Science.gov

Sample records for 158a gev lead

  1. Particle Production in 158.A GeV 208Pb+208Pb Collisions

    SciTech Connect

    Awes, T.C.

    1999-01-09

    The production of neutral pions in 158A GeV {sup 208}Pb+{sup 208}Pb collisions has been studied in the WA98 experiment. The centrality dependence of the neutral pion production is investigated. An invariance of the spectral shape and a simple scaling of the yield with the number of participating nucleons is observed for centralities with more than about 50 participants. The transverse mass spectrum is analyzed in terms of a thermal model with hydrodynamic expansion. The high accuracy and large kinematic coverage of the measurement constrains the extracted freeze-out parameters, and provides information on the freeze-out velocity profile.

  2. Centrality Dependence of Neutral Pion Production in 158A GeV {sup 208}Pb+{sup 208}Pb Collisions

    SciTech Connect

    Aggarwal, M.M.; Bhatia, V.S.; Agnihotri, A.; Bhalla, K.B.; Gupta, S.K.; Raniwala, R.; Raniwala, S.; Ahammed, Z.; Chattopadhyay, S.; Das, A.C.; Dutta Majumdar, M.R.; Ganti, M.S.; Mukhopadhyay, D.S.; Nayak, T.K.; Sinha, B.C.; Trivedi, M.D.; Viyogi, Y.P.; Angelis, A.L.; Donni, P.; Foka, P.; Kalechofsky, H.; Martin, M.; Naef, H.; Rosselet, L.; Rubio, J.M.; Solomey, N.; Voeroes, S.; Antonenko, V.; Cherbatchev, R.; Doubovik, I.; Fokin, S.; Ippolitov, M.; Karadjev, K.; Koutcheryaev, I.; Lebedev, A.; Manko, V.; Mgebrichvili, G.; Nianine, A.; Sibiriak, I.; Tsvetkov, A.; Vinogradov, A.; Arefiev, V.; Astakhov, V.; Avdeitchikov, V.; Baldine, A.; Barabach, L.; Batiounia, B.; Chalyshev, V.; Djordjadze, V.; Frolov, V.; Gavrishchuk, O.; Guskov, B.; Kosarev, I.; Kuzmin, N.; Maximov, A.; Mehdiyev, R.; Mikhalev, D.; Myalkovski, V.; Nikitine, V.; Nikolaev, S.; Nomokonov, P.; Parfenov, A.; Pavliouk, S.; Roufanov, I.; Shabratova, G.; Slavine, N.; Vodopianov, A.; Awes, T.C.; Kim, H.; Plasil, F.; Stankus, P.; Young, G.R.; Baba, P.V.; Badyal, S.K.; Rao, N.K.; Sambyal, S.S.; Barlag, C.; Bathe, S.; Blume, C.; Bohne, E.; Boeroecz, Z.K.; Bucher, D.; Buesching, H.; Claussen, A.; Glasow, R.; Kampert, K.; Kees, S.; Kruempel, T.; Pietzmann, T.; Reygers, K.; Santo, R.; Schlagheck, H.; Stueken, D.; Bernier, T.; Gutbrod, H.H.; Luquin, L.; Nayak, S.K.; Pinanaud, W.; Retiere, F.; Roy, C.; Bock, R.; Kolb, B.W.; Langbein, I.; Lee, Y.Y.; Neumaier, S.; and others

    1998-11-01

    The production of neutral pions in 158A GeV {sup 208}Pb+ {sup 208}Pb collisions has been studied in the WA98 experiment at the CERN Super Proton Synchrotron (SPS). Transverse momentum spectra are studied for the range 0.3{le}m{sub T}{minus}m{sub 0}{le}4.0 GeV /c . The results for central collisions are compared to various models. The centrality dependence of the neutral pion spectral shape and yield is investigated. An invariance of the spectral shape and a simple scaling of the yield with the number of participating nucleons is observed for centralities with greater than about 30thinspthinspparticipating nucleons. This is most naturally explained by assuming an equilibrated system. {copyright} {ital 1998} {ital The American Physical Society }

  3. Event-by-Event Charged-Neutral Fluctuations in Pb + Pb Collisions at 158 A GeV

    SciTech Connect

    Aggarwal, M. M.; Ahammed, Z.; Plasil, F; Silvermyr, David O; Stankus, Paul W; WA98, Collaboration

    2011-01-01

    Charged particles and photons have been measured in central Pb + Pb collisions at 158 A GeV in a common ( )-phase space region in the WA98 experiment at the CERN SPS. The measured distributions have been analyzed to quantify the frequency with which phase space regions of varying sizes have either small or large neutral pion fraction. The measured results are compared with VENUS model simulated events and with mixed events. Events with both large and small charged neutral fluctuations are observed to occur more frequently than expected statistically, as deduced from mixed events, or as predicted by model simulations, with the difference becoming more prominent with decreasing size of the region.

  4. Emission of forward neutrons by 158A GeV indium nuclei in collisions with Al, Cu, Sn and Pb

    NASA Astrophysics Data System (ADS)

    Karpechev, E. V.; Pshenichnov, I. A.; Karavicheva, T. L.; Kurepin, A. B.; Golubeva, M. B.; Guber, F. F.; Maevskaya, A. I.; Reshetin, A. I.; Tiflov, V. V.; Topilskaya, N. S.; Cortese, P.; Dellacasa, G.; Arnaldi, R.; De Marco, N.; Ferretti, A.; Gallio, M.; Musso, A.; Oppedisano, C.; Piccotti, A.; Scomparin, E.; Vercellin, E.; Cicalò, C.; Puddu, G.; Siddi, E.; Szymanski, P.; Efthymiopoulos, I.

    2014-01-01

    The cross sections of forward emission of one, two and three neutrons by 158A GeV 115In nuclei in collisions with Al, Cu, Sn and Pb targets are reported. The measurements were performed in the framework of the ALICE-LUMI experiment at the SPS facility at CERN. Various corrections accounting for the absorption of beam nuclei and produced neutrons in target material and surrounding air were introduced. The corrected cross section data are compared with the predictions of the RELDIS model for electromagnetic fragmentation of 115In in ultraperipheral collisions, as well as with the results of the abrasion-ablation model for neutron emission in hadronic interactions. The measured neutron emission cross sections well agree with the RELDIS results, with the exception of In-Al collisions where the measured cross sections are larger compared to RELDIS. This is attributed to a relatively large contribution of hadronic fragmentation of In on Al target with respect to electromagnetic fragmentation, in contrast to similar measurements performed earlier with 30A GeV 208Pb colliding with Al.

  5. System-size and centrality dependence of charged kaon and pion production in nucleus-nucleus collisions at 40A GeV and 158A GeV beam energy

    NASA Astrophysics Data System (ADS)

    Anticic, T.; Baatar, B.; Barna, D.; Bartke, J.; Beck, H.; Betev, L.; Białkowska, H.; Blume, C.; Bogusz, M.; Boimska, B.; Book, J.; Botje, M.; Bunčić, P.; Cetner, T.; Christakoglou, P.; Chung, P.; Chvala, O.; Cramer, J. G.; Dinkelaker, P.; Eckardt, V.; Fodor, Z.; Foka, P.; Friese, V.; Gaździcki, M.; Grebieszkow, K.; Höhne, C.; Kadija, K.; Karev, A.; Kliemant, M.; Kolesnikov, V. I.; Kollegger, T.; Kowalski, M.; Kresan, D.; Laszlo, A.; Lacey, R.; van Leeuwen, M.; Lungwitz, B.; Mackowiak, M.; Makariev, M.; Malakhov, A. I.; Mateev, M.; Melkumov, G. L.; Mitrovski, M.; Mrówczyński, St.; Nicolic, V.; Pálla, G.; Panagiotou, A. D.; Peryt, W.; Pluta, J.; Prindle, D.; Pühlhofer, F.; Renfordt, R.; Roland, C.; Roland, G.; Rybczyński, M.; Rybicki, A.; Sandoval, A.; Schmitz, N.; Schuster, T.; Seyboth, P.; Siklér, F.; Skrzypczak, E.; Slodkowski, M.; Stefanek, G.; Stock, R.; Ströbele, H.; Susa, T.; Szuba, M.; Utvić, M.; Varga, D.; Vassiliou, M.; Veres, G. I.; Vesztergombi, G.; Vranić, D.; Włodarczyk, Z.; Wojtaszek-Szwarc, A.

    2012-11-01

    Measurements of charged pion and kaon production are presented in centrality selected Pb+Pb collisions at 40A GeV and 158A GeV beam energy as well as in semicentral C+C and Si+Si interactions at 40A GeV. Transverse mass spectra, rapidity spectra, and total yields are determined as a function of centrality. The system-size and centrality dependence of relative strangeness production in nucleus-nucleus collisions at 40A GeV and 158A GeV beam energy are derived from the data presented here and from published data for C+C and Si+Si collisions at 158A GeV beam energy. At both energies a steep increase with centrality is observed for small systems followed by a weak rise or even saturation for higher centralities. This behavior is compared to calculations using transport models (ultra-relativistic quantum molecular dynamics and hadron-string dynamics), a percolation model, and the core-corona approach.

  6. Calculation of the Coulomb Fission Cross Sections for Pb-Pb and Bi-Pb Interactions at 158 A GeV

    NASA Technical Reports Server (NTRS)

    Poyser, William J.; Ahern, Sean C.; Norbury, John W.; Tripathi, R. K.

    2002-01-01

    The Weizsacker-Williams (WW) method of virtual quanta is used to make approximate cross section calculations for peripheral relativistic heavy-ion collisions. We calculated the Coulomb fission cross sections for projectile ions of Pb-208 and Bi-209 with energies of 158 A GeV interacting with a Pb-208 target. We also calculated the electromagnetic absorption cross section for Pb-208 ion interacting as described. For comparison we use both the full WW method and a standard approximate WW method. The approximate WW method in larger cross sections compared to the more accurate full WW method.

  7. Freeze-Out Parameters in Central 158A GeV P{number_sign}208 b+Pb Collision80s

    SciTech Connect

    Aggarwal, M.M.; Bhatia, V.S.; Agnihotri, A.; Bhalla, K.B.; Gupta, S.K.; Raniwala, R.; Raniwala, S.; Ahammed, Z.; Chattopadhyay, S.; Das, A.C.; Dutta Majumdar, M.R.; Ganti, M.S.; Mukhopadhyay, D.S.; Nayak, T.K.; Sinha, B.C.; Trivedi, M.D.; Viyogi, Y.P.; Angelis, A.L.; Donni, P.; Foka, P.; Kalechofsky, H.; Martin, M.; Naef, H.; Rosselet, L.; Rubio, J.M.; Solomey, N.; Voeroes, S.; Antonenko, V.; Cherbatchev, R.; Doubovik, I.; Fokin, S.; Ippolitov, M.; Karadjev, K.; Koutcheryaev, I.; Lebedev, A.; Manko, V.; Mgebrichvili, G.; Nianine, A.; Sibiriak, I.; Tsvetkov, A.; Vinogradov, A.; Arefiev, V.; Astakhov, V.; Avdeitchikov, V.; Baldine, A.; Barabach, L.; Batiounia, B.; Chalyshev, V.; Djordjadze, V.; Frolov, V.; Gavrishchuk, O.; Guskov, B.; Kosarev, I.; Kuzmin, N.; Maximov, A.; Mehdiyev, R.; Mikhalev, D.; Myalkovski, V.; Nikitine, V.; Nikolaev, S.; Nomokonov, P.; Parfenov, A.; Pavliouk, S.; Roufanov, I.; Shabratova, G.; Slavine, N.; Vodopianov, A.; Awes, T.C.; Kim, H.; Plasil, F.; Stankus, P.; Young, G.R.; Baba, P.V.; Badyal, S.K.; Dutt, S.; Mir, M.F.; Rao, N.K.; Sambyal, S.S.; Shah, T.H.; Barlag, C.; Bathe, S.; Blume, C.; Bohne, E.; Boeroecz, Z.K.; Bucher, D.; Buesching, H.; Claussen, A.; Glasow, R.; Kampert, K.; Kees, S.; Kruempel, T.; Peitzmann, T.; Reygers, K.; Santo, R.; Schlagheck, H.; Stueken, D.; Bernier, T.; Delagrange, H.; Gutbrod, H.H.; Luquin, L.; Martinez, G.; Nayak, S.K.; Pinganaud, W.; Retiere, F.; Roy, C.; Schutz, Y. and others

    1999-08-01

    Neutral pion production in central 158A GeV {sup 208}Pb+ {sup 208} Pb collisions has been studied in the WA98 experiment at the CERN Super Proton Synchrotron. The {pi}{sup 0} transverse mass spectrum has been analyzed in terms of a thermal model with hydrodynamic expansion. The high accuracy and large kinematic coverage of the measurement allow one to limit previously noted ambiguities in the extracted freeze-out parameters. The results are shown to be sensitive to the shape of the velocity distribution at freeze-out. {copyright} {ital 1999} {ital The American Physical Society }

  8. Energy dependence of transverse momentum fluctuations in Pb+Pb collisions at the CERN Super Proton Synchrotron (SPS) at 20A to 158A GeV

    SciTech Connect

    NA49 Collaboration; Anticic, T.

    2009-04-15

    Results are presented on event-by-event fluctuations of transverse momenta p{sub T} in central Pb+Pb interactions at 20A, 30A, 40A, 80A, and 158A GeV. The analysis was performed for charged particles at forward center-of-mass rapidity (1.1 < y*{sub {pi}} < 2.6). Three fluctuation measures were studied: the distribution of average transverse momentum M(p{sub T}) in the event, the {phi}{sub p{sub T}} fluctuation measure, and two-particle transverse momentum correlations. Fluctuations of p{sub T} are small and show no significant energy dependence in the energy range of the CERN Super Proton Synchrotron. Results are compared with QCD-inspired predictions for the critical point, and with the UrQMD model. Transverse momentum fluctuations, similar to multiplicity fluctuations, do not show the increase expected for freeze-out near the critical point of QCD.

  9. Search for the QCD critical point in nuclear collisions at 158A GeV at the CERN Super Proton Synchrotron (SPS)

    NASA Astrophysics Data System (ADS)

    Anticic, T.; Baatar, B.; Barna, D.; Bartke, J.; Betev, L.; Białkowska, H.; Blume, C.; Boimska, B.; Botje, M.; Bracinik, J.; Bunčić, P.; Cerny, V.; Christakoglou, P.; Chung, P.; Chvala, O.; Cramer, J. G.; Dinkelaker, P.; Eckardt, V.; Fodor, Z.; Foka, P.; Friese, V.; Gaździcki, M.; Genchev, V.; Grebieszkow, K.; Höhne, C.; Kadija, K.; Karev, A.; Kolesnikov, V. I.; Kowalski, M.; Kreps, M.; Laszlo, A.; Lacey, R.; van Leeuwen, M.; Lungwitz, B.; Makariev, M.; Malakhov, A. I.; Mateev, M.; Melkumov, G. L.; Mitrovski, M.; Mrówczyński, St.; Nicolic, V.; Pálla, G.; Panagiotou, A. D.; Petridis, A.; Peryt, W.; Pikna, M.; Pluta, J.; Prindle, D.; Pühlhofer, F.; Renfordt, R.; Roland, C.; Roland, G.; Rybczyński, M.; Rybicki, A.; Sandoval, A.; Schmitz, N.; Schuster, T.; Seyboth, P.; Siklér, F.; Sitar, B.; Skrzypczak, E.; Slodkowski, M.; Stefanek, G.; Stock, R.; Ströbele, H.; Susa, T.; Szuba, M.; Varga, D.; Vassiliou, M.; Veres, G. I.; Vesztergombi, G.; Vranić, D.; Włodarczyk; Z.; Antoniou, N. G.; Diakonos, F. K.; Mavromanolakis, G.; NA49 Collaboration

    2010-06-01

    Pion production in nuclear collisions at the Super Proton Synchrotron (SPS) is investigated with the aim to search, in a restricted domain of the phase diagram, for power laws in the behavior of correlations that are compatible with critical QCD. We analyzed interactions of nuclei of different sizes (p+p, C+C, Si+Si, Pb+Pb) at 158A GeV adopting, as appropriate observables, scaled factorial moments in a search for intermittent fluctuations in transverse dimensions. The analysis is performed for π+π- pairs with an invariant mass very close to the two-pion threshold. In this sector one may capture critical fluctuations of the sigma component in a hadronic medium, even if the σ meson has no well-defined vacuum state. It turns out that for the Pb+Pb system the proposed analysis technique cannot be applied without entering the invariant mass region with strong Coulomb correlations. As a result the treatment becomes inconclusive in this case. Our results for the other systems indicate the presence of power-law fluctuations in the freeze-out state of Si+Si approaching in size the prediction of critical QCD.

  10. K*(892)⁰ and K̄*(892)⁰ production in central Pb + Pb, Si + Si, C + C, and inelastic p + p collisions at 158A GeV

    DOE PAGES

    Anticic, T.; Baatar, B.; Barna, D.; ...

    2011-12-13

    Production of the K*(892)0 and K̄*(892)⁰ resonances was studied via their K⁺π⁻ and K⁻π⁺ decay modes in central Pb+Pb, Si+Si, C+C, and inelastic p+p collisions at 158A GeV(√(sNN)=17.3 GeV) with the NA49 detector at the CERN SPS. Transverse momentum and rapidity distributions were measured and total yields were estimated. The yield of K* exceeds that of K̄* by about a factor of two in nucleus-nucleus reactions. The total yield ratios ⟨K*⟩/⟨K+⟩ and ⟨K̄*⟩/⟨K-⟩ are strongly suppressed in central Pb+Pb compared to p+p, C+C, and Si+Si collisions, in agreement with the expected attenuation of these short-lived resonance states in the hadronicmore » phase of the expanding fireball. The UrQMD model, although incorporating such a scenario, does not provide a quantitative description of the experimental results. The statistical hadron gas model assuming the same freeze-out parameters for stable hadrons and resonances overestimates the ⟨K*⟩/⟨K⟩ ratios in central Pb+Pb collisions by about a factor of 2.5.« less

  11. K*(892)⁰ and K̄*(892)⁰ production in central Pb + Pb, Si + Si, C + C, and inelastic p + p collisions at 158A GeV

    SciTech Connect

    Anticic, T.; Baatar, B.; Barna, D.; Bartke, J.; Beck, H.; Betev, L.; Białkowska, H.; Blume, C.; Bogusz, M.; Boimska, B.; Book, J.; Botje, M.; Bunčić, P.; Cetner, T.; Christakoglou, P.; Chung, P.; Chvala, O.; Cramer, J. G.; Eckardt, V.; Fodor, Z.; Foka, P.; Friese, V.; Gaździcki, M.; Grebieszkow, K.; Höhne, C.; Kadija, K.; Karev, A.; Kolesnikov, V. I.; Kowalski, M.; Kresan, D.; Laszlo, A.; Lacey, R.; van Leeuwen, M.; Mackowiak, M.; Makariev, M.; Malakhov, A. I.; Mateev, M.; Melkumov, G. L.; Mitrovski, M.; Mrówczyński, S.; Nicolic, V.; Pálla, G.; Panagiotou, A. D.; Peryt, W.; Pluta, J.; Prindle, D.; Pühlhofer, F.; Renfordt, R.; Roland, C.; Roland, G.; Rybczyński, M.; Rybicki, A.; Sandoval, A.; Schmitz, N.; Schuster, T.; Seyboth, P.; Siklér, F.; Skrzypczak, E.; Słodkowski, M.; Stefanek, G.; Stock, R.; Ströbele, H.; Susa, T.; Szuba, M.; Utvić, M.; Varga, D.; Vassiliou, M.; Veres, G. I.; Vesztergombi, G.; Vranić, D.; Włodarczyk, Z.; Wojtaszek-Szwarc, A.

    2011-12-13

    Production of the K*(892)0 and K̄*(892)⁰ resonances was studied via their K⁺π⁻ and K⁻π⁺ decay modes in central Pb+Pb, Si+Si, C+C, and inelastic p+p collisions at 158A GeV(√(sNN)=17.3 GeV) with the NA49 detector at the CERN SPS. Transverse momentum and rapidity distributions were measured and total yields were estimated. The yield of K* exceeds that of K̄* by about a factor of two in nucleus-nucleus reactions. The total yield ratios ⟨K*⟩/⟨K+⟩ and ⟨K̄*⟩/⟨K-⟩ are strongly suppressed in central Pb+Pb compared to p+p, C+C, and Si+Si collisions, in agreement with the expected attenuation of these short-lived resonance states in the hadronic phase of the expanding fireball. The UrQMD model, although incorporating such a scenario, does not provide a quantitative description of the experimental results. The statistical hadron gas model assuming the same freeze-out parameters for stable hadrons and resonances overestimates the ⟨K*⟩/⟨K⟩ ratios in central Pb+Pb collisions by about a factor of 2.5.

  12. Production of deuterium, tritium, and 3He in central Pb + Pb collisions at 20 A ,30 A ,40 A ,80 A , and 158 A GeV at the CERN Super Proton Synchrotron

    NASA Astrophysics Data System (ADS)

    Anticic, T.; Baatar, B.; Bartke, J.; Beck, H.; Betev, L.; Białkowska, H.; Blume, C.; Boimska, B.; Book, J.; Botje, M.; Bunčić, P.; Christakoglou, P.; Chung, P.; Chvala, O.; Cramer, J. G.; Eckardt, V.; Fodor, Z.; Foka, P.; Friese, V.; Gaździcki, M.; Grebieszkow, K.; Höhne, C.; Kadija, K.; Karev, A.; Kolesnikov, V. I.; Kowalski, M.; Kresan, D.; Laszlo, A.; Lacey, R.; van Leeuwen, M.; Maćkowiak-Pawłowska, M.; Makariev, M.; Malakhov, A. I.; Melkumov, G. L.; Mitrovski, M.; Mrówczyński, St.; Pálla, G.; Panagiotou, A. D.; Prindle, D.; Pühlhofer, F.; Renfordt, R.; Roland, C.; Roland, G.; Rustamov, A.; Rybczyński, M.; Rybicki, A.; Sandoval, A.; Schmitz, N.; Schuster, T.; Seyboth, P.; Siklér, F.; Skrzypczak, E.; Slodkowski, M.; Stefanek, G.; Stock, R.; Ströbele, H.; Susa, T.; Szuba, M.; Varga, D.; Vassiliou, M.; Veres, G. I.; Vesztergombi, G.; Vranić, D.; Włodarczyk, Z.; Wojtaszek-Szwarc, A.; NA49 Collaboration

    2016-10-01

    Production of d ,t , and 3He nuclei in central Pb +Pb interactions was studied at five collision energies (√{sN N}=6.3 , 7.6, 8.8, 12.3, and 17.3 GeV) with the NA49 detector at the CERN Super Proton Synchrotron. Transverse momentum spectra, rapidity distributions, and particle ratios were measured. Yields are compared to predictions of statistical models. Phase-space distributions of light nuclei are discussed and compared to those of protons in the context of a coalescence approach. The coalescence parameters B2 and B3, as well as coalescence radii for d and 3He were determined as a function of transverse mass at all energies.

  13. Neutron measurements in the stray field produced by 158 GeV c(-1) per nucleon lead ion beams.

    PubMed

    Agosteo, S; Birattari, C; Foglio Para, A; Nava, E; Silari, M; Ulrici, L

    1998-12-01

    This paper discusses measurements carried out at CERN in the stray radiation field produced by 158 GeV c(-1) per nucleon 208Pb82+ ions. The purpose was to test and intercompare the response of several detectors, mainly neutron measuring devices, and to determine the neutron spectral fluence as well as the microdosimetric (absorbed dose and dose equivalent) distributions in different locations around the shielding. Both active instruments and passive dosimeters were employed, including different types of Andersson-Braun rem counters, a tissue equivalent proportional counter, a set of superheated drop detectors, a Bonner sphere system, and different types of ion chambers. Activation measurements with 12C plastic scintillators and with 32S pellets were also performed to assess the neutron yield of high energy lead ions interacting with a thin gold target. The results are compared with previous measurements and with measurements made during proton runs.

  14. Di-hadron correlations with identified leading hadrons in 200 GeV Au + Au and d + Au collisions at STAR

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Bai, X.; Bairathi, V.; Banerjee, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, D.; Brandin, A. V.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cervantes, M. C.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, X.; Chen, J. H.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, S.; Gupta, A.; Guryn, W.; Hamad, A.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, T.; Huang, B.; Huang, H. Z.; Huang, X.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jia, J.; Jiang, K.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikoła, D. P.; Kisiel, A.; Kochenda, L.; Koetke, D. D.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kumar, L.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, W.; Li, Z. M.; Li, Y.; Li, C.; Li, X.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, Y. G.; Ma, R.; Ma, L.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; Meehan, K.; Mei, J. C.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V.; Olvitt, D.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Peterson, A.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Sharma, M. K.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, Z.; Sun, X. M.; Sun, X.; Surrow, B.; Svirida, D. N.; Szelezniak, M. A.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Tawfik, A.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, J. S.; Wang, F.; Wang, H.; Wang, G.; Wang, Y.; Wang, Y.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Wu; Xiao, Z. G.; Xie, W.; Xin, K.; Xu, H.; Xu, Z.; Xu, Q. H.; Xu, Y. F.; Xu, N.; Yang, S.; Yang, Y.; Yang, Q.; Yang, Y.; Yang, C.; Yang, Y.; Ye, Z.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, Y.; Zhang, Z.; Zhang, J. B.; Zhang, J.; Zhang, X. P.; Zhang, S.; Zhang, J.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.

    2015-12-01

    The STAR Collaboration presents for the first time two-dimensional di-hadron correlations with identified leading hadrons in 200 GeV central Au + Au and minimum-bias d + Au collisions to explore hadronization mechanisms in the quark gluon plasma. The enhancement of the jet-like yield for leading pions in Au + Au data with respect to the d + Au reference and the absence of such an enhancement for leading non-pions (protons and kaons) are discussed within the context of a quark recombination scenario. The correlated yield at large angles, specifically in the ridge region, is found to be significantly higher for leading non-pions than pions. The consistencies of the constituent quark scaling, azimuthal harmonic model and a mini-jet modification model description of the data are tested, providing further constraints on hadronization.

  15. Influence of radiation damage on the performance of a lead/scintillator calorimeter investigated with 1-6 GeV electrons

    NASA Astrophysics Data System (ADS)

    Bohnet, I.; Kummerow, D.; Wick, K.

    2002-09-01

    The influence of radiation damage on energy resolution, linearity and uniformity of an electromagnetic lead/scintillator calorimeter was studied experimentally with 1-6 GeV electrons. Plastic scintillators and wavelength shifter bars were irradiated uniformly with γ rays. Both were identical with those of the ZEUS uranium calorimeter. The attenuation length of the scintillators was determined from bench tests of single scintillator tiles and from beam tests of the whole calorimeter. After exposure to a dose of 10 kGy the attenuation length of the scintillators decreased by a factor of 2. The experimental results show that the irradiation of the nearly 2 m long wavelength shifter bars affects the calorimeter much more than the damage of the scintillators which were only 19 cm long. Damaged and undamaged sections of the calorimeter were scanned with a moving radioactive γ source ( 60Co). The results demonstrate that the 60Co monitor system is a very precise tool to detect radiation damage in a sampling calorimeter.

  16. Lead

    MedlinePlus

    ... Worker, or other abatement discipline Lead in drinking water Lead air pollution Test your child Check and maintain your home Find a Lead-Safe Certified firm Before you renovate Before you buy or rent a home built before 1978 Test your home's drinking water Test for lead in paint, dust or soil ...

  17. Lead

    MedlinePlus

    ... ATSDR Board of Scientific Counselors Lead in the environment: Agency for Toxic Substances and Disease Registry (ATSDR) Federal partner agencies: Department of Housing and Urban Development (HUD) and U.S. Environmental Protection Agency (EPA) Data, ...

  18. Comparison of some lead and non-lead based glass systems, standard shielding concretes and commercial window glasses in terms of shielding parameters in the energy region of 1 keV-100 GeV: A comparative study

    NASA Astrophysics Data System (ADS)

    Kurudirek, Murat; Özdemir, Yüksel; Şimşek, Önder; Durak, Rıdvan

    2010-12-01

    The effective atomic numbers, Z eff of some glass systems with and without Pb have been calculated in the energy region of 1 keV-100 GeV including the K absorption edges of high Z elements present in the glass. Also, these glass systems have been compared with some standard shielding concretes and commercial window glasses in terms of mean free paths and total mass attenuation coefficients in the continuous energy range. Comparisons with experiments were also provided wherever possible for glasses. It has been observed that the glass systems without Pb have higher values of Z eff than that of Pb based glasses at some high energy regions even if they have lower mean atomic numbers than Pb based glasses. When compared with some standard shielding concretes and commercial window glasses, generally it has been shown that the given glass systems have superior properties than concretes and window glasses with respect to the radiation-shielding properties, thus confirming the availability of using these glasses as substitutes for some shielding concretes and commercial window glasses to improve radiation-shielding properties in the continuous energy region.

  19. Study of 232Th(n, γ) and 232Th(n,f) reaction rates in a graphite moderated spallation neutron field produced by 1.6 GeV deuterons on lead target

    NASA Astrophysics Data System (ADS)

    Asquith, N. L.; Hashemi-Nezhad, S. R.; Westmeier, W.; Zhuk, I.; Tyutyunnikov, S.; Adam, J.

    2015-02-01

    The Gamma-3 assembly of the Joint Institute for Nuclear Research (JINR), Dubna, Russia is designed to emulate the neutron spectrum of a thermal Accelerator Driven System (ADS). It consists of a lead spallation target surrounded by reactor grade graphite. The target was irradiated with 1.6 GeV deuterons from the Nuclotron accelerator and the neutron capture and fission rate of 232Th in several locations within the assembly were experimentally measured. 232Th is a proposed fuel for envisaged Accelerator Driven Systems and these two reactions are fundamental to the performance and feasibility of 232Th in an ADS. The irradiation of the Gamma-3 assembly was also simulated using MCNPX 2.7 with the INCL4 intra-nuclear cascade and ABLA fission/evaporation models. Good agreement between the experimentally measured and calculated reaction rates was found. This serves as a good validation for the computational models and cross section data used to simulate neutron production and transport of spallation neutrons within a thermal ADS.

  20. Ratio of Jet Cross Sections at s = 630 GeV and 1800 GeV

    NASA Astrophysics Data System (ADS)

    Abbott, B.; Abolins, M.; Abramov, V.; Acharya, B. S.; Adams, D. L.; Adams, M.; Alves, G. A.; Amos, N.; Anderson, E. W.; Baarmand, M. M.; Babintsev, V. V.; Babukhadia, L.; Baden, A.; Baldin, B.; Balm, P. W.; Banerjee, S.; Bantly, J.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Bassler, U.; Bean, A.; Begel, M.; Belyaev, A.; Beri, S. B.; Bernardi, G.; Bertram, I.; Besson, A.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Bhattacharjee, M.; Blazey, G.; Blessing, S.; Boehnlein, A.; Bojko, N. I.; Borcherding, F.; Brandt, A.; Breedon, R.; Briskin, G.; Brock, R.; Brooijmans, G.; Bross, A.; Buchholz, D.; Buehler, M.; Buescher, V.; Burtovoi, V. S.; Butler, J. M.; Canelli, F.; Carvalho, W.; Casey, D.; Casilum, Z.; Castilla-Valdez, H.; Chakraborty, D.; Chan, K. M.; Chekulaev, S. V.; Cho, D. K.; Choi, S.; Chopra, S.; Christenson, J. H.; Chung, M.; Claes, D.; Clark, A. R.; Cochran, J.; Coney, L.; Connolly, B.; Cooper, W. E.; Coppage, D.; Cummings, M. A.; Cutts, D.; Dahl, O. I.; Davis, G. A.; Davis, K.; de, K.; del Signore, K.; Demarteau, M.; Demina, R.; Demine, P.; Denisov, D.; Denisov, S. P.; Desai, S.; Diehl, H. T.; Diesburg, M.; di Loreto, G.; Doulas, S.; Draper, P.; Ducros, Y.; Dudko, L. V.; Duensing, S.; Dugad, S. R.; Dyshkant, A.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Engelmann, R.; Eno, S.; Eppley, G.; Ermolov, P.; Eroshin, O. V.; Estrada, J.; Evans, H.; Evdokimov, V. N.; Fahland, T.; Feher, S.; Fein, D.; Ferbel, T.; Fisk, H. E.; Fisyak, Y.; Flattum, E.; Fleuret, F.; Fortner, M.; Frame, K. C.; Fuess, S.; Gallas, E.; Galyaev, A. N.; Gartung, P.; Gavrilov, V.; Genik, R. J.; Genser, K.; Gerber, C. E.; Gershtein, Y.; Gibbard, B.; Gilmartin, R.; Ginther, G.; Gómez, B.; Gómez, G.; Goncharov, P. I.; González Solís, J. L.; Gordon, H.; Goss, L. T.; Gounder, K.; Goussiou, A.; Graf, N.; Graham, G.; Grannis, P. D.; Green, J. A.; Greenlee, H.; Grinstein, S.; Groer, L.; Grudberg, P.; Grünendahl, S.; Gupta, A.; Gurzhiev, S. N.; Gutierrez, G.; Gutierrez, P.; Hadley, N. J.; Haggerty, H.; Hagopian, S.; Hagopian, V.; Hahn, K. S.; Hall, R. E.; Hanlet, P.; Hansen, S.; Hauptman, J. M.; Hays, C.; Hebert, C.; Hedin, D.; Heinson, A. P.; Heintz, U.; Heuring, T.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hoftun, J. S.; Hou, S.; Huang, Y.; Ito, A. S.; Jerger, S. A.; Jesik, R.; Johns, K.; Johnson, M.; Jonckheere, A.; Jones, M.; Jöstlein, H.; Juste, A.; Kahn, S.; Kajfasz, E.; Karmanov, D.; Karmgard, D.; Kehoe, R.; Kim, S. K.; Klima, B.; Klopfenstein, C.; Knuteson, B.; Ko, W.; Kohli, J. M.; Kostritskiy, A. V.; Kotcher, J.; Kotwal, A. V.; Kozelov, A. V.; Kozlovsky, E. A.; Krane, J.; Krishnaswamy, M. R.; Krzywdzinski, S.; Kubantsev, M.; Kuleshov, S.; Kulik, Y.; Kunori, S.; Kuznetsov, V. E.; Landsberg, G.; Leflat, A.; Lehner, F.; Li, J.; Li, Q. Z.; Lima, J. G.; Lincoln, D.; Linn, S. L.; Linnemann, J.; Lipton, R.; Lucotte, A.; Lueking, L.; Lundstedt, C.; Maciel, A. K.; Madaras, R. J.; Manankov, V.; Mao, H. S.; Marshall, T.; Martin, M. I.; Martin, R. D.; Mauritz, K. M.; May, B.; Mayorov, A. A.; McCarthy, R.; McDonald, J.; McMahon, T.; Melanson, H. L.; Meng, X. C.; Merkin, M.; Merritt, K. W.; Miao, C.; Miettinen, H.; Mihalcea, D.; Mincer, A.; Mishra, C. S.; Mokhov, N.; Mondal, N. K.; Montgomery, H. E.; Moore, R. W.; Mostafa, M.; da Motta, H.; Nagy, E.; Nang, F.; Narain, M.; Narasimham, V. S.; Neal, H. A.; Negret, J. P.; Negroni, S.; Norman, D.; Oesch, L.; Oguri, V.; Olivier, B.; Oshima, N.; Padley, P.; Pan, L. J.; Para, A.; Parashar, N.; Partridge, R.; Parua, N.; Paterno, M.; Patwa, A.; Pawlik, B.; Perkins, J.; Peters, M.; Peters, O.; Piegaia, R.; Piekarz, H.; Pope, B. G.; Popkov, E.; Prosper, H. B.; Protopopescu, S.; Qian, J.; Quintas, P. Z.; Raja, R.; Rajagopalan, S.; Ramberg, E.; Rapidis, P. A.; Reay, N. W.; Reucroft, S.; Rha, J.; Rijssenbeek, M.; Rockwell, T.; Roco, M.; Rubinov, P.; Ruchti, R.; Rutherfoord, J.; Santoro, A.; Sawyer, L.; Schamberger, R. D.; Schellman, H.; Schwartzman, A.; Sculli, J.; Sen, N.; Shabalina, E.; Shankar, H. C.; Shivpuri, R. K.; Shpakov, D.; Shupe, M.; Sidwell, R. A.; Simak, V.; Singh, H.; Singh, J. B.; Sirotenko, V.; Slattery, P.; Smith, E.; Smith, R. P.; Snihur, R.; Snow, G. R.; Snow, J.; Snyder, S.; Solomon, J.; Sorín, V.; Sosebee, M.; Sotnikova, N.; Soustruznik, K.; Souza, M.; Stanton, N. R.; Steinbrück, G.; Stephens, R. W.; Stevenson, M. L.; Stichelbaut, F.; Stoker, D.; Stolin, V.; Stoyanova, D. A.; Strauss, M.; Streets, K.; Strovink, M.; Stutte, L.; Sznajder, A.; Taylor, W.; Tentindo-Repond, S.; Thompson, J.; Toback, D.; Tripathi, S. M.; Trippe, T. G.; Turcot, A. S.; Tuts, P. M.; van Gemmeren, P.; Vaniev, V.; van Kooten, R.; Varelas, N.; Volkov, A. A.; Vorobiev, A. P.; Wahl, H. D.; Wang, H.; Wang, Z.-M.; Warchol, J.; Watts, G.; Wayne, M.; Weerts, H.; White, A.; White, J. T.; Whiteson, D.; Wightman, J. A.; Wijngaarden, D. A.; Willis, S.; Wimpenny, S. J.; Wirjawan, J. V.; Womersley, J.; Wood, D. R.; Yamada, R.; Yamin, P.; Yasuda, T.; Yip, K.; Youssef, S.; Yu, J.; Yu, Z.; Zanabria, M.; Zheng, H.; Zhou, Z.; Zhu, Z. H.; Zielinski, M.; Zieminska, D.; Zieminski, A.; Zutshi, V.; Zverev, E. G.; Zylberstejn, A.

    2001-03-01

    The D0 Collaboration has measured the inclusive jet cross section in p¯p collisions at s = 630 GeV. The results for pseudorapidities η<0.5 are combined with our previous results at s = 1800 GeV to form a ratio of cross sections with smaller uncertainties than either individual measurement. Next-to-leading-order QCD predictions show excellent agreement with the measurement at 630 GeV; agreement is also satisfactory for the ratio. Specifically, despite a 10% to 15% difference in the absolute magnitude, the dependence of the ratio on jet transverse momentum is very similar for data and theory.

  1. Mixed methods for fitting the GEV distribution

    NASA Astrophysics Data System (ADS)

    Ailliot, Pierre; Thompson, Craig; Thomson, Peter

    2011-05-01

    The generalized extreme-value (GEV) distribution is widely used for modeling and characterizing extremes. It is a flexible three-parameter distribution that combines three extreme-value distributions within a single framework: the Gumbel, Frechet, and Weibull. Common methods used for estimating the GEV parameters are the method of maximum likelihood and the method of L-moments. This paper generalizes the mixed maximum likelihood and L-moments GEV estimation procedures proposed by Morrison and Smith (2002) and derives the asymptotic properties of the resulting estimators. Analytic expressions are given for the asymptotic covariance matrices in a number of important cases, including the estimators proposed by Morrison and Smith (2002). These expressions are verified by simulation and the efficiencies of the various estimators established. The asymptotic results are compared to those obtained for small to medium-size samples by simulation with the estimated parameters and quantiles assessed for accuracy and bias. Using simplified constraints for the support of the log likelihood, computational strategies and graphical tools are developed which lead to computationally efficient, numerically robust, estimation procedures suitable for automatic batch processing of many data sets. The methods are illustrated by application to annual maximum rainfall data at a large number of New Zealand locations. For Wellington, 24 h annual maximum rainfall over the period 1940-1999 is also considered within each phase of the Interdecadal Pacific Oscillation.

  2. Characterization of a Biflaviolin Synthase CYP158A3 from Streptomyces avermitilis and Its Role in the Biosynthesis of Secondary Metabolites

    PubMed Central

    Lim, Young-Ran; Han, Songhee; Kim, Joo-Hwan; Park, Hyoung-Goo; Lee, Ga-Young; Le, Thien-Kim; Yun, Chul-Ho; Kim, Donghak

    2017-01-01

    Streptomyces avermitilis produces clinically useful drugs such as avermectins and oligomycins. Its genome contains approximately 33 cytochrome P450 genes and they seem to play important roles in the biosynthesis of many secondary metabolites. The SAV_7130 gene from S. avermitilis encodes CYP158A3. The amino acid sequence of this enzyme has high similarity with that of CYP158A2, a biflaviolin synthase from S. coelicolor A3(2). Recombinant S. avermitilis CYP158A3 was heterologously expressed and purified. It exhibited the typical P450 Soret peak at 447 nm in the reduced CO-bound form. Type I binding spectral changes were observed when CYP158A3 was titrated with myristic acid; however, no oxidative product was formed. An analog of flaviolin, 2-hydroxynaphthoquinone (2-OH NQ) displayed similar type I binding upon titration with purified CYP158A3. It underwent an enzymatic reaction forming dimerized product. A homology model of CYP158A3 was superimposed with the structure of CYP158A2, and the majority of structural elements aligned. These results suggest that CYP158A3 might be an orthologue of biflaviolin synthase, catalyzing C-C coupling reactions during pigment biosynthesis in S. avermitilis. PMID:27956713

  3. Characterising the 750 GeV diphoton excess

    NASA Astrophysics Data System (ADS)

    Bernon, Jérémy; Goudelis, Andreas; Kraml, Sabine; Mawatari, Kentarou; Sengupta, Dipan

    2016-05-01

    We study kinematic distributions that may help characterise the recently observed excess in diphoton events at 750 GeV at the LHC Run 2. Several scenarios are considered, including spin-0 and spin-2 750 GeV resonances that decay directly into photon pairs as well as heavier parent resonances that undergo three-body or cascade decays. We find that combinations of the distributions of the diphoton system and the leading photon can distinguish the topology and mass spectra of the different scenarios, while patterns of QCD radiation can help differentiate the production mechanisms. Moreover, missing energy is a powerful discriminator for the heavy parent scenarios if they involve (effectively) invisible particles. While our study concentrates on the current excess at 750 GeV, the analysis is general and can also be useful for characterising other potential diphoton signals in the future.

  4. Ratio of Isolated Photon Cross Sections in ppbar Collisions at √s = 630 and 1800 GeV

    NASA Astrophysics Data System (ADS)

    Abazov, V. M.; Abbott, B.; Abdesselam, A.; Abolins, M.; Abramov, V.; Acharya, B. S.; Adams, D. L.; Adams, M.; Ahmed, S. N.; Alexeev, G. D.; Alton, A.; Alves, G. A.; Amos, N.; Anderson, E. W.; Arnoud, Y.; Avila, C.; Baarmand, M. M.; Babintsev, V. V.; Babukhadia, L.; Bacon, T. C.; Baden, A.; Baldin, B.; Balm, P. W.; Banerjee, S.; Barberis, E.; Baringer, P.; Barreto, J.; Bartlett, J. F.; Bassler, U.; Bauer, D.; Bean, A.; Beaudette, F.; Begel, M.; Belyaev, A.; Beri, S. B.; Bernardi, G.; Bertram, I.; Besson, A.; Beuselinck, R.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Bhattacharjee, M.; Blazey, G.; Blekman, F.; Blessing, S.; Boehnlein, A.; Bojko, N. I.; Borcherding, F.; Bos, K.; Bose, T.; Brandt, A.; Breedon, R.; Briskin, G.; Brock, R.; Brooijmans, G.; Bross, A.; Buchholz, D.; Buehler, M.; Buescher, V.; Burtovoi, V. S.; Butler, J. M.; Canelli, F.; Carvalho, W.; Casey, D.; Casilum, Z.; Castilla-Valdez, H.; Chakraborty, D.; Chan, K. M.; Chekulaev, S. V.; Cho, D. K.; Choi, S.; Chopra, S.; Christenson, J. H.; Chung, M.; Claes, D.; Clark, A. R.; Cochran, J.; Coney, L.; Connolly, B.; Cooper, W. E.; Coppage, D.; Crépé-Renaudin, S.; Cummings, M. A.; Cutts, D.; Davis, G. A.; Davis, K.; de, K.; de Jong, S. J.; del Signore, K.; Demarteau, M.; Demina, R.; Demine, P.; Denisov, D.; Denisov, S. P.; Desai, S.; Diehl, H. T.; Diesburg, M.; Doulas, S.; Ducros, Y.; Dudko, L. V.; Duensing, S.; Duflot, L.; Dugad, S. R.; Duperrin, A.; Dyshkant, A.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Engelmann, R.; Eno, S.; Eppley, G.; Ermolov, P.; Eroshin, O. V.; Estrada, J.; Evans, H.; Evdokimov, V. N.; Fahland, T.; Feher, S.; Fein, D.; Ferbel, T.; Filthaut, F.; Fisk, H. E.; Fisyak, Y.; Flattum, E.; Fleuret, F.; Fortner, M.; Fox, H.; Frame, K. C.; Fu, S.; Fuess, S.; Gallas, E.; Galyaev, A. N.; Gao, M.; Gavrilov, V.; Genik, R. J.; Genser, K.; Gerber, C. E.; Gershtein, Y.; Gilmartin, R.; Ginther, G.; Gómez, B.; Gómez, G.; Goncharov, P. I.; González Solís, J. L.; Gordon, H.; Goss, L. T.; Gounder, K.; Goussiou, A.; Graf, N.; Graham, G.; Grannis, P. D.; Green, J. A.; Greenlee, H.; Greenwood, Z. D.; Grinstein, S.; Groer, L.; Grünendahl, S.; Gupta, A.; Gurzhiev, S. N.; Gutierrez, G.; Gutierrez, P.; Hadley, N. J.; Haggerty, H.; Hagopian, S.; Hagopian, V.; Hall, R. E.; Hanlet, P.; Hansen, S.; Hauptman, J. M.; Hays, C.; Hebert, C.; Hedin, D.; Heinmiller, J. M.; Heinson, A. P.; Heintz, U.; Heuring, T.; Hildreth, M. D.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Huang, Y.; Illingworth, R.; Ito, A. S.; Jaffré, M.; Jain, S.; Jesik, R.; Johns, K.; Johnson, M.; Jonckheere, A.; Jöstlein, H.; Juste, A.; Kahl, W.; Kahn, S.; Kajfasz, E.; Kalinin, A. M.; Karmanov, D.; Karmgard, D.; Kehoe, R.; Khanov, A.; Kharchilava, A.; Kim, S. K.; Klima, B.; Knuteson, B.; Ko, W.; Kohli, J. M.; Kostritskiy, A. V.; Kotcher, J.; Kothari, B.; Kotwal, A. V.; Kozelov, A. V.; Kozlovsky, E. A.; Krane, J.; Krishnaswamy, M. R.; Krivkova, P.; Krzywdzinski, S.; Kubantsev, M.; Kuleshov, S.; Kulik, Y.; Kunori, S.; Kupco, A.; Kuznetsov, V. E.; Landsberg, G.; Lee, W. M.; Leflat, A.; Leggett, C.; Lehner, F.; Li, J.; Li, Q. Z.; Li, X.; Lima, J. G.; Lincoln, D.; Linn, S. L.; Linnemann, J.; Lipton, R.; Lucotte, A.; Lueking, L.; Lundstedt, C.; Luo, C.; Maciel, A. K.; Madaras, R. J.; Malyshev, V. L.; Manankov, V.; Mao, H. S.; Marshall, T.; Martin, M. I.; Mauritz, K. M.; May, B.; Mayorov, A. A.; McCarthy, R.; McMahon, T.; Melanson, H. L.; Merkin, M.; Merritt, K. W.; Miao, C.; Miettinen, H.; Mihalcea, D.; Mishra, C. S.; Mokhov, N.; Mondal, N. K.; Montgomery, H. E.; Moore, R. W.; Mostafa, M.; da Motta, H.; Nagy, E.; Nang, F.; Narain, M.; Narasimham, V. S.; Naumann, N. A.; Neal, H. A.; Negret, J. P.; Negroni, S.; Nunnemann, T.; O'Neil, D.; Oguri, V.; Olivier, B.; Oshima, N.; Padley, P.; Pan, L. J.; Papageorgiou, K.; Para, A.; Parashar, N.; Partridge, R.; Parua, N.; Paterno, M.; Patwa, A.; Pawlik, B.; Perkins, J.; Peters, O.; Pétroff, P.; Piegaia, R.; Pope, B. G.; Popkov, E.; Prosper, H. B.; Protopopescu, S.; Przybycien, M. B.; Qian, J.; Raja, R.; Rajagopalan, S.; Ramberg, E.; Rapidis, P. A.; Reay, N. W.; Reucroft, S.; Ridel, M.; Rijssenbeek, M.; Rizatdinova, F.; Rockwell, T.; Roco, M.; Royon, C.; Rubinov, P.; Ruchti, R.; Rutherfoord, J.; Sabirov, B. M.; Sajot, G.; Santoro, A.; Sawyer, L.; Schamberger, R. D.; Schellman, H.; Schwartzman, A.; Sen, N.; Shabalina, E.; Shivpuri, R. K.; Shpakov, D.; Shupe, M.; Sidwell, R. A.; Simak, V.; Singh, H.; Singh, J. B.; Sirotenko, V.; Slattery, P.; Smith, E.; Smith, R. P.; Snihur, R.; Snow, G. R.; Snow, J.; Snyder, S.; Solomon, J.; Song, Y.; Sorín, V.; Sosebee, M.; Sotnikova, N.; Soustruznik, K.; Souza, M.; Stanton, N. R.; Steinbrück, G.; Stephens, R. W.; Stichelbaut, F.; Stoker, D.; Stolin, V.; Stone, A.; Stoyanova, D. A.; Strang, M. A.; Strauss, M.; Strovink, M.; Stutte, L.; Sznajder, A.; Talby, M.; Taylor, W.; Tentindo-Repond, S.; Tripathi, S. M.; Trippe, T. G.; Turcot, A. S.; Tuts, P. M.; Vaniev, V.; van Kooten, R.; Varelas, N.; Vertogradov, L. S.; Villeneuve-Seguier, F.; Volkov, A. A.; Vorobiev, A. P.; Wahl, H. D.; Wang, H.; Wang, Z.-M.; Warchol, J.; Watts, G.; Wayne, M.; Weerts, H.; White, A.; White, J. T.; Whiteson, D.; Wightman, J. A.; Wijngaarden, D. A.; Willis, S.; Wimpenny, S. J.; Womersley, J.; Wood, D. R.; Xu, Q.; Yamada, R.; Yamin, P.; Yasuda, T.; Yatsunenko, Y. A.; Yip, K.; Youssef, S.; Yu, J.; Yu, Z.; Zanabria, M.; Zhang, X.; Zheng, H.; Zhou, B.; Zhou, Z.; Zielinski, M.; Zieminska, D.; Zieminski, A.; Zutshi, V.; Zverev, E. G.; Zylberstejn, A.

    2001-12-01

    The inclusive cross section for production of isolated photons has been measured in ppbar collisions at (s) = 630 GeV with the D0 detector at the Fermilab Tevatron Collider. The photons span a transverse energy (ET) range from 7-49 GeV and have pseudorapidity \\|η\\|<2.5. This measurement is combined with the previous D0 result at (s) = 1800 GeV to form a ratio of the cross sections. Comparison of next-to-leading-order QCD with the measured cross section at 630 GeV and the ratio of cross sections show satisfactory agreement in most of the ET range.

  5. ACCELERATING POLARIZED PROTONS TO 250 GEV

    SciTech Connect

    BAI,M.; AHRENS, L.; ALEKSEEV, I.G.; ALESSI, J.; BEEBE-WANG, J.; ET AL.

    2007-06-25

    The Relativistic Heavy Ion Collider (RHIC) as the first high energy polarized proton collider was designed t o provide polarized proton collisions a t a maximum beam energy of 250 GeV. I t has been providing collisions a t a beam energy of 100 Gel' since 2001. Equipped with two full Siberian snakes in each ring, polarization is preserved during the acceleration from injection to 100 GeV with careful control of the betatron tunes and the vertical orbit distortions. However, the intrinsic spin resonances beyond 100 GeV are about a factor of two stronger than those below 100 GeV? making it important t o examine the impact of these strong intrinsic spin resonances on polarization survival and the tolerance for vertical orbit distortions. Polarized protons were accelerated t o the record energy of 250 GeV in RHIC with a polarization of 46% measured a t top energy in 2006. The polarization measurement as a function of beam energy also shows some polarization loss around 136 GeV, the first strong intrinsic resonance above 100 GeV. This paper presents the results and discusses the sensitivity of the polarization survival t o orbit distortions.

  6. Evaluation of dynamically downscaled extreme temperature using a spatially-aggregated generalized extreme value (GEV) model

    NASA Astrophysics Data System (ADS)

    Wang, Jiali; Han, Yuefeng; Stein, Michael L.; Kotamarthi, Veerabhadra R.; Huang, Whitney K.

    2016-11-01

    The weather research and forecast (WRF) model downscaling skill in extreme maximum daily temperature is evaluated by using the generalized extreme value (GEV) distribution. While the GEV distribution has been used extensively in climatology and meteorology for estimating probabilities of extreme events, accurately estimating GEV parameters based on data from a single pixel can be difficult, even with fairly long data records. This work proposes a simple method assuming that the shape parameter, the most difficult of the three parameters to estimate, does not vary over a relatively large region. This approach is applied to evaluate 31-year WRF-downscaled extreme maximum temperature through comparison with North American regional reanalysis (NARR) data. Uncertainty in GEV parameter estimates and the statistical significance in the differences of estimates between WRF and NARR are accounted for by conducting a novel bootstrap procedure that makes no assumption of temporal or spatial independence within a year, which is especially important for climate data. Despite certain biases over parts of the United States, overall, WRF shows good agreement with NARR in the spatial pattern and magnitudes of GEV parameter estimates. Both WRF and NARR show a significant increase in extreme maximum temperature over the southern Great Plains and southeastern United States in January and over the western United States in July. The GEV model shows clear benefits from the regionally constant shape parameter assumption, for example, leading to estimates of the location and scale parameters of the model that show coherent spatial patterns.

  7. Jefferson Lab 12 GEV Cebaf Upgrade

    NASA Astrophysics Data System (ADS)

    Rode, C. H.

    2010-04-01

    The existing continuous electron beam accelerator facility (CEBAF) at Thomas Jefferson National Accelerator Facility (TJNAF) is a 5-pass, recirculating cw electron Linac operating at ˜6 GeV and is devoted to basic research in nuclear physics. The 12 GeV CEBAF Upgrade is a 310 M project, sponsored by the Department of Energy (DOE) Office of Nuclear Physics, that will expand its research capabilities substantially by doubling the maximum energy and adding major new experimental apparatus. The project received construction approval in September 2008 and has started the major procurement process. The cryogenic aspects of the 12 GeV CEBAF Upgrade includes: doubling the accelerating voltages of the Linacs by adding ten new high-performance, superconducting radiofrequency (SRF) cryomodules (CMs) to the existing 42 1/4 cryomodules; doubling of the 2 K cryogenics plant; and the addition of eight superconducting magnets.

  8. Determination of the b-quark production cross section in p{anti p} collisions at 630 GeV

    SciTech Connect

    Abbott, B.

    1997-10-01

    We present a preliminary measurement of the b-quark production cross section in p{anti p} collisions at {radical}s = 630 GeV. The analysis is based on 340 nb{sup -1} of data collected with the D0 detector at the Fermilab Tevatron Collider. We determine the ratio of the b-quark production cross sections at 630 GeV to 1800 GeV and compare our results with the CDF and UA1 measurements, and with the next-to- leading order QCD predictions.

  9. Results from Cu+Au collisions at 200 GeV in PHENIX Experiment

    SciTech Connect

    Berdnikov, Ya. A.; Kotov, D. O.; Safonov, A. S.; Ivanishchev, D. A.; Riabov, V. G.; Riabov, Yu. G.; Samsonov, V. M.

    2016-01-22

    Collisions of asymmetric nuclei (Cu+Au) differ essentially from the case of symmetric nuclei (Cu+Cu, Au+Au) collisions in the geometry of overlap region. This leads to a number of consequences, which provide more absolute and accurate information about fundamental properties of matter under extreme conditions. Nuclear modification factors for π-mesons in Cu+Au interactions at 200 GeV were measured in PHENIX Experiment at RHIC. New experimental data on measurement of flows of different order (v{sub 1}, v{sub 2}) for light hadrons in Cu+Au interactions at 200 GeV will be discussed in this paper.

  10. K*0 and Σ* production in Au+Au collisions at sNN=200 GeV and 62.4 GeV

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Song, Jun; Shao, Feng-lan

    2012-07-01

    Applying a quark combination model for the hadronization of quark gluon plasma (QGP) and a relativistic transport (ART) model for the subsequent hadronic rescattering process, we investigate the production of K*0 and Σ* resonances in central Au+Au collisions at sNN= 200 and 62.4 GeV. The initial K*0 produced via hadronization is higher than the experimental data in the low-pT region and is close to the data at 2-3 GeV/c. We take into account the hadronic rescattering effects which lead to a strong suppression of K*0 with low pT and find that the pT spectrum of K*0 can be well described. The time span of the hadronic rescattering stage is estimated according to the suppressed magnitude of K*0 yield. The pT spectrum of Σ* directly obtained by quark combination hadronization in central Au+Au collisions at 200 GeV is in agreement with the experimental data, which shows a weak hadronic rescattering effects. The elliptic flow v2 of Σ* in minimum-bias Au+Au collisions at 200 GeV and a pT spectrum of Σ* at lower 62.4 GeV are predicted.

  11. High-pT jets in p¯p collisions at s=630 and 1800 GeV

    NASA Astrophysics Data System (ADS)

    Abbott, B.; Abdesselam, A.; Abolins, M.; Abramov, V.; Acharya, B. S.; Adams, D. L.; Adams, M.; Alves, G. A.; Amos, N.; Anderson, E. W.; Astur, R.; Baarmand, M. M.; Babintsev, V. V.; Babukhadia, L.; Bacon, T. C.; Baden, A.; Baldin, B.; Balm, P. W.; Banerjee, S.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Bassler, U.; Bauer, D.; Bean, A.; Begel, M.; Belyaev, A.; Beri, S. B.; Bernardi, G.; Bertram, I.; Besson, A.; Beuselinck, R.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Bhattacharjee, M.; Blazey, G.; Blessing, S.; Boehnlein, A.; Bojko, N. I.; Borcherding, F.; Brandt, A.; Breedon, R.; Briskin, G.; Brock, R.; Brooijmans, G.; Bross, A.; Buchholz, D.; Buehler, M.; Buescher, V.; Burtovoi, V. S.; Butler, J. M.; Canelli, F.; Carvalho, W.; Casey, D.; Casilum, Z.; Castilla-Valdez, H.; Chakraborty, D.; Chan, K. M.; Chekulaev, S. V.; Cho, D. K.; Choi, S.; Chopra, S.; Christenson, J. H.; Chung, M.; Claes, D.; Clark, A. R.; Cochran, J.; Coney, L.; Connolly, B.; Cooper, W. E.; Coppage, D.; Cummings, M. A.; Cutts, D.; Davis, G. A.; Davis, K.; de, K.; del Signore, K.; Demarteau, M.; Demina, R.; Demine, P.; Denisov, D.; Denisov, S. P.; Desai, S.; Diehl, H. T.; Diesburg, M.; di Loreto, G.; Doulas, S.; Draper, P.; Ducros, Y.; Dudko, L. V.; Duensing, S.; Duflot, L.; Dugad, S. R.; Dyshkant, A.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Engelmann, R.; Eno, S.; Eppley, G.; Ermolov, P.; Eroshin, O. V.; Estrada, J.; Evans, H.; Evdokimov, V. N.; Fahland, T.; Fatyga, M. K.; Feher, S.; Fein, D.; Ferbel, T.; Fisk, H. E.; Fisyak, Y.; Flattum, E.; Fleuret, F.; Fortner, M.; Frame, K. C.; Fuess, S.; Gallas, E.; Galyaev, A. N.; Gao, M.; Gavrilov, V.; Geld, T. L.; Genik, R. J.; Genser, K.; Gerber, C. E.; Gershtein, Y.; Gilmartin, R.; Ginther, G.; Gómez, B.; Gómez, G.; Goncharov, P. I.; González Solís, J. L.; Gordon, H.; Goss, L. T.; Gounder, K.; Goussiou, A.; Graf, N.; Graham, G.; Grannis, P. D.; Green, J. A.; Greenlee, H.; Grinstein, S.; Groer, L.; Grünendahl, S.; Gupta, A.; Gurzhiev, S. N.; Gutierrez, G.; Gutierrez, P.; Hadley, N. J.; Haggerty, H.; Hagopian, S.; Hagopian, V.; Hahn, K. S.; Hall, R. E.; Hanlet, P.; Hansen, S.; Hauptman, J. M.; Hays, C.; Hebert, C.; Hedin, D.; Heinson, A. P.; Heintz, U.; Heuring, T.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hoftun, J. S.; Hou, S.; Huang, Y.; Illingworth, R.; Ito, A. S.; Jaffré, M.; Jerger, S. A.; Jesik, R.; Johns, K.; Johnson, M.; Jonckheere, A.; Jones, M.; Jöstlein, H.; Juste, A.; Kahn, S.; Kajfasz, E.; Karmanov, D.; Karmgard, D.; Kehoe, R.; Kim, S. K.; Klima, B.; Klopfenstein, C.; Knuteson, B.; Ko, W.; Kohli, J. M.; Kostritskiy, A. V.; Kotcher, J.; Kotwal, A. V.; Kozelov, A. V.; Kozlovsky, E. A.; Krane, J.; Krishnaswamy, M. R.; Krzywdzinski, S.; Kubantsev, M.; Kuleshov, S.; Kulik, Y.; Kunori, S.; Kuznetsov, V. E.; Landsberg, G.; Leflat, A.; Leggett, C.; Lehner, F.; Li, J.; Li, Q. Z.; Lima, J. G.; Lincoln, D.; Linn, S. L.; Linnemann, J.; Lipton, R.; Lucotte, A.; Lueking, L.; Lundstedt, C.; Luo, C.; Maciel, A. K.; Madaras, R. J.; Manankov, V.; Mao, H. S.; Marshall, T.; Martin, M. I.; Martin, R. D.; Mauritz, K. M.; May, B.; Mayorov, A. A.; McCarthy, R.; McDonald, J.; McMahon, T.; Melanson, H. L.; Meng, X. C.; Merkin, M.; Merritt, K. W.; Miao, C.; Miettinen, H.; Mihalcea, D.; Mishra, C. S.; Mokhov, N.; Mondal, N. K.; Montgomery, H. E.; Moore, R. W.; Mostafa, M.; da Motta, H.; Nagy, E.; Nang, F.; Narain, M.; Narasimham, V. S.; Neal, H. A.; Negret, J. P.; Negroni, S.; Norman, D.; Nunnemann, T.; Oesch, L.; Oguri, V.; Olivier, B.; Oshima, N.; Padley, P.; Pan, L. J.; Papageorgiou, K.; Para, A.; Parashar, N.; Partridge, R.; Parua, N.; Paterno, M.; Patwa, A.; Pawlik, B.; Perkins, J.; Peters, M.; Peters, O.; Pétroff, P.; Piegaia, R.; Piekarz, H.; Pope, B. G.; Popkov, E.; Prosper, H. B.; Protopopescu, S.; Qian, J.; Quintas, P. Z.; Raja, R.; Rajagopalan, S.; Ramberg, E.; Rapidis, P. A.; Reay, N. W.; Reucroft, S.; Rha, J.; Ridel, M.; Rijssenbeek, M.; Rockwell, T.; Roco, M.; Rubinov, P.; Ruchti, R.; Rutherfoord, J.; Santoro, A.; Sawyer, L.; Schamberger, R. D.; Schellman, H.; Schwartzman, A.; Sen, N.; Shabalina, E.; Shivpuri, R. K.; Shpakov, D.; Shupe, M.; Sidwell, R. A.; Simak, V.; Singh, H.; Singh, J. B.; Sirotenko, V.; Slattery, P.; Smith, E.; Smith, R. P.; Snihur, R.; Snow, G. R.; Snow, J.; Snyder, S.; Solomon, J.; Sorín, V.; Sosebee, M.; Sotnikova, N.; Soustruznik, K.; Souza, M.; Stanton, N. R.; Steinbrück, G.; Stephens, R. W.; Stichelbaut, F.; Stoker, D.; Stolin, V.; Stoyanova, D. A.; Strauss, M.; Strovink, M.; Stutte, L.; Sznajder, A.; Taylor, W.; Tentindo-Repond, S.; Thompson, J.; Toback, D.; Tripathi, S. M.; Trippe, T. G.; Turcot, A. S.; Tuts, P. M.; van Gemmeren, P.; Vaniev, V.; van Kooten, R.; Varelas, N.; Volkov, A. A.; Vorobiev, A. P.; Wahl, H. D.; Wang, H.; Wang, Z.-M.; Warchol, J.; Watts, G.; Wayne, M.; Weerts, H.; White, A.; White, J. T.; Whiteson, D.; Wightman, J. A.; Wijngaarden, D. A.; Willis, S.; Wimpenny, S. J.; Wirjawan, J. V.; Womersley, J.; Wood, D. R.; Yamada, R.; Yamin, P.; Yasuda, T.; Yip, K.; Youssef, S.; Yu, J.; Yu, Z.; Zanabria, M.; Zheng, H.; Zhou, Z.; Zielinski, M.; Zieminska, D.; Zieminski, A.; Zutshi, V.; Zverev, E. G.; Zylberstejn, A.

    2001-08-01

    Results are presented from analyses of jet data produced in pp¯ collisions at s=630 and 1800 GeV collected with the DØ detector during the 1994-1995 Fermilab Tevatron Collider run. We discuss the details of detector calibration, and jet selection criteria in measurements of various jet production cross sections at s=630 and 1800 GeV. The inclusive jet cross sections, the dijet mass spectrum, the dijet angular distributions, and the ratio of inclusive jet cross sections at s=630 and 1800 GeV are compared to next-to-leading-order QCD predictions. The order α3s calculations are in good agreement with the data. We also use the data at s=1800 GeV to rule out models of quark compositeness with a contact interaction scale less than 2.2 TeV at the 95% confidence level.

  12. Meson Spectroscopy At Jlab At 12 Gev

    SciTech Connect

    Fegan, Stuart

    2014-12-01

    The 12 GeV upgrade to the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab will enable a new generation of experiments in hadronic nuclear physics, seeking to address fundamental questions in our understanding of QCD. The existence of exotic states, suggested by both quark models and lattice calculations, would allow gluonic degrees of freedom to be explored, and may help explain the role played by gluons in the QCD interaction. This article will review the meson spectroscopy program being planned at the lab following the 12 GeV upgrade, utilising real and quasi-real photon beams in two of the lab's four experimental halls, whose distinct capabilities will enable an extensive set of spectroscopy experiments to be performed at the same facility.

  13. Booster 6-GeV study

    SciTech Connect

    Yang, Xi; Ankenbrandt, Charles M.; Pellico, William A.; Lackey, James; Padilla, Rene; Norem, James; /Argonne

    2005-05-01

    A wider aperture, which has been obtained along the Booster beam line recently, brings the opportunity to run beams with the intensity higher than ever before. Sooner or later, the available RF accelerating voltage will become a new limit for the beam intensity. Extra accelerating voltages can be achieved either by increasing the RFSUM or by reducing the accelerating rate via a slower acceleration, and this motivates the 6-GeV study.

  14. Booster 6-GeV study

    SciTech Connect

    Yang, Xi; Ankenbrandt, Charles M.; Pellico, William A.; Lackey, James; Padilla, Rene; Norem, J.; /Argonne

    2004-12-01

    Since a wider aperture has been obtained along the Booster beam line, this opens the opportunity for Booster running a higher intensity beam than ever before. Sooner or later, the available RF accelerating voltage will become a new limit for the beam intensity. Either by increasing the RFSUM or by reducing the accelerating rate can achieve the similar goal. The motivation for the 6-GeV study is to gain the relative accelerating voltage via a slower acceleration.

  15. Walking from 750 GeV to 950 GeV in the technipion zoo

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Shinya; Yamawaki, Koichi

    2016-06-01

    If the 750-GeV diphoton excess is identified with the color-singlet isosinglet technipion P0 (750) in the one-family walking technicolor model, as in our previous paper, then there should exist another color-singlet technipion-isotriplet one, P±,3, predicted at around 950 GeV independently of the dynamical details. The P±,3(950 ) are produced at the LHC via vector-boson and photon-fusion processes, predominantly decaying to W γ and γ γ , respectively. Those walking technicolor signals can be explored at run 2 or 3, which would further open the door for a plethora of other (colored) technipions.

  16. Commissioning and Operation of 12 GeV CEBAF

    SciTech Connect

    Freyberger, Arne P.

    2015-09-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) located at the Thomas Jefferson National Accelerator Laboratory (JLab) has been recently upgraded to deliver continuous electron beams to the experimental users at a maximum energy of 12 GeV, three times the original design energy of 4 GeV. This paper will present an overview of the upgrade, referred to as the 12GeV upgrade, and highlights from recent beam commissioning results.

  17. LEADING WITH LEADING INDICATORS

    SciTech Connect

    PREVETTE, S.S.

    2005-01-27

    This paper documents Fluor Hanford's use of Leading Indicators, management leadership, and statistical methodology in order to improve safe performance of work. By applying these methods, Fluor Hanford achieved a significant reduction in injury rates in 2003 and 2004, and the improvement continues today. The integration of data, leadership, and teamwork pays off with improved safety performance and credibility with the customer. The use of Statistical Process Control, Pareto Charts, and Systems Thinking and their effect on management decisions and employee involvement are discussed. Included are practical examples of choosing leading indicators. A statistically based color coded dashboard presentation system methodology is provided. These tools, management theories and methods, coupled with involved leadership and employee efforts, directly led to significant improvements in worker safety and health, and environmental protection and restoration at one of the nation's largest nuclear cleanup sites.

  18. The Chou-Yang model and αα scattering at 126 GeV

    NASA Astrophysics Data System (ADS)

    Kamran, Mujahid; Qureshi, I. E.

    1987-04-01

    A detailed study of αα elastic scattering at 126 GeV is carried out in the light of the Chou-Yang model. The model is found to disagree with the data even in the diffraction peak region. Glauber-Velasco factors do not appear to remedy the defect. A factor due to Bourrely et al., however, leads to agreement between the model and data up to the first dip.

  19. 125 GeV Higgs state in the context of four generations with two Higgs doublets

    NASA Astrophysics Data System (ADS)

    Geller, Michael; Bar-Shalom, Shaouly; Eilam, Gad; Soni, Amarjit

    2012-12-01

    We interpret the recent discovery of a 125 GeV Higgs-like state in the context of a two-Higgs-doublet model with a heavy fourth sequential generation of fermions, in which one Higgs doublet couples only to the fourth-generation fermions, while the second doublet couples to the lighter fermions of the first three families. This model is designed to accommodate the apparent heaviness of the fourth-generation fermions and to effectively address the low-energy phenomenology of a dynamical electroweak-symmetry-breaking scenario. The physical Higgs states of the model are, therefore, viewed as composites primarily of the fourth-generation fermions. We find that the lightest Higgs, h, is a good candidate for the recently discovered 125 GeV spin-zero particle, when tan⁡β˜O(1), for typical fourth-generation fermion masses of M4G=400-600GeV, and with a large t-t' mixing in the right-handed quark sector. This, in turn, leads to BR(t'→th)˜O(1), which drastically changes the t' decay pattern. We also find that, based on the current Higgs data, this two-Higgs-doublet model generically predicts an enhanced production rate (compared to the Standard Model) in the pp→h→ττ channel, and reduced rates in the VV→h→γγ and pp¯/pp→V→hV→Vbb channels. Finally, the heavier CP-even Higgs is excluded by the current data up to mH˜500GeV, while the pseudoscalar state, A, can be as light as 130 GeV. These heavier Higgs states and the expected deviations from the Standard Model din some of the Higgs production channels can be further excluded or discovered with more data.

  20. 3 GeV Injector Design Handbook

    SciTech Connect

    Wiedemann, H.; /SLAC, SSRL

    2009-12-16

    This Design Handbook is intended to be the main reference book for the specifications of the 3 GeV SPEAR booster synchrotron project. It is intended to be a consistent description of the project including design criteria, key technical specifications as well as current design approaches. Since a project is not complete till it's complete changes and modifications of early conceptual designs must be expected during the duration of the construction. Therefore, this Design Handbook is issued as a loose leaf binder so that individual sections can be replaced as needed. Each page will be dated to ease identification with respect to latest revisions. At the end of the project this Design Handbook will have become the 'as built' reference book of the injector for operations and maintenance personnel.

  1. Polarized Proton Collisions at 205GeV at RHIC

    NASA Astrophysics Data System (ADS)

    Bai, M.; Roser, T.; Ahrens, L.; Alekseev, I. G.; Alessi, J.; Beebe-Wang, J.; Blaskiewicz, M.; Bravar, A.; Brennan, J. M.; Bruno, D.; Bunce, G.; Courant, E.; Drees, A.; Fischer, W.; Gardner, C.; Gill, R.; Glenn, J.; Haeberli, W.; Huang, H.; Jinnouchi, O.; Kewisch, J.; Luccio, A.; Luo, Y.; Nakagawa, I.; Okada, H.; Pilat, F.; Mackay, W. W.; Makdisi, Y.; Montag, C.; Ptitsyn, V.; Satogata, T.; Stephenson, E.; Svirida, D.; Tepikian, S.; Trbojevic, D.; Tsoupas, N.; Wise, T.; Zelenski, A.; Zeno, K.; Zhang, S. Y.

    2006-05-01

    The Brookhaven Relativistic Heavy Ion Collider (RHIC) has been providing collisions of polarized protons at a beam energy of 100 GeV since 2001. Equipped with two full Siberian snakes in each ring, polarization is preserved during acceleration from injection to 100 GeV. However, the intrinsic spin resonances beyond 100 GeV are about a factor of 2 stronger than those below 100 GeV making it important to examine the impact of these strong intrinsic spin resonances on polarization survival and the tolerance for vertical orbit distortions. Polarized protons were first accelerated to the record energy of 205 GeV in RHIC with a significant polarization measured at top energy in 2005. This Letter presents the results and discusses the sensitivity of the polarization survival to orbit distortions.

  2. CEBAF at 12 and 25 GeV

    SciTech Connect

    Harwood, Leigh; Reece, Charles

    2001-09-01

    The US nuclear physics community has identified an upgrade of CEBAF to 12 GeV as one of its top priorities. The principal motivation is to enable meson spectroscopy with 9 GeV polarized, quasi-monochromatic photons. A plan for implementing the 12 GeV upgrade has been prepared. Subsystem designs are being tested. Additional opportunities to reduce total project costs have been identified and will be pursued. The plan now calls for the addition to CEBAF of 10 new high-performance cryomodules and a new recirculation arc, yielding 12 GeV after 5.5 passes through the accelerator. Formal construction start could be in 2006. The same cryomodule design would subsequently be the building block for an eventual upgrade to 25 GeV.

  3. Polarized proton collisions at 205 GeV at RHIC.

    PubMed

    Bai, M; Roser, T; Ahrens, L; Alekseev, I G; Alessi, J; Beebe-Wang, J; Blaskiewicz, M; Bravar, A; Brennan, J M; Bruno, D; Bunce, G; Courant, E; Drees, A; Fischer, W; Gardner, C; Gill, R; Glenn, J; Haeberli, W; Huang, H; Jinnouchi, O; Kewisch, J; Luccio, A; Luo, Y; Nakagawa, I; Okada, H; Pilat, F; Mackay, W W; Makdisi, Y; Montag, C; Ptitsyn, V; Satogata, T; Stephenson, E; Svirida, D; Tepikian, S; Trbojevic, D; Tsoupas, N; Wise, T; Zelenski, A; Zeno, K; Zhang, S Y

    2006-05-05

    The Brookhaven Relativistic Heavy Ion Collider (RHIC) has been providing collisions of polarized protons at a beam energy of 100 GeV since 2001. Equipped with two full Siberian snakes in each ring, polarization is preserved during acceleration from injection to 100 GeV. However, the intrinsic spin resonances beyond 100 GeV are about a factor of 2 stronger than those below 100 GeV making it important to examine the impact of these strong intrinsic spin resonances on polarization survival and the tolerance for vertical orbit distortions. Polarized protons were first accelerated to the record energy of 205 GeV in RHIC with a significant polarization measured at top energy in 2005. This Letter presents the results and discusses the sensitivity of the polarization survival to orbit distortions.

  4. Radiation in 1.5 GeV and 12 GeV Laser Wakefield Acceleration Stages from PIC Simulations

    SciTech Connect

    Martins, J. L.; Martins, S. F.; Silva, L. O.

    2010-11-04

    A massivelly parallel post-processing radiation diagnostic for PIC codes is presented, which is then used to study the main features of the radiation from single LWFA stages (1.5 GeV and 12 GeV). This diagnostic also allows to examine radiation signatures associated with the physics of self-injection.

  5. 750 GeV diphotons: implications for supersymmetric unification II

    NASA Astrophysics Data System (ADS)

    Hall, Lawrence J.; Harigaya, Keisuke; Nomura, Yasunori

    2016-07-01

    Perturbative supersymmetric gauge coupling unification is possible in six theories where complete SU (5) TeV-scale multiplets of vector matter account for the size of the reported 750 GeV diphoton resonance, interpreted as a singlet multiplet S=(s+ia)/√{2} . One of these has a full generation of vector matter and a unified gauge coupling α G ˜ 1. The diphoton signal rate is enhanced by loops of vector squarks and sleptons, especially when the trilinear A couplings are large. If the SH u H d coupling is absent, both s and a can contribute to the resonance, which may then have a large apparent width if the mass splitting from s and a arises from loops of vector matter. The width depends sensitively on A parameters and phases of the vector squark and slepton masses. Vector quarks and/or squarks are expected to be in reach of the LHC. If the SH u H d coupling is present, a leads to a narrow diphoton resonance, while a second resonance with decays s → hh, W + W - , ZZ is likely to be discovered at future LHC runs. In some of the theories a non-standard origin or running of the soft parameters is required, for example involving conformal hidden sector interactions.

  6. Lead Poisoning

    MedlinePlus

    ... be exposed to lead by Eating food or drinking water that contains lead. Water pipes in older homes ... herbs or foods that contain lead Breathing air, drinking water, eating food, or swallowing or touching dirt that ...

  7. Chiral heavy fermions in a two Higgs doublet model: 750 GeV resonance or not

    NASA Astrophysics Data System (ADS)

    Bar-Shalom, Shaouly; Soni, Amarjit

    2017-03-01

    We revisit models where a heavy chiral 4th generation doublet of fermions is embedded in a class of two Higgs doublets models (2HDM) with a discrete Z2 symmetry, which couples the ;heavy; scalar doublet only to the 4th generation fermions and the ;light; one to the Standard Model (SM) fermions - the so-called 4G2HDM introduced by us several years ago. We study the constraints imposed on the 4G2HDM from direct searches of heavy fermions, from precision electroweak data (PEWD) and from the measured production and decay signals of the 125 GeV scalar, which in the 4G2HDM corresponds to the lightest CP-even scalar h. We then show that the recently reported excess in the γγ spectrum around 750 GeV can be accommodated by the heavy CP-even scalar of the 4G2HDM, H, resulting in a unique choice of parameter space: negligible mixing (sin ⁡ α ≲ O (10-3)) between the two CP-even scalars h , H and heavy 4th generation quark and lepton masses mt‧ ,mb‧ ≲ 400 GeV and mν‧ ,mτ‧ ≳ 900 GeV, respectively. Whether or not the 750 GeV γγ resonance is confirmed, interesting phenomenology emerges in q‧ - Higgs systems (q‧ =t‧ ,b‧), that can be searched for at the LHC. For example, the heavy scalar states of the model, S = H , A ,H+, may have BR (S →qbar‧q‧) ∼ O (1), giving rise to observable qbar‧q‧ signals on resonance, followed by the flavor changing q‧ decays t‧ → uh (u = u , c) and/or b‧ → dh (d = d , s , b). This leads to rather distinct signatures, with or without charged leptons, of the form qbar‧q‧ →(nj + mb + ℓW) S (j and b being light and b-quark jets, respectively), with n + m + ℓ = 6- 8 and unique kinematic features. These high jet-multiplicity signals appear to be very challenging and may need new search strategies for detection of such heavy chiral quarks. It is also shown that the flavor structure of the 4G2HDM can easily accommodate the interesting recent indications of a percent-level branching ratio in the

  8. X-Ray Counterparts of Puzzling Gev-Tev Sources

    NASA Astrophysics Data System (ADS)

    Kargaltsev, Oleg

    2014-09-01

    We propose to look for X-ray counterparts of the extended TeV source HESS J1616-508 that may also have been detected with Fermi at GeV energies. The nature of the source and the connection between the TeV source and the nearby GeV sources are unknown. It has been suggested that it may be a relic plerion powered by the offset PSR J1617-5055, but a deep Chandra observation of this pulsar and its wind nebula has not confirmed this hypothesis. To understand the nature of this long-standing "dark accelerator", we propose to observe the GeV sources (which could be young pulsars) and another nearby young pulsar (J1614-5048) to check whether or not they could supply relativistic particles and power the TeV source. We will also explore the nature of the GeV sources.

  9. Lead Toxicity

    MedlinePlus

    ... including some imported jewelry. What are the health effects of lead? • More commonly, lower levels of lead in children over time may lead to reduced IQ, slow learning, Attention Deficit Hyperactivity Disorder (ADHD), or behavioral issues. • Lead also affects other ...

  10. Lead poisoning

    SciTech Connect

    Rekus, J.F.

    1992-08-01

    Construction workers who weld, cut or blast structural steel coated with lead-based paint are at significant risk of lead poisoning. Although technology to control these exposures may not have existed when the lead standard was promulgated, it is available today. Employers who do not take steps to protect their employees from lead exposure may be cited and fined severely for their failure.

  11. Evidence for the 125 GeV Higgs boson decaying to a pair of $$\\tau$$ leptons

    DOE PAGES

    Chatrchyan, Serguei

    2014-01-20

    A search for a standard model Higgs boson decaying into a pair of tau leptons is performed using events recorded by the CMS experiment at the LHC in 2011 and 2012. The dataset corresponds to an integrated luminosity of 4.9 inverse femtobarns at a centre-of-mass energy of 7 TeV and 19.7 inverse femtobarns at 8 TeV. Each tau lepton decays hadronically or leptonically to an electron or a muon, leading to six different final states for the tau-lepton pair, all considered in this analysis. An excess of events is observed over the expected background contributions, with a local significance largermore » than 3 standard deviations for m[H] values between 115 and 130 GeV. The best fit of the observed H to tau tau signal cross section for m[H] = 125 GeV is 0.78 +- 0.27 times the standard model expectation. These observations constitute evidence for the 125 GeV Higgs boson decaying to a pair of tau leptons.« less

  12. Photons, photon jets, and dark photons at 750 GeV and beyond

    NASA Astrophysics Data System (ADS)

    Dasgupta, Basudeb; Kopp, Joachim; Schwaller, Pedro

    2016-05-01

    In new physics searches involving photons at the LHC, one challenge is to distinguish scenarios with isolated photons from models leading to "photon jets". For instance, in the context of the 750 GeV diphoton excess, it was pointed out that a true diphoton resonance S → γ γ can be mimicked by a process of the form p p → S → a a → 4γ , where S is a new scalar with a mass of 750 GeV and a is a light pseudoscalar decaying to two collinear photons. Photon jets can be distinguished from isolated photons by exploiting the fact that a large fraction of photons convert to an e^+e^- pair inside the inner detector. In this note, we quantify this discrimination power, and we study how the sensitivity of future searches differs for photon jets compared to isolated photons. We also investigate how our results depend on the lifetime of the particle(s) decaying to the photon jet. Finally, we discuss the extension to S→ A^' A^' → e^+e^-e^+e^-, where there are no photons at all but the dark photon A^' decays to e^+e^- pairs. Our results will be useful in future studies of the putative 750 GeV signal, but also more generally in any new physics search involving hard photons.

