Science.gov

Sample records for 15d-pgj2 mediates repression

  1. Autocrine secretion of 15d-PGJ2 mediates simvastatin-induced apoptotic burst in human metastatic melanoma cells

    PubMed Central

    Wasinger, Christine; Künzl, Martin; Minichsdorfer, Christoph; Höller, Christoph; Zellner, Maria; Hohenegger, Martin

    2014-01-01

    Background and Purpose Despite new therapeutic approaches, metastatic melanomas still have a poor prognosis. Statins reduce low-density lipoprotein cholesterol and exert anti-inflammatory and anti-proliferative actions. We have recently shown that simvastatin triggers an apoptotic burst in human metastatic melanoma cells by the synthesis of an autocrine factor. Experimental Approach The current in vitro study was performed in human metastatic melanoma cell lines (A375, 518a2) and primary human melanocytes and melanoma cells. The secretome of simvastatin-stressed cells was analysed with two-dimensional difference gel electrophoresis and MS. The signalling pathways involved were analysed at the protein and mRNA level using pharmacological approaches and siRNA technology. Key Results Simvastatin was shown to activate a stress cascade, leading to the synthesis of 15-deoxy-12,14-PGJ2 (15d-PGJ2), in a p38- and COX-2-dependent manner. Significant concentrations of 15d-PGJ2 were reached in the medium of melanoma cells, which were sufficient to activate caspase 8 and the mitochondrial pathway of apoptosis. Inhibition of lipocalin-type PGD synthase, a key enzyme for 15d-PGJ2 synthesis, abolished the apoptotic effect of simvastatin. Moreover, 15d-PGJ2 was shown to bind to the fatty acid-binding protein 5 (FABP5), which was up-regulated and predominantly detected in the secretome of simvastatin-stressed cells. Knockdown of FABP5 abolished simvastatin-induced activation of PPAR-γ and amplified the apoptotic response. Conclusions and Implications We characterized simvastatin-induced activation of the 15d-PGJ2/FABP5 signalling cascades, which triggered an apoptotic burst in melanoma cells but did not affect primary human melanocytes. These data support the rationale for the pharmacological targeting of 15d-PGJ2 in metastatic melanoma. PMID:25091578

  2. The cyclopentenone prostaglandin 15d-PGJ2 inhibits the NLRP1 and NLRP3 inflammasomes.

    PubMed

    Maier, Nolan K; Leppla, Stephen H; Moayeri, Mahtab

    2015-03-15

    Inflammasomes are cytosolic protein complexes that respond to diverse danger signals by activating caspase-1. The sensor components of the inflammasome, often proteins of the nucleotide-binding oligomerization domain-like receptor (NLR) family, detect stress, danger stimuli, and pathogen-associated molecular patterns. We report that the eicosanoid 15-deoxy-Δ(12,14)-PGJ2 (15d-PGJ2) and related cyclopentenone PGs inhibit caspase-1 activation by the NLR family leucine-rich repeat protein (NLRP)1 and NLRP3 inflammasomes. This inhibition was independent of the well-characterized role of 15d-PGJ2 as a peroxisome proliferator receptor-γ agonist, its activation of NF erythroid 2-related factor 2, or its anti-inflammatory function as an inhibitor of NF-κB. Instead, 15d-PGJ2 prevents the autoproteolytic activation of caspase-1 and the maturation of IL-1β through induction of a cellular state inhibitory to caspase-1 proteolytic function. The eicosanoid does not directly modify or inactivate the caspase-1 enzyme. Rather, inhibition is dependent on de novo protein synthesis. In a mouse peritonitis model of gout, using monosodium urate crystals to activate NLRP3, 15d-PGJ2 caused a significant inhibition of cell recruitment and associated IL-1β release. Furthermore, in a murine anthrax infection model, 15d-PGJ2 reversed anthrax lethal toxin-mediated NLRP1-dependent resistance. The findings reported in this study suggest a novel mechanism for the anti-inflammatory properties of the cyclopentenone PGs through inhibition of caspase-1 and the inflammasome.

  3. 15d-PGJ2-Loaded Solid Lipid Nanoparticles: Physicochemical Characterization and Evaluation of Pharmacological Effects on Inflammation

    PubMed Central

    da Silva, Camila Morais Gonçalves; Pasquoto, Tatiane; de Lima, Renata; Fraceto, Leonardo Fernandes

    2016-01-01

    15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), a peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist, has physiological properties including pronounced anti-inflammatory activity, though it binds strongly to serum albumin. The use of solid lipid nanoparticles (SLN) can improve therapeutic properties increasing drug efficiency and availability. 15d-PGJ2-SLN was therefore developed and investigated in terms of its immunomodulatory potential. 15d-PGJ2-SLN and unloaded SLN were physicochemically characterized and experiments in vivo were performed. Animals were pretreated with 15d-PGJ2-SLN at concentrations of 3, 10 or 30 μg·kg-1 before inflammatory stimulus with carrageenan (Cg), lipopolysaccharide (LPS) or mBSA (immune response). Interleukins (IL-1β, IL-10 and IL-17) levels were also evaluated in exudates. The 15d-PGJ2-SLN system showed good colloidal parameters and encapsulation efficiency of 96%. The results showed that the formulation was stable for up to 120 days with low hemolytic effects. The 15d-PGJ2-SLN formulation was able to reduce neutrophil migration in three inflammation models tested using low concentrations of 15d-PGJ2. Additionally, 15d-PGJ2-SLN increased IL-10 levels and reduced IL-1β as well as IL-17 in peritoneal fluid. The new 15d-PGJ2-SLN formulation highlights perspectives of a potent anti-inflammatory system using low concentrations of 15d-PGJ2. PMID:27575486

  4. Elimination of the biphasic pharmacodynamics of 15d-PGJ2 by controlling its release from a nanoemulsion

    PubMed Central

    Abbasi, Saed; Kajimoto, Kazuaki; Harashima, Hideyoshi

    2016-01-01

    15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) has a dual action of stimulating anti-inflammation and anti-proliferation when exogenously administered at high doses. However, at lower doses, it can be toxic inducing opposite actions, ie, stimulation of both inflammation and cell proliferation. This biphasic phenomenon of 15d-PGJ2 is believed to be due to its multitarget behavior. In this study, we provide a strategy for controlling such biphasic pharmacodynamics by separating its dual actions while retaining the beneficial one by using a nanoemulsion (NE). The 15d-PGJ2 was encapsulated in the NE composed of triolein/distearoyl phosphatidylcholine/Tween 80 at a high encapsulation ratio (>83%). Furthermore, NE enhanced drug retention by slowing down its release rate, which was, unconventionally, inversely dependent on the total surface area of the NE system. Next, focusing on the biphasic effect on cell proliferation, we found that the 15d-PGJ2-loaded slow-release NE showed only a dose-dependent inhibition of the viability of a mouse macrophage cell line, RAW264.7, although a fast-release NE as well as free 15d-PGJ2 exerted a biphasic effect. The observed slow-release kinetics are believed to be responsible for elimination of the biphasic pharmacodynamics of 15d-PGJ2 mainly for two reasons: 1) a high proportion of 15d-PGJ2 that is retained in the NE was delivered to the cytosol, where proapoptotic targets are located and 2) 15d-PGJ2 was able to bypass cell membrane-associated targets that lead to the induction of cellular proliferation. Collectively, our strategy of eliminating the 15d-PGJ2-induced biphasic pharmacodynamics was based on the delivery of 15d-PGJ2 to its desired site of action, excluding undesired sites, on a subcellular level. PMID:27354798

  5. Therapeutic Treatment of Arthritic Mice with 15-Deoxy Δ12,14-Prostaglandin J2 (15d-PGJ2) Ameliorates Disease through the Suppression of Th17 Cells and the Induction of CD4+CD25−FOXP3+ Cells

    PubMed Central

    Benevides, Luciana; Pinto, Larissa G.; Cunha, Thiago M.

    2016-01-01

    The prostaglandin, 15-deoxy Δ12,14-prostaglandin J2 (15d-PGJ2), is a lipid mediator that plays an important role in the control of chronic inflammatory disease. However, the role of prostanoid in rheumatoid arthritis (RA) is not well determined. We demonstrated the therapeutic effect of 15d-PGJ2 in an experimental model of arthritis. Daily administration of 15d-PGJ2 attenuated the severity of CIA, reducing the clinical score, pain, and edema. 15d-PGJ2 treatment was associated with a marked reduction in joint levels of proinflammatory cytokines. Although the mRNA expression of ROR-γt was profoundly reduced, FOXP3 was enhanced in draining lymph node cells from 15d-PGJ2-treated arthritic mice. The specific and polyclonal CD4+ Th17 cell responses were limited during the addition of prostaglandin to cell culture. Moreover, in vitro 15d-PGJ2 increased the expression of FOXP3, GITR, and CTLA-4 in the CD4+CD25− population, suggesting the induction of Tregs on conventional T cells. Prostanoid addition to CD4+CD25− cells selectively suppressed Th17 differentiation and promoted the enhancement of FOXP3 under polarization conditions. Thus, 15d-PGJ2 ameliorated symptoms of collagen-induced arthritis by regulating Th17 differentiation, concomitant with the induction of Tregs, and, consequently, protected mice from diseases aggravation. Altogether, these results indicate that 15d-PGJ2 may represent a potential therapeutic strategy in RA. PMID:27872515

  6. Mitochondrial remodeling following fission inhibition by 15d-PGJ2 involves molecular changes in mitochondrial fusion protein OPA1

    SciTech Connect

    Kar, Rekha; Mishra, Nandita; Singha, Prajjal K.; Venkatachalam, Manjeri A.; Saikumar, Pothana

    2010-09-03

    Research highlights: {yields} Chemical inhibition of fission protein Drp1 leads to mitochondrial fusion. {yields} Increased fusion stimulates molecular changes in mitochondrial fusion protein OPA1. {yields} Proteolysis of larger isoforms, new synthesis and ubiquitination of OPA1 occur. {yields} Loss of mitochondrial tubular rigidity and disorganization of cristae. {yields} Generation of large swollen dysfunctional mitochondria. -- Abstract: We showed earlier that 15 deoxy {Delta}{sup 12,14} prostaglandin J2 (15d-PGJ2) inactivates Drp1 and induces mitochondrial fusion . However, prolonged incubation of cells with 15d-PGJ2 resulted in remodeling of fused mitochondria into large swollen mitochondria with irregular cristae structure. While initial fusion of mitochondria by 15d-PGJ2 required the presence of both outer (Mfn1 and Mfn2) and inner (OPA1) mitochondrial membrane fusion proteins, later mitochondrial changes involved increased degradation of the fusion protein OPA1 and ubiquitination of newly synthesized OPA1 along with decreased expression of Mfn1 and Mfn2, which likely contributed to the loss of tubular rigidity, disorganization of cristae, and formation of large swollen degenerated dysfunctional mitochondria. Similar to inhibition of Drp1 by 15d-PGJ2, decreased expression of fission protein Drp1 by siRNA also resulted in the loss of fusion proteins. Prevention of 15d-PGJ2 induced mitochondrial elongation by thiol antioxidants prevented not only loss of OPA1 isoforms but also its ubiquitination. These findings provide novel insights into unforeseen complexity of molecular events that modulate mitochondrial plasticity.

  7. 15d-PGJ2 Reduced Microglia Activation and Alleviated Neurological Deficit of Ischemic Reperfusion in Diabetic Rat Model

    PubMed Central

    Huang, Lihong; Li, Gang; Feng, Xiaofang; Wang, Luojun

    2015-01-01

    To investigate the effect of PPARγ agonist 15d-PGJ2 treatment on the microglia activation and neurological deficit of ischemia reperfusion in diabetic rat model, adult Sprague-Dawley rats were sacrificed for the research. The rats were randomly categorized into four groups: (1) sham-operated group; (2) standard ischemia group; (3) diabetic ischemia group; (4) diabetic ischemia group with diabetes and treated with 15d-PGJ2. Compared to the sham-operated group, all the ischemic groups have significantly severer neurological deficits, more TNF-α and IL-1 expression, increased labeling of apoptotic cells, increased CD68 positive staining of brain lesion, and increased volume of infarct and cerebral edema in both 24 hours and 7 days after reperfusion. Interestingly, reduced neurological deficits, decreased TNF-α and IL-1 expression, less apoptotic cells and CD68 positive staining, and alleviated infarct and cerebral edema volume were observed when 15d-PGJ2 was intraperitoneally injected after reperfusion in diabetic ischemia group, suggesting its neuroprotective role in regulating microglia activation, which may have a therapeutic application in the future. PMID:26844229

  8. BEND3 mediates transcriptional repression and heterochromatin organization.

    PubMed

    Khan, Abid; Prasanth, Supriya G

    2015-01-01

    Transcription repression plays a central role in gene regulation. Transcription repressors utilize diverse strategies to mediate transcriptional repression. We have recently demonstrated that BEND3 (BANP, E5R and Nac1 domain) protein represses rDNA transcription by stabilizing a NoRC component. We discuss the role of BEND3 as a global regulator of gene expression and propose a model whereby BEND3 associates with chromatin remodeling complexes to modulate gene expression and heterochromatin organization.

  9. BEND3 mediates transcriptional repression and heterochromatin organization

    PubMed Central

    Khan, Abid; Prasanth, Supriya G

    2015-01-01

    Transcription repression plays a central role in gene regulation. Transcription repressors utilize diverse strategies to mediate transcriptional repression. We have recently demonstrated that BEND3 (BANP, E5R and Nac1 domain) protein represses rDNA transcription by stabilizing a NoRC component. We discuss the role of BEND3 as a global regulator of gene expression and propose a model whereby BEND3 associates with chromatin remodeling complexes to modulate gene expression and heterochromatin organization. PMID:26507581

  10. Organic acid mediated repression of sugar utilization in rhizobia.

    PubMed

    Iyer, Bhagya; Rajput, Mahendrapal Singh; Jog, Rahul; Joshi, Ekta; Bharwad, Krishna; Rajkumar, Shalini

    2016-11-01

    Rhizobia are a class of symbiotic diazotrophic bacteria which utilize C4 acids in preference to sugars and the sugar utilization is repressed as long as C4 acids are present. This can be manifested as a diauxie when rhizobia are grown in the presence of a sugar and a C4 acid together. Succinate, a C4 acid is known to repress utilization of sugars, sugar alcohols, hydrocarbons, etc by a mechanism termed as Succinate Mediated Catabolite Repression (SMCR). Mechanism of catabolite repression determines the hierarchy of carbon source utilization in bacteria. Though the mechanism of catabolite repression has been well studied in model organisms like E. coli, B. subtilis and Pseudomonas sp., mechanism of SMCR in rhizobia has not been well elucidated. C4 acid uptake is important for effective symbioses while mutation in the sugar transport and utilization genes does not affect symbioses. Deletion of hpr and sma0113 resulted in the partial relief of SMCR of utilization of galactosides like lactose, raffinose and maltose in the presence of succinate. However, no such regulators governing SMCR of glucoside utilization have been identified till date. Though rhizobia can utilize multitude of sugars, high affinity transporters for many sugars are yet to be identified. Identifying high affinity sugar transporters and studying the mechanism of catabolite repression in rhizobia is important to understand the level of regulation of SMCR and the key regulators involved in SMCR.

  11. Repression of p53 activity by Smyd2-mediated methylation.

    PubMed

    Huang, Jing; Perez-Burgos, Laura; Placek, Brandon J; Sengupta, Roopsha; Richter, Mario; Dorsey, Jean A; Kubicek, Stefan; Opravil, Susanne; Jenuwein, Thomas; Berger, Shelley L

    2006-11-30

    Specific sites of lysine methylation on histones correlate with either activation or repression of transcription. The tumour suppressor p53 (refs 4-7) is one of only a few non-histone proteins known to be regulated by lysine methylation. Here we report a lysine methyltransferase, Smyd2, that methylates a previously unidentified site, Lys 370, in p53. This methylation site, in contrast to the known site Lys 372, is repressing to p53-mediated transcriptional regulation. Smyd2 helps to maintain low concentrations of promoter-associated p53. We show that reducing Smyd2 concentrations by short interfering RNA enhances p53-mediated apoptosis. We find that Set9-mediated methylation of Lys 372 inhibits Smyd2-mediated methylation of Lys 370, providing regulatory cross-talk between post-translational modifications. In addition, we show that the inhibitory effect of Lys 372 methylation on Lys 370 methylation is caused, in part, by blocking the interaction between p53 and Smyd2. Thus, similar to histones, p53 is subject to both activating and repressing lysine methylation. Our results also predict that Smyd2 may function as a putative oncogene by methylating p53 and repressing its tumour suppressive function.

  12. SMRT isoforms mediate repression and anti-repression of nuclear receptor heterodimers.

    PubMed Central

    Chen, J D; Umesono, K; Evans, R M

    1996-01-01

    Transcriptional repression represents an important component in the regulation of cell differentiation and oncogenesis mediated by nuclear hormone receptors. Hormones act to relieve repression, thus allowing receptors to function as transcriptional activators. The transcriptional corepressor SMRT was identified as a silencing mediator for retinoid and thyroid hormone receptors. SMRT is highly related to another corepressor, N-CoR, suggesting the existence of a new family of receptor-interacting proteins. We demonstrate that SMRT is a ubiquitous nuclear protein that interacts with unliganded receptor heterodimers in mammalian cells. Furthermore, expression of the receptor-interacting domain of SMRT acts as an antirepressor, suggesting the potential importance of splicing variants as modulators of thyroid hormone and retinoic acid signaling. Images Fig. 1 Fig. 2 Fig. 4 Fig. 5 PMID:8755515

  13. Dorsal-Mediated Repression Requires the Formation of a Multiprotein Repression Complex at the Ventral Silencer

    PubMed Central

    Valentine, Scott A.; Chen, Guoqing; Shandala, Tatiana; Fernandez, Joseph; Mische, Sheenah; Saint, Robert; Courey, Albert J.

    1998-01-01

    Dorsal functions as both an activator and repressor of transcription to determine dorsoventral fate in the Drosophila melanogaster embryo. Repression by Dorsal requires the corepressor Groucho (Gro) and is mediated by silencers termed ventral repression regions (VRRs). A VRR in zerknüllt (zen) contains Dorsal binding sites as well as an essential element termed AT2. We have identified and purified an AT2 DNA binding activity in embryos and shown it to consist of cut (ct) and dead ringer (dri) gene products. Studies of loss-of-function mutations in ct and dri demonstrate that both genes are required for the activity of the AT2 site. Dorsal and Dri both bind Gro, acting cooperatively to recruit it to the DNA. Thus, ventral repression may require the formation of a multiprotein complex at the VRR. This complex includes Dorsal, Gro, and additional DNA binding proteins, which appear to convert Dorsal from an activator to a repressor by enabling it to recruit Gro to the template. By showing how binding site context can dramatically alter transcription factor function, these findings help clarify the mechanisms responsible for the regulatory specificity of transcription factors. PMID:9774673

  14. Musashi mediates translational repression of the Drosophila hypoxia inducible factor

    PubMed Central

    Bertolin, Agustina P.; Katz, Maximiliano J.; Yano, Masato; Pozzi, Berta; Acevedo, Julieta M.; Blanco-Obregón, Dalmiro; Gándara, Lautaro; Sorianello, Eleonora; Kanda, Hiroshi; Okano, Hideyuki; Srebrow, Anabella; Wappner, Pablo

    2016-01-01

    Adaptation to hypoxia depends on a conserved α/β heterodimeric transcription factor called Hypoxia Inducible Factor (HIF), whose α-subunit is regulated by oxygen through different concurrent mechanisms. In this study, we have identified the RNA binding protein dMusashi, as a negative regulator of the fly HIF homologue Sima. Genetic interaction assays suggested that dMusashi participates of the HIF pathway, and molecular studies carried out in Drosophila cell cultures showed that dMusashi recognizes a Musashi Binding Element in the 3′ UTR of the HIFα transcript, thereby mediating its translational repression in normoxia. In hypoxic conditions dMusashi is downregulated, lifting HIFα repression and contributing to trigger HIF-dependent gene expression. Analysis performed in mouse brains revealed that murine Msi1 protein physically interacts with HIF-1α transcript, suggesting that the regulation of HIF by Msi might be conserved in mammalian systems. Thus, Musashi is a novel regulator of HIF that inhibits responses to hypoxia specifically when oxygen is available. PMID:27141964

  15. Musashi mediates translational repression of the Drosophila hypoxia inducible factor.

    PubMed

    Bertolin, Agustina P; Katz, Maximiliano J; Yano, Masato; Pozzi, Berta; Acevedo, Julieta M; Blanco-Obregón, Dalmiro; Gándara, Lautaro; Sorianello, Eleonora; Kanda, Hiroshi; Okano, Hideyuki; Srebrow, Anabella; Wappner, Pablo

    2016-09-19

    Adaptation to hypoxia depends on a conserved α/β heterodimeric transcription factor called Hypoxia Inducible Factor (HIF), whose α-subunit is regulated by oxygen through different concurrent mechanisms. In this study, we have identified the RNA binding protein dMusashi, as a negative regulator of the fly HIF homologue Sima. Genetic interaction assays suggested that dMusashi participates of the HIF pathway, and molecular studies carried out in Drosophila cell cultures showed that dMusashi recognizes a Musashi Binding Element in the 3' UTR of the HIFα transcript, thereby mediating its translational repression in normoxia. In hypoxic conditions dMusashi is downregulated, lifting HIFα repression and contributing to trigger HIF-dependent gene expression. Analysis performed in mouse brains revealed that murine Msi1 protein physically interacts with HIF-1α transcript, suggesting that the regulation of HIF by Msi might be conserved in mammalian systems. Thus, Musashi is a novel regulator of HIF that inhibits responses to hypoxia specifically when oxygen is available.

  16. BRCA1-mediated repression of select X chromosome genes

    PubMed Central

    Jazaeri, Amir A; Chandramouli, Gadisetti VR; Aprelikova, Olga; Nuber, Ulrike A; Sotiriou, Christos; Liu, Edison T; Ropers, H Hilger; Yee, Cindy J; Boyd, Jeff; Barrett, J Carl

    2004-01-01

    Recently BRCA1 has been implicated in the regulation of gene expression from the X chromosome. In this study the influence of BRCA1 on expression of X chromosome genes was investigated. Complementary DNA microarrays were used to compare the expression levels of X chromosome genes in 18 BRCA1-associated ovarian cancers to those of the 13 "BRCA1-like" and 14 "BRCA2-like" sporadic tumors (as defined by previously reported expression profiling). Significance was determined using parametric statistics with P < 0.005 as a cutoff. Forty of 178 total X-chromosome transcripts were differentially expressed between the BRCA1-associated tumors and sporadic cancers with a BRCA2-like molecular profile. Thirty of these 40 genes showed higher mean expression in the BRCA1-associated samples including all 11 transcripts that mapped to Xp11. In contrast, four of 178 total X chromosome transcripts showed significant differential expression between BRCA1-associated and sporadic tumors with a BRCA1-like molecular profile. All four mapped to Xp11 and showed higher mean expression in BRCA1-associated tumors. Re-expression of BRCA1 in HCC1937 BRCA1-deficient breast cancer cell resulted in the repression of 21 transcripts. Eleven of the 21 (54.5%) transcripts mapped to Xp11. However, there was no significant overlap between these Xp11 genes and those found to be differentially expressed between BRCA1-associated and sporadic ovarian cancer samples. These results demonstrate that BRCA1 mediates the repression of several X chromosome genes, many of which map to the Xp11 locus. PMID:15383145

  17. MarA-mediated transcriptional repression of the rob promoter.

    PubMed

    Schneiders, Thamarai; Levy, Stuart B

    2006-04-14

    The Escherichia coli transcriptional regulator MarA affects functions that include antibiotic resistance, persistence, and survival. MarA functions as an activator or repressor of transcription utilizing similar degenerate DNA sequences (marboxes) with three different binding site configurations with respect to the RNA polymerase-binding sites. We demonstrate that MarA down-regulates rob transcripts both in vivo and in vitro via a MarA-binding site within the rob promoter that is positioned between the -10 and -35 hexamers. As for the hdeA and purA promoters, which are repressed by MarA, the rob marbox is also in the "backward" orientation. Protein-DNA interactions show that SoxS and Rob, like MarA, bind the same marbox in the rob promoter. Electrophoretic mobility shift analyses with a MarA-specific antibody demonstrate that MarA and RNA polymerase form a ternary complex with the rob promoter DNA. Transcription experiments in vitro and potassium permanganate footprinting analysis show that MarA affects the RNA polymerase-mediated closed to open complex formation at the rob promoter.

  18. Multiple mechanisms mediate glucose repression of the yeast GAL1 gene.

    PubMed Central

    Lamphier, M S; Ptashne, M

    1992-01-01

    Several mechanisms contribute to the glucose repression of the GAL1 gene in Saccharomyces cerevisiae. We show that one mechanism involves the transcriptional down-regulation of the GAL4 gene and a second requires the GAL80 gene. We also examine the contribution of cis-acting negative elements in the GAL1 promoter to glucose repression. In an otherwise wild-type strain disruption of any one of these three mechanisms alleviates repression of GAL1 only 2- to 4-fold. However, in the absence of the other two mechanisms the transcriptional down-regulation of GAL4 is sufficient to repress GAL1 expression 40- to 60-fold and the GAL80-dependent mechanism is sufficient to repress GAL1 expression 20- to 30-fold. These first two mechanisms constitute a functionally redundant system of repression and both must be disrupted in order to abolish glucose repression of GAL1. In contrast, negative elements in the GAL1 promoter are effective in repressing GAL1 expression 2- to 4-fold in glucose medium only when at least one of the other two mechanisms of repression is present. Thus, glucose repression of GAL1 is mediated primarily by the first two mechanisms, whereas the third mechanism supplements repression severalfold. PMID:1631075

  19. TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis.

    PubMed

    Szemenyei, Heidi; Hannon, Mike; Long, Jeff A

    2008-03-07

    The transcriptional response to auxin is critical for root and vascular development during Arabidopsis embryogenesis. Auxin induces the degradation of AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) transcriptional repressors, freeing their binding partners, the AUXIN RESPONSE FACTOR (ARF) proteins, which can activate transcription of auxin response genes. We show that TOPLESS (TPL) can physically interact with IAA12/BODENLOS (IAA12/BDL) through an ETHYLENE RESPONSE FACTOR (ERF)-associated amphiphilic repression (EAR) motif. TPL can repress transcription in vivo and is required for IAA12/BDL repressive activity. In addition, tpl-1 can suppress the patterning defects of the bdl-1 mutant. Direct interaction between TPL and ARF5/MONOPTEROS, which is regulated by IAA12/BDL, results in a loss-of-function arf5/mp phenotype. These observations show that TPL is a transcriptional co-repressor and further our understanding of how auxin regulates transcription during plant development.

  20. The MOX promoter in Hansenula polymorpha is ultrasensitive to glucose-mediated carbon catabolite repression.

    PubMed

    Dusny, Christian; Schmid, Andreas

    2016-09-01

    Redesigning biology towards specific purposes requires a functional understanding of genetic circuits. We present a quantitative in-depth study on the regulation of the methanol-specific MOX promoter system (PMOX) at the single-cell level. We investigated PMOX regulation in the methylotrophic yeast Hansenula (Ogataea) polymorpha with respect to glucose-mediated carbon catabolite repression. This promoter system is particularly delicate as the glucose as carbon and energy source in turn represses MOX promoter activity. Decoupling single cells from population activity revealed a hitherto underrated ultrasensitivity of the MOX promoter to glucose repression. Environmental control with single-cell technologies enabled quantitative insights into the balance between activation and repression of PMOX with respect to extracellular glucose concentrations. While population-based studies suggested full MOX promoter derepression at extracellular glucose concentrations of ∼1 g L(-1), we showed that glucose-mediated catabolite repression already occurs at concentrations as low as 5 × 10(-4) g L(-1) These findings demonstrate the importance of uncoupling single cells from populations for understanding the mechanisms of promoter regulation in a quantitative manner.

  1. Molecular mechanism underlying juvenile hormone-mediated repression of precocious larval–adult metamorphosis

    PubMed Central

    Kayukawa, Takumi; Jouraku, Akiya; Ito, Yuka; Shinoda, Tetsuro

    2017-01-01

    Juvenile hormone (JH) represses precocious metamorphosis of larval to pupal and adult transitions in holometabolous insects. The early JH-inducible gene Krüppel homolog 1 (Kr-h1) plays a key role in the repression of metamorphosis as a mediator of JH action. Previous studies demonstrated that Kr-h1 inhibits precocious larval–pupal transition in immature larva via direct transcriptional repression of the pupal specifier Broad-Complex (BR-C). JH was recently reported to repress the adult specifier gene Ecdysone-induced protein 93F (E93); however, its mechanism of action remains unclear. Here, we found that JH suppressed ecdysone-inducible E93 expression in the epidermis of the silkworm Bombyx mori and in a B. mori cell line. Reporter assays in the cell line revealed that the JH-dependent suppression was mediated by Kr-h1. Genome-wide ChIP-seq analysis identified a consensus Kr-h1 binding site (KBS, 14 bp) located in the E93 promoter region, and EMSA confirmed that Kr-h1 directly binds to the KBS. Moreover, we identified a C-terminal conserved domain in Kr-h1 essential for the transcriptional repression of E93. Based on these results, we propose a mechanism in which JH-inducible Kr-h1 directly binds to the KBS site upstream of the E93 locus to repress its transcription in a cell-autonomous manner, thereby preventing larva from bypassing the pupal stage and progressing to precocious adult development. These findings help to elucidate the molecular mechanisms regulating the metamorphic genetic network, including the functional significance of Kr-h1, BR-C, and E93 in holometabolous insect metamorphosis. PMID:28096379

  2. Hairy and Groucho mediate the action of juvenile hormone receptor Methoprene-tolerant in gene repression

    PubMed Central

    Saha, Tusar T.; Shin, Sang Woon; Dou, Wei; Roy, Sourav; Zhao, Bo; Hou, Yuan; Wang, Xue-Li; Zou, Zhen; Girke, Thomas; Raikhel, Alexander S.

    2016-01-01

    The arthropod-specific juvenile hormone (JH) controls numerous essential functions. Its involvement in gene activation is known to be mediated by the transcription factor Methoprene-tolerant (Met), which turns on JH-controlled genes by directly binding to E-box–like motifs in their regulatory regions. However, it remains unclear how JH represses genes. We used the Aedes aegypti female mosquito, in which JH is necessary for reproductive maturation, to show that a repressor, Hairy, is required for the gene-repressive action of JH and Met. The RNA interference (RNAi) screen for Met and Hairy in the Aedes female fat body revealed a large cohort of Met- and Hairy-corepressed genes. Analysis of selected genes from this cohort demonstrated that they are repressed by JH, but RNAi of either Met or Hairy renders JH ineffective in repressing these genes in an in vitro fat-body culture assay. Moreover, this JH action was prevented by the addition of the translational inhibitor cycloheximide (CHX) to the culture, indicating the existence of an indirect regulatory hierarchy. The lack of Hairy protein in the CHX-treated tissue was verified using immunoblot analysis, and the upstream regions of Met/Hairy-corepressed genes were shown to contain common binding motifs that interact with Hairy. Groucho (gro) RNAi silencing phenocopied the effect of Hairy RNAi knockdown, indicating that it is involved in the JH/Met/Hairy hierarchy. Finally, the requirement of Hairy and Gro for gene repression was confirmed in a cell transfection assay. Thus, our study has established that Hairy and its cofactor Gro mediate the repressive function of JH and Met. PMID:26744312

  3. Wnt-Mediated Repression via Bipartite DNA Recognition by TCF in the Drosophila Hematopoietic System

    PubMed Central

    Zhang, Chen U.; Blauwkamp, Timothy A.; Burby, Peter E.; Cadigan, Ken M.

    2014-01-01

    The Wnt/β-catenin signaling pathway plays many important roles in animal development, tissue homeostasis and human disease. Transcription factors of the TCF family mediate many Wnt transcriptional responses, promoting signal-dependent activation or repression of target gene expression. The mechanism of this specificity is poorly understood. Previously, we demonstrated that for activated targets in Drosophila, TCF/Pangolin (the fly TCF) recognizes regulatory DNA through two DNA binding domains, with the High Mobility Group (HMG) domain binding HMG sites and the adjacent C-clamp domain binding Helper sites. Here, we report that TCF/Pangolin utilizes a similar bipartite mechanism to recognize and regulate several Wnt-repressed targets, but through HMG and Helper sites whose sequences are distinct from those found in activated targets. The type of HMG and Helper sites is sufficient to direct activation or repression of Wnt regulated cis-regulatory modules, and protease digestion studies suggest that TCF/Pangolin adopts distinct conformations when bound to either HMG-Helper site pair. This repressive mechanism occurs in the fly lymph gland, the larval hematopoietic organ, where Wnt/β-catenin signaling controls prohemocytic differentiation. Our study provides a paradigm for direct repression of target gene expression by Wnt/β-catenin signaling and allosteric regulation of a transcription factor by DNA. PMID:25144371

  4. Wnt-mediated repression via bipartite DNA recognition by TCF in the Drosophila hematopoietic system.

    PubMed

    Zhang, Chen U; Blauwkamp, Timothy A; Burby, Peter E; Cadigan, Ken M

    2014-08-01

    The Wnt/β-catenin signaling pathway plays many important roles in animal development, tissue homeostasis and human disease. Transcription factors of the TCF family mediate many Wnt transcriptional responses, promoting signal-dependent activation or repression of target gene expression. The mechanism of this specificity is poorly understood. Previously, we demonstrated that for activated targets in Drosophila, TCF/Pangolin (the fly TCF) recognizes regulatory DNA through two DNA binding domains, with the High Mobility Group (HMG) domain binding HMG sites and the adjacent C-clamp domain binding Helper sites. Here, we report that TCF/Pangolin utilizes a similar bipartite mechanism to recognize and regulate several Wnt-repressed targets, but through HMG and Helper sites whose sequences are distinct from those found in activated targets. The type of HMG and Helper sites is sufficient to direct activation or repression of Wnt regulated cis-regulatory modules, and protease digestion studies suggest that TCF/Pangolin adopts distinct conformations when bound to either HMG-Helper site pair. This repressive mechanism occurs in the fly lymph gland, the larval hematopoietic organ, where Wnt/β-catenin signaling controls prohemocytic differentiation. Our study provides a paradigm for direct repression of target gene expression by Wnt/β-catenin signaling and allosteric regulation of a transcription factor by DNA.

  5. Histone methyltransferase Ash1L mediates activity-dependent repression of neurexin-1α

    PubMed Central

    Zhu, Τao; Liang, Chen; Li, Dongdong; Tian, Miaomiao; Liu, Sanxiong; Gao, Guanjun; Guan, Ji-Song

    2016-01-01

    Activity-dependent transcription is critical for the regulation of long-term synaptic plasticity and plastic rewiring in the brain. Here, we report that the transcription of neurexin1α (nrxn1α), a presynaptic adhesion molecule for synaptic formation, is regulated by transient neuronal activation. We showed that 10 minutes of firing at 50 Hz in neurons repressed the expression of nrxn1α for 24 hours in a primary cortical neuron culture through a transcriptional repression mechanism. By performing a screening assay using a synthetic zinc finger protein (ZFP) to pull down the proteins enriched near the nrxn1α promoter region in vivo, we identified that Ash1L, a histone methyltransferase, is enriched in the nrxn1α promoter. Neuronal activity triggered binding of Ash1L to the promoter and enriched the histone marker H3K36me2 at the nrxn1α promoter region. Knockout of Ash1L in mice completely abolished the activity-dependent repression of nrxn1α. Taken together, our results reveal that a novel process of activity-dependent transcriptional repression exists in neurons and that Ash1L mediates the long-term repression of nrxn1α, thus implicating an important role for epigenetic modification in brain functioning. PMID:27229316

  6. TOPLESS mediates brassinosteroid-induced transcriptional repression through interaction with BZR1.

    PubMed

    Oh, Eunkyoo; Zhu, Jia-Ying; Ryu, Hojin; Hwang, Ildoo; Wang, Zhi-Yong

    2014-06-18

    Brassinosteroid (BR) regulates plant development by activating the transcription factor brassinazole resistant 1 (BZR1), which activates and represses different target genes to switch cellular programmes. The mechanisms that determine BZR1's transcriptional activities remain largely unknown. Here we show that BZR1 represses target genes by recruiting the Groucho/TUP1-like transcriptional corepressor TOPLESS (TPL). Specific deletion or mutation of an evolutionarily conserved ERF-associated amphiphilic repression (EAR) motif at the carboxy terminus abolishes BZR1's abilities to regulate gene expression and cell elongation, but these defects are rescued by TPL fusion to the EAR motif-mutated BZR1. The EAR motif in BZR1 mediates recruitment of TPL to BZR1-repressed promoters. A triple tpl mutant (tpl;tpr1;tpr4) shows reduced BR sensitivity and suppresses the gain-of-function bzr1-1D mutant phenotype. BR repression of gene expression also requires histone deacetylases that interact with TPL. Our study demonstrates key roles of the EAR motif and TPL in BR regulation of gene expression and plant growth.

  7. NF-kappaB mediated transcriptional repression of acid modifying hormone gastrin.

    PubMed

    Datta De, Dipanjana; Datta, Arindam; Bhattacharjya, Sumana; Roychoudhury, Susanta

    2013-01-01

    Helicobacter pylori is a major pathogen associated with the development of gastroduodenal diseases. It has been reported that H. pylori induced pro-inflammatory cytokine IL1B is one of the various modulators of acid secretion in the gut. Earlier we reported that IL1B-activated NFkB down-regulates gastrin, the major hormonal regulator of acid secretion. In this study, the probable pathway by which IL1B induces NFkB and affects gastrin expression has been elucidated. IL1B-treated AGS cells showed nine-fold activation of MyD88 followed by phosphorylation of TAK1 within 15 min of IL1B treatment. Furthermore, it was observed that activated TAK1 significantly up-regulates the NFkB subunits p50 and p65. Ectopic expression of NFkB p65 in AGS cells resulted in about nine-fold transcriptional repression of gastrin both in the presence and absence of IL1B. The S536A mutant of NFkB p65 is significantly less effective in repressing gastrin. These observations show that a functional NFkB p65 is important for IL1B-mediated repression of gastrin. ChIP assays revealed the presence of HDAC1 and NFkB p65 along with NCoR on the gastrin promoter. Thus, the study provides mechanistic insight into the IL1B-mediated gastrin repression via NFkB.

  8. SUMO Modification Enhances p66-Mediated Transcriptional Repression of the Mi-2/NuRD Complex

    PubMed Central

    Gong, Zihua; Brackertz, Marc; Renkawitz, Rainer

    2006-01-01

    Human p66α and p66β are two potent transcriptional repressors that interact with the methyl-CpG-binding domain proteins MBD2 and MBD3. An analysis of the molecular mechanisms mediating repression resulted in the identification of two major repression domains in p66α and one in p66β. Both p66α and p66β are SUMO-modified in vivo: p66α at two sites (Lys-30 and Lys-487) and p66β at one site (Lys-33). Expression of SUMO1 enhanced the transcriptional repression activity of Gal-p66α and Gal-p66β. Mutation of the SUMO modification sites or using a SUMO1 mutant or a dominant negative Ubc9 ligase resulted in a significant decrease of the transcriptional repression of p66α and p66β. The Mi-2/NuRD components MBD3, RbAp46, RbAp48, and HDAC1 were found to bind to both p66α and p66β in vivo. Most of the interactions were not affected by the SUMO site mutations in p66α or p66β, with two exceptions. HDAC1 binding to p66α was lost in the case of a p66αK30R mutant, and RbAp46 binding was reduced in the case of a p66βK33R mutant. These results suggest that interactions within the Mi-2/NuRD complex as well as optimal repression are mediated by SUMOylation. PMID:16738318

  9. Inhibition of tumor cell growth by Sigma1 ligand mediated translational repression

    SciTech Connect

    Kim, Felix J.; Schrock, Joel M.; Spino, Christina M.; Marino, Jacqueline C.; Pasternak, Gavril W.

    2012-09-21

    Highlights: Black-Right-Pointing-Pointer Sigma1 ligand treatment mediates decrease in tumor cell mass. Black-Right-Pointing-Pointer Identification of a Sigma1 ligand with reversible translational repressor actions. Black-Right-Pointing-Pointer Demonstration of a role for Sigma1 in cellular protein synthesis. -- Abstract: Treatment with sigma1 receptor (Sigma1) ligands can inhibit cell proliferation in vitro and tumor growth in vivo. However, the cellular pathways engaged in response to Sigma1 ligand treatment that contribute to these outcomes remain largely undefined. Here, we show that treatment with putative antagonists of Sigma1 decreases cell mass. This effect corresponds with repressed cap-dependent translation initiation in multiple breast and prostate cancer cell lines. Sigma1 antagonist treatment suppresses phosphorylation of translational regulator proteins p70S6K, S6, and 4E-BP1. RNAi-mediated knockdown of Sigma1 also results in translational repression, consistent with the effects of antagonist treatment. Sigma1 antagonist mediated translational repression and decreased cell size are both reversible. Together, these data reveal a role for Sigma1 in tumor cell protein synthesis, and demonstrate that small molecule Sigma1 ligands can be used as modulators of protein translation.

