Science.gov

Sample records for 14n nqr spectra

  1. (14)N NQR, relaxation and molecular dynamics of the explosive TNT.

    PubMed

    Smith, John A S; Rowe, Michael D; Althoefer, Kaspar; Peirson, Neil F; Barras, Jamie

    2015-10-01

    Multiple pulse sequences are widely used for signal enhancement in NQR detection applications. Since the various (14)N NQR relaxation times, signal decay times and frequency of each NQR line have a major influence on detection sequence performance, it is important to characterise these parameters and their temperature variation, as fully as possible. In this paper we discuss such measurements for a number of the ν+ and ν- NQR lines of monoclinic and orthorhombic TNT and relate the temperature variation results to molecular dynamics. The temperature variation of the (14)N spin-lattice relaxation times T1 is interpreted as due to hindered rotation of the NO2 group about the C-NO2 bond with an activation energy of 89 kJ mol(-1) for the ortho and para groups of monoclinic TNT and 70 kJ mol(-1) for the para group of orthorhombic TNT. PMID:26440130

  2. 14N NQR and the Molecular Charge Topology in Coordinated Ammonia

    NASA Astrophysics Data System (ADS)

    Murgich, Juan; Aray, Yosslen; Ospina, Edgar

    1992-02-01

    14N NQR spectra of [Co(NH3 ) 6 ] • 3Cl, [Co(NH3 ) 5CO3 ] • NO 3 , [Zn(NH3 ) 4 ] • 2Cl, [Zn(NH3 ) 4 ] •(BF4)2, and [Ag(NH3) 4 ] • NO 3 were obtained at 77 K. The results, analyzed by means of the topology of the charge distribution obtained from ab-initio MO calculations of free and of a model of coordinated NH3 , showed that bonding to the metal-ion produces a strong decrease (Co ≫ Zn ≈Ag) in the N nonbonded density ("lone pair") and an increase in the bonded maxima found in the N - H bond direction of the N valence shell.

  3. Polymorphism and disorder in natural active ingredients. Low and high-temperature phases of anhydrous caffeine: Spectroscopic ((1)H-(14)N NMR-NQR/(14)N NQR) and solid-state computational modelling (DFT/QTAIM/RDS) study.

    PubMed

    Seliger, Janez; Žagar, Veselko; Apih, Tomaž; Gregorovič, Alan; Latosińska, Magdalena; Olejniczak, Grzegorz Andrzej; Latosińska, Jolanta Natalia

    2016-03-31

    The polymorphism of anhydrous caffeine (1,3,7-trimethylxanthine; 1,3,7-trimethyl-1H-purine-2,6-(3H,7H)-dione) has been studied by (1)H-(14)N NMR-NQR (Nuclear Magnetic Resonance-Nuclear Quadrupole Resonance) double resonance and pure (14)N NQR (Nuclear Quadrupole Resonance) followed by computational modelling (Density Functional Theory, supplemented Quantum Theory of Atoms in Molecules with Reduced Density Gradient) in solid state. For two stable (phase II, form β) and metastable (phase I, form α) polymorphs the complete NQR spectra consisting of 12 lines were recorded. The assignment of signals detected in experiment to particular nitrogen sites was verified with the help of DFT. The shifts of the NQR frequencies, quadrupole coupling constants and asymmetry parameters at each nitrogen site due to polymorphic transition were evaluated. The strongest shifts were observed at N(3) site, while the smallest at N(9) site. The commercial pharmaceutical sample was found to contain approximately 20-25% of phase I and 75-80% of phase II. The orientational disorder in phase II with a local molecular arrangement mimics that in phase I. Substantial differences in the intermolecular interaction phases I and II of caffeine were analysed using computational (DFT/QTAIM/RDS) approach. The analysis of local environment of each nitrogen nucleus permitted drawing some conclusions on the topology of interactions in both polymorphs. For the most stable orientations in phase I and phase II the maps of the principal component qz of EFG tensor and its asymmetry parameter at each point of the molecular system were calculated and visualized. The relevant maps calculated for both phases I and II indicates small variation in electrostatic potential upon phase change. Small differences between packings in phases slightly disturb the neighbourhood of the N(1) and N(7) nitrogens, thus are meaningless from the biological point of view. The composition of two phases in pharmaceutical material

  4. 14N NQR investigation of some thermochromic and photochromic salicylideneanilines and related compounds

    NASA Astrophysics Data System (ADS)

    Hadjoudis, E.; Milia, F.; Seliger, J.; Zagar, V.; Blinc, R.

    1991-09-01

    The temperature dependence of the 14N NQR frequencies have been measured in a series of thermochromic and photochromic salicylideneanilines and related compounds using nuclear quadrupole double resonance. The results show that, in agreement with previous measurements, there is a fast exchange between inequivalent sites in the OH…N bond. The energy difference Δ E of the two proton sites was calculated for all the compounds and shows that it depends on their thermochromic behavior which is connected with the structure of the compounds.

  5. Detection of {sup 14}N and {sup 35}Cl in cocaine base and hydrochloride using NQR, NMR, and SQUID techniques

    SciTech Connect

    Yesinowski, J.P.; Buess, M.L.; Garroway, A.N.; Ziegeweid, M.; Pines, A. |

    1995-07-01

    Results from {sup 14}N pure NQR of cocaine in the free base form (cocaine base) yield a nuclear quadrupole coupling constant (NQCC) e{sup 2}Qq/h of 5.0229 ({+-}0.0001) MHz and an asymmetry parameter {eta} of 0.0395 ({+-}0.0001) at 295 K, with corresponding values of 5.0460 ({+-}0.0013) MHz and 0.0353 ({+-}0.0008) at 77 K. Both pure NQR (at 295-77 K) and a superconducting quantum interference device (SQUID) detector (at 4.2 K) were used to measure the very low (<1 MHz) {sup 14}N transition frequencies in cocaine hydrochloride; at 295 K the NQCC is 1.1780 ({+-}0.0014) MHz and the asymmetry parameter is 0.2632 ({+-}0.0034). Stepping the carrier frequency enables one to obtain a powder pattern without the severe intensity distortions that otherwise arise from finite pulse power. A powder pattern simulation using an NQCC value of 5.027 MHz and an asymmetry parameter {eta} of 0.2 agrees reasonably well with the experimental stepped-frequency spectrum. The use of pure NQR for providing nondestructive, quantitative, and highly specific detection of crystalline compounds is discussed, as are experimental strategies. 31 refs., 8 figs., 1 tab.

  6. /sup 127/I NQR spectra of carborane-containing compounds of polycoordinated iodine

    SciTech Connect

    Semin, G.K.; Grushin, V.V.; Gushchin, S.I.; Lisichkina, I.N.; Petokhov, S.A.; Tolstaya, T.P.

    1985-05-20

    The NQR spectra of polycoordinated iodine compounds is studied. A table presents the I 127 NQR spectra of electroneutral PhIC1/sub 2/ derivatives with intermolecular coordination in the solid state and ionic compounds including compounds with interionic coordination. A considerable increase in the quadrupole coupling constants and significant decrease in the asymmetry parameter is found in carborane-containing CBIC1/sub 2/ and PhCBIX compounds in comparison with the corresponding phenyl and diphenyl derivatives.

  7. Pulsed Fourier-transform NQR of 14N with a dc SQUID

    NASA Astrophysics Data System (ADS)

    Hürlimann, M. D.; Pennington, C. H.; Fan, N. Q.; Clarke, John; Pines, A.; Hahn, E. L.

    1992-07-01

    The zero-field free induction decay of solid ammonium perchlorate at 1.5 K has been directly detected with a dc superconducting quantum interference device. The Fourier-transform spectrum consists of three sharp lines at 17.4, 38.8, and 56.2 kHz arising from pure 14N nuclear quadrupole resonance transitions. The absence of splittings and resonance transitions from dipolar-coupled proton spins is attributed to reorientation of the ammonium groups by quantum tunneling in combination with motional averaging in the three proton levels characterized by the irreducible representation T. The measured 14N spin-spin relaxation time is 22+/-2 ms and the spin-lattice relaxation time is 63+/-6 ms.

  8. 63Cu NQR spectra of dicoordinated Cu(I) cations with imidazole and pyrazole ligands

    NASA Astrophysics Data System (ADS)

    Khajenhouri, Fereidoun; Motallebi, Shahrock; Lucken, Edwin A. C.

    1995-02-01

    The 63Cu NQR spectra of five dicoordinated complex cations of Cu(I) with substituted imidazoles as ligands and six analogous complexes with substituted pyrazoles as ligands are reported. The structures of four of these complexes have been previously determined and the relationship of their 63Cu resonance frequency to the average CuN bond length is compared to that of the analogous lutidine or collidine complexes. It is concluded that there are probably significant differences between the electronic structures of the pyridine complexes and those of the pyrazole or imidazole series.

  9. Explosives detection by nuclear quadrupole resonance (NQR)

    NASA Astrophysics Data System (ADS)

    Garroway, Allen N.; Buess, Michael L.; Yesinowski, James P.; Miller, Joel B.; Krauss, Ronald A.

    1994-10-01

    Pure nuclear quadrupole resonance (NQR) of 14N nuclei is quite promising as a method for detecting explosives such as RDX and contraband narcotics such as cocaine and heroin in quantities of interest. Pure NQR is conducted without an external applied magnetic field, so potential concerns about damage to magnetically encoded data or exposure of personnel to large magnetic fields are not relevant. Because NQR frequencies of different compounds are quite distinct, we do not encounter false alarms from the NQR signals of other benign materials. We have constructed a laboratory prototype NQR explosives detector which interrogates a volume of 300 liters (10 ft3). This paper presents abbreviated results from a demonstration of the laboratory prototype NQR explosives detector conducted at the Federal Aviation Administration Technical Center in May 1994 on RDX-based explosives.

  10. A miniaturized NQR spectrometer for a multi-channel NQR-based detection device.

    PubMed

    Beguš, Samo; Jazbinšek, Vojko; Pirnat, Janez; Trontelj, Zvonko

    2014-10-01

    A low frequency (0.5-5 MHz) battery operated sensitive pulsed NQR spectrometer with a transmitter power up to 5 W and a total mass of about 3 kg aimed at detecting (14)N NQR signals, predominantly of illicit materials, was designed and assembled. This spectrometer uses a standard software defined radio (SDR) platform for the data acquisition unit. Signal processing is done with the LabView Virtual instrument on a personal computer. We successfully tested the spectrometer by measuring (14)N NQR signals from aminotetrazole monohydrate (ATMH), potassium nitrate (PN), paracetamol (PCM) and trinitrotoluene (TNT). Such a spectrometer is a feasible component of a portable single or multichannel (14)N NQR based detection device. PMID:25233110

  11. A miniaturized NQR spectrometer for a multi-channel NQR-based detection device

    NASA Astrophysics Data System (ADS)

    Beguš, Samo; Jazbinšek, Vojko; Pirnat, Janez; Trontelj, Zvonko

    2014-10-01

    A low frequency (0.5-5 MHz) battery operated sensitive pulsed NQR spectrometer with a transmitter power up to 5 W and a total mass of about 3 kg aimed at detecting 14N NQR signals, predominantly of illicit materials, was designed and assembled. This spectrometer uses a standard software defined radio (SDR) platform for the data acquisition unit. Signal processing is done with the LabView Virtual instrument on a personal computer. We successfully tested the spectrometer by measuring 14N NQR signals from aminotetrazole monohydrate (ATMH), potassium nitrate (PN), paracetamol (PCM) and trinitrotoluene (TNT). Such a spectrometer is a feasible component of a portable single or multichannel 14N NQR based detection device.

  12. Measurement of the 14N nuclear quadrupole resonance frequencies by the solid effect

    NASA Astrophysics Data System (ADS)

    Seliger, J.; Žagar, V.

    2008-07-01

    1H- 14N nuclear quadrupole double resonance using magnetic field cycling between high and low magnetic field and solid effect in the low magnetic field is analyzed in details. The transition probabilities per unit time for the solid-effect transitions are calculated. The double resonance spectra are calculated in the limiting cases of fast and slow nitrogen spin-lattice relaxation. The double resonance spectra are measured in histamine and quinolinic acid. The experimental spectra are analyzed and the 14N NQR frequencies are determined.

  13. FPGA based pulsed NQR spectrometer

    NASA Astrophysics Data System (ADS)

    Hemnani, Preeti; Rajarajan, A. K.; Joshi, Gopal; Motiwala, Paresh D.; Ravindranath, S. V. G.

    2014-04-01

    An NQR spectrometer for the frequency range of 1 MHz to 5 MHZ has been designed constructed and tested using an FPGA module. Consisting of four modules viz. Transmitter, Probe, Receiver and computer controlled (FPGA & Software) module containing frequency synthesizer, pulse programmer, mixer, detection and display, the instrument is capable of exciting nuclei with a power of 200W and can detect signal of a few microvolts in strength. 14N signal from NaNO2 has been observed with the expected signal strength.

  14. Influence of the anisotropic hyperfine interaction on the 14N ENDOR and the ESEEM orientation-disordered spectra.

    PubMed

    Benetis, Nikolas P; Dikanov, Sergei A

    2005-07-01

    The influence of the anisotropic hyperfine interaction on the 14N electron-nuclear double resonance/electron spin echo envelope modulation spectra is studied by approximate analytical and graphical methods for the case of the isotropic g-factor. The suggested determination of the modified characteristic directions of the magnetic field due to anisotropy enhances the insight in the structural details of the system and analytical solutions of the secular equation for these conditions are derived. The graphical method, previously used for the analysis of the orientation dependence of the 14N nuclear-transition frequencies in orientation-disordered samples for isotropic hyperfine interaction is extended to the case of arbitrary anisotropic hyperfine tensor. The above analytical and graphical methods are illustrated and tested against exact simulations in two practically important cases: (i) isotropic hyperfine interaction (hfi) exceeding other nuclear interactions in nuclear spin Hamiltonian. (ii) Cancellation of the isotropic part of the hfi. PMID:15878298

  15. The Fundamental Quadrupole Band of (14)N2: Line Positions from High-Resolution Stratospheric Solar Absorption Spectra

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Zander, R.; Goldman, A.; Murcray, F. J.; Murcray, D. G.; Grunson, M. R.; Farmer, C. B.

    1991-01-01

    The purpose of this note is to report accurate measurements of the positions of O- and S-branch lines of the (1-0) vibration-rotation quadrupole band of molecular nitrogen ((14)N2) and improved Dunham coefficients derived from a simultaneous least-squares analysis of these measurements and selected infrared and far infrared data taken from the literature. The new measurements have been derived from stratospheric solar occultation spectra recorded with Fourier transform spectrometer (FTS) instruments operated at unapodized spectral resolutions of 0.002 and 0.01 /cm. The motivation for the present investigation is the need for improved N2 line parameters for use in IR atmospheric remote sensing investigations. The S branch of the N2 (1-0) quadrupole band is ideal for calibrating the line-of-sight airmasses of atmospheric spectra since the strongest lines are well placed in an atmospheric window, their absorption is relatively insensitive to temperature and is moderately strong (typical line center depths of 10 to 50% in high-resolution ground-based solar spectra and in lower stratospheric solar occultation spectra), and the volume mixing ratio of nitrogen is constant in the atmosphere and well known. However, a recent investigation has'shown the need to improve the accuracies of the N2 fine positions, intensities, air-broadened half-widths, and their temperature dependences to fully exploit this calibration capability (1). The present investigation addresses the problem of improving the accuracy of the N2 line positions.

  16. Frequency selective detection of nuclear quadrupole resonance (NQR) spin echoes

    NASA Astrophysics Data System (ADS)

    Somasundaram, Samuel D.; Jakobsson, Andreas; Smith, John A. S.; Althoefer, Kaspar A.

    2006-05-01

    Nuclear Quadrupole Resonance (NQR) is a radio frequency (RF) technique that can be used to detect the presence of quadrupolar nuclei, such as the 14N nucleus prevalent in many explosives and narcotics. The technique has been hampered by low signal-to-noise ratios and is further aggravated by the presence of RF interference (RFI). To ensure accurate detection, proposed detectors should exploit the rich form of the NQR signal. Furthermore, the detectors should also be robust to any remaining residual interference, left after suitable RFI mitigation has been employed. In this paper, we propose a new NQR data model, particularly for the realistic case where multiple pulse sequences are used to generate trains of spin echoes. Furthermore, we refine two recently proposed approximative maximum likelihood (AML) detectors, enabling the algorithm to optimally exploit the data model of the entire echo train and also incorporate knowledge of the temperature dependent spin-echo decay time. The AML-based detectors ensure accurate detection and robustness against residual RFI, even when the temperature of the sample is not precisely known, by exploiting the dependencies of the NQR resonant lines on temperature. Further robustness against residual interference is gained as the proposed detector is frequency selective; exploiting only those regions of the spectrum where the NQR signal is expected. Extensive numerical evaluations based on both simulated and measured NQR data indicate that the proposed Frequency selective Echo Train AML (FETAML) detector offers a significant improvement as compared to other existing detectors.

  17. Narcotics and explosives detection by 14N pure nuclear quadrupole resonance

    NASA Astrophysics Data System (ADS)

    Garroway, Allen N.; Buess, Michael L.; Yesinowski, James P.; Miller, Joel B.

    1994-03-01

    Pure nuclear quadrupole resonance (NQR) of 14N nuclei is quite promising as a method for detecting explosives such as RDX and contraband narcotics such as cocaine and heroin in quantities of interest. Pure NQR is conducted without an external applied magnetic field, so potential concerns about damage to magnetically encoded data or exposure of personnel to large magnetic fields are not relevant. Because NQR frequencies of different compounds are quite distinct, we do not encounter false alarms from the NQR signals of other benign materials. We have constructed a proof-of-concept NQR explosives detector which interrogates a volume of 300 liters (10 ft3). With minimal modification to the existing explosives detector, we can detect operationally relevant quantities of (free base) cocaine within the 300-liter inspection volume in 6 seconds. We are presently extending this approach to the detection of heroin base and also examining 14N and 35,37Cl pure NQR for detection of the hydrochloride forms of both materials. An adaptation of this NQR approach may be suitable for scanning personnel for externally carried contraband and explosives. We first outline the basics of the NQR approach, highlighting strengths and weaknesses, and then present representative results for RDX and cocaine detection. We also present a partial compendium of relevant NQR parameters measured for some materials of interest.

  18. NQR studies on 2,5-dichlorophenol

    NASA Astrophysics Data System (ADS)

    Kasturi, Alapati; Venkatacharyulu, P.; Premaswarup, D.

    1990-11-01

    Nuclear quadrupole resonance (NQR) Zeeman effect studies were carried out on cylindrical single crystals of 2,5-dichlorophenol, using the two 35Cl-NQR frequencies. A self-quenched superregenerative NQR spectrometer was used, and the spectra were analysed ot obtain information on the nature of the crystalline unit cell. An analysis of the experimental data reveals that: (1) the results are in good agreement with the structural reports of Bavoux and Perrin; (2) the crystal unequivocally belongs to the monoclinic system; (3) there are two crystallographically equivalent but physically inequivalent directions for the principal field gradient axes for both the low- and high-frequency resonance lines; (4) as the number of physically inequivalent directions for each of the two resonance lines is two, the minimum number of molecules per unit cell is two; (5) the b axis (90°,90°) is identified as the symmetry axis; (6) the growth axis is slightly inclined to the c axis; (7) the asymmetry parameters obtained for the loci corresponding to the low-frequency line, which is hydrogen bonded, are greater than those for the high-frequency line, which is nonhydrogen bonded; (8) the double-bond character is greater for the hydrogen-bonded chlorine than for the non-hydrogen-bonded chlorine; (9) the ratios of the various bond characters estimated for both the low- and high-frequency resonance lines are 69:24:7 and 74:24:2.

  19. Intramolecular charge delocalization and nonlinear optical properties of push-pull chromophore 1-(4-N,N-dimethylaminopyridinium) acetic acid bromide monohydrate from vibrational spectra.

    PubMed

    John, C Jesintha; Amalanathan, M; Sajan, D; Lakshmi, K Udaya; Joe, I Hubert

    2011-01-01

    FT-Raman and FT-IR spectra of the nonlinear optical crystal 1-(4-N,N-dimethylaminopyridinium) acetic acid bromide monohydrate have been recorded and analyzed. The equilibrium geometry, vibrational wavenumbers and the first order hyperpolarizability of the crystal have been calculated with the help of density functional theory computations. The assignments of the vibrational spectra have been carried out with the help of Scaled Quantum Mechanic force field theory. Optimized geometry gives the charge transfer interaction of the pyridine ring and the amino group in the electron-donor side of the nonlinear optic chromophore. Electron-phonon coupling and O-H⋯O interactions in making the molecule nonlinear optical active have been analyzed based on the vibrational spectral features. The Natural Bond Orbital analysis confirms the occurrence of strong intermolecular O-H⋯O hydrogen bonding. PMID:21036101

  20. (14) N nuclear quadrupole resonance study of piroxicam: confirmation of new polymorphic form V.

    PubMed

    Lavrič, Zoran; Pirnat, Janez; Lužnik, Janko; Puc, Uroš; Trontelj, Zvonko; Srčič, Stane

    2015-06-01

    A new polymorphic crystal form of piroxicam was discovered while preparing crystalline samples of piroxicam for (14) N nuclear quadrupole resonance (NQR) analysis. The new crystal form, designated as V, was prepared by evaporative recrystallization from dichloromethane. Three known polymorphic forms (I, II, and III) were also prepared. Our aim was to apply (14) N NQR to characterize the new polymorphic form of piroxicam and compare the results with those of the other known polymorphic forms. Additional analytical methods used for characterization were X-ray powder diffraction (XRPD), thermal analysis, and vibrational spectroscopy. For the first time, a complete set of nine characteristic (14) N NQR frequencies was found for each prepared polymorph of piroxicam. The consistent set of measured frequencies and calculated characteristic quadrupole parameters found for the new polymorphic form V is a convincing evidence that we are dealing with a new form. The already known piroxicam polymorphic forms were characterized similarly. The XRPD results were in accordance with the conclusions of (14) N NQR analysis. The performed study clearly demonstrates a strong potential of (14) N NQR method to be applied as a highly discriminative spectroscopic analytical tool to characterize polymorphic forms. PMID:25776345

  1. SQUID detected NMR and NQR. Superconducting Quantum Interference Device.

    PubMed

    Augustine, M P; TonThat, D M; Clarke, J

    1998-03-01

    The dc Superconducting QUantum Interference Device (SQUID) is a sensitive detector of magnetic flux, with a typical flux noise of the order 1 muphi0 Hz(-1/2) at liquid helium temperatures. Here phi0 = h/2e is the flux quantum. In our NMR or NQR spectrometer, a niobium wire coil wrapped around the sample is coupled to a thin film superconducting coil deposited on the SQUID to form a flux transformer. With this untuned input circuit the SQUID measures the flux, rather than the rate of change of flux, and thus retains its high sensitivity down to arbitrarily low frequencies. This feature is exploited in a cw spectrometer that monitors the change in the static magnetization of a sample induced by radio frequency irradiation. Examples of this technique are the detection of NQR in 27Al in sapphire and 11B in boron nitride, and a level crossing technique to enhance the signal of 14N in peptides. Research is now focused on a SQUID-based spectrometer for pulsed NQR and NMR, which has a bandwidth of 0-5 MHz. This spectrometer is used with spin-echo techniques to measure the NQR longitudinal and transverse relaxation times of 14N in NH4ClO4, 63+/-6 ms and 22+/-2 ms, respectively. With the aid of two-frequency pulses to excite the 359 kHz and 714 kHz resonances in ruby simultaneously, it is possible to obtain a two-dimensional NQR spectrum. As a third example, the pulsed spectrometer is used to study NMR spectrum of 129Xe after polariza-tion with optically pumped Rb. The NMR line can be detected at frequencies as low as 200 Hz. At fields below about 2 mT the longitudinal relaxation time saturates at about 2000 s. Two recent experiments in other laboratories have extended these pulsed NMR techniques to higher temperatures and smaller samples. In the first, images were obtained of mineral oil floating on water at room temperature. In the second, a SQUID configured as a thin film gradiometer was used to detect NMR in a 50 microm particle of 195Pt at 6 mT and 4.2 K. PMID:9650797

  2. NMR and NQR study of the thermodynamically stable quasicrystals

    SciTech Connect

    Shastri, A.

    1995-02-10

    {sup 27}Al and {sup 61,65}Cu NMR measurements are reported for powder samples of stable AlCuFe and AlCuRu icosahedral quasicrystals and their crystalline approximants, and for a AlPdMn single grain quasicrystal. Furthermore, {sup 27}Al NQR spectra at 4.2 K have been observed in the AlCuFe and AlCuRu samples. From the quadrupole perturbed NMR spectra at different magnetic fields, and from the zero field NQR spectra, a wide distribution of local electric field gradient (EFG) tensor components and principal axis system orientations was found at the Al site. A model EFG calculation based on a 1/1 AlCuFe approximant was successful in explaining the observed NQR spectra. It is concluded that the average local gradient is largely determined by the p-electron wave function at the Al site, while the width of the distribution is due to the lattice contribution to the EFG. Comparison of {sup 63}Cu NMR with {sup 27}Al NMR shows that the EFG distribution at the two sites is similar, but that the electronic contribution to the EFG is considerably smaller at the Cu site, in agreement with a more s-type wave function of the conduction electrons.

  3. An analytical method for estimating the {sup 14}N nuclear quadrupole resonance parameters of organic compounds with complex free induction decays for radiation effects studies

    SciTech Connect

    Iselin, L.H.

    1992-12-31

    The use of {sup 14}N nuclear quadrupole resonance (NQR) as a radiation dosimetry tool has only recently been explored. An analytical method for analyzing {sup 14}N NQR complex free induction decays is presented with the background necessary to conduct pulsed NQR experiments. The {sup 14}N NQR energy levels and possible transitions are derived in step-by-step detail. The components of a pulsed NQR spectrometer are discussed along with the experimental techniques for conducting radiation effects experiments using the spectrometer. Three data analysis techniques -- the power spectral density Fourier transform, state space singular value decomposition (HSVD), and nonlinear curve fitting (using the downhill simplex method of global optimization and the Levenberg-Marquart method) -- are explained. These three techniques are integrated into an analytical method which uses these numerical techniques in this order to determine the physical NQR parameters. Sample data sets of urea and guanidine sulfate data are used to demonstrate how these methods can be employed to analyze both simple and complex free induction decays. By determining baseline values for biologically significant organics, radiation effects on the NQR parameters can be studied to provide a link between current radiation dosimetry techniques and the biological effects of radiation.

  4. Methyl quantum tunneling and nitrogen-14 NQR NMR studies using a SQUID magnetic resonance spectrometer

    SciTech Connect

    Black, B.E. |

    1993-07-01

    Nuclear Magnetic Resonance (NMR) and Nuclear Quadrupole Resonance (NQR) techniques have been very successful in obtaining molecular conformation and dynamics information. Unfortunately, standard NMR and NQR spectrometers are unable to adequately detect resonances below a few megahertz due to the frequency dependent sensitivity of their Faraday coil detectors. For this reason a new spectrometer with a dc SQUID (Superconducting Quantum Interference Device) detector, which has no such frequency dependence, has been developed. Previously, this spectrometer was used to observe {sup 11}B and {sup 27}Al NQR resonances. The scope of this study was increased to include {sup 23}Na, {sup 51}V, and {sup 55}Mn NQR transitions. Also, a technique was presented to observe {sup 14}N NQR resonances through cross relaxation of the nitrogen polarization to adjacent proton spins. When the proton Zeeman splitting matches one nitrogen quadrupoler transition the remaining two {sup 14}N transitions can be detected by sweeping a saturating rf field through resonance. Additionally, simultaneous excitation of two nitrogen resonances provides signal enhancement which helps to connect transitions from the same site. In this way, nitrogen-14 resonances were observed in several amino acids and polypeptides. This spectrometer has also been useful in the direct detection of methyl quantum tunneling splittings at 4.2 K. Tunneling, frequencies of a homologous series of carboxylic acids were measured and for solids with equivalent crystal structures, an exponential correlation between the tunneling frequency and the enthalpy of fusion is observed. This correlation provides information about the contribution of intermolecular interactions to the energy barrier for methyl rotation.

  5. Ferroelastic phase transitions by 14N NMR spectra in [N(CH3)4]2CoCl4 and [N(CH3)4]2ZnCl4 single crystals

    NASA Astrophysics Data System (ADS)

    Lim, Ae Ran

    2016-09-01

    Changes in the structural geometry of [N(CH3)4]2BCl4 (B=Co and Zn) crystals near the phase transition temperatures were studied by analyzing the 14N nuclear magnetic resonance (NMR) spectra. Two physically inequivalent a-N(1)(CH3)4 and b-N(2)(CH3)4 groups were observed in these spectra. Abrupt changes in the resonance frequency and splitting of 14N NMR signals near the phase transition temperatures were attributed to structural phase transitions, and the primary mechanism of these phase transitions exhibited ferroelastic characteristics. In addition, ferroelasticity of [N(CH3)4]2BCl4 was identified at low temperatures using optical polarizing microscopy.

  6. 63Cu NQR in copper (II) compounds

    NASA Astrophysics Data System (ADS)

    Bastow, T. J.; Campbell, I. D.; Whitfield, H. J.

    1980-01-01

    We report observations of 63Cu NQR in CuF 2, KCuF 3, and RbCuF 3 in the paramagnetic state, NQR line widths of 63Cu in CuF 2 and CuBr 2 and of 81Br in CuBr 2, SnBr 2 and ZnBr 2. The NQR resonances of certain Cu (II) paramagnetic compounds are exchange-narrowed to values commensurate with linewidths of the diamagnetic infinite-lattice compounds.

  7. 35Cl NQR frequency and spin lattice relaxation time in 3,4-dichlorophenol as a function of pressure and temperature.

    PubMed

    Ramu, L; Ramesh, K P; Chandramani, R

    2013-01-01

    The pressure dependences of (35)Cl nuclear quadrupole resonance (NQR) frequency, temperature and pressure variation of spin lattice relaxation time (T(1)) were investigated in 3,4-dichlorophenol. T(1) was measured in the temperature range 77-300 K. Furthermore, the NQR frequency and T(1) for these compounds were measured as a function of pressure up to 5 kbar at 300 K. The temperature dependence of the average torsional lifetimes of the molecules and the transition probabilities W(1) and W(2) for the Δm = ±1 and Δm = ±2 transitions were also obtained. A nonlinear variation of NQR frequency with pressure has been observed and the pressure coefficients were observed to be positive. A thermodynamic analysis of the data was carried out to determine the constant volume temperature coefficients of the NQR frequency. An attempt is made to compare the torsional frequencies evaluated from NQR data with those obtained by IR spectra. On selecting the appropriate mode from IR spectra, a good agreement with torsional frequency obtained from NQR data is observed. The previously mentioned approach is a good illustration of the supplementary nature of the data from IR studies, in relation to NQR studies of compounds in solid state. PMID:23161529

  8. The effects of methyl internal rotation and {sup 14}N quadrupole coupling in the microwave spectra of two conformers of N,N-diethylacetamide

    SciTech Connect

    Kannengießer, Raphaela; Klahm, Sebastian; Vinh Lam Nguyen, Ha Lüchow, Arne; Stahl, Wolfgang

    2014-11-28

    The gas phase structures and internal dynamics of N,N-diethylacetamide were determined with very high accuracy using a combination of molecular beam Fourier-transform microwave spectroscopy and quantum chemical calculations at high levels. Conformational studies yielded five stable conformers with C{sub 1} symmetry. The two most energetically favorable conformers, conformer I and II, could be found in the experimental spectrum. For both conformers, quadrupole hyperfine splittings of the {sup 14}N nucleus and torsional fine splittings due to the internal rotation of the acetyl methyl group occurred in the same order of magnitude and were fully assigned. The rotational constants, centrifugal distortion constants as well as the quadrupole coupling constants of the {sup 14}N nucleus were determined and fitted to experimental accuracy. The V{sub 3} potentials were found to be 517.04(13) cm{sup −1} and 619.48(91) cm{sup −1} for conformer I and II, respectively, and compared to the V{sub 3} potentials found in other acetamides. Highly accurate CCSD(T) and DMC calculations were carried out for calculating the barriers to internal rotation in comparison with the experimentally deduced V{sub 3} values.

  9. Electron density distribution in cladribine (2-chloro-2‧-deoxyadenosine) - A drug against leukemia and multiple sclerosis - Studied by multinuclear NQR spectroscopy and DFT calculations

    NASA Astrophysics Data System (ADS)

    Latosińska, J. N.; Latosińska, M.; Seliger, J.; Žagar, V.; Kazimierczuk, Z.

    2009-07-01

    2-Chloro-2'-deoxyadenosine (Cladribine) chemotherapeutic drug has been studied experimentally in solid state by 35Cl NQR and NMR-NQR double resonance and theoretically by the Density Functional Theory. Fifteen resonance frequencies on 14N have been detected and assigned to particular nitrogen sites in the 2-CdA molecule. The effects of tautomerism, regioisomerism, conformations and molecular aggregations, related to intermolecular hydrogen bond formation, on the NQR parameters have been analysed within the DFT and AIM ( Atoms in Molecules) formalism. The properties of the whole molecule, the so-called global reactivity descriptors, have been calculated for a comparison of both syn and anti conformations of 2-CdA molecule to check the effect of crystal packing on molecular conformation.

  10. I: Low Frequency NMR and NQR Using a dc SQUID. II: Variable-temperature 13C CP/MAS of Organometallics

    SciTech Connect

    Ziegeweid, M.A.

    1995-11-29

    NMR and NQR at low frequencies are difficult prospects due to small nuclear spin polarization. Furthermore, the sensitivity'of the inductive pickup circuitry of standard spectrometers is reduced as the frequency is lowered. I have used a cw-SQUID (Superconducting QUantum Interference Device) spectrometer, which has no such frequency dependence, to study the local atomic environment of {sup 14}N via the quadrupolar interaction. Because {sup 14}N has spin I = 1 and a 0-6 MHz frequency range, it is not possible to obtain well-resolved spectra in high magnetic fields. I have used a technique to observe {sup 14}N NQR resonances via their effect on neighboring protons mediated by the heteronuclear dipolar interaction to study peptides and narcotics. The sensitivity of the SQUID is not enough to measure low-frequency surface (or other low spin density) systems. The application of spin-polarized xenon has been previously used to enhance polarization in conventional NMR experiments. Because xenon only polarizes spins with which it is in contact, it is surface selective. While differences in chemical shifts between surface and bulk spins are not large, it is expected that the differences in quadrupole coupling constant should be very large due to the drastic change of the electric field gradient surrounding spins at the surface. With this in mind, I have taken preliminary steps to measure SQUID detected polarization transfer from Xe to another spin species at 4.2 K and in small magnetic fields (<50 G). In this regime, the spin-lattice relaxation of xenon is dependent on the applied magnetic field. The results of our efforts to characterize the relaxation of xenon are presented. The final section describes the solid-state variable-temperature (VT) one- and two-dimensional {sup 13}C cross polarization (CP)/magic angle spinning (MAS) NMR of Hf({eta}{sup 5}-C{sub 5}H{sub 5}){sub 2}({eta}{sup 1}-C{sub 5}H{sub 5}){sub 2}, Zr({eta}{sup 5}-C{sub 5}H{sub 5}){sub 3}({eta}{sup 1}-C

  11. Nanoscale NMR and NQR with Nitrogen Vacancy Centers

    NASA Astrophysics Data System (ADS)

    Urbach, Elana; Lovchinsky, Igor; Sanchez-Yamagishi, Javier; Choi, Soonwon; Bylinskii, Alexei; Dwyer, Bo; Andersen, Trond; Sushkov, Alex; Park, Hongkun; Lukin, Mikhail

    2016-05-01

    Nuclear quadrupole resonance (NQR) is a powerful tool which is used to detect quadrupolar interaction in nuclear spins with I > 1/2. Conventional NQR and NMR technology, however, rely on measuring magnetic fields from a macroscopic number of spins. Extending NMR and NQR techniques to the nanoscale could allow us to learn structural information about interesting materials and biomolecules. We present recent progress on using Nitrogen-Vacancy (NV) centers in diamond to perform room temperature nanoscale NMR and NQR spectroscopy on small numbers of nuclear spins in hexagonal boron nitride.

  12. NQR detection of explosive simulants using RF atomic magnetometers

    NASA Astrophysics Data System (ADS)

    Monti, Mark C.; Alexson, Dimitri A.; Okamitsu, Jeffrey K.

    2016-05-01

    Nuclear Quadrupole Resonance (NQR) is a highly selective spectroscopic method that can be used to detect and identify a number of chemicals of interest to the defense, national security, and law enforcement community. In the past, there have been several documented attempts to utilize NQR to detect nitrogen bearing explosives using induction sensors to detect the NQR RF signatures. We present here our work on the NQR detection of explosive simulants using optically pumped RF atomic magnetometers. RF atomic magnetometers can provide an order of magnitude (or more) improvement in sensitivity versus induction sensors and can enable mitigation of RF interference, which has classically has been a problem for conventional NQR using induction sensors. We present the theory of operation of optically pumped RF atomic magnetometers along with the result of laboratory work on the detection of explosive simulant material. An outline of ongoing work will also be presented along with a path for a fieldable detection system.

  13. Crystallization and preliminary analysis of the NqrA and NqrC subunits of the Na+-translocating NADH:ubiquinone oxidoreductase from Vibrio cholerae

    PubMed Central

    Vohl, Georg; Nedielkov, Ruslan; Claussen, Björn; Casutt, Marco S.; Vorburger, Thomas; Diederichs, Kay; Möller, Heiko M.; Steuber, Julia; Fritz, Günter

    2014-01-01

    The Na+-translocating NADH:ubiquinone oxidoreductase (Na+-NQR) from Vibrio cholerae is a membrane protein complex consisting of six different subunits NqrA–NqrF. The major domains of the NqrA and NqrC subunits were heterologously expressed in Escherichia coli and crystallized. The structure of NqrA1–377 was solved in space groups C2221 and P21 by SAD phasing and molecular replacement at 1.9 and 2.1 Å resolution, respectively. NqrC devoid of the transmembrane helix was co-expressed with ApbE to insert the flavin mononucleotide group covalently attached to Thr225. The structure was determined by molecular replacement using apo-NqrC of Parabacteroides distasonis as search model at 1.8 Å resolution. PMID:25005105

  14. Radio-frequency tunable atomic magnetometer for detection of solid-state NQR

    NASA Astrophysics Data System (ADS)

    Lee, S.-K.; Sauer, K. L.; Seltzer, S. J.; Alem, O.; Romalis, M. V.

    2007-06-01

    We constructed a potassium atomic magnetometer which resonantly detects rf magnetic fields with subfemtotesla sensitivity. The resonance frequency is set by the Zeeman resonance of the potassium atoms in a static magnetic field applied to the magnetometer cell. Strong optical pumping of the potassium atoms into a stretched state reduces spin-exchange broadening of the Zeeman resonance, resulting in relatively small linewidth of about 200 Hz (half-width at half-maximum). The magnetometer was used to detect ^14N NQR signal from powdered ammonium nitrate at 423 kHz, with sensitivity an order of magnitude higher than with a conventional room temperature pickup coil with comparable geometry. The demonstrated sensitivity of 0.24 fT/Hz^1/2 can be improved by several means, including use of higher power lasers for pumping and probing. Our technique can potentially be used to develop a mobile, open-access NQR spectrometer for detection of nitrogen-containing solids of interest in security applications.

  15. NQR in tert-butyl chloride

    NASA Astrophysics Data System (ADS)

    Brunetti, Aldo H.

    2004-03-01

    Tert-butyl chloride has been broadly studied experimentally through various techniques such as X-ray crystallography, DTA, and NMR. It was also studied experimentally through nuclear quadrupole resonance (NQR), but this study was limited and incomplete. In this paper, we present a more detailed study of TBC through the NQR of 35Cl. Our results show that near 120 K, the onset of the CH 3 groups semirotations around symmetry axis C3 takes place with an activation energy U=16.1 kJ mol -1. This intramolecular movement produces a T1 minimum near 148 K and is the dominant mechanism of the nuclear spin-lattice relaxation in phase III of this compound. In phase II of TBC, we show that there are not only methyl groups semirotations, but also semirotations of the whole molecule around a different axis from the symmetry axis C' 3 (C-Cl bond) with an activation energy of E=10.4 kJ mol -1.

  16. WURST-QCPMG sequence and "spin-lock" in 14N nuclear quadrupole resonance

    NASA Astrophysics Data System (ADS)

    Gregorovič, Alan; Apih, Tomaž

    2013-08-01

    14N nuclear quadrupole resonance (NQR) is a promising method for the analysis of pharmaceuticals or for the detection of nitrogen based illicit compounds, but so far, the technique is still not widely used, mostly due to the very low sensitivity. This problem is already acute in the preliminary NQR stage, when a compound is being examined for the first time and the NQR frequencies are being searched for, by scanning a wide frequency range step-by-step. In the present work, we experimentally show how to increase the efficiency of this initial stage by using a combination of a wideband excitation achieved with frequency swept pulses (WURST) and a "spin-lock" state obtained with a quadrupolar-CPMG (QCPMG) sequence. In the first part we show that WURST pulses provide a much larger excitation bandwidth compared to common rectangular pulses. This increased bandwidth allows to increase the frequency step and reduces the total number of steps in a scanning stage. In the second part we show that the "spin-lock" decay time T2eff obtained with the WURST-QCPMG combination is practically identical with the T2eff obtained with the most common "spin-lock" sequence, the SLSE, despite a very different nature and length of excitation pulses. This allows for a substantial S/N increase through echo averaging in every individual step and really allows to exploit all the advantages of the wider excitation in the NQR frequency scanning stage. Our experimental results were obtained on a sample of trinitrotoluene, but identical behavior is expected for all compounds where a "spin-lock" state can be created.

  17. NQR Characteristics of an RDX Plastic Explosives Simulant.

    PubMed

    Turecek, J; Schwitter, B; Miljak, D; Stancl, M

    2012-12-01

    For reliable detection of explosives, a combination of methods integrated within a single measurement platform may increase detection performance. However, the efficient field testing of such measurement platforms requires the use of inexplosive simulants that are detectable by a wide range of methods. Physical parameters such as simulant density, elemental composition and crystalline structure must closely match those of the target explosive. The highly discriminating bulk detection characteristics of nuclear quadrupole resonance (NQR) especially constrain simulant design. This paper describes the development of an inexplosive RDX simulant suited to a wide range of measurement methods, including NQR. Measurements are presented that confirm an RDX NQR response from the simulant. The potential use of the simulant for field testing a prototype handheld NQR-based RDX detector is analyzed. Only modest changes in prototype operation during field testing would be required to account for the use of simulant rather than real explosive. PMID:23204647

  18. Site-directed mutagenesis of conserved cysteine residues in NqrD and NqrE subunits of Na+-translocating NADH:quinone oxidoreductase.

    PubMed

    Fadeeva, M S; Bertsova, Y V; Verkhovsky, M I; Bogachev, A V

    2008-02-01

    Each of two hydrophobic subunits of Na+-translocating NADH:quinone oxidoreductase (NQR), NqrD and NqrE, contain a pair of strictly conserved cysteine residues within their transmembrane alpha-helices. Site-directed mutagenesis showed that substitutions of these residues in NQR of Vibrio harveyi blocked the Na+-dependent and 2-n-heptyl-4-hydroxyquinoline N-oxide-sensitive quinone reductase activity of the enzyme. However, these mutations did not affect the interaction of NQR with NADH and menadione. It was demonstrated that these conserved cysteine residues are necessary for the correct folding and/or the stability of the NQR complex. Mass and EPR spectroscopy showed that NQR from V. harveyi bears only a 2Fe-2S cluster as a metal-containing prosthetic group. PMID:18298367

  19. 14N quadrupole resonance and 1H T1 dispersion in the explosive RDX.

    PubMed

    Smith, John A S; Blanz, Martin; Rayner, Timothy J; Rowe, Michael D; Bedford, Simon; Althoefer, Kaspar

    2011-12-01

    The explosive hexahydro-1,3,5-trinitro-s-triazine (CH2-N-NO2)3, commonly known as RDX, has been studied by 14N NQR and 1H NMR. NQR frequencies and relaxation times for the three ν+ and ν- lines of the ring 14N nuclei have been measured over the temperature range 230-330 K. The 1H NMR T1 dispersion has been measured for magnetic fields corresponding to the 1H NMR frequency range of 0-5.4 M Hz. The results have been interpreted as due to hindered rotation of the NO2 group about the N-NO2 bond with an activation energy close to 92 kJ mol(-1). Three dips in the 1H NMR dispersion near 120, 390 and 510 kHz are assigned to the ν0, ν- and ν+ transitions of the 14NO2 group. The temperature dependence of the inverse line-width parameters T2∗ of the three ν+ and ν- ring nitrogen transitions between 230 and 320 K can be explained by a distribution in the torsional oscillational amplitudes of the NO2 group about the N-NO2 bond at crystal defects whose values are consistent with the latter being mainly edge dislocations or impurities in the samples studied. Above 310 K, the 14N line widths are dominated by the rapid decrease in the spin-spin relaxation time T2 due to hindered rotation of the NO2 group. A consequence of this is that above this temperature, the 1H T1 values at the quadrupole dips are dominated by the spin mixing time between the 1H Zeeman levels and the combined 1H and 14N spin-spin levels. PMID:21978662

  20. NqrM (DUF539) Protein Is Required for Maturation of Bacterial Na+-Translocating NADH:Quinone Oxidoreductase

    PubMed Central

    Kostyrko, Vitaly A.; Bertsova, Yulia V.; Serebryakova, Marina V.; Baykov, Alexander A.

    2015-01-01

    ABSTRACT Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) catalyzes electron transfer from NADH to ubiquinone in the bacterial respiratory chain, coupled with Na+ translocation across the membrane. Na+-NQR maturation involves covalent attachment of flavin mononucleotide (FMN) residues, catalyzed by flavin transferase encoded by the nqr-associated apbE gene. Analysis of complete bacterial genomes has revealed another putative gene (duf539, here renamed nqrM) that usually follows the apbE gene and is present only in Na+-NQR-containing bacteria. Expression of the Vibrio harveyi nqr operon alone or with the associated apbE gene in Escherichia coli, which lacks its own Na+-NQR, resulted in an enzyme incapable of Na+-dependent NADH or reduced nicotinamide hypoxanthine dinucleotide (dNADH) oxidation. However, fully functional Na+-NQR was restored when these genes were coexpressed with the V. harveyi nqrM gene. Furthermore, nqrM lesions in Klebsiella pneumoniae and V. harveyi prevented production of functional Na+-NQR, which could be recovered by an nqrM-containing plasmid. The Na+-NQR complex isolated from the nqrM-deficient strain of V. harveyi lacks several subunits, indicating that nqrM is necessary for Na+-NQR assembly. The protein product of the nqrM gene, NqrM, contains a single putative transmembrane α-helix and four conserved Cys residues. Mutating one of these residues (Cys33 in V. harveyi NqrM) to Ser completely prevented Na+-NQR maturation, whereas mutating any other Cys residue only decreased the yield of the mature protein. These findings identify NqrM as the second specific maturation factor of Na+-NQR in proteobacteria, which is presumably involved in the delivery of Fe to form the (Cys)4[Fe] center between subunits NqrD and NqrE. IMPORTANCE Na+-translocating NADH:quinone oxidoreductase complex (Na+-NQR) is a unique primary Na+ pump believed to enhance the vitality of many bacteria, including important pathogens such as Vibrio cholerae, Vibrio

  1. The single NqrB and NqrC subunits in the Na(+)-translocating NADH: quinone oxidoreductase (Na(+)-NQR) from Vibrio cholerae each carry one covalently attached FMN.

    PubMed

    Casutt, Marco S; Schlosser, Andreas; Buckel, Wolfgang; Steuber, Julia

    2012-10-01

    The Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) is the prototype of a novel class of flavoproteins carrying a riboflavin phosphate bound to serine or threonine by a phosphodiester bond to the ribityl side chain. This membrane-bound, respiratory complex also contains one non-covalently bound FAD, one non-covalently bound riboflavin, ubiquinone-8 and a [2Fe-2S] cluster. Here, we report the quantitative analysis of the full set of flavin cofactors in the Na(+)-NQR and characterize the mode of linkage of the riboflavin phosphate to the membrane-bound NqrB and NqrC subunits. Release of the flavin by β-elimination and analysis of the cofactor demonstrates that the phosphate group is attached at the 5'-position of the ribityl as in authentic FMN and that the Na(+)-NQR contains approximately 1.7mol covalently bound FMN per mol non-covalently bound FAD. Therefore, each of the single NqrB and NqrC subunits in the Na(+)-NQR carries a single FMN. Elimination of the phosphodiester bond yields a dehydro-2-aminobutyrate residue, which is modified with β-mercaptoethanol by Michael addition. Proteolytic digestion followed by mass determination of peptide fragments reveals exclusive modification of threonine residues, which carry FMN in the native enzyme. The described reactions allow quantification and localization of the covalently attached FMNs in the Na(+)-NQR and in related proteins belonging to the Rhodobacter nitrogen fixation (RNF) family of enzymes. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012). PMID:22366169

  2. NMR and NQR study of Si-doped (6,0) zigzag single-walled aluminum nitride nanotube as n or P-semiconductors.

    PubMed

    Baei, Mohammad T; Peyghan, Ali Ahmadi; Tavakoli, Khadijeh; Babaheydari, Ali Kazemi; Moghimi, Masoumeh

    2012-09-01

    Density functional theory (DFT) calculations were performed to investigate the electronic structure properties of pristine and Si-doped aluminum nitride nanotubes as n or P-semiconductors at the B3LYP/6-31G* level of theory in order to evaluate the influence of Si-doped in the (6,0) zigzag AlNNTs. We extended the DFT calculation to predict the electronic structure properties of Si-doped aluminum nitride nanotubes, which are very important for production of solid-state devices and other applications. To this aim, pristine and Si-doped AlNNT structures in two models (Si(N) and Si(Al)) were optimized, and then the electronic properties, the isotropic (CS(I)) and anisotropic (CS(A)) chemical shielding parameters for the sites of various (27)Al and (14)N atoms, NQR parameters for the sites of various of (27)Al and (14)N atoms, and quantum molecular descriptors were calculated in the optimized structures. The optimized structures, the electronic properties, NMR and NQR parameters, and quantum molecular descriptors for the Si(N) and Si(Al) models show that the Si(N) model is a more reactive material than the pristine or Si(Al) model. PMID:22588584

  3. The application of frequency swept pulses for the acquisition of nuclear quadrupole resonance spectra

    NASA Astrophysics Data System (ADS)

    Rossini, Aaron J.; Hamaed, Hiyam; Schurko, Robert W.

    2010-09-01

    The acquisition of nuclear quadrupole resonance (NQR) spectra with wideband uniform rate and smooth truncation (WURST) pulses is investigated. 75As and 35Cl NQR spectra acquired with the WURST echo sequence are compared to those acquired with standard Hahn-echo sequences and echo sequences which employ composite refocusing pulses. The utility of WURST pulses for locating NQR resonances of unknown frequency is investigated by monitoring the integrated intensity and signal to noise of 35Cl and 75As NQR spectra acquired with transmitter offsets of several hundreds kilohertz from the resonance frequencies. The WURST echo sequence is demonstrated to possess superior excitation bandwidths in comparison to the pulse sequences which employ conventional monochromatic rectangular pulses. The superior excitation bandwidths of the WURST pulses allows for differences in the characteristic impedance of the receiving and excitation circuits of the spectrometer to be detected. Impedance mismatches have previously been reported by Marion and Desvaux [D.J.Y. Marion, H. Desvaux, J. Magn. Reson. (2008) 193(1) 153-157] and Muller et al. [M. Nausner, J. Schlagnitweit, V. Smrecki, X. Yang, A. Jerschow, N. Muller, J. Magn. Reson. (2009) 198(1) 73-79]. In this regard, WURST pulse sequences may afford an efficient new method for experimentally detecting impedance mismatches between receiving and excitation circuits, allowing for the optimization of solids and solution NMR and NQR spectrometer systems. The use of the Carr-Purcell Meiboom-Gill (CPMG) pulse sequence for signal enhancement of NQR spectra acquired with WURST pulses and conventional pulses is also investigated. Finally, the utility of WURST pulses for the acquisition of wideline NQR spectra is demonstrated by acquiring part of the 63/65Cu NQR spectrum of CuCN.

  4. Pulsed Spin Locking in Spin-1 NQR: Broadening Mechanisms

    NASA Astrophysics Data System (ADS)

    Malone, Michael W.

    Nuclear Quadrupole Resonance (NQR) is a branch of magnetic resonance physics that allows for the detection of spin I > 1/2 nuclei in crystalline and semi-crystalline materials. Through the application of a resonant radio frequency (rf) pulse, the nuclei's response is to create an oscillating magnetic moment at a frequency unique to the target substance. This creates the NQR signal, which is typically weak and rapidly decaying. The decay is due to the various line broadening mechanisms, the relative strengths of which are functions of the specific material, in addition to thermal relaxation processes. Through the application of a series of rf pulses the broadening mechanisms can be refocused, narrowing the linewidth and extending the signal in time. Three line broadening mechanisms are investigated to explain the NQR signal's linewidth and behavior. The first, electric field gradient (EFG) inhomogeneity, is due to variations in the local electric environment among the target nuclei, for instance from crystal imperfections. While EFG inhomogeneity can vary between samples of the same chemical composition and structure, the other broadening mechanisms of homonuclear and heteronuclear dipolar coupling are specific to this composition and structure. Simple analytical models are developed that explain the NQR signal response to pulse sequences by accounting for the behavior of each broadening mechanism. After a general theoretical introduction, a model of pairs of spin-1 nuclei is investigated, and the refocusing behaviors of EFG and homonuclear dipolar coupling are analyzed. This reveals the conditions where EFG is refocused but homonuclear dipolar coupling is not. In this case the resulting signal shows a rapid decay, the rate of which becomes a measure of interatomic distances. This occurs even in the more complex case of a powder sample with its many randomly oriented crystallites, under particular pulsing conditions. Many target NQR compounds are rich in hydrogen

  5. Studies of Ga NMR and NQR in SrGa4

    NASA Astrophysics Data System (ADS)

    Niki, H.; Higa, N.; Nakamura, S.; Kuroshima, H.; Toji, T.; Yogi, M.; Nakamura, A.; Hedo, M.; Nakama, T.; Ōnuki, Y.; Harima, H.

    2015-04-01

    In order to microscopically investigate the properties in SrGa4, the Ga NMR measurements of a powder sample were carried out. The Ga NMR spectra corresponding to Ga(I) and Ga(II) sites are obtained. The NMR spectra of 69&71Ga (a nuclear spin I = 3/2) in the powder sample of SrGa4 do not take a typical powder pattern caused by the NQR interaction, but take the spectra consisting of three well resolved resonance-lines, which indicates that the nonuniform distribution of crystal orientation in the powder sample occurs because of the magnetic anisotropy. From the analysis of the Ga NMR spectrum, it is found that the ab-plane of the crystal is parallel to the external magnetic field, which would be attributed to the anisotropy of the magnetic susceptibility with the easy axis parallel to the ab-plane. This result is also confirmed by the 69Ga NQR in SrGa4. The Knight shifts of the 69Ga(I) and 69Ga(II) shift slightly to the negative side with decreasing temperature due to the core polarization of the d-electrons. The values of the Knight shift of the 69Ga(I) and 69Ga(II) are 0.01 and -0.11 % at 4.2 K, and 0.09 and -0.08 % at 300 K, respectively. The values of the 1/ T 1 T of the NMR of both 69Ga(I) and 69Ga(II) are almost constant between 4.2 and 100 K, whose values are 1.5 s -1 K -1 at 69Ga(I) and 0.12 s -1 K -1 at 69Ga(II), while the 1/ T 1 T slightly increase above 100K with increasing temperature. The value of T 1 of 69Ga(I) is one order of magnitude less than that of 69Ga(II).

  6. 14 N NMR of tetrapropylammonium based crystals

    NASA Astrophysics Data System (ADS)

    Dib, E.; Mineva, T.; Gaveau, P.; Alonso, B.

    2015-07-01

    We have investigated using 14N NMR different types of materials containing tetrapropylammonium cations. We consider the tetrapropylammonium bromide crystal as well as two different microporous materials silicalite-1 and AlPO-5, with MFI and AFI topology respectively, where the tetrapropylammonium cation plays the role of structure directing agent. 14N NMR quadrupolar coupling parameters were determined experimentally for all the crystals. In addition calculations based on Density Functional Theory with empirical dispersion (DFT-D) were performed on the MFI type zeolite. The sensitivity of the 14N quadrupolar coupling parameters to the spatial distribution of the anions in the zeolite's framework is emphasized.

  7. Enhancing nuclear quadrupole resonance (NQR) signature detection leveraging interference suppression algorithms

    NASA Astrophysics Data System (ADS)

    DeBardelaben, James A.; Miller, Jeremy K.; Myrick, Wilbur L.; Miller, Joel B.; Gilbreath, G. Charmaine; Bajramaj, Blerta

    2012-06-01

    Nuclear quadrupole resonance (NQR) is a radio frequency (RF) magnetic spectroscopic technique that has been shown to detect and identify a wide range of explosive materials containing quadrupolar nuclei. The NQR response signal provides a unique signature of the material of interest. The signal is, however, very weak and can be masked by non-stationary RF interference (RFI) and thermal noise, limiting detection distance. In this paper, we investigate the bounds on the NQR detection range for ammonium nitrate. We leverage a low-cost RFI data acquisition system composed of inexpensive B-field sensing and commercial-off-the-shelf (COTS) software-defined radios (SDR). Using collected data as RFI reference signals, we apply adaptive filtering algorithms to mitigate RFI and enable NQR detection techniques to approach theoretical range bounds in tactical environments.

  8. Localization and Function of the Membrane-bound Riboflavin in the Na+-translocating NADH:Quinone Oxidoreductase (Na+-NQR) from Vibrio cholerae*

    PubMed Central

    Casutt, Marco S.; Huber, Tamara; Brunisholz, René; Tao, Minli; Fritz, Günter; Steuber, Julia

    2010-01-01

    The sodium ion-translocating NADH:quinone oxidoreductase (Na+-NQR) from the human pathogen Vibrio cholerae is a respiratory membrane protein complex that couples the oxidation of NADH to the transport of Na+ across the bacterial membrane. The Na+-NQR comprises the six subunits NqrABCDEF, but the stoichiometry and arrangement of these subunits are unknown. Redox-active cofactors are FAD and a 2Fe-2S cluster on NqrF, covalently attached FMNs on NqrB and NqrC, and riboflavin and ubiquinone-8 with unknown localization in the complex. By analyzing the cofactor content and NADH oxidation activity of subcomplexes of the Na+-NQR lacking individual subunits, the riboflavin cofactor was unequivocally assigned to the membrane-bound NqrB subunit. Quantitative analysis of the N-terminal amino acids of the holo-complex revealed that NqrB is present in a single copy in the holo-complex. It is concluded that the hydrophobic NqrB harbors one riboflavin in addition to its covalently attached FMN. The catalytic role of two flavins in subunit NqrB during the reduction of ubiquinone to ubiquinol by the Na+-NQR is discussed. PMID:20558724

  9. Bonding and molecular motions in the 1:1 molecular complexes of 1,4-diazabicyclo[2.2.2]octane with tetrahalomethane as studied by means of NQR

    NASA Astrophysics Data System (ADS)

    Okuda, T.; Suzuki, T.; Negita, H.

    1983-12-01

    NQR spectra were observed in the complexes of 1,4-diazabicyclo[2.2.2]octane (DABCO) with tetrachloromethane and tetrabromomethane at various temperatures. A phase transition was found at 319 K for DABCO·CBr 4. From spin-lattice relaxation times of nitrogen-14 in DABCO·CBr 4, the activation energy of the reorientation of DABCO about the NN axis was calculated to be 18.3 kJ/mol which agrees with the value obtained from the second moment of proton NMR spectra. The bond nature is discussed using the Townes-Dailey treatment.

  10. An efficient NMR method for the characterisation of 14N sites through indirect 13C detection

    PubMed Central

    Jarvis, James A.; Haies, Ibraheem M.

    2013-01-01

    Nitrogen is one of the most abundant elements and plays a key role in the chemistry of biological systems. Despite its widespread distribution, the study of the naturally occurring isotope of nitrogen, 14N (99.6%), has been relatively limited as it is a spin-1 nucleus that typically exhibits a large quadrupolar interaction. Accordingly, most studies of nitrogen sites in biomolecules have been performed on samples enriched with 15N, limiting the application of NMR to samples which can be isotopically enriched. This precludes the analysis of naturally occurring samples and results in the loss of the wealth of structural and dynamic information that the quadrupolar interaction can provide. Recently, several experimental approaches have been developed to characterize 14N sites through their interaction with neighboring ‘spy’ nuclei. Here we describe a novel version of these experiments whereby coherence between the 14N site and the spy nucleus is mediated by the application of a moderate rf field to the 14N. The resulting 13C/14N spectra show good sensitivity on natural abundance and labeled materials; whilst the 14N lineshapes permit the quantitative analysis of the quadrupolar interaction. PMID:23589073

  11. Temperature dependence of 35Cl NQR in 3,4-Dichlorophenol

    NASA Astrophysics Data System (ADS)

    Chandramani, R.; Devaraj, N.; Indumathy, A.; Ramakrishna, J.

    NQR frequencies in 3,4-dichlorophenol are investigated in the temperature range 77 K to room temperature. Two resonances have been observed throughout the temperature range, corresponding to the two chemically inequivalent chlorine sites. Using Bayer's theory and Brown's method torsional frequencies and their temperature dependence in this range are estimated.

  12. Temperature and baric dependence of nuclear quadruple resonance spectra in indium and gallium monoselenides

    NASA Astrophysics Data System (ADS)

    Khandozhko, Victor; Raranskii, Nikolai; Balazjuk, Vitaly; Samila, Andriy; Kovalyuk, Zahar

    2013-12-01

    Pulsed radiospectroscopy method has been used to study nuclear quadruple resonance (NQR) spectra of 69Ga and 115In isotopes in the layered semiconductors GaSe and InSe. It has been found that in GaSe and InSe there is a considerable temperature dependence of NQR frequency which in the temperature range of 250 to 390 K is practically linear with conversion slope 1.54 kHz/degree for 69Ga and 2.35 kHz/degree for 115In. In the same crystals the effect of uniaxial pressure on NQR spectra applied along the optical axis с up to the values of 500 kg/сm2 has been studied. A strong attenuation of NQR spectra intensity with increase in pressure on layered crystal package has been established. The unvaried multiplicity of resonance spectra indicates the absence of structural transformations in these layered crystals over the investigated range of temperatures and pressures.

  13. LINE LISTS FOR THE A {sup 2}Π-X {sup 2}Σ{sup +} (RED) AND B {sup 2}Σ{sup +}-X {sup 2}Σ{sup +} (VIOLET) SYSTEMS OF CN, {sup 13}C{sup 14}N, AND {sup 12}C{sup 15}N, AND APPLICATION TO ASTRONOMICAL SPECTRA

    SciTech Connect

    Sneden, Christopher; Lucatello, Sara; Ram, Ram S.; Brooke, James S. A.; Bernath, Peter E-mail: sara.lucatello@oapd.inaf.it E-mail: jsabrooke@gmail.com

    2014-10-01

    New red and violet system line lists for the CN isotopologues {sup 13}C{sup 14}N and {sup 12}C{sup 15}N have been generated. These new transition data are combined with those previously derived for {sup 12}C{sup 14}N, and applied to the determination of CNO abundances in the solar photosphere and in four red giant stars: Arcturus, the bright, very low-metallicity star HD 122563, and the carbon-enhanced metal-poor stars HD 196944 and HD 201626. When both red and violet system lines are detectable in a star, their derived N abundances are in good agreement. The mean N abundances determined in this work are also generally in accord with published values.

  14. Natural abundance 14N and 15N solid-state NMR of pharmaceuticals and their polymorphs

    DOE PAGESBeta

    Veinberg, Stanislav L.; Johnston, Karen E.; Jaroszewicz, Michael J.; Kispal, Brianna M.; Mireault, Christopher R.; Kobayashi, Takeshi; Pruski, Marek; Schurko, Robert W.

    2016-06-08

    14N ultra-wideline (UW), 1H{15N} indirectly-detected HETCOR (idHETCOR) and 15N dynamic nuclear polarization (DNP) solid-state NMR (SSNMR) experiments, in combination with plane-wave density functional theory (DFT) calculations of 14N EFG tensors, were utilized to characterize a series of nitrogen-containing active pharmaceutical ingredients (APIs), including HCl salts of scopolamine, alprenolol, isoprenaline, acebutolol, dibucaine, nicardipine, and ranitidine. Here, a case study applying these methods for the differentiation of polymorphs of bupivacaine HCl is also presented. All experiments were conducted upon samples with naturally-abundant nitrogen isotopes. For most of the APIs, it was possible to acquire frequency-stepped UW 14N SSNMR spectra of stationarymore » samples, which display powder patterns corresponding to pseudo-tetrahedral (i.e., RR'R"NH+ and RR'NH2+) or other (i.e., RNH2 and RNO2) nitrogen environments.« less

  15. The Conformational Changes Induced by Ubiquinone Binding in the Na+-pumping NADH:Ubiquinone Oxidoreductase (Na+-NQR) Are Kinetically Controlled by Conserved Glycines 140 and 141 of the NqrB Subunit*

    PubMed Central

    Strickland, Madeleine; Juárez, Oscar; Neehaul, Yashvin; Cook, Darcie A.; Barquera, Blanca; Hellwig, Petra

    2014-01-01

    Na+-pumping NADH:ubiquinone oxidoreductase (Na+-NQR) is responsible for maintaining a sodium gradient across the inner bacterial membrane. This respiratory enzyme, which couples sodium pumping to the electron transfer between NADH and ubiquinone, is not present in eukaryotes and as such could be a target for antibiotics. In this paper it is shown that the site of ubiquinone reduction is conformationally coupled to the NqrB subunit, which also hosts the final cofactor in the electron transport chain, riboflavin. Previous work showed that mutations in conserved NqrB glycine residues 140 and 141 affect ubiquinone reduction and the proper functioning of the sodium pump. Surprisingly, these mutants did not affect the dissociation constant of ubiquinone or its analog HQNO (2-n-heptyl-4-hydroxyquinoline N-oxide) from Na+-NQR, which indicates that these residues do not participate directly in the ubiquinone binding site but probably control its accessibility. Indeed, redox-induced difference spectroscopy showed that these mutations prevented the conformational change involved in ubiquinone binding but did not modify the signals corresponding to bound ubiquinone. Moreover, data are presented that demonstrate the NqrA subunit is able to bind ubiquinone but with a low non-catalytically relevant affinity. It is also suggested that Na+-NQR contains a single catalytic ubiquinone binding site and a second site that can bind ubiquinone but is not active. PMID:25006248

  16. Temperature variation of ultralow frequency modes and mean square displacements in solid lasamide (diuretic drug) studied by 35Cl-NQR, X-ray and DFT/QTAIM.

    PubMed

    Latosińska, Jolanta Natalia; Latosińska, Magdalena; Kasprzak, Jerzy; Tomczak, Magdalena; Maurin, Jan Krzysztof

    2012-10-25

    displacements at both chlorine sites is derived from the (35)Cl-NQR temperature dependence. The frequencies of torsional vibrations higher for the para site than the ortho site are in good agreement with those obtained from thermal parameters obtained from X-ray studies. The mean square angle displacements are in good agreement with those estimated from X-ray data with the use of the TLS model. The detailed DFT/QTAIM analysis suggests that the interplay between different hydrogen bonds in adjacent molecules forming dimers is responsible for the differences in flexibility of the carboxyl and sulphonamide substituents as well as both C-Cl(1) and C-Cl(2) bonds. Three ultralow wavenumber modes of internal vibrations in Raman and IR spectra obtained at the B3LYP/6-311++G(d,p) level close to those obtained within the TLS model suggest that internal and external modes of vibrations are not well separated. PMID:23020838

  17. Suppression of electron correlations in the collapsed tetragonal phase of CaFe2As2 under ambient pressure demonstrated by As75 NMR/NQR measurements

    SciTech Connect

    Furukawa, Yuji; Roy, Beas; Ran, Sheng; Budko, Sergey L.; Canfield, Paul C.

    2014-03-20

    The static and the dynamic spin correlations in the low-temperature collapsed tetragonal and the high-temperature tetragonal phase in CaFe2As2 have been investigated by As75 nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements. Through the temperature (T) dependence of the nuclear spin lattice relaxation rates (1/T1) and the Knight shifts, although stripe-type antiferromagnetic (AFM) spin correlations are realized in the high-temperature tetragonal phase, no trace of the AFM spin correlations can be found in the nonsuperconducting, low-temperature, collapsed tetragonal (cT) phase. Given that there is no magnetic broadening in As75 NMR spectra, together with the T-independent behavior of magnetic susceptibility χ and the T dependence of 1/T1Tχ, we conclude that Fe spin correlations are completely quenched statically and dynamically in the nonsuperconducting cT phase in CaFe2As2.

  18. Suppression of electron correlations in the collapsed tetragonal phase of CaFe2As2 under ambient pressure demonstrated by As75 NMR/NQR measurements

    NASA Astrophysics Data System (ADS)

    Furukawa, Y.; Roy, B.; Ran, S.; Bud'ko, S. L.; Canfield, P. C.

    2014-03-01

    The static and the dynamic spin correlations in the low-temperature collapsed tetragonal and the high-temperature tetragonal phase in CaFe2As2 have been investigated by As75 nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements. Through the temperature (T) dependence of the nuclear spin lattice relaxation rates (1/T1) and the Knight shifts, although stripe-type antiferromagnetic (AFM) spin correlations are realized in the high-temperature tetragonal phase, no trace of the AFM spin correlations can be found in the nonsuperconducting, low-temperature, collapsed tetragonal (cT) phase. Given that there is no magnetic broadening in As75 NMR spectra, together with the T-independent behavior of magnetic susceptibility χ and the T dependence of 1/T1Tχ, we conclude that Fe spin correlations are completely quenched statically and dynamically in the nonsuperconducting cT phase in CaFe2As2.