  13. Evidence for the 125 GeV Higgs boson decaying to a pair of $\\tau$ leptons

    SciTech Connect

    Chatrchyan, Serguei

    2014-01-20

    A search for a standard model Higgs boson decaying into a pair of tau leptons is performed using events recorded by the CMS experiment at the LHC in 2011 and 2012. The dataset corresponds to an integrated luminosity of 4.9 inverse femtobarns at a centre-of-mass energy of 7 TeV and 19.7 inverse femtobarns at 8 TeV. Each tau lepton decays hadronically or leptonically to an electron or a muon, leading to six different final states for the tau-lepton pair, all considered in this analysis. An excess of events is observed over the expected background contributions, with a local significance larger than 3 standard deviations for m[H] values between 115 and 130 GeV. The best fit of the observed H to tau tau signal cross section for m[H] = 125 GeV is 0.78 +- 0.27 times the standard model expectation. These observations constitute evidence for the 125 GeV Higgs boson decaying to a pair of tau leptons.

  14. The JLab TMD Program at 6 GeV and 11 GeV

    SciTech Connect

    Puckett, Andrew J.

    2016-05-01

    The precise mapping of the nucleon’s transverse momentum dependent parton distributions (TMDs) in the valence quark region has emerged as one of the flagship physics programs of the recently upgraded Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab (JLab). The TMDs describe the three-dimensional, spin-correlated densities of quarks and gluons in the nucleon in momentum space, and are accessible experimentally through detailed studies of the Semi-Inclusive Deep Inelastic Scattering (SIDIS) process, N ( e ; e 0 h ) X . The already unrivaled intensity, polarization and duty factor performance of CEBAF will combine with the dramatic expansion of its kinematic reach embodied by the recent near-doubling of the maximum beam energy to enable the first fully differential precision measurements of SIDIS structure functions in the valence region. In this paper, I will review the existing and forthcoming SIDIS results from the 6 GeV era of CEBAF operations and present an overview of the planned JLab SIDIS program at 11 GeV beam energy

  15. The lead-glass electromagnetic calorimeter for the SELEX experiment

    SciTech Connect

    M. Y. Balatz et al.

    2004-07-19

    A large-acceptance, highly segmented electromagnetic lead glass calorimeter for Experiment E781 (SELEX) at Fermi National Acceleration Laboratory was designed and built. This detector has been used to reconstruct photons and electrons with energies ranging from few GeV up to 500 GeV in the collisions of the 650 GeV {Sigma}{sup -} hyperons and {pi}{sup -} mesons with the target nucleons. The design, calibration and performance of the calorimeter are described. Energy resolution and position resolution are assessed using both calibration electron beams and {pi}{sup 0} mesons reconstructed in 650 GeV hadron-hadron interactions. The performance of the calorimeter in selecting resonant states that involve photons is demonstrated.

  16. Lead Poisoning

    MedlinePlus

    ... from lead poisoning in New Hampshire and in Alabama. Lead poisoning has also been associated with juvenile ... for decades—after it first enters the blood stream. (The same process can occur with the onset ...

  17. Lead poisoning

    MedlinePlus

    ... Failure at school Hearing problems Kidney damage Reduced IQ Slowed body growth The symptoms of lead poisoning ... can have a permanent impact on attention and IQ. People with higher lead levels have a greater ...

  18. SPIN Effects, QCD, and Jefferson Laboratory with 12 GeV electrons

    SciTech Connect

    Prokudin, Alexey

    2013-11-01

    QCD and Spin physics are playing important role in our understanding of hadron structure. I will give a short overview of origin of hadron structure in QCD and highlight modern understanding of the subject. Jefferson Laboratory is undergoing an upgrade that will increase the energy of electron beam up to 12 GeV. JLab is one of the leading facilities in nuclear physics studies and once operational in 2015 JLab 12 will be crucial for future of nuclear physics. I will briefly discuss future studies in four experimental halls of Jefferson Lab.

  19. Deeply virtual Compton scattering at 6 GeV

    SciTech Connect

    Jian-ping Chen; Eugene Chudakov; Cornelis De Jager; Javier Gomez; Jens-ole Hansen; John Lerose; Robert Michaels; Joseph Mitchell; Arunava Saha; Bogdan Wojtsekhowski; J. Berthot; Pierre Bertin; Alexandre Deur; Rachele Di Salvo; Lawrence Weinstein; Werner Boeglin; Pete Markowitz; Jeffrey Templon; Paul Gueye; Ting Chang; Alan Nathan; Raffaele De Leo; Luigi Lagamba; Moskov Amarian; Evaristo Cisbani; Salvatore Frullani; Franco Garibaldi; R. Iommi; Mauro Iodice; Guido Urciuoli; Marc Vanderhaeghen; Douglas Higinbotham; Xiaodong Jiang; Pierre Guichon; Yves Roblin; Gail Dodge; Christophe Jutier; Charles Hyde-wright; Franck Sabatie; Luminita Todor; Paul Ulmer

    2000-06-01

    The authors propose a measurement of the Deep Virtual Compton Scattering process (DVCS) ep {yields} ep{gamma} in Hall A at Jefferson Lab with a 6 GeV beam. The authors are able to explore the onset of Q{sup 2} scaling, by measuring a beam helicity asymmetry for Q{sup 2} ranging from 1.5 to 2.5 GeV{sup 2} at x{sub B} {approx} 0.35. At this kinematics, the asymmetry is dominated by the DVCS Bethe-Heitler (BH) interference, which is proportional to the imaginary part of the DVCS amplitude amplified by the full magnitude of the BH amplitude. The imaginary part of the DVCS amplitude is expected to scale early. Indeed, the imaginary part of the forward Compton amplitude measured in deep inelastic scattering (via the optical theorem) scales at Q{sup 2} as low as 1 GeV{sup 2}. If the scaling regime is reached, they make an 8% measurement of the skewed parton distributions (SPD) contributing to the DVCS amplitude. Also, this experiment allows them to separately estimate the size of the higher-twist effects, since they are only suppressed by an additional factor 1/Q compared to the leading-twist term, and have a different angular dependence. They use a polarized electron beam and detect the scattered electron in the HRSe, the real photon in an electromagnetic calorimeter (under construction) and the recoil proton in a shielded scintillator array (to be constructed). This allows them to determine the difference in cross-sections for electrons of opposite helicities. This observable is directly linked to the SPD's. The authors estimate that 25 days of beam (600 hours) are needed to achieve this goal.

  20. Interpreting a 750 GeV diphoton resonance

    NASA Astrophysics Data System (ADS)

    Gupta, Rick S.; Jäger, Sebastian; Kats, Yevgeny; Perez, Gilad; Stamou, Emmanuel

    2016-07-01

    We discuss the implications of the significant excesses in the diphoton final state observed by the LHC experiments ATLAS and CMS around a diphoton invariant mass of 750 GeV. The interpretation of the excess as a spin-zero s-channel resonance implies model-independent lower bounds on both its branching ratio and its coupling to photons, which stringently constrain dynamical models. We consider both the case where the excess is described by a narrow and a broad resonance. We also obtain model-independent constraints on the allowed couplings and branching fractions to final states other than diphotons, by including the interplay with 8 TeV searches. These results can guide attempts to construct viable dynamical models of the resonance. Turning to specific models, our findings suggest that the anomaly cannot be accounted for by the presence of only an additional singlet or doublet spin-zero field and the Standard Model degrees of freedom; this includes all two-Higgs-doublet models. Likewise, heavy scalars in the MSSM cannot explain the excess if stability of the electroweak vacuum is required, at least in a leading-order analysis. If we assume that the resonance is broad we find that it is challenging to find a weakly coupled explanation. However, we provide an existence proof in the form of a model with vectorlike quarks with large electric charge that is perturbative up to the 100 TeV scale. For the narrow-resonance case a similar model can be perturbative up to high scales also with smaller charges. We also find that, in their simplest form, dilaton models cannot explain the size of the excess. Some implications for flavor physics are briefly discussed.

  1. RHIC 100 GeV Polarized Proton Luminosity

    SciTech Connect

    Zhang, S. Y.

    2014-01-17

    A big problem in RHIC 100 GeV proton run 2009 was the significantly lower luminosity lifetime than all previous runs. It is shown in this note that the beam intensity decay in run 2009 is caused by the RF voltage ramping in store. It is also shown that the beam decay is not clearly related to the beam momentum spread, therefore, not directly due to the 0.7m. β* Furthermore, the most important factor regarding the low luminosity lifetime is the faster transverse emittance growth in store, which is also much worse than the previous runs, and is also related to the RF ramping. In 100 GeV proton run 2012a, the RF ramping was abandoned, but the β* was increased to 0.85m, with more than 20% loss of luminosity, which is not necessary. It is strongly suggested to use smaller β* in 100 GeV polarized proton run 2015/2016

  2. CEBAF SRF Performance during Initial 12 GeV Commissioning

    SciTech Connect

    Bachimanchi, Ramakrishna; Allison, Trent; Daly, Edward; Drury, Michael; Hovater, J; Lahti, George; Mounts, Clyde; Nelson, Richard; Plawski, Tomasz

    2015-09-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) energy upgrade from 6 GeV to 12 GeV includes the installation of eleven new 100 MV cryomodules (88 cavities). The superconducting RF cavities are designed to operate CW at an accelerating gradient of 19.3 MV/m with a QL of 3×107. Not all the cavities were operated at the minimum gradient of 19.3 MV/m with the beam. Though the initial 12 GeV milestones were achieved during the initial commissioning of CEBAF, there are still some issues to be addressed for long term reliable operation of these modules. This paper reports the operational experiences during the initial commissioning and the path forward to improve the performance of C100 (100 MV) modules.

  3. The 6 GeV TMD Program at Jefferson Lab

    SciTech Connect

    Puckett, Andrew J.

    2015-01-01

    The study of the transverse momentum dependent parton distributions (TMDs) of the nucleon in semi-inclusive deep-inelastic scattering (SIDIS) has emerged as one of the major physics motivations driving the experimental program using the upgraded 11 GeV electron beam at Jefferson Lab’s Continuous Electron Beam Accelerator Facility (CEBAF). The accelerator construction phase of the CEBAF upgrade is essentially complete and commissioning of the accelerator has begun as of April, 2014. As the new era of CEBAF operations begins, it is appropriate to review the body of published and forthcoming results on TMDs from the 6 GeV era of CEBAF operations, discuss what has been learned, and discuss the key challenges and opportunities for the 11 GeV SIDIS program of CEBAF.

  4. The 12 GeV Upgrade at Jefferson Lab

    SciTech Connect

    Rolf Ent

    2002-02-01

    There has been a remarkable fruitful evolution of our picture of the behavior of strongly interacting matter during the almost two decades that have passed since the parameters of the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab were defined. These advances have revealed important new experimental questions best addressed by a CEBAF-class machine at higher energy. Fortunately, favorable technical developments coupled with foresight in the design of the facility make it feasible to triple (double) CEBAF's design (achieved) beam energy from 4 (6) GeV to 12 GeV, in a cost-effective manner: the Upgrade can be realized for about 15% of the cost of the initial facility. This Upgrade would enable the worldwide community to greatly expand its physics horizons. In addition to in general improving the figure of merit and momentum transfer range of the present Jefferson Lab physics program, raising the energy of the accelerator to 12 GeV opens up two main new areas of physics: (1) It allows direct exploration of the quark-gluon structure of hadrons and nuclei in the ''valence quark region''. It is known that inclusive electron scattering at the high momentum and energy transfers available at 12 GeV is governed by elementary interactions with quarks and, indirectly, gluons. The original CEBAF energy is not adequate to study this critical region, while with continuous 12 GeV beams one can cleanly access the entire ''valence quark region'' and exploit the newly discovered Generalized Parton Distributions. In addition, a 12-GeV Jefferson Lab can essentially complete the studies of the transition from hadronic to quark-gluon degrees of freedom. (2) It allows crossing the threshold above which the origins of quark confinement can be investigated. Specifically, 12 GeV will enable the production of certain ''exotic'' mesons. Whereas in the QCD region of asymptotic freedom ample evidence for the role of gluons exist through the observation of gluon jets

  5. GeV flares observations with GLAST LAT

    SciTech Connect

    Galli, A.; Omodei, N.; Piro, L.

    2007-07-12

    Early X-ray afterglow observations show that X-ray flares are very common features in GRB light curves. X-ray flares may reflect long duration central engine activity. The delayed flare photons are expected to interact with relativistic electrons by Inverse Compton giving delayed high energy counterparts that potentially will be detected by GLAST LAT, which could observe GRB from 20 MeV to more than 300 GeV. The nature oh high energy spectral components from GRB detected by EGRET is still debated. Observations with GLAST LAT will give useful information to constrain the origin of X-ray flares. In this work we simulate a set of possible GeV emitting flares in the context of External Shock model to study the capability of GLAST LAT to detect GeV flares at different intensities and durations.

  6. Centrality dependence of direct photon production in (square root)S(NN) = 200 GeV Au + Au collisions.

    PubMed

    Adler, S S; Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Alexander, J; Amirikas, R; Aphecetche, L; Aronson, S H; Averbeck, R; Awes, T C; Azmoun, R; Babintsev, V; Baldisseri, A; Barish, K N; Barnes, P D; Bassalleck, B; Bathe, S; Batsouli, S; Baublis, V; Bazilevsky, A; Belikov, S; Berdnikov, Y; Bhagavatula, S; Boissevain, J G; Borel, H; Borenstein, S; Brooks, M L; Brown, D S; Bruner, N; Bucher, D; Buesching, H; Bumazhnov, V; Bunce, G; Burward-Hoy, J M; Butsyk, S; Camard, X; Chai, J-S; Chand, P; Chang, W C; Chernichenko, S; Chi, C Y; Chiba, J; Chiu, M; Choi, I J; Choi, J; Choudhury, R K; Chujo, T; Cianciolo, V; Cobigo, Y; Cole, B A; Constantin, P; d'Enterria, D; David, G; Delagrange, H; Denisov, A; Deshpande, A; Desmond, E J; Devismes, A; Dietzsch, O; Drapier, O; Drees, A; du Rietz, R; Durum, A; Dutta, D; Efremenko, Y V; El Chenawi, K; Enokizono, A; En'yo, H; Esumi, S; Ewell, L; Fields, D E; Fleuret, F; Fokin, S L; Fox, B D; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fung, S-Y; Garpman, S; Ghosh, T K; Glenn, A; Gogiberidze, G; Gonin, M; Gosset, J; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Perdekamp, M Grosse; Guryn, W; Gustafsson, H-A; Hachiya, T; Haggerty, J S; Hamagaki, H; Hansen, A G; Hartouni, E P; Harvey, M; Hayano, R; Hayashi, N; He, X; Heffner, M; Hemmick, T K; Heuser, J M; Hibino, M; Hill, J C; Holzmann, W; Homma, K; Hong, B; Hoover, A; Ichihara, T; Ikonnikov, V V; Imai, K; Isenhower, D; Ishihara, M; Issah, M; Isupov, A; Jacak, B V; Jang, W Y; Jeong, Y; Jia, J; Jinnouchi, O; Johnson, B M; Johnson, S C; Joo, K S; Jouan, D; Kametani, S; Kamihara, N; Kang, J H; Kapoor, S S; Katou, K; Kelly, S; Khachaturov, B; Khanzadeev, A; Kikuchi, J; Kim, D H; Kim, D J; Kim, D W; Kim, E; Kim, G-B; Kim, H J; Kistenev, E; Kiyomichi, A; Kiyoyama, K; Klein-Boesing, C; Kobayashi, H; Kochenda, L; Kochetkov, V; Koehler, D; Kohama, T; Kopytine, M; Kotchetkov, D; Kozlov, A; Kroon, P J; Kuberg, C H; Kurita, K; Kuroki, Y; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Ladygin, V; Lajoie, J G; Lebedev, A; Leckey, S; Lee, D M; Lee, S; Leitch, M J; Li, X H; Lim, H; Litvinenko, A; Liu, M X; Liu, Y; Maguire, C F; Makdisi, Y I; Malakhov, A; Manko, V I; Mao, Y; Martinez, G; Marx, M D; Masui, H; Matathias, F; Matsumoto, T; McGaughey, P L; Melnikov, E; Messer, F; Miake, Y; Milan, J; Miller, T E; Milov, A; Mioduszewski, S; Mischke, R E; Mishra, G C; Mitchell, J T; Mohanty, A K; Morrison, D P; Moss, J M; Mühlbacher, F; Mukhopadhyay, D; Muniruzzaman, M; Murata, J; Nagamiya, S; Nagle, J L; Nakamura, T; Nandi, B K; Nara, M; Newby, J; Nilsson, P; Nyanin, A S; Nystrand, J; O'Brien, E; Ogilvie, C A; Ohnishi, H; Ojha, I D; Okada, K; Ono, M; Onuchin, V; Oskarsson, A; Otterlund, I; Oyama, K; Ozawa, K; Pal, D; Palounek, A P T; Pantuev, V; Papavassiliou, V; Park, J; Parmar, A; Pate, S F; Peitzmann, T; Peng, J-C; Peresedov, V; Pinkenburg, C; Pisani, R P; Plasil, F; Purschke, M L; Purwar, A K; Rak, J; Ravinovich, I; Read, K F; Reuter, M; Reygers, K; Riabov, V; Riabov, Y; Roche, G; Romana, A; Rosati, M; Rosnet, P; Ryu, S S; Sadler, M E; Saito, N; Sakaguchi, T; Sakai, M; Sakai, S; Samsonov, V; Sanfratello, L; Santo, R; Sato, H D; Sato, S; Sawada, S; Schutz, Y; Semenov, V; Seto, R; Shaw, M R; Shea, T K; Shibata, T-A; Shigaki, K; Shiina, T; Silva, C L; Silvermyr, D; Sim, K S; Singh, C P; Singh, V; Sivertz, M; Soldatov, A; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Staley, F; Stankus, P W; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Sugitate, T; Sullivan, J P; Takagui, E M; Taketani, A; Tamai, M; Tanaka, K H; Tanaka, Y; Tanida, K; Tannenbaum, M J; Tarján, P; Tepe, J D; Thomas, T L; Tojo, J; Torii, H; Towell, R S; Tserruya, I; Tsuruoka, H; Tuli, S K; Tydesjö, H; Tyurin, N; van Hecke, H W; Velkovska, J; Velkovsky, M; Veszprémi, V; Villatte, L; Vinogradov, A A; Volkov, M A; Vznuzdaev, E; Wang, X R; Watanabe, Y; White, S N; Wohn, F K; Woody, C L; Xie, W; Yang, Y; Yanovich, A; Yokkaichi, S; Young, G R; Yushmanov, I E; Zajc, W A; Zhang, C; Zhou, S; Zhou, S J; Zolin, L

    2005-06-17

    The first measurement of direct photons in Au + Au collisions at (square root)S(NN) = 200 GeV is presented. The direct photon signal is extracted as a function of the Au + Au collision centrality and compared to next-to-leading order perturbative quantum chromodynamics calculations. The direct photon yield is shown to scale with the number of nucleon-nucleon collisions for all centralities.

  7. Leading Democratically

    ERIC Educational Resources Information Center

    Brookfield, Stephen

    2010-01-01

    Democracy is the most venerated of American ideas, the one for which wars are fought and people die. So most people would probably agree that leaders should be able to lead well in a democratic society. Yet, genuinely democratic leadership is a relative rarity. Leading democratically means viewing leadership as a function or process, rather than…

  8. Reconstruction of GeV Neutrino Events in LENA

    SciTech Connect

    Moellenberg, R.; Feilitzsch, F. von; Goeger-Neff, M.; Hellgartner, D.; Lewke, T.; Meindl, Q.; Oberauer, L.; Potzel, W.; Tippmann, M.; Winter, J.; Wurm, M.; Peltoniemi, J.

    2011-10-06

    LENA (Low Energy Neutrino Astronomy) is a proposed next generation liquid-scintillator detector with about 50 kt target mass. Besides the detection of solar neutrinos, geoneutrinos, supernova neutrinos and the search for the proton decay, LENA could also be used as the far detector of a next generation neutrino beam. The present contribution outlines the status of the Monte Carlo studies towards the reconstruction of GeV neutrinos in LENA. Both the tracking capabilities at a few hundred MeV, most interesting for a beta beam, and above 1 GeV for a superbeam experiment are presented.

  9. Balloon measurements of the energy spectrum of cosmic electrons between 1 GeV and 25 GeV

    NASA Technical Reports Server (NTRS)

    Earl, J. A.; Neely, D. E.; Rygg, T. A.

    1971-01-01

    During three balloon flights made in 1966 and 1967, cosmic electrons were investigated with the aid of a hodoscope detector which provided extensive and detailed information on each cosmic ray event triggering the apparatus. Similar information obtained during calibration exposures to protons and pions as well as to electrons was used to provide identification of cosmic electrons and to determine their energies. Differential primary electron intensities measured in the range from 1 GeV to 25 GeV were substantially larger than some earlier measurements. Taken in conjunction with existing measurements at energies above 100 GeV, this indicates that the energy spectrum of cosmic electrons is steeper than that of cosmic-ray nuclei and, consequently, suggests that Compton/synchrotron energy loss plays a significant role in shaping the electron spectrum.

  10. Resonances from QCD bound states and the 750 GeV diphoton excess

    NASA Astrophysics Data System (ADS)

    Kats, Yevgeny; Strassler, Matthew J.

    2016-05-01

    Pair production of colored particles is in general accompanied by production of QCD bound states (onia) slightly below the pair-production threshold. Bound state annihilation leads to resonant signals, which in some cases are easier to see than the decays of the pair-produced constituents. In a previous paper ( arXiv:1204.1119 ) we estimated the bound state signals, at leading order and in the Coulomb approximation, for particles with various spins, color representations and electric charges, and used 7 TeV ATLAS and CMS resonance searches to set rough limits. Here we update our results to include 8 and 13 TeV data. We find that the recently reported diphoton excesses near 750 GeV could indeed be due to a bound state of this kind. A narrow resonance of the correct size could be obtained for a color-triplet scalar with electric charge -4/3 and mass near 375GeV, if (as a recent lattice computation suggests) the wave function at the origin is somewhat larger than anticipated. Pair production of this particle could have evaded detection up to now. Other candidates may include a triplet scalar of charge 5/3, a triplet fermion of charge -4/3, and perhaps a sextet scalar of charge -2/3.

  11. Estimating changes in temperature extremes from millennial-scale climate simulations using generalized extreme value (GEV) distributions

    NASA Astrophysics Data System (ADS)

    Huang, Whitney K.; Stein, Michael L.; McInerney, David J.; Sun, Shanshan; Moyer, Elisabeth J.

    2016-07-01

    Changes in extreme weather may produce some of the largest societal impacts of anthropogenic climate change. However, it is intrinsically difficult to estimate changes in extreme events from the short observational record. In this work we use millennial runs from the Community Climate System Model version 3 (CCSM3) in equilibrated pre-industrial and possible future (700 and 1400 ppm CO2) conditions to examine both how extremes change in this model and how well these changes can be estimated as a function of run length. We estimate changes to distributions of future temperature extremes (annual minima and annual maxima) in the contiguous United States by fitting generalized extreme value (GEV) distributions. Using 1000-year pre-industrial and future time series, we show that warm extremes largely change in accordance with mean shifts in the distribution of summertime temperatures. Cold extremes warm more than mean shifts in the distribution of wintertime temperatures, but changes in GEV location parameters are generally well explained by the combination of mean shifts and reduced wintertime temperature variability. For cold extremes at inland locations, return levels at long recurrence intervals show additional effects related to changes in the spread and shape of GEV distributions. We then examine uncertainties that result from using shorter model runs. In theory, the GEV distribution can allow prediction of infrequent events using time series shorter than the recurrence interval of those events. To investigate how well this approach works in practice, we estimate 20-, 50-, and 100-year extreme events using segments of varying lengths. We find that even using GEV distributions, time series of comparable or shorter length than the return period of interest can lead to very poor estimates. These results suggest caution when attempting to use short observational time series or model runs to infer infrequent extremes.

  12. Shielding Design Aspects of SR Beamlines for 3-GeV And 8-GeV Class Synchrotron Radiation Facilities

    SciTech Connect

    Asano, Yoshihiro; Liu, James C.; Rokni, Sayed; /SLAC

    2007-09-24

    Differences in synchrotron radiation beamline shielding design between the facilities of 3 GeV class and 8 GeV class are discussed with regard to SLAC SSRL and SPring-8 beamlines. Requirements of beamline shielding as well as the accelerator shielding depend on the stored electron energy, and here some factors in beamline shielding depending on the stored energy in particular, are clarified, namely the effect of build up, the effect of double scattering of photons at branch beamlines, and the spread of gas bremsstrahlung.

  13. The JLAB 12 GeV Energy Upgrade of CEBAF

    SciTech Connect

    Harwood, Leigh H.

    2013-12-01

    This presentation should describe the progress of the 12GeV Upgrade of CEBAF at Jefferson Lab. The status of the upgrade should be presented as well as details on the construction, procurement, installation and commissioning of the magnet and SRF components of the upgrade.

  14. Inclusive hadron production at 10 GeV

    NASA Astrophysics Data System (ADS)

    Waldi, R.

    1989-12-01

    Recent results of the ARGUS collaboration on inclusive momentum and angular distributions of charged hadrons produced in direct Υ(1S) decays and nonresonant e+e- annihilation at 10 GeV are presented, which allow investigation of quark and gluon fragmentation. The data demonstrate some of the shortcomings of present fragmentation models.

  15. GeV C. W. electron microtron design report

    SciTech Connect

    Not Available

    1982-05-01

    Rising interest in the nuclear physics community in a GeV C.W. electron accelerator reflects the growing importance of high-resolution short-range nuclear physics to future advances in the field. In this report major current problems are reviewed and the details of prospective measurements which could be made with a GeV C.W. electron facility are discussed, together with their impact on an understanding of nuclear forces and the structure of nuclear matter. The microtron accelerator has been chosen as the technology to generate the electron beams required for the research discussed because of the advantages of superior beam quality, low capital and operating cost and capability of furnishing beams of several energies and intensities simultaneously. A complete technical description of the conceptual design for a 2 GeV double-sided C.W. electron microtron is presented. The accelerator can furnish three beams with independently controlled energy and intensity. The maximum current per beam is 100 ..mu..amps. Although the precise objective for maximum beam energy is still a subject of debate, the design developed in this study provides the base technology for microtron accelerators at higher energies (2 to 6 GeV) using multi-sided geometries.

  16. JLab's Hall A after the 12 GeV upgrade

    SciTech Connect

    John Lerose

    2004-11-14

    An overview is presented of the planned physics program for JLab's Hall A following the 12 GeV upgrade with emphasis on the equipment needed to achieve the desired experimental goals. Results of simulations of sample experiments with anticipated uncertainties are presented.

  17. Nucleon Form Factors experiments with 12 GeV CEBAF

    SciTech Connect

    Wojtsekhowski, B.

    2008-10-13

    A number of precision form factor experiments at high momentum transfer will be performed with the 11 GeV electron beam of CEBAF. We review the approved proposals and the conceptual schemes of several new suggestions. Form factor data will serve as a major input for the construction of a tomographic image of the nucleon.

  18. 7-GeV Advanced Photon Source Conceptual Design Report

    SciTech Connect

    Not Available

    1987-04-01

    During the past decade, synchrotron radiation emitted by circulating electron beams has come into wide use as a powerful, versatile source of x-rays for probing the structure of matter and for studying various physical processes. Several synchrotron radiation facilities with different designs and characteristics are now in regular operation throughout the world, with recent additions in this country being the 0.8-GeV and 2.5-GeV rings of NSLS at Brookhaven National Laboratory. However, none of the operating facilities has been designed to use a low-emittance, high-energy stored beam, together with modern undulator devices, to produce a large number of hard x-ray beams of extremely high brilliance. This document is a proposal to the Department of Energy to construct and operate high-energy synchrotron radiation facility at Argonne National Laboratory. We have now chosen to set the design energy of this facility at 7.0 GeV, with the capability to operate at up to 7.5 GeV.

  19. 12 GeV detector technology at Jefferson Lab

    SciTech Connect

    Leckey, John P.; Collaboration: GlueX Collaboration

    2013-04-19

    The Thomas Jefferson National Accelerator Facility (JLab) is presently in the middle of an upgrade to increase the energy of its CW electron beam from 6 GeV to 12 GeV along with the addition of a fourth experimental hall. Driven both by necessity and availability, novel detectors and electronics modules have been used in the upgrade. One such sensor is the Silicon Photomultiplier (SiPM), specifically a Multi-Pixel Photon Counter (MPPC), which is an array of avalanche photodiode pixels operating in Geiger mode that are used to sense photons. The SiPMs replace conventional photomultiplier tubes and have several distinct advantages including the safe operation in a magnetic field and the lack of need for high voltage. Another key to 12 GeV success is advanced fast electronics. Jlab will use custom 250 MHz and 125 MHz 12-bit analog to digital converters (ADCs) and time to digital converters (TDCs) all of which take advantage of VME Switched Serial (VXS) bus with its GB/s high bandwidth readout capability. These new technologies will be used to readout drift chambers, calorimeters, spectrometers and other particle detectors at Jlab once the 12 GeV upgrade is complete. The largest experiment at Jlab utilizing these components is GlueX - an experiment in the newly constructed Hall D that will study the photoproduction of light mesons in the search for hybrid mesons. The performance of these components and their respective detectors will be presented.

  20. 12 GeV detector technology at Jefferson Lab

    SciTech Connect

    Leckey, John P.

    2013-04-01

    The Thomas Jefferson National Accelerator Facility (JLab) is presently in the middle of an upgrade to increase the energy of its CW electron beam from 6 GeV to 12 GeV along with the addition of a fourth experimental hall. Driven both by necessity and availability, novel detectors and electronics modules have been used in the upgrade. One such sensor is the Silicon Photomultiplier (SiPM), specifically a Multi-Pixel Photon Counter (MPPC), which is an array of avalanche photodiode pixels operating in Geiger mode that are used to sense photons. The SiPMs replace conventional photomultiplier tubes and have several distinct advantages including the safe operation in a magnetic field and the lack of need for high voltage. Another key to 12 GeV success is advanced fast electronics. Jlab will use custom 250 MHz and 125 MHz 12-bit analog to digital converters (ADCs) and time to digital converters (TDCs) all of which take advantage of VME Switched Serial (VXS) bus with its GB/s high bandwidth readout capability. These new technologies will be used to readout drift chambers, calorimeters, spectrometers and other particle detectors at Jlab once the 12 GeV upgrade is complete. The largest experiment at Jlab utilizing these components is GlueX - an experiment in the newly constructed Hall D that will study the photoproduction of light mesons in the search for hybrid mesons. The performance of these components and their respective detectors will be presented.

  1. 90° Neutron emission from high energy protons and lead ions on a thin lead target

    NASA Astrophysics Data System (ADS)

    Agosteo, S.; Birattari, C.; Foglio Para, A.; Mitaroff, A.; Silari, M.; Ulrici, L.

    2002-01-01

    The neutron emission from a relatively thin lead target bombarded by beams of high energy protons/pions and lead ions was measured at CERN in one of the secondary beam lines of the Super Proton Synchrotron for radiation protection and shielding calculations. Measurements were performed with three different beams: 208Pb 82+ lead ions at 40 GeV/ c per nucleon and 158 GeV/ c per nucleon, and 40 GeV/ c mixed protons/pions. The neutron yield and spectral fluence per incident ion on target were measured at 90° with respect to beam direction. Monte-Carlo simulations with the FLUKA code were performed for the case of protons and pions and the results found in good agreement with the experimental data. A comparison between simulations and experiment for protons, pions and lead ions have shown that—for such high energy heavy ion beams—a reasonable estimate can be carried out by scaling the result of a Monte-Carlo calculation for protons by the projectile mass number to the power of 0.80-0.84.

  2. Ecotoxicology: Lead

    USGS Publications Warehouse

    Scheuhammer, A.M.; Beyer, W.N.; Schmitt, C.J.; Jorgensen, Sven Erik; Fath, Brian D.

    2008-01-01

    Lead (Pb) is a naturally occurring metallic element; trace concentrations are found in all environmental media and in all living things. However, certain human activities, especially base metal mining and smelting; combustion of leaded gasoline; the use of Pb in hunting, target shooting, and recreational angling; the use of Pb-based paints; and the uncontrolled disposal of Pb-containing products such as old vehicle batteries and electronic devices have resulted in increased environmental levels of Pb, and have created risks for Pb exposure and toxicity in invertebrates, fish, and wildlife in some ecosystems.

  3. Tetraethyl lead

    Integrated Risk Information System (IRIS)

    Tetraethyl lead ; CASRN 78 - 00 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  4. Why is GeV physics relevant in the age of the LHC?

    SciTech Connect

    Pennington, Michael R.

    2014-02-01

    The contribution that Jefferson Lab has made, with its 6 GeV electron beam, and will make, with its 12 GeV upgrade, to our understanding of the way the fundamental interactions work, particularly strong coupling QCD, is outlined. The physics at the GeV scale is essential even in TeV collisions.

  5. Test of lead glass shower counters

    SciTech Connect

    Kawabata, S.; Ogawa, K.; Sugahara, R.; Sumiyoshi, T.; Takahashi, K.; Awaji, N.; Hayashii, H.; Iwata, S.; Gearhart, R.A.; Miyamoto, A.

    1983-10-01

    Lead glass counters made of wedge shaped blocks of SF6 were tested with positrons at SLAC. The beam energy ranged from 2 to 17.5 GeV. Energy dependence and beam position dependence of pulse height and energy resolution were studied with lead glass blocks of various lengths. The effect of a BK-7 light guide on pulse height was clearly observed. Degradation of the energy resolution due to aluminum absorbers of various lengths was investigated. A mesh type photomultiplier was also tested.

  6. Improvements to the Leake neutron detector II: Extension to 10 GeV energy

    NASA Astrophysics Data System (ADS)

    Leake, J. W.; Lowe, T.; Mason, R. S.

    2009-01-01

    We report on an improved design of neutron ambient dose equivalent (DE) detector, SNS-LINUS, consisting of a spherical polyethylene detector with internal shields of boron and lead based on the LINUS model thus extending the response to the GeV region. The computed Monte Carlo neutron ambient DE energy response is within a factor ±2.4 from 0.1 keV to 10 GeV with a detector weight of 7.8 kg that is significantly lower than other LINUS designs. The ambient DE response in the 50 keV-10 MeV range is within a factor ±1.36 (i.e. ±30%). The main applications are likely to be around particle accelerators, in aircraft or in spacecraft. The improved response in the 20 MeV energy region should make it attractive for use with fission sources. The computed responses of the SNS NGREM and LINUS detectors to pulsed neutrons and limits for their prudent use in portable monitors in such fields are given. The effect of large gamma bursts on the measurement of pulsed neutrons is discussed with recommendations made to enable operation up to 10 μGy of gamma radiation per burst. We propose a method of extending the dynamic range for pulsed neutron detection in which the neutron decay within the moderator is used to make measurements at a time at which the count rate losses are acceptable.

  7. Inferring the nature of the boson at 125-126Â GeV

    NASA Astrophysics Data System (ADS)

    Menon, Arjun; Modak, Tanmoy; Sahoo, Dibyakrupa; Sinha, Rahul; Cheng, Hai-Yang

    2014-05-01

    The presence of a bosonic resonance near 125 GeV has been firmly established at the Large Hadron Collider. Understanding the exact nature of this boson is a priority. The task now is to verify whether the boson is indeed the scalar Higgs as proposed in the Standard Model of particle physics, or something more esoteric as proposed in the plethora of extensions to the Standard Model. This requires a verification that the boson is a JPC=0++ state with couplings precisely as predicted by the Standard Model. Since a non-Standard Model boson can in some cases mimic the Standard Model Higgs in its couplings to gauge bosons, it is essential to rule out any anomalous behavior in its gauge couplings. We present a step by step methodology to determine the properties of this resonance without making any assumptions about its couplings. We present the analysis in terms of uniangular distributions which lead to angular asymmetries that allow for the extraction of the couplings of the 125-126 GeV resonance to Z bosons. We show analytically and numerically, that these asymmetries can unambiguously confirm whether the new boson is indeed the Standard Model Higgs boson.

  8. Performance of a compensating lead/plastic scintillator tile/fiber calorimeter

    NASA Astrophysics Data System (ADS)

    Uozumi, S.; Asakawa, T.; Done, J. P.; Fujii, Y.; Furukawa, K.; Hara, K.; Ishizaki, T.; Kaga, S.; Kajino, F.; Kamon, T.; Kanaya, N.; Kanzaki, J.; Kawagoe, K.; Kim, S.; Miyajima, A.; Nakagawa, A.; Nozaki, M.; Oishi, R.; Ota, T.; Sendai, K.; Sugimoto, Y.; Sugimoto, Y.; Suzuki, T.; Takeda, H.; Takeshita, T.; Takeuchi, A.; Toeda, T.; Yamada, Y.

    2002-07-01

    We have measured performance of a lead/plastic scintillator sampling calorimeter in two separate beam tests at low (1- 4 GeV) and high (10- 200 GeV) energies. The calorimeter is composed of 8-mm-thick lead plates and 2-mm-thick plastic scintillator plates for hardware compensation, where responses to electromagnetic and hadronic showers of the same energy are identical. We find the linearity to be better than 1% in the energy range between 2 and 150 GeV for both pions and electrons. The energy resolutions are obtained to be (46.7±0.6)%/ E⊕(0.9±0.9)% for pions, where the energy E is given in GeV. The response ratio of electromagnetic showers to hadronic showers is measured to be 1.04±0.01 at low energies, and 0.99±0.01 at high energies.

  9. Who Leads China's Leading Universities?

    ERIC Educational Resources Information Center

    Huang, Futao

    2017-01-01

    This study attempts to identify the major characteristics of two different groups of institutional leaders in China's leading universities. The study begins with a review of relevant literature and theory. Then, there is a brief introduction to the selection of party secretaries, deputy secretaries, presidents and vice presidents in leading…

  10. The 750 GeV Diphoton Excess and SUSY

    NASA Astrophysics Data System (ADS)

    Heinemeyer, S.

    The LHC experiments ATLAS and CMS have reported an excess in the diphoton spectrum at ˜750 GeV. At the same time the motivation for Supersymmetry (SUSY) remains unbowed. Consequently, we review briefly the proposals to explain this excess in SUSY, focusing on "pure" (N)MSSM solutions. We then review in more detail a proposal to realize this excess within the NMSSM. In this particular scenario a Higgs boson with mass around 750 GeV decays to two light pseudo-scalar Higgs bosons. Via mixing with the pion these pseudo-scalars decay into a pair of highly collimated photons, which are identified as one photon, thus resulting in the observed signal.

  11. Scaled simulations of a 10 GeV accelerator

    SciTech Connect

    Cormier-Michel, Estelle; Geddes, C.G.R; Esarey, E.; Schroeder, C.B.; Bruhwiler, D.L.; Paul, K.; Cowan, B.; Leemans, W.P.

    2008-09-08

    Laser plasma accelerators are able to produce high quality electron beams from 1 MeV to 1 GeV. The next generation of plasma accelerator experiments will likely use a multi-stage approach where a high quality electron bunch is first produced and then injected into an accelerating structure. In this paper we present scaled particle-in-cell simulations of a 10 GeV stage in the quasi-linear regime. We show that physical parameters can be scaled to be able to perform these simulations at reasonable computational cost. Beam loading properties and electron bunch energy gain are calculated. A range of parameter regimes are studied to optimize the quality of the electron bunch at the output of the stage.

  12. Meson Spectroscopy at JLab@12 GeV

    SciTech Connect

    Celentano, Andrea

    2013-03-01

    Meson, being the simplest hadronic bound system, is the ideal "laboratory" to study the interaction between quarks, to understand the role of the gluons inside hadrons and to investigate the origin of color confinement. To perform such studies it is important to measure the meson spectrum, with precise determination of resonance masses and properties, looking for rare qbar q states and for unconventional mesons with exotic quantum numbers (i.e. mesons with quantum numbers that are not compatible with a qbar q structure). With the imminent advent of the 12 GeV upgrade of Jefferson Lab a new generation of meson spectroscopy experiments will start: "Meson-Ex" in Hall B and "GLUEX" in Hall D. Both will use photo-production to explore the spectrum of mesons in the light-quark sector, in the energy range of few GeVs.

  13. Scaled simulations of a 10 GeV accelerator

    SciTech Connect

    Cormier-Michel, Estelle; Geddes, C. G. R.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.; Bruhwiler, D. L.; Paul, K.; Cowan, B.

    2009-01-22

    Laser plasma accelerators are able to produce high quality electron beams from 1 MeV to 1 GeV. The next generation of plasma accelerator experiments will likely use a multi-stage approach where a high quality electron bunch is first produced and then injected into an accelerating structure. In this paper we present scaled particle-in-cell simulations of a 10 GeV stage in the quasi-linear regime. We show that physical parameters can be scaled to be able to perform these simulations at reasonable computational cost. Beam loading properties and electron bunch energy gain are calculated. A range of parameter regimes are studied to optimize the quality of the electron bunch at the output of the stage.

  14. The 12 GeV Energy Upgrade at Jefferson Laboratory

    SciTech Connect

    Pilat, Fulvia C.

    2012-09-01

    Two new cryomodules and an extensive upgrade of the bending magnets at Jefferson Lab has been recently completed in preparation for the full energy upgrade in about one year. Jefferson Laboratory has undertaken a major upgrade of its flagship facility, the CW re-circulating CEBAF linac, with the goal of doubling the linac energy to 12 GeV. I will discuss here the main scope and timeline of the upgrade and report on recent accomplishments and the present status. I will then discuss in more detail the core of the upgrade, the new additional C100 cryomodules, their production, tests and recent successful performance. I will then conclude by looking at the future plans of Jefferson Laboratory, from the commissioning and operations of the 12 GeV CEBAF to the design of the MEIC electron ion collider.

  15. Multiple collision effects on the antiproton production by high energy proton (100 GeV - 1000 GeV)

    SciTech Connect

    Takahashi, Hiroshi; Powell, J.

    1987-01-01

    Antiproton production rates which take into account multiple collision are calculated using a simple model. Methods to reduce capture of the produced antiprotons by the target are discussed, including geometry of target and the use of a high intensity laser. Antiproton production increases substantially above 150 GeV proton incident energy. The yield increases almost linearly with incident energy, alleviating space charge problems in the high current accelerator that produces large amounts of antiprotons.

  16. Jet production in deep-inelastic muon scattering at 490 GeV

    SciTech Connect

    Melanson, H.L.; E665 Collaboration

    1993-06-01

    Measurements of jet rates in deep-inelastic muon scattering are presented. The JADE algorithm is used to define jets in the kinematic region 9 < W < 33 GeV. Data taken on a proton target are analyzed within the QCD framework, with the goal of extracting {alpha}{sub s}. Results on the Q{sup 2} dependence of the average transverse momentum of jets are used to demonstrate the running of the strong coupling constant {alpha}{sub s}. In addition, first measurements of the production of jets from heavy nuclei in the region x{sub B{sub j}} > 0.001 are discussed. Initial results indicate a suppression in the rate of two forward jets in carbon, calcium and lead as compared to deuterium. All results presented are preliminary.

  17. The ETFDH c.158A>G variation disrupts the balanced interplay of ESE- and ESS-binding proteins thereby causing missplicing and multiple Acyl-CoA dehydrogenation deficiency.

    PubMed

    Olsen, Rikke K J; Brøner, Sabrina; Sabaratnam, Rugivan; Doktor, Thomas K; Andersen, Henriette S; Bruun, Gitte H; Gahrn, Birthe; Stenbroen, Vibeke; Olpin, Simon E; Dobbie, Angus; Gregersen, Niels; Andresen, Brage S

    2014-01-01

    Multiple acyl-CoA dehydrogenation deficiency is a disorder of fatty acid and amino acid oxidation caused by defects of electron transfer flavoprotein (ETF) or its dehydrogenase (ETFDH). A clear relationship between genotype and phenotype makes genotyping of patients important not only diagnostically but also for prognosis and for assessment of treatment. In the present study, we show that a predicted benign ETFDH missense variation (c.158A>G/p.Lys53Arg) in exon 2 causes exon skipping and degradation of ETFDH protein in patient samples. Using splicing reporter minigenes and RNA pull-down of nuclear proteins, we show that the c.158A>G variation increases the strength of a preexisting exonic splicing silencer (ESS) motif UAGGGA. This ESS motif binds splice inhibitory hnRNP A1, hnRNP A2/B1, and hnRNP H proteins. Binding of these inhibitory proteins prevents binding of the positive splicing regulatory SRSF1 and SRSF5 proteins to nearby and overlapping exonic splicing enhancer elements and this causes exon skipping. We further suggest that binding of hnRNP proteins to UAGGGA is increased by triggering synergistic hnRNP H binding to GGG triplets located upstream and downsteam of the UAGGGA motif. A number of disease-causing exonic elements that induce exon skipping in other genes have a similar architecture as the one in ETFDH exon 2.

  18. Result of Monte-Carlo simulation of electron-photon cascades in lead and layers of lead-scintillator

    NASA Technical Reports Server (NTRS)

    Wasilewski, A.; Krys, E.

    1985-01-01

    Results of Monte-Carlo simulation of electromagnetic cascade development in lead and lead-scintillator sandwiches are analyzed. It is demonstrated that the structure function for core approximation is not applicable in the case in which the primary energy is higher than 100 GeV. The simulation data has shown that introducing an inhomogeneous chamber structure results in subsequent reduction of secondary particles.

  19. Pion-Kaon correlations in central Au+Au collisions at square root [sNN] = 130 GeV.

    PubMed

    Adams, J; Adler, C; Aggarwal, M M; Ahammed, Z; Amonett, J; Anderson, B D; Anderson, M; Arkhipkin, D; Averichev, G S; Badyal, S K; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bezverkhny, B I; Bhardwaj, S; Bhaskar, P; Bhati, A K; Bichsel, H; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Botje, M; Boucham, A; Brandin, A; Bravar, A; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Das, D; Das, S; Derevschikov, A A; Didenko, L; Dietel, T; Dong, X; Draper, J E; Du, F; Dubey, A K; Dunin, V B; Dunlop, J C; Dutta Majumdar, M R; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Fachini, P; Faine, V; Faivre, J; Fatemi, R; Filimonov, K; Filip, P; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Fu, J; Gagliardi, C A; Ganti, M S; Gutierrez, T D; Gagunashvili, N; Gans, J; Gaudichet, L; Germain, M; Geurts, F; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Grachov, O; Grigoriev, V; Gronstal, S; Grosnick, D; Guedon, M; Guertin, S M; Gupta, A; Gushin, E; Hallman, T J; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Huang, S L; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Janik, M; Johnson, I; Jones, P G; Judd, E G; Kabana, S; Kaneta, M; Kaplan, M; Keane, D; Kiryluk, J; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Koetke, D D; Kollegger, T; Konstantinov, A S; Kopytine, M; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kunde, G J; Kunz, C L; Kutuev, R Kh; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lauret, J; Lebedev, A; Lednický, R; Leontiev, V M; LeVine, M J; Li, C; Li, Q; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Z; Liu, Q J; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Ludlam, T; Lynn, D; Ma, J; Ma, Y G; Magestro, D; Mahajan, S; Mangotra, L K; Mahapatra, D P; Majka, R; Manweiler, R; Margetis, S; Markert, C; Martin, L; Marx, J; Matis, H S; Matulenko, Yu A; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Messer, M; Miller, M L; Milosevich, Z; Minaev, N G; Mironov, C; Mishra, D; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Mora-Corral, M J; Morozov, V; de Moura, M M; Munhoz, M G; Nandi, B K; Nayak, S K; Nayak, T K; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevoztchikov, V; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rai, G; Rakness, G; Raniwala, R; Raniwala, S; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Ruan, L J; Rykov, V; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schweda, K; Seger, J; Seliverstov, D; Seyboth, P; Shahaliev, E; Shao, M; Sharma, M; Shestermanov, K E; Shimanskii, S S; Singaraju, R N; Simon, F; Skoro, G; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stanislaus, S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Struck, C; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; Szanto de Toledo, A; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Thein, D; Thomas, J H; Tikhomirov, V; Tokarev, M; Tonjes, M B; Trainor, T A; Trentalange, S; Tribble, R E; Trivedi, M D; Trofimov, V; Tsai, O; Ullrich, T; Underwood, D G; Van Buren, G; VanderMolen, A M; Vasiliev, A N; Vasiliev, M; Vigdor, S E; Viyogi, Y P; Voloshin, S A; Waggoner, W; Wang, F; Wang, G; Wang, X L; Wang, Z M; Ward, H; Watson, J W; Wells, R; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Z; Xu, Z Z; Yakutin, A E; Yamamoto, E; Yang, J; Yepes, P; Yurevich, V I; Zanevski, Y V; Zborovský, I; Zhang, H; Zhang, H Y; Zhang, W M; Zhang, Z P; Zołnierczuk, P A; Zoulkarneev, R; Zoulkarneeva, J; Zubarev, A N

    2003-12-31

    Pion-kaon correlation functions are constructed from central Au+Au STAR data taken at sqrt[s(NN)]=130 GeV by the STAR detector at the Relativistic Heavy Ion Collider (RHIC). The results suggest that pions and kaons are not emitted at the same average space-time point. Space-momentum correlations, i.e., transverse flow, lead to a space-time emission asymmetry of pions and kaons that is consistent with the data. This result provides new independent evidence that the system created at RHIC undergoes a collective transverse expansion.

  20. Strange magnetic form factor of the proton at $Q^2 = 0.23$ GeV$^2$

    SciTech Connect

    Wang, Ping; Leinweber, Derek; Thomas, Anthony; Young, Ross

    2009-06-01

    We determine the $u$ and $d$ quark contributions to the proton magnetic form factor at finite momentum transfer by applying chiral corrections to quenched lattice data. Heavy baryon chiral perturbation theory is applied at next to leading order in the quenched, and full QCD cases for the valence sector using finite range regularization. Under the assumption of charge symmetry these values can be combined with the experimental values of the proton and neutron magnetic form factors to deduce a relatively accurate value for the strange magnetic form factor at $Q^2=0.23$ GeV$^2$, namely $G_M^s=-0.034 \\pm 0.021$ $\\mu_N$.

  1. 750 GeV threshold to a new particle world

    NASA Astrophysics Data System (ADS)

    Jain, Samarth; Margaroli, Fabrizio; Moretti, Stefano; Panizzi, Luca

    2017-01-01

    We show how an excess in the diphoton channel can be the effect of neither a resonance nor an end point in a cascade decay, but rather of a threshold for virtual production of a pair of extra quarks, each with half of peak invariant mass, onsetting in both the g g -initiated production and the γ γ -induced decay of an off-shell Z boson. For our analysis we consider as a paradigmatic example the 750 GeV excess previously seen at the end of 2015 with the run 2 data of the LHC but not confirmed with 2016 data.

  2. The Jefferson Lab 12 GeV Upgrade

    SciTech Connect

    R.D. McKeown

    2011-10-01

    A major upgrade of the Continuous Electron Beam Accelerator Facility (CEBAF) at the Thomas Jefferson National Accelerator Facility is in progress. Construction began in 2008 and the project should be completed in 2015. The upgrade includes doubling the energy of the electron beam to 12 GeV, the addition of a new fourth experimental hall, and new experimental equipment in three of the experimental halls. A brief overview of this upgrade project is presented along with some highlights of the anticipated experimental program.

  3. 8 GeV H- ions: Transport and injection

    SciTech Connect

    Chou, W.; Bryant, H.; Drozhdin, A.; Hill, C.; Kostin, M.; Macek, R.; Ostiguy, J.-F.; Rees, G.H.; Tang, Z.; Yoon, P.; /Fermilab /New Mexico U. /Los Alamos /Rutherford /Rochester U.

    2005-05-01

    Fermilab is working on the design of an 8 GeV superconducting RF H{sup -} linac called the Proton Driver. The energy of H{sup -} beam will be an order of magnitude higher than the existing ones. This brings up a number of technical challenges to transport and injection of H{sup -} ions. This paper will focus on the subjects of stripping losses (including stripping by blackbody radiation, field and residual gas) and carbon foil stripping efficiency, along with a brief discussion on other issues such as Stark states lifetime of hydrogen atoms, single and multiple Coulomb scattering, foil heating and stress, radiation activation, collimation and jitter correction, etc.

  4. Total width of 125 GeV Higgs boson.

    PubMed

    Barger, Vernon; Ishida, Muneyuki; Keung, Wai-Yee

    2012-06-29

    By using the LHC and Tevatron measurements of the cross sections to various decay channels relative to the standard model Higgs boson, the total width of the putative 125 GeV Higgs boson is determined as 6.1(-2.9)(+7.7) MeV. We describe a way to estimate the branching fraction for the Higgs-boson decay to dark matter. We also discuss a no-go theorem for the γγ signal of the Higgs boson at the LHC.

  5. An observation of cosmic ray positrons from 10-20 GeV

    NASA Technical Reports Server (NTRS)

    Mueller, D.; Tang, J.

    1985-01-01

    A balloon flight of the University of Chicago electron telescope was performed. Making use of the east-west asymmetry in the geomagnetic cut off rigidity, the cosmic ray positrons and negatrons were separated over the range 10 GeV to 20 GeV. The positron to electron ratio, e+/(e++e-), was measured to be 17% + or - 5%, significantly higher than the ratio measured in the 1 GeV to 10 GeV range by other experiments. This increase appears to suggest that either a primary component of positrons become significant above 10 GeV, or that the spectrum of primary negatrons decreases above 10 GeV more sharply than that of secondary positrons.

  6. The multiplicity and the spectra of secondaries correlated with the leading particle energy

    NASA Technical Reports Server (NTRS)

    Kruglov, N. A.; Proskuryakov, A. S.; Sarycheva, L. I.; Smirnova, L. N.

    1985-01-01

    The spectra of leading particles of different nature in pp-collisions at E sub 0 = 33 GeV are obtained. The multiplicities and the spectra of secondaries, mesons, gamma-quanta, lambda and lambda-hyperons and protons for different leading particle energy ranges are determined.

  7. Galactic Diffuse Gamma Ray Emission Is Greater than 10 Gev

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley D.; White, Nicholas E. (Technical Monitor)

    2000-01-01

    AGILE and Gamma-ray Large Area Telescope (GLAST) are the next high-energy gamma-ray telescopes to be flown in space. These instruments will have angular resolution about 5 times better than Energetic Gamma-Ray Experiment Telescope (EGRET) above 10 GeV and much larger field of view. The on-axis effective area of AGILE will be about half that of EGRET, whereas GLAST will have about 6 times greater effective area than EGRET. The capabilities of ground based very high-energy telescopes are also improving, e.g. Whipple, and new telescopes, e.g. Solar Tower Atmospheric Cerenkov Effect Experiment (STACEE), Cerenkov Low Energy Sampling and Timing Experiment (CELESTE), and Mars Advanced Greenhouse Integrated Complex (MAGIC) are expected to have low-energy thresholds and sensitivities that will overlap the GLAST sensitivity above approximately 10 GeV. In anticipation of the results from these new telescopes, our current understanding of the galactic diffuse gamma-ray emission, including the matter and cosmic ray distributions is reviewed. The outstanding questions are discussed and the potential of future observations with these new instruments to resolve these questions is examined.

  8. Radiation microscope for SEE testing using GeV ions.

    SciTech Connect

    Doyle, Barney Lee; Knapp, James Arthur; Rossi, Paolo; Hattar, Khalid M.; Vizkelethy, Gyorgy; Brice, David Kenneth; Branson, Janelle V.

    2009-09-01

    Radiation Effects Microscopy is an extremely useful technique in failure analysis of electronic parts used in radiation environment. It also provides much needed support for development of radiation hard components used in spacecraft and nuclear weapons. As the IC manufacturing technology progresses, more and more overlayers are used; therefore, the sensitive region of the part is getting farther and farther from the surface. The thickness of these overlayers is so large today that the traditional microbeams, which are used for REM are unable to reach the sensitive regions. As a result, higher ion beam energies have to be used (> GeV), which are available only at cyclotrons. Since it is extremely complicated to focus these GeV ion beams, a new method has to be developed to perform REM at cyclotrons. We developed a new technique, Ion Photon Emission Microscopy, where instead of focusing the ion beam we use secondary photons emitted from a fluorescence layer on top of the devices being tested to determine the position of the ion hit. By recording this position information in coincidence with an SEE signal we will be able to indentify radiation sensitive regions of modern electronic parts, which will increase the efficiency of radiation hard circuits.

  9. PROTON-4He Elastic Scattering at ~ 1 GeV

    NASA Astrophysics Data System (ADS)

    Khan, Z. A.; Singh, Minita

    Based on the (spin-independent) Sugar-Blanckenbecler eikonal expansion for the T-matrix, we parametrize the (spin-dependent) NN amplitude (SNN) which successfully describes the pp and pn elastic scattering observables at ~ 1 GeV up to the available momentum transfers. Using SNN, we calculate the differential cross-section, polarization, and spin-rotation function of ~ 1 GeV protons on 4He within the framework of the Glauber model. The analysis also includes the phase variation in the NN amplitude. It is found that the use of SNN, in comparision with the usually parametrized one-term amplitude, improves the agreement with the experimental data. The introduction of a global phase variation provides only a slight improvement over the results with a constant phase. However, if we allow different phases in the central- and spin-dependent parts of the NN amplitude, the agreement with the polarization data improves further without affecting the differential cross-section results.

  10. Study of rare processes induced by 209-Gev muons

    SciTech Connect

    Smith, W.H.

    1981-05-01

    Analysis of dimuon final states from 1.4 x 10/sup 11/ positive and 2.9 x 10/sup 10/ negative 209-Gev muons in a magnetized iron calorimeter has set a lower limit of 9 Gev/c/sup 2/ on the mass of a heavy neutral muon (M/sup 0/), and a 90%-confidence level upper limit of sigma(..mu..N..-->..b anti bX)B(b anti b..--> mu..X)<2.9 x 10/sup -36/ cm/sup 2/ for the production of bottom hadrons by muons. The dimuon mass spectrum from 102,678 trimuon final states places a 90%-confidence level upper limit for the muoproduction of upsilon states: sigma(..mu..N..--> mu.. UPSILON X)B(UPSILON..--> mu../sup +/..mu../sup -/)<22 x 10/sup -39/ cm/sup 2/. In addition, analysis of 71 rare multimuon events, including 4- and 5-muon final states, is presented.

  11. Detector development for Jefferson Lab's 12GeV Upgrade

    DOE PAGES

    Qiang, Yi

    2015-05-01

    Jefferson Lab will soon finish its highly anticipated 12 GeV Upgrade. With doubled maximum energy, Jefferson Lab’s Continuous Electron Beam Accelerator Facility (CEBAF) will enable a new experimental program with substantial discovery potential, addressing important topics in nuclear, hadronic and electroweak physics. In order to take full advantage of the high energy, high luminosity beam, new detectors are being developed, designed and constructed to fit the needs of different physics topics. The paper will give an overview of various new detector technologies to be used for 12 GeV experiments. It will then focus on the development of two solenoid-based spectrometers,more » the GlueX and SoLID spectrometers. The GlueX experiment in Hall D will study the complex properties of gluons through exotic hybrid meson spectroscopy. The GlueX spectrometer, a hermetic detector package designed for spectroscopy and the associated partial wave analysis, is currently in the final stage of construction. Hall A, on the other hand, is developing the SoLID spectrometer to capture the 3D image of the nucleon from semi-inclusive processes and to study the intrinsic properties of quarks through mirror symmetry breaking. Such a spectrometer will have the capability to handle very high event rates while still maintaining a large acceptance in the forward region.« less

  12. Detector development for Jefferson Lab's 12GeV Upgrade

    SciTech Connect

    Qiang, Yi

    2015-05-01

    Jefferson Lab will soon finish its highly anticipated 12 GeV Upgrade. With doubled maximum energy, Jefferson Lab’s Continuous Electron Beam Accelerator Facility (CEBAF) will enable a new experimental program with substantial discovery potential, addressing important topics in nuclear, hadronic and electroweak physics. In order to take full advantage of the high energy, high luminosity beam, new detectors are being developed, designed and constructed to fit the needs of different physics topics. The paper will give an overview of various new detector technologies to be used for 12 GeV experiments. It will then focus on the development of two solenoid-based spectrometers, the GlueX and SoLID spectrometers. The GlueX experiment in Hall D will study the complex properties of gluons through exotic hybrid meson spectroscopy. The GlueX spectrometer, a hermetic detector package designed for spectroscopy and the associated partial wave analysis, is currently in the final stage of construction. Hall A, on the other hand, is developing the SoLID spectrometer to capture the 3D image of the nucleon from semi-inclusive processes and to study the intrinsic properties of quarks through mirror symmetry breaking. Such a spectrometer will have the capability to handle very high event rates while still maintaining a large acceptance in the forward region.

  13. 125 GeV Technidilaton at the LHC

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Shinya

    The technidilaton (TD) is a composite scalar predicted in walking technicolor (WTC), arising as a pseudo Nambu-Goldstone boson associated with the spontaneous breaking of the approximate scale invariance. Due to the Nambu-Goldstone boson's nature, the TD can be as light as the LHC boson that has been discovered at around 125 GeV. We discuss the size of the TD mass and the coupling properties relevant to the LHC study. It turns out that the TD couplings to the standard model (SM) particles take the same form as those of the SM Higgs boson, except the essentially distinguishable two ingredients: i) the overall coupling strengths set by the decay constant related to the spontaneous breaking of the scale invariance, which is in general not equal to the electroweak scale; ii) the couplings to photons and gluons which can include extra contributions from technifermion loops and hence can be enhanced compared to the SM Higgs case. To be concrete, we take the one-family technicolor model to explore the TD LHC phenomenology at 125 GeV. It is shown that the TD gives the signal consistent with the currently reported LHC data, notably can explain the excess in the diphoton channel, due to the extra contributions to digluon and diphoton couplings coming from the one-family technifermion loops.

  14. STANDARDIZATION OF CEBAF 12 GEV UPGRADE CAVITY TESTING

    SciTech Connect

    Tiffany Bass, G. Davis, Christiana Wilson, Mircea Stirbet

    2012-07-01

    CEBAF 12GeV upgrade project includes 80 new 7-cell cavities to form 10 cryomodules. Each cavity underwent RF qualification at 2.07K using a high power accelerating gradient test and an HOM survey in Jefferson Lab's Vertical Testing Area (VTA) before cavity string assembly. In order to ensure consistently high quality data, updated cavity testing procedures and analysis were implemented and used by a group of VTA operators. For high power tests, a cavity testing procedure was developed and used in conjunction with a LabVIEW program to collect the test data. Additionally while the cavity was at 2.07K, an HOM survey was performed using a network analyzer and a combination of Excel and Mathematica programs. Data analysis was standardized and an online logbook, Pansophy, was used for data storage and mining. The Pansophy system allowed test results to be easily summarized and searchable across all cavity tests. In this presentation, the CEBAF 12GeV upgrade cavity testing procedure, method for data analysis, and results reporting results will be discussed.

  15. 750 GeV diphotons from supersymmetry with Dirac gauginos

    NASA Astrophysics Data System (ADS)

    Cohen, Timothy; Kribs, Graham D.; Nelson, Ann E.; Ostdiek, Bryan

    2016-07-01

    Motivated by the recent excess in the diphoton invariant mass near 750 GeV, we explore a supersymmetric extension of the Standard Model that includes the minimal set of superpartners as well as additional Dirac partner chiral superfields in the adjoint representation for each gauge group. The bino partner pseudoscalar is identified as the 750 GeV resonance, while superpotential interactions between it and the gluino (wino) partners yield production via gluon fusion (decay to photon pairs) at one-loop. The gauginos and these additional adjoint superpartners are married by a Dirac mass and must also have Majorana masses. While a large wino partner Majorana mass is necessary to explain the excess, the gluino can be approximately Dirac-like, providing benefits consistent with being both "supersoft" (loop corrections to the scalar masses from Dirac gauginos are free of logarithmic enhancements) and "supersafe" (the experimental limits on the squark/gluino masses can be relaxed due to the reduced production rate). Consistency with the measured Standard Model-like Higgs boson mass is imposed, and a numerical exploration of the parameter space is provided. Models that can account for the diphoton excess are additionally characterized by having couplings that can remain perturbative up to very high scales, while remaining consistent with experimental constraints, the Higgs boson mass, and an electroweak scale which is not excessively fine-tuned.

  16. Galactic antiprotons of 0.2-2 GeV energy

    NASA Technical Reports Server (NTRS)

    Bogomolov, E. A.; Vasilyev, G. I.; Iodko, M. G.; Krutkov, S. Y.; Lubyanaya, N. D.; Romanov, V. A.; Stepanov, S. V.; Shulakova, M. S.

    1985-01-01

    Balloon measurements of the galactic antiproton flux in the energy range 0.2 GeV to 2 GeV are presented. The experiments were carried out in the summer of 1984 with magnet spectrometers flown at a residual pressure of approximately 10 g sq cm and cut off rigidity of approximately 0.6 GV. An upper limit for the antiproton to proton flux ratio has been obtained of antiproton/proton (0.2 GeV to 2 GeV) less than 5 x .0001.

  17. First polarized proton collision at a beam energy of 250 GeV in RHIC

    SciTech Connect

    Bai,M.; Ahrens, L.; Alekseev, I. G.; Alessi, J.; et al.

    2009-05-04

    After providing collisions of polarized protons at a beam energy of 100 GeV since 2001, the Relativistic Heavy Ion Collider (RHIC) at BNL had its first opportunity to collide polarized protons at its maximum beam energy of 250 GeV in the 2009 polarized proton operations. Equipped with two full Siberian snakes [1] in each ring, RHIC preserves polarization during acceleration from injection to 100 GeV with precise control of the betatron tunes and vertical orbit distortions. However, the strong intrinsic spin resonances beyond 100 GeV are more than two times stronger than those below 100 GeV, requiring much tighter tolerances on vertical orbit distortions and betatron tunes. With the currently achieved orbit correction and tune control, average polarizations of {approx_equal} 42% at top energy and average polarizations of {approx_equal} 55% at injection energy were achieved. Polarization measurements as a function of beam energy also indicated aU polarization losses occurred around three strong intrinsic resonances at 136 GeV, 199.3 GeV and 220.8 GeV Peak luminosity of 122 x 10{sup 30} cm{sup -2} s{sup -1} was also demonstrated. This paper presents the performance of the first RHIC 250 GeV operation and discusses the depolarization issues encountered during the run.

  18. Commissioning of the 123 MeV injector for 12 GeV CEBAF

    SciTech Connect

    Wang, Yan; Hofler, Alicia S.; Kazimi, Reza

    2015-09-01

    The upgrade of CEBAF to 12GeV included modifications to the injector portion of the accelerator. These changes included the doubling of the injection energy and relocation of the final transport elements to accommodate changes in the CEBAF recirculation arcs. This paper will describe the design changes and the modelling of the new 12GeV CEBAF injector. Stray magnetic fields have been a known issue for the 6 GeV CEBAF injector, the results of modelling the new 12GeV injector and the resulting changes implemented to mitigate this issue are described in this paper. The results of beam commissioning of the injector are also presented.

  19. The ρ-meson time-like form factors in sub-leading pQCD

    NASA Astrophysics Data System (ADS)

    de Melo, J. P. B. C.; Ji, Chueng-Ryong; Frederico, T.

    2016-12-01

    The annihilation/production process e+ +e- →ρ+ +ρ- is studied with respect to the universal perturbative QCD (pQCD) predictions. Sub-leading contributions are considered together with the universal leading pQCD amplitudes such that the matrix elements of the ρ-meson electromagnetic current satisfy the constraint from the light-front angular condition. The data from the BaBar collaboration for the time-like ρ-meson form factors at √{ s} = 10.58 GeV puts a stringent test to the onset of asymptotic pQCD behavior. The e+ +e- →ρ+ +ρ- cross-section for s between 60 GeV2 and 160 GeV2 is predicted where the sub-leading contributions are still considerable.

  20. Strangeness Physics at CLAS in the 6 GeV Era

    SciTech Connect

    Schumacher, Reinhard A.

    2016-04-01

    A very brief overview is presented of varied strangeness-physics studies that have been conducted with the CLAS system in the era of 6 GeV beam at Jefferson Lab. A full bibliography of articles related to open strangeness production is given, together with some physics context for each work. One natural place where these studies could be continued, using a K L beam and the GlueX detector, is in the further investigation of the Λ(1405) baryon. The line shapes and cross sections of this state were found, using photoproduction at CLAS, to differ markedly in the three possible Σπ final states. The analogous strong-interaction reactions using a K L beam could further bring this phenomenon into focus. 1. The CLAS program ran from 1998 to 2012, during the time when the maximum Jefferson Lab beam energy was 6 GeV. An important thrust of this program was to investigate the spectrum of N * and Δ * (non-strange) baryon resonances using photo-and electro-production reactions. To this end, final states containing strange particles (K mesons and low-mass hyperons) played a significant role. The reason for this is partly due to favorable kinemat-ics. When the total invariant energy W (= √ s) of a baryonic system exceeds 1.6 GeV it becomes possible to create the lightest strangeness-containing final state, K + Λ. This is a two-body final state that is straightforward to reconstruct in the CLAS detector system [1], and theoretically it is easier to deal with two-body reaction amplitudes than with three-and higher-body reaction amplitudes. In the mass range W > 1.6 GeV the decay modes of excited nucleons tend to not to favor two-body π-nucleon final states but rather multi-pion states. As input to partial-wave decompositions and resonance-extraction models, therefore, the strangeness-containing final states of high-mass nucleon excitations have had importance. Excited baryons decay through all possible channels simultaneously, constrained by unitarity of course

  1. Strange Particle Production in $p+p$ Collisions at $\\sqrt{s}$= 200GeV

    SciTech Connect

    Abelev, B.I.; Adams, J.; Aggarwal, M.M.; Ahammed, Z.; Amonett,J.; Anderson, B.D.; Anderson, M.; Arkhipkin, D.; Averichev, G.S.; Bai,Y.; Balewski, J.; Barannikova, O.; Barnby, L.S.; Baudot, J.; Bekele, S.; Belaga, V.V.; Bellingeri-Laurikainen, A.; Bellwied, R.; Benedosso, F.; Bhardwaj, S.; Bhasin, A.; Bhati, A.K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L.C.; Blyth, S.-L.; Bonner, B.E.; Botje, M.; Bouchet, J.; Brandin, A.V.; Bravar, A.; Bystersky, M.; Cadman, R.V.; Cai,X.Z.; Caines, H.; Calderon de la Barca Sanchez, M.; Castillo, J.; Catu,O.; Cebra, D.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen,H.F.; Chen, J.H.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Coffin, J.P.; Cormier, T.M.; Cosentino, M.R.; Cramer, J.G.; Crawford,H.J.; Das, D.; Das, S.; Daugherity, M.; de Moura, M.M.; Dedovich, T.G.; DePhillips, M.; Derevschikov, A.A.; Didenko, L.; Dietel, T.; Djawotho,P.; Dogra, S.M.; Dong, W.J.; Dong, X.; Draper, J.E.; Du, F.; Dunin, V.B.; Dunlop, J.C.; Dutta Mazumdar, M.R.; Eckardt, V.; Edwards, W.R.; Efimov,L.G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Filimonov, K.; Filip, P.; Finch,E.; Fine, V.; Fisyak, Y.; Fu, J.; Gagliardi, C.A.; Gaillard, L.; Ganti,M.S.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J.S.; Gorbunov, Y.G.; Gos,H.; Grebenyuk, O.; Grosnick, D.; Guertin, S.M.; Guimaraes, K.S.F.F.; Guo,Y.; Gupta,N.; Gutierrez, T.D.; Haag, B.; Hallman, T.J.; Hamed, A.; Harris, J.W.; He, W.; Heinz, M.; Henry, T.W.; Hepplemann, S.; Hippolyte,B.; Hirsch, A.; Hjort, E.; Hoffman, A.M.; Hoffmann, G.W.; Horner, M.J.; Huang, H.Z.; Huang, S.L.; Hughes, E.W.; Humanic, T.J.; Igo, G.; Jacobs,P.; Jacobs, W.W.; Jakl, P.; Jia, F.; Jiang, H.; Jones, P.G.; Judd, E.G.; Kabana, S.; Kang, K.; Kapitan, J.; Kaplan, M.; Keane, D.; Kechechyan, A.; Khodyrev, V.Yu.; Kim, B.C.; Kiryluk, J.; Kisiel, A.; Kislov, E.M.; Klein,S.R.; Kocoloski, A.; Koetke, D.D.; et al.

    2006-07-31

    We present strange particle spectra and yields measured atmid-rapidity in sqrt text s=200 GeV proton-proton (p+p) collisions atRHIC. We find that the previously observed universal transverse mass(mathrm mT \\equiv\\sqrt mathrm p_T 2+\\mathrm m2) scaling of hadronproduction in p+p collisions seems to break down at higher \\mt and thatthere is a difference in the shape of the \\mt spectrum between baryonsand mesons. We observe mid-rapidity anti-baryon to baryon ratios nearunity for Lambda and Xi baryons and no dependence of the ratio ontransverse momentum, indicating that our data do not yet reach thequark-jet dominated region. We show the dependence of the mean transversemomentum (\\mpt) on measured charged particle multiplicity and on particlemass and infer that these trends are consistent with gluon-jet dominatedparticle production. The data are compared to previous measurements fromCERN-SPS, ISR and FNAL experiments and to Leading Order (LO) and Next toLeading order (NLO) string fragmentation model predictions. We infer fromthese comparisons that the spectral shapes and particle yields from $p+p$collisions at RHIC energies have large contributions from gluon jetsrather than quark jets.

  2. Demonstration of self-truncated ionization injection for GeV electron beams

    PubMed Central

    Mirzaie, M.; Li, S.; Zeng, M.; Hafz, N. A. M.; Chen, M.; Li, G. Y.; Zhu, Q. J.; Liao, H.; Sokollik, T.; Liu, F.; Ma, Y. Y.; Chen, L.M.; Sheng, Z. M.; Zhang, J.

    2015-01-01

    Ionization-induced injection mechanism was introduced in 2010 to reduce the laser intensity threshold for controllable electron trapping in laser wakefield accelerators (LWFA). However, usually it generates electron beams with continuous energy spectra. Subsequently, a dual-stage target separating the injection and acceleration processes was regarded as essential to achieve narrow energy-spread electron beams by ionization injection. Recently, we numerically proposed a self-truncation scenario of the ionization injection process based upon overshooting of the laser-focusing in plasma which can reduce the electron injection length down to a few hundred micrometers, leading to accelerated beams with extremely low energy-spread in a single-stage. Here, using 100 TW-class laser pulses we report experimental observations of this injection scenario in centimeter-long plasma leading to the generation of narrow energy-spread GeV electron beams, demonstrating its robustness and scalability. Compared with the self-injection and dual-stage schemes, the self-truncated ionization injection generates higher-quality electron beams at lower intensities and densities, and is therefore promising for practical applications. PMID:26423136

  3. Charmed meson lifetimes from 20 GeV photoproduction

    SciTech Connect

    Brau, J.E.

    1985-01-01

    A sample of 134 events containing 159 visible multiprong charm decays has been obtained from the 20 GeV charm photoproduction experiment at the SLAC Hybrid Facility. Following a selection procedure which ensures high and uniform detection efficiency for selected events, 47 charged, 46 neutral and five topologically ambiguous decays remain. These decays yield preliminary lifetimes of ..pi../sub D/sup +-// = (9.2 +- 1.5 +- 0.5) x 10/sup -13/ secs ..pi../sub D//sup 0/ approx. = (6.1 +- 1.1 +- 0.4) x 10/sup -13/ secs and a ratio (phi/sub D/sup +-//)/(tau/sub D/sup 0//) = 1.5/sub -0.3//sup +0.6/ +- 0.1. One fully reconstructed four-body D/sup 0/ decay has a proper flight time of 55 x 10/sup -13/ seconds. 5 refs., 4 figs.

  4. Pressure Safety of JLAB 12GeV Upgrade Cryomodule

    SciTech Connect

    Cheng, Gary; Wiseman, Mark A.; Daly, Ed

    2009-11-01

    This paper reviews pressure safety considerations, per the US Department of Energy (DOE) 10CFR851 Final Rule [1], which are being implemented during construction of the 100 Megavolt Cryomodule (C100 CM) for Jefferson Lab’s 12 GeV Upgrade Project. The C100 CM contains several essential subsystems that require pressure safety measures: piping in the supply and return end cans, piping in the thermal shield and the helium headers, the helium vessel assembly which includes high RRR niobium cavities, the end cans, and the vacuum vessel. Due to the vessel sizes and pressure ranges, applicable national consensus code rules are applied. When national consensus codes are not applicable, equivalent design and fabrication approaches are identified and implemented. Considerations for design, material qualification, fabrication, inspection and examination are summarized. In addition, JLAB’s methodologies for implementation of the 10 CFR 851 requirements are described.

  5. Laser Guiding for GeV Laser-Plasma Accelerators

    SciTech Connect

    Leemans, Wim; Esarey, Eric; Geddes, Cameron; Schroeder, C.B.; Toth, Csaba

    2005-06-06

    Guiding of relativistically intense laser beams in preformed plasma channels is discussed for development of GeV-class laser accelerators. Experiments using a channel guided laser wakefield accelerator (LWFA) at LBNL have demonstrated that near mono-energetic 100 MeV-class electron beams can be produced with a 10 TW laser system. Analysis, aided by particle-in-cell simulations, as well as experiments with various plasma lengths and densities, indicate that tailoring the length of the accelerator, together with loading of the accelerating structure with beam, is the key to production of mono-energetic electron beams. Increasing the energy towards a GeV and beyond will require reducing the plasma density and design criteria are discussed for an optimized accelerator module. The current progress and future directions are summarized through comparison with conventional accelerators, highlighting the unique short term prospects for intense radiation sources based on laser-driven plasma accelerators.

  6. Nucleon Form Factors above 6 GeV

    DOE R&D Accomplishments Database

    Taylor, R. E.

    1967-09-01

    This report describes the results from a preliminary analysis of an elastic electron-proton scattering experiment... . We have measured cross sections for e-p scattering in the range of q{sup 2} from 0.7 to 25.0 (GeV/c){sup 2}, providing a large region of overlap with previous measurements. In this experiment we measure the cross section by observing electrons scattered from a beam passing through a liquid hydrogen target. The scattered particles are momentum analyzed by a magnetic spectrometer and identified as electrons in a total absorption shower counter. Data have been obtained with primary electron energies from 4.0 to 17.9 GeV and at scattering angles from 12.5 to 35.0 degrees. In general, only one measurement of a cross section has been made at each momentum transfer.

  7. 750 GeV messenger of dark conformal symmetry breaking

    NASA Astrophysics Data System (ADS)

    Davoudiasl, Hooman; Zhang, Cen

    2016-03-01

    The tentative hints for a diphoton resonance at a mass of ˜750 GeV from the ATLAS and CMS experiments at the LHC may be interpreted as first contact with a "dark" sector with a spontaneously broken conformal symmetry. The implied TeV scale of the dark sector may be motivated by the interaction strength required to accommodate a viable thermal relic dark matter (DM) candidate. We model the conformal dynamics using a Randall-Sundrum-type five-dimensional geometry whose IR boundary is identified with the dynamics of the composite dark sector, while the Standard Model (SM) matter content resides on the UV boundary, corresponding to "elementary" fields. We allow the gauge fields to reside in the five-dimensional bulk, which can be minimally chosen to be S U (3 )c×U (1 )Y. The "dark" radion is identified as the putative 750 GeV resonance. Heavy vectorlike fermions, often invoked to explain the diphoton excess, are not explicitly present in our model and are not predicted to appear in the spectrum of TeV scale states. Our minimal setup favors scalar DM of O (TeV ) mass. A generic expectation in this scenario, suggested by DM considerations, is the appearance of vector bosons at ˜ few TeV, corresponding to the gluon and hypercharge Kaluza-Klein (KK) modes that couple to UV boundary states with strengths that are suppressed uniformly compared to their SM values. Our analysis suggests that these KK modes could be within the reach of the LHC in the coming years.

  8. Inclusive particle spectra at (56 and 130)A GeV

    SciTech Connect

    Kahana, D. E.; Kahana, S. H.

    2001-03-01

    A simulation is performed of the recently reported data from PHOBOS at energies of s=56,130A GeV using the relativistic heavy ion cascade LUCIFER which had previously given a good description of the NA49 inclusive spectra at s=17.2A GeV. The results compare well with these early measurements at RHIC.

  9. Parity Violation Inelastic Scattering Experiments at 6 GeV and 12 GeV Jefferson Lab

    SciTech Connect

    Sulkosky, Vincent A.; et. al.,

    2015-03-01

    We report on the measurement of parity-violating asymmetries in the deep inelastic scattering and nucleon resonance regions using inclusive scattering of longitudinally polarized electrons from an unpolarized deuterium target. The effective weak couplings C$_{2q}$ are accessible through the deep-inelastic scattering measurements. Here we report a measurement of the parity-violating asymmetry, which yields a determination of 2C$_{2u}$ - C$_{2d}$ with an improved precision of a factor of five relative to the previous result. This result indicates evidence with 95% confidence that the 2C$_{2u}$ - C$_{2d}$ is non-zero. This experiment also provides the first parity-violation data covering the whole resonance region, which provide constraints on nucleon resonance models. Finally, the program to extend these measurements at Jefferson Lab in the 12 GeV era using the Solenoidal Large Intensity Device was also discussed.

  10. INC Model interpretation of the proton induced residual nuclide production cross sections below 2 GeV

    SciTech Connect

    Divadeenam, M.; Ward, T.E.; Spergel, M.S.; Lakatos, S.; Manche, E.P.

    1991-12-31

    For the purposes of interpreting the abundances of various isotopes in meteorites or on lunar and planetary surfaces exposed to fragmentation by cosmic rays, Webber et al. recently reported the measured total elemental and isotopic cross sections with heavy ions as projectiles on H, He, and C targets with beam energies of 0.33 - 1.7 GeV/nucleon. We employ the INC model to predict the fragmentation of the heavy ions in a hydrogen target with the inverse reaction process: proton bombardment of a heavy-ion nucleus leading to spallation products. Charge-changing and mass-changing cross sections are calculated for proton bombardment of an {sup 56}Fe target with beam energies ranging from 0.33 to 1.88 GeV. Total Z-changing and A-changing cross sections in the energy range 0.6 to 1.88 GeV are in excellent agreement with the corresponding experimental data of Webber et al. and Westfall at al., while the agreement below 0.6 GeV proton energy is not as good. The general trend of the Z-changing cross sections are reproduced by the model calculations at each proton incident energy. The interaction of 200-MeV protons with synthetic Stony Meteorite samples was undertaken to explain radionuclide production in a cosmic-ray environment. The BNL Linac 200-MeV-proton beam was used to irradiate synthetic Stony Meteorites to simulate cosmic-ray exposures corresponding to 6.4 and 16.4 million years. Each irradiated sample was analyzed with the help of a high-resolution gamma-ray spectrometer for long-lived radioisotopes. The intranuclear cascade code HETC was employed to simulate the 200-MeV proton bombardment on the meteorite samples to predict the radionuclides {sup 7}Be, {sup 22}Na, {sup 46}Mn, and {sup 56}Co produced in the experimental investigation.

