information Center

    Ackerman, Peggy T.; McPherson, W. Brian; Oglesby, D. Michael; Dykman, Roscoe A.

    1998-01-01

    Electroencephalographic power spectra were studied in two poor-reading adolescent groups (n=38), dysphonetic and phonetic. Significant Group x Hemisphere effects were found in the alpha and beta bands, with the phonetic group showing right greater than left asymmetry. Results suggest more circumscribed and mature processing in the phonetically…

  18. Discriminating Dysarthria Type from Envelope Modulation Spectra

    ERIC Educational Resources Information Center

    Liss, Julie M.; LeGendre, Sue; Lotto, Andrew J.

    2010-01-01

    Purpose: Previous research demonstrated the ability of temporally based rhythm metrics to distinguish among dysarthrias with different prosodic deficit profiles (J. M. Liss et al., 2009). The authors examined whether comparable results could be obtained by an automated analysis of speech envelope modulation spectra (EMS), which quantifies the…

  19. Prompt fission neutron spectra of actinides

    DOE PAGES

    Capote, R.; Chen, Y. -J.; Hambsch, F. -J.; ...

    2016-01-06

    Here, the energy spectrum of prompt neutrons emitted in fission (PFNS) plays a very important role in nuclear science and technology. A Coordinated Research Project (CRP) "Evaluation of Prompt Fission Neutron Spectra of Actinides" was established by the IAEA Nuclear Data Section in 2009, with the major goal to produce new PFNS evaluations with uncertainties for actinide nuclei.

  20. Spectra of Angrites and Possible Parent Bodies

    NASA Technical Reports Server (NTRS)

    Burbine, T. H.; McCoy, T. J.; Binzel, R. P.

    2001-01-01

    One meteorite class where very little progress has been made in identifying possible parent bodies is the angrites. We have obtained spectra of two new angrites (D'Orbigny and Sahara 99555). Additional information is contained in the original extended abstract.

  1. Calculated late time spectra of supernovae

    SciTech Connect

    Axelrod, T.S.

    1987-10-30

    We consider here the nebular phase spectra of supernovae whose late time luminosity is provided by the radioactive decay of /sup 56/Ni and /sup 56/Co synthesized in the explosion. A broad variety of supernovae are known or suspected to fall in this category. This includes all SNIa and SNIb, and at least some SNII, in particular SN1987a. At sufficiently late times the expanding supernova becomes basically nebular in character due to its decreasing optical depth. The spectra produced during this stage contain information on the density and abundance structure of the entire supernova, as opposed to spectra near maximum light which are affected only by the outermost layers. A numerical model for nebular spectrum formation is therefore potentially very valuable for answering currently outstanding questions about the post-explosion supernova structure. As an example, we can hope to determine the degree of mixing which occurs between the layers of the ''onion-skin'' abundance structure predicted by current one dimensional explosion calculations. In the sections which follow, such a numerical model is briefly described and then applied to SN1972e, a typical SNIa, SN1985f, an SNIb, and finally to SN1987a. In the case of SN1987a predicted spectra are presented for the wavelength range from 1 to 100 microns at a time 300 days after explosion. 18 refs., 6 figs.

  2. Astronomy Spectra Experiment for Nonscience Students.

    ERIC Educational Resources Information Center

    Kaufman, S. E.

    1982-01-01

    An experimental technique to develop inferential thinking in less scientifically-oriented community college students is described. Students activate unlabeled gas discharge tubes and identify the gases by comparing color photographs with spectrometer observations. Includes methods for taking color photographs of spectra. (SK)

  3. Students' Mental Models of Atomic Spectra

    ERIC Educational Resources Information Center

    Körhasan, Nilüfer Didis; Wang, Lu

    2016-01-01

    Mental modeling, which is a theory about knowledge organization, has been recently studied by science educators to examine students' understanding of scientific concepts. This qualitative study investigates undergraduate students' mental models of atomic spectra. Nine second-year physics students, who have already taken the basic chemistry and…

  4. Automatic Spike Removal Algorithm for Raman Spectra.

    PubMed

    Tian, Yao; Burch, Kenneth S

    2016-11-01

    Raman spectroscopy is a powerful technique, widely used in both academia and industry. In part, the technique's extensive use stems from its ability to uniquely identify and image various material parameters: composition, strain, temperature, lattice/excitation symmetry, and magnetism in bulk, nano, solid, and organic materials. However, in nanomaterials and samples with low thermal conductivity, these measurements require long acquisition times. On the other hand, charge-coupled device (CCD) detectors used in Raman microscopes are vulnerable to cosmic rays. As a result, many spurious spikes occur in the measured spectra, which can distort the result or require the spectra to be ignored. In this paper, we outline a new method that significantly improves upon existing algorithms for removing these spikes. Specifically, we employ wavelet transform and data clustering in a new spike-removal algorithm. This algorithm results in spike-free spectra with negligible spectral distortion. The reduced dependence on the selection of wavelets and intuitive wavelet coefficient adjustment strategy enables non-experts to employ these powerful spectra-filtering techniques.

  5. Temporal Evolution of Solar Energetic Particle Spectra

    NASA Astrophysics Data System (ADS)

    Doran, Donald J.; Dalla, Silvia

    2016-08-01

    During solar flares and coronal mass ejections, Solar Energetic Particles (SEPs) may be released into the interplanetary medium and near-Earth locations. The energy spectra of SEP events at 1 AU are typically averaged over the entire event or studied in a few snapshots. In this article we analyze the time evolution of the energy spectra of four large selected SEP events using a large number of snapshots. We use a multi-spacecraft and multi-instrument approach for the observations, obtained over a wide SEP energy range. We find large differences in the spectra at the beginning of the events as measured by different instruments. We show that over time, a wave-like structure is observed traveling through the spectra from the highest energies to the lowest energies, creating an "arch" shape that then straightens into a power law later in the event, after times on the order of 10 hours. We discuss the processes that determine SEP intensities and their role in shaping the spectral time evolution.

  6. Solar Energetic Particle Spectra Measured with PAMELA

    NASA Astrophysics Data System (ADS)

    Ryan, James; Bruno, Alessandro; Boezio, Mirko; Bravar, Ulisse; Christian, Eric; Georgia, De Nolfo; Martucci, Matteo; Merge, Matteo; Munini, Riccardo; Sparvoli, Roberta; Stochaj, Steven; Pamela Collaboration

    2017-01-01

    We have measured the event integrated spectra from several SEP events from 2006 to 2014 in the energy range starting at 80 MeV and extending well above the neutron monitor threshold. The PAMELA instrument is in a high inclination, low Earth orbit and has access to SEPs when at high geographic latitudes. This means that the spectra have been assembled from regularly spaced measurements with gaps during the course of the event. Furthermore, the field of view of PAMELA is small and during the high latitude passes it scans a wide range of asymptotic directions as the spacecraft moves. Correcting for data gaps and solid angle effects, we have compiled event-integrated intensity spectra that typically exhibit power law shapes in energy with an exponential roll over. The events analyzed include two, maybe three, GLEs. In those cases the roll over energy lies above the neutron monitor threshold (1 GV) while the others are lower. We see no qualitative difference between the spectra of GLE vs. non-GLE events. National Science Foundation, NASA, Italian Space Agency, Russian Space Agency.

  7. Mid-infrared spectra of comet nuclei

    NASA Astrophysics Data System (ADS)

    Kelley, Michael S. P.; Woodward, Charles E.; Gehrz, Robert D.; Reach, William T.; Harker, David E.

    2017-03-01

    Comet nuclei and D-type asteroids have several similarities at optical and near-IR wavelengths, including near-featureless red reflectance spectra, and low albedos. Mineral identifications based on these characteristics are fraught with degeneracies, although some general trends can be identified. In contrast, spectral emissivity features in the mid-infrared provide important compositional information that might not otherwise be achievable. Jovian Trojan D-type asteroids have emissivity features strikingly similar to comet comae, suggesting that they have the same compositions and that the surfaces of the Trojans are highly porous. However, a direct comparison between a comet and asteroid surface has not been possible due to the paucity of spectra of comet nuclei at mid-infrared wavelengths. We present 5-35 μm thermal emission spectra of comets 10P/Tempel 2, and 49P/Arend-Rigaux observed with the Infrared Spectrograph on the Spitzer Space Telescope. Our analysis reveals no evidence for a coma or tail at the time of observation, suggesting the spectra are dominated by the comet nucleus. We fit each spectrum with the near-Earth asteroid thermal model (NEATM) and find sizes in agreement with previous values. However, the NEATM beaming parameters of the nuclei, 0.74-0.83, are systematically lower than the Jupiter-family comet population mean of 1.03 ± 0.11, derived from 16- and 22-μm photometry. We suggest this may be either an artifact of the spectral reduction, or the consequence of an emissivity low near 16 μm. When the spectra are normalized by the NEATM model, a weak 10-μm silicate plateau is evident, with a shape similar to those seen in mid-infrared spectra of D-type asteroids. A silicate plateau is also evident in previously published Spitzer spectra of the nucleus of comet 9P/Tempel 1. We compare, in detail, these comet nucleus emission features to those seen in spectra of the Jovian Trojan D-types (624) Hektor, (911) Agamemnon, and (1172) Aneas, as well

  8. Raman spectra of carotenoids in natural products

    NASA Astrophysics Data System (ADS)

    Withnall, Robert; Chowdhry, Babur Z.; Silver, Jack; Edwards, Howell G. M.; de Oliveira, Luiz F. C.

    2003-08-01

    Resonance Raman spectra of naturally occurring carotenoids have been obtained from nautilus, periwinkle ( Littorina littorea) and clam shells under 514.5 nm excitation and these spectra are compared with the resonance Raman spectra obtained in situ from tomatoes, carrots, red peppers and saffron. The tomatoes, carrots and red peppers gave rise to resonance Raman spectra exhibiting a ν1 band at ca. 1520 cm -1, in keeping with its assignment to carotenoids with ca. nine conjugated carboncarbon double bonds in their main chains, whereas the resonance Raman spectrum of saffron showed a ν1 band at 1537 cm -1 which can be assigned to crocetin, having seven conjugated carboncarbon double bonds. A correlation between ν1 wavenumber location and effective conjugated chain length has been used to interpret the data obtained from the shells, and the wavenumber position (1522 cm -1) of the ν1 band of the carotenoid in the orange clam shell suggests that it contains nine conjugated double bonds in the main chain. However, the black periwinkle and nautilus shells exhibit ν1 bands at 1504 and 1496 cm -1, respectively. On the basis of the correlation between ν1 wavenumber location and effective conjugated chain length, this indicates that they contain carotenoids with longer conjugated chains, the former having ca. 11 double bonds and the latter ca. 13 or even more. Raman spectra of the nautilus, periwinkle and clam shells also exhibited a strong band at 1085 cm -1 and a doublet with components at 701 and 705 cm -1, which can be assigned to biogenic calcium carbonate in the aragonite crystallographic form.

  9. An Interactive Gallery of Planetary Nebula Spectra

    NASA Astrophysics Data System (ADS)

    Kwitter, K. B.; Henry, R. B. C.

    2002-12-01

    We have created a website containing high-quality moderate-resolution spectra of 88 planetary nebulae (PNe) from 3600 to 9600 Å, obtained at KPNO and CTIO. Spectra are displayed in a zoomable window, and there are templates available that show wavelength and ion identifications. In addition to the spectra themselves, the website also contains a brief discussion of PNe as astronomical objects and as contributors to our understanding of stellar evolution, and a table with atlas information for each object along with a link to an image. This table can be re-ordered by object name, galactic or equatorial coordinates, distance from the sun, the galactic center, or the galactic plane. We envision that this website, which concentrates a large amount of data in one place, will be of interest to a variety of users. PN researchers might need to check the spectrum of a particular object of interest; the non-specialist astronomer might simply be interested in perusing such a collection of spectra; and finally, teachers of introductory astronomy can use this database to illustrate basic principles of atomic physics and radiation. To encourage such use, we have written two simple exercises at a basic level to introduce beginning astronomy students to the wealth of information that PN spectra contain. We are grateful to Adam Wang of the Williams College OIT and to his summer student teams who worked on various apects of the implementation of this website. This work has been supported by NSF grant AST-9819123 and by Williams College and the University of Oklahoma.

  10. Polarization enhanced Nuclear Quadrupole Resonance with an atomic magnetometer

    NASA Astrophysics Data System (ADS)

    Malone, Michael W.; Barrall, Geoffrey A.; Espy, Michelle A.; Monti, Mark C.; Alexson, Dimitri A.; Okamitsu, Jeffrey K.

    2016-05-01

    Nuclear Quadrupole Resonance (NQR) has been demonstrated for the detection of 14-N in explosive compounds. Application of a material specific radio-frequency (RF) pulse excites a response typically detected with a wire- wound antenna. NQR is non-contact and material specific, however fields produced by NQR are typically very weak, making demonstration of practical utility challenging. For certain materials, the NQR signal can be increased by transferring polarization from hydrogen nuclei to nitrogen nuclei using external magnetic fields. This polarization enhancement (PE) can enhance the NQR signal by an order of magnitude or more. Atomic magnetometers (AM) have been shown to improve detection sensitivity beyond a conventional antenna by a similar amount. AM sensors are immune to piezo-electric effects that hamper conventional NQR, and can be combined to form a gradiometer for effective RF noise cancellation. In principle, combining polarization enhancement with atomic magnetometer detection should yield improvement in signal-to-noise ratio that is the product of the two methods, 100-fold or more over conventional NQR. However both methods are even more exotic than traditional NQR, and have never been combined due to challenges in operating a large magnetic field and ultra-sensitive magnetic field sensor in proximity. Here we present NQR with and without PE with an atomic magnetometer, demonstrating signal enhancement greater than 20-fold for ammonium nitrate. We also demonstrate PE for PETN using a traditional coil for detection with an enhancement factor of 10. Experimental methods and future applications are discussed.

  11. EMPCA and Cluster Analysis of Quasar Spectra: Construction and Application to Simulated Spectra

    NASA Astrophysics Data System (ADS)

    Marrs, Adam; Leighly, Karen; Wagner, Cassidy; Macinnis, Francis

    2017-01-01

    Quasars have complex spectra with emission lines influenced by many factors. Therefore, to fully describe the spectrum requires specification of a large number of parameters, such as line equivalent width, blueshift, and ratios. Principal Component Analysis (PCA) aims to construct eigenvectors-or principal components-from the data with the goal of finding a few key parameters that can be used to predict the rest of the spectrum fairly well. Analysis of simulated quasar spectra was used to verify and justify our modified application of PCA.We used a variant of PCA called Weighted Expectation Maximization PCA (EMPCA; Bailey 2012) along with k-means cluster analysis to analyze simulated quasar spectra. Our approach combines both analytical methods to address two known problems with classical PCA. EMPCA uses weights to account for uncertainty and missing points in the spectra. K-means groups similar spectra together to address the nonlinearity of quasar spectra, specifically variance in blueshifts and widths of the emission lines.In producing and analyzing simulations, we first tested the effects of varying equivalent widths and blueshifts on the derived principal components, and explored the differences between standard PCA and EMPCA. We also tested the effects of varying signal-to-noise ratio. Next we used the results of fits to composite quasar spectra (see accompanying poster by Wagner et al.) to construct a set of realistic simulated spectra, and subjected those spectra to the EMPCA /k-means analysis. We concluded that our approach was validated when we found that the mean spectra from our k-means clusters derived from PCA projection coefficients reproduced the trends observed in the composite spectra.Furthermore, our method needed only two eigenvectors to identify both sets of correlations used to construct the simulations, as well as indicating the linear and nonlinear segments. Comparing this to regular PCA, which can require a dozen or more components, or to

  12. Stopping powers of sup 7 Li, sup 11 B, sup 12 C, sup 14 N, and sup 16 O ions in C sub 16 H sub 14 O sub 3 polycarbonate

    SciTech Connect

    Rauhala, E.; Raeisaenen, J. )

    1990-09-01

    The stopping powers of bisphenol {ital A}-polycarbonate C{sub 16}H{sub 14}O{sub 3} for {sup 7}Li, {sup 11}B, {sup 12}C, {sup 14}N, and {sup 16}O ions in the 0.5--2.1-MeV/amu energy region have been determined. To avoid direct beam exposure on the film, a modified transmission geometry was used. The areal density of the foil, at exactly the position where the stopping power data were measured, was obtained by combining weighing and proton energy-loss measurements. The experimental stopping powers are compared with predictions of three semiempirical models, which are based on the heavy-ion scaling rule, and with our previous data for the same ions in Mylar. The systematics and deviations of the data from the predicted stopping powers, and the validity of Bragg's additivity rule, are discussed.

  13. Gapless spin liquid ground state in the S = 1/2 vanadium oxyfluoride kagome antiferromagnet [NH4]2[C7H14N][V7O6F18].

    PubMed

    Clark, L; Orain, J C; Bert, F; De Vries, M A; Aidoudi, F H; Morris, R E; Lightfoot, P; Lord, J S; Telling, M T F; Bonville, P; Attfield, J P; Mendels, P; Harrison, A

    2013-05-17

    The vanadium oxyfluoride [NH(4)](2)[C(7)H(14)N][V(7)O(6)F(18)] (DQVOF) is a geometrically frustrated magnetic bilayer material. The structure consists of S = 1/2 kagome planes of V(4+) d(1) ions with S = 1 V(3+) d(2) ions located between the kagome layers. Muon spin relaxation measurements demonstrate the absence of spin freezing down to 40 mK despite an energy scale of 60 K for antiferromagnetic exchange interactions. From magnetization and heat capacity measurements we conclude that the S = 1 spins of the interplane V(3+) ions are weakly coupled to the kagome layers, such that DQVOF can be viewed as an experimental model for S = 1/2 kagome physics, and that it displays a gapless spin liquid ground state.

  14. Ab initio infrared and Raman spectra

    NASA Technical Reports Server (NTRS)

    Fredkin, D. R.; White, S. R.; Wilson, K. R.; Komornicki, A.

    1983-01-01

    It is pointed out that with increased computer power and improved computational techniques, such as the gradients developed in recent years, it is becoming practical to compute spectra ab initio, from the fundamental constants of nature, for systems of increasing complexity. The present investigation has the objective to explore several possible ab initio approaches to spectra, giving particular attention to infrared and nonresonance Raman. Two approaches are discussed. The sequential approach, in which first the electronic part and then later the nuclear part of the Born-Oppenheimer approximation is solved, is appropriate for small systems. The simultaneous approach, in which the electronic and nuclear parts are solved at the same time, is more appropriate for many-atom systems. A review of the newer quantum gradient techniques is provided, and the infrared and Raman spectral band contours for the water molecule are computed.

  15. Automated analysis of slitless spectra - Stars

    NASA Astrophysics Data System (ADS)

    Beauchemin, M.; Borra, E. F.; Levesque, S.