  19. Broadband echo sequence using a pi composite pulse for the pure NQR of a spin I = 32 powder sample

    PubMed

    Odin

    2000-04-01

    This work presents a numerical approach to optimizing sequences with composite pulses for the pure NQR of a spin I = 32 powder sample. The calculations are based on a formalism developed in a previous paper, which allows a fast powder-averaging procedure to be implemented. The framework of the Cayley-Klein matrices to describe space rotations by 2 x 2 unitary and unimodular complex matrices is used to calculate the pulse propagators. The object of such a study is to design a high-performance echo sequence composed of a single preparation pulse and a three-pulse composite transfer pulse. We mean a sequence leading to a large excitation bandwidth with a good signal-to-noise ratio, a flat excitation profile near the irradiation frequency, and a good linearity of the phase as a function of frequency offset. Such a composite echo sequence is intended to give a better excitation profile than the classical Hahn (θ)-tau-(2θ) echo sequence. It is argued that in pure NQR of a powder sample, the sequence must be optimized as a whole since both the excitation and the reception of the signal depend on the relative orientation of the crystallites with respect to the coil axis. To our knowledge, this is the first time such a global approach is presented. An extensive numerical study of the composite echo sequence described above is performed in this article. The key of the discrimination between the sequences lies in using the first five reduced moments of the excitation profile as well as an estimator of the phase linearity. Based on such information, we suggest that the echo sequence that best fulfills our criterion is (1)(0)-tau-(0.35)(0)(2.1)(pi)(0.35)(0), the pulse angles omega(RF)t(p) being in radians. The subscripts are the relative pulse phases. We outlined the way to implement the spin echo mapping method to reconstruct large spectra with this sequence, and it is shown that it reduces the acquisition time by a factor of 1.7 if compared to the classical Hahn echo. Some

  20. Natural abundance (14)N and (15)N solid-state NMR of pharmaceuticals and their polymorphs.

    PubMed

    Veinberg, Stanislav L; Johnston, Karen E; Jaroszewicz, Michael J; Kispal, Brianna M; Mireault, Christopher R; Kobayashi, Takeshi; Pruski, Marek; Schurko, Robert W

    2016-06-29

    (14)N ultra-wideline (UW), (1)H{(15)N} indirectly-detected HETCOR (idHETCOR) and (15)N dynamic nuclear polarization (DNP) solid-state NMR (SSNMR) experiments, in combination with plane-wave density functional theory (DFT) calculations of (14)N EFG tensors, were utilized to characterize a series of nitrogen-containing active pharmaceutical ingredients (APIs), including HCl salts of scopolamine, alprenolol, isoprenaline, acebutolol, dibucaine, nicardipine, and ranitidine. A case study applying these methods for the differentiation of polymorphs of bupivacaine HCl is also presented. All experiments were conducted upon samples with naturally-abundant nitrogen isotopes. For most of the APIs, it was possible to acquire frequency-stepped UW (14)N SSNMR spectra of stationary samples, which display powder patterns corresponding to pseudo-tetrahedral (i.e., RR'R''NH(+) and RR'NH2(+)) or other (i.e., RNH2 and RNO2) nitrogen environments. Directly-excited (14)N NMR spectra were acquired using the WURST-CPMG pulse sequence, which incorporates WURST (wideband, uniform rate, and smooth truncation) pulses and a CPMG (Carr-Purcell Meiboom-Gill) refocusing protocol. In certain cases, spectra were acquired using (1)H → (14)N broadband cross-polarization, via the BRAIN-CP (broadband adiabatic inversion - cross polarization) pulse sequence. These spectra provide (14)N electric field gradient (EFG) tensor parameters and orientations that are particularly sensitive to variations in local structure and intermolecular hydrogen-bonding interactions. The (1)H{(15)N} idHETCOR spectra, acquired under conditions of fast magic-angle spinning (MAS), used CP transfers to provide (1)H-(15)N chemical shift correlations for all nitrogen environments, except for two sites in acebutolol and nicardipine. One of these two sites (RR'NH2(+) in acebutolol) was successfully detected using the DNP-enhanced (15)N{(1)H} CP/MAS measurement, and one (RNO2 in nicardipine) remained elusive due to the absence of

  1. Gamma rays from muon capture in 14N

    NASA Astrophysics Data System (ADS)

    Stocki, T. J.; Measday, D. F.; Gete, E.; Saliba, M. A.; Moftah, B. A.; Gorringe, T. P.

    2002-01-01

    Many new γ-rays have been observed, following muon capture on 14N. One had been reported before, and the low yield is confirmed, indicating that the nuclear structure of 14N is still not understood. Gamma rays from 13C resulting from the reaction 14N( μ-, νn) 13C compare favourably with states observed in the reaction 14N( γ, p) 13C. More precise energies are also given for the 7017 and 6730 keV γ-rays in 14C.

  2. Measurement of temperature and temperature gradient in millimeter samples by chlorine NQR

    NASA Astrophysics Data System (ADS)

    Lužnik, Janko; Pirnat, Janez; Trontelj, Zvonko

    2009-09-01

    A mini-thermometer based on the 35Cl nuclear quadrupole resonance (NQR) frequency temperature dependence in the chlorates KClO3 and NaClO3 was built and successfully tested by measuring temperature and temperature gradient at 77 K and higher in about 100 mm3 active volume of a mini Joule-Thomson refrigerator. In the design of the tank-circuit coil, an array of small coils connected in series enabled us (a) to achieve a suitable ratio of inductance to capacity in the NQR spectrometer input tank circuit, (b) to use a single crystal of KClO3 or NaClO3 (of 1-2 mm3 size) in one coil as a mini-thermometer with a resolution of 0.03 K and (c) to construct a system for measuring temperature gradients when the spatial coordinates of each chlorate single crystal within an individual coil are known.

  3. NQR application to the study of hydrogen dynamics in hydrogen-bonded molecular dimers

    NASA Astrophysics Data System (ADS)

    Asaji, Tetsuo

    2016-12-01

    The temperature dependences of 1H NMR as well as 35Cl NQR spin-lattice relaxation times T 1 were investigated in order to study the hydrogen transfer dynamics in carboxylic acid dimers in 3,5-dichloro- and 2,6-dichlorobenzoic acids. The asymmetry energy A/ k B and the activation energy V/ k B for the hydrogen transfer were estimated to be 240 K and 900 K, and 840 K and 2500 K, respectively, for these compounds. In spite of a large asymmetric potential the quantum nature of hydrogen transfer is recognized in the slope of the temperature dependence of T 1 on the low-temperature side of the T 1 minimum. The NQR T 1 measurements was revealed to be a good probe for the hydrogen transfer dynamics.

  4. (14)N overtone NMR under MAS: signal enhancement using symmetry-based sequences and novel simulation strategies.

    PubMed

    Haies, Ibraheem M; Jarvis, James A; Bentley, Harry; Heinmaa, Ivo; Kuprov, Ilya; Williamson, Philip T F; Carravetta, Marina

    2015-03-01

    Overtone (14)N NMR spectroscopy is a promising route for the direct detection of (14)N signals with good spectral resolution. Its application is currently limited, however, by the absence of efficient polarization techniques for overtone signal enhancement and the lack of efficient numerical simulation techniques to aid in both the development of new methods and the analysis and interpretation of experimental data. In this paper we report a novel method for the transfer of polarization from (1)H to the (14)N overtone using symmetry-based R-sequences that overcome many of the limitations of adiabatic approaches that have worked successfully on static samples. Refinement of these sequences and the analysis of the resulting spectra have been facilitated through the development of an efficient simulation strategy for (14)N overtone NMR spectroscopy of spinning samples, using effective Hamiltonians on top of Floquet and Fokker-Planck equations. PMID:25662410

  5. Roles of the Sodium-Translocating NADH:Quinone Oxidoreductase (Na+-NQR) on Vibrio cholerae Metabolism, Motility and Osmotic Stress Resistance

    PubMed Central

    Minato, Yusuke; Halang, Petra; Quinn, Matthew J.; Faulkner, Wyatt J.; Aagesen, Alisha M.; Steuber, Julia; Stevens, Jan F.; Häse, Claudia C.

    2014-01-01

    The Na+ translocating NADH:quinone oxidoreductase (Na+-NQR) is a unique respiratory enzyme catalyzing the electron transfer from NADH to quinone coupled with the translocation of sodium ions across the membrane. Typically, Vibrio spp., including Vibrio cholerae, have this enzyme but lack the proton-pumping NADH:ubiquinone oxidoreductase (Complex I). Thus, Na+-NQR should significantly contribute to multiple aspects of V. cholerae physiology; however, no detailed characterization of this aspect has been reported so far. In this study, we broadly investigated the effects of loss of Na+-NQR on V. cholerae physiology by using Phenotype Microarray (Biolog), transcriptome and metabolomics analyses. We found that the V. cholerae ΔnqrA-F mutant showed multiple defects in metabolism detected by Phenotype Microarray. Transcriptome analysis revealed that the V. cholerae ΔnqrA-F mutant up-regulates 31 genes and down-regulates 55 genes in both early and mid-growth phases. The most up-regulated genes included the cadA and cadB genes, encoding a lysine decarboxylase and a lysine/cadaverine antiporter, respectively. Increased CadAB activity was further suggested by the metabolomics analysis. The down-regulated genes include sialic acid catabolism genes. Metabolomic analysis also suggested increased reductive pathway of TCA cycle and decreased purine metabolism in the V. cholerae ΔnqrA-F mutant. Lack of Na+-NQR did not affect any of the Na+ pumping-related phenotypes of V. cholerae suggesting that other secondary Na+ pump(s) can compensate for Na+ pumping activity of Na+-NQR. Overall, our study provides important insights into the contribution of Na+-NQR to V. cholerae physiology. PMID:24811312

  6. Sensitivity enhanced (14)N/(14)N correlations to probe inter-beta-sheet interactions using fast magic angle spinning solid-state NMR in biological solids.

    PubMed

    Pandey, Manoj Kumar; Amoureux, Jean-Paul; Asakura, Tetsuo; Nishiyama, Yusuke

    2016-08-10

    (14)N/(14)N correlations are vital for structural studies of solid samples, especially those in which (15)N isotopic enrichment is challenging, time-consuming and expensive. Although (14)N nuclei have high isotopic abundance (99.6%), there are inherent difficulties in observing (14)N/(14)N correlations due to limited resolution and sensitivity related to: (i) low (14)N gyromagnetic ratio (γ), (ii) large (14)N quadrupolar couplings, (iii) integer (14)N spin quantum number (I = 1), and (iv) very weak (14)N-(14)N dipolar couplings. Previously, we demonstrated a proton-detected 3D (14)N/(14)N/(1)H correlation experiment at fast magic angle spinning (MAS) on l-histidine·HCl·H2O utilizing a through-bond (J) and residual dipolar-splitting (RDS) based heteronuclear multiple quantum correlation (J-HMQC) sequence mediated through (1)H/(1)H radio-frequency driven recoupling (RFDR). As an extension of our previous work, in this study we show the utility of dipolar-based HMQC (D-HMQC) in combination with (1)H/(1)H RFDR mixing to obtain sensitivity enhanced (14)N/(14)N correlations in more complex biological solids such as a glycyl-l-alanine (Gly-l-Ala) dipeptide, and parallel (P) and antiparallel (AP) β-strand alanine tripeptides (P-(Ala)3 and AP-(Ala)3, respectively). These systems highlight the mandatory necessity of 3D (14)N/(14)N/(1)H measurements to get (14)N/(14)N correlations when the amide proton resonances are overlapped. Moreover, the application of long selective (14)N pulses, instead of short hard ones, is shown to improve the sensitivity. Globally, we demonstrate that replacing J-scalar with dipolar interaction and hard- with selective-(14)N pulses allows gaining a factor of ca. 360 in experimental time. On the basis of intermolecular NH/NH distances and (14)N quadrupolar tensor orientations, (14)N/(14)N correlations are effectively utilized to make a clear distinction between the parallel and antiparallel arrangements of the β-strands in (Ala)3 through the

  7. Single crystal zeeman effect studies on 35Cl NQR lines of 2,6-dichlorophenol

    NASA Astrophysics Data System (ADS)

    Prasad, N. V. L. N.; Venkatacharyulu, P.; Premaswarup, D.

    1987-10-01

    Zeeman effect studies on the two 35Cl NQR lines in cylindrical single crystals of 2,6-dichlorophenol were carried out using a self-quenched super-regenerative NQR spectrometer to obtain information on the nature of the crystalline unit cell and the effect of hydrogen bonding on the electric field gradient tensor. Analysis of the experimental data reveals: (1) the results are in good agreement with those reported from X-ray studies; (2) the crystal is unequivocally identified as belonging to the orthorhombic system; (3) there are two crystallographically equivalent and four physically nonequivalent directions for the principal field gradients for both the low and high frequency resonance lines; (4) the directions of the crystalline a, b, c axes are uniquely identified as (90°, 0°), (0°, -), and (90°, 90°); (5) the b-axis is identified as the growth axis; (6) there are a minimum of four molecules per unit cell, the four molecules lie in different planes, which are, however, connected by symmetry operations; (7)_there exists a weak intramolecular hydrogen bonding in the crystal; (8) the asymmetry parameters for the loci corresponding to the low frequency resonance line, which is affected by hydrogen bonding, are less than the asymmetry parameters of the loci corresponding to the high frequency resonance line, which is not affected by hydrogen bonding; (9) the single bond and ionic bond characters for the hish frequency line are less than that of the low frequency line, while the double bond character for the low frequency line is less than that of the high frequency line and (10) the small deviation between the single bond and double bond characters of the two resonance lines is attributed to the existence of weak hydrogen bonding in the crystal.

  8. Radiative n 14N capture at astrophysical energies

    NASA Astrophysics Data System (ADS)

    Dubovichenko, S. B.

    2013-06-01

    In the potential cluster model with forbidden states and classification of orbital cluster states according to Young's schemes, the possibility is considered of describing the experimental data for the total cross sections of radiative n 14N capture at energies from 25.0 meV (25•10-3 eV) to 1.0 MeV. It is shown that on the whole it is possible to successfully explain the behavior of these cross sections outside the resonant energy region on the basis of the E1 transition from the 2S1/2 scattering wave with zero phase to the bound 2Р1/2 state of the 15N nucleus in the n14N channel.

  9. Solid-state NMR/NQR and first-principles study of two niobium halide cluster compounds.

    PubMed

    Perić, Berislav; Gautier, Régis; Pickard, Chris J; Bosiočić, Marko; Grbić, Mihael S; Požek, Miroslav

    2014-01-01

    Two hexanuclear niobium halide cluster compounds with a [Nb6X12](2+) (X=Cl, Br) diamagnetic cluster core, have been studied by a combination of experimental solid-state NMR/NQR techniques and PAW/GIPAW calculations. For niobium sites the NMR parameters were determined by using variable Bo field static broadband NMR measurements and additional NQR measurements. It was found that they possess large positive chemical shifts, contrary to majority of niobium compounds studied so far by solid-state NMR, but in accordance with chemical shifts of (95)Mo nuclei in structurally related compounds containing [Mo6Br8](4+) cluster cores. Experimentally determined δiso((93)Nb) values are in the range from 2,400 to 3,000 ppm. A detailed analysis of geometrical relations between computed electric field gradient (EFG) and chemical shift (CS) tensors with respect to structural features of cluster units was carried out. These tensors on niobium sites are almost axially symmetric with parallel orientation of the largest EFG and the smallest CS principal axes (Vzz and δ33) coinciding with the molecular four-fold axis of the [Nb6X12](2+) unit. Bridging halogen sites are characterized by large asymmetry of EFG and CS tensors, the largest EFG principal axis (Vzz) is perpendicular to the X-Nb bonds, while intermediate EFG principal axis (Vyy) and the largest CS principal axis (δ11) are oriented in the radial direction with respect to the center of the cluster unit. For more symmetrical bromide compound the PAW predictions for EFG parameters are in better correspondence with the NMR/NQR measurements than in the less symmetrical chlorine compound. Theoretically predicted NMR parameters of bridging halogen sites were checked by (79/81)Br NQR and (35)Cl solid-state NMR measurements. PMID:24581866

  10. Structural and Functional Investigation of Flavin Binding Center of the NqrC Subunit of Sodium-Translocating NADH:Quinone Oxidoreductase from Vibrio harveyi

    PubMed Central

    Bertsova, Yulia; Polovinkin, Vitaly; Gushchin, Ivan; Ishchenko, Andrii; Kovalev, Kirill; Mishin, Alexey; Kachalova, Galina; Popov, Alexander; Bogachev, Alexander; Gordeliy, Valentin

    2015-01-01

    Na+-translocating NADH:quinone oxidoreductase (NQR) is a redox-driven sodium pump operating in the respiratory chain of various bacteria, including pathogenic species. The enzyme has a unique set of redox active prosthetic groups, which includes two covalently bound flavin mononucleotide (FMN) residues attached to threonine residues in subunits NqrB and NqrC. The reason of FMN covalent bonding in the subunits has not been established yet. In the current work, binding of free FMN to the apo-form of NqrC from Vibrio harveyi was studied showing very low affinity of NqrC to FMN in the absence of its covalent bonding. To study structural aspects of flavin binding in NqrC, its holo-form was crystallized and its 3D structure was solved at 1.56 Å resolution. It was found that the isoalloxazine moiety of the FMN residue is buried in a hydrophobic cavity and that its pyrimidine ring is squeezed between hydrophobic amino acid residues while its benzene ring is extended from the protein surroundings. This structure of the flavin-binding pocket appears to provide flexibility of the benzene ring, which can help the FMN residue to take the bended conformation and thus to stabilize the one-electron reduced form of the prosthetic group. These properties may also lead to relatively weak noncovalent binding of the flavin. This fact along with periplasmic location of the FMN-binding domains in the vast majority of NqrC-like proteins may explain the necessity of the covalent bonding of this prosthetic group to prevent its loss to the external medium. PMID:25734798

  11. Structural and functional investigation of flavin binding center of the NqrC subunit of sodium-translocating NADH:quinone oxidoreductase from Vibrio harveyi.

    PubMed

    Borshchevskiy, Valentin; Round, Ekaterina; Bertsova, Yulia; Polovinkin, Vitaly; Gushchin, Ivan; Ishchenko, Andrii; Kovalev, Kirill; Mishin, Alexey; Kachalova, Galina; Popov, Alexander; Bogachev, Alexander; Gordeliy, Valentin

    2015-01-01

    Na+-translocating NADH:quinone oxidoreductase (NQR) is a redox-driven sodium pump operating in the respiratory chain of various bacteria, including pathogenic species. The enzyme has a unique set of redox active prosthetic groups, which includes two covalently bound flavin mononucleotide (FMN) residues attached to threonine residues in subunits NqrB and NqrC. The reason of FMN covalent bonding in the subunits has not been established yet. In the current work, binding of free FMN to the apo-form of NqrC from Vibrio harveyi was studied showing very low affinity of NqrC to FMN in the absence of its covalent bonding. To study structural aspects of flavin binding in NqrC, its holo-form was crystallized and its 3D structure was solved at 1.56 Å resolution. It was found that the isoalloxazine moiety of the FMN residue is buried in a hydrophobic cavity and that its pyrimidine ring is squeezed between hydrophobic amino acid residues while its benzene ring is extended from the protein surroundings. This structure of the flavin-binding pocket appears to provide flexibility of the benzene ring, which can help the FMN residue to take the bended conformation and thus to stabilize the one-electron reduced form of the prosthetic group. These properties may also lead to relatively weak noncovalent binding of the flavin. This fact along with periplasmic location of the FMN-binding domains in the vast majority of NqrC-like proteins may explain the necessity of the covalent bonding of this prosthetic group to prevent its loss to the external medium. PMID:25734798

  12. Ab initio DFT study of bisphosphonate derivatives as a drug for inhibition of cancer: NMR and NQR parameters.

    PubMed

    Aghabozorg, Hussein; Sohrabi, Beheshteh; Mashkouri, Sara; Aghabozorg, Hamid Reza

    2012-03-01

    DFT computations were carried out to characterize the (17)Oand (2)H electric field gradient, EFG, in various bisphosphonate derivatives. The computations were performed at the B3LYP level with 6-311++G (d,P) standard basis set. Calculated EFG tensors were used to determine the (17)O and (2)H nuclear quadrupole coupling constant, χ and asymmetry parameter, η. For better understanding of the bonding and electronic structure of bisphosphonates, isotropic and anisotropic NMR chemical shieldings were calculated for the (13)C, (17)O and (31)P nuclei using GIAO method for the optimized structure of intermediate bisphosphonates at B3LYP level of theory using 6-311++G (d, p) basis set. The results showed that various substituents have a strong effect on the nuclear quadrupole resonance (NQR) parameters (χ, η) of (17)O in contrast with (2)H NQR parameters. The NMR and NQR parameters were studied in order to find the correlation between electronic structure and the activity of the desired bisphosphonates. In addition, the effect of substitutions on the bisphosphonates polarity was investigated. Molecular polarity was determined via the DFT calculated dipole moment vectors and the results showed that substitution of bromine atom on the ring would increase the activity of bisphosphonates. PMID:21633790

  13. 14N Chemical Shifts and Quadrupole Coupling Constants of Inorganic Nitrates

    NASA Astrophysics Data System (ADS)

    Marburger, Simon P.; Fung, B. M.; Khitrin, A. K.

    2002-02-01

    The isotropic chemical shift and the nuclear quadrupole coupling constant for 14N were obtained for 14 inorganic nitrates by solid-state MAS NMR measurements at two different field strengths, 9.4 and 11.7 T. The compounds studied were polycrystalline powders of AgNO3, Al(NO3)3, Ba(NO3)2, Ca(NO3)2, CsNO3, KNO3, LiNO3, Mg(NO3)2, NaNO3, Pb(NO3)2, RbNO3, Sr(NO3)2, Th(NO3)4·4H2O, and UO2(NO3)2·3H2O. Even though the spectra show broadening due to 14N quadrupole interactions, linewidths of a few hundred hertz and a good signal-to-noise ratio were achieved. From the position of the central peaks at the two fields, the chemical shifts and the nuclear quadrupole coupling constants were calculated. The chemical shifts for all compounds studied range from 282 to 342 ppm with respect to NH4Cl. The nuclear quadrupole coupling constants range from 429 kHz for AgNO3 to 993 kHz for LiNO3. These data are compared with those available in the literature.

  14. Proton zero-quantum 2D NMR of 2-propenenitrile aligned by an electric field. Determination of the 2H and 14N quadrupole coupling constants

    NASA Astrophysics Data System (ADS)

    Ruessink, B. H.; De Kanter, F. J. J.; MaClean, C.

    Zero-quantum NMR, selectively detected by 2D NMR, is applied to observe small 1H- 1H dipolar couplings in a polar liquid partially oriented by a strong electric field. The normal (single-quantum) 1H spectrum is severely broadened, which prevents the observation of small couplings. The results from the zero-quantum proton spectrum are used to calculate the 2H and 14N quadrupole coupling constants of 2-deutero-2-propenenitrile from the 2H and 14N NMR spectra.

  15. Measurement of γ rays from μ^- capture on ^14N

    NASA Astrophysics Data System (ADS)

    Stocki, T. J.; Gete, E.; Lange, J.; Measday, D. F.; Moftah, B. A.; Saliba, M. A.; Gorringe, T. P.

    1997-10-01

    A μ^- beam produced at TRIUMF was stopped in a liquid nitrogen target and the γ-rays produced by μ^- capture on ^14N were measured using two HPGe detectors in a back-to-back geometry. Each HPGe detector was surrounded by a NaI annulus to veto γ-rays Compton scattered from the Ge detector. Each HPGe also had a plastic scintillator in front of it, to eliminate the background from muon decay electrons. Using this technique the following ^14C muon capture γ-rays have been observed: 809, 6092, and 6727 keV. The 7010 keV line, which has been seen before,(M.Giffon et al., Phys. Rev. C \\underline24, 241 (1981). ) was also observed. Gamma rays from ^13C have been observed for the first time. The yields of these γ-rays have been measured.

  16. Box-modeling of 15N/14N in mammals.

    PubMed

    Balter, Vincent; Simon, Laurent; Fouillet, Hélène; Lécuyer, Christophe

    2006-03-01

    The 15N/14N signature of animal proteins is now commonly used to understand their physiology and quantify the flows of nutrient in trophic webs. These studies assume that animals are predictably 15N-enriched relative to their food, but the isotopic mechanism which accounts for this enrichment remains unknown. We developed a box model of the nitrogen isotope cycle in mammals in order to predict the 15N/14N ratios of body reservoirs as a function of time, N intake and body mass. Results of modeling show that a combination of kinetic isotope fractionation during the N transfer between amines and equilibrium fractionation related to the reversible conversion of N-amine into ammonia is required to account for the well-established approximately 4 per thousand 15N-enrichment of body proteins relative to the diet. This isotopic enrichment observed in proteins is due to the partial recycling of 15N-enriched urea and the urinary excretion of a fraction of the strongly 15N-depleted ammonia reservoir. For a given body mass and diet delta15N, the isotopic compositions are mainly controlled by the N intake. Increase of the urea turnover combined with a decrease of the N intake lead to calculate a delta15N increase of the proteins, in agreement with the observed increase of collagen delta15N of herbivorous animals with aridity. We further show that the low delta15N collagen values of cave bears cannot be attributed to the dormancy periods as it is commonly thought, but inversely to the hyperphagia behavior. This model highlights the need for experimental investigations performed with large mammals in order to improve our understanding of natural variations of delta15N collagen. PMID:16328553

  17. The Titan 14N/ 15N and 12C/ 13C isotopic ratios in HCN from Cassini/CIRS

    NASA Astrophysics Data System (ADS)

    Vinatier, Sandrine; Bézard, Bruno; Nixon, Conor A.

    2007-11-01

    We report the detection of H 13CN and HC 15N in mid-infrared spectra recorded by the Composite Infrared Spectrometer (CIRS) aboard Cassini, along with the determination of the 12C/ 13C and 14N/ 15N isotopic ratios. We analyzed two sets of limb spectra recorded near 13-15° S (Tb flyby) and 83° N (T4 flyby) at 0.5 cm -1 resolution. The spectral range 1210-1310 cm -1 was used to retrieve the temperature profile in the range 145-490 km at 13° S and 165-300 km at 83° N. These two temperature profiles were then incorporated in the atmospheric model to retrieve the abundance profile of H 12C 14N, H 13CN and HC 15N from their bands at 713, 706 and 711 cm -1, respectively. The HCN abundance profile was retrieved in the range 90-460 km at 15° S and 165-305 km at 83° N. There is no evidence for vertical variations of the isotopic ratios. Constraining the isotopic abundance profiles to be proportional to the HCN one, we find C12/C13=89-18+22 at 15° S, and 68-12+16 at 83° N, two values that are statistically consistent. A combination of these results yields a 12C/ 13C value equal to 75±12. This global result, as well as the 15° S one, envelop the value in Titan's methane ( 82.3±1) [Niemann, H.B., and 17 colleagues, 2005. Nature 438, 779-784] measured at 10° S and is slightly lower than the terrestrial inorganic standard value (89). The 14N/ 15N isotopic ratio is found equal to 56-13+16 at 15° S and 56-9+10 at 83° N. Combining the two values yields 14N/ 15N = 56 ± 8, which corresponds to an enrichment in 15N of about 4.9 compared with the terrestrial ratio. These results agree with the values obtained from previous ground-based millimeter observations [Hidayat, T., Marten, A., Bézard, B., Gautier, D., Owen, T., Matthews, H.E., Paubert, G., 1997. Icarus 126, 170-182; Marten, A., Hidayat, T., Biraud, Y., Moreno, R., 2002. Icarus 158, 532-544]. The 15N/ 14N ratio found in HCN is ˜3 times higher than in N 2 [Niemann, H.B., and 17 colleagues, 2005. Nature 438, 779

  18. Powder-XRD and (14) N magic angle-spinning solid-state NMR spectroscopy of some metal nitrides.

    PubMed

    Kempgens, Pierre; Britton, Jonathan

    2016-05-01

    Some metal nitrides (TiN, ZrN, InN, GaN, Ca3 N2 , Mg3 N2 , and Ge3 N4 ) have been studied by powder X-ray diffraction (XRD) and (14) N magic angle-spinning (MAS) solid-state NMR spectroscopy. For Ca3 N2 , Mg3 N2 , and Ge3 N4 , no (14) N NMR signal was observed. Low speed (νr  = 2 kHz for TiN, ZrN, and GaN; νr  = 1 kHz for InN) and 'high speed' (νr  = 15 kHz for TiN; νr  = 5 kHz for ZrN; νr  = 10 kHz for InN and GaN) MAS NMR experiments were performed. For TiN, ZrN, InN, and GaN, powder-XRD was used to identify the phases present in each sample. The number of peaks observed for each sample in their (14) N MAS solid-state NMR spectrum matches perfectly well with the number of nitrogen-containing phases identified by powder-XRD. The (14) N MAS solid-state NMR spectra are symmetric and dominated by the quadrupolar interaction. The envelopes of the spinning sidebands manifold are Lorentzian, and it is concluded that there is a distribution of the quadrupolar coupling constants Qcc 's arising from structural defects in the compounds studied. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26687421

  19. Chemical structure and intra-molecular effects on NMR-NQR tensors of harmine and harmaline alkaloids

    NASA Astrophysics Data System (ADS)

    Ahmadinejad, Neda; Tahan, Arezoo; Talebi Tari, Mostafa

    2016-02-01

    Density functional theory (DFT) methods were used to analyze the effects of molecular structure and ring currents on the NMR chemical shielding tensors and NQR frequencies of harmine and harmaline alkaloids in the gas phase. The results demonstrated that NMR tensors and NQR frequencies of 15N nuclei in these compounds depend on chemical environment and resonance interactions. Hence, their values are obviously different in the mentioned structures. The interpretation of natural bond orbital (NBO) data suggests that in harmine structure, the lone pair participation of N9 in π-system electron clouds causes to development of aromaticity nature in pyrrole ring. However, the chemical shielding around N9 atom in harmine structure is higher than in harmaline, while in harmaline structure, lone pair participation of N2 in π-system electron clouds causes to development of aromaticity nature in pyridine ring. Hence, chemical shielding around N2 atom in harmaline structure is higher than in harmine. It can be deduced that by increasing lone pair electrons contribution of nitrogen atoms in ring resonance interactions and aromaticity development, the values of NMR chemical shielding around them increase, while χ and q zz values of these nuclei decrease.

  20. 14N nuclear quadrupole resonance in carcinostatic phosphamides

    NASA Astrophysics Data System (ADS)

    Greenbaum, S. G.; Bray, P. J.

    1980-02-01

    Nitrogen-14 nuclear quadrupole resonance spectra of the anti-cancer drugs cyclophosphamide monohydrate, isonphosphamide and triphosphamide have been detected at 77 K. The electron distribution in the vicinity of the nitrogens possessing trigonal bonding configurations have been calculated in the framework of the Townes and Dailey theory.

  1. FOURIER TRANSFORM EMISSION SPECTROSCOPY OF THE B {sup 2}{Sigma}{sup +}-X {sup 2}{Sigma}{sup +} (VIOLET) SYSTEM OF {sup 13}C{sup 14}N

    SciTech Connect

    Ram, R. S.; Bernath, P. F.

    2011-06-01

    Emission spectra of the B {sup 2}{Sigma}{sup +}-X {sup 2}{Sigma}{sup +} transition of {sup 13}C{sup 14}N have been observed at high resolution using the Fourier transform spectrometer associated with the McMath-Pierce Solar Telescope of the National Solar Observatory. The spectra have been measured in the 21000-30000 cm{sup -1} region and a total of 52 vibrational bands involving vibrational levels up to v = 15 of the ground and excited states have been rotationally analyzed to provide a much improved set of spectroscopic constants. An experimental line list and calculated term values are provided. The results of the present analysis should prove useful in the identification of additional {sup 13}C{sup 14}N lines in comets and cool stars, and will help in the determination of the {sup 12}C/{sup 13}C abundance ratio.

  2. (121,123)Sb and (75)As NMR and NQR investigation of the tetrahedrite (Cu12Sb4S13)--Tennantite (Cu12As4S13) system and other metal arsenides.

    PubMed

    Bastow, T J; Lehmann-Horn, J A; Miljak, D G

    2015-10-01

    This work is motivated by the recent developments in online minerals analysis in the mining and minerals processing industry via nuclear quadrupole resonance (NQR). Here we describe a nuclear magnetic resonance (NMR) and NQR study of the minerals tennantite (Cu12As4S13) and tetrahedrite (Cu12 Sb4S13). In the first part NQR lines associated with (75)As in tennantite and (121,123)Sb isotopes in tetrahedrite are reported. The spectroscopy has been restricted to an ambient temperature studies in accord with typical industrial conditions. The second part of this contribution reports nuclear quadrupole-perturbed NMR findings on further, only partially characterised, metal arsenides. The findings enhance the detection capabilities of NQR based analysers for online measurement applications and may aid to control arsenic and antimony concentrations in metal processing stages. PMID:26453410

  3. 14N overtone NMR under MAS: signal enhancement using symmetry-based sequences and novel simulation strategies† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4cp03994g Click here for additional data file.

    PubMed Central

    Haies, Ibraheem M.; Jarvis, James A.; Bentley, Harry; Heinmaa, Ivo; Kuprov, Ilya; Williamson, Philip T. F.

    2015-01-01

    Overtone 14N NMR spectroscopy is a promising route for the direct detection of 14N signals with good spectral resolution. Its application is currently limited, however, by the absence of efficient polarization techniques for overtone signal enhancement and the lack of efficient numerical simulation techniques to aid in both the development of new methods and the analysis and interpretation of experimental data. In this paper we report a novel method for the transfer of polarization from 1H to the 14N overtone using symmetry-based R-sequences that overcome many of the limitations of adiabatic approaches that have worked successfully on static samples. Refinement of these sequences and the analysis of the resulting spectra have been facilitated through the development of an efficient simulation strategy for 14N overtone NMR spectroscopy of spinning samples, using effective Hamiltonians on top of Floquet and Fokker–Planck equations. PMID:25662410

  4. Probing the Electronic Environment of Methylindoles using Internal Rotation and (14)N Nuclear Quadrupole Coupling.

    PubMed

    Gurusinghe, Ranil M; Tubergen, Michael J

    2016-05-26

    High-resolution rotational spectra were recorded in the 10.5-21.0 GHz frequency range for seven singly methylated indoles. (14)N nuclear quadrupole hyperfine structure and spectral splittings arising from tunneling along the internal rotation of the methyl group were resolved for all indole species. The nuclear quadrupole coupling constants were used to characterize the electronic environment of the nitrogen atom, and the program XIAM was used to fit the barrier to internal rotation to the measured transition frequencies. The best fit barriers were found to be 277.1(2), 374.32(4), 414.(5), 331.6(2), 126.8675(15), 121.413(4), and 426(3) cm(-1) for 1-methylindole through 7-methylindole, respectively. The fitted barriers were found to be in good agreement with barriers calculated at the ωB97XD/6-311++G(d,p) level. The complete set of experimental barriers is compared to theoretical investigations of the origins of methyl torsional barriers and confirms that the magnitude of these barriers is an overall effect of individual hyperconjugative and structural interactions of many bonding/antibonding orbitals. PMID:27128828

  5. Three-body final state breakup in the27Al(14N, X) reaction at 116 MeV bombarding energy

    NASA Astrophysics Data System (ADS)

    Petrascu, M.; Isbasescu, A.; Lazar, I.; Mihai, I.; Petrascu, H.; Rudchik, A. T.; Chernievski, V. A.; Ponkratenko, O. A.; Ziman, V. A.

    1993-12-01

    The energy spectra and angular distributions of products in the reaction27Al(14N, X) have been measured at 116 MeV bombarding energy. It is shown that the energy spectra of the products lighter than the projectile, are well described by a three-body breakup calculation. The experimental total breakup cross-section estimated in the present work, together with Glas-Mosel calculation of the fusion cross-section, are in a reasonable agreement with the optical model total reaction cross-section.

  6. 15N/14N Ratio Determination in the ISM with Herschel with High Resolution Spectroscopy of Nitrogen Radicals

    NASA Astrophysics Data System (ADS)

    Margulès, L.; Bailleux, S.; Wlodarczak, G.; Pirali, O.; Martin-Drumel, M.-A.; Roy, P.; Roueff, E.; Gerin, M.

    2011-06-01

    The very high resolution of the HIFI instrument (134 kHz-1MHz) on board of Herschel needs very accurate laboratory measurements to detect unambiguously the signature of stable and unstable molecular species. Concerning the pure rotation spectra of new species, and particularly of open shell molecules, the first prediction could be far away and up to few hundred MHz. The 15N/14N ratio is not well measured in the ISM. However, the 15N/14N in the isotopomers is a potential tracer of the formation processes and the possible link with cometary molecules. Recent measurements include the detection of 15NH_2D N15NH+ and 15NH_3. The NH and NH_2 species are the simplest nitrogen radicals and are intermediate products in the NH_3 synthesis. They have been easily detected by Herschel and it therefore is interesting to now search for 15NH and 15NH_2. No spectrocopic data have been reported for these two radicals up to now. We present here the studies with high resolution spectroscopy in the THz range. The high sensitivity and the wide range of Synchrotron (0.6-6 THz) was essential to improve the prediction of the spectra of these two species in order to measure them in Lille (0.6-1 THz) with both a higher accuracy and resolution. The combined studies now give the most accurate predictions. ISM searches on these radicals are in progress in the HERSCHEL spectra. This work is supported by the Programme National de Physico-Chimie du Milieu Interstellaire (PCMI-CNRS) M. Gerin, N. Marcellino, N. Biver, et al., Astron. & Astrophys. 498 (2009) 9. L. Bizzochi, P. Caselli, and L. Dore, Astron. & Astrophys. 510 (2010) L5. D. C. Lis, A. Wooten, M. Gerin and E. Roueff, Astrophys. J. 710 (2010) L49.

  7. FOURIER TRANSFORM EMISSION SPECTROSCOPY OF THE A {sup 2}{Pi}-X {sup 2}{Sigma}{sup +} (RED) SYSTEM OF {sup 13}C{sup 14}N

    SciTech Connect

    Ram, R. S.; Bernath, P. F.; Wallace, L.; Hinkle, K.

    2010-06-15

    Emission spectra of the A {sup 2{Pi}}-X {sup 2}{Sigma}{sup +} transition (red system) of {sup 13}C{sup 14}N have been measured in the 4000-15,000 cm{sup -1} region using the Fourier transform spectrometer associated with the McMath-Pierce Solar Telescope of the National Solar Observatory. The {sup 13}C{sup 14}N free radical was produced in microwave discharge of a mixture of {sup 13}CH{sub 4} and {sup 14}N{sub 2}. Rotational analysis of 22 vibrational bands involving vibrational levels up to v' = 8 and v'' = 5 of the excited and ground states has been obtained and much improved spectroscopic constants have been determined. An experimental line list and calculated term values are provided. The results of the present analysis are useful for the identification of {sup 13}C{sup 14}N lines in late-type stars in the red and near-infrared spectral regions.

  8. Magnetic correlations in La(2-x)Sr(x)CuO4 from NQR relaxation and specific heat

    NASA Technical Reports Server (NTRS)

    Borsa, F.; Rigamonti, A.

    1991-01-01

    La-139 and Cu-63 Nuclear Quadrupole Resonance (NQR) relaxation measurements in La(2-x)Sr(x)CuO4 for x ranging from 0 up to 0.3, with particular emphasis on the effect of doping on the Cu(2+) magnetic correlations and dynamics, are reviewed. In the low doping limit, x less than or equal to 0.05, the results can be interpreted consistently in terms of a simple phenomenological 'two-fluids' model whereby the effect of thermally-activated mobile O(2p) holes is the one of disrupting locally the Cu(2+) spin correlations. For x greater than or equal to 0.1, the results indicate the onset, as T approaches T(sub c)(+), of a strong coupling between Cu(2+) spins and the Fermi liquid of O(2p) holes leading to the apparent disappearance of localized Cu(2+) moment in connection with the opening of a superconducting gap.

  9. Ferromagnetic Spin Fluctuation and Unconventional Superconductivity in Rb2Cr3As3 Revealed by 75As NMR and NQR

    NASA Astrophysics Data System (ADS)

    Yang, J.; Tang, Z. T.; Cao, G. H.; Zheng, Guo-qing

    2015-10-01

    We report 75As nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) studies on the superconductor Rb2Cr3As3 with a quasi-one-dimensional crystal structure. Below T ˜100 K , the spin-lattice relaxation rate (1 /T1 ) divided by temperature, 1 /T1T , increases upon cooling down to Tc=4.8 K , showing a Curie-Weiss-like temperature dependence. The Knight shift also increases with decreasing temperature. These results suggest ferromagnetic spin fluctuation. In the superconducting state, 1 /T1 decreases rapidly below Tc without a Hebel-Slichter peak, and follows a T5 variation below T ˜3 K , which points to unconventional superconductivity with point nodes in the gap function.

  10. 35C NQR studies in 2,4,6-,2,3,6-, and 2,3,4-trichloro anisoles

    NASA Astrophysics Data System (ADS)

    Rukmani, K.; Ramakrishna, J.

    1985-02-01

    The chlorine-35 NQR frequencies and their temperature variation in 2,4,6-, 2,3,6- and 2,3,4-trichloro anisoles have been studied and compared with the corresponding chlorophenols with a view to studying the effect of hydrogen bonding. The observed frequencies have been assigned to the various chlorines with the help of the additive model of the substituent effect. The temperature dependence has been analysed in terms of the Bayer—Kushida—Brown models. The torsional frequencies and their temperature dependence have been calculated numerically under a two mode approximation. A comparison of the trichloro anisoles with the corresponding trichloro phenols has shown that the resonance frequency decreases due to hydrogen bonding while the torsional frequencies are not affected.

  11. Experimental plant for simultaneous production of (14)N and (15)N by (15)N/(14)N exchange in NO, NO(2)-HNO(3) system under pressure.

    PubMed

    Axente, Damian; Marcu, Cristina; Muresan, Ancuţa; Kaucsar, Martin; Misan, Ioan; Popeneciu, Gabriel; Gligan, Nicolae; Cristea, Gabriela

    2010-06-01

    An experimental study on (14)N and (15)N simultaneous separation using the chemical exchange in NO, NO(2)-HNO(3) system under pressure is presented. The influence of the pressure and of the interstage 10 M HNO(3) flow rate on the separation of (14)N and (15)N was measured on a packed column with product and waste refluxers. At steady state and 1.8 atm (absolute), the isotopic concentration at the bottom of the separation column was 0.563 at% (15)N, and in the top of the column was 0.159 at% (15)N. The height equivalent to a theoretical plate and interstage 10 M HNO(3) flow rate values, obtained in these experimental conditions, allows the separation of (14)N highly depleted of (15)N and of (15)N at 99 at% (15)N concentration. PMID:20582793

  12. Volovik effect and Fermi-liquid behavior in the s-wave superconductor CaPd2As2: As75 NMR-NQR measurements

    DOE PAGESBeta

    Ding, Q. -P.; Wiecki, P.; Anand, V. K.; Sangeetha, N. S.; Lee, Y.; Johnston, D. C.; Furukawa, Y.

    2016-04-07

    The electronic and magnetic properties of the collapsed-tetragonal CaPd2As2 superconductor (SC) with a transition temperature of 1.27 K have been investigated by 75As nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements. The temperature (T) dependence of the nuclear spin lattice relaxation rates (1/T1) and the Knight shifts indicate the absence of magnetic correlations in the normal state. In the SC state, 1/T1 measured by 75As NQR shows a clear Hebel-Slichter (HS) peak just below Tc and decreases exponentially at lower T, confirming a conventional s-wave SC. Additionally, the Volovik effect, also known as the Doppler shift effect, hasmore » been clearly evidenced by the observation of the suppression of the HS peak with applied magnetic field.« less

  13. Studies of the electronic structure and biological activity of chosen 1,4-benzodiazepines by 35Cl NQR spectroscopy and DFT calculations

    NASA Astrophysics Data System (ADS)

    Bronisz, K.; Ostafin, M.; Poleshchuk, O. Kh.; Mielcarek, J.; Nogaj, B.

    2006-11-01

    Selected derivatives of 1,4-benzodiazepine: lorazepam, lormetazepam, oxazepam and temazepam, used as active substances in anxiolytic drugs, have been studied by 35Cl NQR method in order to find the correlation between electronic structure and biological activity. The 35Cl NQR resonance frequencies ( νQ) measured at 77 K have been correlated with the following parameters characterising their biological activity: biological half-life period ( t0.5), affinity to benzodiazepine receptor (IC 50) and mean dose equivalent. The results of experimental study of some benzodiazepine derivatives by nuclear quadrupole resonance of 35Cl nuclei are compared with theoretical results based on DFT calculations which were carried out by means of Gaussian'98 W software.

  14. Volovik effect and Fermi-liquid behavior in the s -wave superconductor CaPd2As2: 75As NMR-NQR measurements

    NASA Astrophysics Data System (ADS)

    Ding, Q.-P.; Wiecki, P.; Anand, V. K.; Sangeetha, N. S.; Lee, Y.; Johnston, D. C.; Furukawa, Y.

    2016-04-01

    The electronic and magnetic properties of the collapsed-tetragonal CaPd2As2 superconductor (SC) with a transition temperature of 1.27 K have been investigated by 75As nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements. The temperature (T ) dependence of the nuclear spin lattice relaxation rates (1 /T1) and the Knight shifts indicate the absence of magnetic correlations in the normal state. In the SC state, 1 /T1 measured by 75As NQR shows a clear Hebel-Slichter (HS) peak just below Tc and decreases exponentially at lower T , confirming a conventional s -wave SC. In addition, the Volovik effect, also known as the Doppler shift effect, has been clearly evidenced by the observation of the suppression of the HS peak with applied magnetic field.

  15. 35Cl NQR study of lattice dynamic and magnetic property of a crystalline coordination polymer {CuCA(phz)(H 2O) 2} n

    NASA Astrophysics Data System (ADS)

    Gotoh, Kazuma; Terao, Takeshi; Asaji, Tetsuo

    2007-01-01

    Copper(II) compounds {CuCA(phz)(H 2O) 2} n (H 2CA = chloranilic acid, phz = phenazine) having a layer structure of -CuCA(H 2O) 2- polymer chains and phenazine were studied by 35Cl nuclear quadrupole resonance (NQR). The single NQR line observed at 35.635 MHz at 261.5 K increased to 35.918 MHz at 4.2 K. The degree of reduction of electric field gradient due to lattice vibrations was similar to that of chloranilic acid crystal. Temperature dependence of spin-lattice relaxation time, T1, of the 35Cl NQR signal below 20 K, between 20 and 210 K, and above 210 K, was explained by (1) a decrease of effective electron-spin density caused by antiferromagnetic interaction, (2) a magnetic interaction between Cl nuclear-spin and electron-spins on paramagnetic Cu(II) ions, and (3) an increasing contribution from reorientation of ligand molecules, respectively. The electron spin-exchange parameter ∣ J∣ between the neighboring Cu(II) electrons was estimated to be 0.33 cm -1 from the T1 value of the range 20-210 K. Comparing this value with that of J = -1.84 cm -1 estimated from the magnetic susceptibility, it is suggested that the magnetic dipolar coupling with the electron spins on Cu(II) ions must be the principal mechanism for the 35Cl NQR spin-lattice relaxation of {CuCA(phz)(H 2O) 2} n but a delocalization of electron spin over the chloranilate ligand has to be taken into account.

  16. Climate-Dependence of Plant-Soil 15N/14N Interactions Across Tropical Rainforests

    NASA Astrophysics Data System (ADS)

    Houlton, B. Z.; Sigman, D. M.; Hedin, L. O.

    2005-12-01

    In most areas of the world, the 15N/14N of bulk soils is higher than that of plant leaves, and the isotopic signatures of these two ecosystem N pools progressively diverge with increasing rainfall. However, both the cause for this isotopic trend and its implications for understanding interactions between climate and N cycles are largely unknown. We report 15N/14N measurements of nitrate, ammonium, and total dissolved N in soil extracts from a highly constrained rainfall sequence in Hawaii, across which this trend in ecosystem 15N/14N is captured, to examine the competing explanations for plant-soil 15N/14N uncouplings. While the isotopic influences of microbial transfers of N between nitrate and ammonium pools and plant-mycorrhizae interactions have been posited in plant-soil 15N/14N relationships, our data did not support an important role for either of these mechanisms. Instead, preferential regeneration of 14N during the breakdown of DON to ammonium explains why the 15N/14N of plants is lower than that of bulk soils. Fractionation at this step leads to two isotopically distinct N subcycles in each forest, a lower-15N/14N subcycle composed of ammonium, nitrate, and bulk plant biomass N that `spins' rapidly and a higher-15N/14N subcycle composed of bulk soil N and DON that is much less dynamic. The increased difference between soil and plant 15N/14N is due to changes in the impacts of nitrification and denitrification on the 15N/14N of ammonium and nitrate, coupled with a switch from nitrate to ammonium uptake by plants under the wettest conditions. For instance, the particularly large (~6 per mil) 15N/14N difference between plants and soils in the wettest sites is due to the lack of 15N-enrichment of ammonium by nitrification coupled with plant dependence on ammonium uptake only. Our results highlight the importance of interactions between DON breakdown, ecosystem N recycling, and gaseous N losses in the explaining the interactions between the 15N signatures of

  17. Peripheral interactions of relativistic {sup 14}N nuclei with emulsion nuclei

    SciTech Connect

    Shchedrina, T. V. Bradnova, V.; Vokal, S.; Vokalova, A.; Zarubin, P. I. Zarubina, I. G.; Kovalenko, A. D.; Malakhov, A. I.; Orlova, G. I.; Rukoyatkin, P. A.; Rusakova, V. V.; Haiduc, M.; Kharlamov, S. P.; Chernyavsky, M. M.

    2007-07-15

    The results of investigation of the dissociation of the 2.86-A-GeV/c{sup 14}N nucleus in an emulsion are presented. The cross sections for various fragmentation channels are given. The invariant approach to analysis of fragmentation is used. The momentum and correlation characteristics of the {alpha} particles for the {sup 14}N {sup {yields}} 3{alpha} + X channel in the laboratory system and c.m.s. of three {alpha} particles are examined. The results obtained for the {sup 14}N nucleus are compared with similar data for the {sup 12}C and {sup 16}O nuclei.

  18. Proton-detected 3D 14N/14N/1H isotropic shift correlation experiment mediated through 1H-1H RFDR mixing on a natural abundant sample under ultrafast MAS

    NASA Astrophysics Data System (ADS)

    Pandey, Manoj Kumar; Nishiyama, Yusuke

    2015-09-01

    In this contribution, we have demonstrated a proton detection-based approach on a natural abundant powdered L-Histidine HCl-H2O sample at ultrafast magic angle spinning (MAS) to accomplish 14N/14N correlation from a 3D 14N/14N/1H isotropic shift correlation experiment mediated through 1H finite-pulse radio frequency-driven recoupling (fp-RFDR). Herein the heteronuclear magnetization transfer between 14N and 1H has been achieved by HMQC experiment, whereas 14N/14N correlation is attained through enhanced 1H-1H spin diffusion process due to 1H-1H dipolar recoupling during the RFDR mixing. While the use of ultrafast MAS (90 kHz) provides sensitivity enhancement through increased 1H transverse relaxation time (T2), the use of micro-coil probe which can withstand strong 14N radio frequency (RF) fields further improves the sensitivity per unit sample volume.

  19. 17O(p,α)14N reaction measurement at astrophysical energies

    NASA Astrophysics Data System (ADS)

    Sergi, M. L.; Spitaleri, C.; Pizzone, R. G.; Burjan, S. V.; Cherubini, S.; Coc, A.; Gulino, M.; Hammache, F.; Hons, Z.; Irgaziev, B.; Kiss, G. G.; Kroha, V.; La Cognata, M.; Lamia, L.; Mukhamedzhanov, A.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; de Séréville, N.; Somorjai, E.; Tumino, A.

    2014-05-01

    The 17O(p,α)14N reaction is of paramount importance for the nucleosynthesis in a number of stellar sites, including red giants (RG), asymptotic giant branch (AGB) stars, massive stars and classical novae. We report on the indirect study of the 17O(p,α)14N reaction via the Trojan Horse Method by applying the approach recently developed for extracting the resonance strength of narrow resonance in the ultra-low energy region.

  20. A Multispectrum Analysis of the 2v2 Spectral Region of H12C14N: Intensities, Broadening and Pressure-Shift Coefficients

    SciTech Connect

    Devi, V M.; Benner, D C.; Smith, M.A.H.; Rinsland, Curtis P.; Sharpe, Steven W.; Sams, Robert L.

    2004-09-01

    High-resolution (0.005 cm-1) infrared absorption spectra of HCN in the 2v2 band region near 1411 cm-1 have been recorded at room temperature using the Bruker IFS120HR Fourier transform spectrometer located at Pacific Northwest National Laboratory. Four spectra of high-purity (99.8%) HCN together with three spectra of lean mixtures ({approx}3%) of HCN in dry air were simultaneously fit using a multispectrum non-linear least-squares procedure. The analysis yielded room temperature values for absolute intensities, self- and air-broadening coefficients, and self- and air-broadening coefficients for numerous lines in the 2v2 band of H13C14N, were also determined. Since there are no previous measurements of broadening and shift parameters reported in the 2v2 band, our results are compared with values recently determined in the v1 band of H13C14N and with current HITRAN values.

  1. Electronic properties of Y-Ba-Cu-O superconductors as seen by Cu and O NMR/NQR

    NASA Technical Reports Server (NTRS)

    Brinkmann, D.

    1995-01-01

    Nuclear Magnetic Resonance (NMR) and Nuclear Quadrupole Resonance (NQR) allow the investigation of electronic properties at the atomic level. We will report on such studies of typical members of the the Y-Ba-Cu-O family such as YBa2Cu30(6 + x) (1-2-3-(6 + x)), YBa2Cu4O8 (1-2-4) and Y2Ba4Cu7015 (2-4-7) with many examples of recent work performed in our laboratory. In particular, we will deal with Knight shift and relaxation studies of copper and oxygen. We will discuss important issues of current studies such as: (1) Existence of a common electronic spin-susceptibility in the planes (and perhaps in the chains) of 1-2-4; (2) Strong evidence for the existence of a pseudo spin-gap of the antiferromagnetic fluctuations in 1-2-4 and 2-4-7; (3) Evidence for d-wave pairing in 1-2-4; (4) Strong coupling of inequivalent Cu-O planes in 2-4-7 and possible origin for the high Tc value of this compound; and (5) The possibility to describe NMR data in the framework of a charge-excitation picture.

  2. Magnetic correlations in La(2-x)Sr(x)CuO4 from NQR relaxation and specific heat

    NASA Technical Reports Server (NTRS)

    Borsa, F.; Rigamonti, A.

    1990-01-01

    La-139 and Cu-63 Nuclear Quadrupole Resonance (NQR) relaxation measurements in La(2-x)Sr(x)CuO4 for O = to or less than 0.3 and in the temperature range 1.6 + 450 K are analyzed in terms of Cu(++) magnetic correlations and dynamics. It is described how the magnetic correlations that would result from Cu-Cu exchange are reduced by mobile charge defects related to x-doping. A comprehensive picture is given which explains satisfactorily the x and T dependence of the correlation time, of the correlation length and of the Neel temperature T(sub n)(x) as well as being consistent with known electrical resistivity and magnetic susceptibility measurements. It is discussed how, in the superconducting samples, the mobile defects also cause the decrease, for T yields T(sub c)(+) of the hyperfine Cu electron-nucleus effective interaction, leading to the coexistence of quasi-localized, reduced magnetic moments from 3d Cu electrons and mobile oxygen p-hole carriers. The temperature dependence of the effective hyperfine field around the superconducting transition yields an activation energy which could be related to the pairing energy. New specific heat measurements are also presented and discussed in terms of the above picture.

  3. Sb-NQR study on novel superconductivity in (Pr 1-xLa x)Os 4Sb 12

    NASA Astrophysics Data System (ADS)

    Nagai, Takayuki; Yogi, Mamoru; Imamura, Yoju; Mukuda, Hidekazu; Kitaoka, Yoshio; Kikuchi, Daisuke; Sugawara, Hitoshi; Sato, Hideyuki

    2007-03-01

    We report on superconducting (SC) properties in a series of filled-skutterudite compounds (Pr 1-xLa x)Os 4Sb 12 through the Sb nuclear-quadrupole-resonance (NQR). In the SC state, the nuclear spin-lattice relaxation rate 1/ T1Pr at Pr-cage decreases exponentially with no coherence peak below TC, consistent with the results for the pure PrOs 4Sb 12. In the Pr-rich compounds of x=0.05 and 0.2, the residual density of states (RDOS) at the Fermi level are induced below TC due to the La substitution. It is concluded that the RDOS is not due to the impurity effect that used to be observed in unconventional superconductors with line-node gap. Rather, a part of the Fermi surface that contributes to 5.5% of the total is suggested to become gapless for x=0.05 and 0.2, yielding the RDOS. For the La-rich compounds of x=0.4, 0.8 and 1, as the Pr-substitution for La increases, TC increases and a size of energy gap increases. The Pr-substitution for La makes the pairing interaction for forming the Cooper pairs strong and causes an anisotropy in its energy-gap structure.

  4. Synthesis, crystal structure, and photocatalytical properties of Ba3Ta5O14N

    NASA Astrophysics Data System (ADS)

    Anke, B.; Bredow, T.; Soldat, J.; Wark, M.; Lerch, M.

    2016-01-01

    Light yellow Ba3TaV5O14N was successfully synthesized as phase-pure material crystallizing isostructurally to well-known mixed-valence Ba3TaV4TaIVO15. The electronic structure of Ba3Ta5O14N was studied theoretically with a hybrid Hartree-Fock-DFT method. The most stable structure was obtained when nitrogen atoms were placed at 4 h sites having fourfold coordination. By incorporating nitrogen, the band gap decreases from ∼3.8 eV commonly known for barium tantalum(V) oxides to 2.8 eV for the oxide nitride, giving rise to an absorption band well in the visible-light region. Ba3Ta5O14N was also tested for photocatalytic hydrogen formation.

  5. NQR-NMR studies of higher alcohol synthesis Cu-Co catalysts

    SciTech Connect

    Not Available

    1991-12-17

    Our previous studies (1,2) on the zerofield NMR spectra of Cu/Co catalysts revealed that the method of preparation sensitively influences the magnetic character of the Catalyst. Catalytic studies of the earlier investigators also (3) show similar influence on the product selectivity and indicate reproducible performance is critically dependent on the control and rigor of the preparation technique. To compliment the NMR results, we have made a thorough investigation of the Hysteresis character of the Cu/Co catalysts with the metal ratio varying from 0.2 to 4.0.

  6. Coexistence of multiple charge-density waves and superconductivity in SrPt2As2 revealed by 75As-NMR /NQR and 195Pt-NMR

    NASA Astrophysics Data System (ADS)

    Kawasaki, Shinji; Tani, Yoshihiko; Mabuchi, Tomosuke; Kudo, Kazutaka; Nishikubo, Yoshihiro; Mitsuoka, Daisuke; Nohara, Minoru; Zheng, Guo-qing

    2015-02-01

    The relationship between charge-density wave (CDW) orders and superconductivity in arsenide superconductor SrPt2As2 with Tc=5.2 K which crystallizes in the CaBe2Ge2 -type structure was studied by 75As nuclear magnetic resonance (NMR) measurements up to 520 K, and 75As nuclear quadrupole resonance (NQR) and 195Pt-NMR measurements down to 1.5 K. At high temperature, 75As-NMR spectrum and nuclear-spin-relaxation rate (1 /T1) have revealed two distinct CDW orders, one realized in the As-Pt-As layer below TCDWAs (1 )=410 K and the other in the Pt-As-Pt layer below TCDWAs (2 )=255 K . The 1 /T1 measured by 75As-NQR shows a clear Hebel-Slichter peak just below Tc and decreases exponentially well below Tc. Concomitantly, 195Pt Knight shift decreases below Tc. Our results indicate that superconductivity in SrPt2As2 is in the spin-singlet state with an s -wave gap and is robust under the two distinct CDW orders in different layers.

  7. Ferromagnetic Quantum Critical Fluctuations and Anomalous Coexistence of Ferromagnetism and Superconductivity in UCoGe Revealed by Co-NMR and NQR Studies

    NASA Astrophysics Data System (ADS)

    Ohta, Tetsuya; Nakai, Yusuke; Ihara, Yoshihiko; Ishida, Kenji; Deguchi, Kazuhiko; Sato, Noriaki K.; Satoh, Isamu

    2008-02-01

    Co nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) studies were carried out for the recently discovered UCoGe, in which the ferromagnetic and superconducting (SC) transitions are reported to occur at TCurie˜ 3 K and TS˜ 0.8 K [Huy et al.: Phys. Rev. Lett. 99 (2007) 067006], in order to investigate the coexistence of ferromagnetism and superconductivity as well as the normal-state and SC properties from a microscopic point of view. From the nuclear spin-lattice relaxation rate 1/T1 and Knight-shift measurements, we confirm that ferromagnetic fluctuations that possess a quantum critical character are present above TCurie and also the occurrence of a ferromagnetic transition at 2.5 K in our polycrystalline sample. The magnetic fluctuations in the normal state show that UCoGe is an itinerant ferromagnet similar to ZrZn2 and YCo2. The onset SC transition is identified at TS˜ 0.7 K, below which 1/T1 arising from 30% of the volume fraction starts to decrease due to the opening of the SC gap. This component of 1/T1, which follows a T3 dependence in the temperature range 0.3-0.1 K, coexists with the magnetic components of 1/T1 showing a \\sqrt{T} dependence below TS. From the NQR measurements in the SC state, we suggest that the self-induced vortex state is realized in UCoGe.

  8. Density functional theory calculations of nuclear quadrupole coupling constants with calibrated 14N quadrupole moments

    NASA Astrophysics Data System (ADS)

    Sicilia, E.; de Luca, G.; Chiodo, S.; Russo, N.; Calaminici, P.; Koster, A. M.; Jug, K.

    Density functional calculations of the electric field gradient tensor at the nitrogen nucleus in 13 test molecules, containing 14 nitrogen sites, have been performed using the linear combination of Gaussian-type orbital Kohn-Sham density functional theory (LCGTO-KSDFT) approach. Local and gradient corrected functionals were used for all-electron calculations. All the molecular structures were optimized at their respective levels of theory with extended basis sets. Calibrated 14N nuclear quadrupole moments were obtained through a fitting procedure between calculated electric field gradients and experimental nuclear quadrupole coupling constants of the test set of molecules for each basis set and functional considered. With these calibrated 14N nuclear quadrupole moments, the nuclear quadrupole coupling constants of the following selected systems were determined: fluoromethylisonitrile, pyridine, pyrrole, imadazole, pyrazole, 1,8-bis(dimethyl-amino)naphthalene, cyclotetramethylenetetranitramine, cocaine and heroin.

  9. The ^17O(p,α)^14N reaction measured using a novel technique

    NASA Astrophysics Data System (ADS)

    Moazen, B. H.; Blackmon, J. C.; Bardayan, D. W.; Chae, K. Y.; Chipps, K.; Domizioli, C. P.; Fitzgerald, R.; Greife, U.; Hix, W. R.; Jones, K. L.; Kozub, R. L.; Lingerfelt, E. J.; Livesay, R. J.; Nesaraja, C. D.; Pain, S. D.; Roberts, L. F.; Shriner, J. F., Jr.; Smith, M. S.; Thomas, J. S.

    2007-10-01

    We developed a new approach for measuring (p,α) reactions and applied it to measure the energy and strength of the 183 keV resonance in ^17O(p,α)^ 14N that was recently reported to significantly increase the reaction rate in novae. A beam of ^17O from the Holifield Radioactive Ion Beam Facility [ORNL] tandem accelerator bombarded hydrogen gas, which filled a differentially pumped scattering chamber at pressures up to 4 Torr. Reaction products were detected in coincidence and the vertex of the reaction was determined from the relative kinematics of the two products. Nova simulations show the new ^17O(p,α)^14N reaction rate significantly decreases ^18F production in low mass ONeMg nova but affects more energetic novae less. Results and astrophysical implications will be presented as well as comments regarding my past CEU participation. ORNL is managed by UT-Battelle for the US DOE.

  10. Nuclear quadrupole resonance of 14N and 2H in pyrimidines, purines, and their nucleosides

    NASA Astrophysics Data System (ADS)

    Rabbani, S. R.; Edmonds, D. T.; Gosling, P.

    Using nuclear quadrupole double-resonance techniques, nitrogen-14 and deuterium nuclear quadrupole coupling constants and asymmetry parameters have been measured in uracil, 5-bromouracil, cytosine, adenine, xanthine, hypoxanthine, their nucleosides, 2-aminopyrimidine, and benzimidazole. Zeeman studies and the detection of the simultaneous transitions of neighboring nuclei allowed in many cases a complete assignment of the observed spectral lines to particular 14N and 2D sites.

  11. High sensitivity cavity ring down spectroscopy of N2O near 1.22 μm: (II) 14N216O line intensity modeling and global fit of 14N218O line positions

    NASA Astrophysics Data System (ADS)

    Tashkun, S. A.; Perevalov, V. I.; Karlovets, E. V.; Kassi, S.; Campargue, A.

    2016-06-01

    In a recent work (Karlovets et al., 2016 [1]), we reported the measurement and rovibrational assignments of more than 3300 transitions belonging to 64 bands of five nitrous oxide isotopologues (14N216O, 14N15N16O, 15N14N16O, 14N218O and 14N217O) in the high sensitivity CRDS spectrum recorded in the 7915-8334 cm-1 spectral range. The assignments were performed by comparison with predictions of the effective Hamiltonian models developed for each isotopologue. In the present paper, the large amount of measurements from our previous work mentioned above and literature are gathered to refine the modeling of the nitrous oxide spectrum in two ways: (i) improvement of the intensity modeling for the principal isotopologue, 14N216O, near 8000 cm-1 from a new fit of the relevant effective dipole moment parameters, (ii) global modeling of 14N218O line positions from a new fit of the parameters of the global effective Hamiltonian using an exhaustive input dataset collected in the literature in the 12-8231 cm-1 region. The fitted set of 81 parameters allowed reproducing near 5800 measured line positions with an RMS deviation of 0.0016 cm-1. The dimensionless weighted standard deviation of the fit is 1.22. As an illustration of the improvement of the predictive capabilities of the obtained effective Hamiltonian, two new 14N218O bands could be assigned in the CRDS spectrum in the 7915-8334 cm-1 spectral range. A line list at 296 K has been generated in the 0-10,700 cm-1 range for 14N218O in natural abundance with a 10-30 cm/molecule intensity cutoff.

  12. Detection of 15NNH+ in L1544: non-LTE modelling of dyazenilium hyperfine line emission and accurate 14N/15N values

    NASA Astrophysics Data System (ADS)

    Bizzocchi, L.; Caselli, P.; Leonardo, E.; Dore, L.

    2013-07-01

    Context. Samples of pristine solar system material found in meteorites and interplanetary dust particles are highly enriched in 15N. Conspicuous nitrogen isotopic anomalies have also been measured in comets, and the 14N/15N abundance ratio of the Earth is itself higher than the recognised presolar value by almost a factor of two. Low-temperature ion/molecule reactions in the proto-solar nebula have been repeatedly indicated as being responsible for these 15N-enhancements. Aims: We have searched for 15N variants of the N2H+ ion in L1544, a prototypical starless cloud core that is one of the best candidate sources for detection owing to its low central core temperature and high CO depletion. The goal is to evaluate accurate and reliable 14N/15N ratio values for this species in the interstellar gas. Methods: A deep integration of the 15NNH+(1-0) line at 90.4 GHz was obtained with the IRAM 30 m telescope. Non-LTE radiative transfer modelling was performed on the J = 1-0 emissions of the parent and 15N-containing dyazenilium ions, using a Bonnor-Ebert sphere as a model for the source. Results: A high-quality fit of the N2H+(1-0) hyperfine spectrum has allowed us to derive a revised value of the N2H+ column density in L1544. Analysis of the observed N15NH+ and 15NNH+ spectra yielded an abundance ratio N(N15NH+)/N(15NNH+) = 1.1 ± 0.3. The obtained 14N/15N isotopic ratio is ~1000 ± 200, suggestive of a sizeable 15N depletion in this molecular ion. Such a result is not consistent with the prediction of the current nitrogen chemical models. Conclusions: Since chemical models predict high 15N fractionation of N2H+, we suggest that 15N14N, or 15N in some other molecular form, tends to deplete onto dust grains. Based on observations carried out with the IRAM 30 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).Full Tables B.1-B.6 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http

  13. Systematic R -matrix analysis of the 13C(p ,γ )14N capture reaction

    NASA Astrophysics Data System (ADS)

    Chakraborty, Suprita; deBoer, Richard; Mukherjee, Avijit; Roy, Subinit

    2015-04-01

    Background: The proton capture reaction 13C(p ,γ )14N is an important reaction in the CNO cycle during hydrogen burning in stars with mass greater than the mass of the Sun. It also occurs in astrophysical sites such as red giant stars: the asymptotic giant branch (AGB) stars. The low energy astrophysical S factor of this reaction is dominated by a resonance state at an excitation energy of around 8.06 MeV (Jπ=1-,T =1 ) in 14N. The other significant contributions come from the low energy tail of the broad resonance with Jπ=0-,T =1 at an excitation of 8.78 MeV and the direct capture process. Purpose: Measurements of the low energy astrophysical S factor of the radiative capture reaction 13C(p ,γ )14N reported extrapolated values of S (0 ) that differ by about 30 % . Subsequent R -matrix analysis and potential model calculations also yielded significantly different values for S (0 ) . The present work intends to look into the discrepancy through a detailed R -matrix analysis with emphasis on the associated uncertainties. Method: A systematic reanalysis of the available decay data following the capture to the Jπ=1-,T =1 resonance state of 14N around 8.06 MeV excitation had been performed within the framework of the R -matrix method. A simultaneous analysis of the 13C(p ,p0 ) data, measured over a similar energy range, was carried out with the capture data. The data for the ground state decay of the broad resonance state (Jπ=0-,T =1 ) around 8.78 MeV excitations was included as well. The external capture model along with the background poles to simulate the internal capture contribution were used to estimate the direct capture contribution. The asymptotic normalization constants (ANCs) for all states were extracted from the capture data. The multichannel, multilevel R -matrix code azure2 was used for the calculation. Results: The values of the astrophysical S factor at zero relative energy, resulting from the present analysis, are found to be consistent within the

  14. Low energy proton capture study of the 14N(p, gamma)15O reaction

    NASA Astrophysics Data System (ADS)

    Daigle, Stephen Michael

    The 14N(p,gamma)15O reaction regulates the rate of energy production for stars slightly more massive than the sun throughout stable hydrogen burning on the main sequence. The 14N(p,gamma)15O reaction rate also determines the luminosity for all stars after leaving the main sequence when their cores have exhausted hydrogen fuel, and later when they become red giant stars. The significant role that this reaction plays in stellar evolution has far-reaching consequences, from neutrino production in our Sun, to age estimates of globular clusters in our Galaxy. The weak cross section and inherent coincidence summing in the 15O gamma-ray decay scheme make a precision measurement of the astrophysical S-factor especially challenging, particularly for the ground-state transition. The present study, performed in the Laboratory for Experimental Nuclear Astrophysics (LENA), was aimed at measuring the ground-state transition at low energy by utilizing a new 24-element, position-sensitive, NaI(Tl) detector array. Because the array is highly segmented, the 14N( p,gamma)15O S-factor was evaluated for transitions to the ground, 5.18, 6.18, and 6.79 MeV states without the need for coincidence summing corrections. Additionally, the position-sensitivity of the detector was exploited to measure the angular correlation of the two-photon cascades. Software cuts were made to the data in order to identify single and coincident gamma-ray events and a fraction fit analysis technique was used to extract the characteristic 15O peaks from the composite gamma-ray spectrum. The results from the current work demonstrated a new approach to measuring weak nuclear cross sections near astrophysically relevant energies that, with refinements, has broader applications in gamma-ray spectroscopy.