  10. Biosynthesis of 15-deoxy-Δ12,14-PGJ2 and the ligation of PPARγ

    PubMed Central

    Bell-Parikh, L. Chastine; Ide, Tomomi; Lawson, John A.; McNamara, Peter; Reilly, Muredach; FitzGerald, Garret A.

    2003-01-01

    15-deoxy-Δ12,14-PGJ2 (15d-PGJ2) has been identified as an endogenous ligand for PPARγ, inducing adipogenesis in vitro. Additional roles for this molecule in the propagation and resolution of inflammation, ligation of NF-κB, and mediation of apoptosis have been proposed. However, quantitative, physiochemical evidence for the formation of 15d-PGJ2 in vivo is lacking. We report that 15d-PGJ2 is detectable using liquid chromatography–mass spectrometry–mass spectrometry at low picomolar concentrations in the medium of 3T3-L1 preadipocytes. However, despite induction of COX-2, production of PGs, including 15d-PGJ2, does not increase during adipocyte differentiation, a process unaltered by COX inhibition. 15d-PGJ2 is detectable as a minor product of COX-2 in human urine. However, its biosynthesis is unaltered during or after COX activation in vivo by LPS. Furthermore, the biosynthesis of 15d-PGJ2 is not augmented in the joint fluid of patients with arthritis, nor is its urinary excretion increased in patients with diabetes or obesity. 15d-PGJ2 is not the endogenous mediator of PPARγ-dependent adipocyte activation and is unaltered in clinical settings in which PPARγ activation has been implicated. PMID:12975479

  11. LEF1-mediated MMP13 gene expression is repressed by SIRT1 in human chondrocytes.

    PubMed

    Elayyan, Jinan; Lee, Eun-Jin; Gabay, Odile; Smith, Christopher A; Qiq, Omar; Reich, Eli; Mobasheri, Ali; Henrotin, Yves; Kimber, Susan J; Dvir-Ginzberg, Mona

    2017-04-07

    Reduced SIRT1 activity and levels during osteoarthritis (OA), promotes gradual loss of cartilage. Loss of cartilage matrix is accompanied by an increase in matrix metalloproteinase (MMP) 13, partially because of enhanced LEF1 transcriptional activity. In this study, we assessed the role of SIRT1 in LEF1-mediated MMP13 gene expression in human OA chondrocytes. Results showed that MMP13 protein levels and enzymatic activity decreased significantly during SIRT1 overexpression or activation by resveratrol. Conversely, MMP13 gene expression was reduced in chondrocytes transfected with SIRT1 siRNA or treated with nicotinamide (NAM), a sirtuin inhibitor. Chondrocytes challenged with IL-1β, a cytokine involved in OA pathogenesis, enhanced LEF1 protein levels, and gene expression, resulting in increased MMP13 gene expression; however, overexpression of SIRT1 during IL-1β challenge impeded LEF1 levels and MMP13 gene expression. Previous reports showed that LEF1 binds to the MMP13 promoter and transactivates its expression, but we observed that SIRT1 repressed LEF1 protein and mRNA expression, ultimately reducing LEF1 transcriptional activity, as judged by luciferase assay. Finally, mouse articular cartilage from Sirt1(-/-) presented increased LEF1 and MMP13 protein levels, similar to human OA cartilage. Thus, demonstrating for the first time that SIRT1 represses MMP13 in human OA chondrocytes, which appears to be mediated, at least in part, through repression of the transcription factor LEF1, a known modulator of MMP13 gene expression.-Elayyan, J. Lee, E.-J., Gabay, O., Smith, C. A., Qiq, O., Reich, E., Mobasheri, A., Henrotin, Y., Kimber, S. J., Dvir-Ginzberg, M. LEF1-mediated MMP13 gene expression is repressed by SIRT1 in human chondrocytes.

  12. 15-Deoxy-Δ12,14-prostaglandin J2 Induces Apoptosis and Upregulates SOCS3 in Human Thyroid Cancer Cells

    PubMed Central

    Trindade-da-Silva, Carlos Antônio; Reis, Carolina Fernandes; Vecchi, Lara; Napimoga, Marcelo Henrique; Sperandio, Marcelo; Matias Colombo, Bruna França; Alves, Patrícia Terra; Ward, Laura Sterian; Ueira-Vieira, Carlos; Goulart, Luiz Ricardo

    2016-01-01

    The cyclopentenone prostaglandin 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) is a natural ligand of peroxisome proliferator-activated receptor gamma (PPAR-γ) and a potential mediator of apoptosis in cancer cells. In the present study, we evaluated the effect of 15d-PGJ2 in human thyroid papillary carcinoma cells (TPC-1) using different doses of 15d-PGJ2 (0.6 to 20 μM) to determine IC50 (9.3 μM) via the MTT assay. The supernatant culture medium of the TPC-1 cells that was treated either with 15d-PGJ2 or with vehicle (control) for 24 hours was assessed for IL-6 secretion via CBA assay. RT-qPCR was used to evaluate mRNA expression of IL-6, SOCS1, SOCS3, and STAT3. TPC-1 cells treated with 15d-PGJ2 decreased the secretion and expression of IL-6 and STAT3, while it increased SOCS1 and SOCS3. Overall, we demonstrated that 15d-PGJ2 downregulated IL-6 signaling pathway and led TPC-1 cells into apoptosis. In conclusion, 15d-PGJ2 shows the potential to become a new therapeutic approach for thyroid tumors. PMID:27190500

  13. RNAi mediates post-transcriptional repression of gene expression in fission yeast Schizosaccharomyces pombe

    SciTech Connect

    Smialowska, Agata; Djupedal, Ingela; Wang, Jingwen; Kylsten, Per; Swoboda, Peter; Ekwall, Karl

    2014-02-07

    Highlights: • Protein coding genes accumulate anti-sense sRNAs in fission yeast S. pombe. • RNAi represses protein-coding genes in S. pombe. • RNAi-mediated gene repression is post-transcriptional. - Abstract: RNA interference (RNAi) is a gene silencing mechanism conserved from fungi to mammals. Small interfering RNAs are products and mediators of the RNAi pathway and act as specificity factors in recruiting effector complexes. The Schizosaccharomyces pombe genome encodes one of each of the core RNAi proteins, Dicer, Argonaute and RNA-dependent RNA polymerase (dcr1, ago1, rdp1). Even though the function of RNAi in heterochromatin assembly in S. pombe is established, its role in controlling gene expression is elusive. Here, we report the identification of small RNAs mapped anti-sense to protein coding genes in fission yeast. We demonstrate that these genes are up-regulated at the protein level in RNAi mutants, while their mRNA levels are not significantly changed. We show that the repression by RNAi is not a result of heterochromatin formation. Thus, we conclude that RNAi is involved in post-transcriptional gene silencing in S. pombe.

  14. A long noncoding RNA induced by TLRs mediates both activation and repression of immune response genes

    PubMed Central

    Carpenter, Susan; Atianand, Maninjay; Aiello, Daniel; Ricci, Emiliano; Gandhi, Pallavi; Hall, Lisa L.; Byron, Meg; Monks, Brian; Henry-Bezy, Meabh; O’Neill, Luke A.J; Lawrence, Jeanne B.; Moore, Melissa J.; Caffrey, Daniel R.; Fitzgerald, Katherine A.

    2015-01-01

    An inducible program of inflammatory gene expression is central to anti-microbial defenses. Signal-dependent activation of transcription factors, transcriptional co-regulators and chromatin modifying factors collaborate to control this response. Here we identify a long noncoding RNA that acts as a key regulator of this inflammatory response. Germline-encoded receptors such as the Toll-like receptors induce the expression of numerous lncRNAs. One of these, lincRNA-Cox2 mediates both the activation and repression of distinct classes of immune genes. Transcriptional repression of target genes is dependent on interactions of lincRNA-Cox2 with heterogeneous nuclear ribonucleoprotein A/B and A2/B1. Collectively, these studies unveil a central role of lincRNA-Cox2 as a broad acting regulatory component of the circuit that controls the inflammatory response. PMID:23907535

  15. JAZ8 lacks a canonical degron and has an EAR motif that mediates transcriptional repression of jasmonate responses in Arabidopsis.

    PubMed

    Shyu, Christine; Figueroa, Pablo; Depew, Cody L; Cooke, Thomas F; Sheard, Laura B; Moreno, Javier E; Katsir, Leron; Zheng, Ning; Browse, John; Howe, Gregg A

    2012-02-01

    The lipid-derived hormone jasmonoyl-L-Ile (JA-Ile) initiates large-scale changes in gene expression by stabilizing the interaction of JASMONATE ZIM domain (JAZ) repressors with the F-box protein CORONATINE INSENSITIVE1 (COI1), which results in JAZ degradation by the ubiquitin-proteasome pathway. Recent structural studies show that the JAZ1 degradation signal (degron) includes a short conserved LPIAR motif that seals JA-Ile in its binding pocket at the COI1-JAZ interface. Here, we show that Arabidopsis thaliana JAZ8 lacks this motif and thus is unable to associate strongly with COI1 in the presence of JA-Ile. As a consequence, JAZ8 is stabilized against jasmonate (JA)-mediated degradation and, when ectopically expressed in Arabidopsis, represses JA-regulated growth and defense responses. These findings indicate that sequence variation in a hypervariable region of the degron affects JAZ stability and JA-regulated physiological responses. We also show that JAZ8-mediated repression depends on an LxLxL-type EAR (for ERF-associated amphiphilic repression) motif at the JAZ8 N terminus that binds the corepressor TOPLESS and represses transcriptional activation. JAZ8-mediated repression does not require the ZIM domain, which, in other JAZ proteins, recruits TOPLESS through the EAR motif-containing adaptor protein NINJA. These findings show that EAR repression domains in a subgroup of JAZ proteins repress gene expression through direct recruitment of corepressors to cognate transcription factors.

  16. Widespread negative response elements mediate direct repression by agonist-liganded glucocorticoid receptor.

    PubMed

    Surjit, Milan; Ganti, Krishna Priya; Mukherji, Atish; Ye, Tao; Hua, Guoqiang; Metzger, Daniel; Li, Mei; Chambon, Pierre

    2011-04-15

    The glucocorticoid (GC) receptor (GR), when liganded to GC, activates transcription through direct binding to simple (+)GRE DNA binding sequences (DBS). GC-induced direct repression via GR binding to complex "negative" GREs (nGREs) has been reported. However, GR-mediated transrepression was generally ascribed to indirect "tethered" interaction with other DNA-bound factors. We report that GC-induces direct transrepression via the binding of GR to simple DBS (IR nGREs) unrelated to (+)GRE. These DBS act on agonist-liganded GR, promoting the assembly of cis-acting GR-SMRT/NCoR repressing complexes. IR nGREs are present in over 1000 mouse/human ortholog genes, which are repressed by GC in vivo. Thus variations in the levels of a single ligand can coordinately turn genes on or off depending in their response element DBS, allowing an additional level of regulation in GR signaling. This mechanism suits GR signaling remarkably well, given that adrenal secretion of GC fluctuates in a circadian and stress-related fashion.

  17. EZH2-mediated repression of Dkk1 promotes hepatic stellate cell activation and hepatic fibrosis.

    PubMed

    Yang, Yang; Chen, Xiao-Xia; Li, Wan-Xia; Wu, Xiao-Qin; Huang, Cheng; Xie, Juan; Zhao, Yu-Xin; Meng, Xiao-Ming; Li, Jun

    2017-03-23

    EZH2, a histone H3 lysine-27-specific methyltransferase, is involved in diverse physiological and pathological processes including cell proliferation and differentiation. However, the role of EZH2 in liver fibrosis is largely unknown. In this study, it was identified that EZH2 promoted Wnt pathway-stimulated fibroblasts in vitro and in vivo by repressing Dkk-1, which is a Wnt pathway antagonist. The expression of EZH2 was increased in CCl4 -induced rat liver and primary HSCs as well as TGF-β1-treated HSC-T6, whereas the expression of Dkk1 was reduced. Silencing of EZH2 prevented TGF-β1-induced proliferation of HSC-T6 cells and the expression of α-SMA. In addition, knockdown of Dkk1 promoted TGF-β1-induced activation of HSCs. Moreover, silencing of EZH2 could restore the repression of Dkk-1 through trimethylation of H3K27me3 in TGF-β1-treated HSC-T6 cells. Interestingly, inhibition of EZH2 had almost no effect on the activation of HSC when Dkk1 was silenced. Collectively, EZH2-mediated repression of Dkk1 promotes the activation of Wnt/β-catenin pathway, which is an essential event for HSC activation.

  18. Acute myeloid leukemia requires Hhex to enable PRC2-mediated epigenetic repression of Cdkn2a

    PubMed Central

    Shields, Benjamin J.; Jackson, Jacob T.; Metcalf, Donald; Shi, Wei; Huang, Qiutong; Garnham, Alexandra L.; Glaser, Stefan P.; Beck, Dominik; Pimanda, John E.; Bogue, Clifford W.; Smyth, Gordon K.; Alexander, Warren S.; McCormack, Matthew P.

    2016-01-01

    Unlike clustered HOX genes, the role of nonclustered homeobox gene family members in hematopoiesis and leukemogenesis has not been extensively studied. Here we found that the hematopoietically expressed homeobox gene Hhex is overexpressed in acute myeloid leukemia (AML) and is essential for the initiation and propagation of MLL-ENL-induced AML but dispensable for normal myelopoiesis, indicating a specific requirement for Hhex for leukemic growth. Loss of Hhex leads to expression of the Cdkn2a-encoded tumor suppressors p16INK4a and p19ARF, which are required for growth arrest and myeloid differentiation following Hhex deletion. Mechanistically, we show that Hhex binds to the Cdkn2a locus and directly interacts with the Polycomb-repressive complex 2 (PRC2) to enable H3K27me3-mediated epigenetic repression. Thus, Hhex is a potential therapeutic target that is specifically required for AML stem cells to repress tumor suppressor pathways and enable continued self-renewal. PMID:26728554

  19. EAR motif-mediated transcriptional repression in plants: an underlying mechanism for epigenetic regulation of gene expression.

    PubMed

    Kagale, Sateesh; Rozwadowski, Kevin

    2011-02-01

    Ethylene-responsive element binding factor-associated Amphiphilic Repression (EAR) motif-mediated transcriptional repression is emerging as one of the principal mechanisms of plant gene regulation. The EAR motif, defined by the consensus sequence patterns of either LxLxL or DLNxxP, is the most predominant form of transcriptional repression motif so far identified in plants. Additionally, this active repression motif is highly conserved in transcriptional regulators known to function as negative regulators in a broad range of developmental and physiological processes across evolutionarily diverse plant species. Recent discoveries of co-repressors interacting with EAR motifs, such as TOPLESS (TPL) and AtSAP18, have begun to unravel the mechanisms of EAR motif-mediated repression. The demonstration of genetic interaction between mutants of TPL and AtHDA19, co-complex formation between TPL-related 1 (TPR1) and AtHDA19, as well as direct physical interaction between AtSAP18 and AtHDA19 support a model where EAR repressors, via recruitment of chromatin remodeling factors, facilitate epigenetic regulation of gene expression. Here, we discuss the biological significance of EAR-mediated gene regulation in the broader context of plant biology and present literature evidence in support of a model for EAR motif-mediated repression via the recruitment and action of chromatin modifiers. Additionally, we discuss the possible influences of phosphorylation and ubiquitination on the function and turnover of EAR repressors.

  20. ATM mediates repression of DNA end-degradation in an ATP-dependent manner.

    PubMed

    Rahal, Elias A; Henricksen, Leigh A; Li, Yuling; Turchi, John J; Pawelczak, Katherine S; Dixon, Kathleen

    2008-03-01

    Ataxia telangiectasia mutated (ATM) is a PI3-kinase-like kinase (PIKK) associated with DNA double-strand break (DSB) repair and cell cycle control. We have previously reported comparable efficiencies of DSB repair in nuclear extracts from both ATM deficient (A-T) and control (ATM+) cells; however, the repair products from the A-T nuclear extracts contained deletions encompassing longer stretches of DNA compared to controls. These deletions appeared to result from end-joining at sites of microhomology. These data suggest that ATM hinders error-prone repair pathways that depend on degradation of DNA ends at a break. Such degradation may account for the longer deletions we formerly observed in A-T cell extracts. To address this possibility we assessed the degradation of DNA duplex substrates in A-T and control nuclear extracts under DSB repair conditions. We observed a marked shift in signal intensity from full-length products to shorter products in A-T nuclear extracts, and addition of purified ATM to A-T nuclear extracts restored full-length product detection. This repression of degradation by ATM was both ATP-dependent and inhibited by the PIKK inhibitors wortmannin and caffeine. Addition of pre-phosphorylated ATM to an A-T nuclear extract in the presence of PIKK inhibitors was insufficient in repressing degradation, indicating that kinase activities are required. These results demonstrate a role for ATM in preventing the degradation of DNA ends possibly through repressing nucleases implicated in microhomology-mediated end-joining.

  1. SAFB1 Mediates Repression of Immune Regulators and Apoptotic Genes in Breast Cancer Cells*

    PubMed Central

    Hammerich-Hille, Stephanie; Kaipparettu, Benny A.; Tsimelzon, Anna; Creighton, Chad J.; Jiang, Shiming; Polo, Jose M.; Melnick, Ari; Meyer, Rene; Oesterreich, Steffi

    2010-01-01

    The scaffold attachment factors SAFB1 and SAFB2 are paralogs, which are involved in cell cycle regulation, apoptosis, differentiation, and stress response. They have been shown to function as estrogen receptor corepressors, and there is evidence for a role in breast tumorigenesis. To identify their endogenous target genes in MCF-7 breast cancer cells, we utilized a combined approach of chromatin immunoprecipitation (ChIP)-on-chip and gene expression array studies. By performing ChIP-on-chip on microarrays containing 24,000 promoters, we identified 541 SAFB1/SAFB2-binding sites in promoters of known genes, with significant enrichment on chromosomes 1 and 6. Gene expression analysis revealed that the majority of target genes were induced in the absence of SAFB1 or SAFB2 and less were repressed. Interestingly, there was no significant overlap between the genes identified by ChIP-on-chip and gene expression array analysis, suggesting regulation through regions outside the proximal promoters. In contrast to SAFB2, which shared most of its target genes with SAFB1, SAFB1 had many unique target genes, most of them involved in the regulation of the immune system. A subsequent analysis of the estrogen treatment group revealed that 12% of estrogen-regulated genes were dependent on SAFB1, with the majority being estrogen-repressed genes. These were primarily genes involved in apoptosis, such as BBC3, NEDD9, and OPG. Thus, this study confirms the primary role of SAFB1/SAFB2 as corepressors and also uncovers a previously unknown role for SAFB1 in the regulation of immune genes and in estrogen-mediated repression of genes. PMID:19901029

  2. The Paf1 complex represses small RNA-mediated epigenetic gene silencing

    PubMed Central

    Flury, Valentin; Stadler, Michael Beda; Batki, Julia; Bühler, Marc

    2015-01-01

    RNA interference (RNAi) refers to the ability of exogenously introduced double-stranded RNA (dsRNA) to silence expression of homologous sequences. Silencing is initiated when the enzyme Dicer processes the dsRNA into small interfering RNAs (siRNAs). Small RNA molecules are incorporated into Argonaute protein-containing effector complexes, which they guide to complementary targets to mediate different types of gene silencing, specifically post-transcriptional gene silencing (PTGS) and chromatin-dependent gene silencing1. Although endogenous small RNAs play critical roles in chromatin-mediated processes across kingdoms, efforts to initiate chromatin modifications in trans by using siRNAs have been inherently difficult to achieve in all eukaryotic cells. Using fission yeast, we show that RNAi-directed heterochromatin formation is negatively controlled by the highly conserved RNA polymerase-associated factor 1 complex (Paf1C). Temporary expression of a synthetic hairpin RNA in Paf1C mutants triggers stable heterochromatin formation at homologous loci, effectively silencing genes in trans. This repressed state is propagated across generations by continual production of secondary siRNAs, independently of the synthetic hairpin RNA. Our data support a model where Paf1C prevents targeting of nascent transcripts by the siRNA-containing RNA-induced transcriptional silencing (RITS) complex and thereby epigenetic gene silencing, by promoting efficient transcription termination and rapid release of the RNA from the site of transcription. We show that although compromised transcription termination is sufficient to initiate the formation of bi-stable heterochromatin by trans-acting siRNAs, impairment of both transcription termination and nascent transcript release is imperative to confer stability to the repressed state. Our work uncovers a novel mechanism for small RNA- mediated epigenome regulation and highlights fundamental roles for Paf1C and the RNAi machinery in building

  3. Anchoring of Heterochromatin to the Nuclear Lamina Reinforces Dosage Compensation-Mediated Gene Repression

    PubMed Central

    Brouhard, Elizabeth A.; Jiang, Jianhao; Sifuentes, Margarita H.

    2016-01-01

    Higher order chromosome structure and nuclear architecture can have profound effects on gene regulation. We analyzed how compartmentalizing the genome by tethering heterochromatic regions to the nuclear lamina affects dosage compensation in the nematode C. elegans. In this organism, the dosage compensation complex (DCC) binds both X chromosomes of hermaphrodites to repress transcription two-fold, thus balancing gene expression between XX hermaphrodites and XO males. X chromosome structure is disrupted by mutations in DCC subunits. Using X chromosome paint fluorescence microscopy, we found that X chromosome structure and subnuclear localization are also disrupted when the mechanisms that anchor heterochromatin to the nuclear lamina are defective. Strikingly, the heterochromatic left end of the X chromosome is less affected than the gene-rich middle region, which lacks heterochromatic anchors. These changes in X chromosome structure and subnuclear localization are accompanied by small, but significant levels of derepression of X-linked genes as measured by RNA-seq, without any observable defects in DCC localization and DCC-mediated changes in histone modifications. We propose a model in which heterochromatic tethers on the left arm of the X cooperate with the DCC to compact and peripherally relocate the X chromosomes, contributing to gene repression. PMID:27690361

  4. Antisense-mediated FLC transcriptional repression requires the P-TEFb transcription elongation factor

    PubMed Central

    Wang, Zhi-Wei; Wu, Zhe; Raitskin, Oleg; Sun, Qianwen; Dean, Caroline

    2014-01-01

    The functional significance of noncoding transcripts is currently a major question in biology. We have been studying the function of a set of antisense transcripts called COOLAIR that encompass the whole transcription unit of the Arabidopsis floral repressor FLOWERING LOCUS C (FLC). Alternative polyadenylation of COOLAIR transcripts correlates with different FLC sense expression states. Suppressor mutagenesis aimed at understanding the importance of this sense–antisense transcriptional circuitry has identified a role for Arabidopsis cyclin-dependent kinase C (CDKC;2) in FLC repression. CDKC;2 functions in an Arabidopsis positive transcription elongation factor b (P-TEFb) complex and influences global RNA polymerase II (Pol II) Ser2 phosphorylation levels. CDKC;2 activity directly promotes COOLAIR transcription but does not affect an FLC transgene missing the COOLAIR promoter. In the endogenous gene context, however, the reduction of COOLAIR transcription by cdkc;2 disrupts a COOLAIR-mediated repression mechanism that increases FLC expression. This disruption then feeds back to indirectly increase COOLAIR expression. This tight interconnection between sense and antisense transcription, together with differential promoter sensitivity to P-TEFb, is central to quantitative regulation of this important floral repressor gene. PMID:24799695

  5. Gene induction and repression during terminal erythropoiesis are mediated by distinct epigenetic changes.

    PubMed

    Wong, Piu; Hattangadi, Shilpa M; Cheng, Albert W; Frampton, Garrett M; Young, Richard A; Lodish, Harvey F

    2011-10-20

    It is unclear how epigenetic changes regulate the induction of erythroid-specific genes during terminal erythropoiesis. Here we use global mRNA sequencing (mRNA-seq) and chromatin immunoprecipitation coupled to high-throughput sequencing (CHIP-seq) to investigate the changes that occur in mRNA levels, RNA polymerase II (Pol II) occupancy, and multiple posttranslational histone modifications when erythroid progenitors differentiate into late erythroblasts. Among genes induced during this developmental transition, there was an increase in the occupancy of Pol II, the activation marks H3K4me2, H3K4me3, H3K9Ac, and H4K16Ac, and the elongation methylation mark H3K79me2. In contrast, genes that were repressed during differentiation showed relative decreases in H3K79me2 levels yet had levels of Pol II binding and active histone marks similar to those in erythroid progenitors. We also found that relative changes in histone modification levels, in particular, H3K79me2 and H4K16ac, were most predictive of gene expression patterns. Our results suggest that in terminal erythropoiesis both promoter and elongation-associated marks contribute to the induction of erythroid genes, whereas gene repression is marked by changes in histone modifications mediating Pol II elongation. Our data map the epigenetic landscape of terminal erythropoiesis and suggest that control of transcription elongation regulates gene expression during terminal erythroid differentiation.

  6. Functional Association between Eyegone and HP1a Mediates wingless Transcriptional Repression during Development

    PubMed Central

    Salvany, Lara; Requena, David

    2012-01-01

    The eyegone (eyg) gene encodes Eyg, a transcription factor of the Pax family with multiple roles during Drosophila development. Although Eyg has been shown to act as a repressor, nothing is known about the mechanism by which it represses its target genes. Here, we show that Eyg forms a protein complex with heterochromatin protein 1a (HP1a). Both proteins bind to the same chromatin regions on polytene chromosomes and act cooperatively to suppress variegation and mediate gene silencing. In addition, Eyg binds to a wingless (wg) enhancer region, recruiting HP1a to assemble a closed, heterochromatin-like conformation that represses transcription of the wg gene. We describe here the evidence that suggests that Eyg, encoded by eyegone (eyg), represses wingless (wg) during eye development by association with HP1a. We show that Eyg forms a protein complex with HP1a and both proteins colocalize on salivary gland polytene chromosomes. Using position effect variegation (PEV) experiments, we demonstrated that eyg has a dose-dependent effect on heterochromatin gene silencing and identified a genetic interaction with HP1a in this process. We further demonstrated that HP1a binds to the same wg enhancer element as Eyg. DNase I sensitivity assays indicated that this enhancer region has a closed heterochromatin-like conformation, which becomes open in eyg mutants. In these mutants, much less HP1a binds to the wg enhancer region, as shown by ChIP experiments. Furthermore, as previously described for Eyg, a reduction in the amount of HP1a in the eye imaginal disc derepresses wg. Together, our results suggest a model in which Eyg specifically binds to the wg enhancer region, recruiting HP1a to that site. The recruitment of HP1a prevents transcription by favoring a closed, heterochromatin-like structure. Thus, for the first time, we show that HP1a plays a direct role in the repression of a developmentally regulated gene, wg, during Drosophila eye development. PMID:22547675

  7. The cyclopentenone 15-deoxy-Δ12,14-prostaglandin J2 binds to and activates H-Ras

    PubMed Central

    Oliva, José Luis; Pérez-Sala, Dolores; Castrillo, Antonio; Martínez, Natalia; Cañada, F. Javier; Boscá, Lisardo; Rojas, José M.

    2003-01-01

    The cyclopentenone 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) induces cell proliferation and mitogen-activated protein kinase activation. Here, we describe that these effects are mediated by 15d-PGJ2-elicited H-Ras activation. We demonstrate that this pathway is specific for H-Ras through the formation of a covalent adduct of 15d-PGJ2 with Cys-184 of H-Ras, but not with N-Ras or K-Ras. Mutation of C184 inhibited H-Ras modification and activation by 15d-PGJ2, whereas serum-elicited stimulation was not affected. These results describe a mechanism for the activation of the Ras signaling pathway, which results from the chemical modification of H-Ras by formation of a covalent adduct with cyclopentenone prostaglandins. PMID:12684535

  8. Glucocorticoid receptor and histone deacetylase-2 mediate dexamethasone-induced repression of MUC5AC gene expression.

    PubMed

    Chen, Yajun; Watson, Alan M; Williamson, Chad D; Rahimi, Michael; Liang, Chong; Colberg-Poley, Anamaris M; Rose, Mary C

    2012-11-01

    Airway occlusion in obstructive airway diseases is caused in part by the overproduction of secretory mucin glycoproteins through the up-regulation of mucin (MUC) genes by inflammatory mediators. Some pharmacological agents, including the glucocorticoid dexamethasone (Dex), repress mucin concentrations in lung epithelial cancer cells. Here, we show that Dex reduces the expression of MUC5AC, a major airway mucin gene, in primary differentiated normal human bronchial epithelial (NHBE) cells in a dose-dependent and time-dependent manner, and that the Dex-induced repression is mediated by the glucocorticoid receptor (GR) and two glucocorticoid response elements (GREs) in the MUC5AC promoter. The pre-exposure of cells to RU486, a GR antagonist, and mutations in either the GRE3 or GRE5 cis-sites abolished the Dex-induced repression. Chromatin immunoprecipitation (ChIP) assays showed a rapid temporal recruitment of GR to the GRE3 and GRE5 cis-elements in the MUC5AC promoter in NHBE and in A549 cells. Immunofluorescence showed nuclear colocalization of GR and histone deacetylase-2 (HDAC2) in MUC5AC-expressing NHBE cells. ChIP also showed a rapid temporal recruitment of HDAC2 to the GRE3 and GRE5 cis-elements in the MUC5AC promoter in both cell types. The knockdown of HDAC2 by HDAC2-specific short interfering RNA prevented the Dex-induced repression of MUC5AC in NHBE and A549 cells. These data demonstrate that GR and HDAC2 are recruited to the GRE3 and GRE5 cis-sites in the MUC5AC promoter and mediate the Dex-induced cis repression of MUC5AC gene expression. A better understanding of the mechanisms whereby glucocorticoids repress MUC5AC gene expression may be useful in formulating therapeutic interventions in chronic lung diseases.

  9. Repression of retrovirus-mediated transgene expression by interferons: implications for gene therapy.

    PubMed Central

    Ghazizadeh, S; Carroll, J M; Taichman, L B

    1997-01-01

    Retrovirus-mediated gene transfer is commonly used in gene therapy protocols and has the potential to provide long-term expression of the transgene. Although expression of a retrovirus-delivered transgene is satisfactory in cultured cells, it has been difficult to achieve consistent and high-level expression in vivo. In this investigation, we explored the possibility of modulating transgene expression by host-derived cytokines. Normal human keratinocytes and dermal fibroblasts were transduced with recombinant retroviruses expressing a reporter gene (lacZ). Treatment of transduced cells with a proinflammatory cytokine, gamma interferon (IFN-gamma), significantly reduced lacZ expression to less than 25% of that of nontreated cells. The inhibition was concentration dependent (peak at 5 ng/ml) and time dependent (maximal at 16 h for transcript and 24 h for protein); expression remained repressed in the continued presence of IFN-gamma but returned to normal levels 24 h after IFN-gamma withdrawal. The decrease in beta-galactosidase activity appeared to result from decrease in steady-state lacZ mRNA levels. Inhibitors of transcription and translation blocked IFN-gamma-induced repression, suggesting involvement of newly synthesized protein intermediates. Similar results were obtained by treatment of transduced cells with IFN-alpha but not with other proinflammatory cytokines, including tumor necrosis factor alpha, interleukin-2 (IL-1), IL-4, and granulocyte colony-stimulating factor. Although the level of lacZ mRNA was reduced by >70% following IFN treatment, the rate of lacZ transcription was not significantly different from that for nontreated cells. These results suggest that IFN-mediated regulation of transgene expression is at a posttranscriptional level. Interestingly, IFN-gamma also suppressed transgene expression driven by a cellular promoter (involucrin) inserted in an internal position in the retroviral vector. The presence of the overlapping 3' untranslated

  10. 15-Deoxy-Δ(12,14)-prostaglandin J2 exerts pro- and anti-inflammatory effects in mesangial cells in a concentration-dependent manner.

    PubMed

    Martínez, Alma E; Sánchez-Gómez, Francisco J; Díez-Dacal, Beatriz; Oeste, Clara L; Pérez-Sala, Dolores

    2012-02-01

    Cyclopentenone prostaglandins play a modulatory role in inflammation, in part through their ability to covalently modify key proinflammatory proteins. Using mesangial cells as a cellular model of inflammation we have observed that 15-deoxy-Δ(12,14)-prostaglandin J(2) (15d-PGJ(2)) exerts a biphasic effect on cell activation by cytokines, with nanomolar concentrations eliciting an amplification of nitric oxide (NO) production and iNOS and COX-2 levels, and concentrations of 5 μM and higher inhibiting proinflammatory gene expression. An analog of 15d-PGJ(2) lacking the cyclopentenone structure (9,10-dihydro-15d-PGJ(2)) showed reduced ability to elicit both types of effects, suggesting that the electrophilic nature of 15d-PGJ(2) is important for its biphasic action. Interestingly, the switch from stimulatory to inhibitory actions occurred within a narrow concentration range and correlated with the ability of 15d-PGJ(2) to induce heme oxygenase 1 and γ-GCSm expression. These events are highly dependent on the triggering of the antioxidant response, which is considered as a sensor of thiol group modification. Indeed, the levels of the master regulator of the antioxidant response Nrf2 increased upon treatment with concentrations of 15d-PGJ(2) above 5 μM, an effect that could not be mimicked by 9,10-dihydro-15d-PGJ(2). Thus, an interplay of redox and electrophilic signalling mechanisms can be envisaged by which 15d-PGJ(2), as several other redox mediators, could contribute both to the onset and to the resolution of inflammation in a context or concentration-dependent manner.

  11. The Stress Response Mediator ATF3 Represses Androgen Signaling by Binding the Androgen Receptor

    PubMed Central

    Wang, Hongbo; Jiang, Ming; Cui, Hongmei; Chen, Mengqian; Buttyan, Ralph; Hayward, Simon W.; Hai, Tsonwin; Wang, Zhengxin

    2012-01-01

    Activating transcription factor 3 (ATF3) is a common mediator of cellular stress response signaling and is often aberrantly expressed in prostate cancer. We report here that ATF3 can directly bind the androgen receptor (AR) and consequently repress AR-mediated gene expression. The ATF3-AR interaction requires the leucine zipper domain of ATF3 that independently binds the DNA-binding and ligand-binding domains of AR, and the interaction prevents AR from binding to cis-acting elements required for expression of androgen-dependent genes while inhibiting the AR N- and C-terminal interaction. The functional consequences of the loss of ATF3 expression include increased transcription of androgen-dependent genes in prostate cancer cells that correlates with increased ability to grow in low-androgen-containing medium and increased proliferative activity of the prostate epithelium in ATF3 knockout mice that is associated with prostatic hyperplasia. Our results thus demonstrate that ATF3 is a novel repressor of androgen signaling that can inhibit AR functions, allowing prostate cells to restore homeostasis and maintain integrity in the face of a broad spectrum of intrinsic and environmental insults. PMID:22665497

  12. STAT4-mediated transcriptional repression of the IL5 gene in human memory Th2 cells.

    PubMed

    Gonzales-van Horn, Sarah R; Estrada, Leonardo D; van Oers, Nicolai S C; Farrar, J David

    2016-06-01

    Type I interferon (IFN-α/β) plays a critical role in suppressing viral replication by driving the transcription of hundreds of interferon-sensitive genes (ISGs). While many ISGs are transcriptionally activated by the ISGF3 complex, the significance of other signaling intermediates in IFN-α/β-mediated gene regulation remains elusive, particularly in rare cases of gene silencing. In human Th2 cells, IFN-α/β signaling suppressed IL5 and IL13 mRNA expression during recall responses to T-cell receptor (TCR) activation. This suppression occurred through a rapid reduction in the rate of nascent transcription, independent of de novo expression of ISGs. Further, IFN-α/β-mediated STAT4 activation was required for repressing the human IL5 gene, and disrupting STAT4 dimerization reversed this effect. This is the first demonstration of STAT4 acting as a transcriptional repressor in response to IFN-α/β signaling and highlights the unique activity of this cytokine to acutely block the expression of an inflammatory cytokine in human T cells.

  13. miRNA-mediated auxin signalling repression during Vat-mediated aphid resistance in Cucumis melo.

    PubMed

    Sattar, Sampurna; Addo-Quaye, Charles; Thompson, Gary A

    2016-06-01

    Resistance to Aphis gossypii in melon is attributed to the presence of the single dominant R gene virus aphid transmission (Vat), which is biologically expressed as antibiosis, antixenosis and tolerance. However, the mechanism of resistance is poorly understood at the molecular level. Aphid-induced transcriptional changes, including differentially expressed miRNA profiles that correspond to resistance interaction have been reported in melon. The potential regulatory roles of miRNAs in Vat-mediated aphid resistance were further revealed by identifying the specific miRNA degradation targets. A total of 70 miRNA:target pairs, including 28 novel miRNA:target pairs, for the differentially expressed miRNAs were identified: 11 were associated with phytohormone regulation, including six miRNAs that potentially regulate auxin interactions. A model for a redundant regulatory system of miRNA-mediated auxin insensitivity is proposed that incorporates auxin perception, auxin modification and auxin-regulated transcription. Chemically inhibiting the transport inhibitor response-1 (TIR-1) auxin receptor in susceptible melon tissues provides in vivo support for the model of auxin-mediated impacts on A. gossypii resistance.

  14. ChREBP mediates glucose repression of peroxisome proliferator-activated receptor alpha expression in pancreatic beta-cells.

    PubMed

    Boergesen, Michael; Poulsen, Lars la Cour; Schmidt, Søren Fisker; Frigerio, Francesca; Maechler, Pierre; Mandrup, Susanne

    2011-04-15

    Chronic exposure to elevated levels of glucose and fatty acids leads to dysfunction of pancreatic β-cells by mechanisms that are only partly understood. The transcription factor peroxisome proliferator-activated receptor α (PPARα) is an important regulator of genes involved in fatty acid metabolism and has been shown to protect against lipid-induced β-cell dysfunction. We and others have previously shown that expression of the PPARα gene in β-cells is rapidly repressed by glucose. Here we show that the PPARα gene is transcribed from five alternative transcription start sites, resulting in three alternative first exons that are spliced to exon 2. Expression of all PPARα transcripts is repressed by glucose both in insulinoma cells and in isolated pancreatic islets. The observation that the dynamics of glucose repression of PPARα transcription are very similar to those of glucose activation of target genes by the carbohydrate response element-binding protein (ChREBP) prompted us to investigate the potential role of ChREBP in the regulation of PPARα expression. We show that a constitutively active ChREBP lacking the N-terminal domain efficiently represses PPARα expression in insulinoma cells and in rodent and human islets. In addition, we demonstrate that siRNA-mediated knockdown of ChREBP abrogates glucose repression of PPARα expression as well as induction of well established ChREBP target genes in insulinoma cells. In conclusion, this work shows that ChREBP is a critical and direct mediator of glucose repression of PPARα gene expression in pancreatic β-cells, suggesting that ChREBP may be important for glucose suppression of the fatty acid oxidation capacity of β-cells.

  15. Id2 complexes with the SNAG domain of Snai1 inhibiting Snai1-mediated repression of integrin β4.

    PubMed

    Chang, Cheng; Yang, Xiaofang; Pursell, Bryan; Mercurio, Arthur M

    2013-10-01

    The epithelial-mesenchymal transition (EMT) is a fundamental process that underlies development and cancer. Although the EMT involves alterations in the expression of specific integrins that mediate stable adhesion to the basement membrane, such as α6β4, the mechanisms involved are poorly understood. Here, we report that Snai1 inhibits β4 transcription by increasing repressive histone modification (trimethylation of histone H3 at K27 [H3K27Me3]). Surprisingly, Snai1 is expressed and localized in the nucleus in epithelial cells, but it does not repress β4. We resolved this paradox by discovering that Id2 complexes with the SNAG domain of Snai1 on the β4 promoter and constrains the repressive function of Snai1. Disruption of the complex by depleting Id2 resulted in Snai1-mediated β4 repression with a concomitant increase in H3K27Me3 modification on the β4 promoter. These findings establish a novel function for Id2 in regulating Snai1 that has significant implications for the regulation of epithelial gene expression.

  16. CRISPR-ERA: a comprehensive design tool for CRISPR-mediated gene editing, repression and activation

    PubMed Central

    Liu, Honglei; Wei, Zheng; Dominguez, Antonia; Li, Yanda; Wang, Xiaowo; Qi, Lei S.