    1991-09-01

    The stellar spectral classification that can be achieved with very low-dispersion spectroscopy is examined. Several methods are applied to slitless spectra taken from the automated grens plates analysis project undertaken at Laval University. It is suggested that an accuracy in B - V of about 0.1 mag at B approximating 19 for stars bluer than B - V below 0.8 mag or better for redder stars can be obtained by probing the continuum. Results from DDO-like photometry show that grens data behave similarly to the Gunn and Stryker library of standard stars for many indices. Results of multivariate analysis are coherent with the stellar spectral classification and provide a powerful and objective means of cataloging spectra of the same spectral shape.

  16. High resolution derivative spectra in remote sensing

    NASA Technical Reports Server (NTRS)

    Demetriades-Shah, Tanvir H.; Steven, Michael D.; Clark, Jeremy A.

    1990-01-01

    The use of derivative spectra is an established technique in analytical chemistry for the elimination of background signals and for resolving overlapping spectral features. Application of this technique for tackling analogous problems such as interference from soil background reflectance in the remote sensing of vegetation or for resolving complex spectra of several target species within individual pixels in remote sensing is proposed. Methods for generating derivatives of high spectral resolution data are reviewed. Results of experiments to test the use of derivatives for monitoring chlorosis in vegetation show that derivative spectral indices are superior to conventional broad-band spectral indices such as the near-infrared/red reflectance ratio. Conventional broad-band indices are sensitive to both leaf cover as well as leaf color. New derivative spectral indices which were able to monitor chlorosis unambiguously were identified. Potential areas for the application of this technique in remote sensing are considered.

  17. Vibrational Spectra of Hydrolysed Triethoxysilane on Germania

    NASA Astrophysics Data System (ADS)

    Anabtawi, Sami; Mallik, Robert

    1996-04-01

    Hydrolysed triethoxysilane (TES) monolayers are introduced onto ultra-thin (of order 1.5 nm) and relatively hydrogern-free sputtered germania films. Two methods are used to dope the germania surface: (i) from TES vapor under a water vapor/nitrogen atmosphere, and (ii) from aqueous acidic hydrolysed TES solution. Vibrational Spectra obtained using these two methods are similar; in both cases Si-H stretching and bending modes are present at approximately 2000 - 2200, and 900 wavenumbers respectively, together with broad Si-O-Si symmetric and asymmetric stretching peaks centered at 700 and 1100 wavenumbers respectively. Only very weak features due to residual CH species are present indicating a large degree of hydrolysis in both cases. All spectra obtained closely resemble those of hydrogenated amorphous silicon monoxide films, confirming that a polysiloxane matrix is present.

  18. Cathodoluminescence spectra of gallium nitride nanorods

    PubMed Central

    2011-01-01

    Gallium nitride [GaN] nanorods grown on a Si(111) substrate at 720°C via plasma-assisted molecular beam epitaxy were studied by field-emission electron microscopy and cathodoluminescence [CL]. The surface topography and optical properties of the GaN nanorod cluster and single GaN nanorod were measured and discussed. The defect-related CL spectra of GaN nanorods and their dependence on temperature were investigated. The CL spectra along the length of the individual GaN nanorod were also studied. The results reveal that the 3.2-eV peak comes from the structural defect at the interface between the GaN nanorod and Si substrate. The surface state emission of the single GaN nanorod is stronger as the diameter of the GaN nanorod becomes smaller due to an increased surface-to-volume ratio. PMID:22168896

  19. Energy spectra in elasto-inertial turbulence

    NASA Astrophysics Data System (ADS)

    Valente, P. C.; da Silva, C. B.; Pinho, F. T.

    2016-07-01

    Direct numerical simulations of statistically steady homogeneous isotropic turbulence in viscoelastic fluids described by the FENE-P model are presented. Emphasis is given to large polymer relaxation times compared to the eddy turnover time, which is a regime recently termed elasto-inertial turbulence. In this regime the polymers are ineffective in dissipating kinetic energy but they play a lead role in transferring kinetic energy to the small solvent scales which turns out to be concomitant with the depletion of the usual non-linear energy cascade. However, we show that the non-linear interactions are still highly active, but they lead to no net downscale energy transfer because the forward and reversed energy cascades are nearly balanced. Finally, we show that the tendency for a steeper elasto-inertial power-law spectra is reversed for large polymer relaxation times and the spectra tend towards the usual k-5/3 functional form.

  20. Terahertz-sideband spectra involving Kapteyn series

    NASA Astrophysics Data System (ADS)

    Lerche, Ian; Tautz, Robert C.; Citrin, D. S.

    2009-09-01

    Kapteyn series of the second kind appear in models of even- and odd-order sideband spectra in the optical regime of a quantum system modulated by a high-frequency (e.g., terahertz) electromagnetic field (Citrin D S 1999 Phys. Rev. B 60 5659) and in certain time-periodic transport problems in superlattices (Ignatov A A and Romanov Y A 1976 Phys. Status Solidi b 73 327; Feise M W and Citrin D S 1999 Appl. Phys. Lett. 75 3536). This paper shows that both the even- and the odd-order Kapteyn series that appear can be summed in closed form, thereby allowing more transparent insight into the structural dependence of the sideband spectra and also providing an analytic control for the accuracy of numerical procedures designed to evaluate the series. The general method of analysis may also be of interest for other Kapteyn series.

  1. Analysis of spectra using correlation functions

    NASA Technical Reports Server (NTRS)

    Beer, Reinhard; Norton, Robert H.

    1988-01-01

    A novel method is presented for the quantitative analysis of spectra based on the properties of the cross correlation between a real spectrum and either a numerical synthesis or laboratory simulation. A new goodness-of-fit criterion called the heteromorphic coefficient H is proposed that has the property of being zero when a fit is achieved and varying smoothly through zero as the iteration proceeds, providing a powerful tool for automatic or near-automatic analysis. It is also shown that H can be rendered substantially noise-immune, permitting the analysis of very weak spectra well below the apparent noise level and, as a byproduct, providing Doppler shift and radial velocity information with excellent precision. The technique is in regular use in the Atmospheric Trace Molecule Spectroscopy (ATMOS) project and operates in an interactive, realtime computing environment with turn-around times of a few seconds or less.

  2. RADLite: Raytracer for infrared line spectra

    NASA Astrophysics Data System (ADS)

    Pontoppidan, Klaus; Dullemond, Kees

    2013-08-01

    RADLite is a raytracer that is optimized for producing infrared line spectra and images from axisymmetric density structures, originally developed to function on top of the dust radiative transfer code RADMC. RADLite can consistently deal with a wide range of velocity gradients, such as those typical for the inner regions of protoplanetary disks. The code is intended as a back-end for chemical and excitation codes, and can rapidly produce spectra of thousands of lines for grids of models for comparison with observations. It includes functionality for simulating telescopic images for optical/IR/midIR/farIR telescopes. It takes advantage of multi-threaded CPUs and includes an escape-probability non-LTE module.

  3. Bone densitometry using x-ray spectra.

    PubMed

    Krmar, M; Shukla, S; Ganezer, K

    2010-10-21

    In contrast to the two distinct energy regions that are involved in dual-energy x-ray absorptiometry for bone densitometry, the complete spectrum of a beam transmitted through two layers of different materials is utilized in this study to calculate the areal density of each material. Test objects constructed from aluminum and Plexiglas were used to simulate cortical bone and soft tissue, respectively. Solid-state HPGe (high-purity germanium) detectors provided high-resolution x-ray spectra over an energy range of approximately 20-80 keV. Areal densities were obtained from spectra using two methods: a system of equations for two spectral regions and a nonlinear fit of the entire spectrum. Good agreement with the known areal densities of aluminum was obtained over a wide range of PMMA thicknesses. The spectral method presented here can be used to decrease beam hardening at a small number of bodily points selected for examination.

  4. Creating semiconductor metafilms with designer absorption spectra

    PubMed Central

    Kim, Soo Jin; Fan, Pengyu; Kang, Ju-Hyung; Brongersma, Mark L.

    2015-01-01

    The optical properties of semiconductors are typically considered intrinsic and fixed. Here we leverage the rapid developments in the field of optical metamaterials to create ultrathin semiconductor metafilms with designer absorption spectra. We show how such metafilms can be constructed by placing one or more types of high-index semiconductor antennas into a dense array with subwavelength spacings. It is argued that the large absorption cross-section of semiconductor antennas and their weak near-field coupling open a unique opportunity to create strongly absorbing metafilms whose spectral absorption properties directly reflect those of the individual antennas. Using experiments and simulations, we demonstrate that near-unity absorption at one or more target wavelengths of interest can be achieved in a sub-50-nm-thick metafilm using judiciously sized and spaced Ge nanobeams. The ability to create semiconductor metafilms with custom absorption spectra opens up new design strategies for planar optoelectronic devices and solar cells. PMID:26184335

  5. Specific heat of multifractal energy spectra

    NASA Astrophysics Data System (ADS)

    da Silva, L. R.; Vallejos, R. O.; Tsallis, C.; Mendes, R. S.; Roux, S.

    2001-07-01

    Motivated by the self-similar character of energy spectra demonstrated for quasicrystals, we investigate the case of multifractal energy spectra, and compute the specific heat associated with simple archetypal forms of multifractal sets as generated by iterated maps. We considered the logistic map and the circle map at their threshold to chaos. Both examples show nontrivial structures associated with the scaling properties of their respective chaotic attractors. The specific heat displays generically log-periodic oscillations around a value that characterizes a single exponent, the ``fractal dimension,'' of the distribution of energy levels close to the minimum value set to 0. It is shown that when the fractal dimension and the frequency of log oscillations of the density of states are large, the amplitude of the resulting log oscillation in the specific heat becomes much smaller than the log-periodic oscillation measured on the density of states.

  6. Specific heat spectra for quasiperiodic ladder sequences

    NASA Astrophysics Data System (ADS)

    Moreira, D. A.; Albuquerque, E. L.; Bezerra, C. G.

    2006-12-01

    We performed a theoretical study of the specific heat C(T) as a function of the temperature for double-strand quasiperiodic sequences. To mimic DNA molecules, the sequences are made up from the nucleotides guanine G, adenine A, cytosine C and thymine T, arranged according to the Fibonacci and Rudin-Shapiro quasiperiodic sequences. The energy spectra are calculated using the two-dimensional Schrödinger equation, in a tight-binding approximation, with the on-site energy exhibiting long-range disorder and non-random hopping amplitudes. We compare the specific heat features of these quasiperiodic artificial sequences to the spectra considering a segment of the first sequenced human chromosome 22 (Ch22), a real genomic DNA sequence.

  7. Neutron Spectra in a 15 MV LINAC

    SciTech Connect

    Vega-Carrillo, H. R.; Chu, Wei-Han; Tung, Chuan-Jong; Lan, Jen-Hong

    2010-12-07

    Neutron spectra were calculated inside the treatment hall of a 15 MV LINAC, calculations were carried out using Monte Carlo methods. With a Bonner sphere spectrometer with pairs of thermoluminiscent dosimeters the neutron spectrum at 100 cm from the isocenter was measured and compared with the calculated spectrum. All the spectra in the treatment hall show the presence of evaporation and knock-on neutrons; also the room-return due to the hall features is shown. In the maze the large contribution are due to epithermal and thermal neutrons. A good agreement between the calculated and measured spectrum at 100 cm was noticed, from this comparison the differences are attributed to the water content in the concrete of the hall.

  8. Measurement and interpretation of plutonium spectra

    SciTech Connect

    Blaise, J.; Fred, M.S.; Carnall, W.T.; Crosswhite, H.M.; Crosswhite, H.

    1982-01-01

    The atomic spectroscopic data available for plutonium are among the rickest of any in the periodic system. They include high-resolution grating and Fourier-transform spectra as well as extensive Zeeman and isotope-shift studies. We summarize the present status of the term analysis and cite the configurations that have been identified. A least-squares adjustment of a parametric Hamiltonian for configurations of both Pu I and Pu II has shown that almost all of the expected low levels are now known. The use of a model Hamiltonian applicable to both lanthanide and actinide atomic species has been applied to the low configurations of Pu I and Pu II making use of trends predicted by ab initio calculations. This same model has been used to describe the energy levels of Pu/sup 3 +/ in LaCl/sub 3/, and an extension has permitted preliminary calculations of the spectra of other valence states.

  9. Model atmospheres, predicted spectra, and colors

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Theoretical models of stellar atmospheres and the process of forming a spectrum are reviewed with particular reference to the spectra of B stars. In the case of classical models the stellar atmosphere is though to consist of plane parallel layers of gas in which radiative and hydrostatic equilibrium exists. No radiative energy is lost or gained in the model atmosphere, but the detailed shape of the spectrum is changed as a result of the interactions with the ionized gas. Predicted line spectra using statistical equilibrium local thermodynamic equilibrium (LTE), and non-LTE physics are compared and the determination of abundances is discussed. The limitations of classical modeling are examined. Models developed to demonstrate what motions in the upper atmosphere will do to the spectrum and to explore the effects of using geometries different from plane parallel layer are reviewed. In particular the problem of radiative transfer is addressed.

  10. Cathodoluminescence spectra of gallium nitride nanorods.

    PubMed

    Tsai, Chia-Chang; Li, Guan-Hua; Lin, Yuan-Ting; Chang, Ching-Wen; Wadekar, Paritosh; Chen, Quark Yung-Sung; Rigutti, Lorenzo; Tchernycheva, Maria; Julien, François Henri; Tu, Li-Wei

    2011-12-14

    Gallium nitride [GaN] nanorods grown on a Si(111) substrate at 720°C via plasma-assisted molecular beam epitaxy were studied by field-emission electron microscopy and cathodoluminescence [CL]. The surface topography and optical properties of the GaN nanorod cluster and single GaN nanorod were measured and discussed. The defect-related CL spectra of GaN nanorods and their dependence on temperature were investigated. The CL spectra along the length of the individual GaN nanorod were also studied. The results reveal that the 3.2-eV peak comes from the structural defect at the interface between the GaN nanorod and Si substrate. The surface state emission of the single GaN nanorod is stronger as the diameter of the GaN nanorod becomes smaller due to an increased surface-to-volume ratio.

  11. Characteristics of magnetospheric radio noise spectra

    NASA Technical Reports Server (NTRS)

    Herman, J. R.

    1976-01-01

    Magnetospheric radio noise spectra (30 kHz to 10 MHz) taken by IMP-6 and RAE-2 exhibit time-varying characteristics which are related to spacecraft position and magnetospheric processes. In the mid-frequency range (100-1,000 kHz) intense noise peaks rise by a factor of 100 or more above background; 80% of the peak frequencies are within the band 125 kHz to 600 kHz, and the peak occurs most often (18% of the time) at 280 kHz. This intense mid-frequency noise has been detected at radial distances from 1.3 Re to 60 Re on all sides of the Earth during magnetically quiet as well as disturbed periods. Maximum occurrence of the mid-frequency noise is in the evening to midnight hours where splash-type energetic particle precipitation takes place. ""Magnetospheric lightning'' can be invoked to explain the spectral shape of the observed spectra.

  12. Knowledge Discovery in Mega-Spectra Archives

    NASA Astrophysics Data System (ADS)

    Škoda, P.; Bromová, P.; Lopatovsk'y, L.; Palička, A.; Vávzný, J.

    2015-09-01

    The recent progress of astronomical instrumentation resulted in the construction of multi-object spectrographs with hundreds to thousands of micro-slits or optical fibres allowing the acquisition of tens of thousands of spectra of celestial objects per observing night. Currently there are two spectroscopic surveys containing millions of spectra. These surveys are being processed by automatic pipelines, spectrum by spectrum, in order to estimate physical parameters of individual objects resulting in extensive catalogues, used typically to construct the better models of space-kinematic structure and evolution of the Universe or its subsystems. Such surveys are, however, very good source of homogenised, pre-processed data for application of machine learning techniques common in Astroinformatics. We present challenges of knowledge discovery in such surveys as well as practical examples of machine learning based on specific shapes of spectral features used in searching for new candidates of interesting astronomical objects, namely Be and B[e] stars and quasars.

  13. Reanalysis of Tyrannosaurus rex Mass Spectra.

    PubMed

    Bern, Marshall; Phinney, Brett S; Goldberg, David

    2009-09-01

    Asara et al. reported the detection of collagen peptides in a 68-million-year-old Tyrannosaurus rex bone by shotgun proteomics. This finding has been called into question as a possible statistical artifact. We reanalyze Asara et al.'s tandem mass spectra using a different search engine and different statistical tools. Our reanalysis shows a sample containing common laboratory contaminants, soil bacteria, and bird-like hemoglobin and collagen.

  14. Dynamical analysis of highly excited molecular spectra

    SciTech Connect

    Kellman, M.E.

    1993-12-01

    The goal of this program is new methods for analysis of spectra and dynamics of highly excited vibrational states of molecules. In these systems, strong mode coupling and anharmonicity give rise to complicated classical dynamics, and make the simple normal modes analysis unsatisfactory. New methods of spectral analysis, pattern recognition, and assignment are sought using techniques of nonlinear dynamics including bifurcation theory, phase space classification, and quantization of phase space structures. The emphasis is chaotic systems and systems with many degrees of freedom.

  15. Ir spectra of preparations of ozonized pyrocatechin

    NASA Astrophysics Data System (ADS)

    Khovratovich, N. N.; Novikova, T. M.; Khmel'Nitskii, A. I.; Cherenkevich, S. N.; Loban, V. A.

    1998-03-01

    We investigate IR spectra of the solid phase of products obtained at different stages in the process of ozonizing aqueous solutions of pyrocatechin. We found that melanin structures are formed in the process of pyrocatechin ozonization. The existence of intra- and intermolecular interactions in the melanin preparations formed, leading to the formation of molecular associates, is shown. Thorough treatment of preparations with ozone leads to destruction of polymer systems and formation of water-soluble products of acid type.

  16. Understanding the baryon and meson spectra

    SciTech Connect

    Pennington, Michael R.

    2013-10-01

    A brief overview is given of what we know of the baryon and meson spectra, with a focus on what are the key internal degrees of freedom and how these relate to strong coupling QCD. The challenges, experimental, theoretical and phenomenological, for the future are outlined, with particular reference to a program at Jefferson Lab to extract hadronic states in which glue unambiguously contributes to their quantum numbers.

  17. Nebular spectra of pair-instability supernovae

    NASA Astrophysics Data System (ADS)

    Jerkstrand, A.; Smartt, S. J.; Heger, A.

    2016-01-01

    If very massive stars (M ≳ 100 M⊙) can form and avoid too strong mass-loss during their evolution, they are predicted to explode as pair-instability supernovae (PISNe). One critical test for candidate events is whether their nucleosynthesis yields and internal ejecta structure, being revealed through nebular-phase spectra at t ≳ 1 yr, match those of model predictions. Here, we compute theoretical spectra based on model PISN ejecta at 1-3 yr post-explosion to allow quantitative comparison with observations. The high column densities of PISNe lead to complete gamma-ray trapping for t ≳ 2 yr which, combined with fulfilled conditions of steady state, leads to bolometric supernova luminosities matching the 56Co decay. Most of the gamma-rays are absorbed by the deep-lying iron and silicon/sulphur layers. The ionization balance shows a predominantly neutral gas state, which leads to emission lines of Fe I, Si I, and S I. For low-mass PISNe, the metal core expands slowly enough to produce a forest of distinct lines, whereas high-mass PISNe expand faster and produce more featureless spectra. Line blocking is complete below ˜5000 Å for several years, and the model spectra are red. The strongest line is typically [Ca II] λλ7291, 7323, one of few lines from ionized species. We compare our models with proposed PISN candidates SN 2007bi and PTF12dam, finding discrepancies for several key observables and thus no support for a PISN interpretation. We discuss distinct spectral features predicted by the models, and the possibility of detecting pair-instability explosions among non-superluminous supernovae.