  15. Isotope effect on the temperature dependence of the 35Cl NQR frequency in (NH4)2RuCl6

    NASA Astrophysics Data System (ADS)

    Kume, Yoshio; Amino, Daiki; Asaji, Tetsuo

    2013-07-01

    The 35Cl nuclear quadrupole resonance frequencies and spin-lattice relaxation times for (NH4)2RuCl6, (ND4)2RuCl6, (NH4)2SnCl6, and (ND4)2SnCl6 were measured in the temperature range 4.2-300 K. In these four compounds, it was confirmed that no phase transition occurs in the observed temperature range. At 4.2 K, discrepancies of the NQR frequency between non-deuterated and deuterated compounds, which are attributed to the difference in the spatial distributions of hydrogen (deuterium) atoms in the ground states of the rotational motion of ammonium ion, reached to 24 kHz and 23 kHz for the ruthenate compounds and the stannate compounds, respectively. The separation between the ground and the first excited states of the rotational motion of the ammonium ion was estimated to be 466 J mol-1 and 840 J mol-1 for (ND4)2RuCl6 and (NH4)2RuCl6, respectively, by least-square fitting calculations of temperature dependence of the NQR frequency. For (ND4)2SnCl6 and (NH4)2SnCl6, these quantities were estimated to be 501 J mol-1 and 1544 J mol-1, respectively. It was clarified that the T1 minimum, which has been observed for the stannate compounds at around 60 K as a feature of the temperature dependence, was dependent on a method of sample preparation. It is concluded that the minimum is not an essential character of the ammonium hexachlorostannate(IV) since the crystals prepared in strong acid condition to prevent a partial substitution of chlorine atoms by hydroxyl groups, did not show such T1 minimum.

  16. General analysis of (14)N (I = 1) electron spin echo envelope modulation.

    PubMed

    Lee, H I; Doan, P E; Hoffman, B M

    1999-09-01

    The analysis methods described to date for (14)N electron spin echo envelope modulation (ESEEM) mostly deal with isotropic g- and (14)N hyperfine coupling tensors. However, many cases of rhombic tensors are encountered. In the present report we present general equations for analyzing orientation-selective ESEEM and illustrate their use. (i) We present general equations for the nuclear interactions in an electron spin system where the EPR signal arises from an isolated Kramers doublet, then give the nuclear (electron-nuclear double resonance) frequencies for I = 1 associated with such a system. (ii) These are incorporated into equations for single-crystal ESEEM amplitudes, which in turn are incorporated into general equations for the orientation-selective ESEEM that arises when the EPR envelope of a frozen-solution (powder) sample is determined by g anisotropy. (iii) This development is first used in the simplest limit of an isotropic g-tensor and leads to a more general picture of the response of the I = 1 modulation amplitude to variations in the nuclear hyperfine and quadrupole coupling constants, relative to the nuclear Zeeman interaction, than had been presented previously. We find that strong modulation occurs not only in the well-known regime where the "exact/near cancellation" condition (A/2 approximately nu(N)) is satisfied, but also when the nuclear hyperfine interaction is much larger than the nuclear Zeeman interaction (A/nu(N) > 3) with A/K = 4 approximately 5. (iv) We then describe the orientation-selective (14)N ESEEM frequency-domain patterns (g vs frequency) in the presence of anisotropic (rhombic) hyperfine and electron Zeeman interactions for both coaxial and noncoaxial cases. We derive analytical solutions when the g-, hyperfine, and nuclear quadrupole tensors are coaxial. (v) The method is applied to the ESEEM of the nitrogenase MoFe protein (Av1) to determine the full hyperfine and nuclear quadrupole tensors of (14)N nuclei interacting with the

  17. Target mass dependence of neutron emission in collisions with 35 MeV/nucleon /sup 14/N ions

    SciTech Connect

    Kiss, A.; Deak, F.; Seres, Z.; Caskey, G.; Galonsky, A.; Heilbronn, L.; Remington, B.

    1988-07-01

    Energy and angular distributions of neutrons emitted from collisions of 35 MeV/nucleon /sup 14/N ions with carbon, nickel, and holmium nuclei were measured. The neutrons were in coincidence with Li, Be, B, or C fragments at angles from 7/sup 0/ to 23/sup 0/ in the plane of the neutron detectors and at 15/sup 0/ out of this plane. Using fragment velocity bins of width corresponding to E/A = 7 MeV, we find the shapes of the neutron spectra above 15 MeV to be similar for the different targets for a given coincident fragment species, velocity bin, and angle. The cross sections are discussed in terms of moving thermal sources. In all cases the velocity and temperature parameters of the intermediate rapidity source are consistent with E/A = 8.5 +- 2.5 MeV and T = 9 +- 2.5 MeV, respectively. In agreement with a simple stripping-pickup model, the associated neutron multiplicities of this source decrease approximately linearly with the velocity of the coincident light fragments for fragment angles less than or equal to15/sup 0/. Using the model to compute the mass of the source, we find that, with some fluctuations, these multiplicities are proportional to the mass. Also, the linear relationship is approximately the same for the three targets. The temperature parameters of the target-like source are between 1 and 3.5 MeV for all three targets, while the associated neutron multiplicities increase considerably with target mass. For colinear neutron-fragment coincidences for a given projectile-like isotope, the neutron multiplicities associated with the projectile-like source are about the same for all three targets, indicating that the average excitations of the parent fragments are similar.

  18. SU-E-J-142: Prompt Gamma Emission Measurements From a Passively Scattered Proton Beam On Targets Containing 16O, 12C and 14N

    SciTech Connect

    Jeyasugiththan, J; Peterson, S

    2015-06-15

    Purpose: To measure the prompt gamma emission from the important elements found in tissue ({sup 16}O,{sup 12}C and {sup 14}N) in a clinical passive-scatter treatment environment. Methods: The targets (composed of water, Perspex, graphite and liquid nitrogen) were irradiated with a 200 MeV passive-scatter proton beam and the discrete prompt gamma energy spectra was detected by a high resolution 2′ × 2′ LaBr. detector. In order to reduce the high level of radiation produced by the beam line elements, the detector was surrounded by 10 cm of lead to attenuate the scattered gamma-rays entering the detector with an extra 5 cm thick layer of lead added along the beam direction. A 10 cm thick collimator with a 5 cm × 10 cm rectangular opening was also used. Results: The prompt gamma peaks at 6.13 MeV and 4.44 MeV were clearly identified as a Result of the inelastic nuclear reaction between the protons and the 16O atoms found in the water target. The 6.13 MeV peak was 5% higher than the peak at 4.44 MeV for the water target. The 4.44 MeV peak was the only identified emission in the prompt gamma energy spectra from the graphite target ({sup 12}C). The expected 2.313 MeV peak form the{sup 14}N (liquid nitrogen target) was identified, but the other expected {sup 14}N peaks could not be resolved. Conclusion: Prompt gamma measurements with a passive-scatter proton beam are possible, but the presence of a high amount of background radiation from the patient final collimator presents a challenge at the treatment isocenter. The prominent prompt gamma peaks at 6.13 MeV and 4.44 MeV were identified from the water, Perspex and graphite targets. The prompt gammas from the liquid nitrogen target were difficult to see, but may not be significant in the in-vivo verification process.

  19. Clustering Features of 9Be, 14N, 7Be, and 8B Nuclei in Relativistic Fragmentation

    SciTech Connect

    Artemenkov, D. A.; Shchedrina, T. V.; Stanoeva, R.; Zarubin, P. I.

    2007-05-22

    Recent studies of clustering in light nuclei with an initial energy above 1 A GeV in nuclear track emulsion are overviewed. The results of investigations of the relativistic 9Be nuclei fragmentation in emulsion, which entails the production of He fragments, are presented. It is shown that most precise angular measurements provided by this technique play a crucial role in the restoration of the excitation spectrum of the {alpha} particle system. In peripheral interactions 9Be nuclei are dissociated practically totally through the 0+ and 2+ states of the 8Be nucleus.The results of investigations of the dissociation of a 14N nucleus of momentum 2.86 A GeV/c in emulsion are presented as example of more complicated system. The momentum and correlation characteristics of {alpha} particles for the 14N{yields}3{alpha} + X channel in the laboratory system and the rest systems of 3{alpha} particles were considered in detail. Topology of charged fragments produced in peripheral relativistic dissociation of radioactive 8B, 7Be nuclei in emulsion is studied.

  20. The {sup 14}N(p,gamma){sup 15}O reaction studied at high energy

    SciTech Connect

    Marta, Michele

    2010-03-01

    The {sup 14}N(p,gamma){sup 15}O reaction is the bottleneck of the carbon-nitrogen-oxygen (CNO) cycle. Recent studies of this reaction have been performed in the low energy range E<500 keV. However, also data at higher energy are necessary to extrapolate the S-factor down to the energy range of astrophysical interest. Up to now, only one set of data from an experiment performed in 1987 extends up to 2.5 MeV. A new study has been carried out at the high-current FZD Tandetron in Dresden, in the energy region from 0.6 to 2.5 MeV. The astrophysics motivations, setup and on-going analysis are presented.

  1. Storm Spectra

    NASA Technical Reports Server (NTRS)

    2007-01-01

    portion is defined by the day/night boundary (known as the terminator).

    These two images illustrate only a small fraction of the information contained in a single LEISA scan, highlighting just one aspect of the power of infrared spectra for atmospheric studies.

  2. Study of chemically inequivalent N(CH3)4 ions in [N(CH3)4]2ZnBr4 near the phase transition temperature using 1H MAS NMR, 13C CP/MAS NMR, and 14N NMR

    NASA Astrophysics Data System (ADS)

    Lim, Ae Ran

    2016-02-01

    The temperature dependences of the chemical shifts and intensities of 1H, 13C, and 14N nuclei in tetramethylammonium tetrabromozincate, [N(CH3)4]2ZnBr4, were investigated using single-crystal nuclear magnetic resonance (NMR) and magic angle spinning (MAS) NMR spectroscopy to elucidate the structural geometry near the phase transition temperature. Based on the analysis of the 13C cross-polarization (CP)/MAS NMR and 14N NMR spectra, the two chemically inequivalent N(1) (CH3)4 and N(2) (CH3)4 ions were distinguished. Furthermore, the 14N NMR spectrum at the phase transition temperature indicated the existence of the ferroelastic characteristics of the N(CH3)4 ions.

  3. Nuclear Quadrupole Resonance Studies of Charge Distributions in Molecular Solids.

    NASA Astrophysics Data System (ADS)

    Greenbaum, Steven Garry

    A detailed description of an NMR-NQR double resonance spectrometer designed and constructed in this laboratory is given, including some instruction on its use. ('14)N NQR data obtained by pulse methods for six classes of nitrogen-containing compounds are presented and analyzed in the framework of the Townes and Dailey theory. A study of the anti-cancer drugs cyclophosphamide, isophosphamide and triphosphamide suggests the existence of a correlation between the substance's chemotherapeutic efficacy and the (pi) - (sigma)(,NP) charge density at the trigonal nitrogen. Satisfactory correlations of the NQR spectra of 22 monosubstituted anilines with both the Hammett (sigma) parameters and the in vitro biological activities of the corresponding sulfanilamides have been found, indicating that the nitrogen lone-pair orbital is more sensitive than the nitrogen-carbon sigma orbital is to substituent effects. NQR spectra of several N-acetyl amino acids and related compounds are reported. The inductive effect of the chloroacetyl group on the nitrogen is discussed. A positive correlation between the (pi) - (sigma)(,NC) electron density at the nitrogen and the Taft inductive parameter (sigma)* is observed, suggesting that the nitrogen (pi) -charge density in the N-acetyl amino acids does not vary appreciably. Both ('14)N and ('35)Cl NQR data have been obtained for a series of compounds containing nitrogen directly bonded to chlorine. The existence of a linear correlation between the ('14)N and ('35)Cl quadrupole coupling constants is interpreted in terms of a simple model dealing with charge excesses and deficiencies at the respective nuclei. A study of two complexes of 4-aminopyridine (4AP) addresses the loss of pyridine nitrogen lone-pair charge upon formation of the strong and asymmetric N-H-N bond characteristic of these complexes. Evidence of hydrogen bonding interactions involving the amino nitrogens is found to be in agreement with a published neutron diffraction study

  4. Nuclear Quadrupole Resonance Study of the Nitrogen Mustards and Local Anesthetics.

    NASA Astrophysics Data System (ADS)

    Buess, Michael Lee

    The density matrix description of pulsed nitrogen -14 nuclear quadrupole resonance (NQR) spin-echoes is presented. The parallel between this problem, when formulated in terms of the fictitious spin- 1/2 operators, and that of spin - 1/2 NMR spin-echoes in liquids is discussed along with the complications which arise in multiple-pulse NQR experiments in powders due to the random orientation of the electric field gradient tensors. The equipment and procedures involved in searching for, detecting and identifying NQR resonances using pulsed techniques are described. The ('14)N NQR spectra of several nitrogen mustard compounds in the solid state are reported and analyzed in the framework of the Townes and Dailey theory. For the aniline derivatives, a correlation exists between l -(sigma), l being the nitrogen lone-pair electron density and (sigma) the average N-C sigma bond electron density, and the enhanced Hammett sigma constant (sigma)('-). An improved correlation is obtained between l-(sigma) and (sigma)(,R)('-), which emphasizes the importance of resonance effects in determining l-(sigma). The increase of hydrolysis and alkylation rates with increasing values of l-(sigma) is in agreement with the identification of the cyclic immonium ion as the intermediate in the hydrolysis and alkylation processes of the aromatic nitrogen mustards. A possible correlation is noted between the ('35)Cl NQR spectra for some of the mustards and measures of toxic and antitumor activity. ('14)N NQR spectra for several local anesthetics in the solid state are also reported and analyzed using the Townes and Dailey approach. The changes in the electron distributions at various nitrogen sites, produced by protonating the tertiary amino nitrogen, are discussed and shown to be in general agreement with expectations bases on the increased electrophilic character of the protonated amino group.

  5. Cross section measurement of 14N(p ,γ )15O in the CNO cycle

    NASA Astrophysics Data System (ADS)

    Li, Q.; Görres, J.; deBoer, R. J.; Imbriani, G.; Best, A.; Kontos, A.; LeBlanc, P. J.; Uberseder, E.; Wiescher, M.

    2016-05-01

    Background: The CNO cycle is the main energy source in stars more massive than our sun; it defines the energy production and the cycle time that lead to the lifetime of massive stars, and it is an important tool for the determination of the age of globular clusters. In our sun about 1.6% of the total solar neutrino flux comes from the CNO cycle. The largest uncertainty in the prediction of this CNO flux from the standard solar model comes from the uncertainty in the 14N(p ,γ )15O reaction rate; thus, the determination of the cross section at astrophysical temperatures is of great interest. Purpose: The total cross section of the 14N(p ,γ )15O reaction has large contributions from the transitions to the Ex=6.79 MeV excited state and the ground state of 15O. The Ex=6.79 MeV transition is dominated by radiative direct capture, while the ground state is a complex mixture of direct and resonance capture components and the interferences between them. Recent studies have concentrated on cross-section measurements at very low energies, but broad resonances at higher energy may also play a role. A single measurement has been made that covers a broad higher-energy range but it has large uncertainties stemming from uncorrected summing effects. Furthermore, the extrapolations of the cross section vary significantly depending on the data sets considered. Thus, new direct measurements have been made to improve the previous high-energy studies and to better constrain the extrapolation. Methods: Measurements were performed at the low-energy accelerator facilities of the nuclear science laboratory at the University of Notre Dame. The cross section was measured over the proton energy range from Ep=0.7 to 3.6 MeV for both the ground state and the Ex=6.79 MeV transitions at θlab=0∘ , 45∘, 90∘, 135∘, and 150∘. Both TiN and implanted-14N targets were utilized. γ rays were detected by using an array of high-purity germanium detectors. Results: The excitation function as

  6. Theoretical Study of ^14N Hyperfine Interactions in NO-Hemoglobin in R and T States

    NASA Astrophysics Data System (ADS)

    Pujari, Minakhi; Sahoo, N.; Das, T. P.

    2002-03-01

    The origin of the change(J. C. W. Chien and L. C. Dickinson, J. Biol. Chem. 252), 1331 (1977); M. Chevion, A. Stern, J. Peisach, W. E. Blumberg and S. Simon, Biochemistry 17, 1745 (1978). in the ^14N hyperfine splitting of Electron Paramagnetic Resonance signals in the R and T states of NO-Hb from a 9-line pattern to a 3-line one has been investigated using the first-principles Hartree-Fock procedure. The influence of various factors have been studied, namely changes from linear configuration for Fe-NO bonding to non-linear, change from a protonated imidazole ligand for the heme group to a deprotonated one, and the increase in length, and consequent weakening, of the Fe-N_ɛ bond associated with the imidazole ligand. The last factor is the only one that is able to explain the change in the EPR signal as found from earlier Extended Hückel studies(S. K. Mun, Jane C. Chang and T. P. Das, Proc. Nat. Acad. Sci. (USA) 76), 4842 (1979)..

  7. Nuclear microprobe analysis of wear tracks on 14N-implanted steels

    NASA Astrophysics Data System (ADS)

    Doyle, B. L.; Follstaedt, D. M.; Picraux, S. T.; Yost, F. G.; Pope, L. E.; Knapp, J. A.

    1985-03-01

    Two nuclear microbeam analysis techniques [3,7 MeV(α,p) and 6 MeV(α, α)] have been used to determine the local areal density of 14N which remains in wear tracks resulting from pin-on-disc testing of nitrogen implanted 15-5 PH and 304 stainless steels. The microbeam analysis shows that the extent of N migration into the 15-5 substrate was to depths ≲ 0.5 μm, but perhaps to ≲ 1.0 μm in 304. The as-implanted layer in 15-5 PH contains up to 40-45 at.% N and consists principally of ∼ 2 μm particles of (Fe, Cr) 2N 1-x. When sufficient wear has occurred in 304 to lower the N content below 10 17 N/cm 2, an O buildup to 2 × 10 17 O/cm 2 is observed; however the presence of N does not correlate with low O levels in the wear tracks of 15-5 PH.

  8. Microwave absorption of gamma'-Fe2.6 Ni1.4N nanoparticles derived from nitriding counterpart precursor.

    PubMed

    Huang, H; Wang, F; Lv, B; Xue, F H; Guo, D Y; Park, W J; Lee, W J; Dong, X L

    2012-04-01

    Gamma-Fe2.6Ni1.4 nanoparticles were prepared by the arc-discharge method as the precursor and its nitride counterpart of gamma'-Fe2.6Ni14N nanoparticles was synthesized directly through a thermal ammonolysis reaction at the temperature of 673 K for two hours. The resultant product was identified as a homogeneous ternary nitride with nearly spherical shape and average size of about 60.0 nm. The electromagnetic characteristics of gamma'-Fe2.6Ni1.4N derivant and gamma-Fe2.6Ni1.4 precursor have been studied in the frequency range of 2-18 GHz. Compared with the precursor, gamma'-Fe2.6Ni1.4N nanoparticles exhibits an enhanced electromagnetic absorption property resulted from the increased dielectric loss by nitriding process. The optimal reflection loss (RL) of gamma'-Fe2.6Ni1.4N nanoparticles/paraffin composite can reach -39.9 dB at 5.2 GHz in a thickness of 2.29 mm, and the frequency band corresponding RL < -10 dB is over 2.6-18 GHz in the thickness range of 0.78-4.20 mm. PMID:22849063

  9. DFT-D study of 14N nuclear quadrupolar interactions in tetra-n-alkyl ammonium halide crystals.

    PubMed

    Dib, Eddy; Alonso, Bruno; Mineva, Tzonka

    2014-05-15

    The density functional theory-based method with periodic boundary conditions and addition of a pair-wised empirical correction for the London dispersion energy (DFT-D) was used to study the NMR quadrupolar interaction (coupling constant CQ and asymmetry parameter ηQ) of (14)N nuclei in a homologous series of tetra-n-alkylammonium halides (C(x)H(2x+1))4N(+)X(-) (x = 1-4), (X = Br, I). These (14)N quadrupolar properties are particularly challenging for the DFT-D computations because of their very high sensitivity to tiny geometrical changes, being negligible for other spectral property calculations as, for example, NMR (14)N chemical shift. In addition, the polarization effect of the halide anions in the considered crystal mesophases combines with interactions of van der Waals type between cations and anions. Comparing experimental and theoretical results, the performance of PBE-D functional is preferred over that of B3LYP-D. The results demonstrated a good transferability of the empirical parameters in the London dispersion formula for crystals with two or more carbons per alkyl group in the cations, whereas the empirical corrections in the tetramethylammonium halides appeared to be inappropriate for the quadrupolar interaction calculation. This is attributed to the enhanced cation-anion attraction, which causes a strong polarization at the nitrogen site. Our results demonstrated that the (14)N CQ and ηQ are predominantly affected by the molecular structures of the cations, adapted to the symmetry of the anion arrangements. The long-range polarization effect of the surrounding anions at the target nitrogen site becomes more important for cells with lower spatial symmetry. PMID:24758512

  10. The Effects of Internal Rotation and 14N Quadrupole Coupling in N-Methyldiacetamide

    NASA Astrophysics Data System (ADS)

    Kannengießer, Raphaela; Eibl, Konrad; Nguyen, Ha Vinh Lam; Stahl, Wolfgang

    2015-06-01

    Acetyl- and nitrogen containing substances play an important role in chemical, physical, and especially biological systems. This applies in particular for acetamides, which are structurally related to peptide bonds. In this work, N-methyldiacetamide, CH_3N(COCH_3)_2, was investigated by a combination of molecular beam Fourier transform microwave spectroscopy and quantum chemical calculations. In N-methyldiacetamide, at least three large amplitude motions are possible: (1) the internal rotation of the methyl group attached to the nitrogen atom and (2, 3) the internal rotations of both acetyl methyl groups. This leads to a rather complicated torsional fine structure of all rotational transitions with additional quadrupole hyperfine splittings caused by the 14N nucleus. Quantum chemical calculations were carried out at the MP2/6-311++G(d,p) level of theory to support the spectral assignment. Conformational analysis was performed by calculating a full potential energy surface depending on the orientation of the two acetyl groups. This yielded three stable conformers with a maximum energy difference of 35.2 kJ/mol. The spectrum of the lowest energy conformer was identified in the molecular beam. The quadrupole hyperfine structure as well as the internal rotation of two methyl groups could be assigned. For the N-methyl group and for one of the two acetyl methyl groups, barriers to internal rotation of 147 cm-1 and of 680 cm-1, respectively, were determined. The barrier of the last methyl group seems to be so high that no additional splittings could be resolved. Using the XIAM program, a global fit with a standard deviation on the order of our experimental accuracy could be achieved.

  11. Geological mapping of the Rainbow Massif, Mid-Atlantic Ridge, 36°14'N

    NASA Astrophysics Data System (ADS)

    Ildefonse, B.; Fouquet, Y.; Hoisé, E.; Dyment, J.; Gente, P.; Thibaud, R.; Bissessur, D.; Yatheesh, V.; Momardream 2008 Scientific Party*, T.

    2008-12-01

    The Rainbow hydrothermal field at 36°14'N on the Mid-Atlantic Ridge is one of the few known sites hosted in ultramafic basement. The Rainbow Massif is located along the non-transform offset between the AMAR and South AMAR second-order ridge segments, and presents the characteristic dome morphology of oceanic core complexes, although no corrugated surface has been observed so far. One of the objectives of Cruises MOMAR DREAM (July 2007, R/V Pourquoi Pas ?; Aug-Sept 2008, R/V Atalante) was to study the petrological and structural context of the hydrothermal system at the scale of the Rainbow Massif. Our geological sampling complements previous ones achieved during Cruises FLORES (1997) and IRIS (2001), and consisted in dredge hauls, and submersible dives by manned submersible Nautile and ROV Victor. The tectonics of the Rainbow Massif is dominated by a N-S trending fault pattern on the western flank of the massif, and a series of SW-NW ridges on its northeastern side. The active hydrothermal site is located in the area were these two systems crosscut. The most abundant recovered rock type is peridotite (harzburgite and dunite) that presents a variety of serpentinization styles and intensity, and a variety of deformation styles (commonly undeformed, sometimes displaying ductile or brittle foliations). Serpentinites are frequently oxidized. Some peridotite samples have melt impregnation textures. Massive chromitite was recovered in one dredge haul. Variously evolved gabbroic rocks were collected as discrete samples or as centimeter to decimeter-thick dikes in peridotites. Basalts and fresh basaltic glass were also sampled in talus and sediments on the southwestern and northeastern flanks of the massif. Our sampling is consistent with the lithological variability encountered in oceanic core complexes along the Mid-Atlantic Ridge and Southwest Indian Ridge. The stockwork of the hydrothermal system has been sampled on the western side of the present-day hydrothermal

  12. Diatom-bound 15N/14N: New support for enhanced nutrient consumption in the ice age subantarctic

    NASA Astrophysics Data System (ADS)

    Robinson, Rebecca S.; Sigman, Daniel M.; Difiore, Peter J.; Rohde, Melissa M.; Mashiotta, Tracy A.; Lea, David W.

    2005-09-01

    Diatom-bound 15N/14N was used to reconstruct the glacial nutrient status of the Subantarctic Zone in the Southern Ocean. Down-core records from both the Pacific and Indian sectors show δ15N of 5 to 6‰ during the Last Glacial Maximum and a decrease, coincident with the glacial termination, to values as low as 2‰. The effect of either diatom assemblage or physiological change on the diatom-bound 15N/14N is unknown and cannot yet be ruled out as a possible explanation for the observed change. However, the consistency between Indian and Pacific sector records and with other paleoceanographic data suggests that the glacial-interglacial difference in diatom-bound 15N/14N was driven by higher consumption of nitrate in the subantarctic surface during the last ice age. Such a change in nutrient consumption may have resulted from atmospheric iron fertilization and/or decreased glacial mixed layer depths associated with sea ice melting. Enhanced nutrient consumption in the glacial subantarctic would have worked to lower the concentration of CO2 in the ice age atmosphere. It also would have reduced the preformed nutrient content of the low-latitude thermocline, leading to decreases in low-latitude productivity, suboxia, and denitrification.

  13. Effects on ^18F production in novae from changes in the ^17O(p,α)^14N rate

    NASA Astrophysics Data System (ADS)

    Moazen, B. H.; Blackmon, J. C.; Bardayan, D. W.; Chae, K. Y.; Chipps, K.; Domizioli, C. P.; Fitzgerald, R.; Greife, U.; Hix, W. R.; Jones, K. L.; Kozub, R. L.; Lingerfelt, E. J.; Livesay, R. J.; Nesaraja, C. D.; Pain, S. D.; Roberts, L. F.; Shriner, J. F., Jr.; Smith, M. S.; Thomas, J. S.

    2008-04-01

    The properties of a resonance at 183 keV are important for understanding the ^17 O(p,α)^14N and ^17O(p,γ)^18F reaction rates at nova temperatures and was recently reported to significantly increase the (p,α) reaction rate. A method involving the bombardment of a hydrogen filled target chamber was recently developed at ORNL for measuring the strength and energy of (p, α) resonances and was applied to measure this resonance in ^17O(p, α)^14N. The strength of the resonance was confirmed and post-processing nova nucleosynthesis simulations show the new ^17O(p,α)^14N reaction rate significantly decreases ^18F production in low mass ONeMg novae but has little effect on more energetic novae [Moazen et. al. Phys. Rev. C 75 065801 (2007)]. Results and astrophysical implications will be presented as well as future plans to measure ^18F(p,α)^15O with this technique. ORNL is managed by UT Battelle for the US DOE

  14. EPR line shifts and line shape changes due to spin exchange of nitroxide-free radicals in liquids 4. Test of a method to measure re-encounter rates in liquids employing 15N and 14N nitroxide spin probes.

    PubMed

    Bales, Barney L; Meyer, Michelle; Smith, Steve; Peric, Miroslav

    2008-03-20

    EPR line shifts due to spin exchange of perdeuterated 2,2,6,6-tetramethyl-4-oxopiperidine-1-oxyl (14N-PDT) in aqueous solutions and the same probe isotopically substituted with 15N (15N-PDT) were measured from 293 to 338 and 287 to 353 K, respectively. Nonlinear least-squares fits of the EPR spectra yielded the resonance fields of the nitrogen hyperfine lines to high precision from which the shifts were deduced. The shifts are described by two terms: one linear and the other quadratic in the electron spin-exchange frequency, omegae. The quadratic term is due to spin exchange that occurs when two spin probes diffuse together and collide. A linear term is predicted for spin exchanges that occur upon re-encounter of the same two probes while they occupy the same "cage" before diffusing apart. The quadratic term has no adjustable parameters, while the linear term has one: the mean time between re-encounters, tauRE. The theory is cast in terms of the spin-exchange-induced line broadening that can be measured from each spectrum independently of the line shifts, thereby removing the explicit dependence of omegae on the temperature and the spin-probe concentration. In this form, theoretically, the value of the linear term is about a factor of 2 larger for 15N-PDT than for 14N-PDT for all temperatures; however, tauRE must be the same. Experimentally, we find that both of these expectations are fulfilled, providing strong support that the linear term is indeed due to re-encounter collisions. Values of tauRE derived from 14N-PDT and 15N-PDT are of the same order of magnitude and show the same trend with temperature as a hydrodynamic estimate based on the Stokes-Einstein equation. PMID:18278887

  15. Night Spectra Quest.

    ERIC Educational Resources Information Center

    Jacobs, Stephen

    1995-01-01

    Presents the Night Spectra Quest, a pocket-sized chart that identifies in color the spectra of all the common night lights and has an integrally mounted, holographic diffraction grating to look through. (JRH)

  16. A Multispectrum Analysis of the {nu}{sub 2} Band of H{sup 12}C{sup 14}N: Part I. Intensities, Broadening and Shift Coefficients

    SciTech Connect

    Devi, V M.; Benner, D C.; Smith, M.A.H.; Rinsland, Curtis P.; Predoi-Cross, A; Sharpe, Steven W.; Sams, Robert L.; Boulet, C; Bouanich, J P.

    2005-05-01

    Absolute intensities, self- and air-broadening coefficients, self- and air-induced shift coefficients and their temperature dependences have been determined for lines belonging to the P- and R-branches of the {nu}{sub 2} band of H{sup 12}C{sup 14}N centered near 712 cm{sup -1}. Infrared spectra of HCN in the 14-{micro}m region were obtained at high resolution (0.002-0.008 cm{sup -1}) using two different Fourier transform spectrometers (FTS), the McMath-Pierce FTS at the National Solar Observatory on Kitt Peak and the Bruker IFS 120HR FTS at the Pacific Northwest National Laboratory. Spectra were recorded with 99.8% pure HCN as well as lean mixtures of HCN in air at various temperatures ranging between +26 C and -60 C. A multispectrum nonlinear least squares technique was used to fit selected intervals of 36 spectra simultaneously to obtain the line positions, intensities, broadening and shift parameters. The measured line intensities were analyzed to determine the vibrational band intensity and the Herman-Wallis coefficients. The measured self-broadening coefficients vary between 0.2 and 1.2 cm{sup -1} atm{sup -1} at 296 K, and the air broadening coefficients range from 0.08 to 0.14 cm{sup -1} atm{sup -1} at 296 K. The temperature dependence exponents of self-broadening range from 1.46 to -0.12 while the corresponding exponents for air broadening vary between 0.58 and 0.86. The present measurements are the first known determination of negative values for the temperature dependence exponents of HCN broadening coefficients. We were able to support our self-broadening measurements with appropriate theoretical calculations. Our present measurements are compared, where possible, with previous measurements for this and other HCN bands, as well as the parameters that are included in the 2000 and 2004 editions of the HITRAN (HIgh-resolution TRANsmission) database.

  17. Study of {sup 17}O(p,{alpha}){sup 14}N reaction via the Trojan Horse Method for application to {sup 17}O nucleosynthesis

    SciTech Connect

    Sergi, M. L.; Spitaleri, C.; Pizzone, R. G.; Gulino, M.; Cherubini, S.; Crucilla, V.; La Cognata, M.; Lamia, L.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; Tudisco, S.; Tumino, A.; Coc, A.; Hammache, F.; Sereville, N. de; Kiss, G.

    2008-05-21

    Because of the still present uncertainties on its rate, the {sup 17}O(p,{alpha}){sup 14}N is one of the most important reaction to be studied in order to get more information about the fate of {sup 17}O in different astrophysical scenarios. The preliminary study of the three-body reaction {sup 2}H({sup 17}O,{alpha}{sup 14}N)n is presented here as a first stage of the indirect study of this important {sup 17}O(p,{alpha}){sup 14}N reaction through the Trojan Horse Method (THM)

  18. Determination of the delta(15N/14N)of Ammonium (NH4+) in Water: RSIL Lab Code 2898

    USGS Publications Warehouse

    Hannon, Janet E.; Böhlke, John Karl

    2008-01-01

    The purpose of the technique described by Reston Stable Isotope Laboratory (RSIL) lab code 2898 is to determine the N isotopic composition, delta(15N/14N), abbreviated as d15N, of ammonium (NH4+) in water (freshwater and saline water). The procedure involves converting dissolved NH4+ into NH3 gas by raising the pH of the sample to above 9 with MgO and subsequently trapping the gas quantitatively as (NH4)2SO4 on a glass fiber (GF) filter. The GF filter is saturated with NaHSO4 and pressure sealed between two gas-permeable polypropylene filters. The GF filter 'sandwich' floats on the surface of the water sample in a closed bottle. NH3 diffuses from the water through the polypropylene filter and reacts with NaHSO4, forming (NH4)2SO4 on the GF filter. The GF filter containing (NH4)2SO4 is dried and then combusted with a Carlo Erba NC 2500 elemental analyzer (EA), which is used to convert total nitrogen in a solid sample into N2 gas. The EA is connected to a continuous-flow isotope-ratio mass spectrometer (CF-IRMS), which determines the relative difference in ratios of the amounts of the stable isotopes of nitrogen (15N and 14N) of the product N2 gas and a reference N2 gas. The filters containing the samples are compressed in tin capsules and loaded into a Costech Zero-Blank Autosampler on the EA. Under computer control, samples then are dropped into a heated reaction tube that contains an oxidant, where combustion takes place in a He atmosphere containing an excess of O2 gas. To remove S-O gases produced from the NaHSO4, a plug of Ag-coated Cu wool is inserted at the bottom of the reaction tube. Combustion products are transported by a He carrier through a reduction furnace to remove excess O2, toconvert all nitrogen oxides to N2, and to remove any remaining S-O gases. The gases then pass through a drying tube to remove water. The gas-phase products, mainly N2 and a small amount of background CO2, are separated by a gas chromatograph (GC). The gas is then introduced

  19. Levels in 12N via the 14N (p , t ) reaction using the JENSA gas-jet target

    NASA Astrophysics Data System (ADS)

    Chipps, K. A.; Pain, S. D.; Greife, U.; Kozub, R. L.; Bardayan, D. W.; Blackmon, J. C.; Kontos, A.; Linhardt, L. E.; Matos, M.; Pittman, S. T.; Sachs, A.; Schatz, H.; Schmitt, K. T.; Smith, M. S.; Thompson, P.; Jensa Collaboration

    2015-09-01

    As one of a series of physics cases to demonstrate the unique benefit of the new Jet Experiments in Nuclear Structure and Astrophysics (JENSA) gas-jet target for enabling next-generation transfer reaction studies, the 14N (p , t )12N reaction was studied for the first time, using a pure jet of nitrogen, in an attempt to resolve conflicting information on the structure of 12N . A potentially new level at 4.561-MeV excitation energy in 12N was found.

  20. Resonance Strength Measurement at Astrophysical Energies: The 17O(p,α)14N Reaction Studied via THM

    NASA Astrophysics Data System (ADS)

    Sergi, M. L.; Spitaleri, C.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Rapisarda, G. G.; Mukhamedzhanov, A.; Irgaziev, B.; Tang, X. D.; Wischer, M.; Mrazek, J.; Kroha, V.

    2016-05-01

    In recent years, the Trojan Horse Method (THM) has been used to investigate the low-energy cross sections of proton-induced reactions on 17O nuclei, overcoming extrapolation procedures and enhancement effects due to electron screening. We will report on the indirect study of the 17O(p,α)14N reaction via the Trojan Horse Method by applying the approach developed for extracting the resonance strength of narrow resonance in the ultralow energy region. The mean value of the strengths obtained in the two measurements was calculated and compared with the direct data available in literature.

  1. Resonance strength measurement at astrophysical energies: The 17O(p,α)14N reaction studied via Trojan Horse Method

    NASA Astrophysics Data System (ADS)

    Sergi, M. L.; Spitaleri, C.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Rapisarda, G. G.; Mukhamedzhanov, A.; Irgaziev, B.; Tang, X. D.; Wiescher, M.; Mrazek, J.; Kroha, V.

    2015-10-01

    In recent years, the Trojan Horse Method (THM) has been used to investigate the low-energy cross sections of proton-induced reactions on 17O nuclei, overcoming extrapolation procedures and enhancement effects due to electron screening. We will report on the indirect study of the 17O(p,α)14N reaction via the THM by applying the approach developed for extracting the resonance strength of narrow resonance in the ultralow energy region. Two measurements will be described and the experimental THM cross sections will be shown for both experiments.

  2. Photographic spectra of fireballs

    NASA Astrophysics Data System (ADS)

    Borovička, J.

    2016-01-01

    Two methods of spectroscopy of meteors using image intensified video cameras and classical photographic film cameras are compared. Video cameras provide large number of low resolution spectra of meteors of normal brightness, which can be used for statistical studies. Large format film cameras have been used through the history and provide high resolution spectra, which can be used to derive temperature, density and absolute abundances of various elements in the radiating plasma. The sensitivity of films is, however, low and only spectra of bright meteors (fireballs) can be studied. Examples of photographic fireball spectra are provided.

  3. Crack spectra analysis

    SciTech Connect

    Tiernan, M.

    1980-09-01

    Crack spectra derived from velocity data have been shown to exhibit systematics which reflect microstructural and textural differences between samples (Warren and Tiernan, 1980). Further research into both properties and information content of crack spectra have yielded the following: Spectral features are reproducible even at low pressures; certain observed spectral features may correspond to non-in-situ crack populations created during sample retrieval; the functional form of a crack spectra may be diagnostic of the sample's grain texture; hysteresis is observed in crack spectra between up and down pressure runs - it may be due to friction between the faces of closed crack populations.

  4. Study of the levels in 12N using the 14N(p,t) reaction with JENSA

    NASA Astrophysics Data System (ADS)

    Chipps, K. A.; Greife, U.; Bardayan, D. W.; Blackmon, J. C.; Linhardt, L. E.; Kontos, A.; Schatz, H.; Kozub, R. L.; Matos, M.; Pain, S. D.; Smith, M. S.; Pittman, S. T.; Sachs, A.; Schmitt, K. T.; Thompson, P.; Jensa Collaboration

    2014-09-01

    Based on consideration of the isobaric analogues 12B and 12C, the experimental information on 12N is incomplete, with a number of inconsistencies between the compilations and the results of individual studies. As one of a series of commissioning physics measurements to demonstrate the benefit of the new Jet Experiments in Nuclear Structure and Astrophysics (JENSA) gas jet target for enabling next-generation transfer reaction studies, the 14N(p,t)12N reaction was studied using a pure 300 psig jet of nitrogen, in order to help elucidate the structure of 12N. The experiment and results will be discussed. Based on consideration of the isobaric analogues 12B and 12C, the experimental information on 12N is incomplete, with a number of inconsistencies between the compilations and the results of individual studies. As one of a series of commissioning physics measurements to demonstrate the benefit of the new Jet Experiments in Nuclear Structure and Astrophysics (JENSA) gas jet target for enabling next-generation transfer reaction studies, the 14N(p,t)12N reaction was studied using a pure 300 psig jet of nitrogen, in order to help elucidate the structure of 12N. The experiment and results will be discussed. Research supported by the US Department of Energy Office of Science.

  5. (14)N Nuclear Quadrupole Coupling and Methyl Internal Rotation in N-tert-Butylacetamide As Observed by Microwave Spectroscopy.

    PubMed

    Kannengießer, Raphaela; Stahl, Wolfgang; Nguyen, Ha Vinh Lam; Kleiner, Isabelle

    2016-06-16

    The rotational spectrum of N-tert-butylacetamide, CH3(C═O)(NH)C(CH3)3, was measured in the frequency range from 2 to 26.5 GHz using a molecular beam Fourier transform microwave spectrometer. Only one conformer with trans configuration and Cs symmetry was observed. Torsional splittings up to 4.3 GHz occurred in the spectrum due to the internal rotation of the acetyl methyl group CH3(C═O) with a barrier height of approximately 65 cm(-1). Hyperfine structures arise from the quadrupole coupling of the (14)N nucleus appeared for all rotation-torsional transitions. The data set was reproduced with the programs XIAM and BELGI-C1-hyperfine, an extended version of the BELGI-C1 code that includes the effect of the (14)N quadrupole coupling, to root-mean-square deviations of 16.9 and 3.0 kHz, respectively. Quantum chemical calculations were performed to complement the experimental results. The BELGI-C1-hyperfine code was also used to refit the recently published microwave data of N-ethylacetamide to measurement accuracy. PMID:27213507

  6. Determination of NH proton chemical shift anisotropy with 14N-1H heteronuclear decoupling using ultrafast magic angle spinning solid-state NMR

    NASA Astrophysics Data System (ADS)

    Pandey, Manoj Kumar; Nishiyama, Yusuke

    2015-12-01

    The extraction of chemical shift anisotropy (CSA) tensors of protons either directly bonded to 14N nuclei (I = 1) or lying in their vicinity using rotor-synchronous recoupling pulse sequence is always fraught with difficulty due to simultaneous recoupling of 14N-1H heteronuclear dipolar couplings and the lack of methods to efficiently decouple these interactions. This difficulty mainly arises from the presence of large 14N quadrupolar interactions in comparison to the rf field that can practically be achieved. In the present work it is demonstrated that the application of on-resonance 14N-1H decoupling with rf field strength ∼30 times weaker than the 14N quadrupolar coupling during 1H CSA recoupling under ultrafast MAS (90 kHz) results in CSA lineshapes that are free from any distortions from recoupled 14N-1H interactions. With the use of extensive numerical simulations we have shown the applicability of our proposed method on a naturally abundant L-Histidine HCl·H2O sample.

  7. Persistence of singlet fluctuations in the coupled spin tetrahedra system Cu2Te2O5Br2 revealed by high-field magnetization, 79Br NQR, and 125Te NMR

    NASA Astrophysics Data System (ADS)

    Baek, S.-H.; Choi, K.-Y.; Berger, H.; Büchner, B.; Grafe, H.-J.

    2012-11-01

    We present high-field magnetization and 79Br nuclear quadrupole resonance (NQR) and 125Te nuclear magnetic resonance (NMR) studies in the weakly coupled Cu2+ (S=1/2) tetrahedral system Cu2Te2O5Br2. The field-induced level crossing effects were observed by the magnetization measurements in a long-ranged magnetically ordered state which was confirmed by a strong divergence of the spin-lattice relaxation rate T1-1 at T0=13.5 K. In the paramagnetic state, T1-1 reveals an effective singlet-triplet spin gap much larger than that observed by static bulk measurements. Our results imply that the inter- and the intratetrahedral interactions compete, but at the same time they cooperate strengthening effectively the local intratetrahedral exchange couplings. We discuss that the unusual feature originates from the frustrated intertetrahedral interactions.

  8. Action spectra again?

    PubMed

    Coohill, T P

    1991-11-01

    Action spectroscopy has a long history and is of central importance to photobiological studies. Action spectra were among the first assays to point to chlorophyll as the molecule most responsible for plant growth and to DNA as the genetic material. It is useful to construct action spectra early in the investigation of new areas of photobiological research in an attempt to determine the wavelength limits of the radiation region causing the studied response. But due to the severe absorption of ultraviolet (UV) radiation by biological samples, UV action spectra were first limited to small cells (bacteria and fungi). Advances in techniques (e.g. single cell culture) and analysis allowed accurate action spectra to be reported even for mammalian cells. But precise analytical action spectra are often difficult to obtain when large, pigmented, or groups of cells are investigated. Here some action spectra are limited in interpretation and merely supply a wavelength vs effect curve. When polychromatic sources are employed, the interpretation of action spectra is even more complex and formidable. But such polychromatic action spectra can be more directly related to ambient responses. Since precise action spectra usually require the completion of a relatively large number of careful experiments using somewhat sophisticated equipment over a range of at least six wavelengths, they are often not pursued. But they remain central to the elucidation of the effect being studied. The worldwide community has agreed that stratospheric ozone is depleting, with the possibility of a consequent rise in the amount of UV-B (290-320 nm) reaching the earth's surface. It is therefore essential that new action spectra be completed for UV-B effects on a large variety of responses of human, animal, and aquatic plant systems. Combining these action spectra with the known amounts of UV-B reaching the biosphere can give rise to solar UV effectiveness spectra that, in turn, can give rise to estimates

  9. Transfer reactions with JENSA: study of the levels in 12N using 14N(p,t)

    NASA Astrophysics Data System (ADS)

    Chipps, K. A.; Jensa Collaboration

    2015-10-01

    The Jet Experiments in Nuclear Structure and Astrophysics (JENSA) gas jet target, recently recommissioned in the ReA3 facility at the NSCL, will provide a state-of-the-art, dense, localized, and pure target of light, gaseous elements for various reaction studies. As one of a series of commissioning physics measurements to demonstrate the benefit of the new Jet Experiments in Nuclear Structure and Astrophysics (JENSA) gas jet target for enabling next-generation transfer reaction studies, the 14N(p,t)12N reaction was studied using a pure 300 psig jet of nitrogen, in order to help elucidate the structure of 12N. The experiment and lessons learned for future gas jet transfer reaction measurements will be discussed. Research supported by the U. S. Department of Energy Office of Science and NSF.

  10. Cross sections for n+{sup 14}N from an R-matrix analysis of the {sup 15}N system

    SciTech Connect

    Hale, G.M.; Young, P.G.; Chadwick, M.B.

    1994-06-01

    As part of the Hiroshima-Nagasaki Dose Reevaluation Program, a new evaluation of the neutron cross sections for {sup 14}N was made for ENDF/B-VI, based at energies below 2.5 MeV on a multichannel R-matrix analysis of reactions in the {sup 15}N system. The types of data used in the analysis, and the resulting cross sections and resonance structure for {sup 15}N are briefly described. The resonant features of the neutron cross sections were especially well determined by including precise, high-resolution neutron total cross section measurements from ORNL. While the new evaluated cross section appear to be significant improvements over the earlier ones, they still need to be tested more extensively against recent measurements of the differential elastic cross section from Oak Ridge.

  11. Interaction of 1p nuclei: Case of 14N+12C Elastic Scattering at 21.0 MeV

    NASA Astrophysics Data System (ADS)

    Burtebayev, N.; Alimov, D.; Boztosun, I.; Burtebayeva, J.; Kerimkulov, Zh K.; Nassurlla, M.; Amangeldy, N.; Morzabayev, A. K.; Sakhiev, S. K.; Hamada, Sh

    2015-04-01

    Optical model analysis has been conducted for the elastic scattering of 1p-shell nuclei around the Coulomb barrier energies. We have used both microscopic double-folding and phenomenological potentials for the real part of the complex nuclear potential. The imaginary potential has the shape of phenomenological Wood-Saxon volume. The case 14N+12C for 1p-shell nuclei has been studied in detail and it is noticed that a large normalization of the strength of the double-folding real potential is needed to explain the structure observed in the experimental data. A good agreement between experimental data and theoretical results is obtained for the phenomenological potential case.

  12. On the trimerization of cyanoacetylene: mechanism of formation of tricyanobenzene isomers and laboratory detection of their radio spectra.

    PubMed

    Hopf, Henning; Mlynek, Cornelia; McMahon, Robert J; Menke, Jessica L; Lesarri, Alberto; Rosemeyer, Michael; Grabow, Jens-Uwe

    2010-12-17

    In support of a deeper understanding of the chemistry of cyanoacetylene--a known constituent of planetary atmospheres and interstellar space--theoretical and experimental studies address the chemical mechanism of dimerization and trimerization, and provide high-resolution rotational spectra of two of the trimeric products, 1,2,3- and 1,2,4-tricyanobenzene. Analysis of the rotational spectra is particularly challenging because of quadrupolar coupling from three (14)N nuclei. The laboratory rotational spectra provide the basis for future searches for these polar aromatic compounds in interstellar space by radio astronomy. PMID:20967903

  13. Thermodynamic analysis of spectra

    SciTech Connect

    Mitchell, G. E.; Shriner, J. F. Jr.

    2008-04-04

    Although random matrix theory had its initial application to neutron resonances, there is a relative scarcity of suitable nuclear data. The primary reason for this is the sensitivity of the standard measures used to evaluate spectra--the spectra must be essential pure (no state with a different symmetry) and complete (no states missing). Additional measures that are less sensitive to these experimental limitations are of significant value. The standard measure for long range order is the {delta}{sub 3} statistic. In the original paper that introduced this statistic, Dyson and Mehta also attempted to evaluate spectra with thermodynamic variables obtained from the circular orthogonal ensemble. We consider the thermodynamic 'internal energy' and evaluate its sensitivity to experimental limitations such as missing and spurious levels. Monte Carlo simulations suggest that the internal energy is less sensitive to mistakes than is {delta}{sub 3}, and thus the internal energy can serve as a addition to the tool kit for evaluating experimental spectra.

  14. Fast detection of choline-containing metabolites in liver using 2D 1H- 14N three-bond correlation (HN3BC) spectroscopy

    NASA Astrophysics Data System (ADS)

    Mao, Xi-an; Li, Ning; Mao, Jiezhen; Li, Qiurong; Xiao, Nan; Jiang, Bin; Jiang, Ling; Wang, Xu-xia; Liu, Maili

    2012-01-01

    Detection and quantification of total choline-containing metabolites (CCMs) in tissues by magnetic resonance spectroscopy (MRS) has received considerable attention as a biomarker of cancer. Tissue CCMs are mainly choline (Cho), phosphocholine (PCho), and glycerophosphocholine (GPCho). Because the methyl 1H resonances of tissue CCMs exhibit small chemical shift differences and overlap significantly in 1D 1H MRS, quantification of individual components is precluded. Development of a MRS method capably of resolving individual components of tissue CCMs would be a significant advance. Herein, a modification of the 2D 1H- 14N HSQC technique is targeted on the two methylene 1H in the CH 2O group ( 3J1H14N = 2.7 Hz) and applied to ex vivo mouse and human liver samples at physiological temperature (37 °C). Specifically, the 1H- 14N HSQC technique is modified into a 2D 1H- 14N three-bond correlation (HN3BC) experiment, which selectively detects the 1H of CH 2O coupled to 14N in CCMs. Separate signals from Cho, PCho, and GPCho components are resolved with high detection sensitivity. A 2D HN3BC spectrum can be recorded from mouse liver in only 1.5 min and from human carcinoma liver tissue in less than 3 min with effective sample volume of 0.2 ml at 14.1 T.

  15. THM determination of the 65 keV resonance strength intervening in the 17O ( p ,α)14N reaction rate

    NASA Astrophysics Data System (ADS)

    Sergi, M. L.; Spitaleri, C.; Burjan, S. V.; Cherubini, S.; Coc, A.; Gulino, M.; Hammache, F.; Hons, Z.; Irgaziev, B.; Kiss, G. G.; Kroha, V.; La Cognata, M.; Lamia, L.; Mukhamedzhanov, A.; Pizzone, R. G.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; de Séréville, N.; Somorjai, E.; Tumino, A.

    2015-02-01

    The 17O ( p ,α)14N reaction is of paramount importance for the nucleosynthesis in a number of stellar sites, including red giants (RG), asymptotic giant branch (AGB) stars, massive stars and classical novae. We report on the indirect study of the 17O ( p ,α)14N reaction via the Trojan Horse Method by applying the approach recently developed for extracting the resonance strength of the narrow resonance at Ec.m.R = 65 keV (EX =5.673 MeV). The strength of the 65 keV resonance in the 17O ( p ,α)14N reaction, measured by means of the THM, has been used to renormalize the corresponding resonance strength in the 17O + p radiative capture channel.

  16. Energy loss effect on color center creation in LiF crystals under irradiation with 12C, 14N, 40Ar, 84Kr, and 130Xe ions

    NASA Astrophysics Data System (ADS)

    Dauletbekova, A.; Schwartz, K.; Sorokin, M. V.; Baizhumanov, M.; Akilbekov, A.; Zdorovets, M.

    2015-09-01

    Color center creation in LiF crystals irradiated with 12C, 14N, 40Ar, 84Kr, and 130Xe MeV ions were studied as a function of the absorbed energy (fluence). For light ions (12C, 14N) the saturation of single F centers takes place at higher absorbed energy (5 × 1023 eV/cm3) than that for 40Ar, 84Kr and 130Xe ions (∼1023 eV/cm3). The saturation concentration of F centers for 12C and 14N (2 × 1019 cm-3) is twice of that for the heavier ions. Further irradiation with light ions decreases concentration of F centers, presumably due to aggregation, whereas for heavy ions the saturation concentration remains approximately the same that can be explained by much stronger recombination losses within single tracks.

  17. Extrapolation of astrophysical S factors for the reaction {sup 14}N((p, {gamma}) {sup 15}O to near-zero energies

    SciTech Connect

    Artemov, S. V.; Igamov, S. B. Tursunmakhatov, Q. I.; Yarmukhamedov, R.

    2012-03-15

    The astrophysical S factors for the radiative-capture reaction {sup 14}N(p, {gamma}){sup 15}O in the region of ultralow energies were calculated on the basis of the R-matrix approach. The values of the radiative and protonic widths were fitted to new experimental data. The contribution of direct radiative capture to bound states of the {sup 15}O nucleus was determined with the aid of asymptotic normalization coefficients, whose values were refined in the present study on the basis of the results obtained from an analysis of the reaction {sup 14}N({sup 3}He, d){sup 15}O at three different energies of incident helium ions. A value of S(0) = 1.79 {+-} 0.31 keV b was obtained for the total astrophysical S factor, and the reaction rate was determined for the process {sup 14}N(p, {gamma}){sup 15}O.

  18. THM determination of the 65 keV resonance strength intervening in the {sup 17}O(p,α){sup 14}N reaction rate

    SciTech Connect

    Sergi, M. L.; La Cognata, M.; Pizzone, R. G.; Spitaleri, C.; Cherubini, S.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; Burjan, S. V.; Hons, Z.; Kroha, V.; Coc, A.; Hammache, F.; Irgaziev, B.; Kiss, G. G.; Somorjai, E.; Lamia, L.; Mukhamedzhanov, A.; and others

    2015-02-24

    The {sup 17}O(p,α){sup 14}N reaction is of paramount importance for the nucleosynthesis in a number of stellar sites, including red giants (RG), asymptotic giant branch (AGB) stars, massive stars and classical novae. We report on the indirect study of the {sup 17}O(p,α){sup 14}N reaction via the Trojan Horse Method by applying the approach recently developed for extracting the resonance strength of the narrow resonance at E{sub c.m.}{sup R} = 65 keV (E{sub X} =5.673 MeV). The strength of the 65 keV resonance in the {sup 17}O(p,α){sup 14}N reaction, measured by means of the THM, has been used to renormalize the corresponding resonance strength in the {sup 17}O+p radiative capture channel.

  19. Resonance strengths in the {sup 14}N(p,gamma){sup 15}O and {sup 15}N(p,alphagamma){sup 12}C reactions

    SciTech Connect

    Marta, Michele; Trompler, Erik; Bemmerer, Daniel; Beyer, Roland; Grosse, Eckart; Hannaske, Roland; Junghans, Arnd R.; Nair, Chithra; Schwengner, Ronald; Wagner, Andreas; Yakorev, Dmitry; Broggini, Carlo; Caciolli, Antonio; Erhard, Martin; Menegazzo, Roberto; Fueloep, Zsolt; Gyuerky, Gyoergy; Szuecs, Tamas; Vezzu, Simone

    2010-05-15

    The {sup 14}N(p,gamma){sup 15}O reaction is the slowest reaction of the carbon-nitrogen-oxygen cycle of hydrogen burning in stars. As a consequence, it determines the rate of the cycle. The {sup 15}N(p,alphagamma){sup 12}C reaction is frequently used in inverse kinematics for hydrogen depth profiling in materials. The {sup 14}N(p,gamma){sup 15}O and {sup 15}N(p,alphagamma){sup 12}C reactions have been studied simultaneously, using titanium nitride targets of natural isotopic composition and a proton beam. The strengths of the resonances at E{sub p} = 1058 keV in {sup 14}N(p,gamma){sup 15}O and at E{sub p} = 897 and 430 keV in {sup 15}N(p,alphagamma){sup 12}C have been determined with improved precision, relative to the well-known resonance at E{sub p} = 278 keV in {sup 14}N(p,gamma){sup 15}O. The new recommended values are omegagamma=0.353+-0.018, 362+-20, and 21.9+-1.0 eV for their respective strengths. In addition, the branching ratios for the decay of the E{sub p} = 1058 keV resonance in {sup 14}N(p,gamma){sup 15}O have been redetermined. The data reported here should facilitate future studies of off-resonant capture in the {sup 14}N(p,gamma){sup 15}O reaction that are needed for an improved R-matrix extrapolation of the cross section. In addition, the data on the 430 keV resonance in {sup 15}N(p,alphagamma){sup 12}C may be useful for hydrogen depth profiling.

  20. First direct measurement of the 11C (α ,p )14N stellar reaction by an extended thick-target method

    NASA Astrophysics Data System (ADS)

    Hayakawa, S.; Kubono, S.; Kahl, D.; Yamaguchi, H.; Binh, D. N.; Hashimoto, T.; Wakabayashi, Y.; He, J. J.; Iwasa, N.; Kato, S.; Komatsubara, T.; Kwon, Y. K.; Teranishi, T.

    2016-06-01

    The 11C(α,p ) 14N reaction is an important α -induced reaction competing with β -limited hydrogen-burning processes in high-temperature explosive stars. We directly measured its reaction cross sections both for the ground-state transition (α ,p0) and the excited-state transitions (α ,p1) and (α ,p2) at relevant stellar energies 1.3-4.5 MeV by an extended thick-target method featuring time of flight for the first time. We revised the reaction rate by numerical integration including the (α ,p1) and (α ,p2) contributions and also low-lying resonances of (α ,p0) using both the present and the previous experimental data which were totally neglected in the previous compilation works. The present total reaction rate lies between the previous (α ,p0) rate and the total rate of the Hauser-Feshbach statistical model calculation, which is consistent with the relevant explosive hydrogen-burning scenarios such as the ν p process.

  1. Radiative Neutron Capture on 9Be, 14C, 14N, 15N and 16O at Thermal and Astrophysical Energies

    NASA Astrophysics Data System (ADS)

    Dubovichenko, Sergey; Dzhazairov-Kakhramanov, Albert; Afanasyeva, Nadezhda

    2013-10-01

    The total cross-sections of the radiative neutron capture processes on 9Be, 14C, 14N, 15N and 16O are described in the framework of the modified potential cluster model with the classification of orbital states according to Young tableaux. The continued interest in the study of these reactions is due, on the one hand, to the important role played by this process in the analysis of many fundamental properties of nuclei and nuclear reactions, and, on the other hand, to the wide use of the capture cross-section data in the various applications of nuclear physics and nuclear astrophysics, and, also, to the importance of the analysis of primordial nucleosynthesis in the Universe. This article is devoted to the description of results for the processes of the radiative neutron capture on certain light atomic nuclei at thermal and astrophysical energies. The considered capture reactions are not part of stellar thermonuclear cycles, but involve in the reaction chains of inhomogeneous Big Bang models.

  2. 15N/14N variations in Cretaceous Atlantic sedimentary sequences: implication for past changes in marine nitrogen biogeochemistry

    USGS Publications Warehouse

    Rau, G.H.; Arthur, M.A.; Dean, W.E.

    1987-01-01

    At two locations in the Atlantic Ocean (DSDP Sites 367 and 530) early to middle Cretaceous organic-carbon-rich beds ("black shales") were found to have significantly lower ??15N values (lower 15N/14N ratios) than adjacent organic-carbon-poor beds (white limestones or green claystones). While these lithologies are of marine origin, the black strata in particular have ??15N values that are significantly lower than those previously found in the marine sediment record and most contemporary marine nitrogen pools. In contrast, black, organic-carbon-rich beds at a third site (DSDP Site 603) contain predominantly terrestrial organic matter and have C- and N-isotopic compositions similar to organic matter of modern terrestrial origin. The recurring 15N depletion in the marine-derived Cretaceous sequences prove that the nitrogen they contain is the end result of an episodic and atypical biogeochemistry. Existing isotopic and other data indicate that the low 15N relative abundance is the consequence of pelagic rather than post-depositional processes. Reduced ocean circulation, increased denitrification, and, hence, reduced euphotic zone nitrate availability may have led to Cretaceous phytoplankton assemblages that were periodically dominated by N2-fixing blue-green algae, a possible source of this sediment 15N-depletion. Lack of parallel isotopic shifts in Cretaceous terrestrially-derived nitrogen (Site 603) argues that the above change in nitrogen cycling during this period did not extend beyond the marine environment. ?? 1987.

  3. INVESTIGATION OF MOLECULAR CLOUD STRUCTURE AROUND INFRARED BUBBLES: CARMA OBSERVATIONS OF N14, N22, AND N74

    SciTech Connect

    Sherman, Reid A.

    2012-11-20

    We present CARMA observations in 3.3 mm continuum and several molecular lines of the surroundings of N14, N22, and N74, three infrared bubbles from the GLIMPSE catalog. We have discovered 28 compact continuum sources and confirmed their associations with the bubbles using velocity information from HCO{sup +} and HCN. We have also mapped small-scale structures of N{sub 2}H{sup +} emission in the vicinity of the bubbles. By combining our data with survey data from GLIMPSE, MIPSGAL, BGPS, and MAGPIS, we establish about half of our continuum sources as star-forming cores. We also use survey data with the velocity information from our molecular line observations to describe the morphology of the bubbles and the nature of the fragmentation. We conclude from the properties of the continuum sources that N74 likely is at the near kinematic distance, which was previously unconfirmed. We also present tentative evidence of molecular clouds being more fragmented on bubble rims compared to dark clouds, suggesting that triggered star formation may occur, though our findings do not conform to a classic collect-and-collapse model.

  4. Differentiation of Pigment in Eggs Using Carbon ((13)C/(12)C) and Nitrogen ((15)N/(14)N) Stable Isotopes.

    PubMed

    Sun, Feng M; Shi, Guang Y; Wang, Hui W

    2016-07-01

    Consumers prefer natural and healthy food, but artificial pigments are often abused in egg products. The study aimed at differentiating the origin of pigments in eggs by applying the technique of carbon ((13)C/(12)C) and nitrogen ((15)N/(14)N) stable isotope analysis. Five hundred sixty laying hens were randomly distributed into 14 treatments, which were divided into four groups: maize, carophyll red pigment, carophyll yellow pigment, and a mixture of carophyll red and yellow pigments. Eggs were collected and pretreated to determe the values of the Roche Yolk Color Fan (RCF), δ(13)C, and δ(15)N. With increasing maize content, the RCF and δ(13)C values of yolks increased. Moreover, the RCF values in the three pigment groups were significantly influenced by the artificial colors, but δ(13)C values were not significantly different, regardless of the existence of pigment. The δ(15)N values in all treatments did not vary as regularly as the carbon stable isotope. A strong positive correlation was found between RCF and δ(13)C in the maize group, but no such correlation was be observed in the pigment groups. It is concluded that carbon stable isotope ratio analysis (δ(13)C) of the yolk can be used to differentiate the origin of the pigment added to eggs. PMID:27302905

  5. Atomic Spectra Database (ASD)

    National Institute of Standards and Technology Data Gateway

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  6. Calculating (14)N(16)O2 spectral line parameters in an infrared range: A comparison of "global" and "local" effective operator methods.

    PubMed

    Voitsekhovskaya, O K; Egorov, O V; Kashirskii, D E

    2016-08-01

    Nitrogen dioxide, (14)N(16)O2, line positions and intensities calculated by us based on a "local" effective operator method are compared to the recent results of the "global" calculation. The comparison was made for theoretical absorption coefficients in the spectral range of 600-3700cm(-1) using the measured data taken from the Pacific Northwest National Laboratory. In order to conduct the calculations, empirical parameters of the effective rotational Hamiltonian of the twenty-one vibrational states were applied from the most recent experimental works. The second order parameters of the dipole moment function of (14)N(16)O2 were determined for the first time. The "local" line list in this research consists of one hundred and four bands and includes the line intensities of the v1+v2+v3 band of (14)N(16)O2 that have not yet been investigated in the literature. Among these bands, only eleven bands are included in HITRAN2012. The reasons behind the disagreements between the theoretical and measured absorption coefficients of (14)N(16)O2 are discussed. PMID:27111152

  7. Calculating 14N16O2 spectral line parameters in an infrared range: A comparison of "global" and "local" effective operator methods

    NASA Astrophysics Data System (ADS)

    Voitsekhovskaya, O. K.; Egorov, O. V.; Kashirskii, D. E.

    2016-08-01

    Nitrogen dioxide, 14N16O2, line positions and intensities calculated by us based on a "local" effective operator method are compared to the recent results of the "global" calculation. The comparison was made for theoretical absorption coefficients in the spectral range of 600-3700 cm- 1 using the measured data taken from the Pacific Northwest National Laboratory. In order to conduct the calculations, empirical parameters of the effective rotational Hamiltonian of the twenty-one vibrational states were applied from the most recent experimental works. The second order parameters of the dipole moment function of 14N16O2 were determined for the first time. The "local" line list in this research consists of one hundred and four bands and includes the line intensities of the v1 + v2 + v3 band of 14N16O2 that have not yet been investigated in the literature. Among these bands, only eleven bands are included in HITRAN2012. The reasons behind the disagreements between the theoretical and measured absorption coefficients of 14N16O2 are discussed.

  8. The 17O(p,α)14N reaction measurement via the Trojan horse method and its application to 17O nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Sergi, M. L.; Spitaleri, C.; Pizzone, R. G.; Burjan, S. V.; Cherubini, S.; Coc, A.; Gulino, M.; Hammache, F.; Hons, Z.; Irgaziev, B.; Kiss, G. G.; Kroha, V.; La Cognata, M.; Lamia, L.; Mukhamedzhanov, A.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; de Séréville, N.; Somorjai, E.; Tumino, A.

    2014-05-01

    The role of oxygen in astrophysics is related to different problems as novae nucleosynthesis and gamma-ray astronomy. In particular, owing to the still present uncertainties on its rate, the 17O(p,α)14N is one of the most important reaction to be studied in order to get more information about the fate of oxygen in different astrophysical scenarios.

  9. Genome Sequence of a Novel H14N7 Subtype Influenza A Virus Isolated from a Blue-Winged Teal (Anas discors) Harvested in Texas, USA.

    PubMed

    Ramey, Andrew M; Reeves, Andrew B; Poulson, Rebecca L; Carter, Deborah L; Davis-Fields, Nicholas; Stallknecht, David E

    2016-01-01

    We report here the complete genome sequence of a novel H14N7 subtype influenza A virus (IAV) isolated from a blue-winged teal (Anas discors) harvested in Texas, USA. The genomic characteristics of this IAV strain with a previously undetected subtype combination suggest recent viral evolution within the New World wild-bird IAV reservoir. PMID:27284136

  10. Genome Sequence of a Novel H14N7 Subtype Influenza A Virus Isolated from a Blue-Winged Teal (Anas discors) Harvested in Texas, USA

    PubMed Central

    Reeves, Andrew B.; Poulson, Rebecca L.; Carter, Deborah L.; Davis-Fields, Nicholas; Stallknecht, David E.

    2016-01-01

    We report here the complete genome sequence of a novel H14N7 subtype influenza A virus (IAV) isolated from a blue-winged teal (Anas discors) harvested in Texas, USA. The genomic characteristics of this IAV strain with a previously undetected subtype combination suggest recent viral evolution within the New World wild-bird IAV reservoir. PMID:27284136

  11. Trophic guilds of generalist feeders in soil animal communities as indicated by stable isotope analysis (15N/14N).

    PubMed

    Oelbermann, K; Scheu, S

    2010-10-01

    We investigated if the commonly used aggregation of organisms into trophic guilds, such as detritivores and predators, in fact represent distinct trophic levels. Soil arthropods of a forest-meadow transect were ascribed a priori to trophic guilds (herbivores, detritivores, predators and necrovores), which are often used as an equivalent to trophic levels. We analysed natural variations in 15N/14N ratios of the animals in order to investigate the trophic similarity of organisms within (a priori defined) trophic guilds. Using trophic guilds as an equivalent to trophic level, the assumed stepwise enrichment of 15N by 3.4 per thousand per trophic level did not apply to detritivores; they were only enriched in 15N by on average 1.5 per thousand compared to litter materials. Predators on average were enriched in 15N by 3.5 per thousand compared to detritivores. Within detritvores and predators delta15N signatures varied markedly, indicating that these trophic guilds are dominated by generalist feeders which form a gradient of organisms feeding on different resources. The results indicate that commonly used trophic guilds, in particular detritivores and predators, do not represent trophic levels but consist of subguilds, i.e. subsets of organisms differing in resource utilization. In particular, in soil and litter food webs where trophic level omnivory is common, the use of distinct trophic levels may be inappropriate. Guilds of species delineated by natural variations of stable isotope ratios are assumed to more adequately represent the structure of litter and soil food webs allowing a more detailed understanding of their functioning. PMID:20109270

  12. Stars and their Spectra

    NASA Astrophysics Data System (ADS)

    Kaler, James B.

    1997-03-01

    This unique and informative text describes how stars are classified according to their spectral qualities and temperature. James Kaler explains the alphabet of stellar astronomy, running from cool M stars to hot O stars, and tells the story of their evolution. Before embarking on a voyage of cosmic discovery, the author discusses the fundamental properties of stars, their atomic structure and the formation of spectra. Then, Kaler considers each star type individually and explores its spectra in detail. A review of unusual, hard-to-classify stars, and a discussion of data related to the birth, life and death of stars round out the text. This book is an important resource for all amateur astronomers and students of astronomy. Professionals will find it a refreshing read as well.

  13. Parmeterization of spectra

    NASA Technical Reports Server (NTRS)

    Cornish, C. R.

    1983-01-01

    Following reception and analog to digital conversion (A/D) conversion, atmospheric radar backscatter echoes need to be processed so as to obtain desired information about atmospheric processes and to eliminate or minimize contaminating contributions from other sources. Various signal processing techniques have been implemented at mesosphere-stratosphere-troposphere (MST) radar facilities to estimate parameters of interest from received spectra. Such estimation techniques need to be both accurate and sufficiently efficient to be within the capabilities of the particular data-processing system. The various techniques used to parameterize the spectra of received signals are reviewed herein. Noise estimation, electromagnetic interference, data smoothing, correlation, and the Doppler effect are among the specific points addressed.

  14. Barnacle Bill Spectra

    NASA Technical Reports Server (NTRS)

    1997-01-01

    These IMP spectra show the characteristics of the rock surface measured by the Alpha Proton X-Ray Spectrometer (blue), the soil trapped in pits on the rock surface (red), and the deposit of bright drift on the top of the rock. The area measured by the APXS has the properties expected for nearly unweathered igneous rock, and the soil trapped in the pits is intermediate to the unweathered rock and the highly weathered drift material.