    2015-01-01

    Summary: The CRISPR/Cas9 system was recently developed as a powerful and flexible technology for targeted genome engineering, including genome editing (altering the genetic sequence) and gene regulation (without altering the genetic sequence). These applications require the design of single guide RNAs (sgRNAs) that are efficient and specific. However, this remains challenging, as it requires the consideration of many criteria. Several sgRNA design tools have been developed for gene editing, but currently there is no tool for the design of sgRNAs for gene regulation. With accumulating experimental data on the use of CRISPR/Cas9 for gene editing and regulation, we implement a comprehensive computational tool based on a set of sgRNA design rules summarized from these published reports. We report a genome-wide sgRNA design tool and provide an online website for predicting sgRNAs that are efficient and specific. We name the tool CRISPR-ERA, for clustered regularly interspaced short palindromic repeat-mediated editing, repression, and activation (ERA). Availability and implementation: http://CRISPR-ERA.stanford.edu. Contact: stanley.qi@stanford.edu or xwwang@tsinghua.edu.cn Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26209430

  17. Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation

    PubMed Central

    Horlbeck, Max A; Gilbert, Luke A; Villalta, Jacqueline E; Adamson, Britt; Pak, Ryan A; Chen, Yuwen; Fields, Alexander P; Park, Chong Yon; Corn, Jacob E; Kampmann, Martin; Weissman, Jonathan S

    2016-01-01

    We recently found that nucleosomes directly block access of CRISPR/Cas9 to DNA (Horlbeck et al., 2016). Here, we build on this observation with a comprehensive algorithm that incorporates chromatin, position, and sequence features to accurately predict highly effective single guide RNAs (sgRNAs) for targeting nuclease-dead Cas9-mediated transcriptional repression (CRISPRi) and activation (CRISPRa). We use this algorithm to design next-generation genome-scale CRISPRi and CRISPRa libraries targeting human and mouse genomes. A CRISPRi screen for essential genes in K562 cells demonstrates that the large majority of sgRNAs are highly active. We also find CRISPRi does not exhibit any detectable non-specific toxicity recently observed with CRISPR nuclease approaches. Precision-recall analysis shows that we detect over 90% of essential genes with minimal false positives using a compact 5 sgRNA/gene library. Our results establish CRISPRi and CRISPRa as premier tools for loss- or gain-of-function studies and provide a general strategy for identifying Cas9 target sites. DOI: http://dx.doi.org/10.7554/eLife.19760.001 PMID:27661255

  18. Cross-talk between TLR4 and PPARγ pathways in the arachidonic acid-induced inflammatory response in pancreatic acini.

    PubMed

    Mateu, A; Ramudo, L; Manso, M A; De Dios, I

    2015-12-01

    Arachidonic acid (AA) is generally associated with inflammation in different settings. We assess the molecular mechanisms involved in the inflammatory response exerted by AA on pancreatic acini as an approach to acute pancreatitis (AP). Celecoxib (COX-2 inhibitor), TAK-242 (TLR4 inhibitor) and 15d-PGJ2 (PPARγ agonist) were used to ascertain the signaling pathways. In addition, we examine the effects of TAK-242 and 15d-PGJ2 on AP induced in rats by bile-pancreatic duct obstruction (BPDO). To carry out in vitro studies, acini were isolated from pancreas of control rats. Generation of PGE2 and TXB2, activation of pro-inflammatory pathways (MAPKs, NF-κB, and JAK/STAT3) and overexpression of CCL2 and P-selectin was found in AA-treated acini. In addition, AA up-regulated TLR4 and down-regulated PPARγ expression. Celecoxib prevented the up-regulation of CCL2 and P-selectin but did not show any effect on the AA-mediated changes in TLR4 and PPARγ expression. TAK-242, reduced the generation of AA metabolites and repressed both the cascade of pro-inflammatory events which led to CCL2 and P-selectin overexpression as well as the AA-induced PPARγ down-regulation. Thus, TLR4 acts as upstream activating pro-inflammatory and inhibiting anti-inflammatory pathways. 15d-PGJ2 down-regulated TLR4 expression and hence prevented the synthesis of AA metabolites and the inflammatory response mediated by them. Reciprocal negative cross-talk between TLR4 and PPARγ pathways is evidenced. In vivo experiments showed that TAK-242 and 15d-PGJ2 treatments reduced the inflammatory response in BPDO-induced AP. We conclude that through TLR4-dependent mechanisms, AA up-regulated CCL2 and P-selectin in pancreatic acini, partly mediated by the generation of PGE2 and TXB2, which activated pro-inflammatory pathways, but also directly by down-regulating PPARγ expression with anti-inflammatory activity. In vitro and in vivo studies support the role of TLR4 in AP and the use of TLR4 inhibitors and

  19. Ligand-induced repression of the glucocorticoid receptor gene is mediated by an NCoR1 repression complex formed by long-range chromatin interactions with intragenic glucocorticoid response elements.

    PubMed

    Ramamoorthy, Sivapriya; Cidlowski, John A

    2013-05-01

    Glucocorticoids are among the most potent and effective agents for treating inflammatory diseases and hematological cancers. However, subpopulations of patients are often resistant to steroid therapy, and determining the molecular mechanisms that contribute to glucocorticoid resistance is thus critical to addressing this clinical problem affecting patients with chronic inflammatory disorders. Since the cellular level of the glucocorticoid receptor (GR) is a critical determinant of glucocorticoid sensitivity and resistance, we investigated the molecular mechanisms mediating repression of glucocorticoid receptor gene expression. We show here that glucocorticoid-induced repression of GR gene expression is mediated by inhibition of transcription initiation. This process is orchestrated by the recruitment of agonist-bound GR to exon 6, followed by the assembly of a GR-NCoR1-histone deacetylase 3-containing repression complex at the transcriptional start site of the GR gene. A functional negative glucocorticoid response element (nGRE) in exon 6 of the GR gene and a long-range interaction occurring between this intragenic response element and the transcription start site appear to be instrumental in this repression. This autoregulatory mechanism of repression implies that the GR concentration can coordinate repression with excess ligand, regardless of the combinatorial associations of tissue-specific transcription factors. Consequently, the chronic nature of inflammatory conditions involving long-term glucocorticoid administration may lead to constitutive repression of GR gene transcription and thus to glucocorticoid resistance.

  20. Borna Disease Virus Phosphoprotein Represses p53-Mediated Transcriptional Activity by Interference with HMGB1

    PubMed Central

    Zhang, Guoqi; Kobayashi, Takeshi; Kamitani, Wataru; Komoto, Satoshi; Yamashita, Makiko; Baba, Satoko; Yanai, Hideyuki; Ikuta, Kazuyoshi; Tomonaga, Keizo

    2003-01-01

    Borna disease virus (BDV) is a noncytolytic, neurotropic RNA virus that has a broad host range in warm-blooded animals, probably including humans. Recently, it was demonstrated that a 24-kDa phosphoprotein (P) of BDV directly binds to a multifunctional protein, amphoterin-HMGB1, and inhibits its function in cultured neural cells (W. Kamitani, Y. Shoya, T. Kobayashi, M. Watanabe, B. J. Lee, G. Zhang, K. Tomonaga, and K. Ikuta, J. Virol. 75:8742-8751, 2001). This observation suggested that expression of BDV P may cause deleterious effects in cellular functions by interference with HMGB1. In this study, we further investigated the significance of the binding between P and HMGB1. We demonstrated that P directly binds to the A-box domain on HMGB1, which is also responsible for interaction with a tumor suppression factor, p53. Recent works have demonstrated that binding between HMGB1 and p53 enhances p53-mediated transcriptional activity. Thus, we examined whether BDV P affects the transcriptional activity of p53 by interference with HMGB1. Mammalian two-hybrid analysis revealed that p53 and P competitively interfere with the binding of each protein to HMGB1 in a p53-deficient cell line, NCI-H1299. In addition, P was able to significantly decrease p53-mediated transcriptional activation of the cyclin G promoter. Furthermore, we showed that activation of p21waf1 expression was repressed in cyclosporine-treated BDV-infected cells, as well as p53-transduced NCI-H1299 cells. These results suggested that BDV P may be a unique inhibitor of p53 activity via binding to HMGB1. PMID:14581561

  1. Recruitment of Histone Methyltransferase G9a Mediates Transcriptional Repression of Fgf21 Gene by E4BP4 Protein*

    PubMed Central

    Tong, Xin; Zhang, Deqiang; Buelow, Katie; Guha, Anirvan; Arthurs, Blake; Brady, Hugh J. M.; Yin, Lei

    2013-01-01

    The liver responds to fasting-refeeding cycles by reprogramming expression of metabolic genes. Fasting potently induces one of the key hepatic hormones, fibroblast growth factor 21 (FGF21), to promote lipolysis, fatty acid oxidation, and ketogenesis, whereas refeeding suppresses its expression. We previously reported that the basic leucine zipper transcription factor E4BP4 (E4 binding protein 4) represses Fgf21 expression and disrupts its circadian oscillations in cultured hepatocytes. However, the epigenetic mechanism for E4BP4-dependent suppression of Fgf21 has not yet been addressed. Here we present evidence that histone methyltransferase G9a mediates E4BP4-dependent repression of Fgf21 during refeeding by promoting repressive histone modification. We find that Fgf21 expression is up-regulated in E4bp4 knock-out mouse liver. We demonstrate that the G9a-specific inhibitor BIX01294 abolishes suppression of the Fgf21 promoter activity by E4BP4, whereas overexpression of E4bp4 leads to increased levels of dimethylation of histone 3 lysine 9 (H3K9me2) around the Fgf21 promoter region. Furthermore, we also show that E4BP4 interacts with G9a, and knockdown of G9a blocks repression of Fgf21 promoter activity and expression in cells overexpressing E4bp4. A G9a mutant lacking catalytic activity, due to deletion of the SET domain, fails to inhibit the Fgf21 promoter activity. Importantly, acute hepatic knockdown by adenoviral shRNA targeting G9a abolishes Fgf21 repression by refeeding, concomitant with decreased levels of H3K9me2 around the Fgf21 promoter region. In summary, we show that G9a mediates E4BP4-dependent suppression of hepatic Fgf21 by enhancing histone methylation (H3K9me2) of the Fgf21 promoter. PMID:23283977

  2. 15-deoxy prostaglandin J2, the nonenzymatic metabolite of prostaglandin D2, induces apoptosis in keratinocytes of human hair follicles: a possible explanation for prostaglandin D2-mediated inhibition of hair growth.

    PubMed

    Joo, Hyun Woo; Kang, Yoo Ri; Kwack, Mi Hee; Sung, Young Kwan

    2016-07-01

    Recent studies have shown that prostaglandin D2 (PGD2) and its nonenzymatic metabolite, 15-deoxy-Δ(12,14)-prostaglandin J2 (15-dPGJ2), inhibit in vitro growth of explanted human hair follicles and inhibit hair growth in mice through the GPR44 (DP2). However, the underlying mechanism is still unclear. In this study, we first investigated the expression of DP2 in human hair follicles and in cultured follicular cells. We found that DP2 is strongly expressed in the outer root sheath (ORS) cells and weakly expressed in the dermal papilla (DP) cells. We observed slight growth stimulation when ORS and DP cells were treated with PGD2. We also observed slight growth stimulation when DP and ORS cells were treated with low concentrations (0.5 and 1 μM) of 15-dPGJ2. However, 5 μM 15-dPGJ2 inhibited the viability and caused apoptosis of both cell types. Exposure of cultured human hair follicles to 15-dPGJ2 resulted in significant apoptosis in follicular keratinocytes. Altogether, our data provide an evidence that 15-dPGJ2 promotes apoptosis in follicular keratinocytes and provide rationale for developing remedies for the prevention and treatment of hair loss based on DP2 antagonism.

  3. The Mediator Kinase Module Restrains Epidermal Growth Factor Receptor Signaling and Represses Vulval Cell Fate Specification in Caenorhabditis elegans.

    PubMed

    Grants, Jennifer M; Ying, Lisa T L; Yoda, Akinori; You, Charlotte C; Okano, Hideyuki; Sawa, Hitoshi; Taubert, Stefan

    2016-02-01

    Cell signaling pathways that control proliferation and determine cell fates are tightly regulated to prevent developmental anomalies and cancer. Transcription factors and coregulators are important effectors of signaling pathway output, as they regulate downstream gene programs. In Caenorhabditis elegans, several subunits of the Mediator transcriptional coregulator complex promote or inhibit vulva development, but pertinent mechanisms are poorly defined. Here, we show that Mediator's dissociable cyclin dependent kinase 8 (CDK8) module (CKM), consisting of cdk-8, cic-1/Cyclin C, mdt-12/dpy-22, and mdt-13/let-19, is required to inhibit ectopic vulval cell fates downstream of the epidermal growth factor receptor (EGFR)-Ras-extracellular signal-regulated kinase (ERK) pathway. cdk-8 inhibits ectopic vulva formation by acting downstream of mpk-1/ERK, cell autonomously in vulval cells, and in a kinase-dependent manner. We also provide evidence that the CKM acts as a corepressor for the Ets-family transcription factor LIN-1, as cdk-8 promotes transcriptional repression by LIN-1. In addition, we find that CKM mutation alters Mediator subunit requirements in vulva development: the mdt-23/sur-2 subunit, which is required for vulva development in wild-type worms, is dispensable for ectopic vulva formation in CKM mutants, which instead display hallmarks of unrestrained Mediator tail module activity. We propose a model whereby the CKM controls EGFR-Ras-ERK transcriptional output by corepressing LIN-1 and by fine tuning Mediator specificity, thus balancing transcriptional repression vs. activation in a critical developmental signaling pathway. Collectively, these data offer an explanation for CKM repression of EGFR signaling output and ectopic vulva formation and provide the first evidence of Mediator CKM-tail module subunit crosstalk in animals.

  4. Evaluation of sgRNA target sites for CRISPR-mediated repression of TP53.

    PubMed

    Lawhorn, Ingrid E B; Ferreira, Joshua P; Wang, Clifford L

    2014-01-01

    The CRISPR (clustered regularly interspaced short palindromic repeats) platform has been developed as a general method to direct proteins of interest to gene targets. While the native CRISPR system delivers a nuclease that cleaves and potentially mutates target genes, researchers have recently employed catalytically inactive CRISPR-associated 9 nuclease (dCas9) in order to target and repress genes without DNA cleavage or mutagenesis. With the intent of improving repression efficiency in mammalian cells, researchers have also fused dCas9 with a KRAB repressor domain. Here, we evaluated different genomic sgRNA targeting sites for repression of TP53. The sites spanned a 200-kb distance, which included the promoter, transcript sequence, and regions flanking the endogenous human TP53 gene. We showed that repression up to 86% can be achieved with dCas9 alone (i.e., without use of the KRAB domain) by targeting the complex to sites near the TP53 transcriptional start site. This work demonstrates that efficient transcriptional repression of endogenous human genes can be achieved by the targeted delivery of dCas9. Yet, the efficiency of repression strongly depends on the choice of the sgRNA target site.

  5. Possible involvement of 15-deoxy-Δ(12,14) -prostaglandin J2 in the development of leptin resistance.

    PubMed

    Hosoi, Toru; Matsuzaki, Syu; Miyahara, Tsuyoshi; Shimizu, Kaori; Hasegawa, Yuki; Ozawa, Koichiro

    2015-05-01

    Obesity is a worldwide health problem that urgently needs to be solved. Leptin is an anti-obesity hormone that activates satiety signals to the brain. Evidence to suggest that leptin resistance is involved in the development of obesity is increasing; however, the molecular mechanisms involved remain unclear. We herein demonstrated that 15-deoxy-Δ(12,14) -prostaglandin J2 (15d-PGJ2 ) was involved in the development of leptin resistance. A treatment with 15d-PGJ2 inhibited the leptin-induced activation of signal transducer and activator of transcription 3 (STAT3) in neuronal cells (SH-SY5Y-Ob-Rb cells). Furthermore, the intracerebroventricular administration of 15d-PGJ2 reversed the inhibitory effects of leptin on food intake in rats. The peroxisome proliferator-activated receptor gamma (PPAR-γ) antagonist, GW9662, slightly reversed the inhibitory effects of 15d-PGJ2 on the leptin-induced activation of STAT3 in neuronal cells. The PPAR-γ agonist, rosiglitazone, also inhibited leptin-induced STAT3 phosphorylation. Therefore, the inhibitory effects of 15d-PGJ2 may be mediated through PPAR-γ. On the other hand, 15d-PGJ2 -induced leptin resistance may not be mediated by endoplasmic reticulum stress or suppressor of cytokine signaling 3. The results of the present study suggest that 15d-PGJ2 is a novel factor for the development of leptin resistance in obesity. Leptin resistance, an insensitivity to the actions of leptin, is involved in the development of obesity. Here, we found 15-deoxy-Δ(12,14) -prostaglandin J2 (15d-PGJ2 ) may be involved in the development of leptin resistance. The present results suggest that the 15d-PGJ2 may be a novel factor for the development of leptin resistance in obesity. 15d-PGJ2 , 15-Deoxy-Δ(12,14) -prostaglandin J2; STAT3, signal tranducer and activator of transcription 3.

  6. The Mediator Kinase Module Restrains Epidermal Growth Factor Receptor Signaling and Represses Vulval Cell Fate Specification in Caenorhabditis elegans

    PubMed Central

    Grants, Jennifer M.; Ying, Lisa T. L.; Yoda, Akinori; You, Charlotte C.; Okano, Hideyuki; Sawa, Hitoshi; Taubert, Stefan

    2016-01-01

    Cell signaling pathways that control proliferation and determine cell fates are tightly regulated to prevent developmental anomalies and cancer. Transcription factors and coregulators are important effectors of signaling pathway output, as they regulate downstream gene programs. In Caenorhabditis elegans, several subunits of the Mediator transcriptional coregulator complex promote or inhibit vulva development, but pertinent mechanisms are poorly defined. Here, we show that Mediator’s dissociable cyclin dependent kinase 8 (CDK8) module (CKM), consisting of cdk-8, cic-1/Cyclin C, mdt-12/dpy-22, and mdt-13/let-19, is required to inhibit ectopic vulval cell fates downstream of the epidermal growth factor receptor (EGFR)-Ras-extracellular signal-regulated kinase (ERK) pathway. cdk-8 inhibits ectopic vulva formation by acting downstream of mpk-1/ERK, cell autonomously in vulval cells, and in a kinase-dependent manner. We also provide evidence that the CKM acts as a corepressor for the Ets-family transcription factor LIN-1, as cdk-8 promotes transcriptional repression by LIN-1. In addition, we find that CKM mutation alters Mediator subunit requirements in vulva development: the mdt-23/sur-2 subunit, which is required for vulva development in wild-type worms, is dispensable for ectopic vulva formation in CKM mutants, which instead display hallmarks of unrestrained Mediator tail module activity. We propose a model whereby the CKM controls EGFR-Ras-ERK transcriptional output by corepressing LIN-1 and by fine tuning Mediator specificity, thus balancing transcriptional repression vs. activation in a critical developmental signaling pathway. Collectively, these data offer an explanation for CKM repression of EGFR signaling output and ectopic vulva formation and provide the first evidence of Mediator CKM-tail module subunit crosstalk in animals. PMID:26715664

  7. The DDX6–4E-T interaction mediates translational repression and P-body assembly

    PubMed Central

    Kamenska, Anastasiia; Simpson, Clare; Vindry, Caroline; Broomhead, Helen; Bénard, Marianne; Ernoult-Lange, Michèle; Lee, Benjamin P.; Harries, Lorna W.; Weil, Dominique; Standart, Nancy

    2016-01-01

    4E-Transporter binds eIF4E via its consensus sequence YXXXXLΦ, shared with eIF4G, and is a nucleocytoplasmic shuttling protein found enriched in P-(rocessing) bodies. 4E-T inhibits general protein synthesis by reducing available eIF4E levels. Recently, we showed that 4E-T bound to mRNA however represses its translation in an eIF4E-independent manner, and contributes to silencing of mRNAs targeted by miRNAs. Here, we address further the mechanism of translational repression by 4E-T by first identifying and delineating the interacting sites of its major partners by mass spectrometry and western blotting, including DDX6, UNR, unrip, PAT1B, LSM14A and CNOT4. Furthermore, we document novel binding between 4E-T partners including UNR-CNOT4 and unrip-LSM14A, altogether suggesting 4E-T nucleates a complex network of RNA-binding protein interactions. In functional assays, we demonstrate that joint deletion of two short conserved motifs that bind UNR and DDX6 relieves repression of 4E-T-bound mRNA, in part reliant on the 4E-T-DDX6-CNOT1 axis. We also show that the DDX6-4E-T interaction mediates miRNA-dependent translational repression and de novo P-body assembly, implying that translational repression and formation of new P-bodies are coupled processes. Altogether these findings considerably extend our understanding of the role of 4E-T in gene regulation, important in development and neurogenesis. PMID:27342281

  8. Histone acetyltransferase (HAT) activity of p300 modulates human T lymphotropic virus type 1 p30{sup II}-mediated repression of LTR transcriptional activity

    SciTech Connect

    Michael, Bindhu; Nair, Amrithraj M.; Datta, Antara; Hiraragi, Hajime; Ratner, Lee; Lairmore, Michael D. . E-mail: lairmore.1@osu.edu

    2006-10-25

    Human T-lymphotropic virus type-1 (HTLV-1) is a deltaretrovirus that causes adult T cell leukemia/lymphoma, and is implicated in a variety of lymphocyte-mediated inflammatory disorders. HTLV-1 provirus has regulatory and accessory genes in four pX open reading frames. HTLV-1 pX ORF-II encodes two proteins, p13{sup II} and p30{sup II}, which are incompletely defined in virus replication or pathogenesis. We have demonstrated that pX ORF-II mutations block virus replication in vivo and that ORF-II encoded p30{sup II}, a nuclear-localizing protein that binds with CREB-binding protein (CBP)/p300, represses CREB and Tax responsive element (TRE)-mediated transcription. Herein, we have identified p30{sup II} motifs important for p300 binding and in regulating TRE-mediated transcription in the absence and presence of HTLV-1 provirus. Within amino acids 100-179 of p30{sup II}, a region important for repression of LTR-mediated transcription, we identified a single lysine residue at amino acid 106 (K3) that significantly modulates the ability of p30{sup II} to repress TRE-mediated transcription. Exogenous p300, in a dose-responsive manner, reverses p30{sup II}-dependent repression of TRE-mediated transcription, in the absence or presence of the provirus, In contrast to wild type p300, p300 HAT mutants (defective in histone acetyltransferase activity) only partially rescued p30{sup II}-mediated LTR repression. Deacetylation by histone deacetylase-1 (HDAC-1) enhanced p30{sup II}-mediated LTR repression, while inhibition of deacetylation by trichostatin A decreases p30{sup II}-mediated LTR repression. Collectively, our data indicate that HTLV-1 p30{sup II} modulates viral gene expression in a cooperative manner with p300-mediated acetylation.

  9. Lactose-mediated carbon catabolite repression of putrescine production in dairy Lactococcus lactis is strain dependent.

    PubMed

    del Rio, Beatriz; Ladero, Victor; Redruello, Begoña; Linares, Daniel M; Fernández, Maria; Martín, Maria Cruz; Alvarez, Miguel A

    2015-06-01

    Lactococcus lactis is the lactic acid bacterial (LAB) species most widely used as a primary starter in the dairy industry. However, several strains of L. lactis produce the biogenic amine putrescine via the agmatine deiminase (AGDI) pathway. We previously reported the putrescine biosynthesis pathway in L. lactis subsp. cremoris GE2-14 to be regulated by carbon catabolic repression (CCR) via glucose but not lactose (Linares et al., 2013). The present study shows that both these sugars repress putrescine biosynthesis in L. lactis subsp. lactis T3/33, a strain isolated from a Spanish artisanal cheese. Furthermore, we demonstrated that both glucose and lactose repressed the transcriptional activity of the aguBDAC catabolic genes of the AGDI route. Finally, a screening performed in putrescine-producing dairy L. lactis strains determined that putrescine biosynthesis was repressed by lactose in all the L. lactis subsp. lactis strains tested, but in only one L. lactis subsp. cremoris strain. Given the obvious importance of the lactose-repression in cheese putrescine accumulation, it is advisable to consider the diversity of L. lactis in this sense and characterize consequently the starter cultures to select the safest strains.

  10. The tumor suppressor, parafibromin, mediates histone H3 K9 methylation for cyclin D1 repression.

    PubMed

    Yang, Yong-Jin; Han, Jeung-Whan; Youn, Hong-Duk; Cho, Eun-Jung

    2010-01-01

    Parafibromin, a component of the RNA polymerase II-associated PAF1 complex, is a tumor suppressor linked to hyperparathyroidism-jaw tumor syndrome and sporadic parathyroid carcinoma. Parafibromin induces cell cycle arrest by repressing cyclin D1 via an unknown mechanism. Here, we show that parafibromin interacts with the histone methyltransferase, SUV39H1, and functions as a transcriptional repressor. The central region (128-227 amino acids) of parafibromin is important for both the interaction with SUV39H1 and transcriptional repression. Parafibromin associated with the promoter and coding regions of cyclin D1 and was required for the recruitment of SUV39H1 and the induction of H3 K9 methylation but not H3 K4 methylation. RNA interference analysis showed that SUV39H1 was critical for cyclin D1 repression. These data suggest that parafibromin plays an unexpected role as a repressor in addition to its widely known activity associated with transcriptional activation. Parafibromin as a part of the PAF1 complex might downregulate cyclin D1 expression by integrating repressive H3 K9 methylation during transcription.

  11. Characterization of a two-component regulatory system that regulates succinate-mediated catabolite repression in Sinorhizobium meliloti.

    PubMed

    Garcia, Preston P; Bringhurst, Ryan M; Arango Pinedo, Catalina; Gage, Daniel J

    2010-11-01

    When they are available, Sinorhizobium meliloti utilizes C(4)-dicarboxylic acids as preferred carbon sources for growth while suppressing the utilization of some secondary carbon sources such as α- and β-galactosides. The phenomenon of using succinate as the sole carbon source in the presence of secondary carbon sources is termed succinate-mediated catabolite repression (SMCR). Genetic screening identified the gene sma0113 as needed for strong SMCR when S. meliloti was grown in succinate plus lactose, maltose, or raffinose. sma0113 and the gene immediately downstream, sma0114, encode the proteins Sma0113, an HWE histidine kinase with five PAS domains, and Sma0114, a CheY-like response regulator lacking a DNA-binding domain. sma0113 in-frame deletion mutants show a relief of catabolite repression compared to the wild type. sma0114 in-frame deletion mutants overproduce polyhydroxybutyrate (PHB), and this overproduction requires sma0113. Sma0113 may use its five PAS domains for redox level or energy state monitoring and use that information to regulate catabolite repression and related responses.

  12. Organizer-Derived WOX5 Signal Maintains Root Columella Stem Cells through Chromatin-Mediated Repression of CDF4 Expression.

    PubMed

    Pi, Limin; Aichinger, Ernst; van der Graaff, Eric; Llavata-Peris, Cristina I; Weijers, Dolf; Hennig, Lars; Groot, Edwin; Laux, Thomas

    2015-06-08

    Stem cells in plants and animals are maintained pluripotent by signals from adjacent niche cells. In plants, WUSCHEL HOMEOBOX (WOX) transcription factors are central regulators of stem cell maintenance in different meristem types, yet their molecular mode of action has remained elusive. Here we show that in the Arabidopsis root meristem, the WOX5 protein moves from the root niche organizer, the quiescent center, into the columella stem cells, where it directly represses the transcription factor gene CDF4. This creates a gradient of CDF4 transcription, which promotes differentiation opposite to the WOX5 gradient, allowing stem cell daughter cells to exit the stem cell state. We further show that WOX5 represses CDF4 transcription by recruiting TPL/TPR co-repressors and the histone deacetylase HDA19, which consequently induces histone deacetylation at the CDF4 regulatory region. Our results show that chromatin-mediated repression of differentiation programs is a common strategy in plant and animal stem cell niches.

  13. Evolution of VRN2/Ghd7-Like Genes in Vernalization-Mediated Repression of Grass Flowering1[OPEN

    PubMed Central

    McKeown, Meghan A.

    2016-01-01

    Flowering of many plant species is coordinated with seasonal environmental cues such as temperature and photoperiod. Vernalization provides competence to flower after prolonged cold exposure, and a vernalization requirement prevents flowering from occurring prior to winter. In winter wheat (Triticum aestivum) and barley (Hordeum vulgare), three genes VRN1, VRN2, and FT form a regulatory loop that regulates the initiation of flowering. Prior to cold exposure, VRN2 represses FT. During cold, VRN1 expression increases, resulting in the repression of VRN2, which in turn allows activation of FT during long days to induce flowering. Here, we test whether the circuitry of this regulatory loop is conserved across Pooideae, consistent with their niche transition from the tropics to the temperate zone. Our phylogenetic analyses of VRN2-like genes reveal a duplication event occurred before the diversification of the grasses that gave rise to a CO9 and VRN2/Ghd7 clade and support orthology between wheat/barley VRN2 and rice (Oryza sativa) Ghd7. Our Brachypodium distachyon VRN1 and VRN2 knockdown and overexpression experiments demonstrate functional conservation of grass VRN1 and VRN2 in the promotion and repression of flowering, respectively. However, expression analyses in a range of pooids demonstrate that the cold repression of VRN2 is unique to core Pooideae such as wheat and barley. Furthermore, VRN1 knockdown in B. distachyon demonstrates that the VRN1-mediated suppression of VRN2 is not conserved. Thus, the VRN1-VRN2 feature of the regulatory loop appears to have evolved late in the diversification of temperate grasses. PMID:26848096

  14. Identification of a prostaglandin D2 metabolite as a neuritogenesis enhancer targeting the TRPV1 ion channel

    PubMed Central

    Shibata, Takahiro; Takahashi, Katsuhiro; Matsubara, Yui; Inuzuka, Emi; Nakashima, Fumie; Takahashi, Nobuaki; Kozai, Daisuke; Mori, Yasuo; Uchida, Koji

    2016-01-01

    Mast cells play important roles in allergic inflammation by secreting various mediators. In the present study, based on the finding that the medium conditioned by activated RBL-2H3 mast cells enhanced the nerve growth factor (NGF)-induced neuritogenesis of PC12 cells, we attempted to isolate an active compound from the mast cell conditioned culture medium. Our experiment identified 15-deoxy-Δ12,14-PGJ2 (15d-PGJ2), one of the PGD2 metabolites, as a potential enhancer of neuritogenesis. 15d-PGJ2 strongly enhanced the neuritogenesis elicited by a low-concentration of NGF that alone was insufficient to induce the neuronal differentiation. This 15d-PGJ2 effect was exerted in a Ca2+-dependent manner, but independently of the NGF receptor TrkA. Importantly, 15d-PGJ2 activated the transient receptor potential vanilloid-type 1 (TRPV1), a non-selective cation channel, leading to the Ca2+ influx. In addition, we observed that (i) NGF promoted the insertion of TRPV1 into the cell surface membrane and (ii) 15d-PGJ2 covalently bound to TRPV1. These findings suggest that the NGF/15d-PGJ2-induced neuritogenesis may be regulated by two sets of mechanisms, one for the translocation of TRPV1 into the cell surface by NGF and one for the activation of TRPV1 by 15d-PGJ2. Thus, there is most likely a link between allergic inflammation and activation of the neuronal differentiation. PMID:26879669

  15. CRISPathBrick: Modular Combinatorial Assembly of Type II-A CRISPR Arrays for dCas9-Mediated Multiplex Transcriptional Repression in E. coli.

    PubMed

    Cress, Brady F; Toparlak, Ö Duhan; Guleria, Sanjay; Lebovich, Matthew; Stieglitz, Jessica T; Englaender, Jacob A; Jones, J Andrew; Linhardt, Robert J; Koffas, Mattheos A G

    2015-09-18

    Programmable control over an addressable global regulator would enable simultaneous repression of multiple genes and would have tremendous impact on the field of synthetic biology. It has recently been established that CRISPR/Cas systems can be engineered to repress gene transcription at nearly any desired location in a sequence-specific manner, but there remain only a handful of applications described to date. In this work, we report development of a vector possessing a CRISPathBrick feature, enabling rapid modular assembly of natural type II-A CRISPR arrays capable of simultaneously repressing multiple target genes in Escherichia coli. Iterative incorporation of spacers into this CRISPathBrick feature facilitates the combinatorial construction of arrays, from a small number of DNA parts, which can be utilized to generate a suite of complex phenotypes corresponding to an encoded genetic program. We show that CRISPathBrick can be used to tune expression of plasmid-based genes and repress chromosomal targets in probiotic, virulent, and commonly engineered E. coli strains. Furthermore, we describe development of pCRISPReporter, a fluorescent reporter plasmid utilized to quantify dCas9-mediated repression from endogenous promoters. Finally, we demonstrate that dCas9-mediated repression can be harnessed to assess the effect of downregulating both novel and computationally predicted metabolic engineering targets, improving the yield of a heterologous phytochemical through repression of endogenous genes. These tools provide a platform for rapid evaluation of multiplex metabolic engineering interventions.

  16. The zinc finger and C-terminal domains of MTA proteins are required for FOG-2-mediated transcriptional repression via the NuRD complex.

    PubMed

    Roche, Andrea E; Bassett, Brett J; Samant, Sadhana A; Hong, Wei; Blobel, Gerd A; Svensson, Eric C

    2008-02-01

    FOG-2 is a transcriptional co-regulator that is required for cardiac morphogenesis as mice deficient in this factor die during mid-gestation of cardiac malformations. FOG-2 interacts with GATA4 to attenuate GATA4-dependent gene expression. The first 12 amino acids of FOG-2 (the FOG Repression Motif) are necessary to mediate this repression. To determine the mechanism by which the FOG Repression Motif functions, we identified 7 polypeptides from rat cardiac nuclear extracts that co-purified with a GST-FOG-2 fusion protein. All proteins identified are members of the NuRD nucleosome remodeling complex. Using in vitro binding and co-immunoprecipitation assays, we demonstrate that Metastasis-Associated proteins (MTA)-1, 2 and 3 and Retinoblastoma binding proteins RbAp46 and RbAp48 interact with FOG-2, but not with a mutant form of FOG-2 that is unable to repress transcription. Furthermore, we define a novel domain located in the C-terminal portion of MTA-1 that mediates the FOG-2/MTA-1 interaction. We also demonstrate that knockdown of MTA protein expression dramatically impairs the ability of FOG-2 to repress GATA4 activity. Finally, we show that the zinc finger domain of MTA-1 is required for FOG-2-mediated transcriptional repression and that this domain interacts with RbAp46 and RbAp48 subunits of the NuRD complex. Together, these results demonstrate the importance of FOG-2/MTA/RbAp interactions for FOG-2-mediated transcriptional repression and further define the molecular interactions between the FOG Repression Motif and the NuRD complex.

  17. Phosphoribulokinase mediates nitrogenase-induced carbon dioxide fixation gene repression in Rhodobacter sphaeroides

    PubMed Central

    Farmer, Ryan M.

    2015-01-01

    In many organisms there is a balance between carbon and nitrogen metabolism. These observations extend to the nitrogen-fixing, nonsulfur purple bacteria, which have the classic family of P(II) regulators that coordinate signals of carbon and nitrogen status to regulate nitrogen metabolism. Curiously, these organisms also possess a reverse mechanism to regulate carbon metabolism based on cellular nitrogen status. In this work, studies in Rhodobacter sphaeroides firmly established that the activity of the enzyme that catalyses nitrogen fixation, nitrogenase, induces a signal that leads to repression of genes encoding enzymes of the Calvin–Benson–Bassham (CBB) CO2 fixation pathway. Additionally, genetic and metabolomic experiments revealed that NADH-activated phosphoribulokinase is an intermediate in the signalling pathway. Thus, nitrogenase activity appears to be linked to cbb gene repression through phosphoribulokinase. PMID:26306848

  18. Trichoderma reesei CRE1-mediated Carbon Catabolite Repression in Re-sponse to Sophorose Through RNA Sequencing Analysis

    PubMed Central

    Antoniêto, Amanda Cristina Campos; de Paula, Renato Graciano; Castro, Lílian dos Santos; Silva-Rocha, Rafael; Persinoti, Gabriela Felix; Silva, Roberto Nascimento

    2016-01-01

    Carbon catabolite repression (CCR) mediated by CRE1 in Trichoderma reesei emerged as a mechanism by which the fungus could adapt to new environments. In the presence of readily available carbon sources such as glucose, the fungus activates this mechanism and inhibits the production of cellulolytic complex enzymes to avoid unnecessary energy expenditure. CCR has been well described for the growth of T. reesei in cellulose and glucose, however, little is known about this process when the carbon source is sophorose, one of the most potent inducers of cellulase production. Thus, we performed high-throughput RNA sequencing to better understand CCR during cellulase formation in the presence of sophorose, by comparing the mutant ∆cre1 with its parental strain, QM9414. Of the 9129 genes present in the genome of T. reesei, 184 were upregulated and 344 downregulated in the mutant strain ∆cre1 compared to QM9414. Genes belonging to the CAZy database, and those encoding transcription factors and transporters are among the gene classes that were repressed by CRE1 in the presence of sophorose; most were possible indirectly regulated by CRE1. We also observed that CRE1 activity is carbon-dependent. A recent study from our group showed that in cellulose, CRE1 repress different groups of genes when compared to sophorose. CCR differences between these carbon sources may be due to the release of cellodextrins in the cellulose polymer, resulting in different targets of CRE1 in both carbon sources. These results contribute to a better understanding of CRE1-mediated CCR in T. reesei when glucose comes from a potent inducer of cellulase production such as sophorose, which could prove useful in improving cellulase production by the biotechnology sector. PMID:27226768

  19. Trichoderma reesei CRE1-mediated Carbon Catabolite Repression in Re-sponse to Sophorose Through RNA Sequencing Analysis.

    PubMed

    Antoniêto, Amanda Cristina Campos; de Paula, Renato Graciano; Castro, Lílian Dos Santos; Silva-Rocha, Rafael; Persinoti, Gabriela Felix; Silva, Roberto Nascimento

    2016-04-01

    Carbon catabolite repression (CCR) mediated by CRE1 in Trichoderma reesei emerged as a mechanism by which the fungus could adapt to new environments. In the presence of readily available carbon sources such as glucose, the fungus activates this mechanism and inhibits the production of cellulolytic complex enzymes to avoid unnecessary energy expenditure. CCR has been well described for the growth of T. reesei in cellulose and glucose, however, little is known about this process when the carbon source is sophorose, one of the most potent inducers of cellulase production. Thus, we performed high-throughput RNA sequencing to better understand CCR during cellulase formation in the presence of sophorose, by comparing the mutant ∆cre1 with its parental strain, QM9414. Of the 9129 genes present in the genome of T. reesei, 184 were upregulated and 344 downregulated in the mutant strain ∆cre1 compared to QM9414. Genes belonging to the CAZy database, and those encoding transcription factors and transporters are among the gene classes that were repressed by CRE1 in the presence of sophorose; most were possible indirectly regulated by CRE1. We also observed that CRE1 activity is carbon-dependent. A recent study from our group showed that in cellulose, CRE1 repress different groups of genes when compared to sophorose. CCR differences between these carbon sources may be due to the release of cellodextrins in the cellulose polymer, resulting in different targets of CRE1 in both carbon sources. These results contribute to a better understanding of CRE1-mediated CCR in T. reesei when glucose comes from a potent inducer of cellulase production such as sophorose, which could prove useful in improving cellulase production by the biotechnology sector.

  20. Freud-2/CC2D1B mediates dual repression of the serotonin-1A receptor gene.

    PubMed

    Hadjighassem, Mahmoud R; Galaraga, Kimberly; Albert, Paul R

    2011-01-01

    The serotonin-1A (5-HT1A) receptor functions as a pre-synaptic autoreceptor in serotonin neurons that regulates their activity, and is also widely expressed on non-serotonergic neurons as a post-synaptic heteroreceptor to mediate serotonin action. The 5-HT1A receptor gene is strongly repressed by a dual repressor element (DRE), which is recognized by two proteins: Freud-1/CC2D1A and another unknown protein. Here we identify mouse Freud-2/CC2D1B as the second repressor of the 5-HT1A-DRE. Freud-2 shares 50% amino acid identity with Freud-1, and contains conserved structural domains. Mouse Freud-2 bound specifically to the rat 5-HT1A-DRE adjacent to, and partially overlapping, the Freud-1 binding site. By supershift assay using nuclear extracts from L6 myoblasts, Freud-2-DRE complexes were distinguished from Freud-1-DRE complexes. Freud-2 mRNA and protein were detected throughout mouse brain and peripheral tissues. Freud-2 repressed 5-HT1A promoter-reporter constructs in a DRE-dependent manner in non-neuronal (L6) or 5-HT1A-expressing neuronal (NG108-15, RN46A) cell models. In NG108-15 cells, knockdown of Freud-2 using a specific short-interfering RNA reduced endogenous Freud-2 protein levels and decreased Freud-2 bound to the 5-HT1A-DRE as detected by chromatin immunoprecipitation assay, but increased 5-HT1A promoter activity and 5-HT1A protein levels. Taken together, these data show that Freud-2 is the second component that, with Freud-1, mediates dual repression of the 5-HT1A receptor gene at the DRE.