  11. INC Model interpretation of the proton induced residual nuclide production cross sections below 2 GeV

    SciTech Connect

    Divadeenam, M.; Ward, T.E. ); Spergel, M.S.; Lakatos, S.; Manche, E.P. )

    1991-01-01

    For the purposes of interpreting the abundances of various isotopes in meteorites or on lunar and planetary surfaces exposed to fragmentation by cosmic rays, Webber et al. recently reported the measured total elemental and isotopic cross sections with heavy ions as projectiles on H, He, and C targets with beam energies of 0.33 - 1.7 GeV/nucleon. We employ the INC model to predict the fragmentation of the heavy ions in a hydrogen target with the inverse reaction process: proton bombardment of a heavy-ion nucleus leading to spallation products. Charge-changing and mass-changing cross sections are calculated for proton bombardment of an {sup 56}Fe target with beam energies ranging from 0.33 to 1.88 GeV. Total Z-changing and A-changing cross sections in the energy range 0.6 to 1.88 GeV are in excellent agreement with the corresponding experimental data of Webber et al. and Westfall at al., while the agreement below 0.6 GeV proton energy is not as good. The general trend of the Z-changing cross sections are reproduced by the model calculations at each proton incident energy. The interaction of 200-MeV protons with synthetic Stony Meteorite samples was undertaken to explain radionuclide production in a cosmic-ray environment. The BNL Linac 200-MeV-proton beam was used to irradiate synthetic Stony Meteorites to simulate cosmic-ray exposures corresponding to 6.4 and 16.4 million years. Each irradiated sample was analyzed with the help of a high-resolution gamma-ray spectrometer for long-lived radioisotopes. The intranuclear cascade code HETC was employed to simulate the 200-MeV proton bombardment on the meteorite samples to predict the radionuclides {sup 7}Be, {sup 22}Na, {sup 46}Mn, and {sup 56}Co produced in the experimental investigation.

  12. Production of mesons and baryons at high rapidity and high p(T) in proton-proton collisions at square root[s] = 200 GeV.

    PubMed

    Arsene, I; Bearden, I G; Beavis, D; Bekele, S; Besliu, C; Budick, B; Bøggild, H; Chasman, C; Christensen, C H; Dalsgaard, H H; Debbe, R; Gaardhøje, J J; Hagel, K; Ito, H; Jipa, A; Johnson, E B; Jørgensen, C E; Karabowicz, R; Katrynska, N; Kim, E J; Larsen, T M; Lee, J H; Lindal, S; Løvhøiden, G; Majka, Z; Murray, M; Natowitz, J; Nielsen, B S; Nygaard, C; Płaneta, R; Rami, F; Renault, F; Ristea, C; Ristea, O; Röhrich, D; Samset, B H; Sanders, S J; Scheetz, R A; Staszel, P; Tveter, T S; Videbaek, F; Wada, R; Yin, Z; Yang, H; Zgura, I S

    2007-06-22

    We present particle spectra for charged hadrons pi(+/-), K(+/-), p, and p[over] from pp collisions at square root[s] = 200 GeV measured for the first time at forward rapidities (2.95 and 3.3). The kinematics of these measurements are skewed in a way that probes the small momentum fraction in one of the protons and large fractions in the other. Large proton to pion ratios are observed at values of transverse momentum that extend up to 4 GeV/c, where protons have momenta up to 35 GeV. Next-to-leading order perturbative QCD calculations describe the production of pions and kaons well at these rapidities, but fail to account for the large proton yields and small p[over]/p ratios.

  13. Measurement of the spin asymmetry in p + p{dagger}{r_arrow}{pi}{sup 0} + X at 70 GeV at 90{degrees}{sub cm}

    SciTech Connect

    Crandell, D.A.; Chu, C.M.; Duryea, J.W.

    1993-04-01

    The single-spin transverse asymmetry, A, in the inclusive reaction p + p{dagger}{yields}{pi}{sup 0} + X at 70 GeV is being measured at the U-70 accelerator at Protvino. The proton beam is extracted using a bent crystal which is inside the accelerator vacuum tube. A propanediol (C{sub 3}H{sub 8}O{sub 2}) polarized proton target is used; {pi}{sup 0}-mesons are detected by a lead-glass calorimeter at 90{degrees}{sub cm} at P{perpendicular} values of 1 to 4 GeV/c. Previous data from CERN, BNL, Protvino, and Fermilab suggested a scaling behavior of A in {pi}{sup 0} and {pi}{sup {+-}} production. New data at 70 GeV is crucial to establish this asymmetry scaling.

  14. Background model systematics for the Fermi GeV excess

    SciTech Connect

    Calore, Francesca; Weniger, Christoph; Cholis, Ilias E-mail: cholis@fnal.gov

    2015-03-01

    The possible gamma-ray excess in the inner Galaxy and the Galactic center (GC) suggested by Fermi-LAT observations has triggered a large number of studies. It has been interpreted as a variety of different phenomena such as a signal from WIMP dark matter annihilation, gamma-ray emission from a population of millisecond pulsars, or emission from cosmic rays injected in a sequence of burst-like events or continuously at the GC. We present the first comprehensive study of model systematics coming from the Galactic diffuse emission in the inner part of our Galaxy and their impact on the inferred properties of the excess emission at Galactic latitudes 2° < |b| < 20° and 300 MeV to 500 GeV. We study both theoretical and empirical model systematics, which we deduce from a large range of Galactic diffuse emission models and a principal component analysis of residuals in numerous test regions along the Galactic plane. We show that the hypothesis of an extended spherical excess emission with a uniform energy spectrum is compatible with the Fermi-LAT data in our region of interest at 95% CL. Assuming that this excess is the extended counterpart of the one seen in the inner few degrees of the Galaxy, we derive a lower limit of 10.0° (95% CL) on its extension away from the GC. We show that, in light of the large correlated uncertainties that affect the subtraction of the Galactic diffuse emission in the relevant regions, the energy spectrum of the excess is equally compatible with both a simple broken power-law of break energy E{sub break} = 2.1 ± 0.2 GeV, and with spectra predicted by the self-annihilation of dark matter, implying in the case of b-bar b final states a dark matter mass of m{sub χ}=49{sup +6.4}{sub −5.4}  GeV.

  15. Background model systematics for the Fermi GeV excess

    SciTech Connect

    Calore, Francesca; Cholis, Ilias; Weniger, Christoph

    2015-03-01

    The possible gamma-ray excess in the inner Galaxy and the Galactic center (GC) suggested by Fermi-LAT observations has triggered a large number of studies. It has been interpreted as a variety of different phenomena such as a signal from WIMP dark matter annihilation, gamma-ray emission from a population of millisecond pulsars, or emission from cosmic rays injected in a sequence of burst-like events or continuously at the GC. We present the first comprehensive study of model systematics coming from the Galactic diffuse emission in the inner part of our Galaxy and their impact on the inferred properties of the excess emission at Galactic latitudes 2° < |b| < 20° and 300 MeV to 500 GeV. We study both theoretical and empirical model systematics, which we deduce from a large range of Galactic diffuse emission models and a principal component analysis of residuals in numerous test regions along the Galactic plane. We show that the hypothesis of an extended spherical excess emission with a uniform energy spectrum is compatible with the Fermi-LAT data in our region of interest at 95% CL. Assuming that this excess is the extended counterpart of the one seen in the inner few degrees of the Galaxy, we derive a lower limit of 10.0° (95% CL) on its extension away from the GC. We show that, in light of the large correlated uncertainties that affect the subtraction of the Galactic diffuse emission in the relevant regions, the energy spectrum of the excess is equally compatible with both a simple broken power-law of break energy E(break) = 2.1 ± 0.2 GeV, and with spectra predicted by the self-annihilation of dark matter, implying in the case of bar bb final states a dark matter mass of m(χ)=49(+6.4)(-)(5.4)  GeV.

  16. Measurement of the Galactic Cosmic Ray Antiproton Flux from 0.25 GEV to 3.11 GEV with the Isotope Matter Antimatter Experiment (IMAX)

    NASA Astrophysics Data System (ADS)

    Labrador, Allan Wayne

    1997-07-01

    The galactic cosmic ray proton and antiproton abundances were measured with the Isotope Matter Antimatter Experiment (IMAX), a balloon-borne magnet spectrometer. IMAX flew from Lynn Lake, Manitoba, Canada on July 16, 1992. Particles detected by IMAX were identified via the Cherenkov-Rigidity and TOF-Rigidity techniques, with measured mass resolution <=0.2 amu for Z = 1 particles. Previous cosmic ray antiproton experiments reported more antiprotons than expected from high energy cosmic ray interactions with the interstellar medium. IMAX data analysis yielded 124405 protons and 3 antiprotons in the energy range 0.19-0.97 GeV at the instrument, 140617 protons and 8 antiprotons at 0.97-2.58 GeV, and 22524 protons and 5 antiprotons at 2.58-3.08 GeV. These measurements are a statistical improvement over previous measurements, and they demonstrate improved separation of antiprotons from protons, electrons, and other cosmic ray species. When corrected for instrumental and atmospheric background and losses, the ratios at the top of the atmosphere are p/p = 3.21 (+3.49, -1.97)× 10-5 in the energy range 0.25-1.00 GeV, p/p = 5.38 (+3.48, -2.45)× 10-5 at 1.00-2.61 GeV, and p/p = 2.05 (+1.79, -1.15)× 10-4 at 2.61-3.11 GeV. The corresponding antiproton intensities are 2.3 (+2.5, -1.4)× 10-2 (m2 s sr GeV)-1, 2.1 (+1.4, -1.0)× 10-2 (m2 s sr GeV)-1, and 4.3 (+3.7, -2.4)× 10-2 (m2 s sr GeV)-1. The IMAX antiproton fluxes and antiproton/proton ratios are compared with recent Standard Leaky Box Model (SLBM) calculations, in which cosmic ray antiprotons arise solely from high energy cosmic ray interactions with the interstellar medium. Solar modulation effects are also calculated, showing that the antiproton/proton ratio can vary by an order of magnitude over the solar cycle. The IMAX antiproton measurements are consistent with recent calculations of the SLBM and solar modulation. No evidence is found in the IMAX data for excess antiprotons arising from exotic sources. Furthermore

  17. Conceptual design of the Project-X 1.3 GHz 3-8 GeV pulsed linac

    SciTech Connect

    Solyak, N.; Eidelman, Y.; Nagaitsev, S.; Ostiguy, J.-F.; Vostrikov, A.; Yakovlev, V.; /Fermilab

    2011-03-01

    Project-X, a multi-MW proton source, is under development at Fermilab. It enables a Long Baseline Neutrino Experiment via a new beam line pointed to DUSEL in Lead, South Dakota, and a broad suite of rare decay experiments. The initial acceleration is provided by a 3-GeV 1-mA CW superconducting linac. In a second stage, about 5% of the H{sup -} beam is accelerated up to 8 GeV in a 1.3 GHz SRF pulsed linac and injected into the Recycler/Main Injector complex. In order to mitigate problems with stripping foil heating during injection, higher current pulses are accelerated in the CW linac in conjunction with the 1 mA beam which is separated and further accelerated in the pulsed linac. The optimal current in the pulsed linac is discussed as well as the constraints that led to its selection. A conceptual design which covers optics and RF stability analysis is presented. Finally, the need for HOM damping is discussed.

  18. High Luminosity Options for the JLC.NLC at 500 GeV cms(LCC-0004)

    SciTech Connect

    Raubenheimer, T

    2004-04-22

    The present JLC/NLC parameters are chosen to provide luminosities between 0.5 {approx} 0.75 x 10{sup 34} s{sup -1} cm{sup -2} at a cms energy of 500 GeV; the parameters are listed in Table 1 for both the 500 GeV and 1 TeV cases. In all cases, these luminosities assume extensive margins and emittance dilutions to ensure that they are attainable. In this note, they consider the feasibility of substantially higher luminosities which might be attained by operating with smaller emittance dilutins and higher beam currents. The parameters they describe are listed in Table 2 where these high luminosity sets (ILC-IHa and ILC-IHb) are compared with the base JLC/NLC set (ILC-Ib) and with the high luminosity TESLA parameter set. In the next sections, they will discuss the limitations and assumptions leading to these higher luminosity parameter sets. The details in their discussion will be based on the NLC design described in the Zeroth-order Design Report (ZDR) but the same arguments, with slightly different values, could be applied to the JLC reference design.

  19. A 10-GeV, 5-MW proton source for a pulsed spallation source

    SciTech Connect

    Cho, Y.; Chae, Y.C.; Crosbie, E.

    1995-12-31

    A feasibility study for a pulsed spallation source based on a 5-MW, 10-GeV rapid proton synchrotron (RCS) is in progress. The integrated concept and performance parameters of the facility are discussed. The 10-GeV synchrotron uses as its injector the 2-GeV accelerator system of a 1-MW source described elsewhere. The 1-MW source accelerator system consists of a 400-MeV H{sup {minus}} linac with 2.5 MeV energy spread in the 75% chopped (25% removed) beam and a 30-Hz RCS that accelerates the 400-MeV beam to 2 GeV. The time averaged current of the accelerator system is 0.5 mA, equivalent to 1.04 {times} 10{sup 14} protons per pulse. The 10-GeV RCS accepts the 2 GeV beam and accelerates it to 10 GeV. Beam transfer from the 2-GeV synchrotron to the 10-GeV machine u highly efficient bunch-to-bucket injection, so that the transfer can be made without beam loss. The synchrotron lattice uses FODO cells of 90{degrees} phase advance. Dispersion-free straight sections are obtained using a missing magnet scheme. The synchrotron magnets are powered by dual-frequency resonant circuits. The magnets are excited at a 20-Hz rate and de-excited at 60-Hz. resulting in an effective 30-Hz rate. A key feature of the design of this accelerator system is that beam losses are minimized from injection to extraction, reducing activation to levels consistent with hands-on maintenance. Details of the study are presented.

  20. Pseudorapidity distributions of charged particles produced in $\\bar{p}p$ interactions at $\\sqrt{s} = 630$ GeV and 1800 GeV

    SciTech Connect

    Abe, F.; et al.

    1989-09-01

    We present measurements of the pseudo-rapidity (η) distribution of charged particles (dNch/dη) produced within |η|≤ 3.5 in proton-antiproton collisions at s= of 630 and 1800 GeV. We measure dNch/dη at η = 0 to be 3.18±0.05(stat)±0.10(sys) at 630 GeV, and 3.95±0.02(stat)±0.13(sys) at 1800 GeV. Many systematic errors in the ratio of dNch dη at the two energies cancel, and we measure 1.26±0.01±0.04 for the ratio of dNch/dη at 1800 GeV to that at 630 GeV within |η|≤ 3. Comparing to lower energy data, we observe an increase faster than In(s) in dNch dη at η=0

  1. Proton and deuteron structure functions in muon scattering at 470 GeV

    SciTech Connect

    Kotwal, A.V.; E665 Collaboration

    1995-05-01

    The proton and deuteron structure functions F{sub 2}{sup p} and F{sub 2}{sup d} measured in inelastic muon scattering with an average beam energy of 470 GeV. The data were taken at Fermilab experiment 665 during 1991-1992 using liquid hydrogen and deuterium targets. The F{sub 2} measurements are reported in the range 0.0008 < x < 0.6 and 0.2 < Q{sup 2} < 75 GeV{sup 2}. These are the first precise measurements of F{sub 2} in the low x and Q{sub 2} range of the data. The E665 data overlap in x with the HERA data, and there is a smooth connection in Q{sup 2} between the two data sets. At high Q{sup 2} the E665 measurements are consistent with QCD-evolved leading twist structure function models. The data are qualitatively described by structure function models incorporating the hadronic nature of the photon at low Q{sup 2}. The Q{sup 2} and the W dependence of the data measure the transition in the nature of the photon between a point-probe at high Q{sup 2} and a hadronic object at low Q{sup 2}.

  2. Research Perspectives at Jefferson Lab: 12 GeV and Beyond

    SciTech Connect

    Kees de Jager

    2002-09-01

    The plans for upgrading the CEBAF accelerator at Jefferson Lab to 12 GeV are presented. The research program supporting that upgrade are illustrated with a few selected examples. The instrumentation under design to carry out that research program is discussed. Finally, a conceptual design of a future upgrade which combines a 25 GeV fixed-target facility and an electron-ion collider facility at a luminosity of up to 10{sup 35}cm{sup -2}s{sup -1} and a CM energy of over 40 GeV.

  3. Research Perspectives at Jefferson Lab: 12 GeV and Beyond

    SciTech Connect

    Kees de Jager

    2003-05-01

    The plans for upgrading the CEBAF accelerator at Jefferson Lab to 12 GeV are presented. The research program supporting that upgrade is illustrated with a few selected examples. The instrumentation under design to carry out that research program is discussed. Finally, a conceptual design of a future upgrade which combines an electron-ion collider facility at a luminosity of up to 10{sup 35} cm{sup -2}s{sup -1} and a CM energy of up to 65 GeV with a 25 GeV fixed-target facility.

  4. Research Perspectives At Jefferson Lab: 12 GeV and Beyond

    SciTech Connect

    Kees de Jager

    2004-07-01

    The plans for upgrading the CEBAF accelerator at Jefferson Lab to 12 GeV are presented. The research program supporting that upgrade is illustrated with a few selected examples. The instrumentation under design to carry out that research program is discussed. Finally, a conceptual design of a future upgrade which combines a 25 GeV fixed-target facility and an electron-ion collider facility at a luminosity of up to 10{sup 35} cm{sup -2}s{sup -1} and a CM energy of up to 65 GeV.

  5. Research Perspectives at Jefferson Lab: 12 GeV and Beyond

    SciTech Connect

    Jager, Kees de

    2005-02-10

    The plans for upgrading the CEBAF accelerator at Jefferson Lab to 12 GeV are presented. The research program supporting that upgrade is illustrated with a few selected examples. The instrumentation under design to carry out that research program is discussed. Finally, a conceptual design of a future upgrade which combines a 25 GeV fixed-target facility and an electron-ion collider facility at a luminosity of up to 1035 cm-2s-1 and a CM energy of up to 65 GeV.

  6. Exclusive processes at JLab at 6 GeV

    SciTech Connect

    Kim, Andrey

    2015-01-01

    Deeply virtual exclusive reactions provide a unique opportunity to probe the complex internal structure of the nucleon. They allow to access information about the correlations between parton transverse spatial and longitudinal momentum distributions from experimental observables. Dedicated experiments to study Deeply Virtual Compton Scattering (DVCS) and Deeply Virtual Meson Production (DVMP) have been carried out at Jefferson Lab using continuous electron beam with energies up to 6 GeV. Unpolarized cross sections, beam, target and double spin asymmetries have been measured for DVCS as well as for π0 exclusive electroproduction. The data from Hall B provide a wide kinematic coverage with Q2=1-4.5 GeV2, xB=0.1-0.5, and -t up to 2 GeV2. Hall A data have limited kinematic range partially overlapping with Hall B kinematics but provide a high accuracy measurements. Scaling tests of the DVCS cross sections provide solid evidence of twist-2 dominance, which makes chiral-even GPDs accessible even at modest Q2. We will discuss the interpretation of these data in terms of Generalized Parton Distributions (GPDs) model. Successful description of the recent CLAS π0 exclusive production data within the framework of the GPD-based model provides a unique opportunity to access the chiral-odd GPDs.

  7. Hydrodynamical assessment of 200[ital A] GeV collisions

    SciTech Connect

    Schnedermann, E.; Heinz, U. Institut fuer Theoretische Physik, Universitaet Regensburg, D-93040 Regensburg )

    1994-09-01

    We are analyzing the hydrodynamics of 200[ital A] GeV S+S collisions using a new approach which tries to quantify the uncertainties arising from the specific implementation of the hydrodynamical model. Based on a previous phenomenological analysis we use the global hydrodynamics model to show that the amount of initial flow, or initial energy density, cannot be determined from the hadronic momentum spectra. We additionally find that almost always a sizable transverse flow develops, which causes the system to freeze out, thereby limiting the flow velocity in itself. This freeze-out dominance in turn makes a distinction between a plasma and a hadron resonance gas equation of state very difficult, whereas a pure pion gas can easily be ruled out from present data. To complete the picture we also analyze particle multiplicity data, which suggest that chemical equilibrium is not reached with respect to the strange particles. However, the overpopulation of pions seems to be at most moderate, with a pion chemical potential far away from the Bose divergence.

  8. Variable gamma-ray sky at 1 GeV

    SciTech Connect

    Pshirkov, M. S.; Rubtsov, G. I.

    2013-01-15

    We search for the long-term variability of the gamma-ray sky in the energy range E > 1 GeV with 168 weeks of the gamma-ray telescope Fermi-LAT data. We perform a full sky blind search for regions with variable flux looking for deviations from uniformity. We bin the sky into 12288 pixels using the HEALPix package and use the Kolmogorov-Smirnov test to compare weekly photon counts in each pixel with the constant flux hypothesis. The weekly exposure of Fermi-LAT for each pixel is calculated with the Fermi-LAT tools. We consider flux variations in a pixel significant if the statistical probability of uniformity is less than 4 Multiplication-Sign 10{sup -6}, which corresponds to 0.05 false detections in the whole set. We identified 117 variable sources, 27 of which have not been reported variable before. The sources with previously unidentified variability contain 25 active galactic nuclei (AGN) belonging to the blazar class (11 BL Lacs and 14 FSRQs), one AGN of an uncertain type, and one pulsar PSR J0633+1746 (Geminga).

  9. Variable gamma-ray sky at 1 GeV

    NASA Astrophysics Data System (ADS)

    Pshirkov, M. S.; Rubtsov, G. I.

    2013-01-01

    We search for the long-term variability of the gamma-ray sky in the energy range E > 1 GeV with 168 weeks of the gamma-ray telescope Fermi-LAT data. We perform a full sky blind search for regions with variable flux looking for deviations from uniformity. We bin the sky into 12288 pixels using the HEALPix package and use the Kolmogorov-Smirnov test to compare weekly photon counts in each pixel with the constant flux hypothesis. The weekly exposure of Fermi-LAT for each pixel is calculated with the Fermi-LAT tools. We consider flux variations in a pixel significant if the statistical probability of uniformity is less than 4 × 10-6, which corresponds to 0.05 false detections in the whole set. We identified 117 variable sources, 27 of which have not been reported variable before. The sources with previously unidentified variability contain 25 active galactic nuclei (AGN) belonging to the blazar class (11 BL Lacs and 14 FSRQs), one AGN of an uncertain type, and one pulsar PSR J0633+1746 (Geminga).

  10. The GeV Excess in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Linden, Tim

    2017-01-01

    Over the last seven years, Fermi-LAT observations have convincingly found an excess in gamma-ray emission emanating from the center of the Milky Way galaxy. The excess has three definitive properties: (1) it has a hard spectrum that peaks at an energy of 2 GeV, (2) it extends from within 0.1 degrees to more than 10 degrees from Sgr A* with a three-dimensional intensity that falls roughly as r-2 , (3) it is approximately spherically symmetric. Several models for this excess have been formulated, including the collective emission from a population of individually dim gamma-ray pulsars, outbursts of cosmic-ray electrons from the central molecular zone, or potentially even dark matter annihilation. In this overview, I will discuss the observational data, and the arguments for and against each theoretical model. Additionally, I will discuss significant improvements in gamma-ray diffuse emission modeling that enhance our understanding of high energy astrophysics near the Galactic center, and will describe the impact of these models on our understanding of the gamma-ray excess.

  11. Atmospheric Muon Neutrino Fraction above 1 GeV

    SciTech Connect

    Clark, R.; Svoboda, R.; Becker-Szendy, R.; Bratton, C.B.; Breault, J.; Gajewski, W.; Halverson, P.G.; Kropp, W.R.; Price, L.; Reines, F.; Schultz, J.; Sobel, H.W.; Vagins, M.; Casper, D.; Dye, S.T.; Goldhaber, M.; Haines, T.J.; Miller, R.S.; Kielczewska, D.; Learned, J.G.; Matsuno, S.; LoSecco, J.; McGrew, C.; Stone, J.; Sulak, L.R.

    1997-07-01

    A 2.1 ktonyr exposure of data from the Irvine-Michigan-Brookhaven detector has yielded 72 atmospheric neutrino events with a vertex contained inside the fiducial volume and at least 0.95GeV of visible {hacek C}erenkov energy. The ratio of these two ratios ((muon li ke)/(tot al)){sub Data}/( (muonl i ke)/(tot al)){sub MC} was found to be 1.1{sup +0.07}{sub {minus}0.12}(stat) {plus_minus}0.11(syst) . The zenith angle dependence of this ratio of ratios is consistent with being flat. The region of sin{sup 2}(2{theta} ){gt}0.5 and {delta}m{sup 2}{gt}9.8{times}10{sup {minus}3} eV{sup 2} has been excluded to the 90{percent} confidence level for {nu}{sub {mu}}{r_arrow}{nu}{sub e} oscillations while the region of sin{sup 2}(2{theta} ){gt}0.7 and {delta}m{sup 2}{gt}1.5{times}10{sup {minus}2} eV{sup 2} has been excluded to the 90{percent} confidence level for {nu}{sub {mu}}{r_arrow}{nu}{sub {tau}} oscillations. {copyright} {ital 1997} {ital The American Physical Society}

  12. Gev Gamma-ray Astronomy in the Era of GLAST

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; White, Nicholas E. (Technical Monitor)

    2000-01-01

    The Gamma Ray Large Area Space Telescope (GLAST) is a high energy astronomy mission planned for launch in 2005. GLAST features two instruments; the Large Area Telescope (LAT) operating from 20 MeV - 300 GeV and the Gamma-ray Burst Monitor (GBM) operating from 10 keV - 25 MeV. GLAST observations will contribute to our understanding of active galactic nuclei and their jets, gamma-ray bursts, extragalactic and galactic diffuse emissions, dark matter, supernova remnants, pulsars, and the unidentified high energy gamma-ray sources. The LAT sensitivity is 4 x 10(exp -9) photons per square centimeter per second (greater than 100 MeV) for a one year all-sky survey, which is a factor of greater than 20 better than CGRO/EGRET. GLAST spectral observations of gamma-ray bursts cover over 6 orders of magnitude in energy thanks to the context observations of the GBM. The upper end of the LAT energy range merges with the low energy end of ground-based observatories to provide a remarkable new perspective on particle acceleration in the Universe.

  13. Lead - nutritional considerations

    MedlinePlus

    Lead poisoning - nutritional considerations; Toxic metal - nutritional considerations ... utensils . Old paint poses the greatest danger for lead poisoning , especially in young children. Tap water from lead ...

  14. Measurements of Compton Scattering on the Proton at 2 - 6 GeV

    SciTech Connect

    Danagoulian, Areg

    2006-01-01

    Similar to elastic electron scattering, Compton Scattering on the proton at high momentum transfers(and high p⊥) can be an effective method to study its short-distance structure. An experiment has been carried out to measure the cross sections for Real Compton Scattering (RCS) on the proton for 2.3-5.7 GeV electron beam energies and a wide distribution of large scattering angles. The 25 kinematic settings sampled a domain of s = 5-11(GeV/c)2,-t = -7(GeV/c)2 and -u = 0.5-6.5(GeV/c)2. In addition, a measurement of longitudinal and transverse polarization transfer asymmetries was made at a 3.48 GeV beam energy and a scattering angle of θcm = 120°. These measurements were performed to test the existing theoretical mechanisms for this process as well as to determine RCS form factors. At the heart of the scientific motivation is the desire to understand the manner in which a nucleon interacts with external excitations at the above listed energies, by comparing and contrasting the two existing models – Leading Twist Mechanism and Soft Overlap “Handbag” Mechanism – and identify the dominant mechanism. Furthermore, the Handbag Mechanism allows one to calculate reaction observables in the framework of Generalized Parton Distributions (GPD), which have the function of bridging the wide gap between the exclusive(form factors) and inclusive(parton distribution functions) description of the proton. The experiment was conducted in Hall A of Thomas Jefferson National Accelerator Facility(Jefferson Lab). It used a polarized and unpolarized electron beam, a 6% copper radiator with the thickness of 6.1% radiation lengths (to produce a bremsstrahlung photon beam), the Hall A liquid hydrogen target, a high resolution spectrometer with a focal plane polarimeter, and a photon hodoscope calorimeter. Results of the differential cross sections are presented, and discussed in the general context of the scientific motivation.

  15. Early Commissioning Experience and Future Plans for the 12 GeV Continuous Electron Beam Accelerator Facility

    SciTech Connect

    Spata, Michael F.

    2014-12-01

    Jefferson Lab has recently completed the accelerator portion of the 12 GeV Upgrade for the Continuous Electron Beam Accelerator Facility. All 52 SRF cryomodules have been commissioned and operated with beam. The initial beam transport goals of demonstrating 2.2 GeV per pass, greater than 6 GeV in 3 passes to an existing experimental facility and greater than 10 GeV in 5-1/2 passes have all been accomplished. These results along with future plans to commission the remaining beamlines and to increase the performance of the accelerator to achieve reliable, robust and efficient operations at 12 GeV are presented.

  16. Lead and Your Baby

    MedlinePlus

    ... yourself and your family from lead in drinking water? Drinking water may contain lead if you have ... yourself and your family from lead in drinking water? Drinking water may contain lead if you have ...

  17. Probing hard color-singlet exchange in pp¯ collisions at sqrt(s) = 630 GeV and 1800 GeV

    NASA Astrophysics Data System (ADS)

    D0 Collaboration; Abbott, B.; Abolins, M.; Abramov, V.; Acharya, B. S.; Adam, I.; Adams, D. L.; Adams, M.; Ahn, S.; Aihara, H.; Alves, G. A.; Amos, N.; Anderson, E. W.; Astur, R.; Baarmand, M. M.; Babintsev, V. V.; Babukhadia, L.; Baden, A.; Baldin, B.; Banerjee, S.; Bantly, J.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Belyaev, A.; Beri, S. B.; Bertram, I.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Bhattacharjee, M.; Biswas, N.; Blazey, G.; Blessing, S.; Bloom, P.; Boehnlein, A.; Bojko, N. I.; Borcherding, F.; Boswell, C.; Brandt, A.; Breedon, R.; Brock, R.; Bross, A.; Buchholz, D.; Burtovoi, V. S.; Butler, J. M.; Carvalho, W.; Casey, D.; Casilum, Z.; Castilla-Valdez, H.; Chakraborty, D.; Chang, S.-M.; Chekulaev, S. V.; Chen, W.; Choi, S.; Chopra, S.; Choudhary, B. C.; Christenson, J. H.; Chung, M.; Claes, D.; Clark, A. R.; Cobau, W. G.; Cochran, J.; Coney, L.; Cooper, W. E.; Cretsinger, C.; Cullen-Vidal, D.; Cummings, M. A. C.; Cutts, D.; Dahl, O. I.; Davis, K.; de, K.; del Signore, K.; Demarteau, M.; Denisov, D.; Denisov, S. P.; Diehl, H. T.; Diesburg, M.; di Loreto, G.; Draper, P.; Ducros, Y.; Dudko, L. V.; Dugad, S. R.; Dyshkant, A.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Engelmann, R.; Eno, S.; Eppley, G.; Ermolov, P.; Eroshin, O. V.; Evdokimov, V. N.; Fahland, T.; Fatyga, M. K.; Feher, S.; Fein, D.; Ferbel, T.; Finocchiaro, G.; Fisk, H. E.; Fisyak, Y.; Flattum, E.; Forden, G. E.; Fortner, M.; Frame, K. C.; Fuess, S.; Gallas, E.; Galyaev, A. N.; Gartung, P.; Gavrilov, V.; Geld, T. L.; Genik, R. J., II; Genser, K.; Gerber, C. E.; Gershtein, Y.; Gibbard, B.; Gobbi, B.; Gómez, B.; Gómez, G.; Goncharov, P. I.; González Solís, J. L.; Gordon, H.; Goss, L. T.; Gounder, K.; Goussiou, A.; Graf, N.; Grannis, P. D.; Green, D. R.; Greenlee, H.; Grinstein, S.; Grudberg, P.; Grünendahl, S.; Guglielmo, G.; Guida, J. A.; Guida, J. M.; Gupta, A.; Gurzhiev, S. N.; Gutierrez, G.; Gutierrez, P.; Hadley, N. J.; Haggerty, H.; Hagopian, S.; Hagopian, V.; Hahn, K. S.; Hall, R. E.; Hanlet, P.; Hansen, S.; Hauptman, J. M.; Hedin, D.; Heinson, A. P.; Heintz, U.; Hernández-Montoya, R.; Heuring, T.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hoftun, J. S.; Hsieh, F.; Hu, Ting; Hu, Tong; Ito, A. S.; James, E.; Jaques, J.; Jerger, S. A.; Jesik, R.; Joffe-Minor, T.; Johns, K.; Johnson, M.; Jonckheere, A.; Jones, M.; Jöstlein, H.; Jun, S. Y.; Jung, C. K.; Kahn, S.; Kalbfleisch, G.; Karmanov, D.; Karmgard, D.; Kehoe, R.; Kelly, M. L.; Kim, S. K.; Klima, B.; Klopfenstein, C.; Ko, W.; Kohli, J. M.; Koltick, D.; Kostritskiy, A. V.; Kotcher, J.; Kotwal, A. V.; Kozelov, A. V.; Kozlovsky, E. A.; Krane, J.; Krishnaswamy, M. R.; Krzywdzinski, S.; Kuleshov, S.; Kulik, Y.; Kunori, S.; Landry, F.; Landsberg, G.; Lauer, B.; Leflat, A.; Li, J.; Li-Demarteau, Q. Z.; Lima, J. G. R.; Lincoln, D.; Linn, S. L.; Linnemann, J.; Lipton, R.; Lobkowicz, F.; Loken, S. C.; Lucotte, A.; Lueking, L.; Lyon, A. L.; Maciel, A. K. A.; Madaras, R. J.; Madden, R.; Magaña-Mendoza, L.; Manankov, V.; Mani, S.; Mao, H. S.; Markeloff, R.; Marshall, T.; Martin, M. I.; Mauritz, K. M.; May, B.; Mayorov, A. A.; McCarthy, R.; McDonald, J.; McKibben, T.; McKinley, J.; McMahon, T.; Melanson, H. L.; Merkin, M.; Merritt, K. W.; Miao, C.; Miettinen, H.; Mincer, A.; Mishra, C. S.; Mokhov, N.; Mondal, N. K.; Montgomery, H. E.; Mooney, P.; Mostafa, M.; da Motta, H.; Murphy, C.; Nang, F.; Narain, M.; Narasimham, V. S.; Narayanan, A.; Neal, H. A.; Negret, J. P.; Nemethy, P.; Norman, D.; Oesch, L.; Oguri, V.; Oliveira, E.; Oltman, E.; Oshima, N.; Owen, D.; Padley, P.; Para, A.; Park, Y. M.; Partridge, R.; Parua, N.; Paterno, M.; Pawlik, B.; Perkins, J.; Peters, M.; Piegaia, R.; Piekarz, H.; Pischalnikov, Y.; Pope, B. G.; Prosper, H. B.; Protopopescu, S.; Qian, J.; Quintas, P. Z.; Raja, R.; Rajagopalan, S.; Ramirez, O.; Reucroft, S.; Rijssenbeek, M.; Rockwell, T.; Roco, M.; Rubinov, P.; Ruchti, R.; Rutherfoord, J.; Sánchez-Hernández, A.; Santoro, A.; Sawyer, L.; Schamberger, R. D.; Schellman, H.; Sculli, J.; Shabalina, E.; Shaffer, C.; Shankar, H. C.; Shivpuri, R. K.; Shpakov, D.; Shupe, M.; Singh, H.; Singh, J. B.; Sirotenko, V.; Smith, E.; Smith, R. P.; Snihur, R.; Snow, G. R.; Snow, J.; Snyder, S.; Solomon, J.; Sosebee, M.; Sotnikova, N.; Souza, M.; Steinbrück, G.; Stephens, R. W.; Stevenson, M. L.; Stewart, D.; Stichelbaut, F.; Stoker, D.; Stolin, V.; Stoyanova, D. A.; Strauss, M.; Streets, K.; Strovink, M.; Sznajder, A.; Tamburello, P.; Tarazi, J.; Tartaglia, M.; Thomas, T. L. T.; Thompson, J.; Trippe, T. G.; Tuts, P. M.; Vaniev, V.; Varelas, N.; Varnes, E. W.; Vititoe, D.; Volkov, A. A.; Vorobiev, A. P.; Wahl, H. D.; Wang, G.; Warchol, J.; Watts, G.; Wayne, M.; Weerts, H.; White, A.; White, J. T.; Wightman, J. A.; Willis, S.; Wimpenny, S. J.

    1998-11-01

    We present results on dijet production via hard color-singlet exchange in proton-antiproton collisions at sqrt(s)=630 GeV and 1800 GeV using the DØ detector. The fraction of dijet events produced via color-singlet exchange is measured as a function of jet transverse energy, separation in pseudorapidity between the two highest transverse energy jets, and proton-antiproton center-of-mass energy. The results are consistent with a color-singlet fraction that increases with an increasing fraction of quark-initiated processes and inconsistent with two-gluon models for the hard color-singlet.

  18. The Science and Experimental Equipment for the 12 GeV Upgrade of CEBAF

    SciTech Connect

    Arrington, John; Bernstein, Aron; Brooks, William; Burker, Volker; Cardman, Lawrence; Carlson, Carl; Cates, Gordon; Chen, Jian-Ping; Dzierba, Alex; Ent, Rolf; Elouadrhiri, Latifa; Fenker, Howard; Gao, Haiyan; Gasparian, Ashot; Goity, Jose; Higinbotham, Douglas; Holt, Roy; Hyde, Charles; De Jager, Cornelis; Jeschonnek, Sabine; Ji, Xiangdong; Jiang, Xiangdong; Jones, Mark; Keppel, Cynthia; Kuhn, Sebastian; Kumar, Krishna; Laget, Jean; Mack, David; Meyer, Curtis; Melnitchouk, Wolodymyr; Meziani, Zein-Eddine; Radyushkin, Anatoly; Ramsey-Musolf, Mike; Reimer, Paul; Richards, David; Rondon-Aramayo, Oscar; Salgado, Carlos; Smith, Elton; Schiavilla, Rocco; Souder, Paul; Stoler, Paul; Thomas, Anthony; Ulmer, Paul; Weinstein, Lawrence; Weiss, Christian

    2005-01-10

    This Conceptual Design Report (CDR) presents the compelling scientific case for upgrading the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab to 12 GeV. Such a facility will make profound contributions to the study of hadronic matter.

  19. Lead in petrol. The isotopic lead experiment

    SciTech Connect

    Facchetti, S. )

    1989-10-01

    Many studies were dedicated to the evaluation of the impact of automotive lead on the environment and to the assessment of its absorption in the human population. They can be subdivided into two groups, those based on changes of air and blood lead concentrations and those based on changes of air and blood lead isotopic compositions. According to various authors, 50-66% of the lead added to petrol is mobilized in the atmosphere, while most of the remainder adheres to the walls of the exhaust system from which it is expelled by mechanical and thermal shocks in the forms of easily sedimented particles. The fraction directly emitted by engine exhaust fumes is found in the form of fine particles, which can be transferred a long way from the emitting sources. However important the contribution of petrol lead to the total airborne lead may be, our knowledge does not permit a straightforward calculation of the percentage of petrol lead in total blood lead, which of course can also originate from other sources (e.g., industrial, natural). To evaluate this percentage in 1973, the idea of the Isotopic Lead Experiment (ILE project) was conceived to label, on a regional scale, petrol with a nonradioactive lead of an isotopic composition sufficiently different from that of background lead and sufficiently stable in time. This Account summarizes the main results obtained by the ILE project.

  20. Bone lead, hypertension, and lead nephropathy

    SciTech Connect

    Wedeen, R.P.

    1988-06-01

    There is considerable clinical evidence that excessive lead absorption causes renal failure with hypertension and predisposes individuals to hypertension even in the absence of detectable renal failure. Recent analyses of transiliac bone biopsies indicate that unsuspected elevated bone leads may reflect the cause (or contributing cause) of end-stage renal disease in 5% of the European dialysis population. In these patients, bone lead levels were four times higher than in unexposed cadavers (6 micrograms/g wet weight) and approximated levels found in lead workers (30 micrograms/g). At present, the most reliable index of the body lead burden is the CaNa2 EDTA lead mobilization test. In vivo tibial X-ray-induced X-ray fluorescence (XRF) is a more practical noninvasive technique for assessing bone lead, which should find widespread application as a diagnostic tool and for epidemiologic studies.

  1. The First Fermi-LAT Catalog of Sources Above 10 GeV

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Allafort, A.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Moiseev, Alexander A.

    2013-01-01

    We present a catalog of gamma-ray sources at energies above 10 GeV based on data from the Large Area Telescope (LAT) accumulated during the first 3 yr of the Fermi Gamma-ray Space Telescope mission. The first Fermi-LAT catalog of >10 GeV sources (1FHL) has 514 sources. For each source we present location, spectrum, a measure of variability, and associations with cataloged sources at other wavelengths. We found that 449 (87%) could be associated with known sources, of which 393 (76% of the 1FHL sources) are active galactic nuclei. Of the 27 sources associated with known pulsars, we find 20 (12) to have significant pulsations in the range >10 GeV (>25 GeV). In this work we also report that, at energies above 10 GeV, unresolved sources account for 27% +/- 8% of the isotropic ? -ray background, while the unresolved Galactic population contributes only at the few percent level to the Galactic diffuse background. We also highlight the subset of the 1FHL sources that are best candidates for detection at energies above 50-100 GeV with current and future ground-based ? -ray observatories.

  2. The first fermi-lat catalog of sources above 10 GeV

    SciTech Connect

    Ackermann, M.; Ajello, M.; Allafort, A.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Belfiore, A.; Bellazzini, R.; Bernieri, E.; Bissaldi, E.; Bloom, E. D.; Bonamente, E.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Burnett, T. H.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Campana, R.; Caraveo, P. A.; Casandjian, J. M.; Cavazzuti, E.; Cecchi, C.; Charles, E.; Chaves, R. C. G.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Cutini, S.; D'Ammando, F.; de Angelis, A.; de Palma, F.; Dermer, C. D.; Desiante, R.; Digel, S. W.; Di Venere, L.; Drell, P. S.; Drlica-Wagner, A.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Fortin, P.; Franckowiak, A.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Godfrey, G.; Gomez-Vargas, G. A.; Grenier, I. A.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Hewitt, J.; Hill, A. B.; Horan, D.; Hughes, R. E.; Jogler, T.; Jóhannesson, G.; Johnson, A. S.; Johnson, T. J.; Johnson, W. N.; Kamae, T.; Kataoka, J.; Kawano, T.; Knödlseder, J.; Kuss, M.; Lande, J.; Larsson, S.; Latronico, L.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Massaro, E.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; Mehault, J.; Michelson, P. F.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nemmen, R.; Nuss, E.; Ohsugi, T.; Okumura, A.; Orienti, M.; Ormes, J. F.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Porter, T. A.; Rainò, S.; Razzano, M.; Reimer, A.; Reimer, O.; Reposeur, T.; Ritz, S.; Romani, R. W.; Roth, M.; Saz Parkinson, P. M.; Schulz, A.; Sgrò, C.; Siskind, E. J.; Smith, D. A.; Spandre, G.; Spinelli, P.; Stawarz, Łukasz; Strong, A. W.; Suson, D. J.; Takahashi, H.; Thayer, J. G.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vitale, V.; Werner, M.; Winer, B. L.; Wood, K. S.; Wood, M.

    2013-11-14

    We present a catalog of gamma-ray sources at energies above 10 GeV based on data from the Large Area Telescope (LAT) accumulated during the first three years of the Fermi Gamma-ray Space Telescope mission. The first Fermi-LAT catalog of >10GeV sources (1FHL) has 514 sources. For each source we present location, spectrum, a measure of variability, and associations with cataloged sources at other wavelengths. We found that 449 (87%) could be associated with known sources, of which 393 (76% of the 1FHL sources) are active galactic nuclei. Of the 27 sources associated with known pulsars, we find 20 (12) to have significant pulsations in the range >10GeV (>25GeV). In this work we also report that, at energies above 10 GeV, unresolved sources account for 27+/-8 % of the isotropic gamma-ray background, while the unresolved Galactic population contributes only at the few percent level to the Galactic diffuse background. We also highlight the subset of the 1FHL sources that are best candidates for detection at energies above 50-100 GeV with current and future ground-based gamma-ray observatories.

  3. Energies of GRB blast waves and prompt efficiencies as implied by modelling of X-ray and GeV afterglows

    NASA Astrophysics Data System (ADS)

    Beniamini, Paz; Nava, Lara; Duran, Rodolfo Barniol; Piran, Tsvi

    2015-11-01

    We consider a sample of 10 gamma-ray bursts with long-lasting ( ≳ 102 s) emission detected by Fermi/Large Area Telescope and for which X-ray data around 1 d are also available. We assume that both the X-rays and the GeV emission are produced by electrons accelerated at the external forward shock, and show that the X-ray and the GeV fluxes lead to very different estimates of the initial kinetic energy of the blast wave. The energy estimated from GeV is on average ˜50 times larger than the one estimated from X-rays. We model the data (accounting also for optical detections around 1 d, if available) to unveil the reason for this discrepancy and find that good modelling within the forward shock model is always possible and leads to two possibilities: (i) either the X-ray emitting electrons (unlike the GeV emitting electrons) are in the slow-cooling regime or (ii) the X-ray synchrotron flux is strongly suppressed by Compton cooling, whereas, due to the Klein-Nishina suppression, this effect is much smaller at GeV energies. In both cases the X-ray flux is no longer a robust proxy for the blast wave kinetic energy. On average, both cases require weak magnetic fields (10-6 ≲ ɛB ≲ 10-3) and relatively large isotropic kinetic blast wave energies 10^{53} erg<{E}_{0,kin}<10^{55} erg corresponding to large lower limits on the collimated energies, in the range 10^{52} erg<{E}_{θ ,kin}<5× 10^{52} erg for an ISM (interstellar medium) environment with n ˜ 1 cm-3 and 10^{52} erg<{E}_{θ ,kin}<10^{53} erg for a wind environment with A* ˜ 1. These energies are larger than those estimated from the X-ray flux alone, and imply smaller inferred values of the prompt efficiency mechanism, reducing the efficiency requirements on the still uncertain mechanism responsible for prompt emission.

  4. Lead and the Romans

    ERIC Educational Resources Information Center

    Reddy, Aravind; Braun, Charles L.

    2010-01-01

    Lead poisoning has been a problem since early history and continues into modern times. An appealing characteristic of lead is that many lead salts are sweet. In the absence of cane and beet sugars, early Romans used "sugar of lead" (lead acetate) to sweeten desserts, fruits, and sour wine. People most at risk would have been those who…

  5. Personal Dose Equivalent Conversion Coefficients For Photons To 1 GEV

    SciTech Connect

    Veinot, K. G.; Hertel, N. E.

    2010-09-27

    The personal dose equivalent, H{sub p}(d), is the quantity recommended by the International Commission on Radiation Units and Measurements (ICRU) to be used as an approximation of the protection quantity Effective Dose when performing personal dosemeter calibrations. The personal dose equivalent can be defined for any location and depth within the body. Typically, the location of interest is the trunk where personal dosemeters are usually worn and in this instance a suitable approximation is a 30 cm X 30 cm X 15 cm slab-type phantom. For this condition the personal dose equivalent is denoted as H{sub p,slab}(d) and the depths, d, are taken to be 0.007 cm for non-penetrating and 1 cm for penetrating radiation. In operational radiation protection a third depth, 0.3 cm, is used to approximate the dose to the lens of the eye. A number of conversion coefficients for photons are available for incident energies up to several MeV, however, data to higher energies are limited. In this work conversion coefficients up to 1 GeV have been calculated for H{sub p,slab}(10) and H{sub p,slab}(3) using both the kerma approximation and by tracking secondary charged particles. For H{sub p}(0.07) the conversion coefficients were calculated, but only to 10 MeV due to computational limitations. Additionally, conversions from air kerma to H{sub p,slab}(d) have been determined and are reported. The conversion coefficients were determined for discrete incident energies, but analytical fits of the coefficients over the energy range are provided. Since the inclusion of air can influence the production of secondary charged particles incident on the face of the phantom conversion coefficients have been determined both in vacuo and with the source and slab immersed within a sphere in air. The conversion coefficients for the personal dose equivalent are compared to the appropriate protection quantity, calculated according to the recommendations of the latest International Commission on

  6. Lead levels - blood

    MedlinePlus

    ... is used to screen people at risk for lead poisoning. This may include industrial workers and children who ... also used to measure how well treatment for lead poisoning is working. Lead is common in the environment, ...

  7. Longitudinal double-spin asymmetry and cross section for inclusivejet production in polarized proton collisions at sqrt(s) = 200 GeV

    SciTech Connect

    Abelev, B.I.; Adams, J.; Aggarwal, M.M.; Ahammed, Z.; Amonett,J.; Anderson, B.D.; Anderson, M.; Arkhipkin, D.; Averichev, G.S.; Bai,Y.; Balewski, J.; Barannikova, O.; Barnby, L.S.; Baudot, J.; Bekele, S.; Belaga, V.V.; Bellingeri-Laurikainen, A.; Bellwied, R.; Benedosso, F.; Bhardwaj, S.; Bhasin, A.; Bhati, A.K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L.C.; Blyth, S.-L.; Bonner, B.E.; Botje, M.; Bouchet, J.; Brandin, A.V.; Bravar, A.; Bystersky, M.; Cadman, R.V.; Cai,X.Z.; Caines, H.; Calderon de la Barca Sanchez, M.; Castillo, J.; Catu,O.; Cebra, D.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen,H.F.; Chen, J.H.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Coffin, J.P.; Cormier, T.M.; Cosentino, M.R.; Cramer, J.G.; Crawford,H.J.; Das, D.; Das, S.; Daugherity, M.; de Moura, M.M.; Dedovich, T.G.; DePhillips, M.; Derevschikov, A.A.; Didenko, L.; Dietel, T.; Djawotho,P.; Dogra, S.M.; Dong, W.J.; Dong, X.; Draper, J.E.; Du, F.; Dunin, V.B.; Dunlop, J.C.; Dutta Mazumdar, M.R.; Eckardt, V.; Edwards, W.R.; Efimov,L.G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Filimonov, K.; Filip, P.; Finch,E.; Fine, V.; Fisyak, Y.; Fu, J.; Gagliardi, C.A.; Gaillard, L.; Ganti,M.S.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J.S.; Gorbunov, Y.G.; Gos,H.; Grebenyuk, O.; Grosnick, D.; Guertin, S.M.; Guimaraes, K.S.F.F.; Guo,Y.; Gupta, N.; Gutierrez, T.D.; Haag, B.; Hallman, T.J.; Hamed, A.; Harris, J.W.; He, W.; Heinz, M.; Henry, T.W.; Hepplemann, S.; Hippolyte,B.; Hirsch, A.; Hjort, E.; Hoffman, A.M.; Hoffmann, G.W.; Horner, M.J.; Huang, H.Z.; Huang, S.L.; Hughes, E.W.; Humanic, T.J.; Igo, G.; Jacobs,P.; Jacobs, W.W.; Jakl, P.; Jia, F.; Jiang, H.; Jones, P.G.; Judd, E.G.; Kabana, S.; Kang, K.; Kapitan, J.; Kaplan, M.; Keane, D.; Kechechyan, A.; Khodyrev, V.Yu.; Kim, B.C.; Kiryluk, J.; Kisiel, A.; Kislov, E.M.; Klein,S.R.; Kocoloski, A.; Koetke, D.D.; et al.

    2006-08-10

    We report a measurement of the longitudinal double-spinasymmetry A_LL and the differential cross section for inclusivemidrapidity jet production in polarized proton collisions at sqrt(s)=200GeV. The cross section data cover transverse momenta 5leading order perturbative QCD evaluations.The A_LL data cover 5

  8. Determination of alpha/sub s/ from energy-energy correlations in e/sup +/e/sup -/ annihilation at 29 GeV

    SciTech Connect

    Wood, D.R.

    1987-10-01

    We have studied the energy-energy correlation in e/sup +/e/sup -/ annihilation into hadrons at ..sqrt..s = 29 GeV using the Mark II detector at PEP. We find to O(..cap alpha../sub s//sup 2/) that ..cap alpha../sub s/ = 0.158 +- .003 +- .008 if hadronization is described by string fragmentation. Independent fragmentation schemes give ..cap alpha../sub s/ = .10 - .14, and give poor agreement with the data. A leading-log shower fragmentation model is found to describe the data well.

  9. Precision measurement of the longitudinal double-spin asymmetry for inclusive jet production in polarized proton collisions at √s = 200 GeV

    DOE PAGES

    Adamczyk, L.

    2015-08-26

    We report a new measurement of the midrapidity inclusive jet longitudinal double-spin asymmetry, ALL, in polarized pp collisions at center-of-mass energy √s = 200 GeV. The STAR data place stringent constraints on polarized parton distribution functions extracted at next-to-leading order from global analyses of inclusive deep-inelastic scattering (DIS), semi-inclusive DIS, and RHIC pp data. Lastly, the measured asymmetries provide evidence at the 3σ level for positive gluon polarization in the Bjorken-x region x > 0.05 .

  10. Precision measurement of the longitudinal double-spin asymmetry for inclusive jet production in polarized proton collisions at √s = 200 GeV

    SciTech Connect

    Adamczyk, L.

    2015-08-26

    We report a new measurement of the midrapidity inclusive jet longitudinal double-spin asymmetry, ALL, in polarized pp collisions at center-of-mass energy √s = 200 GeV. The STAR data place stringent constraints on polarized parton distribution functions extracted at next-to-leading order from global analyses of inclusive deep-inelastic scattering (DIS), semi-inclusive DIS, and RHIC pp data. Lastly, the measured asymmetries provide evidence at the 3σ level for positive gluon polarization in the Bjorken-x region x > 0.05 .

  11. Single-pion production in proton-proton collisions at 1.25 GeV: measurements by HADES and a PWA

    NASA Astrophysics Data System (ADS)

    Przygoda, Witold

    2014-11-01

    We report on the single-pion production in proton-proton collisions at a kinetic energy of 1.25 GeV based on data measured with HADES. Exclusive channels npπ+ and ppπ0 were studied simultaneously. The parametrization of production cross sections of the one-pion final states by means of the resonance model has been obtained. Independently, the extraction of the leading partial waves in the data were analyzed within the framework of the partial wave analysis (PWA). Contributions for the production of ∆(1232) and N(1440) intermediate states have been deduced.

  12. Precision Measurement of the Longitudinal Double-Spin Asymmetry for Inclusive Jet Production in Polarized Proton Collisions at √{s }=200 GeV

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C. D.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Banerjee, A.; Beavis, D. R.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Borowski, W.; Bouchet, J.; Brandin, A. V.; Brovko, S. G.; Bültmann, S.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, L.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Chwastowski, J.; Codrington, M. J. M.; Contin, G.; Cramer, J. G.; Crawford, H. J.; Cudd, A. B.; Cui, X.; Das, S.; Davila Leyva, A.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Derradi de Souza, R.; Dhamija, S.; di Ruzza, B.; Didenko, L.; Dilks, C.; Ding, F.; Djawotho, P.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Engle, K. S.; Eppley, G.; Eun, L.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Fedorisin, J.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Gagliardi, C. A.; Gangadharan, D. R.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Gliske, S.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Haag, B.; Hamed, A.; Han, L.-X.; Haque, R.; Harris, J. W.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, H. Z.; Huang, X.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Kesich, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Koetke, D. D.; Kollegger, T.; Konzer, J.; Koralt, I.; Kosarzewski, L. K.; Kotchenda, L.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; LeVine, M. J.; Li, C.; Li, W.; Li, X.; Li, X.; Li, Y.; Li, Z. M.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, Y. G.; Madagodagettige Don, D. M. M. D.; Mahapatra, D. P.; Majka, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; McShane, T. S.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Ohlson, A.; Okorokov, V.; Oldag, E. W.; Olvitt, D. L.; Pachr, M.; Page, B. S.; Pal, S. K.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Peryt, W.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Pujahari, P. R.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Riley, C. K.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ross, J. F.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sangaline, E.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Singaraju, R. N.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Solanki, D.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stevens, J. R.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Sun, X.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Svirida, D. N.; Symons, T. J. M.; Szelezniak, M. A.; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Vanfossen, J. A.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Vossen, A.; Wada, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J. S.; Wang, X. L.; Wang, Y.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, H.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y.; Xu, Z.; Yan, W.; Yang, C.; Yang, Y.; Yang, Y.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zawisza, Y.; Zbroszczyk, H.; Zha, W.; Zhang, J. B.; Zhang, J. L.; Zhang, S.; Zhang, X. P.; Zhang, Y.; Zhang, Z. P.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, X.; Zhu, Y. H.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2015-08-01

    We report a new measurement of the midrapidity inclusive jet longitudinal double-spin asymmetry, AL L, in polarized p p collisions at center-of-mass energy √{s }=200 GeV . The STAR data place stringent constraints on polarized parton distribution functions extracted at next-to-leading order from global analyses of inclusive deep-inelastic scattering (DIS), semi-inclusive DIS, and RHIC p p data. The measured asymmetries provide evidence at the 3 σ level for positive gluon polarization in the Bjorken-x region x >0.05 .

  13. Longitudinal double-spin asymmetry and cross section for inclusive jet production in polarized proton collisions at square root of s = 200 GeV.

    PubMed

    Abelev, B I; Aggarwal, M M; Ahammed, Z; Amonett, J; Anderson, B D; Anderson, M; Arkhipkin, D; Averichev, G S; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellingeri-Laurikainen, A; Bellwied, R; Benedosso, F; Bhardwaj, S; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Blyth, S-L; Bonner, B E; Botje, M; Bouchet, J; Brandin, A V; Bravar, A; Burton, T P; Bystersky, M; Cadman, R V; Cai, X Z; Caines, H; Sánchez, M Calderón de la Barca; Castillo, J; Catu, O; Cebra, D; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Coffin, J P; Cormier, T M; Cosentino, M R; Cramer, J G; Crawford, H J; Das, D; Das, S; Dash, S; Daugherity, M; de Moura, M M; Dedovich, T G; Dephillips, M; Derevschikov, A A; Didenko, L; Dietel, T; Djawotho, P; Dogra, S M; Dong, W J; Dong, X; Draper, J E; Du, F; Dunin, V B; Dunlop, J C; Mazumdar, M R Dutta; Eckardt, V; Edwards, W R; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Fatemi, R; Fedorisin, J; Filip, P; Finch, E; Fine, V; Fisyak, Y; Fu, J; Gagliardi, C A; Gaillard, L; Ganti, M S; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Gorbunov, Y G; Gos, H; Grebenyuk, O; Grosnick, D; Guertin, S M; Guimaraes, K S F F; Gupta, N; Gutierrez, T D; Haag, B; Hallman, T J; Hamed, A; Harris, J W; He, W; Heinz, M; Henry, T W; Hepplemann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffman, A M; Hoffmann, G W; Horner, M J; Huang, H Z; Huang, S L; Hughes, E W; Humanic, T J; Igo, G; Jacobs, P; Jacobs, W W; Jakl, P; Jia, F; Jiang, H; Jones, P G; Judd, E G; Kabana, S; Kang, K; Kapitan, J; Kaplan, M; Keane, D; Kechechyan, A; Khodyrev, V Yu; Kim, B C; Kiryluk, J; Kisiel, A; Kislov, E M; Klein, S R; Kocoloski, A; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kouchpil, V; Kowalik, K L; Kramer, M; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; LaPointe, S; Laue, F; Lauret, J; Lebedev, A; Lednicky, R; Lee, C-H; Lehocka, S; LeVine, M J; Li, C; Li, Q; Li, Y; Lin, G; Lin, X; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, J; Liu, L; Liu, Z; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Magestro, D; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Martin, L; Matis, H S; Matulenko, Yu A; McClain, C J; McShane, T S; Melnick, Yu; Meschanin, A; Millane, J; Miller, M L; Minaev, N G; Mioduszewski, S; Mironov, C; Mischke, A; Mishra, D K; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Morozov, D A; Munhoz, M G; Nandi, B K; Nattrass, C; Nayak, T K; Nelson, J M; Netrakanti, P K; Nogach, L V; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Pachr, M; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Poljak, N; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rakness, G; Raniwala, R; Raniwala, S; Ray, R L; Razin, S V; Reinnarth, J; Relyea, D; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M J; Sahoo, R; Sakuma, T; Salur, S; Sandweiss, J; Sarsour, M; Sazhin, P S; Schambach, J; Scharenberg, R P; Schmitz, N; Seger, J; Selyuzhenkov, I; Seyboth, P; Shabetai, A; Shahaliev, E; Shao, M; Sharma, M; Shen, W Q; Shimanskiy, S S; Sichtermann, E P; Simon, F; Singaraju, R N; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Speltz, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Suaide, A A P; Sugarbaker, E; Sumbera, M; Sun, Z; Surrow, B; Swanger, M; Symons, T J M; Szanto de Toledo, A; Tai, A; Takahashi, J; Tang, A H; Tarnowsky, T; Thein, D; Thomas, J H; Timmins, A R; Timoshenko, S; Tokarev, M; Trainor, T A; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Buren, G Van; van der Kolk, N; van Leeuwen, M; Molen, A M Vander; Varma, R; Vasilevski, I M; Vasiliev, A N; Vernet, R; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Waggoner, W T; Wang, F; Wang, G; Wang, J S; Wang, X L; Wang, Y; Watson, J W; Webb, J C; Westfall, G D; Wetzler, A; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Q H; Xu, Z; Yepes, P; Yoo, I-K; Yurevich, V I; Zhan, W; Zhang, H; Zhang, W M; Zhang, Y; Zhang, Z P; Zhao, Y; Zhong, C; Zoulkarneev, R; Zoulkarneeva, Y; Zubarev, A N; Zuo, J X

    2006-12-22

    We report a measurement of the longitudinal double-spin asymmetry A(LL) and the differential cross section for inclusive midrapidity jet production in polarized proton collisions at square root of s = 200 GeV. The cross section data cover transverse momenta 5 < pT < 50 GeV/c and agree with next-to-leading order perturbative QCD evaluations. The A(LL) data cover 5 < pT < 17 GeV/c and disfavor at 98% C.L. maximal positive gluon polarization in the polarized nucleon.

  14. The First Fermi-LAT SNR Catalog: GeV Characteristics and Cosmic Ray Implications

    NASA Astrophysics Data System (ADS)

    Brandt, T. J.; Acero, F.; de Palma, F.; Hewitt, J.; Renaud, M.; Fermi-LAT Collaboration

    2015-08-01

    Galactic cosmic rays (CR) sources, classically proposed to be Supernova Remnants (SNRs), must meet the energetic particle content required by direct measurements of high energy CRs. Indirect gamma-ray measurements of SNRs with the Fermi Large Area Telescope (LAT) have now shown directly that at least three SNRs accelerate protons. With the first Fermi LAT SNR Catalog, we have systematically characterized the GeV gamma-rays emitted by 279 SNRs known primarily from radio surveys. We present these sources in a multiwavelength context, including studies of correlations between GeV and radio size, flux, and index, TeV index, and age and environment tracers, in order to better understand effects of evolution and environment on the GeV emission. We show that previously sufficient models of SNRs' GeV emission no longer adequately describe the data. To address the question of CR origins, we also examine the SNRs' maximal CR contribution assuming the GeV emission arises solely from proton interactions. Improved breadth and quality of multiwavelength data, including distances and local densities, and more, higher resolution gamma-ray data with correspondingly improved Galactic diffuse models will strengthen this constraint.

  15. Lead Surveillance Program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Background on lead exposure is presented including forms of lead, sources, hematologic effects, neurologic effects, endocrine effects, renal effects, and reproductive and developmental effects. The purpose of the Lead Surveillance Program at LeRC is outlined, and the specifics of the Medical Surveillance Program for Lead Exposure at LeRC are discussed.

  16. Undulator-Based Production of Polarized Positrons, A Proposal for the 50-GeV Beam in the FFTB

    SciTech Connect

    G. Alexander; P. Anthony; V. Bharadwaj; Yu.K. Batygin; T. Behnke; S. Berridge; G.R. Bower; W. Bugg; R. Carr; E. Chudakov; J.E. Clendenin; F.J. Decker; Yu. Efremenko; T. Fieguth; K. Flottmann; M. Fukuda; V. Gharibyan; T. Handler; T. Hirose; R.H. Iverson; Yu. Kamyshkov; H. Kolanoski; T. Lohse; Chang-guo Lu; K.T. McDonald; N. Meyners; R. Michaels; A.A. Mikhailichenko; K. Monig; G. Moortgat-Pick; M. Olson; T. Omori; D. Onoprienko; N. Pavel; R. Pitthan; M. Purohit; L. Rinolfi; K.P. Schuler; J.C. Sheppard; S. Spanier; A. Stahl; Z.M. Szalata; J. Turner; D. Walz; A. Weidemann; J. Weisend

    2003-06-01

    The full exploitation of the physics potential of future linear colliders such as the JLC, NLC, and TESLA will require the development of polarized positron beams. In the proposed scheme of Balakin and Mikhailichenko [1] a helical undulator is employed to generate photons of several MeV with circular polarization which are then converted in a relatively thin target to generate longitudinally polarized positrons. This experiment, E-166, proposes to test this scheme to determine whether such a technique can produce polarized positron beams of sufficient quality for use in future linear colliders. The experiment will install a meter-long, short-period, pulsed helical undulator in the Final Focus Test Beam (FFTB) at SLAC. A low-emittance 50-GeV electron beam passing through this undulator will generate circularly polarized photons with energies up to 10 MeV. These polarized photons are then converted to polarized positrons via pair production in thin targets. Titanium and tungsten targets, which are both candidates for use in linear colliders, will be tested. The experiment will measure the flux and polarization of the undulator photons, and the spectrum and polarization of the positrons produced in the conversion target, and compare the measurement results to simulations. Thus the proposed experiment directly tests for the first time the validity of the simulation programs used for the physics of polarized pair production in finite matter, in particular the effects of multiple scattering on polarization. Successful comparison of the experimental results to the simulations will lead to greater confidence in the proposed designs of polarized positrons sources for the next generation of linear colliders. This experiment requests six-weeks of time in the FFTB beam line: three weeks for installation and setup and three weeks of beam for data taking. A 50-GeV beam with about twice the SLC emittance at a repetition rate of 30 Hz is required.

  17. The JLAB 3D program at 12 GeV (TMDs + GPDs)

    SciTech Connect

    Pisano, Silvia

    2015-01-01

    The Jefferson Lab CEBAF accelerator is undergoing an upgrade that will increase the beam energy up to 12 GeV. The three experimental Halls operating in the 6-GeV era are upgrading their detectors to adapt their performances to the new available kinematics, and a new Hall (D) is being built. The investigation of the three-dimensional nucleon structure both in the coordinate and in the momentum space represents an essential part of the 12-GeV physics program, and several proposals aiming at the extraction of related observables have been already approved in Hall A, B and C. In this proceedings, the focus of the JLab 3D program will be described, and a selection of proposals will be discussed.

  18. Conceptual design of the Argonne 6-GeV synchrotron light source

    SciTech Connect

    Cho, Y.; Crosbie, E.; Khoe, T.; Knott, M.; Kramer, S.; Kustom, R.; Lari, R.; Martin, R.; Mavrogenes, G.; Moenich, J.

    1985-10-01

    The Argonne National Laboratory Synchrotron Light Source Storage Ring is designed to have a natural emittance of 6.5 X 10/sup -9/ m for circulating 6-GeV positrons. Thirty of the 32 long straight sections, each 6.5-m long, will be available for synchrotron light insertion devices. A circulating positron current of 300 mA can be injected in about 8 min. from a booster synchrotron operating with a repetition time of 1.2 sec. The booster synchrotron will contain two different rf systems. The lower frequency system (38.97 MHz) will accept positrons from a 360-MeV linac and will accelerate them to 2.25 GeV. The higher frequency system (350.76 MHz) will accelerate the positrons to 6 GeV. The positrons will be produced from a 300-MeV electron beam on a tungsten target.

  19. Options for an 11 GeV RF Beam Separator for the Jefferson Lab CEBAF Upgrade

    SciTech Connect

    Jean Delayen, Michael Spata, Haipeng Wang

    2009-05-01

    The CEBAF accelerator at Jefferson Lab has had, since first demonstration in 1996, the ability to deliver a 5-pass electron beam to experimental halls (A, B, and C) simultaneously. This capability was provided by a set of three, room temperature 499 MHz rf separators in the 5th pass beamline. The separator was two-rod, TEM mode type resonator, which has a high shunt impedance. The maximum rf power to deflect the 6 GeV beams was about 3.4kW. The 12 GeV baseline design does not preserve the capability of separating the 5th pass, 11 GeV beam for the 3 existing halls. Several options for restoring this capability, including extension of the present room temperature system or a new superconducting design in combination with magnetic systems, are under investigation and are presented.

  20. Detection of pulsed gamma rays above 100 GeV from the Crab pulsar.

    PubMed

    Aliu, E; Arlen, T; Aune, T; Beilicke, M; Benbow, W; Bouvier, A; Bradbury, S M; Buckley, J H; Bugaev, V; Byrum, K; Cannon, A; Cesarini, A; Christiansen, J L; Ciupik, L; Collins-Hughes, E; Connolly, M P; Cui, W; Dickherber, R; Duke, C; Errando, M; Falcone, A; Finley, J P; Finnegan, G; Fortson, L; Furniss, A; Galante, N; Gall, D; Gibbs, K; Gillanders, G H; Godambe, S; Griffin, S; Grube, J; Guenette, R; Gyuk, G; Hanna, D; Holder, J; Huan, H; Hughes, G; Hui, C M; Humensky, T B; Imran, A; Kaaret, P; Karlsson, N; Kertzman, M; Kieda, D; Krawczynski, H; Krennrich, F; Lang, M J; Lyutikov, M; Madhavan, A S; Maier, G; Majumdar, P; McArthur, S; McCann, A; McCutcheon, M; Moriarty, P; Mukherjee, R; Nuñez, P; Ong, R A; Orr, M; Otte, A N; Park, N; Perkins, J S; Pizlo, F; Pohl, M; Prokoph, H; Quinn, J; Ragan, K; Reyes, L C; Reynolds, P T; Roache, E; Rose, H J; Ruppel, J; Saxon, D B; Schroedter, M; Sembroski, G H; Sentürk, G D; Smith, A W; Staszak, D; Tešić, G; Theiling, M; Thibadeau, S; Tsurusaki, K; Tyler, J; Varlotta, A; Vassiliev, V V; Vincent, S; Vivier, M; Wakely, S P; Ward, J E; Weekes, T C; Weinstein, A; Weisgarber, T; Williams, D A; Zitzer, B

    2011-10-07

    We report the detection of pulsed gamma rays from the Crab pulsar at energies above 100 giga-electron volts (GeV) with the Very Energetic Radiation Imaging Telescope Array System (VERITAS) array of atmospheric Cherenkov telescopes. The detection cannot be explained on the basis of current pulsar models. The photon spectrum of pulsed emission between 100 mega-electron volts and 400 GeV is described by a broken power law that is statistically preferred over a power law with an exponential cutoff. It is unlikely that the observation can be explained by invoking curvature radiation as the origin of the observed gamma rays above 100 GeV. Our findings require that these gamma rays be produced more than 10 stellar radii from the neutron star.

  1. Diphoton decay for a 750 GeV scalar boson in a U(1)X model

    NASA Astrophysics Data System (ADS)

    Martinez, R.; Ochoa, F.; Sierra, C. F.

    2016-12-01

    In the context of a nonuniversal and anomaly free U(1)X extension of the standard model, we examine the decay of a 750 GeV scalar singlet state, ξχ, as a possible explanation of the observed diphoton excess announced by the ATLAS and CMS collaborations at CERN-LHC collider. The one-loop decay to photons is allowed through three heavy singlet quarks and one charged Higgs boson into the loop. We obtain, for different width approximations and for masses of the exotic singlet quarks in the region [ 900 , 3000 ] GeV, a production cross section σ (pp →ξχ → γγ) compatible with ATLAS and CMS collaborations data. We also include another scalar singlet, σ, as a dark matter candidate that may couple with the 750 GeV scalar at tree level with production cross sections in agreement with ATLAS and CMS.

  2. Fermi LAT Search for Photon Lines from 30 to 200 GeV

    SciTech Connect

    Abdo, A.A.; Ackermann, M.; Ajello, M.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bloom, E.D.; Bonamente, E.; Borgland, A.W.; Bouvier, A.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Burnett, T.H.; Buson, S.; /Padua U. /Barcelona, IEEC /Stanford U. /SLAC /IASF, Milan /Padua U. /DAPNIA, Saclay /INFN, Perugia /Perugia U. /NASA, Goddard /JAXA, Sagamihara /NASA, Goddard /Maryland U., Baltimore County /Naval Research Lab, Wash., D.C. /George Mason U. /Stanford U. /SLAC /Perugia U. /Stanford U. /SLAC /Montpellier U. /Stockholm U. /Stockholm U., OKC /Naval Research Lab, Wash., D.C. /Udine U. /INFN, Trieste /Bari U. /INFN, Bari /Stanford U. /SLAC /CENBG, Gradignan /Stanford U. /SLAC /Montpellier U. /Bari U. /INFN, Bari /Ecole Polytechnique /Stanford U. /SLAC /Ecole Polytechnique /Udine U. /INFN, Trieste /Hiroshima U. /Stanford U. /SLAC /Bari U. /INFN, Bari /INFN, Bari /ASDC, Frascati /NASA, Goddard /Penn State U. /Maryland U. /INFN, Perugia /Perugia U. /Bari U. /INFN, Bari /Stanford U. /SLAC /DAPNIA, Saclay /Naval Research Lab, Wash., D.C. /Bonn, Max Planck Inst., Radioastron. /Alabama U., Huntsville /Padua U. /INFN, Padua /ICREA, Barcelona /NASA, Goddard /Ecole Polytechnique /Taiwan, Natl. Taiwan U. /Ohio State U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm /Stanford U. /SLAC /UC, Santa Cruz /Naval Research Lab, Wash., D.C. /Stanford U. /SLAC /Hiroshima U. /Waseda U. /Tokyo Inst. Tech. /Wako, RIKEN /Washington U., Seattle /Toulouse, CESR /INFN, Pisa /Stanford U. /SLAC /INFN, Pisa /Stockholm U. /Stockholm U., OKC /INFN, Trieste /Trieste U. /Bari U. /INFN, Bari /CENBG, Gradignan /Naval Research Lab, Wash., D.C. /INFN, Perugia /Perugia U. /Naval Research Lab, Wash., D.C. /George Mason U. /INFN, Bari /NASA, Goddard /Maryland U. /Stockholm U. /Stockholm U., OKC /Stanford U. /SLAC /Hiroshima U. /JAXA, Sagamihara /NASA, Goddard /Maryland U. /Bari U. /INFN, Bari /Stanford U. /SLAC /Rome U.,Tor Vergata /Stanford U. /SLAC /Denver U. /Montpellier U. /Hiroshima U. /INFN, Pisa /Garching, Max Planck Inst., MPE /Denver U. /JAXA, Sagamihara /Stanford U. /SLAC /CENBG, Gradignan /Montpellier U. /INFN, Perugia /Perugia U. /INFN, Pisa /Montpellier U. /Bari U. /INFN, Bari /INFN, Padua /Padua U. /INFN, Pisa /Innsbruck U. /Stanford U. /SLAC /CENBG, Gradignan /Stockholm U. /Stockholm U., OKC /UC, Santa Cruz /Barcelona, IEEC /Washington U., Seattle /UC, Santa Cruz /Taiwan, Natl. Taiwan U. /Ohio State U. /UC, Santa Cruz /NASA, Ames /UC, Santa Cruz /Stockholm U. /Stockholm U., OKC /INFN, Pisa /Unlisted /CENBG, Gradignan /Taiwan, Natl. Taiwan U. /Ohio State U. /INFN, Pisa /Bari U. /INFN, Bari /DAPNIA, Saclay /Naval Research Lab, Wash., D.C. /Purdue U. /Stanford U. /SLAC /Hiroshima U. /Stanford U. /SLAC /INFN, Padua /Padua U. /DAPNIA, Saclay /ICREA, Barcelona /Barcelona, IEEC /Stanford U. /SLAC /JAXA, Sagamihara /NASA, Goddard /Maryland U., Baltimore County /Toulouse, CESR /Rome U.,Tor Vergata /Banca di Roma /Stanford U. /SLAC /Taiwan, Natl. Taiwan U. /Ohio State U. /Naval Research Lab, Wash., D.C. /Royal Inst. Tech., Stockholm /Tsukuba U., GSPAS /Kalmar U. /Stockholm U., OKC /UC, Santa Cruz

    2010-05-26

    Dark matter (DM) particle annihilation or decay can produce monochromatic {gamma}-rays readily distinguishable from astrophysical sources. {gamma}-ray line limits from 30 GeV to 200 GeV obtained from 11 months of Fermi Large Area Space Telescope data from 20-300 GeV are presented using a selection based on requirements for a {gamma}-ray line analysis, and integrated over most of the sky. We obtain {gamma}-ray line flux upper limits in the range 0.6-4.5 x 10{sup -9} cm{sup -2}s{sup -1}, and give corresponding DM annihilation cross-section and decay lifetime limits. Theoretical implications are briefly discussed.

  3. Report on radiation exposure of lead-scintillator stack

    SciTech Connect

    Underwood, D.G.

    1990-11-08

    A stack of lead and scintillator was placed in a neutral beam obtained from targeting 800 GeV protons. Small pieces of film containing radiochromic dye were placed adjacent to the layers of scintillator for the purpose of measuring the radiation dose to the scintillator. Our motivation was to calibrate the radiation dose obtainable in this manner for future tests of scintillator for SSC experiments and to relate dose to flux to check absolute normalization for calculations. We also observed several other radiation effects which should be considered for both damage and compensation in a calorimeter.

  4. Inclusive Jet Production from Pbar P Collisions at SQRTS=630 GEV in the Cdf Detector

    NASA Astrophysics Data System (ADS)

    Akopian, Alexander

    1996-05-01

    We present a preliminary analysis of the inclusive jet cross section from pbar p collisions at √ s= 630 GeV, measured using the CDF detector. We compare these results with previous CDF measurements at 546 and 1800 GeV. ^Supported by U.S. DOE under Contract No. DE-FG02-91ER-40651. Supported by the U.S. Department of Energy; the National Science Foundation; the Istituto Nazionale di Fisica Nucleare, Italy; the Ministry of Science, Culture and Education of Japan; the A.P. Sloan Foundation, and the Alexander von Humboldt-Stiftung.

  5. Self-triggered Search for GRB Emission at ~ 100 GeV with HAWC

    NASA Astrophysics Data System (ADS)

    Wood, Joshua; HAWC Collaboration

    2015-04-01

    The High Altitude Water Cherenkov (HAWC) Observatory is a ground-based, TeV gamma-ray observatory currently under construction in the state of Puebla, Mexico at an altitude of 4100m. Its 22,000 m2 instrumented area, wide field of view (~ 2 sr), and > 95% uptime make it an ideal instrument for discovering GRB emission at ~ 100 GeV energies. Such a discovery would provide key information about the origins of prompt GRB emission as well as constraints on EBL models and Lorentz invariance. We will present prospects for discovering GRB emission at ~ 100 GeV energies using a simple, blind search algorithm on HAWC data.

  6. Adsorption/desorption properties of vacuum materials for the 6 GeV synchrotron

    SciTech Connect

    Krauss, A.R.

    1985-01-01

    Considerable attention must be paid to the vacuum and adsorption/desorption properties of all materials installed inside the vacuum envelope if the design goals of the 6 GeV synchrotron are to be met. Unfortunately, the data is very sparse in several key areas. Additionally, some procedures normally associated with good vacuum practice, such as air baking, may prove to be totally unsuitable on the basis of desorption properties. We present here a brief discussion of the adsorption, outgassing, electron-stimulated desorption (ESD), and photon-stimulated desorption (PSD) properties of vacuum materials as they relate to the design of a 6 GeV synchrotron.

  7. The D-Zero luminosity monitor constant for {radical} {ital s} = 630 GeV

    SciTech Connect

    Krane, J.; Barnly, J.; Owen, D.

    1997-06-01

    D0 has calculated the luminosity monitor constant for {radical}s= 630 GeV. The inelastic p{anti p} cross section was interpolated between measurements performed at {radical}s = 546 and 1800 GeV. The geometric acceptance, hardware efficiency, and luminosity-dependent corrections are similar to those previously published for the full Tevatron energy. We find a luminosity-weighted value of {sigma}{sub L0} = 34.04 {+-} 1.05 mb, yielding a precision of {+-} 3.08%.

  8. Straw man 900-1000 GeV crystal extraction test beam for Fermilab collider operation

    SciTech Connect

    Carrigan, R.A. Jr.

    1996-10-01

    A design for a 900-1000 GeV, 100 khz parasitic test beam for use during collider operations has been developed. The beam makes use of two bent crystals, one for extraction and the other one for redirecting the beam in to the present Switchyard beam system. The beam requires only a few modifications in the A0 area and largely uses existing devices. It should be straight-forward to modify one or two beam lines in the fixed target experimental areas to work above 800 GeV. Possibilities for improvements to the design,to operate at higher fluxes are discussed.

  9. Transboundary atmospheric lead pollution.

    PubMed

    Erel, Yigal; Axelrod, Tamar; Veron, Alain; Mahrer, Yitzak; Katsafados, Petros; Dayan, Uri

    2002-08-01

    A high-temporal resolution collection technique was applied to refine aerosol sampling in Jerusalem, Israel. Using stable lead isotopes, lead concentrations, synoptic data, and atmospheric modeling, we demonstrate that lead detected in the atmosphere of Jerusalem is not only anthropogenic lead of local origin but also lead emitted in other countries. Fifty-seven percent of the collected samples contained a nontrivial fraction of foreign atmospheric lead and had 206Pb/207Pb values which deviated from the local petrol-lead value (206Pb/207Pb = 1.113) by more than two standard deviations (0.016). Foreign 206Pb/207Pb values were recorded in Jerusalem on several occasions. The synoptic conditions on these dates and reported values of the isotopic composition of lead emitted in various countries around Israel suggest that the foreign lead was transported to Jerusalem from Egypt, Turkey, and East Europe. The average concentration of foreign atmospheric lead in Jerusalem was 23 +/- 17 ng/m3, similar to the average concentration of local atmospheric lead, 21 +/- 18 ng/ m3. Hence, the load of foreign atmospheric lead is similar to the load of local atmospheric lead in Jerusalem.

  10. Lead (Pb) Air Pollution

    MedlinePlus

    ... and 2014. In 2008, EPA significantly strengthened the air quality standards for lead to provide health protection for ... time? Setting and Reviewing Standards What are lead air quality standards? How are they developed and reviewed? What ...

  11. Lead Poisoning (For Parents)

    MedlinePlus

    ... metal used in everything from construction materials to batteries, can cause serious health problems, particularly in young ... introduce lead dust into the home. water that flows through old lead pipes or faucets, if the ...

  12. Lead Content of Foodstuffs

    PubMed Central

    Mitchell, Douglas G.; Aldous, Kenneth M.

    1974-01-01

    The lead content of a number of foodstuffs, particularly baby fruit juices and milk, is reported. Samples were analyzed in quadruplicate by using an automated Delves cup atomic absorption procedure. A large proportion of the products examined contained significant amounts of lead. Of 256 metal can examined, the contents of 62% contained a lead level of 100 μg/l. or more, 37% contained 200 μg/l. or more and 12% contained 400 μg/l. lead or more. Of products in glass and aluminum containers, only 1% had lead levels in excess of 200 μg/l. Lead levels of contents also correlate with the seam length/volume ratio of the leaded seam can. A survey of bulk milk showed a mean lead level of 40 μg/l. for 270 samples; for canned evaporated milk the mean level was 202 μg/l. These data indicate a potential health hazard. PMID:4406645

  13. VOLUMETRIC LEAD ASSAY

    SciTech Connect

    M.A. Ebadian, Ph.D.; S.K. Dua; David Roelant; Sachin Kumar

    2001-01-01

    This report describes a system for handling and radioassay of lead, consisting of a robot, a conveyor, and a gamma spectrometer. The report also presents a cost-benefit analysis of options: radioassay and recycling lead vs. disposal as waste.

  14. Lead and tap water

    MedlinePlus

    Water contaminated with lead ... The Environmental Protection Agency (EPA) monitors drinking water in the United States. It requires water suppliers to produce annual water quality reports. These reports include information about lead amounts, and they ...