  18. Analysis of the IRAS Low Resolution Spectra

    DTIC Science & Technology

    1988-04-01

    which were previously not known. 1. RESEARCH The Infrared Astronomical Satellite , IRAS, surveyed the sky in four wavelength bands centered on 12, 25, 60...agree at 12 Am unless a linear baseline is subtracted from the usable portion of the spectrum. The IRAS science team characterized the LRS spectra...that have silicate dust grain emission features extending from about 8 -14 Am with a maximum around 10 Am are characterized as 2n where n= I to 9

  19. CUBISM: CUbe Builder for IRS Spectra Maps

    NASA Astrophysics Data System (ADS)

    Sings Irs Team; Smith, J. D.; Armus, Lee; Bot, Caroline; Buckalew, Brent; Dale, Danny; Helou, George; Jarrett, Tom; Roussel, Helene; Sheth, Kartik

    2011-11-01

    CUBISM, written in IDL, constructs spectral cubes, maps, and arbitrary aperture 1D spectral extractions from sets of mapping mode spectra taken with Spitzer's IRS spectrograph. CUBISM is optimized for non-sparse maps of extended objects, e.g. the nearby galaxy sample of SINGS, but can be used with data from any spectral mapping AOR (primarily validated for maps which are designed as suggested by the mapping HOWTO).

  20. Wavevector-Frequency Spectra of Nonhomogeneous Fields

    DTIC Science & Technology

    1987-01-22

    TITLE (Indud* Security Qasafication) WAVEVECTOR-FREQUENCY SPECTRA OF NONHOMOGENEOUS FIELDS 12. PERSONAL AUTHOR(S) Dr . Wayne A. Strawderman...SAME AS RPT. D DTIC USERS 22a. NAME OF RESPONSIBLE INDIVIDUAL Dr . Wayne A. Strawderman 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED 22b.T...Program Element 62314N. The NUSC Project No. is B60010. Principal Investigator Dr . H. P. Bakewell, Jr., Code 2141. The Sponsoring Activity was the Office

  1. Simultaneous Confidence Bands for Autoregressive Spectra.

    DTIC Science & Technology

    1982-06-01

    CONFIDENCE BANDS FOR AUTOREGRESSIVE SPECTRA H. Joseph Newton Marcello Pagano Institute of Statistics Department of Biostatistics Texas A&M University...AUTHOR(4) 8. CONTRACT OR GRANT NUMIUER(a) H. Joseph Newton and Marcello Pagano ONR N00014-82-MP-2001 ARU DAAG 29-80-C-0070 0. PERFORMING ORGANIZATION NAME...Parzen (1974), Uirych and Bishop (1975), and Beamish and Priestley (1981), for example) despite 1) a continuing discussion of the problems of order

  2. Decay of {sup 246}Bk* formed in similar entrance channel reactions of {sup 11}B+{sup 235}U and {sup 14}N+{sup 232}Th at low energies using the dynamical cluster-decay model

    SciTech Connect

    Singh, BirBikram; Sharma, Manoj K.; Gupta, Raj K.

    2008-05-15

    The decay of the {sup 246}Bk* nucleus, formed in entrance channel reactions {sup 11}B+{sup 235}U and {sup 14}N+{sup 232}Th at different incident energies, is studied by using the dynamical cluster-decay model (DCM) extended to include the deformations and orientations of nuclei. The main decay mode here is fission. The other (weaker) decay channels are the light particles evaporation (A{<=}4) and intermediate mass fragments (5{<=}A{<=}20). All decay products are calculated as emissions of preformed clusters through the interaction barriers. The calculated fission cross sections {sigma}{sub fiss}, taken as a sum of the energetically favored symmetric and near symmetric fragments (A{sub CN}/2{+-}7 and A=106-110 plus complementary fragments) show an excellent agreement with experimental data at all experimental incident c.m. energies for both reactions, except for the top three energies in the case of the {sup 11}B+{sup 235}U reaction. The disagreement between the DCM calculations and data at higher incident c.m. energies for the {sup 11}B+{sup 235}U entrance channel is associated with the presence of additional effects of noncompound, quasifission (qf) components, in contradiction with the measured anisotropy effects which indicate the other entrance channel {sup 14}N+{sup 232}Th to contain the noncompound nucleus contribution. The prediction of two fission windows, the symmetric fission (SF) and near symmetric or heavy mass fragments (HMFs), suggests the presence of a fine structure of fission fragments, which also need an experimental verification. The only parameter of the model is the neck length parameter {delta}R whose value is shown to depend strongly on limiting angular momentum, which in turn depends on the use of sticking or nonsticking moment of inertia for angular momentum effects.

  3. Meteor spectra in the EDMOND database

    NASA Astrophysics Data System (ADS)

    Koukal, J.; Gorková, S.; Srba, J.; Ferus, M.; Civiš, S.; di Pietro, C. A.

    2015-01-01

    We present a selection of five interesting meteor spectra obtained in the years 2014 and 2015 via CCTV video systems with a holographic grating, working in CEMENT and BRAMON meteor observation networks. Based on the EDMOND multi stations video meteor trajectory data an orbital classification of these meteors was performed. Selected meteors are members of the LYR, SPE, DSA and LVI meteor streams, one meteor is classified as sporadic background (SPO). In calibrated spectra the main chemical components were identified. Meteors are chemically classified based on relative intensities of the main spectral lines (or multiplets): Mg I (2), Na I (1), and Fe I (15). Bolide EN091214 is linked with the 23rd meteorite with known orbit (informally known as "Žďár"), two fragments of the parent body were found in the Czech Republic so far (August, 2015). For this particular event a time resolved spectral observation and comparison with laboratory spectra of LL3.2 chondritic meteorite are presented.

  4. Infrared spectra of substituted polycylic aromatic hydrocarbons

    NASA Technical Reports Server (NTRS)

    Langhoff, S. R.; Bauschlicher, C. W. Jr; Hudgins, D. M.; Sandford, S. A.; Allamandola, L. J.

    1998-01-01

    Calculations are carried out using density functional theory (DFT) to determine the harmonic frequencies and intensities of 1-methylanthracene, 9-methylanthracene, 9-cyanoanthracene, 2-aminoanthracene, acridine, and their positive ions. The theoretical data are compared with matrix-isolation spectra for these species also reported in this work. The theoretical and experimental frequencies and relative intensities for the neutral species are in generally good agreement, whereas the positive ion spectra are only in qualitative agreement. Relative to anthracene, we find that substitution of a methyl or CN for a hydrogen does not significantly affect the spectrum other than to add the characteristic methyl C-H and C triple bond N stretches near 2900 and 2200 cm-1, respectively. However, addition of NH2 dramatically affects the spectrum of the neutral. Not only are the NH2 modes themselves strong, but this electron-withdrawing group induces sufficient partial charge on the ring to give the neutral molecule spectra characteristics of the anthracene cation. The sum of the absolute intensities is about four times larger for 2-aminoanthracene than those for 9-cyanoanthracene. Substituting nitrogen in the ring at the nine position (acridine) does not greatly alter the spectrum compared with anthracene.

  5. Analysis of positron lifetime spectra in polymers

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Mall, Gerald H.; Sprinkle, Danny R.

    1988-01-01

    A new procedure for analyzing multicomponent positron lifetime spectra in polymers was developed. It requires initial estimates of the lifetimes and the intensities of various components, which are readily obtainable by a standard spectrum stripping process. These initial estimates, after convolution with the timing system resolution function, are then used as the inputs for a nonlinear least squares analysis to compute the estimates that conform to a global error minimization criterion. The convolution integral uses the full experimental resolution function, in contrast to the previous studies where analytical approximations of it were utilized. These concepts were incorporated into a generalized Computer Program for Analyzing Positron Lifetime Spectra (PAPLS) in polymers. Its validity was tested using several artificially generated data sets. These data sets were also analyzed using the widely used POSITRONFIT program. In almost all cases, the PAPLS program gives closer fit to the input values. The new procedure was applied to the analysis of several lifetime spectra measured in metal ion containing Epon-828 samples. The results are described.

  6. Janus spectra: cascades without local isotropy

    NASA Astrophysics Data System (ADS)

    Liu, Chien-Chia; Cerbus, Rory; Chakraborty, Pinaki

    2016-11-01

    Two-dimensional turbulent flows host two disparate cascades: of enstrophy and of energy. The phenomenological theory of turbulence, which provides the theoretical underpinning of these cascades, assumes local isotropy. This assumption has been amply verified via computational, experimental and field data amassed to date. Local isotropy mandates that the streamwise (u) and transverse (v) velocity fluctuations partake in the same cascade; consequently, the attendant spectral exponents (αu and αv) of the turbulent energy spectra are the same, αu =αv . Here we report experiments in soap-film flows where αu corresponds to the energy cascade, but concurrently αv corresponds to the enstrophy cascade, as if two mutually independent turbulent fields of disparate dynamics were concurrently active within the flow. This species of turbulent energy spectra, which we term the Janus spectra, has never been observed or predicted theoretically. Remarkably, the tools of phenomenological theory can be invoked to elucidate this manifestly anisotropic flow. Okinawa Institute of Science and Technology.

  7. IRAS Low Resolution Spectra of Asteroids

    NASA Technical Reports Server (NTRS)

    Cohen, Martin; Walker, Russell G.

    2002-01-01

    Optical/near-infrared studies of asteroids are based on reflected sunlight and surface albedo variations create broad spectral features, suggestive of families of materials. There is a significant literature on these features, but there is very little work in the thermal infrared that directly probes the materials emitting on the surfaces of asteroids. We have searched for and extracted 534 thermal spectra of 245 asteroids from the original Dutch (Groningen) archive of spectra observed by the IRAS Low Resolution Spectrometer (LRS). We find that, in general, the observed shapes of the spectral continua are inconsistent with that predicted by the standard thermal model used by IRAS. Thermal models such as proposed by Harris (1998) and Harris et al.(1998) for the near-earth asteroids with the "beaming parameter" in the range of 1.0 to 1.2 best represent the observed spectral shapes. This implies that the IRAS Minor Planet Survey (IMPS, Tedesco, 1992) and the Supplementary IMPS (SIMPS, Tedesco, et al., 2002) derived asteroid diameters are systematically underestimated, and the albedos are overestimated. We have tentatively identified several spectral features that appear to be diagnostic of at least families of materials. The variation of spectral features with taxonomic class hints that thermal infrared spectra can be a valuable tool for taxonomic classification of asteroids.

  8. Optical spectra analysis for breast cancer diagnostics

    NASA Astrophysics Data System (ADS)

    Belkov, S. A.; Kochemasov, G. G.; Lyubynskaya, T. E.; Maslov, N. V.; Nuzhny, A. S.; da Silva, L. B.; Rubenchik, A.

    2011-11-01

    Minimally invasive probe and optical biopsy system based on optical spectra recording and analysis seem to be a promising tool for early diagnostics of breast cancer. Light scattering and absorption spectra are generated continuously as far as the needle-like probe with one emitting and several collecting optical fibers penetrates through the tissues toward to the suspicious area. That allows analyzing not only the state of local site, but also the structure of tissues along the needle trace. The suggested method has the advantages of automated on-line diagnosing and minimal tissue destruction and in parallel with the conventional diagnostic procedures provides the ground for decision-making. 165 medical trials were completed in Nizhny Novgorod Regional Oncology Centre, Russia. Independent diagnoses were the results of fine biopsy and histology. Application of wavelet expansion and clasterization techniques for spectra analysis revealed several main spectral types for malignant and benign tumors. Automatic classification algorithm demonstrated specificity ˜90% and sensitivity ˜91%. Large amount of information, fuzziness in criteria and data noisiness make neural networks to be an attractive analytic tool. The model based on three-layer perceptron was tested over the sample of 29 `cancer' and 29 `non-cancer' cases and demonstrated total separation.

  9. VARIABILITY IN OPTICAL SPECTRA OF {epsilon} ORIONIS

    SciTech Connect

    Thompson, Gregory B.; Morrison, Nancy D. E-mail: nmorris@utnet.utoledo.edu

    2013-04-15

    We present the results of a time series analysis of 130 echelle spectra of {epsilon} Ori (B0 Ia), acquired over seven observing seasons between 1998 and 2006 at Ritter Observatory. The equivalent widths of H{alpha} (net) and He I {lambda}5876 were measured and radial velocities were obtained from the central absorption of He I {lambda}5876. Temporal variance spectra (TVS) revealed significant wind variability in both H{alpha} and He I {lambda}5876. The He I TVS have a double-peaked profile consistent with radial velocity oscillations. A periodicity search was carried out on the equivalent width and radial velocity data, as well as on wavelength-binned spectra. This analysis has revealed several periods in the variability with timescales of two to seven days. Many of these periods exhibit sinusoidal modulation in the associated phase diagrams. Several of these periods were present in both H{alpha} and He I, indicating a possible connection between the wind and the photosphere. Due to the harmonic nature of these periods, stellar pulsations may be the origin of some of the observed variability. Periods on the order of the rotational period were also detected in the He I line in the 1998-1999 season and in both lines during the 2004-2005 season. These periods may indicate rotational modulation due to structure in the wind.

  10. Near-infrared spectra of Jupiter, Saturn, and Uranus

    NASA Technical Reports Server (NTRS)

    Potter, A. E.

    1974-01-01

    Near infrared spectra of Jupiter, Saturn, and Uranus were measured at resolutions higher than previously available in the range from 6,000 to 10,750/cm. The resolution was 0.5/cm for Jupiter and Saturn, and 32/cm for Uranus. The spectra are presented both individually and as ratio spectra, in which the planetary spectra are divided by the solar spectrum. The Uranus spectrum is shown with Saturn, Jupiter, and Sun spectra reduced to the same resolution so that Uranus can be compared with the other outer planets. The high resolution Saturn, Jupiter, and Sun spectra are presented in parallel plots to simplify comparisons between them.

  11. EMPCA and Cluster Analysis of Quasar Spectra: Application to SDSS Spectra

    NASA Astrophysics Data System (ADS)

    Leighly, Karen; Marrs, Adam; Wagner, Cassidy; Macinnis, Francis

    2017-01-01

    Accurate modeling of the quasar continuum is necessary to measure and analyze absorption lines. But quasar continua, in particular the emission lines, vary from object to object. Patterns in the variations allow a spectral principal component analysis (SPCA) approach using large samples of quasar spectra, e.g., from the SDSS. Then, a small number of the derived principal component spectra can be used to reconstruct an arbitrary quasar's continuum.A problem with this approach is that the number of principal components required to model an arbitrary quasar, usually 8 to 20 in the literature, is large. One reason why so many components are required is that SPCA implicitly assumes that spectra bins are independent. Quasar emission lines are spread over a range of spectral bins, and more importantly, can sometimes be blueshifted. So while the intrinsic variability may only be a function of a few physical parameters, the nonlinearity inherent in the variations from object to object requires a large number of prinicipal components to accurately model a quasar continuum.We present a modified approach. We perform a SPCA analysis, using an expectation-maximization algorithm by Bailey et al. 2012, which takes into account uncertainties and missing data. We project the sample spectra on the resulting eignevectors to obtain the projection coefficients. Reasoning that intriniscally similar spectra will have similar projection coefficients, we perform a cluster analysis on the projection coefficients. The results are used to divide the sample into groups of similar spectra. A second PCA analysis is then performed on each group. We find that many fewer eigenspectra are required to accurately model the spectra in each group. We apply this approach to several samples of quasars from the SDSS.

  12. Intrinsic Wavelength Shifts in Stellar Spectra

    NASA Astrophysics Data System (ADS)

    Dravins, D.; Lindegren, L.; Ludwig, H.-G.; Madsen, S.

    2004-12-01

    Wavelengths of stellar spectral lines do not have the precise values `naively' expected from laboratory wavelengths merely Doppler-shifted by stellar radial motion. Slight displacements may originate as convective shifts (correlated velocity and brightness patterns in the photosphere), as gravitational redshifts, or perhaps be induced by wave motions. Intrinsic lineshifts thus reveal stellar surface structure, while possible periodic changes (during a stellar activity cycle, say) need to be segregated from variability induced by orbiting exoplanets. Absolute lineshifts can now be studied also in some stars other than the Sun, thanks to astrometric determinations of stellar radial motion. Comparisons between spectroscopic apparent radial velocities and astrometrically determined radial motions reveal greater spectral blueshifts in F-type stars than in the Sun (as theoretically expected from their more vigorous convection), further increasing in A-type stars (possibly due to atmospheric shockwaves). Solar spectral atlases, and high-resolution spectra (from UVES on ESO VLT) of a dozen solar-type stars are being surveyed for `unblended' photospheric lines of most atomic species with accurate laboratory wavelengths available. One aim is to understand the ultimate information content of stellar spectra, and in what detail it will be feasible to verify models of stellar atmospheric hydrodynamics. These may predict line asymmetries (bisectors) and shifts for widely different classes of lines, but there will not result any comparison with observations if such lines do not exist in real spectra. An expected near-future development in stellar physics is spatially resolved spectroscopy across stellar disks, enabled by optical interferometry and adaptive optics on very large telescopes. Stellar surface structure manifests itself in the center-to-limb wavelength changes along a stellar diameter, and their spatially resolved time variability, diagnostics which already now can be

  13. Effect of Temperature on Jet Velocity Spectra

    NASA Technical Reports Server (NTRS)

    Bridges, James E.; Wernet, Mark P.

    2007-01-01

    Statistical jet noise prediction codes that accurately predict spectral directivity for both cold and hot jets are highly sought both in industry and academia. Their formulation, whether based upon manipulations of the Navier-Stokes equations or upon heuristic arguments, require substantial experimental observation of jet turbulence statistics. Unfortunately, the statistics of most interest involve the space-time correlation of flow quantities, especially velocity. Until the last 10 years, all turbulence statistics were made with single-point probes, such as hotwires or laser Doppler anemometry. Particle image velocimetry (PIV) brought many new insights with its ability to measure velocity fields over large regions of jets simultaneously; however, it could not measure velocity at rates higher than a few fields per second, making it unsuitable for obtaining temporal spectra and correlations. The development of time-resolved PIV, herein called TR-PIV, has removed this limitation, enabling measurement of velocity fields at high resolution in both space and time. In this paper, ground-breaking results from the application of TR-PIV to single-flow hot jets are used to explore the impact of heat on turbulent statistics of interest to jet noise models. First, a brief summary of validation studies is reported, undertaken to show that the new technique produces the same trusted results as hotwire at cold, low-speed jets. Second, velocity spectra from cold and hot jets are compared to see the effect of heat on the spectra. It is seen that heated jets possess 10 percent more turbulence intensity compared to the unheated jets with the same velocity. The spectral shapes, when normalized using Strouhal scaling, are insensitive to temperature if the stream-wise location is normalized relative to the potential core length. Similarly, second order velocity correlations, of interest in modeling of jet noise sources, are also insensitive to temperature as well.