  15. Multispectral processing without spectra

    NASA Astrophysics Data System (ADS)

    Drew, Mark S.; Finlayson, Graham D.

    2003-07-01

    It is often the case that multiplications of whole spectra, component by component, must be carried out, for example when light reflects from or is transmitted through materials. This leads to particularly taxing calculations, especially in spectrally based ray tracing or radiosity in graphics, making a full-spectrum method prohibitively expensive. Nevertheless, using full spectra is attractive because of the many important phenomena that can be modeled only by using all the physics at hand. We apply to the task of spectral multiplication a method previously used in modeling RGB-based light propagation. We show that we can often multiply spectra without carrying out spectral multiplication. In previous work J. Opt. Soc. Am. A 11 , 1553 (1994) we developed a method called spectral sharpening, which took camera RGBs to a special sharp basis that was designed to render illuminant change simple to model. Specifically, in the new basis, one can effectively model illuminant change by using a diagonal matrix rather than the 33 linear transform that results from a three-component finite-dimensional model G. Healey and D. Slater, J. Opt. Soc. Am. A 11 , 3003 (1994). We apply this idea of sharpening to the set of principal components vectors derived from a representative set of spectra that might reasonably be encountered in a given application. With respect to the sharp spectral basis, we show that spectral multiplications can be modeled as the multiplication of the basis coefficients. These new product coefficients applied to the sharp basis serve to accurately reconstruct the spectral product. Although the method is quite general, we show how to use spectral modeling by taking advantage of metameric surfaces, ones that match under one light but not another, for tasks such as volume rendering. The use of metamers allows a user to pick out or merge different volume structures in real time simply by changing the lighting. 2003 Optical Society of America

  16. Multispectral processing without spectra.

    PubMed

    Drew, Mark S; Finlayson, Graham D

    2003-07-01

    It is often the case that multiplications of whole spectra, component by component, must be carried out,for example when light reflects from or is transmitted through materials. This leads to particularly taxing calculations, especially in spectrally based ray tracing or radiosity in graphics, making a full-spectrum method prohibitively expensive. Nevertheless, using full spectra is attractive because of the many important phenomena that can be modeled only by using all the physics at hand. We apply to the task of spectral multiplication a method previously used in modeling RGB-based light propagation. We show that we can often multiply spectra without carrying out spectral multiplication. In previous work [J. Opt. Soc. Am. A 11, 1553 (1994)] we developed a method called spectral sharpening, which took camera RGBs to a special sharp basis that was designed to render illuminant change simple to model. Specifically, in the new basis, one can effectively model illuminant change by using a diagonal matrix rather than the 3 x 3 linear transform that results from a three-component finite-dimensional model [G. Healey and D. Slater, J. Opt. Soc. Am. A 11, 3003 (1994)]. We apply this idea of sharpening to the set of principal components vectors derived from a representative set of spectra that might reasonably be encountered in a given application. With respect to the sharp spectral basis, we show that spectral multiplications can be modeled as the multiplication of the basis coefficients. These new product coefficients applied to the sharp basis serve to accurately reconstruct the spectral product. Although the method is quite general, we show how to use spectral modeling by taking advantage of metameric surfaces, ones that match under one light but not another, for tasks such as volume rendering. The use of metamers allows a user to pick out or merge different volume structures in real time simply by changing the lighting. PMID:12868625

  17. Einstein spectra of quasars

    NASA Technical Reports Server (NTRS)

    Wilkes, Belinda J.

    1988-01-01

    The results of the initial stage of the CfA survey of quasar energy distributions are reviewed. Einstein imaging proportional counter spectra of 33 quasars have been studied by fitting a single power law slope and absorption by an equivalent column density of neutral hydrogen. Comparison with the higher energy HEAO-A2 data leads to a two-component model for the X-ray spectrum. The X-ray column density is systematically lower than the 21-cm measured Galactic column density along the same line of sight.

  18. First Infrared Spectra of Nitrous Oxide Pentamer

    NASA Astrophysics Data System (ADS)

    Rezaei, M.; Oliaee, J. Norooz; Moazzen-Ahmadi, N.; McKellar, A. R. W.

    2012-06-01

    High resolution spectra have previously been studied for N_2O dimers (two isomers), trimers (one isomer), and tetramers (two isomers). Here, we assign two new bands to the N_2O pentamer. The bands are observed in the region of the N_2O νb{1} fundamental using a tunable laser to probe a pulsed supersonic slit jet expansion. They are centered at 2233.9 and 2236.4 wn for 14N_2O, and at 2164.4 and 2166.8 wn for 15N_2O. Attribution to the pentamer is based on comparison of the observed rotational constants with theoretical ones from calculated cluster structures based on two rather different N_2O pair potentials. The first potential function is from a recent high level ab initio study. The second potential is a relatively simple empirical one, based partly on fitting to bulk properties. The likely pentamer structure is a completely unsymmetric one. It can be visualized starting with a highly symmetric oblate tetramer which is attacked by a fifth monomer, locating itself at a favorable distance and breaking the symmetry. Interestingly, analysis of the two bands yields very similar but not quite identical ground state parameters. We believe that they are due to distinct isomers having this same basic structure but differing in the orientation direction of one N_2O monomer. [1] R. Dawes, X.-G. Wang, A.W. Jasper, and T. Carrington, Jr., {J. Chem. Phys.} {133}, 134304 (2010). [2] B. Kutcha, R.D. Etters, and R. LeSar, {J. Chem. Phys.} {97}, 5662 (1992). [3] J.N. Oliaee, M. Dehghany, N. Moazzen-Ahmadi, and A.R.W. McKellar, {J. Chem. Phys.} {134}, 074310 (2011).

  19. Theoretical Studies of Molecular Spectra

    NASA Technical Reports Server (NTRS)

    McKay, Christopher (Technical Monitor); Freedman, Richard S.

    2002-01-01

    This summary describes the research activities of the principal investigator during the reporting period. The research includes spectroscopy, management of molecular databases, and generation of spectral line profiles and opacity data. The spectroscopy research includes oxygen broadening of nitric oxide (NO), analysis of CO2 spectra, analysis of HNO3 spectra, and analysis of CO spectra.

  20. The AGB star nucleosynthesis in the light of the recent 17O ( p ,α)14N and 18O ( p ,α)15N reaction rate determinations

    NASA Astrophysics Data System (ADS)

    Palmerini, S.; Sergi, M. L.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Spitaleri, C.

    2015-02-01

    Presolar grains form in the cold and dusty envelopes of Asymptotic Giant Branch (AGB) stars. These solides, once that have been ejected by stellar winds, come to us as inclusions in meteorites providing invaluable benchmarks and constraints for our knowledge of low temeperature H-burning in stars. The Trojan Horse Method (THM) has been used to investigate the low-energy cross sections of the 17O ( p ,α)14N and 18O ( p ,α)15N reactions. Moreover, the strength of the 65 keV resonance in the 17O ( p ,α)14N reaction, measured by means of the THM, has been used to renormalize the corresponding resonance strength in the 17O + p radiative capture channel. The new estimates of the reaction rates have been introduced into calculations of AGB star nucleosynthesis and the results have been compared with geochemical analysis of "presolar" grains to determine their impact on astrophysical environments.

  1. Experimental Study of 17O(p,{alpha})14N and 17O(p,{gamma})18F for Classical Nova Nucleosynthesis

    SciTech Connect

    Chafa, A.; Ouichaoui, S.; Tatischeff, V.; Coc, A.; Garrido, F.; Kiener, J.; Lefebvre-Schuhl, A.; Thibaud, J.-P.; Aguer, P.; Barhoumi, S.; Hernanz, M.; Jose, J.; Sereville, N. de

    2006-04-26

    We investigated the proton-capture reactions on 17O occurring in classical nova explosions. We observed a previously undiscovered resonance at E{sub R}{sup lab}=194.1{+-}0.6 keV in the 17O(p,{alpha})14N reaction, with a measured resonance strength {omega}{gamma}p{alpha}=1.6{+-}0.2 meV. We studied in the same experiment the 17O(p,{gamma})18F reaction by an activation method and the resonance-strength ratio was found to be {omega}{gamma}p{alpha}/{omega}{gamma}p{gamma}=470{+-}50. The corresponding excitation energy in the 18F compound nucleus was determined to be 5789.8{+-}0.3 keV by {gamma}-ray measurements using the 14N({alpha},{gamma})18F reaction. These new resonance properties have important consequences for 17O nucleosynthesis and {gamma}-ray astronomy of classical novae.

  2. Direct measurement of the {sup 11}C({alpha},p){sup 14}N reaction at CRIB: A path from pp-chain to CNO

    SciTech Connect

    Hayakawa, S.; Kubono, S.; Kahl, D.; Yamaguchi, H.; Binh, D. N.; Hashimoto, T.; Wakabayashi, Y.; He, J. J.; Iwasa, N.; Kato, S.; Komatsubara, T.; Kwon, Y. K.; Teranishi, T.; Wanajo, S.

    2012-11-20

    We determined the total reaction rate of the {sup 11}C({alpha},p){sup 14}N reaction relevant to the nucleosynthesis in explosive hydrogen-burning stars. The measurement was performed by means of the thick target method in inverse kinematics with {sup 11}C RI beams. We performed the identification of the ground-state transition and excited-state transitions using time-of-flight information for the first time.

  3. Direct measurement of the breakout reaction {sup 11}C({alpha},p){sup 14}N in explosive hydrogen-burning process

    SciTech Connect

    Hayakawa, S.; Kubono, S.; Kahl, D.; Yamaguchi, H.; Binh, Dam N.; Hashimoto, T.; Wakabayashi, Y.; He, J. J.; Iwasa, N.; Kato, S.; Komatsubara, T.; Kwon, Y. K.; Teranishi, T.; Wanajo, S.

    2012-11-12

    We determined the {sup 11}C({alpha},p){sup 14}N reaction rate relevant to the nucleosynthesis in explosive hydrogen-burning stars. The measurement was performed by means of the thick target method in inverse kinematics with {sup 11}C RI beams. We derived the excitation functions for the ground-state transition and excited-state transitions using time-of-flight information for the first time. The present reaction rate is compared to the previous one.

  4. Carbon-rich Presolar Grains from Massive Stars: Subsolar 12C/13C and 14N/15N Ratios and the Mystery of 15N

    NASA Astrophysics Data System (ADS)

    Pignatari, M.; Zinner, E.; Hoppe, P.; Jordan, C. J.; Gibson, B. K.; Trappitsch, R.; Herwig, F.; Fryer, C.; Hirschi, R.; Timmes, F. X.

    2015-08-01

    Carbon-rich grains with isotopic anomalies compared to the Sun are found in primitive meteorites. They were made by stars, and carry the original stellar nucleosynthesis signature. Silicon carbide grains of Type X and C and low-density (LD) graphites condensed in the ejecta of core-collapse supernovae. We present a new set of models for the explosive He shell and compare them with the grains showing 12C/13C and 14N/15N ratios lower than solar. In the stellar progenitor H was ingested into the He shell and not fully destroyed before the explosion. Different explosion energies and H concentrations are considered. If the supernova shock hits the He-shell region with some H still present, the models can reproduce the C and N isotopic signatures in C-rich grains. Hot-CNO cycle isotopic signatures are obtained, including a large production of 13C and 15N. The short-lived radionuclides 22Na and 26Al are increased by orders of magnitude. The production of radiogenic 22Ne from the decay of 22Na in the He shell might solve the puzzle of the Ne-E(L) component in LD graphite grains. This scenario is attractive for the SiC grains of type AB with 14N/15N ratios lower than solar, and provides an alternative solution for SiC grains originally classified as nova grains. Finally, this process may contribute to the production of 14N and 15N in the Galaxy, helping to produce the 14N/15N ratio in the solar system.

  5. Genome sequence of a novel H14N7 subtype influenza A virus isolated from a blue-winged teal (Anas discors) harvested in Texas, USA

    USGS Publications Warehouse

    Ramey, Andy M.; Reeves, Andrew; Poulson, Rebecca L.; Carter, Deborah L.; Davis-Fields, Nicholas; Stallknecht, David E.

    2016-01-01

    We report here the complete genome sequence of a novel H14N7 subtype influenza A virus (IAV) isolated from a blue-winged teal (Anas discors) harvested in Texas, USA. The genomic characteristics of this IAV strain with a previously undetected subtype combination suggest recent viral evolution within the New World wild-bird IAV reservoir.                   

  6. Millimeter-Wave Observations of Circumstellar 14N/15N and 12C/13C Ratios: New Insights into J-Type Stars

    NASA Astrophysics Data System (ADS)

    Adande, Gilles; Ziurys, Lucy M.; Woolf, Neville

    2016-06-01

    Measurements of 14N/15N and 12C/13C isotopic ratios have been conducted towards circumstellar envelopes of a sample of evolved stars using the J = 3→2 rotational transitions of the isotopologues of HCN, observed with the Submillimeter Telescope (SMT) of the Arizona Radio Observatory (ARO). Towards the J-type stars Y CVn and RY Dra, where 12C/13C ~ 3, the 14N/15N ratios were found to be 120-180 and 225, respectively. The 14N/15N ratio is thus anomalously low relative to interstellar values and a factor ~100 lower than equilibrium values predicted from the CNO cycle. Combining these results with previous chemical and isotopic prior observations of these stars, we conclude that two anomalous behaviors are likely to have occurred in Y CVn and RY Dra. First, the stellar envelope failed to participate in the normal mixing seen in low mass red giants, in which C and then O are substantially converted to N. Secondly, both the carbon enrichment and anomalous isotopic composition of both 13C and15N could have been caused by a plume of hot gas, hydrogen poor but enriched in 12C, from a helium flash mixing into the envelope.

  7. Studies of Structure and Phase Transition in [C(NH2)3]HgBr3 and [C(NH2)3]HgI3 by Means of Halogen NQR, 1H NMR, and Single Crystal X-Ray Diffraction

    NASA Astrophysics Data System (ADS)

    Terao, Hiromitsu; Hashimoto, Masao; Hashimoto, Shinichi; Furukawa, Yoshihiro

    2000-02-01

    The crystal structure of [C(NH2)3]HgBr3 was determined at room temperature: monoclinic, space group C2/c, Z = 4, a = 775.0(2), b = 1564.6(2), c = 772.7(2) pm, β = 109.12(2)°. In the crystal, almost planar HgBr3- ions are connected via Hg ··· Br bonds, resulting in single chains of trigonal bipyramidal HgBr5 units which run along the c direction. [C(NH2)3]HgI3 was found to be isomorphous with the bromide at room temperature. The temperature dependence of the halogen NQR frequencies (77 < 77K < ca. 380) and the DTA measurements evidenced no phase transition for the bromide, but a second-order phase transition at (251 ± 1) K (Tc1) and a first-order one at (210 ± 1) K for the iodide. The transitions at Tc2are accompanied with strong supercooling and significant superheating. The room temperature phase (RTP) and the intermediate temperature phase (ITP) of the iodide are characterized by two 127I(m=1/2↔3/2) NQR lines which are assigned to the terminal and the bridging I atoms, respectively. There exist three lines in the lowest temperature phase (LTP), indicating that the resonance line of the bridging atom splits into two. The signal intensities of the 127I(m =1/2↔3/2) NQR lines in the LTP decrease with decreasing temperature resulting in no detection below ca. 100 K. The 127I(m=1/2↔3/2) NQR frequency vs. temperature curves are continuous at Tcl, but they are unusual in the LTP. The T1vs. Tcurves of 1H NMR for the bromide and iodide are explainable by the reorientational motions of the cations about their pseudo three-fold axes. The estimated activation energies of the motions are 35.0 kJ/mol for the bromide, and 24.1, 30.1, and 23.0 kJ/mol for the RTP, FTP, and LTP of the iodide, respectively

  8. NQR-NMR studies of higher alcohol synthesis Cu-Co catalysts. Quarterly technical progress report, June 15--September 15, 1991

    SciTech Connect

    Not Available

    1991-12-17

    Our previous studies (1,2) on the zerofield NMR spectra of Cu/Co catalysts revealed that the method of preparation sensitively influences the magnetic character of the Catalyst. Catalytic studies of the earlier investigators also (3) show similar influence on the product selectivity and indicate reproducible performance is critically dependent on the control and rigor of the preparation technique. To compliment the NMR results, we have made a thorough investigation of the Hysteresis character of the Cu/Co catalysts with the metal ratio varying from 0.2 to 4.0.

  9. Continuum Fitting HST QSO Spectra

    NASA Technical Reports Server (NTRS)

    Tytler, David; Oliversen, Ronald J. (Technical Monitor)

    2002-01-01

    The Principal Component Analysis (PCA) method which we are using to fit and describe QSO spectra relies upon the fact that QSO continuum are generally very smooth and simple except for emission and absorption lines. To see this we need high signal-to-noise (S/N) spectra of QSOs at low redshift which have relatively few absorption lines in the Lyman-a forest. We need a large number of such spectra to use as the basis set for the PCA analysis which will find the set of principal component spectra which describe the QSO family as a whole. We have found that too few HST spectra have the required S/N and hence we need to supplement them with ground based spectra of QSOs at higher redshift. We have many such spectra and we have been working to make them suitable for this analysis. We have concentrated on this topic since 12/15/01.

  10. AGNs with composite spectra.

    NASA Astrophysics Data System (ADS)

    Veron, P.; Goncalves, A. C.; Veron-Cetty, M.-P.

    1997-03-01

    The use of the Baldwin et al. (1981PASP...93....5B) or Veilleux & Osterbrock (1987ApJS...63..295V) diagnostic diagrams allows the unambiguous classification of the nuclear emission line regions of most galaxies into one of three categories: nuclear HII regions or starbursts, Seyfert 2 galaxies and Liners. However, a small fraction of them have a "transition" spectrum. We present spectral observations of 15 "transition" objects at high-dispersion (66Å/mm) around the Hα, [NII]λλ6548,6584 and/or Hβ, [OIII]λλ4959,5007 emission lines. We show that most of these spectra are composite, due to the simultaneous presence on the slit of a Seyfert nucleus and a HII region. Seyfert 2s and Liners seem to occupy relatively small and distinct volumes in the three-dimensional space λ5007/Hβ, λ6584/Hα, λ6300/Hα.

  11. Interstellar Electron Density Spectra

    NASA Astrophysics Data System (ADS)

    Lambert, Hendrick Clark

    This study concerns the investigation of the form of the wavenumber spectrum of the Galactic electron density fluctuations through an examination of the scattering of the radio pulses emitted by pulsars as they propagate through the diffuse ionized interstellar gas. A widely used model for the electron density spectrum is based on the simple power-law: Pne(q)∝ q-β, where β = 11/3 is usually assumed, corresponding to Kolmogorov's turbulence spectrum. The simple Kolmogorov model provides satisfactory agreement for observations along many lines of sight; however, major inconsistencies remain. The inconsistencies suggest that an increase in the ratio of the power between the high (10-8[ m]-1≤ q<=10-7[ m]-1) and low (10-13[ m]-1≤ q<=10-12[ m]-1) wavenumbers is needed. This enhancement in the ratio can in turn be achieved by either including an inner scale, corresponding to a dissipation scale for the turbulent cascade, in the Kolmogorov spectrum or by considering steeper spectra. Spectra with spectral exponents β > 4 have been in general rejected based on observations of pulsar refractive scintillations. The special case of β = 4 has been given little attention and is analyzed in detail. Physically, this 'β = 4' model corresponds to the random distribution, both in location and orientation, of discrete objects with relatively sharp boundaries across the line of sight. An outer scale is included in the model to account for the average size of such objects. We compare the predictions of the inner-scale and β = 4 models both with published observations and observations we made as part of this investigation. We conclude that the form of the wavenumber spectrum is dependent on the line of sight. We propose a composite spectrum featuring a uniform background turbulence in presence of randomly distributed discrete objects, as modeled by the β = model.

  12. Cloning and expression of porcine β1,4 N-acetylgalactosaminyl transferase encoding a new xenoreactive antigen

    PubMed Central

    Byrne, Guerard W; Du, Zeji; Stalboerger, Paul; Kogelberg, Heide; McGregor, Christopher G A

    2014-01-01

    Background Xenograft rejection of pigs organs with an engineered mutation in the GGTA-1 gene (GTKO) remains a predominantly antibody mediated process which is directed to a variety of non-Gal protein and carbohydrate antigens. We previously used an expression library screening strategy to identify six porcine endothelial cell cDNAs which encode pig antigens that bind to IgG induced after pig-to-primate cardiac xenotransplantation. One of these gene products was a glycosyltransferase with homology to the bovine β1,4 N-acetylgalactosaminyltransferase (B4GALNT2). We now characterize the porcine B4GALNT2 gene sequence, genomic organization, expression, and functional significance. Methods The porcine B4GALNT2 cDNA was recovered from the original library isolate, subcloned, sequenced, and used to identify a bacterial artificial chromosome (BAC) containing the entire B4GALNT2 locus from the Children's Hospital Oakland Research Institute BACPAC Resource Centre (#AC173453). PCR primers were designed to map the intron/exon genomic organization in the BAC clone. A stable human embryonic kidney (HEK) cell line expressing porcine B4GALNT2 (HEK-B4T) was produced. Expression of porcine B4GALNT2 in HEK-B4T cells was characterized by immune staining and siRNA transfection. The effects of B4GALNT2 expression in HEK-B4T cells was measured by flow cytometry and complement mediated lysis. Antibody binding to HEK and HEK-B4T cells was used to detect an induced antibody response to the B4GALNT2 produced glycan and the results were compared to GTKO PAEC specific non-Gal antibody induction. Expression of porcine B4GALNT2 in pig cells and tissues was measured by qualitative and quantitative real time reverse transcriptase PCR and by Dolichos biflorus agglutinin (DBA) tissue staining. Results The porcine B4GALNT2 gene shares a conserved genomic organization and encodes an open reading frame with 76 and 70% amino acid identity to the human and murine B4GALNT2 genes, respectively. The B4GALNT2 gene is expressed in porcine endothelial cells and shows a broadly distributed expression pattern. Expression of porcine B4GALNT2 in human HEK cells (HEK-B4T) results in increased binding of antibody to the B4GALNT2 enzyme, and increased reactivity with anti-Sda and DBA. HEK-B4T cells show increased sensitivity to complement mediated lysis when challenged with serum from primates after pig to primate cardiac xenotransplantation. In GTKO and GTKO:CD55 cardiac xenotransplantation recipients there is a significant correlation between the induction of a non-Gal antibody, measured using GTKO PAECs, and the induction of antibodies which preferentially bind to HEK-B4T cells. Conclusion The functional isolation of the porcine B4GALNT2 gene from a PAEC expression library, the pattern of B4GALNT2 gene expression and its sensitization of HEK-B4T cells to antibody binding and complement mediated lysis indicates that the enzymatic activity of porcine B4GALNT2 produces a new immunogenic non-Gal glycan which contributes in part to the non-Gal immune response detected after pig-to-baboon cardiac xenotransplantation. PMID:25176027

  13. Experimental determination of the {sup 17}O(p,{alpha}){sup 14}N and {sup 17}O(p,{gamma}){sup 18}F reaction rates

    SciTech Connect

    Chafa, A.; Ouichaoui, S.; Tatischeff, V.; Coc, A.; Garrido, F.; Kiener, J.; Lefebvre-Schuhl, A.; Thibaud, J.-P.; Aguer, P.; Barhoumi, S.; Hernanz, M.; Jose, J.; Sereville, N. de

    2007-03-15

    The {sup 17}O(p,{alpha}){sup 14}N and {sup 17}O(p,{gamma}){sup 18}F reactions are of major importance to hydrogen-burning nucleosynthesis in a number of different stellar sites. In particular, {sup 17}O and {sup 18}F nucleosynthesis in classical novae is strongly dependent on the thermonuclear rates of these two reactions. The previously estimated rate for {sup 17}O(p,{alpha}){sup 14}N carries very large uncertainties in the temperature range of classical novae (T=0.01-0.4 GK), whereas a recent measurement has reduced the uncertainty of the {sup 17}O(p,{gamma}){sup 18}F rate. We report on the observation of a previously undiscovered resonance at E{sub c.m.}=183.3 keV in the {sup 17}O(p,{alpha}){sup 14}N reaction, with a measured resonance strength {omega}{gamma}{sub p{alpha}}=(1.6{+-}0.2)x10{sup -3} eV. We studied in the same experiment the {sup 17}O(p,{gamma}){sup 18}F reaction by an activation method, and the resonance strength was found to amount to {omega}{gamma}{sub p{gamma}}=(2.2{+-}0.4)x10{sup -6} eV. The excitation energy of the corresponding level in {sup 18}F was determined to be 5789.8{+-}0.3 keV in a Doppler shift attenuation method measurement, which yielded a value of {tau}<2.6 fs for the level lifetime. The {sup 17}O(p,{alpha}){sup 14}N and {sup 17}O(p,{gamma}){sup 18}F reaction rates were calculated using the measured resonance properties and reconsidering some previous analyses of the contributions of other levels or processes. The {sup 17}O(p,{alpha}){sup 14}N rate is now well established below T=1.5 GK, with uncertainties reduced by orders of magnitude in the temperature range T=0.1-0.4 GK. The uncertainty in the {sup 17}O(p,{gamma}){sup 18}F rate is somewhat larger because of remaining obscurities in the knowledge of the direct capture process. These new resonance properties have important consequences for {sup 17}O nucleosynthesis and {gamma}-ray emission of classical novae.

  14. Spectra of hot stars

    NASA Astrophysics Data System (ADS)

    Hillier, D. John

    2015-08-01

    Non-LTE modeling is essential for interpreting the spectra of O stars and their decendents, and much progress has been made. The major uncertainty associated with analyzing photospheric spectra of O stars arises from issues related to microturbulence and macroturbulence. Many supergiants, for example, have microturbulent velocities that approach the sound speed, while macroturbulent velocities are often several times the sound speed. The cause of this turbulence is unknown, but may be related to pulsation, an underlying convection zone associated with the Fe opacity bump, or feedback from the stellar wind. Determining accurate abundances in O stars is hampered by the lack of lines belonging to low-z elements. Many species only have a few observable lines, and some of these are subject to complex non-LTE effects. A characteristic of massive stars is the existence of a stellar wind which is driven by radiation pressure. Radiation driving is inherently unstable, and this leads to winds with an inhomogeneous structure. Major issues that are still unresolved include: How are winds driven through the sonic point? What is the nature of the inhomogeneities, and how do the properties of these inhomogeneities change with density and velocity? How important is spatial porosity, and porosity in velocity space? What is the structure of the shocks, and in what stars do the shocks fail to cool? With Wolf-Rayet (W-R) stars the major uncertainty arises because the classic spectroscopic radius (i.e., the location where τ = 2/3) often refers to a location in the wind — not necessarily the stellar radius associated with stellar evolution models. Derived radii are typically several times those predicted by stellar evolution calculations, although for strong-lined W-R stars it is possible to construct models that are consistent with evolution calculations. The driving of the winds in these stars is strongly coupled to the closeness of the stars to the Eddington limit and to their

  15. Peak suppression in ESEEM spectra of multinuclear spin systems.

    PubMed

    Stoll, Stefan; Calle, Carlos; Mitrikas, George; Schweiger, Arthur

    2005-11-01

    We have observed a disturbing suppression effect in three-pulse ESEEM and HYSCORE spectra of systems with more than one nucleus coupled to the electron spin. For such systems, the ESEEM signal contains internuclear combination peaks of varying intensity. At the same time, the peaks at the basic ESEEM frequencies are reduced in intensity, up to the point of complete cancellation. For both three-pulse ESEEM and HYSCORE, the amplitude of a peak of a given nucleus depends not only on its modulation depth parameter k and the tau-dependent blind-spot term b, but also on k and b of all other nuclei. Peaks of nuclei with shallow modulations can be strongly suppressed by nuclei with deep modulations. This cross-suppression effect explains the observation that HYSCORE (1)H peaks are often very weak or even undetectable in the presence of strong (14)N peaks. Due to this distortion of intensities, ESEEM spectra have to be analysed very carefully. We present a theoretical analysis of this effect based on the product rules, numerical computations, and illustrative experimental data on Cu(gly)(2). In experiments, the impact of this cross suppression can be alleviated by a proper choice of tau values, remote echo detection, and matched pulses. PMID:16112885

  16. Analysis of the performance of a phase alternated multiple pulse sequence in spin I = 7/2 zero-field NQR spectroscopy

    NASA Astrophysics Data System (ADS)

    Ramamoorthy, A.

    Zero-field nuclear magnetic resonance spectroscopy of solids containing quadrupole nuclei usually results in broad spectral lines. This line-broadening is due mainly to the inhomogeneity of the electric field gradient (EFG) at the quadrupolar nuclear site. High resolution spectra of such solids can be obtained with the application of suitably designed multiple radiofrequency (RF) pulse sequences. The performance is reported for a periodic and cyclic phase alternated multiple RF pulse sequence (PAPS) in a spin I = 7/2 system in zero external magnetic field. Average Hamiltonian theory based on the Magnus expansion is used to solve the time-dependent Liouville-von Neumann equation of motion of the spin system under the effect of the PAPS sequence. Single transition operators are employed in the spin dynamics calculations. It is shown that the multiple pulse seqeuncearation pulse, suppresses the EFG inhomogeneity to a maximum extent when = 2 . [-- ] 2 , where is the prep1 2 2 N 1 2 1

  17. Sequencing BPS spectra

    NASA Astrophysics Data System (ADS)

    Gukov, Sergei; Nawata, Satoshi; Saberi, Ingmar; Stošić, Marko; Sułkowski, Piotr

    2016-03-01

    This paper provides both a detailed study of color-dependence of link homologies, as realized in physics as certain spaces of BPS states, and a broad study of the behavior of BPS states in general. We consider how the spectrum of BPS states varies as continuous parameters of a theory are perturbed. This question can be posed in a wide variety of physical contexts, and we answer it by proposing that the relationship between unperturbed and perturbed BPS spectra is described by a spectral sequence. These general considerations unify previous applications of spectral sequence techniques to physics, and explain from a physical standpoint the appearance of many spectral sequences relating various link homology theories to one another. We also study structural properties of colored HOMFLY homology for links and evaluate Poincaré polynomials in numerous examples. Among these structural properties is a novel "sliding" property, which can be explained by using (refined) modular S-matrix. This leads to the identification of modular transformations in Chern-Simons theory and 3d {N}=2 theory via the 3d/3d correspondence. Lastly, we introduce the notion of associated varieties as classical limits of recursion relations of colored superpolynomials of links, and study their properties.

  18. Interpreting Chromosome Aberration Spectra

    NASA Technical Reports Server (NTRS)

    Levy, Dan; Reeder, Christopher; Loucas, Bradford; Hlatky, Lynn; Chen, Allen; Cornforth, Michael; Sachs, Rainer

    2007-01-01

    Ionizing radiation can damage cells by breaking both strands of DNA in multiple locations, essentially cutting chromosomes into pieces. The cell has enzymatic mechanisms to repair such breaks; however, these mechanisms are imperfect and, in an exchange process, may produce a large-scale rearrangement of the genome, called a chromosome aberration. Chromosome aberrations are important in killing cells, during carcinogenesis, in characterizing repair/misrepair pathways, in retrospective radiation biodosimetry, and in a number of other ways. DNA staining techniques such as mFISH ( multicolor fluorescent in situ hybridization) provide a means for analyzing aberration spectra by examining observed final patterns. Unfortunately, an mFISH observed final pattern often does not uniquely determine the underlying exchange process. Further, resolution limitations in the painting protocol sometimes lead to apparently incomplete final patterns. We here describe an algorithm for systematically finding exchange processes consistent with any observed final pattern. This algorithm uses aberration multigraphs, a mathematical formalism that links the various aspects of aberration formation. By applying a measure to the space of consistent multigraphs, we will show how to generate model-specific distributions of aberration processes from mFISH experimental data. The approach is implemented by software freely available over the internet. As a sample application, we apply these algorithms to an aberration data set, obtaining a distribution of exchange cycle sizes, which serves to measure aberration complexity. Estimating complexity, in turn, helps indicate how damaging the aberrations are and may facilitate identification of radiation type in retrospective biodosimetry.

  19. Improvement of the high-accuracy 17O(p ,α )14N reaction-rate measurement via the Trojan Horse method for application to 17O nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Sergi, M. L.; Spitaleri, C.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Rapisarda, G. G.; Tang, X. D.; Bucher, B.; Couder, M.; Davies, P.; deBoer, R.; Fang, X.; Lamm, L.; Ma, C.; Notani, M.; O'Brien, S.; Roberson, D.; Tan, W.; Wiescher, M.; Irgaziev, B.; Mukhamedzhanov, A.; Mrazek, J.; Kroha, V.

    2015-06-01

    The 17O(p ,α )14N and 17O(p ,γ )18F reactions are of paramount importance for the nucleosynthesis in a number of stellar sites, including red giants (RGs), asymptotic giant branch (AGB) stars, massive stars, and classical novae. In particular, they govern the destruction of 17O and the formation of the short-lived radioisotope 18F, which is of special interest for γ -ray astronomy. At temperatures typical of the above-mentioned astrophysical scenario, T =0.01 -0.1 GK for RG, AGB, and massive stars and T =0.1 -0.4 GK for a classical nova explosion, the 17O(p ,α )14N reaction cross section is dominated by two resonances: one at about ERc m=65 keV above the 18F proton threshold energy, corresponding to the EX=5.673 MeV level in 18F, and another one at ERc m=183 keV (EX=5.786 MeV). We report on the indirect study of the 17O(p ,α )14N reaction via the Trojan Horse method by applying the approach recently developed for extracting the strength of narrow resonance at ultralow energies. The mean value of the strengths obtained in the two measurements was calculated and compared with the direct data available in literature. This value was used as input parameter for reaction-rate determination and its comparison with the result of the direct measurement is also discussed in the light of the electron screening effect.

  20. THE EFFECT OF THE {sup 14}N(p, {gamma}){sup 15}O REACTION ON THE BLUE LOOPS IN INTERMEDIATE-MASS STARS

    SciTech Connect

    Halabi, Ghina M.; El Eid, Mounib F.; Champagne, Arthur

    2012-12-10

    We present stellar evolutionary sequences of stars in the mass range 5-12 M{sub Sun }, having solar-like initial composition. The stellar models are obtained using updated input physics, including recent rates of thermonuclear reactions. We investigate the effects of a modification of the {sup 14}N(p, {gamma}){sup 15}O reaction rate, as suggested by recent evaluations, on the formation and extension of the blue loops encountered during the evolution of the stars in the above mass range. We find that a reduced {sup 14}N(p, {gamma}){sup 15}O rate, as described in the text, has a striking impact on the physical conditions of burning and mixing during shell hydrogen burning when the blue loops are formed. In particular, we find that the efficiency of shell hydrogen burning is crucial for the formation of an extended blue loop. We show that a significantly reduced {sup 14}N(p, {gamma}){sup 15}O rate affects severely the extension of the blue loops and the time spent by the star in the blue part of the Hertzsprung-Russell diagram in the mass range 5-7 M{sub Sun} if the treatment of convection is based on the Schwarzschild criterion only. In this case, envelope overshooting helps to restore well-extended blue loops as supported by the observations of the Cepheid stars. If core overshooting is included during the core hydrogen and core helium burning phases, the loop formation and its properties depend on how this overshooting is treated for a given stellar mass range, as well as on its efficiency.

  1. Assessment of experimental d-PIGE γ-ray production cross sections for 12C, 14N and 16O and comparison with absolute thick target yields

    NASA Astrophysics Data System (ADS)

    Csedreki, L.; Halász, Z.; Kiss, Á. Z.

    2016-08-01

    Measured differential cross sections for deuteron induced γ-ray emission from the reactions 12C(d,pγ)13C, (Eγ = 3089 keV), 14N(d,pγ)15N (Eγ = 8310 keV) and 16O(d,pγ)17O (Eγ = 871 keV) available in the literature were assessed. In order to cross check the assessed γ-ray production cross section data, thick target γ-yields calculated from the differential cross sections were compared with available measured thick target yields. Recommended differential cross section data for each reaction were deduced for particle induced γ-ray emission (PIGE) applications.

  2. Resonance strength measurement at astrophysical energies: The {sup 17}O(p,α){sup 14}N reaction studied via Trojan Horse Method

    SciTech Connect

    Sergi, M. L. La Cognata, M.; Pizzone, R. G.; Spitaleri, C.; Lamia, L.; Rapisarda, G. G.; Mukhamedzhanov, A.; Irgaziev, B.; Tang, X. D.; Wiescher, M.; Mrazek, J.; Kroha, V.

    2015-10-15

    In recent years, the Trojan Horse Method (THM) has been used to investigate the low-energy cross sections of proton-induced reactions on {sup 17}O nuclei, overcoming extrapolation procedures and enhancement effects due to electron screening. We will report on the indirect study of the {sup 17}O(p,α){sup 14}N reaction via the THM by applying the approach developed for extracting the resonance strength of narrow resonance in the ultralow energy region. Two measurements will be described and the experimental THM cross sections will be shown for both experiments.

  3. A direct underground measurement of the {sup 17}O(p,α){sup 14}N reaction cross-section at energies of astrophysical interest

    SciTech Connect

    Bruno, C. G.; Collaboration, LUNA

    2014-05-09

    The {sup 17}O(p,α){sup 14}N reaction plays a key role in many stellar sites, including classical novae and massive stars. Our knowledge of these scenarios might be improved by a precise measurement of the reaction’s cross-section at astrophysical energies. A direct attempt is currently underway in the Gran Sasso Laboratory, Italy, using the underground LUNA 400kV accelerator. The background reduction afforded by the underground environment is essential to the success of this challenging measurement. A purpose-built experimental setup has been simulated and commissioned. Preliminary results are presented.

  4. Heat of Mixing and Solution of N,N,N',N'-Tetramethylmethanediamine C5H14N2 + C16H34 Hexadecane (HMSD1111, LB3839_H)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume B 'Binary Liquid Systems of Nonelectrolytes II' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Heat of Mixing and Solution of N,N,N',N'-Tetramethylmethanediamine C5H14N2 + C16H34 Hexadecane (HMSD1111, LB3839_H)' providing data from direct low-pressure calorimetric measurement of molar excess enthalpy at variable mole fraction and constant temperature.

  5. Theoretical study of NMR, infrared and Raman spectra on triple-decker phthalocyanines

    NASA Astrophysics Data System (ADS)

    Suzuki, Atsushi; Oku, Takeo

    2016-02-01

    Electronic structures and magnetic properties of multi-decker phthalocyanines were studied by theoretical calculation. Electronic structures, excited processes at multi-states, isotropic chemical shifts of 13C, 14N and 1H-nuclear magnetic resonance (NMR), principle V-tensor in electronic field gradient (EFG) tensor and asymmetry parameters (η), vibration mode in infrared (IR) and Raman spectra of triple-decker phthalocyanines were calculated by density functional theory (DFT) and time-dependent DFT using B3LYP as basis function. Electron density distribution was delocalized on the phthalocyanine rings with electron static potential. Considerable separation of chemical shifts in 13C, 14N and 1H-NMR was originated from nuclear spin interaction between nitrogen and carbon atoms, nuclear quadrupole interaction based on EFG and η of central metal under crystal field. Calculated optical absorption at multi-excited process was derived from overlapping π-orbital on the phthalocyanine rings. The vibration modes in IR and Raman spectra were based on in-plane deformation and stretching vibrations of metal-ligand coordination bond on the deformed structure.

  6. Rapid probe of the nicotine spectra by high-resolution rotational spectroscopy.

    PubMed

    Grabow, Jens-Uwe; Mata, S; Alonso, José L; Peña, I; Blanco, S; López, Juan C; Cabezas, C

    2011-12-21

    Nicotine has been investigated in the gas phase and two conformational forms were characterized through their rotational spectra. Two spectroscopic techniques have been used to obtain the spectra: a new design of broadband Fourier transform microwave (FTMW) spectroscopy with an in-phase/quadrature-phase-modulation passage-acquired-coherence technique (IMPACT) and narrowband FTMW spectroscopy with coaxially oriented beam-resonator arrangement (COBRA). The rotational, centrifugal distortion and hyperfine quadrupole coupling constants of two conformers of nicotine have been determined and found to be in N-methyl trans configurations with the pyridine and pyrrolidine rings perpendicular to one another. The quadrupole hyperfine structure originated by two (14)N nuclei has been completely resolved for both conformers and used for their unambiguous identification. PMID:22020263

  7. Catalogue of representative meteor spectra

    NASA Astrophysics Data System (ADS)

    Vojáček, V.; Borovička, J.; Koten, P.; Spurný, P.; Štork, R.

    2016-01-01

    We present a library of low-resolution meteor spectra that includes sporadic meteors, members of minor meteor showers, and major meteor showers. These meteors are in the magnitude range from +2 to ‑3, corresponding to meteoroid sizes from 1 mm to10 mm. This catalogue is available online at the CDS for those interested in video meteor spectra.

  8. Projecting Spectra for Classroom Investigations.

    ERIC Educational Resources Information Center

    Sadler, Philip

    1991-01-01

    Describes an inexpensive spectrum projector that makes high-dispersion, high-efficiency diffraction gratings using a holographic process. Discusses classroom applications such as transmission spectra, absorption spectra, reflection characteristics of materials, color mixing, florescence and phosphorescence, and break up spectral colors. (MDH)

  9. Precision Measurements of the 278 keV {sup 14}N(p,{gamma}) and the 151 keV {sup 18}O(p,{alpha}) Resonance Parameters

    SciTech Connect

    Borowski, M.; Lieb, K. P.; Uhrmacher, M.; Bolse, W.

    2009-01-28

    In thin film technology, analytical methods for monitoring the deposition of oxide and nitride coatings and the effects of corrosive, laser and ion-beam treatments have attracted considerable attention. For depth-profiling the concentrations of light isotopes, resonant nuclear reaction analysis is an excellent non-destructive ion-beam analytical tool. We report here on precision measurements of the 278 keV {sup 14}N(p,{gamma}) and the 151 keV {sup 18}O(p,{alpha}) resonances using the high-resolution proton beam of the Goettingen IONAS accelerator. The deduced resonance energies E{sub R} and total widths {gamma}(in the laboratory system) are E{sub R} = 277.60(27) keV and {gamma} = 1115(33) eV for the {sup 14}N(p,{gamma}) resonance, and E{sub R} = 150.97(26) keV and {gamma} = 178(35) eV for the {sup 18}O(p,{alpha}) resonance. These values are significantly more precise than the ones quoted in the literature.

  10. Submillimeter Observations of Titan: Global Measures of Stratospheric Temperature, CO, HCN, HC3N, and the Isotopic Ratios 12C/13C and 14N/15N

    NASA Astrophysics Data System (ADS)

    Gurwell, Mark A.

    2004-11-01

    Interferometric observations of the atmosphere of Titan were performed with the Submillimeter Array on two nights in 2004 February to investigate the global average vertical distributions of several molecular species above the tropopause. Rotational transitions of CO, isomers of HCN, and HC3N were simultaneously recorded. The abundance of CO is determined to be 51+/-4 parts per million (ppm), constant with altitude. The vertical profile of HCN is dependent on the assumed temperature but generally increases from 30 parts per billion at the condensation altitude (~83 km) to 5 ppm at ~300 km. Furthermore, the central core of the HCN emission is strong and can be reproduced only if the upper stratospheric temperature increases with altitude. The isotopic ratios are determined to be 12C/13C=132+/-25 and 14N/15N=94+/-13 assuming the Coustenis & Bézard temperature profile. If the Lellouch temperature profile is assumed, the ratios decrease to 12C/13C=108+/-20 and 14N/15N=72+/-9. The vertical profile of HC3N is consistent with that derived by Marten et al.

  11. Accelerator mass spectrometry measurements of the 13C (n ,γ )14C and 14N(n ,p )14C cross sections

    NASA Astrophysics Data System (ADS)

    Wallner, A.; Bichler, M.; Buczak, K.; Dillmann, I.; Käppeler, F.; Karakas, A.; Lederer, C.; Lugaro, M.; Mair, K.; Mengoni, A.; Schätzel, G.; Steier, P.; Trautvetter, H. P.

    2016-04-01

    The technique of accelerator mass spectrometry (AMS), offering a complementary tool for sensitive studies of key reactions in nuclear astrophysics, was applied for measurements of the 13C (n ,γ )14C and the 14N(n ,p )14C cross sections, which act as a neutron poison in s -process nucleosynthesis. Solid samples were irradiated at Karlsruhe Institute of Technology with neutrons closely resembling a Maxwell-Boltzmann distribution for k T =25 keV, and also at higher energies between En=123 and 182 keV. After neutron irradiation the produced amount of 14C in the samples was measured by AMS at the Vienna Environmental Research Accelerator (VERA) facility. For both reactions the present results provide important improvements compared to previous experimental data, which were strongly discordant in the astrophysically relevant energy range and missing for the comparably strong resonances above 100 keV. For 13C (n ,γ ) we find a four times smaller cross section around k T =25 keV than a previous measurement. For 14N(n ,p ), the present data suggest two times lower cross sections between 100 and 200 keV than had been obtained in previous experiments and data evaluations. The effect of the new stellar cross sections on the s process in low-mass asymptotic giant branch stars was studied for stellar models of 2 M⊙ initial mass, and solar and 1 /10th solar metallicity.

  12. Image restoration using fast Fourier and wavelet transforms

    NASA Astrophysics Data System (ADS)

    Harrod, William J.; Nagy, James G.; Plemmons, Robert J.

    1994-02-01

    Pure nuclear quadrupole resonance (NQR) of 14N nuclei is quite promising as a method for detecting explosives such as RDX and contraband narcotics such as cocaine and heroin in quantities of interest. Pure NQR is conducted without an external applied magnetic field, so potential concerns about damage to magnetically encoded data or exposure of personnel to large magnetic fields are not relevant. Because NQR frequencies of different compounds are quite distinct, we do not encounter false alarms from the NQR signals of other benign materials. We have constructed a proof-of-concept NQR explosives detector which interrogates a volume of 300 liters (10 ft3). With minimal modification to the existing explosives detector, we can detect operationally relevant quantities of (free base) cocaine within the 300-liter inspection volume in 6 seconds. We are presently extending this approach to the detection of heroin base and also examining 14N and 35,37Cl pure NQR for detection of the hydrochloride forms of both materials. An adaptation of this NQR approach may be suitable for scanning personnel for externally carried contraband and explosives. We first outline the basics of the NQR approach, highlighting strengths and weaknesses, and then present representative results for RDX and cocaine detection. We also present a partial compendium of relevant NQR parameters measured for some materials of interest.

  13. Simulations of molecular dynamics in solid-state NMR spectra of spin-1 nuclei including effects of CSA- and EFG-terms up to second order.

    PubMed

    Larsen, Flemming H

    2007-04-01

    By numerical simulations MAS and QCPMG methods for acquiring spectra of spin-1 nuclei were compared in order to determine the most sensitive experiment for analysis of molecular dynamics. To comply with the large quadrupolar constants for 14N and the CSA reported for 6Li both of these interactions are included up to second order. For 2H and 6Li both QCPMG and single-pulse MAS experiments were suitable for dynamics studies whereas the single-pulse MAS experiment were the method of choice for investigation of 14N dynamics for C(Q)'s larger than 750kHz at 14.1T. This property prohibits excitation of the 14N lineshape using either single hard or softer composite rf-pulses. Focusing on 14N it was demonstrated that the centerband lineshape is sensitive toward both off-MAS and CSA effects. In addition, excitation by real-time pulses showed that proper lineshapes corresponding to a site with a C(Q) of 3MHz may be excited by a very short pulse. PMID:17418539

  14. Spectra ID of recent SN

    NASA Astrophysics Data System (ADS)

    Challis, Peter

    2013-12-01

    P. Challis, Harvard-Smithsonian Center for Astrophysics (CfA), on behalf of the CfA Supernova Group, report spectra (range 320-860 nm) of various SN obtained during Dec. 24-27 UT by P. Challis, S. Gottilla (MMTO.org), and E. Marin (MMTO.org) with the MMT 6.5-m telescope (+ Blue Channel). Cross-correlation with a library of supernova spectra using the "Supernova Identification" code (SNID; Blondin and Tonry 2007, Ap.J.

  15. Estimators of bottom reflectance spectra

    NASA Technical Reports Server (NTRS)

    Estep, L.; Holloway, J.

    1992-01-01

    Estimators of in situ bottom spectral reflectance are calculated from multi-station optical field data gathered with standard instrumentation from different sites. These spectra are then compared to reflectance spectra measured in the laboratory of the bottom sediments collected in the field for the stations at these different sites. The relative fit of the estimated spectral curves to those measured in the laboratory was measured. The most accurate absolute estimation was provided by the single scattering irradiance model.

  16. Upper limits to the fractionation of isotopes due to atmospheric escape: Implications for potential 14N/15N in Pluto's atmosphere

    NASA Astrophysics Data System (ADS)

    Mandt, K.; Mousis, O.

    2014-12-01

    Formation and evolution of the solar system is studied in part using stable isotope ratios that are presumed to be primordial, or representative of conditions in the protosolar Nebula. Comets, meteorites and giant planet atmospheres provide measurements that can reasonably be presumed to represent primordial conditions while the terrestrial planets, Pluto and Saturn's moon Titan have atmospheres that have evolved over the history of the solar system. The stable isotope ratios measured in these atmospheres are, therefore, first a valuable tool for evaluating the history of atmospheric escape and once escape is constrained can provide indications of conditions of formation. D/H ratios in the atmosphere of Venus provide indications of the amount of water lost from Venus over the history of the solar system, while several isotope ratios in the atmosphere of Mars provide evidence for long-term erosion of the atmosphere. We have recently demonstrated that the nitrogen ratios, 14N/15N, in Titan's atmosphere cannot evolve significantly over the history of the solar system and that the primordial ratio for Titan must have been similar to the value recently measured for NH3 in comets. This implies that the building blocks for Titan formed in the protosolar nebula rather than in the warmer subnebula surrounding Saturn at the end of its formation. Our result strongly contrasts with works showing that 14N/15N in the atmosphere of Mars can easily fractionate from the terrestrial value to its current value due to escape processes within the lifetime of the solar system. The difference between how nitrogen fractionates in Mars and Titan's atmospheres presents a puzzle for the fractionation of isotopes in an atmosphere due to atmospheric escape. Here, we present a method aiming at determining an upper limit to the amount of fractionation allowed to occur due to escape, which is a function of the escape flux and the column density of the atmospheric constituent. Through this

  17. NO3- Coordination in Aqueous Solutions by 15N/14N and 18O/natO Isotopic Substitution: What Can We Learn from Molecular Simulation?

    DOE PAGESBeta

    Chialvo, Ariel A.; Vlcek, Lukas

    2014-12-16

    We explore the deconvolution of the water-nitrate correlations by the first-order difference approach involving neutron diffraction of heavy- and null-aqueous solutions of KNO3 under 14N 15N and natON 18ON substitutions to achieve a full characterization of the first water coordination around the nitrate ion. For that purpose we performed isobaric-isothermal simulations of 3.5m KNO3 aqueous solutions at ambient conditions to generate the relevant radial distribution functions (RDF) required in the analysis (a) to identify the individual partial contributions to the total neutron weighted distribution function, (b) to isolate and assess the contribution of NO3 -!K+ pair formation, (c) to testmore » the accuracy of the NDIS-based coordination calculations and XRDbased assumptions, and (d) to describe the water coordination around both the nitrogen and oxygen sites of the nitrate ion.« less

  18. Astrophysical S-factor for the radiative-capture reaction p{sup 13}C {yields} {sup 14}N{gamma}

    SciTech Connect

    Dubovichenko, S. B.

    2012-02-15

    The possibility of describing experimental data on the astrophysical S factor for radiative proton capture on a {sup 13}C nucleus at energies in the range 0.03-0.8 MeV is considered within the potential cluster model involving forbidden states. It is shown that the energy dependence of this astrophysical S factor can be reasonably explained on the basis of the E1 transition to the {sup 3}P{sub 1}-wave bound state of the {sup 14}N nucleus in the p{sup 13}C channel from the {sup 3}S{sub 1} wave of p{sup 13}C scattering in the resonance energy region around 0.55 MeV in the laboratory frame.

  19. Radiative neutron capture by {sup 2}H, {sup 7}Li, {sup 14}C, and {sup 14}N nuclei at astrophysical energies

    SciTech Connect

    Dubovichenko, S. B.

    2013-07-15

    The possibility of describing experimental data on the total cross sections for the n{sup 2}H, n{sup 7}Li, n{sup 14}C, and n{sup 14}N radiative-capture processes within the potential cluster model involving forbidden states and their classification according to Young's tableaux is considered. It is shown that this model and the methods used here to construct potentials make it possible to describe correctly the behavior of the experimental cross sections at energies between 5 to 10 meV (5 Multiplication-Sign 10{sup -3}-10 Multiplication-Sign 10{sup -3} eV) and 1 to 15MeV.

  20. Anisotropic Fermi Couplings due to Large Unquenched Orbital Angular Momentum: Q-band 1H, 14N and 11B ENDOR of bistrispyrazolylborate Co(II)

    PubMed Central

    Myers, William K.; Scholes, Charles P.; Tierney, David L.

    2009-01-01

    We report Q-band ENDOR of 1H, 14N, and 11B at the g|| extreme of the EPR spectrum of bistrispyrazolylborate Co(II), Co(Tp)2 and two structural analogs. This trigonally symmetric, high-spin (hs) S = 3/2 Co(II) complex shows large unquenched ground–state orbital angular momentum, which leads to highly anisotropic electronic g-values [g|| = 8.48, g⊥ = 1.02]. The large g-anisotropy is shown to result in large dipolar couplings near g|| and uniquely anisotropic 14N Fermi couplings, which arise from spin transferred to the nitrogen 2s orbital (2.2 %) via anti-bonding interactions with singly occupied metal dx2−y2 and dz2 orbitals. Large, well-resolved 1H and 11B dipolar couplings were also observed. Taken in concert with our previous X-band ENDOR measurements at g⊥ (Myers, et al, Inorg. Chem. 2008, 47, 6701–6710), the present data allow a detailed analysis of the dipolar hyperfine tensors of two of the four symmetry distinct protons in the parent molecule. In the substituted analogs, changes in hyperfine coupling due to altered metal-proton distances give further evidence of an anisotropic Fermi contact interaction. For the pyrazolyl 3H proton, the data indicate a 0.2 MHz anisotropic contact interaction and ~ 4 % transfer of spin away from Co(II). Dipolar coupling also dominates for the axial boron atoms, consistent with their distance from the Co(II) ion, and resolved 11B quadrupolar coupling showed ~ 30 % electronic inequivalence between the B-H and B-C sp3 bonds. This is the first comprehensive ENDOR study of any hs Co(II) species and lays the foundation for future development. PMID:19591466

  1. The composite load spectra project

    NASA Technical Reports Server (NTRS)

    Newell, J. F.; Ho, H.; Kurth, R. E.

    1990-01-01

    Probabilistic methods and generic load models capable of simulating the load spectra that are induced in space propulsion system components are being developed. Four engine component types (the transfer ducts, the turbine blades, the liquid oxygen posts and the turbopump oxidizer discharge duct) were selected as representative hardware examples. The composite load spectra that simulate the probabilistic loads for these components are typically used as the input loads for a probabilistic structural analysis. The knowledge-based system approach used for the composite load spectra project provides an ideal environment for incremental development. The intelligent database paradigm employed in developing the expert system provides a smooth coupling between the numerical processing and the symbolic (information) processing. Large volumes of engine load information and engineering data are stored in database format and managed by a database management system. Numerical procedures for probabilistic load simulation and database management functions are controlled by rule modules. Rules were hard-wired as decision trees into rule modules to perform process control tasks. There are modules to retrieve load information and models. There are modules to select loads and models to carry out quick load calculations or make an input file for full duty-cycle time dependent load simulation. The composite load spectra load expert system implemented today is capable of performing intelligent rocket engine load spectra simulation. Further development of the expert system will provide tutorial capability for users to learn from it.

  2. Analysis of photometric spectra of 17 meteors

    NASA Technical Reports Server (NTRS)

    Millman, P. M.

    1982-01-01

    The initial phase of the photometry which involved 17 meteor spectra consisting of eight Geminid spectra, six Orionid spectra and three Eta Aquarid spectra is discussed. Among these 17 spectra it is found that the Geminid spectra are of the best quality and are used for the identification of the atomic lines and molecular bands that normally appear on video tape spectra. The data from the Geminid records are used for developing calibration techniques in photometry. The Orionid and Eta Aquarid spectra are chosen for early analysis because of the current interest in all physical and chemical data relating to Comet Halley.

  3. Photon spectra from WIMP annihilation

    SciTech Connect

    Cembranos, J. A. R.; Cruz-Dombriz, A. de la; Dobado, A.; Maroto, A. L.; Lineros, R. A.

    2011-04-15

    If the present dark matter in the Universe annihilates into standard model particles, it must contribute to the fluxes of cosmic rays that are detected on the Earth and, in particular, to the observed gamma-ray fluxes. The magnitude of such a contribution depends on the particular dark matter candidate, but certain features of the produced photon spectra may be analyzed in a rather model-independent fashion. In this work we provide the complete photon spectra coming from WIMP annihilation into standard model particle-antiparticle pairs obtained by extensive Monte Carlo simulations. We present results for each individual annihilation channel and provide analytical fitting formulas for the different spectra for a wide range of WIMP masses.

  4. QUALITATIVE INTERPRETATION OF GALAXY SPECTRA

    SciTech Connect

    Sanchez Almeida, J.; Morales-Luis, A. B.; Terlevich, R.; Terlevich, E.; Cid Fernandes, R. E-mail: abml@iac.es E-mail: eterlevi@inaoep.mx

    2012-09-10

    We describe a simple step-by-step guide to qualitative interpretation of galaxy spectra. Rather than an alternative to existing automated tools, it is put forward as an instrument for quick-look analysis and for gaining physical insight when interpreting the outputs provided by automated tools. Though the recipe is for general application, it was developed for understanding the nature of the Automatic Spectroscopic K-means-based (ASK) template spectra. They resulted from the classification of all the galaxy spectra in the Sloan Digital Sky Survey data release 7, thus being a comprehensive representation of the galaxy spectra in the local universe. Using the recipe, we give a description of the properties of the gas and the stars that characterize the ASK classes, from those corresponding to passively evolving galaxies, to H II galaxies undergoing a galaxy-wide starburst. The qualitative analysis is found to be in excellent agreement with quantitative analyses of the same spectra. We compare the mean ages of the stellar populations with those inferred using the code STARLIGHT. We also examine the estimated gas-phase metallicity with the metallicities obtained using electron-temperature-based methods. A number of byproducts follow from the analysis. There is a tight correlation between the age of the stellar population and the metallicity of the gas, which is stronger than the correlations between galaxy mass and stellar age, and galaxy mass and gas metallicity. The galaxy spectra are known to follow a one-dimensional sequence, and we identify the luminosity-weighted mean stellar age as the affine parameter that describes the sequence. All ASK classes happen to have a significant fraction of old stars, although spectrum-wise they are outshined by the youngest populations. Old stars are metal-rich or metal-poor depending on whether they reside in passive galaxies or in star-forming galaxies.

  5. AVIRIS spectra of California wetlands

    NASA Technical Reports Server (NTRS)

    Gross, Michael F.; Ustin, Susan L.; Klemas, Vytautas

    1988-01-01

    Spectral data gathered by the AVIRIS from wetlands in the Suisun Bay area of California on 13 October 1987 were analyzed. Spectra representing stands of numerous vegetation types (including Sesuvium verrucosum, Scirpus acutus and Scirpus californicus, Xanthium strumarium, Cynadon dactylon, and Distichlis spicata) and soil were isolated. Despite some defects in the data, it was possible to detect vegetation features such as differences in the location of the chlorophyll red absorption maximum. Also, differences in cover type spectra were evident in other spectral regions. It was not possible to determine if the observed features represent noise, variability in canopy architecture, or chemical constituents of leaves.

  6. Classical Trajectories and Quantum Spectra

    NASA Technical Reports Server (NTRS)

    Mielnik, Bogdan; Reyes, Marco A.

    1996-01-01

    A classical model of the Schrodinger's wave packet is considered. The problem of finding the energy levels corresponds to a classical manipulation game. It leads to an approximate but non-perturbative method of finding the eigenvalues, exploring the bifurcations of classical trajectories. The role of squeezing turns out decisive in the generation of the discrete spectra.

  7. Cloud Processing of CCN Spectra

    NASA Astrophysics Data System (ADS)

    Hudson, J. G.; Noble, S. R., Jr.

    2014-12-01

    Cloud processing often makes bimodal aerosol spectra from which size at minimal concentration infers cloud effective supersaturation (Seff) (Hoppel et al. 1986). Particle hygroscopicity (κ) converts this Hoppel minimum to critical S, Sc. Only lower Sc particles that produce cloud droplets are physically (coalescence) or chemically (gas-to-particle conversion) processed, which increases soluble content so that upon evaporation, these CCN have even lower Sc whereas the unactivated CCN do not change size or Sc. This results in the size gap at Seff. DRI CCN spectrometers have revealed bimodality in 6 projects for which Seff can be obtained without κ. However in 2 projects, MASE and ICE-T, simultaneous DMA measurements also provided κ by transposing DMA sizes to Sc; the κ that makes the DMA spectra agree with simultaneous CCN spectra (Fig). There was DMA-CCN agreement for 227 MASE and 50 ICE-T measurements. Since unlike Fig. a mean κ of the processed modes was greater than mean κ of the unprocessed modes, chemical processing was indicated; since most κ were lower than ammonium sulfate κ (0.61) chemical processing should move processed κ closer to 0.61. Chemical processing was also indicated in MASE by greater sulfate and nitrate concentrations for bimodal spectra and greater sulfur dioxide and ozone concentrations for monomodal spectra. MASE above cloud measurements showed higher κ and less bimodality than below cloud measurements, this is consistent with the higher above cloud NCCN, that κ is lower in pollution and for these less cloud interacted samples. Interspersed bimodal and monomodal CCN spectra under the ubiquitous MASE stratus suggested less than well-mixed boundary layers. Somewhat surprisingly there was more bimodality for the cumulus ICE-T clouds than the MASE stratus. ICE-T indicated more physical than chemical cloud processing. Cloud-processing of CCN spectra is as important as CCN sources; it alters Seff, cloud droplet concentrations, mean

  8. Lifetime Measurement of the 6.79 MeV Excited State of 15O to Help Constrain the 14N(p,gamma)15O Reaction Rate

    NASA Astrophysics Data System (ADS)

    Galinski, Naomi

    2013-12-01

    In main sequence stars such as our Sun, the source of energy comes from converting hydrogen into helium. There are two competing mechanisms via which this can happen: the pp chain and CNO cycle. The latter is a cycle of reactions involving carbon, nitrogen and oxygen which are catalysts for the conversion of hydrogen into helium. The slowest reaction 14N(p, gamma) 15O in the cycle will affect the energy generation timescale and the amount of helium ash produced via the CNO cycle. This has several astrophysical impacts. It affects the evolutionary timescale of main sequence stars from which the ages of globular clusters can be calculated, the nucleosynthesis of heavier elements in H burning shells of red giant stars, and the fraction of energy produced by the CNO cycle compared to the pp chain in our Sun which helps determine the interior composition of the Sun. For main sequence stars the CNO cycle dominates over the pp chain for core temperatures T ≳ 0.02 GK. For the 14N(p, gamma)15O reaction this corresponds to a low center of mass energy Ecm = 30 keV. This is lower than the low energy limit of the reaction rate measurable in the laboratory. This means that we need to extrapolate down to low energy using theory. The largest remaining uncertainty in the theoretical calculations is due to the lifetime tau of the 6.79 MeV state of 15O. In this work the lifetimes of three excited states of 15O were measured using the Doppler shift attenuation method (DSAM) populating the states via the 3He(16O,alpha)15O reaction at a beam energy of 50 MeV. The low lifetime limit measurable using the DSAM is ˜1 fs. The lifetime of the 6.79 MeV state is near that limit, making this measurement challenging. A 1.8 fs upper limit (68.3% C.L.) on this lifetime is reported here. In addition we measured the lifetimes of the 6.17 and 6.86 MeV state in 15O which were < 2.5 fs and 13.3+0.8-1.2 fs (68.3% C.L.) respectively. iii Acknowledgments

  9. Effect of quenching conditions on the formation of the grain structure and the mechanical properties of high-nitrogen austenitic 02Kh20AG14N8MF and 02Kh20AG12N4 steels

    NASA Astrophysics Data System (ADS)

    Bannykh, I. O.

    2015-11-01

    The formation of the grain structure of high-nitrogen 02Kh20AG14N8MF and 02Kh20AG12N4 steels in forging and quenching and their mechanical properties in this state have been studied. It is found that both steels have close mechanical properties under the same quenching conditions. In 02Kh20AG14N8MF steel, a homogeneous structure of primarily recrystallized austenite grains forms under the quenching conditions under study. In 02Kh20AG12N4 steel, the processes of secondary recrystallization and normal grain growth take place.

  10. NIST Databases on Atomic Spectra

    NASA Astrophysics Data System (ADS)

    Reader, J.; Wiese, W. L.; Martin, W. C.; Musgrove, A.; Fuhr, J. R.

    2002-11-01

    The NIST atomic and molecular spectroscopic databases now available on the World Wide Web through the NIST Physics Laboratory homepage include Atomic Spectra Database, Ground Levels and Ionization Energies for the Neutral Atoms, Spectrum of Platinum Lamp for Ultraviolet Spectrograph Calibration, Bibliographic Database on Atomic Transition Probabilities, Bibliographic Database on Atomic Spectral Line Broadening, and Electron-Impact Ionization Cross Section Database. The Atomic Spectra Database (ASD) [1] offers evaluated data on energy levels, wavelengths, and transition probabilities for atoms and atomic ions. Data are given for some 950 spectra and 70,000 energy levels. About 91,000 spectral lines are included, with transition probabilities for about half of these. Additional data resulting from our ongoing critical compilations will be included in successive new versions of ASD. We plan to include, for example, our recently published data for some 16,000 transitions covering most ions of the iron-group elements, as well as Cu, Kr, and Mo [2]. Our compilations benefit greatly from experimental and theoretical atomic-data research being carried out in the NIST Atomic Physics Division. A new compilation covering spectra of the rare gases in all stages of ionization, for example, revealed a need for improved data in the infrared. We have thus measured these needed data with our high-resolution Fourier transform spectrometer [3]. An upcoming new database will give wavelengths and intensities for the stronger lines of all neutral and singly-ionized atoms, along with energy levels and transition probabilities for the persistent lines [4]. A critical compilation of the transition probabilities of Ba I and Ba II [5] has been completed and several other compilations of atomic transition probabilities are nearing completion. These include data for all spectra of Na, Mg, Al, and Si [6]. Newly compiled data for selected ions of Ne, Mg, Si and S, will form the basis for a new

  11. The Drosophila melanogaster homologue of the human histo-blood group Pk gene encodes a glycolipid-modifying α1,4-N-acetylgalactosaminyltransferase

    PubMed Central

    2004-01-01

    Insects express arthro-series glycosphingolipids, which contain an α1,4-linked GalNAc residue. To determine the genetic basis for this linkage, we cloned a cDNA (CG17223) from Drosophila melanogaster encoding a protein with homology to mammalian α1,4-glycosyltransferases and expressed it in the yeast Pichia pastoris. Culture supernatants from the transformed yeast were found to display a novel UDP-GalNAc:GalNAcβ1,4GlcNAcβ1-R α-N-acetylgalactosaminyltransferase activity when using either a glycolipid, p-nitrophenylglycoside or an N-glycan carrying one or two terminal β-N-acetylgalactosamine residues. NMR and MS in combination with glycosidase digestion and methylation analysis indicate that the cloned cDNA encodes an α1,4-N-acetylgalactosaminyltransferase. We hypothesize that this enzyme and its orthologues in other insects are required for the biosynthesis of the N5a and subsequent members of the arthro-series of glycolipids as well as of N-glycan receptors for Bacillus thuringiensis crystal toxin Cry1Ac. PMID:15130086

  12. Haldane-gap excitations in the low-Hc one-dimensional quantum antiferromagnet Ni(C5D14N2)2N3(PF6)

    NASA Astrophysics Data System (ADS)

    Zheludev, A.; Chen, Y.; Broholm, C. L.; Honda, Z.; Katsumata, K.

    2001-03-01

    Inelastic neutron scattering on deuterated single-crystal samples is used to study Haldane-gap excitations in the new S=1 one-dimensional quantum antiferromagnet Ni(C5D14N2)2N3(PF6), that was recently recognized as an ideal model system for high-field studies. The Haldane gap energies Δx=0.42(3) meV, Δy=0.52(6) meV, and Δz=1.9(1) meV, for excitations polarized along the a, b, and c crystallographic axes, respectively, are measured. The dispersion relation is studied for momentum transfers both along and perpendicular to the chains' direction. The in-chain exchange constant J=2.8 meV is found to be much larger than interchain coupling, Jy=1.8(4)×10-3 meV and Jx=4(3)×10-4 meV, along the b and a axes, respectively. The results are discussed in the context of future experiments in high magnetic fields.

  13. beta1,4-N-Acetylglucosaminyltransferase III potentiates beta1 integrin-mediated neuritogenesis induced by serum deprivation in Neuro2a cells.

    PubMed

    Shigeta, Masaki; Shibukawa, Yukinao; Ihara, Hideyuki; Miyoshi, Eiji; Taniguchi, Naoyuki; Gu, Jianguo

    2006-06-01

    Aspects of the biological significance of the bisecting N-acetylglucosamine (GlcNAc) structure on N-glycans introduced by beta1,4-N-acetylglucosaminyltransferase III (GnT-III) in Neuro2a cell differentiation are demonstrated. The overexpression of GnT-III in the cells led to the induction of axon-like processes with numerous neurites and swellings, in which beta1 integrin was localized, under conditions of serum starvation. This enhancement in neuritogenesis was suppressed by either the addition of a bisecting GlcNAc-containing N-glycan or erythroagglutinating phytohemagglutinin (E(4)-PHA), which preferentially recognizes the bisecting GlcNAc. GnT-III-promoted neuritogenesis was also significantly perturbed by treatment with a functional blocking anti-beta1 integrin antibody. In fact, beta1 integrin was found to be one of the target proteins of GnT-III, as confirmed by a pull-down assay with E(4)-PHA. These data suggest that N-glycans with a bisecting GlcNAc on target molecules, such as beta1 integrin, play important roles in the regulation of neuritogenesis. PMID:16531477

  14. Earth's magnetic field enabled scalar coupling relaxation of 13C nuclei bound to fast-relaxing quadrupolar 14N in amide groups

    NASA Astrophysics Data System (ADS)

    Chiavazza, Enrico; Kubala, Eugen; Gringeri, Concetta V.; Düwel, Stephan; Durst, Markus; Schulte, Rolf F.; Menzel, Marion I.