  15. Recent results from PHENIX on double helicity asymmetry (ALLπ0) measurement at center of mass energy (√{ s }) = 510 GeV

    NASA Astrophysics Data System (ADS)

    Guragain, Hari

    2015-04-01

    One of the major objectives of the Relativistic Heavy Ion Collider (RHIC) spin program at Brookhaven National Laboratory is the measurement of the gluon helicity contribution to the proton spin via measuring the double longitudinal spin asymmetry (ALL) in various channels. In PHENIX (Pioneering High Energy Nuclear Interaction eXperiment) we measure ALL in π0 production. The π0 is reconstructed through its diphoton decay channel. The photons are detected by the PHENIX Electromagnetic calorimeter, which consists of lead glass and lead scintillator detectors and covers rapidity of | η | < 0.35 and azimuthal angle of 180& circ; . We present a preliminary results for 180& circ; in π0 production from the data collected in the year 2013 at center of mass energy (√{ s }) = 510 GeV. In year 2013, the total integrated luminosity was 150 pb-1 which is almost ten times the total luminosity recorded in the year 2009 at √{ s } = 200 GeV. Due to increase in the center of mass energy and integrated luminosity, the new measurements can cover the Bjorken x range down to 0.01. We found a non-zero ALL result which is consistent with positive gluon polarization at the probed kinematics.

  16. Transplacental transport of lead

    SciTech Connect

    Goyer, R.A. )

    1990-11-01

    Neurotoxicity is the major health effect from exposure to lead for infants and young children, and there is current concern regarding possible toxic effects of lead on the child while in utero. there is no placental-fetal barrier to lead transport. Maternal and fetal blood lead levels are nearly identical, so lead passes through the placenta unencumbered. Lead has been measured in the fetal brain as early as the end of the first trimester (13 weeks). There is a similar rate of increase in brain size and lead content throughout pregnancy in the fetus of mothers in the general population, so concentration of lead probably does not differ greatly during gestation unless exposure of the mother changes. Cell-specific sensitivity to the toxic effects of lead, however, may be greater the younger the fetus. Lead toxicity to the nervous system is characterized by edema or swelling of the brain due to altered permeability of capillary endothelial cells. Experimental studies suggest that immature endothelial cells forming the capillaries of the developing brain are less resistant to the effects of lead, permitting fluid and cations including lead to reach newly formed components of the brain, particularly astrocytes and neurons. Also, the ability of astrocytes and neurons to sequester lead in the form of lead protein complexes occurs only in the later stages of fetal development, permitting lead in maturing brain cells to interact with vital subcellular organelles, particularly mitochondria, which are the major cellular energy source. Intracellular lead also affects binding sites for calcium which, in turn, may affect numerous cell functions including neurotransmitter release.

  17. Lead Poisoning in Schools.

    ERIC Educational Resources Information Center

    Guyaux, Susan

    1990-01-01

    Overexposure to lead can permanently impair a child's mental and physical development. This article discusses sources of lead paint, survey and testing methods, management and abatement plans, drinking water contamination, and associated federal standards. Although lead is present in soil and in art, theater, and vocational programs, no federal…

  18. Lead Poisoning in Childhood.

    ERIC Educational Resources Information Center

    Pueschel, Siegfried M., Ed.; Linakis, James G., Ed.; Anderson, Angela C., Ed.

    The magnitude of childhood lead poisoning has been inexplicably neglected by modern medicine and by legislators. However, since the 1970s, increased attention has been focused on lead poisoning, and advances have been made in several areas, including understanding of the neurodevelopmental and behavioral ramifications of lead poisoning, and…

  19. Lead Poisoning in Children.

    ERIC Educational Resources Information Center

    Drummond, A. H., Jr.

    1981-01-01

    Early symptoms of lead poisoning in children are often overlooked. Lead poisoning has its greatest effects on the brain and nervous system. The obvious long-term solution to the lead poisoning problem is removal of harmful forms of the metal from the environment. (JN)

  20. Lead Poisoning in Children.

    ERIC Educational Resources Information Center

    Boeckx, Roger L.

    1986-01-01

    Urban children are exposed to lead through the air they breathe, the water they drink, and the food and nonfood substances they ingest. The history, diagnosis, and treatment of lead poisoning in these children are discussed. Includes information on the toxicology of lead and the various risk classes. (JN)

  1. Lead poisoning: An overview

    NASA Technical Reports Server (NTRS)

    Gendel, Neil

    1993-01-01

    A problem that should be of great concern to all of us is the lead poisoning of children. First, I would like to present a short overview concerning the reasons everyone should care about lead poisoning, then discuss the history of lead poisoning, what is happening today across the country, and the future.

  2. Extension of the Integrated Tiger Series (ITS) of electron-photon Monte Carlo codes to 100 GeV

    SciTech Connect

    Miller, S.G.

    1988-08-01

    Version 2.1 of the Integrated Tiger Series (ITS) of electron-photon Monte Carlo codes was modified to extend their ability to model interactions up to 100 GeV. Benchmarks against experimental results conducted at 10 and 15 GeV confirm the accuracy of the extended codes. 12 refs., 2 figs., 2 tabs.

  3. Lead in the environment

    USGS Publications Warehouse

    Pattee, O.H.; Pain, D.J.; Hoffman, David J.; Rattner, Barnett A.; Burton, G. Allen; Cairns, John=

    2003-01-01

    Anthropogenic uses of lead have probably altered its availability and environmental distribution more than any other toxic element. Consequently, lead concentrations in many living organisms may be approaching thresholds of toxicity for the adverse effects of lead. Such thresholds are difficult to define, as they vary with the chemical and physical form of lead, exposure regime, other elements present and also vary both within and between species. The technological capability to accurately quantify low lead concentrations has increased over the last decade, and physiological and behavioral effects have been measured in wildlife with tissue lead concentrations below those previously considered safe for humans.s.236 Consequently. lead criteria for the protection of wildlife and human health are frequently under review, and 'thresholds' of lead toxicity are being reconsidered. Proposed lead criteria for the protection of natural resources have been reviewed by Eisler. Uptake of lead by plants is limited by its generally low availability in soils and sediments, and toxicity may be limited by storage mechanisms and its apparently limited translocation within most plants. Lead does not generally accumulate within the foliar parts of plants, which limits its transfer to higher trophic levels. Although lead may concentrate in plant and animal tissues, no evidence of biomagnification exists. Acid deposition onto surface waters and soils with low buffering capacity may influence the availability of lead for uptake by plants and animals, and this may merit investigation at susceptible sites. The biological significance of chronic low-level lead exposure to wildlife is sometimes difficult to quantify. Animals living in urban environments or near point sources of lead emission are inevitably subject to greater exposure to lead and enhanced risk of lead poisoning. Increasingly strict controls on lead emissions in many countries have reduced exposure to lead from some sources

  4. Physics with a high-intensity proton accelerator below 30 GeV

    SciTech Connect

    Hoffman, C.M.

    1982-01-01

    The types of physics that would be pursued at a high-intensity, moderate-energy proton accelerator are discussed. The discussion is drawn from the deliberations of the 30-GeV subgroup of the Fixed-Target Group at this workshop.

  5. HIGH POWER TEST OF RF SEPARATOR FOR 12 GEV UPGRADE OF CEBAF AT JLAB

    SciTech Connect

    S. Ahmed, M. Wissmann, J. Mammosser, C. Hovater, M. Spata, G. Krafft, J. Delayen

    2012-07-01

    CEBAF at JLab is in the process of an energy upgrade from 6 GeV to 12 GeV. The existing setup of the RF separator cavities in the 5th pass will not be adequate to extract the highest energy (11 GeV) beam to any two existing halls (A, B or C) while simultaneously delivering to the new hall D in the case of the proposed 12 GeV upgrade of the machine. To restore this capability, we are exploring the possibility of extension of existing normal conducting 499 MHz TEM-type rf separator cavities. Detailed numerical studies suggest that six 2-cell normal conducting structures meet the requirements; each 2-cell structure will require up to 4 kW RF input power in contrast with the current nominal operating power of 1.0 to 2.0 kW. A high power test of 4 kW confirms that the cavity meet the requirement.

  6. The Jefferson Lab 12 GeV program on nucleon structure

    SciTech Connect

    Burkert, Volker D.

    2013-10-01

    This slide-show presents the experiments planned at JLab with their 12 GeV upgrade. Experiments reported address: the use of hadron spectra as probes of QCD; the transverse structure of hadrons; the longitudinal structure of hadrons; the 3-dimensional structure of hadrons; hadrons and cold nuclear matter; and low-energy tests of the Standard Model and fundamental symmetries.

  7. Vector leptoquarks and the 750 GeV diphoton resonance at the LHC

    NASA Astrophysics Data System (ADS)

    Murphy, Christopher W.

    2016-06-01

    The ATLAS and CMS Collaborations recently presented evidence of a resonance decaying to pairs of photons around 750 GeV. In addition, the BaBar, Belle, and LHCb Collaborations have evidence of lepton non-universality in the semileptonic decays of B mesons. In this work, we make a first step towards a unified explanation of these anomalies. Specifically, we extend the Standard Model by including vector leptoquarks and a scalar singlet that couples linearly to pairs of the leptoquarks. We find there is parameter space that gives the correct cross section for a putative 750 GeV resonance decaying to photons that is consistent with unitarity, measurements of the properties of the 125 GeV Higgs boson, and direct searches for resonances in other channels. In addition, we also show that constraints can be derived on any Beyond the Standard Model explanation of the 750 GeV resonance where the only new particles are scalars, which are strong enough to rule out certain types of models entirely.

  8. Measurement of the nuclear electromagnetic cascade development in glass at energies above 200 GeV

    NASA Technical Reports Server (NTRS)

    Gillespie, C. R.; Huggett, R. W.; Humphreys, D. R.; Jones, W. V.; Levit, L. B.

    1971-01-01

    The longitudinal development of nuclear-electromagnetic cascades with energies greater than 200 GeV was measured in a low-Z (glass) absorber. This was done in the course of operating an ionization spectrometer at mountain altitude in an experiment to study the properties of gamma rays emitted from individual interactions at energies around 10,000 GeV. The ionization produced by a cascade is sampled by 20 sheets of plastic scintillator spaced uniformly in depth every 2.2 radiation lengths. Adjacent pairs of scintillators are viewed by photomultipliers which measure the mean ionization produced by an individual cascade in 10 layers each 1.1 interaction length (4.4 radiation lengths) thick. The longitudinal development of the cascades was measured for about 250 cascades having energies ranging from 200 GeV to 2500 GeV. The observations are compared with the predictions of calculations made for this specific spectrometer using a three-dimensional Monte Carlo model of the nuclear-electromagnetic cascade.

  9. Details and justifications for the MAP concept specification for acceleration above 63 GeV

    SciTech Connect

    Berg, J. Scott

    2014-02-28

    The Muon Accelerator Program (MAP) requires a concept specification for each of the accelerator systems. The Muon accelerators will bring the beam energy from a total energy of 63 GeV to the maximum energy that will fit on the Fermilab site. Justifications and supporting references are included, providing more detail than will appear in the concept specification itself.

  10. Performance of First C100 Cryomodules for the CEBAF 12 GeV Upgrade Project

    SciTech Connect

    Drury, Michael A.; Burrill, Andrew B.; Davis, G. Kirk; Hogan, John P.; King, Lawrence; Marhauser, Frank; Park, HyeKyoung; Preble, Joseph; Reece, Charles E.; Reilly, Anthony V.; Rimmer, Robert A.; Wang, Haipeng; Wiseman, Mark A.

    2012-09-01

    The Thomas Jefferson National Accelerator Facility is currently engaged in the 12 GeV Upgrade Project. The goal of the project is a doubling of the available beam energy of CEBAF from 6 GeV to 12 GeV. This increase in beam energy will be due primarily to the construction and installation of ten "C100" cryomodules in the CEBAF linacs. The C100 cryomodules are designed to deliver an average 108 MV each from a string of eight seven-cell, electropolished superconducting RF cavities operating at an average accelerating gradient of 19.2 MV/m. The new cryomodules fit in the same available linac space as the original CEBAF 20 MV cryomodules. Cryomodule production started in September 2010. Initial acceptance testing started in June 2011. The first two C100 cryomodules were installed and tested from August 2011 through October 2011, and successfully operated during the last period of the CEBAF 6 GeV era, which ended in May 2012. This paper will present the results of acceptance testing and commissioning of the C100 style cryomodules to date.

  11. Fabrication and Testing Status of CEBAF 12 GeV Upgrade Cavities

    SciTech Connect

    Marhauser, F; Davis, G K; Forehand, D; Grenoble, C; Hogan, J; Overton, R B; Reilly, A V; Rimmer, R A; Stirbet, M

    2011-09-01

    The 12 GeV upgrade of the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Laboratory (JLab) is under way. All cavities have been built by industry and are presently undergoing post-processing and final low and high power qualification before cryomodule assembly. The status is reported including fabrication-related experiences, observations and issues throughout production, post-processing and qualification.

  12. Recent developments in neutrino-nucleus interactions in 1 GeV energy region

    SciTech Connect

    Sobczyk, Jan T.

    2015-07-15

    Neutrino interactions in 1 GeV energy region are discussed. A role of nucleon-nucleon correlations in understanding recent quasi-elastic cross section measurements on nuclear target is explained. An importance of a correct treatment of two-body current contribution to the neutrino inclusive cross section is addressed.

  13. The onset of the GeV afterglow of GRB 090510

    NASA Astrophysics Data System (ADS)

    Ghirlanda, G.; Ghisellini, G.; Nava, L.

    2010-02-01

    We study the emission of the short/hard Gamma Ray Burst 090510 at energies >0.1 GeV as observed by the Large Area Telescope (LAT) onboard the Fermi satellite. The GeV flux rises in time as t2 up till 0.2 s after the peak of the MeV pulse detected by the Fermi Gamma Burst Monitor (GBM) after which it decays as t-1.5 up to 200 s. Its energy spectrum is consistent with F(ν)∝ ν-1. The time behavior and the spectrum of the high energy LAT flux are strong evidences of an afterglow origin. We then interpret it as synchrotron radiation produced by the forward shock of a fireball with a bulk Lorentz factor Γ ˜ 2000. The afterglow peak time is independent of energy in the 0.1-30 GeV range and coincides with the arrival time of the highest energy photon (~ 30 GeV). Since the flux detected by the GBM and the LAT have different origins, the delay between these two components is not entirely due to possible violation of the Lorentz invariance. The LAT component alone allows us to set a reliable lower limit on the quantum-gravity mass of 4.7 times the Planck mass.

  14. Pulsars above 10 GeV: Fermi LAT Observations and Questions

    NASA Technical Reports Server (NTRS)

    Thomson, Dave

    2012-01-01

    The success of the Fermi Large Area Telescope in studying gamma-ray pulsars offers hints about future work above 10 GeV. The infrastructure for discovering pulsars will be similar between LAT and any future telescope. Some of the Fermi LAT results suggest intriguing questions about the future of high-energy pulsar studies.

  15. Research Perspectives at Jefferson Lab with the 12 GeV Upgrade

    SciTech Connect

    Kees de Jager

    2000-06-01

    The plans for upgrading the CEBAF accelerator at Jefferson Lab to 12 GeV are presented. The research program supporting that update are illustrated with a few selected examples. The instrumentation under design to carry out that research program is discussed.

  16. The JLAB Research Program with the 12 GeV Upgrade

    SciTech Connect

    Kees de Jager

    2001-05-01

    The plans for upgrading the CEBAF accelerator at Jefferson Lab to 12 GeV are presented. The research program supporting that upgrade are illustrated with a few selected examples. The instrumentation under design to carry out that research program is discussed.

  17. Aspects of strangeness production with 15 -- 30 GeV proton beams

    SciTech Connect

    Dover, C.B.

    1992-04-01

    We discuss the spectrum of physics questions related to strangeness which could be addressed with a 15--30 GeV proton storage ring. We focus on various aspects of strangeness production, including hyperon production in pp collisions, studies of hyperon-nucleon scattering, production of hyper-fragments in p-nucleus collisions, and hyperon spin observables in inclusive production.

  18. GeV Blazar flares several parsecs from the central engine. Who pays the seed photon bill?

    NASA Astrophysics Data System (ADS)

    Breiding, Peter; Georganopoulos, Markos; Meyer, Eileen

    2016-04-01

    In Blazars, multi-wavelength observations suggest that some GeV flares take place at the location of the mm VLBI core, several pc from the black hole. This location for the GeV emission requires a yet un-identified source of seed photons to be Inverse Compton scattered to GeV energies. Our model for these flares involves a fast spine and slow sheath configuration for the relativistic jet, where the mildly beamed sheath emission will illuminate with a large opening angle the outer regions of the Molecular Torus. The heated clouds will then radiate and their emission will be relativistically boosted in the spine frame where it can they be up-scattered to GeV energies. We argue, through analytical work and simulations, that this can be the seed photon source that produces the GeV flares.

  19. Saturation of azimuthal anisotropy in Au + Au collisions at (square root)s(NN) = 62-200 GeV.

    PubMed

    Adler, S S; Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Al-Jamel, A; Alexander, J; Amirikas, R; Aoki, K; Aphecetche, L; Armendariz, R; Aronson, S H; Averbeck, R; Awes, T C; Azmoun, B; Azmoun, R; Babintsev, V; Baldisseri, A; Barish, K N; Barnes, P D; Bassalleck, B; Bathe, S; Batsouli, S; Baublis, V; Bauer, F; Bazilevsky, A; Belikov, S; Bennett, R; Berdnikov, Y; Bhagavatula, S; Bjorndal, M T; Boissevain, J G; Borel, H; Borenstein, S; Boyle, K; Brooks, M L; Brown, D S; Bruner, N; Bucher, D; Buesching, H; Bumazhnov, V; Bunce, G; Burward-Hoy, J M; Butsyk, S; Camard, X; Campbell, S; Chai, J-S; Chand, P; Chang, W C; Chernichenko, S; Chi, C Y; Chiba, J; Chiu, M; Choi, I J; Choi, J; Choudhury, R K; Chujo, T; Cianciolo, V; Cleven, C R; Cobigo, Y; Cole, B A; Comets, M P; Constantin, P; Csanád, M; Csörgo, T; d'Enterria, D; Dahms, T; Das, K; David, G; Delagrange, H; Denisov, A; Deshpande, A; Desmond, E J; Devismes, A; Dietzsch, O; Dion, A; Drachenberg, J L; Drapier, O; Drees, A; Drees, K A; Dubey, A K; du Rietz, R; Durum, A; Dutta, D; Dzhordzhadze, V; Efremenko, Y V; Egdemir, J; El Chenawi, K; Enokizono, A; En'yo, H; Espagnon, B; Esumi, S; Ewell, L; Fields, D E; Fleuret, F; Fokin, S L; Forestier, B; Fox, B D; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fukao, Y; Fung, S-Y; Gadrat, S; Garpman, S; Gastineau, F; Germain, M; Ghosh, T K; Glenn, A; Gogiberidze, G; Gonin, M; Gosset, J; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Perdekamp, M Grosse; Gunji, T; Guryn, W; Gustafsson, H-A; Hachiya, T; Henni, A Hadj; Haggerty, J S; Hagiwara, M N; Hamagaki, H; Hansen, A G; Harada, H; Hartouni, E P; Haruna, K; Harvey, M; Haslum, E; Hasuko, K; Hayano, R; Hayashi, N; He, X; Heffner, M; Hemmick, T K; Heuser, J M; Hibino, M; Hiejima, H; Hill, J C; Hobbs, R; Holmes, M; Holzmann, W; Homma, K; Hong, B; Hoover, A; Horaguchi, T; Hur, H M; Ichihara, T; Ikonnikov, V V; Imai, K; Inaba, M; Isenhower, D; Isenhower, L; Ishihara, M; Isobe, T; Issah, M; Isupov, A; Jacak, B V; Jang, W Y; Jeong, Y; Jia, J; Jin, J; Jinnouchi, O; Johnson, B M; Johnson, S C; Joo, K S; Jouan, D; Kajihara, F; Kametani, S; Kamihara, N; Kaneta, M; Kang, J H; Kapoor, S S; Katou, K; Kawagishi, T; Kazantsev, A V; Kelly, S; Khachaturov, B; Khanzadeev, A; Kikuchi, J; Kim, D H; Kim, D J; Kim, D W; Kim, E; Kim, G-B; Kim, H J; Kim, Y-S; Kinney, E; Kinnison, W W; Kiss, A; Kistenev, E; Kiyomichi, A; Kiyoyama, K; Klein-Boesing, C; Kobayashi, H; Kochenda, L; Kochetkov, V; Koehler, D; Kohama, T; Komkov, B; Konno, M; Kopytine, M; Kotchetkov, D; Kozlov, A; Kroon, P J; Kuberg, C H; Kunde, G J; Kurihara, N; Kurita, K; Kuroki, Y; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Ladygin, V; Lajoie, J G; Le Bornec, Y; Lebedev, A; Leckey, S; Lee, D M; Lee, M K; Lee, S; Leitch, M J; Leite, M A L; Li, X H; Lim, H; Litvinenko, A; Liu, M X; Liu, Y; Maguire, C F; Makdisi, Y I; Malakhov, A; Malik, M D; Manko, V I; Mao, Y; Martinez, G; Marx, M D; Masui, H; Matathias, F; Matsumoto, T; McCain, M C; McGaughey, P L; Melnikov, E; Messer, F; Miake, Y; Milan, J; Miller, T E; Milov, A; Mioduszewski, S; Mischke, R E; Mishra, G C; Mitchell, J T; Mohanty, A K; Morrison, D P; Moss, J M; Moukhanova, T V; Mühlbacher, F; Mukhopadhyay, D; Muniruzzaman, M; Murata, J; Nagamiya, S; Nagata, Y; Nagle, J L; Naglis, M; Nakamura, T; Nandi, B K; Nara, M; Newby, J; Nguyen, M; Nilsson, P; Norman, B; Nyanin, A S; Nystrand, J; O'Brien, E; Ogilvie, C A; Ohnishi, H; Ojha, I D; Okada, H; Okada, K; Omiwade, O O; Ono, M; Onuchin, V; Oskarsson, A; Otterlund, I; Oyama, K; Ozawa, K; Pal, D; Palounek, A P T; Pantuev, V; Papavassiliou, V; Park, J; Park, W J; Parmar, A; Pate, S F; Pei, H; Peitzmann, T; Peng, J-C; Pereira, H; Peresedov, V; Peressounko, D Yu; Pinkenburg, C; Pisani, R P; Plasil, F; Purschke, M L; Purwar, A K; Qu, H; Rak, J; Ravinovich, I; Read, K F; Reuter, M; Reygers, K; Riabov, V; Riabov, Y; Roche, G; Romana, A; Rosati, M; Rosendahl, S S E; Rosnet, P; Rukoyatkin, P; Rykov, V L; Ryu, S S; Sadler, M E; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakai, M; Sakai, S; Samsonov, V; Sanfratello, L; Santo, R; Sato, H D; Sato, S; Sawada, S; Schutz, Y; Semenov, V; Seto, R; Sharma, D; Shaw, M R; Shea, T K; Shein, I; Shibata, T-A; Shigaki, K; Shiina, T; Shimomura, M; Shohjoh, T; Shoji, K; Sickles, A; Silva, C L; Silvermyr, D; Sim, K S; Simon-Gillo, J; Singh, C P; Singh, V; Sivertz, M; Skutnik, S; Smith, W C; Soldatov, A; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Staley, F; Stankus, P W; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Sugitate, T; Suire, C; Sullivan, J P; Sziklai, J; Tabaru, T; Takagi, S; Takagui, E M; Taketani, A; Tamai, M; Tanaka, K H; Tanaka, Y; Tanida, K; Tannenbaum, M J; Taranenko, A; Tarján, P; Tepe, J D; Thomas, T L; Togawa, M; Tojo, J; Torii, H; Towell, R S; Tram, V-N; Tserruya, I; Tsuchimoto, Y; Tsuruoka, H; Tuli, S K; Tydesjö, H; Tyurin, N; Valle, H; van Hecke, H W; Velkovska, J; Velkovsky, M; Vertesi, R; Veszprémi, V; Villatte, L; Vinogradov, A A; Volkov, M A; Vznuzdaev, E; Wagner, M; Wang, X R; Watanabe, Y; Wessels, J; White, S N; Willis, N; Winter, D; Wohn, F K; Woody, C L; Wysocki, M; Xie, W; Yang, Y; Yanovich, A; Yokkaichi, S; Young, G R; Younus, I; Yushmanov, I E; Zajc, W A; Zaudkte, O; Zhang, C; Zhou, S; Zhou, S J; Zimányi, J; Zolin, L

    2005-06-17

    New measurements are presented for charged hadron azimuthal correlations at midrapidity in Au+Au collisions at (square root)s(NN) = 62.4 and 200 GeV. They are compared to earlier measurements obtained at (square root)s(NN) = 130 GeV and in Pb + Pb collisions at (square root)s(NN) = 17.2 GeV. Sizeable anisotropies are observed with centrality and transverse momentum (pT) dependence characteristic of elliptic flow (upsilon2). For a broad range of centralities, the observed magnitudes and trends of the differential anisotropy, upsilon2(pT), change very little over the collision energy range (square root)s(NN) = 62-200 GeV, indicating saturation of the excitation function for upsilon2 at these energies. Such a saturation may be indicative of the dominance of a very soft equation of state for (square root)s(NN) approximately 60-200 GeV.

  20. Neutron yields for reactions induced by 120 GeV protons on thick copper target

    SciTech Connect

    Kajimoto, Tsuyoshi; Sanami, Toshiya; Iwamoto, Yosuke; Shigyo, Nobuhiro; Hagiwara, Masayuki; Saitoh, Kiwamu; Nakashima, Hiroshi; Ishibashi, Kenji; Lee, Hee-Seock; Ramberg, Eric; Coleman, Richard; /Fermilab

    2011-02-01

    We developed an experimental method to measure neutron energy spectrum for 120-GeV protons on a thick copper target at Fermilab Test Beam Facility (FTBF). The spectrum in the energy range from 16 to 1600 MeV was obtained for 60-cm long copper target by time-of-flight technique with an NE213 scintillator and 5.5-m flight path. Energy spectra of neutrons generated from an interaction with beam and materials are important to design shielding structure of high energy accelerators. Until now, the energy spectra for the incident energy up to 3 GeV have been measured by several groups, Ishibashi et al., Amian et al., and Leray et al. In the energy region above 3 GeV, few experimental data are available because of small number of facilities for neutron experiment. On the other hand, concerning simulation codes, theoretical models for particle generation and transportation are switched from intermediate to high energy one around this energy. The spectra calculated by the codes have not been examined using experimental data. In shielding experiments using 120 GeV hadron beam, experimental data shows systematic differences from calculations. Hagiwara et al. have measured leakage neutron spectra behind iron and concrete shield from 120 GeV proton on target at anti-proton target station in Fermilab by using Bonner Spheres with unfolding technique. In CERN, Nakao et al reported experimental results of neutron spectra behind iron and concrete wall from 120 GeV/c proton and pion mixed beam on copper by using NE213 liquid scintillators with unfolding technique. Both of the results reported systematic discrepancies between experimental and calculation results. Therefore, experimental data are highly required to verify neutron production part of calculations. In this study, we developed an experimental method to measure neutron energy spectrum for 120 GeV proton on target. The neutron energy was determined using time-of-flight technique. We used the Fermilab Test Beam Facility (FTBF

  1. Spectra and solar energetic protons over 20 GeV in Bastille Day event

    NASA Astrophysics Data System (ADS)

    Wang, Ruiguang; Wang, Jinxiu

    2006-02-01

    Solar energetic particles (SEPs) from large solar flares give important information about the physical process in the solar corona and the heliosphere. Several observations have indicated that solar protons could sometimes be accelerated to at least tens of GeV, even hundreds of GeV, in intense solar energetic process. We studied the solar proton differential energy spectra with energy range of 1 500 MeV at several time intervals during Bastille Day event. It was shown that the spectra could be fitted by a power law function before flare and after flare the power law spectra still existed above 30 MeV although spectra became softer with time. There was a spectral “knee” occurring at ˜30 MeV. We constructed a solar proton differential spectrum from 30 MeV to 3 GeV at peak flux time 10:30 UT and fitted it in the same manner. On the basis of a supposition of having the same power law spectrum in higher energy, we calculated the solar proton integrated fluxes in energy range of from 500 MeV to 20 GeV and compared them with other results obtained from experimental, modelling and theoretical calculations in other big historic SEP events. A Monte Carlo simulation was carried out for a primary proton beam at the top of the atmosphere producing secondary muons on the ground. Based on the simulation, possibility of registering the solar energetic proton beams with energies over 20 GeV was discussed.

  2. Dielectron production in Au + Au collisions at √{sN N}=200 GeV

    NASA Astrophysics Data System (ADS)

    Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Alexander, J.; Alfred, M.; Al-Ta'Ani, H.; Angerami, A.; Aoki, K.; Apadula, N.; Aramaki, Y.; Asano, H.; Aschenauer, E. C.; Atomssa, E. T.; Averbeck, R.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Bassalleck, B.; Bathe, S.; Baublis, V.; Baumgart, S.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belmont, R.; Berdnikov, A.; Berdnikov, Y.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Butsyk, S.; Campbell, S.; Castera, P.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Connors, M.; Csanád, M.; Csörgő, T.; Dairaku, S.; Danley, T. W.; Datta, A.; Daugherity, M. S.; David, G.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dharmawardane, K. V.; Dietzsch, O.; Ding, L.; Dion, A.; Diss, P. B.; Do, J. H.; Donadelli, M.; D'Orazio, L.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; Edwards, S.; Efremenko, Y. V.; Engelmore, T.; Enokizono, A.; Esumi, S.; Eyser, K. O.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukao, Y.; Fusayasu, T.; Gainey, K.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, A.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, X.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gunji, T.; Guo, L.; Gustafsson, H.-Å.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamilton, H. F.; Han, S. Y.; Hanks, J.; Hasegawa, S.; Haseler, T. O. S.; Hashimoto, K.; Haslum, E.; Hayano, R.; He, X.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hollis, R. S.; Homma, K.; Hong, B.; Horaguchi, T.; Hori, Y.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Ichihara, T.; Iinuma, H.; Ikeda, Y.; Imai, K.; Imrek, J.; Inaba, M.; Iordanova, A.; Isenhower, D.; Issah, M.; Ivanishchev, D.; Jacak, B. V.; Javani, M.; Jezghani, M.; Jia, J.; Jiang, X.; Johnson, B. M.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kamin, J.; Kanda, S.; Kaneti, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapustinsky, J.; Karatsu, K.; Kasai, M.; Kawall, D.; Kazantsev, A. V.; Kempel, T.; Key, J. A.; Khachatryan, V.; Khanzadeev, A.; Kijima, K. M.; Kim, B. I.; Kim, C.; Kim, D. J.; Kim, E.-J.; Kim, G. W.; Kim, H. J.; Kim, K.-B.; Kim, M.; Kim, Y.-J.; Kim, Y. K.; Kimelman, B.; Kinney, E.; Kiss, Á.; Kistenev, E.; Kitamura, R.; Klatsky, J.; Kleinjan, D.; Kline, P.; Koblesky, T.; Komatsu, Y.; Komkov, B.; Koster, J.; Kotchetkov, D.; Kotov, D.; Král, A.; Krizek, F.; Kunde, G. J.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, B.; Lee, D. M.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, S.; Lee, S. H.; Lee, S. R.; Leitch, M. J.; Leite, M. A. L.; Leitgab, M.; Lewis, B.; Li, X.; Lim, S. H.; Linden Levy, L. A.; Liu, M. X.; Love, B.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Makek, M.; Manion, A.; Manko, V. I.; Mannel, E.; Masumoto, S.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Mignerey, A. C.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Miyachi, Y.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Mohapatra, S.; Montuenga, P.; Moon, H. J.; Moon, T.; Morrison, D. P.; Motschwiller, S.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagae, T.; Nagamiya, S.; Nagashima, K.; Nagle, J. L.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nattrass, C.; Nederlof, A.; Netrakanti, P. K.; Nihashi, M.; Niida, T.; Nishimura, S.; Nouicer, R.; Novák, T.; Novitzky, N.; Nyanin, A. S.; O'Brien, E.; Ogilvie, C. A.; Okada, K.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ouchida, M.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, B. H.; Park, I. H.; Park, J. S.; Park, S.; Park, S. K.; Pate, S. F.; Patel, L.; Patel, M.; Pei, H.; Peng, J.-C.; Pereira, H.; Perepelitsa, D. V.; Perera, G. D. N.; Peressounko, D. Yu.; Perry, J.; Petti, R.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Proissl, M.; Purschke, M. L.; Qu, H.; Rak, J.; Ramson, B. J.; Ravinovich, I.; Read, K. F.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Rinn, T.; Roach, D.; Roche, G.; Rolnick, S. D.; Rosati, M.; Rowan, Z.; Rubin, J. G.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sako, H.; Samsonov, V.; Sano, M.; Sarsour, M.; Sato, S.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seidl, R.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Sim, K. S.; Singh, B. K.; Singh, C. P.

    2016-01-01

    We present measurements of e+e- production at midrapidity in Au +Au collisions at √{sNN}=200 GeV. The invariant yield is studied within the PHENIX detector acceptance over a wide range of mass (me e<5 GeV /c2) and pair transverse momentum (pT<5 GeV /c ) for minimum bias and for five centrality classes. The e+e- yield is compared to the expectations from known sources. In the low-mass region (me e=0.30 - 0.76 GeV /c2 ) there is an enhancement that increases with centrality and is distributed over the entire pair pT range measured. It is significantly smaller than previously reported by the PHENIX experiment and amounts to 2.3 ±0.4 (stat )±0.4 (syst )±0.2 (model ) or to 1.7 ±0.3 (stat )±0.3 (syst )±0.2 (model ) for minimum bias collisions when the open heavy-flavor contribution is calculated with pythia or mc@nlo, respectively. The inclusive mass and pT distributions, as well as the centrality dependence, are well reproduced by model calculations where the enhancement mainly originates from the melting of the ρ meson resonance as the system approaches chiral symmetry restoration. In the intermediate-mass region (me e=1.2 - 2.8 GeV /c2 ), the data hint at a significant contribution in addition to the yield from the semileptonic decays of heavy-flavor mesons.

  3. Lead Poison Detection

    NASA Technical Reports Server (NTRS)

    1976-01-01

    With NASA contracts, Whittaker Corporations Space Science division has developed an electro-optical instrument to mass screen for lead poisoning. Device is portable and detects protoporphyrin in whole blood. Free corpuscular porphyrins occur as an early effect of lead ingestion. Also detects lead in urine used to confirm blood tests. Test is inexpensive and can be applied by relatively unskilled personnel. Similar Whittaker fluorometry device called "drug screen" can measure morphine and quinine in urine much faster and cheaper than other methods.

  4. Lead poisoning: case studies.

    PubMed

    Gordon, J N; Taylor, A; Bennett, P N

    2002-05-01

    Early clinical features of lead toxicity are non-specific and an occupational history is particularly valuable. Lead in the body comprises 2% in the blood (t1/2 35 days) and 95% in bone and dentine (t1/2 20-30 years). Blood lead may remain elevated for years after cessation from long exposure, due to redistribution from bone. Blood lead concentration is the most widely used marker for inorganic lead exposure. Zinc protoporphyrin (ZPP) concentration in blood usefully reflects lead exposure over the prior 3 months. Symptomatic patients with blood lead concentration >2.4 micromol l-1 (50 microg dl-1) or in any event >3.8 micromol l-1 (80 microg dl-1) should receive sodium calciumedetate i.v., followed by succimer by mouth for 19 days. Asymptomatic patients with blood lead concentration >2.4 micromol l-1 (50 microg dl-1) may be treated with succimer alone. Sodium calciumedetate should be given with dimercaprol to treat lead encephalopathy.

  5. Immunosuppressive effects of lead

    USGS Publications Warehouse

    Franson, J. Christian; Feierabend, J.Scott; Russell, A.Brooke

    1986-01-01

    Immunosuppressive effects of lead were reported as early as 1966, when it was noted that lead increased the sensitivity of rats to bacterial endotoxins (Selye et al. 1966). Since then a substantial body of literature has demonstrated adverse effects of lead on the immune system in a variety of laboratory animals, but very little has been done in this area with avian species. Such immunosuppressive effects could be of significance to waterfowl populations, considering the potential for lead ingestion by waterfowl and subsequent exposure of these birds to disease agents.

  6. Childhood lead poisoning.

    PubMed

    Linakis, J G

    1995-01-01

    Lead poisoning has been referred to as the most important environmental health hazard for children in New England. Medical professionals are in a unique position to perform a number of interventions that could make a lasting impact. First, physicians and nurses, particularly in the areas of pediatrics and family medicine, can provide anticipatory guidance to all families with young children. Lead poisoning, in contrast to long held beliefs, is an affliction that affects all socioeconomic groups. Parents should thus be informed regarding sources of lead, including occupational and hobby sources, and basic nutritional and abatement information should be provided. Second, health care workers should encourage lead screening in appropriately aged children at recommended intervals based on known risk factors. Once a blood lead concentration greater than 20[symbol: see text]g/dl has been obtained in a child, treatment or referral to an established lead clinic should be undertaken in a timely fashion. For children with low or moderate lead levels, many pediatricians or family physicians prefer to supervise their patients' treatment, including chelation therapy. For children with higher levels or in instances when the health care professional elects to refer, there are several lead clinics throughout New England whose clinicians are experienced in the treatment of childhood lead poisoning. Finally the medical profession needs to publicly recognize, as child advocates, that lead poisoning is one of the most common pediatric health problems in the United States and that it is entirely preventable. Fortunately, after many years and much hard work, Rhode Island finally has laws that start to deal with the lead problem in an appropriately aggressive fashion.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Probing Balitsky-Fadin-Kuraev-Lipatov Dynamics in the Dijet Cross Section at Large Rapidity Intervals in pp¯ Collisions at √s = 1800 and 630 GeV

    NASA Astrophysics Data System (ADS)

    Abbott, B.; Abolins, M.; Abramov, V.; Acharya, B. S.; Adams, D. L.; Adams, M.; Akimov, V.; Alves, G. A.; Amos, N.; Anderson, E. W.; Baarmand, M. M.; Babintsev, V. V.; Babukhadia, L.; Baden, A.; Baldin, B.; Banerjee, S.; Bantly, J.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Bassler, U.; Bean, A.; Belyaev, A.; Beri, S. B.; Bernardi, G.; Bertram, I.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Bhattacharjee, M.; Blazey, G.; Blessing, S.; Boehnlein, A.; Bojko, N. I.; Borcherding, F.; Brandt, A.; Breedon, R.; Briskin, G.; Brock, R.; Brooijmans, G.; Bross, A.; Buchholz, D.; Buescher, V.; Burtovoi, V. S.; Butler, J. M.; Carvalho, W.; Casey, D.; Casilum, Z.; Castilla-Valdez, H.; Chakraborty, D.; Chan, K. M.; Chekulaev, S. V.; Chen, W.; Cho, D. K.; Choi, S.; Chopra, S.; Choudhary, B. C.; Christenson, J. H.; Chung, M.; Claes, D.; Clark, A. R.; Cobau, W. G.; Cochran, J.; Coney, L.; Connolly, B.; Cooper, W. E.; Coppage, D.; Cullen-Vidal, D.; Cummings, M. A.; Cutts, D.; Dahl, O. I.; Davis, K.; de, K.; del Signore, K.; Demarteau, M.; Denisov, D.; Denisov, S. P.; Diehl, H. T.; Diesburg, M.; di Loreto, G.; Draper, P.; Ducros, Y.; Dudko, L. V.; Dugad, S. R.; Dyshkant, A.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Engelmann, R.; Eno, S.; Eppley, G.; Ermolov, P.; Eroshin, O. V.; Estrada, J.; Evans, H.; Evdokimov, V. N.; Fahland, T.; Feher, S.; Fein, D.; Ferbel, T.; Fisk, H. E.; Fisyak, Y.; Flattum, E.; Fleuret, F.; Fortner, M.; Frame, K. C.; Fuess, S.; Gallas, E.; Galyaev, A. N.; Gartung, P.; Gavrilov, V.; Genik, R. J.; Genser, K.; Gerber, C. E.; Gershtein, Y.; Gibbard, B.; Gilmartin, R.; Ginther, G.; Gobbi, B.; Gómez, B.; Gómez, G.; Goncharov, P. I.; González Solís, J. L.; Gordon, H.; Goss, L. T.; Gounder, K.; Goussiou, A.; Graf, N.; Grannis, P. D.; Green, J. A.; Greenlee, H.; Grinstein, S.; Grudberg, P.; Grünendahl, S.; Guglielmo, G.; Gupta, A.; Gurzhiev, S. N.; Gutierrez, G.; Gutierrez, P.; Hadley, N. J.; Haggerty, H.; Hagopian, S.; Hagopian, V.; Hahn, K. S.; Hall, R. E.; Hanlet, P.; Hansen, S.; Hauptman, J. M.; Hays, C.; Hebert, C.; Hedin, D.; Heinson, A. P.; Heintz, U.; Heuring, T.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hoftun, J. S.; Ito, A. S.; Jerger, S. A.; Jesik, R.; Joffe-Minor, T.; Johns, K.; Johnson, M.; Jonckheere, A.; Jones, M.; Jöstlein, H.; Jun, S. Y.; Juste, A.; Kahn, S.; Kajfasz, E.; Karmanov, D.; Karmgard, D.; Kehoe, R.; Kim, S. K.; Klima, B.; Klopfenstein, C.; Knuteson, B.; Ko, W.; Kohli, J. M.; Kostritskiy, A. V.; Kotcher, J.; Kotwal, A. V.; Kozelov, A. V.; Kozlovsky, E. A.; Krane, J.; Krishnaswamy, M. R.; Krzywdzinski, S.; Kubantsev, M.; Kuleshov, S.; Kulik, Y.; Kunori, S.; Landsberg, G.; Leflat, A.; Lehner, F.; Li, J.; Li, Q. Z.; Lima, J. G.; Lincoln, D.; Linn, S. L.; Linnemann, J.; Lipton, R.; Lu, J. G.; Lucotte, A.; Lueking, L.; Lundstedt, C.; Maciel, A. K.; Madaras, R. J.; Manankov, V.; Mani, S.; Mao, H. S.; Markeloff, R.; Marshall, T.; Martin, M. I.; Martin, R. D.; Mauritz, K. M.; May, B.; Mayorov, A. A.; McCarthy, R.; McDonald, J.; McKibben, T.; McMahon, T.; Melanson, H. L.; Merkin, M.; Merritt, K. W.; Miao, C.; Miettinen, H.; Mihalcea, D.; Mincer, A.; Mishra, C. S.; Mokhov, N.; Mondal, N. K.; Montgomery, H. E.; Mostafa, M.; da Motta, H.; Nagy, E.; Nang, F.; Narain, M.; Narasimham, V. S.; Neal, H. A.; Negret, J. P.; Negroni, S.; Norman, D.; Oesch, L.; Oguri, V.; Olivier, B.; Oshima, N.; Padley, P.; Pan, L. J.; Para, A.; Parashar, N.; Partridge, R.; Parua, N.; Paterno, M.; Patwa, A.; Pawlik, B.; Perkins, J.; Peters, M.; Piegaia, R.; Piekarz, H.; Pope, B. G.; Popkov, E.; Prosper, H. B.; Protopopescu, S.; Qian, J.; Quintas, P. Z.; Raja, R.; Rajagopalan, S.; Reay, N. W.; Reucroft, S.; Rijssenbeek, M.; Rockwell, T.; Roco, M.; Rubinov, P.; Ruchti, R.; Rutherfoord, J.; Santoro, A.; Sawyer, L.; Schamberger, R. D.; Schellman, H.; Schwartzman, A.; Sculli, J.; Sen, N.; Shabalina, E.; Shankar, H. C.; Shivpuri, R. K.; Shpakov, D.; Shupe, M.; Sidwell, R. A.; Singh, H.; Singh, J. B.; Sirotenko, V.; Slattery, P.; Smith, E.; Smith, R. P.; Snihur, R.; Snow, G. R.; Snow, J.; Snyder, S.; Solomon, J.; Song, X. F.; Sorín, V.; Sosebee, M.; Sotnikova, N.; Souza, M.; Stanton, N. R.; Steinbrück, G.; Stephens, R. W.; Stevenson, M. L.; Stichelbaut, F.; Stoker, D.; Stolin, V.; Stoyanova, D. A.; Strauss, M.; Streets, K.; Strovink, M.; Stutte, L.; Sznajder, A.; Tarazi, J.; Taylor, W.; Tentindo-Repond, S.; Thomas, T. L.; Thompson, J.; Toback, D.; Trippe, T. G.; Turcot, A. S.; Tuts, P. M.; van Gemmeren, P.; Vaniev, V.; Varelas, N.; Volkov, A. A.; Vorobiev, A. P.; Wahl, H. D.; Wang, H.; Warchol, J.; Watts, G.; Wayne, M.; Weerts, H.; White, A.; White, J. T.; Whiteson, D.; Wightman, J. A.; Willis, S.; Wimpenny, S. J.; Wirjawan, J. V.; Womersley, J.; Wood, D. R.; Yamada, R.; Yamin, P.; Yasuda, T.; Yip, K.; Youssef, S.; Yu, J.; Yu, Z.; Zanabria, M.; Zheng, H.; Zhou, Z.; Zhu, Z. H.; Zielinski, M.; Zieminska, D.; Zieminski, A.; Zutshi, V.; Zverev, E. G.; Zylberstejn, A.

    2000-06-01

    Inclusive dijet production at large pseudorapidity intervals ( Δη) between the two jets has been suggested as a regime for observing Balitsky-Fadin-Kuraev-Lipatov (BFKL) dynamics. We have measured the dijet cross section for large Δη in pp¯ collisions at s = 1800 and 630 GeV using the D0 detector. The partonic cross section increases strongly with the size of Δη. The observed growth is even stronger than expected on the basis of BFKL resummation in the leading logarithmic approximation. The growth of the partonic cross section can be accommodated with an effective BFKL intercept of αBFKL\\(20 GeV\\) = 1.65+/-0.07.

  8. Interference analysis of the pion-production volume for hadron-hadron and nucleus-nucleus collisions at primary momenta in the range 3.8-5.2 GeV/ c per nucleon

    NASA Astrophysics Data System (ADS)

    Anikina, M. Kh.; Belyaev, A. V.; Golokhvastov, A. I.; Lukstins, J.; Troyan, A. Yu.; Troyan, Yu. A.

    2009-03-01

    By the method of interference correlations, it was directly proven for the first time that the pion-production volume in neutron-proton ( np) interactions at primary momenta in the range 3.8-5.2 GeV/ c is not constant. It was shown that the interference patterns for np and MgMg interactions are identical. It was established that the rate of expansion of the pion-production volume does not depend on the type of interacting particles (from np and e + e - to PbPb collisions) or on their primary energy (from 3.4 to 200 GeV). It was found that the determination of dimensions is possible only for individual approximately stationary volume elements in their rest frame. A change in the kinematical properties of the subensemble under analysis leads to changes both in the size of the respective element and in its shape.

  9. Measurement of inelastic cross sections in relativistic deuteron-on-lead reactions

    SciTech Connect

    Zamani, M.; Stoulos, S.; Fragopoulou, M.; Krivopustov, M.

    2010-10-15

    The inelastic cross section of deuterons hitting a lead target has been determined by the beam attenuation technique. A spallation neutron source based on a lead target was irradiated with 1.6- and 2.5-GeV deuterons. Solid-state nuclear track detectors as well as the activation method were used to obtain the neutron and proton distribution along the surface of the source. The attenuation coefficient was estimated by fitting the experimental data and taking into account the buildup effect and the beam attenuation. Using the attenuation coefficient, the interaction length and then the inelastic cross section of deuterons on lead reaction were determined.

  10. Lead toxicity: a review.

    PubMed

    Wani, Ab Latif; Ara, Anjum; Usmani, Jawed Ahmad

    2015-06-01

    Lead toxicity is an important environmental disease and its effects on the human body are devastating. There is almost no function in the human body which is not affected by lead toxicity. Though in countries like US and Canada the use of lead has been controlled up to a certain extent, it is still used vehemently in the developing countries. This is primarily because lead bears unique physical and chemical properties that make it suitable for a large number of applications for which humans have exploited its benefits from historical times and thus it has become a common environmental pollutant. Lead is highly persistent in the environment and because of its continuous use its levels rise in almost every country, posing serious threats. This article reviews the works listed in the literature with recent updates regarding the toxicity of lead. Focus is also on toxic effects of lead on the renal, reproductive and nervous system. Finally the techniques available for treating lead toxicity are presented with some recent updates.

  11. Lead toxicity: a review

    PubMed Central

    Ara, Anjum; Usmani, Jawed Ahmad

    2015-01-01

    Lead toxicity is an important environmental disease and its effects on the human body are devastating. There is almost no function in the human body which is not affected by lead toxicity. Though in countries like US and Canada the use of lead has been controlled up to a certain extent, it is still used vehemently in the developing countries. This is primarily because lead bears unique physical and chemical properties that make it suitable for a large number of applications for which humans have exploited its benefits from historical times and thus it has become a common environmental pollutant. Lead is highly persistent in the environment and because of its continuous use its levels rise in almost every country, posing serious threats. This article reviews the works listed in the literature with recent updates regarding the toxicity of lead. Focus is also on toxic effects of lead on the renal, reproductive and nervous system. Finally the techniques available for treating lead toxicity are presented with some recent updates. PMID:27486361

  12. Rapid Lead Screening Test

    MedlinePlus

    ... and treated earlier before the damaging effects of lead poisoning occur. U.S. Department of Health and Human Services ... exceed 10μg/dL, the threshold used to indicate lead poisoning. The American Academy of Pediatrics (AAP) estimates one ...

  13. Lead Poisoning in Children.

    ERIC Educational Resources Information Center

    Lin-Fu, Jane S.

    This publication is a guide to help social and health workers plan a preventive campaign against lead poisoning, a cause of mental retardation other neurological handicaps, and death among children. The main victims are 1- to 6-year-olds living in areas where deteriorating housing prevails. Among the causes of lead poisoning are: ingestion of…

  14. Lead carbonate scintillator materials

    DOEpatents

    Derenzo, Stephen E.; Moses, William W.

    1991-01-01

    Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses.

  15. Bonding aluminum beam leads

    NASA Technical Reports Server (NTRS)

    Burkett, F. S.

    1978-01-01

    Report makes it relatively easy for hybrid-circuit manufacturers to convert integrated circuit chips with aluminum bead leads. Report covers: techniques for handling tiny chips; proper geometries for ultrasonic bonding tips; best combinations of pressure, pulse time, and ultrasonic energy for bonding; and best thickness for metal films to which beam leads are bonded.

  16. Supersonic Leading Edge Receptivity

    NASA Technical Reports Server (NTRS)

    Maslov, Anatoly A.

    1998-01-01

    This paper describes experimental studies of leading edge boundary layer receptivity for imposed stream disturbances. Studies were conducted in the supersonic T-325 facility at ITAM and include data for both sharp and blunt leading edges. The data are in agreement with existing theory and should provide guidance for the development of more complete theories and numerical computations of this phenomena.

  17. LEAD IN CANDLE EMISSIONS

    EPA Science Inventory

    The candle-using public should be made aware that the core of candle wicks may contain lead. Used as a stiffening agent to keep the wick out of the molten wax, lead can be emitted as particulate to the air and then deposited on indoor surfaces. To define the problem, 100 sets of ...

  18. Lead toxicity: current concerns.

    PubMed Central

    Goyer, R A

    1993-01-01

    Over the 20-year period since the first issue of Environmental Health Perspectives was published, there has been considerable progress in the understanding of the potential toxicity of exposure to lead. Many of these advances have been reviewed in published symposia, conferences, and review papers in EHP. This brief review identifies major advances as well as a number of current concerns that present opportunities for prevention and intervention strategies. The major scientific advance has been the demonstration that blood lead (PbB) levels of 10-15 micrograms/dL in newborn and very young infants result in cognitive and behavioral deficits. Further support for this observation is being obtained by prospective or longitudinal studies presently in progress. The mechanism(s) for the central nervous system effects of lead is unclear but involve lead interactions within calcium-mediated intracellular messenger systems and neurotransmission. Effects of low-level lead exposure on blood pressure, particularly in adult men, may be related to the effect of lead on calcium-mediated control of vascular smooth muscle contraction and on the renin-angiotensin system. Reproductive effects of lead have long been suspected, but low-level effects have not been well studied. Whether lead is a carcinogen or its association with renal adenocarcinoma is a consequence of cystic nephropathy is uncertain. Major risk factors for lead toxicity in children in the United States include nutrition, particularly deficiencies of essential metals, calcium, iron, and zinc, and housing and socioeconomic status. A goal for the year 2000 is to reduce prevalence of blood lead levels exceeding 15 micrograms/dL. Images FIGURE 2. PMID:8354166

  19. Lead toxicity: Current concerns

    SciTech Connect

    Goyer, R.A. )

    1993-04-01

    Over the 20-year period since the first issue of Environmental Health Perspectives was published, there has been considerable progress in the understanding of the potential toxicity of exposure to lead. Many of these advances have been reviewed in published symposia, conferences, and review papers in EHP. This brief review identifies major advances as well as a number of current concerns that present opportunities for prevention and intervention strategies. The major scientific advance has been the demonstration that blood lead (PbB) levels of 10-15 micrograms/dL in newborn and very young infants result in cognitive and behavioral deficits. Further support for this observation is being obtained by prospective or longitudinal studies presently in progress. The mechanism(s) for the central nervous system effects of lead is unclear but involve lead interactions within calcium-mediated intracellular messenger systems and neurotransmission. Effects of low-level lead exposure on blood pressure, particularly in adult men, may be related to the effect of lead on calcium-mediated control of vascular smooth muscle contraction and on the renin-angiotensin system. Reproductive effects of lead have long been suspected, but low-level effects have not been well studied. Whether lead is a carcinogen or its association with renal adenocarcinoma is a consequence of cystic nephropathy is uncertain. Major risk factors for lead toxicity in children in the United States include nutrition, particularly deficiencies of essential metals, calcium, iron, and zinc, and housing and socioeconomic status. A goal for the year 2000 is to reduce prevalence of blood lead levels exceeding 15 micrograms/dL. 97 refs.

  20. The Variable Crab Nebula: Evidence for a Connection Between GeV Flares and Hard X-ray Variations

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Harding, A. K.; Hays, E. A.; Cherry, M. L.; Case, G. L.; Finger, M. H.; Jenke, P.; Zhang, X.

    2016-01-01

    In 2010, hard X-ray variations (Wilson-Hodge et al. 2011) and GeV flares (Tavani et al 2011, Abdo et al. 2011) from the Crab Nebula were discovered. Connections between these two phenomena were unclear, in part because the timescales were quite different, with yearly variations in hard X-rays and hourly to daily variations in the GeV flares. The hard X-ray flux from the Crab Nebula has again declined since 2014, much like it did in 2008-2010. During both hard X-ray decline periods, the Fermi LAT detected no GeV flares, suggesting that injection of particles from the GeV flares produces the much slower and weaker hard X-ray variations. The timescale for the particles emitting the GeV flares to lose enough energy to emit synchrotron photons in hard X-rays is consistent with the yearly variations observed in hard X-rays and with the expectation that the timescale for variations slowly increases with decreasing energy. This hypothesis also predicts even slower and weaker variations below 10 keV, consistent with the non-detection of counterparts to the GeV flares by Chandra (Weisskopf et al 2013). We will present a comparison of the observed hard X-ray variations and a simple model of the decay of particles from the GeV flares to test our hypothesis.

  1. The Variable Crab Nebula: Evidence for a Connection between GeV flares and Hard X-ray Variations

    NASA Astrophysics Data System (ADS)

    Wilson-Hodge, Colleen A.; Kust Harding, Alice; Hays, Elizabeth A.; Cherry, Michael L.; Case, Gary L.; Finger, Mark H.; Jenke, Peter; Zhang, Xiao-Ling

    2016-04-01

    In 2010, hard X-ray variations (Wilson-Hodge et al. 2011) and GeV flares (Tavani et al 2011, Abdo et al. 2011) from the Crab Nebula were discovered. Connections between these two phenomena were unclear, in part because the timescales were quite different, with yearly variations in hard X-rays and hourly to daily variations in the GeV flares. The hard X-ray flux from the Crab Nebula has again declined since 2014, much like it did in 2008-2010. During both hard X-ray decline periods, the Fermi LAT detected no GeV flares, suggesting that injection of particles from the GeV flares produces the much slower and weaker hard X-ray variations. The timescale for the particles emitting the GeV flares to lose enough energy to emit synchrotron photons in hard X-rays is consistent with the yearly variations observed in hard X-rays and with the expectation that the timescale for variations slowly increases with decreasing energy. This hypothesis also predicts even slower and weaker variations below 10 keV, consistent with the non-detection of counterparts to the GeV flares by Chandra (Weisskopf et al 2013). We will present a comparison of the observed hard X-ray variations and a simple model of the decay of particles from the GeV flares to test our hypothesis.

  2. a Study of Proton Induced Nuclear Fragmentation in the Threshold Region: 1 TO 20 GEV

    NASA Astrophysics Data System (ADS)

    Sangster, Thomas Craig

    This thesis contains the details of the experimental set-up and final results of BNL E-778. The experimental objective was to study proton induced nuclear fragmentation using an internal gas jet target facility that was specifically designed for this experiment and installed in the AGS main ring. The fragment telescopes were designed to measure a broad range of fragment charge (2 to 14) and kinetic energy (5 to 100 MeV). Using a mixed gas target (1% or 3% Xe with H(,2)), normalized fragment production cross sections were obtained by separately measuring p-p elastic production from the H(,2) component. Fragment production cross sections are observed to rise dramatically ((TURN) x 10) for incident proton energies between 1 and 10 GeV, while above 10 GeV, fragment production appears to be independent of the incident proton energy. The measured differential cross sections (above 10 GeV) are found to agree (within 20%) with the differential cross sections measured during a previous internal target experiment (E-591) conducted at FNAL, where the lowest available proton energies were 50 GeV. The measured fragment kinetic energy spectra (above 10 GeV) are fit with a functional form motivated by the observation that fragment production in an excited nuclear system is consistent with a critical phenomenon (a liquid -gas phase transition). The failure of this functional form at the lowest available incident energies (below 10 GeV) is interpreted as the observation of an additional fragment production mechanism. Recent theoretical and experimental evidence for an asymmetric fission process (binary decay), is used to modify the original functional form for the two-component spectra. It is concluded that, in the threshold region, two fragment production mechanisms are observed. Although insufficient information is available to uniquely separate the two components, certain features of the asymmetric fission mechanism are identified. The observed p-nucleus systematics are also

  3. 130 GeV fingerprint of right-handed neutrino dark matter

    NASA Astrophysics Data System (ADS)

    Bergström, Lars

    2012-11-01

    Recently, an interesting indication for a dark matter signal in the form of a narrow line, or maybe two lines and/or an internal bremsstrahlung feature, has been found in analyses of public data from the Fermi-LAT satellite detector. As recent analyses have also shown that there is little sign of extra contributions to continuum photons, it is natural to investigate leptophilic interacting massive particle models. We show that a model of radiatively generated neutrino masses may have the properties needed to explain the Fermi-LAT structure around 130 GeV. This model was proposed some 10 years ago, and predicted a clearly observable γ-ray signal in the Fermi-LAT (then GLAST) detector. Here, we update and improve that analysis, and show as an example that a right-handed neutrino of mass 135 GeV should give rise to three conspicuous effects: a broad internal bremsstrahlung bump with maximum around 120 GeV, a 2γ line around 135 GeV, and a Zγ line at 119.6 GeV (neglected in the previous work). These features together give a good fit to the 130 GeV structure, given the present energy resolution of the Fermi-LAT data. An attractive feature of the model is that the particle physics properties are essentially fixed, once the relic density and the mass of the right-handed neutrino dark matter particle have been set. Puzzling features of the data at present are a slight displacement of the signal from the galactic center, and a needed boost factor of order 5-15. This presents interesting challenges for numerical simulations including both baryons and dark matter on scales of 100 pc, and perhaps a need to go beyond the simplest halo models. With upcoming experiments having better energy resolution, or with future Fermi-LAT data, the double-peak structure with a definite predicted ratio of the strengths of the two lines and the internal bremsstrahlung feature should be seen, if this model is correct. With the planned satellite GAMMA-400, a striking fingerprint of this dark

  4. THERMAL SHOCK INDUCED BY A 24 GEV PROTON BEAM IN THE TEST WINDOWS OF THE MUON COLLIDER EXPERIMENT E951 - TEST RESULTS AND THEORETICAL PREDICTIONS.

    SciTech Connect

    SIMOS,N.; KIRK,H.; FINFROCK,C.; PRIGL,R.; BROWN,K.; KAHN,S.; LUDEWIG,H.; MCDONALDK.; CATES,M.; TSAI,J.; BESHEARS,D.; RIEMER,B.

    2001-11-11

    The need for intense muon beams for muon colliders and neutrino factories has lead to a concept of a high performance target station in which a 1-4 MW proton beam of 6-24 GeV impinges on a target inside a high field solenoid channel. While novel technical issues exist regarding the survivability of the target itself, the need to pass the tightly focused proton beam through beam windows poses additional concerns. In this paper, issues associated with the interaction of a proton beam with window structures designed for the muon targetry experiment E951 at BNL are explored. Specifically, a 24 GeV proton beam up to 16 x 10{sup 12} per pulse and a pulse length of approximately 100 ns is expected to be tightly focused (to 0.5 mm rms one sigma radius) on an experimental target. Such beam will induce very high thermal, quasi-static and shock stresses in the window structure that exceed the strength of most common materials. In this effort, a detailed assessment of the thermal/shock response of beam windows is attempted with a goal of identifying the best window material candidate. Further, experimental strain results and comparison with the predicted values are presented and discussed.

  5. Measurement of ratios of νμ charged-current cross sections on C, Fe, and Pb to CH at neutrino energies 2-20 GeV.

    PubMed

    Tice, B G; Datta, M; Mousseau, J; Aliaga, L; Altinok, O; Barrios Sazo, M G; Betancourt, M; Bodek, A; Bravar, A; Brooks, W K; Budd, H; Bustamante, M J; Butkevich, A; Martinez Caicedo, D A; Castromonte, C M; Christy, M E; Chvojka, J; da Motta, H; Devan, J; Dytman, S A; Díaz, G A; Eberly, B; Felix, J; Fields, L; Fiorentini, G A; Gago, A M; Gallagher, H; Gran, R; Harris, D A; Higuera, A; Hurtado, K; Jerkins, M; Kafka, T; Kordosky, M; Kulagin, S A; Le, T; Maggi, G; Maher, E; Manly, S; Mann, W A; Marshall, C M; Martin Mari, C; McFarland, K S; McGivern, C L; McGowan, A M; Miller, J; Mislivec, A; Morfín, J G; Muhlbeier, T; Naples, D; Nelson, J K; Norrick, A; Osta, J; Palomino, J L; Paolone, V; Park, J; Patrick, C E; Perdue, G N; Rakotondravohitra, L; Ransome, R D; Ray, H; Ren, L; Rodrigues, P A; Savage, D G; Schellman, H; Schmitz, D W; Simon, C; Snider, F D; Solano Salinas, C J; Tagg, N; Valencia, E; Velásquez, J P; Walton, T; Wolcott, J; Zavala, G; Zhang, D; Ziemer, B P

    2014-06-13

    We present measurements of ν(μ) charged-current cross section ratios on carbon, iron, and lead relative to a scintillator (CH) using the fine-grained MINERvA detector exposed to the NuMI neutrino beam at Fermilab. The measurements utilize events of energies 2GeV, with ⟨E(ν)⟩ = 8 GeV, which have a reconstructed μ(-) scattering angle less than 17° to extract ratios of inclusive total cross sections as a function of neutrino energy E(ν) and flux-integrated differential cross sections with respect to the Bjorken scaling variable x. These results provide the first high-statistics direct measurements of nuclear effects in neutrino scattering using different targets in the same neutrino beam. Measured cross section ratios exhibit a relative depletion at low x and enhancement at large x. Both become more pronounced as the nucleon number of the target nucleus increases. The data are not reproduced by GENIE, a conventional neutrino-nucleus scattering simulation, or by the alternative models for the nuclear dependence of inelastic scattering that are considered.

  6. Measurements of the performance of a beam condition monitor prototype in a 5 GeV electron beam

    NASA Astrophysics Data System (ADS)

    Hempel, M.; Afanaciev, K.; Burtowy, P.; Dabrowski, A.; Henschel, H.; Idzik, M.; Karacheban, O.; Lange, W.; Leonard, J.; Levy, I.; Lohmann, W.; Pollak, B.; Przyborowski, D.; Ryjov, V.; Schuwalow, S.; Stickland, D.; Walsh, R.; Zagozdzinska, A.

    2016-08-01

    The Fast Beam Conditions Monitor, BCM1F, in the Compact Muon Solenoid, CMS, experiment was operated since 2008 and delivered invaluable information on the machine induced background in the inner part of the CMS detector supporting a safe operation of the inner tracker and high quality data. Due to the shortening of the time between two bunch crossings from 50 ns to 25 ns and higher expected luminosity at the Large Hadron Collider, LHC, in 2015, BCM1F needed an upgrade to higher bandwidth. In addition, BCM1F is used as an on-line luminometer operated independently of CMS. To match these requirements, the number of single crystal diamond sensors was enhanced from 8 to 24. Each sensor is subdivided into two pads, leading to 48 readout channels. Dedicated fast front-end ASICs were developed in 130 nm technology, and the back-end electronics is completely upgraded. An assembled prototype BCM1F detector comprising sensors, a fast front-end ASIC and optical analog readout was studied in a 5 GeV electron beam at the DESY-II accelerator. Results on the performance are given.

  7. IDENTIFIED PARTICLE TRANSVERSE MOMENTUM SPECTRA IN P+P AND D+AU COLLISIONS AT SNN=200 GEV.

    SciTech Connect

    NETRAKANTI, P.K.

    2005-10-24

    The transverse momentum (pT) spectra for identified charged pions, protons and anti-protons from p+p and d+Au collisions are measured around midrapidity (|y| < 0.5) over the range of 0.3 < p{sub T} < 10 GeV/c at {radical}s{sub NN} = 200 GeV. The charged pion and proton+anti-proton spectra at high p{sub T} in p+p collisions have been compared with the next-to-leading order perturbative quantum chromodynamic (NLO pQCD) calculations with a specific fragmentation scheme. The p/{pi}{sup +} and {bar p}/{pi}{sup -} has been studied at high p{sub T}. The nuclear modification factor (R{sub dAu}) shows that the identified particle Cronin effects around midrapidity are significantly non-zero for charged pions and to be even larger for protons at intermediate p{sub T} (2 < p{sub T} < 5 GeV/c).

  8. American Lead Action Memorandum

    EPA Pesticide Factsheets

    ACTION MEMORANDUM— Request for a Time-Critical Removal Action andExemption from the $2 Million and 12-Month Statutory Limits at the AmericanLead Site, Indianapolis, Marion County, Indiana (Site ID #B56J)

  9. Leading Causes of Blindness

    MedlinePlus

    ... Cataract. Photo courtesy of National Eye Institute, NIH Cataracts Cataracts are a clouding of the lenses in your ... older people. More than 22 million Americans have cataracts. They are the leading cause of blindness in ...

  10. Learn about Lead

    MedlinePlus

    Jump to main content US EPA United States Environmental Protection Agency Search Search Lead Share Facebook Twitter Google+ ... 2 pp, 291 K, About PDF ) The most important step parents, doctors, and others can take is ...

  11. Lead Poisoning Prevention Tips

    MedlinePlus

    ... North Dakota Ohio Oklahoma Oregon Pennsylvania Philadelphia Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont ... up paint debris after work is completed. Create barriers between living/play areas and lead sources. Until ...

  12. Feature Leads That Work.

    ERIC Educational Resources Information Center

    Konkle, Bruce E.

    1999-01-01

    Presents advice to scholastic journalists on writing leads for feature stories. Discusses using a summary, a question, a direct quote, a first-person account, alliteration, a shocking statement, contrast, historical reference, descriptions, narratives, metaphors, and similes. (RS)

  13. Lead carbonate scintillator materials

    DOEpatents

    Derenzo, S.E.; Moses, W.W.

    1991-05-14

    Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses. 3 figures.

  14. High sensitive X-ray films to detect electron showers in 100 GeV region

    NASA Technical Reports Server (NTRS)

    Taira, T.; Shirai, T.; Tateyama, N.; Torii, S.; Nishimura, J.; Fujii, M.; Yoshida, A.; Aizu, H.; Nomura, Y.; Kazuno, M.

    1985-01-01

    Nonscreen type X-ray films were used in emulsion chamber experiments to detect high energy showers in cosmic rays. Ranges of the detection threshold is from about 1 to 2 TeV depending on the exposure conditions. Different types of X-ray films and sheets i.e. high sensitive screen type X-ray films and luminescence sheets were tested. The threshold of the shower detection is found to be about 200 GeV, which is much lower than that of nonscreen type X-ray films. These films are useful to detect showers in the medium energy range, a few hundred GeV, of the cosmic ray electrons.

  15. Coherent [pi][sup 0] photoproduction on the deuteron up to 4 GeV

    SciTech Connect

    Meekins, D.G.; Armstrong, C.S. ); Meekins, D.G.; Abbott, D.J.; Baker, O.K.; Cardman, L.; Carlini, R.D.; Dunne, J.A.; Ent, R.; Keppel, C.E.; Mack, D.J.; Mitchell, J.H.; Tang, L.; Vulcan, W.F.; Wood, S.A.; Yan, C. ); Ahmidouch, A.; Madey, R.; Suleiman, R. ); Arrington, J.; Filippone, B.W.; McKeown, R.D. ); Assamagan, K.A.; Baker, O.K.; Cha, J.; Eden, T.; Gueye, P.L.; Harvey, M.; Hinton, W.; Keppel, C.E.; Madey, R.; Niculescu, G.; Niculescu, I.; Savage, G.; Tang, L. ); Barrow, S.P.; Beatty, D.P.; Fortune, H.T.; Koltenuk,

    1999-11-01

    The differential cross section for [sup 2]H([gamma],d)[pi][sup 0] has been measured at deuteron center-of-mass angles of 90[degree] and 136[degree]. This work reports the first data for this reaction above a photon energy of 1 GeV, and permits a test of the apparent constituent counting rule and reduced nuclear amplitude behavior as observed in elastic [ital ed] scattering. Measurements were performed up to a photon energy of 4.0 GeV, and are in good agreement with previous lower energy measurements. Overall, the data are inconsistent with both constituent-counting rule and reduced nuclear amplitude predictions. [copyright] [ital 1999] [ital The American Physical Society

  16. Coherent {pi}{sup 0} photoproduction on the deuteron up to 4 GeV

    SciTech Connect

    Meekins, D.G.; Armstrong, C.S.; Meekins, D.G.; Abbott, D.J.; Baker, O.K.; Cardman, L.; Carlini, R.D.; Dunne, J.A.; Ent, R.; Keppel, C.E.; Mack, D.J.; Mitchell, J.H.; Tang, L.; Vulcan, W.F.; Wood, S.A.; Yan, C.; Ahmidouch, A.; Madey, R.; Suleiman, R.; Arrington, J.; Filippone, B.W.; McKeown, R.D.; Assamagan, K.A.; Baker, O.K.; Cha, J.; Eden, T.; Gueye, P.L.; Harvey, M.; Hinton, W.; Keppel, C.E.; Madey, R.; Niculescu, G.; Niculescu, I.; Savage, G.; Tang, L.; Barrow, S.P.; Beatty, D.P.; Fortune, H.T.; Koltenuk, D.M.; Beck, D.H.; Bochna, C.; Cadman, R.V.; Forest, T.A.; Gao, H.; Holt, R.J.; Miller, M.A.; Nathan, A.M.; Owen, B.R.; Simicevic, N.; Terburg, B.P.; Williamson, S.E.; Beedoe, S.Y.; Danagoulian, S.; Beise, E.J.; Breuer, H.; Chant, N.S.; Collins, G.; Duncan, F.A.; Gustafsson, K.K.; Lung, A.F.; Mohring, R.M.; Belz, J.E.; Bosted, P.E.; Brash, E.J.; and others

    1999-11-01

    The differential cross section for {sup 2}H({gamma},d){pi}{sup 0} has been measured at deuteron center-of-mass angles of 90{degree} and 136{degree}. This work reports the first data for this reaction above a photon energy of 1 GeV, and permits a test of the apparent constituent counting rule and reduced nuclear amplitude behavior as observed in elastic {ital ed} scattering. Measurements were performed up to a photon energy of 4.0 GeV, and are in good agreement with previous lower energy measurements. Overall, the data are inconsistent with both constituent-counting rule and reduced nuclear amplitude predictions. {copyright} {ital 1999} {ital The American Physical Society}

  17. SRF CAVITY PERFORMANCE OVERVIEW FOR THE 12 GeV UPGRADE

    SciTech Connect

    A. Burrill, G.K. Davis, C.E. Reece, A.V. Reilly, M. Stirbet

    2012-07-01

    The CEBAF accelerator, a recirculating CW electron accelerator that is currently operating at Jefferson Laboratory, is in the process of having 10 new cryomodules installed to allow for the maximum beam energy to be increased from 6 GeV to 12 GeV. This upgrade required the fabrication, processing and RF qualification of 80, seven cell elliptical SRF cavities, a process that was completed in February 2012. The RF performance achieve in the vertical testing dewars has exceeded the design specification by {approx}25% and is a testament to the cavity design and processing cycle that has been implemented. This paper will provide a summary of the cavity RF performance in the vertical tests, as well as review the overall cavity processing cycle and duration for the project.

  18. Brilliant GeV electron beam with narrow energy spread generated by a laser plasma accelerator

    NASA Astrophysics Data System (ADS)

    Hu, Ronghao; Lu, Haiyang; Shou, Yinren; Lin, Chen; Zhuo, Hongbin; Chen, Chia-erh; Yan, Xueqing

    2016-09-01

    The production of GeV electron beam with narrow energy spread and high brightness is investigated using particle-in-cell simulations. A controlled electron injection scheme and a method for phase-space manipulation in a laser plasma accelerator are found to be essential. The injection is triggered by the evolution of two copropagating laser pulses near a sharp vacuum-plasma transition. The collection volume is well confined and the injected bunch is isolated in phase space. By tuning the parameters of the laser pulses, the parameters of the injected electron bunch, such as the bunch length, energy spread, emittance and charge, can be adjusted. Manipulating the phase-space rotation with the rephasing technique, the injected electron bunch can be accelerated to GeV level while keeping relative energy spread below 0.5% and transverse emittance below 1.0 μ m . The results present a very promising way to drive coherent x-ray sources.

  19. An electron front end for the Fermilab multi-species 8 GeV SCRF linac

    SciTech Connect

    Philippe R.-G. Piot; G W Foster

    2004-07-08

    Fermilab is considering a 8 GeV superconducting linac whose primary mission is to serve as an intense H{sup -} injector for the main injector. This accelerator is also planned to be used for accelerating various other species (e.g. electrons, protons and muons). In the present paper we investigate the possibility of such a linac to accelerate high-brightness electron beam up to {approx} 7 GeV. We propose a design for the electron front end based on a photoinjector and consider the electron beam dynamics along the linac. Start-to-end simulations of the full accelerator for electrons are presented. Finally the potential applications of such an electron beam are outlined.

  20. Study of kaonic final states in {pi}{sup -} p at 190 GeV

    SciTech Connect

    Schlueter, Tobias

    2010-08-05

    We discuss the status of analyses of data recorded in the 2008 and 2009 runs of the COMPASS experiment at CERN with sepcific focus on final states with K{sub S}{sup 0}K{sub S}{sup 0{pi}}- and K{sup +}K{sup -{pi}-} produced in {pi}{sup -}(190 GeV)p scattering. The interest in such final states is motivated by a summary of some of the relevant literature. We also show first results from the analysis of diffractively produced KK-bar{pi} states. Two prominent three-body structures, one around 1.8 GeV, the other at 2.2 GeV decaying via known KK-bar and K{pi} states are seen.

  1. RF System Modelling for the JLab 12 GeV Upgrade and RIA

    SciTech Connect

    Alicia Hofler; Jean Delayen; J. Hovater; Stefan Simrock

    2003-10-01

    Jefferson Lab is using the MATLAB/Simulink library for RF systems developed for TTF as a tool to develop a model of its 12 GeV upgrade and the Rare Isotope Accelerator (RIA) to study the behavior and performance of the RF control system. The library includes elements describing a superconducting cavity with mechanical modes excited by Lorentz Force effects and a klystron including saturation characteristics. It can be applied to gradient and phase or in-phase and quadrature control for cavities operating in either a self-excited loop or generator driven mode. We will provide an overview of the theory behind the library components and present initial modeling results for Jefferson Lab's 12 GeV Upgrade and the RIA systems.

  2. Superconducting Magnets for the 12 GeV Upgrade at Jefferson Lab

    SciTech Connect

    Fair, Ruben J.; Young, Glenn R.

    2015-06-01

    Jefferson Laboratory is embarked on an energy upgrade to its flagship continuous electron beam accelerator in order to expand the scope of its research capabilities and probe further into the structure of nuclear particles. The 12 GeV upgrade includes the design, manufacture, integration, installation and commissioning of eight different superconducting magnets in three separate experimental halls. The effort involves other national laboratories, universities and industry spanning three countries. This paper will summarize the key characteristics of these magnets, ranging in size from 0.2 to 23 MJ in stored energy, and featuring many different types and configurations. The paper will also give an overview of the specific technical challenges for each magnet, and a status report on magnet manufacture and expected delivery dates. The 12GeV upgrade at J-Lab represents the largest superconducting magnet fabrication and installation program currently ongoing in the United States and this paper will present the breadth of collaborations supporting it.

  3. PLIAC: A Pion Linac facility for 1-GEV pion physics at LAMPF

    SciTech Connect

    Spalek, G.; Thiessen, H.A.

    1991-01-01

    A design study for a Pion Linac (PILAC) at LAMPF is underway at Los Alamos. We present here a reference design for a system of pion source, linac, and high-resolution beam line and spectrometer that will provide 10{sup 9} pions per second on target and 200-keV resolution for the ({pi}{sup +}, K{sup +}) reaction at 0.92 GeV. A general-purpose beam line that delivers both positive and negative pions in the energy range 0.4--1.1 GeV is included, thus opening up the possibility of a broad experimental program as is discussed in this report. A kicker-based beam sharing system allows delivery of beam to both beamlines simultaneously with independent sign and energy control. Because the pion linac acts like an rf particle separator, all beams produced by PILAC will be free of electron (or positron) and proton contamination.

  4. PLIAC: A Pion Linac facility for 1-GEV pion physics at LAMPF

    SciTech Connect

    Spalek, G.; Thiessen, H.A.

    1991-12-31

    A design study for a Pion Linac (PILAC) at LAMPF is underway at Los Alamos. We present here a reference design for a system of pion source, linac, and high-resolution beam line and spectrometer that will provide 10{sup 9} pions per second on target and 200-keV resolution for the ({pi}{sup +}, K{sup +}) reaction at 0.92 GeV. A general-purpose beam line that delivers both positive and negative pions in the energy range 0.4--1.1 GeV is included, thus opening up the possibility of a broad experimental program as is discussed in this report. A kicker-based beam sharing system allows delivery of beam to both beamlines simultaneously with independent sign and energy control. Because the pion linac acts like an rf particle separator, all beams produced by PILAC will be free of electron (or positron) and proton contamination.

  5. Control system features of the argonne 6 GeV synchrotron light source

    SciTech Connect

    Knott, M.; Gunderson, G.; Lenkszus, F.; McDowell, W.

    1985-10-01

    The Argonne 6 GeV synchrotron light source design consists of an electron/positron linac, a fast-cycling 6 GeV synchrotron, and the storage ring itself. The design attributes are presented elsewhere in this conference. Three aspects of the overall design call for special attention in the control system design: First, the operation of a high energy positron accelerator in a fast cycling mode may demand high processing performance and high data throughput rates. Second, the high energy and small beam size projected (100 x 200 microns) will call for high resolution data processing and control precision in many areas. Finally, the necessity to provide independent, orthogonal control for each of up to 32 insertion device light beams both from the point of view of the experimental requirements and from the need to remove the effects of component vibration will require dedicated, high performance processors.

  6. Measurements of Deuteron Photodisintegration up to 4.0 GeV

    SciTech Connect

    C. Bochna; B. P. Terburg; D. J. Abbott; A. Ahmidouch; C. S. Armstrong; J. Arrington; K. A. Assamagan; O. K. Baker; S. P. Barrow; D. P. Beatty; D. H. Beck; S. Y. Beedoe; E. J. Beise; J. E. Belz; P. E. Bosted; E. J. Brash; H. Breuer; R. V. Cadman; L. Cardman; R. D. Carlini; J. Cha; N. S. Chant; G. Collins; C. Cothran; W.J. Cummings; S. Danagoulian; F.A. Duncan; J.A. Dunne; D. Dutta; T. Eden; R. Ent; B. W. Filippone; T. A. Forest; H. T. Fortune; V. V. Frolov; H. Gao; D. F. Geesaman; R. Gilman; P.L.J. Gucye; K.K. Gustafsson; J.O. Hansen; M. Harvey; W. Hinton; R.J. Holt; H.E. Jackson; C.E. Keppel; M. A. Khandaker; E. R. Kinney; A. Klein; D. M. Koltenuk; G. Kumbartzki; A. F. Lung; D. J. Mack; R. Madey; P. Markowitz; K. W. McFarlane; R. D. McKeown; D. G. Meekins; Z.E. Meziani; M. A. Miller; J. H. Mitchell; H. G. Mkrtchyan; R. M. Mohring; J. Napolitano; A. M. Nathan; G. Niculescu; I. Niculescu; T. G. O'Neill; B. R. Owen; S. F. Pate; D. H. Potterveld; J. W. Price; G. L. Rakness; R. Ransome; J. Reinhold; P.M. Rutt; C.W. Salgado; G. Savage; R.E. Segel; N. Simicevic; P. Stoler; R. Suleiman; L. Tang; D. van Westrum; W. F. Vulcan; S. Williamson; M. T. Witkowski; S. A. Wood; C. Yan; B. Zeidman

    1998-07-01

    The first measurements of the differential cross section for the d(gamma,p)n reaction up to 4.0 GeV were performed at the Continuous Electron Beam Accelerator Facility (CEBAF) at Thomas Jefferson Laboratory. We report the cross sections at the proton center-of-mass angles of 36{sup o}, 52{sup o}, 69{sup o}, and 89{sup o}. These results are in reasonable agreement with previous measurements at lower energy. The 89{sup o} and 69{sup o} data show constituent-counting-rule behavior up to 4.0 GeV photon energy. The 52{sup o} and 36{sup o} data disagree with the counting-rule behavior.

  7. Commissioning and operational results of the 12 GeV helium compression system at Jlab

    SciTech Connect

    Knudsen, Peter N.; Ganni, Venkatarao; Dixon, Kelly D.; Norton, Robert O.; Creel, Jonathan D.

    2015-12-01

    The new compressor system at Jefferson Lab (JLab) for the 12 GeV upgrade was commissioned in the spring of 2013 and incorporates many design changes, discussed in previous publications, to improve the operational range, efficiency, reliability and maintainability as compared to previous compressor skids used for this application. The 12 GeV helium compression system has five compressors configured with four pressure levels supporting three pressure levels in the new cold box. During compressor commissioning the compressors were operated independent of the cold box over a wide range of process conditions to verify proper performance including adequate cooling and oil removal. Isothermal and volumetric efficiencies over these process conditions for several built-involume ratios were obtained. This paper will discuss the operational envelope results and the modifications/improvements incorporated into the skids.

  8. Commissioning and operational results of the 12 GeV helium compression system at JLab

    NASA Astrophysics Data System (ADS)

    Knudsen, P.; Ganni, V.; Dixon, K.; Norton, R.; Creel, J.

    2015-12-01

    The new compressor system at Jefferson Lab (JLab) for the 12 GeV upgrade was commissioned in the spring of 2013 and incorporates many design changes, discussed in previous publications, to improve the operational range, efficiency, reliability and maintainability as compared to previous compressor skids used for this application. The 12 GeV helium compression system has five compressors configured with four pressure levels supporting three pressure levels in the new cold box. During compressor commissioning the compressors were operated independent of the cold box over a wide range of process conditions to verify proper performance including adequate cooling and oil removal. Isothermal and volumetric efficiencies over these process conditions for several built-involume ratios were obtained. This paper will discuss the operational envelope results and the modifications/improvements incorporated into the skids.