  14. High precision radial velocities with GIANO spectra

    NASA Astrophysics Data System (ADS)

    Carleo, I.; Sanna, N.; Gratton, R.; Benatti, S.; Bonavita, M.; Oliva, E.; Origlia, L.; Desidera, S.; Claudi, R.; Sissa, E.

    2016-06-01

    Radial velocities (RV) measured from near-infrared (NIR) spectra are a potentially excellent tool to search for extrasolar planets around cool or active stars. High resolution infrared (IR) spectrographs now available are reaching the high precision of visible instruments, with a constant improvement over time. GIANO is an infrared echelle spectrograph at the Telescopio Nazionale Galileo (TNG) and it is a powerful tool to provide high resolution spectra for accurate RV measurements of exoplanets and for chemical and dynamical studies of stellar or extragalactic objects. No other high spectral resolution IR instrument has GIANO's capability to cover the entire NIR wavelength range (0.95-2.45 μm) in a single exposure. In this paper we describe the ensemble of procedures that we have developed to measure high precision RVs on GIANO spectra acquired during the Science Verification (SV) run, using the telluric lines as wavelength reference. We used the Cross Correlation Function (CCF) method to determine the velocity for both the star and the telluric lines. For this purpose, we constructed two suitable digital masks that include about 2000 stellar lines, and a similar number of telluric lines. The method is applied to various targets with different spectral type, from K2V to M8 stars. We reached different precisions mainly depending on the H-magnitudes: for H ˜ 5 we obtain an rms scatter of ˜ 10 m s-1, while for H ˜ 9 the standard deviation increases to ˜ 50 ÷ 80 m s-1. The corresponding theoretical error expectations are ˜ 4 m s-1 and 30 m s-1, respectively. Finally we provide the RVs measured with our procedure for the targets observed during GIANO Science Verification.

  15. Evolution of Fourier spectra through interplanetary shocks

    NASA Astrophysics Data System (ADS)

    Pitna, Alexander; Safrankova, Jana; Nemecek, Zdenek; Nemec, Frantisek; Goncharov, Oleksandr

    2014-05-01

    Well established nearly isothermic solar wind expansion requires an additional heating. A dissipation of large scale variations of the solar wind kinetic energy into the thermal energy via turbulence cascades is thought to be an important source of this heating, although the exact mechanism is yet to be found. For this reason, the turbulence in the solar wind is a subject of extensive theoretical and experimental studies on different time scales ranging from years to minutes. The frequency spectrum of magnetic field fluctuations can be divided into several domains differing by spectral indices - the lowest frequencies are controlled by the solar activity, MHD activity shapes the spectrum at higher (up to 0.1 Hz) frequencies, whereas the ion and electron kinetic effects dominate at the high frequency end of the spectra. Interplanetary shocks of various origins are a part of solar wind turbulence naturally occurring in the solar wind and the BMSW instrument onboard the Spektr-R spacecraft has detected tens of them in course of the 2011-2013 years. Based on its high-time resolution of the ion flux, density and velocity measurements reaching 31 ms, we study an evolution of the frequency spectra on MHD and kinetic scales across fast forward low Mach number shocks. We have found that the power of downstream fluctuations rises by an order of magnitude in a broad range of frequencies independently of its upstream value but the slope of the spectrum on the kinetic scale (≡3-8 Hz) has been found to be statistically steeper downstream than upstream of the shock. The time needed to a full relaxation to the pre-shock spectral shape is as long as several hours. A combination of the ion flux power spectra obtained by BMSW with fast magnetic field observations of other spacecraft enhances our understanding of dissipation mechanisms.

  16. Synthesized Spectra of Optically Thin Emission Lines

    NASA Astrophysics Data System (ADS)

    Olluri, K.; Gudiksen, B. V.; Hansteen, V. H.; De Pontieu, B.

    2015-03-01

    In recent years realistic 3D numerical models of the solar atmosphere have become available. The models attempt to recreate the solar atmosphere and mimic observations in the best way, in order to make it possible to couple complicated observations with physical properties such as the temperatures, densities, velocities, and magnetic fields. We here present a study of synthetic spectra created using the Bifrost code in order to assess how well they fit with previously taken solar data. A study of the synthetic intensity, nonthermal line widths, Doppler shifts, and correlations between any two of these three components of the spectra first assuming statistical equilibrium is made, followed by a report on some of the effects nonequilibrium ionization will have on the synthesized spectra. We find that the synthetic intensities compare well with the observations. The synthetic observations depend on the assumed resolution and point-spread function (PSF) of the instrument, and we find a large effect on the results, especially for intensity and nonthermal line width. The Doppler shifts produce the reported persistent redshifts for the transition region (TR) lines and blueshifts for the upper TR and corona lines. The nonthermal line widths reproduce the well-known turnoff point around (2-3) × 105 K, but with much lower values than those observed. The nonthermal line widths tend to increase with decreasing assumed instrumental resolution, also when nonequilibrium ionization is included. Correlations between the nonthermal line width of any two TR line studies as reported by Chae et al. are reproduced, while the correlations of intensity to line width are reproduced only after applying a PSF to the data. Doppler shift correlations reported by Doschek for the TR lines and correlations of Doppler shift to nonthermal line width of the Fe xii 19.5 line reported by Doschek et al. are reproduced.

  17. Ultraviolet Spectra of Normal Spiral Galaxies

    NASA Technical Reports Server (NTRS)

    Kinney, Anne

    1997-01-01

    The data related to this grant on the Ultraviolet Spectra of Normal Spiral Galaxies have been entirely reduced and analyzed. It is incorporated into templates of Spiral galaxies used in the calculation of K corrections towards the understanding of high redshift galaxies. The main paper was published in the Astrophysical Journal, August 1996, Volume 467, page 38. The data was also used in another publication, The Spectral Energy Distribution of Normal Starburst and Active Galaxies, June 1997, preprint series No. 1158. Copies of both have been attached.

  18. SIMULATION OF PARTICLE SPECTRA AT RHIC.

    SciTech Connect

    KAHANA,D.E.; KAHANA,S.H.

    2001-09-04

    A purely hadronic simulation is performed of the recently reported data from PHOBOS at energies of {radical}s = 56, 130 GeV using the relativistic heavy ion cascade LUCIFER which had previously given a good description of the NA49 inclusive spectra at {radical}s = 17.2 GeV/A. The results compare well with these early measurements at RHIC and indeed successfully predict the increase in multiplicity now seen by PHOBOS and the other RHIC detectors at the nominal maximum energy of {radical}s = 200 GeV/A, suggesting that evidence for quark-gluon matter remains elusive.

  19. Electronic absorption spectra from first principles

    NASA Astrophysics Data System (ADS)

    Hazra, Anirban

    Methods for simulating electronic absorption spectra of molecules from first principles (i.e., without any experimental input, using quantum mechanics) are developed and compared. The electronic excitation and photoelectron spectra of ethylene are simulated, using the EOM-CCSD method for the electronic structure calculations. The different approaches for simulating spectra are broadly of two types---Frank-Condon (FC) approaches and vibronic coupling approaches. For treating the vibrational motion, the former use the Born-Oppenheimer or single surface approximation while the latter do not. Moreover, in our FC approaches the vibrational Hamiltonian is additively separable along normal mode coordinates, while in vibronic approaches a model Hamiltonian (obtained from ab initio electronic structure theory) provides an intricate coupling between both normal modes and electronic states. A method called vertical FC is proposed, where in accord with the short-time picture of molecular spectroscopy, the approximate excited-state potential energy surface that is used to calculate the electronic spectrum is taken to reproduce the ab initio potential at the ground-state equilibrium geometry. The potential energy surface along normal modes may be treated either in the harmonic approximation or using the full one-dimensional potential. Systems with highly anharmonic potential surfaces can be treated and expensive geometry optimizations are not required, unlike the traditional FC approach. The ultraviolet spectrum of ethylene between 6.2 and 8.7 eV is simulated using vertical FC. While FC approaches for simulation are computationally very efficient, they are not accurate when the underlying approximations are unreasonable. Then, vibronic coupling model Hamiltonians are necessary. Since these Hamiltonians have an analytic form, they are used to map the potential energy surfaces and understand their topology. Spectra are obtained by numerical diagonalization of the Hamiltonians. The

  20. Multifractal spectra in homogeneous shear flow

    NASA Technical Reports Server (NTRS)

    Deane, A. E.; Keefe, L. R.

    1988-01-01

    Employing numerical simulations of 3-D homogeneous shear flow, the associated multifractal spectra of the energy dissipation, scalar dissipation and vorticity fields were calculated. The results for (128) cubed simulations of this flow, and those obtained in recent experiments that analyzed 1- and 2-D intersections of atmospheric and laboratory flows, are in some agreement. A two-scale Cantor set model of the energy cascade process which describes the experimental results from 1-D intersections quite well, describes the 3-D results only marginally.

  1. Applying Zeeman Doppler imaging to solar spectra

    NASA Astrophysics Data System (ADS)

    Hussain, G. A. J.; Saar, S. H.; Collier Cameron, A.

    2004-03-01

    A new generation of spectro-polarimeters with high throughput (e.g. CFHT/ESPADONS and LBT/PEPSI) is becoming available. This opportunity can be exploited using Zeeman Doppler imaging (ZDI), a technique that inverts time-series of Stokes V spectra to map stellar surface magnetic fields (Semel 1989). ZDI is assisted by ``Least squares deconvolution'' (LSD), which sums up the signal from 1000's of photospheric lines to produce a mean deconvolved profile with higher S:N (Donati & Collier Cameron 1997).

  2. Transmission spectra of sausage-like microresonators.

    PubMed

    Ye, Ming-Yong; Shen, Mei-Xia; Lin, Xiu-Min

    2015-10-05

    We experimentally develop a sausage-like microresonator (SLM) by making two microtapers on a single-mode fiber, and study whispering-gallery modes (WGMs) in SLMs with different lengths. The transmission spectra from 1530 nm to 1550 nm of several SLMs are presented and SLMs with different lengths are shown to have different transmission features. The maximal Q factor observed in the SLMs is 3.8 * 10(7). For comparison, the transmission spectrum of a fiber cylinder microresonator is given and the maximal Q factor achieved in the fiber microcylinder resonator is 1.7 * 10(7). The strain tuning of the SLM is also demonstrated.

  3. Far-infrared spectra of acetanilide revisited

    NASA Astrophysics Data System (ADS)

    Spire, A.; Barthes, M.; Kellouai, H.; De Nunzio, G.

    2000-03-01

    A new investigation of the temperature dependence of the far-infrared spectra of acetanilide and some isotopomers is presented. Four absorption bands are considered at 31, 42, 64, and 80 cm-1, and no significant change of their integrated intensity is observed when reducing the temperature. The temperature induced frequency shift values and other properties of these bands are consistent with an assignment as anharmonic lattice phonons. These results rule out the assignment of the 64, 80, and 106 cm-1 bands as normal modes of the polaronic excitation, as previously suggested.

  4. Beamstrahlung spectra in next generation linear colliders

    SciTech Connect

    Barklow, T.; Chen, P. ); Kozanecki, W. )

    1992-04-01

    For the next generation of linear colliders, the energy loss due to beamstrahlung during the collision of the e{sup +}e{sup {minus}} beams is expected to substantially influence the effective center-of-mass energy distribution of the colliding particles. In this paper, we first derive analytical formulae for the electron and photon energy spectra under multiple beamstrahlung processes, and for the e{sup +}e{sup {minus}} and {gamma}{gamma} differential luminosities. We then apply our formulation to various classes of 500 GeV e{sup +}e{sup {minus}} linear collider designs currently under study.

  5. Solar Doppler shifts - Sources of continuous spectra

    NASA Technical Reports Server (NTRS)

    Duvall, T. L., Jr.; Harvey, J. W.

    1986-01-01

    Oscillation observations can be used to study nonoscillatory solar phenomena that exhibit Doppler shifts. The paper discusses several effects of these phenomena and their associated temporal and spatial power spectra: (1) they limit the signal-to-noise ratio and sometimes detectability of oscillation modes; (2) there is the potential for better understanding and/or detection of solar phenomena; (3) large-scale convection may spatially modulate oscillation modes, leading to a continuous background spectrum; and (4) in regions of the spectrum where the resolution to separate modes is lacking one can determine upper limits for the integrated effects of modes.

  6. Methane and the Spectra of T Dwarfs

    NASA Astrophysics Data System (ADS)

    Homeier, Derek; Hauschildt, Peter H.; Allard, France

    2003-06-01

    We have updated our PHOENIX model atmospheres and theoretical spectra for ultracool dwarfs with new opacity data for methane based on line strength predictions with the STDS software. By extending the line list to rotational levels of J = 40 we can significantly improve the shape of the near-IR absorption features of CH_4, and in addition find an enhanced blanketing effect, resulting in up to 50% more flux emerging in the J band than seen in previous models, which may thus contribute to the brightening in J and blue IR colors observed in T dwarfs.

  7. Covariance Analysis of Gamma Ray Spectra

    SciTech Connect

    Trainham, R.; Tinsley, J.

    2013-01-01

    The covariance method exploits fluctuations in signals to recover information encoded in correlations which are usually lost when signal averaging occurs. In nuclear spectroscopy it can be regarded as a generalization of the coincidence technique. The method can be used to extract signal from uncorrelated noise, to separate overlapping spectral peaks, to identify escape peaks, to reconstruct spectra from Compton continua, and to generate secondary spectral fingerprints. We discuss a few statistical considerations of the covariance method and present experimental examples of its use in gamma spectroscopy.

  8. Covariance analysis of gamma ray spectra

    SciTech Connect

    Trainham, R.; Tinsley, J.

    2013-01-15

    The covariance method exploits fluctuations in signals to recover information encoded in correlations which are usually lost when signal averaging occurs. In nuclear spectroscopy it can be regarded as a generalization of the coincidence technique. The method can be used to extract signal from uncorrelated noise, to separate overlapping spectral peaks, to identify escape peaks, to reconstruct spectra from Compton continua, and to generate secondary spectral fingerprints. We discuss a few statistical considerations of the covariance method and present experimental examples of its use in gamma spectroscopy.

  9. GENERAL RELATIVISTIC EFFECTS ON NONLINEAR POWER SPECTRA

    SciTech Connect

    Jeong, Donghui; Gong, Jinn-Ouk; Noh, Hyerim; Hwang, Jai-chan E-mail: jgong@lorentz.leidenuniv.nl E-mail: jchan@knu.ac.kr

    2011-01-20

    The nonlinear nature of Einstein's equation introduces genuine relativistic higher order corrections to the usual Newtonian fluid equations describing the evolution of cosmological perturbations. We study the effect of such novel nonlinearities on the next-to-leading order matter and velocity power spectra for the case of a pressureless, irrotational fluid in a flat Friedmann background. We find that pure general relativistic corrections are negligibly small over all scales. Our result guarantees that, in the current paradigm of standard cosmology, one can safely use Newtonian cosmology even in nonlinear regimes.

  10. Classification of specialty seed meals from NIR reflectance spectra

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Near infrared reflectance spectroscopy was used to identify alternative seed meals proposed for food and feed formulations. Spectra were collected from cold pressed Camelina (Camelina sativa), Coriander (Coriandrum sativum), and Pennycress (Thlaspi arvense) meals. Additional spectra were collected ...

  11. Velocity, scalar and transfer spectra in numerical turbulence

    NASA Astrophysics Data System (ADS)

    Kerr, Robert M.

    1990-02-01

    Velocity and passive-scalar spectra for turbulent fields generated by a forced three-dimensional simulation with 128-cubed grid points and Taylor-microscale Reynolds numbers up to 83 are shown to have convective and diffusive spectral regimes. One- and three-dimensional spectra are compared with experiment and theory. If normalized by the Kolmogorov dissipation scales and scalar dissipation, velocity spectra and scalar spectra for given Prandtl numbers collapse to single curves in the dissipation regime with exponentail tails. If multiplied by k exp 5/3, the velocity spectra show an anomalously high Kolmogorov constant that is consistent with low Reynolds number experiments. When normalized by the Batchelor scales, the scalar spectra show a universal dissipation regime that is independent of Prandtl numbers from 0.1 to 1.0. The time development of velocity spectra is illustrated by energy-transfer spectra in which distinct pulses propagate to high wavenumbers.

  12. Study on Mössbauer spectra of hemoglobin in thalassemia

    NASA Astrophysics Data System (ADS)

    Xuanhui, Guo; Nanming, Zhao; Xiufang, Zhang; Naifei, Gao; Youwen, Huang; Rongxin, Wang

    1988-02-01

    The57Fe Mössbauer spectra of erythrocytes in normal subjects and nine patients of different thalassemias were studied. Together with clinical analysis, the correlation between the components in the spectra and different types of anemias was discussed.

  13. Quantum synchrotron spectra from semirelativistic electrons in teragauss magnetic fields

    NASA Technical Reports Server (NTRS)

    Brainerd, J. J.

    1987-01-01

    Synchrotron spectra are calculated from quantum electrodynamic transition rates for thermal and power-law electron distributions. It is shown that quantum effects appear in thermal spectra when the photon energy is greater than the electron temperature, and in power-law spectra when the electron energy in units of the electron rest mass times the magnetic field strength in units of the critical field strength is of order unity. These spectra are compared with spectra calculated from the ultrarelativistic approximation for synchrotron emission. It is found that the approximation for the power-law spectra is good, and the approximation for thermal spectra produces the shape of the spectrum accurately but fails to give the correct normalization. Single photon pair creation masks the quantum effects for power-law distributions, so only modifications to thermal spectra are important for gamma-ray bursts.

  14. REPS: REscaled Power Spectra for initial conditions with massive neutrinos

    NASA Astrophysics Data System (ADS)

    Zennaro, Matteo; Bel, Julien; Villaescusa-Navarro, Francisco; Carbone, Carmelita; Sefusatti, Emiliano; Guzzo, Luigi

    2016-12-01

    REPS (REscaled Power Spectra) provides accurate, one-percent level, numerical simulations of the initial conditions for massive neutrino cosmologies, rescaling the late-time linear power spectra to the simulation initial redshift.

  15. Identifying Minerals from Their Infra-red Spectra.

    ERIC Educational Resources Information Center

    Paterson, W. G.

    1986-01-01

    Describes a British secondary school's use of a spectrometer to identify minerals. Discusses the origins of mineral spectra, the preparation of the specimen, the actual spectroscopic scanning, and the interpretation of the spectra. (TW)

  16. Retrieving sea-wave spectra using satellite-imagery spectra in a wide range of frequencies

    NASA Astrophysics Data System (ADS)

    Bondur, V. G.; Dulov, V. A.; Murynin, A. B.; Ignatiev, V. Yu.