  1. Epigenetic regulation of puberty via Zinc finger protein-mediated transcriptional repression

    PubMed Central

    Lomniczi, Alejandro; Wright, Hollis; Castellano, Juan Manuel; Matagne, Valerie; Toro, Carlos A.; Ramaswamy, Suresh; Plant, Tony M.; Ojeda, Sergio R.

    2015-01-01

    In primates, puberty is unleashed by increased GnRH release from the hypothalamus following an interval of juvenile quiescence. GWAS implicates Zinc finger (ZNF) genes in timing human puberty. Here we show that hypothalamic expression of several ZNFs decreased in agonadal male monkeys in association with the pubertal reactivation of gonadotropin secretion. Expression of two of these ZNFs, GATAD1 and ZNF573, also decreases in peripubertal female monkeys. However, only GATAD1 abundance increases when gonadotropin secretion is suppressed during late infancy. Targeted delivery of GATAD1 or ZNF573 to the rat hypothalamus delays puberty by impairing the transition of a transcriptional network from an immature repressive epigenetic configuration to one of activation. GATAD1 represses transcription of two key puberty-related genes, KISS1 and TAC3, directly, and reduces the activating histone mark H3K4me2 at each promoter via recruitment of histone demethylase KDM1A. We conclude that GATAD1 epitomizes a subset of ZNFs involved in epigenetic repression of primate puberty. PMID:26671628

  2. The RING domain of Mdm2 mediates histone ubiquitylation and transcriptional repression.

    PubMed

    Minsky, Neri; Oren, Moshe

    2004-11-19

    Histone modifications play a pivotal role in regulating transcription and other chromatin-associated processes. In yeast, histone H2B monoubiquitylation affects gene silencing. However, mammalian histone ubiquitylation remains poorly understood. We report that the Mdm2 oncoprotein, a RING domain E3 ubiquitin ligase known to ubiquitylate the p53 tumor suppressor protein, can interact directly with histones and promote in vitro monoubiquitylation of histones H2A and H2B. Moreover, Mdm2 induces H2B monoubiquitylation in vivo. Endogenous Mdm2 is tethered in vivo, presumably via p53, to chromatin comprising the p53-responsive p21(waf1) promoter, and Mdm2 overexpression enhances protein ubiquitylation in the vicinity of a p53 binding site within that promoter. Moreover, when recruited to a promoter in the absence of p53, Mdm2 can repress transcription dependently on its RING domain, suggesting that its E3 activity contributes to repression. Histone ubiquitylation may thus constitute a novel mechanism of transcriptional repression by Mdm2, possibly underlying some of its oncogenic activities.

  3. Blue light-mediated transcriptional activation and repression of gene expression in bacteria

    PubMed Central

    Jayaraman, Premkumar; Devarajan, Kavya; Chua, Tze Kwang; Zhang, Hanzhong; Gunawan, Erry; Poh, Chueh Loo

    2016-01-01

    Light-regulated modules offer unprecedented new ways to control cellular behavior in precise spatial and temporal resolution. The availability of such tools may dramatically accelerate the progression of synthetic biology applications. Nonetheless, current optogenetic toolbox of prokaryotes has potential issues such as lack of rapid and switchable control, less portable, low dynamic expression and limited parts. To address these shortcomings, we have engineered a novel bidirectional promoter system for Escherichia coli that can be induced or repressed rapidly and reversibly using the blue light dependent DNA-binding protein EL222. We demonstrated that by modulating the dosage of light pulses or intensity we could control the level of gene expression precisely. We show that both light-inducible and repressible system can function in parallel with high spatial precision in a single cell and can be switched stably between ON- and OFF-states by repetitive pulses of blue light. In addition, the light-inducible and repressible expression kinetics were quantitatively analysed using a mathematical model. We further apply the system, for the first time, to optogenetically synchronize two receiver cells performing different logic behaviors over time using blue light as a molecular clock signal. Overall, our modular approach layers a transformative platform for next-generation light-controllable synthetic biology systems in prokaryotes. PMID:27353329

  4. Could repressive coping be a mediating factor in the symptom profile of individuals diagnosed with schizophrenia?

    PubMed

    Scholes, B; Martin, C R

    2010-06-01

    Despite a relatively high prevalence, and the enduring patronage of the disorder by psychiatry and the pharmaceutical industry, innovative conceptualization of schizophrenia in a client-empowering and quality of life-enhancing way appears to represent a vacuum within the clinical agenda, certainly taking second place to 'patient management'. However, against this bland background of medicalization of what is clearly a poorly understood and complex multifactorial syndrome, innovative treatment approaches aimed at symptom control, in particular, the stress vulnerability model (SVM), have been developed. However, the SVM is an incomplete model of patient experience and says little of aetiological note. One area of psychological function that may give further insight into the symptom experience associated with schizophrenia within the context of stress vulnerability concerns the mechanisms of repression. Ironically, the notion of repression will for many represent the epitome of nonevidence-based psychiatric theory and related psychodynamic therapy practice. However, more contemporary work within the psychological literature has aimed to make the concept both measurable and observable. No longer occluded by the context of psychoanalysis, cognitive science accounts of repression may be of value in facilitating understanding of the variability and predictability of symptoms of schizophrenia and may provide a dimension of therapeutic engagement allied to the SVM.

  5. Telomere-Mediated Plasmid Segregation in Saccharomyces Cerevisiae Involves Gene Products Required for Transcriptional Repression at Silencers and Telomeres

    PubMed Central

    Longtine, M. S.; Enomoto, S.; Finstad, S. L.; Berman, J.

    1993-01-01

    Plasmids that contain Saccharomyces cerevisiae TG(1-3) telomere repeat sequences (TRS plasmids) segregate efficiently during mitosis. Mutations in histone H4 reduce the efficiency of TRS-mediated plasmid segregation, suggesting that chromatin structure is involved in this process. Sir2, Sir3 and Sir4 are required for the transcriptional repression of genes located at the silent mating type loci (HML and HMR) and at telomeres (telomere position effect) and are also involved in the segregation of TRS plasmids, indicating that TRS-mediated plasmid segregation involves factors that act at chromosomal telomeres. TRS plasmid segregation differs from the segregation of plasmids carrying the HMR E silencing region: HMR E plasmid segregation function is completely dependent upon Sir2, Sir3 and Sir4, involves Sir1 and is not influenced by mutations in RAP1 that eliminate TRS plasmid segregation. Mutations in SIR1, SIN1, TOP1, TEL1 and TEL2 do not influence TRS plasmid segregation. Unlike transcriptional repression at telomeres, TRS plasmids retain partial segregation function in sir2, sir3, sir4, nat1 and ard1 mutant strains. Thus it is likely that TRS plasmid segregation involves additional factors that are not involved in telomere position effect. PMID:8436267

  6. The Saccharomyces cerevisiae Cdk8 Mediator Represses AQY1 Transcription by Inhibiting Set1p-Dependent Histone Methylation

    PubMed Central

    Law, Michael J.; Finger, Michael A.

    2017-01-01

    In the budding yeast Saccharomyces cerevisiae, nutrient depletion induces massive transcriptional reprogramming that relies upon communication between transcription factors, post-translational histone modifications, and the RNA polymerase II holoenzyme complex. Histone H3Lys4 methylation (H3Lys4 me), regulated by the Set1p-containing COMPASS methyltransferase complex and Jhd2p demethylase, is one of the most well-studied histone modifications. We previously demonstrated that the RNA polymerase II mediator components cyclin C-Cdk8p inhibit locus-specific H3Lys4 3me independently of Jhd2p. Here, we identify loci subject to cyclin C- and Jhd2p-dependent histone H3Lys4 3me inhibition using chromatin immunoprecipitation (ChIP)-seq. We further characterized the independent and combined roles of cyclin C and Jhd2p in controlling H3Lys4 3me and transcription in response to fermentable and nonfermentable carbon at multiple loci. These experiments suggest that H3Lys4 3me alone is insufficient to induce transcription. Interestingly, we identified an unexpected role for cyclin C-Cdk8p in repressing AQY1 transcription, an aquaporin whose expression is normally induced during nutrient deprivation. These experiments, combined with previous work in other labs, support a two-step model in which cyclin C-Cdk8p mediate AQY1 transcriptional repression by stimulating transcription factor proteolysis and preventing Set1p recruitment to the AQY1 locus. PMID:28143948

  7. Imperfect centered miRNA binding sites are common and can mediate repression of target mRNAs

    PubMed Central

    2014-01-01

    Background MicroRNAs (miRNAs) bind to mRNAs and target them for translational inhibition or transcriptional degradation. It is thought that most miRNA-mRNA interactions involve the seed region at the 5′ end of the miRNA. The importance of seed sites is supported by experimental evidence, although there is growing interest in interactions mediated by the central region of the miRNA, termed centered sites. To investigate the prevalence of these interactions, we apply a biotin pull-down method to determine the direct targets of ten human miRNAs, including four isomiRs that share centered sites, but not seeds, with their canonical partner miRNAs. Results We confirm that miRNAs and their isomiRs can interact with hundreds of mRNAs, and that imperfect centered sites are common mediators of miRNA-mRNA interactions. We experimentally demonstrate that these sites can repress mRNA activity, typically through translational repression, and are enriched in regions of the transcriptome bound by AGO. Finally, we show that the identification of imperfect centered sites is unlikely to be an artifact of our protocol caused by the biotinylation of the miRNA. However, the fact that there was a slight bias against seed sites in our protocol may have inflated the apparent prevalence of centered site-mediated interactions. Conclusions Our results suggest that centered site-mediated interactions are much more frequent than previously thought. This may explain the evolutionary conservation of the central region of miRNAs, and has significant implications for decoding miRNA-regulated genetic networks, and for predicting the functional effect of variants that do not alter protein sequence. PMID:24629056

  8. GR SUMOylation and formation of an SUMO-SMRT/NCoR1-HDAC3 repressing complex is mandatory for GC-induced IR nGRE-mediated transrepression.

    PubMed

    Hua, Guoqiang; Paulen, Laetitia; Chambon, Pierre

    2016-02-02

    Unique among the nuclear receptor superfamily, the glucocorticoid (GC) receptor (GR) can exert three distinct transcriptional regulatory functions on binding of a single natural (cortisol in human and corticosterone in mice) and synthetic [e.g., dexamethasone (Dex)] hormone. The molecular mechanisms underlying GC-induced positive GC response element [(+)GRE]-mediated activation of transcription are partially understood. In contrast, these mechanisms remain elusive for GC-induced evolutionary conserved inverted repeated negative GC response element (IR nGRE)-mediated direct transrepression and for tethered indirect transrepression that is mediated by DNA-bound NF-κB/activator protein 1 (AP1)/STAT3 activators and instrumental in GC-induced anti-inflammatory activity. We demonstrate here that SUMOylation of lysine K293 (mouse K310) located within an evolutionary conserved sequence in the human GR N-terminal domain allows the formation of a GR-small ubiquitin-related modifiers (SUMOs)-NCoR1/SMRT-HDAC3 repressing complex mandatory for GC-induced IR nGRE-mediated direct repression in vitro, but does not affect transactivation. Importantly, these results were validated in vivo: in K310R mutant mice and in mice ablated selectively for nuclear receptor corepressor 1 (NCoR1)/silencing mediator for retinoid or thyroid-hormone receptors (SMRT) corepressors in skin keratinocytes, Dex-induced direct repression and the formation of repressing complexes on IR nGREs were impaired, whereas transactivation was unaffected. In mice selectively ablated for histone deacetylase 3 (HDAC3) in skin keratinocytes, GC-induced direct repression, but not bindings of GR and of corepressors NCoR1/SMRT, was abolished, indicating that HDAC3 is instrumental in IR nGRE-mediated repression. Moreover, we demonstrate that the binding of HDAC3 to IR nGREs in vivo is mediated through interaction with SMRT/NCoR1. We also show that the GR ligand binding domain (LBD) is not required for SMRT-mediated

  9. Citrullination of Histone H3 Interferes with HP1-Mediated Transcriptional Repression

    PubMed Central

    Sharma, Priyanka; Azebi, Saliha; England, Patrick; Christensen, Tove; Møller-Larsen, Anné; Petersen, Thor; Batsché, Eric; Muchardt, Christian

    2012-01-01

    Multiple Sclerosis (MS) is an autoimmune disease associated with abnormal expression of a subset of cytokines, resulting in inappropriate T-lymphocyte activation and uncontrolled immune response. A key issue in the field is the need to understand why these cytokines are transcriptionally activated in the patients. Here, we have examined several transcription units subject to pathological reactivation in MS, including the TNFα and IL8 cytokine genes and also several Human Endogenous RetroViruses (HERVs). We find that both the immune genes and the HERVs require the heterochromatin protein HP1α for their transcriptional repression. We further show that the Peptidylarginine Deiminase 4 (PADI4), an enzyme with a suspected role in MS, weakens the binding of HP1α to tri-methylated histone H3 lysine 9 by citrullinating histone H3 arginine 8. The resulting de-repression of both cytokines and HERVs can be reversed with the PADI-inhibitor Cl-amidine. Finally, we show that in peripheral blood mononuclear cells (PBMCs) from MS patients, the promoters of TNFα, and several HERVs share a deficit in HP1α recruitment and an augmented accumulation of histone H3 with a double citrulline 8 tri-methyl lysine 9 modifications. Thus, our study provides compelling evidence that HP1α and PADI4 are regulators of both immune genes and HERVs, and that multiple events of transcriptional reactivation in MS patients can be explained by the deficiency of a single mechanism of gene silencing. PMID:23028349

  10. A Herpesviral induction of RAE-1 NKG2D ligand expression occurs through release of HDAC mediated repression

    PubMed Central

    Greene, Trever T; Tokuyama, Maria; Knudsen, Giselle M; Kunz, Michele; Lin, James; Greninger, Alexander L; DeFilippis, Victor R; DeRisi, Joseph L; Raulet, David H; Coscoy, Laurent

    2016-01-01

    Natural Killer (NK) cells are essential for control of viral infection and cancer. NK cells express NKG2D, an activating receptor that directly recognizes NKG2D ligands. These are expressed at low level on healthy cells, but are induced by stresses like infection and transformation. The physiological events that drive NKG2D ligand expression during infection are still poorly understood. We observed that the mouse cytomegalovirus encoded protein m18 is necessary and sufficient to drive expression of the RAE-1 family of NKG2D ligands. We demonstrate that RAE-1 is transcriptionally repressed by histone deacetylase inhibitor 3 (HDAC3) in healthy cells, and m18 relieves this repression by directly interacting with Casein Kinase II and preventing it from activating HDAC3. Accordingly, we found that HDAC inhibiting proteins from human herpesviruses induce human NKG2D ligand ULBP-1. Thus our findings indicate that virally mediated HDAC inhibition can act as a signal for the host to activate NK-cell recognition. DOI: http://dx.doi.org/10.7554/eLife.14749.001 PMID:27874833

  11. A Herpesviral induction of RAE-1 NKG2D ligand expression occurs through release of HDAC mediated repression.

    PubMed

    Greene, Trever T; Tokuyama, Maria; Knudsen, Giselle M; Kunz, Michele; Lin, James; Greninger, Alexander L; DeFilippis, Victor R; DeRisi, Joseph L; Raulet, David H; Coscoy, Laurent

    2016-11-22

    Natural Killer (NK) cells are essential for control of viral infection and cancer. NK cells express NKG2D, an activating receptor that directly recognizes NKG2D ligands. These are expressed at low level on healthy cells, but are induced by stresses like infection and transformation. The physiological events that drive NKG2D ligand expression during infection are still poorly understood. We observed that the mouse cytomegalovirus encoded protein m18 is necessary and sufficient to drive expression of the RAE-1 family of NKG2D ligands. We demonstrate that RAE-1 is transcriptionally repressed by histone deacetylase inhibitor 3 (HDAC3) in healthy cells, and m18 relieves this repression by directly interacting with Casein Kinase II and preventing it from activating HDAC3. Accordingly, we found that HDAC inhibiting proteins from human herpesviruses induce human NKG2D ligand ULBP-1. Thus our findings indicate that virally mediated HDAC inhibition can act as a signal for the host to activate NK-cell recognition.

  12. BCL6 induces EMT by promoting the ZEB1-mediated transcription repression of E-cadherin in breast cancer cells.

    PubMed

    Yu, Jin-Mei; Sun, Wei; Hua, Fang; Xie, Jing; Lin, Heng; Zhou, Dan-Dan; Hu, Zhuo-Wei

    2015-09-01

    B-cell CLL/lymphoma 6 (BCL6), a transcriptional repressor, is involved in the development and progression of breast cancers with uncertain mechanism. The purpose of this study is to investigate the potential effect and mechanism of BCL6 in the regulation of epithelial-mesenchymal transition (EMT), a critical cellular process for controlling the development and progression of breast cancers. We found that BCL6 promoted invasion, migration and growth by stimulating EMT in breast cancer cells. BCL6 induced EMT by enhancing the expression of transcriptional repressor ZEB1 which bound to the E-cadherin promoter and repressing the E-cadherin transcription. Deletion of ZEB1 protected against the pro-EMT roles of BCL6 by restoring the expression of E-cadherin in these cells. Moreover, inhibition of BCL6 with BCL6 inhibitor 79-6 suppressed these functions of BCL6 in breast cancer cells. These findings indicate that BCL6 promotes EMT via enhancing the ZEB1-mediated transcriptional repression of E-cadherin in breast cancer cells. Targeting BCL6 has therapeutic potential against the development and progression of breast cancer.

  13. Convergent repression of miR156 by sugar and the CDK8 module of Arabidopsis Mediator.

    PubMed

    Buendía-Monreal, Manuel; Gillmor, C Stewart

    2017-03-01

    In Arabidopsis, leaves produced during the juvenile vegetative phase are simple, while adult leaves are morphologically complex. The juvenile to adult transition is regulated by miR156, a microRNA that promotes juvenility by impeding the function of SPL transcription factors, which specify adult leaf traits. Both leaf derived sugars, as well as the Mediator Cyclin Dependent Kinase 8 (CDK8) module genes CENTER CITY (CCT)/MED12 and GRAND CENTRAL (GCT)/MED13, act upstream of miR156 to promote the juvenile to adult transition. However, it is not known whether sugar, CCT and GCT repress miR156 independently, as part of the same pathway, or in a cooperative manner. Here we show that sugar treatment can repress MIR156 expression in the absence of CCT or GCT. Both cct and the photosynthetic mutant chlorina1 (ch1) (which decreases sugar synthesis) exhibit extended juvenile development and increased MIR156A and MIR156C expression. Compared to ch1 and cct single mutants, the ch1 cct double mutant has a stronger effect on juvenile leaf traits, higher MIR156C levels, and a dramatic increase in MIR156A. Our results show that sugar and the CDK8 module are capable of regulating MIR156 independently, but suggest they normally act together in a synergistic manner.

  14. EZH2-mediated Puma gene repression regulates non-small cell lung cancer cell proliferation and cisplatin-induced apoptosis.

    PubMed

    Liu, Haidan; Li, Wei; Yu, Xinfang; Gao, Feng; Duan, Zhi; Ma, Xiaolong; Tan, Shiming; Yuan, Yunchang; Liu, Lijun; Wang, Jian; Zhou, Xinmin; Yang, Yifeng

    2016-08-30

    Polycomb group (PcG) proteins are highly conserved epigenetic effectors that maintain the silenced state of genes. EZH2 is the catalytic core and one of the most important components of the polycomb repressive complex 2 (PRC2). In non-small cell lung cancer (NSCLC) cells and primary lung tumors, we found that PRC2 components, including EZH2, are overexpressed. High levels of EZH2 protein were associated with worse overall survival rate in NSCLC patients. RNA interference mediated attenuation of EZH2 expression blunted the malignant phenotype in this setting, exerting inhibitory effects on cell proliferation, anchorage-independent growth, and tumor development in a xenograft mouse model. Unexpectedly, we discovered that, in the suppression of EZH2, p53 upregulated modulator of apoptosis (PUMA) expression was concomitantly induced. This is achieved through EZH2 directly binds to the Puma promoter thus epigenetic repression of PUMA expression. Furthermore, cisplatin-induced apoptosis of EZH2-knocking down NSCLC cells was elevated as a consequence of increased PUMA expression. Our work reveals a novel epigenetic regulatory mechanism controlling PUMA expression and suggests that EZH2 offers a candidate molecular target for NSCLC therapy and EZH2-regulated PUMA induction would synergistically increase the sensitivity to platinum agents in non-small cell lung cancers.

  15. EZH2-mediated Puma gene repression regulates non-small cell lung cancer cell proliferation and cisplatin-induced apoptosis

    PubMed Central

    Yu, Xinfang; Gao, Feng; Duan, Zhi; Ma, Xiaolong; Tan, Shiming; Yuan, Yunchang; Liu, Lijun; Wang, Jian; Zhou, Xinmin; Yang, Yifeng

    2016-01-01

    Polycomb group (PcG) proteins are highly conserved epigenetic effectors that maintain the silenced state of genes. EZH2 is the catalytic core and one of the most important components of the polycomb repressive complex 2 (PRC2). In non-small cell lung cancer (NSCLC) cells and primary lung tumors, we found that PRC2 components, including EZH2, are overexpressed. High levels of EZH2 protein were associated with worse overall survival rate in NSCLC patients. RNA interference mediated attenuation of EZH2 expression blunted the malignant phenotype in this setting, exerting inhibitory effects on cell proliferation, anchorage-independent growth, and tumor development in a xenograft mouse model. Unexpectedly, we discovered that, in the suppression of EZH2, p53 upregulated modulator of apoptosis (PUMA) expression was concomitantly induced. This is achieved through EZH2 directly binds to the Puma promoter thus epigenetic repression of PUMA expression. Furthermore, cisplatin-induced apoptosis of EZH2-knocking down NSCLC cells was elevated as a consequence of increased PUMA expression. Our work reveals a novel epigenetic regulatory mechanism controlling PUMA expression and suggests that EZH2 offers a candidate molecular target for NSCLC therapy and EZH2-regulated PUMA induction would synergistically increase the sensitivity to platinum agents in non-small cell lung cancers. PMID:27472460

  16. α-Synuclein induces alterations in adult neurogenesis in Parkinson disease models via p53-mediated repression of Notch1.

    PubMed

    Desplats, Paula; Spencer, Brian; Crews, Leslie; Pathel, Pruthul; Morvinski-Friedmann, Dinorah; Kosberg, Kori; Roberts, Scott; Patrick, Christina; Winner, Beate; Winkler, Juergen; Masliah, Eliezer

    2012-09-14

    Parkinson disease is characterized by the loss of dopaminergic neurons mainly in the substantia nigra. Accumulation of α-synuclein and cell loss has been also reported in many other brain regions including the hippocampus, where it might impair adult neurogenesis, contributing to nonmotor symptoms. However, the molecular mechanisms of these alterations are still unknown. In this report we show that α-synuclein-accumulating adult rat hippocampus neural progenitors present aberrant neuronal differentiation, with reduction of Notch1 expression and downstream signaling targets. We characterized a Notch1 proximal promoter that contains p53 canonical response elements. In vivo binding of p53 represses the transcription of Notch1 in neurons. Moreover, we demonstrated that α-synuclein directly binds to the DNA at Notch1 promoter vicinity and also interacts with p53 protein, facilitating or increasing Notch1 signaling repression, which interferes with maturation and survival of neural progenitors cells. This study provides a molecular basis for α-synuclein-mediated disruption of adult neurogenesis in Parkinson disease.

  17. mRNA Targeting to Endoplasmic Reticulum Precedes Ago Protein Interaction and MicroRNA (miRNA)-mediated Translation Repression in Mammalian Cells.

    PubMed

    Barman, Bahnisikha; Bhattacharyya, Suvendra N

    2015-10-09

    MicroRNA (miRNA) binds to the 3'-UTR of its target mRNAs to repress protein synthesis. Extensive research was done to understand the mechanism of miRNA-mediated repression in animal cells. Considering the progress in understanding the mechanism, information about the subcellular sites of miRNA-mediated repression is surprisingly limited. In this study, using an inducible expression system for an miRNA target message, we have delineated how a target mRNA passes through polysome association and Ago2 interaction steps on rough endoplasmic reticulum (ER) before the miRNA-mediated repression sets in. From this study, de novo formed target mRNA localization to the ER-bound polysomes manifested as the earliest event, which is followed by Ago2 micro-ribonucleoprotein binding, and translation repression of target message. Compartmentalization of this process to rough ER membrane ensures enrichment of miRNA-targeted messages and micro-ribonucleoprotein components on ER upon reaching a steady state.

  18. The putrescine biosynthesis pathway in Lactococcus lactis is transcriptionally regulated by carbon catabolic repression, mediated by CcpA.

    PubMed

    Linares, Daniel M; del Río, Beatriz; Ladero, Victor; Redruello, Begoña; Martín, María Cruz; Fernández, María; Alvarez, Miguel A

    2013-07-01

    Lactococcus lactis is the lactic acid bacterium most widely used by the dairy industry as a starter for the manufacture of fermented products such as cheese and buttermilk. However, some strains produce putrescine from agmatine via the agmatine deiminase (AGDI) pathway. The proteins involved in this pathway, including those necessary for agmatine uptake and conversion into putrescine, are encoded by the aguB, aguD, aguA and aguC genes, which together form an operon. This paper reports the mechanism of regulation of putrescine biosynthesis in L. lactis. It is shown that the aguBDAC operon, which contains a cre site at the promoter of aguB (the first gene of the operon), is transcriptionally regulated by carbon catabolic repression (CCR) mediated by the catabolite control protein CcpA.

  19. CDK11{sup p58} represses vitamin D receptor-mediated transcriptional activation through promoting its ubiquitin-proteasome degradation

    SciTech Connect

    Chi, Yayun; Hong, Yi; Zong, Hongliang; Wang, Yanlin; Zou, Weiying; Yang, Junwu; Kong, Xiangfei; Yun, Xiaojing; Gu, Jianxin

    2009-08-28

    Vitamin D receptor (VDR) is a member of the nuclear receptor superfamily and regulates transcription of target genes. In this study, we identified CDK11{sup p58} as a novel protein involved in the regulation of VDR. CDK11{sup p58}, a member of the large family of p34cdc2-related kinases, is associated with cell cycle progression, tumorigenesis, and apoptotic signaling. Our study demonstrated that CDK11{sup p58} interacted with VDR and repressed VDR-dependent transcriptional activation. Furthermore, overexpression of CDK11{sup p58} decreased the stability of VDR through promoting its ubiquitin-proteasome-mediated degradation. Taken together, these results suggest that CDK11{sup p58} is involved in the negative regulation of VDR.

  20. dbx mediates neuronal specification and differentiation through cross-repressive, lineage-specific interactions with eve and hb9.

    PubMed

    Lacin, Haluk; Zhu, Yi; Wilson, Beth A; Skeath, James B

    2009-10-01

    Individual neurons adopt and maintain defined morphological and physiological phenotypes as a result of the expression of specific combinations of transcription factors. In particular, homeodomain-containing transcription factors play key roles in determining neuronal subtype identity in flies and vertebrates. dbx belongs to the highly divergent H2.0 family of homeobox genes. In vertebrates, Dbx1 and Dbx2 promote the development of a subset of interneurons, some of which help mediate left-right coordination of locomotor activity. Here, we identify and show that the single Drosophila ortholog of Dbx1/2 contributes to the development of specific subsets of interneurons via cross-repressive, lineage-specific interactions with the motoneuron-promoting factors eve and hb9 (exex). dbx is expressed primarily in interneurons of the embryonic, larval and adult central nervous system, and these interneurons tend to extend short axons and be GABAergic. Interestingly, many Dbx(+) interneurons share a sibling relationship with Eve(+) or Hb9(+) motoneurons. The non-overlapping expression of dbx and eve, or dbx and hb9, within pairs of sibling neurons is initially established as a result of Notch/Numb-mediated asymmetric divisions. Cross-repressive interactions between dbx and eve, and dbx and hb9, then help maintain the distinct expression profiles of these genes in their respective pairs of sibling neurons. Strict maintenance of the mutually exclusive expression of dbx relative to that of eve and hb9 in sibling neurons is crucial for proper neuronal specification, as misexpression of dbx in motoneurons dramatically hinders motor axon outgrowth.

  1. Polycomb-Mediated Repression and Sonic Hedgehog Signaling Interact to Regulate Merkel Cell Specification during Skin Development

    PubMed Central

    Bar, Carmit; Tsai, Pai-Chi; Valdes, Victor J.; Cohen, Idan; Santoriello, Francis J.; Zhao, Dejian; Hsu, Ya-Chieh; Ezhkova, Elena

    2016-01-01

    An increasing amount of evidence indicates that developmental programs are tightly regulated by the complex interplay between signaling pathways, as well as transcriptional and epigenetic processes. Here, we have uncovered coordination between transcriptional and morphogen cues to specify Merkel cells, poorly understood skin cells that mediate light touch sensations. In murine dorsal skin, Merkel cells are part of touch domes, which are skin structures consisting of specialized keratinocytes, Merkel cells, and afferent neurons, and are located exclusively around primary hair follicles. We show that the developing primary hair follicle functions as a niche required for Merkel cell specification. We find that intraepidermal Sonic hedgehog (Shh) signaling, initiated by the production of Shh ligand in the developing hair follicles, is required for Merkel cell specification. The importance of Shh for Merkel cell formation is further reinforced by the fact that Shh overexpression in embryonic epidermal progenitors leads to ectopic Merkel cells. Interestingly, Shh signaling is common to primary, secondary, and tertiary hair follicles, raising the possibility that there are restrictive mechanisms that regulate Merkel cell specification exclusively around primary hair follicles. Indeed, we find that loss of Polycomb repressive complex 2 (PRC2) in the epidermis results in the formation of ectopic Merkel cells that are associated with all hair types. We show that PRC2 loss expands the field of epidermal cells competent to differentiate into Merkel cells through the upregulation of key Merkel-differentiation genes, which are known PRC2 targets. Importantly, PRC2-mediated repression of the Merkel cell differentiation program requires inductive Shh signaling to form mature Merkel cells. Our study exemplifies how the interplay between epigenetic and morphogen cues regulates the complex patterning and formation of the mammalian skin structures. PMID:27414999

  2. Hepatic injury associated with Trypanosoma cruzi infection is attenuated by treatment with 15-deoxy-Δ(12,14) prostaglandin J2.

    PubMed

    Penas, Federico Nicolás; Cevey, Ágata Carolina; Siffo, Sofía; Mirkin, Gerardo Ariel; Goren, Nora Beatriz

    2016-11-01

    Trypanosoma cruzi, the etiological agent of Chagas' disease, causes an intense inflammatory response in several tissues, including the liver. Since this organ is central to metabolism, its infection may be reflected in the outcome of the disease. 15-deoxy-Δ(12,14) prostaglandin J2 (15dPGJ2), a natural agonist of peroxisome-proliferator activated receptor (PPAR) γ, has been shown to exert anti-inflammatory effects in the heart upon T. cruzi infection. However, its role in the restoration of liver function and reduction of liver inflammation has not been studied yet. BALB/c mice were infected with T. cruzi. The effects of in vivo treatment with 15dPGJ2 on liver inflammation and fibrosis, as well as on the GOT/GPT ratio were studied and the role of NF-κB pathway on 15dPGJ2-mediated effects was analysed. 15dPGJ2 reduced liver inflammatory infiltrates, proinflammatory enzymes and cytokines expression, restored the De Ritis ratio values to normal, reduced the deposits of interstitial and perisinusoidal collagen, reduced the expression of the pro-fibrotic cytokines and inhibited the translocation of the p65 NF-κB subunit to the nucleus. Thus, we showed that 15dPGJ2 is able to significantly reduce the inflammatory response and fibrosis and reduced enzyme markers of liver damage in mice infected with T. cruzi.

  3. 15-Deoxy-Δ12,14-Prostaglandin J2 Modifies Components of the Proteasome and Inhibits Inflammatory Responses in Human Endothelial Cells

    PubMed Central

    Marcone, Simone; Evans, Paul; Fitzgerald, Desmond J.

    2016-01-01

    15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) is an electrophilic lipid mediator derived from PGD2 with potent anti-inflammatory effects. These are likely to be due to the covalent modification of cellular proteins, via a reactive α,β-unsaturated carbonyl group in its cyclopentenone ring. This study was carried out to identify novel cellular target(s) for covalent modification by 15d-PGJ2 and to investigate the anti-inflammatory effects of the prostaglandin on endothelial cells (EC). The data presented here show that 15d-PGJ2 modifies and inhibits components of the proteasome and consequently inhibits the activation of the NF-κB pathway in response to TNF-α. This, in turn, inhibits the adhesion and migration of monocytes toward activated EC, by reducing the expression of adhesion molecules and chemokines in the EC. The effects are consistent with the covalent modification of 13 proteins in the 19S particle of the proteasome identified by mass spectrometry and the suppression of proteasome function, and were similar to the effects seen with a known proteasome inhibitor (MG132). The ubiquitin–proteasome system has been implicated in the regulation of several inflammatory processes and the observation that 15d-PGJ2 profoundly affects the proteasome functions in human EC suggests that 15d-PGJ2 may regulate the progression of inflammatory disorders such as atherosclerosis. PMID:27833612

  4. Effect of peroxisome proliferator activated receptor (PPAR)gamma agonists on prostaglandins cascade in joint cells.

    PubMed

    Moulin, David; Poleni, Paul-Emile; Kirchmeyer, Mélanie; Sebillaud, Sylvie; Koufany, Meriem; Netter, Patrick; Terlain, Bernard; Bianchi, Arnaud; Jouzeau, Jean-Yves

    2006-01-01

    In response to inflammatory cytokines, chondrocytes and synovial fibroblasts produce high amounts of prostaglandins (PG) which self-perpetuate locally the inflammatory reaction. Prostaglandins act primarily through membrane receptors coupled to G proteins but also bind to nuclear Peroxisome Proliferator-Activated Receptors (PPARs). Amongst fatty acids, the cyclopentenone metabolite of PGD2, 15-deoxy-Delta12,14PGJ2 (15d-PGJ2), was shown to be a potent ligand of the PPARgamma isotype prone to inhibit the production of inflammatory mediators. As the stimulated synthesis of PGE2 originates from the preferential coupling of inducible enzymes, cyclooxygenase-2 (COX-2) and membrane PGE synthase-1 (mPGES-1), we investigated the potency of 15d-PGJ2 to regulate prostaglandins synthesis in rat chondrocytes stimulated with interleukin-1beta (IL-1beta). We demonstrated that 15d-PGJ2, but not the high-affinity PPARgamma ligand rosiglitazone, decreased almost completely PGE2 synthesis and mPGES-1 expression. The inhibitory potency of 15d-PGJ2 was unaffected by changes in PPARgamma expression and resulted from inhibition of NF-kappaB nuclear binding and IkappaBalpha sparing, secondary to reduced phosphorylation of IKKbeta. Consistently with 15d-PGJ2 being a putative endogenous regulator of the inflammatory reaction if synthesized in sufficient amounts, the present data confirm the variable PPARgamma-dependency of its effects in joint cells while underlining possible species and cell types specificities.

  5. Repression of Rgg But Not Upregulation of LacD.1 in emm1-type covS Mutant Mediates the SpeB Repression in Group A Streptococcus

    PubMed Central

    Chiang-Ni, Chuan; Chu, Teng-Ping; Wu, Jiunn-Jong; Chiu, Cheng-Hsun

    2016-01-01

    CovR/CovS is an important two-component regulatory system in human pathogen group A Streptococcus (GAS). Epidemiological studies have shown that inactivation of the sensor kinase CovS is correlated with invasive clinical manifestations. The phosphorylation level of response regulator CovR decreases dramatically in the absence of CovS, resulting in the derepression of virulence factor expression and an increase in bacterial invasiveness. Streptococcal pyrogenic exotoxin B (SpeB) is a cysteine protease and is negatively regulated by CovR; however, the expression of SpeB is almost completely repressed in the covS mutant. The present study found that in the emm1-type A20 strain, non-phosphorylated CovR acts as a transcriptional repressor for SpeB-positive regulator Rgg. In addition, the expression of Rgg-negative regulator LacD.1 is upregulated in the covS mutant. These results suggest that inactivation of Rgg in the covS mutant would directly mediate speB repression. The current study showed that overexpression of rgg but not inactivation of lacD.1 in the covS mutant partially restores speB expression, indicating that only rgg repression, but not lacD.1 upregulation, contributes to the speB repression in the covS mutant. PMID:27965655

  6. Chromatin Accessibility Mapping Identifies Mediators of Basal Transcription and Retinoid-Induced Repression of OTX2 in Medulloblastoma

    PubMed Central

    Zhang, Monica; Song, Lingyun; Lee, Bum-Kyu; Iyer, Vishwanath R.; Furey, Terrence S.; Crawford, Gregory E.; Yan, Hai; He, Yiping

    2014-01-01

    Despite an emerging understanding of the genetic alterations giving rise to various tumors, the mechanisms whereby most oncogenes are overexpressed remain unclear. Here we have utilized an integrated approach of genomewide regulatory element mapping via DNase-seq followed by conventional reporter assays and transcription factor binding site discovery to characterize the transcriptional regulation of the medulloblastoma oncogene Orthodenticle Homeobox 2 (OTX2). Through these studies we have revealed that OTX2 is differentially regulated in medulloblastoma at the level of chromatin accessibility, which is in part mediated by DNA methylation. In cell lines exhibiting chromatin accessibility of OTX2 regulatory regions, we found that autoregulation maintains OTX2 expression. Comparison of medulloblastoma regulatory elements with those of the developing brain reveals that these tumors engage a developmental regulatory program to drive OTX2 transcription. Finally, we have identified a transcriptional regulatory element mediating retinoid-induced OTX2 repression in these tumors. This work characterizes for the first time the mechanisms of OTX2 overexpression in medulloblastoma. Furthermore, this study establishes proof of principle for applying ENCODE datasets towards the characterization of upstream trans-acting factors mediating expression of individual genes. PMID:25198066

  7. EphrinB2 repression through ZEB2 mediates tumour invasion and anti-angiogenic resistance

    PubMed Central

    Depner, C.; zum Buttel, H.; Böğürcü, N.; Cuesta, A. M.; Aburto, M. R.; Seidel, S.; Finkelmeier, F.; Foss, F.; Hofmann, J.; Kaulich, K.; Barbus, S.; Segarra, M.; Reifenberger, G.; Garvalov, B. K.; Acker, T.; Acker-Palmer, A.

    2016-01-01

    Diffuse invasion of the surrounding brain parenchyma is a major obstacle in the treatment of gliomas with various therapeutics, including anti-angiogenic agents. Here we identify the epi-/genetic and microenvironmental downregulation of ephrinB2 as a crucial step that promotes tumour invasion by abrogation of repulsive signals. We demonstrate that ephrinB2 is downregulated in human gliomas as a consequence of promoter hypermethylation and gene deletion. Consistently, genetic deletion of ephrinB2 in a murine high-grade glioma model increases invasion. Importantly, ephrinB2 gene silencing is complemented by a hypoxia-induced transcriptional repression. Mechanistically, hypoxia-inducible factor (HIF)-1α induces the EMT repressor ZEB2, which directly downregulates ephrinB2 through promoter binding to enhance tumour invasiveness. This mechanism is activated following anti-angiogenic treatment of gliomas and is efficiently blocked by disrupting ZEB2 activity. Taken together, our results identify ZEB2 as an attractive therapeutic target to inhibit tumour invasion and counteract tumour resistance mechanisms induced by anti-angiogenic treatment strategies. PMID:27470974

  8. NFATc1 Mediates HDAC-Dependent Transcriptional Repression of Osteocalcin Expression During Osteoblast Differentiation

    PubMed Central

    Choo, Min-Kyung; Yeo, Hyeonju; Zayzafoon, Majd

    2009-01-01

    We previously reported that the in vivo and in vitro suppression of Nuclear Factor of Activated T Cells (NFAT) signaling increases osteoblast differentiation and bone formation. To investigate the mechanism by which NFATc1 regulates osteoblast differentiation, we established an osteoblast cell line that overexpresses a constitutively active NFATc1 (ca-NFATc1). The activation of NFATc1 significantly inhibits osteoblast differentiation and function, demonstrated by inhibition of alkaline phosphatase activity and mineralization as well as a decrease in gene expression of early and late markers of osteoblast differentiation such as osterix and osteocalcin, respectively. By focusing on the specific role of NFATc1 during late differentiation, we discovered that the inhibition of osteocalcin gene expression by NFATc1 was associated with a repression of the osteocalcin promoter activity, and a decrease in TCF/LEF transactivation. Also, overexpression of NFATc1 completely blocked the decrease in total histone deacetylase (HDAC) activity during osteoblast differentiation and prevented the hyperacetylation of histones H3 and H4. Mechanistically, we show by Chromatin Immunoprecipitation (ChIP) assay that the overexpression of NFATc1 sustains the binding of HDAC3 on the proximal region of the osteocalcin promoter, resulting in complete hypoacetylation of histones H3 and H4 when compared to GFP-expressing osteoblasts. In contrast, the inhibition of NFATc1 nuclear translocation either by cyclosporin or by using primary mouse osteoblasts with deleted calcineurin b1 prevents HDAC3 from associating with the proximal regulatory site of the osteocalcin promoter. These preliminary results suggest that NFATc1 acts as a transcriptional co-repressor of osteocalcin promoter possibly in an HDAC-dependent manner. PMID:19463978

  9. Glucocorticoid Receptor Signaling Represses the Antioxidant Response by Inhibiting Histone Acetylation Mediated by the Transcriptional Activator NRF2.