  9. Detection of Gamma Rays with E greater than 300 GeV From Markarian 501

    NASA Technical Reports Server (NTRS)

    Quinn, J.; Connaughton, V.; Akerlof, C. W.; Biller, S.; Buckley, J.; Carter-Lewis, D. A.; Catanese, M.; Cawley, M. F.; Fegan, D. J.; Finley, J. P.

    1996-01-01

    The detection of gamma rays of energy greater than 300 GeV from the BL Lacertae object Mrk 501 demonstrates that extragalactic TeV emission is not unique to Mrk 421. During 66 hr of observations between 1995 March and July we measured an average flux of 8.1 +/- 1.4 x 10(exp -12) cm(exp -2)/s above 300 GeV, a flux that is only 20 percent of the average Mrk 421 flux. The new gamma-ray source has not been reported by the Compton Gamma Ray Observatory as an emitter of gamma rays at lower energies. There is evidence for variability on timescales of days.

  10. Proton-antiproton suppression in 200A GeV Au-Au collisions

    NASA Astrophysics Data System (ADS)

    Renk, Thorsten; Eskola, Kari J.

    2007-08-01

    We discuss the measured nuclear suppression of p+p¯ production in 200A GeV Au-Au collisions at the Relativistic Heavy Ion Collider (RHIC) within radiative energy loss. For the Albino-Kniehl-Kramer (AKK) set of fragmentation functions, proton production is dominated by gluons, giving rise to the expectation that the nuclear suppression for p+p¯ should be stronger than for pions due to the stronger coupling of gluons to the quenching medium. Using a hydrodynamical description for the soft matter evolution, we show that this is indeed seen in the calculation. However, the expected suppression factors for pions and protons are sufficiently similar that a discrimination with present data is not possible. In the high pT region above 6 GeV where the contributions of hydrodynamics and recombination to hadron production are negligible, the model calculation is in good agreement with the data on p+p¯ suppression.

  11. Proton-antiproton suppression in 200A GeV Au-Au collisions

    SciTech Connect

    Renk, Thorsten; Eskola, Kari J.

    2007-08-15

    We discuss the measured nuclear suppression of p+p production in 200A GeV Au-Au collisions at the Relativistic Heavy Ion Collider (RHIC) within radiative energy loss. For the Albino-Kniehl-Kramer (AKK) set of fragmentation functions, proton production is dominated by gluons, giving rise to the expectation that the nuclear suppression for p+p should be stronger than for pions due to the stronger coupling of gluons to the quenching medium. Using a hydrodynamical description for the soft matter evolution, we show that this is indeed seen in the calculation. However, the expected suppression factors for pions and protons are sufficiently similar that a discrimination with present data is not possible. In the high p{sub T} region above 6 GeV where the contributions of hydrodynamics and recombination to hadron production are negligible, the model calculation is in good agreement with the data on p+p suppression.

  12. Muon g-2 and 125 GeV Higgs in split-family supersymmetry

    NASA Astrophysics Data System (ADS)

    Ibe, Masahiro; Yanagida, Tsutomu T.; Yokozaki, Norimi

    2013-08-01

    We discuss the minimal supersymmetric standard model with "split-family" spectrum where the sfermions in the first two generations are in the hundreds GeV to a TeV range while the sfermions in the third generation are in the range of tens TeV. With the split-family spectrum, the deviation of the muon g - 2 and the observed Higgs boson mass are explained simultaneously. It is predicted that the gluino and the squarks in the first two generations are within the reach of the LHC experiments in most favored parameter space for the universal gaugino mass, which can be tested by searching for events with missing transverse energy or events with stable charged massive particles. We also point out that the split-family scenario can be consistent with the focus point scenario for the non-universal gaugino masses where the required μ-term is in the hundreds GeV range.

  13. The Generalized Parton Distribution program after the Jefferson Lab 12 GeV upgrade

    SciTech Connect

    Franck Sabatie

    2009-12-01

    The Generalized Parton Distribution framework was introduced in the late 90's and describes the nucleon in a revolutionary way, correlating the information from both momentum and transverse position space into experimentally accessible functions. After a brief introduction, this article reviews the Jefferson Lab 6 GeV measurements of Deeply Virtual Compton Scattering in Halls A and B, which give a unique access to Generalized Parton Distributions (GPD). The second half of this article reviews the Jefferson Lab 12 GeV upgrade in general terms, and then focuses on the GPD program in Halls A and B. This second generation of experiments will yield more accurate, more complete data in a wider kinematical range than any experiment ever before, using the full capability of a higher beam energy, higher luminosities, upgraded detectors and refined extraction techniques.

  14. GeV Electron Beams from a Capillary Discharge Guided Laser Plasma Accelerator

    SciTech Connect

    Nakamura, Kei; Gonsalves, Anthony; Panasenko, Dmitriy; Lin, Chen; Toth, Csaba; Geddes, Cameron; Schroeder, Carl; Esarey, Eric; Leemans, Wim

    2010-07-08

    Laser plasma acceleration (LPA) up to 1 GeV has been realized at Lawrence Berkeley National Laboratory by using a capillary discharge waveguide. In this paper, the capillary discharge guided LPA system including a broadband single-shot electron spectrometer is described. The spectrometer was designed specifically for LPA experiments and has amomentumacceptance of 0.01 - 1.1 GeV/c with a percent level resolution. Experiments using a 33 mm long, 300 mu m diameter capillary demonstrated the generation of high energy electron beams up to 1 GeV. By de-tuning discharge delay from optimum guiding performance, selftrapping and acceleration were found to be stabilized producing 460 MeV electron beams.

  15. Dirac gauginos, R symmetry and the 125 GeV Higgs

    SciTech Connect

    Bertuzzo, Enrico; Frugiuele, Claudia; Gregoire, Thomas; Ponton, Eduardo

    2015-04-20

    We study a supersymmetric scenario with a quasi exact R-symmetry in light of the discovery of a Higgs resonance with a mass of 125 GeV. In such a framework, the additional adjoint superfields, needed to give Dirac masses to the gauginos, contribute both to the Higgs mass and to electroweak precision observables. We then analyze the interplay between the two aspects, finding regions in parameter space in which the contributions to the precision observables are under control and a 125 GeV Higgs boson can be accommodated. Furthermore, we estimate the fine-tuning of the model finding regions of the parameter space still unexplored by the LHC with a fine-tuning considerably improved with respect to the minimal supersymmetric scenario. In particular, sizable non-holomorphic (non-supersoft) adjoints masses are required to reduce the fine-tuning.

  16. Dirac gauginos, R symmetry and the 125 GeV Higgs

    DOE PAGES

    Bertuzzo, Enrico; Frugiuele, Claudia; Gregoire, Thomas; ...

    2015-04-20

    We study a supersymmetric scenario with a quasi exact R-symmetry in light of the discovery of a Higgs resonance with a mass of 125 GeV. In such a framework, the additional adjoint superfields, needed to give Dirac masses to the gauginos, contribute both to the Higgs mass and to electroweak precision observables. We then analyze the interplay between the two aspects, finding regions in parameter space in which the contributions to the precision observables are under control and a 125 GeV Higgs boson can be accommodated. Furthermore, we estimate the fine-tuning of the model finding regions of the parameter spacemore » still unexplored by the LHC with a fine-tuning considerably improved with respect to the minimal supersymmetric scenario. In particular, sizable non-holomorphic (non-supersoft) adjoints masses are required to reduce the fine-tuning.« less

  17. An improved 8 GeV beam transport system for the Fermi National Accelerator Laboratory

    SciTech Connect

    Syphers, M.J.

    1987-06-01

    A new 8 GeV beam transport system between the Booster and Main Ring synchrotrons at the Fermi National Accelerator Laboratory is presented. The system was developed in an effort to improve the transverse phase space area occupied by the proton beam upon injection into the Main Ring accelerator. Problems with the original system are described and general methods of beamline design are formulated. Errors in the transverse properties of a beamline at the injection point of the second synchrotron and their effects on the region in transverse phase space occupied by a beam of particles are discussed. Results from the commissioning phase of the project are presented as well as measurements of the degree of phase space dilution generated by the transfer of 8 GeV protons from the Booster synchrotron to the Main Ring synchrotron.

  18. Lead-210 contamination

    SciTech Connect

    Gray, P.

    1997-12-31

    Nearly all scrap dealers, smelters and other recyclers routinely monitor for radioactivity in shipments entering their facility. These sensitive radiation gate monitors easily detect radium-226 and most other radioactive nuclides. However, the type of detector normally used, sodium iodide scintillation crystals, will not detect the low energy gamma radiation emitted by lead-210 and its progeny. Since lead-210 is a common radioactive contaminant in certain industries, contaminated scrap metal from these industries may avoid detection at the recycler. Lead-210 is a decay product of radon-222 which is produced in small concentrations with natural gas. As the natural gas liquids, particularly ethane and propane, are separated from the natural gas, the radon concentrates in the ethane/propane fraction. The natural gas industry, particularly gas processing facilities and industries using ethane and propane as feed stocks can be significantly contaminated with the radon decay products, especially lead-210, bismuth-210 and polonium-210. Unless the scrap metal is decontaminated before sending to the recycler, the lead-210 contaminated scrap may be processed, resulting in some degree of radioactive contamination of the recycling facilities. Methods of detecting the low energy gamma radiation associated with lead-210 include the pancake G-M detector and the thin crystal-thin window scintillation detector.

  19. On the Origin of GeV Emission in Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Beloborodov, Andrei M.; Hascoët, Romain; Vurm, Indrek

    2014-06-01

    The most common progenitors of gamma-ray bursts (GRBs) are massive stars with strong stellar winds. We show that the GRB blast wave in the wind should emit a bright GeV flash. It is produced by inverse-Compton cooling of the thermal plasma behind the forward shock. The main part of the flash is shaped by scattering of the prompt MeV radiation (emitted at smaller radii) which streams through the external blast wave. The inverse-Compton flash is bright due to the huge e ± enrichment of the external medium by the prompt radiation ahead of the blast wave. At late times, the blast wave switches to normal synchrotron-self-Compton cooling. The mechanism is demonstrated by a detailed transfer simulation. The observed prompt MeV radiation is taken as an input of the simulation; we use GRB 080916C as an example. The result reproduces the GeV flash observed by the Fermi telescope. It explains the delayed onset, the steep rise, the peak flux, the time of the peak, the long smooth decline, and the spectral slope of GeV emission. The wind density required to reproduce all these features is typical of Wolf-Rayet stars. Our simulation predicts strong TeV emission 1 minute after the burst trigger; then a cutoff in the observed high-energy spectrum is expected from absorption by extragalactic background light. In addition, a bright optical counterpart of the GeV flash is predicted for plausible values of the magnetic field; such a double (optical+GeV) flash has been observed in GRB 130427A.

  20. eDT and Model-based Configuration of 12GeV CEBAF

    SciTech Connect

    Turner, Dennison L.

    2015-09-01

    This poster will discuss model-driven setup of CEBAF for the 12GeV era, focusing on the elegant Download Tool (eDT). eDT is a new operator tool that generates magnet design setpoints for various machine energies and pass configurations. eDT was developed in the effort towards a process for reducing machine configuration time and reproducibility by way of an accurate accelerator model.

  1. Research in atomic and applied physics using a 6-GeV synchrotron source

    SciTech Connect

    Jones, K.W.

    1985-12-01

    The Division of Atomic and Applied Physics in the Department of Applied Science at Brookhaven National Laboratory conducts a broad program of research using ion beams and synchrotron radiation for experiments in atomic physics and nuclear analytical techniques and applications. Many of the experiments would benefit greatly from the use of high energy, high intensity photon beams from a 6-GeV synchrotron source. A survey of some of the specific scientific possibilities is presented.

  2. Net charge fluctuations in Au + Au interactions at sqrt[s(NN)]=130 GeV.

    PubMed

    Adcox, K; Adler, S S; Ajitanand, N N; Akiba, Y; Alexander, J; Aphecetche, L; Arai, Y; Aronson, S H; Averbeck, R; Awes, T C; Barish, K N; Barnes, P D; Barrette, J; Bassalleck, B; Bathe, S; Baublis, V; Bazilevsky, A; Belikov, S; Bellaiche, F G; Belyaev, S T; Bennett, M J; Berdnikov, Y; Botelho, S; Brooks, M L; Brown, D S; Bruner, N; Bucher, D; Buesching, H; Bumazhnov, V; Bunce, G; Burward-Hoy, J; Butsyk, S; Carey, T A; Chand, P; Chang, J; Chang, W C; Chavez, L L; Chernichenko, S; Chi, C Y; Chiba, J; Chiu, M; Choudhury, R K; Christ, T; Chujo, T; Chung, M S; Chung, P; Cianciolo, V; Cole, B A; D'Enterria, D G; David, G; Delagrange, H; Denisov, A; Deshpande, A; Desmond, E J; Dietzsch, O; Dinesh, B V; Drees, A; Durum, A; Dutta, D; Ebisu, K; Efremenko, Y V; El Chenawi, K; En'yo, H; Esumi, S; Ewell, L; Ferdousi, T; Fields, D E; Fokin, S L; Fraenkel, Z; Franz, A; Frawley, A D; Fung, S-Y; Garpman, S; Ghosh, T K; Glenn, A; Godoi, A L; Goto, Y; Greene, S V; Grosse Perdekamp, M; Gupta, S K; Guryn, W; Gustafsson, H-A; Haggerty, J S; Hamagaki, H; Hansen, A G; Hara, H; Hartouni, E P; Hayano, R; Hayashi, N; He, X; Hemmick, T K; Heuser, J M; Hibino, M; Hill, J C; Ho, D S; Homma, K; Hong, B; Hoover, A; Ichihara, T; Imai, K; Ippolitov, M S; Ishihara, M; Jacak, B V; Jang, W Y; Jia, J; Johnson, B M; Johnson, S C; Joo, K S; Kametani, S; Kang, J H; Kann, M; Kapoor, S S; Kelly, S; Khachaturov, B; Khanzadeev, A; Kikuchi, J; Kim, D J; Kim, H J; Kim, S Y; Kim, Y G; Kinnison, W W; Kistenev, E; Kiyomichi, A; Klein-Boesing, C; Klinksiek, S; Kochenda, L; Kochetkov, V; Koehler, D; Kohama, T; Kotchetkov, D; Kozlov, A; Kroon, P J; Kurita, K; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Lajoie, J G; Lauret, J; Lebedev, A; Lee, D M; Leitch, M J; Li, X H; Li, Z; Lim, D J; Liu, M X; Liu, X; Liu, Z; Maguire, C F; Mahon, J; Makdisi, Y I; Manko, V I; Mao, Y; Mark, S K; Markacs, S; Martinez, G; Marx, M D; Masaike, A; Matathias, F; Matsumoto, T; McGaughey, P L; Melnikov, E; Merschmeyer, M; Messer, F; Messer, M; Miake, Y; Miller, T E; Milov, A; Mioduszewski, S; Mischke, R E; Mishra, G C; Mitchell, J T; Mohanty, A K; Morrison, D P; Moss, J M; Mühlbacher, F; Muniruzzaman, M; Murata, J; Nagamiya, S; Nagasaka, Y; Nagle, J L; Nakada, Y; Nandi, B K; Newby, J; Nikkinen, L; Nilsson, P; Nishimura, S; Nyanin, A S; Nystrand, J; O'Brien, E; Ogilvie, C A; Ohnishi, H; Ojha, I D; Ono, M; Onuchin, V; Oskarsson, A; Osterman, L; Otterlund, I; Oyama, K; Paffrath, L; Palounek, A P T; Pantuev, V S; Papavassiliou, V; Pate, S F; Peitzmann, T; Petridis, A N; Pinkenburg, C; Pisani, R P; Pitukhin, P; Plasil, F; Pollack, M; Pope, K; Purschke, M L; Ravinovich, I; Read, K F; Reygers, K; Riabov, V; Riabov, Y; Rosati, M; Rose, A A; Ryu, S S; Saito, N; Sakaguchi, A; Sakaguchi, T; Sako, H; Sakuma, T; Samsonov, V; Sangster, T C; Santo, R; Sato, H D; Sato, S; Sawada, S; Schlei, B R; Schutz, Y; Semenov, V; Seto, R; Shea, T K; Shein, I; Shibata, T-A; Shigaki, K; Shiina, T; Shin, Y H; Sibiriak, I G; Silvermyr, D; Sim, K S; Simon-Gillo, J; Singh, C P; Singh, V; Sivertz, M; Soldatov, A; Soltz, R A; Sorensen, S; Stankus, P W; Starinsky, N; Steinberg, P; Stenlund, E; Ster, A; Stoll, S P; Sugioka, M; Sugitate, T; Sullivan, J P; Sumi, Y; Sun, Z; Suzuki, M; Takagui, E M; Taketani, A; Tamai, M; Tanaka, K H; Tanaka, Y; Taniguchi, E; Tannenbaum, M J; Thomas, J; Thomas, J H; Thomas, T L; Tian, W; Tojo, J; Torii, H; Towell, R S; Tserruya, I; Tsuruoka, H; Tsvetkov, A A; Tuli, S K; Tydesjö, H; Tyurin, N; Ushiroda, T; van Hecke, H W; Velissaris, C; Velkovska, J; Velkovsky, M; Vinogradov, A A; Volkov, M A; Vorobyov, A; Vznuzdaev, E; Wang, H; Watanabe, Y; White, S N; Witzig, C; Wohn, F K; Woody, C L; Xie, W; Yagi, K; Yokkaichi, S; Young, G R; Yushmanov, I E; Zajc, W A; Zhang, Z; Zhou, S

    2002-08-19

    Data from Au + Au interactions at sqrt[s(NN)]=130 GeV, obtained with the PHENIX detector at the Relativistic Heavy-Ion Collider, are used to investigate local net charge fluctuations among particles produced near midrapidity. According to recent suggestions, such fluctuations may carry information from the quark-gluon plasma. This analysis shows that the fluctuations are dominated by a stochastic distribution of particles, but are also sensitive to other effects, like global charge conservation and resonance decays.

  3. Coherent (pi)0 Photoproduction on the Deuteron up to 4 GeV.

    SciTech Connect

    Meekins, David; Abbott, David; Ahmidouch, Abdellah; Armstrong, Christopher; Arrington, John; Assamagan, Ketevi; Baker, O.; Barrow, Steve; Beatty, David; Beck, Douglas; Beedoe, Shelton; Beise, Elizabeth; Belz, John; Bochna, Christopher; Bosted, Peter; Brash, Edward; Breuer, Herbert; Cadman, Robert; Cardman, Lawrence; Carlini, Roger; Cha, Jinseok; Chant, Nicholas; Collins, Glenn; Cothran, Christopher; Cummings, William; Danagoulian, Samuel; Duncan, Fraser; Dunne, James; Dutta, Dipangkar; Eden, Thomas; Ent, R.; Filippone, Bradley; Forest, Tony; Fortune, Harry; Frolov, Valera; Gao, Haiyan; Gilman, Ronald; Gueye, Paul; Gustafsson, Kenneth; Hansen, Jens-Ole; Harvey, Mark; Hinton, Wendy; Holt, Roy; Jackson, Harold; Keppel, Cynthia; Khandaker, Mahbubul; Kinney, Edward; Klein, Andreas; Koltenuk, Douglas; Kumbartzki, Gerfried; Lung, Allison; Mack, David; Madey, Richard; Markowitz, Pete; McFarlane, Kenneth; McKeown, Robert; Meziani, Zein-Eddine; Miller, M.A.; Mitchell, Joseph; Mkrtchyan, Hamlet; Mohring, Richard; Napolitano, James; Nathan, Alan; Niculescu, Gabriel; Niculescu, Maria-Ioana; O'neill, Thomas; Owen, Brynnen; Pate, Stephen; Potterveld, David; Price, John; Rakness, Gregory; Ransome, Ronald; Reinhold, Joerg; Rutt, Paul; Salgado, Carlos; Savage, Geoff; Segel, Ralph; Simicevic, Neven; Stoler, Paul; Suleiman, Riad; Tang, Liguang; Terburg, Bart; Westrum, D.van; Vulcan, William; Williamson, Steven; Witkowski, Michael; Wood, Stephen; Yan, Chen; Zeidman, Benjamin

    1999-11-01

    The differential cross section for D( gamma,d)(pi)0 has been measured at deuteron center-of-mass angles of 90z and 136z. This work reports the first data for this reaction above a photon energy of 1 GeV, and permits a test of the apparent constituent counting rule and reduced nuclear amplitude behavior as observed in elastic ed scattering.

  4. Search for Pentaquarks in 920 GeV Proton-Nucleus Collisions at HERA-B

    NASA Astrophysics Data System (ADS)

    Medinnis, M.

    2005-04-01

    HERA-B has searched in vain for evidence of the production of two recently reported states which have been identified as possible pentaquarks: the Θ+(1540), decaying into pKs0, and the Ξ3/2--, decaying into Ξ-π-. Upper limits on production cross sections at mid-rapidity and on ratios of the production cross sections to those of well-known resonances in 920 GeV proton-nucleus interactions are reported.

  5. Search for Pentaquarks in 920 GEV Proton-Nucleus Collisions with Hera-B

    NASA Astrophysics Data System (ADS)

    Medinnis, M.

    2005-04-01

    HERA-B has searched in vain for evidence of the production of two recently reported states which have been identified as possible pentaquarks: the Θ+(1540), decaying into pKs0, and the Xi_{3/2}^{-}$, decaying into Ξ-π-. Upper limits on production cross sections at mid-rapidity and on ratios of the production cross sections to those of well-known resonances in 920 GeV proton-nucleus interactions are reported.

  6. 750 GeV composite axion as the LHC diphoton resonance

    NASA Astrophysics Data System (ADS)

    Barrie, Neil D.; Kobakhidze, Archil; Talia, Matthew; Wu, Lei

    2016-04-01

    We propose that the 750 GeV resonance, presumably observed in the early LHC Run 2 data, could be a heavy composite axion that results from condensation of a hypothetical quark in a high-colour representation of conventional QCD. The model, motivated by a recently proposed solution to the strong CP problem, is very economical and is essentially defined by the properties of the additional quark - its colour charge, hypercharge and mass. The axion mass and its coupling to two photons (via axial anomaly) can be computed in terms of these parameters. The axion is predominantly produced via photon fusion (γγ → A) which is followed by Z vector boson fusion and associated production at the LHC. We find that the total diphoton cross section of the axion can be fitted with the observed excess. Combining the requirement on the cross-section, such that it reproduces the diphoton excess events, with the bounds on the total width (Γtot ⩽ 45 GeV), we obtain the effective coupling in the range 1.6 ×10-4 GeV-1 ≳CA ≳ 6.5 ×10-5 GeV-1. Within this window of allowed couplings the model favours a narrow width resonance and yQ2 ∼ O (10). In addition, we observe that the associated production q q bar → Aγ → γγγ can potentially produce a sizeable number of three photon events at future LHC. However, the rare decay Z →A* γ → γγγ is found to be too small to be probed at the LHC and e+e- colliders.

  7. Shielding and radiation protection at the SSRL 3 GeV injector

    SciTech Connect

    Ipe, N.E.; Liu, J.C.

    1991-12-01

    The Stanford Synchrotron Radiation Laboratory (SSRL) Injector is comprised of a linear accelerator (linac) capable of energies {le} 150 MeV, a 3 GeV booster synchrotron, and a beam line to transport the electrons into the storage ring SPEAR. The injector is shielded so that under normal operating conditions, the annual dose equivalent at the shield surface does not exceed 10 mSv. This paper describes the shielding and radiation protection at the injector.

  8. Measurements of charm meson production in 10.5 GeV electron-positron annihilations

    NASA Astrophysics Data System (ADS)

    Johnson, Edward Eric

    A study of charm meson production in e+ e- γ* --> cc¯ events at s = 10.5 GeV is presented. Included are measurements of the fragmentation distributions of D+s and D*+s , the vector to pseudoscalar production ratio for Ds, and the D*+ spin alignment. A description of the new trigger designed for the CLEO III detector is also provided.

  9. J/. psi. and. psi. prime production with 800 GeV protons

    SciTech Connect

    Moss, J.M.

    1990-01-01

    The yields of J/{psi} and {psi}{prime} vector meson states have been measured for 800 GeV protons incident on deuterium, carbon, calcium, iron and tungsten targets. A depletion of the yield per nucleon from heavy nuclei is observed for both J/{psi} and {psi}{prime} production. This depletion exhibits a strong dependence on x{sub F} and p{sub t}. 24 refs., 3 figs.

  10. GeV electron beams from a cm-scale accelerator

    SciTech Connect

    Leemans, W.P.; Nagler, B.; Gonsalves, A.J.; Toth, C.; Nakamura,K.; Geddes, C.G.R.; Esarey, E.B.; Schroeder, C.; Hooker, S.M.

    2006-05-04

    GeV electron accelerators are essential to synchrotron radiation facilities and free electron lasers, and as modules for high-energy particle physics. Radio frequency based accelerators are limited to relatively low accelerating fields (10-50 MV/m) and hence require tens to hundreds of meters to reach the multi-GeV beam energies needed to drive radiation sources, and many kilometers to generate particle energies of interest to the frontiers of high-energy physics.Laser wakefield accelerators (LWFA) in which particles are accelerated by the field of a plasma wave driven by an intense laser pulse produce electric fields several orders of magnitude stronger (10-100 GV/m) and so offer the potential of very compact devices. However, until now it has not been possible to maintain the required laser intensity, and hence acceleration, over the several centimeters needed to reach GeV energies.For this reason laser-driven accelerators have to date been limited to the 100 MeV scale. Contrary to predictions that PW-class lasers would be needed to reach GeV energies, here we demonstrate production of a high-quality electron beam with 1 GeV energy by channeling a 40 TW peak power laser pulse in a 3.3 cm long gas-filled capillary discharge waveguide. We anticipate that laser-plasma accelerators based on capillary discharge waveguides will have a major impact on the development of future femtosecond radiation sources such as x-ray free electron lasers and become a standard building block for next generation high-energy accelerators.

  11. GeV electron beams from a centimeter-scale laser-driven plasmaaccelerator

    SciTech Connect

    Gonsalves, A.; Nakamura, K.; Panasenko, D.; Toth, Cs.; Esarey,E.; Schroeder; Hooker, S.M.; and Leemans, W.P.; Hooker, S.M.

    2007-06-25

    esults are presented on the generation ofquasi-monoenergeticelectron beams with energy up to 1GeV using a 40TWlaser and a 3.3 cm-long hydrogen-filled capillary discharge waveguide.Electron beams were not observed without a plasma channel, indicatingthat self-focusing alone could not be relied upon for effective guidingofthe laser pulse. Results are presented of the electronbeam spectra, andthe dependence of the reliability of producingelectron beams as afunction of laser and plasma parameters.

  12. Nonintrusive Emittance Measurement of 1GeV H- Beam with a Laser

    SciTech Connect

    Liu, Yun; Aleksandrov, Alexander V; Long, Cary D; Menshov, Alexander A; Pogge, James R; Webster, Anthony W; Zhukov, Alexander P

    2012-01-01

    A laser wire based transverse phase space measurement system has been developed at the Spallation Neutron Source (SNS). The system allows a nonintrusive measurement of 1GeV hydrogen ion (H-) beam at the high energy beam transport (HEBT). This paper describes the design, installation, and measurement performance of the system. Major technical challenges in the implementation and commissioning of the nonintrusive phase space diagnostics at high brightness particle accelerator facilities are discussed.

  13. On the origin of GeV emission in gamma-ray bursts

    SciTech Connect

    Beloborodov, Andrei M.; Hascoët, Romain; Vurm, Indrek

    2014-06-10

    The most common progenitors of gamma-ray bursts (GRBs) are massive stars with strong stellar winds. We show that the GRB blast wave in the wind should emit a bright GeV flash. It is produced by inverse-Compton cooling of the thermal plasma behind the forward shock. The main part of the flash is shaped by scattering of the prompt MeV radiation (emitted at smaller radii) which streams through the external blast wave. The inverse-Compton flash is bright due to the huge e {sup ±} enrichment of the external medium by the prompt radiation ahead of the blast wave. At late times, the blast wave switches to normal synchrotron-self-Compton cooling. The mechanism is demonstrated by a detailed transfer simulation. The observed prompt MeV radiation is taken as an input of the simulation; we use GRB 080916C as an example. The result reproduces the GeV flash observed by the Fermi telescope. It explains the delayed onset, the steep rise, the peak flux, the time of the peak, the long smooth decline, and the spectral slope of GeV emission. The wind density required to reproduce all these features is typical of Wolf-Rayet stars. Our simulation predicts strong TeV emission 1 minute after the burst trigger; then a cutoff in the observed high-energy spectrum is expected from absorption by extragalactic background light. In addition, a bright optical counterpart of the GeV flash is predicted for plausible values of the magnetic field; such a double (optical+GeV) flash has been observed in GRB 130427A.

  14. Geant4 validation of neutron production on thick targets bombarded with 120 GeV protons

    NASA Astrophysics Data System (ADS)

    Sabra, Mohammad S.

    2015-09-01

    Neutron energy spectra and angular distributions are calculated for 120 GeV protons on thick graphite, aluminum, copper, and tungsten targets using relevant physics models within the Monte-Carlo simulation package Geant4. The calculations are compared to data from recent experiment. Discrepancies are observed between experimental data and Geant4 models, and suggest that improvements of the intra-(INC) and inter-nuclear cascade processes employed by the models are required.

  15. The 750 GeV diphoton resonance as an sgoldstino: a reappraisal

    NASA Astrophysics Data System (ADS)

    Bardhan, Debjyoti; Byakti, Pritibhajan; Ghosh, Diptimoy; Sharma, Tarun

    2016-06-01

    Among the various explanations of the possible 750 GeV diphoton resonance, the possibility of it being an sgoldstino is an attractive one, as it is related to the spontaneous breaking of global supersymmetry. We discuss this possibility in this paper and point out the various theoretical issues associated with it. In particular, we indicate the difficulties of this explanation in realistic models of gauge mediated supersymmetry breaking.

  16. Search for single top production via FCNC at LEP at s=189 -208 GeV

    NASA Astrophysics Data System (ADS)

    Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alderweireld, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P. P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.-D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J. E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.-H.; Begalli, M.; Behrmann, A.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Berntzon, L.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P. S. L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T. J. V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J. M.; Bugge, L.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, N.; Cavallo, F.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S. U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M. J.; Crawley, B.; Crennell, D.; Cuevas, J.; D'Hondt, J.; Dalmau, J.; da Silva, T.; da Silva, W.; Della Ricca, G.; de Angelis, A.; de Boer, W.; de Clercq, C.; de Lotto, B.; de Maria, N.; de Min, A.; de Paula, L.; di Ciaccio, L.; di Simone, A.; Doroba, K.; Drees, J.; Dris, M.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M. C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, Ph.; Gazis, E.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Herr, H.; Hoffman, J.; Holmgren, S.-O.; Holt, P. J.; Houlden, M. A.; Hultqvist, K.; Jackson, J. N.; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, E. K.; Johansson, P. D.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, F.; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B. P.; Kerzel, U.; Kiiskinen, A.; King, B. T.; Kjaer, N. J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, F.; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J. H.; Lopez, J. M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.-C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; McNulty, R.; Meroni, C.; Meyer, W. T.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Moenig, K.; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J. P.; Palka, H.; Papadopoulou, Th. D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M. E.; Polok, G.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Rames, J.; Ramler, L.; Read, A.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Rosenberg, E.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Savoy-Navarro, A.; Schwickerath, U.; Segar, A.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Taffard, A. C.; Tegenfeldt, F.; Timmermans, J.; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.-L.; Tyapkin, I. A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; van Dam, P.; van Eldik, J.; van Lysebetten, A.; van Remortel, N.; van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A. J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zhuravlov, V.; Zimin, N. I.; Zintchenko, A.; Zupan, M.; Delphi Collaboration

    2004-06-01

    A search for single top production (e+e-→tc¯) via flavour changing neutral currents (FCNC) was performed using the data taken by the DELPHI detector at LEP2. The data analyzed have been accumulated at center-of-mass energies ranging from 189 to 208 GeV. Limits at 95% confidence level were obtained on the anomalous coupling parameters κγ and κZ.

  17. Optics solutions for pp operation with electron lenses at 100 GeV

    SciTech Connect

    White, S.; Fischer, W.; Luo, Y.

    2014-07-12

    Electron lenses for head-on compensation are currently under commissioning and foreseen to be operational for the 2015 polarized proton run. These devices will provide a partial compensation of head-on beam-beam effects and allow to double the RHIC proton luminosity. This note reviews the optics constraints related to beam-beam compensation and summarizes the current lattice options for proton operation at 100 GeV.

  18. Future Research Program at JLab: 12 GeV and Beyond

    SciTech Connect

    Kees de Jager

    2007-09-06

    The project to upgrade the CEBAF accelerator at Jefferson Lab to 12 GeV is presented. Most of the research program supporting that upgrade, will require a highly polarized beam, as will be illustrated by a few selected examples. To carry out that research program will require an extensively upgraded instrumentation in two of the existing experimental halls and the addition of a fourth hall. The plans for a high-luminosity electron-ion collider are briefly discussed.

  19. Future Spin Physics at JLab 12 GeV and Beyond

    SciTech Connect

    Jager, Kees de

    2007-06-13

    The project to upgrade the CEBAF accelerator at Jefferson Lab to 12 GeV is presented. Most of the research program supporting that upgrade, will require a highly polarized beam, as will be illustrated by a few selected examples. To carry out that research program will require an extensively upgraded instrumentation in two of the existing experimental halls and the addition of a fourth hall. The plans for a high-luminosity electron-ion collider are briefly discussed.

  20. Future Spin Physics at JLab: 12 GeV and Beyond

    SciTech Connect

    Kees de Jager

    2006-10-02

    The project to upgrade the CEBAF accelerator at Jefferson Lab to 12 GeV is presented. Most of the research program supporting that upgrade, will require a highly polarized beam, as will be illustrated by a few selected examples. To carry out that research program will require an extensively upgraded instrumentation in two of the existing experimental halls and the addition of a fourth hall. The plans for a high-luminosity electron-ion collider are briefly discussed.

  1. On the Location of the 2009 GeV Flares of Blazar PKS 1510-089

    NASA Astrophysics Data System (ADS)

    Dotson, Amanda; Georganopoulos, Markos; Meyer, Eileen T.; McCann, Kevin

    2015-08-01

    Most of the radiated power of blazars is produced at GeV energies via inverse Compton scattering at an unknown distance from the central engine. Possible seed photon sources map to different locations along the jet spanning two orders of magnitude in distance from the black hole, ranging from the broad-line region (BLR, ˜0.1 pc), to the molecular torus (MT, ˜ 1- few pc), to the very long baseline interferometry (VLBI) radio core zone at ˜10 pc. Here, we apply a diagnostic for identifying the GeV emission zone (GEZ) in blazar PKS 1510-089 using four bright gamma-ray flares detected by Fermi in 2009. As shown by Dotson et al., the flare decay time should be energy-independent for flares in the BLR, but faster at higher energies for flares in the MT. We find that in the two cases where the gamma-ray flare was not accompanied by an optical flare, the decay times show an energy-dependence suggesting a location in the MT. For the two GeV flares accompanied by optical flares, we obtained very fast decay times (≲3 hr) in both low and high energy Fermi bands. For these flares, considering the simultaneous >100 GeV detection by HESS (H.E.S.S. Collaboration et al.) and the ejection of a superluminal component from the VLBI radio core in one case, our results suggest that both flares came from the vicinity of the VLBI core. We thus suggest that the GEZ is spread over a wide range of locations beyond the BLR.

  2. Magnesium Diboride Current Leads

    NASA Technical Reports Server (NTRS)

    Panek, John

    2010-01-01

    A recently discovered superconductor, magnesium diboride (MgB2), can be used to fabricate conducting leads used in cryogenic applications. Dis covered to be superconducting in 2001, MgB2 has the advantage of remaining superconducting at higher temperatures than the previously used material, NbTi. The purpose of these leads is to provide 2 A of electricity to motors located in a 1.3 K environment. The providing environment is a relatively warm 17 K. Requirements for these leads are to survive temperature fluctuations in the 5 K and 11 K heat sinks, and not conduct excessive heat into the 1.3 K environment. Test data showed that each lead in the assembly could conduct 5 A at 4 K, which, when scaled to 17 K, still provided more than the required 2 A. The lead assembly consists of 12 steelclad MgB2 wires, a tensioned Kevlar support, a thermal heat sink interface at 4 K, and base plates. The wires are soldered to heavy copper leads at the 17 K end, and to thin copper-clad NbTi leads at the 1.3 K end. The leads were designed, fabricated, and tested at the Forschungszentrum Karlsruhe - Institut foer Technische Physik before inclusion in Goddard's XRS (X-Ray Spectrometer) instrument onboard the Astro-E2 spacecraft. A key factor is that MgB2 remains superconducting up to 30 K, which means that it does not introduce joule heating as a resistive wire would. Because the required temperature ranges are 1.3-17 K, this provides a large margin of safety. Previous designs lost superconductivity at around 8 K. The disadvantage to MgB2 is that it is a brittle ceramic, and making thin wires from it is challenging. The solution was to encase the leads in thin steel tubes for strength. Previous designs were so brittle as to risk instrument survival. MgB2 leads can be used in any cryogenic application where small currents need to be conducted at below 30 K. Because previous designs would superconduct only at up to 8 K, this new design would be ideal for the 8-30 K range.

  3. Exclusive ρ0 meson photoproduction with a leading neutron at HERA

    NASA Astrophysics Data System (ADS)

    Goerlich, Lidia

    2016-11-01

    A first measurement is presented of exclusive photoproduction of ρ0 mesons associated with leading neutrons at HERA. The data were taken with the H1 detector in the years 2006 and 2007 at a centre-of-mass energy of √s = 319 GeV and correspond to an integrated luminosity of 1.16pb-1. The ρ0 mesons with transverse momenta pT < 1 GeV are reconstructed from their decays to charged pions, while leading neutrons carrying a large fraction of the incoming proton momentum, xL > 0.35, are detected in the Forward Neutron Calorimeter. The phase space of the measurement is defined by the photon virtuality Q2 < 2 GeV2, the total energy of the photon-proton system 20 < Wγp < 100 GeV and the polar angle of the leading neutron θn < 0.75 mrad. The cross section of the reaction γp → ρ0nπ+ is measured as a function of several variables. The data are interpreted in terms of a double peripheral process, involving pion exchange at the proton vertex followed by elastic photoproduction of a ρ0 meson on the virtual pion. In the framework of one-pion-exchange dominance the elastic cross section of photon-pion scattering, σel(γπ+ → ρ°π+), is extracted. The value of this cross section indicates significant absorptive corrections for the exclusive reaction γp → ρ°nπ+.

  4. Exclusive ρ ^0 meson photoproduction with a leading neutron at HERA

    NASA Astrophysics Data System (ADS)

    Andreev, V.; Baghdasaryan, A.; Begzsuren, K.; Belousov, A.; Bolz, A.; Boudry, V.; Brandt, G.; Brisson, V.; Britzger, D.; Buniatyan, A.; Bylinkin, A.; Bystritskaya, L.; Campbell, A. J.; Cantun Avila, K. B.; Cerny, K.; Chekelian, V.; Contreras, J. G.; Cvach, J.; Dainton, J. B.; Daum, K.; Diaconu, C.; Dobre, M.; Dodonov, V.; Eckerlin, G.; Egli, S.; Elsen, E.; Favart, L.; Fedotov, A.; Feltesse, J.; Ferencei, J.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, S.; Goerlich, L.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Grebenyuk, A.; Greenshaw, T.; Grindhammer, G.; Haidt, D.; Henderson, R. C. W.; Hladkỳ, J.; Hoffmann, D.; Horisberger, R.; Hreus, T.; Huber, F.; Jacquet, M.; Janssen, X.; Jung, H.; Kapichine, M.; Kiesling, C.; Klein, M.; Kleinwort, C.; Kogler, R.; Kostka, P.; Kretzschmar, J.; Krüger, K.; Landon, M. P. J.; Lange, W.; Laycock, P.; Lebedev, A.; Levonian, S.; Lipka, K.; List, B.; List, J.; Lobodzinski, B.; Malinovski, E.; Martyn, H.-U.; Maxfield, S. J.; Mehta, A.; Meyer, A. B.; Meyer, H.; Meyer, J.; Mikocki, S.; Morozov, A.; Müller, K.; Naumann, Th.; Newman, P. R.; Niebuhr, C.; Nowak, G.; Olsson, J. E.; Ozerov, D.; Pascaud, C.; Patel, G. D.; Perez, E.; Petrukhin, A.; Picuric, I.; Pirumov, H.; Pitzl, D.; Plačakytė, R.; Pokorny, B.; Polifka, R.; Povh, B.; Radescu, V.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Rusakov, S.; Šálek, D.; Sankey, D. P. C.; Sauter, M.; Sauvan, E.; Schmitt, S.; Schoeffel, L.; Schöning, A.; Sefkow, F.; Shushkevich, S.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, A.; Steder, M.; Stella, B.; Straumann, U.; Sykora, T.; Thompson, P. D.; Traynor, D.; Truöl, P.; Tsakov, I.; Tseepeldorj, B.; Turnau, J.; Valkárová, A.; Vallée, C.; Van Mechelen, P.; Vazdik, Y.; Wegener, D.; Wünsch, E.; Žáček, J.; Zhang, Z.; Žlebčík, R.; Zohrabyan, H.; Zomer, F.

    2016-01-01

    A first measurement is presented of exclusive photoproduction of ρ ^0 mesons associated with leading neutrons at HERA. The data were taken with the H1 detector in the years 2006 and 2007 at a centre-of-mass energy of √{s}=319 GeV and correspond to an integrated luminosity of 1.16 pb^{-1}. The ρ ^0 mesons with transverse momenta p_T<1 GeV are reconstructed from their decays to charged pions, while leading neutrons carrying a large fraction of the incoming proton momentum, x_L>0.35, are detected in the Forward Neutron Calorimeter. The phase space of the measurement is defined by the photon virtuality Q^2 < 2 GeV^2, the total energy of the photon-proton system 20 < W_{γ p}< 100 GeV and the polar angle of the leading neutron θ _n < 0.75 mrad. The cross section of the reaction γ p → ρ ^0 n π ^+ is measured as a function of several variables. The data are interpreted in terms of a double peripheral process, involving pion exchange at the proton vertex followed by elastic photoproduction of a ρ ^0 meson on the virtual pion. In the framework of one-pion-exchange dominance the elastic cross section of photon-pion scattering, σ ^el(γ π ^+ → ρ ^0π ^+), is extracted. The value of this cross section indicates significant absorptive corrections for the exclusive reaction γ p → ρ ^0 n π ^+.

  5. Experimental study of prompt neutrino production in 400 GeV proton-nucleus collisions

    SciTech Connect

    Jonker, M.; Panman, J.; Udo, F.; Allaby, J.V.; Amaldi, U.; Barbiellini, G.; Baroncelli, A.; Blobel, V.; Flegel, W.; Kozanecki, W.; Mess, K.H.; Metcalf, M.; Meyer, J.; Orr, R.S.; Schneider, F.; Valente, V.; Wetherell, A.M.; Winter, K.; Buesser, F.W.; Gall, P.D.; Grote, H.; Kroeger, B.; Metz, E.; Niebergall, F.; Ranitzsch, K.H.; Staehelin, P.; Gorbunov, P.; Grigoriev, E.; Kaftanov, V.; Khovansky, V.; Rosanov, A.; Biancastelli, R.; Borgia, B.; Bosio, C.; Capone, A.; Ferroni, F.; Longo, E.; Monacelli, P.; de Notaristefani, F.; Pistilli, P.; Santoni, C.

    1981-02-01

    Results are reported from a proton beam-dump experiment performed at the 400 GeV CERN SPS using the Charm neutrino detector. Prompt electron-neutrinos and prompt muon-neutrinos, produced by decays of short-lived parents, have been observed. The ratio of the fluxes of (nu-bar/sub e/+..nu../sub e/) and of (nu-bar/sub ..mu../+..nu../sub ..mu../), measured by the rates of charged-current interactions with E/sub vis/>20 GeV, is 0.48 +- 0.12 (statistical) +- 0.10 (systematic). The ratio of nu-bar/sub ..mu../ and ..nu../sub ..mu../ fluxes is 1.3/sup +0.6//sub -0.5/. At low shower energies, 2 GeV, we observe 54 +- 19 (statistical) +- 9 (systematic) prompt muonless events in excess of electron- and muon-neutrino interactions expected from standard DD production and decay.

  6. Dark Higgs channel for Fermi GeV γ-ray excess

    SciTech Connect

    Ko, P.; Tang, Yong E-mail: ytang@kias.re.kr

    2016-02-01

    Dark Higgs is very generic in dark matter models where DM is stabilized by some spontaneously broken dark gauge symmetries. Motivated by tentative GeV scale γ-ray excess from the galactic center (GC), we investigate a scenario where a pair of dark matter X annihilates into a pair of dark Higgs H{sub 2}, which subsequently decays into standard model particles through its mixing with SM Higgs boson. Besides the two-body decay of H{sub 2}, we also include multibody decay channels of the dark Higgs. We find that the best-fit point is around M{sub X} ≅ 95.0 GeV, M{sub H{sub 2}} ≅ 86.7 GeV, (σ v) ≅ 4.0 × 10{sup −26}cm{sup 3}/s and gives a p-value ≅ 0.40. Implication of this result is described in the context of dark matter models with dark gauge symmetries. Since such a dark Higgs boson is very difficult to produce at colliders, indirect DM detections of cosmic γ-rays could be an important probe of dark sectors, complementary to collider searches.

  7. The Time of Flight Upgrade for CLAS at 12 GeV

    SciTech Connect

    Graham, Lewis

    2007-10-26

    The Time of Flight (TOF) system is a detection system within the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson National Accelerator Facility. CLAS, being a magnetic toroidal multi-gap spectrometer, is used in the detection of particles and their varying properties. Jefferson National Accelerator Facility is providing an incoming electron beam of energy 6 GeV that is used to probe the structure and production of these particles. The CLAS detector is currently adapted to energies of up to 6 GeV, but with recent approval it will now upgrade to energies of 12 GeV. CLAS consists of drift chambers to determine the charged particle paths, gas Cherenkov counters for electron discrimination, TOF scintillators for particle identification, and an electromagnetic calorimeter for identifying showering electrons and photons. The TOF system, which is our focus, is composed of scintillation counters at the forward angle, and covers an area of 206 meters squared. Therefore, we look to upgrade and construct the TOF system of CLAS and outline strategies of current construction, purpose for design, and outlook for the TOF system upgrade.

  8. Diphoton rate in the inert doublet model with a 125 GeV Higgs boson

    NASA Astrophysics Data System (ADS)

    Świeżewska, Bogumiła; Krawczyk, Maria

    2013-08-01

    An improved analysis of the diphoton decay rate of the Higgs boson in the inert doublet model is presented together with a critical discussion of the results existing in the literature. For a Higgs boson mass Mh of 125 GeV and taking into account various constraints—vacuum stability, existence of the inert vacuum, perturbative unitarity, electroweak precision tests, and the LEP bounds—we find regions in the parameter space where the diphoton rate is enhanced. The resulting regions are confronted with the allowed values of the dark matter mass. We find that a significant enhancement in the two-photon decay of the Higgs boson is only possible for constrained values of the scalar couplings λ3˜hH+H-, λ345˜hHH and the masses of the charged scalar and the dark matter particle. The enhancement above 1.3 demands that the masses of H± and H be less than 135 GeV (and above 62.5 GeV) and -1.46<λ3, λ345<-0.24. In addition, we analyze the correlation of the diphoton and Zγ rates.

  9. Bivariate Frequency Analysis with Nonstationary Gumbel/GEV Marginal Distributions for Rainfall Event

    NASA Astrophysics Data System (ADS)

    Joo, Kyungwon; Kim, Sunghun; Kim, Hanbeen; Ahn, Hyunjun; Heo, Jun-Haeng

    2016-04-01

    Multivariate frequency analysis has been developing for hydrological data recently. Particularly, the copula model has been used as an effective method which has no limitation on deciding marginal distributions. The time-series rainfall data can be characterized to rainfall event by inter-event time definition and each rainfall event has rainfall depth and duration. In addition, changes in rainfall depth have been studied recently due to climate change. The nonstationary (time-varying) Gumbel and Generalized Extreme Value (GEV) have been developed and their performances have been investigated from many studies. In the current study, bivariate frequency analysis has performed for rainfall depth and duration using Archimedean copula on stationary and nonstationary hourly rainfall data to consider the effect of climate change. The parameter of copula model is estimated by inference function for margin (IFM) method and stationary/nonstationary Gumbel and GEV distributions are used for marginal distributions. As a result, level curve of copula model is obtained and goodness-of-fit test is performed to choose appropriate marginal distribution among the applied stationary and nonstationary Gumbel and GEV distributions.

  10. The Time of Flight Upgrade for CLAS at 12 GeV

    SciTech Connect

    Lewis Graham

    2007-10-01

    The Time of Flight (TOF) system is a detection system within the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson National Accelerator Facility. CLAS, being a magnetic toroidal multi-gap spectrometer, is used in the detection of particles and their varying properties. Jefferson National Accelerator Facility is providing an incoming electron beam of energy 6 GeV that is used to probe the structure and production of these particles. The CLAS detector is currently adapted to energies of up to 6 GeV, but with recent approval it will now upgrade to energies of 12 GeV. CLAS consists of drift chambers to determine the charged particle paths, gas Cherenkov counters for electron discrimination, TOF scintillators for particle identification, and an electromagnetic calorimeter for identifying showering electrons and photons. The TOF system, which is our focus, is composed of scintillation counters at the forward angle, and covers an area of 206 meters squared. Therefore, we look to upgrade and construct the TOF system of CLAS and outline strategies of current construction, purpose for design, and outlook for the TOF system upgrade

  11. Proposed OTR Measurements of 120-GeV Protons and Antiprotons at FNAL

    NASA Astrophysics Data System (ADS)

    Scarpine, V. E.; Tassotto, G. R.; Lumpkin, A. H.

    2004-11-01

    Fermi National Accelerator Laboratory (FNAL) is developing optical transition radiation (OTR) detectors for beam diagnostics for their 120-GeV proton and antiproton transfer lines. As part of a collaboration to enhance the luminosity for the FNAL collider RUN II program, the quality of the proton and antiproton beams, as they are transported from the main injector (MI) to the Tevatron, will be characterized using OTR imaging techniques. A prototype detector in air has already successfully acquired OTR images of 120-GeV protons upstream of the antiproton production target. This result demonstrates that (i) the Ti and Al thin foil screens survive the 5 × 1012 proton beam spills, (ii) OTR is sufficient to image lower intensity antiproton beams, and (iii) the images provide two-dimensional information and higher resolution than the present multi-wire profile monitors in the transport lines. Beam bombardment effects on the Al screen and radiation effects on the lenses, filters and cameras have been evaluated for the prototype system for over 1 × 1019 120-GeV protons and will also be presented. An in-vacuum OTR station is being designed for the transport lines with adjustments to the optical components as warranted by the beam characteristics and anticipated radiation environment.

  12. A SEARCH FOR PULSATIONS FROM GEMINGA ABOVE 100 GeV WITH VERITAS

    SciTech Connect

    Aliu, E.; Archambault, S.; Archer, A.; Beilicke, M.; Buckley, J. H.; Bugaev, V.; Aune, T.; Barnacka, A.; Benbow, W.; Cerruti, M.; Bird, R.; Byrum, K.; Cardenzana, J. V.; Dickinson, H. J.; Eisch, J. D.; Chen, X.; Ciupik, L.; Connolly, M. P.; Cui, W.; Dumm, J. E-mail: gtrichards@gatech.edu; and others

    2015-02-10

    We present the results of 71.6 hr of observations of the Geminga pulsar (PSR J0633+1746) with the VERITAS very-high-energy gamma-ray telescope array. Data taken with VERITAS between 2007 November and 2013 February were phase-folded using a Geminga pulsar timing solution derived from data recorded by the XMM- Newton and Fermi-LAT space telescopes. No significant pulsed emission above 100 GeV is observed, and we report upper limits at the 95% confidence level on the integral flux above 135 GeV (spectral analysis threshold) of 4.0 × 10{sup –13} s{sup –1} cm{sup –2} and 1.7 × 10{sup –13} s{sup –1} cm{sup –2} for the two principal peaks in the emission profile. These upper limits, placed in context with phase-resolved spectral energy distributions determined from 5 yr of data from the Fermi-Large Area Telescope (LAT), constrain possible hardening of the Geminga pulsar emission spectra above ∼50 GeV.

  13. The BErkeley Lab Laser Accelerator (BELLA): A 10 GeV Laser Plasma Accelerator

    SciTech Connect

    Leemans, W.P.; Duarte, R.; Esarey, E.; Fournier, S.; Geddes, C.G.R.; Lockhart, D.; Schroeder, C.B.; Toth, C.; Vay, J.-L.; Zimmermann, S.

    2010-06-01

    An overview is presented of the design of a 10 GeV laser plasma accelerator (LPA) that will be driven by a PW-class laser system and of the BELLA Project, which has as its primary goal to build and install the required Ti:sapphire laser system for the acceleration experiments. The basic design of the 10 GeV stage aims at operation in the quasi-linear regime, where the laser excited wakes are largely sinusoidal and offer the possibility of accelerating both electrons and positrons. Simulations show that a 10 GeV electron beam can be generated in a meter scale plasma channel guided LPA operating at a density of about 1017 cm-3 and powered by laser pulses containing 30-40 J of energy in a 50- 200 fs duration pulse, focused to a spotsize of 50-100 micron. The lay-out of the facility and laser system will be presented as well as the progress on building the facility.

  14. A GeV Source in the Direction of Supernova Remnant CTB 37B

    NASA Astrophysics Data System (ADS)

    Xin, Yu-Liang; Liang, Yun-Feng; Li, Xiang; Yuan, Qiang; Liu, Si-Ming; Wei, Da-Ming

    2016-01-01

    Supernova remnants (SNRs) are the most attractive candidates for the acceleration sites of Galactic cosmic rays. We report the detection of GeV γ-ray emission with the Pass 8 events recorded by the Fermi Large Area Telescope (Fermi-LAT) in the vicinity of the shell-type SNR CTB 37B that is likely associated with the TeV γ-ray source HESS J1713-381. The photon spectrum of CTB 37B is consistent with a power law with an index of 1.89 ± 0.08 in the energy range of 0.5-500 GeV, and the measured flux connects smoothly with that of HESS J1713-381 at a few hundred GeV. No significant spatial extension and time variation are detected. The multi-wavelength data can be well fitted with either a leptonic model or a hadronic one. However, parameters of both models suggest more efficient particle acceleration than typical SNRs. Meanwhile, the X-ray and γ-ray spectral properties of CTB 37B show that it is an interesting source bridging young SNRs dominated by non-thermal emission and old SNRs interacting with molecular clouds.

  15. 9 GeV energy gain in a beam-driven plasma wakefield accelerator

    SciTech Connect

    Litos, M.; Adli, E.; Allen, J. M.; An, W.; Clarke, C. I.; Corde, S.; Clayton, C. E.; Frederico, J.; Gessner, S. J.; Green, S. Z.; Hogan, M. J.; Joshi, C.; Lu, W.; Marsh, K. A.; Mori, W. B.; Schmeltz, M.; Vafaei-Najafabadi, N.; Yakimenko, V.

    2016-02-15

    An electron beam has gained a maximum energy of 9 GeV per particle in a 1.3 m-long electron beam-driven plasma wakefield accelerator. The amount of charge accelerated in the spectral peak was 28.3 pC, and the root-mean-square energy spread was 5.0%. The mean accelerated charge and energy gain per particle of the 215 shot data set was 115 pC and 5.3 GeV, respectively, corresponding to an acceleration gradient of 4.0 GeV m-1 at the spectral peak. Moreover, the mean energy spread of the data set was 5.1%. Our results are consistent with the extrapolation of the previously reported energy gain results using a shorter, 36 cm-long plasma source to within 10%, evincing a non-evolving wake structure that can propagate distances of over a meter in length. Wake-loading effects were evident in the data through strong dependencies observed between various spectral properties and the amount of accelerated charge.

  16. The gamma-ray pulsar population of globular clusters: Implications for the GeV excess

    SciTech Connect

    Hooper, Dan; Linden, Tim

    2016-08-09

    In this study, it has been suggested that the GeV excess, observed from the region surrounding the Galactic Center, might originate from a population of millisecond pulsars that formed in globular clusters. With this in mind, we employ the publicly available Fermi data to study the gamma-ray emission from 157 globular clusters, identifying a statistically significant signal from 25 of these sources (ten of which are not found in existing gamma-ray catalogs). We combine these observations with the predicted pulsar formation rate based on the stellar encounter rate of each globular cluster to constrain the gamma-ray luminosity function of millisecond pulsars in the Milky Way's globular cluster system. We find that this pulsar population exhibits a luminosity function that is quite similar to those millisecond pulsars observed in the field of the Milky Way (i.e. the thick disk). After pulsars are expelled from a globular cluster, however, they continue to lose rotational kinetic energy and become less luminous, causing their luminosity function to depart from the steady-state distribution. Using this luminosity function and a model for the globular cluster disruption rate, we show that millisecond pulsars born in globular clusters can account for only a few percent or less of the observed GeV excess. Among other challenges, scenarios in which the entire GeV excess is generated from such pulsars are in conflict with the observed mass of the Milky Way's Central Stellar Cluster.

  17. The gamma-ray pulsar population of globular clusters: implications for the GeV excess

    NASA Astrophysics Data System (ADS)

    Hooper, Dan; Linden, Tim

    2016-08-01

    It has been suggested that the GeV excess, observed from the region surrounding the Galactic Center, might originate from a population of millisecond pulsars that formed in globular clusters. With this in mind, we employ the publicly available Fermi data to study the gamma-ray emission from 157 globular clusters, identifying a statistically significant signal from 25 of these sources (ten of which are not found in existing gamma-ray catalogs). We combine these observations with the predicted pulsar formation rate based on the stellar encounter rate of each globular cluster to constrain the gamma-ray luminosity function of millisecond pulsars in the Milky Way's globular cluster system. We find that this pulsar population exhibits a luminosity function that is quite similar to those millisecond pulsars observed in the field of the Milky Way (i.e. the thick disk). After pulsars are expelled from a globular cluster, however, they continue to lose rotational kinetic energy and become less luminous, causing their luminosity function to depart from the steady-state distribution. Using this luminosity function and a model for the globular cluster disruption rate, we show that millisecond pulsars born in globular clusters can account for only a few percent or less of the observed GeV excess. Among other challenges, scenarios in which the entire GeV excess is generated from such pulsars are in conflict with the observed mass of the Milky Way's Central Stellar Cluster.

  18. The gamma-ray pulsar population of globular clusters: Implications for the GeV excess

    DOE PAGES

    Hooper, Dan; Linden, Tim

    2016-08-09

    In this study, it has been suggested that the GeV excess, observed from the region surrounding the Galactic Center, might originate from a population of millisecond pulsars that formed in globular clusters. With this in mind, we employ the publicly available Fermi data to study the gamma-ray emission from 157 globular clusters, identifying a statistically significant signal from 25 of these sources (ten of which are not found in existing gamma-ray catalogs). We combine these observations with the predicted pulsar formation rate based on the stellar encounter rate of each globular cluster to constrain the gamma-ray luminosity function of millisecondmore » pulsars in the Milky Way's globular cluster system. We find that this pulsar population exhibits a luminosity function that is quite similar to those millisecond pulsars observed in the field of the Milky Way (i.e. the thick disk). After pulsars are expelled from a globular cluster, however, they continue to lose rotational kinetic energy and become less luminous, causing their luminosity function to depart from the steady-state distribution. Using this luminosity function and a model for the globular cluster disruption rate, we show that millisecond pulsars born in globular clusters can account for only a few percent or less of the observed GeV excess. Among other challenges, scenarios in which the entire GeV excess is generated from such pulsars are in conflict with the observed mass of the Milky Way's Central Stellar Cluster.« less

  19. Conceptual design of the Argonne 6-GeV synchrotron light source

    SciTech Connect

    Cho, Y.; Crosbie, E.; Khoe, T.; Knott, M.; Kramer, S.; Kustom, R.; Lari, R.; Martin, R.; Mavrogenes, G.; Moenich, J.

    1985-01-01

    The Argonne National Laboratory Synchrotron Light Source Storage Ring is designed to have a natural emittance of 6.5 x 10/sup -9/ m for circulating 6-GeV positrons. Thirty of the 32 long straight sections, each 6.5-m long, will be available for synchrotron light insertion devices. A circulating positron current of 300 mA can be injected in about 8 min. from a booster synchrotron operating with a repetition time of 1.2 sec. The booster synchrotron will contain two different rf systems. The lower frequency system (38.97 MHz) will accept positrons from a 360-MeV linac and will accelerate them to 2.25 GeV. The higher frequency system (350.76 MHz) will accelerate the positrons to 6 GeV. The positrons will be produced from a 300-MeV electron beam on a tungsten target. A conceptual layout is shown. 5 refs., 4 figs., 3 tabs.

  20. 9 GeV energy gain in a beam-driven plasma wakefield accelerator

    DOE PAGES

    Litos, M.; Adli, E.; Allen, J. M.; ...

    2016-02-15

    An electron beam has gained a maximum energy of 9 GeV per particle in a 1.3 m-long electron beam-driven plasma wakefield accelerator. The amount of charge accelerated in the spectral peak was 28.3 pC, and the root-mean-square energy spread was 5.0%. The mean accelerated charge and energy gain per particle of the 215 shot data set was 115 pC and 5.3 GeV, respectively, corresponding to an acceleration gradient of 4.0 GeV m-1 at the spectral peak. Moreover, the mean energy spread of the data set was 5.1%. Our results are consistent with the extrapolation of the previously reported energy gainmore » results using a shorter, 36 cm-long plasma source to within 10%, evincing a non-evolving wake structure that can propagate distances of over a meter in length. Wake-loading effects were evident in the data through strong dependencies observed between various spectral properties and the amount of accelerated charge.« less

  1. A GeV SOURCE IN THE DIRECTION OF SUPERNOVA REMNANT CTB 37B

    SciTech Connect

    Xin, Yu-Liang; Liang, Yun-Feng; Li, Xiang; Liu, Si-Ming; Wei, Da-Ming; Yuan, Qiang E-mail: dmwei@pmo.ac.cn

    2016-01-20

    Supernova remnants (SNRs) are the most attractive candidates for the acceleration sites of Galactic cosmic rays. We report the detection of GeV γ-ray emission with the Pass 8 events recorded by the Fermi Large Area Telescope (Fermi-LAT) in the vicinity of the shell-type SNR CTB 37B that is likely associated with the TeV γ-ray source HESS J1713–381. The photon spectrum of CTB 37B is consistent with a power law with an index of 1.89 ± 0.08 in the energy range of 0.5–500 GeV, and the measured flux connects smoothly with that of HESS J1713–381 at a few hundred GeV. No significant spatial extension and time variation are detected. The multi-wavelength data can be well fitted with either a leptonic model or a hadronic one. However, parameters of both models suggest more efficient particle acceleration than typical SNRs. Meanwhile, the X-ray and γ-ray spectral properties of CTB 37B show that it is an interesting source bridging young SNRs dominated by non-thermal emission and old SNRs interacting with molecular clouds.

  2. Precision measurements of g1 of the proton and of the deuteron with 6 GeV electrons

    NASA Astrophysics Data System (ADS)

    Prok, Y.; Bosted, P.; Kvaltine, N.; Adhikari, K. P.; Adikaram, D.; Aghasyan, M.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Avakian, H.; Baghdasaryan, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Biselli, A. S.; Bono, J.; Briscoe, W. J.; Brock, J.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Carlin, C.; Carman, D. S.; Celentano, A.; Chandavar, S.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crabb, D.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dupre, R.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Fersch, R.; Fleming, J. A.; Forest, T. A.; Garçon, M.; Garillon, B.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Girod, F. X.; Giovanetti, K. L.; Goetz, J. T.; Gohn, W.; Gothe, R. W.; Griffioen, K. A.; Guegan, B.; Guler, N.; Hafidi, K.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Ho, D.; Holtrop, M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jawalkar, S.; Jiang, X.; Jo, H. S.; Joo, K.; Kalantarians, N.; Keith, C.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Meekins, D.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moutarde, H.; Movsisyan, A.; Munevar, E.; Munoz Camacho, C.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Peng, P.; Phillips, J. J.; Pierce, J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Rimal, D.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Sharabian, Y. G.; Simonyan, A.; Smith, C.; Smith, G.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Strakovsky, I. I.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tang, W.; Tkachenko, S.; Ungaro, M.; Vernarsky, B.; Vlassov, A. V.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Weinstein, L. B.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, B.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration

    2014-08-01

    The inclusive polarized structure functions of the proton and deuteron, g1p and g1d, were measured with high statistical precision using polarized 6 GeV electrons incident on a polarized ammonia target in Hall B at Jefferson Laboratory. Electrons scattered at laboratory angles between 18 and 45 degrees were detected using the CEBAF Large Acceptance Spectrometer (CLAS). For the usual deep inelastic region kinematics, Q2>1 GeV2 and the final-state invariant mass W >2 GeV, the ratio of polarized to unpolarized structure functions g1/F1 is found to be nearly independent of Q2 at fixed x. Significant resonant structure is apparent at values of W up to 2.3 GeV. In the framework of perturbative quantum chromodynamics, the high-W results can be used to better constrain the polarization of quarks and gluons in the nucleon, as well as high-twist contributions.

  3. Phase-resolved Crab pulsar measurements from 25 to 400 GeV with the MAGIC telescopes

    NASA Astrophysics Data System (ADS)

    Klepser, S.; Giavitto, G.; Lopez, M.; Saito, T. Y.; Schweizer, T.; Šnidarić, I.; Zanin, R.; MAGIC Collaboration

    2012-07-01

    We report on observations of the Crab pulsar with the MAGIC telescopes. Our data were taken in both monoscopic (> 25 GeV) and stereoscopic (> 50 GeV) observation modes. Two peaks were detected with both modes and phase-resolved energy spectra were calculated. By comparing with Fermi-LAT measurements, we find that the energy spectrum of the Crab pulsar does not follow a power law with an exponential cutoff, but has an additional hard component, extending up to at least 400 GeV. This suggests that the emission above 25 GeV is not dominated by curvature radiation, as suggested in the standard scenarios of the OG and SG models.

  4. Extra matters decree the relatively heavy Higgs of mass about 125 GeV in the supersymmetric model

    NASA Astrophysics Data System (ADS)

    Moroi, Takeo; Sato, Ryosuke; Yanagida, Tsutomu T.

    2012-03-01

    We show that the Higgs mass about 125 GeV is easily realized in supersymmetric model with extra matters, simultaneously explaining the anomaly in the muon anomalous magnetic moment and the dark matter density.

  5. Precision measurements of g1 of the proton and the deuteron with 6 GeV electrons

    SciTech Connect

    Prok, Yelena; Bosted, Peter; Kvaltine, Nicholas; Adhikari, Krishna; Adikaram-Mudiyanselage, Dasuni; Aghasyan, Mher; Amaryan, Moskov; Anderson, Mark; Anefalos Pereira, Sergio; Avagyan, Harutyun; Baghdasaryan, Hovhannes; Ball, Jacques; Baltzell, Nathan; Battaglieri, Marco; Biselli, Angela; Bono, Jason; Briscoe, William; Brock, Joseph; Brooks, William; Bueltmann, Stephen; Burkert, Volker; Carlin, Christopher; Carman, Daniel; Celentano, Andrea; Chandavar, Shloka; Colaneri, Luca; Cole, Philip; Contalbrigo, Marco; Cortes, Olga; Crabb, Donald; Crede, Volker; D'Angelo, Annalisa; Dashyan, Natalya; De Vita, Raffaella; De Sanctis, Enzo; Deur, Alexandre; Djalali, Chaden; Dodge, Gail; Doughty, David; Dupre, Raphael; El Alaoui, Ahmed; El Fassi, Lamiaa; Elouadrhiri, Latifa; Fedotov, Gleb; Fegan, Stuart; Fersch, Robert; Fleming, Jamie; Forest, Tony; Garcon, Michel; Gevorgyan, Nerses; Ghandilyan, Yeranuhi; Gilfoyle, Gerard; Girod-Gard, Francois-Xavier; Giovanetti, Kevin; Goetz, John; Gohn, Wesley; Gothe, Ralf; Griffioen, Keith; Guegan, Baptiste; Guler, Nevzat; Hafidi, Kawtar; Hanretty, Charles; Harrison, Nathan; Hattawy, Mohammad; Hicks, Kenneth; Ho, Dao; Holtrop, Maurik; Ilieva, Yordanka; Ireland, David; Ishkhanov, Boris; Isupov, Evgeny; Jawalkar, Sucheta; Jiang, Xiaodong; Jo, Hyon-Suk; Joo, Kyungseon; Kalantarians, Narbe; Keith, Christopher; Keller, Daniel; Khandaker, Mahbubul; Kim, Andrey; Kim, Wooyoung; Klein, Andreas; Klein, Franz; Koirala, Suman; Kubarovsky, Valery; Kuhn, Sebastian; Kuleshov, Sergey; Lenisa, Paolo; Livingston, Kenneth; Lu, Haiyun; MacGregor, Ian; Markov, Nikolai; Mayer, Michael; McKinnon, Bryan; Meekins, David; Mineeva, Taisiya; Mirazita, Marco; Mokeev, Viktor; Montgomery, Rachel; MOUTARDE, Herve; Movsisyan, Aram; Munevar Espitia, Edwin; Munoz Camacho, Carlos; Nadel-Turonski, Pawel; Niccolai, Silvia; Niculescu, Gabriel; Niculescu, Maria; Osipenko, Mikhail; Ostrovidov, Alexander; Pappalardo, Luciano; Paremuzyan, Rafayel; Park, K; Peng, Peng; Phillips, J J; Pierce, Joshua; Pisano, Silvia; Pogorelko, Oleg; Pozdniakov, Serguei; Price, John; Procureur, Sebastien; Protopopescu, Dan; Puckett, Andrew; Raue, Brian; Rimal, Dipak; Ripani, Marco; Rizzo, Alessandro; Rosner, Guenther; Rossi, Patrizia; Roy, Priyashree; Sabatie, Franck; Saini, Mukesh; Salgado, Carlos; Schott, Diane; Schumacher, Reinhard; Seder, Erin; Sharabian, Youri; Simonyan, Ani; Smith, Claude; Smith, Gregory; Sober, Daniel; Sokhan, Daria; Stepanyan, Stepan; Stepanyan, Samuel; Strakovski, Igor; Strauch, Steffen; Sytnik, Valeriy; Taiuti, Mauro; Tang, Wei; Tkachenko, Svyatoslav; Ungaro, Maurizio; Vernarsky, Brian; Vlasov, Alexander; Voskanyan, Hakob; Voutier, Eric; Walford, Natalie; Watts, Daniel; Weinstein, Lawrence; Zachariou, Nicholas; Zana, Lorenzo; Zhang, Jixie; Zhao, Bo; Zhao, Zhiwen; Zonta, Irene

    2014-08-01

    The inclusive polarized structure functions of the proton and deuteron, g1p and g1d, were measured with high statistical precision using polarized 6 GeV electrons incident on a polarized ammonia target in Hall B at Jefferson Laboratory. Electrons scattered at lab angles between 18 and 45 degrees were detected using the CEBAF Large Acceptance Spectrometer (CLAS). For the usual DIS kinematics, Q^2>1 GeV^2 and the final-state invariant mass W>2 GeV, the ratio of polarized to unpolarized structure functions g1/F1 is found to be nearly independent of Q^2 at fixed x. Significant resonant structure is apparent at values of W up to 2.3 GeV. In the framework of perturbative QCD, the high-W results can be used to better constrain the polarization of quarks and gluons in the nucleon, as well as high-twist contributions.

  6. Food Exposures to Lead

    PubMed Central

    Kolbye, Albert C.; Mahaffey, Kathryn R.; Fiorino, John A.; Corneliussen, Paul C.; Jelinek, Charles F.

    1974-01-01

    Exposures to lead have emanated from various sources, including food, throughout human history. Occupational and environmental exposures (especially pica) appear to account for much of the identified human disease, however, food-borne exposures deserve further investigation. Lead residues in food can result from: biological uptake from soils into plants consumed by food animals or man, usage of lead arsenate pesticides, inadvertent addition during food processing, and by leaching them improperly glazed pottery used as food storage or dining utensils. Estimates of total dietary exposure should reflect frequency distribution data on lead levels in specific food commodities in relation to the quantities actually ingested by various sample populations to distinguish degrees of risk associated with particular dietary habits. Earlier estimates of average total dietary intake of lead by adults have been reported to range from above 500 μg/day downward with more recent estimates suggesting averages of 200 μg/day or lower. The strengths and weaknesses of these data are discussed along with analytical and sampling considerations. FDA programs related to food surveillance, epidemiology, and toxicological investigation are briefly described. PMID:4406646

  7. Estimation of sea level muon energy spectra in the energy range 0.2 GeV TO 10 GeV

    NASA Astrophysics Data System (ADS)

    Haldar, T. K.; Mitra, M.; Bhattacharyya, D. P.

    The vertical muon energy spectrum has been calculated in the energy range 0.2 GeV to 10 GeV using the latest directly measured primary cosmic ray nucleon spectrum . The primary cosmic ray nucleon spectrum has been calculated from the available measurements JACEE, CRN, SOKOL and the experiments done by Ramaty, Ryan, Seo, Badhwar on P, He, CNO, Ne -Si and Fe. Then using the superposition model the all nucleon spectrum has been constructed which makes the form N(E)dE = 1.13E-2.61 dE [cm2 .s.sr.GeV/n]-1 The pT integrated Lorentz invariant crosssections available from the CERN LEBC EHS data for π± and K± production initiated by pp collisions has been fitted and then from the fitting parameters hadronic energy moments have been calculated. The adopted inelastic crosssection for pp interactions is 35 mb and the value of σp-air cross-section has been adopted as 273 mb.The Z-factors have been corrected for p-air collisions using the methodology of Minorikawa and Mitsui. The Q-G plasma correction of Z-factors has also been made. Adopting the methodology of Arnon Dar and taking the other interaction parameters the modified production co-efficients gNM AT M have been calculated. To calculate the muon flux in this methode one has to estimate Cπ and CK for which we used the parametric values like Bπ = 1, BK = 0.632, pa = 2.3424, αK = 1.048.Using those values, Cπ and CK have been found out to be 0.220137 and 0.007149 respectively. The survival probability of muons which are produced at atmospheric depth λ0 to survive down to atmospheric depth l has been calculated with the help of the average muon production depth λ0 = 100 gm-cm-2 and survival depth λF = 1033 gmcm-2 , respectively. The energy loss of muon during its propagation through atmosphere has been calculated. Finally the vertical muon energy spectrum at sea level from conventinal meson decay has been estimated and compared with experimental data of CAPRICE-94 (1999), Allkofer et al.(1976), Allkofer et al. (1971

  8. Accelerating Into the Future: From 0 to GeV in a Few Centimeters (LBNL Summer Lecture Series)

    SciTech Connect

    Leemans, Wim

    2008-07-08

    July 8, 2008 Berkeley Lab lecture: By exciting electric fields in plasma-based waveguides, lasers accelerate electrons in a fraction of the distance conventional accelerators require. The Accelerator and Fusion Research Division's LOASIS program, headed by Wim Leemans, has used 40-trillion-watt laser pulses to deliver billion-electron-volt (1 GeV) electron beams within centimeters. Leemans looks ahead to BELLA, 10-GeV accelerating modules that could power a future linear collider.

  9. Accelerating Into the Future: From 0 to GeV in a Few Centimeters (LBNL Summer Lecture Series)

    SciTech Connect

    Leemans, Wim

    2008-07-08

    Summer Lecture Series 2008: By exciting electric fields in plasma-based waveguides, lasers accelerate electrons in a fraction of the distance conventional accelerators require. The Accelerator and Fusion Research Division's LOASIS program, headed by Wim Leemans, has used 40-trillion-watt laser pulses to deliver billion-electron-volt (1 GeV) electron beams within centimeters. Leemans looks ahead to BELLA, 10-GeV accelerating modules that could power a future linear collider.

  10. Accelerating Into the Future: From 0 to GeV in a Few Centimeters (LBNL Summer Lecture Series)

    ScienceCinema

    Leemans, Wim [LOASIS Program, AFRD

    2016-07-12

    July 8, 2008 Berkeley Lab lecture: By exciting electric fields in plasma-based waveguides, lasers accelerate electrons in a fraction of the distance conventional accelerators require. The Accelerator and Fusion Research Division's LOASIS program, headed by Wim Leemans, has used 40-trillion-watt laser pulses to deliver billion-electron-volt (1 GeV) electron beams within centimeters. Leemans looks ahead to BELLA, 10-GeV accelerating modules that could power a future linear collider.

  11. Evolution of π0 Suppression in Au+Au Collisions from sNN=39 to 200 GeV

    NASA Astrophysics Data System (ADS)

    Adare, A.; Afanasiev, S.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Al-Ta'ani, H.; Alexander, J.; Angerami, A.; Aoki, K.; Apadula, N.; Aramaki, Y.; Asano, H.; Aschenauer, E. C.; Atomssa, E. T.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bannier, B.; Barish, K. N.; Bassalleck, B.; Bathe, S.; Baublis, V.; Baumgart, S.; Bazilevsky, A.; Belmont, R.; Berdnikov, A.; Berdnikov, Y.; Bing, X.; Blau, D. S.; Boyle, K.; Brooks, M. L.; Buesching, H.; Bumazhnov, V.; Butsyk, S.; Campbell, S.; Castera, P.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Connors, M.; Csanád, M.; Csörgő, T.; Dairaku, S.; Datta, A.; Daugherity, M. S.; David, G.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dharmawardane, K. V.; Dietzsch, O.; Ding, L.; Dion, A.; Donadelli, M.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; D'Orazio, L.; Edwards, S.; Efremenko, Y. V.; Engelmore, T.; Enokizono, A.; Esumi, S.; Eyser, K. O.; Fadem, B.; Fields, D. E.; Finger, M.; Finger, M., Jr.; Fleuret, F.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukao, Y.; Fusayasu, T.; Gainey, K.; Gal, C.; Garishvili, A.; Garishvili, I.; Glenn, A.; Gong, X.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gunji, T.; Guo, L.; Gustafsson, H.-Å.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hanks, J.; Hashimoto, K.; Haslum, E.; Hayano, R.; He, X.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hollis, R. S.; Homma, K.; Hong, B.; Horaguchi, T.; Hori, Y.; Huang, S.; Ichihara, T.; Iinuma, H.; Ikeda, Y.; Imrek, J.; Inaba, M.; Iordanova, A.; Isenhower, D.; Issah, M.; Isupov, A.; Ivanischev, D.; Jacak, B. V.; Javani, M.; Jia, J.; Jiang, X.; Johnson, B. M.; Joo, K. S.; Jouan, D.; Kamin, J.; Kaneti, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapustinsky, J.; Karatsu, K.; Kasai, M.; Kawall, D.; Kazantsev, A. V.; Kempel, T.; Khanzadeev, A.; Kijima, K. M.; Kim, B. I.; Kim, C.; Kim, D. J.; Kim, E.-J.; Kim, H. J.; Kim, K.-B.; Kim, Y.-J.; Kim, Y. K.; Kinney, E.; Kiss, Á.; Kistenev, E.; Klatsky, J.; Kleinjan, D.; Kline, P.; Komatsu, Y.; Komkov, B.; Koster, J.; Kotchetkov, D.; Kotov, D.; Král, A.; Krizek, F.; Kunde, G. J.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, B.; Lee, D. M.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, S. H.; Lee, S. R.; Leitch, M. J.; Leite, M. A. L.; Leitgab, M.; Lewis, B.; Lim, S. H.; Linden Levy, L. A.; Litvinenko, A.; Liu, M. X.; Love, B.; Maguire, C. F.; Makdisi, Y. I.; Makek, M.; Malakhov, A.; Manion, A.; Manko, V. I.; Mannel, E.; Masumoto, S.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Mignerey, A. C.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Miyachi, Y.; Miyasaka, S.; Mohanty, A. K.; Moon, H. J.; Morrison, D. P.; Motschwiller, S.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Nagae, T.; Nagamiya, S.; Nagle, J. L.; Nagy, M. I.; Nakagawa, I.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nattrass, C.; Nederlof, A.; Nihashi, M.; Nouicer, R.; Novitzky, N.; Nyanin, A. S.; O'Brien, E.; Ogilvie, C. A.; Okada, K.; Oskarsson, A.; Ouchida, M.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, B. H.; Park, I. H.; Park, S. K.; Pate, S. F.; Patel, L.; Pei, H.; Peng, J.-C.; Pereira, H.; Peresedov, V.; Peressounko, D. Yu.; Petti, R.; Pinkenburg, C.; Pisani, R. P.; Proissl, M.; Purschke, M. L.; Qu, H.; Rak, J.; Ravinovich, I.; Read, K. F.; Reynolds, R.; Riabov, V.; Riabov, Y.; Richardson, E.; Roach, D.; Roche, G.; Rolnick, S. D.; Rosati, M.; Rukoyatkin, P.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Samsonov, V.; Sano, M.; Sarsour, M.; Sawada, S.; Sedgwick, K.; Seidl, R.; Sen, A.; Seto, R.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Slunečka, M.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Soumya, M.; Sourikova, I. V.; Stankus, P. W.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Sugitate, T.; Sukhanov, A.; Sun, J.; Sziklai, J.; Takagui, E. M.; Takahara, A.; Taketani, A.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tennant, E.; Themann, H.; Todoroki, T.; Tomášek, L.; Tomášek, M.; Torii, H.; Towell, R. S.; Tserruya, I.; Tsuchimoto, Y.; Tsuji, T.; Vale, C.; van Hecke, H. W.; Vargyas, M.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Virius, M.; Vossen, A.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Wei, R.; White, S. N.; Winter, D.; Wolin, S.; Woody, C. L.

    2012-10-01

    Neutral-pion π0 spectra were measured at midrapidity (|y|<0.35) in Au+Au collisions at sNN=39 and 62.4 GeV and compared with earlier measurements at 200 GeV in a transverse-momentum range of 1GeV at all centralities. Perturbative-quantum-chromodynamics calculations that describe RAA well at 200 GeV fail to describe the 39 GeV data, raising the possibility that, for the same pT region, the relative importance of initial-state effects and soft processes increases at lower energies. The pT range where π0 spectra in central Au+Au collisions have the same power as in p+p collisions is ≈5 and 7GeV/c for sNN=200 and 62.4 GeV, respectively. For the sNN=39GeV data, it is not clear whether such a region is reached, and the xT dependence of the xT-scaling power-law exponent is very different from that observed in the sNN=62 and 200 GeV data, providing further evidence that initial-state effects and soft processes mask the in-medium suppression of hard-scattered partons to higher pT as the collision energy decreases.

  12. Accelerating Into the Future: From 0 to GeV in a Few Centimeters (LBNL Summer Lecture Series)

    ScienceCinema

    Leemans, Wim [LOASIS Program, AFRD

    2016-07-12

    Summer Lecture Series 2008: By exciting electric fields in plasma-based waveguides, lasers accelerate electrons in a fraction of the distance conventional accelerators require. The Accelerator and Fusion Research Division's LOASIS program, headed by Wim Leemans, has used 40-trillion-watt laser pulses to deliver billion-electron-volt (1 GeV) electron beams within centimeters. Leemans looks ahead to BELLA, 10-GeV accelerating modules that could power a future linear collider.

  13. Lead zirconate titanate ceramics

    SciTech Connect

    Walker, B.E. Jr.