    2013-02-01

    Scalar coupling relaxation, which is usually only associated with closely resonant nuclei (e.g., 79Br-13C), can be a very effective relaxation mechanism. While working on hyperpolarized [5-13C]glutamine, fast liquid-state polarization decay during transfer to the MRI scanner was observed. This behavior could hypothetically be explained by substantial T1 shortening due to a scalar coupling contribution (type II) to the relaxation caused by the fast-relaxing quadrupolar 14N adjacent to the 13C nucleus in the amide group. This contribution is only effective in low magnetic fields (i.e., less than 800 μT) and prevents the use of molecules bearing the 13C-amide group as hyperpolarized MRS/MRI probes. In the present work, this hypothesis is explored both theoretically and experimentally. The results show that high hyperpolarization levels can be retained using either a 15N-labeled amide or by applying a magnetic field during transfer of the sample from the polarizer to the MRI scanner.

  15. Theoretical 13C chemical shift, 14N, and 2H quadrupole coupling- constant studies of hydrogen bonding in L-alanylglycine dipeptide.

    PubMed

    Tafazzoli, M; Amini, S K

    2008-04-01

    (13)C chemical shieldings and (14)N and (2)H electric field gradient (EFG) tensors of L-alanylglycine (L-alagly) dipeptide were calculated at RHF/6-31 + + G** and B3LYP/6-31 + + G** levels of theory respectively. For these calculations a crystal structure of this dipeptide obtained from X-ray crystallography was used. Atomic coordinates of different clusters containing several L-alagly molecules were used as input files for calculations. These clusters consist of central and surrounding L-alagly molecules, the latter forming short, strong, hydrogen bonds with the central molecule. Since the calculations did not converge for these clusters, the surrounding L-alagly molecules were replaced by glycine molecules. In order to improve the accuracy of calculated chemical shifts and nuclear quadrupole coupling constants (NQCCs), different geometry-optimization strategies were applied for hydrogen nuclei. Agreement between calculated and experimental data confirms that our optimized coordinates for hydrogen nuclei are more accurate than those obtained by X-ray diffraction. PMID:18273875

  16. Hierarchical analysis of molecular spectra

    SciTech Connect

    Davis, M.J.

    1996-03-01

    A novel representation of molecular spectra in terms of hierarchical trees has proven to be an important aid for the study of many significant problems in gas-phase chemical dynamics. Trees are generated from molecular spectra by monitoring the changes that occur in a spectrum as resolution is changed in a continuous manner. A tree defines a genealogy among all lines of a spectrum. This allows for a detailed understanding of the assignment of features of a spectrum that may be difficult to obtain any other way as well as an understanding of intramolecular energy transfer time scales, mechanisms, and pathways. The methodology has been applied to several problems: transition state spectroscopy, intramolecular energy transfer in highly excited molecules, high-resolution overtone spectroscopy, and the nature of the classical-quantum correspondence when there is classical chaos (``quantum chaos``).

  17. Evaluated cross section libraries and kerma factors for neutrons up to 100 MeV on {sup 16}O and {sup 14}N

    SciTech Connect

    Chadwick, M.B.; Young, P.G.

    1995-07-01

    We present evaluations of the interaction of 20 to 100 MeV neutrons with oxygen and nitrogen nuclei, which follows on from our previous work on carbon. Our aim is to accurately represent integrated cross sections, inclusive emission spectra, and kerma factors, in a data library which can be used in radiation transport calculations. We apply the FKK-GNASH nuclear model code, which includes Hauser-Feshbach, preequilibrium, and direct reaction mechanisms, and use experimental measurements to optimize the calculations. We determine total, elastic, and nonelastic cross sections, angle-energy correlated emission spectra, for light ejectiles with A{<=}4 and gamma-rays, and average energy depositions. Our results for charged-particle emission spectra agree well with the measurements of Subramanian et al.. We compare kerma factors derived from our evaluated cross sections with experimental data, providing an integral benchmarking of our work. The evaluated data libraries are available as electronic files.

  18. Catalogue of representative meteor spectra

    NASA Astrophysics Data System (ADS)

    Vojáček, V.; Borovička, J.; Koten, P.; Spurný, P.; Štork, R.

    2015-08-01

    Aims: We present a library of low-resolution meteor spectra that includes sporadic meteors, members of minor meteor showers, and major meteor showers. These meteors are in the magnitude range from +2 to -3, corresponding to meteoroid sizes from 1 mm to 10 mm. Methods: Parallel double-station video observations allowed us to compute heliocentric orbits for all meteors. Most observations were performed during the periods of activity of major meteor showers in the years between 2006 and 2012. Spectra are classified according to relative intensities of the low-temperature emission lines of Mg, Na, and Fe. Results: Shower meteors were found to be of normal composition, except for Southern δ Aquariids and some members of the Geminid shower, neither of which have Na in the meteor spectra. Variations in Na content are typical for the Geminid shower. Three populations of Na-free mereoroids were identified. The first population are iron meteorites, which have an asteroidal-chondritic origin, but one meteoroid with low perihelion (0.11 AU) was found among the iron meteorites. The second population were Sun-approaching meteoroids in which sodium is depleted by thermal desorption. The third population were Na-free meteoroids of cometary origin. Long exposure to cosmic rays on the surface of comets in the Oort cloud and disintegration of this crust might be the origin of this population of meteoroids. Spectra (Figs. 17-30) are only, Tables 4-6 are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/580/A67

  19. Accelerated Fitting of Stellar Spectra

    NASA Astrophysics Data System (ADS)

    Ting, Yuan-Sen; Conroy, Charlie; Rix, Hans-Walter

    2016-07-01

    Stellar spectra are often modeled and fitted by interpolating within a rectilinear grid of synthetic spectra to derive the stars’ labels: stellar parameters and elemental abundances. However, the number of synthetic spectra needed for a rectilinear grid grows exponentially with the label space dimensions, precluding the simultaneous and self-consistent fitting of more than a few elemental abundances. Shortcuts such as fitting subsets of labels separately can introduce unknown systematics and do not produce correct error covariances in the derived labels. In this paper we present a new approach—Convex Hull Adaptive Tessellation (chat)—which includes several new ideas for inexpensively generating a sufficient stellar synthetic library, using linear algebra and the concept of an adaptive, data-driven grid. A convex hull approximates the region where the data lie in the label space. A variety of tests with mock data sets demonstrate that chat can reduce the number of required synthetic model calculations by three orders of magnitude in an eight-dimensional label space. The reduction will be even larger for higher dimensional label spaces. In chat the computational effort increases only linearly with the number of labels that are fit simultaneously. Around each of these grid points in the label space an approximate synthetic spectrum can be generated through linear expansion using a set of “gradient spectra” that represent flux derivatives at every wavelength point with respect to all labels. These techniques provide new opportunities to fit the full stellar spectra from large surveys with 15–30 labels simultaneously.

  20. Vibrational spectra of fluorohafnate glass

    NASA Astrophysics Data System (ADS)

    Bendow, Bernard; Drexhage, Martin G.; Banerjee, Pranab K.; Goltman, John; Mitra, Shashanka S.; Moynihan, Cornelius T.

    1981-02-01

    We report the first detailed measurements of fundamental vibrational spectra in fluorohafnate glass. The Raman spectrum is dominated by a single relatively broad peak in the vicinity of 570-590 cm -1 attributed to Hf-F stretching modes, while the infrared spectrum displays two prominent broad peaks. The location of the high frequency peaks is shown to be consistent with the observed position of the infrared absorption edge.

  1. Optical Spectra of Triggered Lightning

    NASA Astrophysics Data System (ADS)

    Walker, T. D.; Biagi, C. J.; Hill, J. D.; Jordan, D. M.; Uman, M. A.; Christian, H. J., Jr.

    2009-12-01

    In August 2009, the first optical spectra of triggered lightning flashes were acquired. Data from two triggered lightning flashes were obtained at the International Center for Lightning Research and Testing in north-central Florida. The spectrometer that was used has an average dispersion of 260 Å/mm resulting in an average resolution of 5 Å when mated to a Photron (SA1.1) high-speed camera. The spectra captured with this system had a free spectral range of 3800-8000 Å. The spectra were captured at 300,000 frames per second. The spectrometer's vertical field of view was 3 m at an altitude 50 m above the launch tower, intended to view the middle of the triggering wire. Preliminary results show that the copper spectrum dominated the earliest part of the flash and copper lines persisted during the total lifetime of the detectable spectrum. Animations over the lifetime of the stroke from the initial wire illumination to multiple return strokes show the evolution of the spectrum. In addition, coordinated high speed channel base current, electric field and imagery measurements of the exploding wire, downward leaders, and return strokes were recorded. Quantitative analysis of the spectral evolution will be discussed in the context of the overall flash development.

  2. Polarization enhanced Nuclear Quadrupole Resonance with an atomic magnetometer

    NASA Astrophysics Data System (ADS)

    Malone, Michael W.; Barrall, Geoffrey A.; Espy, Michelle A.; Monti, Mark C.; Alexson, Dimitri A.; Okamitsu, Jeffrey K.

    2016-05-01

    Nuclear Quadrupole Resonance (NQR) has been demonstrated for the detection of 14-N in explosive compounds. Application of a material specific radio-frequency (RF) pulse excites a response typically detected with a wire- wound antenna. NQR is non-contact and material specific, however fields produced by NQR are typically very weak, making demonstration of practical utility challenging. For certain materials, the NQR signal can be increased by transferring polarization from hydrogen nuclei to nitrogen nuclei using external magnetic fields. This polarization enhancement (PE) can enhance the NQR signal by an order of magnitude or more. Atomic magnetometers (AM) have been shown to improve detection sensitivity beyond a conventional antenna by a similar amount. AM sensors are immune to piezo-electric effects that hamper conventional NQR, and can be combined to form a gradiometer for effective RF noise cancellation. In principle, combining polarization enhancement with atomic magnetometer detection should yield improvement in signal-to-noise ratio that is the product of the two methods, 100-fold or more over conventional NQR. However both methods are even more exotic than traditional NQR, and have never been combined due to challenges in operating a large magnetic field and ultra-sensitive magnetic field sensor in proximity. Here we present NQR with and without PE with an atomic magnetometer, demonstrating signal enhancement greater than 20-fold for ammonium nitrate. We also demonstrate PE for PETN using a traditional coil for detection with an enhancement factor of 10. Experimental methods and future applications are discussed.

  3. Prediction of earthquake response spectra

    USGS Publications Warehouse

    Joyner, W.B.; Boore, David M.

    1982-01-01

    We have developed empirical equations for predicting earthquake response spectra in terms of magnitude, distance, and site conditions, using a two-stage regression method similar to the one we used previously for peak horizontal acceleration and velocity. We analyzed horizontal pseudo-velocity response at 5 percent damping for 64 records of 12 shallow earthquakes in Western North America, including the recent Coyote Lake and Imperial Valley, California, earthquakes. We developed predictive equations for 12 different periods between 0.1 and 4.0 s, both for the larger of two horizontal components and for the random horizontal component. The resulting spectra show amplification at soil sites compared to rock sites for periods greater than or equal to 0.3 s, with maximum amplification exceeding a factor of 2 at 2.0 s. For periods less than 0.3 s there is slight deamplification at the soil sites. These results are generally consistent with those of several earlier studies. A particularly significant aspect of the predicted spectra is the change of shape with magnitude (confirming earlier results by McGuire and by Irifunac and Anderson). This result indicates that the conventional practice of scaling a constant spectral shape by peak acceleration will not give accurate answers. The Newmark and Hall method of spectral scaling, using both peak acceleration and peak velocity, largely avoids this error. Comparison of our spectra with the Nuclear Regulatory Commission's Regulatory Guide 1.60 spectrum anchored at the same value at 0.1 s shows that the Regulatory Guide 1.60 spectrum is exceeded at soil sites for a magnitude of 7.5 at all distances for periods greater than about 0.5 s. Comparison of our spectra for soil sites with the corresponding ATC-3 curve of lateral design force coefficient for the highest seismic zone indicates that the ATC-3 curve is exceeded within about 7 km of a magnitude 6.5 earthquake and within about 15 km of a magnitude 7.5 event. The amount by

  4. Microwave spectra, molecular structure, and aromatic character of 4a,8a-azaboranaphthalene.

    PubMed

    Pejlovas, Aaron M; Daly, Adam M; Ashe, Arthur J; Kukolich, Stephen G

    2016-03-21

    The microwave spectra for seven unique isotopologues of 4a,8a-azaboranaphthalene [hereafter referred to as BN-naphthalene] were measured using a pulsed-beam Fourier transform microwave spectrometer. Spectra were obtained for the normal isotopologues with (10)B, (11)B, and all unique single (13)C and the (15)N isotopologue (with (11)B), in natural abundance. The rotational, centrifugal distortion and quadrupole coupling constants determined for the (11)B(14)N isotopologue are A = 3042.712 75(43) MHz, B = 1202.706 57(35) MHz, C = 862.220 13(35) MHz, DJ = 0.06(1) kHz, 1.5χaa ((14)N) = 2.5781(61) MHz, 0.25(χbb - χcc) ((14)N) = - 0.1185(17) MHz, 1.5χaa (11B) = - 3.9221(75) MHz, and 0.25(χbb - χcc) ((11)B) = - 0.9069(24) MHz. The experimental inertial defect is Δ = - 0.159 amu Å(2), which is consistent with a planar structure for the molecule. The B-N bond length from the experimentally determined structure is 1.47 Å, which indicates π-bonding character between the B and N. The measured quadrupole coupling strengths provide important and useful information about the bonding, orbital occupancy, and aromatic character for this aromatic molecule. Extended Townes-Dailey analyses were used to determine the B and N electron sp(2)-hybridized and p-orbital occupations. These results are compared with electron orbital occupations from the natural bond orbital option in theoretical calculations. From the analyses, it was determined that BN-naphthalene has aromatic character similar to that of other N-containing aromatics. The results are compared with similar results for B-N bonding in 1,2-dihydro-1,2-azaborine and BN-cyclohexene. Accurate and precise structural parameters were obtained from the microwave measurements on seven isotopologues and from high-level G09 calculations. PMID:27004872

  5. Microwave spectra, molecular structure, and aromatic character of 4a,8a-azaboranaphthalene

    NASA Astrophysics Data System (ADS)

    Pejlovas, Aaron M.; Daly, Adam M.; Ashe, Arthur J.; Kukolich, Stephen G.

    2016-03-01

    The microwave spectra for seven unique isotopologues of 4a,8a-azaboranaphthalene [hereafter referred to as BN-naphthalene] were measured using a pulsed-beam Fourier transform microwave spectrometer. Spectra were obtained for the normal isotopologues with 10B, 11B, and all unique single 13C and the 15N isotopologue (with 11B), in natural abundance. The rotational, centrifugal distortion and quadrupole coupling constants determined for the 11B14N isotopologue are A = 3042.712 75(43) MHz, B = 1202.706 57(35) MHz, C = 862.220 13(35) MHz, DJ = 0.06(1) kHz, 1.5χaa (14N) = 2.5781(61) MHz, 0.25(χbb - χcc) (14N) = - 0.1185(17) MHz, 1.5χaa (11B) = - 3.9221(75) MHz, and 0.25(χbb - χcc) (11B) = - 0.9069(24) MHz. The experimental inertial defect is Δ = - 0.159 amu Å2, which is consistent with a planar structure for the molecule. The B—N bond length from the experimentally determined structure is 1.47 Å, which indicates π-bonding character between the B and N. The measured quadrupole coupling strengths provide important and useful information about the bonding, orbital occupancy, and aromatic character for this aromatic molecule. Extended Townes-Dailey analyses were used to determine the B and N electron sp2-hybridized and p-orbital occupations. These results are compared with electron orbital occupations from the natural bond orbital option in theoretical calculations. From the analyses, it was determined that BN-naphthalene has aromatic character similar to that of other N-containing aromatics. The results are compared with similar results for B—N bonding in 1,2-dihydro-1,2-azaborine and BN-cyclohexene. Accurate and precise structural parameters were obtained from the microwave measurements on seven isotopologues and from high-level G09 calculations.

  6. The Trojan Horse Method as a tool to investigate low-energy resonances: the {sup 18}O(p, {alpha}){sup 15}N and {sup 17}O(p, {alpha}){sup 14}N cases

    SciTech Connect

    La Cognata, M.; Sergi, M. L.; Spitaleri, C.; Cherubini, S.; Gulino, M.; Kiss, G.; Lamia, L.; Pizzone, R. G.; Romano, S.; Mukhamedzhanov, A.; Goldberg, V.; Tribble, R.; Coc, A.; Hammache, F.; Sereville, N. de; Tumino, A.

    2010-08-12

    The {sup 18}O(p, {alpha}){sup 15}N and {sup 17}O(p, {alpha}){sup 14}N reactions are of primary importance in several as-trophysical scenarios, including nucleosynthesis inside Asymptotic Giant Branch stars and oxygen and nitrogen isotopic ratios in meteorite grains. They are also key reactions to understand exotic systems such as R-Coronae Borealis stars and novae. Thus, the measurement of their cross sections in the low energy region can be crucial to reduce the nuclear uncertainty on theoretical predictions, because the resonance parameters are poorly determined. The Trojan Horse Method, in its newly developed form particularly suited to investigate low-energy resonances, has been applied to the {sup 2}H({sup 18}O, {alpha}{sup 15}N)n and {sup 2}H({sup 17}O, {alpha}{sup 14}N)n reactions to deduce the {sup 18}O(p, {alpha}){sup 15}N and {sup 17}O(p, {alpha}){sup 14}N cross sections at low energies. Resonances in the {sup 18}O(p, {alpha}){sup 15}N and {sup 17}O(p, {alpha}){sup 14}N excitation functions have been studied and the resonance parameters deduced.

  7. MILLIMETER-WAVE OBSERVATIONS OF CN AND HNC AND THEIR {sup 15}N ISOTOPOLOGUES: A NEW EVALUATION OF THE {sup 14}N/{sup 15}N RATIO ACROSS THE GALAXY

    SciTech Connect

    Adande, G. R.; Ziurys, L. M.

    2012-01-10

    The N = 1 {yields} 0 transitions of CN and C{sup 15}N (X{sup 2}{Sigma}{sup +}), as well as the J = 1 {yields} 0 lines of HN{sup 13}C and H{sup 15}NC, have been observed toward 11 molecular clouds using the new 3 mm ALMA-type receiver of the 12 m telescope of the Arizona Radio Observatory. These sources span a wide range of distances from the Galactic center and are all regions of star formation. From these observations, {sup 14}N/{sup 15}N ratios have been determined using two independent methods. First, the measurements of C{sup 14}N and C{sup 15}N were directly compared to establish this ratio, correcting for high opacities when needed, as indicated by the nitrogen hyperfine intensities. Second, the ratio was calculated from the quantity [HN{sup 13}C]/[H{sup 15}NC], determined from the HNC data, and then scaled by {sup 12}C/{sup 13}C ratios previously established, i.e., the so-called double isotope method. Values from both methods are in reasonable agreement, and fall in the range {approx}120-400, somewhat lower than previous {sup 14}N/{sup 15}N ratios derived from HCN. The ratios exhibit a distinct positive gradient with distance from the Galactic center, following the relationship{sup 14}N/{sup 15}N = 21.1 (5.2) kpc{sup -1} D{sub GC} + 123.8 (37.1). This gradient is consistent with predictions of Galactic chemical evolution models in which {sup 15}N has a secondary origin in novae, while primary and secondary sources exist for {sup 14}N. The local interstellar medium value was found to be {sup 4}N/{sup 15}N = 290 {+-} 40, in agreement with the ratio found in nearby diffuse clouds and close to the value of 272 found in Earth's atmosphere.

  8. Stable isotope ((13)C/(12)C and (15)N/(14)N) composition of the woolly rhinoceros Coelodonta antiquitatis horn suggests seasonal changes in the diet.

    PubMed

    Tiunov, Alexei V; Kirillova, Irina V

    2010-11-15

    The extinct woolly rhinoceros Coelodonta antiquitatis is a prominent member of the Mammuthus-Coelodonta faunal complex, but its biology is poorly known, partly because very few specimens with well-preserved soft tissues have been discovered to date. However, the permafrost-preserved horns of the woolly rhinoceros are recording structures which contain isotopic records of the diet, environmental conditions and physiological status of the animal during most of its life. In this study we report the first data on the pattern of carbon ((13)C/(12)C) and nitrogen ((15)N/(14)N) isotopic composition along the nasal horn of woolly rhinoceros. We found systematic variations in δ(13)C and δ(15)N values associated with morphologically expressed transverse banding of the horn. The comparative analysis of isotopic variation in keratinous tissues of extant and extinct herbivores suggests that the oscillation in isotopic composition of the horn was induced by seasonal changes in the diet. Although the compiled evidence is in part contradictory, we suggest that more positive δ(13)C and δ(15)N values associated with dark-colored and less dense zones of the horn indicate a summer diet. More dense and light-colored zones of the horn have lower δ(13)C and δ(15)N values possibly indicating a larger proportion of woody and shrub vegetation in the winter diet. The validity of these conclusions has to be proven in further investigations, but our data underline the potential of isotopic analysis for studies on diet and habitat use by extinct members of Pleistocene fauna. PMID:20941761

  9. 13C/12C and 15N/14N Isotope Analysis to Characterize Natural Degradation of Atrazine: Evidence from Parent and Daughter Compound Values

    NASA Astrophysics Data System (ADS)

    Elsner, Martin; Meyer, Armin

    2013-04-01

    The mobile and still herbicidal metabolites desethylatrazine (DEA) and desisopropylatrazine (DIA) are frequently detected together with its parent compound atrazine (Atz) in the aquatic environment. Interpretation of their transformation state is often difficult with current methods, which are mainly measuring concentrations. Alternatively, compound specific isotope analyses (CSIA) has become a novel tool to detect degradation processes of contaminants in groundwater. The aim of our study was to investigate on the lab scale 13C/12C and 15N/14N isotope trends in parent and daughter compounds associated with different degradation scenarios of atrazine likely to occur in the environment. Thus atrazine was dealkylated with (i) permanganate and (ii) the bacterium Rhodococcus sp. NI86/21. In both transformations, 13C/12C ratios of atrazine increased strongly (epsilon carbon/permanganate = -4.6 ± 0.6 ‰ and epsilon carbon/Rhodoccoccus = -3.8 ± 0.2 ‰) whereas nitrogen isotope fractionation was small. 13C/12C ratios of DEA showed the following trends. (i) When DEA was formed as only product (Atz + permanganate) 13C/12C remained constant, close to the initial value of Atz. (ii) When DEA was formed together with deisopropylatrazine (biodegradation of Atz) 13C/12C increased, but only within 2‰. (iii) When DEA and DIA was further biodegraded, 13C/12C increased for both metabolites up to 9‰. Thus strong enrichment of 13C/12C in the metabolites in comparison to Atz can give strong testimony for further breakdown of the metabolite.

  10. Radical Prostatectomy versus External Beam Radiotherapy for cT1-4N0M0 Prostate Cancer: Comparison of Patient Outcomes Including Mortality

    PubMed Central

    Taguchi, Satoru; Fukuhara, Hiroshi; Shiraishi, Kenshiro; Nakagawa, Keiichi; Morikawa, Teppei; Kakutani, Shigenori; Takeshima, Yuta; Miyazaki, Hideyo; Fujimura, Tetsuya; Nakagawa, Tohru; Kume, Haruki; Homma, Yukio

    2015-01-01

    Background Although radical prostatectomy (RP) and external beam radiotherapy (EBRT) have been considered as comparable treatments for localized prostate cancer (PC), it is controversial which treatment is better. The present study aimed to compare outcomes, including mortality, of RP and EBRT for localized PC. Methods We retrospectively analyzed 891 patients with cT1-4N0M0 PC who underwent either RP (n = 569) or EBRT (n = 322) with curative intent at our single institution between 2005 and 2012. Of the EBRT patients, 302 (93.8%) underwent intensity-modulated radiotherapy. Primary endpoints were overall survival (OS) and cancer-specific survival (CSS). Related to these, other-cause mortality (OCM) was also calculated. Biochemical recurrence-free survival was assessed as a secondary endpoint. Cox proportional hazards model was used for multivariate analysis. Results Median follow-up durations were 53 and 45 months, and median ages were 66 and 70 years (P <0.0001), in the RP and EBRT groups, respectively. As a whole, significantly better prognoses of the RP group than the EBRT group were observed for both OS and CSS, although OCM was significantly higher in the EBRT group. There was no death from PC in men with low and intermediate D’Amico risks, except one with intermediate-risk in the EBRT group. In high-risk patients, significantly more patients died from PC in the EBRT group than the RP group. Multivariate analysis demonstrated the RP group to be an independent prognostic factor for better CSS. On the other hand, the EBRT group had a significantly longer biochemical recurrence-free survival than the RP group. Conclusions Mortality outcomes of both RP and EBRT were generally favorable in low and intermediate risk patients. Improvement of CSS in high risk patients was seen in patients receiving RP over those receiving EBRT. PMID:26506569

  11. Analysis of microearthquakes at the non-transform offset of the Mid-Atlantic Ridge hosting the Rainbow hydrothermal system (36°14'N)

    NASA Astrophysics Data System (ADS)

    Horning, G.; Canales, J. P.; Sohn, R. A.; Dunn, R. A.

    2015-12-01

    The Rainbow hydrothermal field is an active, ultramafic-hosted system located on the Mid-Atlantic Ridge (MAR) at 36° 14'N. It is located at a non-transform discontinuity (NTD) of the MAR at the AMAR-AMAR minor segment intersection [German et al., 1996]. Rainbow, in contrast to other ultramafic-hosted systems such as Lost City, is a high-temperature site with fluids up to 365 °C [Douville et al., 2002]. A magmatic heat source must be present to account for the long-lived, high-temperature, heat flux of 1-5 GW [Thurnherr and Richards, 2001], but the nearest, known neovolcanic activity is 15-20 km away on the AMAR segment [German and Parson, 1998]. In 2013, a long-term, ocean bottom seismometer (OBS) microearthquake network of 13 instruments was deployed as part of the MARINER geophysical experiment [Dunn et al., 2013]. Over 40,000 events were detected and located within ~16 km of the active hydrothermal field during the ~200 day deployment. We present hypocenters estimated using P- and S-wave arrival times and a crustal velocity model derived from the active-source tomography component of the MARINER experiment. Moment/magnitude estimates from spectral methods indicate that the majority of events have local magnitudes (ML) of 0-1, with the largest events approaching ML ~2. First arrival polarity data demonstrate that many of the events have non-double couple source mechanisms, and we explore the use of P/S-wave amplitude ratios to constrain these focal mechanisms. The detection of predominantly non-double events indicates processes other than simple fault slip (e.g., serpentinization) are contributing to the observed seismicity and deformation. We use the spatial distribution, magnitudes, rate, and source mechanisms of the seismic events to constrain the coupled processes of hydrothermal circulation and deformation at the Rainbow massif.

  12. Modelling of hydrothermal fluid circulation in a heterogeneous medium: Application to the Rainbow Vent site (Mid-Atlantic-Ridge, 36°14N)

    NASA Astrophysics Data System (ADS)

    Perez, F.; Mügler, C.; Jean-Baptiste, P.; Charlou, J. L.

    2012-04-01

    Hydrothermal activity at the axis of mid-ocean ridges is a key driver for energy and matter transfer from the interior of the Earth to the ocean floor. At mid-ocean ridges, seawater penetrates through the permeable young crust, warms at depth and exchanges chemicals with the surrounding rocks. This hot fluid focuses and flows upwards, then is expelled from the crust at hydrothermal vent sites in the form of black or white smokers completed by diffusive emissions. We developed a new numerical tool in the Cast3M software framework to model such hydrothermal circulations. Thermodynamic properties of one-phase pure water were calculated from the IAPWS formulation. This new numerical tool was validated on several test cases of convection in closed-top and open-top boxes. Simulations of hydrothermal circulation in a homogeneous-permeability porous medium also gave results in good agreement with already published simulations. We used this new numerical tool to construct a geometric and physical model configuration of the Rainbow Vent site at 36°14'N on the Mid-Atlantic Ridge. In this presentation, several configurations will be discussed, showing that high temperatures and high mass fluxes measured at the Rainbow site cannot be modelled with hydrothermal circulation in a homogeneous-permeability porous medium. We will show that these high values require the presence of a fault or a preferential pathway right below the venting site. We will propose and discuss a 2-D one-path model that allows us to simulate both high temperatures and high mass fluxes. This modelling of the hydrothermal circulation at the Rainbow site constitutes a first but necessary step to understand the origin of high concentrations of hydrogen issued from this ultramafic-hosted vent field.

  13. DUO: Spectra of diatomic molecules

    NASA Astrophysics Data System (ADS)

    Yurchenko, Sergei N.; Lodi, Lorenzo; Tennyson, Jonathan; Stolyarov, Andrey V.

    2016-05-01

    Duo computes rotational, rovibrational and rovibronic spectra of diatomic molecules. The software, written in Fortran 2003, solves the Schrödinger equation for the motion of the nuclei for the simple case of uncoupled, isolated electronic states and also for the general case of an arbitrary number and type of couplings between electronic states. Possible couplings include spin–orbit, angular momenta, spin-rotational and spin–spin. Introducing the relevant couplings using so-called Born–Oppenheimer breakdown curves can correct non-adiabatic effects.

  14. Satellite spectra of heliumlike nickel

    SciTech Connect

    Hsuan, H.; Bitter, M.; Hill, K.W.; von Goeler, S. Grek, B.; Johnson, D.; Johnson, L.C.; Sesnic, S.; Bhalla, C.P.; Karim, K.R.

    1987-02-01

    Spectra of heliumlike nickel, NiXXVII, have been observed from Tokamak Fusion Test Reactor (TFTR) plasmas with a high resolution crystal spectrometer. The experimental arrangement permits simultaneous observation of the heliumlike resonance line, the intercombination and forbidden lines, and all the associated satellites due to transitions 1s/sup 2/nl - 1s2l'nl'' with N greater than or equal to 2. Relative wavelengths and line intensities can thus be determined very accurately. The observed spectral data are in good agreement with results from the present Hartree-Fock-Slater atomic model calculations and predictions from the Z-expansion method.

  15. Identified hadron spectra from PHOBOS

    NASA Astrophysics Data System (ADS)

    Veres, Gábor I.; PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holynski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Sarin, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wolfs, F. L. H.; Wosiek, B.; Wozniak, K.; Wyslouch, B.; Zhang, J.

    2004-08-01

    Transverse momentum spectra of pions, kaons and protons, as well as antiparticle to particle ratios near mid-rapidity from d+Au collisions at \\sqrt{s_{{\\rm NN}}} = 200\\,{\\rm GeV} have been measured by the PHOBOS experiment at RHIC. The transverse momentum range of particle identification was extended to beyond 3 GeV/c using the TOF detector and a new trigger system. The pseudorapidity dependence of the nuclear modification factor for charged hadrons in d+Au collisions is presented.

  16. Action spectra for photosynthetic inhibition

    NASA Technical Reports Server (NTRS)

    Caldwell, M. M.; Flint, S.; Camp, L. B.

    1981-01-01

    The ultraviolet action spectrum for photosynthesis inhibition was determined to fall between that of the general DNA action spectrum and the generalized plant action spectrum. The characteristics of this action spectrum suggest that a combination of pronounced increase in effectiveness with decreasing wavelength, substantial specificity for the UV-B waveband, and very diminished response in the UV-A waveband result in large radiation amplification factors when the action spectra are used as weighting functions. Attempted determination of dose/response relationships for leaf disc inhibition provided inconclusive data from which to deconvolute an action spectrum.

  17. Planetary spectra for anisotropic scattering

    NASA Technical Reports Server (NTRS)

    Chamberlain, J. W.

    1975-01-01

    Some of the effects on planetary spectra that would be produced by departures from isotropic scattering are examined. The phase function is the simplest departure to handle analytically and the only phase function, other than the isotropic one, that can be incorporated into a Chandrasekhar first approximation. This approach has the advantage of illustrating trends resulting from anisotropies while retaining the simplicity that yields physical insight. An algebraic solution to the two sets of anisotropic H functions is developed in the appendix. It is readily adaptable to progammable desk calculators and gives emergent intensities accurate to 0.3 percent, which is sufficient even for spectroscopic analysis.

  18. Energy spectra and LET spectra of protons behind shielding

    NASA Astrophysics Data System (ADS)

    Katz, Sari; Barak, Joseph

    2014-08-01

    With the advent of devices sensitive to SEU due to direct ionization by protons, it became important to know the flux and energies of protons behind aluminum shielding or within satellites. We present new analytically derived expressions for the energy distribution of incident protons, after passing the shielding, and of secondary protons emitted within the shielding. The results are compared with those of the MULASSIS code. In some cases, like a satellite in a GCR orbit, the contribution of the secondary protons to SEU might be the dominant one. Proton energy-distributions behind shielding are proportional, at low energy values, to inverse proton-LET in aluminum. Their calculated LET-spectra in silicon can be used for evaluating SEU-rate in space. The analytic expressions presented here can be useful in calculating the influence of shielding on other incident ions and secondary ions.

  19. Spectra from pair-equilibrium plasmas

    NASA Technical Reports Server (NTRS)

    Zdziarski, A. A.

    1984-01-01

    A numerical model of relativistic nonmagnetized plasma with uniform temperature and electron density distributions is considered, and spectra from plasma in pair equilibrium are studied. A range of dimensionless temperature (T) greater than about 0.2 is considered. The spectra from low pair density plasmas in pair equilibrium vary from un-Comptonized bremsstrahlung spectra at Thomson cross section tau(N) much less than one to Comptonized bremsstrahlung spectra with tau(N) over one. For high pair density plasmas the spectra are flat for T greater than about one, and have broad intensity peaks at energy roughly equal to 3T for T less than one. In the latter region the total luminosity is approximately twice the annihilation luminosity. All spectra are flat in the X-ray region, in contradiction to observed AGN spectra. For dimensionless luminosity greater than about 100, the cooling time becomes shorter than the Thomson time.

  20. Energy spectra in bubbly turbulence

    NASA Astrophysics Data System (ADS)

    Luther, Stefan; van den Berg, Thomas H.; Rensen, Judith; Lohse, Detlef

    2004-11-01

    The energy spectrum of single phase turbulent flow - apart from intermittency corrections - has been known since Kolomogorov 1941, E(k) ∝ k-5/3. How do bubbles modify this spectrum? To answer this question, we inject micro bubbles (radius 100 μm) in fully turbulent flow (Re_λ=200) up to volume concentrations of 0.3 %. Energy spectra and velocity structure functions are measured with hot-film anemometry. Under our experimental conditions, we find an enhancement of energy on small scales confirming numerical predictions by Mazzitelli, Lohse, and Toschi [Phys. Fluids 15, L5 (2003)]. They propose a mechanism in which bubbles are clustering most likely in downflow regions. This clustering is a lift force effect suppressing large vortical structures, while enhancing energy input on small scales.

  1. Reflectance spectra of primitive chondrites

    NASA Astrophysics Data System (ADS)

    Trigo-Rodríguez, J. M.; Moyano-Cambero, C. E.; Llorca, J.

    2013-05-01

    We are studying a wide sample of pristine carbonaceous chondrites from the NASA Antarctic collection in order to get clues on the physico-chemical processes occurred in the parent bodies of these meteorites. We are obtaining laboratory reflectance spectra of different groups of carbonaceous chondrites, but here we focus in CM and CI chondrites. We discuss the main spectral features that can be used to identify primitive carbonaceous asteroids by remote sensing techniques. Two different spectrometers were used covering the entire 0.3 to 30 μm electromagnetic window. Only a handful of Near Earth Objects (NEOs) exhibit bands or features clearly associated with aqueous alteration. Among them are the target asteroids of Osiris Rex and Marco Polo-R missions.

  2. Optimal Extraction of Echelle Spectra

    NASA Astrophysics Data System (ADS)

    Piskunov, Nikolai

    The extraction of the echelle spectra registered with a CCD detector represents a big challenge because of three reasons: (1) the pixel sampling is often close or worse then optimal, (2) spectral orders are curved and tilted with respect to the CCD rows (or columns) and (3) every pixel contains additional noise coming from various sources as illustrated in Figure 1. The main goal of an optimal extraction is to recover as much of the science signal while minimizing the contribution of the noise. Here we present the Slit Function Decomposition algorithm which replaces the summation in a sliding window with a reconstruction of the slit illumination profile. The reconstruction is formulated as an inverse problem solved by iterations and it is robust against most of the systematic problems including cosmic rays and cosmetic defects.

  3. Graviton Spectra in String Cosmology

    SciTech Connect

    Galluccio, M.; Occhionero, F.; Litterio, M.

    1997-08-01

    We propose to uncover the signature of a stringy era in the primordial Universe by searching for a prominent peak in the relic graviton spectrum. This feature, which in our specific model terminates an {omega}{sup 3} increase and initiates an {omega}{sup {minus}7} decrease, is induced during the so far overlooked bounce of the scale factor between the collapsing deflationary era (or pre{endash}big bang) and the expanding inflationary era (or post{endash}big bang). The frequency and the intensity of the peak may likely fall in the realm of the new generation of interferometric detectors. The existence of a peak, at variance with ordinarily monotonic graviton spectra, would therefore offer strong support to string cosmology. {copyright} {ital 1997} {ital The American Physical Society}

  4. Graviton spectra in string cosmology

    SciTech Connect

    Galluccio, Massimo; Litterio, Marco; Occhionero, Franco

    1996-08-01

    We propose to uncover the signature of a stringy era in the primordial Universe by searching for a prominent peak in the relic graviton spectrum. This feature, which in our specific model terminates an ω³ increase and initiates an ω⁻⁷ decrease, is induced during the so far overlooked bounce of the scale factor between the collapsing deflationary era (or pre-Big Bang) and the expanding inflationary era (or post-Big Bang). We evaluate both analytically and numerically the frequency and the intensity of the peak and we show that they may likely fall in the realm of the new generation of interferometric detectors. The existence of a peak is at variance with ordinarily monotonic (either increasing or decreasing) graviton spectra of canonical cosmologies; its detection would therefore offer strong support to string cosmology.

  5. Line Coupling in Atmospheric Spectra

    NASA Technical Reports Server (NTRS)

    Tipping, R. H.

    1996-01-01

    The theoretical modeling of atmospheric spectra is important for a number of different applications: for instance, in the determination of minor atmospheric constituents such as ozone, carbon dioxide, CFC's etc.; in monitoring the temperature profile for climate studies; and in measuring the incoming and outgoing radiation to input into global climate models. In order to accomplish the above mentioned goal, one needs to know the spectral parameters characterizing the individual spectral lines (frequency, width, strength, and shape) as well as the physical parameters of the atmosphere (temperature, abundances, and pressure). When all these parameters are known, it is usually assumed that the resultant spectra and concomitant absorption coefficient can then be calculated by a superposition of individual profiles of appropriate frequency, strength and shape. However, this is not true if the lines are 'coupled'. Line coupling is a subtle effect that takes place when lines of a particular molecule overlap in frequency. In this case when the initial states and the final states of two transitions are connected by collisions, there is a quantum interference resulting in perturbed shapes. In general, this results in the narrowing of Q-branches (those in which the rotational quantum number does not change), and vibration-rotational R- and P branches (those in which the rotational quantum number changes by +/- 1), and in the spectral region beyond band heads (regions where the spectral lines pile up due to centrifugal distortion). Because these features and spectral regions are often those of interest in the determination of the abundances and pressure-temperature profiles, one must take this effect into account in atmospheric models.

  6. Removal of 14 N-terminal amino acids of lactoferrin enhances its affinity for parenchymal liver cells and potentiates the inhibition of beta- very low density lipoprotein binding.

    PubMed

    Ziere, G J; Bijsterbosch, M K; van Berkel, T J

    1993-12-25

    Lactoferrin inhibits the hepatic uptake of lipoprotein remnants, and we showed earlier that arginine residues of lactoferrin are involved. In this study, lactoferrin was treated with aminopeptidase M (APM), which resulted in removal of 14 N-terminal amino acids, including 4 clustered arginine residues at positions 2-5 (APM-lactoferrin). After intravenous injection into rats, 125I-labeled APM-lactoferrin was cleared within 10 min by the liver parenchymal cells (74.7% of the dose). In contrast to native lactoferrin, APM-lactoferrin was rapidly internalized after liver association (> 80% of the liver-associated radioactivity was internalized within 10 min). Binding of APM-lactoferrin to isolated parenchymal liver cells was saturable with a Kd of 186 nM (750,000 sites/cell). This is in striking contrast to the binding of native lactoferrin (Kd 10 microM; 20 x 10(6) sites/cell). Preinjection of rats with 20 mg of APM-lactoferrin/kg of body weight reduced the liver association of beta-very low density lipoprotein (beta-VLDL) by 50%, whereas lactoferrin had no effect at this dose. With isolated parenchymal liver cells, APM-lactoferrin was a more effective competitor for beta-VLDL binding than native lactoferrin (50% inhibition at 0.5 mg/ml versus 8.0 mg/ml). Selective modification of the arginines of APM-lactoferrin with 1,2-cyclohexanedione reduced the liver association by approximately 60% and abolished the capacity of APM-lactoferrin to inhibit the binding of 125I-labeled beta-VLDL in vitro. In conclusion, our data indicate that the four-arginine cluster of lactoferrin at positions 2-5 is involved in its massive, low affinity association of lactoferrin with the liver, possibly to proteoglycans, but is not essential for the inhibition of lipoprotein remnant uptake. The Arg-Lys sequence at positions 25-31, which resembles the binding site of apolipoprotein E, may mediate the high affinity binding of lactoferrin and block the binding of beta-VLDL to the remnant receptor

  7. High-resolution spectra of comet C/2013 R1 (Lovejoy)

    NASA Astrophysics Data System (ADS)

    Rousselot, P.; Decock, A.; Jehin, E.; Manfroid, J.; Hutsemékers, D.

    2014-07-01

    Comet C/2013 R1 (Lovejoy) is a long-period comet discovered on 7 September 2013 by Terry Lovejoy with a 0.2-m telescope (Guido et al., 2013), it passed its perihelion (0.81 au) on 22 December 2013. It was a bright comet visible to the naked eye. We obtained high-resolution spectra of this comet immediately after its perihelion passage during 4 nights in the period 23-26 December 2013. These spectra have been obtained with the 3.5-m Telescopio Nazionale Galileo (TNG) and the High Accuracy Radial velocity Planet Searcher in North hemisphere (HARPS-N) echelle spectrograph. HARPS-N is an echelle spectrograph covering the spectral range from 383 to 693 nm, with a spectral resolution of R=115000 (Cosentino et al., 2012). It is designed to measure stellar radial velocities in view of detecting extrasolar planets. Our observations are the first successful cometary observations performed with this instrument. They demonstrate that this spectrograph can also be efficient for getting cometary spectra, even if the sensitivity of this instrument is low in the blue part of its spectral coverage. We will present the results of our data analysis for these spectra. This analysis is focused on isotopic ratios, mainly ^{12}C/^{13}C with C_2 emission lines (with the method described in Rousselot et al. 2012) and ^{14}N/^{15}N with ^{14}NH_2 and ^{15}NH_2 emission lines (with the line wavelengths given in Rousselot et al. 2014), atomic oxygen emission lines at 557.7, 630.0 and 636.4 nm (intensity ratios and widths, see Decock et al. 2013) and relative production rates of the detected species.

  8. Dual element ((15)N/(14)N, (13)C/(12)C) isotope analysis of glyphosate and AMPA by derivatization-gas chromatography isotope ratio mass spectrometry (GC/IRMS) combined with LC/IRMS.

    PubMed

    Mogusu, Emmanuel O; Wolbert, J Benjamin; Kujawinski, Dorothea M; Jochmann, Maik A; Elsner, Martin

    2015-07-01

    To assess sources and degradation of the herbicide glyphosate [N-(phosphonomethyl) glycine] and its metabolite AMPA (aminomethylphosphonic acid), concentration measurements are often inconclusive and even (13)C/(12)C analysis alone may give limited information. To advance isotope ratio analysis of an additional element, we present compound-specific (15)N/(14)N analysis of glyphosate and AMPA by a two step derivatization in combination with gas chromatography/isotope ratio mass spectrometry (GC/IRMS). The N-H group was derivatized with isopropyl chloroformate (iso-PCF), and remaining acidic groups were subsequently methylated with trimethylsilyldiazomethane (TMSD). Iso-PCF treatment at pH <10 gave too low (15)N/(14)N ratios indicating an incomplete derivatization; in contrast, too high (15)N/(14)N ratios at pH >10 indicated decomposition of the derivative. At pH 10, and with an excess of iso-PCF by 10-24, greatest yields and accurate (15)N/(14)N ratios were obtained (deviation from elemental analyzer-IRMS: -0.2 ± 0.9% for glyphosate; -0.4 ± 0.7% for AMPA). Limits for accurate δ(15)N analysis of glyphosate and AMPA were 150 and 250 ng injected, respectively. A combination of δ(15)N and δ(13)C analysis by liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) (1) enabled an improved distinction of commercial glyphosate products and (2) showed that glyphosate isotope values during degradation by MnO2 clearly fell outside the commercial product range. This highlights the potential of combined carbon and nitrogen isotopes analysis to trace sources and degradation of glyphosate. PMID:25967147

  9. Blind extraction of exoplanetary spectra

    NASA Astrophysics Data System (ADS)

    Morello, Giuseppe; Waldmann, Ingo P.; Tinetti, Giovanna

    2016-06-01

    In the last decade, remote sensing spectroscopy enabled characterization of the atmospheres of extrasolar planets. Transmission and emission spectra of tens of transiting exoplanets have been measured with multiple instruments aboard Spitzer and Hubble Space Telescopes as well as ground-based facilities, revealing the presence of atomic, ionic and molecular species in their atmospheres, and constraining their temperature and pressure profiles.Early analyses were somehow heuristic both in measuring the spectra and in their interpretation, leading to some controversies in the literature.A photometric precision of 0.01% is necessary to detect the atmospheric spectral modulations. Current observatories, except Kepler, were not designed to achieve this precision. Data reduction is necessary to minimize the effect of instrument systematics in order to achieve the target precision. In the past, parametric models have extensively been used by most teams to remove correlated noise with the aid of auxiliary information of the instrument, the so-called optical state vectors (OSVs). Such OSVs can include inter- and intra-pixel position of the star or its spectrum, instrument temperatures and inclinations, and/or other parameters. In some cases, different parameterizations led to discrepant results.We recommend the use of blind non-parametric data detrending techniques to overcome those issues. In particular, we adopt Independent Component Analysis (ICA), i.e. a blind source separation (BSS) technique to disentangle the multiple instrument systematics and astrophysical signals in transit/eclipse light curves. ICA does not require a model for the systematics, and for this reason, it can be applied to any instrument with little changes, if any. ICA-based algorithms have been applied to Spitzer/IRAC and synthetic observations in photometry (Morello et al. 2014, 2015, 2016; Morello 2015) and to Hubble/NICMOS and Spitzer/IRS in spectroscopy (Waldmann 2012, 2014, Waldmann et al. 2013

  10. Synthesis and structure of [C 6H 14N 2][(UO 2) 4(HPO 4) 2(PO 4) 2(H 2O)]·H 2O: An expanded open-framework amine-bearing uranyl phosphate

    NASA Astrophysics Data System (ADS)

    Bray, Travis H.; Gorden, John D.; Albrecht-Schmitt, Thomas E.

    2008-09-01

    A new open-framework compound, [C 6H 14N 2][(UO 2) 4(HPO 4) 2(PO 4) 2(H 2O)]·H 2O, ( DUP-1) has been synthesized under mild hydrothermal conditions. The resulting structure consists of diprotonated DABCOH 22+ (C 6H 14N 22+) cations and occluded water molecules occupying the channels of a complex uranyl phosphate three-dimensional framework. The anionic lattice contains uranophane-like sheets connected by hydrated pentagonal bipyramidal UO 7 units. [C 6H 14N 2][(UO 2) 4(HPO 4) 2(PO 4) 2(H 2O)]·H 2O possesses five crystallographically unique U centers. U(VI) is present here in both six- and seven-coordinate environments. The DABCOH 22+ cations are held within the channels by hydrogen bonds to both two uranyl oxygen atoms and a μ2-O atom. Crystallographic data (193 K, Mo Kα, λ=0.71073 Å): DUP-1, monoclinic, P2 1/ n, a=7.017(1) Å, b=21.966(4) Å, c=17.619(3) Å, β=90.198(3)°, Z=4, R(F)=4.76% for 382 parameters with 6615 reflections with I>2 σ( I).

  11. Dual spectra well logging system

    SciTech Connect

    Nussbaum, T.W.

    1982-09-07

    A dual spectra well logging system includes a well logging tool which is adapted to pass through a bore hole in an earth formation. The well logging tool includes at least two sensors which sense at least one condition of the earth formation and provides corresponding pulse signals. A circuit connected to the sensors provides a combined pulse signal wherein the pulses of the pulse signal from one sensor has one polarity and the pulses of the pulse signal from the other sensor has pulses of an opposite polarity. A circuit applies the combined pulse signal to a well logging cable which conducts the combined pulse signal to the surface of the earth formation. Surface apparatus includes a network connected to the cable which provides control signals in accordance with the polarity of the pulses in the combined pulse signal. A network connected to the cable inverts the combined pulse signal and provides a combined pulse signal and an inverted combined pulse signal. A first switching network receiving the combined pulse signal passes the pulses derived from the pulses of the one polarity in acccordance with the control signals to provide a first pulse signal while a second switching network receiving the inverted combined pulse signal passes the pulses derived from the pulses of the opposite polarity in accordance with the control signals to provide a second pulse signal. An output network processes the two pulse signals to provide an indication of the earth's condition in accordance with the processed pulse signals.

  12. Infrared spectra of protostellar collapse

    NASA Technical Reports Server (NTRS)

    Hollenbach, David J.; Ceccarelli, Cecilia; Neufeld, David A.; Tielens, Alexander G. G. M.

    1995-01-01

    Theoretical models of the formation of low mass stars by cloud collapse predict that OI(63 micrometers) and IR rotational lines of CO and H2O dominate the cooling in the freefalling region 10-1000 AU from the protostar. The freefalling gas supersonically hits the protoplanetary disk orbiting the protostar, forming an accretion shock with strong IR emission in rotational lines of H2O and OH, and OI(63 microns). The accretion shock spectra and line profiles depend on the mass flux through the shock and the typical distance r-bar at which the freefalling gas strikes the disk. The line widths are of order the Keplerian speed, or approx. 10(r-bar/10AU)(exp -0.5) km/s, for the accretion shock lines, and less for the lines from the infalling gas. Measurements of the IR line fluxes and profiles from the freefalling gas and the accretion shock diagnoses how a protostar and disk are formed and requires high sensitivity and high spectral and spatial resolving power. SOFIA will be the optimum observatory for many of these lines, although ISO will contribute and the KAO may make a few pioneering detections.

  13. Interpretation of Nitroindolinospirobenzothiopyran Vibrational Spectra

    NASA Astrophysics Data System (ADS)

    Gladkov, L. L.; Khamchukov, Yu. D.; Lyubimov, A. V.

    2016-05-01

    The structures of four possible stereoisomers of the closed form of photochromic nitroindolinospirobenzothiopyran (NISTP) {1',3'-dihydro-1',3',3'-trimethyl-6-nitrospiro[2H-1-benzothiopyran-2,2'-(2H)-indoline]} were determined by the DFT method. The geometry of the most stable isomer was defined. Nitro-substitution changes mainly the lengths of bonds formed by S and N with spiro-atom Cs. According to the calculations, the CsS bond changes most and lengthens by 0.019 Å. It is shown that the S atom has large displacement amplitudes in normal modes assigned to Raman lines at 230, 285, 360, and 575 cm-1 and weak IR bands at 467 and 577 cm-1. Oscillations involving the nitro group are very active in Raman and IR spectra. Their frequencies are slightly lower than similar frequencies of nitrobenzene and nitroindolinospirobenzopyran, indicating a higher degree of vibrational coupling of the NO2 group with the NISTP molecular skeleton.

  14. Reflectance spectra of subarctic lichens

    NASA Technical Reports Server (NTRS)

    Petzold, Donald E.; Goward, Samuel N.

    1988-01-01

    Lichens constitute a major portion of the ground cover of high latitude environments, but little has been reported concerning their in situ solar spectral reflectance properties. Knowledge of these properties is important for the interpretation of remotely sensed observations from high latitude regions, as well as in studies of high latitude ecology and energy balance climatology. The spectral reflectance of common boreal vascular plants is similar to that of vascular plants of the midlatitudes. The dominant lichens, in contrast, display variable reflectance patterns in visible wavelengths. The relative reflectance peak at 0.55 microns, common to green vegetation, is absent or indistinct in spectra of pervasive boreal forest and tundra lichens, despite the presence of chlorophyll in the inner algal cells. Lichens of the dominant genus, Cladina, display strong absorption of ultraviolet energy and short-wavelength blue light relative to their absorption in other visible wavelengths. Since the Cladinae dominate both the surface vegetation in open woodlands of the boreal forest and the low arctic tundra, their unusual spectral reflectance patterns will enable accurate monitoring of the boreal forest-tundra ecotone and detection of its vigor and movement in the future.

  15. Overcoming Degeneracies in Exoplanet Spectra

    NASA Astrophysics Data System (ADS)

    Benneke, Björn

    2015-08-01

    Spectroscopic observations of exoplanets can provide invaluable insights into the planets’ compositions, their formation and evolution histories, and even their habitability. Obtaining exoplanet spectra is observationally challenging; however, and we are generally limited to relatively low signal-to-noise, low spectral resolution, disk-integrated observations , often with relatively narrow wavelength coverage. This low data situation results in strong correlations and degeneracies between the different planet and atmospheric parameters of interest. In this talk, I will present a conceptual picture of how vital information about the planet is encoded in its observable spectrum. I will then give an overview about the wide range of correlations and degeneracies relevant to today’s exoplanet observations. Finally, I will demonstrate how some degeneracies can be overcome and improved constraints can be obtained by including prior knowledge of atmospheric chemistry and physics in the retrieval. I present a new atmospheric retrieval framework, SCARLET, that combines observational data and our prior (limited) knowledge of atmospheric processes in a statistical robust Bayesian framework. New results for hot Jupiters will be presented.

  16. X-ray spectra of supernova remnants

    NASA Technical Reports Server (NTRS)

    Szymkowiak, A. E.

    1985-01-01

    X-ray spectra were obtained from fields in three supernova remnants with the solid state spectrometer of the HEAO 2 satellite. These spectra, which contain lines from K-shell transitions of several abundant elements with atomic numbers between 10 and 22, were compared with various models, including some of spectra that would be produced by adiabatic phase remnants when the time-dependence of the ionization is considered.

  17. Infrared spectra of natural and synthetic malachites

    NASA Astrophysics Data System (ADS)

    Schuiskii, A. V.; Zorina, M. L.

    2013-09-01

    IR absorption and reflection spectra of dark and light samples of natural and synthetic malachite over 400-4000 cm-1 are studied for the purpose of improving the synthesis technique and in order to distinguish between natural malachite and malachite grown from ammonia solutions. Nitrogen was not detected in the IR spectra or in microprobe analyses of the synthetic material. The differences found in the IR spectra were insignificant and cannot be regarded as distinctive indicators of these materials.

  18. ALIEN: A nebular spectra analysis software

    NASA Astrophysics Data System (ADS)

    Cook, R.; Vazquez, R.

    2000-11-01

    A new C-coded software, designed to analyze nebular spectra, is presented. T his software is able to read the fluxes of the most important ions directly from IRAF's output file (splot.log). Spectra can be dereddened using the Balmer lines ratio and the Seaton's extinction law. Electron temperature and density, as well as ionic abundances by number are estimated by means of numeric calculations based on the five-level atom model. The dereddened spectra and the table containing the ionic abundances can be saved in a LaTex formatted file. This software has been initially designed to work with a low dispersion spectra.

  19. Infrared spectra of thyroid tumor tissues

    NASA Astrophysics Data System (ADS)

    Tolstorozhev, G. B.; Skornyakov, I. V.; Butra, V. A.

    2010-07-01

    We used infrared spectroscopy methods to study thyroid tumor tissues removed during surgery. The IR spectra of the surgical material are compared with data from histological examination. We show that in malignant neoplasms, the spectra of proteins in the region of C=O vibrations are different from the spectra of these substances in benign tumors and in tissues outside the pathological focus at a distance >1 cm from the margin of the tumor. The differences in the spectra are due to changes in the supermolecular structure of the proteins, resulting from rearrangement of the system of hydrogen bonds. We identify the spectral signs of malignant pathologies.

  20. Incorporating Spectra Into Periodic Timing

    NASA Astrophysics Data System (ADS)

    Connors, Alanna; Hong, J.; Protopapas, P.; Kashyap, V.

    2011-09-01

    The Chandra surveys have resulted in a wealth of data on low-luminosity X-ray sources (Lx 1030-34 erg/s) of Galactic scales beyond the local solar neighborhood. Many of these are compact binaries, in particular, cataclysmic variables, often identified by their periodic X-ray variability and spectra. Hong et al. (2009, 2011) have used energy quantiles (Hong, Schlegel & Grindlay, 2004) as a fast, robust indicator of spectral hardness and absorption of the X-ray sources. Energy quantiles also enable a simple but effective illustration of spectral changes with phase in these periodic systems: e.g. absorption by the accreting material is understood to drive the periodic light-curves. An interesting question is how to best make use of the information encapsulated in the periodic change in energy spectrum, along with the periodic change in intensity, especially for cases of ambiguous period determination? And, how to do it computationally efficiently? A first approach is to do the period search in intensity, as is standard; and then use a criterion of spectral variation to verify possible periods. Huijse, Zegers & Protopapas (2011) recently demonstrated a powerful period estimation technique using information potential and correntropy embedded in the light curve. Similar quantities based on energies (or energy quantiles) of X-ray photons can serve as criteria of spectral variation. A different approach treats the spectrum variations and intensity variations completely independently, searching through period-space in each, and then combining the results. A more general method would include both at the same time, looking for statistically significant variations above what is expected for a constant (in intensity and spectrum).

  1. Spectra of the Jovian ring and Amalthea

    NASA Technical Reports Server (NTRS)

    Neugebauer, G.; Becklin, E. E.; Jewitt, D. C.; Danielson, G. E.; Terrile, R. J.

    1981-01-01

    Measurements made between 0.887 and 2.4 microns demonstrate that the Jovian ring and Amalthea have similar reflection spectra. The spectra, in particular the ratio of the 0.9- to 2.2-micron reflectivities, are inconsistent with those expected from water, ammonia, or methane frosts, but are consistent with reflection from large rock bodies.

  2. Heavy primary spectra observed by RUNJOB

    NASA Astrophysics Data System (ADS)

    Apanasenko, A. V.; Beresovskaya, V. A.; Fujii, M.; Galkin, V. I.; Hareyama, M.; Ichimura, M.; Ito, S.; Kamioka, E.; Kitami, T.; Kobayashi, T.; Kopenkin, V. V.; Kuramata, S.; Kuriyama, T.; Lapshin, V. I.; Managadze, A. K.; Matsutani, H.; Mikami, H.; Misnikova, N. P.; Mukhamedshin, R. A.; Namiki, M.; Nanjo, H.; Nazarov, S. N.; Nikolsky, S. I.; Oe, T.; Ohta, S.; Osedlo, V. I.; Oshuev, D. S.; Publichenko, P. A.; Rakobolskaya, I. V.; Roganova, T. M.; Saito, M.; Sazhina, G. P.; Semba, H.; Shabanova, Yu. N.; Shibata, T.; Sugimoto, H.; Sveshnikova, L. G.; Takahashi, K.; Tsutiya, T.; Taran, V. M.; Yajima, N.; Yamagami, T.; Yamamoto, K.; Yashin, I. V.; Zamchalova, E. A.; Zatsepin, G. T.; Zayarnaya, I. S.

    2001-08-01

    RUssian Nippon JOint Balloon (RUNJOB) has been observing the primary spectra of cosmic ray nuclei since 1995. Data from 6 out of 10 succesful flights will be used to report the spectra of heavy primaries up to iron nucleus with the energy range more than 1014 eV/particle. The details of analysis like charge and energy determinations will be also given.

  3. (abstract) Spectra of Comet Hale-Bopp

    NASA Technical Reports Server (NTRS)

    Hanner, M. S.; Hayward, T. L.; Lynch, D. K.; Russell, R. W.

    1996-01-01

    The spectra of Hale-Bopp were acquired in mid-1996 at R > 3.5 AU. Strong silicate emission is present in all the spectra. The shape of the feature is very similar to that seen in comet P/Halley. This is the first time that a strong silicate feature has been detected in a comet beyond 2 AU.

  4. COMPUTER INTERPRETATION OF POLLUTANT MASS SPECTRA

    EPA Science Inventory

    The objective of this research was to improve systems for computer examination of the mass spectra of unknown pollutants. For this we have developed a new probability based matching (PBM) system for the retrieval of mass spectra from a large data base, and have substantially impr...

  5. High-resolution Visible Spectra of Titan

    NASA Astrophysics Data System (ADS)

    Sim, Chae Kyung; Kim, S.

    2006-09-01

    We have obtained high-resolution (R 30,000) spectra of Titan between 4,000 and 10,000 A on Feb. 23, 2005 (UT) using an optical echelle spectrograph (BOES) on the 1.8-m telescope at Bohyunsan Observatory, Korea. The raw Titan spectra contain telluric and solar absorption/emission lines. We used Kitt Peak solar atlases to remove the solar lines effectively. We also constructed synthetic spectra for the atmosphere of Titan including haze layers and utilizing laboratory spectra of CH4 available in literature. Preliminary results on the identifications of weak CH4 lines and on the derived opacities of the haze layers will be presented. Since the observations were carried out near the activities of Cassini observations of Titan, these high-resolution visible spectra are complementary to Cassini/VIMS imagery.

  6. Pharmacological profile of the cyclic nociceptin/orphanin FQ analogues c[Cys10,14]N/OFQ(1-14)NH2 and c[Nphe1,Cys10,14]N/OFQ(1-14)NH2.

    PubMed

    Kitayama, M; Barnes, T A; Carra, G; McDonald, J; Calo, G; Guerrini, R; Rowbotham, D J; Smith, G; Lambert, D G

    2003-12-01

    In this study we describe the activity of two cyclic nociceptin/orphanin FQ (N/OFQ) peptides; c[Cys(10,14)]N/OFQ(1-14)NH(2) (c[Cys(10,14)]) and its [Nphe(1)] derivative c[Nphe(1),Cys(10,14)]N/OFQ(1-14)NH(2) (c[Nphe(1),Cys(10,14)]) in native rat and mouse and recombinant human N/OFQ receptors (NOP). Cyclisation may protect the peptide from metabolic degradation. In competition binding studies of rat, mouse and human NOP the following rank order pK(i) was obtained: N/OFQ(1-13)NH(2)(reference agonist)>N/OFQ=c[Cys(10,14)]>c[Nphe(1)Cys(10,14)]. In GTPgamma(35)S studies of Chinese hamster ovary cells expressing human NOP (CHO(hNOP)) c[Cys(10,14)] (pEC(50) 8.29) and N/OFQ(1-13)NH(2) (pEC(50) 8.57) were full agonists whilst c[Nphe(1)Cys(10,14)] alone was inactive. Following 30 min pre-incubation c[Nphe(1)Cys(10,14)] competitively antagonised the effects of N/OFQ(1-13)NH(2) with a pA(2) and slope factor of 6.92 and 1.01 respectively. In cAMP assays c[Cys(10,14)] (pEC(50) 9.29, E(max) 102% inhibition of the forskolin stimulated response), N/OFQ(1-13)NH(2) (pEC(50) 10.16, E(max) 103% inhibition) and c[Nphe(1)Cys(10,14)] (~80% inhibition at 10 microM) displayed agonist activity. In the mouse vas deferens c[Cys(10,14)] (pEC(50) 6.82, E(max) 89% inhibition of electrically evoked contractions) and N/OFQ(1-13)NH(2) (pEC(50) 7.47, E(max) 93% inhibition) were full agonists whilst c[Nphe(1)Cys(10,14)] alone was inactive. c[Nphe(1)Cys(10,14)] (10 microM) competitively antagonised the effects of N/OFQ(1-13)NH(2) with a pK(B) of 5.66. In a crude attempt to assess metabolic stability, c[Cys(10,14)] was incubated with rat brain membranes and then the supernatant assayed for remaining peptide. Following 60 min incubation 64% of the 1 nM added peptide was metabolised (compared with 54% for N/OFQ-NH(2)). In summary, we report that c[Cys(10,14)] is a full agonist with a small reduction in potency but no improvement in stability whilst c[Nphe(1)Cys(10,14)] displays tissue (antagonist in the

  7. Study of TFTR D-T neutron spectra using natural diamond detectors

    SciTech Connect

    Roquemore, A.L.; Krasilnikov, A.V., Gorelenkov, N.N.

    1996-12-31

    Three Natural Diamond Detector (NDD) based spectrometers have been used for neutron spectra measurement during Deuterium-Tritium (D-T) experiments using high power Neutral Beam Injection (NBI) and Ton Cyclotron Resonance Heating (ICRH) on the Tokamak Fusion Test Reactor (TFTR) in 1996. A 2-3 % energy resolution coupled with the high radiation resistance of NDDs (5 x 10{sup 14}n/cm{sup 2}) makes them ideal for measuring the D-T neutron spectra in the high radiation environment of TFTR tritium experiments. The compact size of the NDD made it possible to insert one of the detectors into one of the center channels of the TFTR multichannel neutron collimator to provide a vertical view perpendicular to the vessel midplane, Two other detectors were placed inside shields in TFTR test cell and provide measurements of the neutrons having angles of emission of 110- 180{degrees} and 60-12-{degrees} with respect to the direction of the plasma current. By using a 0.25 {mu}s shaping time of the Ortec 673 spectroscopy amplifier we were able to accumulate useful spectrometry data at count rates up to 1.5 x 10{sup 3} counts/sec. To model the D- T neutron spectra measured by each of three NDD`s the Neutron Source post TRANSP (NST) code and semi-analytical model were developed. A set of D-T and D-D plasmas is analyzed for the dynamics of D-T neutron spectral broadening for each of three NDD cones of view. The application of three NDD based D-T neutron -spectrometer array demonstrated the anisotropy of the ion distribution function. and provided a mature of the dynamics of the effective ion temperatures for each detector view, and determined the tangential velocity of resonant tritons during ICRH.

  8. Climatic Spectra of Extreme Sea States

    NASA Astrophysics Data System (ADS)

    Boukhanovsky, A.; Lopatoukhin, L.; Sas'kov, K.

    Climatic variability of sea waves is described in the terms of statistical ensemble of directional spectra, dependent from spatial coordinates (x,y) and time t. The major probabilistic characteristics of the ensemble are the climatic spectra, i.e. spectra ap- propriate to certain wavemaking conditions with certain probability. Traditionally the definition of climatic wave spectra is based on a buoy measurements in a point. How- ever such data are restricted, and are unsuitable for estimation of climatic spectra of extreme waves with return period up to 100 years or longer. Hindcasting of statistical ensemble of spectra by mean of some numerical model allows to expand the informa- tion base significantly. In this report the approach to analysis and synthesis of climatic spectra, corresponding to extreme sea states, is proposed. The Barents sea is consid- ered as an example. A set of 43800 directional spectra of wind sea and swell (1970- 1999, every 6 hours) for any of 565 points of regular grid 0.50x1.50 are calculated. Numerical wave model Wave Watch III for computation on the parallel supercomputer Parsytec CC/20 was used. The NCEP/NCAR reanalysis wind fields were used as input data. Statistical analysis of computed spectra allows to separate a set of genetic types appropriate to various stable sea states. For each of types the system of parameters as discriminant variables are proposed. Probabilistic values of these parameters allows to approximate the probabilistic characteristic of all the spectra ensemble in terms of non-random function of random arguments. It allows to synthesize the results of the analysis in terms of multiscale stochastic model of spectral wave climate, with tak- ing into account the temporal nonstationary and spatial inhomogeneity of wave fields. The Monte-Carlo approach is employed for stochastic simulation. Stochastic simu- lation proves the extrapolation procedure for climatic spectra of rare (extreme) sea states. Specific climatic wave

  9. Microwave, infrared, and Raman spectra, structure, vibrational assignment, and normal coordinate analysis of disilanyl cyanide

    NASA Astrophysics Data System (ADS)

    Durig, J. R.; Brletic, P. A.; Church, J. S.; Li, Y. S.

    1982-03-01

    The microwave spectra of SiH3SiH2 12C14N and SiH3SiH2 12C15N have been recorded from 18.0 to 26.5 GHz. Only a-type transitions were observed and R-branch assignments have been made for the ground vibrational state. The rotational constants were found to have the following values: for SiH3SiH2 12C14N, A = 8996.72±5.91, B = 2203.95±0.05, and C = 1844.03±0.05 MHz; for SiH3SiH2 12C15N, A = 8896.08±5.70, B = 2145.15±0.04, and C = 1798.63±0.03 MHz. From a diagnostic least-squares adjustment to fit the six rotational constants, the following structural parameters were obtained: r(Si-Si) = 2.332±0.014 Å; r(Si-C) = 1.841±0.015 Å; r(C≡N) = 1.156±0.010 Å; and ∢SiSiC = 107.4±0.1°. These parameters are compared to the corresponding ones in some other silanes and cyanide molecules. The infrared (2500 to 80 cm-1) and the Raman (2500 to 10 cm-1) spectra of the solid phase have been recorded for disilanyl cyanide-d0 and -d5. Additionally, the infrared spectrum of the gaseous phase and the Raman spectrum of the liquid phase were recorded and qualitative depolarization values were obtained. All of the normal modes have been assigned based upon band contours, depolarization ratios, and group frequencies but the assignment of the SiH3 torsional mode must be considered tentative. A normal coordinate calculation has been carried out by utilizing a modified valence force field to calculate the frequencies and the potential energy distribution. These results are compared to similar quantities in some corresponding molecules.

  10. Use of mutation spectra analysis software.

    PubMed

    Rogozin, I; Kondrashov, F; Glazko, G

    2001-02-01

    The study and comparison of mutation(al) spectra is an important problem in molecular biology, because these spectra often reflect on important features of mutations and their fixation. Such features include the interaction of DNA with various mutagens, the function of repair/replication enzymes, and properties of target proteins. It is known that mutability varies significantly along nucleotide sequences, such that mutations often concentrate at certain positions, called "hotspots," in a sequence. In this paper, we discuss in detail two approaches for mutation spectra analysis: the comparison of mutation spectra with a HG-PUBL program, (FTP: sunsite.unc.edu/pub/academic/biology/dna-mutations/hyperg) and hotspot prediction with the CLUSTERM program (www.itba.mi.cnr.it/webmutation; ftp.bionet.nsc.ru/pub/biology/dbms/clusterm.zip). Several other approaches for mutational spectra analysis, such as the analysis of a target protein structure, hotspot context revealing, multiple spectra comparisons, as well as a number of mutation databases are briefly described. Mutation spectra in the lacI gene of E. coli and the human p53 gene are used for illustration of various difficulties of such analysis. PMID:11180592

  11. SCALING PROPERTIES OF THE TRANSVERSE MASS SPECTRA.

    SciTech Connect

    SCHAFFNER-BIELICH,J.; KHARZEEV,D.; MCLERRAN,L.; VENUGOPALAN,R.