    2016-11-01

    A method to register sea-wave spectra using optical aerospace imagery has been developed. The method is based on the use of retrieval operators both in areas of high and low spatial frequencies, including the areas of spectral maximum. The approach to adjust and validate the method developed using sea truth data obtained by string wave recorders has been suggested. This paper presents the results of using the suggested method to study sea-wave spectra using high-resolution satellite imagery for various water areas under different conditions of wave generation.

  17. Odor Impression Prediction from Mass Spectra.

    PubMed

    Nozaki, Yuji; Nakamoto, Takamichi

    2016-01-01

    The sense of smell arises from the perception of odors from chemicals. However, the relationship between the impression of odor and the numerous physicochemical parameters has yet to be understood owing to its complexity. As such, there is no established general method for predicting the impression of odor of a chemical only from its physicochemical properties. In this study, we designed a novel predictive model based on an artificial neural network with a deep structure for predicting odor impression utilizing the mass spectra of chemicals, and we conducted a series of computational analyses to evaluate its performance. Feature vectors extracted from the original high-dimensional space using two autoencoders equipped with both input and output layers in the model are used to build a mapping function from the feature space of mass spectra to the feature space of sensory data. The results of predictions obtained by the proposed new method have notable accuracy (R≅0.76) in comparison with a conventional method (R≅0.61).

  18. Infrared Spectra of Substituted Polycyclic Aromatic Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Hudgins, Douglas M.; Sandford, Scott A.; Allamandola, Louis J.; Arnold, James O. (Technical Monitor)

    1997-01-01

    Calculations are carried out using density functional theory (DFT) to determine the harmonic frequencies and intensities of 1-methylanthracene, 9-methylanthracene, 9-cyanoanthracene, 2-aminoanthracene, acridine, and their positive ions. The theoretical data are compared with matrix-isolation spectra for these species also reported in this work. The theoretical and experimental frequencies and relative intensities for the neutral species are in generally good agreement, whereas the positive ion spectra are only in qualitative agreement. Relative to anthracene, we find that substitution of amethyl or CN for a hydrogen does not significantly affect the spectrum other than to add the characteristic methyl C-H stretch and C-N stretch (near 2200/cm), respectively. However, addition of NH2 dramatically affects the spectrum of the neutral. Not only are the NH2 modes themselves strong, but this electron withdrawing group induces sufficient partial charge on the ring to give the neutral molecule characteristics of the anthracene cation spectrum. The sum of the absolute intensities is about four times larger for 2-aminoanthracene than for 9-cyanoanthracene. Substituting nitrogen in the ring at the nine position (acridine) does not greatly alter the spectrum compared with anthracene.

  19. An atlas of selected calibrated stellar spectra

    NASA Technical Reports Server (NTRS)

    Walker, Russell G.; Cohen, Martin

    1992-01-01

    Five hundred and fifty six stars in the IRAS PSC-2 that are suitable for stellar radiometric standards and are brighter than 1 Jy at 25 microns were identified. In addition, 123 stars that meet all of our criteria for calibration standards, but which lack a luminosity class were identified. An approach to absolute stellar calibration of broadband infrared filters based upon new models of Vega and Sirius due to Kurucz (1992) is presented. A general technique used to assemble continuous wide-band calibrated infrared spectra is described and an absolutely calibrated 1-35 micron spectrum of alpha(Tau) is constructed and the method using new and carefully designed observations is independently validated. The absolute calibration of the IRAS Low Resolution Spectrometer (LRS) database is investigated by comparing the observed spectrum of alpha(Tau) with that assumed in the original LRS calibration scheme. Neglect of the SiO fundamental band in alpha(Tau) has led to the presence of a specious 'emission' feature in all LRS spectra near 8.5 microns, and to an incorrect spectral slope between 8 and 12 microns. Finally, some of the properties of asteroids that effect their utility as calibration objects for the middle and far infrared region are examined. A technique to determine, from IRAS multiwaveband observations, the basic physical parameters needed by various asteroid thermal models that minimize the number of assumptions required is developed.

  20. Reflectance Spectra of Space Debris in GEO

    NASA Astrophysics Data System (ADS)

    Schildknecht, T.; Vannanti, A.; Krag, H.; Erd, C.

    The space debris environment in the Geostationary Earth Orbit (GEO) region is mostly investigated by means of optical surveys. Such surveys revealed a considerable amount of debris in the size range of 10 centimeter to one meter. Some of these debris exhibit particularly high area-to-mass ratios as derived from the evolution of their orbits. In order to understand the nature and eventually the origin of these objects, observations allowing to derive physical characteristics like size, shape and material are required. Information on the shape and the attitude motion of a debris piece may be obtained by photometric light curves. The most promising technique to investigate the surface material properties is reflectance spectroscopy. This paper discusses preliminary results obtained from spectrometric observations of space debris in GEO. The observations were acquired at the 1-meter ESA Space Debris Telescope (ESASDT) on Tenerife with a low-resolution spectrograph in the wavelength range of 450-960 nm. The target objects were space debris of different types with brightness as small as magnitude 15. Some simple-shaped, intact "calibration objects" with known surface materials like the MSG-2 satellites were also observed. The spectra show shape variations expected to be caused by the different physical properties of the objects. The determination of the possible materials is still in a preliminary phase. Limitations of the acquisition process of the spectra and the subsequent analysis are discussed. Future steps planned for a better characterization of the debris from the observed data are briefly outlined.

  1. Spectra of {gamma} rays feeding superdeformed bands

    SciTech Connect

    Lauritsen, T.; Khoo, T.L.; Henry, R.G.

    1995-08-01

    The spectrum of {gamma}rays coincident with SD transitions contains the transitions which populate the SD band. This spectrum can provide information on the feeding mechanism and on the properties (moment of inertia, collectivity) of excited SD states. We used a model we developed to explain the feeding of SD bands, to calculate the spectrum of feeding {gamma}rays. The Monte Carlo simulations take into account the trigger conditions present in our Eurogam experiment. Both experimental and theoretical spectra contain a statistical component and a broad E2 peak (from transitions occurring between excited states in the SD well). There is good resemblance between the measured and calculated spectra although the calculated multiplicity of an E2 bump is low by {approximately}30%. Work is continuing to improve the quality of the fits, which will result in a better understanding of excited SD states. In addition, a model for the last steps, which cool the {gamma} cascade into the SD yrast line, needs to be developed. A strong M1/E2 low-energy component, which we believe is responsible for this cooling, was observed.

  2. Wave spectra from sun glint patterns

    NASA Astrophysics Data System (ADS)

    Alvarez-Borrego, Josue

    1992-12-01

    The problem of retrieving spatial information of the sea surface heights from aerial images is considered. We proceed, for simplicity, by considering a one-dimensional model of the problem. With some simplifying assumptions, we derive some analytical and numerical results that relate the autocorrelation of the surface heights and those of the sunglint patterns. We assume that the surfaces are such that they constitute approximations to Gaussian random processes. We also assume that the surfaces are illuminated by a source (the sun) of a fixed angular extent and imaged through a lens that subtends a very small solid angle. With these assumptions, we calculate their images, as they would be formed by a signal clipping detector. In order to do this, we define a `glitter function,' which operates on the slope of the surfaces. To test our predictions we have conducted a Monte Carlo type simulation. Random surfaces with two different power spectra have been generated in a computer. We find that under favorable conditions, it is possible to invert the relation numerically and estimate the surface height autocorrelation from the sunglint data. We obtain the wave spectra from the surface height autocorrelation via a Fourier transform.

  3. Odor Impression Prediction from Mass Spectra

    PubMed Central

    Nakamoto, Takamichi

    2016-01-01

    The sense of smell arises from the perception of odors from chemicals. However, the relationship between the impression of odor and the numerous physicochemical parameters has yet to be understood owing to its complexity. As such, there is no established general method for predicting the impression of odor of a chemical only from its physicochemical properties. In this study, we designed a novel predictive model based on an artificial neural network with a deep structure for predicting odor impression utilizing the mass spectra of chemicals, and we conducted a series of computational analyses to evaluate its performance. Feature vectors extracted from the original high-dimensional space using two autoencoders equipped with both input and output layers in the model are used to build a mapping function from the feature space of mass spectra to the feature space of sensory data. The results of predictions obtained by the proposed new method have notable accuracy (R≅0.76) in comparison with a conventional method (R≅0.61). PMID:27326765

  4. Equilibria and absorption spectra of tryptophanase.

    PubMed

    Metzler, C M; Viswanath, R; Metzler, D E

    1991-05-25

    Tryptophanase (tryptophan: indole-lyase) from Escherichia coli has been isolated in the holoenzyme form and its absorption spectra and acid-base chemistry have been reevaluated. Apoenzyme has been prepared by dialysis against sodium phosphate and L-alanine and molar absorptivities of the coenzyme bands have been estimated by readdition of pyridoxal 5'-phosphate. The spectrophotometric titration curve, whose midpoint is at pH 7.6 in 0.1 M potassium phosphate buffers, indicates some degree of cooperativity in dissociation of a pair of protons. Resolution of the computed spectra of individual ionic forms of the enzyme with lognormal distribution curves shows that band shapes are similar to those of model Schiff bases and of aspartate aminotransferase. Using molar areas from the latter we estimated amounts of individual tautomeric species. In addition to ketoenamine and enolimine or covalent adduct the high pH form also appears to contain approximately 18% of a species with a dipolar ionic ring (protonated on the ring nitrogen and with phenolate -O-). We suggest that this may be the catalytically active form of the coenzyme in tryptophanase. The equilibrium between tryptophanase and L-alanine has also been reevaluated.

  5. Millimeter wave absorption spectra of biological samples

    SciTech Connect

    Gandhi, O.P.; Hagmann, M.J.; Hill, D.W.; Partlow, L.M.; Bush, L.

    1980-01-01

    A solid-state computer-controlled system has been used to make swept-frequency measurements of absorption of biological specimens from 26.5 to 90.0 GHz. A wide range of samples was used, including solutions of DNA and RNA, and suspensions of BHK-21/C13 cells, Candida albicans, C krusei, and Escherichia coli. Sharp spectra reported by other workers were not observed. The strong absorbance of water (10--30 dB/mm) caused the absorbance of all aqueous preparations that we examined to have a water-like dependence on frequency. Reduction of incident power (to below 1.0 microW), elimination of modulation, and control of temperature to assure cell viability were not found to significantly alter the water-dominated absorbance. Frozen samples of BHK-21/C13 cells tested at dry ice and liquid nitrogen temperatures were found to have average insertion loss reduced to 0.2 dB/cm but still showed no reproducible peaks that could be attributed to absorption spectra. It is concluded that the special resonances reported by others are likely to be in error.

  6. Rotary spectra analysis applied to static stabilometry.

    PubMed

    Chiaramello, E; Knaflitz, M; Agostini, V

    2011-01-01

    Static stabilometry is a technique aimed at quantifying postural sway during quiet standing in the upright position. Many different models and many different techniques to analyze the trajectories of the Centre of Pressure (CoP) have been proposed. Most of the parameters calculated according to these different approaches are affected by a relevant intra- and inter-subject variability or do not have a clear physiological interpretation. In this study we hypothesize that CoP trajectories have rotational characteristics, therefore we decompose them in clockwise and counter-clockwise components, using the rotary spectra analysis. Rotary spectra obtained studying a population of healthy subjects are described through the group average of spectral parameters, i.e., 95% spectral bandwidth, mean frequency, median frequency, and skewness. Results are reported for the clockwise and the counter-clockwise components and refer to the upright position maintained with eyes open or closed. This study demonstrates that the approach is feasible and that some of the spectral parameters are statistically different between the open and closed eyes conditions. More research is needed to demonstrate the clinical applicability of this approach, but results so far obtained are promising.

  7. Nuclear size effects in vibrational spectra.

    PubMed

    Almoukhalalati, Adel; Shee, Avijit; Saue, Trond

    2016-06-01

    We present a theoretical study of nuclear volume in the rovibrational spectra of diatomic molecules which is an extension of a previous study restricted to rotational spectra [Chem. Phys., 2012, 401, 103]. We provide a new derivation for the electron-nucleus electrostatic interaction energy which is basically independent of the choice of model for the nuclear charge distribution. Starting from this expression we derive expressions for the electronic, rotational and vibrational field shift parameters in terms of effective electron density and its first and second derivatives with respect to internuclear distance. The effective density is often approximated by the contact density, but we demonstrate that this leads to errors on the order of 10% and is furthermore not necessary since the contact and effective densities can be obtained at the same computational cost. We calculate the field shift parameters at the 4-component relativistic coupled-cluster singles-and-doubles level and find that our results confirm the experimental findings of Tiemann and co-workers [Chem. Phys., 1982, 68(21), 1982, Ber. Bunsenges. Phys. Chem., 1982, 86, 821], whereas we find no theoretical justification for a scaling factor introduced in later work [Chem. Phys., 1985, 93, 349]. For lead sulfide we study the effective density as a function of internuclear distance and find a minimum some 0.2 Å inside the equilibrium bond distance. We also discuss Bigeleisen-Goeppert-Mayer theory of isotope fractionation in light of our results.

  8. Serial FBG sensor network allowing overlapping spectra

    NASA Astrophysics Data System (ADS)

    Abbenseth, S.; Lochmann, S.; Ahrens, A.; Rehm, B.

    2016-05-01

    For structure or material monitoring low impact serial fiber Bragg grating (FBG) networks have attracted increasing research interest. Common sensor networks using wavelength division multiplexing (WDM) for FBG interrogation are limited in their efficiency by the spectral width of their light source, the FBG tuning range and the spectral guard bands. Overlapping spectra are strictly forbidden in this case. Applying time division multiplexing (TDM) or active resonator schemes may overcome these restrictions. However, they introduce other substantial disadvantages like signal roundtrip dependency or sophisticated control of active resonating structures. Code division multiplexing (CDM) as a means of FBG interrogation by simple autocorrelation of appropriate codes has been shown to be superior in this respect. However, it came at the cost of a second spectrometer introducing additional equalization efforts. We demonstrate a new serial FBG sensor network utilizing CDM signal processing for efficient sensor interrogation without the need of a second spectrometer and additional state of polarization (SOP) controlling components. It allows overlapping spectra even when all sensing FBGs are positioned at the same centre wavelength and it shows a high degree of insensitivity to SOP. Sequence inversed keyed (SIK) serial signal processing utilizing quasi-orthogonal balanced codes ensures simple and quick sensor interrogation with high signal-to-interference/noise ratio.

  9. Spectra and statistics in compressible isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Wang, Jianchun; Gotoh, Toshiyuki; Watanabe, Takeshi

    2017-01-01

    Spectra and one-point statistics of velocity and thermodynamic variables in isotropic turbulence of compressible fluid are examined by using numerical simulations with solenoidal forcing at the turbulent Mach number Mt from 0.05 to 1.0 and at the Taylor Reynolds number Reλ from 40 to 350. The velocity field is decomposed into a solenoidal component and a compressible component in terms of the Helmholtz decomposition, and the compressible velocity component is further decomposed into a pseudosound component, namely, the hydrodynamic component associated with the incompressible field and an acoustic component associated with sound waves. It is found that the acoustic mode dominates over the pseudosound mode at turbulent Mach numbers Mt≥0.4 in our numerical simulations. At turbulent Mach numbers Mt≤0.4 , there exists a critical wave number kc beyond which the pseudosound mode dominates while the acoustic mode dominates at small wave numbers k spectra of pressure, density, and temperature exhibit a k-7 /3 scaling for Mt≤0.3 and a k-5 /3 scaling for Mt≥0.5 .

  10. High Resolution Infrared Spectra of Triacetylene

    NASA Astrophysics Data System (ADS)

    Doney, Kirstin D.; Zhao, Dongfeng; Linnartz, Harold

    2015-06-01

    Triacetylene, HC6H, is the longest poly-acetylene chain found in space, and is believed to be involved in the formation of longer chain molecules and polycyclic aromatic hydrocarbons (PAHs). However, abundances are expected to be low, and observational confirmation requires knowledge of the gas-phase spectra, which up to now has been incomplete with only the weak, low lying bending modes being known. We present new infrared (IR) spectra in the C-H stretch region obtained using ultra-sensitive and highly precise IR continuous wave cavity ring-down spectroscopy (cw-CRDS), combined with supersonic plasma expansions The talk reviews the accurate determination of the rotational constants of the asymmetric fundamental mode, νb{5}, including discussion on the perturber state, and associated hot bands. The determined molecular parameters are accurate enough to aid astronomical searches with such facilities as ALMA (Atacama Large Millimeter Array) or the upcoming JWST (James Webb Space Telecscope), which can now probe even trace molecules (abundances of ˜ 10-6 - 10-10 with respect to H2). D. Zhao, J. Guss, A. Walsh, H. Linnartz, Chem. Phys. Lett., 565, 132 (2013) K.D. Doney, D. Zhao, H. Linnartz, in preparation

  11. Discriminating Dysarthria Type From Envelope Modulation Spectra

    PubMed Central

    Liss, Julie M.; LeGendre, Sue; Lotto, Andrew J.

    2013-01-01

    Purpose Previous research demonstrated the ability of temporally based rhythm metrics to distinguish among dysarthrias with different prosodic deficit profiles (J. M. Liss et al., 2009). The authors examined whether comparable results could be obtained by an automated analysis of speech envelope modulation spectra (EMS), which quantifies the rhythmicity of speech within specified frequency bands. Method EMS was conducted on sentences produced by 43 speakers with 1 of 4 types of dysarthria and healthy controls. The EMS consisted of the spectra of the slow-rate (up to 10 Hz) amplitude modulations of the full signal and 7 octave bands ranging in center frequency from 125 to 8000 Hz. Six variables were calculated for each band relating to peak frequency and amplitude and relative energy above, below, and in the region of 4 Hz. Discriminant function analyses (DFA) determined which sets of predictor variables best discriminated between and among groups. Results Each of 6 DFAs identified 2–6 of the 48 predictor variables. These variables achieved 84%–100% classification accuracy for group membership. Conclusions Dysarthrias can be characterized by quantifiable temporal patterns in acoustic output. Because EMS analysis is automated and requires no editing or linguistic assumptions, it shows promise as a clinical and research tool. PMID:20643800

  12. Microwave Spectra of 9-FLUORENONE and Benzophenone

    NASA Astrophysics Data System (ADS)

    West, Channing; Sedo, Galen; van Wijngaarden, Jennifer

    2015-06-01

    The pure rotational spectra of 9-fluorenone (C13H8O) and benzophenone (C13H10O) were observed using chirped-pulse Fourier transform microwave spectroscopy (cp-FTMW). The 9-fluorenone spectrum was collected between 8 and 13 GHz, which allowed for the assignment of 124 rotational transitions. A separate spectrum spanning from 8 to 14 GHz was collected for benzophenone, allowing for the assignment of 133 rotational transitions. Both aromatic ketones exhibited strong b-type spectra with little to no centrifugal distortion, indicating highly rigid molecular structures. A comparison of the experimentally determined spectral constants of 9-fluorenone to those calculated using both ab initio and density functional theory strongly suggest the molecule conforms to a planar C2v symmetric geometry as expected for its polycyclic structure. Whereas, a comparison of the experimental benzophenone constants to those predicted by theory suggests a molecule with non-planar C2 symmetry, where the two phenyl groups are rotated approximately 32° out-of-plane to form a paddlewheel like geometry.