    1986-12-02

    This patent describes a lead zirconate titanate (PZT) piezoelectric ceramic composition which, based on total composition weight, consists essentially of a solid solution of lead zirconate and lead titanate in a PbZrO/sub 3/:PbTiO/sub 3/ ratio from about 0.505:0.495 to about 0.54:0.46; a halide salt selected from the group consisting of fluorides and chlorides of alkali metal and alkaline earth elements and mixtures thereof except for francium and radium in an amount from about 0.5 to 2 weight percent; and an oxide selected from the group consisting of magnesium, barium, scandium, aluminum, lanthanum, praesodynium, neodymium, samarium, and mixtures thereof in an amount from about 0.5 to about 6 weight percent, the relative amount of oxide being from about 1 to about 4 times that of the halide.

  14. Pacemaker lead endocarditis

    PubMed Central

    Scheffer, M.; van der Linden, E.; van Mechelen, R.

    2003-01-01

    We present a patient with a pacemaker lead endocarditis who showed no signs of pocket infection but with high fever and signs of infection in the routine laboratory tests. A diagnosis of pacemaker lead endocarditis must be considered in all patients with fever and infection parameters who have a pacemaker inserted, not only in the first weeks after implantation but also late after implantation, as long as no other cause of infection has been found. Transthoracal echocardiography alone is not sensitive enough to establish the correct diagnosis. Transoesophageal echocardiography (TEE) is mandatory to demonstrate the presence or absence of a vegetation on a pacemaker lead. ImagesFigure 1Figure 2Figure 3Figure 4 PMID:25696204

  15. Placental Permeability of Lead

    PubMed Central

    Carpenter, Stanley J.

    1974-01-01

    The detection of lead in fetal tissues by chemical analysis has long been accepted as prima facie evidence for the permeability of the placenta to this nonessential trace metal. However, only a few investigations, all on lower mammalian species, have contributed any direct experimental data bearing on this physiological process. Recent radioactive tracer and radioautographic studies on rodents have shown that lead crosses the placental membranes rapidly and in significant amounts even at relatively low maternal blood levels. While it is not possible to extrapolate directly the results of these experiments to humans because of differences in placental structure and other factors, the results do serve as a warning of the possible hazard to the human embryo and fetus of even low levels of lead in the maternal system. PMID:4857497

  16. Environmental lead in Mexico.

    PubMed

    Albert, L A; Badillo, F

    1991-01-01

    From the data presented here, it can be concluded that environmental exposure to lead is a particularly severe problem in Mexico. As has been shown, there are very important sources of exposure to this metal: (a) for rural populations who manufacture and/or utilize lead-glazed pottery, (b) for urban populations who are exposed to high air lead concentrations due to the continued use of lead fuel additives, (c) for workers of several industries, mainly those of batteries and pigments, (d) for consumers who routinely eat canned foods such as hot peppers and fruit products, and (e) for the general population living in the vicinity of smelters, refineries and other industries that emit lead. Therefore, in Mexico only those native populations living in very primitive communities, far away from all civilized life, could be expected to be free from this exposure. At the same time, and despite the relatively few data available, it can be stated that the exposure to lead of populations in Mexico could be approaching levels that might be highly hazardous, in particular for the neuropsychological health of children. Regarding the presence of lead in the environment, despite the fact that the available studies are not enough, it is evident that pollution by this metal is widespread and that there is a serious lack of studies for most regions of the country, including several that might be expected to be highly polluted. At the same time, it is evident that the official attention paid to the problem, either in regulations, support of further studies, or implementation of effective control measures has been far from the level needed according to the available data. Lead in gasoline is still used at very high concentrations in all the country, with the exception of Mexico City and its surrounding area, while no studies have been carried out to determine the potential health and environmental impact of this practice in regions outside Mexico City. Despite the fact that the Torre

  17. Thrombus on pacemaker lead.

    PubMed

    Raut, Monish S; Maheshwari, Arun; Dubey, Sumir

    2015-12-01

    A 58-year-old male was admitted with history of shortness of breath and recurrent fever since two months. He had undergone permanent pacemaker implantation six years back for complete heart block. The patient was persistently having thrombocytopenia. Echocardiographic examination revealed mass (size 4.28 cm(2)) attached to pacemaker lead in right atrium. The patient was scheduled for open-heart surgery for removal of right atrial mass. During surgery, pacemaker leads and pulse generator were also removed along with mass considering the possible source of infection.

  18. Source breakup dynamics in Au + Au collisions at sqrt[s(NN)]=200 GeV via three-dimensional two-pion source imaging.

    PubMed

    Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Alexander, J; Al-Jamel, A; Aoki, K; Aphecetche, L; Armendariz, R; Aronson, S H; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Baldisseri, A; Barish, K N; Barnes, P D; Bassalleck, B; Bathe, S; Batsouli, S; Baublis, V; Bauer, F; Bazilevsky, A; Belikov, S; Bennett, R; Berdnikov, Y; Bjorndal, M T; Boissevain, J G; Borel, H; Boyle, K; Brooks, M L; Brown, D S; Bucher, D; Buesching, H; Bumazhnov, V; Bunce, G; Burward-Hoy, J M; Butsyk, S; Campbell, S; Chai, J-S; Chernichenko, S; Chiba, J; Chi, C Y; Chiu, M; Choi, I J; Chujo, T; Chung, P; Cianciolo, V; Cleven, C R; Cobigo, Y; Cole, B A; Comets, M P; Constantin, P; Csanád, M; Csörgo, T; Dahms, T; Das, K; David, G; Delagrange, H; Denisov, A; d'Enterria, D; Deshpande, A; Desmond, E J; Dietzsch, O; Dion, A; Drachenberg, J L; Drapier, O; Drees, A; Dubey, A K; Durum, A; Dzhordzhadze, V; Efremenko, Y V; Egdemir, J; Enokizono, A; En'yo, H; Espagnon, B; Esumi, S; Fields, D E; Fleuret, F; Fokin, S L; Forestier, B; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fukao, Y; Fung, S-Y; Gadrat, S; Gastineau, F; Germain, M; Glenn, A; Gonin, M; Gosset, J; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grosse Perdekamp, M; Gunji, T; Gustafsson, H-A; Hachiya, T; Henni, A Hadj; Haggerty, J S; Hagiwara, M N; Hamagaki, H; Harada, H; Hartouni, E P; Haruna, K; Harvey, M; Haslum, E; Hasuko, K; Hayano, R; Heffner, M; Hemmick, T K; Heuser, J M; He, X; Hiejima, H; Hill, J C; Hobbs, R; Holmes, M; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hur, M G; Ichihara, T; Imai, K; Inaba, M; Isenhower, D; Isenhower, L; Ishihara, M; Isobe, T; Issah, M; Isupov, A; Jacak, B V; Jia, J; Jin, J; Jinnouchi, O; Johnson, B M; Joo, K S; Jouan, D; Kajihara, F; Kametani, S; Kamihara, N; Kaneta, M; Kang, J H; Kawagishi, T; Kazantsev, A V; Kelly, S; Khanzadeev, A; Kim, D J; Kim, E; Kim, Y-S; Kinney, E; Kiss, A; Kistenev, E; Kiyomichi, A; Klein-Boesing, C; Kochenda, L; Kochetkov, V; Komkov, B; Konno, M; Kotchetkov, D; Kozlov, A; Kroon, P J; Kunde, G J; Kurihara, N; Kurita, K; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Lajoie, J G; Lebedev, A; Le Bornec, Y; Leckey, S; Lee, D M; Lee, M K; Leitch, M J; Leite, M A L; Lim, H; Litvinenko, A; Liu, M X; Li, X H; Maguire, C F; Makdisi, Y I; Malakhov, A; Malik, M D; Manko, V I; Masui, H; Matathias, F; McCain, M C; McGaughey, P L; Miake, Y; Miller, T E; Milov, A; Mioduszewski, S; Mishra, G C; Mitchell, J T; Morrison, D P; Moss, J M; Moukhanova, T V; Mukhopadhyay, D; Murata, J; Nagamiya, S; Nagata, Y; Nagle, J L; Naglis, M; Nakamura, T; Newby, J; Nguyen, M; Norman, B E; Nyanin, A S; Nystrand, J; O'Brien, E; Ogilvie, C A; Ohnishi, H; Ojha, I D; Okada, H; Okada, K; Omiwade, O O; Oskarsson, A; Otterlund, I; Ozawa, K; Pal, D; Palounek, A P T; Pantuev, V; Papavassiliou, V; Park, J; Park, W J; Pate, S F; Pei, H; Peng, J-C; Pereira, H; Peresedov, V; Peressounko, D Yu; Pinkenburg, C; Pisani, R P; Purschke, M L; Purwar, A K; Qu, H; Rak, J; Ravinovich, I; Read, K F; Reuter, M; Reygers, K; Riabov, V; Riabov, Y; Roche, G; Romana, A; Rosati, M; Rosendahl, S S E; Rosnet, P; Rukoyatkin, P; Rykov, V L; Ryu, S S; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakai, S; Samsonov, V; Sato, H D; Sato, S; Sawada, S; Semenov, V; Seto, R; Sharma, D; Shea, T K; Shein, I; Shibata, T-A; Shigaki, K; Shimomura, M; Shohjoh, T; Shoji, K; Sickles, A; Silva, C L; Silvermyr, D; Sim, K S; Singh, C P; Singh, V; Skutnik, S; Smith, W C; Soldatov, A; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Staley, F; Stankus, P W; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Sugitate, T; Suire, C; Sullivan, J P; Sziklai, J; Tabaru, T; Takagi, S; Takagui, E M; Taketani, A; Tanaka, K H; Tanaka, Y; Tanida, K; Tannenbaum, M J; Taranenko, A; Tarján, P; Thomas, T L; Togawa, M; Tojo, J; Torii, H; Towell, R S; Tram, V-N; Tserruya, I; Tsuchimoto, Y; Tuli, S K; Tydesjö, H; Tyurin, N; Vale, C; Valle, H; van Hecke, H W; Velkovska, J; Vertesi, R; Vinogradov, A A; Vznuzdaev, E; Wagner, M; Wang, X R; Watanabe, Y; Wessels, J; White, S N; Willis, N; Winter, D; Woody, C L; Wysocki, M; Xie, W; Yanovich, A; Yokkaichi, S; Young, G R; Younus, I; Yushmanov, I E; Zajc, W A; Zaudtke, O; Zhang, C; Zimányi, J; Zolin, L

    2008-06-13

    A three-dimensional correlation function obtained from midrapidity, low p(T), pion pairs in central Au+Au collisions at sqrt[s(NN)]=200 GeV is studied. The extracted model-independent source function indicates a long range tail in the directions of the pion pair transverse momentum (out) and the beam (long). A proper breakup time tau(0) ~ 9 fm/c and a mean proper emission duration Delta tau ~ 2 fm/c, leading to sizable emission time differences ({|Delta t(LCM)|} approximately 12 fm/c), are required to allow models to be successfully matched to these tails. The model comparisons also suggest an outside-in "burning" of the emission source reminiscent of many hydrodynamical models.

  19. Centrality dependence of charged-hadron transverse-momentum spectra in d+Au collisions at sqrt[s(NN)]=200 GeV.

    PubMed

    Back, B B; Baker, M D; Ballintijn, M; Barton, D S; Becker, B; Betts, R R; Bickley, A A; Bindel, R; Budzanowski, A; Busza, W; Carroll, A; Decowski, M P; García, E; Gburek, T; George, N; Gulbrandsen, K; Gushue, S; Halliwell, C; Hamblen, J; Harrington, A S; Henderson, C; Hofman, D J; Hollis, R S; Hołyński, R; Holzman, B; Iordanova, A; Johnson, E; Kane, J L; Khan, N; Kulinich, P; Kuo, C M; Lee, J W; Lin, W T; Manly, S; Mignerey, A C; Noell, A; Nouicer, R; Olszewski, A; Pak, R; Park, I C; Pernegger, H; Reed, C; Remsberg, L P; Roland, C; Roland, G; Sagerer, J; Sarin, P; Sawicki, P; Sedykh, I; Skulski, W; Smith, C E; Steinberg, P; Stephans, G S F; Sukhanov, A; Teng, R; Tonjes, M B; Trzupek, A; Vale, C; van Nieuwenhuizen, G J; Verdier, R; Veres, G I; Wadsworth, B; Wolfs, F L H; Wosiek, B; Woźniak, K; Wuosmaa, A H; Wysłouch, B; Zhang, J

    2003-08-15

    We have measured transverse momentum distributions of charged hadrons produced in d+Au collisions at sqrt[s(NN)]=200 GeV. The spectra were obtained for transverse momenta 0.25leading to a strong modification of the spectral shape. This change in spectral shape is qualitatively different from observations in Au+Au collisions at the same energy. The results provide important information for discriminating between different models for the suppression of high-p(T) hadrons observed in Au+Au collisions.

  20. Leading Charm in Hadron-Nucleus Interaction in the Intrinsic Charm Model

    SciTech Connect

    Gutierrez, T.; Vogt, R.

    1998-08-03

    Leading charm hadrons produced in hadron-nucleus interactions cannot be adequately described within the parton fusion model. Recent results on charm baryon production in Sigma{sup -} A interactions at 330 GeV with the WA89 detector disagree with fusion predictions. Intrinsic heavy quark pairs in the Sigma{sup -}(dds) wave function provide a simple mechanism for producing fast charm hadrons. We calculate leading charm baryon production from Sigma{sup -}, pi{sup -} and p projectiles in a two component model combining partonfusion with intrinsic charm. Final state D{sup -}, Sigma{sub c}{sup 0}, Xi{sub c}{sup +}, and Lambda{sub c}{sup +} d sigma/dx{sub F} distributions and D{sup -}/D{sup +}, D{sub s}{sup -}/D{sub s}{sup +} and Lambda{sub c}{sup +}/overline Lambda{sub c}{sup +} asymmetries are compared to WA89 data. Predictions are made for 650 GeV Sigma{sup -} A and pi{sup -} A interactions in the SELEX detector at Fermilab and for 800 GeV pA interactions.

  1. Change, Lead, Succeed

    ERIC Educational Resources Information Center

    Munger, Linda; von Frank, Valerie

    2010-01-01

    Redefine leadership in your school, and create capacity through school leadership teams that successfully coordinate professional learning. "Change, Lead, Succeed" shows school leaders and teachers in leadership roles what they need to know to effectively create a culture for change. Find out what distinguishes a school leadership team from other…

  2. Girls Leading Outward

    ERIC Educational Resources Information Center

    Hamed, Heather; Reyes, Jazmin; Moceri, Dominic C.; Morana, Laura; Elias, Maurice J.

    2011-01-01

    The authors describe a program implemented in Red Bank Middle School in New Jersey to help at-risk, minority middle school girls realize their leadership potential. The GLO (Girls Leading Outward) program was developed by the Developing Safe and Civil Schools Project at Rutgers University and is facilitated by university students. Selected middle…

  3. Beam lead forming tool

    NASA Technical Reports Server (NTRS)

    Clemons, P. W.

    1973-01-01

    Tool was designed for table-top manual operation that can bend leads to any desired angle up to 90 degrees. It can be readily adapted to electrical, hydraulic, or pneumatic operation. This innovation may be of interest to electronics, sheet metal, and appliance industries.

  4. Lead Thickness Measurements

    SciTech Connect

    Rucinski, R.; /Fermilab

    1998-02-16

    The preshower lead thickness applied to the outside of D-Zero's superconducting solenoid vacuum shell was measured at the time of application. This engineering documents those thickness measurements. The lead was ordered in sheets 0.09375-inch and 0.0625-inch thick. The tolerance on thickness was specified to be +/- 0.003-inch. The sheets all were within that thickness tolerance. The nomenclature for each sheet was designated 1T, 1B, 2T, 2B where the numeral designates it's location in the wrap and 'T' or 'B' is short for 'top' or 'bottom' half of the solenoid. Micrometer measurements were taken at six locations around the perimeter of each sheet. The width,length, and weight of each piece was then measured. Using an assumed pure lead density of 0.40974 lb/in{sup 3}, an average sheet thickness was calculated and compared to the perimeter thickness measurements. In every case, the calculated average thickness was a few mils thinner than the perimeter measurements. The ratio was constant, 0.98. This discrepancy is likely due to the assumed pure lead density. It is not felt that the perimeter is thicker than the center regions. The data suggests that the physical thickness of the sheets is uniform to +/- 0.0015-inch.

  5. Lead Poisoning in Children.

    ERIC Educational Resources Information Center

    Lin-Fu, Jane S.

    Designed as a public information pamphlet, the text discusses the problem of lead poisoning in children. The preventable nature of the problem is stressed as well as needed action on the part of the public, physicians and other health workers, and the legislators. The pamphlet emphasizes that each of these areas is essential in preventing death or…

  6. Lead and compounds (inorganic)

    Integrated Risk Information System (IRIS)

    Lead and compounds ( inorganic ) ; CASRN 7439 - 92 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for

  7. ALL AGES LEAD MODEL

    EPA Science Inventory

    The Integrated Exposure Uptake Biokinetic (IEUBK) Model for Lead in Children (version 0.99d) was released in March 1994, and has been widely accepted in the risk assessment community as a tool for implementing the site specific risk assessment process when the issue is childhood...

  8. Lead poisoning: The invisible disease

    USGS Publications Warehouse

    Friend, Milton

    1989-01-01

    Lead poisoning is an intoxication resulting from absorption of hazardous levels of lead into body tissues. Lead pellets from shot shells, when ingested, are the most common source of lead poisoning in migratory birds. Other far less common sources include lead fishing sinkers, mine wastes, paint pigments, bullets, and other lead objects that are swallowed.

  9. LEAD SEVERING CONTRIVANCE

    DOEpatents

    Widmaier, W.

    1958-04-01

    A means for breaking an electrical circuit within an electronic tube during the process of manufacture is described. Frequently such circuits must be employed for gettering or vapor coating purposes, however, since an external pair of corector pins having no use after manufacture, is undesirable, this invention permits the use of existing leads to form a temporary circuit during manufacture, and severing it thereafter. One portion of the temporary circuit, made from a springy material such as tungsten, is spot welded to a fusable member. To cut the circuit an external radiant heat source melts the fusable member, allowing the tensed tungsten spring to contract and break the circuit. This inexpensive arrangement is particularly useful when the tube has a great many external leads crowded into the tube base.

  10. Lead/acid batteries

    NASA Astrophysics Data System (ADS)

    Bullock, Kathryn R.

    Lead/acid batteries are produced in sizes from less than 1 to 3000 Ah for a wide variety of portable, industrial and automotive applications. Designs include Planté, Fauré or pasted, and tubular electrodes. In addition to the traditional designs which are flooded with sulfuric acid, newer 'valve-regulated" designs have the acid immolibized in a silica gel or absorbed in a porous glass separator. Development is ongoing worldwide to increase the specific power, energy and deep discharge cycle life of this commercially successful system to meet the needs of new applications such as electric vehicles, load leveling, and solar energy storage. The operating principles, current status, technical challenges and commercial impact of the lead/acid battery are reviewed.

  11. Control of Laser Plasma Based Accelerators up to 1 GeV

    SciTech Connect

    Nakamura, Kei

    2007-12-01

    This dissertation documents the development of a broadband electron spectrometer (ESM) for GeV class Laser Wakefield Accelerators (LWFA), the production of high quality GeV electron beams (e-beams) for the first time in a LWFA by using a capillary discharge guide (CDG), and a statistical analysis of CDG-LWFAs. An ESM specialized for CDG-LWFAs with an unprecedented wide momentum acceptance, from 0.01 to 1.1 GeV in a single shot, has been developed. Simultaneous measurement of e-beam spectra and output laser properties as well as a large angular acceptance (> ± 10 mrad) were realized by employing a slitless scheme. A scintillating screen (LANEX Fast back, LANEX-FB)--camera system allowed faster than 1 Hz operation and evaluation of the spatial properties of e-beams. The design provided sufficient resolution for the whole range of the ESM (below 5% for beams with 2 mrad divergence). The calibration between light yield from LANEX-FB and total charge, and a study on the electron energy dependence (0.071 to 1.23 GeV) of LANEX-FB were performed at the Advanced light source (ALS), Lawrence Berkeley National Laboratory (LBNL). Using this calibration data, the developed ESM provided a charge measurement as well. The production of high quality electron beams up to 1 GeV from a centimeter-scale accelerator was demonstrated. The experiment used a 310 μm diameter gas-filled capillary discharge waveguide that channeled relativistically-intense laser pulses (42 TW, 4.5 x 1018 W/cm2) over 3.3 centimeters of sufficiently low density (≃ 4.3 x 1018/cm3) plasma. Also demonstrated was stable self-injection and acceleration at a beam energy of ≃ 0.5 GeV by using a 225 μm diameter capillary. Relativistically-intense laser pulses (12 TW, 1.3 x 1018W/cm2) were guided over 3.3 centimeters of low density (≃ 3.5 x 1018/cm3) plasma in this experiment. A statistical analysis of the CDG

  12. The 750 GeV S-cion: Where else should we look for it?

    NASA Astrophysics Data System (ADS)

    Alves, Alexandre; Dias, Alex G.; Sinha, Kuver

    2016-06-01

    The resonance S at ∼ 750 GeV in the diphoton channel observed by ATLAS and CMS, if it holds up, is almost certainly the (S)cion of a larger dynasty in a UV completion that may very well be connected to the hierarchy problem. At this stage, however, an effective field theory framework provides a useful way to parametrize searches for this resonance in other channels. Assuming that the excess is due to a new scalar or pseudoscalar boson, we study associated production of S ("S-strahlung") at the LHC and propose searches in several clean channels like γγℓℓ, γγℓE̸T and ℓℓℓγE̸T to probe dimension-5 operators coupling S to Standard Model gauge bosons. We consider a range of widths for S, from 5 GeV to 45 GeV, and find that the three channels probe complementary regions of parameter space and the suppression scale Λ. The finding of most immediate relevance is that with 3 fb-1, the LHC might already reveal new excesses in the γγℓℓ channel and a 5 (3) σ discovery may already be possible after collecting 65 (25) fb-1 of data with ℓℓℓγE̸T events if the scale of the new physics is within ∼ 9 TeV for couplings respecting 8 TeV LHC bounds and compatible with the observed excess in diphotons for a wide resonance as suggested by the ATLAS Collaboration. Beyond the EFT parametrization, we found realizations of models with heavy vector-like quarks and leptons which can simultaneously fit the diphoton excess and be discovered in the channels proposed here.

  13. GeV emission from gamma-ray bursts: a radiative fireball?

    NASA Astrophysics Data System (ADS)

    Ghisellini, G.; Ghirlanda, G.; Nava, L.; Celotti, A.

    2010-04-01

    We study the emission observed at energies >100 MeV of 11 gamma-ray bursts (GRBs) detected by the Fermi-Large Area Telescope (LAT) until 2009 October. The GeV emission has three main properties: (i) its duration is often longer than the duration of the softer emission detected by the Gamma Burst Monitor onboard Fermi (this confirms earlier results from the Energetic Gamma-Ray Experiment Telescope); (ii) its spectrum is consistent with Fν ~ ν-1 and does not show strong spectral evolution; and (iii) for the brightest bursts the flux detected by the LAT decays as a power law with a typical slope t-1.5. We argue that the observed >0.1 GeV flux can be interpreted as afterglow emission shortly following the start of the prompt phase emission as seen at smaller frequencies. The decay slope is what is expected if the fireball emission is produced in the radiative regime, i.e. all dissipated energy is radiated away. We also argue that the detectability in the GeV energy range depends on the bulk Lorentz factor Γ of the bursts, being strongly favoured in the case of large Γ. This implies that the fraction of bursts detected at high energies corresponds to the fraction of bursts having the largest Γ. The radiative interpretation can help to explain why the observed X-ray and optical afterglow energetics are much smaller than the energetics emitted during the prompt phase, despite the fact that the collision with the external medium should be more efficient than internal shocks in producing the radiation that we see.

  14. The Spectrum of Isotropic Diffuse Gamma-Ray Emission Between 100 Mev and 820 Gev

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Brandt, T. J.; Hays, E.; Perkins, J. S.

    2014-01-01

    The gamma-ray sky can be decomposed into individually detected sources, diffuse emission attributed to the interactions of Galactic cosmic rays with gas and radiation fields, and a residual all-sky emission component commonly called the isotropic diffuse gamma-ray background (IGRB). The IGRB comprises all extragalactic emissions too faint or too diffuse to be resolved in a given survey, as well as any residual Galactic foregrounds that are approximately isotropic. The first IGRB measurement with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi) used 10 months of sky-survey data and considered an energy range between 200 MeV and 100 GeV. Improvements in event selection and characterization of cosmic-ray backgrounds, better understanding of the diffuse Galactic emission, and a longer data accumulation of 50 months, allow for a refinement and extension of the IGRB measurement with the LAT, now covering the energy range from 100 MeV to 820 GeV. The IGRB spectrum shows a significant high-energy cutoff feature, and can be well described over nearly four decades in energy by a power law with exponential cutoff having a spectral index of 2.32 plus or minus 0.02 and a break energy of (279 plus or minus 52) GeV using our baseline diffuse Galactic emission model. The total intensity attributed to the IGRB is (7.2 plus or minus 0.6) x 10(exp -6) cm(exp -2) s(exp -1) sr(exp -1) above 100 MeV, with an additional +15%/-30% systematic uncertainty due to the Galactic diffuse foregrounds.

  15. Gravitino or axino dark matter with reheat temperature as high as 1016 GeV

    NASA Astrophysics Data System (ADS)

    Co, Raymond T.; D'Eramo, Francesco; Hall, Lawrence J.

    2017-03-01

    A new scheme for lightest supersymmetric particle (LSP) dark matter is introduced and studied in theories of TeV supersymmetry with a QCD axion, a, and a high reheat temperature after inflation, T R . A large overproduction of axinos ( ã) and gravitinos (\\tilde{G}) from scattering at T R , and from freeze-in at the TeV scale, is diluted by the late decay of a saxion condensate that arises from inflation. The two lightest superpartners are ã, with mass of order the TeV scale, and \\tilde{G} with mass m 3/2 anywhere between the keV and TeV scales, depending on the mediation scale of supersymmetry breaking. Dark matter contains both warm and cold components: for \\tilde{G} LSP the warm component arises from \\tilde{a}\\to \\tilde{G}a , while for ã LSP the warm component arises from \\tilde{G}\\to \\tilde{a}a . The free-streaming scale for the warm component is predicted to be of order 1 Mpc (and independent of m 3/2 in the case of \\tilde{G} LSP). T R can be as high as 1016 GeV, for any value of m 3/2, solving the gravitino problem. The PQ symmetry breaking scale V PQ depends on T R and m 3/2 and can be anywhere in the range (1010 - 1016) GeV. Detailed predictions are made for the lifetime of the neutralino LOSP decaying to ã+ h/Z and \\tilde{G}+h/Z/γ , which is in the range of (10-1 -106)m over much of parameter space. For an axion misalignment angle of order unity, the axion contribution to dark matter is sub-dominant, except when V PQ approaches 1016 GeV.

  16. Channeling, Volume Reection and Gamma Emission Using 14GeV Electrons in Bent Silicon Crystals

    SciTech Connect

    Benson, Brandon

    2015-08-14

    High energy electrons can be deflected with very tight bending radius using a bent silicon crystal. This produces gamma radiation. As these crystals can be thin, a series of bent silicon crystals with alternating direction has the potential to produce coherent gamma radiation with reasonable energy of the driving electron beam. Such an electron crystal undulator offers the prospect for higher energy radiation at lower cost than current methods. Permanent magnetic undulators like LCLS at SLAC National Accelerator Laboratory are expensive and very large (about 100 m in case of the LCLS undulator). Silicon crystals are inexpensive and compact when compared to the large magnetic undulators. Additionally, such a high energy coherent light source could be used for probing through materials currently impenetrable by x-rays. In this work we present the experimental data and analysis of experiment T523 conducted at SLAC National Accelerator Laboratory. We collected the spectrum of gamma ray emission from 14 GeV electrons on a bent silicon crystal counting single photons. We also investigated the dynamics of electron motion in the crystal i.e. processes of channeling and volume reflection at 14 GeV, extending and building off previous work. Our single photon spectrum for the amorphous crystal orientation is consistent with bremsstrahlung radiation and the volume reflection crystal orientation shows a trend consistent with synchrotron radiation at a critical energy of 740 MeV. We observe that in these two cases the data are consistent, but we make no further claims because of statistical limitations. We also extended the known energy range of electron crystal dechanneling length and channeling efficiency to 14 GeV.

  17. Vibration Response Testing of the CEBAF 12GeV Upgrade Cryomodules

    SciTech Connect

    Davis, G. Kirk; Matalevich, Joseph R.; Wiseman, Mark A.; Powers, Thomas J.

    2012-09-01

    The CEBAF 12 GeV upgrade project includes 80 new 7-cell cavities to form 10 cryomodules. These cryomodules were tested during production to characterize their microphonic response in situ. For several early cryomodules, detailed (vibration) modal studies of the cryomodule string were performed during the assembly process to identify the structural contributors to the measured cryomodule microphonic response. Structural modifications were then modelled, implemented, and verified by subsequent modal testing and in-situ microphonic response testing. Interim and latest results from this multi-stage process will be reviewed.

  18. Anisotropic flow in the forward directions at {radical}s{sub NN} = 200 GeV

    SciTech Connect

    Oldenburg, Markus D.

    2004-03-09

    The addition of the two Forward TPCs to the STAR detector allows one to measure anisotropic flow at forward pseudorapidities. This made possible the first measurement of directed flow at collision energies of {radical}s{sub NN} = 200 GeV. PHOBOS' results on elliptic flow at forward rapidities were confirmed, and the sign of v{sub 2} was determined to be positive for the first time at RHIC energies. The higher harmonic, v{sub 4}, is consistent with the recently suggested v{sub 2}2 scaling behavior.

  19. Strongly-interacting color-singlet exchange in proton- antiproton collisions at 1800 GeV

    NASA Astrophysics Data System (ADS)

    Thomas, Tracy Lea Taylor

    1997-12-01

    Results are presented from an analysis of the particle multiplicity between high transverse energy jets in p-p collisions at /sqrt[s]=1800 GeV. The data were collected using the DO Detector at Fermi National Accelerator Laboratory. We observe an excess of events at low multiplicity which is consistent with strongly- interacting color-singlet exchange. The fraction of events due to color-singlet exchange is measured as a function of the transverse energy and rapidity separation of the jets and is compared to several theoretical models for color-singlet exchange.

  20. Two-Particle Interferometry of 200 GeV Au+Au Collisions at PHENIX

    SciTech Connect

    Heffner, M

    2004-04-19

    The PHENIX experiment has measured pion-pion, kaon-kaon, and proton-proton correlations in Au+Au collisions at {radical}S{sub NN} = 200GeV. The correlations are fit to extract radii using both the Bowler Coulomb correction and full calculation of the two-particle wave function. The resulting radii are similar for all three species and decrease with increasing k{sub t} as expected for collective flow. The R{sub out} and R{sub side} radii are approximately equal indicating a short emission duration.

  1. Late effects of 2.2 GeV protons on the central nervous system.

    NASA Technical Reports Server (NTRS)

    Lippincott, S. W.; Calvo, W.

    1971-01-01

    Investigation of late pathological effects of high-energy (2.2 GeV) protons on the brain of rabbits, in a postirradiation period of up to 16 months following exposure at fluxes of 30, 100, and 1000 billion protons per sq cm. At the latter two irradiation-intensity levels, the kinds of brain lesions inflicted include large venous dilatation, thickening of vessel walls with deposit of amorphous PAS positive substance, thrombosis, perivascular infiltration of leukocytes and macrophages, mobilization of microglia cells, gliosis, demyelinization, and multiple small pseudocyst formation.

  2. Elliptic Flow in Au+Au Collisions at √sNN = 130 GeV

    NASA Astrophysics Data System (ADS)

    Ackermann, K. H.; Adams, N.; Adler, C.; Ahammed, Z.; Ahmad, S.; Allgower, C.; Amsbaugh, J.; Anderson, M.; Anderssen, E.; Arnesen, H.; Arnold, L.; Averichev, G. S.; Baldwin, A.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Beddo, M.; Bekele, S.; Belaga, V. V.; Bellwied, R.; Bennett, S.; Bercovitz, J.; Berger, J.; Betts, W.; Bichsel, H.; Bieser, F.; Bland, L. C.; Bloomer, M.; Blyth, C. O.; Boehm, J.; Bonner, B. E.; Bonnet, D.; Bossingham, R.; Botlo, M.; Boucham, A.; Bouillo, N.; Bouvier, S.; Bradley, K.; Brady, F. P.; Braithwaite, E. S.; Braithwaite, W.; Brandin, A.; Brown, R. L.; Brugalette, G.; Byrd, C.; Caines, H.; Calderón de La Barca Sánchez, M.; Cardenas, A.; Carr, L.; Carroll, J.; Castillo, J.; Caylor, B.; Cebra, D.; Chatopadhyay, S.; Chen, M. L.; Chen, W.; Chen, Y.; Chernenko, S. P.; Cherney, M.; Chikanian, A.; Choi, B.; Chrin, J.; Christie, W.; Coffin, J. P.; Conin, L.; Consiglio, C.; Cormier, T. M.; Cramer, J. G.; Crawford, H. J.; Danilov, V. I.; Dayton, D.; Demello, M.; Deng, W. S.; Derevschikov, A. A.; Dialinas, M.; Diaz, H.; Deyoung, P. A.; Didenko, L.; Dimassimo, D.; Dioguardi, J.; Dominik, W.; Drancourt, C.; Draper, J. E.; Dunin, V. B.; Dunlop, J. C.; Eckardt, V.; Edwards, W. R.; Efimov, L. G.; Eggert, T.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Etkin, A.; Fachini, P.; Feliciano, C.; Ferenc, D.; Ferguson, M. I.; Fessler, H.; Finch, E.; Fine, V.; Fisyak, Y.; Flierl, D.; Flores, I.; Foley, K. J.; Fritz, D.; Gagunashvili, N.; Gans, J.; Gazdzicki, M.; Germain, M.; Geurts, F.; Ghazikhanian, V.; Gojak, C.; Grabski, J.; Grachov, O.; Grau, M.; Greiner, D.; Greiner, L.; Grigoriev, V.; Grosnick, D.; Gross, J.; Guilloux, G.; Gushin, E.; Hall, J.; Hallman, T. J.; Hardtke, D.; Harper, G.; Harris, J. W.; He, P.; Heffner, M.; Heppelmann, S.; Herston, T.; Hill, D.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffmann, G. W.; Horsley, M.; Howe, M.; Huang, H. Z.; Humanic, T. J.; Hümmler, H.; Hunt, W.; Hunter, J.; Igo, G. J.; Ishihara, A.; Ivanshin, Yu. I.; Jacobs, P.; Jacobs, W. W.; Jacobson, S.; Jared, R.; Jensen, P.; Johnson, I.; Jones, P. G.; Judd, E.; Kaneta, M.; Kaplan, M.; Keane, D.; Kenney, V. P.; Khodinov, A.; Klay, J.; Klein, S. R.; Klyachko, A.; Koehler, G.; Konstantinov, A. S.; Kormilitsyne, V.; Kotchenda, L.; Kotov, I.; Kovalenko, A. D.; Kramer, M.; Kravtsov, P.; Krueger, K.; Krupien, T.; Kuczewski, P.; Kuhn, C.; Kunde, G. J.; Kunz, C. L.; Kutuev, R. Kh.; Kuznetsov, A. A.; Lakehal-Ayat, L.; Lamas-Valverde, J.; Lamont, M. A.; Landgraf, J. M.; Lange, S.; Lansdell, C. P.; Lasiuk, B.; Laue, F.; Lebedev, A.; Lecompte, T.; Leonhardt, W. J.; Leontiev, V. M.; Leszczynski, P.; Levine, M. J.; Li, Q.; Li, Q.; Li, Z.; Liaw, C.-J.; Lin, J.; Lindenbaum, S. J.; Lindenstruth, V.; Lindstrom, P. J.; Lisa, M. A.; Liu, H.; Ljubicic, T.; Llope, W. J.; Locurto, G.; Long, H.; Longacre, R. S.; Lopez-Noriega, M.; Lopiano, D.; Love, W. A.; Lutz, J. R.; Lynn, D.; Madansky, L.; Maier, R.; Majka, R.; Maliszewski, A.; Margetis, S.; Marks, K.; Marstaller, R.; Martin, L.; Marx, J.; Matis, H. S.; Matulenko, Yu. A.; Matyushevski, E. A.; McParland, C.; McShane, T. S.; Meier, J.; Melnick, Yu.; Meschanin, A.; Middlekamp, P.; Mikhalin, N.; Miller, B.; Milosevich, Z.; Minaev, N. G.; Minor, B.; Mitchell, J.; Mogavero, E.; Moiseenko, V. A.; Moltz, D.; Moore, C. F.; Morozov, V.; Morse, R.; de Moura, M. M.; Munhoz, M. G.; Mutchler, G. S.; Nelson, J. M.; Nevski, P.; Ngo, T.; Nguyen, M.; Nguyen, T.; Nikitin, V. A.; Nogach, L. V.; Noggle, T.; Norman, B.; Nurushev, S. B.; Nussbaum, T.; Nystrand, J.; Odyniec, G.; Ogawa, A.; Ogilvie, C. A.; Olchanski, K.; Oldenburg, M.; Olson, D.; Ososkov, G. A.; Ott, G.; Padrazo, D.; Paic, G.; Pandey, S. U.; Panebratsev, Y.; Panitkin, S. Y.; Pavlinov, A. I.; Pawlak, T.; Pentia, M.; Perevotchikov, V.; Peryt, W.; Petrov, V. A.; Pinganaud, W.; Pirogov, S.; Platner, E.; Pluta, J.; Polk, I.; Porile, N.; Porter, J.; Poskanzer, A. M.; Potrebenikova, E.; Prindle, D.; Pruneau, C.; Puskar-Pasewicz, J.; Rai, G.; Rasson, J.; Ravel, O.; Ray, R. L.; Razin, S. V.; Reichhold, D.; Reid, J.; Renfordt, R. E.; Retiere, F.; Ridiger, A.; Riso, J.; Ritter, H. G.; Roberts, J. B.; Roehrich, D.; Rogachevski, O. V.; Romero, J. L.; Roy, C.; Russ, D.; Rykov, V.; Sakrejda, I.; Sanchez, R.; Sandler, Z.; Sandweiss, J.; Sappenfield, P.; Saulys, A. C.; Savin, I.; Schambach, J.; Scharenberg, R. P.; Scheblien, J.; Scheetz, R.; Schlueter, R.; Schmitz, N.; Schroeder, L. S.; Schulz, M.; Schüttauf, A.; Sedlmeir, J.; Seger, J.; Seliverstov, D.; Seyboth, J.; Seyboth, P.; Seymour, R.; Shakaliev, E. I.; Shestermanov, K. E.; Shi, Y.; Shimanskii, S. S.; Shuman, D.; Shvetcov, V. S.; Skoro, G.; Smirnov, N.; Smykov, L. P.; Snellings, R.; Solberg, K.; Sowinski, J.; Spinka, H. M.; Srivastava, B.; Stephenson, E. J.; Stock, R.; Stolpovsky, A.; Stone, N.; Stone, R.; Strikhanov, M.; Stringfellow, B.; Stroebele, H.; Struck, C.; Suaide, A. A.; Sugarbaker, E.; Suire, C.; Symons, T. J.; Takahashi, J.; Tang, A. H.; Tarchini, A.; Tarzian, J.; Thomas, J. H.; Tikhomirov, V.; Szanto de Toledo, A.; Tonse, S.; Trainor, T.; Trentalange, S.; Tokarev, M.; Tonjes, M. B.; Trofimov, V.; Tsai, O.; Turner, K.; Ullrich, T.; Underwood, D. G.; Vakula, I.; van Buren, G.; Vandermolen, A. M.; Vanyashin, A.; Vasilevski, I. M.; Vasiliev, A. N.; Vigdor, S. E.; Visser, G.; Voloshin, S. A.; Vu, C.; Wang, F.; Ward, H.; Weerasundara, D.; Weidenbach, R.; Wells, R.; Wells, R.; Wenaus, T.; Westfall, G. D.; Whitfield, J. P.; Whitten, C.; Wieman, H.; Willson, R.; Wilson, K.; Wirth, J.; Wisdom, J.; Wissink, S. W.; Witt, R.; Wolf, J.; Wood, L.; Xu, N.; Xu, Z.; Yakutin, A. E.; Yamamoto, E.; Yang, J.; Yepes, P.; Yokosawa, A.; Yurevich, V. I.; Zanevski, Y. V.; Zhang, J.; Zhang, W. M.; Zhu, J.; Zimmerman, D.; Zoulkarneev, R.; Zubarev, A. N.

    2001-01-01

    Elliptic flow from nuclear collisions is a hadronic observable sensitive to the early stages of system evolution. We report first results on elliptic flow of charged particles at midrapidity in Au+Au collisions at sNN = 130 GeV using the STAR Time Projection Chamber at the Relativistic Heavy Ion Collider. The elliptic flow signal, v2, averaged over transverse momentum, reaches values of about 6% for relatively peripheral collisions and decreases for the more central collisions. This can be interpreted as the observation of a higher degree of thermalization than at lower collision energies. Pseudorapidity and transverse momentum dependence of elliptic flow are also presented.

  3. Design of 10 GeV laser wakefield accelerator stages with shaped laser modes

    SciTech Connect

    Cormier-Michel, Estelle; Esarey, E.; Geddes, C.G.R.; Geddes, C.G.R.; Leemans, W.P.; Bruhwiler, D.L.; Cowan, B.; Paul, K.

    2009-09-25

    We present particle-in-cell simulations, using the VORPAL framework, of 10 GeV laser plasma wakefield accelerator stages. Scaling of the physical parameters with the plasma density allows us to perform these simulations at reasonable cost and to design high performance stages. In particular we show that, by choosing to operate in the quasi-linear regime, we can use higher order laser modes to tailor the focusing forces. This makes it possible to increase the matched electron beam radius and hence the total charge in the bunch while preserving the low bunch emittance required for applications.

  4. Deep subthreshold Xi;{-} production in Ar + KCl reactions at 1.76A GeV.

    PubMed

    Agakishiev, G; Balanda, A; Bassini, R; Belver, D; Belyaev, A V; Blanco, A; Böhmer, M; Boyard, J L; Braun-Munzinger, P; Cabanelas, P; Castro, E; Chernenko, S; Christ, T; Destefanis, M; Díaz, J; Dohrmann, F; Dybczak, A; Eberl, T; Fabbietti, L; Fateev, O V; Finocchiaro, P; Fonte, P; Friese, J; Fröhlich, I; Galatyuk, T; Garzón, J A; Gernhäuser, R; Gil, A; Gilardi, C; Golubeva, M; González-Díaz, D; Guber, F; Hennino, T; Holzmann, R; Iori, I; Ivashkin, A; Jurkovic, M; Kämpfer, B; Kanaki, K; Karavicheva, T; Kirschner, D; Koenig, I; Koenig, W; Kolb, B W; Kotte, R; Krizek, F; Krücken, R; Kühn, W; Kugler, A; Kurepin, A; Lang, S; Lange, J S; Lapidus, K; Liu, T; Lopes, L; Lorenz, M; Maier, L; Mangiarotti, A; Markert, J; Metag, V; Michalska, B; Michel, J; Mishra, D; Morinière, E; Mousa, J; Müntz, C; Naumann, L; Otwinowski, J; Pachmayer, Y C; Palka, M; Parpottas, Y; Pechenov, V; Pechenova, O; Pietraszko, J; Przygoda, W; Ramstein, B; Reshetin, A; Roy-Stephan, M; Rustamov, A; Sadovsky, A; Sailer, B; Salabura, P; Schmah, A; Sobolev, Yu G; Spataro, S; Spruck, B; Ströbele, H; Stroth, J; Sturm, C; Sudol, M; Tarantola, A; Teilab, K; Tlusty, P; Traxler, M; Trebacz, R; Tsertos, H; Wagner, V; Weber, M; Wisniowski, M; Wojcik, T; Wüstenfeld, J; Yurevich, S; Zanevsky, Y V; Zhou, P; Zumbruch, P

    2009-09-25

    We report first results on a deep subthreshold production of the doubly strange hyperon Xi;{-} in a heavy-ion reaction. At a beam energy of 1.76A GeV the reaction Ar + KCl was studied with the High Acceptance Di-Electron Spectrometer at SIS18/GSI. A high-statistics and high-purity Lambda sample was collected, allowing for the investigation of the decay channel Xi;{-} --> Lambdapi;{-}. The deduced Xi;{-}/(Lambda + Sigma;{0}) production ratio of (5.6 +/- 1.2_{-1.7};{+1.8}) x 10;{-3} is significantly larger than available model predictions.

  5. Prediction of Narrow N* and {Lambda}* Resonances with Hidden Charm above 4 GeV

    SciTech Connect

    Wu Jiajun; Molina, R.; Oset, E.; Zou, B. S.

    2010-12-03

    The interaction between various charmed mesons and charmed baryons is studied within the framework of the coupled-channel unitary approach with the local hidden gauge formalism. Several meson-baryon dynamically generated narrow N{sup *} and {Lambda}{sup *} resonances with hidden charm are predicted with mass above 4 GeV and width smaller than 100 MeV. The predicted new resonances definitely cannot be accommodated by quark models with three constituent quarks and can be looked for in the forthcoming PANDA/FAIR experiments.

  6. Jet production in deep-inelastic muon scattering at 490 GeV

    SciTech Connect

    Melanson, H.L.

    1993-06-01

    Measurements of jet rates in deep-inelastic muon scattering are presented. The JADE algorithm is used to define jets in the kinematic region 9 < W < 33 GeV. Data taken on a proton target are analyzed within the QCD framework, with the goal of extracting [alpha][sub s]. Results on the Q[sup 2] dependence of the average transverse momentum of jets are used to demonstrate the running of the strong coupling constant [alpha][sub s]. In addition, first measurements of the production of jets from heavy nuclei in the region x[sub B[sub j

  7. 750 GeV diphoton excess confronted with a top-pion in the TTM model

    NASA Astrophysics Data System (ADS)

    Guo, Yu-Chen; Yue, Chong-Xing; Zhao, Zhen-Hua

    2016-05-01

    The latest LHC data suggest an intriguing excess at mγγ = 750GeV which apparently requires an explanation from the beyond standard model physics. In this paper, we explore the possibility for this signal to arise from a top-pion in the Top Triangle Moose model which can be viewed as a dimensional-deconstruction version of the top-color assisted technicolor model. We demonstrate that the observed excess can be accommodated by and has important implications for this interesting model.

  8. The LHC di-photon excess at 750 GeV

    NASA Astrophysics Data System (ADS)

    Fabbrichesi, Marco

    2016-11-01

    I review the main features and some of the theoretical attempts to explain the excess around an invariant mass of 750 GeV seen in 2015 at the LHC in the di-photon channel. As this hint to new physics has now all but disappeared from the higher-luminosity 2016 data, the statistical analysis nicely illustrates why only a high level of significance can be trusted in a discovery. The various explanations that has been suggested remain interesting examples of our current understanding of physics beyond the standard model and also of the challenging task of discriminating among them.

  9. Application of JLab 12GeV helium refrigeration system for the FRIB accelerator at MSU

    SciTech Connect

    Ganni, Venkatarao; Knudsen, Peter N.; Arenius, Dana M.; Casagrande, Fabio

    2014-01-01

    The planned approach to have a turnkey helium refrigeration system for the MSU-FRIB accelerator system, encompassing the design, fabrication, installation and commissioning of the 4.5-K refrigerator cold box(es), cold compression system, warm compression system, gas management, oil removal and utility/ancillary systems, was found to be cost prohibitive. Following JLab’s suggestion, MSU-FRIB accelerator management made a formal request to evaluate the applicability of the recently designed 12GeV JLab cryogenic system for this application. The following paper will outline the findings and the planned approach for the FRIB helium refrigeration system.

  10. Application of JLab 12GeV helium refrigeration system for the FRIB accelerator at MSU

    SciTech Connect

    Ganni, V.; Knudsen, P.; Arenius, D.; Casagrande, F.

    2014-01-29

    The planned approach to have a turnkey helium refrigeration system for the MSU-FRIB accelerator system, encompassing the design, fabrication, installation and commissioning of the 4.5-K refrigerator cold box(es), cold compression system, warm compression system, gas management, oil removal and utility/ancillary systems, was found to be cost prohibitive. Following JLab’s suggestion, MSU-FRIB accelerator management made a formal request to evaluate the applicability of the recently designed 12GeV JLab cryogenic system for this application. The following paper will outline the findings and the planned approach for the FRIB helium refrigeration system.

  11. Software Tools for Emittance Measurement and Matching for 12 GeV CEBAF

    SciTech Connect

    Turner, Dennis L.

    2016-05-01

    This paper discusses model-driven setup of the Continuous Electron Beam Accelerator Facility (CEBAF) for the 12GeV era, focusing on qsUtility. qsUtility is a set of software tools created to perform emittance measurements, analyze those measurements, and compute optics corrections based upon the measurements.qsUtility was developed as a toolset to facilitate reducing machine configuration time and reproducibility by way of an accurate accelerator model, and to provide Operations staff with tools to measure and correct machine optics with little or no assistance from optics experts.

  12. Measurement of the W mass in e+e- collisions at 183 GeV

    NASA Astrophysics Data System (ADS)

    ALEPH Collaboration; Barate, R.; Decamp, D.; Ghez, P.; Goy, C.; Jezequel, S.; Lees, J.-P.; Martin, F.; Merle, E.; Minard, M.-N.; Pietrzyk, B.; Alemany, R.; Casado, M. P.; Chmeissani, M.; Crespo, J. M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Graugès, E.; Juste, A.; Martinez, M.; Merino, G.; Miquel, R.; Mir, Ll. M.; Morawitz, P.; Pacheco, A.; Park, I. C.; Riu, I.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Becker, U.; Boix, G.; Cattaneo, M.; Ciulli, V.; Dissertori, G.; Drevermann, H.; Forty, R. W.; Frank, M.; Gianotti, F.; Halley, A. W.; Hansen, J. B.; Harvey, J.; Janot, P.; Jost, B.; Lehraus, I.; Leroy, O.; Loomis, C.; Maley, P.; Mato, P.; Minten, A.; Moutoussi, A.; Ranjard, F.; Rolandi, L.; Rousseau, D.; Schlatter, D.; Schmitt, M.; Schneider, O.; Tejessy, W.; Teubert, F.; Tomalin, I. R.; Tournefier, E.; Vreeswijk, M.; Wright, A. E.; Ajaltouni, Z.; Badaud, F.; Chazelle, G.; Deschamps, O.; Dessagne, S.; Falvard, A.; Ferdi, C.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Rensch, B.; Wäänänen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Blondel, A.; Brient, J.-C.; Machefert, F.; Rougé, A.; Swynghedauw, M.; Tanaka, R.; Valassi, A.; Videau, H.; Focardi, E.; Parrini, G.; Zachariadou, K.; Cavanaugh, R.; Corden, M.; Georgiopoulos, C.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Chalmers, M.; Curtis, L.; Lynch, J. G.; Negus, P.; O'Shea, V.; Raeven, B.; Raine, C.; Smith, D.; Teixeira-Dias, P.; Thompson, A. S.; Ward, J. J.; Buchmüller, O.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Sommer, J.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Girone, M.; Goodsir, S.; Marinelli, N.; Martin, E. B.; Nash, J.; Nowell, J.; Sedgbeer, J. K.; Spagnolo, P.; Thomson, E.; Williams, M. D.; Ghete, V. M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Betteridge, A. P.; Bowdery, C. K.; Buck, P. G.; Colrain, P.; Crawford, G.; Ellis, G.; Finch, A. J.; Foster, F.; Hughes, G.; Jones, R. W. L.; Robertson, N. A.; Williams, M. I.; van Gemmeren, P.; Giehl, I.; Hölldorfer, F.; Hoffmann, C.; Jakobs, K.; Kleinknecht, K.; Kröcker, M.; Nürnberger, H.-A.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; Schmeling, S.; Wachsmuth, H.; Zeitnitz, C.; Ziegler, T.; Aubert, J. J.; Benchouk, C.; Bonissent, A.; Carr, J.; Coyle, P.; Ealet, A.; Fouchez, D.; Motsch, F.; Payre, P.; Talby, M.; Thulasidas, M.; Tilquin, A.; Aleppo, M.; Antonelli, M.; Ragusa, F.; Berlich, R.; Büscher, V.; Dietl, H.; Ganis, G.; Hüttmann, K.; Lütjens, G.; Mannert, C.; Männer, W.; Moser, H.-G.; Schael, S.; Settles, R.; Seywerd, H.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Azzurri, P.; Boucrot, J.; Callot, O.; Chen, S.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jacholkowska, A.; Kado, M.; Lefrançois, J.; Serin, L.; Veillet, J.-J.; Videau, I.; de Vivie de Régie, J.-B.; Zerwas, D.; Bagliesi, G.; Bettarini, S.; Boccali, T.; Bozzi, C.; Calderini, G.; dell'Orso, R.; Ferrante, I.; Giassi, A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Sciabà, A.; Sguazzoni, G.; Tenchini, R.; Vannini, C.; Venturi, A.; Verdini, P. G.; Blair, G. A.; Coles, J.; Cowan, G.; Green, M. G.; Hutchcroft, D. E.; Jones, L. T.; Medcalf, T.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Norton, P. R.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Fabbro, B.; Faïf, G.; Lançon, E.; Lemaire, M.-C.; Locci, E.; Perez, P.; Przysiezniak, H.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Trabelsi, A.; Tuchming, B.; Vallage, B.; Black, S. N.; Dann, J. H.; Kim, H. Y.; Konstantinidis, N.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Cartwright, S.; Combley, F.; Hodgson, P. N.; Kelly, M. S.; Lehto, M.; Thompson, L. F.; Affholderbach, K.; Böhrer, A.; Brandt, S.; Grupen, C.; Misiejuk, A.; Prange, G.; Sieler, U.; Giannini, G.; Gobbo, B.; Putz, J.; Rothberg, J.; Wasserbaech, S.; Williams, R. W.; Armstrong, S. R.; Charles, E.; Elmer, P.; Ferguson, D. P. S.; Gao, Y.; González, S.; Greening, T. C.; Hayes, O. J.; Hu, H.; Jin, S.; McNamara, P. A., III; Nachtman, J. M.; Nielsen, J.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Scott, I. J.; Walsh, J.; Wu, Sau Lan; Wu, X.; Zobernig, G.

    1999-04-01

    The mass of the W boson is obtained from reconstructed invariant mass distributions in W-pair events. The sample of W pairs is selected from 57 pb-1 collected with the ALEPH detector in 1997 at a centre-of-mass energy of 183 GeV. The invariant mass distributions of reweighted Monte Carlo events are fitted separately to the experimental distributions in the qq¯qq¯ and all lνqq¯ channels to give the following W masses:where the theory error represents the possible effects of final state interactions. The combination of these two measurements, including the LEP energy calibration uncertainty, gives

  13. Recirculating Beam Breakup Study for the 12 GeV Upgrade at Jefferson Lab

    SciTech Connect

    Ilkyoung Shin, Todd Satogata, Shahid Ahmed, Slawomir Bogacz, Mircea Stirbet, Haipeng Wang, Yan Wang, Byung Yunn, Ryan Bodenstein

    2012-07-01

    Two new high gradient C100 cryomodules with a total of 16 new cavities were installed at the end of the CEBAF south linac during the 2011 summer shutdown as part of the 12-GeV upgrade project at Jefferson Lab. We surveyed the higher order modes (HOMs) of these cavities in the Jefferson Lab cryomodule test facility and CEBAF tunnel. We then studied recirculating beam breakup (BBU) in November 2011 to evaluate CEBAF low energy performance, measure transport optics, and evaluate BBU thresholds due to these HOMs. This paper discusses the experiment setup, cavity measurements, machine setup, optics measurements, and lower bounds on BBU thresholds by new cryomodules.

  14. Theory Support for the Excited Baryon Analysis Program at the JLAB 12 GeV Upgrade

    SciTech Connect

    Burkert, Volker; Lee, Tsung-Shung; Mokeev, Viktor; Aznauryan, Inna; Braun, Vladimir; Capstick, Simon; Cloet, Ian; Edwards, Robert; Gianinni, M.; Lin, Huey-Wen; Roberts, C.D.; Stoler, Paul; Zhao, Qiang; Zou, Bing-Song

    2009-01-01

    This document summarizes the contributions of the Electromagnetic $\\gamma_vNN^*$ Transition Form Factors workshop participants that provide theoretical support of the excited baryon program at the 12 GeV energy upgrade at JLab. The main objectives of the workshop were (a) review the status of the $\\gamma_vNN^*$ transition form factors extracted from the meson electroproduction data, (b) call for the theoretical interpretations of the extracted $N$-$N^*$ transition form factors, that enable access to the mechanisms responsible for the N* formation and to their emergence from QCD.

  15. A Bunch Length Monitor for JLab 12 GeV Upgrade

    SciTech Connect

    Ahmad, Mahmoud Mohamad Ali; Freyberger, Arne P.; Gubeli, Joseph F.; Krafft, Geoffrey A.

    2013-12-01

    A continuous non-invasive bunch length monitor for the 12 GeV upgrade of Jefferson Lab will be used to determine the bunch length of the beam. The measurement will be done at the fourth dipole of the injector chicane at 123 MeV using the coherent synchrotron light emitted from the dipole. The estimated bunch length is 333 fs. A vacuum chamber will be fabricated and a Radiabeam real time interferometer will be used. In this paper, background, the estimated calculations and the construction of the chamber will be discussed.

  16. FMEA on the superconducting torus for the Jefferson Lab 12 GeV accelerator upgrade

    SciTech Connect

    Ghoshal, Probir K.; Biallas, George H.; Fair, Ruben J.; Rajput-Ghoshal, Renuka; Schneider, William J.; Legg, Robert A.; Kashy, David H.; Hogan, John P.; Wiseman, Mark A.; Luongo, Cesar; Ballard, Joshua T.; Young, Glenn R.; Elouadrhiri, Latifa; Rode, Claus H.

    2015-01-16

    As part of the Jefferson Lab 12GeV accelerator upgrade project, Hall B requires two conduction cooled superconducting magnets. One is a magnet system consisting of six superconducting trapezoidal racetrack-type coils assembled in a toroidal configuration and the second is an actively shielded solenoidal magnet system consisting of 5 coils. Both magnets are to be wound with Superconducting Super Collider-36 NbTi strand Rutherford cable soldered into a copper channel. This paper describes the various failure modes in torus magnet along with the failure modes that could be experienced by the torus and its interaction with the solenoid which is located in close proximity.

  17. Testing of the new tuner design for the CEBAF 12 GeV upgrade SRF cavities

    SciTech Connect

    Edward Daly; G. Davis; William Hicks

    2005-05-01

    The new tuner design for the 12 GeV Upgrade SRF cavities consists of a coarse mechanical tuner and a fine piezoelectric tuner. The mechanism provides a 30:1 mechanical advantage, is pre-loaded at room temperature and tunes the cavities in tension only. All of the components are located in the insulating vacuum space and attached to the helium vessel, including the motor, harmonic drive and piezoelectric actuators. The requirements and detailed design are presented. Measurements of range and resolution of the coarse tuner are presented and discussed.

  18. A hierarchical Bayesian GEV model for improving local and regional flood quantile estimates

    NASA Astrophysics Data System (ADS)

    Lima, Carlos H. R.; Lall, Upmanu; Troy, Tara; Devineni, Naresh

    2016-10-01

    We estimate local and regional Generalized Extreme Value (GEV) distribution parameters for flood frequency analysis in a multilevel, hierarchical Bayesian framework, to explicitly model and reduce uncertainties. As prior information for the model, we assume that the GEV location and scale parameters for each site come from independent log-normal distributions, whose mean parameter scales with the drainage area. From empirical and theoretical arguments, the shape parameter for each site is shrunk towards a common mean. Non-informative prior distributions are assumed for the hyperparameters and the MCMC method is used to sample from the joint posterior distribution. The model is tested using annual maximum series from 20 streamflow gauges located in an 83,000 km2 flood prone basin in Southeast Brazil. The results show a significant reduction of uncertainty estimates of flood quantile estimates over the traditional GEV model, particularly for sites with shorter records. For return periods within the range of the data (around 50 years), the Bayesian credible intervals for the flood quantiles tend to be narrower than the classical confidence limits based on the delta method. As the return period increases beyond the range of the data, the confidence limits from the delta method become unreliable and the Bayesian credible intervals provide a way to estimate satisfactory confidence bands for the flood quantiles considering parameter uncertainties and regional information. In order to evaluate the applicability of the proposed hierarchical Bayesian model for regional flood frequency analysis, we estimate flood quantiles for three randomly chosen out-of-sample sites and compare with classical estimates using the index flood method. The posterior distributions of the scaling law coefficients are used to define the predictive distributions of the GEV location and scale parameters for the out-of-sample sites given only their drainage areas and the posterior distribution of the

  19. Leading change: 2--planning.

    PubMed

    Kerridge, Joanna

    National initiatives have outlined the importance of involving frontline staff in service improvement, and the ability to influence and manage change has been identified as an essential skill for delivering new models of care. Nurses often have to take the lead in managing change in clinical practice. The second in a three-part series is designed to help nurses at all levels develop the knowledge and skills to function as change agents within their organisations. This article focuses on planning the change and dealing with resistance.

  20. Modeling astatine production in liquid lead-bismuth spallation targets

    NASA Astrophysics Data System (ADS)

    David, J. C.; Boudard, A.; Cugnon, J.; Ghali, S.; Leray, S.; Mancusi, D.; Zanini, L.

    2013-03-01

    Astatine isotopes can be produced in liquid lead-bismuth eutectic targets through proton-induced double charge exchange reactions on bismuth or in secondary helium-induced interactions. Models implemented into the most common high-energy transport codes generally have difficulties to correctly estimate their production yields as was shown recently by the ISOLDE Collaboration, which measured release rates from a lead-bismuth target irradiated by 1.4 and 1 GeV protons. In this paper, we first study the capability of the new version of the Liège intranuclear cascade model, INCL4.6, coupled to the deexcitation code ABLA07 to predict the different elementary reactions involved in the production of such isotopes through a detailed comparison of the model with the available experimental data from the literature. Although a few remaining deficiencies are identified, very satisfactory results are found, thanks in particular to improvements brought recently on the treatment of low-energy helium-induced reactions. The implementation of the models into MCNPX allows identifying the respective contributions of the different possible reaction channels in the ISOLDE case. Finally, the full simulation of the ISOLDE experiment is performed, taking into account the likely rather long diffusion time from the target, and compared with the measured diffusion rates for the different astatine isotopes, at the two studied energies, 1.4 and 1 GeV. The shape of the isotopic distribution is perfectly reproduced as well as the absolute release rates, assuming in the calculation a diffusion time between 5 and 10hours. This work finally shows that our model, thanks to the attention paid to the emission of high-energy clusters and to low-energy cluster induced reactions, can be safely used within MCNPX to predict isotopes with a charge larger than that of the target by two units in spallation targets, and, probably, more generally to isotopes created in secondary reactions induced by composite

  1. Study of leading hadrons in gluon and quark fragmentation

    NASA Astrophysics Data System (ADS)

    Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P. P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.-D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J. E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G. J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.-H.; Begalli, M.; Behrmann, A.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Berntzon, L.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P. S. L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T. J. V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J. M.; Buschbeck, B.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, N.; Cavallo, F.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S. U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M. J.; Crennell, D.; Cuevas, J.; D'Hondt, J.; Dalmau, J.; da Silva, T.; da Silva, W.; Della Ricca, G.; de Angelis, A.; de Boer, W.; de Clercq, C.; de Lotto, B.; de Maria, N.; de Min, A.; de Paula, L.; di Ciaccio, L.; di Simone, A.; Doroba, K.; Drees, J.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M. C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, Ph.; Gazis, E.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Herr, H.; Hoffman, J.; Holmgren, S.-O.; Holt, P. J.; Houlden, M. A.; Jackson, J. N.; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, E. K.; Johansson, P. D.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, F.; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B. P.; Kerzel, U.; King, B. T.; Kjaer, N. J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, F.; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J. H.; Lopez, J. M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.-C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; Mc Nulty, R.; Meroni, C.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Moenig, K.; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J. P.; Palka, H.; Papadopoulou, Th. D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M. E.; Polok, G.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Rames, J.; Read, A.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Sander, C.; Savoy-Navarro, A.; Schwickerath, U.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Taffard, A. C.; Tegenfeldt, F.; Timmermans, J.; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.-L.; Tyapkin, I. A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; van Dam, P.; van Eldik, J.; van Remortel, N.; van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A. J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zhuravlov, V.; Zimin, N. I.; Zintchenko, A.; Zupan, M.; Delphi Collaboration

    2006-12-01

    The study of quark jets in e+e- reactions at LEP has demonstrated that the hadronisation process is reproduced well by the Lund string model. However, our understanding of gluon fragmentation is less complete. In this study enriched quark and gluon jet samples of different purities are selected in three-jet events from hadronic decays of the Z collected by the DELPHI experiment in the LEP runs during 1994 and 1995. The leading systems of the two kinds of jets are defined by requiring a rapidity gap and their sum of charges is studied. An excess of leading systems with total charge zero is found for gluon jets in all cases, when compared to Monte Carlo simulations with JETSET (with and without Bose-Einstein correlations included) and ARIADNE. The corresponding leading systems of quark jets do not exhibit such an excess. The influence of the gap size and of the gluon purity on the effect is studied and a concentration of the excess of neutral leading systems at low invariant masses (≲ 2 GeV /c2) is observed, indicating that gluon jets might have an additional hitherto undetected fragmentation mode via a two-gluon system. This could be an indication of a possible production of gluonic states as predicted by QCD.

  2. Interpreting the 750 GeV diphoton excess in minimal extensions of Two-Higgs-Doublet models

    NASA Astrophysics Data System (ADS)

    Badziak, Marcin

    2016-08-01

    It is shown that the 750 GeV diphoton excess can be explained in extensions of Two-Higgs-Doublet Models that do not involve large multiplicities of new electromagnetically charged states. The key observation is that at moderate and large tan ⁡ β the total decay width of the 750 GeV Higgs is strongly reduced as compared to the Standard Model. This allows for much more economical choices of new states that enhance the diphoton signal to fit the data. In particular, it is shown that one family of vector-like quarks and leptons with SM charges is enough to explain the 750 GeV diphoton excess. Moreover, such charge assignment can keep the 125 GeV Higgs signal rates exactly at the SM values. The scenario can interpret the diphoton excess provided that the total decay width of a hypothetical resonance that would be measured at the LHC turns out to not exceed few GeV.

  3. Implications of the 750 GeV γγ Resonance as a Case Study for the International Linear Collider

    SciTech Connect

    Fujii, Keisuke; Grojean, Christophe; Peskin, Michael E.; Barklow, Tim; Gao, Yuanning; Kanemura, Shinya; Kim, Hyungdo; List, Jenny; Nojiri, Mihoko; Perelstein, Maxim; Poschl, Roman; Reuter, Jurgen; Simon, Frank; Tanabe, Tomohiko; Yu, Jaehoon; Wells, James D.; Falkowski, Adam; Matsumoto, Shigeki; Moroi, Takeo; Richard, Francois; Tian, Junping; Vos, Marcel; Yokoya, Hiroshi; Murayama, Hitoshi; Yamamoto, Hitoshi

    2016-07-14

    If the γγ resonance at 750 GeV suggested by 2015 LHC data turns out to be a real effect, what are the implications for the physics case and upgrade path of the International Linear Collider? Whether or not the resonance is confirmed, this question provides an interesting case study testing the robustness of the ILC physics case. In this note, we address this question with two points: (1) Almost all models proposed for the new 750 GeV particle require additional new particles with electroweak couplings. The key elements of the 500 GeV ILC physics program - precision measurements of the Higgs boson, the top quark, and 4-fermion interactions - will powerfully discriminate among these models. This information will be important in conjunction with new LHC data, or alone, if the new particles accompanying the 750 GeV resonance are beyond the mass reach of the LHC. (2) Over a longer term, the energy upgrade of the ILC to 1 TeV already discussed in the ILC TDR will enable experiments in γγ and e+e- collisions to directly produce and study the 750 GeV particle from these unique initial states.

  4. Feasibility of Near field ODR Imaging of Multi GeV Electron Beams at CEBAF

    SciTech Connect

    A.H. Lumpkin; P. Evtushenko; Arne P. Freyberger; C. Liu

    2007-08-01

    We have evaluated the feasibility of using the optical diffraction radiation (ODR) generated as a 1- to 6-GeV CW electron beam passes nearby the edge of a single metal conducting plane as a nonintercepting (NI) relative beam size monitor for CEBAF. Previous experiments were successfully done using near-field imaging on the lower-current, 7-GeV beam at APS, and an analytical model was developed for near-field imaging. Calculations from this model indicate sufficient beam-size sensitivity in the ODR profiles for beam sizes in the 30-50 micron regime as found in the transport lines of CEBAF before the experimental targets. With anticipated beam currents of 100 microamps, the ODR signal from the charge integrated over the video field time should be ~500 times larger than in the APS case. These signal strengths will allow a series of experiments to be done on beam energy dependencies, impact parameters, polarization effects, and wavelength effects that should further elucidate the working regime of this technique and test the model. Plans for the diagnostics station that will also provide reference optical transition radiation (OTR) images will also be described.

  5. Gamma-ray burst observations above 100 GeV with STACEE

    NASA Astrophysics Data System (ADS)

    Jarvis, Alexander Charles

    Gamma-ray Bursts (GRBs) are the most powerful known explosions in the universe. Forty years after their discovery, they are still some of the most enigmatic phenomena in the universe. Sensitive measurements of the high-energy spectra of GRBs can place important constraints on the burst environments, particle acceleration mechanisms and radiation mechanisms. Until the past few years, there were no observations of the early minutes of GRB afterglows in the energy range between 30 GeV and 1 TeV. With the launch of the Swift GRB Explorer in late 2004, GRB alerts and localizations within seconds of the bursts became available. The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) was a ground-based, gamma-ray telescope sensitive to gamma rays with energies above 50 GeV. At the time of Swift's launch, STACEE was in a rare position to provide rapid, low-energy-threshold follow-up observations of GRBs. In addition, STACEE performed follow-up observations of several GRBs that were localized by other satellites. Between the end of major modifications to the experiment in 2002 and the decommissioning of the experiment in 2007, STACEE obtained follow-up observations of 23 GRBs. In this thesis, STACEE's GRB observations are described and limits are placed on the high-energy, gamma-ray fluxes that reached Earth from these bursts.

  6. Design of the Trigger Interface and Distribution Board for CEBAF 12 GeV Upgrade

    SciTech Connect

    Gu, Jianhui; Dong, Hai; Cuevas, R; Gyurjyan, Vardan; Heyes, William; Jastrzembski, Edward; Kaneta, Scott; Nganga, Nicholas; Moffit, Bryan; Raydo, Benjamin; Timmer, Carl; Wilson, Jeffrey

    2012-10-01

    The design of the Trigger Interface and Distribution (TID) board for the 12 GeV Upgrade at the Continuous Electron Beam Accelerator Facility (CEBAF) at TJNAL is described. The TID board distributes a low jitter system clock, synchronized trigger, and synchronized multi-purpose SYNC signal. The TID also initiates data acquisition for the crate. With the TID boards, a multi-crate system can be setup for experiment test and commissioning. The TID board can be selectively populated as a Trigger Interface (TI) board, or a Trigger Distribution (TD) board for the 12 GeV upgrade experiments. When the TID is populated as a TI, it can be located in the VXS crate and distribute the CLOCK/TRIGGER/SYNC through the VXS P0 connector; it can also be located in the standard VME64 crate, and distribute the CLOCK/TRIGGER/SYNC through the VME P2 connector or front panel. It initiates the data acquisition for the front crate where the TI is positioned in. When the TID is populated as a TD, it fans out the CLOCK/TRIGGER/SYNC from trigger supervisor to the front end crates through optical fibres. The TD monitors the trigger processing on the TIs, and gives feedback to the TS for trigger flow control. Field Programmable Gate Arrays (FPGA) is utilised on TID board to provide programmability. The TID boards were intensively tested on the bench, and various setups.

  7. The Realignment of the Beamline for J-PARC 3 GeV RCS

    NASA Astrophysics Data System (ADS)

    Tani, Norio; Yamamoto, Masanobu; Kamiya, Junichiro; Hotchi, Hideaki; Kinsho, Michikazu

    J-PARC 3-GeV RCS suffered from the misalignments of several millimeters of the magnets in both horizontal and vertical directions caused by the Tohoku Region Pacific Coast Earthquake on 11th March, 2011. As the result of the orbit calculation showed that the beam loss was acceptable for beam operation at 300 kW, beam operation with the current placement was implemented until May, 2013. However according to the beam loss simulation, the beam loss increased and the horizontal emittance expanded at 1 MW operation. The collimator aperture of RCS was designed at 324 π mm mrad. The ring acceptance of RCS is 486 π mm mrad. The ring acceptance can secure good collimation efficiency of 97% by taking the aperture ratio which is 1.5 times of collimator aperture. The realignment of the RCS beamline must secure ring acceptance in order to perform the 1 MW operation. In this paper, the alignment results of the magnets and the ceramic chambers that constitute the beamline of 3-GeV RCS are reported.

  8. The magnet lattice of the LBL 1-2 GeV Synchrotron Radiation Source

    SciTech Connect

    Jackson, A.

    1987-03-01

    This paper describes the magnet chosen for the LBL 1-2 GeV Synchrotron Radiation Source. The structure has a circumference of 196.8 m, with 12 dispersion free straight sections that can accommodate insertion devices up to 5 m long. The achromatic arcs that connect these straight sections feature combined function (gradient) bending magnets. Utilization of three such magnets in the so-called three-bend-achromat (TBA) arrangement, has several beneficial effects: (1) it reduces the amplitude of the vertical beta-function in the bending magnets, thereby minimizing the required aperture; (2) it changes the damping partition number in such a way as to reduce the natural emittance; and (3) it produces separation of the beta-functions such that relatively low sextupole strengths are sufficient for chromatic correction. The result is a structure with very low emittance (4 nm-rad at 1.5 GeV) that is correctable with only two families of sextupoles while maintaining excellent chromatic properties and acceptable dynamic aperture. In this paper we describe the details of the storage ring and discuss the characteristic features of the lattice.

  9. Inclusive Λ production in proton-proton collisions at 3.5 GeV

    NASA Astrophysics Data System (ADS)

    Adamczewski-Musch, J.; Agakishiev, G.; Arnold, O.; Atomssa, E. T.; Behnke, C.; Berger-Chen, J. C.; Biernat, J.; Blanco, A.; Blume, C.; Böhmer, M.; Bordalo, P.; Chernenko, S.; Deveaux, C.; Dreyer, J.; Dybczak, A.; Epple, E.; Fabbietti, L.; Fateev, O.; Fonte, P.; Franco, C.; Friese, J.; Fröhlich, I.; Galatyuk, T.; Garzón, J. A.; Gill, K.; Golubeva, M.; Guber, F.; Gumberidze, M.; Harabasz, S.; Hennino, T.; Hlavac, S.; Höhne, C.; Holzmann, R.; Ierusalimov, A.; Ivashkin, A.; Jurkovic, M.; Kämpfer, B.; Karavicheva, T.; Kardan, B.; Koenig, I.; Koenig, W.; Kolb, B. W.; Korcyl, G.; Kornakov, G.; Kotte, R.; Krása, A.; Krebs, E.; Kuc, H.; Kugler, A.; Kunz, T.; Kurepin, A.; Kurilkin, A.; Kurilkin, P.; Ladygin, V.; Lalik, R.; Lapidus, K.; Lebedev, A.; Lopes, L.; Lorenz, M.; Mahmoud, T.; Maier, L.; Maurus, S.; Mangiarotti, A.; Markert, J.; Metag, V.; Michel, J.; Morozov, S.; Müntz, C.; Münzer, R.; Naumann, L.; Palka, M.; Parpottas, Y.; Pechenov, V.; Pechenova, O.; Petousis, V.; Pietraszko, J.; Przygoda, W.; Ramos, S.; Ramstein, B.; Rehnisch, L.; Reshetin, A.; Rost, A.; Rustamov, A.; Sadovsky, A.; Salabura, P.; Scheib, T.; Schmidt-Sommerfeld, K.; Schuldes, H.; Sellheim, P.; Siebenson, J.; Silva, L.; Sobolev, Yu. G.; Spataro, S.; Ströbele, H.; Stroth, J.; Strzempek, P.; Sturm, C.; Svoboda, O.; Tarantola, A.; Teilab, K.; Tlusty, P.; Traxler, M.; Tsertos, H.; Vasiliev, T.; Wagner, V.; Wendisch, C.; Wirth, J.; Zanevsky, Y.; Zumbruch, P.; HADES Collaboration

    2017-01-01

    The inclusive production of Λ hyperons in proton-proton collisions at √{s }=3.18 GeV was measured with HADES at the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt. The experimental data are compared to a data-based model for individual exclusive Λ production channels in the same reaction. The contributions of intermediate resonances such as Σ (1385 ) , Δ++, or N* are considered in detail. In particular, the result of a partial-wave analysis accounts for the abundant p K +Λ final state. Model and data show a reasonable agreement at midrapidities, while a difference is found for larger rapidities. A total Λ production cross section in p +p collisions at √{s }=3.18 GeV of σ (p +p →Λ +X ) =207.3 ±1.3 -7.3+6.0(stat .) ±8.4 (syst .) -0.5+0.4(model .) μ b is found.

  10. Synchro-betatron resonances in the 8 GeV proton driver

    SciTech Connect

    Shoroku Ohnuma

    2002-12-02

    The major difference of these two versions is the size (circumference) and the maximum energy. In the first study, the circumference is chosen to be 711.3m, which is 1.5 times the present Booster, with the maximum energy of 16 GeV. In the second version, it is mandated to be the same as Booster together with the same maximum energy of 8 GeV. One of the major impacts of the reduced size of the ring is the inevitable reduction in the total length of available space for injection/collimation/extraction systems and for rf cavities, 14 slots of 7.43m each in the smaller ring compared with 24 slots of 6.15m each in the larger ring. Since each cavity occupies a slot of 2.35m and 22 cavities are desirable, seven or eight slots out of 14 in the smaller ring must be reserved for rf, only six or seven remaining for all other systems. The constraint in space is particularly troublesome for the extraction system since the beam loss at extraction (at the highest beam energy) is the major concern of any high intensity proton machines.

  11. 750 GeV diphoton resonance in a visible heavy QCD axion model

    NASA Astrophysics Data System (ADS)

    Chiang, Cheng-Wei; Fukuda, Hajime; Ibe, Masahiro; Yanagida, Tsutomu T.

    2016-05-01

    In this paper, we revisit a visible heavy QCD axion model in light of the recent reports on the 750 GeV diphoton resonance by the ATLAS and CMS experiments. In this model, the axion is made heavy with the help of the mirror copied sector of the Standard Model, while the successful Peccei-Quinn mechanism is kept intact. We identify the 750 GeV resonance as the scalar boson associated with spontaneous breaking of the Peccei-Quinn symmetry, which mainly decays into a pair of axions. We find that the mixing between the axion and η and η' plays important roles in its decays and the resultant branching ratio into two photons. The axion decay length can be suitable for explaining the diphoton excess by the di-axion production when its decay constant fa≃1 TeV . We also find that our model allows multiple sets of the extra fermions without causing the domain wall problem, which is advantageous to explain the diphoton signal.

  12. Environmental assessment of the proposed 7-GeV Advanced Photon Source

    SciTech Connect

    Not Available

    1990-02-01

    The potential environmental impacts of construction and operation of a 6- to 7-GeV synchrotron radiation source known as the 7-GeV Advanced Photon Source at Argonne National Laboratory were evaluated. Key elements considered include on- and off-site radiological effects; socioeconomic effects; and impacts to aquatic and terrestrial flora and fauna, wetlands, water and air quality, cultural resources, and threatened or endangered species. Also incorporated are the effects of decisions made as a result of the preliminary design (Title I) being prepared. Mitigation plans to further reduce impacts are being developed. These plans include coordination with the US Army Corps of Engineers (COE) and other responsible agencies to mitigate potential impacts to wetlands. This mitigation includes providing habitat of comparable ecological value to assure no net loss of wetlands. These mitigation actions would be permitted and monitored by COE. A data recovery plan to protect cultural resources has been developed and approved, pursuant to a Programmatic Agreement among the US Department of Energy, the Advisory Council on Historic Preservation, and the Illinois State Historic Preservation Office. Applications for National Emission Standard for Hazardous Air Pollutants (NESHAP) and air emissions permits have been submitted to the US Environmental Protection Agency (EPA) and the Illinois Environmental Protection Agency (IEPA), respectively. 71 refs., 10 figs., 11 tabs.

  13. Precision Electron-Beam Polarimetry at 1 GeV Using Diamond Microstrip Detectors

    NASA Astrophysics Data System (ADS)

    Narayan, A.; Jones, D.; Cornejo, J. C.; Dalton, M. M.; Deconinck, W.; Dutta, D.; Gaskell, D.; Martin, J. W.; Paschke, K. D.; Tvaskis, V.; Asaturyan, A.; Benesch, J.; Cates, G.; Cavness, B. S.; Dillon-Townes, L. A.; Hays, G.; Ihloff, E.; Jones, R.; King, P. M.; Kowalski, S.; Kurchaninov, L.; Lee, L.; McCreary, A.; McDonald, M.; Micherdzinska, A.; Mkrtchyan, A.; Mkrtchyan, H.; Nelyubin, V.; Page, S.; Ramsay, W. D.; Solvignon, P.; Storey, D.; Tobias, A.; Urban, E.; Vidal, C.; Waidyawansa, B.; Wang, P.; Zhamkotchyan, S.

    2016-01-01

    We report on the highest precision yet achieved in the measurement of the polarization of a low-energy, O (1 GeV ) , continuous-wave (CW) electron beam, accomplished using a new polarimeter based on electron-photon scattering, in Hall C at Jefferson Lab. A number of technical innovations were necessary, including a novel method for precise control of the laser polarization in a cavity and a novel diamond microstrip detector that was able to capture most of the spectrum of scattered electrons. The data analysis technique exploited track finding, the high granularity of the detector, and its large acceptance. The polarization of the 180 -μ A , 1.16-GeV electron beam was measured with a statistical precision of <1 % per hour and a systematic uncertainty of 0.59%. This exceeds the level of precision required by the Qweak experiment, a measurement of the weak vector charge of the proton. Proposed future low-energy experiments require polarization uncertainty <0.4 %, and this result represents an important demonstration of that possibility. This measurement is the first use of diamond detectors for particle tracking in an experiment. It demonstrates the stable operation of a diamond-based tracking detector in a high radiation environment, for two years.

  14. Right-handed neutrino production rate at T > 160 GeV

    SciTech Connect

    Ghisoiu, I.; Laine, M. E-mail: laine@itp.unibe.ch

    2014-12-01

    The production rate of right-handed neutrinos from a Standard Model plasma at a temperature above a hundred GeV has previously been evaluated up to NLO in Standard Model couplings (g ∼ 2/3) in relativistic (M ∼ πT) and non-relativistic regimes (M >> πT), and up to LO in an ultrarelativistic regime (M ∼< gT). The last result necessitates an all-orders resummation of the loop expansion, accounting for multiple soft scatterings of the nearly light-like particles participating in 1 ↔ 2 reactions. In this paper we suggest how the regimes can be interpolated into a result applicable for any right-handed neutrino mass and at all temperatures above 160GeV. The results can also be used for determining the lepton number washout rate in models containing right-handed neutrinos. Numerical results are given in a tabulated form permitting for their incorporation into leptogenesis codes. We note that due to effects from soft Higgs bosons there is a narrow intermediate regime around (M ∼ g{sup 1/2}T in which our interpolation is phenomenological and a more precise study would be welcome.

  15. Plasma control and diagnostics for 10 GeV electron beams on BELLA

    NASA Astrophysics Data System (ADS)

    Daniels, J.; Gonsalves, A. J.; Pieronek, C. V.; Benedetti, C.; van Tilborg, J.; Schroeder, C. B.; Leemans, W. P.