    2002-01-13

    Motivated from the formation of an initial state of gluon-saturated matter, we discuss scaling relations for the transverse mass spectra at BNL's Relativistic Heavy-Ion Collider (RHIC). We show on linear plots, that the transverse mass spectra for various hadrons can be described by an universal function in m{sub t}. The transverse mass spectra for different centralities can be rescaled into each other. Finally, we demonstrate that m{sub t}-scaling is also present in proton-antiproton collider data and compare it to m{sub t}-scaling at RHIC.

  12. Analysis of atmospheric spectra for trace gases

    NASA Technical Reports Server (NTRS)

    Rinsland, Curtis P.; Seals, Robert K., Jr.; Smith, Mary Ann H.; Goldman, Aaron; Murcray, David G.; Murcray, Frank J.

    1990-01-01

    The objective is the comprehensive analysis of high resolution atmospheric spectra recorded in the middle-infrared region to obtain simultaneous measurements of coupled parameters (gas concentrations of key trace constituents, total column amounts, pressure, and temperature) in the stratosphere and upper troposphere. Solar absorption spectra recorded at 0.002 and 0.02 cm exp -1 resolutions with the University of Denver group's balloon-borne, aircraft borne, and ground-based interferometers and 0.005 to 0.01 cm exp -1 resolution solar spectra from Kitt Peak are used in the analyses.

  13. Negative Ion Photoelectron Spectra of Halomethyl Anions

    NASA Astrophysics Data System (ADS)

    Vogelhuber, Kristen M.; Wren, Scott W.; McCoy, Anne B.; Ervin, Kent M.; Lineberger, W. Carl

    2009-06-01

    Halomethyl anions undergo a significant geometry change upon electron photodetachment, resulting in multiple extended vibrational progressions in the photoelectron spectra. The normal mode analysis that successfully models photoelectron spectra when geometry changes are modest is unable to reproduce the experimental data using physically reasonable parameters. A three-dimensional anharmonic coupled-mode analysis was employed to accurately reproduce the observed vibrational structure. We present the 364 nm negative ion photoelectron spectra of the halomethyl anions CHX_2^- and CDX_2^- (X = Cl, Br, I) and report electron affinities, vibrational frequencies, and geometries.

  14. THE RGB AND AGB STAR NUCLEOSYNTHESIS IN LIGHT OF THE RECENT {sup 17}O(p, {alpha}){sup 14}N AND {sup 18}O(p, {alpha}){sup 15}N REACTION-RATE DETERMINATIONS

    SciTech Connect

    Palmerini, S.; Sergi, M. L.; La Cognata, M.; Pizzone, R. G.; Spitaleri, C.; Lamia, L.

    2013-02-20

    In recent years, the Trojan Horse Method (THM) has been used to investigate the low-energy cross sections of proton-induced reactions on A = 17 and A = 18 oxygen isotopes, overcoming extrapolation procedures and enhancement effects due to electron screening. In particular, the strengths of the 20 keV and 65 keV resonances in the {sup 18}O(p, {alpha}){sup 15}N and {sup 17}O(p, {alpha}){sup 14}N reactions, respectively, have been extracted, as well as the contribution of the tail of the broad 656 keV resonance in the {sup 18}O(p, {alpha}){sup 15}N reaction inside the Gamow window. The strength of the 65 keV resonance in the {sup 17}O(p, {alpha}){sup 14}N reaction, measured by means of the THM, has been used to renormalize the corresponding resonance strength in the {sup 17}O + p radiative capture channel. As a result, more accurate reaction rates for the {sup 18}O(p, {alpha}){sup 15}N, {sup 17}O(p, {alpha}){sup 14}N, and {sup 17}O(p, {gamma}){sup 18}F processes have been deduced, devoid of systematic errors due to extrapolation or the electron screening effect. Such rates have been introduced into state-of-the-art red giant branch and asymptotic giant branch (AGB) models for proton-capture nucleosynthesis coupled with extra-mixing episodes. The predicted abundances have been compared with isotopic compositions provided by geochemical analysis of presolar grains. As a result, an improved agreement is found between the models and the isotopic mix of oxide grains of AGB origins, whose composition is the signature of low-temperature proton-capture nucleosynthesis. The low {sup 14}N/{sup 15}N found in SiC grains cannot be explained by the revised nuclear reaction rates and remains a serious problem that has not been satisfactorily addressed.

  15. Cooperative Interaction Within RNA Virus Mutant Spectra.

    PubMed

    Shirogane, Yuta; Watanabe, Shumpei; Yanagi, Yusuke

    2016-01-01

    RNA viruses usually consist of mutant spectra because of high error rates of viral RNA polymerases. Growth competition occurs among different viral variants, and the fittest clones predominate under given conditions. Individual variants, however, may not be entirely independent of each other, and internal interactions within mutant spectra can occur. Examples of cooperative and interfering interactions that exert enhancing and suppressing effects on replication of the wild-type virus, respectively, have been described, but their underlying mechanisms have not been well defined. It was recently found that the cooperation between wild-type and variant measles virus genomes produces a new phenotype through the heterooligomer formation of a viral protein. This observation provides a molecular mechanism underlying cooperative interactions within mutant spectra. Careful attention to individual sequences, in addition to consensus sequences, may disclose further examples of internal interactions within mutant spectra. PMID:26162566

  16. Microwave spectra of some volatile organic compounds

    NASA Technical Reports Server (NTRS)

    White, W. F.

    1975-01-01

    A computer-controlled microwave (MRR) spectrometer was used to catalog reference spectra for chemical analysis. Tables of absorption frequency, peak absorption intensity, and integrated intensity are included for 26 volatile organic compounds, all but one of which contain oxygen.

  17. Contribution to the study of turbulence spectra

    NASA Technical Reports Server (NTRS)

    Dumas, R.

    1979-01-01

    An apparatus suitable for turbulence measurement between ranges of 1 to 5000 cps and from 6 to 16,000 cps was developed and is described. Turbulence spectra downstream of the grills were examined with reference to their general characteristics, their LF qualities, and the effects of periodic turbulence. Medium and HF are discussed. Turbulence spectra in the boundary layers are similarly examined, with reference to their fluctuations at right angles to the wall, and to lateral fluctuations. Turbulence spectra in a boundary layer with suction to the wall is discussed. Induced turbulence, and turbulence spectra at high Reynolds numbers. Calculations are presented relating to the effect of filtering on the value of the correlations in time and space.

  18. Ultraviolet Spectra of Globular Clusters in Andromeda

    NASA Astrophysics Data System (ADS)

    Peterson, R. C.

    1999-05-01

    As part of a NASA-funded effort with Ben Dorman of Goddard Space Flight Center, I am engaged in calculating spectra from first principles of solar-type stars of a wide range of metallicity. This paper reports on an extension of this work funded by the Hubble Space Telescope archival program, the derivation of fundamental parameters for several globular clusters in Andromeda (M31). Properties of the underlying stellar population are derived by matching archival HST spectra with composite spectra constructed by weighted coaddition of the calculated spectra for stars of appropriate spectral types. Armed with these ab initio calculations, this work explores the degeneracy in age and metallicity in the ultraviolet, and the affect of unknowns such as the relative abundance of light elements versus iron and the possible presence of blue stragglers or blue horizontal branch stars.

  19. Dynamic radio spectra from two fireballs

    NASA Astrophysics Data System (ADS)

    Obenberger, K. S.; Taylor, G. B.; Lin, C. S.; Dowell, J.; Schinzel, F. K.; Stovall, K.

    2015-11-01

    We present dynamic spectra from the Long Wavelength Array telescope of two large meteors (fireballs) observed to emit between 37 and 54 MHz. These spectra show the first ever recorded broadband measurements of this newly discovered VHF emission. The spectra show that the emission is smooth and steep, getting very bright at lower frequencies. We suggest that this signal is possibly emission of Langmuir waves and that these waves could be excited by a bump-on-tail instability within the trail. The spectra of one fireball display broadband temporal frequency sweeps. We suggest that these sweeps are evidence of individual expanding clumps of emitting plasma. While some of these proposed clumps may have formed at the very beginning of the fireball event, others must have formed seconds after the initial event.

  20. Study on Raman spectra of synthetic celluloses

    NASA Astrophysics Data System (ADS)

    Tong, Na; Zhu, Changjun; Zhang, Yixin

    2015-02-01

    Raman spectrometry was employed to study the characteristics of Raman spectra of aliphatic polyamide fiber and polyethylene terephthalate (PET), which were treated with sodium hydroxide, sulfuric acid and copper sulfate, respectively. Raman spectra under different conditions were obtained and the characteristics of the Raman spectra were analyzed. The results show that Raman peaks beyond 1200 cm-1 appear for aliphatic polyamide fiber processed by sodium hydroxide, while the Raman peaks beyond 1000 cm-1 disappear for aliphatic polyamide fiber processed by sulfuric acid. Raman peaks beyond 1750 cm-1 decrease for polyethylene terephthalate processed by sodium hydroxide, while Raman peaks beyond 1000 cm-1 disappear, except weak peaks around 3000 cm-1 , for polyethylene terephthalate processed by sulfuric acid. The variations of the Raman spectra are primarily related to the changes of chemical bonds and molecular structures.

  1. Investigation of Raman spectra of polyethylene terephthalate

    NASA Astrophysics Data System (ADS)

    Zhu, Changjun; Tong, Na; Song, Lixin; Zhang, Guoqing

    2015-08-01

    Raman spectrometry was employed to study the characteristics of Raman spectra of polyethylene terephthalate (PET), which were treated with sodium hydroxide, sulfuric acid and copper sulfate, respectively. Raman spectra under different conditions were obtained and the characteristics of the Raman spectra were analyzed. The morphology structures were observed under different conditions using Atomic Force Microscope. The results show that the spectral intensity of PET treated with sodium hydroxide is higher than that untreated between 200-1750 cm-1, while the intensity of PET treated with sodium hydroxide is lower than that untreated beyond 1750 cm-1 and the fluorescence background of Raman spectra is decreased. The spectral intensity of PET treated with sulfuric acid is remarkably reduced than that untreated, and the intensity of PET treated with copper sulphate is much higher than that untreated.

  2. Comparing Ultraviolet Spectra Against Calculations: First Results

    NASA Technical Reports Server (NTRS)

    Peterson, Ruth C.

    2003-01-01

    The five-year goal of this effort is to calculate high fidelity mid-UV spectra for individual stars and stellar systems for a wide range of ages, abundances, and abundance ratios. In this first year, the emphasis was placed on revising the list of atomic line parameters used to calculate mid-UV spectra. First, new identifications of atomic lines and measurements of their transition probabilities were obtained for lines of the first and second ionization stages of iron-peak elements. Second, observed mid-UV and optical spectra for standard stars were re-analyzed and compared to new calculations, to refine the determination of transition probabilities and to estimate the identity of lines still missing from the laboratory lists. As evidenced by the figures, a dramatic improvement has resulted in the reproduction of the spectra of standard stars by the calculations.

  3. Synthesis and Spectra of Vanadium Complexes.

    ERIC Educational Resources Information Center

    Ophardt, Charles E.; Stupgia, Sean

    1984-01-01

    Describes an experiment which illustrates simple synthetic techniques, redox principles in synthesis reactions, interpretation of visible spectra using Orgel diagrams, and the spectrochemical series. The experiment is suitable for the advanced undergraduate inorganic chemistry laboratory. (JN)

  4. [Spectra of dark green jade from Myanmar].

    PubMed

    Mao, Jian; Chai, Lin-Tao; Guo, Shou-Guo; Fan, Jian-Liang; Bao, Feng

    2013-05-01

    Chemical compositions and spectral characteristics of one type of dark green jades assumed from omphacite jadeite from Myanmar jadeite mining area were studied by X-ray powder diffraction(XRD), X-ray fluorescence spectra(XRF), Raman spectra(RM) and UV-Vis Spectroscopy, etc. Based on testing by XRD and XRF, it was shown that it belongs to iron-enriched plagioclase, including albite and anorthite. The compositions range is between Ab0.731 An0.264 Or0.004 and Ab0.693 An0.303 Or0.004. Raman spectra of samples, albite jade and anorthite were collected and analyzed. Additionally, the distributions of Si, Al in the crystal structure were also discussed. UV-Vis spectra showed that dark green hue of this mineral is associated with d--d electronic transition of Fe3+ and Cr3+. PMID:23905358

  5. POLLUX: a database of synthetic stellar spectra

    NASA Astrophysics Data System (ADS)

    Palacios, A.; Gebran, M.; Josselin, E.; Martins, F.; Plez, B.; Belmas, M.; Lèbre, A.

    2010-06-01

    Aims: Synthetic spectra are needed to determine fundamental stellar and wind parameters of all types of stars. They are also used for the construction of theoretical spectral libraries helpful for stellar population synthesis. Therefore, a database of theoretical spectra is required to allow rapid and quantitative comparisons to spectroscopic data. We provide such a database offering an unprecedented coverage of the entire Hertzsprung-Russell diagram. Methods: We present the POLLUX database of synthetic stellar spectra. For objects with Teff ≤ 6000 K, MARCS atmosphere models are computed and the program TURBOSPECTRUM provides the synthetic spectra. ATLAS12 models are computed for stars with 7000 K ≤ Teff ≤ 15 000 K. SYNSPEC gives the corresponding spectra. Finally, the code CMFGEN provides atmosphere models for the hottest stars (Teff > 25 000 K). Their spectra are computed with CMF_FLUX. Both high resolution (R > 150 000) optical spectra in the range 3000 to 12 000 Å and spectral energy distributions extending from the UV to near-IR ranges are presented. These spectra cover the HR diagram at solar metallicity. Results: We propose a wide variety of synthetic spectra for various types of stars in a format that is compliant with the Virtual Observatory standards. A user-friendly web interface allows an easy selection of spectra and data retrieval. Upcoming developments will include an extension to a large range of metallicities and to the near-IR high resolution spectra, as well as a better coverage of the HR diagram, with the inclusion of models for Wolf-Rayet stars and large datasets for cool stars. The POLLUX database is accessible at http://pollux.graal.univ-montp2.fr/ and through the Virtual Observatory. Copy of database is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb

  6. beta 1-4N-acetylgalactosaminyltransferase can synthesize both asialoglycosphingolipid GM2 and glycosphingolipid GM2 in vitro and in vivo: isolation and characterization of a beta 1-4N-acetylgalactosaminyltransferase cDNA clone from rat ascites hepatoma cell line AH7974F.

    PubMed Central

    Hidari, J K; Ichikawa, S; Furukawa, K; Yamasaki, M; Hirabayashi, Y

    1994-01-01

    We have cloned a cDNA encoding beta 1-4N-acetylgalactosaminyltransferase (EC 2.4.1.92) (GalNAc-T) from rat ascites hepatoma of the free-cell type AH7974F. The cell line only expressed asialo-series glycosphingolipids (GSLs) including asialo-GM2 [Taki, T., Hirabayashi, Y., Ishiwata, Y., Matsumoto, M., and Kojima, K. (1979) Biochim. Biophys. Acta 572, 113-120]. The cDNA, pGNA56, was isolated by screening AH7974F cDNA library in lambda gt10 with a probe. The probe was obtained from AH7974F cDNA by PCR using primers with the nucleotide sequence of the human GalNAc-T cDNA. The amino acid sequence deduced from the nucleotide sequence of pGNA56 exhibited 88% similarity to the human GalNAc-T sequence. The enzyme was a typical type II membrane protein, which consisted of a short N-terminal residue, a transmembrane region, and a long C-terminal residue, including the catalytic domain. The substrate specificity of rat GalNAc-T was determined using homogenates from cells into which the cDNA clone was transfected. The enzyme catalysed not only the formation of GM2 and GD2 from GM3 and GD3 respectively, but also asialo-GM2 from CDH. It also acted on GSL substrates, including GM1b, sialylparagloboside and GD1 alpha. On the other hand, the enzyme did not transfer GalNAc to soluble substrates such as glycoproteins and oligosaccharide. The GSL compositional and immunocytochemical analyses of stable transfectants obtained by transfection of the cDNA showed simultaneous expression of asialo-GM2 and GM2 on the plasma membrane. Therefore, we concluded that the formation of asialo-GM2, GM2 and GD2 was catalysed by the single GalNAc-T. Northern-blot hybridization showed that the GalNAc-T mRNA was strongly expressed in rat brain, testis, and spleen. The gene was also expressed in rat normal liver to a lesser extent. We found the GSLs in asialo- and alpha-pathways such as asialo-GM1 and GD1 alpha in the rat tissues by using a sensitive t.l.c.-immunostaining method. These observations also supported our conclusion that the single GalNAc-T synthesizes asialo-GM2, GM2 and GD2 in vivo. Images Figure 4 Figure 5 Figure 6 PMID:7980468

  7. Diffuse emission and pathological Seyfert spectra

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.

    1995-01-01

    In this annual ROSAT status report, the diffuse emission and spectra from Seyfert galaxies are examined. Three papers are presented and their contents include the soft x-ray properties and spectra of a binary millisecond pulsar, the PSPC and HRI observations of a Starburst/Seyfert 2 Galaxy, and an analysis of the possibility of x-ray luminous starbursts in the Einstein Medium Sensitivity Survey.

  8. Electron spectra derived from depth dose distributions.

    PubMed

    Faddegon, B A; Blevis, I

    2000-03-01

    The technique of extracting electron energy spectra from measured distributions of dose along the central axis of clinical electron beams is explored in detail. Clinical spectra measured with this simple spectroscopy tool are shown to be sufficient in accuracy and resolution for use in Monte Carlo treatment planning. A set of monoenergetic depth dose curves of appropriate energy spacing, precalculated with Monte Carlo for a simple beam model, are unfolded from the measured depth dose curve. The beam model is comprised of a point electron and photon source placed in vacuum with a source-to-surface distance of 100 cm. Systematic error introduced by this model affects the calculated depth dose curve by no more than 2%/2 mm. The component of the dose due to treatment head bremsstrahlung, subtracted prior to unfolding, is estimated from the thin-target Schiff spectrum within 0.3% of the maximum total dose (from electrons and photons) on the beam axis. Optimal unfolding parameters are chosen, based on physical principles. Unfolding is done with the public-domain code FERDO. Comparisons were made to previously published spectra measured with magnetic spectroscopy and to spectra we calculated with Monte Carlo treatment head simulation. The approach gives smooth spectra with an average resolution for the 27 beams studied of 16+/-3% of the mean peak energy. The mean peak energy of the magnetic spectrometer spectra was calculated within 2% for the AECL T20 scanning beam accelerators, 3% for the Philips SL25 scattering foil based machine. The number of low energy electrons in Monte Carlo spectra is estimated by unfolding with an accuracy of 2%, relative to the total number of electrons in the beam. Central axis depth dose curves calculated from unfolded spectra are within 0.5%/0.5 mm of measured and simulated depth dose curves, except near the practical range, where 1%/1 mm errors are evident. PMID:10757603

  9. New atlas of IR solar spectra

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Blatherwick, R. D.; Murcray, F. H.; Vanallen, J. W.; Bradford, C. M.; Cook, G. R.; Murcray, D. G.

    1980-01-01

    Over 4500 absorption lines have been marked on the spectra and the corresponding line positions tabulated. The associated absorbing telluric or solar species for more than 90% of these lines have been identified and only a fraction of the unidentified lines have peak absorptions greater than a few percent. The high resolution and the low Sun spectra greatly enhance the sensitivity limits for identification of trace constituents.

  10. Trigonometric Polynomials For Estimation Of Spectra

    NASA Technical Reports Server (NTRS)

    Greenhall, Charles A.

    1990-01-01

    Orthogonal sets of trigonometric polynomials used as suboptimal substitutes for discrete prolate-spheroidal "windows" of Thomson method of estimation of spectra. As used here, "windows" denotes weighting functions used in sampling time series to obtain their power spectra within specified frequency bands. Simplified windows designed to require less computation than do discrete prolate-spheroidal windows, albeit at price of some loss of accuracy.

  11. THE SPITZER ATLAS OF STELLAR SPECTRA (SASS)

    SciTech Connect

    Ardila, David R.; Van Dyk, Schuyler D.; Makowiecki, Wojciech; Stauffer, John; Rho, Jeonghee; Fajardo-Acosta, Sergio; Hoard, D. W.; Wachter, Stefanie; Song, Inseok

    2010-12-15

    We present the Spitzer Atlas of Stellar Spectra, which includes 159 stellar spectra (5-32 {mu}m; R {approx} 100) taken with the Infrared Spectrograph on the Spitzer Space Telescope. This Atlas gathers representative spectra of a broad section of the Hertzsprung-Russell diagram, intended to serve as a general stellar spectral reference in the mid-infrared. It includes stars from all luminosity classes, as well as Wolf-Rayet (WR) objects. Furthermore, it includes some objects of intrinsic interest, such as blue stragglers and certain pulsating variables. All of the spectra have been uniformly reduced, and all are available online. For dwarfs and giants, the spectra of early-type objects are relatively featureless, characterized by the presence of hydrogen lines in A spectral types. Besides these, the most noticeable photospheric features correspond to water vapor and silicon monoxide in late-type objects and methane and ammonia features at the latest spectral types. Most supergiant spectra in the Atlas present evidence of circumstellar gas and/or dust. The sample includes five M supergiant spectra, which show strong dust excesses and in some cases polycyclic aromatic hydrocarbon features. Sequences of WR stars present the well-known pattern of lines of He I and He II, as well as forbidden lines of ionized metals. The characteristic flat-top shape of the [Ne III] line is evident even at these low spectral resolutions. Several Luminous Blue Variables and other transition stars are present in the Atlas and show very diverse spectra, dominated by circumstellar gas and dust features. We show that the [8]-[24] Spitzer colors (IRAC and MIPS) are poor predictors of spectral type for most luminosity classes.

  12. The AGB star nucleosynthesis in the light of the recent {sup 17}O(p,α){sup 14}N and {sup 18}O(p,α){sup 15}N reaction rate determinations

    SciTech Connect

    Palmerini, S.; Sergi, M. L.; La Cognata, M.; Pizzone, R. G.; Lamia, L.; Spitaleri, C.

    2015-02-24

    Presolar grains form in the cold and dusty envelopes of Asymptotic Giant Branch (AGB) stars. These solides, once that have been ejected by stellar winds, come to us as inclusions in meteorites providing invaluable benchmarks and constraints for our knowledge of low temeperature H-burning in stars. The Trojan Horse Method (THM) has been used to investigate the low-energy cross sections of the {sup 17}O(p,α){sup 14}N and {sup 18}O(p,α){sup 15}N reactions. Moreover, the strength of the 65 keV resonance in the {sup 17}O(p,α){sup 14}N reaction, measured by means of the THM, has been used to renormalize the corresponding resonance strength in the {sup 17}O+p radiative capture channel. The new estimates of the reaction rates have been introduced into calculations of AGB star nucleosynthesis and the results have been compared with geochemical analysis of 'presolar' grains to determine their impact on astrophysical environments.

  13. L-shell X-ray production cross sections of Ce, Nd, Sm, Eu, Gd, and Dy by impact of 14N2+ ions with energies between 7.0 MeV and 10.5 MeV

    NASA Astrophysics Data System (ADS)

    Murillo, G.; Méndez, B.; López-Monroy, J.; Miranda, J.; Villaseñor, P.

    2016-09-01

    L-shell X-ray production cross sections from the lanthanoid elements Ce, Nd, Sm, Eu, Gd, and Dy, induced by the impact of 14N2+ ions with energies in the interval 7.0 MeV to 10.5 MeV (0.50 MeV/μ to 0.75 MeV/μ), were measured and then compared with theoretical calculations obtained with the ECPSSR model with exact limits of integration (eCPSSR) and related corrections. These include the electron capture by the incoming ion and multiple ionizations of higher shells. Data from this work were contrasted with previously published L X-ray production cross sections for 14N2+ ion impact. As with other ions, a universal behavior is found when Lα and Lγ X-ray production cross sections are plotted as a function of reduced velocity parameters. The agreement with theoretical predictions was very good when the corrections were applied to the eCPSSR model.

  14. The effect of the recent 17O(p,α)14N and 18O(p,α)15N fusion cross section measurements in the nucleosynthesis of AGB stars

    NASA Astrophysics Data System (ADS)

    Palmerini, S.; Sergi, M. L.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Spitaleri, C.

    2015-01-01

    The Trojan Horse Method (THM) has been used to investigate the low-energy cross sections of the 17O(p,α)14N and 18O(p,α)15N fusion reactions and to extract the strengths of the resonances that more contribute to the reaction rates at astrophysical energies. Moreover, the strength of the 65 keV resonance in the 17O(p,α)14N reaction, measured by means of the THM, has been used to renormalize the corresponding resonance strength in the 17O + p radiative capture channel. Since, proton-induced fusion reactions on 17O and 18O belong to the CNO cycle network for H-burning in stars, the new estimates of the cross sections have been introduced into calculations of Asymptotic giant branch (AGB) star nucleosynthesis to determine their impact on astrophysical environments. Results of nucleosynthesis calculations have been compared with geochemical analysis of "presolar" grains. These solids form in the cold and dusty envelopes that surround AGB stars and once that have been ejected by stellar winds, come to us as inclusions in meteorites providing invaluable benchmarks and constraints for our knowledge of fusion reactions in astrophysical environments.

  15. A Multispectrum Analysis of the v2 Band of H12C14N: Part II. Theoretical Calculations of Self-Broadening, Self-Induced Shifts, and Their Temperature Dependences

    SciTech Connect

    Bouanich, J P.; Boulet, C; Predoi-Cross, A; Sharpe, Steven W.; Sams, Robert L.; Smith, Mary A.; Rinsland, Curtis P.; Benner, D C.; Devi, V M.

    2005-04-07

    A semiclassical theory based upon the Robert-Bonamy formalism has been developed in order to explain the experimental measurements of self-broadening, self-induced pressure shift coefficients in the v1, v2, 2v2 bands of H12C14N and the 2v1 band of H13C14N as well as the temperature dependences of these parameters with special emphasis on the v2 band. Our calculations include only electrostatic interactions and neglect the vibrational dependence of the isotropic part of the intermolecular potential, which probably has a weak contribution to the HCN self-shifts for the bands investigated in this study. The agreement between theory and measurements is good in the cases of self-broadening coefficients and their variation with temperature, as well as the self-shift coefficients determined at room temperature. However, the observed temperature dependence of self-shift coefficients in the v2 band is different from that derived theoretically.

  16. Nuclear quadrupole resonance studies of the SORC sequence and nuclear magnetic resonance studies of polymers

    SciTech Connect

    Jayakody, J.R.P.

    1993-12-31

    The behavior of induction signals during steady-state pulse irradiation in {sup 14}N NQR was investigated experimentally. Because Strong Off-resonance Comb (SORC) signals recur as long as the pulsing continues, very efficient signal-averaging can result. The dependence of these steady-state SORC signals on pulse parameters and on frequency offset are presented, together with a discussion of the applicability of the method. Also as part of the NQR work, cocaine base has been detected using conventional NQR techniques. The experimental results show that SORC detection can be of sufficient sensitivity to form the basis of narcotics screening devices for both mail and airline baggage. A new NMR technique, to obtain the correlation time of the random thermal motion of a polymer at temperatures near the glass transition has been introduced. The temperature dependence is a result of thermal motion. For slow-motion of a polymer chain near the glass transition, the CSA parameter begins to decrease. This motional narrowing can be interpreted to yield the correlation time of the thermal motion. In this work nitrocellulose isotopically highly enriched with {sup 15}N was studied at four different temperatures between 27{degrees} and 120{degrees} Celsius and the correlation times for polymer backbone motions were obtained. Naflon films containing water (D{sub 2}O and H{sub 2} {sup 17}O) and methanol (CH{sub 3}OD, CH{sub 3} {sup 17}OH), have been studied using deuteron and oxygen-17 NMR spectroscopy. Glassy behavior of the water domains at low temperature is evidenced by the specific nature of the {sup 2}H NMR lineshapes. Activation energies extracted from {sup 2}H spin-lattice relaxation data on the high temperature side of the T{sub 1} minimum exhibit a steady increase with increasing water content. In spite of a high degree of molecular mobility, angular-dependent spectra of both unstretched and stretched samples reflect considerable anisotrophy of the host polymer.

  17. Background noise spectra of global seismic stations

    SciTech Connect

    Wada, M.M.; Claassen, J.P.

    1996-08-01

    Over an extended period of time station noise spectra were collected from various sources for use in estimating the detection and location performance of global networks of seismic stations. As the database of noise spectra enlarged and duplicate entries became available, an effort was mounted to more carefully select station noise spectra while discarding others. This report discusses the methodology and criteria by which the noise spectra were selected. It also identifies and illustrates the station noise spectra which survived the selection process and which currently contribute to the modeling efforts. The resulting catalog of noise statistics not only benefits those who model network performance but also those who wish to select stations on the basis of their noise level as may occur in designing networks or in selecting seismological data for analysis on the basis of station noise level. In view of the various ways by which station noise were estimated by the different contributors, it is advisable that future efforts which predict network performance have available station noise data and spectral estimation methods which are compatible with the statistics underlying seismic noise. This appropriately requires (1) averaging noise over seasonal and/or diurnal cycles, (2) averaging noise over time intervals comparable to those employed by actual detectors, and (3) using logarithmic measures of the noise.

  18. [Characteristics of Raman Spectra of Polyethylene Terephthalate].

    PubMed

    Tong, Na; Zhu, Chang-jun; Song, Li-xun; Zhang, Chong-hui; Zhang, Guo-qing; Zhang, Yi-xin

    2016-01-01

    Raman spectrometry was employed to study the characteristics of Raman spectra of polyethylene terephthalate (PET), which were treated with sodium hydroxide, sulfuric acid and copper sulfate, respectively. Raman spectra under different conditions were obtained and the characteristics of the Raman spectra were analyzed. The morphology structures were observed under different conditions using Atomic Force Microscope. The results show that the spectral intensity of PET treated with sodium hydroxide is higher than that untreated between 200-1 750 cm(-1), while the intensity of PET treated with sodium hydroxide is lower than that untreated beyond 1 750 cm(-1) and the fluorescence background of Raman spectra is decreased. The spectral intensity of PET treated with sulfuric acid is remarkably reduced than that untreated, and the intensity of PET treated with copper sulphate is much higher than that untreated. The research results obtained by Atomic Force Microscopy show that the variations of the Raman spectra of PET fibers are closely related to. the chemical bonds and molecular structures of PET fibers. The surface of the PET treated with sodium hydroxide is rougher than that untreated, the surface roughness of the PET treated with sulfuric acid is reduced as compared to that untreated, while the surface roughness of the PET treated with copper sulphate is increased. The results obtained by Raman spectroscopy are consistent with those by Atomic Force Microscopy, indicating that the combination of Raman spectroscopy and Atomic Force Microscopy is expected to be a promising characterization technology for polymer characteristics. PMID:27228752

  19. Cleaning HI Spectra Contaminated by GPS RFI

    NASA Astrophysics Data System (ADS)

    Sylvia, Kamin; Hallenbeck, Gregory L.; Undergraduate ALFALFA Team

    2016-01-01

    The NUDET systems aboard GPS satellites utilize radio waves to communicate information regarding surface nuclear events. The system tests appear in spectra as RFI (radio frequency interference) at 1381MHz, which contaminates observations of extragalactic HI (atomic hydrogen) signals at 50-150 Mpc. Test durations last roughly 20-120 seconds and can occur upwards of 30 times during a single night of observing. The disruption essentially renders the corresponding HI spectra useless.We present a method that automatically removes RFI in HI spectra caused by these tests. By capitalizing on the GPS system's short test durations and predictable frequency appearance we are able to devise a method of identifying times containing compromised data records. By reevaluating the remaining data, we are able to recover clean spectra while sacrificing little in terms of sensitivity to extragalactic signals. This method has been tested on 500+ spectra taken by the Undergraduate ALFALFA Team (UAT), in which it successfully identified and removed all sources of GPS RFI. It will also be used to eliminate RFI in the upcoming Arecibo Pisces-Perseus Supercluster Survey (APPSS).This work has been supported by NSF grant AST-1211005.

  20. Spectra from nuclear-excited plasmas

    NASA Technical Reports Server (NTRS)

    De Young, R. J.; Weaver, W. R.

    1980-01-01

    The paper discusses the spectra taken from He-3(n,p)H-3 nuclear-induced plasmas under high thermal neutron flux, lasing conditions. Also, initial spectra are presented for U-235F6 generated plasmas. From an evaluation of these spectra, important atomic and molecular processes that occur in the plasma can be inferred. The spectra presented are the first to be generated by He-3 and U-235F6 nuclear reactions under high neutron flux, lasing conditions. The U-235(n,ff)FF reaction, which liberates 165 MeV of fission-fragment kinetic energy, creates plasmas that are of great interest, since at sufficiently high densities of U-235F6 the gas becomes self-critical; thus, there is no need for an external driving reactor (source of neutrons). The spectra from mixtures of He-3 and Ar, Xe, Kr, Ne, Cl2, F2 and N2 indicate little difference between high-pressure nuclear-induced plasmas and high-pressure electrically pulsed afterglow plasmas for noble-gas systems

  1. EXPLORING THE MORPHOLOGY OF RAVE STELLAR SPECTRA

    SciTech Connect

    Matijevic, G.; Zwitter, T.; Bienayme, O.; Siebert, A.; Bland-Hawthorn, J.; Boeche, C.; Grebel, E. K.; Freeman, K. C.; Gibson, B. K.; Gilmore, G.; Helmi, A.; Munari, U.; Navarro, J.; Parker, Q. A.; Reid, W.; Seabroke, G.; Siviero, A.; Steinmetz, M.; Williams, M.; Watson, F. G.; and others

    2012-06-01

    The RAdial Velocity Experiment (RAVE) is a medium-resolution (R {approx} 7500) spectroscopic survey of the Milky Way that has already obtained over half a million stellar spectra. They present a randomly selected magnitude-limited sample, so it is important to use a reliable and automated classification scheme that identifies normal single stars and discovers different types of peculiar stars. To this end, we present a morphological classification of {approx}350, 000 RAVE survey stellar spectra using locally linear embedding, a dimensionality reduction method that enables representing the complex spectral morphology in a low-dimensional projected space while still preserving the properties of the local neighborhoods of spectra. We find that the majority of all spectra in the database ({approx} 90%-95%) belong to normal single stars, but there is also a significant population of several types of peculiars. Among them, the most populated groups are those of various types of spectroscopic binary and chromospherically active stars. Both of them include several thousands of spectra. Particularly the latter group offers significant further investigation opportunities since activity of stars is a known proxy of stellar ages. Applying the same classification procedure to the sample of normal single stars alone shows that the shape of the projected manifold in two-dimensional space correlates with stellar temperature, surface gravity, and metallicity.

  2. Cloud supersaturations from CCN spectra Hoppel minima

    NASA Astrophysics Data System (ADS)

    Hudson, James G.; Noble, Stephen; Tabor, Samantha

    2015-04-01

    High-resolution cloud condensation nucleus (CCN) spectral measurements in two aircraft field projects, Marine Stratus/Stratocumulus Experiment (MASE) and Ice in Clouds Experiment-Tropical (ICE-T), often showed bimodality that had previously been observed in submicrometer aerosol size distributions obtained by differential mobility analyzers. However, a great deal of spectral shape variability from very bimodal to very monomodal was observed in close proximity. Cloud supersaturation (S) estimates based on critical S, Sc, at minimal CCN concentrations between two modes (Hoppel minima) were ascertained for 63% of 325 measured spectra. These cloud S were lower than effective S (Seff) determined by comparing ambient CCN spectra with nearby cloud droplet concentrations (Nc). Averages for the polluted MASE stratus were 0.15 and 0.23% and for the cumulus clouds of ICE-T 0.44 and 1.03%. This cloud S disagreement between the two methods might in part be due to the fact that Hoppel minima include the effects of cloud processing, which push CCN spectra toward lower S. Furthermore, there is less cloud processing by the smaller cloud droplets, which might be related to smaller droplets evaporating more readily. Significantly lower concentrations within the more bimodal spectra compared with the monomodal spectra indicated active physical processes: Brownian capture of interstitial CCN and droplet coalescence. Chemical cloud processing also contributed to bimodality, especially in MASE.

  3. [Infrared and Raman spectra study on Tianhuang].

    PubMed

    Liu, Yun-gui; Chen, Tao

    2012-08-01

    The Tianhuang stones, from Shoushan in China, were studied by using X-ray powder diffractometry (XRD), infrared (IR) spectroscopy and Raman spectroscopy to obtain the spectra characterization. Wave numbers 3621, 3629 and 3631 cm(-1) in the IR spectra and 3626, 3627 and 3632 cm(-1) in the Raman spectra are the characteristic peaks of dickitic Tianhuang, nacritic Tianhuang and illitic Tianhuang, respectively. Raman spectra assigned to OH are in good agreement with the IR results at 3550 -3750 cm(-1). Dickitic Tianhuang includes ordered dickite and disordered dickite. Compared with ordered dickite, the band assigned to OH3 of disordered dickite shifts to low-frequency by 8 cm(-1) and the relative intensity becomes stronger. The disorder structure may relate to the high level of Fe. The IR absorption spectra of nacritic Tianhuang superimposes strong peaks of dickite, indicating that IR absorption bands of dickite are stronger than that of nacrite at 3550-3750 cm(-1). The main mineral composition of illitic Tianhuang is 2M(1), while illite Tianhuang contains a small amount of 1M. All these characters provide a theoretical basis for the scientific identification of Tianhuang. PMID:23156769

  4. Disk-averaged synthetic spectra of Mars

    NASA Technical Reports Server (NTRS)

    Tinetti, Giovanna; Meadows, Victoria S.; Crisp, David; Fong, William; Velusamy, Thangasamy; Snively, Heather

    2005-01-01

    The principal goal of the NASA Terrestrial Planet Finder (TPF) and European Space Agency's Darwin mission concepts is to directly detect and characterize extrasolar terrestrial (Earthsized) planets. This first generation of instruments is expected to provide disk-averaged spectra with modest spectral resolution and signal-to-noise. Here we use a spatially and spectrally resolved model of a Mars-like planet to study the detectability of a planet's surface and atmospheric properties from disk-averaged spectra. We explore the detectability as a function of spectral resolution and wavelength range, for both the proposed visible coronograph (TPFC) and mid-infrared interferometer (TPF-I/Darwin) architectures. At the core of our model is a spectrum-resolving (line-by-line) atmospheric/surface radiative transfer model. This model uses observational data as input to generate a database of spatially resolved synthetic spectra for a range of illumination conditions and viewing geometries. The model was validated against spectra recorded by the Mars Global Surveyor-Thermal Emission Spectrometer and the Mariner 9-Infrared Interferometer Spectrometer. Results presented here include disk-averaged synthetic spectra, light curves, and the spectral variability at visible and mid-infrared wavelengths for Mars as a function of viewing angle, illumination, and season. We also considered the differences in the spectral appearance of an increasingly ice-covered Mars, as a function of spectral resolution, signal-to-noise and integration time for both TPF-C and TPFI/ Darwin.

  5. Inertial solvation in femtosecond 2D spectra

    NASA Astrophysics Data System (ADS)

    Hybl, John; Albrecht Ferro, Allison; Farrow, Darcie; Jonas, David

    2001-03-01

    We have used 2D Fourier transform spectroscopy to investigate polar solvation. 2D spectroscopy can reveal molecular lineshapes beneath ensemble averaged spectra and freeze molecular motions to give an undistorted picture of the microscopic dynamics of polar solvation. The transition from "inhomogeneous" to "homogeneous" 2D spectra is governed by both vibrational relaxation and solvent motion. Therefore, the time dependence of the 2D spectrum directly reflects the total response of the solvent-solute system. IR144, a cyanine dye with a dipole moment change upon electronic excitation, was used to probe inertial solvation in methanol and propylene carbonate. Since the static Stokes' shift of IR144 in each of these solvents is similar, differences in the 2D spectra result from solvation dynamics. Initial results indicate that the larger propylene carbonate responds more slowly than methanol, but appear to be inconsistent with rotational estimates of the inertial response. To disentangle intra-molecular vibrations from solvent motion, the 2D spectra of IR144 will be compared to the time-dependent 2D spectra of the structurally related nonpolar cyanine dye HDITCP.

  6. H. N. Russell and Atomic Spectra

    NASA Astrophysics Data System (ADS)

    Devorkin, David

    2001-04-01

    “I would rather analyze spectra than do cross-word puzzles or do almost anything else” Henry Norris Russell wrote to William F. Meggers in 1927. Meggers, chief of the spectroscopy division at the NBS, had been surprised that an astrophysicist could be so keen about the analysis of complex spectra. But Russell was a new type of astrophysicist, one who made physics the core of his research. Spectra, for Russell, held the "master key" to knowledge about the universe, and of the atom. He was first attracted by the challenge of detecting and explaining anomalies, which he hoped would lead to new knowledge about the structure of matter. Then, influenced by physicists such as Meggers, he devoted himself to filling in the picture of the structure of atoms from their characteristic spectra as completely as possible. In this talk I will review how Russell worked with Meggers and became the nucleus of an ever-widening circle of spectroscopists devoted to the analysis of complex spectra.

  7. Disk-averaged synthetic spectra of Mars.

    PubMed

    Tinetti, Giovanna; Meadows, Victoria S; Crisp, David; Fong, William; Velusamy, Thangasamy; Snively, Heather

    2005-08-01

    The principal goal of the NASA Terrestrial Planet Finder (TPF) and European Space Agency's Darwin mission concepts is to directly detect and characterize extrasolar terrestrial (Earthsized) planets. This first generation of instruments is expected to provide disk-averaged spectra with modest spectral resolution and signal-to-noise. Here we use a spatially and spectrally resolved model of a Mars-like planet to study the detectability of a planet's surface and atmospheric properties from disk-averaged spectra. We explore the detectability as a function of spectral resolution and wavelength range, for both the proposed visible coronograph (TPFC) and mid-infrared interferometer (TPF-I/Darwin) architectures. At the core of our model is a spectrum-resolving (line-by-line) atmospheric/surface radiative transfer model. This model uses observational data as input to generate a database of spatially resolved synthetic spectra for a range of illumination conditions and viewing geometries. The model was validated against spectra recorded by the Mars Global Surveyor-Thermal Emission Spectrometer and the Mariner 9-Infrared Interferometer Spectrometer. Results presented here include disk-averaged synthetic spectra, light curves, and the spectral variability at visible and mid-infrared wavelengths for Mars as a function of viewing angle, illumination, and season. We also considered the differences in the spectral appearance of an increasingly ice-covered Mars, as a function of spectral resolution, signal-to-noise and integration time for both TPF-C and TPFI/ Darwin. PMID:16078866

  8. The energy spectra of solar energetic particles

    NASA Technical Reports Server (NTRS)

    Mcguire, R. E.; Von Rosenvinge, T. T.

    1984-01-01

    A survey of recent results on the shapes and relative slopes of the spectra of various solar energetic particle populations is presented, with emphasis on the more extensive results currently available for protons, alphas and electrons. From previous work, it is found that proton spectra 0.8 to more than 400 MeV and alpha spectra 1.4 to 80 MeV/nucleon are best characterized, on average, by a functional form involving a Bessel function in momentum/nucleon. However, proton and alpha spectral slopes using this form are not equal, and there is significant variation from event to event. From other studies, electrons 0.02 to 20 MeV are also found to have curved spectra, but seem to be better fit with a double power law in energy. The spectral properties in both cases correlate with other measures of solar particle acceleration; e.g. gamma-ray line production, hard X-ray burst spectra and microwave fluxes.

  9. Rotational spectra and nitrogen nuclear quadrupole coupling for the cyanoacetylene dimer: Hsbnd Ctbnd Csbnd Ctbnd N⋯Hsbnd Ctbnd Csbnd Ctbnd N

    NASA Astrophysics Data System (ADS)

    Kang, Lu; Davis, Philip; Dorell, Ian; Li, Kexin; Daly, Adam; Novick, Stewart E.; Kukolich, Stephen G.

    2016-03-01

    The rotational spectra of cyanoacetylene dimer, Hsbnd Ctbnd Csbnd Ctbnd N⋯Hsbnd Ctbnd Csbnd Ctbnd N, were recorded using Balle-Flygare type Fourier transform microwave (FTMW) spectrometers. The low J transitions were measured down to 1.3 GHz at very high resolution, FWHM ∼ 1 kHz. The spectral hyperfine structure due to the 14N nuclear quadrupole coupling interactions is well-resolved below 4 GHz using a low frequency spectrometer at the University of Arizona. The experimental spectroscopic constants were fitted as: B0 = 339.2923310(79) MHz, DJ = 32.152(82) Hz, H = -0.00147(20) Hz, eqQ(14N1) = -3.9902(14) MHz, and eqQ(14N2) = -4.1712(13) MHz. The vibrationally averaged dimer configuration is Hsbnd Ctbnd Csbnd Ctbnd N⋯Hsbnd Ctbnd Csbnd Ctbnd N. Using a simple linear model, the vibrational ground state and the equilibrium hydrogen bond lengths are determined to be: r0(N⋯H) = 2.2489(3) Å and re(N⋯H) = 2.2315 Å. The equilibrium center-of-mass distance between the two HCCCN subunits is rcom = 7.0366 Å. Using the rigid precession model, the vibrational ground state center-of-mass distance and the pivot angles which HCCCN subunits make with the a-axis of Hsbnd Ctbnd Csbnd Ctbnd N⋯Hsbnd Ctbnd Csbnd Ctbnd N are rc.m. = 7.0603 Å, θ1 = 13.0°, and θ2 = 8.7°, respectively. The calculated hydrogen bond energy of Hsbnd Ctbnd Csbnd Ctbnd N⋯Hsbnd Ctbnd Csbnd Ctbnd N is 1466 cm-1 using the MP2/aug-cc-PVTZ method in present work.

  10. Rotational Spectra of Adrenaline and Noradrenaline

    NASA Astrophysics Data System (ADS)

    Cortijo, V.; López, J. C.; Alonso, J. L.

    2009-06-01

    The emergence of Laser Ablation Molecular Beam Fourier Transform Microwave (LA-MB-FTMW) spectroscopy has rendered accessible the gas-phase study of solid biomolecules with high melting points. Among the biomolecules to benefit from this technique, neurotransmitters have received special attention due to the lack of experimental information and their biological relevance. As a continuation of the we present the study of adrenaline and noradrenaline. The comparison between the experimental rotational and ^{14}N nuclear quadrupole coupling constants and those calculated ab initio provide a definitive test for molecular structures and confirm unambiguously the identification of four conformers of adrenaline and three conformers of noradrenaline. Their relative population in the jet has been evaluated by relative intensity measurements of selected rotational transitions. The most abundant conformer in both neurotransmitters present an extended AG configuration with a O-H\\cdotsN hydrogen bond in the side chain. J.L. Alonso, M.E. Sanz, J.C. López and V. Cortijo, J. Am. Chem. Soc. (in press), 2009

  11. Degradation spectra of electrons in the ionosphere

    NASA Astrophysics Data System (ADS)

    Konovalov, V. P.; Son, E. E.

    2015-11-01

    Theory and numerical simulations of degradation spectra of electrons in gases are presented. Theory is based on the power spectra of degradation charged particles as the spectra with fluxes in energy space. Numerical calculations of the electron energy distribution function have been performed for ionospheric gas mixtures constituted of molecules N2, O2 and atom O under influence of high energy electron source with detailed elementary electron collision processes with molecules and atoms being taken into consideration. The energy expenses of electrons into ionization, dissociation and excitation of various levels have been obtained so that to determine the rates of electron collision processes. The dependence of the electron energy expenses into various inelastic electronic processes upon the energy of primary electron source has been revealed. The results are presented for the rates of numerous elementary processes of electron interaction with basic ionospheric components to be suitably determined.

  12. Quantitative analysis of NMR spectra with chemometrics

    NASA Astrophysics Data System (ADS)

    Winning, H.; Larsen, F. H.; Bro, R.; Engelsen, S. B.

    2008-01-01

    The number of applications of chemometrics to series of NMR spectra is rapidly increasing due to an emerging interest for quantitative NMR spectroscopy e.g. in the pharmaceutical and food industries. This paper gives an analysis of advantages and limitations of applying the two most common chemometric procedures, Principal Component Analysis (PCA) and Multivariate Curve Resolution (MCR), to a designed set of 231 simple alcohol mixture (propanol, butanol and pentanol) 1H 400 MHz spectra. The study clearly demonstrates that the major advantage of chemometrics is the visualisation of larger data structures which adds a new exploratory dimension to NMR research. While robustness and powerful data visualisation and exploration are the main qualities of the PCA method, the study demonstrates that the bilinear MCR method is an even more powerful method for resolving pure component NMR spectra from mixtures when certain conditions are met.

  13. Fast Inversion of Solar Ca II Spectra

    NASA Astrophysics Data System (ADS)

    Beck, C.; Choudhary, D. P.; Rezaei, R.; Louis, R. E.

    2015-01-01

    We present a fast (Lt1 s per profile) inversion code for solar Ca II lines. The code uses an archive of spectra that are synthesized prior to the inversion under the assumption of local thermodynamic equilibrium (LTE). We show that it can be successfully applied to spectrograph data or more sparsely sampled spectra from two-dimensional spectrometers. From a comparison to a non-LTE inversion of the same set of spectra, we derive a first-order non-LTE correction to the temperature stratifications derived in the LTE approach. The correction factor is close to unity up to log τ ~ -3 and increases to values of 2.5 and 4 at log τ = -6 in the quiet Sun and the umbra, respectively.

  14. Ultraviolet spectra and chromospheres of R stars

    NASA Technical Reports Server (NTRS)

    Eaton, J. A.; Johnson, H. R.; Obrien, G. T.; Baumert, J. H.

    1985-01-01

    Long-wavelength IUE spectra of 13 normal R stars and two hydrogen-deficient R0 supergiants were obtained. Early R stars are noted to have line spectra and levels of flux in the ultraviolet characteristic of G5-K2 III stars, whereas late R stars were observed to have colors and line spectra similar to late K and M stars, but with greatly enhanced strength of low-lying multiplets of neutral metals. Hydrogen-deficient carbon stars show readily apparent differences from the normal early R stars, reflecting their luminosity and somewhat higher temperatures. The lines of neutral metals in these stars are weakened, while those of ionized metals are strengthened.

  15. Synthetic spectra: a tool for correlation spectroscopy

    SciTech Connect

    Sinclair, Michael B.; Butler, Michael A.; Ricco, Anthony J. Senturia, Stephen D.

    1997-05-01

    We show that computer-generated diffractive optical elements can be used to synthesize the infrared spectra of important compounds, and we describe a modified phase-retrieval algorithm useful for the design of elements of this type. In particular, we present the results of calculations of diffractive elements that are capable of synthesizing portions of the infrared spectra of gaseous hydrogen fluoride (HF) and trichloroethylene (TCE). Further, we propose a new type of correlation spectrometer that uses these diffractive elements rather than reference cells for the production of reference spectra. Storage of a large number of diffractive elements, each producing a synthetic spectrum corresponding to a different target compound, in compact-disk-like format will allow a spectrometer of this type to rapidly determine the composition of unknown samples. Other advantages of the proposed correlation spectrometer are also discussed. {copyright} 1997 Optical Society of America

  16. Crystal field spectra of lunar pyroxenes.

    NASA Technical Reports Server (NTRS)

    Burns, R. G.; Abu-Eid, R. M.; Huggins, F. E.

    1972-01-01

    Absorption spectra in the visible and near infrared regions have been obtained for pyroxene single crystals in rocks from the Apollo 11, 12, 14, and 15 missions. The polarized spectra are compared with those obtained from terrestrial calcic clinopyroxenes, subcalcic augites, pigeonites, and orthopyroxenes. The lunar pyroxenes contain several broad, intense absorption bands in the near infrared, the positions of which are related to bulk composition, Fe(2+) site occupancy and structure type of the pyroxene. The visible spectra contain several sharp, weak peaks mainly due to spin-forbidden transitions in Fe(2+). Additional weak bands in this region in Apollo 11 pyroxenes are attributed to Ti(3+) ions. Spectral features from Fe(3+), Mn(2+), Cr(3+), and Cr(2+) were not observed.

  17. On the Individuality of Sleep EEG Spectra

    PubMed Central

    Lewandowski, Achim; Rosipal, Roman; Dorffner, Georg

    2013-01-01

    Research in recent years has supported the hypothesis that many properties of the electroencephalogram (EEG) are specific to an individual. In this study, the intra- and inter-individual variations of sleep EEG signals were investigated. This was carried out by analyzing the stability of the average EEG spectra individually computed for the Rechtschaffen and Kales (RK) sleep stages. Six EEG channels were used to account for the topographical aspect of the analysis. Validity of the results was supported by considering a wide dataset of 174 subjects with normal sleep. Subjects spent two consecutive nights in the sleep laboratory during which EEG recordings were obtained. High similarity between average spectra of two consecutive nights was found considering an individual. More than 89% of the second night recordings were correctly assigned to their counterparts of the first night. The average spectra of sleep EEG computed for each RK sleep stage have shown a high degree of individuality. PMID:23997385

  18. FAST INVERSION OF SOLAR Ca II SPECTRA

    SciTech Connect

    Beck, C.; Choudhary, D. P.; Rezaei, R.; Louis, R. E.

    2015-01-10

    We present a fast (<<1 s per profile) inversion code for solar Ca II lines. The code uses an archive of spectra that are synthesized prior to the inversion under the assumption of local thermodynamic equilibrium (LTE). We show that it can be successfully applied to spectrograph data or more sparsely sampled spectra from two-dimensional spectrometers. From a comparison to a non-LTE inversion of the same set of spectra, we derive a first-order non-LTE correction to the temperature stratifications derived in the LTE approach. The correction factor is close to unity up to log τ ∼ –3 and increases to values of 2.5 and 4 at log τ = –6 in the quiet Sun and the umbra, respectively.

  19. Red spectra from white and blue noise

    PubMed Central

    Balmforth, N. J.; Provenzale, A.; Spiegel, E. A.; Martens, M.; Tresser, C.; Wu, C. W.

    1999-01-01

    The value of maps of the interval in modelling population dynamics has recently been called into question because temporal variations from such maps have blue or white power spectra, whereas many observations of real populations show time-series with red spectra. One way to deal with this discrepancy is to introduce chaotic or stochastic fluctuations in the parameters of the map. This leads to on–off intermittency and can markedly redden the spectrum produced by a model that does not by itself have a red spectrum. The parameter fluctuations need not themselves have a red spectrum in order to achieve this effect. Because the power spectrum is not invariant under a change of variable, another way to redden the spectrum is by a suitable transformation of the variables used. The question this poses is whether spectra are the best means of characterizing a fluctuating variable.

  20. POLLUX: a database of stellar spectra - First step : SED and High Resolution Synthetic Spectra

    NASA Astrophysics Data System (ADS)

    Palacios, A.; Josselin, E.; Lèbre, A.; Martins, F.; Monier, R.; Plez, B.; Belmas, M.

    2008-10-01

    POLLUX is a stellar spectra database under development at the GRAAL laboratory (Montpellier, France). It will be made available on-line to the community through a VO compliant interface (http://pollux.graal.univ-montp2.fr). In its first version, POLLUX will propose theoretical data: high resolution synthetic spectra and spectral energy distribution.

  1. Interpretation of IR Spectra of Indolinospirobenzothiopyran

    NASA Astrophysics Data System (ADS)

    Gladkov, L. L.; Khamchukov, Yu. D.; Sychev, I. Yu.; Lyubimov, A. V.; Gladkova, G. A.

    2015-09-01

    The structures of four stereomers (enantiomers) of photochromic indolinospirobenzothiopyran (ISTP) in the closed form were studied by the DFT method. The most stable structure was found. IR spectra of ISTP in KBr pellets and as a film on single-crystalline KBr plates (in the region 400-4000 cm -1 ) and as a powder between polyethylene plates (100-400 cm -1 ) were measured. An interpretation of the obtained IR spectra was proposed. Specific features of normal modes of ISTP caused by the presence of the spiro center were revealed.

  2. What can we learn from inclusive spectra

    SciTech Connect

    Nagamiya, S.

    1981-05-01

    The present experimental status on single particle inclusive measurements is described. Then, the geometrical aspect of the collision is discussed from the data of total integrated cross sections of nuclear charge or mass. The dynamical aspect of the collision, especially that for the participating region is discussed in connection with proton spectra, composite fragment spectra, pion production, ratios of ..pi../sup -//..pi../sup +/, n/p and t//sup 3/He, and production of strange particles. The spectator physics is described from the data on projectile fragments. (GHT)

  3. AIS-2 spectra of California wetland vegetation

    NASA Technical Reports Server (NTRS)

    Gross, Michael F.; Ustin, Susan L.; Klemas, Vytautas

    1987-01-01

    Spectral data gathered by Airborne Imaging Spectrometers-2 from wetlands were analyzed. Spectra representing stands of green Salicornia virginica, green Sesuvium verrucosum, senescing Distichlis spicata, a mixture of senescing Scirpus acutus and Scirpus californicus, senescing Scirpus paludosus, senescent S. paludosus, mowed senescent S. paludosus, and soil were isolated. No difference among narrowband spectral reflectance of the cover types was apparent between 0.8 to 1.6 micron. There were, however, broadband differences in brightness. These differences were sufficient to permit a fairly accurate decomposition of the image into its major cover type components using a procedure that assumes an additive linear mixture of surface spectra.

  4. Algorithms for classification of astronomical object spectra

    NASA Astrophysics Data System (ADS)

    Wasiewicz, P.; Szuppe, J.; Hryniewicz, K.

    2015-09-01

    Obtaining interesting celestial objects from tens of thousands or even millions of recorded optical-ultraviolet spectra depends not only on the data quality but also on the accuracy of spectra decomposition. Additionally rapidly growing data volumes demands higher computing power and/or more efficient algorithms implementations. In this paper we speed up the process of substracting iron transitions and fitting Gaussian functions to emission peaks utilising C++ and OpenCL methods together with the NOSQL database. In this paper we implemented typical astronomical methods of detecting peaks in comparison to our previous hybrid methods implemented with CUDA.

  5. Augmentation of ENDF/B fission product gamma-ray spectra by calculated spectra

    SciTech Connect

    Katakura, J. ); England, T.R. )

    1991-11-01

    Gamma-ray spectral data of the ENDF/B-V fission product decay data file have been augmented by calculated spectra. The calculations were performed with a model using beta strength functions and cascade gamma-ray transitions. The calculated spectra were applied to individual fission product nuclides. Comparisons with several hundred measured aggregate gamma spectra after fission were performed to confirm the applicability of the calculated spectra. The augmentation was extended to a preliminary ENDF/B-VI file, and to beta spectra. Appendix C provides information on the total decay energies for individual products and some comparisons of measured and aggregate values based on the preliminary ENDF/B-VI files. 15 refs., 411 figs.

  6. Thermal Emission and Reflected Light Spectra of Super Earths with Flat Transmission Spectra

    NASA Astrophysics Data System (ADS)

    Morley, Caroline V.; Fortney, Jonathan J.; Marley, Mark S.; Zahnle, Kevin; Line, Michael; Kempton, Eliza; Lewis, Nikole; Cahoy, Kerri

    2015-12-01

    Planets larger than Earth and smaller than Neptune are some of the most numerous in the galaxy, but observational efforts to understand this population have proved challenging because optically thick clouds or hazes at high altitudes obscure molecular features. We present models of super Earths that include thick clouds and hazes and predict their transmission, thermal emission, and reflected light spectra. Very thick, lofted clouds of salts or sulfides in high metallicity (1000× solar) atmospheres create featureless transmission spectra in the near-infrared. Photochemical hazes with a range of particle sizes also create featureless transmission spectra at lower metallicities. Cloudy thermal emission spectra have muted features more like blackbodies, and hazy thermal emission spectra have emission features caused by an inversion layer at altitudes where the haze forms. Close analysis of reflected light from warm (˜400-800 K) planets can distinguish cloudy spectra, which have moderate albedos (0.05-0.20), from hazy models, which are very dark (0.0-0.03). Reflected light spectra of cold planets (˜200 K) accessible to a space-based visible light coronagraph will have high albedos and large molecular features that will allow them to be more easily characterized than the warmer transiting planets. We suggest a number of complementary observations to characterize this population of planets, including transmission spectra of hot (≳ 1000 K) targets, thermal emission spectra of warm targets using the James Webb Space Telescope, high spectral resolution (R ˜ 105) observations of cloudy targets, and reflected light spectral observations of directly imaged cold targets. Despite the dearth of features observed in super Earth transmission spectra to date, different observations will provide rich diagnostics of their atmospheres.

  7. Synthesis and crystal structure of bis(3-ammoniumphenyl) sulfone dinitrate [C{sub 12}H{sub 14}N{sub 2}O{sub 2}S](NO{sub 3}){sub 2}

    SciTech Connect

    Mahroug, A.; Belhouchet, M. Mhiri, T.

    2013-07-15

    A new organic nitrate with the formula [C{sub 12}H{sub 14}N{sub 2}O{sub 2}S](NO{sub 3}){sub 2}, has been prepared and analyzed by X-ray diffraction. This compound crystallizes in the orthorhombic system: a = 16.771 (3), b = 13.884(2), c = 13.884(2) A, V = 3232.7(7)A{sup 3}, Z = 8, space group Pna2{sub 1}. Crystal structure can be described as a succession of organic and inorganic layers parallel to b, c plane. H-bonds between the different species play an important role in the three-dimensional network cohesion.

  8. Experimental determination of the rate of V-V collisional relaxation in (14)N2 in its ground (X(1)Σ(g)(+)) electronic state between 77 and 300 K.

    PubMed

    Martínez, R Z; Bermejo, D

    2015-05-21

    We propose new values for the V-V collisional energy transfer rate constant of (14)N2 (X(1)Σg(+)) at different temperatures in collisions between molecules in the v = 1 and v = 0 vibrational states. The values were obtained experimentally by means of a time-resolved double resonance pump-probe stimulated Raman setup in which the stimulated Raman technique was used for both the pump and the probe stage. The main feature of the experiment is the fact that population pumping is done with rotational (and thus spin) selectivity, that is, only molecules belonging to the ortho spin variety of (14)N2 are promoted to v = 1. The probe stage is then used to monitor the decay of this ortho rotational population placed in v = 1 and the emergence of a para population in that same vibrational level. Since the only possible mechanism for the arrival of para population to v = 1 is collisional V-V energy transfer, the evolution of the ortho/para ratio in v = 1 is used to quantify the rate constant of the process. The measurements were conducted at 77, 136, 226 and 300 K. The 300 K value had been measured and calculated before by other authors, but a spread larger than an order of magnitude existed between their results. Our proposed value is more precise than previous ones and lies near the mid-point of that interval. The low-temperature values of the rate constant are reported here for the first time. The availability of data at several temperatures has allowed us to unequivocally determine the existence of a strong negative temperature dependence of the rate constant between 77 and 300 K that exhibits a linear behavior in a Landau-Teller plot in this temperature interval. PMID:25903654

  9. Squeezing spectra for nonlinear optical systems

    NASA Technical Reports Server (NTRS)

    Collett, M. J.; Walls, D. F.

    1985-01-01

    The squeezing spectra for the output fields of several intracavity nonlinear optical systems are obtained. It is shown that at critical points, e.g., the turning points for optical bistability, the threshold for parametric oscillation, and the self-pulsing instability in second-harmonic generation, perfect squeezing in the output field is, in principle, possible.

  10. Principal component analysis of phenolic acid spectra

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phenolic acids are common plant metabolites that exhibit bioactive properties and have applications in functional food and animal feed formulations. The ultraviolet (UV) and infrared (IR) spectra of four closely related phenolic acid structures were evaluated by principal component analysis (PCA) to...

  11. Microdosimetric spectra measurements of JANUS neutrons

    SciTech Connect

    Marshall, I.R.; Williamson, F.S.

    1985-01-01

    Neutron radiation from the JANUS reactor at Argonne National Laboratory is being used with increasing frequency for major biological experiments. The fast neutron spectrum has a Kerma-weighted mean energy of 0.8 MeV and low gamma-ray contamination. In 1984 the JANUS fission converter plate of highly enriched uranium was replaced by one made of low-enriched uranium. We recorded microdosimetric spectra at several different positions in the high-flux irradiation room of JANUS before the change of the converter plate. Each set of measurements consisted of spectra taken at three different site diameters (0.5, 1.0, and 5.0 ..mu..m) and in both ''attenuator up'' and ''attenuator down'' configurations. At two conventional dosimetry reference positions, two sets of measurements were recorded. At three biological reference positions, measurements simulating several biological irradiation conditions, were taken. The dose rate at each position was estimated and compared with dose rates obtained previously by conventional dosimetry. Comparison of the different measurements showed no major change in spectra as a function of position or irradiation condition. First results from similar sets of measurements recorded after the installment of the new converter plate indicate no major change in the spectra. 11 refs., 4 figs., 5 tabs.

  12. Limitation of energetic ring current ion spectra

    NASA Astrophysics Data System (ADS)

    Summers, Danny; Shi, Run

    2015-09-01

    We address the problem of determining the limiting energetic ring current ion spectrum resulting from electromagnetic ion cyclotron (EMIC)-wave-ion interactions. We solve the problem in a relativistic regime, incorporating a cold background multi-ion plasma component and without assuming a predetermined form for the ion energy distribution. The limiting (Kennel-Petschek) spectrum is determined by the condition that the EMIC waves acquire a specified gain over a given convective length scale for all frequencies over which wave growth occurs. We find that the limiting ion spectrum satisfies an integral equation that must be solved numerically. However, at large particle energy E, the limiting spectrum takes the simple form J ∝ 1/E, E → ∞. Moreover, this 1/E spectral shape does not depend on the energetic ion in question nor on the background multi-ion plasma composition. We provide numerical solutions for the limiting spectra for Earth-like parameters. In addition, at four planets, Jupiter, Saturn, Uranus, and Neptune, we compare measured ion spectra with corresponding numerical limiting spectra. This paper parallels an earlier analogous study on the limitation of radiation belt electron spectra by whistler mode wave-electron interactions.

  13. Acceleration spectra for subduction zone earthquakes

    USGS Publications Warehouse

    Boatwright, J.; Choy, G.L.

    1989-01-01

    We estimate the source spectra of shallow earthquakes from digital recordings of teleseismic P wave groups, that is, P+pP+sP, by making frequency dependent corrections for the attenuation and for the interference of the free surface. The correction for the interference of the free surface assumes that the earthquake radiates energy from a range of depths. We apply this spectral analysis to a set of 12 subduction zone earthquakes which range in size from Ms = 6.2 to 8.1, obtaining corrected P wave acceleration spectra on the frequency band from 0.01 to 2.0 Hz. Seismic moment estimates from surface waves and normal modes are used to extend these P wave spectra to the frequency band from 0.001 to 0.01 Hz. The acceleration spectra of large subduction zone earthquakes, that is, earthquakes whose seismic moments are greater than 1027 dyn cm, exhibit intermediate slopes where u(w)???w5/4 for frequencies from 0.005 to 0.05 Hz. For these earthquakes, spectral shape appears to be a discontinuous function of seismic moment. Using reasonable assumptions for the phase characteristics, we transform the spectral shape observed for large earthquakes into the time domain to fit Ekstrom's (1987) moment rate functions for the Ms=8.1 Michoacan earthquake of September 19, 1985, and the Ms=7.6 Michoacan aftershock of September 21, 1985. -from Authors

  14. Raman phonon spectra of pentacene polymorphs

    NASA Astrophysics Data System (ADS)

    Brillante, A.; Della Valle, R. G.; Farina, L.; Girlando, A.; Masino, M.; Venuti, E.

    2002-05-01

    We report for the first time lattice phonon Raman spectra of pentacene measured by means of a Raman microprobe technique. We experimentally prove the existence of two polymorphs, as expected from recent structural studies. A comparison with Quasi Harmonic Lattice Dynamics calculations, previously performed starting from the available X-ray data, help us in identifying the phase to which each crystal belongs.

  15. Temporal Evolution of Solar Energetic Particle Spectra

    NASA Astrophysics Data System (ADS)

    Doran, Donald J.; Dalla, Silvia

    2016-08-01

    During solar flares and coronal mass ejections, Solar Energetic Particles (SEPs) may be released into the interplanetary medium and near-Earth locations. The energy spectra of SEP events at 1 AU are typically averaged over the entire event or studied in a few snapshots. In this article we analyze the time evolution of the energy spectra of four large selected SEP events using a large number of snapshots. We use a multi-spacecraft and multi-instrument approach for the observations, obtained over a wide SEP energy range. We find large differences in the spectra at the beginning of the events as measured by different instruments. We show that over time, a wave-like structure is observed traveling through the spectra from the highest energies to the lowest energies, creating an "arch" shape that then straightens into a power law later in the event, after times on the order of 10 hours. We discuss the processes that determine SEP intensities and their role in shaping the spectral time evolution.

  16. Scattering Spectra of Single Gold Nanoshells

    NASA Astrophysics Data System (ADS)

    Hafner, Jason H.; Nehl, Colleen L.; Goodrich, Glenn P.; Tam, Felicia; Halas, Naomi J.

    2004-03-01

    Gold nanoshells are metal coated silica nanoparticles whose plasmon resonances vary from the visible to IR depending on their core to shell thickness ratio. Monodisperse nanoshell solutions can be synthesized such that their absorbance spectra match the calculated extinction spectra for the corresponding nanoshell structure. Using transmitted light dark field illumination and high numerical aperture optics, we have studied the scattering spectra of single gold nanoshells supported on ITO substrates in an optically homogeneous medium. With the aid of alignment marks, the same nanoshell can then be structurally characterized by electron microscopy. We have used this system to investigate the lineshape of single nanoshell scattering spectra to further elucidate the relative contributions of retardation, electron-interface scattering, and structural inhomogeneity. [1] Single particle measurements also facilitate the observation subtle interparticle and particle-substrate hybridization effects. [2] [1] S. L. Westcott, J. B. Jackson, C. Radloff, N. J. Halas, Phys. Rev. B 66, 155431 (2002). [2] E. Prodan, C. Radloff, N. J. Halas, P. Nordlander, Science 302, 419-422 (2003).

  17. Absorption spectra of cold dilute solid solutions

    SciTech Connect

    Holland, R.F.; Maier, W.B. II; Freund, S.; Beattie, W.H.

    1983-06-01

    Infrared absorption spectra have been obtained for some compounds trapped in crystalline solids by freezing liquid Xe, Kr, Ar, or CH/sub 4/ solutions. The optical quality of the solid solutions is good, and they have been cooled to approx.80 K in 1.35 cm sample thicknesses to study the absorption in fundamental vibrational bands of the solutes. In the cases discussed, the bands are narrow, with observed full widths at half-maximum absorbance 0.05--0.30 cm/sup -1/ greater than the instrumental resolution (0.18--0.29 cm/sup -1/). The spectra appear to be free of ''multiple site'' and solute aggregate absorptions. Spectra displaying isotropic splitting in bands of natural BCl/sub 3/, SeF/sub 6/, OsO/sub 4/, TiCl/sub 4/, and MoF/sub 6/ are presented, and band frequencies are compared with some results obtained in evaporative matrices, in the gas phase, and in liquid solutions. For this comparison we have obtained some spectra of SeF/sub 6/ and BCl/sub 3/ gas.

  18. Discriminating Dysarthria Type from Envelope Modulation Spectra

    ERIC Educational Resources Information Center

    Liss, Julie M.; LeGendre, Sue; Lotto, Andrew J.