  13. Stellar parametrization from Gaia RVS spectra

    NASA Astrophysics Data System (ADS)

    Recio-Blanco, A.; de Laverny, P.; Allende Prieto, C.; Fustes, D.; Manteiga, M.; Arcay, B.; Bijaoui, A.; Dafonte, C.; Ordenovic, C.; Ordoñez Blanco, D.

    2016-01-01

    Context. Among the myriad of data collected by the ESA Gaia satellite, about 150 million spectra will be delivered by the Radial Velocity Spectrometer (RVS) for stars as faint as GRVS~ 16. A specific stellar parametrization will be performed on most of these RVS spectra, i.e. those with enough high signal-to-noise ratio (S/N), which should correspond to single stars that have a magnitude in the RVS band brighter than ~14.5. Some individual chemical abundances will also be estimated for the brightest targets. Aims: We describe the different parametrization codes that have been specifically developed or adapted for RVS spectra within the GSP-Spec working group of the analysis consortium. The tested codes are based on optimisation (FERRE and GAUGUIN), projection (MATISSE), or pattern-recognition methods (Artificial Neural Networks). We present and discuss each of their expected performances in the recovered stellar atmospheric parameters (effective temperature, surface gravity, overall metallicity) for B- to K-type stars. The performances for determining of [α/Fe] ratios are also presented for cool stars. Methods: Each code has been homogeneously tested with a large grid of RVS simulated synthetic spectra of BAFGK-spectral types (dwarfs and giants), with metallicities varying from 10-2.5 to 10+ 0.5 the solar metallicity, and taking variations of ±0.4 dex in the composition of the α-elements into consideration. The tests were performed for S/N ranging from ten to 350. Results: For all the stellar types we considered, stars brighter than GRVS~ 12.5 are very efficiently parametrized by the GSP-Spec pipeline, including reliable estimations of [α/Fe]. Typical internal errors for FGK metal-rich and metal-intermediate stars are around 40 K in Teff, 0.10 dex in log(g), 0.04 dex in [M/H], and 0.03 dex in [α/Fe] at GRVS = 10.3. They degrade to 155 K in Teff, 0.15 dex in log(g), 0.10 dex in [M/H], and 0.1 dex in [α/Fe] at GRVS~ 12. Similar accuracies in Teff and [M/H] are

  14. Spatially Resolved Mid-IR Spectra from Meteorites; Linking Composition, Crystallographic Orientation and Spectra on the Micro-Scale

    NASA Astrophysics Data System (ADS)

    Stephen, N. R.

    2016-08-01

    IR spectroscopy is used to infer composition of extraterrestrial bodies, comparing bulk spectra to databases of separate mineral phases. We extract spatially resolved meteorite-specific spectra from achondrites with respect to zonation and orientation.

  15. Mineral Spectra from Nili Fossae, Mars

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Spectra collected by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) indicate the presence of three distinct minerals. The graphed information comes from an observation of terrain in the Nili Fossae area of northern Mars. CRISM is one of six science instruments on NASA's Mars Reconnaissance Orbiter.

    Iron-magnesium smectite clay is formed through alteration of rocks by liquid water and is characterized by distinctive absorptions at 1.4, 1.9, and 2.3 micrometers due to water (H2O) and OH in the atomic structure of the mineral. Olivine is an iron magnesium silicate and primary igneous mineral, and water is not in its structure. Its spectrum is characterized by a strong and broad absorption at 1.0 micrometer due to ferrous iron (Fe2+). Carbonate is an alteration mineral identified by the distinctive paired absorptions at 2.3 and 2.5 micrometers. The precise band positions at 2.31 and 2.51 micrometers identify the carbonate at this location as magnesium carbonate. The broad 1.0 micrometer band indicates some small amount of ferrous iron is also present and the feature at 1.9 micrometers indicates the presence of water. CRISM researchers believe the magnesium carbonate found in the Nili Fossae region formed from alteration of olivine by water.

    The data come from a CRISM image catalogued as FRT00003E12. The spectra shown here are five-pixel-by-five-pixel averages of CRISM L-detector spectra taken from three different areas within the image that have then been ratioed to a five-pixel-by-five-pixel common denominator spectrum taken from a spectrally unremarkable area with no distinctive mineralogic signatures. This technique highlights the spectral contrasts between regions due to their unique mineralogy. The spectral wavelengths near 2.0 micrometers are affected by atmospheric absorptions and have been removed for clarity.

    NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, manages the Mars

  16. IR SPECTRA BY DFT FOR GLUCOSE AND ITS EPIMERS: A COMPARISON BETWEEN VACUUM AND SOLVATED SPECTRA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infrared spectra were calculated for the low energy geometry optimized structures of glucose and all of its epimers, at B3LYP/6-311++G** level of theory. Calculations were performed both in vacuo and using the COSMO solvation method. Frequencies, zero point energies, enthalpies, entropies, and rel...

  17. NQR investigation of halogenate crystals under pressure

    NASA Astrophysics Data System (ADS)

    Baisa, D. F.; Barabash, A. I.; Vertegel, I. G.

    It is shown that the phase transition in the KIO 3 crystal at 120K is caused bv the ordering of an impurity in an asymmetrical two-minimum potential. The shape of this potential changes under hydrostatic pressure and the role of proton tunnel effect increases with increasing pressure. The transformation of intemoiecular hydrogen bond. length in the ∝ -HIO 3 crystal under pressure is studied. The value of the O-H....O bond length variation and the compressibility factor for the ∝-HIO 3 crystal is estimated.

  18. Excitation functions of heavy residues produced in the 14N+103Rh reaction up to 400 MeV: Analysis of the pre-equilibrium mechanism with the hybrid Monte Carlo simulation model

    NASA Astrophysics Data System (ADS)

    Acharya, J.; Mukherjee, S.; Steyn, G. F.; Singh, N. L.; Chatterjee, A.

    2016-02-01

    The excitation functions of heavy residues, produced in the interaction of 14N with 103Rh, have been measured over the projectile energy region from a threshold up to 400 MeV by means of the activation method in conjunction with γ-ray spectroscopy. Cross sections for 15 reaction residues are presented, namely, 104Cd, Ag-105103, Pd-10199, 97,99,101Rh, Ru,9795, and Tc-9694. The experimental data are compared with theoretical model predictions using the hybrid Monte Carlo simulation model as implemented in the recently released alice2014 code. The theory assumes that the dominant pre-equilibrium mechanism includes multinucleon and cluster emissions in the initial stages of the interaction between the projectile and the target nucleus. Overall, the theoretical predictions provide a satisfactory agreement with the trend of the present experimental results for most of the observed reaction residues. This provides strong evidence that the underlying reaction mechanisms in the code are appropriately described. Overall, the Obninsk level densities give the best results in the present study.

  19. Study of P-even and P-odd angular correlations in /sup 35/Cl(n,p)/sup 35/S and /sup 14/N(n,p)/sup 14/C reactions

    SciTech Connect

    Antonov, A.; Vesna, V.A.; Gledenov, Y.M.; Zvarova, T.S.; Lobashev, V.M.; Okunev, I.S.; Popov, Y.P.; Rigol', K.; Smotritskii, L.M.; Shul'gina, E.V.; and others

    1988-08-01

    P-odd and left-right asymmetries have been observed in the /sup 35/Cl(n,p)/sup 35/S reaction with capture of polarized thermal neutrons. The correlation coefficients are ..cap alpha../sub n//sub p/ = -(1.51 +- 0.34)x10/sup -4/ and ..cap alpha../sup l//sup r//sub n//sub p/ = -(2.40 +- 0.43)x10/sup -4/, respectively. For the /sup 14/N(n,p)/sup 14/C reaction, and upper bound of ..cap alpha../sub n//sub p/ = (0.07 +- 0.12)x10/sup -4/ is obtained for the P-odd asymmetry, and a left-right asymmetry is found, with correlation coefficient ..cap alpha../sup l//sup r//sub n//sub p/ = (0.66 +- 0.18)x10/sup -4/. The estimated value of the weak-interaction matrix element for the /sup 35/Cl(n,p)/sup 35/S reaction is W/sub S//sub P/ = 0.06 +- 0.02 eV.

  20. Reaction of cyanide with cytochrome ba3 from Thermus thermophilus: spectroscopic characterization of the Fe(II)a3-CN.Cu(II)B-CN complex suggests four 14N atoms are coordinated to CuB.

    PubMed Central

    Surerus, K K; Oertling, W A; Fan, C; Gurbiel, R J; Einarsdóttir, O; Antholine, W E; Dyer, R B; Hoffman, B M; Woodruff, W H; Fee, J A

    1992-01-01

    Cytochrome ba3 from Thermus thermophilus reacts slowly with excess HCN at pH 7.4 to create a form of the enzyme in which CuA, cytochrome b, and CuB remain oxidized, while cytochrome a3 is reduced by one electron, presumably with the formation of cyanogen. We have examined this form of the enzyme by UV-visible, resonance Raman, EPR, and electron nuclear double resonance spectroscopies in conjunction with permutations of 13C- and 15N-labeled cyanide. The results support a model in which one CN- binds through the carbon atom to ferrous a3, supporting a low-spin (S = 0) configuration on the Fe; bridging by this cyanide to the CuB is weak or absent. Four 14N atoms, presumably donated by histidine residues of the protein, provide a strong equatorial ligand field about CuB; a second CN- is coordinated through the carbon atom to CuB in an axial position. PMID:1314380

  1. Infrared Spectra of Polycyclic Aromatic Hydrocarbons: Nitrogen Substitution

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W.; Arnold, James O. (Technical Monitor)

    1998-01-01

    The B3LYP/4-31G approach is used to compute the harmonic frequencies of substituted naphthalene, anthracene, and their cations. The substitutions include cyano (CN), aminio (NH2), imino (NH), and replacement of a CH group by a nitrogen atom. All unique sites are considered, namely 1 and 2 for naphthalene and 1, 2, and 9 for an'tracene, except for the imino, where only 2-iminonaphthalene is studied. The IR spectra of these substituted species are compared with those of the unsubstituted molecules. The addition of a CN group does not significantly affect the spectra except to add the CN stretching frequency. Replacing a CH group by N has only a small effect on the IR spectra. The addition of the NH2 group dramatically affects the neutral spectra, giving it much of the character of the cation spectra. However, the neutral 2-irrinonaphthalene spectra looks more like that of naphthalene than like the 2-aminonaphthalene spectra.

  2. New LRS spectra for 356 bright IRAS sources

    NASA Technical Reports Server (NTRS)

    Volk, Kevin; Cohen, Martin

    1989-01-01

    The low-resolution spectra of all IRAS point sources with F(nu) (12 microns) greater than 40 Jy that were not included in the Atlas of Low-Resolution Spectra are presented. These have been classified into eight groups based upon the spectral morphology. Silicate emission spectra and red-continuum spectra associated with H II region sources form about 60 percent of this sample. All types of spectra in the LRS Atlas are represented in the sample except for emission-line sources. The sample is used to test a recent classification scheme for IRAS sources based on broadband colors. The spectra is used to test a recent classification scheme for IRAS sources based on broadband colors. The spectra are consistent with the classifications from the colors in most cases.

  3. Phonon spectra of plutonium at high temperatures

    NASA Astrophysics Data System (ADS)

    Dorado, Boris; Bottin, François; Bouchet, Johann

    2017-03-01

    Ab initio molecular dynamics calculations are used to investigate the vibrational properties of the high-temperature δ and ɛ phases of plutonium. We combine the local-density approximation (LDA)+U for strong electron correlations and the temperature-dependent effective potential method in order to calculate the phonon spectra of the two phases, as well as their dependence on temperature. Our results show that the ɛ phase can only be stabilized when temperature and correlations are simultaneously accounted for. We are also able to quantify the degree of anharmonicity of the two phases. While the δ phase is fairly harmonic up to 1000 K, we find that the ɛ phase is strongly anharmonic, which explains why this structure dominates the phase diagram at high temperature.

  4. Electron spectra from decay of fission products

    SciTech Connect

    Dickens, J K

    1982-09-01

    Electron spectra following decay of individual fission products (72 less than or equal to A less than or equal to 162) are obtained from the nuclear data given in the compilation using a listed and documented computer subroutine. Data are given for more than 500 radionuclides created during or after fission. The data include transition energies, absolute intensities, and shape parameters when known. An average beta-ray energy is given for fission products lacking experimental information on transition energies and intensities. For fission products having partial or incomplete decay information, the available data are utilized to provide best estimates of otherwise unknown decay schemes. This compilation is completely referenced and includes data available in the reviewed literature up to January 1982.

  5. Multiconfigurational Effects in Theoretical Resonance Raman Spectra

    PubMed Central

    Ma, Yingjin

    2017-01-01

    Abstract We analyze resonance Raman spectra of the nucleobase uracil in the short‐time approximation calculated with multiconfigurational methods. We discuss the importance of static electron correlation by means of density‐matrix renormalization group self‐consistent field (DMRG‐SCF) calculations. Our DMRG‐SCF results reveal that a minimal active orbital space that leads to a qualitatively correct description of the resonance Raman spectrum of uracil should encompass parts of the σ/σ* bonding/anti‐bonding orbitals of the pyrimidine ring. We trace these findings back to the considerable entanglement between the σ/σ* bonding/anti‐bonding as well as valence π/π* orbitals in the excited‐state electronic structure of uracil, which indicates non‐negligible non‐dynamical correlation effects that are less pronounced in the electronic ground state. PMID:27933695

  6. Chemical and isotopic determination from complex spectra

    SciTech Connect

    Zardecki, A.; Strittmatter, R.B.

    1995-07-01

    Challenges for proliferation detection include remote, high- sensitivity detection of chemical effluents from suspect facilities and enhanced detection sensitivity for nuclear material. Both the identification of chemical effluents with lidar and enhanced nuclear material detection from radiation sensors involve determining constituents from complex spectra. In this paper, we extend techniques used to analyze time series to the analysis of spectral data. Pattern identification methods are applied to spectral data for domains where standard matrix inversion may not be suitable because of detection statistics. We use a feed-forward, back-propagation neural network in which the nodes of the input layer are fed with the observed spectral data. The nodes of the output layer contain the identification and concentration of the isotope or chemical effluent the sensor is to identify. We will discuss the neural network architecture, together with preliminary results obtained from the training process.

  7. Terahertz absorption spectra of highly energetic chemicals

    NASA Astrophysics Data System (ADS)

    Slingerland, E. J.; Vallon, M. K.; Jahngen, E. G. E.; Giles, R. H.; Goyette, T. M.

    2010-04-01

    Research into absorption spectra is useful for detecting chemicals in the field. Each molecule absorbs a set of specific frequencies, which are dependent on the molecule's structure. While theoretical models are available for predicting the absorption frequencies of a particular molecule, experimental measurements are a more reliable method of determining a molecule's actual absorption behavior. The goal of this research is to explore chemical markers (absorption frequencies) that can be used to identify highly energetic molecules of interest to the remote sensing community. Particular attention was paid to the frequency ranges located within the terahertz transmission windows of the atmosphere. In addition, theoretical derivations, with the purpose of calculating the detection limits of such chemicals, will also be presented.

  8. Radioactive sample effects on EDXRF spectra

    SciTech Connect

    Worley, Christopher G

    2008-01-01

    Energy dispersive X-ray fluorescence (EDXRF) is a rapid, straightforward method to determine sample elemental composition. A spectrum can be collected in a few minutes or less, and elemental content can be determined easily if there is adequate energy resolution. Radioactive alpha emitters, however, emit X-rays during the alpha decay process that complicate spectral interpretation. This is particularly noticeable when using a portable instrument where the detector is located in close proximity to the instrument analysis window held against the sample. A portable EDXRF instrument was used to collect spectra from specimens containing plutonium-239 (a moderate alpha emitter) and americium-241 (a heavy alpha emitter). These specimens were then analyzed with a wavelength dispersive XRF (WDXRF) instrument to demonstrate the differences to which sample radiation-induced X-ray emission affects the detectors on these two types of XRF instruments.

  9. Evolution and infrared spectra of brown dwarfs

    NASA Technical Reports Server (NTRS)

    Lunine, Jonathan I.; Hubbard, William B.; Marley, Mark S.

    1986-01-01

    Self-consistent models are constructed for the structure, evolution, and observable properties of degenerately cooling objects, or 'brown dwarfs'. Model atmospheres composed of a range of likely gaseous and particulate opacity sources are calculated in order to provide a boundary condition for interior temperature-pressure profiles and to determine the emergent spectra for such objects. The radius derived from the interior models is combined with the emergent fluxes calculated from the atmosphere model to fit the data of McCarthy, Probst, and Low (1985) and to derive the luminosity and mass of VB 8B. The latter is found to be most probably an 0.05 solar mass object with effective temperature in the 1200-1500 K range and an atmosphere which very likely contains particulate absorbers. Key changes in chemical oxidation state and condensation of major constituents during the evolution of brown dwarfs are presented.

  10. Neural Network Solutions to Optical Absorption Spectra

    NASA Astrophysics Data System (ADS)

    Rosenbrock, Conrad

    2012-10-01

    Artificial neural networks have been effective in reducing computation time while achieving remarkable accuracy for a variety of difficult physics problems. Neural networks are trained iteratively by adjusting the size and shape of sums of non-linear functions by varying the function parameters to fit results for complex non-linear systems. For smaller structures, ab initio simulation methods can be used to determine absorption spectra under field perturbations. However, these methods are impractical for larger structures. Designing and training an artificial neural network with simulated data from time-dependent density functional theory may allow time-dependent perturbation effects to be calculated more efficiently. I investigate the design considerations and results of neural network implementations for calculating perturbation-coupled electron oscillations in small molecules.

  11. First dynamic spectra of stellar microwave flares

    NASA Technical Reports Server (NTRS)

    Bastian, T. S.; Bookbinder, J. A.

    1987-01-01

    The VLA has been used in the spectral-line mode at 1.4 GHz to obtain the first dynamic spectra of stellar sources other than the sun. Two very intense, highly circularly polarized, microwave outbursts were observed on the dMe flare star UV Cet, in addition to a slowly varying, unpolarized component. One outburst was purely left circularly polarized and showed no variations as a function of frequency across the 41 MHz band, whereas the other was as much as 70 percent right-circularly polarized and showed distinct variations with frequency. Although the slowly varying emission is probably due to incoherent gyrosynchrotron emission, the two flaring events are the result of coherent mechanisms. The coherent emission is interpreted in terms of plasma radiation and the cyclotron maser instability.