    2017-03-01

    To advance the current state-of-the-art of capillary-based laser plasma accelerators (LPAs), the tunability of capillary discharge plasma channels needs to be improved. We present the techniques used to determine critical properties of the plasma density distribution. Independent tailoring of plasma channel width and on-axis density are required to produce higher energy electron beams with existing facilities. A scheme involving an additional, nanosecond laser pulse to locally heat the channel has been proposed previously. We discuss recent progress on the implementation of this scheme, demonstrating a heating effect on the plasma channel as evidenced from nanosecond-resolved spectroscopy on transversely emitted plasma light. PIC simulations indicate the possibility of accelerating high charge beams up to 8.4 GeV average energy if other technique advances are made as well. These include the need for longer plasma channels of 10s of centimeters, low plasma density and an ionization injection scheme to inject more charge into the wake at the start of the channel. Finally, a brief overview is given of the status of these techniques working towards the goal of producing 10 GeV beams with a single accelerator module.

  16. Right-handed neutrino production rate at T>160 GeV

    SciTech Connect

    Ghisoiu, I.; Laine, M.

    2014-12-16

    The production rate of right-handed neutrinos from a Standard Model plasma at a temperature above a hundred GeV has previously been evaluated up to NLO in Standard Model couplings (g∼2/3) in relativistic (M∼πT) and non-relativistic regimes (M≫πT), and up to LO in an ultrarelativistic regime (M≲gT). The last result necessitates an all-orders resummation of the loop expansion, accounting for multiple soft scatterings of the nearly light-like particles participating in 1↔2 reactions. In this paper we suggest how the regimes can be interpolated into a result applicable for any right-handed neutrino mass and at all temperatures above 160 GeV. The results can also be used for determining the lepton number washout rate in models containing right-handed neutrinos. Numerical results are given in a tabulated form permitting for their incorporation into leptogenesis codes. We note that due to effects from soft Higgs bosons there is a narrow intermediate regime around M∼g{sup 1/2}T in which our interpolation is phenomenological and a more precise study would be welcome.

  17. Electromagnetic production of mesons and nucleon resonances at GeV energies

    SciTech Connect

    Lee, T.S.H.; Pichowsky, M.; Sato, T.

    1995-08-01

    A coupled-channels model for investigating the electromagnetic excitation of nucleon resonances (N*) at energies accessible to CEBAF, was developed. Motivated by the existing QCD-based hadron models, we assume that the basic resonant interaction mechanisms of the model Hamiltonian are the absorption and emission of photons and mesons by a bare quark core. The matrix elements of nonresonant interactions are deduced from low-order Feynman diagrams of an effective Lagrangian with chiral symmetry. The standard projection operator technique was applied to obtain a set of unitary scattering equations for describing {pi}N and {gamma}N reactions up to the GeV energy region. By assuming that the nonresonant two-pion continuum can be approximated as a fictitious {sigma}N state, the scattering equations can then be cast into a set of coupled-channels equations involving only two-particle {gamma}N, {pi}N, {eta}N, {rho}N, {pi}{Delta}, {omega}N and {sigma}N channels, which can be solved by well-developed numerical methods. The bare coupling constants and the range parameters of the hadronic form factors are adjusted to reproduce {pi}N scattering phase shifts up to 2-GeV incident pion energy. We then explore the dependence of the {gamma}N {yields} {pi}N and N(e,e{prime}{pi}) observables on the {gamma}N {yields} N* excitation strengths predicted by various QCD-based models of hadrons.

  18. 130 GeV gamma-ray line through axion conversion

    NASA Astrophysics Data System (ADS)

    Yamanaka, Masato; Kohri, Kazunori; Ioka, Kunihito; Nojiri, Mihoko M.

    2015-03-01

    We apply the axion-photon conversion mechanism to the 130 GeV γ -ray line observed by the Fermi satellite. Near the Galactic center, some astrophysical sources and/or particle dark matter can produce energetic axions (or axionlike particles), and the axions convert to γ rays in Galactic magnetic fields along their flight to the Earth. Since continuum γ -ray and antiproton productions are sufficiently suppressed in axion production, the scenario fits the 130 GeV γ -ray line without conflicting with cosmic ray measurements. We derive the axion production cross section and the decay rate of dark matter to fit the γ -ray excess as functions of axion parameters. In the scenario, the γ -ray spatial distributions depend on both the dark matter profile and the magnetic field configuration, which will be tested by future γ -ray observations, e.g., H.E.S.S. II, CTA, and GAMMA-400. As an illustrative example, we study realistic supersymmetric axion models, and show the favored parameters that nicely fit the γ -ray excess.

  19. MEASUREMENT OF THE CROSS-SECTION FOR THE γ γ -> p/line{p} PROCESS AT √ {s} = 183 - 189\\ GeV AT LEP

    NASA Astrophysics Data System (ADS)

    Barillari, T.

    2002-07-01

    The OPAL detector at LEP has been used to study the exclusive production of proton antiproton pairs in the collisions of two quasi-real photons using data taken at √ {s} = 183\\ GeV and 189 GeV. The results here presented are for γγ invariant masses, W, in the range 2.15 GeV < W < 3.95 GeV. The cross-section measurements are compared with previous data and with recent analytic calculations based on the quark-diquark model predictions.

  20. Inclusive Lambda_c Production in e+e- Annihilations at sqrt{s}=10.54 GeV and in Upsilon(4S) Decays

    SciTech Connect

    Aubert, B.

    2006-09-07

    We present measurements of the total production rates and momentum distributions of the charmed baryon {Lambda}{sub c}{sup +} in e{sup +}e{sup -} {yields} hadrons at a center-of-mass energy of 10.54 GeV and in {Upsilon}(4S) decays. In hadronic events at 10.54 GeV, charmed hadrons are almost exclusively leading particles in e{sup +}e{sup -} {yields} c{bar c} events, allowing direct studies of c-quark fragmentation. We measure a momentum distribution for {Lambda}{sub c}{sup +} baryons that differs significantly from those measured previously for charmed mesons. Comparing with a number of models, we find none that can describe the distribution completely. We measure an average scaled momentum of (x{sub p}) = 0.574 {+-} 0.009 and a total rate of N{sub {Lambda}{sub c}}{sup q{bar q}} = 0.057 {+-} 0.002(exp.) {+-} 0.015(BF) {Lambda}{sub c}{sup +} per hadronic event, where the experimental error is much smaller than that due to the branching fraction into the reconstructed decay mode, pK{sup -} {pi}{sup +}. In {Upsilon}(4S) decays we measure a total rate of N{sub {Lambda}{sub c}}{sup {Upsilon}} = 0.091 {+-} 0.006(exp.) {+-} 0.024(BF) per {Upsilon}(4S) decay, and find a much softer momentum distribution than expected from B decays into a {Lambda}{sub c}{sup +} plus an antinucleon and one to three pions.

  1. Who will lead?

    PubMed

    Gustafson, R P; Schlosser, J R

    1997-01-01

    A recent survey conducted by the UCLA Center for Health Services Management and the Physician Executive Practice of Heidrick & Struggles, an executive search firm, sheds light on the emerging physician executive's role. The goal of the research was to identify success factors as a means of evaluating and developing effective industry leaders. Respondents were asked to look at specific skills in relation to nine categories: Communication, leadership, interpersonal skills, self-motivation/management, organizational knowledge, organizational strategy, administrative skills, and thinking. Communication, leadership, and self-motivation/management emerged, in that order, as the three most important success factors for physician executives. An individual's general competencies, work styles, and ability to lead others through organizational restructuring defines his or her appropriateness for managerial positions in the health care industry.

  2. Cofilin takes the lead.

    PubMed

    DesMarais, Vera; Ghosh, Mousumi; Eddy, Robert; Condeelis, John

    2005-01-01

    Cofilin has emerged as a key regulator of actin dynamics at the leading edge of motile cells. Through its actin-severing activity, it creates new actin barbed ends for polymerization and also depolymerizes old actin filaments. Its function is tightly regulated in the cell. Spatially, its activity is restricted by other actin-binding proteins, such as tropomyosin, which compete for accessibility of actin filament populations in different regions of the cell. At the molecular level, it is regulated by phosphorylation, pH and phosphatidylinositol (4,5)-bisphosphate binding downstream of signaling cascades. In addition, it also appears to be regulated by interactions with 14-3-3zeta and cyclase-associated protein. In vivo, cofilin acts synergistically with the Arp2/3 complex to amplify local actin polymerization responses upon cell stimulation, which gives it a central role in setting the direction of motility in crawling cells.

  3. Blood Test: Lead (For Parents)

    MedlinePlus

    ... and when based on a child's risk for lead poisoning. Those who are considered at risk — such as ... How Do I Get My Child Tested for Lead Poisoning? Lead Poisoning Pica Getting a Blood Test (Video) ...

  4. Antiferroelectricity in lead zirconate

    NASA Astrophysics Data System (ADS)

    Tagantsev, Alexander K.

    2014-03-01

    Antiferroelectrics are essential ingredients for widely applied piezoelectric and ferroelectric materials. Despite their technological importance, the reason why materials become antiferroelectric has remained allusive since their first discovery. Experimentally, antiferroelectrics can be recognized as materials that exhibit a structural phase transition between two non-polar phases with a strong dielectric anomaly at the high temperature side of the transition. Despite a widely spread opinion that these materials can be viewed as direct analogues of antiferromagnetics, the so-called anti-polar ionic displacements at the transition do not guaranty the antiferroelectric behavior of the material while the interpretation of such behavior does not require the incorporation of the anti-polar ionic displacements in the scenario. To get insight in the true origin of antiferroelectricity, we studied the lattice dynamics of the antiferroelectric lead zirconate using inelastic and diffuse X-ray scattering techniques and the Brillouin light scattering. Based on our experimental data, we showed that the driving force for antiferroelectricity is a ferroelectric instability. Through flexoelectric coupling, it drives the system to a state, which is virtually unstable against incommensurate modulations. However, the Umklapp interaction allows the system to go directly to the commensurate lock-in phase, leaving the incommensurate phase as a ``missed'' opportunity. By this mechanism the ferroelectric softening is transformed into an antiferroelectric transition. The remaining key parts of the whole scenario are repulsive and attractive biquadratic couplings that suppress the appearance of the spontaneous polarization and induce the anti-phase octahedral rotations in the low-temperature phase. The analysis of the results reveals that the antiferroelectric state is a ``missed'' incommensurate phase, and that the paraelectric to antiferroelectric phase transition is driven by the

  5. Leading from the boardroom.

    PubMed

    Lorsch, Jay W; Clark, Robert C

    2008-04-01

    These days, boards are working overtime to comply with Sarbanes-Oxley and other governance requirements meant to protect shareholders from executive wrongdoing. But as directors have become more hands-on with compliance, they've become more hands-off with long-range planning. That exposes corporations and their shareholders to another--perhaps even greater--risk, say professors Lorsch, of Harvard Business School, and Clark, of Harvard Law School. Boards are giving the long term short shrift for a number of reasons. Despite much heavier workloads, directors haven't rethought their patterns of operating - their meetings, committees, and other interactions. Compliance has changed their relationship with executives, however, turning directors into micromanagers who closely probe executives' actions instead of providing high-level guidance. Meanwhile, the pressure to meet quarterly expectations intensifies. Directors need to do a better job of balancing compliance with forward thinking. Boardroom effectiveness hinges most on the quality of directors and their interactions, the authors' research shows. Directors must apply their wisdom broadly, handling compliance work more efficiently and staying out of the weeds on strategic issues. Using their power with management to evangelize for long-term planning, they must take the lead on discussions about financial infrastructure, talent development, and strategy. Reserving sacrosanct time for such discussions, as Philips Electronics' board does at annual retreats, is an effective practice: After one recent retreat, Philips decided to exit the semiconductor business, where it was losing ground. Individual directors also must not shy away from asking tough questions and acting as catalysts on critical issues, such as grooming a successor to the CEO. In short, directors must learn to lead from the boardroom.

  6. K*0 production in Cu + Cu and Au + Au collisions at sNN=62.4 GeV and 200 GeV

    NASA Astrophysics Data System (ADS)

    Aggarwal, M. M.; Ahammed, Z.; Alakhverdyants, A. V.; Alekseev, I.; Alford, J.; Anderson, B. D.; Anson, C. D.; Arkhipkin, D.; Averichev, G. S.; Balewski, J.; Barnby, L. S.; Baumgart, S.; Beavis, D. R.; Bellwied, R.; Betancourt, M. J.; Betts, R. R.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Biritz, B.; Bland, L. C.; Bonner, B. E.; Bouchet, J.; Braidot, E.; Brandin, A. V.; Bridgeman, A.; Bruna, E.; Bueltmann, S.; Bunzarov, I.; Burton, T. P.; Cai, X. Z.; Caines, H.; Calderon de La Barca Sanchez, M.; Catu, O.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, J. Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Choi, K. E.; Christie, W.; Chung, P.; Clarke, R. F.; Codrington, M. J. M.; Corliss, R.; Cramer, J. G.; Crawford, H. J.; Das, D.; Dash, S.; Davila Leyva, A.; de Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Derevschikov, A. A.; Derradi de Souza, R.; Didenko, L.; Djawotho, P.; Dogra, S. M.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunlop, J. C.; Dutta Mazumdar, M. R.; Efimov, L. G.; Elhalhuli, E.; Elnimr, M.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Eun, L.; Evdokimov, O.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Fersch, R. G.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Gagliardi, C. A.; Gangadharan, D. R.; Ganti, M. S.; Garcia-Solis, E. J.; Geromitsos, A.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y. N.; Gordon, A.; Grebenyuk, O.; Grosnick, D.; Guertin, S. M.; Gupta, A.; Guryn, W.; Haag, B.; Hamed, A.; Han, L.-X.; Harris, J. W.; Hays-Wehle, J. P.; Heinz, M.; Heppelmann, S.; Hirsch, A.; Hjort, E.; Hoffman, A. M.; Hoffmann, G. W.; Hofman, D. J.; Huang, B.; Huang, H. Z.; Humanic, T. J.; Huo, L.; Igo, G.; Jacobs, P.; Jacobs, W. W.; Jena, C.; Jin, F.; Jones, C. L.; Jones, P. G.; Joseph, J.; Judd, E. G.; Kabana, S.; Kajimoto, K.; Kang, K.; Kapitan, J.; Kauder, K.; Keane, D.; Kechechyan, A.; Kettler, D.; Kikola, D. P.; Kiryluk, J.; Kisiel, A.; Klein, S. R.; Knospe, A. G.; Kocoloski, A.; Koetke, D. D.; Kollegger, T.; Konzer, J.; Koralt, I.; Koroleva, L.; Korsch, W.; Kotchenda, L.; Kouchpil, V.; Kravtsov, P.; Krueger, K.; Krus, M.; Kumar, L.; Kurnadi, P.; Lamont, M. A. C.; Landgraf, J. M.; Lapointe, S.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, C.-H.; Lee, J. H.; Leight, W.; Levine, M. J.; Li, C.; Li, L.; Li, N.; Li, W.; Li, X.; Li, X.; Li, Y.; Li, Z. M.; Lin, G.; Lindenbaum, S. J.; Lisa, M. A.; Liu, F.; Liu, H.; Liu, J.; Ljubicic, T.; Llope, W. J.; Longacre, R. S.; Love, W. A.; Lu, Y.; Lukashov, E. V.; Luo, X.; Ma, G. L.; Ma, Y. G.; Mahapatra, D. P.; Majka, R.; Mall, O. I.; Mangotra, L. K.; Manweiler, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; Matulenko, Yu. A.; McDonald, D.; McShane, T. S.; Meschanin, A.; Milner, R.; Minaev, N. G.; Mioduszewski, S.; Mischke, A.; Mitrovski, M. K.; Mohanty, B.; Mondal, M. M.; Morozov, B.; Morozov, D. A.; Munhoz, M. G.; Nandi, B. K.; Nattrass, C.; Nayak, T. K.; Nelson, J. M.; Netrakanti, P. K.; Ng, M. J.; Nogach, L. V.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Okorokov, V.; Oldag, E. W.; Olson, D.; Pachr, M.; Page, B. S.; Pal, S. K.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S. C.; Pile, P.; Planinic, M.; Ploskon, M. A.; Pluta, J.; Plyku, D.; Poljak, N.; Poskanzer, A. M.; Potukuchi, B. V. K. S.; Powell, C. B.; Prindle, D.; Pruneau, C.; Pruthi, N. K.; Pujahari, P. R.; Putschke, J.; Qiu, H.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Redwine, R.; Reed, R.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Rose, A.; Roy, C.; Ruan, L.; Sahoo, R.; Sakai, S.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sangaline, E.; Schambach, J.; Scharenberg, R. P.; Schmitz, N.; Schuster, T. R.; Seele, J.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shahaliev, E.; Shao, M.; Sharma, M.; Shi, S. S.; Sichtermann, E. P.; Simon, F.; Singaraju, R. N.; Skoby, M. J.; Smirnov, N.; Sorensen, P.; Sowinski, J.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Staszak, D.; Stevens, J. R.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Suarez, M. C.; Subba, N. L.; Sumbera, M.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Svirida, D. N.; Symons, T. J. M.; Szanto de Toledo, A.; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarini, L. H.; Tarnowsky, T.; Thein, D.; Thomas, J. H.; Tian, J.; Timmins, A. R.; Timoshenko, S.; Tlusty, D.; Tokarev, M.; Trainor, T. A.; Tram, V. N.; Trentalange, S.; Tribble, R. E.; Tsai, O. D.; Ulery, J.; Ullrich, T.; Underwood, D. G.; van Buren, G.; van Leeuwen, M.; van Nieuwenhuizen, G.; Vanfossen, J. A., Jr.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Videbaek, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Wada, M.; Walker, M.; Wang, F.; Wang, G.

    2011-09-01

    We report on K*0 production at midrapidity in Au + Au and Cu + Cu collisions at sNN=62.4 and 200 GeV collected by the Solenoid Tracker at the Relativistic Heavy Ion Collider detector. The K*0 is reconstructed via the hadronic decays K*0→K+π- and K*0¯→K-π+. Transverse momentum, pT, spectra are measured over a range of pT extending from 0.2 GeV/c up to 5 GeV/c. The center-of-mass energy and system size dependence of the rapidity density, dN/dy, and the average transverse momentum, , are presented. The measured N(K*0)/N(K) and N(φ)/N(K*0) ratios favor the dominance of rescattering of decay daughters of K*0 over the hadronic regeneration for the K*0 production. In the intermediate pT region (2.0

  7. Generation of tens-of-MeV photons by compton backscatter from laser-plasma-accelerated GeV electrons

    NASA Astrophysics Data System (ADS)

    Shaw, J. M.; Bernstein, A. C.; Hannasch, A.; LaBerge, M.; Chang, Y.-Y.; Weichman, K.; Welch, J.; Zgadzaj, R.; Henderson, W.; Tsai, H.-E.; Fazel, N.; Wang, X.; Wagner, C.; Donovan, M.; Dyer, G.; Gaul, E.; Gordon, J.; Martinez, M.; Spinks, M.; Toncian, T.; Ditmire, T.; Downer, M. C.

    2017-03-01

    Previous work has demonstrated the use of a plasma mirror (PM), after a laser-plasma accelerator (LPA), for generating Compton γ-rays by retro-reflecting the spent laser pulse into the just-accelerated electrons. Here, we investigate the use of a PM to stimulate Compton backscatter (CBS) by retro-reflecting a spent pulse from the Texas Petawatt (TPW) laser after it has driven a cm-scale, GeV LPA. A comparative analysis between the electron and CBS pointing and divergence reveals strong agreement, from shot-to-shot, suggesting a reliable, non-invasive extension for GeV-beam metrology. Our observations confirm the self-aligning PM method is scalable to GeV LPAs, while also suggesting a technique with unique advantages and a robustness that can potentially be exploited for investigations of nonlinear Compton backscatter from ultralow divergence, GeV electrons using the Texas Petawatt Laser.

  8. Cosmic-ray electron flux measured by the PAMELA experiment between 1 and 625 GeV.

    PubMed

    Adriani, O; Barbarino, G C; Bazilevskaya, G A; Bellotti, R; Boezio, M; Bogomolov, E A; Bongi, M; Bonvicini, V; Borisov, S; Bottai, S; Bruno, A; Cafagna, F; Campana, D; Carbone, R; Carlson, P; Casolino, M; Castellini, G; Consiglio, L; De Pascale, M P; De Santis, C; De Simone, N; Di Felice, V; Galper, A M; Gillard, W; Grishantseva, L; Jerse, G; Karelin, A V; Koldashov, S V; Krutkov, S Y; Kvashnin, A N; Leonov, A; Malakhov, V; Malvezzi, V; Marcelli, L; Mayorov, A G; Menn, W; Mikhailov, V V; Mocchiutti, E; Monaco, A; Mori, N; Nikonov, N; Osteria, G; Palma, F; Papini, P; Pearce, M; Picozza, P; Pizzolotto, C; Ricci, M; Ricciarini, S B; Rossetto, L; Sarkar, R; Simon, M; Sparvoli, R; Spillantini, P; Stochaj, S J; Stockton, J C; Stozhkov, Y I; Vacchi, A; Vannuccini, E; Vasilyev, G; Voronov, S A; Wu, J; Yurkin, Y T; Zampa, G; Zampa, N; Zverev, V G

    2011-05-20

    Precision measurements of the electron component in the cosmic radiation provide important information about the origin and propagation of cosmic rays in the Galaxy. Here we present new results regarding negatively charged electrons between 1 and 625 GeV performed by the satellite-borne experiment PAMELA. This is the first time that cosmic-ray e⁻ have been identified above 50 GeV. The electron spectrum can be described with a single power-law energy dependence with spectral index -3.18 ± 0.05 above the energy region influenced by the solar wind (> 30 GeV). No significant spectral features are observed and the data can be interpreted in terms of conventional diffusive propagation models. However, the data are also consistent with models including new cosmic-ray sources that could explain the rise in the positron fraction.

  9. pi0 photoproduction on the proton for photon energies from 0.675 to 2.875-GeV

    SciTech Connect

    Michael Dugger; Barry Ritchie; Jacques Ball; Patrick Collins; Evgueni Pasyuk; Richard Arndt; William Briscoe; Igor Strakovski; Ron Workman; Gary Adams; Moscov Amaryan; Pawel Ambrozewicz; Eric Anciant; Marco Anghinolfi; Burin Asavapibhop; G. Asryan; Gerard Audit; Harutyun Avakian; H. Bagdasaryan; Nathan Baillie; Nathan Baltzell; Steve Barrow; Marco Battaglieri; Kevin Beard; Ivan Bedlinski; Ivan Bedlinskiy; Mehmet Bektasoglu; Matthew Bellis; Nawal Benmouna; Barry Berman; Nicola Bianchi; Angela Biselli; Billy Bonner; Sylvain Bouchigny; Sergey Boyarinov; Robert Bradford; Derek Branford; William Brooks; Stephen Bueltmann; Volker Burkert; Cornel Butuceanu; John Calarco; Sharon Careccia; Daniel Carman; Bryan Carnahan; Shifeng Chen; Philip Cole; Alan Coleman; Philip Coltharp; Dieter Cords; Pietro Corvisiero; Donald Crabb; Hall Crannell; John Cummings; Enzo De Sanctis; Raffaella De Vita; Pavel Degtiarenko; Haluk Denizli; Lawrence Dennis; Alexandre Deur; Kahanawita Dharmawardane; Kalvir Dhuga; Richard Dickson; Chaden Djalali; Gail Dodge; Joseph Donnelly; David Doughty; P. Dragovitsch; Steven Dytman; Oleksandr Dzyubak; Hovanes Egiyan; Kim Egiyan; Latifa Elouadrhiri; A. Empl; Paul Eugenio; Renee Fatemi; Gleb Fedotov; Gerald Feldman; Robert Feuerbach; John Ficenec; Tony Forest; Herbert Funsten; Michel Garcon; Gagik Gavalian; Gerard Gilfoyle; Kevin Giovanetti; Francois-Xavier Girod; John Goetz; Ralf Gothe; Keith Griffioen; Michel Guidal; Matthieu Guillo; Nevzat Guler; Lei Guo; Vardan Gyurjyan; Cynthia Hadjidakis; Rafael Hakobyan; John Hardie; D. Heddle; F. Hersman; Kenneth Hicks; Ishaq Hleiqawi; Maurik Holtrop; J. Hu; Marco Huertas; Charles Hyde; Charles Hyde-Wright; Yordanka Ilieva; David Ireland; Boris Ishkhanov; Mark Ito; David Jenkins; Hyon-Suk Jo; Kyungseon Joo; Henry Juengst; Narbe Kalantarians; James Kellie; Mahbubul Khandaker; Kui Kim; Kinney Kim; Wooyoung Kim; Andreas Klein; Franz Klein; Alexei Klimenko; Mike Klusman; Mikhail Kossov; Zebulun Krahn; Laird Kramer; Valery Kubarovsky; Joachim Kuhn; Sebastian Kuhn; Viacheslav Kuznetsov; Jeff Lachniet; Jean Laget; Jorn Langheinrich; David Lawrence; Tsung-shung Lee; Ana Lima; Kenneth Livingston; K. Lukashin; Joseph Manak; Claude Marchand; Leonard Maximon; Simeon McAleer; Bryan McKinnon; John McNabb; Bernhard Mecking; Mac Mestayer; Curtis Meyer; Tsutomu Mibe; Konstantin Mikhaylov; Ralph Minehart; Marco Mirazita; Rory Miskimen; Viktor Mokeev; Kei Moriya; Steven Morrow; Valeria Muccifora; James Mueller; Gordon Mutchler; Pawel Nadel-Turonski; James Napolitano; Rakhsha Nasseripour; Silvia Niccolai; Gabriel Niculescu; Maria-Ioana Niculescu; Bogdan Niczyporuk; Megh Niroula; Rustam Niyazov; Mina Nozar; Grant O'Rielly; Mikhail Osipenko; Alexander Ostrovidov; K Park; Craig Paterson; Sasha Philips; Joshua Pierce; Nikolay Pivnyuk; Dinko Pocanic; Oleg Pogorelko; S. Pozdniakov; Barry Preedom; John Price; Yelena Prok; Dan Protopopescu; Liming Qin; Brian Raue; Gregory Riccardi; Giovanni Ricco; Marco Ripani; Federico Ronchetti; Guenther Rosner; Patrizia Rossi; David Rowntree; Philip Rubin; Franck Sabatie; Julian Salamanca; Carlos Salgado; Joseph Santoro; Vladimir Sapunenko; Reinhard Schumacher; Vladimir Serov; Aziz Shafi; Youri Sharabian; J. Shaw; Sebastio Simionatto; Alexander Skabelin; Elton Smith; Lee Smith; Daniel Sober; M. Spraker; Aleksey Stavinskiy; Samuel Stepanyan; Stepan Stepanyan; Burnham Stokes; Paul Stoler; Steffen Strauch; Mauro Taiuti; Simon Taylor; David Tedeschi; Ulrike Thoma; R. Thompson; Avtandil Tkabladze; Svyatoslav Tkachenko; Luminita Todor; Clarisse Tur; Maurizio Ungaro; Michael Vineyard; Alexander Vlassov; Xue kai Wang; Lawrence Weinstein; Henry Weller; Dennis Weygand; M. Williams; Elliott Wolin; M.H. Wood; A. Yegneswaran; Jae-Chul Yun; Lorenzo Zana; Jixie Zhang

    2007-07-23

    Differential cross sections for the reaction $\\gamma p \\to p \\pi^0$ have been measured with the CEBAF Large Acceptance Spectrometer (CLAS) and a tagged photon beam with energies from 0.675 to 2.875 GeV. The results reported here possess greater accuracy in the absolute normalization than previous measurements. They disagree with recent CB-ELSA measurements for the process at forward scattering angles. Agreement with the SAID and MAID fits is found below 1 GeV. The present set of cross sections has been incorporated into the SAID database, and exploratory fits have been extended to 3 GeV. Resonance couplings have been extracted and compared to previous determinations.

  10. Events with a Rapidity Gap between Jets in {ovr p}p Collisions at {radical} (s) =630 GeV

    SciTech Connect

    Blair, R.E.; Byrum, K.L.; Kovacs, E.; Kuhlmann, S.E.; LeCompte, T.; Nodulman, L.; Breccia, L.; Brunetti, R.; Deninno, M.; Fiori, I.; Mazzanti, P.; Behrends, S.; Bensinger, J.; Blocker, C.; Kirsch, L.; Lamoureux, J.I.; Bonushkin, Y.; Hauser, J.; Lindgren, M.; Amadon, A.; Berryhill, J.; Contreras, M.; Culbertson, R.; Frisch, H.; Grosso-Pilcher, C.; Hohlmann, M.; Nakaya, T.; Cronin-Hennessy, D.; Dittmann, J.R.; Goshaw, A.T.; Khazins, D.; Kowald, W.; Oh, S.H.; Albrow, M.G.; Atac, M.; Beretvas, A.; Berge, J.P.; Biery, K.; Binkley, M.; Buckley-Geer, E.; Byon-Wagner, A.; Chlebana, F.; Cihangir, S.; Cooper, J.; DeJongh, F.; Demina, R.; Derwent, P.F.; Elias, J.E.; Erdmann, W.; Flaugher, B.; Foster, G.W.; Freeman, J.; Geer, S.; Hahn, S.R.; Harris, R.M.; Incandela, J.; Jensen, H.; Joshi, U.; Kennedy, R.D.; Kephart, R.; Lammel, S.; Lewis, J.D.; Lukens, P.; Maeshima, K.; Marriner, J.P.; Miao, T.; Mukherjee, A.; Nelson, C.; Newman-Holmes, C.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Nomerotski, A.; Barone, M.; Bertolucci, S.; Cordelli, M.; DellAgnello, S.; Happacher, F.; Miscetti, S.; Clark, A.G.; Couyoumtzelis, C.; Kambara, H.; Baumann, T.; Franklin, M.; Gordon, A.; Hamilton, R.; Huth, J.; Kestenbaum, D.; Maksimovic, P.; and others

    1998-12-01

    We report a measurement of the fraction of dijet events with a rapidity gap between jets produced by color-singlet exchange in {ovr p}p collisions at {radical} (s) =630 GeV at the Fermilab Tevatron. In events with two jets of transverse energy E{sup jet}{sub T}{gt}8 GeV , pseudorapidity in the range 1.8{lt}{vert_bar}{eta}{sup jet}{vert_bar}{lt}3.5 and {eta}{sub 1}{eta}{sub 2}{lt}0 , the color-singlet exchange fraction is found to be R=[2.7{plus_minus}0.7(stat){plus_minus}0 .6(syst)]{percent} . Comparisons are made with results obtained at {radical} (s) =1800 GeV and with theoretical expectations. {copyright} {ital 1998} {ital The American Physical Society }

  11. Lead absorption in cows: biological indicators of ambient lead exposure

    SciTech Connect

    Karacic, V.; Prpic-Majic, D.; Skender, L.

    1984-03-01

    In order to determine actual lead exposure from residual amounts of lead in the environmental soil following the introduction of effective engineering emission controls in a lead smeltery, the absorption of lead in cows grazing in the vicinity was investigated. Four groups of cows were examined: two groups of cows exposed to different ambient lead concentration, compared with two normal groups of cows. In each cow aminolevulinic acid dehydratase (ALAD), erythrocyte protoporphyrin (EP) and blood lead (Pb-B) were determined, two years prior to and four years after the technical sanitation of the lead emission source. The results demonstrated normalization of ALAD, EP and Pb-B after the technical sanitation. In spite of normalization, biological indicators ALAD and Pb-B determined four years after the technical sanitation showed increased lead absorption in comparison with the results of the control group. This indirectly indicates lead contamination of the environment from residual amounts of lead in the soil.

  12. Conceptual Design Report. Antiproton - Proton Collider Upgrade 20 GeV Rings. Technical Components and Civil Construction May, 1988

    SciTech Connect

    1988-05-01

    This report contains a description of the design and cost estimate of two new 20 GeV rings which will be required to support the upgrade of the Fermilab Collider with a luminosity goal of 5x10 31 cm-2s-1. The new rings include an antiproton post-accumulator, denoted the Antiproton Super Booster (ASB), and a proton post-booster, denoted the Proton Super Booster (PSB). The siting of the rings is shown in Figure I-1. Both rings are capable of operation at 20 GeV, eliminating the need for ever again injecting beam into the Main Ring below transition, and significantly enhancing Main Ring performance. The Antiproton Super Booster is designed to accept and accumulate up to 4x1012 antiprotons from the existing Antiproton Accumulator, and deliver them to the Main Ring at 20 GeV for acceleration and injection into the Collider. It is also designed to accept diluted antiprotons from the Main Ring at 20 GeV for recooling. The PSB accepts 8.9 GeV protons from the existing Booster and accelerates them to 20 GeV for injection into the Main Ring. The PSB is designed to operate at 5 Hz. The siting shown in Figure I-1 has the attractive feature that it removes all Main Ring injection hardware from the AO straight section, opening the possibility of installing a third proton-antiproton interaction region in the Tevatron Collider.

  13. Study of open charm production in proton+proton collisions at center of mass energies = 200 GeV

    NASA Astrophysics Data System (ADS)

    Butsyk, Sergey

    2005-11-01

    The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) with its unique electron identification system enables us to perform high precision measurements of electron yields. By measuring electron production at high transverse momentum, we can disentangle the contribution of electrons originating from semi-leptonic decays of heavy quarks (charm or bottom) from the less interesting "photonic" decay modes of light mesons. D/B mesons carry single heavy valence quarks and are usually referred to as "Open Charm" and "Open Bottom" particles, differentiating them from Closed Flavor particles such as J/psi, and Y mesons. Due to the large mass of the heavy quarks, their production mechanisms can be adequately explained by perturbative QCD (pQCD) theory. This dissertation presents the measurement of electrons from heavy flavor decays in proton + proton collisions at RHIC at collision energy s = 200 GeV over a wide range of transverse moment (0.4 < pT < 5 GeV/c). Two independent analysis techniques of signal extraction were performed. The "Cocktail" subtraction is based on the calculation and subtraction of the expected "photon-related" electron background based upon measured yields of light mesons. The "Converter" subtraction is based upon a direct measurement of photon yields achieved introducing additional material in the PHENIX acceptance and deducing the photon abundance by measuring the increase in electron yield. This is the first measurement of the Open Charm crossection at this collision energy and it is an important baseline measurement for comparison with nucleus + nucleus collisions. The modification of Open Charm production in heavy ion collisions compared to the presented p + p result can be used to study the final state interaction of the heavy quarks with hot dense matter inside the collisions. The results of the Open Charm measurements are compared to current pQCD predictions both in Leading Order (LO) O a2s and Next-to-Leading Order (NLO) O a3s

  14. Relic gravity waves and 7 keV dark matter from a GeV scale inflaton

    NASA Astrophysics Data System (ADS)

    Bezrukov, F. L.; Gorbunov, D. S.

    2014-09-01

    We study the mechanism of generation of 7 keV sterile neutrino Dark Matter (DM) in the model with light inflaton χ, which serves as a messenger of scale invariance breaking. In this model the inflaton, in addition to providing reheating to the Standard Model (SM) particles, decays directly into sterile neutrinos. The latter are responsible for the active neutrino oscillations via seesaw type I mechanism. While the two sterile neutrinos may also produce the lepton asymmetry in the primordial plasma and hence explain the baryon asymmetry of the Universe, the third one being the lightest may be of 7 keV and serve as DM. For this mechanism to work, the mass of the inflaton is bound to be light (0.1-1 GeV) and uniquely determines its properties, which allows to test the model. For particle physics experiments these are: inflaton lifetime (10-5-10-12 s), branching ratio of B-meson to kaon and inflaton (10-6-10-4) and inflaton branching ratios into light SM particles like it would be for the SM Higgs boson of the same mass. For cosmological experiments these are: spectral index of scalar perturbations (ns≃0.957-0.967), and amount of tensor perturbations produced at inflation (tensor-to-scalar ratio r≃0.15-0.005). β and ξ are related from the CMB normalization. mχ and β are related by the requirement of the generation of proper abundance of DM (given DM mass M1 or coupling f1 is known). ξ can be determined from the measurement of the tensor-to-scalar ratio r of the primordial perturbations. α is bound from below from the requirement of sufficient reheating, α is bound from above not to spoil the inflationary potential by radiative corrections, certain region in mχ and θ (or, equivalently β) is constrained from particle physics experiments. We show below that the first two are automatically satisfied with the parameters, leading to the proper DM generation, and the latter one leads to significant bound on the inflaton mass mχ (and hence effective upper bound

  15. Lead-acid battery

    NASA Technical Reports Server (NTRS)

    Rowlette, John J. (Inventor)

    1983-01-01

    A light weight lead-acid battery (30) having a positive terminal (36) and a negative terminal (34) and including one or more cells or grid stacks having a plurality of vertically stacked conductive monoplates (10, 20) with positive active material and negative active material deposited on alternating plates in the cell or grid stack. Electrolyte layers (26, 28) positioned between each monoplate are included to provide a battery cell having four sides which is capable of being electrically charged and discharged. Two vertical positive bus bars (42, 43) are provided on opposite sides of the battery cell for connecting the monoplates (10) with positive active material together in parallel current conducting relation. In addition, two negative bus bars (38, 39) on opposite sides of the battery cell each being adjacent the positive bus bars are provided for connecting the monoplates (20) with negative active material together in parallel current conducting relation. The positive (42, 43) and negative (38, 39) bus bars not only provide a low resistance method for connecting the plurality of conductive monoplates of their respective battery terminals (36, 34) but also provides support and structural strength to the battery cell structure. In addition, horizontal orientation of monoplates (10, 20) is provided in a vertical stacking arrangement to reduce electrolyte stratification and short circuiting due to flaking of positive and negative active materials from the monoplates.

  16. Europa's Leading Hemisphere

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image of Europa's leading hemisphere was obtained by the solid state imaging (CCD) system on board NASA's Galileo spacecraft during its seventh orbit of Jupiter. In the upper left part of the image is Tyre, a multi-ringed structure that may have formed as a result of an ancient impact. Also visible are numerous lineaments that extend for over 1000 kilometers. The limb, or edge, of Europa in this image can be used by scientists to constrain the radius and shape of the satellite. North is to the top of the picture and the sun illuminates the surface from the right. The image, centered at -40 latitude and 180 longitude, covers an area approximately 2000 by 1300 kilometers. The finest details that can be discerned in this picture are about 6.6 kilometers across. The images were taken on April 3, 1997 at 17 hours, 42 minutes, 19 seconds Universal Time when the spacecraft was at a range of 31,8628 kilometers.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  17. Measurement of D* Mesons in Jets from p + p Collisions at sqrt s = 200 GeV

    SciTech Connect

    STAR Coll

    2009-05-16

    We report the measurement of charged D* mesons in inclusive jets produced in proton-proton collisions at a center of mass energy {radical}s = 200 GeV with the STAR experiment at RHIC. For D* mesons with fractional momenta 0.2 < z < 0.5 in inclusive jets with 11.5 GeV mean transverse energy, the production rate is found to be N(D*{sup +} + D*{sup -})/N(jet) = 0.015 {+-} 0.008(stat) {+-} 0.007(sys). This rate is consistent with perturbative QCD evaluation of gluon splitting into a pair of charm quarks and subsequent hadronization.

  18. Backward-angle {eta} photoproduction from protons at E{sub {gamma}}=1.6-2.4 GeV

    SciTech Connect

    Sumihama, M.; Ejiri, H.; Fujiwara, M.; Hotta, T.; Kato, Y.; Kohri, H.; Miyabe, M.; Muramatsu, N.; Nakano, T.; Shimizu, A.; Yorita, T.; Yosoi, M.; Ahn, D. S.; Ahn, J. K.; Akimune, H.; Asano, Y.; Date, S.; Ohashi, Y.; Ohkuma, H.; Toyokawa, H.

    2009-11-15

    Differential cross sections for {eta} photoproduction from protons have been measured at E{sub {gamma}}=1.6-2.4 GeV in the backward direction. A bump structure has been observed above 2.0 GeV in the total energy. No such bump is observed in {eta}{sup '},{omega}, and {pi}{sup 0} photoproductions. It is inferred that this unique structure in {eta} photoproduction is due to a baryon resonance with a large ss component that is strongly coupled to the {eta}N channel.

  19. Study of the deuteron structure in quasi-elastic breakup reaction pd --> ppn at 1 GeV

    NASA Astrophysics Data System (ADS)

    Aleshin, N. P.; Belostotski, S. L.; Grebenyuk, O. G.; Gordeev, V. A.; Komarov, E. N.; Kochenda, L. M.; Lasarev, V. I.; Manayenkov, S. I.; Miklukho, O. V.; Nelyubin, V. V.; Nikulin, V. N.; Prokofiev, O. E.; Sulimov, V. V.; Vikhrov, V. V.; Boudard, A.; Laget, J.-M.

    1994-02-01

    Quasi-elastic deuteron break-up reactions pd → pp( n) and pd → pn( p) have been studied in complete kinematics at 1 GeV. Two outgoing nucleons were detected in coincidence by means of a two-arm spectrometer. After a correction to the impulse approximation for double scattering and Δ-excitation effects, a good agreement with data is found using a momentum distribution of nucleons in the deuteron computed from nucleon-nucleon potentials. This good agreement is obtained up to 0.5 GeV/ c.

  20. DETERMINANTS OF RESIDENTIAL LEAD EXPOSURE

    EPA Science Inventory

    The phase-out of leaded gasoline, and the accompanying decrease in lead emissions, resulted in a dramatic decline in mean blood lead levels from the late 1970s through the early 1990s. Nonetheless, lead exposures remain a public health concern. Long-term exposures to even low...

  1. Lead contamination of urban snow.

    PubMed

    Grandstaff, D E; Myer, G H

    1979-01-01

    Lead content of newly fallen snow in an urban area ranges from 34 to 56 ppb. After falling, snow may incorporate major additional amounts of lead by dry deposition of lead aerosols from local sources. The highest concentration found was 2,700 ppb. Ingestion of lead-contaminated snow might pose a health hazard to inner city children.

  2. Leading Your Leaders

    NASA Technical Reports Server (NTRS)

    Hale, Wayne N.

    2008-01-01

    life is good. More often when an unbelievably difficult test fails, we are left with a very long discussion of why and what was wrong in the design or execution of the test. Make sure that the test is well defined. Even then, it is important to explain to your leaders what inherent accuracy (or error) the test conditions or equipment have and what the assumptions or initial conditions were for the test. Test results without a good understanding of the test's accuracy or the pedigree of the test assumptions are worth very little. Finally, there is flight test data. Always limited, never at the edge of the envelope, it still shows how the real hardware works in a combined environment. Flight experience is dangerous because it typically doesn't show how close to the edge of the cliff the equipment is operating, but it does demonstrate how the hardware really works. A flight test is the ultimate test, again taken with the knowledge that it is probably not the extreme but something more like the middle of the environmental and systems performance. Good understanding of a problem and its solution always relies on a combination of all these methods. Be sure to lead your leaders by using all the tools you have at your disposal. At the end of the day, decisions in space flight always come down to a risk trade. Our business is not remotely safe, not in the sense that the public, the media, or our legislators use the term. Everything we do has a risk, cost, schedule, or performance trade-off. For your leaders to make an appropriate decision, you need to educate them, lead them, talk with them, and engage them in the discussion until full understanding takes place. It's your job. *

  3. Leading clever people.

    PubMed

    Goffee, Rob; Jones, Gareth

    2007-03-01

    In an economy driven by ideas and intellectual know-how, top executives recognize the importance of employing smart, highly creative people. But if clever people have one defining characteristic, it's that they do not want to be led. So what is a leader to do? The authors conducted more than 100 interviews with leaders and their clever people at major organizations such as PricewaterhouseCoopers, Cisco Systems, Novartis, the BBC, and Roche. What they learned is that the psychological relationships effective leaders have with their clever people are very different from the ones they have with traditional followers. Those relationships can be shaped by seven characteristics that clever people share: They know their worth--and they know you have to employ them if you want their tacit skills. They are organizationally savvy and will seek the company context in which their interests are most generously funded. They ignore corporate hierarchy; although intellectual status is important to them, you can't lure them with promotions. They expect instant access to top management, and if they don't get it, they may think the organization doesn't take their work seriously. They are plugged into highly developed knowledge networks, which both increases their value and makes them more of a flight risk. They have a low boredom threshold, so you have to keep them challenged and committed. They won't thank you--even when you're leading them well. The trick is to act like a benevolent guardian: to grant them the respect and recognition they demand, protect them from organizational rules and politics, and give them room to pursue private efforts and even to fail. The payoff will be a flourishing crop of creative minds that will enrich your whole organization.

  4. Materials science. Electronics without lead.

    PubMed

    Li, Yi; Moon, Kyoung-sik; Wong, C P

    2005-06-03

    In conventional consumer electronics such as cell phones, lead-containing interconnects provide the conductive path between different circuit elements. Environmental concerns have led to a search for lead-free alternatives. In their Perspective, Li et al. review these efforts, which have focused on lead-free alloys and electrically conductive adhesives. Both of these approaches are showing promise, but no one lead-free interconnect material can serve as a substitute for the conventional tin-lead solder in all devices.

  5. Efficient GeV ion generation by ultraintense circularly polarized laser pulse

    SciTech Connect

    Zhang Xiaomei; Shen Baifei; Li Xuemei; Jin Zhangying; Wang Fengchao; Wen Meng

    2007-12-15

    The interaction of an ultraintense circularly polarized laser pulse and a solid target is studied by one-dimensional particle-in-cell simulations. Ions at the front of the target are reflected by a moving quasisteady electrostatic field and obtain a relativistic velocity. At a laser intensity of 10{sup 22} W/cm{sup 2}, almost half of the laser energy is transferred to ions and GeV ions are obtained. Effects of laser polarization state and target thickness on the laser energy conversion are investigated. It is found that a circularly polarized laser pulse can accelerate ions more efficiently than a linearly polarized laser pulse at the same laser and target parameters. A monoenergetic ion bunch is obtained for the ultrathin target, which is accelerated as a single entity.

  6. 750 GeV diphoton excess at CERN LHC from a dark sector assisted scalar decay

    SciTech Connect

    Bhattacharya, Subhaditya; Patra, Sudhanwa; Sahoo, Nirakar; Sahu, Narendra

    2016-06-06

    We present a simple extension of the Standard Model (SM) to explain the recent diphoton excess, reported by CMS and ATLAS at CERN LHC. The SM is extended by a dark sector including a vector-like lepton doublet and a singlet of zero electromagnetic charge, which are odd under a Z{sub 2} symmetry. The charged particle of the vector-like lepton doublet assist the additional scalar, different from SM Higgs, to decay to di-photons of invariant mass around 750 GeV and thus explaining the excess observed at LHC. The admixture of neutral component of the vector-like lepton doublet and singlet constitute the dark matter of the Universe. We show the relevant parameter space for correct relic density and direct detection of dark matter.

  7. A 750 GeV portal: LHC phenomenology and dark matter candidates

    DOE PAGES

    D’Eramo, Francesco; de Vries, Jordy; Panci, Paolo

    2016-05-16

    We study the effective field theory obtained by extending the Standard Model field content with two singlets: a 750 GeV (pseudo-)scalar and a stable fermion. Accounting for collider productions initiated by both gluon and photon fusion, we investigate where the theory is consistent with both the LHC diphoton excess and bounds from Run 1. We analyze dark matter phenomenology in such regions, including relic density constraints as well as collider, direct, and indirect bounds. Scalar portal dark matter models are very close to limits from direct detection and mono-jet searches if gluon fusion dominates, and not constrained at all otherwise.more » In conclusion, pseudo-scalar models are challenged by photon line limits and mono-jet searches in most of the parameter space.« less

  8. Exclusive η electroproduction at W >2 GeV with CLAS and transversity generalized parton distributions

    NASA Astrophysics Data System (ADS)

    Bedlinskiy, I.; Kubarovsky, V.; Stoler, P.; Adhikari, K. P.; Akbar, Z.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Biselli, A. S.; Boiarinov, S.; Briscoe, W. J.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Ciullo, G.; Clark, L.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dupre, R.; Alaoui, A. El; Fassi, L. El; Elouadrhiri, L.; Eugenio, P.; Fanchini, E.; Fedotov, G.; Fersch, R.; Filippi, A.; Fleming, J. A.; Forest, T. A.; Garçon, M.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gleason, C.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Hughes, S. M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joo, K.; Joosten, S.; Keller, D.; Khachatryan, G.; Khachatryan, M.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Kuhn, S. E.; Kuleshov, S. V.; Lanza, L.; Lenisa, P.; Livingston, K.; MacGregor, I. J. D.; Markov, N.; McKinnon, B.; Meziani, Z. E.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Movsisyan, A.; Munoz Camacho, C.; Nadel-Turonski, P.; Net, L. A.; Ni, A.; Niccolai, S.; Niculescu, G.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Peng, P.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schumacher, R. A.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tian, Ye; Torayev, B.; Turisini, M.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Yurov, M.; Zachariou, N.; Zhang, J.; Zonta, I.; CLAS Collaboration

    2017-03-01

    The cross section of the exclusive η electroproduction reaction e p →e'p'η was measured at Jefferson Laboratory with a 5.75 GeV electron beam and the CLAS detector. Differential cross sections d4σ /d t d Q2d xBd ϕη and structure functions σU=σT+ɛ σL,σT T , and σL T, as functions of t , were obtained over a wide range of Q2 and xB. The η structure functions are compared with those previously measured for π0 at the same kinematics. At low t , both π0 and η are described reasonably well by generalized parton distributions (GPDs) in which chiral-odd transversity GPDs are dominant. The π0 and η data, when taken together, can facilitate the flavor decomposition of the transversity GPDs.

  9. FMEA on the superconducting torus for the Jefferson Lab 12 GeV accelerator upgrade

    DOE PAGES

    Ghoshal, Probir K.; Biallas, George H.; Fair, Ruben J.; ...

    2015-01-16

    As part of the Jefferson Lab 12GeV accelerator upgrade project, Hall B requires two conduction cooled superconducting magnets. One is a magnet system consisting of six superconducting trapezoidal racetrack-type coils assembled in a toroidal configuration and the second is an actively shielded solenoidal magnet system consisting of 5 coils. Both magnets are to be wound with Superconducting Super Collider-36 NbTi strand Rutherford cable soldered into a copper channel. This paper describes the various failure modes in torus magnet along with the failure modes that could be experienced by the torus and its interaction with the solenoid which is located inmore » close proximity.« less

  10. Radiative corrections for (e,e{prime}p) reactions at GeV energies

    SciTech Connect

    R. Ent; B. W. Filippone; N. C. R. Makins; R. G. Milner; T. G. O'Neill; D. A. Wasson

    2000-05-01

    A general framework for applying radiative corrections to (e,e{prime}p) coincidence reactions at GeV energies is presented, with special emphasis to higher-order Bremsstrahlung effects, radiation from the scattered hadron, and the validity of peaking approximations. The sensitivity to the assumptions made in practically applying radiative corrections to (e,e{prime}p) data is extensively discussed. The general framework is tested against experimental data of the {sup 1}H(e,e{prime}p) reaction at momentum transfer values larger than 1.0 (GeV/c){sup 2}, where radiative processes become a dominant source of uncertainty. The formulas presented here can easily be modified for any other electron-induced coincidence reaction.

  11. Indirect signature of dark matter with the diphoton resonance at 750 GeV

    NASA Astrophysics Data System (ADS)

    Park, Jong-Chul; Park, Seong Chan

    2016-12-01

    Motivated by the recently reported diphoton resonance at 750 GeV, we study a new axion-like bosonic portal model of dark matter physics. When the resonance particle is identified as the pseudo-scalar mediator, via which the standard model sector would interact with the dark matter sector, the data from collider physics would provide profound implications to dark matter phenomenology. In this paper, we first identify the preferred parameter space of the suggested portal model from the results of the LHC run with √{ s } = 13 TeV, and then we examine the dark matter signature taking into account the data from cosmic-ray experiments including Fermi-LAT dwarf galaxy γ-ray search, HESS γ-line search, and future CTA diffuse γ-ray and γ-line searches.

  12. Signature of sub GeV dark matter particles at the LHC and the Tevatron

    NASA Astrophysics Data System (ADS)

    Albornoz Vásquez, Daniel; Bœhm, Céline; Idárraga, John

    2011-06-01

    In this letter, we investigate the production of light dark matter particles at LHC in a N=2 SUSY inspired model and demonstrate that particles will be copiously produced if the colored messengers Fq are lighter than 1 TeV. We expect up to 106 events if mFq≃500GeV, assuming a ˜1fb-1 luminosity. In addition, we show that, even if mFq>O(1)TeV, searches for Fq production at LHC are promising because a kinematical signature can be used to separate the signal from background. This signature is similar to that expected in supersymmetric scenarios. Hence, our study shows that most of the mFq range could be constrained using LHC data. This should encourage further studies since they could infirm/confirm the MeV DM scenario.

  13. Direct photon production in d+Au collisions at sNN=200 GeV

    NASA Astrophysics Data System (ADS)

    Adare, A.; Adler, S. S.; Afanasiev, S.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Al-Bataineh, H.; Al-Jamel, A.; Alexander, J.; Angerami, A.; Aoki, K.; Apadula, N.; Aphecetche, L.; Aramaki, Y.; Armendariz, R.; Aronson, S. H.; Asai, J.; Atomssa, E. T.; Averbeck, R.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Baksay, G.; Baksay, L.; Baldisseri, A.; Barish, K. N.; Barnes, P. D.; Bassalleck, B.; Basye, A. T.; Bathe, S.; Batsouli, S.; Baublis, V.; Bauer, F.; Baumann, C.; Bazilevsky, A.; Belikov, S.; Belmont, R.; Bennett, R.; Berdnikov, A.; Berdnikov, Y.; Bhom, J. H.; Bickley, A. A.; Bjorndal, M. T.; Blau, D. S.; Boissevain, J. G.; Bok, J. S.; Borel, H.; Boyle, K.; Brooks, M. L.; Brown, D. S.; Bruner, N.; Bucher, D.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Burward-Hoy, J. M.; Butsyk, S.; Camacho, C. M.; Camard, X.; Campbell, S.; Caringi, A.; Chand, P.; Chang, B. S.; Chang, W. C.; Charvet, J.-L.; Chen, C.-H.; Chernichenko, S.; Chi, C. Y.; Chiba, J.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chung, P.; Churyn, A.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cobigo, Y.; Cole, B. A.; Comets, M. P.; Conesa del Valle, Z.; Connors, M.; Constantin, P.; Csanád, M.; Csörgő, T.; Cussonneau, J. P.; Dahms, T.; Dairaku, S.; Danchev, I.; Das, K.; Datta, A.; David, G.; Dayananda, M. K.; Deák, F.; Delagrange, H.; Denisov, A.; d'Enterria, D.; Deshpande, A.; Desmond, E. J.; Devismes, A.; Dharmawardane, K. V.; Dietzsch, O.; Dion, A.; Donadelli, M.; Drachenberg, J. L.; Drapier, O.; Drees, A.; Drees, K. A.; Dubey, A. K.; Durham, J. M.; Durum, A.; Dutta, D.; Dzhordzhadze, V.; D'Orazio, L.; Edwards, S.; Efremenko, Y. V.; Ellinghaus, F.; Engelmore, T.; Enokizono, A.; En'yo, H.; Espagnon, B.; Esumi, S.; Eyser, K. O.; Fadem, B.; Fields, D. E.; Finck, C.; Finger, M.; Finger, M., Jr.; Fleuret, F.; Fokin, S. L.; Fox, B. D.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fujiwara, K.; Fukao, Y.; Fung, S.-Y.; Fusayasu, T.; Gadrat, S.; Garishvili, I.; Germain, M.; Glenn, A.; Gong, H.; Gonin, M.; Gosset, J.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grim, G.; Grosse Perdekamp, M.; Gunji, T.; Gustafsson, H.-Å.; Hachiya, T.; Hadj Henni, A.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamblen, J.; Han, R.; Hanks, J.; Hansen, A. G.; Hartouni, E. P.; Haruna, K.; Harvey, M.; Haslum, E.; Hasuko, K.; Hayano, R.; He, X.; Heffner, M.; Hemmick, T. K.; Hester, T.; Heuser, J. M.; Hidas, P.; Hiejima, H.; Hill, J. C.; Hobbs, R.; Hohlmann, M.; Holzmann, W.; Homma, K.; Hong, B.; Hoover, A.; Horaguchi, T.; Hornback, D.; Huang, S.; Ichihara, T.; Ichimiya, R.; Iinuma, H.; Ikeda, Y.; Ikonnikov, V. V.; Imai, K.; Imrek, J.; Inaba, M.; Inuzuka, M.; Isenhower, D.; Isenhower, L.; Ishihara, M.; Isobe, T.; Issah, M.; Isupov, A.; Ivanischev, D.; Iwanaga, Y.; Jacak, B. V.; Jia, J.; Jiang, X.; Jin, J.; Jinnouchi, O.; Johnson, B. M.; Johnson, S. C.; Jones, T.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kajihara, F.; Kametani, S.; Kamihara, N.; Kamin, J.; Kaneta, M.; Kang, J. H.; Kapustinsky, J.; Karatsu, K.; Kasai, M.; Katou, K.; Kawabata, T.; Kawall, D.; Kawashima, M.; Kazantsev, A. V.; Kelly, S.; Kempel, T.; Khachaturov, B.; Khanzadeev, A.; Kijima, K. M.; Kikuchi, J.; Kim, A.; Kim, B. I.; Kim, D. H.; Kim, D. J.; Kim, E.; Kim, E.-J.; Kim, E. J.; Kim, G.-B.; Kim, H. J.; Kim, S. H.; Kim, Y.-J.; Kinney, E.; Kiriluk, K.; Kiss, Á.; Kistenev, E.; Kiyomichi, A.; Klay, J.; Klein-Boesing, C.; Kleinjan, D.; Kobayashi, H.; Kochenda, L.; Kochetkov, V.; Kohara, R.; Komkov, B.; Konno, M.; Koster, J.; Kotchetkov, D.; Kozlov, A.; Král, A.; Kravitz, A.; Kroon, P. J.; Kuberg, C. H.; Kunde, G. J.; Kurita, K.; Kurosawa, M.; Kweon, M. J.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Layton, D.; Lebedev, A.; Le Bornec, Y.; Leckey, S.; Lee, D. M.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, T.; Leitch, M. J.; Leite, M. A. L.; Lenzi, B.; Li, X.; Li, X. H.; Lichtenwalner, P.; Liebing, P.; Lim, H.; Linden Levy, L. A.; Liška, T.; Litvinenko, A.; Liu, H.; Liu, M. X.; Love, B.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Malakhov, A.; Malik, M. D.; Manko, V. I.; Mannel, E.; Mao, Y.; Martinez, G.; Mašek, L.; Masui, H.; Matathias, F.; Matsumoto, T.; McCain, M. C.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; Means, N.; Meredith, B.; Miake, Y.; Mibe, T.; Mignerey, A. C.; Mikeš, P.; Miki, K.; Miller, T. E.; Milov, A.; Mioduszewski, S.; Mishra, G. C.; Mishra, M.; Mitchell, J. T.; Mohanty, A. K.; Moon, H. J.; Morino, Y.; Morreale, A.; Morrison, D. P.; Moss, J. M.; Moukhanova, T. V.; Mukhopadhyay, D.; Muniruzzaman, M.; Murakami, T.; Murata, J.; Nagamiya, S.; Nagle, J. L.; Naglis, M.; Nagy, M. I.; Nakagawa, I.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nam, S.; Newby, J.; Nguyen, M.; Nihashi, M.; Niida, T.; Nouicer, R.; Nyanin, A. S.; Nystrand, J.; Oakley, C.; O'Brien, E.; Oda, S. X.; Ogilvie, C. A.; Ohnishi, H.; Ojha, I. D.; Oka, M.; Okada, K.; Onuki, Y.; Oskarsson, A.; Otterlund, I.; Ouchida, M.; Oyama, K.; Ozawa, K.; Pak, R.; Pal, D.; Palounek, A. P. T.; Pantuev, V.; Papavassiliou, V.; Park, I. H.; Park, J.; Park, S. K.; Park, W. J.; Pate, S. F.; Pei, H.; Penev, V.; Peng, J.-C.; Pereira, H.; Peresedov, V.; Peressounko, D. Yu.; Petti, R.; Pierson, A.; Pinkenburg, C.; Pisani, R. P.; Proissl, M.; Purschke, M. L.; Purwar, A. K.; Qu, H.; Qualls, J. M.; Rak, J.; Rakotozafindrabe, A.; Ravinovich, I.; Read, K. F.; Rembeczki, S.; Reuter, M.; Reygers, K.; Riabov, V.; Riabov, Y.; Richardson, E.; Roach, D.; Roche, G.; Rolnick, S. D.; Romana, A.; Rosati, M.; Rosen, C. A.; Rosendahl, S. S. E.; Rosnet, P.; Rukoyatkin, P.; Ružička, P.; Rykov, V. L.; Ryu, S. S.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sakai, S.; Sakashita, K.; Samsonov, V.; Sanfratello, L.; Sano, S.; Santo, R.; Sato, H. D.; Sato, S.; Sato, T.; Sawada, S.; Schutz, Y.; Sedgwick, K.; Seele, J.; Seidl, R.; Semenov, A. Yu.; Semenov, V.; Seto, R.; Sharma, D.; Shea, T. K.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Slunečka, M.; Soldatov, A.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Staley, F.; Stankus, P. W.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Sugitate, T.; Suire, C.; Sukhanov, A.; Sullivan, J. P.; Sziklai, J.; Takagi, S.; Takagui, E. M.; Taketani, A.; Tanabe, R.; Tanaka, K. H.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tarján, P.; Themann, H.; Thomas, D.; Thomas, T. L.; Togawa, M.; Toia, A.; Tojo, J.; Tomášek, L.; Tomita, Y.; Torii, H.; Towell, R. S.; Tram, V.-N.; Tserruya, I.; Tsuchimoto, Y.; Tydesjö, H.; Tyurin, N.; Uam, T. J.; Vale, C.; Valle, H.; van Hecke, H. W.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Velkovsky, M.; Vértesi, R.; Veszprémi, V.; Vinogradov, A. A.; Virius, M.; Volkov, M. A.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Wei, F.; Wei, R.; Wessels, J.; White, S. N.; Willis, N.; Winter, D.; Wohn, F. K.; Woody, C. L.; Wright, R. M.; Wysocki, M.; Xie, W.; Yamaguchi, Y. L.; Yamaura, K.; Yang, R.; Yanovich, A.; Ying, J.; Yokkaichi, S.; You, Z.; Young, G. R.; Younus, I.; Yushmanov, I. E.; Zajc, W. A.; Zaudtke, O.; Zhang, C.; Zhou, S.; Zimányi, J.; Zolin, L.; Zong, X.

    2013-05-01

    Direct photons have been measured in sNN=200 GeV d+Au collisions at midrapidity. A wide pT range is covered by measurements of nearly real virtual photons (1

  14. Bound-Free Transitions to GeV Energy via Optical Tunneling

    NASA Astrophysics Data System (ADS)

    Gordon, Daniel

    2015-11-01

    Many laser plasmas are created through the mechanism of tunneling ionization. For weakly to moderately relativistic laser amplitudes (a = eA / mc ~ 1), the photoelectron spectrum can extend to the MeV range, with the electron gaining approximately the ponderomotive potential at the position where the bound-free transition occurred. When a ~ 100 , a new regime of acceleration appears, in which ultrarelativistic energy is obtained in a fraction of an optical cycle. We compute photoelectron characteristics based on relativistic tunneling ionization rates, and advanced particle tracking simulations, utilizing state-of-the art computer hardware. It is found that using near-term multi-petawatt lasers, free space acceleration from rest to GeV energy is possible. The effect of radiation reaction is also examined.

  15. Beam physics of the 8-GeV H-minus linac

    SciTech Connect

    Carneiro, J.-P.; Mustapha, B.; Ostroumov, P.N.; /Argonne

    2008-11-01

    Fermilab is developing the concept and design of an 8-GeV superconducting H-minus linac with the primary mission of increasing the intensity of the Main Injector for the production of neutrino superbeams. The front-end of the linac up to 420 MeV operates at 325 MHz and accelerates beam from the ion source using a room temperature radio-frequency quadrupole followed by short CH type resonators and superconducting spoke resonators. In the high energy section, the acceleration is provided by the International Linear Collider (ILC)-style superconducting elliptical 1.3 GHz cavities. The beam physics for the linac is presented in this paper using two beam dynamics codes: TRACK and ASTRA.

  16. Gauged Two Higgs Doublet Model confronts the LHC 750 GeV diphoton anomaly

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Chih; Tsai, Yue-Lin Sming; Yuan, Tzu-Chiang

    2016-08-01

    In light of the recent 750 GeV diphoton anomaly observed at the LHC, we study the possibility of accommodating the deviation from the standard model prediction based on the recently proposed Gauged Two Higgs Doublet Model. The model embeds two Higgs doublets into a doublet of a non-abelian gauge group SU(2)H, while the standard model SU(2)L right-handed fermion singlets are paired up with new heavy fermions to form SU(2)H doublets, and SU(2)L left-handed fermion doublets are singlets under SU(2)H. An SU(2)H scalar doublet, which provides masses to the new heavy fermions as well as the SU(2)H gauge bosons, can be produced via gluon fusion and subsequently decays into two photons with the new fermions circulating the triangle loops to account for the deviation from the standard model prediction.

  17. A measurement of the p p total cross section at radical s = 1800 GeV

    SciTech Connect

    White, S. )

    1991-10-01

    The {bar p}p differential elastic scattering cross section was measured at {radical}{bar s} = 1800 GeV, using an improved accelerator luminosity determination and CDF small angle data in the range of 0.05 {le} t {le} 0.2(GeV/c){sup 2}. By extrapolating the differential cross sections to t=0 and using the optical theorem we obtain a total cross section of {sigma}{sub tot}({bar p}p) = 72.0 {plus minus} 3.6 mb. This result is preliminary in the sense that we expect to further reduce the systematic error on the optical point. 9 refs., 8 figs.

  18. TeV neutrinos and GeV photons from shock breakout in supernovae.

    PubMed

    Waxman, E; Loeb, A

    2001-08-13

    We show that as a Type II supernova shock breaks out of its progenitor star, it becomes collisionless and may accelerate protons to energies >10 TeV. Inelastic nuclear collisions of these protons produce an approximately 1 h long flash of TeV neutrinos and 10 GeV photons, about 10 h after the thermal (10 MeV) neutrino burst from the cooling neutron star. A Galactic supernova in a red supergiant star would produce a photon and neutrino flux of approximately 10(-4) erg cm(-2) s(-1). A km(2) neutrino detector will detect approximately 100 muons, thus allowing to constrain both supernova models and neutrino properties.

  19. Impact of nuclear effects on weak pion production at energies below 1 GeV

    NASA Astrophysics Data System (ADS)

    Sobczyk, Jan T.; Żmuda, Jakub

    2013-06-01

    Charged-current single-pion production in scattering off 12C is investigated for neutrino energies up to 1 GeV. A model of Nieves [Phys. Rev. C10.1103/PhysRevC.83.045501 83, 045501 (2011)] is further developed by performing exact integration and avoiding several approximations. The effect of exact integration is investigated both for double-differential and total neutrino-nucleus cross sections. The impact of nuclear effects with in-medium modifications of the Δ(1232) resonance properties as well as an effective field theory nonresonant background contribution are discussed. The dependence of the fraction of Δ(1232) decays into n-particle-n-hole states on incident neutrino energy is estimated. The impact of various ingredients of the model on the ratio of muon to electron neutrino cross sections is investigated in detail.

  20. Study of a national 2-GeV continuous beam electron accelerator

    SciTech Connect

    Cho, Y.; Holt, R.J.; Jackson, H.E.; Khoe, T.K.; Mavrogenes, G.S.

    1980-08-01

    Current trends in research in medium energy physics with electromagnetic probes are reviewed briefly and design objectives are proposed for a continuous beam 2 GeV electron accelerator. Various types of accelerator systems are discussed and exploratory designs developed for two concepts, the linac-stretcher ring and a double-sided microtron system. Preliminary cost estimates indicate that a linac-ring system which meets all the design objectives with the exception of beam quality and uses state-of-the-art technology can be built for approximately $29 million. However, the double-sided microtron shows promise for development into a substantially less expensive facility meeting all design objectives. Its technical feasibility remains to be established. Specific areas requiring additional engineering studies are discussed, and current efforts at Argonne and elsewhere are identified.

  1. Subthreshold Ξ- Production in Collisions of p (3.5 GeV )+Nb

    NASA Astrophysics Data System (ADS)

    Agakishiev, G.; Arnold, O.; Balanda, A.; Belver, D.; Belyaev, A. V.; Berger-Chen, J. C.; Blanco, A.; Böhmer, M.; Boyard, J. L.; Cabanelas, P.; Chernenko, S.; Dybczak, A.; Epple, E.; Fabbietti, L.; Fateev, O. V.; Finocchiaro, P.; Fonte, P.; Friese, J.; Fröhlich, I.; Galatyuk, T.; Garzón, J. A.; Gernhäuser, R.; Göbel, K.; Golubeva, M.; González-Díaz, D.; Guber, F.; Gumberidze, M.; Heinz, T.; Hennino, T.; Holzmann, R.; Ierusalimov, A.; Iori, I.; Ivashkin, A.; Jurkovic, M.; Kämpfer, B.; Karavicheva, T.; Koenig, I.; Koenig, W.; Kolb, B. W.; Kornakov, G.; Kotte, R.; Krása, A.; Krizek, F.; Krücken, R.; Kuc, H.; Kühn, W.; Kugler, A.; Kurepin, A.; Ladygin, V.; Lalik, R.; Lang, S.; Lapidus, K.; Lebedev, A.; Liu, T.; Lopes, L.; Lorenz, M.; Maier, L.; Mangiarotti, A.; Markert, J.; Metag, V.; Michalska, B.; Michel, J.; Müntz, C.; Müntzer, R.; Naumann, L.; Pachmayer, Y. C.; Palka, M.; Parpottas, Y.; Pechenov, V.; Pechenova, O.; Pietraszko, J.; Przygoda, W.; Ramstein, B.; Reshetin, A.; Rustamov, A.; Sadovsky, A.; Salabura, P.; Schmah, A.; Schwab, E.; Siebenson, J.; Sobolev, Yu. G.; Spataro, S.; Spruck, B.; Ströbele, H.; Stroth, J.; Sturm, C.; Tarantola, A.; Teilab, K.; Tlusty, P.; Traxler, M.; Trebacz, R.; Tsertos, H.; Vasiliev, T.; Wagner, V.; Weber, M.; Wendisch, C.; Wüstenfeld, J.; Yurevich, S.; Zanevsky, Y. V.; Hades Collaboration

    2015-05-01

    Results on the production of the double strange cascade hyperon Ξ- are reported for collisions of p (3.5 GeV )+Nb , studied with the High Acceptance Di-Electron Spectrometer (HADES) at SIS18 at GSI Helmholtzzentrum for Heavy-Ion Research, Darmstadt. For the first time, subthreshold Ξ- production is observed in proton-nucleus interactions. Assuming a Ξ- phase-space distribution similar to that of Λ hyperons, the production probability amounts to PΞ-=[2.0 ±0.4 (stat)±0.3 (norm)±0.6 (syst)]×1 0-4 resulting in a Ξ-/(Λ +Σ0) ratio of PΞ-/PΛ +Σ0=[1.2 ±0.3 (stat)±0.4 (syst)]×1 0-2 . Available model predictions are significantly lower than the measured Ξ- yield.

  2. Medium effects in proton-induced K0 production at 3.5 GeV

    NASA Astrophysics Data System (ADS)

    Agakishiev, G.; Arnold, O.; Belver, D.; Belyaev, A.; Berger-Chen, J. C.; Blanco, A.; Böhmer, M.; Boyard, J. L.; Cabanelas, P.; Chernenko, S.; Dybczak, A.; Epple, E.; Fabbietti, L.; Fateev, O.; Finocchiaro, P.; Fonte, P.; Friese, J.; Fröhlich, I.; Galatyuk, T.; Garzón, J. A.; Gernhäuser, R.; Göbel, K.; Golubeva, M.; González-Díaz, D.; Guber, F.; Gumberidze, M.; Heinz, T.; Hennino, T.; Holzmann, R.; Ierusalimov, A.; Iori, I.; Ivashkin, A.; Jurkovic, M.; Kämpfer, B.; Karavicheva, T.; Koenig, I.; Koenig, W.; Kolb, B. W.; Korcyl, G.; Kornakov, G.; Kotte, R.; Krása, A.; Krizek, F.; Krücken, R.; Kuc, H.; Kühn, W.; Kugler, A.; Kunz, T.; Kurepin, A.; Ladygin, V.; Lalik, R.; Lapidus, K.; Lebedev, A.; Lopes, L.; Lorenz, M.; Maier, L.; Mangiarotti, A.; Markert, J.; Metag, V.; Michel, J.; Müntz, C.; Münzer, R.; Naumann, L.; Pachmayer, Y. C.; Palka, M.; Parpottas, Y.; Pechenov, V.; Pechenova, O.; Pietraszko, J.; Przygoda, W.; Ramstein, B.; Reshetin, A.; Rustamov, A.; Sadovsky, A.; Salabura, P.; Schmah, A.; Schwab, E.; Siebenson, J.; Sobolev, Yu. G.; Spruck, B.; Ströbele, H.; Stroth, J.; Sturm, C.; Tarantola, A.; Teilab, K.; Tlusty, P.; Traxler, M.; Tsertos, H.; Vasiliev, T.; Wagner, V.; Weber, M.; Wendisch, C.; Wüstenfeld, J.; Yurevich, S.; Zanevsky, Y.; Gaitanos, T.; Weil, J.; Hades Collaboration

    2014-11-01

    We present the analysis of the inclusive K0 production in p +p and p +Nb collisions measured with the HADES detector (GSI Helmholtzzentrum for Heavy-Ion Research, Darmstadt) at a beam kinetic energy of 3.5 GeV. Data are compared to the Giessen Boltzmann-Uehling-Uhlenbeck (GiBUU) transport model. The data suggest the presence of a repulsive momentum-dependent kaon potential as predicted by the chiral perturbation theory (ChPT). For the kaon at rest and at normal nuclear density, the ChPT potential amounts to ≈35 MeV. A detailed tuning of the kaon production cross sections implemented in the model has been carried out to reproduce the experimental data measured in p +p collisions. The uncertainties in the parameters of the model were examined with respect to the sensitivity of the experimental results from p +Nb collisions to the in-medium kaon potential.

  3. Electron cooling of 8-GeV antiprotons at Fermilab's Recycler: Results and operational implications

    SciTech Connect

    Prost, L.R.; Broemmelsiek, D.; Burov, Alexey V.; Carlson, K.; Gattuso, C.; Hu, M.; Kroc, T.; Leibfritz, J.; Nagaitsev, S.; Pruss, S.; Saewert, G.; Schmidt, C.W.; Shemyakin, A.; Sutherland, M.; Tupikov, V.; Warner, A.; /Fermilab

    2006-05-01

    Electron cooling of 8 GeV antiprotons at Fermilab's Recycler storage ring is now routinely used in the collider operation. It requires a 0.1-0.5 A, 4.3 MeV dc electron beam and is designed to increase the longitudinal phase-space density of the circulating antiproton beam. This paper briefly describes the characteristics of the electron beam that were achieved to successfully cool antiprotons. Then, results from various cooling force measurements along with comparison to a nonmagnetized model are presented. Finally, operational aspects of the implementation of electron cooling at the Recycler are discussed, such as adjustments to the cooling rate and the influence of the electron beam on the antiproton beam lifetime.

  4. Exclusive η electroproduction at W>2 GeV with CLAS and transversity generalized parton distributions

    DOE PAGES

    Bedlinskiy, I.; Kubarovsky, V.; Stoler, P.; ...

    2017-03-10

    The cross section of the exclusive η electroproduction reaction ep → e'p'η was measured at Jefferson Laboratory with a 5.75 GeV electron beam and the CLAS detector. Differential cross sections d4σ/dtdQ2dxBdΦη and structure functions σU = σT + εσL, σTT, and σLT, as functions of t, were obtained over a wide range of Q2 and xB. The η structure functions are compared with those previously measured for π0 at the same kinematics. At low t, both π0 and η are described reasonably well by generalized parton distributions (GPDs) in which chiral-odd transversity GPDs are dominant. As a result, the π0more » and η data, when taken together, can facilitate the flavor decomposition of the transversity GPDs.« less

  5. 750 GeV diphoton excesses in a realistic D-brane model

    NASA Astrophysics Data System (ADS)

    Li, Tianjun; Maxin, James A.; Mayes, Van E.; Nanopoulos, Dimitri V.

    2016-07-01

    We study the diphoton excesses near 750 GeV recently reported by the ATLAS and CMS collaborations within the context of a phenomenologically interesting intersecting/magnetized D-brane model on a toroidal orientifold. It is shown that the model contains a Standard Model singlet scalar as well as vector-like quarks and leptons. In addition, it is shown that the singlet scalar has Yukawa couplings with vector-like quarks and leptons such that it may be produced in proton-proton collisions via gluon fusion as well as decay to diphotons through loops involving the vector-like quarks. Moreover, the required vector-like quarks and leptons may appear in complete S U (5 ) multiplets so that gauge coupling unification may be maintained. Finally, it is shown that the diphoton signal may be accommodated within the model.

  6. Naturalness, the autonomy of scales, and the 125 GeV Higgs

    NASA Astrophysics Data System (ADS)

    Williams, Porter

    2015-08-01

    The recent discovery of the Higgs at 125 GeV by the ATLAS and CMS experiments at the LHC has put significant pressure on a principle which has guided much theorizing in high energy physics over the last 40 years, the principle of naturalness. In this paper, I provide an explication of the conceptual foundations and physical significance of the naturalness principle. I argue that the naturalness principle is well-grounded both empirically and in the theoretical structure of effective field theories, and that it was reasonable for physicists to endorse it. Its possible failure to be realized in nature, as suggested by recent LHC data, thus represents an empirical challenge to certain foundational aspects of our understanding of QFT. In particular, I argue that its failure would undermine one class of recent proposals which claim that QFT provides us with a picture of the world as being structured into quasi-autonomous physical domains.

  7. Strange resonance poles from Kπ scattering below 1.8 GeV

    NASA Astrophysics Data System (ADS)

    Pelaez, J. R.; Rodas, A.; Ruiz de Elvira, J.

    2017-02-01

    In this work we present a determination of the mass, width, and coupling of the resonances that appear in kaon-pion scattering below 1.8 GeV. These are: the much debated scalar κ -meson, nowadays known as K_0^*(800), the scalar K_0^*(1430), the K^*(892) and K_1^*(1410) vectors, the spin-two K_2^*(1430) as well as the spin-three K^*_3(1780). The parameters will be determined from the pole associated to each resonance by means of an analytic continuation of the Kπ scattering amplitudes obtained in a recent and precise data analysis constrained with dispersion relations, which were not well satisfied in previous analyses. This analytic continuation will be performed by means of Padé approximants, thus avoiding a particular model for the pole parameterization. We also pay particular attention to the evaluation of uncertainties.

  8. Search for gamma-rays above 400 GeV from Geminga

    NASA Technical Reports Server (NTRS)

    Cawley, M. F.; Fegan, D. J.; Gibbs, K.; Gorham, P. W.; Lamb, R. C.; Liebing, D. F.; Mackeown, P. K.; Porter, N. A.; Stenger, V. J.; Weekes, T. C.

    1985-01-01

    Observations of Geminga made at the Whipple Observatory using the atmospheric Cherenkov technique during the moonless periods of November 1983 to February 1984 and November 1984 till February 1985 were examined for evidence for the emission of gamma rays with energy in excess of approx 400 GeV. Evidence of either a steady flux or a flux pulsed with a period near 60 seconds were studied. In neither case was any significant effect observed, enabling the establishment 3 of sigma upper limits of 5.5 x 10 to the -11th power photons/sq cm/s and 2.0 x 10 to the -11th power photons/sq cm/s for the steady and pulsed emission respectively. The limit to the pulsed flux is approximately a factor of six below that predicted.

  9. Parameter choices for a muon recirculating linear accelerator from 5 to 63 GeV

    SciTech Connect

    Berg, J. S.

    2014-06-19

    A recirculating linear accelerator (RLA) has been proposed to accelerate muons from 5 to 63 GeV for a muon collider. It should be usable both for a Higgs factory and as a stage for a higher energy collider. First, the constraints due to the beam loading are computed. Next, an expression for the longitudinal emittance growth to lowest order in the longitudinal emittance is worked out. After finding the longitudinal expression, a simplified model that describes the arcs and their approximate expression for the time of flight dependence on energy in those arcs is found. Finally, these results are used to estimate the parameters required for the RLA arcs and the linac phase.

  10. 200 A GeV Au + Au collisions serve a nearly perfect quark-gluon liquid.

    PubMed

    Song, Huichao; Bass, Steffen A; Heinz, Ulrich; Hirano, Tetsufumi; Shen, Chun

    2011-05-13

    A new robust method to extract the specific shear viscosity (η/s)(QGP) of a quark-gluon plasma (QGP) at temperatures T(c) < T ≲ 2T(c) from the centrality dependence of the eccentricity-scaled elliptic flow v2/ε measured in ultrarelativistic heavy-ion collisions is presented. Coupling viscous fluid dynamics for the QGP with a microscopic transport model for hadronic freeze-out we find for 200 A GeV Au + Au collisions that v2/ε is a universal function of multiplicity density (1/S)(dN(ch)/dy) that depends only on the viscosity but not on the model used for computing the initial fireball eccentricity ε. Comparing with measurements we find 1<4π(η/s)(QGP) < 2.5 where the uncertainty range is dominated by model uncertainties for the values of ε used to normalize the measured v2.

  11. A Diagnostic Test for Determining the Location of the GeV Emission in Powerful Blazars

    NASA Technical Reports Server (NTRS)

    Dotson, Amanda; Georganopoulos, Markos; Kazanas, Demosthenes; Perlman, Eric

    2011-01-01

    An issue currently under debate in the literature is how far from the black hole is the Fermi-observed GeV emission of powerful blazars emitted. Here we present a clear diagnostic tool for testing whether the Ge V emission site is located within the sub-pc broad emission line (BLR) region or further out in the few pc scale molecular torus (MT) environment. Within the BLR the scatteri takes place at the onset of the Klein-Nishina regime, causing the electron cooling time to become almost energy independent and as a result, the variation of high-energy emission is expected to be achromatic. Contrarily, if the emission site is located outside the BLR, the expected GeY variability is energy-dependent and with amplitude increasing with energy. We demonstrate this using time-dependent numerical simulations of blazar variability.

  12. Analysis of Superconducting Dipole Coil of 11 GeV Super High Momentum Spectrometer

    SciTech Connect

    Sun, Eric; Cheng, Gary; Lassiter, Steve R.; Brindza, Paul D.; Fowler, Michael J.

    2015-06-01

    Jefferson Lab is constructing five Super High Momentum Spectrometer (SHMS) superconducting magnets for the 12 GeV Upgrade. This paper reports measured coil material properties and the results of the extensive finite element analysis (FEA) for the dipole coil. To properly define the smeared orthotropic material of the coil, a detailed coil model is set up to compute material parameters because not all parameters were measured. Stress and strain acceptance criteria are discussed. Eight load steps are defined. The preheat temperature of the force collar is optimized under two loading scenarios so that the positive pressure between the inner coil and central spacer is maintained while there is not too much squeeze to the coil.