    2010-01-01

    Purpose: Previous research demonstrated the ability of temporally based rhythm metrics to distinguish among dysarthrias with different prosodic deficit profiles (J. M. Liss et al., 2009). The authors examined whether comparable results could be obtained by an automated analysis of speech envelope modulation spectra (EMS), which quantifies the…

  19. Variations on supersymmetry breaking and neutrino spectra

    SciTech Connect

    Borzumati, F.; Hamaguchi, K.; Nomura, Y.; Yanagida, T.

    2000-12-11

    The problem of generating light neutrinos within supersymmetric models is discussed. It is shown that the hierarchy of scales induced by supersymmetry breaking can give rise to suppression factors of the correct order of magnitude to produce experimentally allowed neutrino spectra.

  20. Correlation Functions Aid Analyses Of Spectra

    NASA Technical Reports Server (NTRS)

    Beer, Reinhard; Norton, Robert H., Jr.

    1989-01-01

    New uses found for correlation functions in analyses of spectra. In approach combining elements of both pattern-recognition and traditional spectral-analysis techniques, spectral lines identified in data appear useless at first glance because they are dominated by noise. New approach particularly useful in measurement of concentrations of rare species of molecules in atmosphere.

  1. Analysis of COSIMA spectra: Bayesian approach

    NASA Astrophysics Data System (ADS)

    Lehto, H. J.; Zaprudin, B.; Lehto, K. M.; Lönnberg, T.; Silén, J.; Rynö, J.; Krüger, H.; Hilchenbach, M.; Kissel, J.

    2015-06-01

    We describe the use of Bayesian analysis methods applied to time-of-flight secondary ion mass spectrometer (TOF-SIMS) spectra. The method is applied to the COmetary Secondary Ion Mass Analyzer (COSIMA) TOF-SIMS mass spectra where the analysis can be broken into subgroups of lines close to integer mass values. The effects of the instrumental dead time are discussed in a new way. The method finds the joint probability density functions of measured line parameters (number of lines, and their widths, peak amplitudes, integrated amplitudes and positions). In the case of two or more lines, these distributions can take complex forms. The derived line parameters can be used to further calibrate the mass scaling of TOF-SIMS and to feed the results into other analysis methods such as multivariate analyses of spectra. We intend to use the method, first as a comprehensive tool to perform quantitative analysis of spectra, and second as a fast tool for studying interesting targets for obtaining additional TOF-SIMS measurements of the sample, a property unique to COSIMA. Finally, we point out that the Bayesian method can be thought of as a means to solve inverse problems but with forward calculations, only with no iterative corrections or other manipulation of the observed data.

  2. Vibrational Spectra of γ-Aminobutyric Acid

    NASA Astrophysics Data System (ADS)

    Suresh, D. M.; Sajan, D.; Laladas, K. P.; Joe, I. Hubert; Jayakumar, V. S.

    2008-11-01

    The NIR-FT Raman, FT-IR spectral analysis of γ-Aminobutyric acid (GABA) a simple amino acid is carried out by density functional computations. The vibrational spectra confirm the existence of NH3+ in GABA. Hydroxyl groups H-bonded to the different extents are analysed, supported by computed results.

  3. EEG Power Spectra of Adolescent Poor Readers.

    ERIC Educational Resources Information Center

    Ackerman, Peggy T.; McPherson, W. Brian; Oglesby, D. Michael; Dykman, Roscoe A.

    1998-01-01

    Electroencephalographic power spectra were studied in two poor-reading adolescent groups (n=38), dysphonetic and phonetic. Significant Group x Hemisphere effects were found in the alpha and beta bands, with the phonetic group showing right greater than left asymmetry. Results suggest more circumscribed and mature processing in the phonetically…

  4. Silicon Carbide: The Problem with Laboratory Spectra

    NASA Astrophysics Data System (ADS)

    Speck, A. K.; Hofmeister, A. M.; Barlow, M. J.

    2000-03-01

    The interpretation of astronomical observations of infrared (IR) silicon carbide (SiC) features in the spectra of carbon stars have revealed discrepancies between the work of astronomers and that of meteoriticists. The silicon carbide observed around carbon stars has been attributed to one type of SiC (α) while meteoritic samples believed to have formed around such stars are of another type of SiC (β). The key to solving this problem has been to understand the sources of laboratory data used by astronomers in order to interpret the IR spectra. Through comparison of thin film IR absorption spectra and spectra taken using finely ground samples dispersed in potassium bromide (KBr) pellets we show that the previously invoked ``KBr matrix-correction'' is unnecessary for powder dispersions obtained from very fine grain sizes of SiC. Comparison of our data and previous measurements show that dust around carbon stars is β-SiC, consistent with laboratory studies of presolar grains in meteorites. The implications of these findings affect twenty years of work. The IR spectroscopic laboratory data used by astronomers to identify dust species in space must be carefully scrutinized to ensure that the KBr correction is not responsible for further misattributions of minerals in astronomical dust features.

  5. Chaotic spectra: How to extract dynamic information

    SciTech Connect

    Taylor, H.S.; Gomez Llorente, J.M.; Zakrzewski, J.; Kulander, K.C.

    1988-10-01

    Nonlinear dynamics is applied to chaotic unassignable atomic and molecular spectra with the aim of extracting detailed information about regular dynamic motions that exist over short intervals of time. It is shown how this motion can be extracted from high resolution spectra by doing low resolution studies or by Fourier transforming limited regions of the spectrum. These motions mimic those of periodic orbits (PO) and are inserts into the dominant chaotic motion. Considering these inserts and the PO as a dynamically decoupled region of space, resonant scattering theory and stabilization methods enable us to compute ladders of resonant states which interact with the chaotic quasi-continuum computed in principle from basis sets placed off the PO. The interaction of the resonances with the quasicontinuum explains the low resolution spectra seen in such experiments. It also allows one to associate low resolution features with a particular PO. The motion on the PO thereby supplies the molecular movements whose quantization causes the low resolution spectra. Characteristic properties of the periodic orbit based resonances are discussed. The method is illustrated on the photoabsorption spectrum of the hydrogen atom in a strong magnetic field and on the photodissociation spectrum of H/sub 3//sup +/. Other molecular systems which are currently under investigation using this formalism are also mentioned. 53 refs., 10 figs., 2 tabs.

  6. Prompt fission neutron spectra of actinides

    DOE PAGESBeta

    Capote, R.; Chen, Y. -J.; Hambsch, F. -J.; Kornilov, N. V.; Lestone, J. P.; Litaize, O.; Morillon, B.; Neudecker, D.; Oberstedt, S.; Ohsawa, T.; et al

    2016-01-06

    Here, the energy spectrum of prompt neutrons emitted in fission (PFNS) plays a very important role in nuclear science and technology. A Coordinated Research Project (CRP) "Evaluation of Prompt Fission Neutron Spectra of Actinides" was established by the IAEA Nuclear Data Section in 2009, with the major goal to produce new PFNS evaluations with uncertainties for actinide nuclei.

  7. Raman spectra of carotenoids in natural products.

    PubMed

    Withnall, Robert; Chowdhry, Babur Z; Silver, Jack; Edwards, Howell G M; de Oliveira, Luiz F C

    2003-08-01

    Resonance Raman spectra of naturally occurring carotenoids have been obtained from nautilus, periwinkle (Littorina littorea) and clam shells under 514.5 nm excitation and these spectra are compared with the resonance Raman spectra obtained in situ from tomatoes, carrots, red peppers and saffron. The tomatoes, carrots and red peppers gave rise to resonance Raman spectra exhibiting a nu1 band at ca. 1520 cm(-1), in keeping with its assignment to carotenoids with ca. nine conjugated carbon-carbon double bonds in their main chains, whereas the resonance Raman spectrum of saffron showed a nu1 band at 1537 cm(-1) which can be assigned to crocetin, having seven conjugated carbon-carbon double bonds. A correlation between nu1 wavenumber location and effective conjugated chain length has been used to interpret the data obtained from the shells, and the wavenumber position (1522 cm(-1)) of the nu1 band of the carotenoid in the orange clam shell suggests that it contains nine conjugated double bonds in the main chain. However, the black periwinkle and nautilus shells exhibit nu1 bands at 1504 and 1496 cm(-1), respectively. On the basis of the correlation between nu1 wavenumber location and effective conjugated chain length, this indicates that they contain carotenoids with longer conjugated chains, the former having ca. 11 double bonds and the latter ca. 13 or even more. Raman spectra of the nautilus, periwinkle and clam shells also exhibited a strong band at 1085 cm(-1) and a doublet with components at 701 and 705 cm(-1), which can be assigned to biogenic calcium carbonate in the aragonite crystallographic form. PMID:12909134

  8. Improved predictions of reactor antineutrino spectra

    NASA Astrophysics Data System (ADS)

    Mueller, Th. A.; Lhuillier, D.; Fallot, M.; Letourneau, A.; Cormon, S.; Fechner, M.; Giot, L.; Lasserre, T.; Martino, J.; Mention, G.; Porta, A.; Yermia, F.

    2011-05-01

    Precise predictions of the antineutrino spectra emitted by nuclear reactors is a key ingredient in measurements of reactor neutrino oscillations as well as in recent applications to the surveillance of power plants in the context of nonproliferation of nuclear weapons. We report new calculations including the latest information from nuclear databases and a detailed error budget. The first part of this work is the so-called ab initio approach where the total antineutrino spectrum is built from the sum of all β branches of all fission products predicted by an evolution code. Systematic effects and missing information in nuclear databases lead to final relative uncertainties in the 10-20% range. A prediction of the antineutrino spectrum associated with the fission of U238 is given based on this ab initio method. For the dominant isotopes we developed a more accurate approach combining information from nuclear databases and reference electron spectra associated with the fission of U235, Pu239, and Pu241, measured at Institut Laue-Langevin (ILL) in the 1980s. We show how the anchor point of the measured total β spectra can be used to suppress the uncertainty in nuclear databases while taking advantage of all the information they contain. We provide new reference antineutrino spectra for U235, Pu239, and Pu241 isotopes in the 2-8 MeV range. While the shapes of the spectra and their uncertainties are comparable to those of the previous analysis of the ILL data, the normalization is shifted by about +3% on average. In the perspective of the reanalysis of past experiments and direct use of these results by upcoming oscillation experiments, we discuss the various sources of errors and their correlations as well as the corrections induced by off-equilibrium effects.

  9. Raman spectra of carotenoids in natural products

    NASA Astrophysics Data System (ADS)

    Withnall, Robert; Chowdhry, Babur Z.; Silver, Jack; Edwards, Howell G. M.; de Oliveira, Luiz F. C.

    2003-08-01

    Resonance Raman spectra of naturally occurring carotenoids have been obtained from nautilus, periwinkle ( Littorina littorea) and clam shells under 514.5 nm excitation and these spectra are compared with the resonance Raman spectra obtained in situ from tomatoes, carrots, red peppers and saffron. The tomatoes, carrots and red peppers gave rise to resonance Raman spectra exhibiting a ν1 band at ca. 1520 cm -1, in keeping with its assignment to carotenoids with ca. nine conjugated carboncarbon double bonds in their main chains, whereas the resonance Raman spectrum of saffron showed a ν1 band at 1537 cm -1 which can be assigned to crocetin, having seven conjugated carboncarbon double bonds. A correlation between ν1 wavenumber location and effective conjugated chain length has been used to interpret the data obtained from the shells, and the wavenumber position (1522 cm -1) of the ν1 band of the carotenoid in the orange clam shell suggests that it contains nine conjugated double bonds in the main chain. However, the black periwinkle and nautilus shells exhibit ν1 bands at 1504 and 1496 cm -1, respectively. On the basis of the correlation between ν1 wavenumber location and effective conjugated chain length, this indicates that they contain carotenoids with longer conjugated chains, the former having ca. 11 double bonds and the latter ca. 13 or even more. Raman spectra of the nautilus, periwinkle and clam shells also exhibited a strong band at 1085 cm -1 and a doublet with components at 701 and 705 cm -1, which can be assigned to biogenic calcium carbonate in the aragonite crystallographic form.

  10. Improved predictions of reactor antineutrino spectra

    SciTech Connect

    Mueller, Th. A.; Lhuillier, D.; Letourneau, A.

    2011-05-15

    Precise predictions of the antineutrino spectra emitted by nuclear reactors is a key ingredient in measurements of reactor neutrino oscillations as well as in recent applications to the surveillance of power plants in the context of nonproliferation of nuclear weapons. We report new calculations including the latest information from nuclear databases and a detailed error budget. The first part of this work is the so-called ab initio approach where the total antineutrino spectrum is built from the sum of all {beta} branches of all fission products predicted by an evolution code. Systematic effects and missing information in nuclear databases lead to final relative uncertainties in the 10-20% range. A prediction of the antineutrino spectrum associated with the fission of {sup 238}U is given based on this ab initio method. For the dominant isotopes we developed a more accurate approach combining information from nuclear databases and reference electron spectra associated with the fission of {sup 235}U, {sup 239}Pu, and {sup 241}Pu, measured at Institut Laue-Langevin (ILL) in the 1980s. We show how the anchor point of the measured total {beta} spectra can be used to suppress the uncertainty in nuclear databases while taking advantage of all the information they contain. We provide new reference antineutrino spectra for {sup 235}U, {sup 239}Pu, and {sup 241}Pu isotopes in the 2-8 MeV range. While the shapes of the spectra and their uncertainties are comparable to those of the previous analysis of the ILL data, the normalization is shifted by about +3% on average. In the perspective of the reanalysis of past experiments and direct use of these results by upcoming oscillation experiments, we discuss the various sources of errors and their correlations as well as the corrections induced by off-equilibrium effects.

  11. Discrimination of phytoplankton classes using characteristic spectra of 3D fluorescence spectra

    NASA Astrophysics Data System (ADS)

    Zhang, Qian-Qian; Lei, Shu-He; Wang, Xiu-Lin; Wang, Lei; Zhu, Chen-Jian

    2006-02-01

    The discrimination of phytoplankton classes using the characteristic fluorescence spectra extracted from three-dimensional fluorescence spectra was investigated. Single species cultures of 11 phytoplankton species, representing 5 major phytoplankton divisions, were used. The 3D fluorescence spectra of the cultures grown at different temperatures (20 and 15 °C) and illumination intensities (140, 80 and 30 μM m -2 s -1) were measured and their feature extraction methods were explored. Ordering Rayleigh and Raman scattering data as zero, the obtained excitation-emission matrices were processed by both singular value decomposition (SVD) and trilinear decomposition methods. The resulting first principal component can be regarded as the characteristic spectrum of the original 3D fluorescence spectrum. The analysis shows that such characteristic spectra have a discriminatory capability. At different temperatures, the characteristic spectra of Isochrysis galbana, Platymonas helgolanidica and Skeletonema costatuma have high degrees of similarity to their own species samples, while the spectra similarities of Alexandrium tamarense, Prorocentrum dentatum, Pseudo-nitzschia pungens, Chaetoceros curvisetus, Ch. Debilis, Ch. Didymus and Synechococcus sp. are not as significant as the other three species. C. curvisetus, Ch. Debilis and Ch. Didymus, belonging to genus Chaetoceros, have identical spectra and cannot be discriminated at all. Regarding all six diatom species as one class, the average discriminant error rate is below 9%. It is worth mentioning that the diatom class can be distinguished from A. tamarense and P. dentatum, which belong to Dinophyta.

  12. Raman spectra of deuteriated taurine single crystals

    NASA Astrophysics Data System (ADS)

    Souza, J. M. de; Lima, R. J. C.; Freire, P. T. C.; Sasaki, J. M.; Melo, F. E. A.; Filho, J. Mendes; Jones, Derry W.

    2005-05-01

    The polarized Raman spectra of partially deuteriated taurine [(ND 3+) 0.65(NH 3+) 0.35(CH 2) 2SO 3-] crystals from x( zz) x and x( zy) x scattering geometries of the A g and B g irreducible representations of the factor group C 2h are reported. The temperature-dependent Raman spectra of partially deuteriated taurine do not reveal any evidence of the structural phase transition undergone by normal taurine at about 250 K, but an anomaly observed in the 180 cm -1 band at ˜120 K implies a different dynamic for this band (which is involved in a pressure-induced phase transition) in the deuteriated crystal.

  13. Measurement and interpretation of plutonium spectra

    SciTech Connect

    Blaise, J.; Fred, M.S.; Carnall, W.T.; Crosswhite, H.M.; Crosswhite, H.

    1982-01-01

    The atomic spectroscopic data available for plutonium are among the rickest of any in the periodic system. They include high-resolution grating and Fourier-transform spectra as well as extensive Zeeman and isotope-shift studies. We summarize the present status of the term analysis and cite the configurations that have been identified. A least-squares adjustment of a parametric Hamiltonian for configurations of both Pu I and Pu II has shown that almost all of the expected low levels are now known. The use of a model Hamiltonian applicable to both lanthanide and actinide atomic species has been applied to the low configurations of Pu I and Pu II making use of trends predicted by ab initio calculations. This same model has been used to describe the energy levels of Pu/sup 3 +/ in LaCl/sub 3/, and an extension has permitted preliminary calculations of the spectra of other valence states.

  14. Creating semiconductor metafilms with designer absorption spectra

    PubMed Central

    Kim, Soo Jin; Fan, Pengyu; Kang, Ju-Hyung; Brongersma, Mark L.

    2015-01-01

    The optical properties of semiconductors are typically considered intrinsic and fixed. Here we leverage the rapid developments in the field of optical metamaterials to create ultrathin semiconductor metafilms with designer absorption spectra. We show how such metafilms can be constructed by placing one or more types of high-index semiconductor antennas into a dense array with subwavelength spacings. It is argued that the large absorption cross-section of semiconductor antennas and their weak near-field coupling open a unique opportunity to create strongly absorbing metafilms whose spectral absorption properties directly reflect those of the individual antennas. Using experiments and simulations, we demonstrate that near-unity absorption at one or more target wavelengths of interest can be achieved in a sub-50-nm-thick metafilm using judiciously sized and spaced Ge nanobeams. The ability to create semiconductor metafilms with custom absorption spectra opens up new design strategies for planar optoelectronic devices and solar cells. PMID:26184335

  15. Specific heat spectra for quasiperiodic ladder sequences

    NASA Astrophysics Data System (ADS)

    Moreira, D. A.; Albuquerque, E. L.; Bezerra, C. G.

    2006-12-01

    We performed a theoretical study of the specific heat C(T) as a function of the temperature for double-strand quasiperiodic sequences. To mimic DNA molecules, the sequences are made up from the nucleotides guanine G, adenine A, cytosine C and thymine T, arranged according to the Fibonacci and Rudin-Shapiro quasiperiodic sequences. The energy spectra are calculated using the two-dimensional Schrödinger equation, in a tight-binding approximation, with the on-site energy exhibiting long-range disorder and non-random hopping amplitudes. We compare the specific heat features of these quasiperiodic artificial sequences to the spectra considering a segment of the first sequenced human chromosome 22 (Ch22), a real genomic DNA sequence.

  16. Energy spectra in elasto-inertial turbulence

    NASA Astrophysics Data System (ADS)

    Valente, P. C.; da Silva, C. B.; Pinho, F. T.

    2016-07-01

    Direct numerical simulations of statistically steady homogeneous isotropic turbulence in viscoelastic fluids described by the FENE-P model are presented. Emphasis is given to large polymer relaxation times compared to the eddy turnover time, which is a regime recently termed elasto-inertial turbulence. In this regime the polymers are ineffective in dissipating kinetic energy but they play a lead role in transferring kinetic energy to the small solvent scales which turns out to be concomitant with the depletion of the usual non-linear energy cascade. However, we show that the non-linear interactions are still highly active, but they lead to no net downscale energy transfer because the forward and reversed energy cascades are nearly balanced. Finally, we show that the tendency for a steeper elasto-inertial power-law spectra is reversed for large polymer relaxation times and the spectra tend towards the usual k-5/3 functional form.

  17. Origin of electron spectra and its characteristics

    NASA Astrophysics Data System (ADS)

    Mineev, Yu. V.

    This work presents the data on differential energy spectra of cosmic electrons with energies 0.1-6.0 MeV from the Pioneer-8-11, Prognoz-4-10, IMP-6,7,8, and Intercosmos-19 (polar cap measurements) spacecraft during 1975-1998. Some different sources of energetic electron are discussed. Analysis of the spectra permits a conclusion about a preferential contribution of galactic, solar and Jupiterian sources, depending on energies and on time of measurements. The dependencies of the sign and values of north-south asymmetry on the sector structure of the interplanetary magnetic field are obtained. The asymmetry sign and the size of cosmic electron fluxes for the above energies are compared with the earlier data in the high and low electron energy ranges for solar cycles 21-22.

  18. Neutron Spectra in a 15 MV LINAC

    SciTech Connect

    Vega-Carrillo, H. R.; Chu, Wei-Han; Tung, Chuan-Jong; Lan, Jen-Hong

    2010-12-07

    Neutron spectra were calculated inside the treatment hall of a 15 MV LINAC, calculations were carried out using Monte Carlo methods. With a Bonner sphere spectrometer with pairs of thermoluminiscent dosimeters the neutron spectrum at 100 cm from the isocenter was measured and compared with the calculated spectrum. All the spectra in the treatment hall show the presence of evaporation and knock-on neutrons; also the room-return due to the hall features is shown. In the maze the large contribution are due to epithermal and thermal neutrons. A good agreement between the calculated and measured spectrum at 100 cm was noticed, from this comparison the differences are attributed to the water content in the concrete of the hall.

  19. 8- to 13-micron spectra of asteroids

    NASA Astrophysics Data System (ADS)

    Green, S. F.; Eaton, N.; Aitken, D. K.; Roche, P. F.; Meadows, A. J.

    1985-05-01

    It is pointed out that thermal emission from asteroids reaches a maximum in the 10- to 20-micron region. In connection with the present investigation, a uniform set of spectra was obtained in the 8- to 13-micron region for 12 asteroids (together with additional observations of 19 Fortuna). These spectra provide a potentially valuable data set for future use (e.g., with IRAS data). The main conclusion from the obtained results is that diagnostic emission features of the type observed by Feierberg et al. (1983) are not common in C- and M-type asteroids. Optical studies of 19 Fortuna do not reveal any unusual properties which distinguish it from other C-type asteroids observed.

  20. Creating semiconductor metafilms with designer absorption spectra

    NASA Astrophysics Data System (ADS)

    Kim, Soo Jin; Fan, Pengyu; Kang, Ju-Hyung; Brongersma, Mark L.

    2015-07-01

    The optical properties of semiconductors are typically considered intrinsic and fixed. Here we leverage the rapid developments in the field of optical metamaterials to create ultrathin semiconductor metafilms with designer absorption spectra. We show how such metafilms can be constructed by placing one or more types of high-index semiconductor antennas into a dense array with subwavelength spacings. It is argued that the large absorption cross-section of semiconductor antennas and their weak near-field coupling open a unique opportunity to create strongly absorbing metafilms whose spectral absorption properties directly reflect those of the individual antennas. Using experiments and simulations, we demonstrate that near-unity absorption at one or more target wavelengths of interest can be achieved in a sub-50-nm-thick metafilm using judiciously sized and spaced Ge nanobeams. The ability to create semiconductor metafilms with custom absorption spectra opens up new design strategies for planar optoelectronic devices and solar cells.

  1. Creating semiconductor metafilms with designer absorption spectra.

    PubMed

    Kim, Soo Jin; Fan, Pengyu; Kang, Ju-Hyung; Brongersma, Mark L

    2015-01-01

    The optical properties of semiconductors are typically considered intrinsic and fixed. Here we leverage the rapid developments in the field of optical metamaterials to create ultrathin semiconductor metafilms with designer absorption spectra. We show how such metafilms can be constructed by placing one or more types of high-index semiconductor antennas into a dense array with subwavelength spacings. It is argued that the large absorption cross-section of semiconductor antennas and their weak near-field coupling open a unique opportunity to create strongly absorbing metafilms whose spectral absorption properties directly reflect those of the individual antennas. Using experiments and simulations, we demonstrate that near-unity absorption at one or more target wavelengths of interest can be achieved in a sub-50-nm-thick metafilm using judiciously sized and spaced Ge nanobeams. The ability to create semiconductor metafilms with custom absorption spectra opens up new design strategies for planar optoelectronic devices and solar cells. PMID:26184335

  2. Sulphur compounds in cometary IUE spectra

    NASA Technical Reports Server (NTRS)

    Krishna Swamy, K. S.; Wallis, M. K.

    1987-01-01

    From a study of cometary IUE spectra, a tentative identification of bands of the B-X systems of the SO molecule in the comet IRAS-Araki-Alcock in the 2200-2400 A region is reported, and it is suggested that sulphur compounds are more prevalent in comets than has been previously realized. S(+) and possibly SH are evident in comet Halley spectra, and new bands in the (A-X) system of CS and the (B-X) system of S2 are identified. The present results throw doubts on previous assessments of dust abundances from scattered continua in the 2900-3000 A region. The relatively strong abundance of S2 compared to OH in the Cernis and Bowell comets suggests that S2 is not well mixed and is not bound in H2O-ice.

  3. Characteristics of magnetospheric radio noise spectra

    NASA Technical Reports Server (NTRS)

    Herman, J. R.

    1976-01-01

    Magnetospheric radio noise spectra (30 kHz to 10 MHz) taken by IMP-6 and RAE-2 exhibit time-varying characteristics which are related to spacecraft position and magnetospheric processes. In the mid-frequency range (100-1,000 kHz) intense noise peaks rise by a factor of 100 or more above background; 80% of the peak frequencies are within the band 125 kHz to 600 kHz, and the peak occurs most often (18% of the time) at 280 kHz. This intense mid-frequency noise has been detected at radial distances from 1.3 Re to 60 Re on all sides of the Earth during magnetically quiet as well as disturbed periods. Maximum occurrence of the mid-frequency noise is in the evening to midnight hours where splash-type energetic particle precipitation takes place. ""Magnetospheric lightning'' can be invoked to explain the spectral shape of the observed spectra.

  4. Analysis of spectra using correlation functions

    NASA Technical Reports Server (NTRS)

    Beer, Reinhard; Norton, Robert H.

    1988-01-01

    A novel method is presented for the quantitative analysis of spectra based on the properties of the cross correlation between a real spectrum and either a numerical synthesis or laboratory simulation. A new goodness-of-fit criterion called the heteromorphic coefficient H is proposed that has the property of being zero when a fit is achieved and varying smoothly through zero as the iteration proceeds, providing a powerful tool for automatic or near-automatic analysis. It is also shown that H can be rendered substantially noise-immune, permitting the analysis of very weak spectra well below the apparent noise level and, as a byproduct, providing Doppler shift and radial velocity information with excellent precision. The technique is in regular use in the Atmospheric Trace Molecule Spectroscopy (ATMOS) project and operates in an interactive, realtime computing environment with turn-around times of a few seconds or less.

  5. Bone densitometry using x-ray spectra

    NASA Astrophysics Data System (ADS)

    Krmar, M.; Shukla, S.; Ganezer, K.

    2010-10-01

    In contrast to the two distinct energy regions that are involved in dual-energy x-ray absorptiometry for bone densitometry, the complete spectrum of a beam transmitted through two layers of different materials is utilized in this study to calculate the areal density of each material. Test objects constructed from aluminum and Plexiglas were used to simulate cortical bone and soft tissue, respectively. Solid-state HPGe (high-purity germanium) detectors provided high-resolution x-ray spectra over an energy range of approximately 20-80 keV. Areal densities were obtained from spectra using two methods: a system of equations for two spectral regions and a nonlinear fit of the entire spectrum. Good agreement with the known areal densities of aluminum was obtained over a wide range of PMMA thicknesses. The spectral method presented here can be used to decrease beam hardening at a small number of bodily points selected for examination.

  6. Primordial power spectra from anisotropic inflation

    SciTech Connect

    Dulaney, Timothy R.; Gresham, Moira I.

    2010-05-15

    We examine cosmological perturbations in a dynamical theory of inflation in which an Abelian gauge field couples directly to the inflaton, breaking conformal invariance. When the coupling between the gauge field and the inflaton takes a specific form, inflation becomes anisotropic and anisotropy can persist throughout inflation, avoiding Wald's no-hair theorem. After discussing scenarios in which anisotropy can persist during inflation, we calculate the dominant effects of a small persistent anisotropy on the primordial gravitational wave and curvature perturbation power spectra using the ''in-in'' formalism of perturbation theory. We find that the primordial power spectra of cosmological perturbations gain significant direction dependence and that the fractional direction dependence of the tensor power spectrum is suppressed in comparison to that of the scalar power spectrum.

  7. Raman spectra of shocked minerals. I - Olivine

    NASA Technical Reports Server (NTRS)

    Heymann, D.; Celucci, T. A.

    1988-01-01

    The Raman spectra of olivine contained in a chip of the Twin Sisters Peak (Washington) dunite shocked to 22.2 GPa is shown to be identical to that of unshocked olivine in the same rock. The Raman spectra of powder of the rock shocked to 20.1 GPa and of chips shocked to 59.5 GPa and 60.7 GPa display strong and broad low-frequency features with crests at 475/cm, 556/cm, and 572/cm, and broad high-frequency features near 1100/cm. It is suggested that these features are due to the formation of olivine glass with a considerable degree of three-dimensional Si-O-Si linkage having scattered domains of greatly variable grain size, internal structure, and chemical composition.

  8. Automated analysis of slitless spectra - Stars

    NASA Astrophysics Data System (ADS)

    Beauchemin, M.; Borra, E. F.; Levesque, S.

    1991-09-01

    The stellar spectral classification that can be achieved with very low-dispersion spectroscopy is examined. Several methods are applied to slitless spectra taken from the automated grens plates analysis project undertaken at Laval University. It is suggested that an accuracy in B - V of about 0.1 mag at B approximating 19 for stars bluer than B - V below 0.8 mag or better for redder stars can be obtained by probing the continuum. Results from DDO-like photometry show that grens data behave similarly to the Gunn and Stryker library of standard stars for many indices. Results of multivariate analysis are coherent with the stellar spectral classification and provide a powerful and objective means of cataloging spectra of the same spectral shape.

  9. Inflation and alternatives with blue tensor spectra

    SciTech Connect

    Wang, Yi; Xue, Wei E-mail: wei.xue@sissa.it

    2014-10-01

    We study the tilt of the primordial gravitational waves spectrum. A hint of blue tilt is shown from analyzing the BICEP2 and POLARBEAR data. Motivated by this, we explore the possibilities of blue tensor spectra from the very early universe cosmology models, including null energy condition violating inflation, inflation with general initial conditions, and string gas cosmology, etc. For the simplest G-inflation, blue tensor spectrum also implies blue scalar spectrum. In general, the inflation models with blue tensor spectra indicate large non-Gaussianities. On the other hand, string gas cosmology predicts blue tensor spectrum with highly Gaussian fluctuations. If further experiments do confirm the blue tensor spectrum, non-Gaussianity becomes a distinguishing test between inflation and alternatives.

  10. Knowledge Discovery in Mega-Spectra Archives

    NASA Astrophysics Data System (ADS)

    Škoda, P.; Bromová, P.; Lopatovsk'y, L.; Palička, A.; Vávzný, J.

    2015-09-01

    The recent progress of astronomical instrumentation resulted in the construction of multi-object spectrographs with hundreds to thousands of micro-slits or optical fibres allowing the acquisition of tens of thousands of spectra of celestial objects per observing night. Currently there are two spectroscopic surveys containing millions of spectra. These surveys are being processed by automatic pipelines, spectrum by spectrum, in order to estimate physical parameters of individual objects resulting in extensive catalogues, used typically to construct the better models of space-kinematic structure and evolution of the Universe or its subsystems. Such surveys are, however, very good source of homogenised, pre-processed data for application of machine learning techniques common in Astroinformatics. We present challenges of knowledge discovery in such surveys as well as practical examples of machine learning based on specific shapes of spectral features used in searching for new candidates of interesting astronomical objects, namely Be and B[e] stars and quasars.

  11. Ab initio infrared and Raman spectra

    NASA Technical Reports Server (NTRS)

    Fredkin, D. R.; White, S. R.; Wilson, K. R.; Komornicki, A.

    1983-01-01

    It is pointed out that with increased computer power and improved computational techniques, such as the gradients developed in recent years, it is becoming practical to compute spectra ab initio, from the fundamental constants of nature, for systems of increasing complexity. The present investigation has the objective to explore several possible ab initio approaches to spectra, giving particular attention to infrared and nonresonance Raman. Two approaches are discussed. The sequential approach, in which first the electronic part and then later the nuclear part of the Born-Oppenheimer approximation is solved, is appropriate for small systems. The simultaneous approach, in which the electronic and nuclear parts are solved at the same time, is more appropriate for many-atom systems. A review of the newer quantum gradient techniques is provided, and the infrared and Raman spectral band contours for the water molecule are computed.

  12. Optical spectra of FLASH generated plasmas

    NASA Astrophysics Data System (ADS)

    Stránský, M.; Rohlena, Karel

    2014-05-01

    Time integrated measurements of optical spectra of the plasma generated by pulses of the free electron laser facility FLASH on a solid target at DESY Hamburg are interpreted in terms of plasma hydrodynamics. It is shown that the main contribution to the optical range comes from the expanding stage of the plasma evolution on a ns scale, whereas the UV part is partially obscured by the optically dense outstreaming plasma near the ablated hole.

  13. The Zeeman effect in stellar spectra

    NASA Astrophysics Data System (ADS)

    Romanyuk, I. I.

    A short biography of Pieter Zeeman is presented. The main formulae for the normal, anomalous, quadratic Zeeman effects and Paschen-Back effect are given. Instrumentation for Zeeman effect measurements in stellar spectra is described, the most important scientific achievements in magnetic stars investigations with the world's largest telescopes for 50 years are demonstrated. The devices for magnetic measurements made at SAO and the main results of stellar magnetic observations obtained with the 6 m telescope are described in detail.

  14. Nebular spectra of pair-instability supernovae

    NASA Astrophysics Data System (ADS)

    Jerkstrand, A.; Smartt, S. J.; Heger, A.

    2016-01-01

    If very massive stars (M ≳ 100 M⊙) can form and avoid too strong mass-loss during their evolution, they are predicted to explode as pair-instability supernovae (PISNe). One critical test for candidate events is whether their nucleosynthesis yields and internal ejecta structure, being revealed through nebular-phase spectra at t ≳ 1 yr, match those of model predictions. Here, we compute theoretical spectra based on model PISN ejecta at 1-3 yr post-explosion to allow quantitative comparison with observations. The high column densities of PISNe lead to complete gamma-ray trapping for t ≳ 2 yr which, combined with fulfilled conditions of steady state, leads to bolometric supernova luminosities matching the 56Co decay. Most of the gamma-rays are absorbed by the deep-lying iron and silicon/sulphur layers. The ionization balance shows a predominantly neutral gas state, which leads to emission lines of Fe I, Si I, and S I. For low-mass PISNe, the metal core expands slowly enough to produce a forest of distinct lines, whereas high-mass PISNe expand faster and produce more featureless spectra. Line blocking is complete below ˜5000 Å for several years, and the model spectra are red. The strongest line is typically [Ca II] λλ7291, 7323, one of few lines from ionized species. We compare our models with proposed PISN candidates SN 2007bi and PTF12dam, finding discrepancies for several key observables and thus no support for a PISN interpretation. We discuss distinct spectral features predicted by the models, and the possibility of detecting pair-instability explosions among non-superluminous supernovae.

  15. Surface Electronic Spectra Detected by Atomic Desorption

    SciTech Connect

    Joly, Alan G.; Beck, Kenneth M.; Henyk, Matthias; Hess, Wayne P.; Sushko, Petr V.; Shluger, Alexander L.

    2003-10-10

    Using continuously tunable laser excitation of KI we measure the velocity profiles and the yield of desorbing hyperthermal iodine atoms as a function of photon energy. Based on the theoretical model of desorption we demonstrate that these spectra display a signature of a surface exciton and constitute a new sensitive method of surface specific desorption spectroscopy. Our results demonstrate that creation of surface excitions can be a much more general phenomenon than was previously thought based on extant spectroscopic measurements.

  16. Understanding the baryon and meson spectra

    SciTech Connect

    Pennington, Michael R.

    2013-10-01

    A brief overview is given of what we know of the baryon and meson spectra, with a focus on what are the key internal degrees of freedom and how these relate to strong coupling QCD. The challenges, experimental, theoretical and phenomenological, for the future are outlined, with particular reference to a program at Jefferson Lab to extract hadronic states in which glue unambiguously contributes to their quantum numbers.

  17. Dynamical analysis of highly excited molecular spectra

    SciTech Connect

    Kellman, M.E.

    1993-12-01

    The goal of this program is new methods for analysis of spectra and dynamics of highly excited vibrational states of molecules. In these systems, strong mode coupling and anharmonicity give rise to complicated classical dynamics, and make the simple normal modes analysis unsatisfactory. New methods of spectral analysis, pattern recognition, and assignment are sought using techniques of nonlinear dynamics including bifurcation theory, phase space classification, and quantization of phase space structures. The emphasis is chaotic systems and systems with many degrees of freedom.

  18. HET Spectra of Three Recent Extragalactic Novae

    NASA Astrophysics Data System (ADS)

    Shafter, A. W.; Coelho, E. A.; Misselt, K. A.; Bode, M. F.; Darnley, M. J.; Quimby, R.

    2006-10-01

    We report optical spectroscopic observations (4280Å - 7280Å) obtained with the HET of three extragalactic novae: Nova M31 2006 No. 9 (ATEL #887), Nova M32 2006 No. 1 (CBET #591), and Nova M33 2006 No. 1 (CBET #655). The spectra were obtained on 24 Sep 2006 UT, 30 Sep 2006 UT, and 02 Oct 2006 UT, corresponding to approximately 6, 65, and 4 days post discovery, for the three novae respectively.

  19. Reanalysis of Tyrannosaurus rex Mass Spectra.

    PubMed

    Bern, Marshall; Phinney, Brett S; Goldberg, David

    2009-09-01

    Asara et al. reported the detection of collagen peptides in a 68-million-year-old Tyrannosaurus rex bone by shotgun proteomics. This finding has been called into question as a possible statistical artifact. We reanalyze Asara et al.'s tandem mass spectra using a different search engine and different statistical tools. Our reanalysis shows a sample containing common laboratory contaminants, soil bacteria, and bird-like hemoglobin and collagen. PMID:19603827

  20. Quasar X-Ray Spectra Revisited: Erratum

    NASA Astrophysics Data System (ADS)

    Shastri, P.; Wilkes, B. J.; Elvis, M.; McDowell, J.

    1994-08-01

    In the paper "Quasar X-Ray Spectra Revisited " by P. Shastri, B. J. Wilkes, M. Elvis, and J. McDowell (ApJ, 410,29 [1993]), there is an error in the flux density levels in Figures 4a and 4b. As a result of an error during rebinning of the optical spectrophotometry data, the flux density levels in those two figures are a factor of 5 lower then their actual value.

  1. Dose spectra from energetic particles and neutrons

    NASA Astrophysics Data System (ADS)

    Schwadron, Nathan; Bancroft, Chris; Bloser, Peter; Legere, Jason; Ryan, James; Smith, Sonya; Spence, Harlan; Mazur, Joe; Zeitlin, Cary

    2013-10-01

    spectra from energetic particles and neutrons (DoSEN) are an early-stage space technology research project that combines two advanced complementary radiation detection concepts with fundamental advantages over traditional dosimetry. DoSEN measures not only the energy but also the charge distribution (including neutrons) of energetic particles that affect human (and robotic) health in a way not presently possible with current dosimeters. For heavy ions and protons, DoSEN provides a direct measurement of the lineal energy transfer (LET) spectra behind shielding material. For LET measurements, DoSEN contains stacks of thin-thick Si detectors similar in design to those used for the Cosmic Ray Telescope for the Effects of Radiation. With LET spectra, we can now directly break down the observed spectrum of radiation into its constituent heavy-ion components and through biologically based quality factors that provide not only doses and dose rates but also dose equivalents, associated rates, and even organ doses. DoSEN also measures neutrons from 10 to 100 MeV, which requires enough sensitive mass to fully absorb recoil particles that the neutrons produce. DoSEN develops the new concept of combining these independent measurements and using the coincidence of LET measurements and neutron detection to significantly reduce backgrounds in each measurement. The background suppression through the use of coincidence allows for significant reductions in size, mass, and power needed to provide measurements of dose, neutron dose, dose equivalents, LET spectra, and organ doses. Thus, we introduce the DoSEN concept: a promising low-mass instrument that detects the full spectrum of energetic particles, heavy ions, and neutrons to determine biological impact of radiation in space.

  2. Ultraviolet spectra of R Coronae Borealis stars

    NASA Technical Reports Server (NTRS)

    Holm, A. V.; Wu, C. C.

    1982-01-01

    An analysis of the International Ultraviolet Explorer spectra of the R CrB-type variables R CrB, RY Sgr, XX Cam, and MV Sgr suggests that: (1) it should be possible to construct useful models for the atmospheres of these hydrogen deficient, carbon rich stars if present standards of metallic line blanketing are used; and (2) the observed wavelength dependence of the circumstellar extinction is primarily due to circumstellar grains.

  3. Analysis of positron lifetime spectra in polymers

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Mall, Gerald H.; Sprinkle, Danny R.

    1988-01-01

    A new procedure for analyzing multicomponent positron lifetime spectra in polymers was developed. It requires initial estimates of the lifetimes and the intensities of various components, which are readily obtainable by a standard spectrum stripping process. These initial estimates, after convolution with the timing system resolution function, are then used as the inputs for a nonlinear least squares analysis to compute the estimates that conform to a global error minimization criterion. The convolution integral uses the full experimental resolution function, in contrast to the previous studies where analytical approximations of it were utilized. These concepts were incorporated into a generalized Computer Program for Analyzing Positron Lifetime Spectra (PAPLS) in polymers. Its validity was tested using several artificially generated data sets. These data sets were also analyzed using the widely used POSITRONFIT program. In almost all cases, the PAPLS program gives closer fit to the input values. The new procedure was applied to the analysis of several lifetime spectra measured in metal ion containing Epon-828 samples. The results are described.

  4. Deconvolution of spectra for intimate mixtures

    NASA Technical Reports Server (NTRS)

    Mustard, John F.; Pieters, Carle M.; Pratt, Stephen F.

    1987-01-01

    Visible to near infrared reflectance spectra of macroscopic mixtures have been shown to be linear combinations of the reflections of the pure mineral components in the mixture. However, for microscopic mixtures the mixing systematics are in general nonlinear. The systematics may be linearized by conversion of reflectance to single scattering albedo (w), where the equations which relate reflectance to w depend on the method of data collection. Several proposed mixing models may be used to estimate mineral abundances from the reflectance spectra of intimate mixtures. These models are summarized and a revised model is presented. A noniterative (linear) least squares approach was used for curve fitting and the data, measured as bi-directional reflectance with incidence and emergence angles of 30 and 0 deg were converted to w by a simplified version of Hapke's equation for bi-directional reflectance. This model was tested with two mixture series composed of 45 to 75 micron particles: an anorthite-enstatite series and an olivine-magnetite series. The data indicate that the simplified Hapke's equation may be used to convolve reflectance spectra into mineral abundances if appropriate endmembers are known or derived from other techniques. For surfaces that contain a significant component of very low albedo material, a somewhat modified version of this technique will need to be developed. Since the abundances are calculated using a noniterative approach, the application of this method is especially efficient for large spectral data sets, such as those produced by mapping spectrometers.

  5. Infrared spectra of substituted polycylic aromatic hydrocarbons

    NASA Technical Reports Server (NTRS)

    Langhoff, S. R.; Bauschlicher, C. W. Jr; Hudgins, D. M.; Sandford, S. A.; Allamandola, L. J.

    1998-01-01

    Calculations are carried out using density functional theory (DFT) to determine the harmonic frequencies and intensities of 1-methylanthracene, 9-methylanthracene, 9-cyanoanthracene, 2-aminoanthracene, acridine, and their positive ions. The theoretical data are compared with matrix-isolation spectra for these species also reported in this work. The theoretical and experimental frequencies and relative intensities for the neutral species are in generally good agreement, whereas the positive ion spectra are only in qualitative agreement. Relative to anthracene, we find that substitution of a methyl or CN for a hydrogen does not significantly affect the spectrum other than to add the characteristic methyl C-H and C triple bond N stretches near 2900 and 2200 cm-1, respectively. However, addition of NH2 dramatically affects the spectrum of the neutral. Not only are the NH2 modes themselves strong, but this electron-withdrawing group induces sufficient partial charge on the ring to give the neutral molecule spectra characteristics of the anthracene cation. The sum of the absolute intensities is about four times larger for 2-aminoanthracene than those for 9-cyanoanthracene. Substituting nitrogen in the ring at the nine position (acridine) does not greatly alter the spectrum compared with anthracene.

  6. IRAS Low Resolution Spectra of Asteroids

    NASA Technical Reports Server (NTRS)

    Cohen, Martin; Walker, Russell G.

    2002-01-01

    Optical/near-infrared studies of asteroids are based on reflected sunlight and surface albedo variations create broad spectral features, suggestive of families of materials. There is a significant literature on these features, but there is very little work in the thermal infrared that directly probes the materials emitting on the surfaces of asteroids. We have searched for and extracted 534 thermal spectra of 245 asteroids from the original Dutch (Groningen) archive of spectra observed by the IRAS Low Resolution Spectrometer (LRS). We find that, in general, the observed shapes of the spectral continua are inconsistent with that predicted by the standard thermal model used by IRAS. Thermal models such as proposed by Harris (1998) and Harris et al.(1998) for the near-earth asteroids with the "beaming parameter" in the range of 1.0 to 1.2 best represent the observed spectral shapes. This implies that the IRAS Minor Planet Survey (IMPS, Tedesco, 1992) and the Supplementary IMPS (SIMPS, Tedesco, et al., 2002) derived asteroid diameters are systematically underestimated, and the albedos are overestimated. We have tentatively identified several spectral features that appear to be diagnostic of at least families of materials. The variation of spectral features with taxonomic class hints that thermal infrared spectra can be a valuable tool for taxonomic classification of asteroids.

  7. Meteor spectra in the EDMOND database

    NASA Astrophysics Data System (ADS)

    Koukal, J.; Gorková, S.; Srba, J.; Ferus, M.; Civiš, S.; di Pietro, C. A.

    2015-01-01

    We present a selection of five interesting meteor spectra obtained in the years 2014 and 2015 via CCTV video systems with a holographic grating, working in CEMENT and BRAMON meteor observation networks. Based on the EDMOND multi stations video meteor trajectory data an orbital classification of these meteors was performed. Selected meteors are members of the LYR, SPE, DSA and LVI meteor streams, one meteor is classified as sporadic background (SPO). In calibrated spectra the main chemical components were identified. Meteors are chemically classified based on relative intensities of the main spectral lines (or multiplets): Mg I (2), Na I (1), and Fe I (15). Bolide EN091214 is linked with the 23rd meteorite with known orbit (informally known as "Žďár"), two fragments of the parent body were found in the Czech Republic so far (August, 2015). For this particular event a time resolved spectral observation and comparison with laboratory spectra of LL3.2 chondritic meteorite are presented.

  8. Soil emissivity and reflectance spectra measurements.

    PubMed

    Sobrino, José A; Mattar, Cristian; Pardo, Pablo; Jiménez-Muñoz, Juan C; Hook, Simon J; Baldridge, Alice; Ibañez, Rafael

    2009-07-01

    We present an analysis of the laboratory reflectance and emissivity spectra of 11 soil samples collected on different field campaigns carried out over a diverse suite of test sites in Europe, North Africa, and South America from 2002 to 2008. Hemispherical reflectance spectra were measured from 2.0 to 14 microm with a Fourier transform infrared spectrometer, and x-ray diffraction analysis (XRD) was used to determine the mineralogical phases of the soil samples. Emissivity spectra were obtained from the hemispherical reflectance measurements using Kirchhoff's law and compared with in situ radiance measurements obtained with a CIMEL Electronique CE312-2 thermal radiometer and converted to emissivity using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) temperature and emissivity separation algorithm. The CIMEL has five narrow bands at approximately the same positions as the ASTER. Results show a root mean square error typically below 0.015 between laboratory emissivity measurements and emissivity measurements derived from the field radiometer. PMID:19571921

  9. Low Temperature Reflectance Spectra of Titan Tholins

    NASA Technical Reports Server (NTRS)

    Roush, T. L.; Dalton, J. B.; Fonda, Mark (Technical Monitor)

    2001-01-01

    Compositional interpretation of remotely obtained reflectance spectra of outer solar system surfaces is achieved by a variety of methods. These include matching spectral curves, matching spectral features, quantitative spectral interpretation, and theoretical modeling of spectra. All of these approaches rely upon laboratory measurements of one kind or another. The bulk of these laboratory measurements are obtained with the sample of interest at ambient temperatures and pressures. However, surface temperatures of planets, satellites, and asteroids in the outer solar system are significantly cooler than ambient laboratory conditions on Earth. The infrared spectra of many materials change as a function of temperature. As has been recently demonstrated it is important to assess what effects colder temperatures have on spectral properties and hence, compositional interpretations. Titan tholin is a solid residue created by energetic processing of H-, C-, and N-bearing gases. Such residues can also be created by energetic processing if the gases are condensed into ices. Titan tholin has been suggested as a coloring agent for several surfaces in the outer solar system. Here we report laboratory measurements of Titan tholin at a temperature of 100 K and compare these to measurements of the same sample near room temperature. At low temperature the absorption features beyond 1 micrometer narrow slightly. At wavelengths greater than approx. 0.8 micrometer the overall reflectance of the sample decreases slightly making the sample less red at low temperatures. We will discuss the implications of the laboratory measurements for interpretation of cold outer solar system surfaces.

  10. VARIABILITY IN OPTICAL SPECTRA OF {epsilon} ORIONIS

    SciTech Connect

    Thompson, Gregory B.; Morrison, Nancy D. E-mail: nmorris@utnet.utoledo.edu

    2013-04-15

    We present the results of a time series analysis of 130 echelle spectra of {epsilon} Ori (B0 Ia), acquired over seven observing seasons between 1998 and 2006 at Ritter Observatory. The equivalent widths of H{alpha} (net) and He I {lambda}5876 were measured and radial velocities were obtained from the central absorption of He I {lambda}5876. Temporal variance spectra (TVS) revealed significant wind variability in both H{alpha} and He I {lambda}5876. The He I TVS have a double-peaked profile consistent with radial velocity oscillations. A periodicity search was carried out on the equivalent width and radial velocity data, as well as on wavelength-binned spectra. This analysis has revealed several periods in the variability with timescales of two to seven days. Many of these periods exhibit sinusoidal modulation in the associated phase diagrams. Several of these periods were present in both H{alpha} and He I, indicating a possible connection between the wind and the photosphere. Due to the harmonic nature of these periods, stellar pulsations may be the origin of some of the observed variability. Periods on the order of the rotational period were also detected in the He I line in the 1998-1999 season and in both lines during the 2004-2005 season. These periods may indicate rotational modulation due to structure in the wind.

  11. Soil emissivity and reflectance spectra measurements

    SciTech Connect

    Sobrino, Jose A.; Mattar, Cristian; Pardo, Pablo; Jimenez-Munoz, Juan C.; Hook, Simon J.; Baldridge, Alice; Ibanez, Rafael

    2009-07-01

    We present an analysis of the laboratory reflectance and emissivity spectra of 11 soil samples collected on different field campaigns carried out over a diverse suite of test sites in Europe, North Africa, and South America from 2002 to 2008. Hemispherical reflectance spectra were measured from 2.0 to 14 {mu}m with a Fourier transform infrared spectrometer, and x-ray diffraction analysis (XRD) was used to determine the mineralogical phases of the soil samples. Emissivity spectra were obtained from the hemispherical reflectance measurements using Kirchhoff's law and compared with in situ radiance measurements obtained with a CIMEL Electronique CE312-2 thermal radiometer and converted to emissivity using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) temperature and emissivity separation algorithm. The CIMEL has five narrow bands at approximately the same positions as the ASTER. Results show a root mean square error typically below 0.015 between laboratory emissivity measurements and emissivity measurements derived from the field radiometer.

  12. Optical spectra analysis for breast cancer diagnostics

    NASA Astrophysics Data System (ADS)

    Belkov, S. A.; Kochemasov, G. G.; Lyubynskaya, T. E.; Maslov, N. V.; Nuzhny, A. S.; da Silva, L. B.; Rubenchik, A.

    2011-11-01

    Minimally invasive probe and optical biopsy system based on optical spectra recording and analysis seem to be a promising tool for early diagnostics of breast cancer. Light scattering and absorption spectra are generated continuously as far as the needle-like probe with one emitting and several collecting optical fibers penetrates through the tissues toward to the suspicious area. That allows analyzing not only the state of local site, but also the structure of tissues along the needle trace. The suggested method has the advantages of automated on-line diagnosing and minimal tissue destruction and in parallel with the conventional diagnostic procedures provides the ground for decision-making. 165 medical trials were completed in Nizhny Novgorod Regional Oncology Centre, Russia. Independent diagnoses were the results of fine biopsy and histology. Application of wavelet expansion and clasterization techniques for spectra analysis revealed several main spectral types for malignant and benign tumors. Automatic classification algorithm demonstrated specificity ˜90% and sensitivity ˜91%. Large amount of information, fuzziness in criteria and data noisiness make neural networks to be an attractive analytic tool. The model based on three-layer perceptron was tested over the sample of 29 `cancer' and 29 `non-cancer' cases and demonstrated total separation.

  13. Island shadows in wave directional spectra

    NASA Astrophysics Data System (ADS)

    Pawka, S. S.

    1983-03-01

    Shadows of individual islands are observed in directional spectra sampled with a high resolution linear array at Torrey Pines Beach, California. A detailed investigation of the spectra indicates that the Channel Islands restrict the wave energy density to certain narrow directional sectors. A deep spectral trough, associated with San Clemente Island, is a predominant feature in the well resolved spectra (wave frequencies ˜0.06-0.15 Hz). Negligible values of energy density in the center of this directional `gap' were consistently observed in the range 0.082-0.114 Hz. Measurable but low gap energy density values are seen in the high and low frequency regimes. Generation of high frequency waves (f≥0.13 Hz) by local winds generally smears the island windowing effects and even creates a spectral peak in a directional sector which is blocked from deep ocean exposure. Several estimation techniques are used in the directional spectrum analysis. These include the Maximum Likelihood Method (MLM) and two methods developed in this work. The two new techniques show significant improvement over the MLM in the definition of gaps in the spectrum. Although none of these methods is considered an `Optimal' estimator for general use, each displays some superior merit in particular directional spectrum estimation problems.

  14. Haloes Seen In UVIS Reflectance Spectra

    NASA Astrophysics Data System (ADS)

    Esposito, Larry W.; Bradley, E.; Colwell, J.; Sremcevic, M.

    2012-10-01

    UVIS SOI reflectance spectra show bright ‘haloes’ around the locations of some of the strongest resonances in Saturn’s A ring (Esposito etal 2005). UV spectra constrain the size and composition of the icy ring particles (Bradley etal 2010, 2012). We investigate the Janus 4:3, 5:3, 6:5 and Mimas 5:3 inner Lindblad resonances as well as at the Mimas 5:3 vertical resonance (bending wave location). Models of ring particle regolith evolution (Elliott and Esposito 2010) indicate the deeper regolith is made of older and purer ice. The strong resonances cause streamline crowding (Lewis and Stewart 2005) which damps the interparticle velocity, allowing temporary clumps to grow, which in turn increase the velocity, eroding the clumps and releasing smaller particles and regolith (see the predator-prey model of Esposito etal 2012). This cyclic behavior, driven by the resonant perturbation from the moon, can yield collision velocities greater than 1m/sec, sufficient to erode the aggregates (Blum 2006), exposing older, purer materials. Thus, the radial location of the strongest resonances can be where we find both large aggregates and disrupted fragments, in a balance maintained by the periodic moon forcing. If this stirring exposes older, and purer ice, the velocity threshold for eroding the aggregates can explain why only the strongest Lindblad resonances show haloes. UVIS spectra can determine the relative contributions of particle size and purity at these locations, for comparison to estimates from the regolith evolution models.

  15. Tunneling spectra of graphene on copper unraveled.

    PubMed

    Zhang, Xin; Stradi, Daniele; Liu, Lei; Luo, Hong; Brandbyge, Mads; Gu, Gong

    2016-06-22

    Scanning tunneling spectroscopy is often employed to study two-dimensional (2D) materials on conductive growth substrates, in order to gain information on the electronic structures of the 2D material-substrate systems, which can lead to insight into 2D material-substrate interactions, growth mechanisms, etc. The interpretation of the spectra can be complicated, however. Specifically for graphene grown on copper, there have been conflicting reports of tunneling spectra. A clear understanding of the mechanisms behind the variability is desired. In this work, we have revealed that the root cause of the variability in tunneling spectra is the variation in graphene-substrate coupling under various experimental conditions, providing a salutary perspective on the important role of 2D material-substrate interactions. The conclusions are drawn from measured data and theoretical calculations for monolayer, AB-stacked bilayer, and twisted bilayer graphene coexisting on the same substrates in areas with and without intercalated oxygen, demonstrating a high degree of consistency. The Van Hove singularities of the twisted graphene unambiguously indicate the Dirac energy between them, lending strong evidence to our assignment of the spectral features. In addition, we have discovered an O-Cu superstructure that has never been observed before. PMID:27297050

  16. Atomic Spectra Bibliography Databases at NIST

    NASA Astrophysics Data System (ADS)

    Kramida, A. E.

    2007-06-01

    In June 2006, our Atomic Spectroscopy Data Center released three new Bibliographic Databases (BD) containing references to papers with atomic data for controlled fusion research, modeling and diagnostics of astrophysical and terrestrial plasmas, and fundamental properties of electronic spectra of atoms and ions. The NIST Atomic Energy Levels and Spectra BD (http://physics.nist.gov/elevbib) [EL] is the first online version of the NIST bibliography on atomic energy levels and spectra, last published on paper in 1985. It includes more than 9300 references, mostly for years 1967 through 2004. Work is in progress to cover the latest years. The NIST Atomic Transition Probability BD, v. 8.1 (http://physics.nist.gov/fvalbib) [TP] with its 7200 references mainly covers years 1964 through 2006. The NIST Spectral Line Broadening BD, v. 2.0 (http://physics.nist.gov/linebrbib) [LB] has 3600 references, mostly for 1978 through 2006. It is a major upgrade of v. 1.0, which had only 800 references. All three databases are now maintained in a unified database management system that allows us to quickly update the contents. Updates become available to users on the next day. A new Data Entry module makes it easy to enter and categorize the data. This work is supported in part by the Office of Fusion Energy Sciences of the U.S. Department of Energy

  17. MAGNETIC ENERGY SPECTRA IN SOLAR ACTIVE REGIONS

    SciTech Connect

    Abramenko, Valentyna; Yurchyshyn, Vasyl

    2010-09-01

    Line-of-sight magnetograms for 217 active regions (ARs) with different flare rates observed at the solar disk center from 1997 January until 2006 December are utilized to study the turbulence regime and its relationship to flare productivity. Data from the SOHO/MDI instrument recorded in the high-resolution mode and data from the BBSO magnetograph were used. The turbulence regime was probed via magnetic energy spectra and magnetic dissipation spectra. We found steeper energy spectra for ARs with higher flare productivity. We also report that both the power index, {alpha}, of the energy spectrum, E(k) {approx} k{sup -}{alpha}, and the total spectral energy, W = {integral}E(k)dk, are comparably correlated with the flare index, A, of an AR. The correlations are found to be stronger than those found between the flare index and the total unsigned flux. The flare index for an AR can be estimated based on measurements of {alpha} and W as A = 10{sup b}({alpha}W){sup c}, with b = -7.92 {+-} 0.58 and c = 1.85 {+-} 0.13. We found that the regime of the fully developed turbulence occurs in decaying ARs and in emerging ARs (at the very early stage of emergence). Well-developed ARs display underdeveloped turbulence with strong magnetic dissipation at all scales.

  18. Investigation of Wavelet-Based Enhancements to Nuclear Quadrupole Resonance Explosives Detectors

    SciTech Connect

    Kercel, Stephen W.; Dress, William B.; Hibbs, Andrew D.; Barrall, Geoffrey A.

    1998-06-01

    Nuclear Quadrupole Resonance (NQR) is effective for the detection and identification of certain types of explosives such as RDX, PETN and TNT. In explosive detection, the NQR response of certain 14N nuclei present in the crystalline material is probed. The 14N nuclei possess a nuclear quadrupole moment which in the presence of an electric field gradient produces an energy level splitting which may be excited by radio-frequency magnetic fields. Pulsing on the sample with a radio signal of the appropriate frequency produces a transient NQR response which may then be detected. Since the resonant frequency is dependent upon both the quadrupole moment of the 14N nucleus and the nature of the local electric field gradients, it is very compound specific. Under DARPA sponsorship, the authors are using multiresolution methods to investigate the enhancement of operation of NQR explosives detectors used for land mine detection. For this application, NQR processing time must be reduced to less than one second. False alarm responses due to acoustic and piezoelectric ringing must be suppressed. Also, as TNT is the most prevalent explosive found in land mines, NQR detection of TNT must be made practical despite unfavorable relaxation tunes. All three issues require improvement in signal-to-noise ratio, and all would benefit from improved feature extraction. This paper reports some of the insights provided by multiresolution methods that can be used to obtain these improvements. It includes results of multiresolution analysis of experimentally observed NQR signatures for RDX responses and various false alarm signatures in the absence of explosive compounds.

  19. From plasmon spectra of metallic to vibron spectra of dielectric nanoparticles.

    PubMed

    Preston, Thomas C; Signorell, Ruth

    2012-09-18

    Light interacts surprisingly differently with small particles than with bulk or gas phase materials. This can cause rare phenomena such as the occurence of a "blue moon". Spectroscopic particle phenomena of similar physical origin have also spawned countless applications ranging from remote sensing to medicine. Despite the broad interest in particle spectra, their interpretation still poses many challenges. In this Account, we discuss the challenges associated with the analysis of infrared, or vibron, extinction spectra of small dielectric particles. The comparison with the more widely studied plasmon spectra of metallic nano-particles reveals many common features. The shape, size, and architecture of particles influence the band profiles in vibron and plasmon spectra in similar ways. However, the molecular structure of dielectric particles produces infrared spectral features that are more diverse and detailed or even unique to vibron spectra. More complexity means higher information content, but that also makes the spectra more difficult to interpret. Conventional models such as classical electromagnetic theory with a continuum description of the wavelength-dependent optical constants are often no longer applicable to these spectra. In cases where accurate optical constants are not available and for ultrafine particles, where the molecular structure and quantum effects become essential, researchers must resort to molecular models for light-particle interaction that do not require the prior knowledge of optical constants. In this Account, we illustrate how vibrational exciton approaches combined with molecular dynamics simulations and solid-state density functional calculations provide a viable solution to these challenges. Molecular models reveal two important characteristics of vibron spectra of small molecularly structured particles. The band profiles in vibron spectra are largely determined by transition dipole coupling between the molecules in a particle

  20. Near-infrared spectra of Jupiter, Saturn, and Uranus

    NASA Technical Reports Server (NTRS)

    Potter, A. E.

    1974-01-01

    Near infrared spectra of Jupiter, Saturn, and Uranus were measured at resolutions higher than previously available in the range from 6,000 to 10,750/cm. The resolution was 0.5/cm for Jupiter and Saturn, and 32/cm for Uranus. The spectra are presented both individually and as ratio spectra, in which the planetary spectra are divided by the solar spectrum. The Uranus spectrum is shown with Saturn, Jupiter, and Sun spectra reduced to the same resolution so that Uranus can be compared with the other outer planets. The high resolution Saturn, Jupiter, and Sun spectra are presented in parallel plots to simplify comparisons between them.

  1. Optimal construction of theoretical spectra for MS/MS spectra identification

    SciTech Connect

    Fridman, Tamah; Protopopescu, Vladimir A; Hurst, Gregory {Greg} B; Borziak, Andrei; Gorin, Andrey A

    2005-01-01

    We derive the optimal number of peaks (defined as the minimum number that provides the required efficiency of spectra identification) in the theoretical spectra as a function of: (i) the experimental accuracy, , of the measured ratio m/z; (ii) experimental spectrum density; (iii) size of the database; (iv) number of peaks in the theoretical spectra; and (v) types of ions that the peaks represent. We show that if theoretical spectra are constructed including b and y ions alone, then for =0.5, which is typical for high throughput data, peptide chains of 8 amino acids or longer can be identified based on the positions of peaks alone, at a rate of false identification below 1%. To discriminate between shorter peptides, additional (e.g., intensity-inferred) information is necessary. We derive the dependence of the probability of false identification on the number of peaks in the theoretical spectra and on the types of ions that the peaks represent. Our results suggest that the class of mass spectrum identification problems for which more elaborate development of fragmentation rules (such as intensity model, etc.) is required, can be reduced to the problems that involve homologous peptides.

  2. High precision radial velocities with GIANO spectra

    NASA Astrophysics Data System (ADS)

    Carleo, I.; Sanna, N.; Gratton, R.; Benatti, S.; Bonavita, M.; Oliva, E.; Origlia, L.; Desidera, S.; Claudi, R.; Sissa, E.

    2016-06-01

    Radial velocities (RV) measured from near-infrared (NIR) spectra are a potentially excellent tool to search for extrasolar planets around cool or active stars. High resolution infrared (IR) spectrographs now available are reaching the high precision of visible instruments, with a constant improvement over time. GIANO is an infrared echelle spectrograph at the Telescopio Nazionale Galileo (TNG) and it is a powerful tool to provide high resolution spectra for accurate RV measurements of exoplanets and for chemical and dynamical studies of stellar or extragalactic objects. No other high spectral resolution IR instrument has GIANO's capability to cover the entire NIR wavelength range (0.95-2.45 μm) in a single exposure. In this paper we describe the ensemble of procedures that we have developed to measure high precision RVs on GIANO spectra acquired during the Science Verification (SV) run, using the telluric lines as wavelength reference. We used the Cross Correlation Function (CCF) method to determine the velocity for both the star and the telluric lines. For this purpose, we constructed two suitable digital masks that include about 2000 stellar lines, and a similar number of telluric lines. The method is applied to various targets with different spectral type, from K2V to M8 stars. We reached different precisions mainly depending on the H-magnitudes: for H ˜ 5 we obtain an rms scatter of ˜ 10 m s-1, while for H ˜ 9 the standard deviation increases to ˜ 50 ÷ 80 m s-1. The corresponding theoretical error expectations are ˜ 4 m s-1 and 30 m s-1, respectively. Finally we provide the RVs measured with our procedure for the targets observed during GIANO Science Verification.

  3. Atomic and Molecular Aspects of Astronomical Spectra

    NASA Astrophysics Data System (ADS)

    Sochi, Taha

    2012-11-01

    In the first section we present the atomic part where a C2+ atomic target was prepared and used to generate theoretical data to investigate recombination lines arising from electron-ion collisions in thin plasma. R-matrix method was used to describe the C2+ plus electron system. Theoretical data concerning bound and autoionizing states were generated in the intermediate-coupling approximation. The data were used to generate dielectronic recombination data for C+ which include transition lines, oscillator strengths, radiative transition probabilities, emissivities and dielectronic recombination coefficients. The data were cast in a line list containing 6187 optically-allowed transitions which include many C II lines observed in astronomical spectra. This line list was used to analyze the spectra from a number of astronomical objects, mainly planetary nebulae, and identify their electron temperature. The electron temperature investigation was also extended to include free electron energy analysis to investigate the long-standing problem of discrepancy between the results of recombination and forbidden lines analysis and its possible connection to the electron distribution. In the second section we present the results of our molecular investigation; the generation of a comprehensive, calculated line list of frequencies and transition probabilities for H2D+. The line list contains over 22 million rotational-vibrational transitions occurring between more than 33 thousand energy levels and covers frequencies up to 18500 cm-1. About 15% of these levels are fully assigned with approximate rotational and vibrational quantum numbers. A temperature-dependent partition function and cooling function are presented. Temperature-dependent synthetic spectra for the temperatures T=100, 500, 1000 and 2000 K in the frequency range 0-10000 cm-1 were also generated and presented graphically.

  4. Effect of Temperature on Jet Velocity Spectra

    NASA Technical Reports Server (NTRS)

    Bridges, James E.; Wernet, Mark P.

    2007-01-01

    Statistical jet noise prediction codes that accurately predict spectral directivity for both cold and hot jets are highly sought both in industry and academia. Their formulation, whether based upon manipulations of the Navier-Stokes equations or upon heuristic arguments, require substantial experimental observation of jet turbulence statistics. Unfortunately, the statistics of most interest involve the space-time correlation of flow quantities, especially velocity. Until the last 10 years, all turbulence statistics were made with single-point probes, such as hotwires or laser Doppler anemometry. Particle image velocimetry (PIV) brought many new insights with its ability to measure velocity fields over large regions of jets simultaneously; however, it could not measure velocity at rates higher than a few fields per second, making it unsuitable for obtaining temporal spectra and correlations. The development of time-resolved PIV, herein called TR-PIV, has removed this limitation, enabling measurement of velocity fields at high resolution in both space and time. In this paper, ground-breaking results from the application of TR-PIV to single-flow hot jets are used to explore the impact of heat on turbulent statistics of interest to jet noise models. First, a brief summary of validation studies is reported, undertaken to show that the new technique produces the same trusted results as hotwire at cold, low-speed jets. Second, velocity spectra from cold and hot jets are compared to see the effect of heat on the spectra. It is seen that heated jets possess 10 percent more turbulence intensity compared to the unheated jets with the same velocity. The spectral shapes, when normalized using Strouhal scaling, are insensitive to temperature if the stream-wise location is normalized relative to the potential core length. Similarly, second order velocity correlations, of interest in modeling of jet noise sources, are also insensitive to temperature as well.

  5. High precision radial velocities with GIANO spectra

    NASA Astrophysics Data System (ADS)

    Carleo, I.; Sanna, N.; Gratton, R.; Benatti, S.; Bonavita, M.; Oliva, E.; Origlia, L.; Desidera, S.; Claudi, R.; Sissa, E.

    2016-03-01

    Radial velocities (RV) measured from near-infrared (NIR) spectra are a potentially excellent tool to search for extrasolar planets around cool or active stars. High resolution infrared (IR) spectrographs now available are reaching the high precision of visible instruments, with a constant improvement over time. GIANO is an infrared echelle spectrograph at the Telescopio Nazionale Galileo (TNG) and it is a powerful tool to provide high resolution spectra for accurate RV measurements of exoplanets and for chemical and dynamical studies of stellar or extragalactic objects. No other high spectral resolution IR instrument has GIANO's capability to cover the entire NIR wavelength range (0.95-2.45 μm) in a single exposure. In this paper we describe the ensemble of procedures that we have developed to measure high precision RVs on GIANO spectra acquired during the Science Verification (SV) run, using the telluric lines as wavelength reference. We used the Cross Correlation Function (CCF) method to determine the velocity for both the star and the telluric lines. For this purpose, we constructed two suitable digital masks that include about 2000 stellar lines, and a similar number of telluric lines. The method is applied to various targets with different spectral type, from K2V to M8 stars. We reached different precisions mainly depending on the H-magnitudes: for H ˜ 5 we obtain an rms scatter of ˜ 10 m s-1, while for H ˜ 9 the standard deviation increases to ˜ 50 ÷ 80 m s-1. The corresponding theoretical error expectations are ˜ 4 m s-1 and 30 m s-1, respectively. Finally we provide the RVs measured with our procedure for the targets observed during GIANO Science Verification.