  12. Spectra of Particulate Backscattering in Natural Waters

    NASA Technical Reports Server (NTRS)

    Gordon, Howard, R.; Lewis, Marlon R.; McLean, Scott D.; Twardowski, Michael S.; Freeman, Scott A.; Voss, Kenneth J.; Boynton, Chris G.

    2009-01-01

    Hyperspectral profiles of downwelling irradiance and upwelling radiance in natural waters (oligotrophic and mesotrophic) are combined with inverse radiative transfer to obtain high resolution spectra of the absorption coefficient (a) and the backscattering coefficient (bb) of the water and its constituents. The absorption coefficient at the mesotrophic station clearly shows spectral absorption features attributable to several phytoplankton pigments (Chlorophyll a, b, c, and Carotenoids). The backscattering shows only weak spectral features and can be well represented by a power-law variation with wavelength (lambda): b(sub b) approx. Lambda(sup -n), where n is a constant between 0.4 and 1.0. However, the weak spectral features in b(sub b), suggest that it is depressed in spectral regions of strong particle absorption. The applicability of the present inverse radiative transfer algorithm, which omits the influence of Raman scattering, is limited to lambda < 490 nm in oligotrophic waters and lambda < 575 nm in mesotrophic waters.

  13. Galactic cosmic ray composition and energy spectra

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.

    1994-01-01

    Galactic cosmic ray nuclei represent a significant risk to long-duration spaceflight outside the magnetosphere. We review briefly existing measurements of the composition and energy spectra of heavy cosmic ray nuclei, pointing out which species and energy ranges are most critical to assessing cosmic ray risks for spaceflight. Key data sets are identified and a table of cosmic ray abundances is presented for elements from H to Ni (Z = 1 to 28). Because of the 22-year nature of the solar modulation cycle, data from the approaching 1998 solar minimum is especially important to reducing uncertainties in the cosmic ray radiation hazard. It is recommended that efforts to model this hazard take advantage of approaches that have been developed to model the astrophysical aspects of cosmic rays.

  14. 3- to 13-micron spectra of Io

    NASA Technical Reports Server (NTRS)

    Noll, Keith S.; Hammel, H. B.; Young, Leslie; Joiner, Joanna; Hackwell, J.; Lynch, D. K.; Russell, R.

    1993-01-01

    The Broadband Array Spectrograph System with the NASA Infrared Telescope Facility was used to obtain 3- to 13-micron spectra of Io on June 14-16, 1991. The extinction correction and its error for each standard star (Alpha Boo, Alpha Lyr, and Mu UMa) were found individually by performing an unweighted linear fit of instrumental magnitude as a function of airmass. The model results indicate two significant trends: (1) modest differences between the two hemispheres at lower background temperatures and (2) a tendency to higher temperatures, smaller areas, and less power from the warm component at higher background temperatures with an increased contrast between the two hemispheres. The increased flux from 8 to 13 microns is due primarily to a greater area on the Loki (trailing) hemisphere for the warm component, although temperature also plays a role.

  15. UV Spectra, Bombs, and the Solar Atmosphere

    NASA Astrophysics Data System (ADS)

    Judge, Philip G.

    2015-08-01

    A recent analysis of UV data from the Interface Region Imaging Spectrograph (IRIS) reports plasma “bombs” with temperatures near 8 × 104 K within the solar photosphere. This is a curious result, first because most bomb plasma pressures p (the largest reported case exceeds 103 dyn cm-2) fall well below photospheric pressures (\\gt 7× {10}3), and second, UV radiation cannot easily escape from the photosphere. In the present paper the IRIS data is independently analyzed. I find that the bombs arise from plasma originally at pressures between ≤ 80 and 800 dyne cm-2 before explosion, i.e., between ≥ 850 and 550 km above {τ }500=1. This places the phenomenon’s origin in the low-mid chromosphere or above. I suggest that bomb spectra are more compatible with Alfvénic turbulence than with bi-directional reconnection jets.

  16. On Magnetic Spectra of Earth and Mars

    NASA Technical Reports Server (NTRS)

    Voorhies, C. V.; Sabaka, T. J.; Purucker, M.

    2002-01-01

    The spectral method for distinguishing crustal from core-source magnetic fields is reexamined, modified, and applied to both a comprehensive geomagnetic field model and an altitude normalized magnetic map of Mars. The observational spectra are fairly fitted by theoretical forms expected from certain elementary classes of magnetic sources. For Earth we find fields from a core of radius 3512 +/- 64 km, in accord with the seismologic core radius of 3480 km, and a crust represented by a shell of random dipolar sources at radius 6367 +/- 14 km, near the planetary mean radius of 6371.2 km. For Mars we find no sign of a core-source field, only a field from a crust represented in same way, but at radius 3344 +/- 10 km, about 46 km below the planetary mean radius of 3389.5 km, and with sources about 9.6 +/- 3.2 times stronger.

  17. Spectra as windows into exoplanet atmospheres.

    PubMed

    Burrows, Adam S

    2014-09-02

    Understanding a planet's atmosphere is a necessary condition for understanding not only the planet itself, but also its formation, structure, evolution, and habitability. This requirement puts a premium on obtaining spectra and developing credible interpretative tools with which to retrieve vital planetary information. However, for exoplanets, these twin goals are far from being realized. In this paper, I provide a personal perspective on exoplanet theory and remote sensing via photometry and low-resolution spectroscopy. Although not a review in any sense, this paper highlights the limitations in our knowledge of compositions, thermal profiles, and the effects of stellar irradiation, focusing on, but not restricted to, transiting giant planets. I suggest that the true function of the recent past of exoplanet atmospheric research has been not to constrain planet properties for all time, but to train a new generation of scientists who, by rapid trial and error, are fast establishing a solid future foundation for a robust science of exoplanets.

  18. Towards simulation of high temperature methane spectra

    NASA Astrophysics Data System (ADS)

    Borysov, A.; Champion, J. P.; Jørgensen, U. G.; Wenger, C.

    Methane plays a central role in gas layers of temperatures up to around 3000K in a number of astrophysical objects ranging from giant planets to brown dwarfs, over proto-solar nebulae, to several classes of cool stars. In order to model and analyse these objects correctly, an accurate and complete list of spectral lines at high temperature is demanded. Predicting high temperature spectra implies, however, predicting hot bands and thus modelling highly excited vibrational states. This is a real challenge in the case of methane. We report the preliminary results of a theoretical study combining the global effective Hamiltonian approach and its computational implementation (STDS package: http://www.u-bourgogne.fr/LPUB/ shTDS.html) with semi-quantitative statistical considerations.

  19. Satellite spectra for helium-like titanium

    SciTech Connect

    Bely-Dubac, F.; Faucher, P.; Steeman-Clark, L.; Dubau, J.; Cammy-Val, C.; Bitter, M.; Hill, K.W.; von Goeler, S.

    1982-06-01

    Wavelengths and atomic parameters for both dielectronic and inner-shell satellite lines of the type ls/sup 2/ nl - 1s2l' nl, with n = 2, 3, and 4, have been calculated for Ti XX. The atomic data were calculated in a multiconfiguration intermediate coupling scheme and are compared with previous results for n = 2. The intensities of the higher n satellites are derived from these data, and thus an estimate of the contribution of the unresolved dielectronic satellites to the resonance line is obtained. Direct excitation rates are also given for the resonance, intercombination and forbidden lines for He-like titanium. Cascades and the effect of resonances for these lines are not considered in this paper. These results are used to fit an experimental soft x-ray spectrum from the PDX (Poloidal Divertor Experiment) tokamak discharge. Good agreement is obtained between computed and observed spectra.

  20. Workshop to establish databases of carbohydrate spectra

    SciTech Connect

    1995-12-31

    The workshop was organized to formulate guidelines for establishing spectral databases of complex carbohydrates. The databases will enable the scientific community to avoid the great waste of research effort and funds that frequently occurs when carbohydrate chemists are forced to duplicate the structural characterization of previously characterized complex carbohydrates. Chemists waste their effort on repetitive characterizations because in the absence of spectral databases they are unaware they are analyzing a known molecule until they have completely determined its structure. Chemists will be able to avoid much of this wasted effort when the collections of mass and of nuclear magnetic resonance (NMR) spectra initiated at the workshop are subsequently developed into searchable databases. Then scientists only need query the databases with the spectrum or with information defining the spectrum of an unidentified carbohydrate to find out if it has been previously characterized.

  1. Optical absorption spectra of dications of carotenoids

    SciTech Connect

    Jeevarajan, J.A.; Wei, C.C.; Jeevarajan, A.S.; Kispert, L.D.

    1996-04-04

    Quantitative optical absorption spectra of the cation radicals and the dications of canthaxanthin (I), {beta}carotene (II), 7`-cyano-7`-ethoxycarbonyl-7`-apo-{beta}-carotene (III), and 7`,7`-dimethyl-7`-apo-{beta}-carotene (IV) in dichloromethane solution are reported. Exclusive formation of dications occurs when the carotenoids are oxidized with ferric chloride. Addition of neutral carotenoid to the dications results in equilibrium formation of cation radicals. Oxidation with iodine in dichloromethane affords only cation radicals; electrochemical oxidation under suitable conditions yields both dications and cation radicals. Values of the optical parameters depend on the nature of the oxidative medium. The oscillator strengths calculated for gas phase cation radicals and dications of I-IV using the INDO/S method show the same trend as the experimental values. 31 refs., 4 figs., 2 tabs.

  2. X ray spectra of cataclysmic variables

    NASA Technical Reports Server (NTRS)

    Patterson, Joseph; Halpern, Jules

    1990-01-01

    X ray spectral parameters of cataclysmic variables observed with the 'Einstein' imaging proportional counter were determined by fitting an optically thin, thermal bremsstrahlung spectrum to the raw data. Most of the sources show temperatures of order a few keV, while a few sources exhibit harder spectra with temperatures in excess of 10 keV. Estimated 0.1 to 3.5 keV luminosities are generally in the range from 10(exp 30) to 10(exp 32) erg/sec. The results are consistent with the x rays originating in a disk/white dwarf boundary layer of non-magnetic systems, or in a hot, post-shock region in the accretion column of DQ Her stars, with a negligible contribution from the corona of the companion. In a few objects column densities were found that are unusually high for interstellar material. It was suggested that the absorption occurs in the system itself.

  3. HF Accelerated Electron Fluxes, Spectra, and Ionization

    NASA Astrophysics Data System (ADS)

    Carlson, Herbert C.; Jensen, Joseph B.

    2015-10-01

    Wave particle interactions, an essential aspect of laboratory, terrestrial, and astrophysical plasmas, have been studied for decades by transmitting high power HF radio waves into Earth's weakly ionized space plasma, to use it as a laboratory without walls. Application to HF electron acceleration remains an active area of research (Gurevich in Usp Fizicheskikh Nauk 177(11):1145-1177, 2007) today. HF electron acceleration studies began when plasma line observations proved (Carlson et al. in J Atmos Terr Phys 44:1089-1100, 1982) that high power HF radio wave-excited processes accelerated electrons not to ~eV, but instead to -100 times thermal energy (10 s of eV), as a consequence of inelastic collision effects on electron transport. Gurevich et al (J Atmos Terr Phys 47:1057-1070, 1985) quantified the theory of this transport effect. Merging experiment with theory in plasma physics and aeronomy, enabled prediction (Carlson in Adv Space Res 13:1015-1024, 1993) of creating artificial ionospheres once ~GW HF effective radiated power could be achieved. Eventual confirmation of this prediction (Pedersen et al. in Geophys Res Lett 36:L18107, 2009; Pedersen et al. in Geophys Res Lett 37:L02106, 2010; Blagoveshchenskaya et al. in Ann Geophys 27:131-145, 2009) sparked renewed interest in optical inversion to estimate electron spectra in terrestrial (Hysell et al. in J Geophys Res Space Phys 119:2038-2045, 2014) and planetary (Simon et al. in Ann Geophys 29:187-195, 2011) atmospheres. Here we present our unpublished optical data, which combined with our modeling, lead to conclusions that should meaningfully improve future estimates of the spectrum of HF accelerated electron fluxes. Photometric imaging data can significantly improve detection of emissions near ionization threshold, and confirm depth of penetration of accelerated electrons many km below the excitation altitude. Comparing observed to modeled emission altitude shows future experiments need electron density profiles

  4. Universality of vibrational spectra of globular proteins

    NASA Astrophysics Data System (ADS)

    Na, Hyuntae; Song, Guang; ben-Avraham, Daniel

    2016-02-01

    It is shown that the density of modes of the vibrational spectrum of globular proteins is universal, i.e. regardless of the protein in question, it closely follows one universal curve. The present study, including 135 proteins analyzed with a full atomic empirical potential (CHARMM22) and using the full complement of all atoms Cartesian degrees of freedom, goes far beyond previous claims of universality, confirming that universality holds even in the frequency range that is well above 100 cm-1 (300-4000 cm-1), where peaks and turns in the density of states are faithfully reproduced from one protein to the next. We also characterize fluctuations of the spectral density from the average, paving the way to a meaningful discussion of rare, unusual spectra and the structural reasons for the deviations in such ‘outlier’ proteins. Since the method used for the derivation of the vibrational modes (potential energy formulation, set of degrees of freedom employed, etc) has a dramatic effect on the spectral density, another significant implication of our findings is that the universality can provide an exquisite tool for assessing and improving the quality of potential functions and the quality of various models used for NMA computations. Finally, we show that the input configuration also affects the density of modes, thus emphasizing the importance of simplified potential energy formulations that are minimized at the outset. In summary, our findings call for a serious two-way dialogue between theory and experiment: experimental spectra of proteins could now guide the fine tuning of theoretical empirical potentials, and the various features and peaks observed in theoretical studies—being universal, and hence now rising in importance—would hopefully spur experimental confirmation.

  5. Spectra of small Koronis family members

    NASA Astrophysics Data System (ADS)

    Thomas, C.; Rivkin, A.; Trilling, D.; Moskovitz, N.

    2014-07-01

    The space-weathering process and its implications for the relationships between S- and Q-type asteroids and ordinary chondrite meteorites are long-standing problems in asteroid science. Although the visible and near-infrared spectra of S- and Q-type objects qualitatively show the same absorption features and quantitatively show evidence of the same minerals, the S types display increased spectral slopes and muted absorption features compared to the Q types. This spectral mismatch is consistent with the effects of the space weathering process. Binzel et al. provided the missing link between Q- and S-type bodies in near-Earth space by showing a reddening of spectral slope in objects from 0.1 to 5 km that corresponded to the transition from Q- to S-type spectra. This result implied that size, and therefore age, is related to the relationship between Q- and S-type. The existence of Q-type objects in the main belt was not confirmed until Mothe-Diniz and Nesvorny (2008) found them in young S-type clusters. To investigate the trend from Q to S in the main belt, we examined space weathering within the old main-belt Koronis family using a spectrophotometric survey (Rivkin et al. 2011, Thomas et al. 2011). Rivkin et al. (2011) identified several potential Q-type objects within the Koronis family. Our Q-type candidates were identified using broad-band spectrophotometry and could not be taxonomically classified on that basis alone. We obtained follow-up visible and near-infrared spectral observations of our potential Q-type objects, (26970) Elias, (45610) 2000 DJ_{48}, and (37411) 2001 XF_{152}, using Gemini and Magellan. We will present the results of these spectral follow-up observations. Observations of (26970) Elias demonstrate that the object is more consistent with the average Q-type spectrum than the average S-type spectrum.

  6. Polarization effects in cutaneous autofluorescent spectra

    NASA Astrophysics Data System (ADS)

    Borisova, E.; Angelova, L.; Jeliazkova, Al.; Genova, Ts.; Pavlova, E.; Troyanova, P.; Avramov, L.

    2014-05-01

    Used polarized light for fluorescence excitation one could obtain response related to the anisotropy features of extracellular matrix. The fluorophore anisotropy is attenuated during lesions' growth and level of such decrease could be correlated with the stage of tumor development. Our preliminary investigations are based on in vivo point-by-point measurements of excitation-emission matrices (EEM) from healthy volunteers skin on different ages and from different anatomical places using linear polarizer and analyzer for excitation and emission light detected. Measurements were made using spectrofluorimeter FluoroLog 3 (HORIBA Jobin Yvon, France) with fiber-optic probe in steady-state regime using excitation in the region of 280-440 nm. Three different situations were evaluated and corresponding excitation-emission matrices were developed - with parallel and perpendicular positions for linear polarizer and analyzer, and without polarization of excitation and fluorescence light detected from a forearm skin surface. The fluorescence spectra obtained reveal differences in spectral intensity, related to general attenuation, due to filtering effects of used polarizer/analyzer couple. Significant spectral shape changes were observed for the complex autofluorescence signal detected, which correlated with collagen and protein cross-links fluorescence, that could be addressed to the tissue extracellular matrix and general condition of the skin investigated, due to morphological destruction during lesions' growth. A correlation between volunteers' age and the fluorescence spectra detected was observed during our measurements. Our next step is to increase developed initial database and to evaluate all sources of intrinsic fluorescent polarization effects and found if they are significantly altered from normal skin to cancerous state of the tissue, this way to develop a non-invasive diagnostic tool for dermatological practice.

  7. Curved Radio Spectra of Weak Cluster Shocks

    NASA Astrophysics Data System (ADS)

    Kang, Hyesung; Ryu, Dongsu

    2015-08-01

    In order to understand certain observed features of arc-like giant radio relics such as the rareness, uniform surface brightness, and curved integrated spectra, we explore a diffusive shock acceleration (DSA) model for radio relics in which a spherical shock impinges on a magnetized cloud containing fossil relativistic electrons. Toward this end, we perform DSA simulations of spherical shocks with the parameters relevant for the Sausage radio relic in cluster CIZA J2242.8+5301, and calculate the ensuing radio synchrotron emission from re-accelerated electrons. Three types of fossil electron populations are considered: a delta-function like population with the shock injection momentum, a power-law distribution, and a power law with an exponential cutoff. The surface brightness profile of the radio-emitting postshock region and the volume-integrated radio spectrum are calculated and compared with observations. We find that the observed width of the Sausage relic can be explained reasonably well by shocks with speed {u}{{s}}˜ 3× {10}3 {km} {{{s}}}-1 and sonic Mach number {M}{{s}}˜ 3. These shocks produce curved radio spectra that steepen gradually over (0.1-10){ν }{br} with a break frequency {ν }{br}˜ 1 GHz if the duration of electron acceleration is ˜60-80 Myr. However, the abrupt increase in the spectral index above ˜1.5 GHz observed in the Sausage relic seems to indicate that additional physical processes, other than radiative losses, operate for electrons with {γ }{{e}}≳ {10}4.