  13. Measurement of W-pair production in e+e- collisions at 189 GeV

    NASA Astrophysics Data System (ADS)

    Barate, R.; Decamp, D.; Ghez, P.; Goy, C.; Jezequel, S.; Lees, J.-P.; Martin, F.; Merle, E.; Minard, M.-N.; Pietrzyk, B.; Alemany, R.; Bravo, S.; Casado, M. P.; Chmeissani, M.; Crespo, J. M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, L.; Graugés, E.; Martinez, M.; Merino, G.; Miquel, R.; Mir, L. M.; Pacheco, A.; Ruiz, H.; Colaleo, A.; Creanza, D.; de Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Boix, G.; Buchmüller, O.; Cattaneo, M.; Cerutti, F.; Dissertori, G.; Drevermann, H.; Forty, R. W.; Frank, M.; Gianotti, F.; Greening, T. C.; Halley, A. W.; Hansen, J. B.; Harvey, J.; Janot, P.; Jost, B.; Kado, M.; Lemaitre, V.; Maley, P.; Mato, P.; Minten, A.; Moutoussi, A.; Ranjard, F.; Rolandi, L.; Schlatter, D.; Schmitt, M.; Schneider, O.; Spagnolo, P.; Tejessy, W.; Teubert, F.; Tournefier, E.; Valassi, A.; Ward, J. J.; Wright, A. E.; Ajaltouni, Z.; Badaud, F.; Chazelle, G.; Deschamps, O.; Dessagne, S.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Pascolo, J. M.; Perret, P.; Podlyski, F.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Wäänänen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Blondel, A.; Brient, J.-C.; Machefert, F.; Rougé, A.; Swynghedauw, M.; Tanaka, R.; Videau, H.; Focardi, E.; Parrini, G.; Zachariadou, K.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Chalmers, M.; Kennedy, J.; Lynch, J. G.; Negus, P.; O'Shea, V.; Raeven, B.; Smith, D.; Teixeira-Dias, P.; Thompson, A. S.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Leibenguth, G.; Putzer, A.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Davies, G.; Dornan, P. J.; Girone, M.; Marinelli, N.; Nowell, J.; Przysiezniak, H.; Sedgbeer, J. K.; Thompson, J. C.; Thomson, E.; White, R.; Ghete, V. M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Buck, P. G.; Clarke, D. P.; Ellis, G.; Finch, A. J.; Foster, F.; Hughes, G.; Jones, R. W. L.; Robertson, N. A.; Smizanska, M.; Giehl, I.; Hölldorfer, F.; Jakobs, K.; Kleinknecht, K.; Kröcker, M.; Müller, A.-S.; Nürnberger, H.-A.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; Schmeling, S.; Wachsmuth, H.; Zeitnitz, C.; Ziegler, T.; Bonissent, A.; Carr, J.; Coyle, P.; Curtil, C.; Ealet, A.; Fouchez, D.; Leroy, O.; Kachelhoffer, T.; Payre, P.; Rousseau, D.; Tilquin, A.; Aleppo, M.; Antonelli, M.; Gilardoni, S.; Ragusa, F.; Dietl, H.; Ganis, G.; Hüttmann, K.; Lütjens, G.; Mannert, C.; Männer, W.; Moser, H.-G.; Schael, S.; Settles, R.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Azzurri, P.; Boucrot, J.; Callot, O.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, P.; Jacholkowska, A.; Serin, L.; Veillet, J.-J.; Videau, I.; de Vivie de Régie, J.-B.; Zerwas, D.; Bagliesi, G.; Boccali, T.; Calderini, G.; Ciulli, V.; Foà, L.; Giassi, A.; Ligabue, F.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Sciabà, A.; Sguazzoni, G.; Tenchini, R.; Venturi, A.; Verdini, P. G.; Blair, G. A.; Coles, J.; Cowan, G.; Green, M. G.; Hutchcroft, D. E.; Jones, L. T.; Medcalf, T.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Clifft, R. W.; Edgecock, T. R.; Norton, P. R.; Tomalin, I. R.; Bloch-Devaux, B.; Colas, P.; Fabbro, B.; Faïf, G.; Lançon, E.; Lemaire, M.-C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Seager, P.; Trabelsi, A.; Tuchming, B.; Vallage, B.; Black, S. N.; Dann, J. H.; Loomis, C.; Kim, H. Y.; Konstantinidis, N.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Cartwright, S.; Combley, F.; Hodgson, P. N.; Lehto, M.; Thompson, L. F.; Affholderbach, K.; Böhrer, A.; Brandt, S.; Grupen, C.; Hess, J.; Misiejuk, A.; Prange, G.; Sieler, U.; Borean, C.; Giannini, G.; Gobbo, B.; He, H.; Putz, J.; Rothberg, J.; Wasserbaech, S.; Armstrong, S. R.; Cranmer, K.; Elmer, P.; Ferguson, D. P. S.; Gao, Y.; González, S.; Hayes, O. J.; Hu, H.; Jin, S.; Kile, J.; McNamara, P. A., III; Nielsen, J.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Scott, I. J.; Walsh, J.; Wu, J.; Wu, S. L.; Wu, X.; Zobernig, G.

    2000-07-01

    The production of W+W- pairs is analysed in a data sample collected by ALEPH at a mean centre-of-mass energy of 188.6 /GeV, corresponding to an integrated luminosity of 174.2 pb-1. Cross sections are given for different topologies of W decays into leptons or hadrons. Combining all final states and assuming Standard Model branching fractions, the total W-pair cross section is measured to be 15.71+/-0.34(stat.)+/-0.18(syst.)pb. Using also the W-pair data samples collected by ALEPH at lower centre-of-mass energies, the decay branching fraction of the W boson into hadrons is measured to be /B(W-->hadrons)=66.97+/-0.65(stat.)+/-0.32(syst.)%, allowing a determination of the CKM matrix element Vcs=0.951+/-0.030(stat.)+/-0.015(syst.).

  14. Exclusive pi^0 electroproduction at W > 2 GeV with CLAS

    SciTech Connect

    Bedlinskiy, I; Kubarovsky, V; Niccolai, S; Stoler, P; Adhikari, K P; Anderson, M D; Pereira, S Anefalos; Avakian, H; Ball, J; Baltzell, N A; Battaglieri, M; Batourine, V; Biselli, A S; Boiarinov, S; Bono, J; Briscoe, W J; Brooks, W K; Burkert, V D; Carman, D S; Celentano, A; Chandavar, S; Colaneri, L; Cole, P L; Contalbrigo, M; Cortes, O; Crede, V; D'Angelo, A; Dashyan, N; De Vita, R; De Sanctis, E; Deur, A; Djalali, C; Doughty, D; Dupre, R; Egiyan, H; El Alaoui, A; El Fassi, L; Elouadrhiri, L; Eugenio, P; Fedotov, G; Fegan, S; Fleming, J A; Forest, T A; Garillon, B; Garcon, M; Gavalian, G; Gevorgyan, N; Ghandilyan, Y; Gilfoyle, G P; Giovanetti, K L; Girod, F X; Golovatch, E; Gothe, R W; Griffioen, K A; Guegan, B; Guo, L; Hafidi, K; Hakobyan, H; Harrison, N; Hattawy, M; Hicks, K; Holtrop, M; Ireland, D G; Ishkhanov, B S; Isupov, E L; Jenkins, D; Jo, H S; Joo, K; Keller, D; Khandaker, M; Kim, A; Kim, W; Klein, A; Klein, F J; Koirala, S; Kuhn, S E; Kuleshov, S V; Lenisa, P; Levine, W I; Livingston, K; Lu, H Y; MacGregor, I J.D.; Markov, N; Mayer, M; McKinnon, B; Mirazita, M; Mokeev, V; Montgomery, R A; Moody, C I; Moutarde, H; Movsisyan, A; Munoz Camacho, C; Nadel-Turonski, P; Niculescu, I; Osipenko, M; Ostrovidov, A I; Pappalardo, L L; Park, K; Park, S; Pasyuk, E; Phelps, E; Phelps, W; Phillips, J J; Pisano, S; Pogorelko, O; Price, J W; Prok, Y; Protopopescu, D; Procureur, S; Puckett, A J.R.; Raue, B A; Ripani, M; Ritchie, B G; Rizzo, A; Rossi, P; Roy, P; Sabatié, F; Salgado, C; Schott, D; Schumacher, R A; Seder, E; Senderovich, I; Sharabian, Y G; Simonyan, A; Smith, G D; Sober, D I; Sokhan, D; Stepanyan, S S; Strauch, S; Sytnik, V; Tang, W; Tian, Ye; Ungaro, M; Vlassov, A V; Voskanyan, H; Voutier, E; Walford, N K; Watts, D; Wei, X; Weinstein, L B; Yurov, M; Zachariou, N; Zana, L; Zhang, J; Zhao, Z W; Zonta, I

    2014-08-01

    Exclusive neutral-pion electroproduction (ep-->e'p'pi0) was measured at Jefferson Lab with a 5.75-GeV electron beam and the CLAS detector. Differential cross sections d4sigma/dtdQ2dxBdphipi and structure functions sigmaT+epsilonsigmaL,sigmaTT and σLT as functions of t were obtained over a wide range of Q2 and xB. The data are compared with Regge and handbag theoretical calculations. Analyses in both frameworks find that a large dominance of transverse processes is necessary to explain the experimental results. For the Regge analysis it is found that the inclusion of vector meson rescattering processes is necessary to bring the magnitude of the calculated and measured structure functions into rough agreement. In the handbag framework, there are two independent calculations, both of which appear to roughly explain the magnitude of the structure functions in terms of transversity generalized parton distributions.

  15. Commissioning of helium compression system for the 12 GeV refrigerator

    NASA Astrophysics Data System (ADS)

    Knudsen, P.; Ganni, V.; Dixon, K.; Norton, R.; Creel, J.; Arenius, D.

    2014-01-01

    The compressor system used for the Jefferson Lab (JLab) 12 GeV upgrade, also known as the CHL-2 compressor system, incorporates many design changes to the typical compressor skid design to improve the efficiency, reliability and maintainability from previous systems. These include a considerably smaller bulk oil separator design that does not use coalescing elements/media, automated control of cooling oil injection based on the helium discharge temperature, a helium after-cooler design that is designed for and promotes coalescing of residual oil and a variable speed bearing oil pump to reduce oil bypass. The CHL-2 helium compression system has five compressors configured with four pressure levels that supports the three pressure levels in the cold box. This paper will briefly review several of these improvements and discuss some of the recent commissioning results.

  16. 1 GeV CW nonscaling FFAG for ADS, and magnet parameters

    SciTech Connect

    Johnstone C.; Meot, F.; Snopok, P.; Weng, W.

    2012-05-20

    Multi-MW proton driver capability remains a challenging, critical technology for many core HEP programs, particularly the neutrino ones such as the Muon Collider and Neutrino factory, and for high-profile energy applications such as Accelerator Driven Subcritical Reactors (ADS) and Accelerator Transmutation of Waste for nuclear power and waste management. Work is focused almost exclusively on an SRF linac, as, to date, no re-circulating accelerator can attain the 10-20 MW capability necessary for the nuclear applications. Recently, the concept of isochronous orbits has been explored and developed for nonscaling FFAGs using powerful new methodologies in FFAG accelerator design. Work is progressing on a stable, high-intensity, 1 GeV isochronous FFAG. Initial specifications of novel magnets with the nonlinear radial fields required to support isochronous operation are also reported here.

  17. Annex to 7-GeV Advanced Photon Source Conceptual Design Report

    SciTech Connect

    Not Available

    1988-05-01

    The Annex to the 7-GeV Advanced Photon Source Conceptual Design Report updates the Conceptual Design Report of 1987 (CDR-87) to include the results of further optimization and changes of the design during the past year. The design changes can be summarized as affecting three areas: the accelerator system, conventional facilities, and experimental systems. Most of the changes in the accelerator system result from inclusion of a positron accumulator ring (PAR), which was added at the suggestion of the 1987 DOE Review Committee, to speed up the filling rate of the storage ring. The addition of the PAR necessitates many minor changes in the linac system, the injector synchrotron, and the low-energy beam transport lines. 63 figs., 18 tabs.

  18. Preparation and Testing of the SRF Cavities for the CEBAF 12 GeV Upgrade

    SciTech Connect

    Reilly, A. V.; Bass, T.; Burrill, A.; Davis, G. K.; Marhauser, F.; Reece, C. E.; Stirbet, M.

    2011-07-01

    Eighty new 7-cell, low-loss cell-shaped cavities are required for the CEBAF 12 GeV Upgrade project. In addition to ten pre-production units fabricated at JLab, the full set of commercially-produced cavities have been delivered. An efficient processing routine, which includes a controlled 30 micron electropolish, has been established to transform these cavities into qualified 8-cavity strings. This work began in 2010 and will run through the end of 2011. The realized cavity performance consistently exceeds project requirements and also the maximum useful gradient in CEBAF: 25 MV/m. We will describe the cavity processing and preparation protocols and summarize test results obtained to date.

  19. LHC 750 GeV diphoton excess in a radiative seesaw model

    NASA Astrophysics Data System (ADS)

    Kanemura, Shinya; Nishiwaki, Kenji; Okada, Hiroshi; Orikasa, Yuta; Chan Park, Seong; Watanabe, Ryoutaro

    2016-12-01

    We investigate a possibility for explaining the recently announced 750 GeV diphoton excess by the ATLAS and CMS experiments at the CERN LHC in a model with multiple doubly charged particles, that was originally suggested for explaining tiny neutrino masses through a three-loop effect in a natural way. The enhanced radiatively generated effective coupling of a new singlet scalar S with diphoton with multiple charged particles in the loop enlarges the production rate of S in pp→S+X via a photon fusion process and also the decay width Γ(S→γγ) even without assuming a tree-level production mechanism. We provide detailed analysis on the cases with or without allowing mixing between S and the standard model Higgs doublet.

  20. Radiation damage of LSO crystals under γ- and 24 GeV protons irradiation

    NASA Astrophysics Data System (ADS)

    Auffray, E.; Barysevich, A.; Fedorov, A.; Korjik, M.; Koschan, M.; Lucchini, M.; Mechinski, V.; Melcher, C. L.; Voitovich, A.

    2013-09-01

    Irradiation damage of undoped and low Ce doped lutetium oxyorthosilicate has been investigated. Crystals were irradiated with both a 60Co γ-quanta source with an absorbed dose of 2000 Gy and, at CERN PS, a high-rate 24 GeV proton beam with a fluence of ˜3.6×1013 p/cm2. Both irradiations produced a similar set of induced absorption bands. However, a shift of the fundamental absorption spectrum cutoff appears after proton irradiation, but not in the case of the γ-irradiation. The observed shift of the band edge in the transmission spectrum following proton irradiation in lutetium oxyorthosilicate crystals indicates that this phenomenon is a general property of heavy crystalline materials. A possible proton-induced transmission damage mechanism is discussed.

  1. Charge-Asymmetry Dependence of Proton Elliptic Flow in 200 GeV Au +Au Collisions

    NASA Astrophysics Data System (ADS)

    Smith, Rachel; STAR Collaboration

    2016-09-01

    The chiral magnetic wave (CMW) is predicted to manifest a finite electric quadrupole moment in the quark-gluon plasma produced in high-energy heavy-ion collisions. This quadrupole moment generates a divergence in the azimuthal anisotropy (v2) of positively and negatively charged particles such that v2(+) < v2(-). This effect is proportional to the apparent charge asymmetry (Ach) of particles in the same rapidity window. The Ach dependence of v 2 has already been observed in the cases of charged pions and kaons. We present preliminary STAR measurements of v 2 for protons and anti-protons as a function of Ach from √sNN = 200 GeV Au +Au collisions for different centrality classes. The results are then compared with the previously reported results of pions and kaons. For the STAR Collaboration.

  2. Design of an 8 GeV h transport and multi-turn injection system

    SciTech Connect

    Johnson, D.E.; /Fermilab

    2006-08-01

    An 8 GeV superconducting linear accelerator (SCL) has been proposed as a single stage H{sup -} injector into the Main Injector (MI) synchrotron. This could be a multi-use facility which would, among other things, support a 2 MW Neutrino program at Fermi National Accelerator Lab (FNAL) [1,2,3,4]. This paper describes a solution for a transport line which is capable of low loss transmission of an H{sup -} beam from the linac to the MI, transverse and momentum collimation, and provides for flexible matching into the MI lattice. The required modifications to the MI accelerator complex to accommodate the transfer line and multi-turn injection utilizing carbon foil stripping (and/or potentially laser stripping) and the injection layout are discussed.

  3. Non-minimal CW inflation, electroweak symmetry breaking and the 750 GeV anomaly

    NASA Astrophysics Data System (ADS)

    Marzola, L.; Racioppi, A.; Raidal, M.; Urban, F. R.; Veermäe, H.

    2016-03-01

    We study whether the hinted 750 GeV resonance at the LHC can be a Coleman-Weinberg inflaton which is non-minimally coupled to gravity. Since the inflaton must couple to new charged and coloured states to reproduce the LHC diphoton signature, the same interaction can generate its effective potential and trigger the electroweak symmetry breaking via the portal coupling to the Higgs boson. This inflationary scenario predicts a lower bound on the tensor-to-scalar ratio of r ≳ 0.006, where the minimal value corresponds to the measured spectral index n s ≃ 0.97. However, we find that the compatibility with the LHC diphoton signal requires exotic new physics at energy scales accessible at the LHC. We study and quantify the properties of the predicted exotic particles.

  4. Cygnus X-3 observed at photon energies above 500 GeV

    NASA Technical Reports Server (NTRS)

    Lamb, R. C.; Godfrey, C. P.; Wheaton, W. A.; Tumer, T.

    1982-01-01

    High-energy gamma rays from Cyg X-3 have been observed with the twin 11-m mirrors of NASA JPL's solar energy facility, using the atmospheric Cerenkov technique, resulting in data from about 100,000 air shower events with an approximate threshold energy of 500 GeV for the August 29 to September 6, 1981 period. A positive signal whose amplitude is 10.9 + or - 2.5% of the background cosmic ray rate appears near phase 0.6 of the 4.8-hour cycle, where phase 0.0 corresponds to minimum X-ray emission. This, together with previous Cerenkov detections, indicates that the high energy emission from Cyg X-3 is evolving on a time scale of a few years and suggests that the present form of the system has a recent origin.

  5. A 750 GeV portal: LHC phenomenology and dark matter candidates

    SciTech Connect

    D’Eramo, Francesco; de Vries, Jordy; Panci, Paolo

    2016-05-16

    We study the effective field theory obtained by extending the Standard Model field content with two singlets: a 750 GeV (pseudo-)scalar and a stable fermion. Accounting for collider productions initiated by both gluon and photon fusion, we investigate where the theory is consistent with both the LHC diphoton excess and bounds from Run 1. We analyze dark matter phenomenology in such regions, including relic density constraints as well as collider, direct, and indirect bounds. Scalar portal dark matter models are very close to limits from direct detection and mono-jet searches if gluon fusion dominates, and not constrained at all otherwise. In conclusion, pseudo-scalar models are challenged by photon line limits and mono-jet searches in most of the parameter space.

  6. A 750 GeV messenger of dark conformal symmetry breaking

    SciTech Connect

    Davoudiasl, Hooman; Zhang, Cen

    2016-03-03

    The tentative hints for a diphoton resonance at a mass of ~750 GeV from the ATLAS and CMS experiments at the LHC may be interpreted as first contact with a “dark” sector with a spontaneously broken conformal symmetry. The implied TeV scale of the dark sector may be motivated by the interaction strength required to accommodate a viable thermal relic dark matter (DM) candidate. We model the conformal dynamics using a Randall-Sundrum-type five-dimensional geometry whose IR boundary is identified with the dynamics of the composite dark sector, while the Standard Model (SM) matter content resides on the UV boundary, corresponding to “elementary” fields. We allow the gauge fields to reside in the five-dimensional bulk, which can be minimally chosen to be SU(3)c×U(1)Y. The “dark” radion is identified as the putative 750 GeV resonance. Heavy vectorlike fermions, often invoked to explain the diphoton excess, are not explicitly present in our model and are not predicted to appear in the spectrum of TeV scale states. Our minimal setup favors scalar DM of O(TeV) mass. A generic expectation in this scenario, suggested by DM considerations, is the appearance of vector bosons at ~ few TeV, corresponding to the gluon and hypercharge Kaluza-Klein (KK) modes that couple to UV boundary states with strengths that are suppressed uniformly compared to their SM values. Furthermore, our analysis suggests that these KK modes could be within the reach of the LHC in the coming years.

  7. Modifications to JLab 12 GeV Refrigerator and Wide Range Mix Mode Performance Testing Results

    NASA Astrophysics Data System (ADS)

    Knudsen, P.; Ganni, V.; Hasan, N.; Dixon, K.; Norton, R.; Creel, J.

    2017-02-01

    Analysis of data obtained during the spring 2013 commissioning of the new 4.5 K refrigeration system at Jefferson Lab (JLab) for the 12 GeV upgrade indicated a wide capacity range with good efficiency and minimal operator interaction. Testing also showed that the refrigerator required higher liquid nitrogen (LN) consumption for its pre-cooler than anticipated by the design. This does not affect the capacity of the refrigerator, but it does result in an increased LN utility cost. During the summer of 2015 the modifications were implemented by the cold box manufacturer, according to a design similar to the JLab 12 GeV cold box specification. Subsequently, JLab recommissioned the cold box and performed extensive performance testing, ranging from 20% to 100% of the design maximum capacity, and in various modes of operation, ranging from pure refrigeration, pure liquefaction, half-and-half mix mode and at selected design modes using the Floating Pressure – Ganni Cycle. The testing demonstrated that the refrigerator system has a good and fairly constant performance over a wide capacity range and different modes of operation. It also demonstrated the modifications resulted in a LN consumption that met the design for the pure refrigeration mode (which is the most demanding) and was lower than the design for the nominal and maximum capacity modes. In addition, a pulsed-load test, similar to what is expected for cryogenic systems supporting fusion experiments, was conducted to observe the response using the Floating Pressure – Ganni Cycle, which was stable and robust. This paper will discuss the results and analysis of this testing pertaining to the LN consumption, the system efficiency over a wide range of capacity and different modes and the behaviour of the system to a pulsed load.

  8. Electroproduction of the Φ(1020) Vector Meson at 4 GeV

    SciTech Connect

    Loukachine, Konstantin

    2000-02-01

    We studied the reaction ep → e'p'Φ with a 4.2 GeV incident electron beam in the region of the electroproduction variables Q2 from 0.7 to 2.2 GeV2 and W from 2.0 to 2.6 GeV. The data were taken and analyzed at the Thomas Jefferson National Accelerator Facility. For the first time, we observe the expected t-slope dependence on Q2 and Δτ in Φ vector meson production. We find that the width of the forward Φ-meson diffraction peak increases rapidly as the interaction time decreases below cΔτ of 1 fm. Within a simple optical model framework, the data show that Φ meson has a smaller size than the ρ. The measured Φ cross-section dependence on Q2 is in a good agreement with previous measurements and well-described by the phenomenological Pomeron exchange model. Our cross-section data do not favor the standard Vector Meson Dominance and s$\\bar{s}$-knockout model predictions. From the angular distribution of the decay Φ → K+ K-, assuming the s-channel helicity conservation, we extracted the longitudinal-to-transverse cross-section ratio, R, and Vector Meson Dominance scaling parameter, ζ2, which are consistent with the previous measurements and the model expectations.

  9. The 1.5 GeV harmonic double-sided microtron at Mainz University

    NASA Astrophysics Data System (ADS)

    Kaiser, K.-H.; Aulenbacher, K.; Chubarov, O.; Dehn, M.; Euteneuer, H.; Hagenbuck, F.; Herr, R.; Jankowiak, A.; Jennewein, P.; Kreidel, H.-J.; Ludwig-Mertin, U.; Negrazus, M.; Ratschow, S.; Schumann, St.; Seidl, M.; Stephan, G.; Thomas, A.

    2008-08-01

    At the Institut für Kernphysik of Mainz University a harmonic double-sided microtron (HDSM) has been built to extend the experimental capabilities for nuclear and particle physics experiments to higher excitation energies. This novel microtron variant accelerates the 0.855 GeV continuous wave (cw) electron beam of the established three-staged race track microtron (RTM) cascade MAMI B up to 1.5 GeV. It consists of two normal conducting linear accelerators (linacs) through which the electrons are guided up to 43 times by a pair of 90°-bending magnets at each end. For beam dynamical reasons the linacs operate at the harmonic frequencies of 4.90 and 2.45 GHz. The extended facility is called MAMI C. The relatively strong vertical defocussing due to the 45°-pole face rotations (Fig. 1) at both the entrance and exit of the segment-shaped bending magnets is compensated for all recirculations by a suitable field decay in the magnets towards higher orbits. As a consequence, the energy gain of the electrons has to decrease with increasing turn number to maintain coherent acceleration. This occurs by an appropriate phase slip of the electron bunches downwards the rf-waves during the acceleration process. In this paper the functional principle and the beam dynamical concept of the double-sided microtron (DSM) as well as the design and development of its main components are described. Finally, the results of first beam measurements taken after starting up in December 2006 are discussed.

  10. Neutron energy spectrum from 120 GeV protons on a thick copper target

    SciTech Connect

    Shigyo, Nobuhiro; Sanami, Toshiya; Kajimoto, Tsuyoshi; Iwamoto, Yosuke; Hagiwara, Masayuki; Saito, Kiwamu; Ishibashi, Kenji; Nakashima, Hiroshi; Sakamoto, Yukio; Lee, Hee-Seock; Ramberg, Erik; /Fermilab

    2010-08-01

    Neutron energy spectrum from 120 GeV protons on a thick copper target was measured at the Meson Test Beam Facility (MTBF) at Fermi National Accelerator Laboratory. The data allows for evaluation of neutron production process implemented in theoretical simulation codes. It also helps exploring the reasons for some disagreement between calculation results and shielding benchmark data taken at high energy accelerator facilities, since it is evaluated separately from neutron transport. The experiment was carried out using a 120 GeV proton beam of 3E5 protons/spill. Since the spill duration was 4 seconds, protoninduced events were counted pulse by pulse. The intensity was maintained using diffusers and collimators installed in the beam line to MTBF. The protons hit a copper block target the size of which is 5cm x 5cm x 60 cm long. The neutrons produced in the target were measured using NE213 liquid scintillator detectors, placed about 5.5 m away from the target at 30{sup o} and 5 m 90{sup o} with respect to the proton beam axis. The neutron energy was determined by time-of-flight technique using timing difference between the NE213 and a plastic scintillator located just before the target. Neutron detection efficiency of NE213 was determined on basis of experimental data from the high energy neutron beam line at Los Alamos National Laboratory. The neutron spectrum was compared with the results of multiparticle transport codes to validate the implemented theoretical models. The apparatus would be applied to future measurements to obtain a systematic data set for secondary particle production on various target materials.

  11. A 750 GeV messenger of dark conformal symmetry breaking

    DOE PAGES

    Davoudiasl, Hooman; Zhang, Cen

    2016-03-03

    The tentative hints for a diphoton resonance at a mass of ~750 GeV from the ATLAS and CMS experiments at the LHC may be interpreted as first contact with a “dark” sector with a spontaneously broken conformal symmetry. The implied TeV scale of the dark sector may be motivated by the interaction strength required to accommodate a viable thermal relic dark matter (DM) candidate. We model the conformal dynamics using a Randall-Sundrum-type five-dimensional geometry whose IR boundary is identified with the dynamics of the composite dark sector, while the Standard Model (SM) matter content resides on the UV boundary, correspondingmore » to “elementary” fields. We allow the gauge fields to reside in the five-dimensional bulk, which can be minimally chosen to be SU(3)c×U(1)Y. The “dark” radion is identified as the putative 750 GeV resonance. Heavy vectorlike fermions, often invoked to explain the diphoton excess, are not explicitly present in our model and are not predicted to appear in the spectrum of TeV scale states. Our minimal setup favors scalar DM of O(TeV) mass. A generic expectation in this scenario, suggested by DM considerations, is the appearance of vector bosons at ~ few TeV, corresponding to the gluon and hypercharge Kaluza-Klein (KK) modes that couple to UV boundary states with strengths that are suppressed uniformly compared to their SM values. Furthermore, our analysis suggests that these KK modes could be within the reach of the LHC in the coming years.« less

  12. Hard photon processes in electron-positron annihilation at 29 GeV

    SciTech Connect

    Gold, M.S.

    1986-11-01

    The hard photon processes ..mu mu gamma.. and hadrons + ..gamma.. in e/sup +/e/sup -/ annihilation at 29 GeV have been studied. The study is based on an integrated luminosity of 226 pb/sup -1/ taken at PEP with the Mark II detector. For the ..mu mu gamma.. process, a small fraction of non-planar events are observed with missing momentum along the beam direction. The resulting missing energy spectrum is consistent with that expected from higher order effects. The observed cross section is consistent with the predicted cross section for this process, sigma/sup exp/sigma/sup th/ = .90 +- .05 +- .06. The observed hard photon energy spectrum and mass distributions are found to be in agreement with O(..cap alpha../sup 3/) QED. The measured charge asymmetry is in good agreement with the predicted value, A/sub exp/A/sub th/ = .83 +- .25 +- .12. The ..mu gamma.. invariant mass distribution is used to place a limit on a possible excited muon coupling G..gamma../M* for excited muon masses in the range 1 < M* < 21 GeV of (G..gamma../M*)/sup 2/ < 10/sup -5/ GeV/sup -2/ at a 95% confidence level. In the hadrons + ..gamma.. process, evidence for final state radiation is found in an excess of events over that predicted from initial state radiation alone of 253 +- 54 +- 60 events. Further evidence for final state radiation is found in a large hadronic charge asymmetry A/sub Had+..gamma../= (-24.6 +- 5.5)%.

  13. Masses, Dimensionless Kerr Parameters, and Emission Regions in GeV Gamma-Ray-loud Blazars

    NASA Astrophysics Data System (ADS)

    Xie, G.-Z.; Ma, L.; Liang, E.-W.; Zhou, S.-B.; Xie, Z.-H.

    2003-11-01

    We have compiled sample of 17 GeV γ-ray-loud blazars, for which rapid optical variability and γ-ray fluxes are well observed, from the literature. We derive estimates of the masses, the minimum Kerr parameters amin, and the size of the emission regions of the supermassive black holes (SMBHs) for the blazars in the sample from their minimum optical variability timescales and γ-ray fluxes. The results show that (1) the masses derived from the optical variability timescale (MH) are significantly correlated with the masses from the γ-ray luminosity (MKNH); (2) the values of amin of the SMBHs with masses MH>=108.3 Msolar (three out of 17 objects) range from ~0.5 to ~1.0, suggesting that these SMBHs are likely to be Kerr black holes. For the SMBHs with MH<108.3 Msolar, however, amin=0, suggesting that a nonrotating black hole model cannot be ruled out for these objects. In addition, the values of the size of the emission region, r*, for the two kinds of SMBHs are significantly different. For the SMBHs with amin>0, the sizes of the emission regions are almost within the horizon (2rG) and marginally bound orbit (4rG), while for those with amin=0 they are in the range (4.3-66.4)rG, extending beyond the marginally stable orbit (6rG). These results may imply that (1) the rotational state, the radiating regions, and the physical processes in the inner regions for the two kinds of SMBH are significantly different and (2) the emission mechanisms of GeV γ-ray blazars are related to the SMBHs in their centers but are not related to the two different kinds of SMBH.

  14. Scrutinizing the alignment limit in two-Higgs-doublet models: mh=125 GeV

    NASA Astrophysics Data System (ADS)

    Bernon, Jérémy; Gunion, John F.; Haber, Howard E.; Jiang, Yun; Kraml, Sabine

    2015-10-01

    In the alignment limit of a multidoublet Higgs sector, one of the Higgs mass eigenstates aligns with the direction of the scalar field vacuum expectation values, and its couplings approach those of the Standard Model (SM) Higgs boson. We consider C P -conserving two-Higgs-doublet models (2HDMs) of Type I and Type II near the alignment limit in which the lighter of the two C P -even Higgs bosons, h , is the SM-like state observed at 125 GeV. In particular, we focus on the 2HDM parameter regime where the coupling of h to gauge bosons approaches that of the SM. We review the theoretical structure and analyze the phenomenological implications of the regime of the alignment limit without decoupling, in which the other Higgs scalar masses are not significantly larger than mh and thus do not decouple from the effective theory at the electroweak scale. For the numerical analysis, we perform scans of the 2HDM parameter space employing the software packages 2hdmc and lilith, taking into account all relevant pre-LHC constraints, the latest constraints from the measurements of the 125 GeV Higgs signal at the LHC, as well as the most recent limits coming from searches for heavy Higgs-like states. We contrast these results with the alignment limit achieved via the decoupling of heavier scalar states, where h is the only light Higgs scalar. Implications for Run 2 at the LHC, including expectations for observing the other scalar states, are also discussed.

  15. Estimating the GeV Emission of Millisecond Pulsars in Dwarf Spheroidal Galaxies

    NASA Astrophysics Data System (ADS)

    Winter, Miles; Zaharijas, Gabrijela; Bechtol, Keith; Vandenbroucke, Justin

    2016-11-01

    We estimate the conventional astrophysical emission from dwarf spheroidal satellite galaxies (dSphs) of the Milky Way (MW), focusing on millisecond pulsars (MSPs), and evaluate the potential for confusion with dark matter (DM) annihilation signatures at GeV energies. In low-density stellar environments, such as dSphs, the abundance of MSPs is expected to be proportional to stellar mass. Accordingly, we construct the γ-ray luminosity function (LF) of MSPs in the MW disk, where >90 individual MSPs have been detected with the Fermi Large Area Telescope (LAT), and scale this LF to the stellar masses of 30 dSphs to estimate the cumulative emission from their MSP populations. We predict that MSPs within the highest stellar mass dSphs, Fornax and Sculptor, produce a γ-ray flux >500 MeV of ˜10-11 ph cm-2 s-1, which is a factor ˜10 below the current LAT sensitivity at high Galactic latitudes. The MSP emission in ultra-faint dSphs, including targets with the largest J-factors, is typically several orders of magnitude lower, suggesting that these targets will remain clean targets for indirect DM searches in the foreseeable future. For a DM particle of mass 25 GeV annihilating to b quarks at the thermal relic cross section (consistent with DM interpretations of the Galactic Center excess), we find that the expected γ-ray emission due to DM exceeds that of MSPs in all of the target dSphs. Using the same MW MSP population model, we also estimate the Galactic foreground MSP coincidence probability along the same sightlines to the dSphs.

  16. Target and beam-target spin asymmetries in exclusive π+ and π- electroproduction with 1.6- to 5.7-GeV electrons

    NASA Astrophysics Data System (ADS)

    Bosted, P. E.; Biselli, A. S.; Careccia, S.; Dodge, G.; Fersch, R.; Guler, N.; Kuhn, S. E.; Pierce, J.; Prok, Y.; Zheng, X.; Adhikari, K. P.; Adikaram, D.; Akbar, Z.; Amaryan, M. J.; Anefalos Pereira, S.; Asryan, G.; Avakian, H.; Badui, R. A.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Boiarinov, S.; Briscoe, W. J.; Bültmann, S.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Chetry, T.; Ciullo, G.; Clark, L.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; Deur, A.; Djalali, C.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Eugenio, P.; Fanchini, E.; Fedotov, G.; Filippi, A.; Fleming, J. A.; Forest, T. A.; Fradi, A.; Garçon, M.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gleason, C.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guo, L.; Hafidi, K.; Hanretty, C.; Harrison, N.; Hattawy, M.; Heddle, D.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joo, K.; Joosten, S.; Keller, D.; Khandaker, M.; Kim, W.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Kuleshov, S. V.; Lanza, L.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; McCracken, M. E.; McKinnon, B.; Meyer, C. A.; Minehart, R.; Mirazita, M.; Mokeev, V.; Movsisyan, A.; Munevar, E.; Munoz Camacho, C.; Nadel-Turonski, P.; Net, L. A.; Ni, A.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Peng, P.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schumacher, R. A.; Seder, E.; Sharabian, Y. G.; Simonyan, A.; Skorodumina, Iu.; Smith, G. D.; Sparveris, N.; Stankovic, Ivana; Stepanyan, S.; Strakovsky, I. I.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tian, Ye; Torayev, B.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration

    2016-11-01

    Beam-target double-spin asymmetries and target single-spin asymmetries in exclusive π+ and quasiexclusive π- electroproduction were obtained from scattering of 1.6- to 5.7-GeV longitudinally polarized electrons from longitudinally polarized protons (for π+) and deuterons (for π-) using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. The kinematic range covered is 1.1 GeV and 0.05 GeV2 , with good angular coverage in the forward hemisphere. The asymmetry results were divided into approximately 40 000 kinematic bins for π+ from free protons and 15 000 bins for π- production from bound nucleons in the deuteron. The present results are found to be in reasonable agreement with fits to previous world data for W <1.7 GeV and Q2<0.5 GeV2 , with discrepancies increasing at higher values of Q2, especially for W >1.5 GeV. Very large target-spin asymmetries are observed for W >1.6 GeV. When combined with cross-section measurements, the present results can provide powerful constraints on nucleon resonance amplitudes at moderate and large values of Q2, for resonances with masses as high as 2.3 GeV.

  17. Transverse energy production and charged-particle multiplicity at midrapidity in various systems from √{sN N}=7.7 to 200 GeV

    NASA Astrophysics Data System (ADS)

    Adare, A.; Afanasiev, S.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Al-Bataineh, H.; Alexander, J.; Alfred, M.; Al-Jamel, A.; Al-Ta'Ani, H.; Angerami, A.; Aoki, K.; Apadula, N.; Aphecetche, L.; Aramaki, Y.; Armendariz, R.; Aronson, S. H.; Asai, J.; Asano, H.; Aschenauer, E. C.; Atomssa, E. T.; Averbeck, R.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bai, X.; Baksay, G.; Baksay, L.; Baldisseri, A.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Barnes, P. D.; Bassalleck, B.; Basye, A. T.; Bathe, S.; Batsouli, S.; Baublis, V.; Bauer, F.; Baumann, C.; Baumgart, S.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belikov, S.; Belmont, R.; Bennett, R.; Berdnikov, A.; Berdnikov, Y.; Bhom, J. H.; Bickley, A. A.; Bjorndal, M. T.; Black, D.; Blau, D. S.; Boissevain, J. G.; Bok, J. S.; Borel, H.; Boyle, K.; Brooks, M. L.; Brown, D. S.; Bryslawskyj, J.; Bucher, D.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Burward-Hoy, J. M.; Butsyk, S.; Campbell, S.; Caringi, A.; Castera, P.; Chai, J.-S.; Chang, B. S.; Charvet, J.-L.; Chen, C.-H.; Chernichenko, S.; Chi, C. Y.; Chiba, J.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chung, P.; Churyn, A.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cleven, C. R.; Cobigo, Y.; Cole, B. A.; Comets, M. P.; Conesa Del Valle, Z.; Connors, M.; Constantin, P.; Cronin, N.; Crossette, N.; Csanád, M.; Csörgő, T.; Dahms, T.; Dairaku, S.; Danchev, I.; Danley, T. W.; Das, K.; Datta, A.; Daugherity, M. S.; David, G.; Dayananda, M. K.; Deaton, M. B.; Deblasio, K.; Dehmelt, K.; Delagrange, H.; Denisov, A.; D'Enterria, D.; Deshpande, A.; Desmond, E. J.; Dharmawardane, K. V.; Dietzsch, O.; Ding, L.; Dion, A.; Diss, P. B.; Do, J. H.; Donadelli, M.; D'Orazio, L.; Drachenberg, J. L.; Drapier, O.; Drees, A.; Drees, K. A.; Dubey, A. K.; Durham, J. M.; Durum, A.; Dutta, D.; Dzhordzhadze, V.; Edwards, S.; Efremenko, Y. V.; Egdemir, J.; Ellinghaus, F.; Emam, W. S.; Engelmore, T.; Enokizono, A.; En'yo, H.; Espagnon, B.; Esumi, S.; Eyser, K. O.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Forestier, B.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fujiwara, K.; Fukao, Y.; Fung, S.-Y.; Fusayasu, T.; Gadrat, S.; Gainey, K.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, A.; Garishvili, I.; Gastineau, F.; Ge, H.; Germain, M.; Giordano, F.; Glenn, A.; Gong, H.; Gong, X.; Gonin, M.; Gosset, J.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grim, G.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Guo, L.; Guragain, H.; Gustafsson, H.-Å.; Hachiya, T.; Hadj Henni, A.; Haegemann, C.; Haggerty, J. S.; Hagiwara, M. N.; Hahn, K. I.; Hamagaki, H.; Hamblen, J.; Hamilton, H. F.; Han, R.; Han, S. Y.; Hanks, J.; Harada, H.; Hartouni, E. P.; Haruna, K.; Harvey, M.; Hasegawa, S.; Haseler, T. O. S.; Hashimoto, K.; Haslum, E.; Hasuko, K.; Hayano, R.; Hayashi, S.; He, X.; Heffner, M.; Hemmick, T. K.; Hester, T.; Heuser, J. M.; Hiejima, H.; Hill, J. C.; Hobbs, R.; Hohlmann, M.; Hollis, R. S.; Holmes, M.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hori, Y.; Hornback, D.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Hur, M. G.; Ichihara, T.; Ichimiya, R.; Iinuma, H.; Ikeda, Y.; Imai, K.; Imazu, Y.; Imrek, J.; Inaba, M.; Inoue, Y.; Iordanova, A.; Isenhower, D.; Isenhower, L.; Ishihara, M.; Isinhue, A.; Isobe, T.; Issah, M.; Isupov, A.; Ivanishchev, D.; Iwanaga, Y.; Jacak, B. V.; Javani, M.; Jeon, S. J.; Jezghani, M.; Jia, J.; Jiang, X.; Jin, J.; Jinnouchi, O.; Johnson, B. M.; Jones, T.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kajihara, F.; Kametani, S.; Kamihara, N.; Kamin, J.; Kanda, S.; Kaneta, M.; Kaneti, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kanou, H.; Kapustinsky, J.; Karatsu, K.; Kasai, M.; Kawagishi, T.; Kawall, D.; Kawashima, M.; Kazantsev, A. V.; Kelly, S.; Kempel, T.; Key, J. A.; Khachatryan, V.; Khandai, P. K.; Khanzadeev, A.; Kijima, K. M.; Kikuchi, J.; Kim, A.; Kim, B. I.; Kim, C.; Kim, D. H.; Kim, D. J.; Kim, E.; Kim, E.-J.; Kim, G. W.; Kim, H. J.; Kim, K.-B.; Kim, M.; Kim, Y.-J.; Kim, Y. K.; Kim, Y.-S.; Kimelman, B.; Kinney, E.; Kiss, Á.; Kistenev, E.; Kitamura, R.; Kiyomichi, A.; Klatsky, J.; Klay, J.; Klein-Boesing, C.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kochenda, L.; Kochetkov, V.; Kofarago, M.; Komatsu, Y.; Komkov, B.; Konno, M.; Koster, J.; Kotchetkov, D.; Kotov, D.; Kozlov, A.; Král, A.; Kravitz, A.; Krizek, F.; Kroon, P. J.; Kubart, J.; Kunde, G. J.; Kurihara, N.; Kurita, K.; Kurosawa, M.; Kweon, M. J.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Le Bornec, Y.; Leckey, S.; Lee, B.; Lee, D. M.; Lee, G. H.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, M. K.; Lee, S.; Lee, S. H.; Lee, S. R.; Lee, T.; Leitch, M. J.; Leite, M. A. L.; Leitgab, M.; Lenzi, B.; Lewis, B.; Li, X.; Li, X. H.

    2016-02-01

    Measurements of midrapidity charged-particle multiplicity distributions, d Nch/d η , and midrapidity transverse-energy distributions, d ET/d η , are presented for a variety of collision systems and energies. Included are distributions for Au +Au collisions at √{sNN}=200 , 130, 62.4, 39, 27, 19.6, 14.5, and 7.7 GeV, Cu +Cu collisions at √{sNN}=200 and 62.4 GeV, Cu +Au collisions at √{sNN}=200 GeV, U +U collisions at √{sNN}=193 GeV, d +Au collisions at √{sNN}=200 GeV, 3He+Au collisions at √{sNN}=200 GeV, and p +p collisions at √{sNN}=200 GeV. Centrality-dependent distributions at midrapidity are presented in terms of the number of nucleon participants, Npart, and the number of constituent quark participants, Nqp. For all A +A collisions down to √{sNN}=7.7 GeV, it is observed that the midrapidity data are better described by scaling with Nqp than scaling with Npart. Also presented are estimates of the Bjorken energy density, ɛBJ, and the ratio of d ET/d η to d Nch/d η , the latter of which is seen to be constant as a function of centrality for all systems.

  18. The lead industry and lead water pipes "A Modest Campaign".

    PubMed

    Rabin, Richard

    2008-09-01

    Lead pipes for carrying drinking water were well recognized as a cause of lead poisoning by the late 1800s in the United States. By the 1920s, many cities and towns were prohibiting or restricting their use. To combat this trend, the lead industry carried out a prolonged and effective campaign to promote the use of lead pipes. Led by the Lead Industries Association (LIA), representatives were sent to speak with plumbers' organizations, local water authorities, architects, and federal officials. The LIA also published numerous articles and books that extolled the advantages of lead over other materials and gave practical advice on the installation and repair of lead pipes. The LIA's activities over several decades therefore contributed to the present-day public health and economic cost of lead water pipes.

  19. Comparison of radiation damage in lead tungstate crystals under pion and gamma irradiation

    SciTech Connect

    Batarin, V.A.; Butler, J.; Davidenko, A.M.; Derevschikov, A.A.; Goncharenko, Y.M.; Grishin, V.N.; Kachanov, V.A.; Khodyrev, V.Y.; Konstantinov, A.S.; Kravtsov, V.I.; Kubota, Y.; Lukanin, V.S.; Matulenko, Y.A.; Melnick, Y.M.; Meschanin, A.P.; Mikhalin, N.E.; Minaev, N.G.; Mochalov, V.V.; Morozov, D.A.; Nogach, L.V.; Ryazantsev, A.V.; /Serpukhov, IHEP /Fermilab /Minnesota U. /Syracuse U. /Nanjing U.

    2003-12-01

    Studies of the radiation hardness of lead tungstate crystals produced by the Bogoroditsk Techno-Chemical Plant in Russia and the Shanghai Institute of Ceramics in China have been carried out at IHEP, Protvino. The crystals were irradiated by a 40 GeV pion beam. After full recovery, the same crystals were irradiated using a {sup 137}Cs {gamma}-ray source. The dose rate profiles along the crystal length were observed to be quite similar. We compare the effects of the two types of radiation on the crystals light output.

  20. Sum and buffer amplifier for lead-glass barrel calorimeter in the TOPAZ detector

    SciTech Connect

    Ujiie, N.; Ikeda, M.; Inaba, S.

    1988-02-01

    Analog sum and buffer amplifiers have been developed to provide a fast trigger signal from the lead-glass electromagnetic calorimeter in the TOPAZ detector for TRISTAN e/sup +/e/sup -/ collider experiments at KEK. The total kick-back noise from the 4300 channel gate signals of the LeCroy FASTBUS ADC 1885N has been suppressed to less than 40 mV (equivalent to a 0.4 GeV electron signal). The performances of the analog sum and buffer amplifiers that have been developed are described.

  1. Measurement of the pseudorapidity and transverse momentum dependence of the elliptic flow of charged particles in lead-lead collisions at √{sNN} = 2.76 TeV with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B. S.; Adams, D. L.; Addy, T. N.; Adelman, J.; Aderholz, M.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Akiyama, A.; Alam, M. S.; Alam, M. A.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M. G.; Amako, K.; Amaral, P.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andari, N.; Andeen, T.; Anders, C. F.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Andrieux, M.-L.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoun, S.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arfaoui, S.; Arguin, J.-F.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Aubert, B.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Bachy, G.; Backes, M.; Backhaus, M.; Badescu, E.; Bagnaia, P.; Bahinipati, S.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barashkou, A.; Barbaro Galtieri, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Barton, A. E.; Bartsch, D.; Bartsch, V.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Battistoni, G.; Bauer, F.; Bawa, H. S.; Beare, B.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Beloborodova, O.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benhammou, Y.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Bertinelli, F.; Bertolucci, F.; Besana, M. I.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blazek, T.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. B.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J. A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Bolnet, N. M.; Bona, M.; Bondarenko, V. G.; Boonekamp, M.; Boorman, G.; Booth, C. N.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Botterill, D.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozhko, N. I.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brown, H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchanan, N. J.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Buira-Clark, D.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butin, F.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Buttinger, W.; Byatt, T.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capriotti, D.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G. D.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda Hernandez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N. F.; Cataldi, G.; Cataneo, F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapleau, B.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Chavez Barajas, C. A.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chizhov, M. V.; Choudalakis, G.; Chouridou, S.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciba, K.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M. D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Clifft, R. W.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coe, P.; Cogan, J. G.; Coggeshall, J.; Cogneras, E.; Cojocaru, C. D.; Colas, J.; Colijn, A. P.; Collard, C.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Consonni, M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Crescioli, F.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuciuc, C.-M.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Cuneo, S.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czirr, H.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; da Silva, P. V. M.; da Via, C.; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dam, M.; Dameri, M.; Damiani, D. S.; Danielsson, H. O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G. L.; Daum, C.; Dauvergne, J. P.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, E.; Davies, M.; Davison, A. R.; Davygora, Y.; Dawe, E.; Dawson, I.; Dawson, J. W.; Daya, R. K.; de, K.; de Asmundis, R.; de Castro, S.; de Castro Faria Salgado, P. E.; de Cecco, S.; de Graat, J.; de Groot, N.; de Jong, P.; de La Taille, C.; de la Torre, H.; de Lotto, B.; de Mora, L.; de Nooij, L.; de Oliveira Branco, M.; de Pedis, D.; de Saintignon, P.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; Dean, S.; Dedovich, D. V.; Degenhardt, J.; Dehchar, M.; Deile, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delpierre, P.; Delruelle, N.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Devetak, E.; Deviveiros, P. O.; Dewhurst, A.; Dewilde, B.; Dhaliwal, S.; Dhullipudi, R.; di Ciaccio, A.; di Ciaccio, L.; di Girolamo, A.; di Girolamo, B.; di Luise, S.; di Mattia, A.; di Micco, B.; di Nardo, R.; di Simone, A.; di Sipio, R.; Diaz, M. A.; Diblen, F.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobbs, M.; Dobinson, R.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Doglioni, C.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donadelli, M.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dosil, M.; Dotti, A.; Dova, M. T.; Dowell, J. D.; Doxiadis, A. D.; Doyle, A. T.; Drasal, Z.; Drees, J.; Dressnandt, N.; Drevermann, H.; Driouichi, C.; Dris, M.; Dubbert, J.; Dubbs, T.; Dube, S.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duerdoth, I. P.; Duflot, L.; Dufour, M.-A.; Dunford, M.; Duran Yildiz, H.; Duxfield, R.; Dwuznik, M.; Dydak, F.; Dzahini, D.; Düren, M.; Ebenstein, W. L.; Ebke, J.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Edwards, C. A.; Edwards, N. C.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evangelakou, D.; Evans, H.; Fabbri, L.; Fabre, C.; Fakhrutdinov, R. M.; Falciano, S.; Falou, A. C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S. M.; Farthouat, P.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Favareto, A.; Fayard, L.; Fazio, S.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feligioni, L.; Fellmann, D.; Felzmann, C. U.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Ferland, J.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fischer, P.; Fisher, M. J.; Fisher, S. M.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L. R.; Flowerdew, M. J.; Föhlisch, F.; Fokitis, M.; Fonseca Martin, T.; Forbush, D. A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J. M.; Fournier, D.; Foussat, A.; Fowler, A. J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Frank, T.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; French, S. T.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E. J.; Gallas, M. V.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galyaev, E.; Gan, K. K.; Gao, Y. S.; Gapienko, V. A.; Gaponenko, A.; Garberson, F.; Garcia-Sciveres, M.; García, C.; García Navarro, J. E.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Garvey, J.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gaur, B.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gayde, J.-C.; Gazis, E. N.; Ge, P.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilbert, L. M.; Gilchriese, M.; Gilewsky, V.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.; Giugni, D.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goldfarb, S.; Goldin, D.; Golling, T.; Golovnia, S. N.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, L.; Gonidec, A.; Gonzalez, S.; González de La Hoz, S.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Gorokhov, S. A.; Goryachev, V. N.; Gosdzik, B.; Gosselink, M.; Gostkin, M. I.; Gouanère, M.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Grabowska-Bold, I.; Grabski, V.; Grafström, P.; Grah, C.; Grahn, K.-J.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Grebenyuk, O. G.; Greenfield, D.; Greenshaw, T.; Greenwood, Z. D.; Gregor, I. M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grinstein, S.; Grishkevich, Y. V.; Grivaz, J.-F.; Grognuz, J.; Groh, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guarino, V. J.; Guest, D.; Guicheney, C.; Guida, A.; Guillemin, T.; Guindon, S.; Guler, H.; Gunther, J.; Guo, B.; Guo, J.; Gupta, A.; Gusakov, Y.; Gushchin, V. N.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hackenburg, R.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Hahn, F.; Haider, S.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamal, P.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansson, P.; Hara, K.; Hare, G. A.; Harenberg, T.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Hatch, M.; Hauff, D.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawes, B. M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, D.; Hayakawa, T.; Hayden, D.; Hayward, H. S.; Haywood, S. J.; Hazen, E.; He, M.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Helsens, C.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Henry-Couannier, F.; Hensel, C.; Henß, T.; Hernandez, C. M.; Hernández Jiménez, Y.; Herrberg, R.; Hershenhorn, A. D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N. P.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J. C.; Hill, N.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holder, M.; Holmes, A.; Holmgren, S. O.; Holy, T.; Holzbauer, J. L.; Homma, Y.; Hong, T. M.; Hooft van Huysduynen, L.; Horazdovsky, T.; Horn, C.; Horner, S.; Horton, K.; Hostachy, J.-Y.; Hou, S.; Houlden, M. A.; Hoummada, A.; Howarth, J.; Howell, D. F.; Hristova, I.; Hrivnac, J.; Hruska, I.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Hughes-Jones, R. E.; Huhtinen, M.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibbotson, M.; Ibragimov, I.; Ichimiya, R.; Iconomidou-Fayard, L.; Idarraga, J.; Idzik, M.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Imbault, D.; Imhaeuser, M.; Imori, M.; Ince, T.; Inigo-Golfin, J.; Ioannou, P.; Iodice, M.; Ionescu, G.; Irles Quiles, A.; Ishii, K.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D. K.; Jankowski, E.; Jansen, E.; Jantsch, A.; Janus, M.; Jarlskog, G.; Jeanty, L.; Jelen, K.; Jen-La Plante, I.; Jenni, P.; Jeremie, A.; Jež, P.; Jézéquel, S.; Jha, M. K.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, G.; Jin, S.; Jinnouchi, O.; Joergensen, M. D.; Joffe, D.; Johansen, L. G.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. W.; Jones, T. J.; Jonsson, O.; Joram, C.; Jorge, P. M.; Joseph, J.; Ju, X.; Juranek, V.; Jussel, P.; Kabachenko, V. V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kadlecik, P.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L. V.; Kama, S.; Kanaya, N.; Kaneda, M.; Kanno, T.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagoz, M.; Karnevskiy, M.; Karr, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kazanin, V. A.; Kazarinov, M. Y.; Keates, J. R.; Keeler, R.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kennedy, J.; Kenney, C. J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Ketterer, C.; Keung, J.; Khakzad, M.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Kholodenko, A. G.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, M. S.; Kim, P. C.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; Kirk, J.; Kirsch, G. P.; Kirsch, L. E.; Kiryunin, A. E.; Kisielewska, D.; Kittelmann, T.; Kiver, A. M.; Kiyamura, H.; Kladiva, E.; Klaiber-Lodewigs, J.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Kluth, S.; Kneringer, E.; Knobloch, J.; Knoops, E. B. F. G.; Knue, A.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A. C.; Koenig, S.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Koi, T.; Kokott, T.; Kolachev, G. M.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kollefrath, M.; Kolya, S. D.; Komar, A. A.; Komaragiri, J. R.; Kondo, T.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konstantinidis, N.; Kootz, A.; Koperny, S.; Kopikov, S. V.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korol, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotamäki, M. J.; Kotov, S.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasel, O.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumshteyn, Z. V.; Kruth, A.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kundu, N.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y. A.; Kus, V.; Kuykendall, W.; Kuze, M.; Kuzhir, P.; Kvasnicka, O.; Kvita, J.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lablak, S.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laisne, E.; Lamanna, M.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Landsman, H.; Lane, J. L.; Lange, C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larionov, A. V.; Larner, A.; Lasseur, C.; Lassnig, M.; Lau, W.; Laurelli, P.; Lavorato, A.; Lavrijsen, W.; Laycock, P.; Lazarev, A. B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Maner, C.; Le Menedeu, E.; Lebel, C.; Lecompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, M.; Legendre, M.; Leger, A.; Legeyt, B. C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lellouch, J.; Leltchouk, M.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leontsinis, S.; Leroy, C.; Lessard, J.-R.; Lesser, J.; Lester, C. G.; Leung Fook Cheong, A.; Levêque, J.; Levin, D.; Levinson, L. J.; Levitski, M. S.; Lewandowska, M.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lifshitz, R.; Lilley, J. N.; Limbach, C.; Limosani, A.; Limper, M.; Lin, S. C.; Linde, F.; Linnemann, J. T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, M.; Liu, S.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lombardo, V. P.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Lo Sterzo, F.; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luijckx, G.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lungwitz, M.; Lupi, A.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L. L.; Macana Goia, J. A.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Macina, D.; Mackeprang, R.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P. J.; Magnoni, L.; Magradze, E.; Mahalalel, Y.; Mahboubi, K.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Mangeard, P. S.; Manjavidze, I. D.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Manz, A.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marin, A.; Marino, C. P.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F. K.; Marti-Garcia, S.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, Ph.; Martin, T. A.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Maß, M.; Massa, I.; Massaro, G.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maugain, J. M.; Maxfield, S. J.; Maximov, D. A.; May, E. N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzoni, E.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; McFayden, J. A.; McGlone, H.; McHedlidze, G.; McLaren, R. A.; McLaughlan, T.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meinhardt, J.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Mendoza Navas, L.; Meng, Z.; Mengarelli, A.; Menke, S.; Menot, C.; Meoni, E.; Mercurio, K. M.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meuser, S.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Meyer, T. C.; Meyer, W. T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R. P.; Miele, P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Miller, D. W.; Miller, R. J.; Mills, W. J.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Miñano, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Miralles Verge, L.; Misiejuk, A.; Mitrevski, J.; Mitrofanov, G. Y.; Mitsou, V. A.; Mitsui, S.; Miyagawa, P. S.; Miyazaki, K.; Mjörnmark, J. U.; Moa, T.; Mockett, P.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohapatra, S.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moisseev, A. M.; Moles-Valls, R.; Molina-Perez, J.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Monzani, S.; Moore, R. W.; Moorhead, G. F.; Mora Herrera, C.; Moraes, A.; Morais, A.; Morange, N.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morii, M.; Morin, J.; Morita, Y.; Morley, A. K.; Mornacchi, G.; Morone, M.-C.; Morozov, S. V.; Morris, J. D.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Muenstermann, D.; Muijs, A.; Muir, A.; Munwes, Y.; Murakami, K.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakano, I.; Nanava, G.; Napier, A.; Nash, M.; Nation, N. R.; Nattermann, T.; Naumann, T.; Navarro, G.; Neal, H. A.; Nebot, E.; Nechaeva, P. Yu.; Negri, A.; Negri, G.; Nektarijevic, S.; Nelson, A.; Nelson, S.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Nesterov, S. Y.; Neubauer, M. S.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nickerson, R. B.; Nicolaidou, R.; Nicolas, L.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Niinikoski, T.; Nikiforov, A.; Nikolaenko, V.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Nordkvist, B.; Norton, P. R.; Novakova, J.; Nozaki, M.; Nožička, M.; Nozka, L.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nyman, T.; O'Brien, B. J.; O'Neale, S. W.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Ocariz, J.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Ohshita, H.; Ohska, T. K.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olcese, M.; Olchevski, A. G.; Oliveira, M.; Oliveira Damazio, D.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Osuna, C.; Otero Y Garzon, G.; Ottersbach, J. P.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Øye, O. K.; Ozcan, V. E.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Paganis, E.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadelis, A.; Papadopoulou, Th. D.; Paramonov, A.; Park, W.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pecsy, M.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Peng, H.; Pengo, R.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Cavalcanti, T.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Peshekhonov, V. D.; Peters, O.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, A. W.; Phillips, P. W.; Piacquadio, G.; Piccaro, E.; Piccinini, M.; Pickford, A.; Piec, S. M.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Ping, J.; Pinto, B.; Pirotte, O.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W. G.; Pleier, M.-A.; Pleskach, A. V.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poggioli, L.; Poghosyan, T.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D. M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Porter, R.; Posch, C.; Pospelov, G. E.; Pospisil, S.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Prell, S.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L. E.; Price, M. J.; Prichard, P. M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.; Qian, Z.; Qin, Z.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rahm, D.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Ramstedt, M.; Randrianarivony, K.; Ratoff, P. N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reichold, A.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z. L.; Renaud, A.; Renkel, P.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robinson, M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Rodier, S.; Rodriguez, D.; Rodriguez Garcia, Y.; Roe, A.; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V. M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, M.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosendahl, P. L.; Rosselet, L.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rossi, L.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubinskiy, I.; Ruckert, B.; Ruckstuhl, N.; Rud, V. I.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rulikowska-Zarebska, E.; Rumiantsev, V.; Rumyantsev, L.; Runge, K.; Runolfsson, O.; Rurikova, Z.; Rusakovich, N. A.; Rust, D. R.; Rutherfoord, J. P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y. F.; Ryadovikov, V.; Ryan, P.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Rzaeva, S.; Saavedra, A. F.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sanchez, A.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandstroem, R.; Sandvoss, S.; Sankey, D. P. C.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Santos, H.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sartisohn, G.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Sauvan, J. B.; Savard, P.; Savinov, V.; Savu, D. O.; Savva, P.; Sawyer, L.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrizzi, A.; Scallon, O.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaepe, S.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J. L.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, M.; Schöning, A.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schroeder, C.; Schroer, N.; Schuh, S.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, J. W.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W. G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Sellden, B.; Sellers, G.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaver, L.; Shaw, C.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shichi, H.; Shimizu, S.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinnari, L. A.; Skovpen, K.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloan, T. J.; Sloper, J.; Smakhtin, V.; Smirnov, S. Yu.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E.; Soldevila, U.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Sondericker, J.; Soni, N.; Sopko, V.; Sopko, B.; Sorbi, M.; Sosebee, M.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Spighi, R.; Spigo, G.; Spila, F.; Spiriti, E.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R. D.; Stahl, T.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G. A.; Stillings, J. A.; Stockmanns, T.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strang, M.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Stupak, J.; Sturm, P.; Soh, D. A.; Su, D.; Subramania, H. S.; Succurro, A.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suita, K.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Svatos, M.; Sviridov, Yu. M.; Swedish, S.; Sykora, I.; Sykora, T.; Szeless, B.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Taiblum, N.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanaka, Y.; Tani, K.; Tannoury, N.; Tappern, G. P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R. J.; Thadome, J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thioye, M.; Thoma, S.; Thomas, J. P.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, A. S.; Thomson, E.; Thomson, M.; Thun, R. P.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timmermans, C. J. W. P.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokunaga, K.; Tokushuku, K.; Tollefson, K.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torchiani, I.; Torrence, E.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Traynor, D.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Trinh, T. N.; Tripiana, M. F.; Trischuk, W.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Tua, A.; Tuggle, J. M.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Tyrvainen, H.; Tzanakos, G.; Uchida, K.; Ueda, I.; Ueno, R.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D. G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van der Graaf, H.; van der Kraaij, E.; van der Leeuw, R.; van der Poel, E.; van der Ster, D.; van Eijk, B.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Vegni, G.; Veillet, J. J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Viehhauser, G. H. A.; Viel, S.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Virchaux, M.; Virzi, J.; Vitells, O.; Viti, M.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, G.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A. P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T. T.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Wagner, W.; Wagner, P.; Wahlen, H.; Wakabayashi, J.; Walbersloh, J.; Walch, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Wang, C.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, J. C.; Wang, R.; Wang, S. M.; Warburton, A.; Ward, C. P.; Warsinsky, M.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Weber, J.; Weber, M.; Weber, M. S.; Weber, P.; Weidberg, A. R.; Weigell, P.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P. S.; Wen, M.; Wenaus, T.; Wendler, S.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Wessels, M.; Weydert, C.; Whalen, K.; Wheeler-Ellis, S. J.; Whitaker, S. P.; White, A.; White, M. J.; White, S.; Whitehead, S. R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Will, J. Z.; Williams, E.; Williams, H. H.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wolter, M. W.; Wolters, H.; Wooden, G.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wraight, K.; Wright, C.; Wrona, B.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wunstorf, R.; Wynne, B. M.; Xaplanteris, L.; Xella, S.; Xie, S.; Xie, Y.; Xu, C.; Xu, D.; Xu, G.; Yabsley, B.; Yamada, M.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Y.; Yang, Z.; Yanush, S.; Yao, W.-M.; Yao, Y.; Yasu, Y.; Ybeles Smit, G. V.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.; Yu, D.; Yu, J.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zaets, V. G.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zalite, Yo. K.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zemla, A.; Zendler, C.; Zenin, A. V.; Zenin, O.; Ženiš, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi Della Porta, G.; Zhan, Z.; Zhang, D.; Zhang, H.; Zhang, J.; Zhang, X.; Zhang, Z.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zieminska, D.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zolnierowski, Y.; Zsenei, A.; Zur Nedden, M.; Zutshi, V.; Zwalinski, L.; Atlas Collaboration

    2012-02-01

    This Letter describes the measurement of elliptic flow of charged particles in lead-lead collisions at √{sNN} = 2.76 TeV using the ATLAS detector at the Large Hadron Collider (LHC). The results are based on an integrated luminosity of approximately 7 μb-1. Elliptic flow is measured over a wide region in pseudorapidity, | η | < 2.5, and over a broad range in transverse momentum, 0.5 GeV. The elliptic flow parameter v2 is obtained by correlating individual tracks with the event plane measured using energy deposited in the forward calorimeters. As a function of transverse momentum, v2 (pT) reaches a maximum at pT of about 3 GeV, then decreases and becomes weakly dependent on pT above 7-8 GeV. Over the measured pseudorapidity region, v2 is found to be only weakly dependent on η, with less variation than observed at lower beam energies. The results are discussed in the context of previous measurements at lower collision energies, as well as recent results from the LHC.

  2. The case for 100 GeV bino dark matter: a dedicated LHC tri-lepton search

    NASA Astrophysics Data System (ADS)

    van Beekveld, Melissa; Beenakker, Wim; Caron, Sascha; de Austri, Roberto Ruiz

    2016-04-01

    Global fit studies performed in the pMSSM and the photon excess signal originating from the Galactic Center seem to suggest compressed electroweak supersymmetric spectra with a ˜100 GeV bino-like dark matter particle. We find that these scenarios are not probed by traditional electroweak supersymmetry searches at the LHC. We propose to extend the ATLAS and CMS electroweak supersymmetry searches with an improved strategy for bino-like dark matter, focusing on chargino plus next-to-lightest neutralino production, with a subsequent decay into a tri-lepton final state. We explore the sensitivity for pMSSM scenarios with Δ m = m NLSP - m LSP ˜ (5 - 50) GeV in the √{s} = 14 TeV run of the LHC. Counterintuitively, we find that the requirement of low missing transverse energy increases the sensitivity compared to the current ATLAS and CMS searches. With 300 fb-1 of data we expect the LHC experiments to be able to discover these supersymmetric spectra with mass gaps down to Δ m ˜ 9 GeV for DM masses between 40 and 140 GeV. We stress the importance of a dedicated search strategy that targets precisely these favored pMSSM spectra.

  3. How resonance-continuum interference changes 750 GeV diphoton excess: Signal enhancement and peak shift

    DOE PAGES

    Jung, Sunghoon; Song, Jeonghyeon; Yoon, Yeo Woong

    2016-05-02

    A hypothetical new scalar resonance, a candidate explanation for the recently observed 750 GeV diphoton excess at the LHC 13 TeV, necessarily interferes with the continuum background gg → γγ. The interference has two considerable effects: (1) enhancing or suppressing diphoton signal rate due to the imaginary-part interference and (2) distorting resonance shape due to the real-part interference. We study them based on the best-fit analysis of two benchmark models: two Higgs doublets with ~50 GeV width (exhibiting the imaginary-part interference effect) and a singlet scalar with 5 GeV width (exhibiting the real-part one), both extended with vector-like fermions. Furthermore,more » we find that the resonance contribution can be enhanced by a factor of 2 (1.6) for 3 (6) fb signal rate, or the 68% CL allowed mass region is shifted by O (1) GeV. If the best-fit excess rate decreases in the future data, the interference effects will become more significant.« less

  4. How resonance-continuum interference changes 750 GeV diphoton excess: Signal enhancement and peak shift

    SciTech Connect

    Jung, Sunghoon; Song, Jeonghyeon; Yoon, Yeo Woong

    2016-05-02

    A hypothetical new scalar resonance, a candidate explanation for the recently observed 750 GeV diphoton excess at the LHC 13 TeV, necessarily interferes with the continuum background gg → γγ. The interference has two considerable effects: (1) enhancing or suppressing diphoton signal rate due to the imaginary-part interference and (2) distorting resonance shape due to the real-part interference. We study them based on the best-fit analysis of two benchmark models: two Higgs doublets with ~50 GeV width (exhibiting the imaginary-part interference effect) and a singlet scalar with 5 GeV width (exhibiting the real-part one), both extended with vector-like fermions. Furthermore, we find that the resonance contribution can be enhanced by a factor of 2 (1.6) for 3 (6) fb signal rate, or the 68% CL allowed mass region is shifted by O (1) GeV. If the best-fit excess rate decreases in the future data, the interference effects will become more significant.

  5. Jet rates from deep inelastic muon scattering in the W range of 15 to 35 GeV

    SciTech Connect

    Salgado, C.

    1991-08-01

    Production rates of forward jets in deep inelastic muon scattering are studied using the JADE jet finding algorithm. The evolution of di-jet rates with W is compared to QCD first order predictions in the W range of 15 to 25 GeV. 7 refs., 3 figs.

  6. Integral measurement of the 12C(n, p)12B reaction up to 10 GeV

    NASA Astrophysics Data System (ADS)

    Žugec, P.; Colonna, N.; Bosnar, D.; Ventura, A.; Mengoni, A.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Barbagallo, M.; Bécares, V.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Boccone, V.; Brugger, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Cortés, G.; Cortés-Giraldo, M. A.; Cosentino, L.; Diakaki, M.; Domingo-Pardo, C.; Dressler, R.; Duran, I.; Eleftheriadis, C.; Ferrari, A.; Finocchiaro, P.; Fraval, K.; Ganesan, S.; García, A. R.; Giubrone, G.; Gómez-Hornillos, M. B.; Gonçalves, I. F.; González-Romero, E.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Gurusamy, P.; Heinitz, S.; Jenkins, D. G.; Jericha, E.; Käppeler, F.; Karadimos, D.; Kivel, N.; Kokkoris, M.; Krtička, M.; Kroll, J.; Langer, C.; Lederer, C.; Leeb, H.; Leong, L. S.; Lo Meo, S.; Losito, R.; Manousos, A.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Mendoza, E.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Mondalaers, W.; Musumarra, A.; Paradela, C.; Pavlik, A.; Perkowski, J.; Plompen, A.; Praena, J.; Quesada, J.; Rauscher, T.; Reifarth, R.; Riego, A.; Roman, F.; Rubbia, C.; Sarmento, R.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Tagliente, G.; Tain, J. L.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Versaci, R.; Vermeulen, M. J.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weigand, M.; Weiß, C.; Wright, T.

    2016-04-01

    The integral measurement of the 12C(n, p)12B reaction was performed at the neutron time-of-flight facility n_TOF at CERN. The total number of 12B nuclei produced per neutron pulse of the n_TOF beam was determined using the activation technique in combination with a time-of-flight technique. The cross section is integrated over the n_TOF neutron energy spectrum from reaction threshold at 13.6MeV to 10GeV. Having been measured up to 1GeV on basis of the 235U(n, f ) reaction, the neutron energy spectrum above 200MeV has been re-evaluated due to the recent extension of the cross section reference for this particular reaction, which is otherwise considered a standard up to 200MeV. The results from the dedicated GEANT4 simulations have been used to evaluate the neutron flux from 1GeV up to 10GeV. The experimental results related to the 12C(n, p)12B reaction are compared with the evaluated cross sections from major libraries and with the predictions of different GEANT4 models, which mostly underestimate the 12B production. On the contrary, a good reproduction of the integral cross section derived from measurements is obtained with TALYS-1.6 calculations, with optimized parameters.

  7. Measurement of the π0 differential cross-section with CLAS and outlook into 12 GeV Hall C

    NASA Astrophysics Data System (ADS)

    Kunkel, Michael C.

    2016-05-01

    Photoproduction of the π0 meson was studied using the CLAS detector at Thomas Jefferson National Accelerator Facility using tagged incident beam energies spanning the range Eγ = 1.1 GeV - 5.45 GeV. The measurement is performed on a liquid hydrogen target in the reaction γp → pe+e-(γ). The final state of the reaction is the sum of two subprocesses for π0 decay, the Dalitz decay mode of π0 → e+e-γ and conversion mode where one photon from π0 → γγ decay is converted into a e+e- pair. This specific final state reaction avoided limitations caused by single prompt track triggering and allowed a kinematic range extension to the world data on π0 photoproduction to a domain never systematically measured before. We report the measurement of the π0 differential cross-sections d/σ d Ω and d/σ d t . The angular distributions agree well with the SAID parametrization for incident beam energies below 3 GeV, while an interpretation of the data for incident beam energies greater than 3 GeV is currently being developed. Included in the report will be a discussion of the future wide angle, exclusive photoproduction of π0 experiment that will be performed in Hall C.

  8. Modeling of 10 GeV-1 TeV laser-plasma accelerators using Lorentz boosted simulations

    SciTech Connect

    Vay, J. -L.; Geddes, C. G. R.; Esarey, E.; Schroeder, C. B.; Leemans, W. P.; Cormier-Michel, E.; Grote, D. P.

    2011-12-13

    We study modeling of laser-plasma wakefield accelerators in an optimal frame of reference [J.-L. Vay, Phys. Rev. Lett. 98, 130405 (2007)] that allows direct and efficient full-scale modeling of deeply depleted and beam loaded laser-plasma stages of 10 GeV-1 TeV (parameters not computationally accessible otherwise). This verifies the scaling of plasmaaccelerators to very high energies and accurately models the laser evolution and the accelerated electron beam transverse dynamics and energy spread. Over 4, 5, and 6 orders of magnitude speedup is achieved for the modeling of 10 GeV, 100 GeV, and 1 TeV class stages, respectively. Agreement at the percentage level is demonstrated between simulations using different frames of reference for a 0.1 GeV class stage. In addition, obtaining these speedups and levels of accuracy was permitted by solutions for handling data input (in particular, particle and laser beams injection) and output in a relativistically boosted frame of reference, as well as mitigation of a high-frequency instability that otherwise limits effectiveness.

  9. Measurement of the azimuthal anisotropy for charged particle production in sNN=2.76 TeV lead-lead collisions with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Addy, T. N.; Adelman, J.; Aderholz, M.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Akiyama, A.; Alam, M. S.; Alam, M. A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allbrooke, B. M. M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Amaral, P.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Andrieux, M.-L.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anisenkov, A.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoun, S.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Arfaoui, S.; Arguin, J.-F.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnault, C.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Aubert, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Badescu, E.; Bagnaia, P.; Bahinipati, S.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barashkou, A.; Barbaro Galtieri, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Barton, A. E.; Bartsch, V.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beale, S.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, S.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Beloborodova, O.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bendel, M.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertella, C.; Bertin, A.; Bertinelli, F.; Bertolucci, F.; Besana, M. I.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blazek, T.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. B.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boelaert, N.; Bogaerts, J. A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bolnet, N. M.; Bomben, M.; Bona, M.; Bondarenko, V. G.; Bondioli, M.; Boonekamp, M.; Booth, C. N.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borri, M.; Borroni, S.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Botterill, D.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozhko, N. I.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brendlinger, K.; Brenner, R.; Bressler, S.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Bronner, J.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brown, H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.

    2012-07-01

    Differential measurements of charged particle azimuthal anisotropy are presented for lead-lead collisions at sNN=2.76 TeV with the ATLAS detector at the LHC, based on an integrated luminosity of approximately 8 μb-1. This anisotropy is characterized via a Fourier expansion of the distribution of charged particles in azimuthal angle relative to the reaction plane, with the coefficients vn denoting the magnitude of the anisotropy. Significant v2-v6 values are obtained as a function of transverse momentum (0.5GeV), pseudorapidity (|η|<2.5), and centrality using an event plane method. The vn values for n≥3 are found to vary weakly with both η and centrality, and their pT dependencies are found to follow an approximate scaling relation, vn1/n(pT)∝v21/2(pT), except in the top 5% most central collisions. A Fourier analysis of the charged particle pair distribution in relative azimuthal angle (Δφ=φa-φb) is performed to extract the coefficients vn,n=. For pairs of charged particles with a large pseudorapidity gap (|Δη=ηa-ηb|>2) and one particle with pT<3 GeV, the v2,2-v6,6 values are found to factorize as vn,n(pTa,pTb)≈vn(pTa)vn(pTb) in central and midcentral events. Such factorization suggests that these values of v2,2-v6,6 are primarily attributable to the response of the created matter to the fluctuations in the geometry of the initial state. A detailed study shows that the v1,1(pTa,pTb) data are consistent with the combined contributions from a rapidity-even v1 and global momentum conservation. A two-component fit is used to extract the v1 contribution. The extracted v1 is observed to cross zero at pT≈1.0 GeV, reaches a maximum at 4-5 GeV with a value comparable to that for v3, and decreases at higher pT.

  10. Home refinishing, lead paint, and infant blood lead levels.

    PubMed Central

    Rabinowitz, M; Leviton, A; Bellinger, D

    1985-01-01

    We measured the blood lead levels of 249 infants semi-annually from birth to two years of age; we sampled the home paint and recorded any recent home refinishing activity. Mean blood lead from birth to age 2 years did not vary systematically with age but did correlate significantly with the amount of lead in the indoor paint (p less than .01). Refinishing activity in homes with high lead paint was associated with elevations of blood lead averaging 69 per cent. PMID:3976969

  11. Inclusive direct photon production in the central and forward rapidity regions in proton - anti-proton collisions at a center-of-mass energy of 1800-GeV

    SciTech Connect

    Jerger, Steven A.

    1997-01-01

    A study of isolated direct photon production in proton-antiproton collisions at a center of mass energy √s= 1800 Ge V is reported, as measured at the D0 Fermilab Tevatron. Cross sections for the central (0 ≤ |η| ≤0.9) and forward (1.6 ≤ |η| ≤2.5) rapidity regions are presented as a function of photon (15 GeV≤ ET ≤ 150 GeV ), and compared with a next-to-leading order QCD calculation. In the central the data and theory are consistent in both shape and normalization; however, in the forward region the data are consistently above the theory, especially in the ET region below ~30 Ge V. A preliminary measurement of the correlation between the rapidity of the photon and that of the leading in the event shows qualitative agreement between the data and theoretical prediction.

  12. Lead leaching from pressure cookers.

    PubMed

    Raghunath, R; Nambi, K S

    1998-12-11

    Leachability of lead by tap water and tamarind solution from Indian pressure cookers while cooking with and without a safety valve is studied. Lead contamination of food by cookers is not very high when compared to the daily intake of lead from various food items consumed by the Indian community. However, looking at the very wide range of lead levels leached from various brands of pressure cookers, it certainly seems possible to keep the lead contamination to the minimum by proper choice of the materials used in the manufacture of these pressure cookers. The rubber gasket, which is a very important component of any pressure cooker, contains the maximum lead concentration; the safety valve is another important source leading to lead contamination of cooked food.

  13. Safety and Health Topics: Lead

    MedlinePlus

    ... A Spanish version is also available. Lead Battery Manufacturing eTool . OSHA. Management Guidelines for Blood Lead Levels ... exposure occurs in most industry sectors including construction, manufacturing, wholesale trade, transportation, remediation and even recreation. Construction ...

  14. Lead (Environmental Health Student Portal)

    MedlinePlus

    ... Pollutants Natural Disasters Drinking Water Waterborne Diseases & Illnesses Water Cycle Water Treatment Videos Games Experiments For Teachers Home ... Pollutants Natural Disasters Drinking Water Waterborne Diseases & Illnesses Water Cycle Water Treatment Lead The Basics Lead is a ...

  15. Lead testing wipes contain measurable background levels of lead.

    PubMed

    Keenan, James J; Le, Matthew H; Paustenbach, Dennis J; Gaffney, Shannon H

    2010-03-01

    Lead is registered under the California Safe Drinking Water and Toxic Enforcement Act of 1986 (Proposition 65) as both a carcinogen and a reproductive hazard. As part of the process to determine if consumer products satisfy Proposition 65 with respect to lead, various wipe sampling strategies have been utilized. Four commonly used wipe materials (cotton gauze, cotton balls, ashless filter paper, and Ghost Wipes) were tested for background lead levels. Ghost Wipe material was found to have 0.43 +/- 0.11 microg lead/sample (0.14 microg/wipe). Wipe testing for lead using Ghost Wipes may therefore result in measurable concentrations of lead, regardless of whether or not the consumer product actually contains leachable lead.

  16. Lead in teeth from lead-dosed goats: Microdistribution and relationship to the cumulative lead dose

    SciTech Connect

    Bellis, David J.; Hetter, Katherine M.; Jones, Joseph; Amarasiriwardena, Dula; Parsons, Patrick J.

    2008-01-15

    Teeth are commonly used as a biomarker of long-term lead exposure. There appear to be few data, however, on the content or distribution of lead in teeth where data on specific lead intake (dose) are also available. This study describes the analysis of a convenience sample of teeth from animals that were dosed with lead for other purposes, i.e., a proficiency testing program for blood lead. Lead concentration of whole teeth obtained from 23 animals, as determined by atomic absorption spectrometry, varied from 0.6 to 80 {mu}g g{sup -1}. Linear regression of whole tooth lead ({mu}g g{sup -1}) on the cumulative lead dose received by the animal (g) yielded a slope of 1.2, with r{sup 2}=0.647 (p<0.0001). Laser ablation inductively coupled plasma mass spectrometry was employed to determine lead content at micrometer scale spatial resolution in the teeth of seven goats representing the dosing range. Highly localized concentrations of lead, ranging from about 10 to 2000 {mu}g g{sup -1}, were found in circumpulpal dentine. Linear regression of circumpulpal lead ({mu}g g{sup -1}) on cumulative lead dose (g) yielded a slope of 23 with r{sup 2}=0.961 (p=0.0001). The data indicated that whole tooth lead, and especially circumpulpal lead, of dosed goats increased linearly with cumulative lead exposure. These data suggest that circumpulpal dentine is a better biomarker of cumulative lead exposure than is whole tooth lead, at least for lead-dosed goats.

  17. Lead in School Drinking Water.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Water Programs.

    Lead levels in school drinking water merit special concern because children are more at risk than adults from exposure to lead. This manual provides ways in which school officials can minimize this risk. It assists administrators by providing: (1) general information on the significance of lead in school drinking water and its effects on children;…

  18. Blood Test: Lead (For Parents)

    MedlinePlus

    ... Your 1- to 2-Year-Old Blood Test: Lead KidsHealth > For Parents > Blood Test: Lead A A A What's in this article? What ... Análisis de sangre: plomo What It Is A lead test is used to determine the amount of ...

  19. Breakthrough: Lead-free Solder

    SciTech Connect

    Anderson, Iver

    2012-01-01

    Ames Laboratory senior metallurgist Iver Anderson explains the importance of lead-free solder in taking hazardous lead out of the environment by eliminating it from discarded computers and electronics that wind up in landfills. Anderson led a team that developed a tin-silver-copper replacement for traditional lead-tin solder that has been adopted by more than 50 companies worldwide.

  20. Breakthrough: Lead-free Solder

    ScienceCinema

    Anderson, Iver

    2016-07-12

    Ames Laboratory senior metallurgist Iver Anderson explains the importance of lead-free solder in taking hazardous lead out of the environment by eliminating it from discarded computers and electronics that wind up in landfills. Anderson led a team that developed a tin-silver-copper replacement for traditional lead-tin solder that has been adopted by more than 50 companies worldwide.