    PubMed

    Alam, Md Morshedul; Okazaki, Keito; Nguyen, Linh Thi Thao; Ota, Nao; Kitamura, Hiroshi; Murakami, Shohei; Shima, Hiroki; Igarashi, Kazuhiko; Sekine, Hiroki; Motohashi, Hozumi

    2017-03-17

    NRF2 (nuclear factor erythroid 2-related factor 2) is a key transcriptional activator that mediates the inducible expression of antioxidant genes. NRF2 is normally ubiquitinated by KEAP1 (Kelch-like ECH-associated protein 1) and subsequently degraded by proteasomes. Inactivation of KEAP1 by oxidative stress or electrophilic chemicals allows NRF2 to activate transcription through binding to antioxidant response elements (AREs) and recruiting histone acetyltransferase CBP (CREB-binding protein). While KEAP1-dependent regulation is a major determinant of NRF2 activity, NRF2-mediated transcriptional activation varies from context to context, suggesting other intracellular signaling cascades may impact NRF2 function. To identify a signaling pathway that modifies NRF2 activity, we immunoprecipitated endogenous NRF2 and its interacting proteins from mouse liver and identified glucocorticoid receptor (GR) as a novel NRF2-binding partner. We found that glucocorticoids (GC), dexamethasone (Dex) and betamethasone (Bet), antagonize diethyl maleate (DEM)-induced activation of NRF2 target genes in a GR-dependent manner. Dex treatment enhanced GR recruitment to AREs without affecting chromatin binding of NRF2, resulting in the inhibition of CBP recruitment and histone acetylation at AREs. This repressive effect was canceled by the addition of HDAC inhibitors. Thus, GR signaling decreases NRF2 transcriptional activation through reducing the NRF2-dependent histone acetylation. Consistent with these observations, GR signaling blocked NRF2-mediated cytoprotection from oxidative stress. This study suggests that an impaired antioxidant response by NRF2 and a resulting decrease in cellular antioxidant capacity account for the side effects of GCs, providing a novel viewpoint for the pathogenesis of hypercorticosteroidism.

  10. Role of the hinge region of glucocorticoid receptor for HEXIM1-mediated transcriptional repression

    SciTech Connect

    Yoshikawa, Noritada; Shimizu, Noriaki; Sano, Motoaki; Ohnuma, Kei; Iwata, Satoshi; Hosono, Osamu; Fukuda, Keiichi; Morimoto, Chikao

    2008-06-20

    We previously reported that HEXIM1 (hexamethylene bisacetamide-inducible protein 1), which suppresses transcription elongation via sequestration of positive transcription elongation factor b (P-TEFb) using 7SK RNA as a scaffold, directly associates with glucocorticoid receptor (GR) to suppress glucocorticoid-inducible gene activation. Here, we revealed that the hinge region of GR is essential for its interaction with HEXIM1, and that oxosteroid receptors including GR show sequence homology in their hinge region and interact with HEXIM1, whereas the other members of nuclear receptors do not. We also showed that HEXIM1 suppresses GR-mediated transcription in two ways: sequestration of P-TEFb by HEXIM1 and direct interaction between GR and HEXIM1. In contrast, peroxisome proliferator-activated receptor {gamma}-dependent gene expression is negatively modulated by HEXIM1 solely via sequestration of P-TEFb. We, therefore, conclude that HEXIM1 may act as a gene-selective transcriptional regulator via direct interaction with certain transcriptional regulators including GR and contribute to fine-tuning of, for example, glucocorticoid-mediated biological responses.

  11. FIAT represses ATF4-mediated transcription to regulate bone mass in transgenic mice.

    PubMed

    Yu, Vionnie W C; Ambartsoumian, Gourgen; Verlinden, Lieve; Moir, Janet M; Prud'homme, Josée; Gauthier, Claude; Roughley, Peter J; St-Arnaud, René

    2005-05-23

    We report the characterization of factor inhibiting activating transcription factor 4 (ATF4)-mediated transcription (FIAT), a leucine zipper nuclear protein. FIAT interacted with ATF4 to inhibit binding of ATF4 to DNA and block ATF4-mediated transcription of the osteocalcin gene in vitro. Transgenic mice overexpressing FIAT in osteoblasts also had reduced osteocalcin gene expression and decreased bone mineral density, bone volume, mineralized volume, trabecular thickness, trabecular number, and decreased rigidity of long bones. Mineral homeostasis, osteoclast number and activity, and osteoblast proliferation and apoptosis were unchanged in transgenics. Expression of osteoblastic differentiation markers was largely unaffected and type I collagen synthesis was unchanged. Mineral apposition rate was reduced in transgenic mice, suggesting that the lowered bone mass was due to a decline in osteoblast activity. This cell-autonomous decrease in osteoblast activity was confirmed by measuring reduced alkaline phosphatase activity and mineralization in primary osteoblast cultures. These results show that FIAT regulates bone mass accrual and establish FIAT as a novel transcriptional regulator of osteoblastic function.

  12. Nuclear Matrix protein SMAR1 represses HIV-1 LTR mediated transcription through chromatin remodeling

    SciTech Connect

    Sreenath, Kadreppa; Pavithra, Lakshminarasimhan; Singh, Sandeep; Sinha, Surajit; Dash, Prasanta K.; Siddappa, Nagadenahalli B.; Ranga, Udaykumar; Mitra, Debashis; Chattopadhyay, Samit

    2010-04-25

    Nuclear Matrix and MARs have been implicated in the transcriptional regulation of host as well as viral genes but their precise role in HIV-1 transcription remains unclear. Here, we show that > 98% of HIV sequences contain consensus MAR element in their promoter. We show that SMAR1 binds to the LTR MAR and reinforces transcriptional silencing by tethering the LTR MAR to nuclear matrix. SMAR1 associated HDAC1-mSin3 corepressor complex is dislodged from the LTR upon cellular activation by PMA/TNFalpha leading to an increase in the acetylation and a reduction in the trimethylation of histones, associated with the recruitment of RNA Polymerase II on the LTR. Overexpression of SMAR1 lead to reduction in LTR mediated transcription, both in a Tat dependent and independent manner, resulting in a decreased virion production. These results demonstrate the role of SMAR1 in regulating viral transcription by alternative compartmentalization of LTR between the nuclear matrix and chromatin.

  13. TBP-like protein (TLP) interferes with Taspase1-mediated processing of TFIIA and represses TATA box gene expression.

    PubMed

    Suzuki, Hidefumi; Isogai, Momoko; Maeda, Ryo; Ura, Kiyoe; Tamura, Taka-Aki

    2015-07-27

    TBP-TFIIA interaction is involved in the potentiation of TATA box-driven promoters. TFIIA activates transcription through stabilization of TATA box-bound TBP. The precursor of TFIIA is subjected to Taspase1-directed processing to generate α and β subunits. Although this processing has been assumed to be required for the promoter activation function of TFIIA, little is known about how the processing is regulated. In this study, we found that TBP-like protein (TLP), which has the highest affinity to TFIIA among known proteins, affects Taspase1-driven processing of TFIIA. TLP interfered with TFIIA processing in vivo and in vitro, and direct binding of TLP to TFIIA was essential for inhibition of the processing. We also showed that TATA box promoters are specifically potentiated by processed TFIIA. Processed TFIIA, but not unprocessed TFIIA, associated with the TATA box. In a TLP-knocked-down condition, not only the amounts of TATA box-bound TFIIA but also those of chromatin-bound TBP were significantly increased, resulting in the stimulation of TATA box-mediated gene expression. Consequently, we suggest that TLP works as a negative regulator of the TFIIA processing and represses TFIIA-governed and TATA-dependent gene expression through preventing TFIIA maturation.

  14. Abscisic Acid Antagonizes Ethylene Production through the ABI4-Mediated Transcriptional Repression of ACS4 and ACS8 in Arabidopsis.

    PubMed

    Dong, Zhijun; Yu, Yanwen; Li, Shenghui; Wang, Juan; Tang, Saijun; Huang, Rongfeng

    2016-01-04

    Increasing evidence has revealed that abscisic acid (ABA) negatively modulates ethylene biosynthesis, although the underlying mechanism remains unclear. To identify the factors involved, we conducted a screen for ABA-insensitive mutants with altered ethylene production in Arabidopsis. A dominant allele of ABI4, abi4-152, which produces a putative protein with a 16-amino-acid truncation at the C-terminus of ABI4, reduces ethylene production. By contrast, two recessive knockout alleles of ABI4, abi4-102 and abi4-103, result in increased ethylene evolution, indicating that ABI4 negatively regulates ethylene production. Further analyses showed that expression of the ethylene biosynthesis genes ACS4, ACS8, and ACO2 was significantly decreased in abi4-152 but increased in the knockout mutants, with partial dependence on ABA. Chromatin immunoprecipitation-quantitative PCR assays showed that ABI4 directly binds the promoters of these ethylene biosynthesis genes and that ABA enhances this interaction. A fusion protein containing the truncated ABI4-152 peptide accumulated to higher levels than its full-length counterpart in transgenic plants, suggesting that ABI4 is destabilized by its C terminus. Therefore, our results demonstrate that ABA negatively regulates ethylene production through ABI4-mediated transcriptional repression of the ethylene biosynthesis genes ACS4 and ACS8 in Arabidopsis.

  15. Regulation of miRNA Processing and miRNA Mediated Gene Repression in Cancer

    PubMed Central

    Bajan, Sarah; Hutvagner, Gyorgy

    2014-01-01

    The majority of human protein-coding genes are predicted to be targets of miRNA-mediated post-transcriptional regulation. The widespread influence of miRNAs is illustrated by their essential roles in all biological processes. Regulated miRNA expression is essential for maintaining cellular differentiation; therefore alterations in miRNA expression patterns are associated with several diseases, including various cancers. High-throughput sequencing technologies revealed low level expressing miRNA isoforms, termed isomiRs. IsomiRs may differ in sequence, length, target preference and expression patterns from their parental miRNA and can arise from differences in miRNA biosynthesis, RNA editing, or SNPs inherent to the miRNA gene. The association between isomiR expression and disease progression is largely unknown. Misregulated miRNA expression is thought to contribute to the formation and/or progression of cancer. However, due to the diversity of targeted transcripts, miRNAs can function as both tumor-suppressor genes and oncogenes as defined by cellular context. Despite this, miRNA profiling studies concluded that the differential expression of particular miRNAs in diseased tissue could aid the diagnosis and treatment of some cancers. PMID:25069508

  16. Arabidopsis AINTEGUMENTA mediates salt tolerance by trans-repressing SCABP8.

    PubMed

    Meng, Lai-Sheng; Wang, Yi-Bo; Yao, Shun-Qiao; Liu, Aizhong

    2015-08-01

    The Arabidopsis AINTEGUMENTA (ANT) gene, which encodes an APETALA2 (AP2)-like transcription factor, controls plant organ cell number and organ size throughout shoot development. ANT is thus a key factor in the development of plant shoots. Here, we have found that ANT plays an essential role in conferring salt tolerance in Arabidopsis. ant-knockout mutants presented a salt-tolerant phenotype, whereas transgenic plants expressing ANT under the 35S promoter (35S:ANT) exhibited more sensitive phenotypes under high salt stress. Further analysis indicated that ANT functions mainly in the shoot response to salt toxicity. Target gene analysis revealed that ANT bound to the promoter of SOS3-LIKE CALCIUM BINDING PROTEIN 8 (SCABP8), which encodes a putative Ca(2+) sensor, thereby inhibiting expression of SCABP8 (also known as CBL10). It has been reported that the salt sensitivity of scabp8 is more prominent in shoot tissues. Genetic experiments indicated that the mutation of SCABP8 suppresses the ant-knockout salt-tolerant phenotype, implying that ANT functions as a negative transcriptional regulator of SCABP8 upon salt stress. Taken together, the above results reveal that ANT is a novel regulator of salt stress and that ANT binds to the SCABP8 promoter, mediating salt tolerance.

  17. pVHL-Mediated Transcriptional Repression of c-Myc by Recruitment of Histone Deacetylases

    PubMed Central

    Hwang, In-Young; Roe, Jae-Seok; Seol, Ja-Hwan; Kim, Hwa-Ryeon; Cho, Eun-Jung; Youn, Hong-Duk

    2012-01-01

    The biological functions of Myc are to regulate cell growth, apoptosis, cell differentiation and stem-cell self-renewal. Abnormal accumulation of c-Myc is able to induce excessive proliferation of normal cells. von Hippel-Lindau protein (pVHL) is a key regulator of hypoxia-inducible factor1α (HIF1α), thus accumulation and hyperactivation of HIF1α is the most prominent feature of VHL-mutated renal cell carcinoma. Interestingly, the Myc pathway is reported to be activated in renal cell carcinoma even though the precise molecular mechanism still remains to be established. Here, we demonstrated that pVHL locates at the c-Myc promoter region through physical interaction with Myc. Furthermore, pVHL reinforces HDAC1/2 recruitment to the Myc promoter, which leads to the auto-suppression of Myc. Therefore, one possible mechanism of Myc auto-suppression by pVHL entails removing histone acetylation. Our study identifies a novel mechanism for pVHL-mediated negative regulation of c-Myc transcription. PMID:22286234

  18. Repression of hypoxia-inducible factor α signaling by Set7-mediated methylation

    PubMed Central

    Liu, Xing; Chen, Zhu; Xu, Chenxi; Leng, Xiaoqian; Cao, Hong; Ouyang, Gang; Xiao, Wuhan

    2015-01-01

    Hypoxia-inducible factor (HIF)-1α and HIF-2α are the main regulators of cellular responses to hypoxia. Post-translational modifications of HIF-1α and 2α are necessary to modulate their functions. The methylation of non-histone proteins by Set7, an SET domain-containing lysine methyltransferase, is a novel regulatory mechanism to control cell protein function in response to various cellular stresses. In this study, we show that Set7 methylates HIF-1α at lysine 32 and HIF-2α at lysine K29; this methylation inhibits the expression of HIF-1α/2α targets by impairing the occupancy of HIF-α on hypoxia response element of HIF target gene promoter. Set7-null fibroblasts and the cells with shRNA-knocked down Set7 exhibit upregulated HIF target genes. Set7 inhibitor blocks HIF-1α/2α methylation to enhance HIF target gene expression. Set7-null fibroblasts and the cells with shRNA-knocked down Set7 or inhibition of Set7 by the inhibitor subjected to hypoxia display an increased glucose uptake and intracellular adenosine triphosphate levels. These findings define a novel modification of HIF-1α/2α and demonstrate that Set7-medited lysine methylation negatively regulates HIF-α transcriptional activity and HIF-1α-mediated glucose homeostasis. PMID:25897119

  19. Calcium-mediated repression of β-catenin and its transcriptional signaling mediates neural crest cell death in an avian model of fetal alcohol syndrome.

    PubMed

    Flentke, George R; Garic, Ana; Amberger, Ed; Hernandez, Marcos; Smith, Susan M

    2011-07-01

    Fetal alcohol syndrome (FAS) is a common birth defect in many societies. Affected individuals have neurodevelopmental disabilities and a distinctive craniofacial dysmorphology. These latter deficits originate during early development from the ethanol-mediated apoptotic depletion of cranial facial progenitors, a population known as the neural crest. We showed previously that this apoptosis is caused because acute ethanol exposure activates G-protein-dependent intracellular calcium within cranial neural crest progenitors, and this calcium transient initiates the cell death. The dysregulated signals that reside downstream of ethanol's calcium transient and effect neural crest death are unknown. Here we show that ethanol's repression of the transcriptional effector β-catenin causes the neural crest losses. Clinically relevant ethanol concentrations (22-78 mM) rapidly deplete nuclear β-catenin from neural crest progenitors, with accompanying losses of β-catenin transcriptional activity and downstream genes that govern neural crest induction, expansion, and survival. Using forced expression studies, we show that β-catenin loss of function (via dominant-negative T cell transcription factor [TCF]) recapitulates ethanol's effects on neural crest apoptosis, whereas β-catenin gain-of-function in ethanol's presence preserves neural crest survival. Blockade of ethanol's calcium transient using Bapta-AM normalizes β-catenin activity and prevents the neural crest losses, whereas ionomycin treatment is sufficient to destabilize β-catenin. We propose that ethanol's repression of β-catenin causes the neural crest losses in this model of FAS. β-Catenin is a novel target for ethanol's teratogenicity. β-Catenin/Wnt signals participate in many developmental events and its rapid and persistent dysregulation by ethanol may explain why the latter is such a potent teratogen.

  20. Complementary quantitative proteomics reveals that transcription factor AP-4 mediates E-box-dependent complex formation for transcriptional repression of HDM2.

    PubMed

    Ku, Wei-Chi; Chiu, Sung-Kay; Chen, Yi-Ju; Huang, Hsin-Hung; Wu, Wen-Guey; Chen, Yu-Ju

    2009-09-01

    Transcription factor activating enhancer-binding protein 4 (AP-4) is a basic helix-loop-helix protein that binds to E-box elements. AP-4 has received increasing attention for its regulatory role in cell growth and development, including transcriptional repression of the human homolog of murine double minute 2 (HDM2), an important oncoprotein controlling cell growth and survival, by an unknown mechanism. Here we demonstrate that AP-4 binds to an E-box located in the HDM2-P2 promoter and represses HDM2 transcription in a p53-independent manner. Incremental truncations of AP-4 revealed that the C-terminal Gln/Pro-rich domain was essential for transcriptional repression of HDM2. To further delineate the molecular mechanism(s) of AP-4 transcriptional control and its potential implications, we used DNA-affinity purification followed by complementary quantitative proteomics, cICAT and iTRAQ labeling methods, to identify a previously unknown E-box-bound AP-4 protein complex containing 75 putative components. The two labeling methods complementarily quantified differentially AP-4-enriched proteins, including the most significant recruitment of DNA damage response proteins, followed by transcription factors, transcriptional repressors/corepressors, and histone-modifying proteins. Specific interaction of AP-4 with CCCTC binding factor, stimulatory protein 1, and histone deacetylase 1 (an AP-4 corepressor) was validated using AP-4 truncation mutants. Importantly, inclusion of trichostatin A did not alleviate AP-4-mediated repression of HDM2 transcription, suggesting a previously unidentified histone deacetylase-independent repression mechanism. In contrast, the complementary quantitative proteomics study suggested that transcription repression occurs via coordination of AP-4 with other transcription factors, histone methyltransferases, and/or a nucleosome remodeling SWI.SNF complex. In addition to previously known functions of AP-4, our data suggest that AP-4 participates in a

  1. Enteric glia modulate epithelial cell proliferation and differentiation through 15-deoxy-Δ12,14-prostaglandin J2

    PubMed Central

    Bach-Ngohou, Kalyane; Mahé, Maxime M; Aubert, Philippe; Abdo, Hind; Boni, Sébastien; Bourreille, Arnaud; Denis, Marc G; Lardeux, Bernard; Neunlist, Michel; Masson, Damien

    2010-01-01

    The enteric nervous system (ENS) and its major component, enteric glial cells (EGCs), have recently been identified as a major regulator of intestinal epithelial barrier functions. Indeed, EGCs inhibit intestinal epithelial cell (IEC) proliferation and increase barrier resistance and IEC adhesion via the release of EGC-derived soluble factors. Interestingly, EGC regulation of intestinal epithelial barrier functions is reminiscent of previously reported peroxisome proliferator-activated receptor γ (PPARγ)-dependent functional effects. In this context, the present study aimed at identifying whether EGC could synthesize and release the main PPARγ ligand, 15-deoxy-Δ12,14-prostaglandin J2 (15dPGJ2), and regulate IEC functions such as proliferation and differentiation via a PPARγ dependent pathway. First, we demonstrated that the lipocalin but not the haematopoetic form for prostaglandin D synthase (PGDS), the enzyme responsible of 15dPGJ2 synthesis, was expressed in EGCs of the human submucosal plexus and of the subepithelium, as well as in rat primary culture of ENS and EGC lines. Next, 15dPGJ2 was identified in EGC supernatants of various EGC lines. 15dPGJ2 reproduced EGC inhibitory effects upon IEC proliferation, and inhibition of lipocalin PGDS expression by shRNA abrogated these effects. Furthermore, EGCs induced nuclear translocation of PPARγ in IEC, and both EGC and 15dPGJ2 effects upon IEC proliferation were prevented by the PPARγ antagonist GW9662. Finally, EGC induced differentiation-related gene expression in IEC through a PPARγ-dependent pathway. Our results identified 15dPGJ2 as a novel glial-derived mediator involved in the control of IEC proliferation/differentiation through activation of PPARγ. They also suggest that alterations of glial PGDS expression may modify intestinal epithelial barrier functions and be involved in the development of pathologies such as cancer or inflammatory bowel diseases. PMID:20478974

  2. Retinoid X receptor alpha represses GATA-4-mediated transcription via a retinoid-dependent interaction with the cardiac-enriched repressor FOG-2.

    PubMed

    Clabby, Martha L; Robison, Trevor A; Quigley, Heather F; Wilson, David B; Kelly, Daniel P

    2003-02-21

    Dietary vitamin A and its derivatives, retinoids, regulate cardiac growth and development. To delineate mechanisms involved in retinoid-mediated control of cardiac gene expression, the regulatory effects of the retinoid X receptor alpha (RXR alpha) on atrial naturietic factor (ANF) gene transcription was investigated. The transcriptional activity of an ANF promoter-reporter in rat neonatal ventricular myocytes was repressed by RXR alpha in the presence of 9-cis-RA and by the constitutively active mutant RXR alpha F318A indicating that liganded RXR confers the regulatory effect. The RXR alpha-mediated repression mapped to the proximal 147 bp of the rat ANF promoter, a region lacking a consensus retinoid response element but containing several known cardiogenic cis elements including a well characterized GATA response element. Glutathione S-transferase "pull-down" assays revealed that RXR alpha interacts directly with GATA-4, in a ligand-independent manner, via the DNA binding domain of RXR alpha and the second zinc finger of GATA-4. Liganded RXR alpha repressed the activity of a heterologous promoter-reporter construct containing GATA-response element recognition sites in cardiac myocytes but not in several other cell types, suggesting that additional cardiac-enriched factors participate in the repression complex. Co-transfection of liganded RXR alpha and the known cardiac-enriched GATA-4 repressor, FOG-2, resulted in additive repression of GATA-4 activity in ventricular myocytes. In addition, RXR alpha was found to bind FOG-2, in a 9-cis-RA-dependent manner. These data reveal a novel mechanism by which retinoids regulate cardiogenic gene expression through direct interaction with GATA-4 and its co-repressor, FOG-2.

  3. Mutations in the GW-repeat protein SUO reveal a developmental function for microRNA-mediated translational repression in Arabidopsis

    PubMed Central

    Yang, Li; Wu, Gang; Poethig, R. Scott

    2012-01-01

    Plant microRNAs (miRNAs) typically mediate RNA cleavage, but examples of miRNA-mediated translational repression have also been reported. However, the functional significance of this latter process is unknown. We identified SUO in a screen for Arabidopsis mutations that increase the accumulation of the miR156-regulated gene SPL3. suo has a loss-of-function phenotype characteristic of plants with reduced Argonaute (AGO)1 activity. An analysis of RNA and protein levels in suo mutants demonstrated that this phenotype is a consequence of a defect in miRNA-mediated translational repression; the effect of suo on vegetative phase change is attributable to a reduction in miR156/miR157 activity. SUO encodes a large protein with N-terminal bromo-adjacent homology (BAH) and transcription elongation factor S-II (TFS2N) domains and two C-terminal GW (glycine and tryptophan) repeats. SUO is present in the nucleus, and colocalizes with the processing-body component DCP1 in the cytoplasm. Our results reveal that SOU is a component of the miRNA pathway in Arabidopsis and demonstrate that translational repression is a functionally important aspect of miRNA activity in plants. PMID:22184231

  4. Mutations in the GW-repeat protein SUO reveal a developmental function for microRNA-mediated translational repression in Arabidopsis.

    PubMed

    Yang, Li; Wu, Gang; Poethig, R Scott

    2012-01-03

    Plant microRNAs (miRNAs) typically mediate RNA cleavage, but examples of miRNA-mediated translational repression have also been reported. However, the functional significance of this latter process is unknown. We identified SUO in a screen for Arabidopsis mutations that increase the accumulation of the miR156-regulated gene SPL3. suo has a loss-of-function phenotype characteristic of plants with reduced Argonaute (AGO)1 activity. An analysis of RNA and protein levels in suo mutants demonstrated that this phenotype is a consequence of a defect in miRNA-mediated translational repression; the effect of suo on vegetative phase change is attributable to a reduction in miR156/miR157 activity. SUO encodes a large protein with N-terminal bromo-adjacent homology (BAH) and transcription elongation factor S-II (TFS2N) domains and two C-terminal GW (glycine and tryptophan) repeats. SUO is present in the nucleus, and colocalizes with the processing-body component DCP1 in the cytoplasm. Our results reveal that SOU is a component of the miRNA pathway in Arabidopsis and demonstrate that translational repression is a functionally important aspect of miRNA activity in plants.

  5. 15-Deoxy-Δ12,14-prostaglandin J2 induces expression of 15-hydroxyprostaglandin dehydrogenase through Elk-1 activation in human breast cancer MDA-MB-231 cells.

    PubMed

    Kim, Hye-Rim; Lee, Ha-Na; Lim, Kyu; Surh, Young-Joon; Na, Hye-Kyung

    2014-10-01

    Overproduction of prostaglandin E2 (PGE2) has been reported to be implicated in carcinogenesis. The intracellular level of PGE2 is maintained not only by its biosynthesis, but also by inactivation/degradation. 15-Hydroxyprostaglandin dehydrogenase (15-PGDH) is the key enzyme that catalyzes the conversion of oncogenic PGE2 to a biologically inactive keto metabolite. In the present study, we demonstrate that 15-deoxy-Δ(12,14)-prostaglandin J2 (15 d-PGJ2), one of the terminal products of cyclooxygenase-2, updregulates the expression and the activity of 15-PGDH in human breast cancer MDA-MB-231 cells. By using deletion constructs of the 15-PGDH promoter, we have found that E-twenty six (Ets) is the most essential determinant for 15-PGDH induction. 15 d-PGJ2 induced phosphorylation of Elk-1, one of Ets transcription factor family members, in the nucleus. Knockdown of Elk-1 abolished the ability of 15 d-PGJ2 to upregulate 15-PGDH expression. Furthermore, 15 d-PGJ2-mediated activation of Elk-1 was found to be dependent on activation of extracellular-signal related kinase (ERK) 1/2. Treatment of U0126, a pharmacological inhibitor of MEK1/2-ERK, abolished phosphorylation and DNA binding of Elk-1 as well as 15-PGDH induction in 15 d-PGJ2-treated MDA-MB-231 cells. Moreover, 15 d-PGJ2 generated reactive oxygen species (ROS), which contribute to the expression of 15-PGDH as well as phosphorylation of ERK1/2 and Elk-1. 15 d-PGJ2 inhibited the migration of MDA-MB-231 cells, which was attenuated by transient transfection with 15-PGDH siRNA. Taken together, these findings suggest that 15 d-PGJ2 induces the expression of 15-PGDH through ROS-mediated activation of ERK1/2 and subsequently Elk-1 in the MDA-MB-231 cells, which may contribute to tumor suppressive activity of this cyclopentenone prostaglandin.

  6. Epigenetic involvement of Alien/ESET complex in thyroid hormone-mediated repression of E2F1 gene expression and cell proliferation

    SciTech Connect

    Hong, Wei; Li, Jinru; Wang, Bo; Chen, Linfeng; Niu, Wenyan; Yao, Zhi; Baniahmad, Aria

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer Corepressor Alien interacts with histone methyltransferase ESET in vivo. Black-Right-Pointing-Pointer Alien/ESET complex is recruited to nTRE of T3-responsive gene by liganded TR{beta}1. Black-Right-Pointing-Pointer ESET-mediated H3K9 methylation is required for liganded TR{beta}1-repressed transcription. Black-Right-Pointing-Pointer ESET is involved in T3-repressed G1/S phase transition and proliferation. -- Abstract: The ligand-bound thyroid hormone receptor (TR) is known to repress via a negative TRE (nTRE) the expression of E2F1, a key transcription factor that controls the G1/S phase transition. Alien has been identified as a novel interacting factor of E2F1 and acts as a corepressor of E2F1. The detailed molecular mechanism by which Alien inhibits E2F1 gene expression remains unclear. Here, we report that the histone H3 lysine 9 (H3K9) methyltransferase (HMT) ESET is an integral component of the corepressor Alien complex and the Alien/ESET complex is recruited to both sites, the E2F1 and the nTRE site of the E2F1 gene while the recruitment to the negative thyroid hormone response element (nTRE) is induced by the ligand-bound TR{beta}1 within the E2F1 gene promoter. We show that, overexpression of ESET promotes, whereas knockdown of ESET releases, the inhibition of TR{beta}1-regulated gene transcription upon T3 stimulation; and H3K9 methylation is required for TR{beta}1-repressed transcription. Furthermore, depletion of ESET impairs thyroid hormone-repressed proliferation as well as the G1/S transition of the cell cycle. Taken together, our data indicate that ESET is involved in TR{beta}1-mediated transcription repression and provide a molecular basis of thyroid hormone-induced repression of proliferation.

  7. Sp1 mediates repression of the resistin gene by PPAR{gamma} agonists in 3T3-L1 adipocytes

    SciTech Connect

    Chung, S.S.; Choi, H.H.; Cho, Y.M.; Lee, H.K.; Park, K.S. . E-mail: kspark@snu.ac.kr

    2006-09-15

    Resistin is an adipokine related to obesity and insulin resistance. Expression of the resistin gene is repressed by the treatment of peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) agonists, thiazolidinediones (TZDs). In this study, we investigated the mechanism by which TZDs inhibit the resistin gene expression. Resistin gene expression was decreased by TZD in fully differentiated 3T3-L1 adipocytes, which was abolished after treatment of cycloheximide (a protein synthesis inhibitor). TZD could not repress the expression of the resistin gene in the presence of mithramycin A (an Sp1 binding inhibitor). Sp1 binding site of the resistin promoter (-122/-114 bp) was necessary for the repression. Further investigation of the effect of TZDs on the modification of Sp1 showed that the level of O-glycosylation of Sp1 was decreased in this process. These results suggest that PPAR{gamma} activation represses the expression of the resistin gene by modulating Sp1 activity.

  8. Probing key DNA contacts in AraR-mediated transcriptional repression of the Bacillus subtilis arabinose regulon.

    PubMed

    Franco, Irina Saraiva; Mota, Luís Jaime; Soares, Cláudio Manuel; de Sá-Nogueira, Isabel

    2007-01-01

    In the absence of arabinose, the AraR transcription factor represses the expression of genes involved in the utilization of arabinose, xylose and galactose in Bacillus subtilis. AraR exhibits a chimeric organization: the N-terminal DNA-binding region belongs to the GntR family and the C-terminal effector-binding domain is homologous to the GalR/LacI family. Here, the AraR-DNA-binding interactions were characterized in vivo and in vitro. The effect of residue substitutions in the AraR N-terminal domain and of base-pair exchanges into an AraR-DNA-binding operator site were examined by assaying for AraR-mediated regulatory activity in vivo and DNA-binding activity in vitro. The results showed that residues K4, R45 and Q61, located in or near the winged-helix DNA-binding motif, were the most critical amino acids required for AraR function. In addition, the analysis of the various mutations in an AraR palindromic operator sequence indicated that bases G9, A11 and T16 are crucial for AraR binding. Moreover, an AraR mutant M34T was isolated that partially suppressed the effect of mutations in the regulatory cis-elements. Together, these findings extend the knowledge on the nature of AraR nucleoprotein complexes and provide insight into the mechanism that underlies the mode of action of AraR and its orthologues.

  9. Zinc-fingers and homeoboxes 1 (ZHX1) binds DNA methyltransferase (DNMT) 3B to enhance DNMT3B-mediated transcriptional repression

    SciTech Connect

    Kim, Sung-Hak; Park, Jinah; Choi, Moon-Chang; Kim, Hwang-Phill; Park, Jung-Hyun; Jung, Yeonjoo; Lee, Ju-Hee; Oh, Do-Youn; Im, Seock-Ah; Bang, Yung-Jue; Kim, Tae-You; E-mail: kimty@snu.ac.kr

    2007-04-06

    DNA methyltransferases (DNMT) 3B is a de novo DNMT that represses transcription independent of DNMT activity. In order to gain a better insight into DNMT3B-mediated transcriptional repression, we performed a yeast two-hybrid analysis using DNMT3B as a bait. Of the various binding candidates, ZHX1, a member of zinc-finger and homeobox protein, was found to interact with DNMT3B in vivo and in vitro. N-terminal PWWP domain of DNMT3B was required for its interaction with homeobox motifs of ZHX1. ZHX1 contains nuclear localization signal at C-terminal homeobox motif, and both ZHX1 and DNMT3B were co-localized in nucleus. Furthermore, we found that ZHX1 enhanced the transcriptional repression mediated by DNMT3B when DNMT3B is directly targeted to DNA. These results showed for First the direct linkage between DNMT and zinc-fingers homeoboxes protein, leading to enhanced gene silencing by DNMT3B.

  10. NuRD mediates activating and repressive functions of GATA-1 and FOG-1 during blood development.

    PubMed

    Miccio, Annarita; Wang, Yuhuan; Hong, Wei; Gregory, Gregory D; Wang, Hongxin; Yu, Xiang; Choi, John K; Shelat, Suresh; Tong, Wei; Poncz, Mortimer; Blobel, Gerd A

    2010-01-20

    GATA transcription factors interact with FOG proteins to regulate tissue development by activating and repressing transcription. FOG-1 (ZFPM1), a co-factor for the haematopoietic factor GATA-1, binds to the NuRD co-repressor complex through a conserved N-terminal motif. Surprisingly, we detected NuRD components at both repressed and active GATA-1/FOG-1 target genes in vivo. In addition, while NuRD is required for transcriptional repression in certain contexts, we show a direct requirement of NuRD also for FOG-1-dependent transcriptional activation. Mice in which the FOG-1/NuRD interaction is disrupted display defects similar to germline mutations in the Gata1 and Fog1 genes, including anaemia and macrothrombocytopaenia. Gene expression analysis in primary mutant erythroid cells and megakaryocytes (MKs) revealed an essential function for NuRD during both the repression and activation of select GATA-1/FOG-1 target genes. These results show that NuRD is a critical co-factor for FOG-1 and underscore the versatile use of NuRD by lineage-specific transcription factors to activate and repress gene transcription in the appropriate cellular and genetic context.

  11. Alleviation of Human Papillomavirus E2-Mediated Transcriptional Repression via Formation of a TATA Binding Protein (or TFIID)-TFIIB-RNA Polymerase II-TFIIF Preinitiation Complex

    PubMed Central

    Hou, Samuel Y.; Wu, Shwu-Yuan; Zhou, Tianyuan; Thomas, Mary C.; Chiang, Cheng-Ming

    2000-01-01

    Transcription in human papillomaviruses (HPVs) is mainly regulated by cellular transcription factors and virus-encoded E2 proteins that act as sequence-specific DNA-binding proteins. Although the functions of E2 as a transcriptional activator and a repressor have been well documented, the role of cellular factors involved in E2-mediated regulation of the HPV promoters and the mechanism by which E2 modulates viral gene expression remain unclear. Using reconstituted cell-free transcription systems, we found that cellular enhancer-binding factors and general cofactors, such as TAFIIs, TFIIA, Mediator, and PC4, are not required for E2-mediated repression. Unlike other transcriptional repressors that function through recruitment of histone deacetylase or corepressor complexes, HPV E2 is able to directly target components of the general transcription machinery to exert its repressor activity on the natural HPV E6 promoter. Interestingly, preincubation of TATA binding protein (TBP) or TFIID with HPV template is not sufficient to overcome E2-mediated repression, which can be alleviated only via formation of a minimal TBP (or TFIID)-TFIIB-RNA polymerase II-TFIIF preinitiation complex. Our data therefore indicate that E2 does not simply work by displacing TBP or TFIID from binding to the adjacent TATA box. Instead, E2 appears to function as an active repressor that directly inhibits HPV transcription at steps after TATA recognition by TBP or TFIID. PMID:10594014

  12. Repression of oxalic acid-mediated mineral phosphate solubilization in rhizospheric isolates of Klebsiella pneumoniae by succinate.

    PubMed

    Rajput, Mahendrapal Singh; Naresh Kumar, G; Rajkumar, Shalini

    2013-02-01

    Two strains of Klebsiella (SM6 and SM11) were isolated from rhizospheric soil that solubilized mineral phosphate by secretion of oxalic acid from glucose. Activities of enzymes for periplasmic glucose oxidation (glucose dehydrogenase) and glyoxylate shunt (isocitrate lyase and glyoxylate oxidase) responsible for oxalic acid production were estimated. In presence of succinate, phosphate solubilization was completely inhibited, and the enzymes glucose dehydrogenase and glyoxylate oxidase were repressed. Significant activity of isocitrate lyase, the key enzyme for carbon flux through glyoxylate shunt and oxalic acid production during growth on glucose suggested that it could be inducible in nature, and its inhibition by succinate appeared to be similar to catabolite repression.

  13. Histone hypoacetylation-activated genes are repressed by acetyl-CoA- and chromatin-mediated mechanism

    PubMed Central

    Mehrotra, Swati; Galdieri, Luciano; Zhang, Tiantian; Zhang, Man; Pemberton, Lucy F.; Vancura, Ales

    2014-01-01

    Transcriptional activation is typically associated with increased acetylation of promoter histones. However, this paradigm does not apply to transcriptional activation of all genes. In this study we have characterized a group of genes that are repressed by histone acetylation. These histone hypoacetylation-activated genes (HHAAG) are normally repressed during exponential growth, when the cellular level of acetyl-CoA is high and global histone acetylation is also high. The HHAAG are induced during diauxic shift, when the levels of acetyl-CoA and global histone acetylation decrease. The histone hypoacetylation-induced activation of HHAAG is independent of Msn2/Msn4. The repression of HSP12, one of the HHAAG, is associated with well-defined nucleosomal structure in the promoter region, while histone hypoacetylation-induced activation correlates with delocalization of positioned nucleosomes or with reduced nucleosome occupancy. Correspondingly, unlike the majority of yeast genes, HHAAG are transcriptionally upregulated when expression of histone genes is reduced. Taken together, these results suggest a model in which histone acetylation is required for proper positioning of promoter nucleosomes and repression of HHAAG. PMID:24907648

  14. Glucose Repression of STA1 Expression Is Mediated by the Nrg1 and Sfl1 Repressors and the Srb8-11 Complex

    PubMed Central

    Kim, Tae Soo; Lee, Sung Bae; Kang, Hyen Sam

    2004-01-01

    In the yeast Saccharomyces diastaticus, expression of the STA1 gene, which encodes an extracellular glucoamylase, is negatively regulated by glucose. Here we demonstrate that glucose-dependent repression of STA1 expression is imposed by both Sfl1 and Nrg1, which serve as direct transcriptional repressors. We show that Nrg1 acts only on UAS1, and Sfl1 acts only on UAS2, in the STA1 promoter. When bound to its specific site, Sfl1 (but not Nrg1) prevents the binding to UAS2 of two transcriptional activators, Ste12 and Tec1, required for STA1 expression. We also found that Sfl1 contributes to STA1 repression by binding to the promoter and inhibiting the expression of FLO8, a gene that encodes a third transcriptional activator involved in STA1 expression. In addition, we show that the levels of Nrg1 and Sfl1 increase in glucose-grown cells, suggesting that the effects of glucose are mediated, at least in part, through an increase in the abundance of these repressors. NRG1 and SFL1 expression requires the Srb8-11 complex, and correspondingly, the Srb8-11 complex is also necessary for STA1 repression. However, our evidence indicates that the Srb8-11 complex does not associate with either the SFL1 or the NRG1 promoter and thus plays an indirect role in activating NRG1 and SFL1 expression. PMID:15314176

  15. Small molecule/ML327 mediated transcriptional de-repression of E-cadherin and inhibition of epithelial-to-mesenchymal transition

    PubMed Central

    An, Hanbing; Stoops, Sydney L.; Deane, Natasha G.; Zhu, Jing; Zi, Jinghuan; Weaver, Connie; Waterson, Alex G.; Zijlstra, Andries; Lindsley, Craig W.; Beauchamp, Robert Daniel

    2015-01-01

    Transcriptional repression of E-cadherin is a hallmark of Epithelial-to-Mesenchymal Transition (EMT) and is associated with cancer cell invasion and metastasis. Understanding the mechanisms underlying E-cadherin repression during EMT may provide insights into the development of novel targeted therapeutics for cancer. Here, we report on the chemical probe, ML327, which de-represses E-cadherin transcription, partially reverses EMT, and inhibits cancer cell invasiveness and tumor cell migration in vitro and in vivo. Induction of E-cadherin mRNA expression by ML327 treatment does not require de novo protein synthesis. RNA sequencing analysis revealed that ML327 treatment significantly alters expression of over 2,500 genes within three hours in the presence of the translational inhibitor, cycloheximide. Network analysis reveals Hepatocyte Nuclear Factor 4-alpha (HNF4α) as the most significant upstream transcriptional regulator of multiple genes whose expressions were altered by ML327 treatment. Further, small interfering RNA-mediated depletion of HNF4α markedly attenuates the E-cadherin expression response to ML327. In summary, ML327 represents a valuable tool to understand mechanisms of EMT and may provide the basis for a novel targeted therapeutic strategy for carcinomas. PMID:26082441

  16. Mechanisms of ceramide-mediated repression of the human telomerase reverse transcriptase promoter via deacetylation of Sp3 by histone deacetylase 1.