  8. High Pressure Oxygen A-Band Spectra

    NASA Astrophysics Data System (ADS)

    Drouin, Brian; Sung, Keeyoon; Yu, Shanshan; Lunny, Elizabeth M.; Bui, Thinh Quoc; Okumura, Mitchio; Rupasinghe, Priyanka; Bray, Caitlin; Long, David A.; Hodges, Joseph; Robichaud, David; Benner, D. Chris; Devi, V. Malathy; Hoo, Jiajun

    2015-06-01

    Composition measurements from remote sensing platforms require knowledge of air mass to better than the desired precision of the composition. Oxygen spectra allow determination of air mass since the mixing ratio of oxygen is fixed. The OCO-2 mission is currently retrieving carbon dioxide concentration using the oxygen A-band for air mass normalization. The 0.25% accuracy desired for the carbon dioxide concentration has pushed the state-of-the-art for oxygen spectroscopy. To produce atmospheric pressure A-band cross-sections with this accuracy requires a sophisticated line-shape model (Galatry or Speed-Dependent) with line mixing (LM) and collision induced absorption (CIA). Models of each of these phenomena exist, but an integrated self-consistent model must be developed to ensure accuracy. This presentation will describe the ongoing effort to parameterize these phenomena on a representative data set created from complementary experimental techniques. The techniques include Fourier transform spectroscopy (FTS), photo-acoustic spectroscopy (PAS) and cavity ring-down spectroscopy (CRDS). CRDS data allow long-pathlength measurements with absolute intensities, providing lineshape information as well as LM and CIA, however the subtleties of the lineshape are diminished in the saturated line-centers. Conversely, the short paths and large dynamic range of the PAS data allow the full lineshape to be discerned, but with an arbitrary intensity axis. Finally, the FTS data provides intermediate paths and consistency across a broad pressure range. These spectra are all modeled with the Labfit software using first the spectral line database HITRAN, and then model values are adjusted and fitted for better agreement with the data.

  9. [Raman spectra of monkey cerebral cortex tissue].

    PubMed

    Zhu, Ji-chun; Guo, Jian-yu; Cai, Wei-ying; Wang, Zu-geng; Sun, Zhen-rong

    2010-01-01

    Monkey cerebral cortex, an important part in the brain to control action and thought activities, is mainly composed of grey matter and nerve cell. In the present paper, the in situ Raman spectra of the cerebral cortex of the birth, teenage and aged monkeys were achieved for the first time. The results show that the Raman spectra for the different age monkey cerebral cortex exhibit most obvious changes in the regions of 1000-1400 and 2800-3000 cm(-1). With monkey growing up, the relative intensities of the Raman bands at 1313 and 2885 cm(-1) mainly assigned to CH2 chain vibrational mode of lipid become stronger and stronger whereas the relative intensities of the Raman bands at 1338 and 2932 cm(-1) mainly assigned to CH3 chain vibrational mode of protein become weaker and weaker. In addition, the two new Raman bands at 1296 and 2850 cm(-1) are only observed in the aged monkey cerebral cortex, therefore, the two bands can be considered as a character or "marker" to differentiate the caducity degree with monkey growth In order to further explore the changes, the relative intensity ratios of the Raman band at 1313 cm(-1) to that at 1338 cm(-1) and the Raman band at 2885 cm(-1) to that at 2 932 cm(-1), I1313/I1338 and I2885/I2932, which are the lipid-to-protein ratios, are introduced to denote the degree of the lipid content. The results show that the relative intensity ratios increase significantly with monkey growth, namely, the lipid content in the cerebral cortex increases greatly with monkey growth. So, the authors can deduce that the overmuch lipid is an important cause to induce the caducity. Therefore, the results will be a powerful assistance and valuable parameter to study the order of life growth and diagnose diseases.

  10. THEORETICAL SPECTRA OF TERRESTRIAL EXOPLANET SURFACES

    SciTech Connect

    Hu Renyu; Seager, Sara; Ehlmann, Bethany L.

    2012-06-10

    We investigate spectra of airless rocky exoplanets with a theoretical framework that self-consistently treats reflection and thermal emission. We find that a silicate surface on an exoplanet is spectroscopically detectable via prominent Si-O features in the thermal emission bands of 7-13 {mu}m and 15-25 {mu}m. The variation of brightness temperature due to the silicate features can be up to 20 K for an airless Earth analog, and the silicate features are wide enough to be distinguished from atmospheric features with relatively high resolution spectra. The surface characterization thus provides a method to unambiguously identify a rocky exoplanet. Furthermore, identification of specific rocky surface types is possible with the planet's reflectance spectrum in near-infrared broad bands. A key parameter to observe is the difference between K-band and J-band geometric albedos (A{sub g}(K) - A{sub g}(J)): A{sub g}(K) - A{sub g}(J) > 0.2 indicates that more than half of the planet's surface has abundant mafic minerals, such as olivine and pyroxene, in other words primary crust from a magma ocean or high-temperature lavas; A{sub g}(K) - A{sub g}(J) < -0.09 indicates that more than half of the planet's surface is covered or partially covered by water ice or hydrated silicates, implying extant or past water on its surface. Also, surface water ice can be specifically distinguished by an H-band geometric albedo lower than the J-band geometric albedo. The surface features can be distinguished from possible atmospheric features with molecule identification of atmospheric species by transmission spectroscopy. We therefore propose that mid-infrared spectroscopy of exoplanets may detect rocky surfaces, and near-infrared spectrophotometry may identify ultramafic surfaces, hydrated surfaces, and water ice.

  11. Prediction of electroencephalographic spectra from neurophysiology

    NASA Astrophysics Data System (ADS)

    Robinson, P. A.; Rennie, C. J.; Wright, J. J.; Bahramali, H.; Gordon, E.; Rowe, D. L.

    2001-02-01

    A recent neurophysical model of propagation of electrical waves in the cortex is extended to include a physiologically motivated subcortical feedback loop via the thalamus. The electroencephalographic spectrum when the system is driven by white noise is then calculated analytically in terms of physiological parameters, including the effects of filtering of signals by the cerebrospinal fluid, skull, and scalp. The spectral power at low frequencies is found to vary as f-1 when awake and f-3 when asleep, with a breakpoint to a steeper power-law tail at frequencies above about 20 Hz in both cases; the f-1 range concurs with recent magnetoencephalographic observations of such a regime. Parameter sensitivities are explored, enabling a model with fewer free parameters to be proposed, and showing that spectra predicted for physiologically reasonable parameter values strongly resemble those observed in the laboratory. Alpha and beta peaks seen near 10 Hz and twice that frequency, respectively, in the relaxed wakeful state are generated via subcortical feedback in this model, thereby leading to predictions of their frequencies in terms of physiological parameters, and of correlations in their occurrence. Subcortical feedback is also predicted to be responsible for production of anticorrelated peaks in deep sleep states that correspond to the occurrence of theta rhythm at around half the alpha frequency and sleep spindles at 3/2 times the alpha frequency. An additional positively correlated waking peak near three times the alpha frequency is also predicted and tentatively observed, as are two new types of sleep spindle near 5/2 and 7/2 times the alpha frequency, and anticorrelated with alpha. These results provide a theoretical basis for the conventional division of EEG spectra into frequency bands, but imply that the exact bounds of these bands depend on the individual. Three types of potential instability are found: one at zero frequency, another in the theta band at around

  12. CO2 profile retrievals from TCCON spectra

    NASA Astrophysics Data System (ADS)

    Dohe, Susanne; Hase, Frank; Sepúlveda, Eliezer; García, Omaira; Wunch, Debra; Wennberg, Paul; Gómez-Peláez, Angel; Abshire, James B.; Wofsy, Steven C.; Schneider, Matthias; Blumenstock, Thomas

    2014-05-01

    The Total Carbon Column Observing Network (TCCON) is a global network of ground-based Fourier Transform Spectrometers recording direct solar spectra in the near-infrared spectral region. With stringent requirements on the instrumentation, data processing and calibration, accurate and precise column-averaged abundances of CO2, CH4, N2O, HF, CO, H2O, and HDO are retrieved being an essential contribution for the validation of satellite data (e.g. GOSAT, OCO-2) and carbon cycle research (Olsen and Randerson, 2004). However, the determined column-averaged dry air mole fraction (DMF) contains no information about the vertical CO2 profile, due to the use of a simple scaling retrieval within the common TCCON analysis, where the fitting algorithm GFIT (e.g. Yang et al., 2005) is used. In this presentation we will apply a different procedure for calculating trace gas abundances from the measured spectra, the fitting algorithm PROFFIT (Hase et. al., 2004) which has been shown to be in very good accordance with GFIT. PROFFIT additionally offers the ability to perform profile retrievals in which the pressure broadening effect of absorption lines is used to retrieve vertical gas profiles, being of great interest especially for the CO2 modelling community. A new analyzing procedure will be shown and retrieved vertical CO2 profiles of the TCCON sites Izaña (Tenerife, Canary Islands, Spain) and Lamont (Oklahoma, USA) will be presented and compared with simultaneously performed surface in-situ measurements and CO2 profiles from different aircraft campaigns. References: - Hase, F. et al., J.Q.S.R.T. 87, 25-52, 2004. - Olsen, S.C. and Randerson, J.T., J.G.Res., 109, D023012, 2004. - Yang, Z. et al., J.Q.S.R.T., 90, 309-321, 2005.

  13. Spectra of volcanic rocks glasses as analogues of Mercury surface spectra

    NASA Astrophysics Data System (ADS)

    Carli, C.; Capaccioni, F.; de Sanctis, M.; Filacchione, G.; Sgavetti, M.; di Genova, D.; Vona, A.; Visonà, D.; Ammannito, E.

    2010-12-01

    Remote-sensing studies have revealed that most of the inner planets surfaces are composed by magmatic effusive rocks as lava flows or pyroclastic deposits, that are the natural products of magma-rock dynamic systems controlled by T, P, oxygen fugacity and time. These materials generally contain a fair amount of volcanic glass, due to the magma rapid cooling once effused on the surface. The VNIR reflectance spectroscopy is one of the most relevant tools for remote-sensing studies and in the last decades gave important results identifying the presence of different Fe-Mg silicates, such as olivine and pyroxenes, on the planets surfaces. However, the mineralogical interpretation of the observed spectral features of several volcanic areas on the inner Solar System bodies is still matter of debate. In particular the presence of dark volcanic glass, which can dominate or not the rock texture, influences the spectra signatures. In fact samples with a glass-bearing groundmass have lower albedo and reduced band intensity of the spectra of samples with comparable mineral composition and intergranular texture. As a consequence, an important goal for studying the planetary crusts is to understand the spectral behavior of volcanic material, where chemical or physical parameters are different depending on geologic context and effusive processes. We present here preliminary laboratory activity to investigate VNIR reflectance spectra of several volcanic glasses. Reflectance spectra, in the wavelength range between 0.35- 2.50 μm, are measured on powders of magmatic rocks, having different composition and textures, at fine (<60 μm in diameter) and very fine (<10 μm) grain sizes. For each rock sample a corresponding “thermal shocked-sample” is produced by heating at 1300°C and P=1 atm and a glass-sample was produced by melting at 1500°C and P=1 atm, than quenching it in air. Reflectance spectra of powders of shocked and glass-samples were acquired at the same grain size, and

  14. Browsing a wealth of millimeter-wavelength doppler spectra data

    SciTech Connect

    Johnson,K.; Luke,E.; Kollias, P.; Remillard, J.; Widener, K.; Jensen, M.

    2010-03-15

    The ARM Climate Research Facility has collected an extensive archive of vertically pointing millimeter wavelength Doppler radar spectra at both 35 and 95 GHz. These data are a rich potential source of detailed microphysical and dynamical cloud and precipitation information. The recording of spectra, which is ongoing, began at the Southern Great Plains site in September of 2003, at the North Slope of Alaska site in April 2004, and at Tropical Western Pacific sites in 2006. Spectra are also being collected during ARM Mobile Facility deployments. The data’s temporal resolution is as high as two seconds, at height intervals of 45 to 90 m. However, the sheer volume of available data can be somewhat daunting to access and search for specific features of interest. Here we present a user interface for spectra browsing, which allows the user to view time-height images of radar moments, select a time or height of interest, and then “drill down” through images of spectrograms to individual Doppler spectra or time- and height-sequences of spectra. Also available are images summarizing spectral characteristics, such as number of spectral peaks, spectral shape information (skewness and kurtosis), moment uncertainty estimates, and hydrometeor vs. clutter identification as produced by the ARM MicroARSCL (Microphysical Active Remote Sensing of Clouds) value-added product. In addition to the access and visualization tools, we are developing a Doppler spectra simulator capable of generating Doppler spectra from liquid, mixed-phase, and solid cloud constituents and precipitation. The Doppler spectra simulator can be used as an interface between explicit microphysics models and Doppler spectra observations from the ARM radars. The plan is to ultimately make the spectra simulator available from within the spectra browser, allowing a user to associate observed spectra with the microphysical conditions capable of producing them.

  15. Conformal symmetry and light flavor baryon spectra

    NASA Astrophysics Data System (ADS)

    Kirchbach, M.; Compean, C. B.

    2010-08-01

    The degeneracy among parity pairs systematically observed in the N and Δ spectra is interpreted to hint on a possible conformal symmetry realization in the light flavor baryon sector in line with AdS5/CFT4. The case is made by showing that all the observed N and Δ resonances with masses below 2500 MeV distribute fairly well each over the first levels of a unitary representation of the conformal group, a representation that covers the spectrum of a quark-diquark system, placed directly on a conformally compactified Minkowski spacetime, R1⊗S3, as approached from the AdS5 cone. The free geodesic motion on the S3 manifold is described by means of the scalar conformal equation there, which is of the Klein-Gordon-type. The equation is then gauged by the curved Coulomb potential that has the form of a cotangent function. Conformal symmetry is not exact, this because the gauge potential slightly modifies the conformal centrifugal barrier of the free geodesic motion. Thanks to this, the degeneracy between P11-S11 pairs from same level is relaxed, while the remaining states belonging to same level remain practically degenerate. The model describes the correct mass ordering in the P11-S11 pairs through the spectra as a combined effect of the above conformal symmetry breaking, on the one side, and a parity change of the diquark from a scalar at low masses, to a pseudoscalar at higher masses, on the other. The quality of the wave functions is illustrated by calculations of realistic mean square charge radii and electric charge form factors on the examples of the proton, and the protonic P11(1440), and S11(1535) resonances. The scheme also allows for a prediction of the dressing function of an effective instantaneous gluon propagator from the Fourier transform of the gauge potential. We find a dressing function that is finite in the infrared and tends to zero at infinity.

  16. Ab initio infrared and Raman spectra

    NASA Astrophysics Data System (ADS)

    Fredkin, Donald R.; Komornicki, Andrew; White, Steven R.; Wilson, Kent R.

    1983-06-01

    We discuss several ways in which molecular absorption and scattering spectra can be computed ab initio, from the fundamental constants of nature. These methods can be divided into two general categories. In the first, or sequential, type of approach, one first solves the electronic part of the Schrödinger equation in the Born-Oppenheimer approximation, mapping out the potential energy, dipole moment vector (for infrared absorption) and polarizability tensor (for Raman scattering) as functions of nuclear coordinates. Having completed the electronic part of the calculation, one then solves the nuclear part of the problem either classically or quantum mechanically. As an example of the sequential ab initio approach, the infrared and Raman rotational and vibrational-rotational spectral band contours for the water molecule are computed in the simplest rigid rotor, normal mode approximation. Quantum techniques are used to calculate the necessary potential energy, dipole moment, and polarizability information at the equilibrium geometry. A new quick, accurate, and easy to program classical technique involving no reference to Euler angles or special functions is developed to compute the infrared and Raman band contours for any rigid rotor, including asymmetric tops. A second, or simultaneous, type of ab initio approach is suggested for large systems, particularly those for which normal mode analysis is inappropriate, such as liquids, clusters, or floppy molecules. Then the curse of dimensionality prevents mapping out in advance the complete potential, dipole moment, and polarizability functions over the whole space of nuclear positions of all atoms, and a solution in which the electronic and nuclear parts of the Born-Oppenheimer approximation are simultaneously solved is needed. A quantum force classical trajectory (QFCT) molecular dynamic method, based on linear response theory, is described, in which the forces, dipole moment, and polarizability are computed quantum

  17. [Raman spectra of fossil dinosaurs from different regions].

    PubMed

    Yang, Qun; Wang, Yi-lin

    2007-12-01

    Raman microscopic spectra in the higher wave number region were obtained from 7 fossil dinosaurs specimens from different regions. The specimens of fossil dinosaurs are different parts of bone. The Raman spectra of fossil dinosaurs indicate the high similarity among peak positions of different fossil dinosaurs; but important differences exist in the spectral peak figures. In the wave number region of 1000-1800 cm(-1) the Raman spectra of the same bone part fossils from different regions are very similar, example similarities between spectra of Lufeing backbone head and Yua nmou backbone head; Lufeng limb bone and Wuding limb bone. There are relations between the same bone part spectra of different fossil dinosaurs. The characteristic does not relate to regions. Raman spectra of fossil dinosaurs cannot be used to distinguish fossil source, although the part of bone can be used as an indicator to narrow the range of possible geographical origins.

  18. Radial Distribution of Electron Spectra from High-Energy Ions

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Katz, Robert; Wilson, John W.

    1998-01-01

    The average track model describes the response of physical and biological systems using radial dose distribution as the key physical descriptor. We report on an extension of this model to describe the average distribution of electron spectra as a function of radial distance from an ion. We present calculations of these spectra for ions of identical linear energy transfer (LET), but dissimilar charge and velocity to evaluate the differences in electron spectra from these ions. To illustrate the usefulness of the radial electron spectra for describing effects that are not described by electron dose, we consider the evaluation of the indirect events in microdosimetric distributions for ions. We show that folding our average electron spectra model with experimentally determined frequency distributions for photons or electrons provides a good representation of radial event spectra from high-energy ions in 0.5-2 micrometer sites.

  19. Monte Carlo simulation of Auger-electron spectra.

    PubMed

    Grau Carles, A; Kossert, K

    2009-01-01

    A procedure to calculate the complex spectra of electron-capture nuclides which simultaneously eject several electrons and X-rays with different energies is presented. The model is applied to compute spectra of the radionuclides (125)I, (123)I and (111)In. The spectra are then compared with experimental spectra obtained by means of liquid scintillation counting. To this end, the computed spectra were transformed to allow for the nonlinear response function for a liquid scintillator, chemical quenching, as well as the Wallac-type amplifier used for the measurements. The calculated spectra are important for applications of free parameter models in liquid scintillation counting and also for studying the impact of electron-capture nuclides on DNA.

  20. Camera artifacts in IUE low-dispersion spectra

    NASA Technical Reports Server (NTRS)

    Crenshaw, D. Michael; Norman, Dara J.; Bruegman, Otto W.

    1990-01-01

    Sky-background images obtained by the International Ultraviolet Explorer (IUE) were analyzed to study artificial spectral features (camera artifacts) in low-dispersion spectra. The artifacts mimic emission features and have been present in long-exposure spectra since the launch of the IUE satellite. The camera artifacts are strong in spectra characterized by long exposure times because they scale in time-integrated flux with the background level, which increases during the exposure due to camera phosphorescence. The artifacts cannot be detected in spectra obtained from short, direct exposures of flat-field lamps or standard stars. Plots of average sky-background spectra for the three operational IUE cameras (SWP, LWP, and LWR) are given to aid scientists in the identification of artifacts in their spectra.