  6. Haldane-gap excitations in the low-H{sub c} one-dimensional quantum antiferromagnet Ni(C{sub 5}D{sub 14}N{sub 2}){sub 2}N{sub 3}(PF{sub 6})

    SciTech Connect

    Zheludev, A.; Chen, Y.; Broholm, C. L.; Honda, Z.; Katsumata, K.

    2001-03-01

    Inelastic neutron scattering on deuterated single-crystal samples is used to study Haldane-gap excitations in the new S=1 one-dimensional quantum antiferromagnet Ni(C{sub 5}D{sub 14}N{sub 2}){sub 2}N{sub 3}(PF{sub 6}), that was recently recognized as an ideal model system for high-field studies. The Haldane gap energies {Delta}{sub x}=0.42(3) meV, {Delta}{sub y}=0.52(6) meV, and {Delta}{sub z}=1.9(1) meV, for excitations polarized along the a, b, and c crystallographic axes, respectively, are measured. The dispersion relation is studied for momentum transfers both along and perpendicular to the chains' direction. The in-chain exchange constant J=2.8 meV is found to be much larger than interchain coupling, J{sub y}=1.8(4)x10{sup -3} meV and J{sub x}=4(3)x10{sup -4} meV, along the b and a axes, respectively. The results are discussed in the context of future experiments in high magnetic fields.

  7. Excitation functions of heavy residues produced in the 14N+103Rh reaction up to 400 MeV: Analysis of the pre-equilibrium mechanism with the hybrid Monte Carlo simulation model

    NASA Astrophysics Data System (ADS)

    Acharya, J.; Mukherjee, S.; Steyn, G. F.; Singh, N. L.; Chatterjee, A.

    2016-02-01

    The excitation functions of heavy residues, produced in the interaction of 14N with 103Rh, have been measured over the projectile energy region from a threshold up to 400 MeV by means of the activation method in conjunction with γ-ray spectroscopy. Cross sections for 15 reaction residues are presented, namely, 104Cd, Ag-105103, Pd-10199, 97,99,101Rh, Ru,9795, and Tc-9694. The experimental data are compared with theoretical model predictions using the hybrid Monte Carlo simulation model as implemented in the recently released alice2014 code. The theory assumes that the dominant pre-equilibrium mechanism includes multinucleon and cluster emissions in the initial stages of the interaction between the projectile and the target nucleus. Overall, the theoretical predictions provide a satisfactory agreement with the trend of the present experimental results for most of the observed reaction residues. This provides strong evidence that the underlying reaction mechanisms in the code are appropriately described. Overall, the Obninsk level densities give the best results in the present study.

  8. Multifractal spectra in homogeneous shear flow

    NASA Technical Reports Server (NTRS)

    Deane, A. E.; Keefe, L. R.

    1988-01-01

    Employing numerical simulations of 3-D homogeneous shear flow, the associated multifractal spectra of the energy dissipation, scalar dissipation and vorticity fields were calculated. The results for (128) cubed simulations of this flow, and those obtained in recent experiments that analyzed 1- and 2-D intersections of atmospheric and laboratory flows, are in some agreement. A two-scale Cantor set model of the energy cascade process which describes the experimental results from 1-D intersections quite well, describes the 3-D results only marginally.

  9. Fine structure in cosmic ray spectra

    NASA Astrophysics Data System (ADS)

    Wolfendale, A. W.; Erlykin, A. D.

    2013-02-01

    The case is made for there being more 'structure' in the cosmic ray energy spectra than just the well-known knee at several PeV and the ankle at several EeV. Specifically, there seems to be a 'dip' or 'kink' at about 100 GeV/nucleon, a possible 'bump' at about 10 TeV, an 'iron peak' at 60 PeV and the possibility of further structure before the ankle is reached. The significance of the structures will be assessed.

  10. Far-infrared spectra of acetanilide revisited

    NASA Astrophysics Data System (ADS)

    Spire, A.; Barthes, M.; Kellouai, H.; De Nunzio, G.

    2000-03-01

    A new investigation of the temperature dependence of the far-infrared spectra of acetanilide and some isotopomers is presented. Four absorption bands are considered at 31, 42, 64, and 80 cm-1, and no significant change of their integrated intensity is observed when reducing the temperature. The temperature induced frequency shift values and other properties of these bands are consistent with an assignment as anharmonic lattice phonons. These results rule out the assignment of the 64, 80, and 106 cm-1 bands as normal modes of the polaronic excitation, as previously suggested.

  11. Ultraviolet absorption spectra of mercuric halides.

    NASA Technical Reports Server (NTRS)

    Templet, P.; Mcdonald, J. R.; Mcglynn, S. P.; Kendrow, C. H.; Roebber, J. L.; Weiss, K.

    1972-01-01

    The gas phase transitions of the mercuric halides were observed in the UV region by operating at temperatures above 400 K and at vapor pressures on the order of 0.5 mm. Spectral features exhibited by the chloride, bromide, and iodide of mercury correlate energetically with bands previously designated as intermolecular charge transfer transitions. The solution spectra of mercuric iodide and deep color of the crystals (if not due to some solid state interactions) indicate that this molecule may also have longer wavelength transitions.

  12. Isotopic spectra of the hydroxyl radical.

    PubMed

    Drouin, Brian J

    2013-10-01

    Rotational spectra of OH and its isotopologues have been precisely measured using high efficiency terahertz (THz) sources. The measurements are compared with existing data and are useful for global modeling. For the first time, microwave measurements of the Λ-doubling transitions of the (17)OH isotopologue are combined with THz data successfully. Precise rotational, fine-structure, and hyperfine structure parameters for the (17)OH isotopologue are reported. An isotopically independent Dunham model for all isotopologues of (2)Π OH v < 3 is presented. PMID:23634899

  13. Beamstrahlung spectra in next generation linear colliders

    SciTech Connect

    Barklow, T.; Chen, P. ); Kozanecki, W. )

    1992-04-01

    For the next generation of linear colliders, the energy loss due to beamstrahlung during the collision of the e{sup +}e{sup {minus}} beams is expected to substantially influence the effective center-of-mass energy distribution of the colliding particles. In this paper, we first derive analytical formulae for the electron and photon energy spectra under multiple beamstrahlung processes, and for the e{sup +}e{sup {minus}} and {gamma}{gamma} differential luminosities. We then apply our formulation to various classes of 500 GeV e{sup +}e{sup {minus}} linear collider designs currently under study.

  14. Benford's law and complex atomic spectra.

    PubMed

    Pain, Jean-Christophe

    2008-01-01

    We found that in transition arrays of complex atomic spectra, the strengths of electric-dipolar lines obey Benford's law, which means that their significant digits follow a logarithmic distribution favoring the smallest values. This indicates that atomic processes result from the superposition of uncorrelated probability laws and that the occurrence of digits reflects the constraints induced by the selection rules. Furthermore, Benford' law can be a useful test of theoretical spectroscopic models. Its applicability to the statistics of electric-dipolar lines can be understood in the framework of random matrix theory and is consistent with the Porter-Thomas law. PMID:18351894

  15. Impedance spectra of polypyrrole coated platinum electrodes.

    PubMed

    Onnela, Niina; Savolainen, Virpi; Hiltunen, Maiju; Kellomäki, Minna; Hyttinen, Jari

    2013-01-01

    Polypyrrole (PPy) coated electrodes may provide new solutions to increase the charge injection capacity and biocompatibility of metal electrodes in e.g., neural stimulus applications. In this study, electrical impedance spectra of PPy coated platinum (Pt) electrodes having three different coating thicknesses were measured and modeled. A suitable equivalent electrical circuit providing the material characteristics was chosen and the impedance data was analyzed using the model and data fitting. The modeled parameter values of different coating thicknesses were compared and our results demonstrated the changes in charge transfer properties and mechanisms of thin and thick PPy film coatings. PMID:24109743

  16. SPECTRA AND LIGHT CURVES OF FAILED SUPERNOVAE

    SciTech Connect

    Fryer, Chris L.; Dahl, Jon A.; Fontes, Christopher J. E-mail: dahl@lanl.go

    2009-12-10

    Astronomers have proposed a number of mechanisms to produce supernova explosions. Although many of these mechanisms are now not considered primary engines behind supernovae (SNe), they do produce transients that will be observed by upcoming ground-based surveys and NASA satellites. Here, we present the first radiation-hydrodynamics calculations of the spectra and light curves from three of these 'failed' SNe: SNe with considerable fallback, accretion-induced collapse of white dwarfs, and energetic helium flashes (also known as type Ia SNe).

  17. Synthetic spectra of C2 in comets

    NASA Technical Reports Server (NTRS)

    Ahearn, M. F.

    1978-01-01

    With the key result of Krishna Swamy and O'Dell (1977), a complete fluorescence equilibrium calculation has been used to predict the detailed Swan-band spectrum in comets. A rotational Boltzmann temperature of approximately 3000 K and small changes in published molecular constants lead to a theoretical spectrum in excellent agreement with that observed. The Fox-Herzberg bands are predicted to be quite weak compared with previously observed ultraviolet features in cometary spectra. The Ballik-Ramsay bands should be observable in the near-infrared.

  18. Spectra of electron oscillations in magnetoplasmadynamic thruster

    NASA Astrophysics Data System (ADS)

    Kirdyashev, K. P.; Kubarev, Yu. V.

    2012-03-01

    The intensity and spectra of electron oscillations in magnetoplasmadynamic (MPD) thruster have been experimentally studied. Oscillatory regimes corresponding to various relations between the relative gradients of magnetic field, electron concentration, and residual gas pressure in the vacuum chamber of the experimental setup have been determined. Relationship between the regimes of excitation of electron oscillations, the formation of an azimuthal current, and a change in the plasma flow potential is revealed. Model notions about the instability of plasma flow on low- and high-frequency branches of electron oscillations are developed.

  19. Fluorescence spectra shape based dynamic thermometry

    NASA Astrophysics Data System (ADS)

    Liu, Liwang; Creten, Sebastiaan; Firdaus, Yuliar; Agustin Flores Cuautle, Jose Jesus; Kouyaté, Mansour; Van der Auweraer, Mark; Glorieux, Christ

    2014-01-01

    An entirely optical, dynamic thermometry technique based on the temperature dependence of a fluorescence spectrum is presented. Different from conventional intensity-based fluorescence thermometry, in this work, neural network recognition is employed to extract the sample temperature from the magnitude and shape of recorded fluorescence spectra. As a demonstration to determine the depth profile of dynamical temperature variations and of the thermal and optical properties of semitransparent samples, in-depth photothermally induced periodical temperature oscillations of a rhodamine B and copper chloride dyed glycerol sample were measured with an accuracy of 4.2 mK.Hz-1/2 and fitted well by a 1D thermal diffusion model.

  20. Covariance Analysis of Gamma Ray Spectra

    SciTech Connect

    Trainham, R.; Tinsley, J.

    2013-01-01

    The covariance method exploits fluctuations in signals to recover information encoded in correlations which are usually lost when signal averaging occurs. In nuclear spectroscopy it can be regarded as a generalization of the coincidence technique. The method can be used to extract signal from uncorrelated noise, to separate overlapping spectral peaks, to identify escape peaks, to reconstruct spectra from Compton continua, and to generate secondary spectral fingerprints. We discuss a few statistical considerations of the covariance method and present experimental examples of its use in gamma spectroscopy.

  1. Covariance analysis of gamma ray spectra

    SciTech Connect

    Trainham, R.; Tinsley, J.

    2013-01-15

    The covariance method exploits fluctuations in signals to recover information encoded in correlations which are usually lost when signal averaging occurs. In nuclear spectroscopy it can be regarded as a generalization of the coincidence technique. The method can be used to extract signal from uncorrelated noise, to separate overlapping spectral peaks, to identify escape peaks, to reconstruct spectra from Compton continua, and to generate secondary spectral fingerprints. We discuss a few statistical considerations of the covariance method and present experimental examples of its use in gamma spectroscopy.

  2. Simulation and evaluation of nuclear reaction spectra

    NASA Astrophysics Data System (ADS)

    Vizkelethy, G.

    1990-01-01

    A RUMP-like-[1] computer code was written for PCs in order to simulate and evaluate nuclear reaction spectra. The code was written in Turbo Pascal. Any particle-target combination can be used; the stopping power calculation based on the ZBL algorithm [2] and the cross sections are taken from experimental data. The effects of straggling and geometrical spread are included in the simulation. Examples are given for the 16O(d,P) 17O, 18O(P,α) 15N, 16O( 3He,α) 15O and 16O(α,α) 16O reactions and for ERDA measurements.

  3. Applying Zeeman Doppler imaging to solar spectra

    NASA Astrophysics Data System (ADS)

    Hussain, G. A. J.; Saar, S. H.; Collier Cameron, A.

    2004-03-01

    A new generation of spectro-polarimeters with high throughput (e.g. CFHT/ESPADONS and LBT/PEPSI) is becoming available. This opportunity can be exploited using Zeeman Doppler imaging (ZDI), a technique that inverts time-series of Stokes V spectra to map stellar surface magnetic fields (Semel 1989). ZDI is assisted by ``Least squares deconvolution'' (LSD), which sums up the signal from 1000's of photospheric lines to produce a mean deconvolved profile with higher S:N (Donati & Collier Cameron 1997).

  4. Removing The Instrument Function From Fluorescence Spectra

    NASA Astrophysics Data System (ADS)

    Childs, Andrew F.

    1989-05-01

    The spectrum acquired at the sample phototnultiplier tube of a fluorescence spectrophotometer is a product of the sample spectrum and the instrument function. The determination of the instrument function and its removal from the acquired spectrum is often critical to the accurate determination of the physical properties of the sample. Methods are discussed for the determination and removal of the instrument function from excitation and emission spectra. Methods considered include quantum counters and ratio circuits for excitation correction, and emission correction against calibrated excitation systems, calibrated tungsten lamps, and NBS standard quinine sulfate.

  5. Glow Sticks: Spectra and Color Mixing

    NASA Astrophysics Data System (ADS)

    Birriel, Jennifer; Birriel, Ignacio

    2014-10-01

    Glow sticks are a popular Halloween staple familiar to most of our students. The production of light via a chemical reaction is called "chemiluminescence," and glow sticks are often used as demonstrations and experiments in the chemistry classroom to study reaction rates as a function of temperature.1-3 A black light can be used to illuminate glow sticks that have not been cracked or those that are "dead" in order to demonstrate fluorescence in liquid chemicals.4 In this article, we present the use of glow sticks as an inexpensive demonstration of spectra and color addition.

  6. Solar Doppler shifts - Sources of continuous spectra

    NASA Technical Reports Server (NTRS)

    Duvall, T. L., Jr.; Harvey, J. W.

    1986-01-01

    Oscillation observations can be used to study nonoscillatory solar phenomena that exhibit Doppler shifts. The paper discusses several effects of these phenomena and their associated temporal and spatial power spectra: (1) they limit the signal-to-noise ratio and sometimes detectability of oscillation modes; (2) there is the potential for better understanding and/or detection of solar phenomena; (3) large-scale convection may spatially modulate oscillation modes, leading to a continuous background spectrum; and (4) in regions of the spectrum where the resolution to separate modes is lacking one can determine upper limits for the integrated effects of modes.

  7. Magnetic Resonance Spectra and Statistical Geometry.

    PubMed

    Earle, Keith A; Mainali, Laxman; Sahu, Indra Dev; Schneider, David J

    2010-01-01

    Methods of statistical geometry are introduced which allow one to estimate, on the basis of computable criteria, the conditions under which maximally informative data may be collected. We note the important role of constraints which introduce curvature into parameter space and discuss the appropriate mathematical tools for treating curvature effects. Channel capacity, a term from communication theory, is suggested as a useful figure of merit for estimating the information content of spectra in the presence of noise. The tools introduced here are applied to the case of a model nitroxide system as a concrete example, but we stress that the methods described here are of general utility. PMID:20730032

  8. Vibrational infrared and raman spectra of dicyanoacetylene

    NASA Astrophysics Data System (ADS)

    Khanna, R. K.; Perera-Jarmer, M. A.; Ospina, M. J.

    The raman and infrared spectra for solid C 4N 2 are reported. New assignments are given for ˜gn 1 (2333 cm -1), ˜gn 2 (2267) and ˜gn 3 (640 cm -1). These assignments are supported by a normal coordinate Analysis using eight force constants. Extinction coefficients for the infrared active fundamentals are also reported. Our results suggest C 4N 2 to be a likely candidate to explain the 478 cm -1 band in the Titan's emission recorded by the Voyager mission.

  9. Theoretical photoabsorption spectra of Ar n+ clusters

    NASA Astrophysics Data System (ADS)

    Doltsinis, Nikos L.; Knowles, Peter J.

    2000-08-01

    The photoabsorption spectra of selected Ar n+ clusters ( n=7, 8, 17, 19, 23) have been investigated theoretically using an extended Diatomics-in-Molecules approach including induced dipole - induced dipole and spin-orbit coupling interaction effects. Our calculations at 0 K confirm the experimentally observed spectral red-shift of the visible photoabsorption peak in the region 15< n<20 [Levinger et al., J. Chem. Phys. 89 (1988) 5654]. Furthermore, we have been able to reproduce the additional red-shift measured for 7⩽ n⩽9 [Haberland et al., Phys. Rev. Lett. 67 (1991) 3290] by carrying out finite temperature Monte Carlo simulations.

  10. Raman spectra of hydroxide-halide melts

    NASA Astrophysics Data System (ADS)

    Zakiriyanova, I. D.; Khokhlov, V. A.

    2012-08-01

    The Raman spectra of molten binary mixtures based on sodium hydroxide and containing (mol %) 35 NaCl, 30 NaBr, and 30 NaI have been recorded at various temperatures. An increase in the vibrational frequency and the force constant of the O-H bond is detected under isothermal conditions upon a variation of the anionic composition of a melt in the series I → Br → Cl. Based on the experimental data, the viscosity of the hydroxide-halide melts is estimated.

  11. Ultraviolet Spectra of Normal Spiral Galaxies

    NASA Technical Reports Server (NTRS)

    Kinney, Anne

    1997-01-01

    The data related to this grant on the Ultraviolet Spectra of Normal Spiral Galaxies have been entirely reduced and analyzed. It is incorporated into templates of Spiral galaxies used in the calculation of K corrections towards the understanding of high redshift galaxies. The main paper was published in the Astrophysical Journal, August 1996, Volume 467, page 38. The data was also used in another publication, The Spectral Energy Distribution of Normal Starburst and Active Galaxies, June 1997, preprint series No. 1158. Copies of both have been attached.

  12. Magnetic Resonance Spectra and Statistical Geometry

    PubMed Central

    Mainali, Laxman; Sahu, Indra Dev; Schneider, David J.

    2010-01-01

    Methods of statistical geometry are introduced which allow one to estimate, on the basis of computable criteria, the conditions under which maximally informative data may be collected. We note the important role of constraints which introduce curvature into parameter space and discuss the appropriate mathematical tools for treating curvature effects. Channel capacity, a term from communication theory, is suggested as a useful figure of merit for estimating the information content of spectra in the presence of noise. The tools introduced here are applied to the case of a model nitroxide system as a concrete example, but we stress that the methods described here are of general utility. PMID:20730032

  13. Classification of specialty seed meals from NIR reflectance spectra

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Near infrared reflectance spectroscopy was used to identify alternative seed meals proposed for food and feed formulations. Spectra were collected from cold pressed Camelina (Camelina sativa), Coriander (Coriandrum sativum), and Pennycress (Thlaspi arvense) meals. Additional spectra were collected ...

  14. Quantum synchrotron spectra from semirelativistic electrons in teragauss magnetic fields

    NASA Technical Reports Server (NTRS)

    Brainerd, J. J.

    1987-01-01

    Synchrotron spectra are calculated from quantum electrodynamic transition rates for thermal and power-law electron distributions. It is shown that quantum effects appear in thermal spectra when the photon energy is greater than the electron temperature, and in power-law spectra when the electron energy in units of the electron rest mass times the magnetic field strength in units of the critical field strength is of order unity. These spectra are compared with spectra calculated from the ultrarelativistic approximation for synchrotron emission. It is found that the approximation for the power-law spectra is good, and the approximation for thermal spectra produces the shape of the spectrum accurately but fails to give the correct normalization. Single photon pair creation masks the quantum effects for power-law distributions, so only modifications to thermal spectra are important for gamma-ray bursts.

  15. Microwave Spectra of Furazan. IV. Rotation Spectra of Vibrationally Excited States of Perdeuterated Furazan

    NASA Astrophysics Data System (ADS)

    Stiefvater, Otto L.

    1990-10-01

    The pure rotation spectra of molecules in 25 vibrationally excited states of perdeuterated furazan, C2D2N2O, have been studied by double resonance modulation (DRM) microwave spectroscopy. Twelve of these spectra have been correlated, -on the basis of relative intensity measurements under DRM -, with fundamental vibrations as previously established by IR spectroscopy. Rotational parameters for these 12 fundamental levels are reported, and the contributions to the effective rotational constants and to the inertia defect of the ground state of d2 -furazan have been determined for 10 modes of vibration.

  16. Absorption Features in Soil Spectra Assessment.

    PubMed

    Vašát, Radim; Kodešová, Radka; Borůvka, Luboš; Jakšík, Ondřej; Klement, Aleš; Drábek, Ondřej

    2015-12-01

    From a wide range of techniques appropriate to relate spectra measurements with soil properties, partial least squares (PLS) regression and support vector machines (SVM) are most commonly used. This is due to their predictive power and the availability of software tools. Both represent exclusively statistically based approaches and, as such, benefit from multiple responses of soil material in the spectrum. However, physical-based approaches that focus only on a single spectral feature, such as simple linear regression using selected continuum-removed spectra values as a predictor variable, often provide accurate estimates. Furthermore, if this approach extends to multiple cases by taking into account three basic absorption feature parameters (area, width, and depth) of all occurring features as predictors and subjecting them to best subset selection, one can achieve even higher prediction accuracy compared with PLS regression. Here, we attempt to further extend this approach by adding two additional absorption feature parameters (left and right side area), as they can be important diagnostic markers, too. As a result, we achieved higher prediction accuracy compared with PLS regression and SVM for exchangeable soil pH, slightly higher or comparable for dithionite-citrate and ammonium oxalate extractable Fe and Mn forms, but slightly worse for oxidizable carbon content. Therefore, we suggest incorporating the multiple linear regression approach based on absorption feature parameters into existing working practices. PMID:26555184

  17. INFRARED SPECTRA OF AMMONIA-WATER ICES

    SciTech Connect

    Zheng Weijun; Jewitt, David; Kaiser, Ralf I. E-mail: ralfk@hawaii.edu

    2009-03-15

    We conducted a systematic study of the near-IR and mid-IR spectra of ammonia-water ices at various NH{sub 3}/H{sub 2}O ratios. The differences between the spectra of amorphous and crystalline ammonia-water ices were also investigated. The 2.0 {mu}m ammonia band central wavelength is a function of the ammonia/water ratio. It shifts from 2.006 {+-} 0.003 {mu}m (4985 {+-} 5 cm{sup -1}) to 1.993 {+-} 0.003 {mu}m (5018 {+-} 5 cm{sup -1}) as the percentage of ammonia decreases from 100% to 1%. The 2.2 {mu}m ammonia band center shifts from 2.229 {+-} 0.003 {mu}m (4486 {+-} 5 cm{sup -1}) to 2.208 {+-} 0.003 {mu}m (4528 {+-} 5 cm{sup -1}) over the same range. Temperature-dependent shifts of those bands are below the uncertainty of the measurement, and therefore are not detectable. These results are important for comparison with astronomical observations as well as for estimating the concentration of ammonia in outer solar system ices.

  18. Infrared Spectra of Substituted Polycyclic Aromatic Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Hudgins, Douglas M.; Sandford, Scott A.; Allamandola, Louis J.; Arnold, James O. (Technical Monitor)

    1997-01-01

    Calculations are carried out using density functional theory (DFT) to determine the harmonic frequencies and intensities of 1-methylanthracene, 9-methylanthracene, 9-cyanoanthracene, 2-aminoanthracene, acridine, and their positive ions. The theoretical data are compared with matrix-isolation spectra for these species also reported in this work. The theoretical and experimental frequencies and relative intensities for the neutral species are in generally good agreement, whereas the positive ion spectra are only in qualitative agreement. Relative to anthracene, we find that substitution of amethyl or CN for a hydrogen does not significantly affect the spectrum other than to add the characteristic methyl C-H stretch and C-N stretch (near 2200/cm), respectively. However, addition of NH2 dramatically affects the spectrum of the neutral. Not only are the NH2 modes themselves strong, but this electron withdrawing group induces sufficient partial charge on the ring to give the neutral molecule characteristics of the anthracene cation spectrum. The sum of the absolute intensities is about four times larger for 2-aminoanthracene than for 9-cyanoanthracene. Substituting nitrogen in the ring at the nine position (acridine) does not greatly alter the spectrum compared with anthracene.

  19. SEC Vidicon spectra of Geminid meteors, 1972

    NASA Technical Reports Server (NTRS)

    Millman, P. M.; Clifton, K. S.

    1975-01-01

    The SEC Vidicon, a low light level closed circuit television system, was used to obtain 137 spectrographic records of meteors at Mt. Hopkins, Arizona, during the Geminid meteor shower in December 1972. Seven of the best Geminid meteor spectra are studied here in detail. The near infrared, out to wavelengths near 9000 A, is recorded for the first time for Geminids. The spectra, in general, exhibit the elements previously found in photographic records of this shower but show a surprising frequency of occurrence of the forbidden green line of O I at 5577 A. This line is normally absent from meteors moving as slowly as the Geminids (36 km/sec) and its presence in these records may be due to the added sensitivity available with the SEC Vidicon. The average green line duration in Geminid meteors with a luminosity near zero absolute visual magnitude is 0.73 sec at a mean height of 95 km, 11 km lower than the green line peak in Perseid meteors of the same luminosity.

  20. Discriminating Dysarthria Type From Envelope Modulation Spectra

    PubMed Central

    Liss, Julie M.; LeGendre, Sue; Lotto, Andrew J.

    2013-01-01

    Purpose Previous research demonstrated the ability of temporally based rhythm metrics to distinguish among dysarthrias with different prosodic deficit profiles (J. M. Liss et al., 2009). The authors examined whether comparable results could be obtained by an automated analysis of speech envelope modulation spectra (EMS), which quantifies the rhythmicity of speech within specified frequency bands. Method EMS was conducted on sentences produced by 43 speakers with 1 of 4 types of dysarthria and healthy controls. The EMS consisted of the spectra of the slow-rate (up to 10 Hz) amplitude modulations of the full signal and 7 octave bands ranging in center frequency from 125 to 8000 Hz. Six variables were calculated for each band relating to peak frequency and amplitude and relative energy above, below, and in the region of 4 Hz. Discriminant function analyses (DFA) determined which sets of predictor variables best discriminated between and among groups. Results Each of 6 DFAs identified 2–6 of the 48 predictor variables. These variables achieved 84%–100% classification accuracy for group membership. Conclusions Dysarthrias can be characterized by quantifiable temporal patterns in acoustic output. Because EMS analysis is automated and requires no editing or linguistic assumptions, it shows promise as a clinical and research tool. PMID:20643800

  1. Measurement and interpretation of plutonium spectra

    SciTech Connect

    Blaise, J.; Fred, M.S.; Carnall, W.T.; Crosswhite, H.M.; Crosswhite, H.

    1983-01-01

    The atomic spectroscopic data available for plutonium are among the richest of any in the periodic system. They include high-resolution grating and Fourier-transform spectra as well as extensive Zeeman and isotope-shift studies. The present status of the term analysis is summarized, and the configurations that have been identified are cited. A least-squares adjustment of a parametric Hamiltonian for configurations of both Pu I and Pu II has shown that almost all of the expected low levels are now known. The use of a model Hamiltonian applicable to both lanthanide and actinide atomic species has been applied to the low configurations of Pu I and Pu II making use of trends predicted by ab initio calculations. This same model has been used to describe the energy levels of Pu/sup 3 +/ in LaCl/sub 3/, and an extension has permitted preliminary calculations of the spectra of other valence states. 46 references, 9 figures, 7 tables.

  2. Power spectra of internal gravity waves

    NASA Astrophysics Data System (ADS)

    Dewan, E. M.

    1990-09-01

    The OH layer located in the region of 85 km altitude emits strong infrared radiation. Gravity waves can be modulate the brightness of this layer over a wide range of spatial scales. Such fluctuations constitute, in effect, a form of IR clutter which could potentially degrade surveillance systems in certain situations. For this reason there is interest in the spatial and temporal variations of atmospheric internal gravity waves. A physical, similitude model of internal gravity waves assumes saturation of the waves and control by cascade processes of the temporal and horizontal scales of the waves. This model contains all the power spectral densities (PSD's) (sometimes merely called spectra) to be found in the formalism of Garrett and Munk. The latter is a purely empirical model for internal gravity waves applicable to the atmosphere and ocean. The main new predictions of the present model are that the dissipation rate controls the amplitudes of the frequency and horizontal wave number spectra. The validity of the proposed model is unknown at this time, and will depend upon the future experimental tests. It is shown, however, that based on 'typical' parametric values, results from the model are encouraging.

  3. Odor Impression Prediction from Mass Spectra

    PubMed Central

    Nakamoto, Takamichi

    2016-01-01

    The sense of smell arises from the perception of odors from chemicals. However, the relationship between the impression of odor and the numerous physicochemical parameters has yet to be understood owing to its complexity. As such, there is no established general method for predicting the impression of odor of a chemical only from its physicochemical properties. In this study, we designed a novel predictive model based on an artificial neural network with a deep structure for predicting odor impression utilizing the mass spectra of chemicals, and we conducted a series of computational analyses to evaluate its performance. Feature vectors extracted from the original high-dimensional space using two autoencoders equipped with both input and output layers in the model are used to build a mapping function from the feature space of mass spectra to the feature space of sensory data. The results of predictions obtained by the proposed new method have notable accuracy (R≅0.76) in comparison with a conventional method (R≅0.61). PMID:27326765

  4. Nuclear size effects in vibrational spectra.

    PubMed

    Almoukhalalati, Adel; Shee, Avijit; Saue, Trond

    2016-06-01

    We present a theoretical study of nuclear volume in the rovibrational spectra of diatomic molecules which is an extension of a previous study restricted to rotational spectra [Chem. Phys., 2012, 401, 103]. We provide a new derivation for the electron-nucleus electrostatic interaction energy which is basically independent of the choice of model for the nuclear charge distribution. Starting from this expression we derive expressions for the electronic, rotational and vibrational field shift parameters in terms of effective electron density and its first and second derivatives with respect to internuclear distance. The effective density is often approximated by the contact density, but we demonstrate that this leads to errors on the order of 10% and is furthermore not necessary since the contact and effective densities can be obtained at the same computational cost. We calculate the field shift parameters at the 4-component relativistic coupled-cluster singles-and-doubles level and find that our results confirm the experimental findings of Tiemann and co-workers [Chem. Phys., 1982, 68(21), 1982, Ber. Bunsenges. Phys. Chem., 1982, 86, 821], whereas we find no theoretical justification for a scaling factor introduced in later work [Chem. Phys., 1985, 93, 349]. For lead sulfide we study the effective density as a function of internuclear distance and find a minimum some 0.2 Å inside the equilibrium bond distance. We also discuss Bigeleisen-Goeppert-Mayer theory of isotope fractionation in light of our results. PMID:27215395

  5. An atlas of selected calibrated stellar spectra

    NASA Technical Reports Server (NTRS)

    Walker, Russell G.; Cohen, Martin

    1992-01-01

    Five hundred and fifty six stars in the IRAS PSC-2 that are suitable for stellar radiometric standards and are brighter than 1 Jy at 25 microns were identified. In addition, 123 stars that meet all of our criteria for calibration standards, but which lack a luminosity class were identified. An approach to absolute stellar calibration of broadband infrared filters based upon new models of Vega and Sirius due to Kurucz (1992) is presented. A general technique used to assemble continuous wide-band calibrated infrared spectra is described and an absolutely calibrated 1-35 micron spectrum of alpha(Tau) is constructed and the method using new and carefully designed observations is independently validated. The absolute calibration of the IRAS Low Resolution Spectrometer (LRS) database is investigated by comparing the observed spectrum of alpha(Tau) with that assumed in the original LRS calibration scheme. Neglect of the SiO fundamental band in alpha(Tau) has led to the presence of a specious 'emission' feature in all LRS spectra near 8.5 microns, and to an incorrect spectral slope between 8 and 12 microns. Finally, some of the properties of asteroids that effect their utility as calibration objects for the middle and far infrared region are examined. A technique to determine, from IRAS multiwaveband observations, the basic physical parameters needed by various asteroid thermal models that minimize the number of assumptions required is developed.

  6. Classification of infrared spectra from skin tumors

    NASA Astrophysics Data System (ADS)

    McIntosh, Laura M.; Mansfield, James R.; Crowson, A. Neil; Toole, John W. P.; Mantsch, Henry H.; Jackson, Michael

    2000-05-01

    The clinical differential diagnosis of skin tumors is an often-challenging task, to which the probing of skin with mid- and near-infrared (IR) light may be contributory. The development of objective methods for the analysis of IR spectra remains a major hurdle to developing clinically useful applications. The authors highlight different processing methods for IR spectra from skin biopsies and in-vivo skin tumors. Spectroscopic maps of biopsies of basal cell, squamous cell and melanocytic neoplasms were objectively grouped into distinct clusters that corresponded with tumor, epidermis, dermis, follicle and fat. Normal and abnormal skin components were located within maps using a search engine based upon linear discriminant analysis (LDA). In all instances, areas of tumor were distinct from normal tissue in biopsies. In-vivo, near-IR spectroscopy and LDA allowed discrimination between benign and malignant skin lesions with a high degree of accuracy. We conclude that IR spectroscopy has significant diagnostic promise in the skin cancer arena. The analytical methods described can now be used to create a powerful classification scheme in which to detect skin tumor cells within biopsied and living skin.

  7. The energy spectra of solar flare electrons

    NASA Technical Reports Server (NTRS)

    Evenson, P. A.; Hovestadt, D.; Meyer, P.; Moses, D.

    1985-01-01

    A survey of 50 electron energy spectra from .1 to 100 MeV originating from solar flares was made by the combination of data from two spectrometers onboard the International Sun Earth Explorer-3 spacecraft. The observed spectral shapes of flare events can be divided into two classes through the criteria of fit to an acceleration model. This standard two step acceleration model, which fits the spectral shape of the first class of flares, involves an impulsive step that accelerates particles up to 100 keV and a second step that further accelerates these particles up to 100 MeV by a single shock. This fit fails for the second class of flares that can be characterized as having excessively hard spectra above 1 MeV relative to the predictions of the model. Correlations with soft X-ray and meter radio observations imply that the acceleration of the high energy particles in the second class of flares is dominated by the impulsive phase of the flares.

  8. Primordial spectra from sudden turning trajectory

    SciTech Connect

    Noumi, Toshifumi; Yamaguchi, Masahide E-mail: gucci@phys.titech.ac.jp

    2013-12-01

    Effects of heavy fields on primordial spectra of curvature perturbations are discussed in inflationary models with a sudden turning trajectory. When heavy fields are excited after the sudden turn and oscillate around the bottom of the potential, the following two effects are generically induced: deformation of the inflationary background spacetime and conversion interactions between adiabatic and isocurvature perturbations, both of which can affect the primordial density perturbations. In this paper, we calculate primordial spectra in inflationary models with sudden turning potentials taking into account both of the two effects appropriately. We find that there are some non-trivial correlations between the two effects in the power spectrum and, as a consequence, the primordial scalar power spectrum has a peak around the scale exiting the horizon at the turn. Though both effects can induce parametric resonance amplifications, they are shown to be canceled out for the case with the canonical kinetic terms. The peak feature and the scale dependence of bispectra are also discussed.

  9. Spectra of {gamma} rays feeding superdeformed bands

    SciTech Connect

    Lauritsen, T.; Khoo, T.L.; Henry, R.G.

    1995-08-01

    The spectrum of {gamma}rays coincident with SD transitions contains the transitions which populate the SD band. This spectrum can provide information on the feeding mechanism and on the properties (moment of inertia, collectivity) of excited SD states. We used a model we developed to explain the feeding of SD bands, to calculate the spectrum of feeding {gamma}rays. The Monte Carlo simulations take into account the trigger conditions present in our Eurogam experiment. Both experimental and theoretical spectra contain a statistical component and a broad E2 peak (from transitions occurring between excited states in the SD well). There is good resemblance between the measured and calculated spectra although the calculated multiplicity of an E2 bump is low by {approximately}30%. Work is continuing to improve the quality of the fits, which will result in a better understanding of excited SD states. In addition, a model for the last steps, which cool the {gamma} cascade into the SD yrast line, needs to be developed. A strong M1/E2 low-energy component, which we believe is responsible for this cooling, was observed.

  10. Millimeter wave absorption spectra of biological samples

    SciTech Connect

    Gandhi, O.P.; Hagmann, M.J.; Hill, D.W.; Partlow, L.M.; Bush, L.

    1980-01-01

    A solid-state computer-controlled system has been used to make swept-frequency measurements of absorption of biological specimens from 26.5 to 90.0 GHz. A wide range of samples was used, including solutions of DNA and RNA, and suspensions of BHK-21/C13 cells, Candida albicans, C krusei, and Escherichia coli. Sharp spectra reported by other workers were not observed. The strong absorbance of water (10--30 dB/mm) caused the absorbance of all aqueous preparations that we examined to have a water-like dependence on frequency. Reduction of incident power (to below 1.0 microW), elimination of modulation, and control of temperature to assure cell viability were not found to significantly alter the water-dominated absorbance. Frozen samples of BHK-21/C13 cells tested at dry ice and liquid nitrogen temperatures were found to have average insertion loss reduced to 0.2 dB/cm but still showed no reproducible peaks that could be attributed to absorption spectra. It is concluded that the special resonances reported by others are likely to be in error.

  11. High Resolution Infrared Spectra of Triacetylene

    NASA Astrophysics Data System (ADS)

    Doney, Kirstin D.; Zhao, Dongfeng; Linnartz, Harold

    2015-06-01

    Triacetylene, HC6H, is the longest poly-acetylene chain found in space, and is believed to be involved in the formation of longer chain molecules and polycyclic aromatic hydrocarbons (PAHs). However, abundances are expected to be low, and observational confirmation requires knowledge of the gas-phase spectra, which up to now has been incomplete with only the weak, low lying bending modes being known. We present new infrared (IR) spectra in the C-H stretch region obtained using ultra-sensitive and highly precise IR continuous wave cavity ring-down spectroscopy (cw-CRDS), combined with supersonic plasma expansions The talk reviews the accurate determination of the rotational constants of the asymmetric fundamental mode, νb{5}, including discussion on the perturber state, and associated hot bands. The determined molecular parameters are accurate enough to aid astronomical searches with such facilities as ALMA (Atacama Large Millimeter Array) or the upcoming JWST (James Webb Space Telecscope), which can now probe even trace molecules (abundances of ˜ 10-6 - 10-10 with respect to H2). D. Zhao, J. Guss, A. Walsh, H. Linnartz, Chem. Phys. Lett., 565, 132 (2013) K.D. Doney, D. Zhao, H. Linnartz, in preparation

  12. Microwave Spectra of 9-FLUORENONE and Benzophenone

    NASA Astrophysics Data System (ADS)

    West, Channing; Sedo, Galen; van Wijngaarden, Jennifer

    2015-06-01

    The pure rotational spectra of 9-fluorenone (C13H8O) and benzophenone (C13H10O) were observed using chirped-pulse Fourier transform microwave spectroscopy (cp-FTMW). The 9-fluorenone spectrum was collected between 8 and 13 GHz, which allowed for the assignment of 124 rotational transitions. A separate spectrum spanning from 8 to 14 GHz was collected for benzophenone, allowing for the assignment of 133 rotational transitions. Both aromatic ketones exhibited strong b-type spectra with little to no centrifugal distortion, indicating highly rigid molecular structures. A comparison of the experimentally determined spectral constants of 9-fluorenone to those calculated using both ab initio and density functional theory strongly suggest the molecule conforms to a planar C2v symmetric geometry as expected for its polycyclic structure. Whereas, a comparison of the experimental benzophenone constants to those predicted by theory suggests a molecule with non-planar C2 symmetry, where the two phenyl groups are rotated approximately 32° out-of-plane to form a paddlewheel like geometry.

  13. Odor Impression Prediction from Mass Spectra.

    PubMed

    Nozaki, Yuji; Nakamoto, Takamichi

    2016-01-01

    The sense of smell arises from the perception of odors from chemicals. However, the relationship between the impression of odor and the numerous physicochemical parameters has yet to be understood owing to its complexity. As such, there is no established general method for predicting the impression of odor of a chemical only from its physicochemical properties. In this study, we designed a novel predictive model based on an artificial neural network with a deep structure for predicting odor impression utilizing the mass spectra of chemicals, and we conducted a series of computational analyses to evaluate its performance. Feature vectors extracted from the original high-dimensional space using two autoencoders equipped with both input and output layers in the model are used to build a mapping function from the feature space of mass spectra to the feature space of sensory data. The results of predictions obtained by the proposed new method have notable accuracy (R≅0.76) in comparison with a conventional method (R≅0.61). PMID:27326765

  14. Blind Source Separation For Ion Mobility Spectra

    NASA Astrophysics Data System (ADS)

    Marco, S.; Pomareda, V.; Pardo, A.; Kessler, M.; Goebel, J.; Mueller, G.

    2009-05-01

    Miniaturization is a powerful trend for smart chemical instrumentation in a diversity of applications. It is know that miniaturization in IMS leads to a degradation of the system characteristics. For the present work, we are interested in signal processing solutions to mitigate limitations introduced by limited drift tube length that basically involve a loss of chemical selectivity. While blind source separation techniques (BSS) are popular in other domains, their application for smart chemical instrumentation is limited. However, in some conditions, basically linearity, BSS may fully recover the concentration time evolution and the pure spectra with few underlying hypothesis. This is extremely helpful in conditions where non-expected chemical interferents may appear, or unwanted perturbations may pollute the spectra. SIMPLISMA has been advocated by Harrington et al. in several papers. However, more modern methods of BSS for bilinear decomposition with the restriction of positiveness have appeared in the last decade. In order to explore and compare the performances of those methods a series of experiments were performed.

  15. Blind Source Separation For Ion Mobility Spectra

    SciTech Connect

    Marco, S.; Pomareda, V.

    2009-05-23

    Miniaturization is a powerful trend for smart chemical instrumentation in a diversity of applications. It is know that miniaturization in IMS leads to a degradation of the system characteristics. For the present work, we are interested in signal processing solutions to mitigate limitations introduced by limited drift tube length that basically involve a loss of chemical selectivity. While blind source separation techniques (BSS) are popular in other domains, their application for smart chemical instrumentation is limited. However, in some conditions, basically linearity, BSS may fully recover the concentration time evolution and the pure spectra with few underlying hypothesis. This is extremely helpful in conditions where non-expected chemical interferents may appear, or unwanted perturbations may pollute the spectra. SIMPLISMA has been advocated by Harrington et al. in several papers. However, more modern methods of BSS for bilinear decomposition with the restriction of positiveness have appeared in the last decade. In order to explore and compare the performances of those methods a series of experiments were performed.

  16. Serial FBG sensor network allowing overlapping spectra

    NASA Astrophysics Data System (ADS)

    Abbenseth, S.; Lochmann, S.; Ahrens, A.; Rehm, B.

    2016-05-01

    For structure or material monitoring low impact serial fiber Bragg grating (FBG) networks have attracted increasing research interest. Common sensor networks using wavelength division multiplexing (WDM) for FBG interrogation are limited in their efficiency by the spectral width of their light source, the FBG tuning range and the spectral guard bands. Overlapping spectra are strictly forbidden in this case. Applying time division multiplexing (TDM) or active resonator schemes may overcome these restrictions. However, they introduce other substantial disadvantages like signal roundtrip dependency or sophisticated control of active resonating structures. Code division multiplexing (CDM) as a means of FBG interrogation by simple autocorrelation of appropriate codes has been shown to be superior in this respect. However, it came at the cost of a second spectrometer introducing additional equalization efforts. We demonstrate a new serial FBG sensor network utilizing CDM signal processing for efficient sensor interrogation without the need of a second spectrometer and additional state of polarization (SOP) controlling components. It allows overlapping spectra even when all sensing FBGs are positioned at the same centre wavelength and it shows a high degree of insensitivity to SOP. Sequence inversed keyed (SIK) serial signal processing utilizing quasi-orthogonal balanced codes ensures simple and quick sensor interrogation with high signal-to-interference/noise ratio.

  17. Determination of antineutrino spectra from nuclear reactors

    SciTech Connect

    Huber, Patrick

    2011-08-15

    In this paper we study the effect of well-known higher-order corrections to the allowed {beta}-decay spectrum on the determination of antineutrino spectra resulting from the decays of fission fragments. In particular, we try to estimate the associated theory errors and find that induced currents like weak magnetism may ultimately limit our ability to improve the current accuracy and under certain circumstance could even greatly increase the theoretical errors. We also perform a critical evaluation of the errors associated with our method to extract the antineutrino spectrum using synthetic {beta} spectra. It turns out that a fit using only virtual {beta} branches with a judicious choice of the effective nuclear charge provides results with a minimal bias. We apply this method to actual data for {sup 235}U, {sup 239}Pu, and {sup 241}Pu and confirm, within errors, recent results, which indicate a net 3% upward shift in energy-averaged antineutrino fluxes. However, we also find significant shape differences which can, in principle, be tested by high-statistics antineutrino data samples.

  18. Supernova spectra below strong circumstellar interaction

    NASA Astrophysics Data System (ADS)

    Leloudas, G.; Hsiao, E. Y.; Johansson, J.; Maeda, K.; Moriya, T. J.; Nordin, J.; Petrushevska, T.; Silverman, J. M.; Sollerman, J.; Stritzinger, M. D.; Taddia, F.; Xu, D.

    2015-02-01

    We construct spectra of supernovae (SNe) interacting strongly with a circumstellar medium (CSM) by adding SN templates, a black-body continuum, and an emission-line spectrum. In a Monte Carlo simulation we vary a large number of parameters, such as the SN type, brightness and phase, the strength of the CSM interaction, the extinction, and the signal to noise ratio (S/N) of the observed spectrum. We generate more than 800 spectra, distribute them to ten different human classifiers, and study how the different simulation parameters affect the appearance of the spectra and their classification. The SNe IIn showing some structure over the continuum were characterized as "SNe IInS" to allow for a better quantification. We demonstrate that the flux ratio of the underlying SN to the continuum fV is the single most important parameter determining whether a spectrum can be classified correctly. Other parameters, such as extinction, S/N, and the width and strength of the emission lines, do not play a significant role. Thermonuclear SNe get progressively classified as Ia-CSM, IInS, and IIn as fV decreases. The transition between Ia-CSM and IInS occurs at fV ~ 0.2-0.3. It is therefore possible to determine that SNe Ia-CSM are found at the (un-extincted) magnitude range -19.5 >M> -21.6, in very good agreement with observations, and that the faintest SN IIn that can hide a SN Ia has M = -20.1. The literature sample of SNe Ia-CSM shows an association with 91T-like SNe Ia. Our experiment does not support that this association can be attributed to a luminosity bias (91T-like being brighter than normal events). We therefore conclude that this association has real physical origins and we propose that 91T-like explosions result from single degenerate progenitors that are responsible for the CSM. Despite the spectroscopic similarities between SNe Ibc and SNe Ia, the number of misclassifications between these types was very small in our simulation and mostly at low S/N. Combined with

  19. Stellar parametrization from Gaia RVS spectra

    NASA Astrophysics Data System (ADS)

    Recio-Blanco, A.; de Laverny, P.; Allende Prieto, C.; Fustes, D.; Manteiga, M.; Arcay, B.; Bijaoui, A.; Dafonte, C.; Ordenovic, C.; Ordoñez Blanco, D.

    2016-01-01

    Context. Among the myriad of data collected by the ESA Gaia satellite, about 150 million spectra will be delivered by the Radial Velocity Spectrometer (RVS) for stars as faint as GRVS~ 16. A specific stellar parametrization will be performed on most of these RVS spectra, i.e. those with enough high signal-to-noise ratio (S/N), which should correspond to single stars that have a magnitude in the RVS band brighter than ~14.5. Some individual chemical abundances will also be estimated for the brightest targets. Aims: We describe the different parametrization codes that have been specifically developed or adapted for RVS spectra within the GSP-Spec working group of the analysis consortium. The tested codes are based on optimisation (FERRE and GAUGUIN), projection (MATISSE), or pattern-recognition methods (Artificial Neural Networks). We present and discuss each of their expected performances in the recovered stellar atmospheric parameters (effective temperature, surface gravity, overall metallicity) for B- to K-type stars. The performances for determining of [α/Fe] ratios are also presented for cool stars. Methods: Each code has been homogeneously tested with a large grid of RVS simulated synthetic spectra of BAFGK-spectral types (dwarfs and giants), with metallicities varying from 10-2.5 to 10+ 0.5 the solar metallicity, and taking variations of ±0.4 dex in the composition of the α-elements into consideration. The tests were performed for S/N ranging from ten to 350. Results: For all the stellar types we considered, stars brighter than GRVS~ 12.5 are very efficiently parametrized by the GSP-Spec pipeline, including reliable estimations of [α/Fe]. Typical internal errors for FGK metal-rich and metal-intermediate stars are around 40 K in Teff, 0.10 dex in log(g), 0.04 dex in [M/H], and 0.03 dex in [α/Fe] at GRVS = 10.3. They degrade to 155 K in Teff, 0.15 dex in log(g), 0.10 dex in [M/H], and 0.1 dex in [α/Fe] at GRVS~ 12. Similar accuracies in Teff and [M/H] are

  20. Estimation of vertical sea level muon energy spectra from the latest primary cosmic ray elemental spectra

    NASA Astrophysics Data System (ADS)

    Mitra, M.; Molla, N. H.; Bhattacharyya, D. P.

    The directly measured elemental spectra of primary cosmic rays obtained from Webber et al., Seo et al., Menn et al., Ryan et al. and experiments like JACEE, CRN, SOKOL, RICH on P, He, CNO, Ne-S and Fe have been considered to estimate the vertical sea level muon energy spectra. The primary elemental energy spectra of P, He, CNO, Ne-S and Fe available from the different experimental data duly fitted by power law are given by Np(E)dE = 1.2216E-2.68 dE [cm2 .s.sr.GeV/n]-1 NHe(E)dE = 0.0424E-2.59 dE [cm2 .s.sr.GeV/n]-1 NCNO(E)dE = 0.0026E-2.57 dE[cm2 .s.sr.GeV/n]-1 NNe-S(E)dE = 0.00066E-2.57 dE [cm2 .s.sr.GeV/n]-1 NF e(E)dE = 0.0056E-2.55 dE [cm2 .s.sr.GeV/n]-1 Using the conventional superposition model the all nucleon primary cosmic ray spectrum has been derived which is of the form N(E)dE = 1.42E-2.66 dE [cm2 .s.sr.GeV/n]-1 We have considered all these spectra separately as parents of the secondary mesons and finallty the sea level muon fluxes at 00 from each species have been derived. To evaluate the meson spectra which are the initial air shower interaction products initiated by the primary nucleon air collisions, the hadronic energy moments have been calculated from the CERN LEBCEHS data for pp collisions and FNAL data for πp collisions. Pion production by secondary pions have been taken into account and the final total muon spectrum has been derived from pp rightarrowπ± x, pp → K± x, πp → π± x channels. The Z-factors have been corrected for p-air collisions. We have adopted the constant values of σp-air and σπ-air crosssections which are 273 mb and 213 mb, respectively. The adopted inelastic cross-sections for pp and πp interactions are 35 mb and 22 mb, respectively. The Q-G plasma correction of Z-factors have also been incorporated in the final form. The solution to the standard differential equation for mesons is considered for muon flux estimation from Ngenerations of the parent mesons. By this formulation vertical muon spectra from each element

  1. Mineral Spectra from Nili Fossae, Mars

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Spectra collected by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) indicate the presence of three distinct minerals. The graphed information comes from an observation of terrain in the Nili Fossae area of northern Mars. CRISM is one of six science instruments on NASA's Mars Reconnaissance Orbiter.

    Iron-magnesium smectite clay is formed through alteration of rocks by liquid water and is characterized by distinctive absorptions at 1.4, 1.9, and 2.3 micrometers due to water (H2O) and OH in the atomic structure of the mineral. Olivine is an iron magnesium silicate and primary igneous mineral, and water is not in its structure. Its spectrum is characterized by a strong and broad absorption at 1.0 micrometer due to ferrous iron (Fe2+). Carbonate is an alteration mineral identified by the distinctive paired absorptions at 2.3 and 2.5 micrometers. The precise band positions at 2.31 and 2.51 micrometers identify the carbonate at this location as magnesium carbonate. The broad 1.0 micrometer band indicates some small amount of ferrous iron is also present and the feature at 1.9 micrometers indicates the presence of water. CRISM researchers believe the magnesium carbonate found in the Nili Fossae region formed from alteration of olivine by water.

    The data come from a CRISM image catalogued as FRT00003E12. The spectra shown here are five-pixel-by-five-pixel averages of CRISM L-detector spectra taken from three different areas within the image that have then been ratioed to a five-pixel-by-five-pixel common denominator spectrum taken from a spectrally unremarkable area with no distinctive mineralogic signatures. This technique highlights the spectral contrasts between regions due to their unique mineralogy. The spectral wavelengths near 2.0 micrometers are affected by atmospheric absorptions and have been removed for clarity.

    NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, manages the Mars

  2. Automatic one dimensional spectra extraction for Weihai fiber-fed high resolution echelle spectra

    NASA Astrophysics Data System (ADS)

    Hu, Shao Ming; Gao, Dong Yang

    2014-11-01

    One fiber-fed high resolution echelle spectrograph was built for the one meter telescope atWeihai Observatory of Shandong University. It is used for exoplanet searching by radial velocity method and for stellar spectra analysis. One dimensional spectra extraction from the raw echelle data is researched in this paper. Flat field images with different exposure times were used to trace the order position accurately. The accurate background was fitted from each CCD image and it was subtracted from the raw image to correct the background and straylight. The intensity of each order decreases towards the order margin, and the lengths of order are different between the blue and red regions. The order tracing during the data reduction was investigated in this work. Accurate flux can be obtained after considering the effects of bad pixels, the curvature of each order and so on. One Interactive Data Language program for one dimensional spectra extraction was adopted and implemented to echelle data reduction for Weihai fiber-fed high resolution echelle spectra, and the results are illustrated here. The program is efficient and accurate for echelle data reduction. It can be adopted to reduce data taken by other instruments even the spectrographs in other fields, and it is very convenient for astronomers.

  3. IR SPECTRA BY DFT FOR GLUCOSE AND ITS EPIMERS: A COMPARISON BETWEEN VACUUM AND SOLVATED SPECTRA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infrared spectra were calculated for the low energy geometry optimized structures of glucose and all of its epimers, at B3LYP/6-311++G** level of theory. Calculations were performed both in vacuo and using the COSMO solvation method. Frequencies, zero point energies, enthalpies, entropies, and rel...

  4. Vibrational spectra and molecular dynamics of alkoxycyanobiphenyls

    NASA Astrophysics Data System (ADS)

    Babkov, L. M.; Gabrusyonok, E.; Krasnoholovets, V. V.; Puchkovskaya, G. A.; Khakimov, I. N.

    1999-05-01

    The IR and Raman spectra of 4-alkoxy-4'-cyanobiphenyls ( nOCB, where n=3-8 is the number of carbon atom in the alkyl chain) were measured in the 30-3200 cm -1 spectral region at 77-400 K. With the DSC and DTA methods, the temperatures and enthalpies of the state transitions were determined for the substances under study in the 100-400 K temperature range. The changes of the spectral parameters of several vibrational bands at phase transitions were interpreted as being caused by conformational changes of the nOCB molecules. The mechanism of intradimer energy transfer which explains the Q(CN) band broadening in the liquid crystal and isotropic liquid phases is discussed.

  5. Workshop to establish databases of carbohydrate spectra

    SciTech Connect

    1995-12-31

    The workshop was organized to formulate guidelines for establishing spectral databases of complex carbohydrates. The databases will enable the scientific community to avoid the great waste of research effort and funds that frequently occurs when carbohydrate chemists are forced to duplicate the structural characterization of previously characterized complex carbohydrates. Chemists waste their effort on repetitive characterizations because in the absence of spectral databases they are unaware they are analyzing a known molecule until they have completely determined its structure. Chemists will be able to avoid much of this wasted effort when the collections of mass and of nuclear magnetic resonance (NMR) spectra initiated at the workshop are subsequently developed into searchable databases. Then scientists only need query the databases with the spectrum or with information defining the spectrum of an unidentified carbohydrate to find out if it has been previously characterized.

  6. Spectra as windows into exoplanet atmospheres.

    PubMed

    Burrows, Adam S

    2014-09-01

    Understanding a planet's atmosphere is a necessary condition for understanding not only the planet itself, but also its formation, structure, evolution, and habitability. This requirement puts a premium on obtaining spectra and developing credible interpretative tools with which to retrieve vital planetary information. However, for exoplanets, these twin goals are far from being realized. In this paper, I provide a personal perspective on exoplanet theory and remote sensing via photometry and low-resolution spectroscopy. Although not a review in any sense, this paper highlights the limitations in our knowledge of compositions, thermal profiles, and the effects of stellar irradiation, focusing on, but not restricted to, transiting giant planets. I suggest that the true function of the recent past of exoplanet atmospheric research has been not to constrain planet properties for all time, but to train a new generation of scientists who, by rapid trial and error, are fast establishing a solid future foundation for a robust science of exoplanets. PMID:24613929

  7. A Study of Pioneer Venus Nightglow Spectra

    NASA Technical Reports Server (NTRS)

    Slanger, Tom G.

    1993-01-01

    The work performed during the 12-month period of this contract involved: (1) further analysis of latitudinal variations in the Venusian NO nightglow intensity from PVOUVS data; (2) corrections made to the input data for the VTGCM model, relating specifically to a factor of three increase in the three-body recombination rate coefficient of N + O; (3) consideration of limits on the rate of reaction of N-atoms with CO2; (4) consideration of the Venusian equivalent of the terrestrial hot N-atom reaction for NO production; and (5) successful location of video images of meteor trails from space, for the purpose of making a comparison with the meteor trail that we have hypothesized as an explanation of intense UV spectra observed on a particular Pioneer Venus (PV) orbit.

  8. First dynamic spectra of stellar microwave flares

    NASA Technical Reports Server (NTRS)

    Bastian, T. S.; Bookbinder, J. A.

    1987-01-01

    The VLA has been used in the spectral-line mode at 1.4 GHz to obtain the first dynamic spectra of stellar sources other than the sun. Two very intense, highly circularly polarized, microwave outbursts were observed on the dMe flare star UV Cet, in addition to a slowly varying, unpolarized component. One outburst was purely left circularly polarized and showed no variations as a function of frequency across the 41 MHz band, whereas the other was as much as 70 percent right-circularly polarized and showed distinct variations with frequency. Although the slowly varying emission is probably due to incoherent gyrosynchrotron emission, the two flaring events are the result of coherent mechanisms. The coherent emission is interpreted in terms of plasma radiation and the cyclotron maser instability.

  9. Reflectance Spectra of the Juneau Icefield

    NASA Astrophysics Data System (ADS)

    Hughes-Allen, L.; Popyack, K.; Peter, A.; Perera, E.; Pope, A.

    2015-12-01

    Snow reflectance is an important input to understanding a glacier's surface energy balance. It is also useful for quantifying other snow properties such as impurities and grain size. In cooperation with the Juneau Icefield Research Program, we measured the spectral reflectance and albedo of a range of targets, collecting a spectral catalogue of the Taku glacier system. Using this spectral library, the main foci of this study are linking red algae biomass to spectral reflectance, quantifying the radiative forcing of impurities in suncups, and testing a snow grain size retrieval algorithm. Impurities, algae, and large snow grains all reduce the reflectance of shortwave radiation but with unique spectral signatures. In addition, spectra are used in conjunction with satellite imagery to investigate the spatial variability of albedo and therefore impurities on the Taku Glacier.

  10. UV Spectra, Bombs, and the Solar Atmosphere

    NASA Astrophysics Data System (ADS)

    Judge, Philip G.

    2015-08-01

    A recent analysis of UV data from the Interface Region Imaging Spectrograph (IRIS) reports plasma “bombs” with temperatures near 8 × 104 K within the solar photosphere. This is a curious result, first because most bomb plasma pressures p (the largest reported case exceeds 103 dyn cm-2) fall well below photospheric pressures (\\gt 7× {10}3), and second, UV radiation cannot easily escape from the photosphere. In the present paper the IRIS data is independently analyzed. I find that the bombs arise from plasma originally at pressures between ≤ 80 and 800 dyne cm-2 before explosion, i.e., between ≥ 850 and 550 km above {τ }500=1. This places the phenomenon’s origin in the low-mid chromosphere or above. I suggest that bomb spectra are more compatible with Alfvénic turbulence than with bi-directional reconnection jets.

  11. Galactic cosmic ray composition and energy spectra

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.

    1994-01-01

    Galactic cosmic ray nuclei represent a significant risk to long-duration spaceflight outside the magnetosphere. We review briefly existing measurements of the composition and energy spectra of heavy cosmic ray nuclei, pointing out which species and energy ranges are most critical to assessing cosmic ray risks for spaceflight. Key data sets are identified and a table of cosmic ray abundances is presented for elements from H to Ni (Z = 1 to 28). Because of the 22-year nature of the solar modulation cycle, data from the approaching 1998 solar minimum is especially important to reducing uncertainties in the cosmic ray radiation hazard. It is recommended that efforts to model this hazard take advantage of approaches that have been developed to model the astrophysical aspects of cosmic rays.

  12. Radioactive sample effects on EDXRF spectra

    SciTech Connect

    Worley, Christopher G

    2008-01-01

    Energy dispersive X-ray fluorescence (EDXRF) is a rapid, straightforward method to determine sample elemental composition. A spectrum can be collected in a few minutes or less, and elemental content can be determined easily if there is adequate energy resolution. Radioactive alpha emitters, however, emit X-rays during the alpha decay process that complicate spectral interpretation. This is particularly noticeable when using a portable instrument where the detector is located in close proximity to the instrument analysis window held against the sample. A portable EDXRF instrument was used to collect spectra from specimens containing plutonium-239 (a moderate alpha emitter) and americium-241 (a heavy alpha emitter). These specimens were then analyzed with a wavelength dispersive XRF (WDXRF) instrument to demonstrate the differences to which sample radiation-induced X-ray emission affects the detectors on these two types of XRF instruments.

  13. On Magnetic Spectra of Earth and Mars

    NASA Technical Reports Server (NTRS)

    Voorhies, C. V.; Sabaka, T. J.; Purucker, M.

    2002-01-01

    The spectral method for distinguishing crustal from core-source magnetic fields is reexamined, modified, and applied to both a comprehensive geomagnetic field model and an altitude normalized magnetic map of Mars. The observational spectra are fairly fitted by theoretical forms expected from certain elementary classes of magnetic sources. For Earth we find fields from a core of radius 3512 +/- 64 km, in accord with the seismologic core radius of 3480 km, and a crust represented by a shell of random dipolar sources at radius 6367 +/- 14 km, near the planetary mean radius of 6371.2 km. For Mars we find no sign of a core-source field, only a field from a crust represented in same way, but at radius 3344 +/- 10 km, about 46 km below the planetary mean radius of 3389.5 km, and with sources about 9.6 +/- 3.2 times stronger.

  14. Evolution and infrared spectra of brown dwarfs

    NASA Technical Reports Server (NTRS)

    Lunine, Jonathan I.; Hubbard, William B.; Marley, Mark S.

    1986-01-01

    Self-consistent models are constructed for the structure, evolution, and observable properties of degenerately cooling objects, or 'brown dwarfs'. Model atmospheres composed of a range of likely gaseous and particulate opacity sources are calculated in order to provide a boundary condition for interior temperature-pressure profiles and to determine the emergent spectra for such objects. The radius derived from the interior models is combined with the emergent fluxes calculated from the atmosphere model to fit the data of McCarthy, Probst, and Low (1985) and to derive the luminosity and mass of VB 8B. The latter is found to be most probably an 0.05 solar mass object with effective temperature in the 1200-1500 K range and an atmosphere which very likely contains particulate absorbers. Key changes in chemical oxidation state and condensation of major constituents during the evolution of brown dwarfs are presented.

  15. Optical absorption spectra of dications of carotenoids

    SciTech Connect

    Jeevarajan, J.A.; Wei, C.C.; Jeevarajan, A.S.; Kispert, L.D.

    1996-04-04

    Quantitative optical absorption spectra of the cation radicals and the dications of canthaxanthin (I), {beta}carotene (II), 7`-cyano-7`-ethoxycarbonyl-7`-apo-{beta}-carotene (III), and 7`,7`-dimethyl-7`-apo-{beta}-carotene (IV) in dichloromethane solution are reported. Exclusive formation of dications occurs when the carotenoids are oxidized with ferric chloride. Addition of neutral carotenoid to the dications results in equilibrium formation of cation radicals. Oxidation with iodine in dichloromethane affords only cation radicals; electrochemical oxidation under suitable conditions yields both dications and cation radicals. Values of the optical parameters depend on the nature of the oxidative medium. The oscillator strengths calculated for gas phase cation radicals and dications of I-IV using the INDO/S method show the same trend as the experimental values. 31 refs., 4 figs., 2 tabs.

  16. Spectra as windows into exoplanet atmospheres

    NASA Astrophysics Data System (ADS)

    Burrows, Adam S.

    2014-09-01

    Understanding a planet's atmosphere is a necessary condition for understanding not only the planet itself, but also its formation, structure, evolution, and habitability. This requirement puts a premium on obtaining spectra and developing credible interpretative tools with which to retrieve vital planetary information. However, for exoplanets, these twin goals are far from being realized. In this paper, I provide a personal perspective on exoplanet theory and remote sensing via photometry and low-resolution spectroscopy. Although not a review in any sense, this paper highlights the limitations in our knowledge of compositions, thermal profiles, and the effects of stellar irradiation, focusing on, but not restricted to, transiting giant planets. I suggest that the true function of the recent past of exoplanet atmospheric research has been not to constrain planet properties for all time, but to train a new generation of scientists who, by rapid trial and error, are fast establishing a solid future foundation for a robust science of exoplanets.

  17. Jets and Bombs: Characterizing IRIS Spectra

    NASA Astrophysics Data System (ADS)

    Schmit, Donald; Innes, Davina

    2014-06-01

    For almost two decades, SUMER has provided an unique perspective on explosive events in the lower solar atmosphere. One of the hallmark observations during this tenure is the identification of quiet sun bi-directional jets in the lower transition region. We investigate these events through two distinct avenues of study: a MHD model for reconnection and the new datasets of the Interface Region Imaging Spectrograph (IRIS). Based on forward modeling optically thin spectral profiles, we find the spectral signatures of reconnection can vary dramatically based on viewing angle and altitude. We look to the IRIS data to provide a more complete context of the chromospheric and coronal environment during these dynamic events. During a joint IRIS-SUMER observing campaign, we observed spectra of multiple jets, a small C flare, and an Ellerman bomb event. We discuss the questions that arise from the inspection of these new data.

  18. Spectra of Particulate Backscattering in Natural Waters

    NASA Technical Reports Server (NTRS)

    Gordon, Howard, R.; Lewis, Marlon R.; McLean, Scott D.; Twardowski, Michael S.; Freeman, Scott A.; Voss, Kenneth J.; Boynton, Chris G.

    2009-01-01

    Hyperspectral profiles of downwelling irradiance and upwelling radiance in natural waters (oligotrophic and mesotrophic) are combined with inverse radiative transfer to obtain high resolution spectra of the absorption coefficient (a) and the backscattering coefficient (bb) of the water and its constituents. The absorption coefficient at the mesotrophic station clearly shows spectral absorption features attributable to several phytoplankton pigments (Chlorophyll a, b, c, and Carotenoids). The backscattering shows only weak spectral features and can be well represented by a power-law variation with wavelength (lambda): b(sub b) approx. Lambda(sup -n), where n is a constant between 0.4 and 1.0. However, the weak spectral features in b(sub b), suggest that it is depressed in spectral regions of strong particle absorption. The applicability of the present inverse radiative transfer algorithm, which omits the influence of Raman scattering, is limited to lambda < 490 nm in oligotrophic waters and lambda < 575 nm in mesotrophic waters.

  19. Microwave spectra of terrestrial mesospheric CO

    NASA Technical Reports Server (NTRS)

    Clancy, R. T.; Muhleman, D. O.; Berge, G. L.

    1982-01-01

    Mesospheric CO was observed in absorption against the moon in early December 1979 at a wavelength of 1.3 mm and in early December 1980 at 2.6 mm with the 10.4-m millimeter wavelength telescope at the Owens Valley Radio Observatory. No significant change in the column density of CO above about 65 km is found between the 1979 and 1980 observations. Comparison with other published spectra of mesospheric CO suggests a large seasonal variation (about a factor of 2-3) in the column density of CO above 65 km, with a maximum in winter and a minimum in summer. It is concluded that the understanding of CO in the mesosphere can be improved with earth-based microwave measurements, but data with high signal-to-noise ratios must be obtained.

  20. The Production of (26)Al in the Early Solar System by the (16)O((16)O, X)(26)Al(Gs) and (14)N((16)O, X)(26)Al(Gs) Reactions

    NASA Astrophysics Data System (ADS)

    Yildiz, Kazim Orhan

    1998-12-01

    abundance of oxygen compared to carbon, this reaction turned out to have the highest contribution to the yield. For completeness, the yield of the 14N(16O,x)26Algs reaction was also measured, because this reaction is another possibility for the production of the meteoritic 26Al by the incident oxygen-rich cosmic rays. Due to lower solar system abundances of nitrogen compared to carbon as well as a smaller cross section, the yield of this reaction found to be negligible as expected. For the experimental work, thick BeO samples were irradiated with beams of 16O and 14N ions, and the resulting activities were counted off-line using a Compton suppressed HPGe detector. The number of produced 26Algs atoms was determined by counting the 1809 keV gamma rays resulting from the decay of 26Algs. If 26Al was uniformly distributed throughout the proto-solar cloud, then the abundance ratio of 26Al/16O=1.8×10-7 could be calculated for the entire cloud. This abundance ratio could be produced by oxygen-rich cosmic rays only if more than 30% of the solar system oxygen was injected into the proto-solar cloud as cosmic rays that had energies up to 10 MeV/nucleon. This is not a plausible scenario. Therefore, it is more likely that 26Al in the early solar system was produced in a stellar site, not by cosmic-ray irradiation of the proto-solar cloud.