    PubMed

    Wooten-Blanks, Leslie G; Song, Pengfei; Senkal, Can E; Ogretmen, Besim

    2007-10-01

    In this study, distinct roles of de novo-generated endogenous ceramides and mechanisms by which deacetylated Sp3 regulates the hTERT promoter activity in response to ceramide signaling were explored. The generation of C18-ceramide via the expression of ceramide synthase 1 (CerS1), and not C16-ceramide by CerS5 or CerS6 expression, resulted in repression of the hTERT promoter via deacetylation of Sp3 by histone deacetylase 1 (HDAC1) in A549 human lung adenocarcinoma cells. Then roles and mechanisms of action of ceramide-mediated deacetylation of Sp3 in inhibiting the hTERT promoter were determined using constitutively deacetylated or acetylated Sp3 mutants at lysine (K) 551. Expression of the deacetylated Sp3 mutant resulted in repression, whereas its acetylated mutant induced basal hTERT promoter activity in Drosophila S2 cells, which do not express any endogenous Sp3, and in A549 cells. Remarkably, chromatin immunoprecipitation data revealed that acetylated Sp3 mutant (K551Q-Sp3) did not bind whereas deacetylated Sp3 (K551R-Sp3) mutant bound strongly to the promoter DNA, resulting in the recruitment of histone deacetylase 1 (HDAC1) and inhibition of the association of RNA polymerase II with the promoter. Mechanistically, increased generation of C18-ceramide by hCerS1 expression, but not by its catalytically inactive mutant, mediated the association and recruitment of the deacetylated Sp3/HDAC1 complex to the hTERT promoter DNA, resulting in the local histone H3 deacetylation and repression of the promoter.

  17. CLOCKWORK ORANGE Enhances PERIOD Mediated Rhythms in Transcriptional Repression by Antagonizing E-box Binding by CLOCK-CYCLE

    PubMed Central

    Yu, Wangjie; Hardin, Paul E.

    2016-01-01

    The Drosophila circadian oscillator controls daily rhythms in physiology, metabolism and behavior via transcriptional feedback loops. CLOCK-CYCLE (CLK-CYC) heterodimers initiate feedback loop function by binding E-box elements to activate per and tim transcription. PER-TIM heterodimers then accumulate, bind CLK-CYC to inhibit transcription, and are ultimately degraded to enable the next round of transcription. The timing of transcriptional events in this feedback loop coincide with, and are controlled by, rhythms in CLK-CYC binding to E-boxes. PER rhythmically binds CLK-CYC to initiate transcriptional repression, and subsequently promotes the removal of CLK-CYC from E-boxes. However, little is known about the mechanism by which CLK-CYC is removed from DNA. Previous studies demonstrated that the transcription repressor CLOCKWORK ORANGE (CWO) contributes to core feedback loop function by repressing per and tim transcription in cultured S2 cells and in flies. Here we show that CWO rhythmically binds E-boxes upstream of core clock genes in a reciprocal manner to CLK, thereby promoting PER-dependent removal of CLK-CYC from E-boxes, and maintaining repression until PER is degraded and CLK-CYC displaces CWO from E-boxes to initiate transcription. These results suggest a model in which CWO co-represses CLK-CYC transcriptional activity in conjunction with PER by competing for E-box binding once CLK-CYC-PER complexes have formed. Given that CWO orthologs DEC1 and DEC2 also target E-boxes bound by CLOCK-BMAL1, a similar mechanism may operate in the mammalian clock. PMID:27814361

  18. CLOCKWORK ORANGE Enhances PERIOD Mediated Rhythms in Transcriptional Repression by Antagonizing E-box Binding by CLOCK-CYCLE.

    PubMed

    Zhou, Jian; Yu, Wangjie; Hardin, Paul E

    2016-11-01

    The Drosophila circadian oscillator controls daily rhythms in physiology, metabolism and behavior via transcriptional feedback loops. CLOCK-CYCLE (CLK-CYC) heterodimers initiate feedback loop function by binding E-box elements to activate per and tim transcription. PER-TIM heterodimers then accumulate, bind CLK-CYC to inhibit transcription, and are ultimately degraded to enable the next round of transcription. The timing of transcriptional events in this feedback loop coincide with, and are controlled by, rhythms in CLK-CYC binding to E-boxes. PER rhythmically binds CLK-CYC to initiate transcriptional repression, and subsequently promotes the removal of CLK-CYC from E-boxes. However, little is known about the mechanism by which CLK-CYC is removed from DNA. Previous studies demonstrated that the transcription repressor CLOCKWORK ORANGE (CWO) contributes to core feedback loop function by repressing per and tim transcription in cultured S2 cells and in flies. Here we show that CWO rhythmically binds E-boxes upstream of core clock genes in a reciprocal manner to CLK, thereby promoting PER-dependent removal of CLK-CYC from E-boxes, and maintaining repression until PER is degraded and CLK-CYC displaces CWO from E-boxes to initiate transcription. These results suggest a model in which CWO co-represses CLK-CYC transcriptional activity in conjunction with PER by competing for E-box binding once CLK-CYC-PER complexes have formed. Given that CWO orthologs DEC1 and DEC2 also target E-boxes bound by CLOCK-BMAL1, a similar mechanism may operate in the mammalian clock.

  19. SUV39H1 mediated SIRT1 trans-repression contributes to cardiac ischemia-reperfusion injury.

    PubMed

    Yang, Guang; Zhang, Xinjian; Weng, Xinyu; Liang, Peng; Dai, Xin; Zeng, Sheng; Xu, Huihui; Huan, Hailin; Fang, Mingming; Li, Yuehua; Xu, Dachun; Xu, Yong

    2017-05-01

    Ischemic reperfusion (I/R) contributes to deleterious cardiac remodeling and heart failure. The deacetylase SIRT1 has been shown to protect the heart from I/R injury. We examined the mechanism whereby I/R injury represses SIRT1 transcription in the myocardium. There was accumulation of trimethylated histone H3K9 on the proximal SIRT1 promoter in the myocardium in mice following I/R injury and in cultured cardiomyocytes exposed to hypoxia-reoxygenation (H/R). In accordance, the H3K9 trimethyltransferase SUV39H1 bound to the SIRT1 promoter and repressed SIRT1 transcription. SUV39H1 expression was up-regulated in the myocardium in mice following I/R insults and in H/R-treated cardiomyocytes paralleling SIRT1 down-regulation. Silencing SUV39H1 expression or suppression of SUV39H1 activity erased H3K9Me3 from the SIRT1 promoter and normalized SIRT1 levels in cardiomyocytes. Meanwhile, SUV39H1 deficiency or inhibition attenuated I/R-induced infarction and improved heart function in mice likely through influencing ROS levels in a SIRT1-dependent manner. Therefore, our data uncover a novel mechanism for SIRT1 trans-repression during cardiac I/R injury and present SUV39H1 as a druggable target for the development of therapeutic strategies against ischemic heart disease.

  20. Pregnane X Receptor (PXR)-Mediated Gene Repression and Cross-Talk of PXR with Other Nuclear Receptors via Coactivator Interactions

    PubMed Central

    Pavek, Petr

    2016-01-01

    Pregnane X receptor is a ligand-activated nuclear receptor (NR) that mainly controls inducible expression of xenobiotics handling genes including biotransformation enzymes and drug transporters. Nowadays it is clear that PXR is also involved in regulation of intermediate metabolism through trans-activation and trans-repression of genes controlling glucose, lipid, cholesterol, bile acid, and bilirubin homeostasis. In these processes PXR cross-talks with other NRs. Accumulating evidence suggests that the cross-talk is often mediated by competing for common coactivators or by disruption of coactivation and activity of other transcription factors by the ligand-activated PXR. In this respect mainly PXR-CAR and PXR-HNF4α interference have been reported and several cytochrome P450 enzymes (such as CYP7A1 and CYP8B1), phase II enzymes (SULT1E1, Gsta2, Ugt1a1), drug and endobiotic transporters (OCT1, Mrp2, Mrp3, Oatp1a, and Oatp4) as well as intermediate metabolism enzymes (PEPCK1 and G6Pase) have been shown as down-regulated genes after PXR activation. In this review, I summarize our current knowledge of PXR-mediated repression and coactivation interference in PXR-controlled gene expression regulation. PMID:27932985

  1. Repression of BIM mediates survival signaling by MYC and AKT in high-risk T-cell acute lymphoblastic leukemia.

    PubMed

    Reynolds, C; Roderick, J E; LaBelle, J L; Bird, G; Mathieu, R; Bodaar, K; Colon, D; Pyati, U; Stevenson, K E; Qi, J; Harris, M; Silverman, L B; Sallan, S E; Bradner, J E; Neuberg, D S; Look, A T; Walensky, L D; Kelliher, M A; Gutierrez, A

    2014-09-01

    Treatment resistance in T-cell acute lymphoblastic leukemia (T-ALL) is associated with phosphatase and tensin homolog (PTEN) deletions and resultant phosphatidylinositol 3'-kinase (PI3K)-AKT pathway activation, as well as MYC overexpression, and these pathways repress mitochondrial apoptosis in established T-lymphoblasts through poorly defined mechanisms. Normal T-cell progenitors are hypersensitive to mitochondrial apoptosis, a phenotype that is dependent on the expression of proapoptotic BIM. In a conditional zebrafish model, MYC downregulation induced BIM expression in T-lymphoblasts, an effect that was blunted by expression of constitutively active AKT. In human T-ALL cell lines and treatment-resistant patient samples, treatment with MYC or PI3K-AKT pathway inhibitors each induced BIM upregulation and apoptosis, indicating that BIM is repressed downstream of MYC and PI3K-AKT in high-risk T-ALL. Restoring BIM function in human T-ALL cells using a stapled peptide mimetic of the BIM BH3 domain had therapeutic activity, indicating that BIM repression is required for T-ALL viability. In the zebrafish model, where MYC downregulation induces T-ALL regression via mitochondrial apoptosis, T-ALL persisted despite MYC downregulation in 10% of bim wild-type zebrafish, 18% of bim heterozygotes and in 33% of bim homozygous mutants (P=0.017). We conclude that downregulation of BIM represents a key survival signal downstream of oncogenic MYC and PI3K-AKT signaling in treatment-resistant T-ALL.

  2. AP-1 mediated relief of repressive activity of the CD30 promoter microsatellite in Hodgkin and Reed-Sternberg cells.

    PubMed

    Watanabe, Mariko; Ogawa, Yuji; Ito, Kinji; Higashihara, Masaaki; Kadin, Marshall E; Abraham, Lawrence J; Watanabe, Toshiki; Horie, Ryouichi

    2003-08-01

    Overexpression of CD30 is the hallmark of Hodgkin and Reed-Sternberg (H-RS) cells and drives constitutive nuclear factor-kappaB activation that is the molecular basis for the pathophysiology of Hodgkin's lymphoma. Transcription of the CD30 gene is controlled by the core promoter that is driven by Sp-1 and the microsatellite sequences (MSs) that represses core promoter activity. To understand the mechanism(s) of CD30 overexpression in H-RS cells, we structurally and functionally characterized the CD30 MSs. Although the CD30 MS of H-RS cell lines was polymorphic, it was not truncated compared with that of control cells. A strong core promoter activity and constitutive Sp-1 binding were revealed in all cell lines examined irrespective of the levels of CD30 expression. In transient reporter gene assays, all MS clones derived from H-RS cell lines repressed the core promoter activity in unrelated cell lines, but not in the H-RS cell lines. An AP-1-binding site was found in the MS at nucleotide position of -377 to -371, the presence of which was found to relieve repression of the core promoter in H-RS cell lines but not in other tumor cell lines. H-RS cell lines showed constitutive and strong AP-1-binding activity, but other cell lines did not. The AP-1 complex contained JunB, whose overexpression activated reporter constructs driven by the CD30 promoter including the MSs, and was dependent on the AP-1 site. JunB expression was detected in H-RS cells in vitro and in vivo, but not in reactive cells or tumor cells of non-Hodgkin's lymphoma of diffuse large B-cell type. Transduction of JunB small interfering RNAs suppressed CD30 promoter activity in L428 cells but not in control cells. Taken together, overexpression and binding of JunB to the AP-1 site appear to relieve the repression of the core promoter by the CD30 MS in H-RS cells, which provide one basis for the constitutive overexpression of CD30 in Hodgkin's lymphoma.

  3. Grb7 Upregulation Is a Molecular Adaptation to HER2 Signaling Inhibition Due to Removal of Akt-Mediated Gene Repression

    PubMed Central

    Nencioni, Alessio; Cea, Michele; Garuti, Anna; Passalacqua, Mario; Raffaghello, Lizzia; Soncini, Debora; Moran, Eva; Zoppoli, Gabriele; Pistoia, Vito; Patrone, Franco; Ballestrero, Alberto

    2010-01-01

    The efficacy of anti-HER2 therapeutics, such as lapatinib and trastuzumab, is limited by primary and acquired resistance. Cellular adaptations that allow breast cancer cell to survive prolonged HER2 inhibition include de-repression of the transcription factor FOXO3A with consequent estrogen receptor activation, and/or increased HER3 signaling. Here, we used low-density arrays, quantitative PCR, and western blotting to determine how HER2 signaling inhibition with lapatinib or PI3K inhibitors affects the expression of genes involved in breast cancer metastatic spread and overall prognosis. Retroviral transgenesis was used to express constitutively active forms of Akt in the HER2+ breast cancer cell line SKBR3, and Grb7 in MCF7 cells. Specific gene silencing was obtained by siRNAs transfection. A murine BT474 xenograft cancer model was used to assess the effect of lapatinib on gene expression in vivo. We found that lapatinib induces upregulation of Grb7, an adaptor protein involved in receptor tyrosine kinase signaling and promoting cell survival and cell migration. Grb7 upregulation induced by lapatinib was found to occur in cancer cells in vitro and in vivo. We demonstrate that Grb7 upregulation is recreated by PI3K inhibitors while being prevented by constitutively active Akt. Thus, Grb7 is repressed by PI3K signaling and lapatinib-mediated Akt inhibition is responsible for Grb7 de-repression. Finally, we show that Grb7 removal by RNA-interference reduces breast cancer cell viability and increases the activity of lapatinib. In conclusion, Grb7 upregulation is a potentially adverse consequence of HER2 signaling inhibition. Preventing Grb7 accumulation and/or its interaction with receptor tyrosine kinases may increase the benefit of HER2-targeting drugs. PMID:20126311

  4. Lateral gene expression in Drosophila early embryos is supported by Grainyhead-mediated activation and tiers of dorsally-localized repression.

    PubMed

    Garcia, Mayra; Stathopoulos, Angelike

    2011-01-01

    The general consensus in the field is that limiting amounts of the transcription factor Dorsal establish dorsal boundaries of genes expressed along the dorsal-ventral (DV) axis of early Drosophila embryos, while repressors establish ventral boundaries. Yet recent studies have provided evidence that repressors act to specify the dorsal boundary of intermediate neuroblasts defective (ind), a gene expressed in a stripe along the DV axis in lateral regions of the embryo. Here we show that a short 12 base pair sequence ("the A-box") present twice within the ind CRM is both necessary and sufficient to support transcriptional repression in dorsal regions of embryos. To identify binding factors, we conducted affinity chromatography using the A-box element and found a number of DNA-binding proteins and chromatin-associated factors using mass spectroscopy. Only Grainyhead (Grh), a CP2 transcription factor with a unique DNA-binding domain, was found to bind the A-box sequence. Our results suggest that Grh acts as an activator to support expression of ind, which was surprising as we identified this factor using an element that mediates dorsally-localized repression. Grh and Dorsal both contribute to ind transcriptional activation. However, another recent study found that the repressor Capicua (Cic) also binds to the A-box sequence. While Cic was not identified through our A-box affinity chromatography, utilization of the same site, the A-box, by both factors Grh (activator) and Cic (repressor) may also support a "switch-like" response that helps to sharpen the ind dorsal boundary. Furthermore, our results also demonstrate that TGF-β signaling acts to refine ind CRM expression in an A-box independent manner in dorsal-most regions, suggesting that tiers of repression act in dorsal regions of the embryo.

  5. c-Myc represses FOXO3a-mediated transcription of the gene encoding the p27(Kip1) cyclin dependent kinase inhibitor.

    PubMed

    Chandramohan, Vidyalakshmi; Mineva, Nora D; Burke, Brian; Jeay, Sébastien; Wu, Min; Shen, Jian; Yang, William; Hann, Stephen R; Sonenshein, Gail E

    2008-08-15

    The p27(Kip1) (p27) cyclin-dependent kinase inhibitor and c-Myc oncoprotein play essential roles in control of cell cycle progression and apoptosis. Induction of p27 (CDKN1B) gene transcription by Forkhead box O proteins such as FOXO3a leads to growth arrest and apoptosis. Previously, we observed that B cell receptor (surface IgM) engagement of WEHI 231 immature B lymphoma cells with an anti-IgM antibody results in activation of FOXO3a, growth arrest and apoptosis. As ectopic c-Myc expression in these cells prevented anti-IgM induction of p27 and cell death, we hypothesized that c-Myc represses FOXO3a-mediated transcription. Here we show that c-Myc inhibits FOXO3a-mediated activation of the p27 promoter in multiple cell lines. The mechanism of this repression was explored using a combination of co-immunoprecipitation, oligonucleotide precipitation, and chromatin immunoprecipitation experiments. The studies demonstrate a functional association of FOXO3a and c-Myc on a proximal Forkhead binding element in the p27 promoter. This association involves the Myc box II domain of c-Myc and the N-terminal DNA-binding portion of FOXO3a. Analysis of publicly available microarray datasets showed an inverse pattern of c-MYC and p27 RNA expression in primary acute myeloid leukemia, prostate cancer and tongue squamous cell carcinoma samples. The inhibition of FOXO3a-mediated activation of the p27 gene by the high aberrant expression of c-Myc in many tumor cells likely contributes to their uncontrolled proliferation and invasive phenotype.

  6. WT1-mediated repression of the proapoptotic transcription factor ZNF224 is triggered by the BCR-ABL oncogene

    PubMed Central

    Montano, Giorgia; Vidovic, Karina; Palladino, Chiara; Cesaro, Elena; Sodaro, Gaetano; Quintarelli, Concetta; De Angelis, Biagio; Errichiello, Santa; Pane, Fabrizio; Izzo, Paola; Grosso, Michela; Gullberg, Urban; Costanzo, Paola

    2015-01-01

    The Kruppel-like protein ZNF224 is a co-factor of the Wilms’ tumor 1 protein, WT1. We have previously shown that ZNF224 exerts a specific proapoptotic role in chronic myelogenous leukemia (CML) K562 cells and contributes to cytosine arabinoside-induced apoptosis, by modulating WT1-dependent transcription of apoptotic genes. Here we demonstrate that ZNF224 gene expression is down-regulated both in BCR-ABL positive cell lines and in primary CML samples and is restored after imatinib and second generation tyrosine kinase inhibitors treatment. We also show that WT1, whose expression is positively regulated by BCR-ABL, represses transcription of the ZNF224 gene. Finally, we report that ZNF224 is significantly down-regulated in patients with BCR-ABL positive chronic phase-CML showing poor response or resistance to imatinib treatment as compared to high-responder patients. Taken as a whole, our data disclose a novel pathway activated by BCR-ABL that leads to inhibition of apoptosis through the ZNF224 repression. ZNF224 could thus represent a novel promising therapeutic target in CML. PMID:26320177

  7. Nuclear localization of MBNL1: splicing-mediated autoregulation and repression of repeat-derived aberrant proteins.

    PubMed

    Kino, Yoshihiro; Washizu, Chika; Kurosawa, Masaru; Oma, Yoko; Hattori, Nobutaka; Ishiura, Shoichi; Nukina, Nobuyuki

    2015-02-01

    In some neurological diseases caused by repeat expansions such as myotonic dystrophy, the RNA-binding protein muscleblind-like 1 (MBNL1) accumulates in intranuclear inclusions containing mutant repeat RNA. The interaction between MBNL1 and mutant RNA in the nucleus is a key event leading to loss of MBNL function, yet the details of this effect have been elusive. Here, we investigated the mechanism and significance of MBNL1 nuclear localization. We found that MBNL1 contains two classes of nuclear localization signal (NLS), a classical bipartite NLS and a novel conformational NLS. Alternative splicing of exon 7 acts as a switch between these NLS types and couples MBNL1 activity and intracellular localization. Depending on its nuclear localization, MBNL1 promoted nuclear accumulation of mutant RNA containing a CUG or CAG repeat, some of which produced proteins containing homopolymeric tracts such as polyglutamine. Furthermore, MBNL1 repressed the expression of these homopolymeric proteins including those presumably produced through repeat-associated non-ATG (RAN) translation. These results suggest that nuclear retention of expanded RNA reflects a novel role of MBNL proteins in repressing aberrant protein expression and may provide pathological and therapeutic implications for a wide range of repeat expansion diseases associated with nuclear RNA retention and/or RAN translation.

  8. Ectomycorrhiza-mediated repression of the high-affinity ammonium importer gene AmAMT2 in Amanita muscaria.

    PubMed

    Willmann, Anita; Weiss, Michael; Nehls, Uwe

    2007-02-01

    A main function of ectomycorrhizas, a symbiosis between certain soil fungi and fine roots of woody plants, is the exchange of plant-derived carbohydrates for fungus-derived nutrients. As it is required in large amounts, nitrogen is of special interest. A gene (AmAMT2) coding for a putative fungal ammonium importer was identified in an EST project of functional Amanita muscaria/poplar ectomycorrhizas. Heterologous expression of the entire AmAMT2 coding region in yeast revealed the corresponding protein to be a high-affinity ammonium importer. In axenically grown Amanita hyphae AmAMT2 expression was strongly repressed by nitrogen, independent of whether the offered nitrogen source was transported by AmAMT2 or not. In functional ectomycorrhizas the AmAMT2 transcript level was further decreased in both hyphal networks (sheath and Hartig net), while extraradical hyphae revealed strong gene expression. Together our data suggest that (1) AmAMT2 expression is regulated by the endogenous nitrogen content of hyphae and (2) fungal hyphae in ectomycorrhizas are well supported with nitrogen even when the extraradical mycelium is nitrogen limited. As a consequence of AmAMT2 repression in mycorrhizas, ammonium can be suggested as a potential nitrogen source delivered by fungal hyphae in symbiosis.

  9. Small Ubiquitin-like Modifier (SUMO)-mediated Repression of the Xenopus Oocyte 5 S rRNA Genes*

    PubMed Central

    Malik, Mariam Q.; Bertke, Michelle M.; Huber, Paul W.

    2014-01-01

    The 5 S rRNA gene-specific transcription factor IIIA (TFIIIA) interacts with the small ubiquitin-like modifier (SUMO) E3 ligase PIAS2b and with one of its targets, the transcriptional corepressor, XCtBP. PIAS2b is restricted to the cytoplasm of Xenopus oocytes but relocates to the nucleus immediately after fertilization. Following the midblastula transition, PIAS2b and XCtBP are present on oocyte-type, but not somatic-type, 5 S rRNA genes up through the neurula stage, as is a limiting amount of TFIIIA. Histone H3 methylation, coincident with the binding of XCtBP, also occurs exclusively on the oocyte-type genes. Immunohistochemical staining of embryos confirms the occupancy of a subset of the oocyte-type genes by TFIIIA that become positioned at the nuclear periphery shortly after the midblastula transition. Inhibition of SUMOylation activity relieves repression of oocyte-type 5 S rRNA genes and is correlated with a decrease in methylation of H3K9 and H3K27 and disruption of subnuclear localization. These results reveal a novel function for TFIIIA as a negative regulator that recruits histone modification activity through the CtBP repressor complex exclusively to the oocyte-type 5 S rRNA genes, leading to their terminal repression. PMID:25368327

  10. Akt1-mediated Gata3 phosphorylation controls the repression of IFNγ in memory-type Th2 cells

    PubMed Central

    Hosokawa, Hiroyuki; Tanaka, Tomoaki; Endo, Yusuke; Kato, Miki; Shinoda, Kenta; Suzuki, Akane; Motohashi, Shinichiro; Matsumoto, Masaki; Nakayama, Keiichi I.; Nakayama, Toshinori

    2016-01-01

    Th2 cells produce Th2 cytokines such as IL-4, IL-5 and IL-13, but repress Th1 cytokine IFNγ. Recent studies have revealed various distinct memory-type Th2 cell subsets, one of which produces a substantial amount of IFNγ in addition to Th2 cytokines, however it remains unclear precisely how these Th2 cells produce IFNγ. We herein show that phosphorylation of Gata3 at Ser308, Thr315 and Ser316 induces dissociation of a histone deacetylase Hdac2 from the Gata3/Chd4 repressive complex in Th2 cells. We also identify Akt1 as a Gata3-phosphorylating kinase, and the activation of Akt1 induces derepression of Tbx21 and Ifng expression in Th2 cells. Moreover, T-bet-dependent IFNγ expression in IFNγ-producing memory Th2 cells appears to be controlled by the phosphorylation status of Gata3 in human and murine systems. Thus, this study highlights the molecular basis for posttranslational modifications of Gata3 that control the regulation of IFNγ expression in memory Th2 cells. PMID:27053161

  11. 15-Deoxy-Δ12,14-prostaglandin J2-Glycerol Ester, a Putative Metabolite of 2-Arachidonyl Glycerol, Activates Peroxisome Proliferator Activated Receptor γ

    PubMed Central

    Raman, Priyadarshini; Kaplan, Barbara L. F.; Thompson, Jerry T.; Vanden Heuvel, John P.

    2011-01-01

    2-Arachidonyl glycerol (2-AG) is an endogenous arachidonic acid derivative capable of suppressing interleukin (IL)-2 production by activated T cells. 2-AG-mediated IL-2 suppression is dependent on cyclooxygenase-2 (COX-2) metabolism and peroxisome proliferator activated receptor γ (PPARγ) activation. The objective of the present studies was to examine whether 15-deoxy-Δ12,14-PGJ2-glycerol ester (15d-PGJ2-G), a putative metabolite of 2-AG, can mimic the actions of 2-AG on IL-2 regulation through PPARγ activation. 15d-PGJ2-G bound PPARγ-ligand binding domain in a PPARγ competitive binding assay. 15d-PGJ2-G treatment activated PPARγ in a reporter assay, and PPARγ activation was attenuated when a PPARγ antagonist, 2-chloro-5-nitro-N-4-pyridinylbenzamide (T0070907), was present. 15d-PGJ2-G treatment suppressed IL-2 production by activated Jurkat cells, which was partially attenuated when pretreated with T0070907. Moreover, IL-2 suppression was pronounced when 15d-PGJ2-G was present 30 min before or after T-cell activation. Concordant with IL-2 suppression, 15d-PGJ2-G treatment decreased nuclear factor of activated T cells (NFAT) transcriptional activity in transiently transfected Jurkat cells. It is noteworthy that T0070907 alone markedly increased NFAT reporter activity, suggesting the existence of endogenous PPARγ activation and modulation of NFAT. Because COX-2 metabolism of 2-AG is important for IL-2 suppression, the effect of 2-AG on COX-2 and PPARγ mRNA expression was investigated. 2-AG treatment decreased the up-regulation of COX-2 mRNA after T-cell activation, which suggests negative feedback limiting COX-2-mediated metabolism of 2-AG. PPARγ mRNA expression was increased upon activation, and 2-AG treatment produced a modest decrease in PPARγ mRNA expression. Collectively, our findings suggest that 15d-PGJ2-G activates PPARγ to decrease NFAT transcriptional activity and IL-2 expression in activated T cells. PMID:21511917

  12. The regulatory gene areA mediating nitrogen metabolite repression in Aspergillus nidulans. Mutations affecting specificity of gene activation alter a loop residue of a putative zinc finger.

    PubMed Central

    Kudla, B; Caddick, M X; Langdon, T; Martinez-Rossi, N M; Bennett, C F; Sibley, S; Davies, R W; Arst, H N

    1990-01-01

    The regulatory gene areA mediating nitrogen metabolite repression in Aspergillus nidulans has been sequenced and its transcript mapped and orientated. A single ORF can encode a protein of 719 amino acids. A 52 amino acid region including a putative 'zinc finger' strongly resembles putative DNA binding regions of the major regulatory protein of erythroid cells. The derived protein sequence also contains a highly acidic region possibly involved in gene activation and 22 copies of the motif S(T)PXX, abundant in DNA binding proteins. Analysis of chromosomal rearrangements and transformation with deletion clones identified 342 N-terminal and 124 C-terminal residues as inessential and localized a C-terminal region required for nitrogen metabolite repressibility. A -1 frameshift eliminating the inessential 122 C-terminal amino acids is a surprising loss-of-function mutation. Extraordinary basicity of the replacement C terminus might explain its phenotype. Mutant sequencing also identified a polypeptide chain termination and several missense mutations, but most interesting are sequence changes associated with specificity mutations. A mutation elevating expression of some structural genes under areA control whilst reducing or not affecting expression of others is a leucine to valine change in the zinc finger loop. It reverts to a partly reciprocal phenotype by replacing the mutant valine by methionine. Images Fig.2 Fig.4 Fig.5 Fig. 8. Fig. 9. PMID:1970293

  13. Pro Isomerization in MLL1 PHD3-Bromo Cassette Connects H3K4me Readout to CyP33 and HDAC-Mediated Repression

    SciTech Connect

    Wang, Zhanxin; Song, Jikui; Milne, Thomas A.; Wang, Gang G.; Li, Haitao; Allis, C. David; Patel, Dinshaw J.

    2010-09-13

    The MLL1 gene is a frequent target for recurrent chromosomal translocations, resulting in transformation of hematopoietic precursors into leukemia stem cells. Here, we report on structure-function studies that elucidate molecular events in MLL1 binding of histone H3K4me3/2 marks and recruitment of the cyclophilin CyP33. CyP33 contains a PPIase and a RRM domain and regulates MLL1 function through HDAC recruitment. We find that the PPIase domain of CyP33 regulates the conformation of MLL1 through proline isomerization within the PHD3-Bromo linker, thereby disrupting the PHD3-Bromo interface and facilitating binding of the MLL1-PHD3 domain to the CyP33-RRM domain. H3K4me3/2 and CyP33-RRM target different surfaces of MLL1-PHD3 and can bind simultaneously to form a ternary complex. Furthermore, the MLL1-CyP33 interaction is required for repression of HOXA9 and HOXC8 genes in vivo. Our results highlight the role of PHD3-Bromo cassette as a regulatory platform, orchestrating MLL1 binding of H3K4me3/2 marks and cyclophilin-mediated repression through HDAC recruitment.

  14. REDD1 enhances protein phosphatase 2A-mediated dephosphorylation of Akt to repress mTORC1 signaling

    PubMed Central

    Dennis, Michael D.; Coleman, Catherine S.; Berg, Arthur; Jefferson, Leonard S.; Kimball, Scot R.

    2014-01-01

    The protein kinase mTOR (mechanistic target of rapamycin) in complex 1 (mTORC1) promotes cell growth and proliferation in response to anabolic stimuli, including growth factors and nutrients. Growth factors activate mTORC1 by stimulating the kinase Akt, which phosphorylates and inhibits the tuberous sclerosis complex (TSC; which is comprised of TSC1, TSC2, and TBC1D7), thereby stimulating the mTORC1 activator Rheb. Here, we identified the mechanism through which REDD1 (regulated in DNA damage and development 1) represses the mTORC1 signaling pathway. We found that REDD1 promoted the protein phosphatase 2A (PP2A)-dependent dephosphorylation of Akt at Thr308 but not at Ser473. Consistent with previous studies showing that phosphorylation of Akt on Thr308, but not Ser473, is necessary for phosphorylation of TSC2, we observed a REDD1-dependent reduction in the phosphorylation of TSC2 and subsequently in the activity of Rheb. REDD1 and PP2A coimmunoprecipitated with Akt from wild-type but not REDD1-knockout mouse embryonic fibroblasts, suggesting that REDD1 may act as a targeting protein for the catalytic subunit of PP2A. Furthermore, binding to both Akt and PP2A was essential for REDD1 to repress signaling to mTORC1. Overall, the results demonstrate that REDD1 acts not just as a repressor of mTORC1, but also as a constant modulator of the phosphorylation of Akt in response to growth factors and nutrients. PMID:25056877

  15. Epoxide-mediated CifR repression of cif gene expression utilizes two binding sites in Pseudomonas aeruginosa.

    PubMed

    Ballok, Alicia E; Bahl, Christopher D; Dolben, Emily L; Lindsay, Allia K; St Laurent, Jessica D; Hogan, Deborah A; Madden, Dean R; O'Toole, George A

    2012-10-01

    Pseudomonas aeruginosa secretes an epoxide hydrolase virulence factor that reduces the apical membrane expression of ABC transporters such as the cystic fibrosis transmembrane conductance regulator (CFTR). This virulence factor, named CFTR inhibitory factor (Cif), is regulated by a TetR-family, epoxide-responsive repressor known as CifR via direct binding and repression. We identified two sites of CifR binding in the intergenic space between cifR and morB, the first gene in the operon containing the cif gene. We have mapped these binding sites and found they are 27 bp in length, and they overlap the -10 and +1 sites of both the cifR and morB regulatory region and the start of transcription, respectively. In addition, we found that CifR binds to each repression site with differing affinity. Mutagenesis of these binding sites resulted in a loss of DNA binding in vitro, and mutation of one of these sites in vivo resulted in an increase in transcription of both the cif and cifR genes. We characterized cif and cifR gene expression in sputum and found that, whereas cif gene expression varied relative to an in vitro coculture control, cifR gene expression was consistently higher. Analysis of a longitudinal sample of CF isolates from nine patients revealed that Cif protein was expressed over time, although variably, and these changes could not be linked to mutations in the cifR gene or the promoters of these genes. Finally, we tested CifR responsiveness to other epoxides and showed that CifR can respond to multiple epoxides to various degrees.

  16. Activated Nrf2 Interacts with Kaposi's Sarcoma-Associated Herpesvirus Latency Protein LANA-1 and Host Protein KAP1 To Mediate Global Lytic Gene Repression

    PubMed Central

    Gjyshi, Olsi; Roy, Arunava; Dutta, Sujoy; Veettil, Mohanan Valiya; Dutta, Dipanjan

    2015-01-01

    ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) is etiologically associated with Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman's disease. We have previously shown that KSHV utilizes the host transcription factor Nrf2 to aid in infection of endothelial cells and oncogenesis. Here, we investigate the role of Nrf2 in PEL and PEL-derived cell lines and show that KSHV latency induces Nrf2 protein levels and transcriptional activity through the COX-2/PGE2/EP4/PKCζ axis. Next-generation sequencing of KSHV transcripts in the PEL-derived BCBL-1 cell line revealed that knockdown of this activated Nrf2 results in global elevation of lytic genes. Nrf2 inhibition by the chemical brusatol also induces lytic gene expression. Both Nrf2 knockdown and brusatol-mediated inhibition induced KSHV lytic reactivation in BCBL-1 cells. In a series of follow-up experiments, we characterized the mechanism of Nrf2-mediated regulation of KSHV lytic repression during latency. Biochemical assays showed that Nrf2 interacted with KSHV latency-associated nuclear antigen 1 (LANA-1) and the host transcriptional repressor KAP1, which together have been shown to repress lytic gene expression. Promoter studies showed that although Nrf2 alone induces the open reading frame 50 (ORF50) promoter, its association with LANA-1 and KAP1 abrogates this effect. Interestingly, LANA-1 is crucial for efficient KAP1/Nrf2 association, while Nrf2 is essential for LANA-1 and KAP1 recruitment to the ORF50 promoter and its repression. Overall, these results suggest that activated Nrf2, LANA-1, and KAP1 assemble on the ORF50 promoter in a temporal fashion. Initially, Nrf2 binds to and activates the ORF50 promoter during early de novo infection, an effect that is exploited during latency by LANA-1-mediated recruitment of the host transcriptional repressor KAP1 on Nrf2. Cell death assays further showed that Nrf2 and KAP1 knockdown induce significant cell death in PEL cell lines

  17. Inhibition of mitochondrial division through covalent modification of Drp1 protein by 15 deoxy-{Delta}{sup 12,14}-prostaglandin J2

    SciTech Connect

    Mishra, Nandita; Kar, Rekha; Singha, Prajjal K.; Venkatachalam, Manjeri A.; McEwen, Donald G.; Saikumar, Pothana

    2010-04-23

    Arachidonic acid derived endogenous electrophile 15d-PGJ2 has gained much attention in recent years due to its potent anti-proliferative and anti-inflammatory actions mediated through thiol modification of cysteine residues in its target proteins. Here, we show that 15d-PGJ2 at 1 {mu}M concentration converts normal mitochondria into large elongated and interconnected mitochondria through direct binding to mitochondrial fission protein Drp1 and partial inhibition of its GTPase activity. Mitochondrial elongation induced by 15d-PGJ2 is accompanied by increased assembly of Drp1 into large oligomeric complexes through plausible intermolecular interactions. The role of decreased GTPase activity of Drp1 in the formation of large oligomeric complexes is evident when Drp1 is incubated with a non-cleavable GTP analog, GTP{gamma}S or by a mutation that inactivated GTPase activity of Drp1 (K38A). The mutation of cysteine residue (Cys644) in the GTPase effector domain, a reported target for modification by reactive electrophiles, to alanine mimicked K38A mutation induced Drp1 oligomerization and mitochondrial elongation, suggesting the importance of cysteine in GED to regulate the GTPase activity and mitochondrial morphology. Interestingly, treatment of K38A and C644A mutants with 15d-PGJ2 resulted in super oligomerization of both mutant Drp1s indicating that 15d-PGJ2 may further stabilize Drp1 oligomers formed by loss of GTPase activity through covalent modification of middle domain cysteine residues. The present study documents for the first time the regulation of a mitochondrial fission activity by a prostaglandin, which will provide clues for understanding the pathological and physiological consequences of accumulation of reactive electrophiles during oxidative stress, inflammation and degeneration.

  18. Gene Resistance to Transcriptional Reprogramming following Nuclear Transfer Is Directly Mediated by Multiple Chromatin-Repressive Pathways.

    PubMed

    Jullien, Jerome; Vodnala, Munender; Pasque, Vincent; Oikawa, Mami; Miyamoto, Kei; Allen, George; David, Sarah Anne; Brochard, Vincent; Wang, Stan; Bradshaw, Charles; Koseki, Haruhiko; Sartorelli, Vittorio; Beaujean, Nathalie; Gurdon, John

    2017-03-02

    Understanding the mechanism of resistance of genes to reactivation will help improve the success of nuclear reprogramming. Using mouse embryonic fibroblast nuclei with normal or reduced DNA methylation in combination with chromatin modifiers able to erase H3K9me3, H3K27me3, and H2AK119ub1 from transplanted nuclei, we reveal the basis for resistance of genes to transcriptional reprogramming by oocyte factors. A majority of genes is affected by more than one type of treatment, suggesting that resistance can require repression through multiple epigenetic mechanisms. We classify resistant genes according to their sensitivity to 11 chromatin modifier combinations, revealing the existence of synergistic as well as adverse effects of chromatin modifiers on removal of resistance. We further demonstrate that the chromatin modifier USP21 reduces resistance through its H2AK119 deubiquitylation activity. Finally, we provide evidence that H2A ubiquitylation also contributes to resistance to transcriptional reprogramming in mouse nuclear transfer embryos.

  19. Characterization of Cellulase Secretion and Cre1-Mediated Carbon Source Repression in the Potential Lignocellulose-Degrading Strain Trichoderma asperellum T-1

    PubMed Central

    Wang, Qun; Lin, Hui; Shen, Qi; Fan, Xiaoping; Bai, Naling; Zhao, Yuhua

    2015-01-01

    Trichoderma asperellum, a traditional bio-control species, was demonstrated to be an excellent candidate for lignocellulose degradation in this work. Comparing to the representatively industrial strain of Trichoderma reeseiQM6a, T. asperellum T-1 showed more robust growth, stronger spore production, faster secretion of lignocellulose-decomposing enzymes and better pH tolerance. The reducing sugar released by strain T-1 on the second day of fermentation was 87% higher than that of strain QM6a, although the maximum reducing sugar yield and the cellulase production persistence of the strain T-1 were lower. Our experiment found that the cellulase secretion was strongly inhibited by glucose, suggesting the existence of carbon source repression pathway in T. asperellum T-1. The inhibiting effect was enhanced with an increase in glucose concentration and was closely related to mycelium growth. SDS-PAGE and secondary mass-spectrum identification confirmed that the expression of endo-1,4-β-xylanase I in T. asperellum T-1 was down-regulated when glucose was added. The factor Cre1, which plays an important role in the down-regulation of the endo-1,4-β-xylanase I gene, was investigated by bioinformatics methods. The protein structure of Cre1, analyzed using multiple protein sequence alignment, indicates the existence of the Zn-fingers domain. Then, the binding sites of Cre1 on the endo-1,4-β-xylanase I gene promoter were further elucidated. This study is the first report about Cre1-mediated carbon repression in the bio-control strain T. asperellum T-1. All of the above results provided good references for better understanding T. asperellum T-1 and improving its application for lignocellulose degradation. PMID:25741694

  20. KLF4 regulates adult lung tumor-initiating cells and represses K-Ras-mediated lung cancer.

    PubMed

    Yu, T; Chen, X; Zhang, W; Liu, J; Avdiushko, R; Napier, D L; Liu, A X; Neltner, J M; Wang, C; Cohen, D; Liu, C

    2016-02-01

    Lung cancer is the leading cause of cancer-related mortality in both men and women worldwide. To identify novel factors that contribute to lung cancer pathogenesis, we analyzed a lung cancer database from The Cancer Genome Atlas and found that Krüppel-like Factor 4 (KLF4) expression is significantly lower in patients' lung cancer tissue than in normal lung tissue. In addition, we identified seven missense mutations in the KLF4 gene. KLF4 is a transcription factor that regulates cell proliferation and differentiation as well as the self-renewal of stem cells. To understand the role of KLF4 in the lung, we generated a tamoxifen-induced Klf4 knockout mouse model. We found that KLF4 inhibits lung cancer cell growth and that depletion of Klf4 altered the differentiation pattern in the developing lung. To understand how KLF4 functions during lung tumorigenesis, we generated the K-ras(LSL-G12D/+);Klf4(fl/fl) mouse model, and we used adenovirus-expressed Cre to induce K-ras activation and Klf4 depletion in the lung. Although Klf4 deletion alone or K-ras mutation alone can trigger lung tumor formation, Klf4 deletion combined with K-ras mutation significantly enhanced lung tumor formation. We also found that Klf4 deletion in conjunction with K-ras activation caused lung inflammation. To understand the mechanism whereby KLF4 is regulated during lung tumorigenesis, we analyzed KLF4 promoter methylation and the profiles of epigenetic factors. We found that Class I histone deacetylases (HDACs) are overexpressed in lung cancer and that HDAC inhibitors induced expression of KLF4 and inhibited proliferation of lung cancer cells, suggesting that KLF4 is probably repressed by histone acetylation and that HDACs are valuable drug targets for lung cancer treatment.

  1. Tumor Suppressor PDCD4 Represses Internal Ribosome Entry Site-Mediated Translation of Antiapoptotic Proteins and Is Regulated by S6 Kinase 2

    PubMed Central

    Liwak, Urszula; Thakor, Nehal; Jordan, Lindsay E.; Roy, Rajat; Lewis, Stephen M.; Pardo, Olivier E.; Seckl, Michael

    2012-01-01

    Apoptosis can be regulated by extracellular signals that are communicated by peptides such as fibroblast growth factor 2 (FGF-2) that have important roles in tumor cell proliferation. The prosurvival effects of FGF-2 are transduced by the activation of the ribosomal protein S6 kinase 2 (S6K2), which increases the expression of the antiapoptotic proteins X chromosome-linked Inhibitor of Apoptosis (XIAP) and Bcl-xL. We now show that the FGF-2–S6K2 prosurvival signaling is mediated by the tumor suppressor programmed cell death 4 (PDCD4). We demonstrate that PDCD4 specifically binds to the internal ribosome entry site (IRES) elements of both the XIAP and Bcl-xL messenger RNAs and represses their translation by inhibiting the formation of the 48S translation initiation complex. Phosphorylation of PDCD4 by activated S6K2 leads to the degradation of PDCD4 and thus the subsequent derepression of XIAP and Bcl-xL translation. Our results identify PDCD4 as a specific repressor of the IRES-dependent translation of cellular mRNAs (such as XIAP and Bcl-xL) that mediate FGF-2–S6K2 prosurvival signaling and provide further insight into the role of PDCD4 in tumor suppression. PMID:22431522

  2. HuR represses Wnt/β-catenin-mediated transcriptional activity by promoting cytoplasmic localization of β-catenin

    SciTech Connect

    Kim, Inae; Hur, Jung; Jeong, Sunjoo

    2015-01-30

    Highlights: • Wnt signaling as well as β-catenin overexpression enhance HuR cytoplasmic export. • HuR overexpression promotes cytoplasmic localization of β-catenin from the perinuclear fraction. • Wnt/β-catenin-mediated transcriptional activity is repressesed by HuR. - Abstract: β-Catenin is the key transcriptional activator of canonical Wnt signaling in the nucleus; thus, nuclear accumulation of β-catenin is a critical step for expressing target genes. β-Catenin accumulates in the nucleus of cancer cells where it activates oncogenic target genes. Hu antigen R (HuR) is a RNA binding protein that regulates multiple post-transcriptional processes including RNA stability. Thus, cytoplasmic HuR protein may be involved in tumorigenesis by stabilizing oncogenic transcripts, but the molecular mechanism remains unclear. Here, we observed that Wnt/β-catenin signaling induced export of the HuR protein, whereas HuR overexpression promoted accumulation of the β-catenin protein in the cytoplasm. Thus, Wnt/β-catenin-mediated transcriptional activity in the nucleus was reduced by overexpressing HuR. These results suggest novel and uncharacterized cytoplasmic β-catenin functions related to HuR-mediated RNA metabolism in cancer cells.

  3. PICKLE is required for SOLITARY-ROOT/IAA14-mediated repression of ARF7 and ARF19 activity during Arabidopsis lateral root initiation.

    PubMed

    Fukaki, Hidehiro; Taniguchi, Naohide; Tasaka, Masao

    2006-11-01

    Lateral root (LR) formation in Arabidopsis is regulated by auxin signaling through AUXIN RESPONSE FACTOR transcriptional activators, ARF7 and ARF19, and auxin/indole-3-acetic acid (Aux/IAA) repressors, including SOLITARY-ROOT (SLR)/IAA14. Previous studies have strongly suggested that, in the gain-of-function slr-1 mutant, stabilized mutant IAA14 (mIAA14) protein inactivates ARF7/19 functions, thereby completely blocking LR initiation. However, the mechanism of inactivation is still unknown. We have now identified an extragenic suppressor mutation of slr-1, suppressor of slr2 (ssl2), which specifically restores LR formation in the slr-1 mutant, and have found that SSL2 negatively regulates the auxin-induced pericycle cell divisions required for LR initiation. The SSL2 gene encodes PICKLE (PKL), a homologue of the animal chromatin-remodeling factor CHD3/Mi-2, and LR formation restored in pkl/ssl2 slr-1 mutants depends on ARF7/19 functions, suggesting that ARF7/19-dependent transcription takes place if there is a pkl/ssl2 mutation in slr-1. In animals, Mi-2 represses transcription as a subunit of the NuRD/Mi-2 complex containing histone deacetylases (HDACs). Inhibition of HDAC activity by trichostatin A also results in LR formation in the slr-1 mutant, but not in the slr-1 arf7 arf19 triple mutant, suggesting that normal HDAC activity is required for the mIAA14-mediated inactivation of ARF7/19 functions in LR initiation. Taken together, our data suggest that PKL/SSL2-mediated chromatin remodeling negatively regulates auxin-mediated LR formation in Arabidopsis.

  4. Salvianolic acid A preconditioning confers protection against concanavalin A-induced liver injury through SIRT1-mediated repression of p66shc in mice

    SciTech Connect

    Xu, Xiaomei; Hu, Yan; Zhai, Xiaohan; Lin, Musen; Chen, Zhao; Tian, Xiaofeng; Zhang, Feng; Gao, Dongyan; Ma, Xiaochi; Lv, Li; Yao, Jihong

    2013-11-15

    Salvianolic acid A (SalA) is a phenolic carboxylic acid derivative extracted from Salvia miltiorrhiza. It has many biological and pharmaceutical activities. The purpose of this study was to investigate the effect of SalA on concanavalin A (ConA)-induced acute hepatic injury in Kunming mice and to explore the role of SIRT1 in such an effect. The results showed that in vivo pretreatment with SalA significantly reduced ConA-induced elevation in serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities and decreased levels of the hepatotoxic cytokines such as interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α). Moreover, the SalA pretreatment ameliorated the increases in NF-κB and in cleaved caspase-3 caused by ConA exposure. Whereas, the pretreatment completely reversed expression of the B-cell lymphoma-extra large (Bcl-xL). More importantly, the SalA pretreatment significantly increased the expression of SIRT1, a NAD{sup +}-dependent deacetylase, which was known to attenuate acute hypoxia damage and metabolic liver diseases. In our study, the increase in SIRT1 was closely associated with down-regulation of the p66 isoform (p66shc) of growth factor adapter Shc at both protein and mRNA levels. In HepG2 cell culture, SalA pretreatment increased SIRT1 expression in a time and dose-dependent manner and such an increase was abrogated by siRNA knockdown of SIRT1. Additionally, inhibition of SIRT1 significantly reversed the decreased expression of p66shc, and attenuated SalA-induced p66shc down-regulation. Collectively, the present study indicated that SalA may be a potent activator of SIRT and that SalA can alleviate ConA-induced hepatitis through SIRT1-mediated repression of the p66shc pathway. - Highlights: • We report for the first time that SalA protects against ConA-induced hepatitis. • We find that SalA is a potential activator of SIRT1. • SalA's protection against hepatitis involves SIRT1-mediated repression of p66shc.

  5. Poly(ADP-ribose) Polymerase 1 Represses Liver X Receptor-mediated ABCA1 Expression and Cholesterol Efflux in Macrophages.

    PubMed

    Shrestha, Elina; Hussein, Maryem A; Savas, Jeffery N; Ouimet, Mireille; Barrett, Tessa J; Leone, Sarah; Yates, John R; Moore, Kathryn J; Fisher, Edward A; Garabedian, Michael J

    2016-05-20

    Liver X receptors (LXR) are oxysterol-activated nuclear receptors that play a central role in reverse cholesterol transport through up-regulation of ATP-binding cassette transporters (ABCA1 and ABCG1) that mediate cellular cholesterol efflux. Mouse models of atherosclerosis exhibit reduced atherosclerosis and enhanced regression of established plaques upon LXR activation. However, the coregulatory factors that affect LXR-dependent gene activation in macrophages remain to be elucidated. To identify novel regulators of LXR that modulate its activity, we used affinity purification and mass spectrometry to analyze nuclear LXRα complexes and identified poly(ADP-ribose) polymerase-1 (PARP-1) as an LXR-associated factor. In fact, PARP-1 interacted with both LXRα and LXRβ. Both depletion of PARP-1 and inhibition of PARP-1 activity augmented LXR ligand-induced ABCA1 expression in the RAW 264.7 macrophage line and primary bone marrow-derived macrophages but did not affect LXR-dependent expression of other target genes, ABCG1 and SREBP-1c. Chromatin immunoprecipitation experiments confirmed PARP-1 recruitment at the LXR response element in the promoter of the ABCA1 gene. Further, we demonstrated that LXR is poly(ADP-ribosyl)ated by PARP-1, a potential mechanism by which PARP-1 influences LXR function. Importantly, the PARP inhibitor 3-aminobenzamide enhanced macrophage ABCA1-mediated cholesterol efflux to the lipid-poor apolipoprotein AI. These findings shed light on the important role of PARP-1 on LXR-regulated lipid homeostasis. Understanding the interplay between PARP-1 and LXR may provide insights into developing novel therapeutics for treating atherosclerosis.

  6. CD151-α3β1 integrin complexes suppress ovarian tumor growth by repressing slug-mediated EMT and canonical Wnt signaling.

    PubMed

    Baldwin, Lauren A; Hoff, John T; Lefringhouse, Jason; Zhang, Michael; Jia, Changhe; Liu, Zeyi; Erfani, Sonia; Jin, Hongyan; Xu, Mei; She, Qing-Bai; van Nagell, John R; Wang, Chi; Chen, Li; Plattner, Rina; Kaetzel, David M; Luo, Jia; Lu, Michael; West, Dava; Liu, Chunming; Ueland, Fred R; Drapkin, Ronny; Zhou, Binhua P; Yang, Xiuwei H

    2014-12-15

    Human ovarian cancer is diagnosed in the late, metastatic stages but the underlying mechanisms remain poorly understood. We report a surprising functional link between CD151-α3β1 integrin complexes and the malignancy of serous-type ovarian cancer. Analyses of clinical specimens indicate that CD151 expression is significantly reduced or diminished in 90% of metastatic lesions, while it remains detectable in 58% of primary tumors. These observations suggest a putative tumor-suppressing role of CD151 in ovarian cancer. Indeed, our analyses show that knocking down CD151 or α3 integrin enhances tumor cell proliferation, growth and ascites production in nude mice. These changes are accompanied by impaired cell-cell contacts and aberrant expression of E-cadherin, Mucin 5AC and fibronectin, largely reminiscent of an epithelial to mesenchymal transition (EMT)-like change. Importantly, Slug, a master regulator of EMT, is markedly elevated. Knocking down Slug partially restores CD151-α3β1 integrin complex-dependent suppression of cell proliferation. Moreover, disruption of these adhesion protein complexes is accompanied by a concomitant activation of canonical Wnt signaling, including elevated levels of β-catenin and Axin-2 as well as resistance to the inhibition in β-catenin-dependent transcriptional complexes. Together, our study demonstrates that CD151-α3β1 integrin complexes regulate ovarian tumor growth by repressing Slug-mediated EMT and Wnt signaling.

  7. ERα-mediated repression of pro-inflammatory cytokine expression by glucocorticoids reveals a crucial role for TNFα and IL1α in lumen formation and maintenance

    PubMed Central

    Eritja, Nuria; Mirantes, Cristina; Llobet, David; Masip, Gemma; Matias-Guiu, Xavier; Dolcet, Xavi

    2012-01-01

    Most glandular tissues comprise polarized epithelial cells organized around a single central lumen. Although there is active research investigating the molecular networks involved in the regulation of lumenogenesis, little is known about the extracellular factors that influence lumen formation and maintenance. Using a three-dimensional culture system of epithelial endometrial cells, we have revealed a new role for pro-inflammatory cytokines such as TNFα and IL1α in the formation and, more importantly, maintenance of a single central lumen. We also studied the mechanism by which glucocorticoids repress TNFα and IL1α expression. Interestingly, regulation of pro-inflammatory cytokine expression and subsequent lumen formation is mediated by estrogen receptor α (ERα) but not by the glucocorticoid receptor. Finally, we investigated the signaling pathways involved in the regulation of lumen formation by pro-inflammatory cytokines. Our results demonstrate that activation of the ERK/MAPK signaling pathway, but not the PI3K/Akt signaling pathway, is important for the formation and maintenance of a single central lumen. In summary, our results suggest a novel role for ERα-regulated pro-inflammatory cytokine expression in lumen formation and maintenance. PMID:22328525

  8. A new regulatory element mediates ethanol repression of KlADH3, a Kluyveromyces lactis gene coding for a mitochondrial alcohol dehydrogenase.

    PubMed

    Saliola, Michele; Getuli, Claudia; Mazzoni, Cristina; Fantozzi, Ivana; Falcone, Claudio

    2007-08-01

    KlADH3 is a Kluyveromyces lactis alcohol dehydrogenase gene induced in the presence of all respiratory carbon sources except ethanol, which specifically represses this gene. Deletion analysis of the KlADH3 promoter revealed the presence of both positive and negative elements. However, by site-directed mutagenesis and gel retardation experiments, we identified a 15-bp element responsible for the transcriptional repression of this gene by ethanol. In particular, this element showed putative sites required for the sequential binding of ethanol-induced factors responsible for the repressed conditions, and the binding of additional factors relieved repression. In addition, we showed that the ethanol element was required for in vivo repression of KlAdh3 activity.

  9. Aspergillus fumigatus spore proteomics and genetics reveal that VeA represses DefA-mediated DNA damage response.

    PubMed

    Shin, Kwang-Soo; Park, Hee-Soo; Kim, Young; Heo, In-Beom; Kim, Young Hwan; Yu, Jae-Hyuk

    2016-10-04

    Aspergillus fumigatus reproduces and infects host by forming a high number of small asexual spores (conidia). The velvet proteins are global transcriptional regulators governing the complex process of conidiogenesis in this fungus. Here, to further understand the velvet-mediated regulation, we carried out comparative proteomic analyses of conidia of wild type (WT) and three velvet mutants (ΔveA, ΔvelB and ΔvosA). Cluster analysis of 184 protein spots showing at least 1.5-fold differential accumulation between WT and mutants reveal the clustering of WT- ΔveA and ΔvelB-ΔvosA. Among 43 proteins identified by Nano-LC-ESI-MS/MS, 23 including several heat shock proteins showed more than two-fold reduction in both the ∆velB and ∆vosA conidia. On the contrary, three proteins exhibited more than five-fold increase in ∆veA only, including the putative RNA polymerase II degradation factor DefA. The deletion of defA resulted in a reduced number of conidia and restricted colony growth. In addition, the defA deletion mutant conidia showed hypersensitivity against the DNA damaging agents NQO and MMS, while the ΔveA mutant conidia were more resistant against to NQO. Taken together, we propose that VeA controls protein level of DefA in conidia, which are dormant and equipped with multiple layers of protection against environmental cues.

  10. The 4E-BP Caf20p Mediates Both eIF4E-Dependent and Independent Repression of Translation

    PubMed Central

    Castelli, Lydia M.; Talavera, David; Kershaw, Christopher J.; Mohammad-Qureshi, Sarah S.; Costello, Joseph L.; Rowe, William; Sims, Paul F. G.; Grant, Christopher M.; Hubbard, Simon J.; Ashe, Mark P.; Pavitt, Graham D.

    2015-01-01

    Translation initiation factor eIF4E mediates mRNA selection for protein synthesis via the mRNA 5’cap. A family of binding proteins, termed the 4E-BPs, interact with eIF4E to hinder ribosome recruitment. Mechanisms underlying mRNA specificity for 4E-BP control remain poorly understood. Saccharomyces cerevisiae 4E-BPs, Caf20p and Eap1p, each regulate an overlapping set of mRNAs. We undertook global approaches to identify protein and RNA partners of both 4E-BPs by immunoprecipitation of tagged proteins combined with mass spectrometry or next-generation sequencing. Unexpectedly, mass spectrometry indicated that the 4E-BPs associate with many ribosomal proteins. 80S ribosome and polysome association was independently confirmed and was not dependent upon interaction with eIF4E, as mutated forms of both Caf20p and Eap1p with disrupted eIF4E-binding motifs retain ribosome interaction. Whole-cell proteomics revealed Caf20p mutations cause both up and down-regulation of proteins and that many changes were independent of the 4E-binding motif. Investigations into Caf20p mRNA targets by immunoprecipitation followed by RNA sequencing revealed a strong association between Caf20p and mRNAs involved in transcription and cell cycle processes, consistent with observed cell cycle phenotypes of mutant strains. A core set of over 500 Caf20p-interacting mRNAs comprised of both eIF4E-dependent (75%) and eIF4E-independent targets (25%), which differ in sequence attributes. eIF4E-independent mRNAs share a 3’ UTR motif. Caf20p binds all tested motif-containing 3’ UTRs. Caf20p and the 3’UTR combine to influence ERS1 mRNA polysome association consistent with Caf20p contributing to translational control. Finally ERS1 3’UTR confers Caf20-dependent repression of expression to a heterologous reporter gene. Taken together, these data reveal conserved features of eIF4E-dependent Caf20p mRNA targets and uncover a novel eIF4E-independent mode of Caf20p binding to mRNAs that extends the

  11. EZH2-mediated repression of GSK-3β and TP53 promotes Wnt/β-catenin signaling-dependent cell expansion in cervical carcinoma.

    PubMed

    Chen, Qian; Zheng, Peng-Sheng; Yang, Wen-Ting

    2016-06-14

    Enhancer of zeste homolog 2 (EZH2), a catalytic core component of the Polycomb repressive complex 2 (PRC2), stimulates the silencing of target genes through histone H3 lysine 27 trimethylation (H3K27me3). Recent findings have indicated EZH2 is involved in the development and progression of various human cancers. However, the exact mechanism of EZH2 in the promotion of cervical cancer is largely unknown. Here, we show that EZH2 expression gradually increases during the progression of cervical cancer. We identified a significant positive correlation between EZH2 expression and cell proliferation in vitro and tumor formation in vivo by the up-regulation or down-regulation of EZH2 using CRISPR-Cas9-mediated gene editing technology and shRNA in HeLa and SiHa cells. Further investigation indicated that EZH2 protein significantly accelerated the cell cycle transition from the G0/G1 to S phase. TOP/FOP-Flash reporter assay revealed that EZH2 significantly activated Wnt/β-catenin signaling and the target genes of Wnt/β-catenin pathway were up-regulated, including β-catenin, cyclin D1, and c-myc. Moreover, dual-luciferase reporter and chromatin immunoprecipitation (ChIP) assays confirmed that EZH2 inhibited the expression of glycogen synthase kinase-3β (GSK-3β) and TP53 through physically interacting with motifs in the promoters of the GSK-3β and TP53 genes. Additionally, blockage of the Wnt/β-catenin pathway resulted in significant inhibition of cell proliferation, and activation of the Wnt/β-catenin pathway resulted in significant enhancement of cell proliferation, as induced by EZH2. Taken together, our data demonstrate that EZH2 promotes cell proliferation and tumor formation in cervical cancer through activating the Wnt/β-catenin pathway by epigenetic silencing via GSK-3β and TP53.

  12. Salvianolic acid A preconditioning confers protection against concanavalin A-induced liver injury through SIRT1-mediated repression of p66shc in mice.

    PubMed

    Xu, Xiaomei; Hu, Yan; Zhai, Xiaohan; Lin, Musen; Chen, Zhao; Tian, Xiaofeng; Zhang, Feng; Gao, Dongyan; Ma, Xiaochi; Lv, Li; Yao, Jihong

    2013-11-15

    Salvianolic acid A (SalA) is a phenolic carboxylic acid derivative extracted from Salvia miltiorrhiza. It has many biological and pharmaceutical activities. The purpose of this study was to investigate the effect of SalA on concanavalin A (ConA)-induced acute hepatic injury in Kunming mice and to explore the role of SIRT1 in such an effect. The results showed that in vivo pretreatment with SalA significantly reduced ConA-induced elevation in serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities and decreased levels of the hepatotoxic cytokines such as interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α). Moreover, the SalA pretreatment ameliorated the increases in NF-κB and in cleaved caspase-3 caused by ConA exposure. Whereas, the pretreatment completely reversed expression of the B-cell lymphoma-extra large (Bcl-xL). More importantly, the SalA pretreatment significantly increased the expression of SIRT1, a NAD(+)-dependent deacetylase, which was known to attenuate acute hypoxia damage and metabolic liver diseases. In our study, the increase in SIRT1 was closely associated with down-regulation of the p66 isoform (p66shc) of growth factor adapter Shc at both protein and mRNA levels. In HepG2 cell culture, SalA pretreatment increased SIRT1 expression in a time and dose-dependent manner and such an increase was abrogated by siRNA knockdown of SIRT1. Additionally, inhibition of SIRT1 significantly reversed the decreased expression of p66shc, and attenuated SalA-induced p66shc down-regulation. Collectively, the present study indicated that SalA may be a potent activator of SIRT and that SalA can alleviate ConA-induced hepatitis through SIRT1-mediated repression of the p66shc pathway.

  13. The Anoikis Effector Bit1 Inhibits EMT through Attenuation of TLE1-Mediated Repression of E-Cadherin in Lung Cancer Cells

    PubMed Central

    Yao, Xin; Pham, Tri; Temple, Brandi; Gray, Selena; Cannon, Cornita; Chen, Renwei; Abdel-Mageed, Asim B.; Biliran, Hector

    2016-01-01

    The mitochondrial Bcl-2 inhibitor of transcription 1 (Bit1) protein is part of an anoikis-regulating pathway that is selectively dependent on integrins. We previously demonstrated that the caspase-independent apoptotic effector Bit1 exerts tumor suppressive function in lung cancer in part by inhibiting anoikis resistance and anchorage-independent growth in vitro and tumorigenicity in vivo. Herein we show a novel function of Bit1 as an inhibitor cell migration and epithelial–mesenchymal transition (EMT) in the human lung adenocarcinoma A549 cell line. Suppression of endogenous Bit1 expression via siRNA and shRNA strategies promoted mesenchymal phenotypes, including enhanced fibroblastoid morphology and cell migratory potential with concomitant downregulation of the epithelial marker E-cadherin expression. Conversely, ectopic Bit1 expression in A549 cells promoted epithelial transition characterized by cuboidal-like epithelial cell phenotype, reduced cell motility, and upregulated E-cadherin expression. Specific downregulation of E-cadherin in Bit1-transfected cells was sufficient to block Bit1-mediated inhibition of cell motility while forced expression of E-cadherin alone attenuated the enhanced migration of Bit1 knockdown cells, indicating that E-cadherin is a downstream target of Bit1 in regulating cell motility. Furthermore, quantitative real-time PCR and reporter analyses revealed that Bit1 upregulates E-cadherin expression at the transcriptional level through the transcriptional regulator Amino-terminal Enhancer of Split (AES) protein. Importantly, the Bit1/AES pathway induction of E-cadherin expression involves inhibition of the TLE1-mediated repression of E-cadherin, by decreasing TLE1 corepressor occupancy at the E-cadherin promoter as revealed by chromatin immunoprecipitation assays. Consistent with its EMT inhibitory function, exogenous Bit1 expression significantly suppressed the formation of lung metastases of A549 cells in an in vivo experimental

  14. The Anoikis Effector Bit1 Inhibits EMT through Attenuation of TLE1-Mediated Repression of E-Cadherin in Lung Cancer Cells.

    PubMed

    Yao, Xin; Pham, Tri; Temple, Brandi; Gray, Selena; Cannon, Cornita; Chen, Renwei; Abdel-Mageed, Asim B; Biliran, Hector

    The mitochondrial Bcl-2 inhibitor of transcription 1 (Bit1) protein is part of an anoikis-regulating pathway that is selectively dependent on integrins. We previously demonstrated that the caspase-independent apoptotic effector Bit1 exerts tumor suppressive function in lung cancer in part by inhibiting anoikis resistance and anchorage-independent growth in vitro and tumorigenicity in vivo. Herein we show a novel function of Bit1 as an inhibitor cell migration and epithelial-mesenchymal transition (EMT) in the human lung adenocarcinoma A549 cell line. Suppression of endogenous Bit1 expression via siRNA and shRNA strategies promoted mesenchymal phenotypes, including enhanced fibroblastoid morphology and cell migratory potential with concomitant downregulation of the epithelial marker E-cadherin expression. Conversely, ectopic Bit1 expression in A549 cells promoted epithelial transition characterized by cuboidal-like epithelial cell phenotype, reduced cell motility, and upregulated E-cadherin expression. Specific downregulation of E-cadherin in Bit1-transfected cells was sufficient to block Bit1-mediated inhibition of cell motility while forced expression of E-cadherin alone attenuated the enhanced migration of Bit1 knockdown cells, indicating that E-cadherin is a downstream target of Bit1 in regulating cell motility. Furthermore, quantitative real-time PCR and reporter analyses revealed that Bit1 upregulates E-cadherin expression at the transcriptional level through the transcriptional regulator Amino-terminal Enhancer of Split (AES) protein. Importantly, the Bit1/AES pathway induction of E-cadherin expression involves inhibition of the TLE1-mediated repression of E-cadherin, by decreasing TLE1 corepressor occupancy at the E-cadherin promoter as revealed by chromatin immunoprecipitation assays. Consistent with its EMT inhibitory function, exogenous Bit1 expression significantly suppressed the formation of lung metastases of A549 cells in an in vivo experimental

  15. Bombyx mori E26 transformation-specific 2 (BmEts2), an Ets family protein, represses Bombyx mori Rels (BmRels)-mediated promoter activation of antimicrobial peptide genes in the silkworm Bombyx mori.

    PubMed

    Tanaka, H; Sagisaka, A; Suzuki, N; Yamakawa, M

    2016-10-01

    E26 transformation-specific (Ets) family transcription factors are known to play roles in various biological phenomena, including immunity, in vertebrates. However, the mechanisms by which Ets proteins contribute to immunity in invertebrates remain poorly understood. In this study, we identified a cDNA encoding BmEts2, which is a putative orthologue of Drosophila Yan and human translocation-ets-leukemia/Ets-variant gene 6, from the silkworm Bombyx mori. Expression of the BmEts2 gene was significantly increased in the fat bodies of silkworm larvae in response to injection with Escherichia coli and Staphylococcus aureus. BmEts2 overexpression dramatically repressed B. mori Rels (BmRels)-mediated promoter activation of antimicrobial peptide genes in silkworm cells. Conversely, gene knockdown of BmEts2 significantly enhanced BmRels activity. In addition, two κB sites located on the 5' upstream region of cecropin B1 were found to be involved in the repression of BmRels-mediated promoter activation. Protein-competition analysis further demonstrated that BmEts2 competitively inhibited binding of BmRels to κB sites. Overall, BmEts2 acts as a repressor of BmRels-mediated transactivation of antimicrobial protein genes by inhibiting the binding of BmRels to κB sites.

  16. Differential selectivity of protein modification by the cyclopentenone prostaglandins PGA1 and 15-deoxy-Delta12,14-PGJ2: role of glutathione.

    PubMed

    Gayarre, Javier; Stamatakis, Konstantinos; Renedo, Marta; Pérez-Sala, Dolores

    2005-10-24

    Cyclopentenone prostaglandins (cyPG) with antiinflammatory and antiproliferative properties have been envisaged as leads for the development of therapeutic agents. Because cyPG effects are mediated in part by the formation of covalent adducts with critical signaling proteins, it is important to assess the specificity of this interaction. By using biotinylated derivatives of 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)-B) and PGA(1) (PGA(1)-B) we herein provide novel evidence for the differential selectivity of protein modification by distinct cyPG. The marked quantitative and qualitative differences in the binding of 15d-PGJ(2)-B and PGA(1)-B to cellular proteins were related to a differential reactivity in the presence of glutathione (GSH), both in vitro and in intact cells. Therefore GSH levels may influence not only the intensity but also the specificity of cyPG action.

  17. Nrf2 activation protects the liver from ischemia/ reperfusion injury in mice

    PubMed Central

    Kudoh, Kazuhiro; Uchinami, Hiroshi; Yoshioka, Masato; Seki, Ekihiro; Yamamoto, Yuzo

    2014-01-01

    Objective To investigate the role of Nrf2 in the pathogenesis of hepatic ischemia-reperfusion (I/R) injury. Summary Background Data Hepatic I/R injury is a serious complication that leads to liver failure after liver surgery. NF-E2-related factor 2 (Nrf2) is a transcription factor that plays a critical role in protecting cells against oxidative stress. Therefore, it is suggested that Nrf2 activation protects the liver from I/R injury. Methods Wild-type (WT) and Nrf2-deficient mice were treated with 15-deoxy-Δ12, 14-prostaglandin J2 (15d-PGJ2), or a vehicle. Subsequently, these mice were subjected to 60 min hepatic 70% ischemia followed by reperfusion. Liver and blood samples were collected to evaluate liver injury and mRNA expressions. Results After hepatic I/R, Nrf2-deficient livers exhibited enhanced tissue damage, impaired GSTm1, NQO1, and GCLc inductions, disturbed redox state, and aggravated TNF-α mRNA expression in comparison to WT livers. 15d-PGJ2 treatment protected the livers of WT mice from I/R injury via increased expressions of GSTm1, NQO1 and GCLc, maintained redox status, and decreased TNF-α induction. These effects induced by 15d-PGJ2 were not seen in the livers of Nrf2−/− mice and were not annulled by PPARγ antagonist in Nrf2+/+ mice, suggesting that the protective effect of 15d-PGJ2 is mediated by Nrf2-dependent antioxidant response. Conclusions Nrf2 plays a critical role in the mechanism of hepatic I/R injury and would be a new therapeutic target for preventing hepatic I/R injury during liver surgery. PMID:24368646

  18. Repression domains of class II ERF transcriptional repressors share an essential motif for active repression.

    PubMed

    Ohta, M; Matsui, K; Hiratsu, K; Shinshi, H; Ohme-Takagi, M

    2001-08-01

    We reported previously that three ERF transcription factors, tobacco ERF3 (NtERF3) and Arabidopsis AtERF3 and AtERF4, which are categorized as class II ERFs, are active repressors of transcription. To clarify the roles of these repressors in transcriptional regulation in plants, we attempted to identify the functional domains of the ERF repressor that mediates the repression of transcription. Analysis of the results of a series of deletions revealed that the C-terminal 35 amino acids of NtERF3 are sufficient to confer the capacity for repression of transcription on a heterologous DNA binding domain. This repression domain suppressed the intermolecular activities of other transcriptional activators. In addition, fusion of this repression domain to the VP16 activation domain completely inhibited the transactivation function of VP16. Comparison of amino acid sequences of class II ERF repressors revealed the conservation of the sequence motif (L)/(F)DLN(L)/(F)(x)P. This motif was essential for repression because mutations within the motif eliminated the capacity for repression. We designated this motif the ERF-associated amphiphilic repression (EAR) motif, and we identified this motif in a number of zinc-finger proteins from wheat, Arabidopsis, and petunia plants. These zinc finger proteins functioned as repressors, and their repression domains were identified as regions that contained an EAR motif.

  19. A tricarboxylic acid cycle intermediate regulating transcription of a chloroaromatic biodegradative pathway: fumarate-mediated repression of the clcABD operon.

    PubMed

    McFall, S M; Abraham, B; Narsolis, C G; Chakrabarty, A M

    1997-11-01

    The ortho-cleavage pathways of catechol and 3-chlorocatechol are central catabolic pathways of Pseudomonas putida that convert aromatic and chloroaromatic compounds to tricarboxylic acid (TCA) cycle intermediates. They are encoded by the evolutionarily related catBCA and clcABD operons, respectively. Expression of the cat and clc operons requires the LysR-type transcriptional activators CatR and ClcR, respectively, and the inducer molecules cis,cis-muconate and 2-chloro-cis,cis-muconate, respectively. The regulation of the cat and clc promoters has been well studied, but the extent to which these operons are repressed by growth in TCA cycle intermediates has not been explored. We demonstrate by transcriptional fusion studies that the expression from the clc promoter is repressed when the cells are grown on succinate, citrate, or fumarate and that this repression is ClcR dependent and occurs at the transcriptional level. The presence of these organic acids did not affect the expression from the cat promoter. In vitro transcription assays demonstrate that the TCA cycle intermediate fumarate directly and specifically inhibits the formation of the clcA transcript. No such inhibition was observed when CatR was used as the activator on either the cat or clc template. Titration studies of fumarate and 2-chloromuconate show that the fumarate effect is concentration dependent and reversible, indicating that fumarate and 2-chloromuconate most probably compete for the same binding site on ClcR. This is an interesting example of the transcriptional regulation of a biodegradative pathway by the intracellular sensing of the state of the TCA cycle.

  20. Pseudomonas aeruginosa infection augments inflammation through miR-301b repression of c-Myb-mediated immune activation and infiltration

    PubMed Central

    Li, Xuefeng; He, Sisi; Li, Rongpeng; Zhou, Xikun; Zhang, Shuang; Yu, Min; Ye, Yan; Wang, Yongsheng; Huang, Canhua; Wu, Min

    2016-01-01

    microRNAs (miRNAs) play critical roles in various biological processes including cell proliferation, development, and host defense. However, the molecular mechanism for miRNAs in regulating bacterial-induced inflammation remains largely unclear. Here we report that miR-301b augments pro-inflammatory response during pulmonary infection and caffeine (CAF) suppresses miR-301b’s effect and thereby augmenting respiratory immunity. LPS treatment or Pseudomonas aeruginosa infection induces miR-301b expression via a TLR4/MyD88/NF-κB pathway. Importantly, CAF decreases miR-301b expression through negative regulation of the cAMP/PKA/NF-κB axis. Further, c-Myb is identified as a target of miR-301b, which positively modulates anti-inflammatory cytokines IL-4 and TGF-β1, but negatively regulates pro-inflammatory cytokines MIP-1α and IL-17A. Moreover, repression of miR-301b results in increased transcription of c-Myb and elevated levels of neutrophil infiltration, thereby alleviating infectiou symptoms in mice. These findings reveal miR-301b as a new controller of inflammatory response by repressing c-Myb function to inhibit anti-inflammatory response to bacterial infection, representing a novel mechanism for balancing inflammation. PMID:27670114

  1. CRISPR/dCas9-mediated Transcriptional Inhibition Ameliorates the Epigenetic Dysregulation at D4Z4 and Represses DUX4-fl in FSH Muscular Dystrophy.

    PubMed

    Himeda, Charis L; Jones, Takako I; Jones, Peter L

    2016-03-01

    Facioscapulohumeral muscular dystrophy (FSHD) is one of the most prevalent myopathies, affecting males and females of all ages. Both forms of the disease are linked by epigenetic derepression of the D4Z4 macrosatellite repeat array at chromosome 4q35, leading to aberrant expression of D4Z4-encoded RNAs in skeletal muscle. Production of full-length DUX4 (DUX4-fl) mRNA from the derepressed D4Z4 array results in misexpression of DUX4-FL protein and its transcriptional targets, and apoptosis, ultimately leading to accumulated muscle pathology. Returning the chromatin at the FSHD locus to its nonpathogenic, epigenetically repressed state would simultaneously affect all D4Z4 RNAs, inhibiting downstream pathogenic pathways, and is thus an attractive therapeutic strategy. Advances in CRISPR/Cas9-based genome editing make it possible to target epigenetic modifiers to an endogenous disease locus, although reports to date have focused on more typical genomic regions. Here, we demonstrate that a CRISPR/dCas9 transcriptional inhibitor can be specifically targeted to the highly repetitive FSHD macrosatellite array and alter the chromatin to repress expression of DUX4-fl in primary FSHD myocytes. These results implicate the promoter and exon 1 of DUX4 as potential therapeutic targets and demonstrate the utility of CRISPR technology for correction of the epigenetic dysregulation in FSHD.

  2. CRISPR/dCas9-mediated Transcriptional Inhibition Ameliorates the Epigenetic Dysregulation at D4Z4 and Represses DUX4-fl in FSH Muscular Dystrophy

    PubMed Central

    Himeda, Charis L; Jones, Takako I; Jones, Peter L

    2016-01-01

    Facioscapulohumeral muscular dystrophy (FSHD) is one of the most prevalent myopathies, affecting males and females of all ages. Both forms of the disease are linked by epigenetic derepression of the D4Z4 macrosatellite repeat array at chromosome 4q35, leading to aberrant expression of D4Z4-encoded RNAs in skeletal muscle. Production of full-length DUX4 (DUX4-fl) mRNA from the derepressed D4Z4 array results in misexpression of DUX4-FL protein and its transcriptional targets, and apoptosis, ultimately leading to accumulated muscle pathology. Returning the chromatin at the FSHD locus to its nonpathogenic, epigenetically repressed state would simultaneously affect all D4Z4 RNAs, inhibiting downstream pathogenic pathways, and is thus an attractive therapeutic strategy. Advances in CRISPR/Cas9-based genome editing make it possible to target epigenetic modifiers to an endogenous disease locus, although reports to date have focused on more typical genomic regions. Here, we demonstrate that a CRISPR/dCas9 transcriptional inhibitor can be specifically targeted to the highly repetitive FSHD macrosatellite array and alter the chromatin to repress expression of DUX4-fl in primary FSHD myocytes. These results implicate the promoter and exon 1 of DUX4 as potential therapeutic targets and demonstrate the utility of CRISPR technology for correction of the epigenetic dysregulation in FSHD. PMID:26527377

  3. Searching for repressed memory.

    PubMed

    McNally, Richard J

    2012-01-01

    This chapter summarizes the work of my research group on adults who report either repressed, recovered, or continuous memories of childhood sexual abuse (CSA) or who report no history of CSA. Adapting paradigms from cognitive psychology, we tested hypotheses inspired by both the "repressed memory" and "false memory" perspectives on recovered memories of CSA. We found some evidence for the false memory perspective, but no evidence for the repressed memory perspective. However, our work also suggests a third perspective on recovered memories that does not require the concept of repression. Some children do not understand their CSA when it occurs, and do not experience terror. Years later, they recall the experience, and understanding it as abuse, suffer intense distress. The memory failed to come to mind for years, partly because the child did not encode it as terrifying (i.e., traumatic), not because the person was unable to recall it.

  4. MOZ-mediated repression of p16(INK) (4) (a) is critical for the self-renewal of neural and hematopoietic stem cells.

    PubMed

    Perez-Campo, Flor M; Costa, Guilherme; Lie-A-Ling, Michael; Stifani, Stefano; Kouskoff, Valerie; Lacaud, Georges

    2014-06-01

    Although inhibition of p16(INK4a) expression is critical to preserve the proliferative capacity of stem cells, the molecular mechanisms responsible for silencing p16(INK4a) expression remain poorly characterized. Here, we show that the histone acetyltransferase (HAT) monocytic leukemia zinc finger protein (MOZ) controls the proliferation of both hematopoietic and neural stem cells by modulating the transcriptional repression of p16(INK4a) . In the absence of the HAT activity of MOZ, expression of p16(INK4a) is upregulated in progenitor and stem cells, inducing an early entrance into replicative senescence. Genetic deletion of p16(INK4a) reverses the proliferative defect in both Moz(HAT) (-) (/) (-) hematopoietic and neural progenitors. Our results suggest a critical requirement for MOZ HAT activity to silence p16(INK4a) expression and to protect stem cells from early entrance into replicative senescence.

  5. Repression of DOK7 mediated by DNMT3A promotes the proliferation and invasion of KYSE410 and TE-12 ESCC cells.

    PubMed

    Yang, Shou-Mei; Li, Su-Yi; Yu, Hao-Bin; Li, Jie-Ru; Sun, Lei-Lei

    2017-03-23

    Increasing evidence shows that aberrant epigenetic regulation of tumor suppressor genes is a contributing factor to their altered expression in esophageal squamous cell carcinoma (ESCC). In the current study, we investigate the role of DOK7 in ESCC cells. We found that enforced expression of DOK7 inhibited the proliferation and invasion of ESCC cells. We also found that treatment of ESCC cells with the DNA methylation inhibitor, 5-aza-2-deoxycytidine (5-azadC), induced the demethylation of DOK7 in promoter and DOK7 expression. Moreover, silencing DNMT3A decreased methylation of DOK7 and increased DOK7 expression, followed by repressing the proliferation and invasion of ESCC cells. Collectively, our data indicated that silencing DNMT3A inhibits proliferation and invasion in ESCC cells by inducing demethylation of DOK7.

  6. Human Sir2-related protein SIRT1 associates with the bHLH repressors HES1 and HEY2 and is involved in HES1- and HEY2-mediated transcriptional repression.

    PubMed

    Takata, Takehiko; Ishikawa, Fuyuki

    2003-01-31

    The Hairy-related bHLH proteins function as transcriptional repressors in most cases and play important roles in diverse aspects of metazoan development. Recently, it was shown that the Drosophila bHLH repressor proteins, Hairy and Deadpan, bind to and function with the NAD(+)-dependent histone deacetylase, Sir2. Here we demonstrate that the human Sir2 homologue, SIRT1, also physically associates with the human bHLH repressor proteins, hHES1 and hHEY2, both in vitro and in vivo. Moreover, using the reporter assay, we show that both SIRT1-dependent and -independent deacetylase pathways are involved in the transcriptional repressions mediated by these bHLH repressors. These results indicate that the molecular association between bHLH proteins and Sir2-related proteins is conserved among metazoans, from Drosophila to human, and suggest that the Sir2-bHLH interaction also plays important roles in human cells.

  7. Kicking against the PRCs – A Domesticated Transposase Antagonises Silencing Mediated by Polycomb Group Proteins and Is an Accessory Component of Polycomb Repressive Complex 2

    PubMed Central

    Perera, Pumi; Mora-García, Santiago; de Leau, Erica; Thornton, Harry; de Alves, Flavia Lima; Rapsilber, Juri; Yang, Suxin; James, Geo Velikkakam; Schneeberger, Korbinian; Finnegan, E. Jean; Turck, Franziska; Goodrich, Justin

    2015-01-01

    The Polycomb group (PcG) and trithorax group (trxG) genes play crucial roles in development by regulating expression of homeotic and other genes controlling cell fate. Both groups catalyse modifications of chromatin, particularly histone methylation, leading to epigenetic changes that affect gene activity. The trxG antagonizes the function of PcG genes by activating PcG target genes, and consequently trxG mutants suppress PcG mutant phenotypes. We previously identified the ANTAGONIST OF LIKE HETEROCHROMATIN PROTEIN1 (ALP1) gene as a genetic suppressor of mutants in the Arabidopsis PcG gene LIKE HETEROCHROMATIN PROTEIN1 (LHP1). Here, we show that ALP1 interacts genetically with several other PcG and trxG components and that it antagonizes PcG silencing. Transcriptional profiling reveals that when PcG activity is compromised numerous target genes are hyper-activated in seedlings and that in most cases this requires ALP1. Furthermore, when PcG activity is present ALP1 is needed for full activation of several floral homeotic genes that are repressed by the PcG. Strikingly, ALP1 does not encode a known chromatin protein but rather a protein related to PIF/Harbinger class transposases. Phylogenetic analysis indicates that ALP1 is broadly conserved in land plants and likely lost transposase activity and acquired a novel function during angiosperm evolution. Consistent with this, immunoprecipitation and mass spectrometry (IP-MS) show that ALP1 associates, in vivo, with core components of POLYCOMB REPRESSIVE COMPLEX 2 (PRC2), a widely conserved PcG protein complex which functions as a H3K27me3 histone methyltransferase. Furthermore, in reciprocal pulldowns using the histone methyltransferase CURLY LEAF (CLF), we identify not only ALP1 and the core PRC2 components but also plant-specific accessory components including EMBRYONIC FLOWER 1 (EMF1), a transcriptional repressor previously associated with PRC1-like complexes. Taken together our data suggest that ALP1 inhibits Pc

  8. miR-155 activates cytokine gene expression in Th17 cells by regulating the DNA-binding protein Jarid2 to relieve polycomb-mediated repression.

    PubMed

    Escobar, Thelma M; Kanellopoulou, Chrysi; Kugler, David G; Kilaru, Gokhul; Nguyen, Cuong K; Nagarajan, Vijayaraj; Bhairavabhotla, Ravikiran K; Northrup, Daniel; Zahr, Rami; Burr, Patrick; Liu, Xiuhuai; Zhao, Keji; Sher, Alan; Jankovic, Dragana; Zhu, Jinfang; Muljo, Stefan A

    2014-06-19

    Specification of the T helper 17 (Th17) cell lineage requires a well-defined set of transcription factors, but how these integrate with posttranscriptional and epigenetic programs to regulate gene expression is poorly understood. Here we found defective Th17 cell cytokine expression in miR-155-deficient CD4+ T cells in vitro and in vivo. Mir155 was bound by Th17 cell transcription factors and was highly expressed during Th17 cell differentiation. miR-155-deficient Th17 and T regulatory (Treg) cells expressed increased amounts of Jarid2, a DNA-binding protein that recruits the Polycomb Repressive Complex 2 (PRC2) to chromatin. PRC2 binding to chromatin and H3K27 histone methylation was increased in miR-155-deficient cells, coinciding with failure to express Il22, Il10, Il9, and Atf3. Defects in Th17 cell cytokine expression and Treg cell homeostasis in the absence of Mir155 could be partially suppressed by Jarid2 deletion. Thus, miR-155 contributes to Th17 cell function by suppressing the inhibitory effects of Jarid2.

  9. miR-155 activates cytokine gene expression in Th17 cells by regulating the DNA-binding protein Jarid2 to relieve Polycomb-mediated repression

    PubMed Central

    Escobar, Thelma M.; Kanellopoulou, Chrysi; Kugler, David G.; Kilaru, Gokhul; Nguyen, Cuong K.; Nagarajan, Vijayaraj; Bhairavabhotla, Ravikiran K.; Northrup, Daniel; Zahr, Rami; Burr, Patrick; Liu, Xiuhuai; Zhao, Keji; Sher, Alan; Jankovic, Dragana; Zhu, Jinfang; Muljo, Stefan A.

    2014-01-01

    Specification of the T helper 17 (Th17) cell lineage requires a well defined set of transcription factors, but how these integrate with post-transcriptional and epigenetic programs to regulate gene expression is poorly understood. Here we found defective Th17 cell cytokine expression in miR-155-deficient CD4+ T cells in vitro and in vivo. Mir155 was bound by Th17 cell transcription factors and was highly expressed during Th17 cell differentiation. miR-155-deficient-Th17 and -T regulatory (Treg) cells expressed increased amounts of Jarid2, a DNA-binding protein that recruits the Polycomb Repressive Complex 2 (PRC2) to chromatin. PRC2 binding to chromatin and H3K27 histone methylation was increased in miR-155-deficient cells, coinciding with failure to express Il22, Il10, Il9 and Atf3. Defects in Th17 cell cytokine expression and Treg cell homeostasis in the absence of Mir155 could be partially suppressed by Jarid2 deletion. Thus, miR-155 contributes to Th17 cell function by suppressing the inhibitory effects of Jarid2. PMID:24856900

  10. VdCYC8, Encoding CYC8 Glucose Repression Mediator Protein, Is Required for Microsclerotia Formation and Full Virulence in Verticillium dahliae.

    PubMed

    Li, Zhi-Fang; Liu, Yi-Jie; Feng, Zi-Li; Feng, Hong-Jie; Klosterman, Steven J; Zhou, Fang-Fang; Zhao, Li-Hong; Shi, Yong-Qiang; Zhu, He-Qin

    2015-01-01

    Verticillium dahliae is the primary causal agent for Verticillium wilt disease on a diverse array of economically important crops, including cotton. In previous research, we obtained the low-pathogenicity mutant T286 from the T-DNA insertional mutant library of the highly virulent isolate Vd080 derived from cotton. In this study, the target disrupted gene VdCYC8 was identified by TAIL-PCR, encoding a homolog of CYC8 proteins involved in glucose repression. The deletion mutant ΔCYC8 exhibited several developmental deficiencies, including reduced microsclerotia formation, reduced sporulation, and slower growth. Moreover, compared with the wild type strain Vd080, the pathogenicity of strain ΔCYC8 was significantly decreased on cotton seedlings. However, the complementary mutants ΔCYC8-C led to restoration of the wild type phenotype or near wild type levels of virulence on cotton. Interestingly, pathogenicity of the strains was correlated with VdCYC8 gene expression levels in complemented mutants. Gene expression analyses in the wild type strain Vd080, the ΔCYC8-45 strain, and complemented strain ΔCYC8-C26 indicated that VdCYC8 regulates the transcription levels of several genes in V. dahliae that have roles in melanin and production.

  11. H-NS-mediated repression of CRISPR-based immunity in Escherichia coli K12 can be relieved by the transcription activator LeuO.

    PubMed

    Westra, Edze R; Pul, Umit; Heidrich, Nadja; Jore, Matthijs M; Lundgren, Magnus; Stratmann, Thomas; Wurm, Reinhild; Raine, Amanda; Mescher, Melina; Van Heereveld, Luc; Mastop, Marieke; Wagner, E Gerhart H; Schnetz, Karin; Van Der Oost, John; Wagner, Rolf; Brouns, Stan J J

    2010-09-01

    The recently discovered prokaryotic CRISPR/Cas defence system provides immunity against viral infections and plasmid conjugation. It has been demonstrated that in Escherichia coli transcription of the Cascade genes (casABCDE) and to some extent the CRISPR array is repressed by heat-stable nucleoid-structuring (H-NS) protein, a global transcriptional repressor. Here we elaborate on the control of the E. coli CRISPR/Cas system, and study the effect on CRISPR-based anti-viral immunity. Transformation of wild-type E. coli K12 with CRISPR spacers that are complementary to phage Lambda does not lead to detectable protection against Lambda infection. However, when an H-NS mutant of E. coli K12 is transformed with the same anti-Lambda CRISPR, this does result in reduced sensitivity to phage infection. In addition, it is demonstrated that LeuO, a LysR-type transcription factor, binds to two sites flanking the casA promoter and the H-NS nucleation site, resulting in derepression of casABCDE12 transcription. Overexpression of LeuO in E. coli K12 containing an anti-Lambda CRISPR leads to an enhanced protection against phage infection. This study demonstrates that in E. coli H-NS and LeuO are antagonistic regulators of CRISPR-based immunity.

  12. Zeste maintains repression of Ubx transgenes: Support for a new model of polycomb repression

    SciTech Connect

    Hur, Man-Wook; Laney, Jeffrey D.; Jeon, Sang-Hack; Ali, Janann; Biggin, Mark D.

    2001-09-01

    During late embryogenesis, the expression domains of homeotic genes are maintained by two groups of ubiquitously expressed regulators: the Polycomb repressors and the Trithorax activators. It is not known how the activities of the two maintenance systems are initially targeted to the correct genes. Zeste and GAGA are sequence specific DNA binding proteins previously shown to be Trithorax group activators of the homeotic gene Ultrabithorax (Ubx). Here we demonstrate that Zeste and GAGA DNA binding sites at the proximal promoter are also required to maintain, but not to initiate, repression of Ubx. Further, the repression mediated by Zeste DNA binding site is abolished in zeste null embryos. These data imply that Zeste and probably GAGA mediate Polycomb repression. We present a model in which the dual transcriptional activities of Zeste and GAGA are an essential component of the mechanism that chooses which maintenance system is to be targeted to a given promoter.

  13. Neuronal gene repression in Niemann-Pick type C models is mediated by the c-Abl/HDAC2 signaling pathway

    PubMed Central

    Contreras, Pablo S.; Gonzalez-Zuñiga, Marcelo; González-Hódar, Lila; Yáñez, María José; Dulcey, Andrés; Marugan, Juan; Seto, Edward; Alvarez, Alejandra R.; Zanlungo, Silvana

    2016-01-01

    Background Niemann-Pick type C (NPC) disease is a fatal neurodegenerative disorder characterized by the accumulation of free cholesterol in lysosomes. There are currently no effective FDA-approved treatments for NPC, although in the last years the inhibition of Histone Deacetylases (HDACs) has emerged as a potential treatment for this disease. However, the molecular mechanisms that deregulate HDACs activity in NPC disease are unknown. Previously our group had shown that the proapoptotic tyrosine kinase c-Abl signaling is activated in NPC neurons. Here, we demonstrate that c-Abl activity increases HDAC2 levels inducing neuronal gene repression of key synaptic genes in NPC models. Results Our data show that: i) HDAC2 levels and activity are increased in NPC neuronal models and in Npc1-/- mice; ii) inhibition of c-Abl or c-Abl deficiency prevents the increase of HDAC2 protein levels and activity in NPC neuronal models; iii) c-Abl inhibition decreases the levels of HDAC2 tyrosine phosphorylation; iv) treatment with methyl-β-cyclodextrin and Vitamin E decrease the activation of the c-Abl/HDAC2 pathway in NPC neurons; v) in vivo treatment with two c-Abl inhibitors prevents the increase of HDAC2 protein levels in the brain of Npc1-/- mice and, vi) c-Abl inhibition prevents HDAC2 recruitment to the promoter of neuronal genes, triggering an increase in their expression. Conclusion our data show the involvement of the c-Abl/HDAC2 signaling pathway in the regulation of neuronal gene expression in NPC neuronal models. Thus, inhibition of c-Abl could be a pharmacological target for preventing the deleterious effects of increased HDAC2 levels in NPC disease. PMID:26603102

  14. The developmental regulator protein Gon4l associates with protein YY1, co-repressor Sin3a, and histone deacetylase 1 and mediates transcriptional repression.

    PubMed

    Lu, Ping; Hankel, Isaiah L; Hostager, Bruce S; Swartzendruber, Julie A; Friedman, Ann D; Brenton, Janet L; Rothman, Paul B; Colgan, John D

    2011-05-20

    Genetic studies involving zebrafish and mice have demonstrated that the protein Gon4l (Gon4-like) is essential for hematopoiesis. These studies also suggested that Gon4l regulates gene expression during hematopoietic development, yet the biochemical function of Gon4l has not been defined. Here, we describe the identification of factors that interact with Gon4l and may cooperate with this protein to regulate gene expression. As predicted by polypeptide sequence conservation, Gon4l interacted and co-localized with the DNA-binding protein YY1 (Yin Yang 1). Density gradient sedimentation analysis of protein lysates from mouse M12 B cells showed that Gon4l and YY1 co-sediment with the transcriptional co-repressor Sin3a and its functional partner histone deacetylase (HDAC) 1. Consistent with these results, immunoprecipitation studies showed that Gon4l associates with Sin3a, HDAC1, and YY1 as a part of complexes that form in M12 cells. Sequential immunoprecipitation studies demonstrated that Gon4l, YY1, Sin3a, and HDAC1 could all associate as components of a single complex and that a conserved domain spanning the central portion of Gon4l was required for formation of this complex. When targeted to DNA, Gon4l repressed the activity of a nearby promoter, which correlated with the ability to interact with Sin3a and HDAC1. Our data suggest that Sin3a, HDAC1, and YY1 are co-factors for Gon4l and that Gon4l may function as a platform for the assembly of complexes that regulate gene expression.

  15. Racism and Surplus Repression.

    ERIC Educational Resources Information Center

    Johnson, Howard

    1983-01-01

    Explores the relationship between Herbert Marcuse's theory of "surplus repression" and Freud's theory of the "unconscious" with respect to latent, hidden, covert, or subliminal aspects of racism in the United States. Argues that unconscious racism, manifested in evasion/avoidance, acting out/projection, and attempted…

  16. The great repression

    PubMed Central

    Hennig, Bianca P.; Fischer, Tamás

    2013-01-01

    The eukaryotic chromatin structure is essential in correctly defining transcription units. Impairing this structure can activate cryptic promoters, and lead to the accumulation of aberrant RNA transcripts. Here we discuss critical pathways that are responsible for the repression of cryptic transcription and the maintenance of genome integrity. PMID:23665541

  17. Interaction of ApoA-IV with NR4A1 and NR1D1 Represses G6Pase and PEPCK Transcription: Nuclear Receptor-Mediated Downregulation of Hepatic Gluconeogenesis in Mice and a Human Hepatocyte Cell Line

    PubMed Central

    Li, Xiaoming; Xu, Min; Wang, Fei; Ji, Yong; DavidsoN, W. Sean; Li, Zongfang; Tso, Patrick

    2015-01-01

    We have previously shown that the nuclear receptor, NR1D1, is a cofactor in ApoA-IV-mediated downregulation of gluconeogenesis. Nuclear receptor, NR4A1, is involved in the transcriptional regulation of various genes involved in inflammation, apoptosis, and glucose metabolism. We investigated whether NR4A1 influences the effect of ApoA-IV on hepatic glucose metabolism. Our in situ proximity ligation assays and coimmunoprecipitation experiments indicated that ApoA-IV colocalized with NR4A1 in human liver (HepG2) and kidney (HEK-293) cell lines. The chromatin immunoprecipitation experiments and luciferase reporter assays indicated that the ApoA-IV and NR4A1 colocalized at the RORα response element of the human G6Pase promoter, reducing its transcriptional activity. Our RNA interference experiments showed that knocking down the expression of NR4A1 in primary mouse hepatocytes treated with ApoA-IV increased the expression of NR1D1, G6Pase, and PEPCK, and that knocking down NR1D1 expression increased the level of NR4A1. We also found that ApoA-IV induced the expression of endogenous NR4A1 in both cultured primary mouse hepatocytes and in the mouse liver, and decreased glucose production in primary mouse hepatocytes. Our findings showed that ApoA-IV colocalizes with NR4A1, which suppresses G6Pase and PEPCK gene expression at the transcriptional level, reducing hepatic glucose output and lowering blood glucose. The ApoA-IV-induced increase in NR4A1 expression in hepatocytes mediates further repression of gluconeogenesis. Our findings suggest that NR1D1 and NR4A1 serve similar or complementary functions in the ApoA-IV-mediated regulation of gluconeogenesis. PMID:26556724

  18. Alleviation of histone H1-mediated transcriptional repression and chromatin compaction by the acidic activation region in chromosomal protein HMG-14.

    PubMed Central

    Ding, H F; Bustin, M; Hansen, U

    1997-01-01

    Histone H1 promotes the generation of a condensed, transcriptionally inactive, higher-order chromatin structure. Consequently, histone H1 activity must be antagonized in order to convert chromatin to a transcriptionally competent, more extended structure. Using simian virus 40 minichromosomes as a model system, we now demonstrate that the nonhistone chromosomal protein HMG-14, which is known to preferentially associate with active chromatin, completely alleviates histone H1-mediated inhibition of transcription by RNA polymerase II. HMG-14 also partially disrupts histone H1-dependent compaction of chromatin. Both the transcriptional enhancement and chromatin-unfolding activities of HMG-14 are mediated through its acidic, C-terminal region. Strikingly, transcriptional and structural activities of HMG-14 are maintained upon replacement of the C-terminal fragment by acidic regions from either GAL4 or HMG-2. These data support the model that the acidic C terminus of HMG-14 is involved in unfolding higher-order chromatin structure to facilitate transcriptional activation of mammalian genes. PMID:9315642

  19. EZH2 and BCL6 Cooperate to Assemble CBX8-BCOR Complex to Repress Bivalent Promoters, Mediate Germinal Center Formation and Lymphomagenesis.

    PubMed

    Béguelin, Wendy; Teater, Matt; Gearhart, Micah D; Calvo Fernández, María Teresa; Goldstein, Rebecca L; Cárdenas, Mariano G; Hatzi, Katerina; Rosen, Monica; Shen, Hao; Corcoran, Connie M; Hamline, Michelle Y; Gascoyne, Randy D; Levine, Ross L; Abdel-Wahab, Omar; Licht, Jonathan D; Shaknovich, Rita; Elemento, Olivier; Bardwell, Vivian J; Melnick, Ari M

    2016-08-08

    The EZH2 histone methyltransferase mediates the humoral immune response and drives lymphomagenesis through formation of bivalent chromatin domains at critical germinal center (GC) B cell promoters. Herein we show that the actions of EZH2 in driving GC formation and lymphoma precursor lesions require site-specific binding by the BCL6 transcriptional repressor and the presence of a non-canonical PRC1-BCOR-CBX8 complex. The chromodomain protein CBX8 is induced in GC B cells, binds to H3K27me3 at bivalent promoters, and is required for stable association of the complex and the resulting histone modifications. Moreover, oncogenic BCL6 and EZH2 cooperate to accelerate diffuse large B cell lymphoma (DLBCL) development and combinatorial targeting of these repressors results in enhanced anti-lymphoma activity in DLBCLs.

  20. NFkappaB p50-CCAAT/enhancer-binding protein beta (C/EBPbeta)-mediated transcriptional repression of microRNA let-7i following microbial infection.

    PubMed

    O'Hara, Steven P; Splinter, Patrick L; Gajdos, Gabriella B; Trussoni, Christy E; Fernandez-Zapico, Martin E; Chen, Xian-Ming; LaRusso, Nicholas F

    2010-01-01

    MicroRNAs, central players of numerous cellular processes, regulate mRNA stability or translational efficiency. Although these molecular events are established, the mechanisms regulating microRNA function and expression remain largely unknown. The microRNA let-7i regulates Toll-like receptor 4 expression. Here, we identify a novel transcriptional mechanism induced by the protozoan parasite Cryptosporidium parvum and Gram(-) bacteria-derived lipopolysaccharide (LPS) mediating let-7i promoter silencing in human biliary epithelial cells (cholangiocytes). Using cultured cholangiocytes, we show that microbial stimulus decreased let-7i expression, and promoter activity. Analysis of the mechanism revealed that microbial infection promotes the formation of a NFkappaB p50-C/EBPbeta silencer complex in the regulatory sequence. Chromatin immunoprecipitation assays (ChIP) demonstrated that the repressor complex binds to the let-7i promoter following microbial stimulus and promotes histone-H3 deacetylation. Our results provide a novel mechanism of transcriptional regulation of cholangiocyte let-7i expression following microbial insult, a process with potential implications for epithelial innate immune responses in general.

  1. Nemo phosphorylates Even-skipped and promotes Eve-mediated repression of odd-skipped in even parasegments during Drosophila embryogenesis.

    PubMed

    Braid, Lorena R; Lee, Wendy; Uetrecht, Andrea C; Swarup, Sharan; Papaianni, Gina; Heiler, Amanda; Verheyen, Esther M

    2010-07-01

    Drosophila nemo (nmo) and other Nemo-like kinase family members (Nlks) are well-established key regulators of numerous conserved signaling pathways, such as Wg and BMP. nmo mutants display pleiotropic defects at different developmental stages, including the embryo. In this study we describe a detailed characterization of embryonic cuticle patterning defects associated with maternal loss of nmo. nmo mutant embryos consistently show segmentation defects, most frequently fusions of pairs of denticle belts in alternating segments. These phenotypes are reminiscent of those associated with defects in pair-rule patterning. Genetic interaction studies demonstrate that Nmo promotes Even-skipped (Eve) activity and is required to promote the expression of the Eve target, engrailed (en), in even numbered parasegments. We find that Nmo regulates a subset of Eve activities by stimulating Eve-mediated suppression of the odd-skipped (odd) repressor. Furthermore, we isolate Nmo in a protein complex with Eve and show that Nmo phosphorylates Eve in in vitro kinase assays. These studies reveal a novel role for the Nmo kinase in embryonic pattern formation through its regulation of the homeodomain-containing transcription factor Eve.

  2. Rice osa-miR171c Mediates Phase Change from Vegetative to Reproductive Development and Shoot Apical Meristem Maintenance by Repressing Four OsHAM Transcription Factors

    PubMed Central

    Yang, Wu; Xia, Kuaifei; Ouyang, Jie; Zhang, Mingyong

    2015-01-01

    Phase change from vegetative to reproductive development is one of the critical developmental steps in plants, and it is regulated by both environmental and endogenous factors. The maintenance of shoot apical meristem (SAM) identity, miRNAs and flowering integrators are involved in this phase change process. Here, we report that the miRNA osa-miR171c targets four GRAS (GAI-RGA-SCR) plant-specific transcription factors (OsHAM1, OsHAM2, OsHAM3, and OsHAM4) to control the floral transition and maintenance of SAM indeterminacy in rice (Oryza sativa). We characterized a rice T-DNA insertion delayed heading (dh) mutant, where the expression of OsMIR171c gene is up-regulated. This mutant showed pleiotropic phenotypic defects, including especially prolonged vegetative phase, delayed heading date, and bigger shoot apex. Parallel expression analysis showed that osa-miR171c controlled the expression change of four OsHAMs in the shoot apex during floral transition, and responded to light. In the dh mutant, the expression of the juvenile-adult phase change negative regulator osa-miR156 was up-regulated, expression of the flowering integrators Hd3a and RFT1 was inhibited, and expression of FON4 negative regulators involved in the maintenance of SAM indeterminacy was also inhibited. From these data, we propose that the inhibition of osa-miR171c-mediated OsHAM transcription factors regulates the phase transition from vegetative to reproductive development by maintaining SAM indeterminacy and inhibiting flowering integrators. PMID:26023934

  3. Rice osa-miR171c Mediates Phase Change from Vegetative to Reproductive Development and Shoot Apical Meristem Maintenance by Repressing Four OsHAM Transcription Factors.

    PubMed

    Fan, Tian; Li, Xiumei; Yang, Wu; Xia, Kuaifei; Ouyang, Jie; Zhang, Mingyong

    2015-01-01

    Phase change from vegetative to reproductive development is one of the critical developmental steps in plants, and it is regulated by both environmental and endogenous factors. The maintenance of shoot apical meristem (SAM) identity, miRNAs and flowering integrators are involved in this phase change process. Here, we report that the miRNA osa-miR171c targets four GRAS (GAI-RGA-SCR) plant-specific transcription factors (OsHAM1, OsHAM2, OsHAM3, and OsHAM4) to control the floral transition and maintenance of SAM indeterminacy in rice (Oryza sativa). We characterized a rice T-DNA insertion delayed heading (dh) mutant, where the expression of OsMIR171c gene is up-regulated. This mutant showed pleiotropic phenotypic defects, including especially prolonged vegetative phase, delayed heading date, and bigger shoot apex. Parallel expression analysis showed that osa-miR171c controlled the expression change of four OsHAMs in the shoot apex during floral transition, and responded to light. In the dh mutant, the expression of the juvenile-adult phase change negative regulator osa-miR156 was up-regulated, expression of the flowering integrators Hd3a and RFT1 was inhibited, and expression of FON4 negative regulators involved in the maintenance of SAM indeterminacy was also inhibited. From these data, we propose that the inhibition of osa-miR171c-mediated OsHAM transcription factors regulates the phase transition from vegetative to reproductive development by maintaining SAM indeterminacy and inhibiting flowering integrators.

  4. Abscisic Acid-Induced Resistance against the Brown Spot Pathogen Cochliobolus miyabeanus in Rice Involves MAP Kinase-Mediated Repression of Ethylene Signaling1[C][W][OA

    PubMed Central

    De Vleesschauwer, David; Yang, Yinong; Vera Cruz, Casiana; Höfte, Monica

    2010-01-01

    The plant hormone abscisic acid (ABA) is involved in an array of plant processes, including the regulation of gene expression during adaptive responses to various environmental cues. Apart from its well-established role in abiotic stress adaptation, emerging evidence indicates that ABA is also prominently involved in the regulation and integration of pathogen defense responses. Here, we demonstrate that exogenously administered ABA enhances basal resistance of rice (Oryza sativa) against the brown spot-causing ascomycete Cochliobolus miyabeanus. Microscopic analysis of early infection events in control and ABA-treated plants revealed that this ABA-inducible resistance (ABA-IR) is based on restriction of fungal progression in the mesophyll. We also show that ABA-IR does not rely on boosted expression of salicylic acid-, jasmonic acid -, or callose-dependent resistance mechanisms but, instead, requires a functional Gα-protein. In addition, several lines of evidence are presented suggesting that ABA steers its positive effect on brown spot resistance through antagonistic cross talk with the ethylene (ET) response pathway. Exogenous ethephon application enhances susceptibility, whereas genetic disruption of ET signaling renders plants less vulnerable to C. miyabeanus attack, thereby inducing a level of resistance similar to that observed on ABA-treated wild-type plants. Moreover, ABA treatment alleviates C. miyabeanus-induced activation of the ET reporter gene EBP89, while derepression of pathogen-triggered EBP89 transcription via RNA interference-mediated knockdown of OsMPK5, an ABA-primed mitogen-activated protein kinase gene, compromises ABA-IR. Collectively, these data favor a model whereby exogenous ABA enhances resistance against C. miyabeanus at least in part by suppressing pathogen-induced ET action in an OsMPK5-dependent manner. PMID:20130100

  5. Pharmacological targeting of IDO-mediated tolerance for treating autoimmune disease.

    PubMed

    Penberthy, W Todd

    2007-04-01

    established mechanisms of necrosis. Chronic elevation of TNFalpha leading to necrotic events by NAD depletion in autoimmune disease likely occurs via combination of persistent IDO activation and iNOS-peroxynitrate activation of PARP1 both of which deplete NAD. Pharmacological doses of NAD precursors repeatedly provide dramatic therapeutic benefit for rheumatoid arthritis, type 1 diabetes, multiple sclerosis, colitis, other autoimmune diseases, and schizophrenia in either the clinic or animal models. Collectively these observations support the idea that autoimmune disease may in part be considered as localized pellagra manifesting symptoms particular to the inflamed target tissues. Thus pharmacological doses of NAD precursors (nicotinic acid/niacin, nicotinamide/niacinamide, or nicotinamide riboside) should be considered as potentially essential to the therapeutic success of any IDO-inducing regimen for treating autoimmune diseases. Distinct among the NAD precursors, nicotinic acid specifically activates the g-protein coupled receptor (GPCR) GPR109a to produce the IDO-inducing tolerogenic prostaglandins PGE(2) and PGD(2). Next, PGD(2) is converted to the anti-inflammatory prostaglandin, 15d-PGJ(2). These prostaglandins exert potent anti-inflammatory activities through endogenous signaling mechanisms involving the GPCRs EP2, EP4, and DP1 along with PPARgamma respectively. Nicotinamide prevents type 1 diabetes and ameliorates multiple sclerosis in animal models, while nothing is known about the therapeutic potential of nicotinamide riboside. Alternatively the direct targeting of the non-redox NAD-dependent proteins using resveratrol to activate SIRT1 or PJ34 in order to inhibit PARP1 and prevent autoimmune pathogenesis are also given consideration.

  6. The repressed and implicit knowledge.

    PubMed

    Talvitie, Vesa; Ihanus, Juhani

    2002-12-01

    The distinction between implicit (non-conscious) and explicit (conscious) knowledge made by cognitive scientists is applied to the psychoanalytic idea of repressed contents. The consequences of repression are suggested to have been caused by implicit representations. Repressed memories can also be treated in terms of explicit representations, which are prevented from becoming activated. Implicit knowledge cannot, however, be made conscious, and thus the idea of becoming conscious of the repressed desires and fears that have never been conscious is contradictory. This tension may be relieved by reconceptualising the idea of becoming conscious of the repressed. It is suggested that this could be seen as creating explicit knowledge about the effects of implicit representations. By applying the implicit/explicit knowledge distinction, psychoanalytic ideas concerning the repressed could be connected to current views in the domain of cognitive orientation.

  7. Coordinated regulation of transcriptional repression by the RBP2 H3K4 demethylase and Polycomb-Repressive Complex 2

    PubMed Central

    Pasini, Diego; Hansen, Klaus H.; Christensen, Jesper; Agger, Karl; Cloos, Paul A.C.; Helin, Kristian

    2008-01-01

    Polycomb group (PcG) proteins regulate important cellular processes such as embryogenesis, cell proliferation, and stem cell self-renewal through the transcriptional repression of genes determining cell fate decisions. The Polycomb-Repressive Complex 2 (PRC2) is highly conserved during evolution, and its intrinsic histone H3 Lys 27 (K27) trimethylation (me3) activity is essential for PcG-mediated transcriptional repression. Here, we show a functional interplay between the PRC2 complex and the H3K4me3 demethylase Rbp2 (Jarid1a) in mouse embryonic stem (ES) cells. By genome-wide location analysis we found that Rbp2 is associated with a large number of PcG target genes in mouse ES cells. We show that the PRC2 complex recruits Rbp2 to its target genes, and that this interaction is required for PRC2-mediated repressive activity during ES cell differentiation. Taken together, these results demonstrate an elegant mechanism for repression of developmental genes by the coordinated regulation of epigenetic marks involved in repression and activation of transcription. PMID:18483221

  8. Nuclear AXIN2 represses MYC gene expression

    SciTech Connect

    Rennoll, Sherri A.; Konsavage, Wesley M.; Yochum, Gregory S.

    2014-01-03

    Highlights: •AXIN2 localizes to cytoplasmic and nuclear compartments in colorectal cancer cells. •Nuclear AXIN2 represses the activity of Wnt-responsive luciferase reporters. •β-Catenin bridges AXIN2 to TCF transcription factors. •AXIN2 binds the MYC promoter and represses MYC gene expression. -- Abstract: The β-catenin transcriptional coactivator is the key mediator of the canonical Wnt signaling pathway. In the absence of Wnt, β-catenin associates with a cytosolic and multi-protein destruction complex where it is phosphorylated and targeted for proteasomal degradation. In the presence of Wnt, the destruction complex is inactivated and β-catenin translocates into the nucleus. In the nucleus, β-catenin binds T-cell factor (TCF) transcription factors to activate expression of c-MYC (MYC) and Axis inhibition protein 2 (AXIN2). AXIN2 is a member of the destruction complex and, thus, serves in a negative feedback loop to control Wnt/β-catenin signaling. AXIN2 is also present in the nucleus, but its function within this compartment is unknown. Here, we demonstrate that AXIN2 localizes to the nuclei of epithelial cells within normal and colonic tumor tissues as well as colorectal cancer cell lines. In the nucleus, AXIN2 represses expression of Wnt/β-catenin-responsive luciferase reporters and forms a complex with β-catenin and TCF. We demonstrate that AXIN2 co-occupies β-catenin/TCF complexes at the MYC promoter region. When constitutively localized to the nucleus, AXIN2 alters the chromatin structure at the MYC promoter and directly represses MYC gene expression. These findings suggest that nuclear AXIN2 functions as a rheostat to control MYC expression in response to Wnt/β-catenin signaling.

  9. Immunopathogenesis of HIV infection in cocaine users: role of arachidonic acid.

    PubMed

    Samikkannu, Thangavel; Rao, Kurapati V K; Ding, Hong; Agudelo, Marisela; Raymond, Andrea D; Yoo, Changwon; Nair, Madhavan P N

    2014-01-01

    Arachidonic acid (AA) is known to be increased in HIV infected patients and illicit drug users are linked with severity of viral replication, disease progression, and impaired immune functions. Studies have shown that cocaine accelerates HIV infection and disease progression mediated by immune cells. Dendritic cells (DC) are the first line of antigen presentation and defense against immune dysfunction. However, the role of cocaine use in HIV associated acceleration of AA secretion and its metabolites on immature dendritic cells (IDC) has not been elucidated yet. The aim of this study is to elucidate the mechanism of AA metabolites cyclooxygenase-2 (COX-2), prostaglandin E2 synthetase (PGE2), thromboxane A2 receptor (TBXA2R), cyclopentenone prostaglandins (CyPG), such as 15-deoxy-Δ12,14-PGJ2 (15d-PGJ2), 14-3-3 ζ/δ and 5-lipoxygenase (5-LOX) mediated induction of IDC immune dysfunctions in cocaine using HIV positive patients. The plasma levels of AA, PGE2, 15d-PGJ2, 14-3-3 ζ/δ and IDC intracellular COX-2 and 5-LOX expression were assessed in cocaine users, HIV positive patients, HIV positive cocaine users and normal subjects. Results showed that plasma concentration levels of AA, PGE2 and COX-2, TBXA2R and 5-LOX in IDCs of HIV positive cocaine users were significantly higher whereas 15d-PGJ2 and 14-3-3 ζ/δ were significantly reduced compared to either HIV positive subjects or cocaine users alone. This report demonstrates that AA metabolites are capable of mediating the accelerative effects of cocaine on HIV infection and disease progression.

  10. SIRT1 activation enhances HDAC inhibition-mediated upregulation of GADD45G by repressing the binding of NF-κB/STAT3 complex to its promoter in malignant lymphoid cells

    PubMed Central

    Scuto, A; Kirschbaum, M; Buettner, R; Kujawski, M; Cermak, J M; Atadja, P; Jove, R

    2013-01-01

    We explored the activity of SIRT1 activators (SRT501 and SRT2183) alone and in combination with panobinostat in a panel of malignant lymphoid cell lines in terms of biological and gene expression responses. SRT501 and SRT2183 induced growth arrest and apoptosis, concomitant with deacetylation of STAT3 and NF-κB, and reduction of c-Myc protein levels. PCR arrays revealed that SRT2183 leads to increased mRNA levels of pro-apoptosis and DNA-damage-response genes, accompanied by accumulation of phospho-H2A.X levels. Next, ChIP assays revealed that SRT2183 reduces the DNA-binding activity of both NF-κB and STAT3 to the promoter of GADD45G, which is one of the most upregulated genes following SRT2183 treatment. Combination of SRT2183 with panobinostat enhanced the anti-growth and anti-survival effects mediated by either compound alone. Quantitative-PCR confirmed that the panobinostat in combination with SRT2183, SRT501 or resveratrol leads to greater upregulation of GADD45G than any of the single agents. Panobinostat plus SRT2183 in combination showed greater inhibition of c-Myc protein levels and phosphorylation of H2A.X, and increased acetylation of p53. Furthermore, EMSA revealed that NF-κB binds directly to the GADD45G promoter, while STAT3 binds indirectly in complexes with NF-κB. In addition, the binding of NF-κB/STAT3 complexes to the GADD45G promoter is inhibited following panobinostat, SRT501 or resveratrol treatment. Moreover, the combination of panobinostat with SRT2183, SRT501 or resveratrol induces a greater binding repression than either agent alone. These data suggest that STAT3 is a corepressor with NF-κB of the GADD45G gene and provides in vitro proof-of-concept for the combination of HDACi with SIRT1 activators as a potential new therapeutic strategy in lymphoid malignancies. PMID:23681230

  11. Chromatin Landscape Defined by Repressive Histone Methylation during Oligodendrocyte Differentiation

    PubMed Central

    Liu, Jia; Magri, Laura; Zhang, Fan; Marsh, Nidaa O.; Albrecht, Stefanie; Huynh, Jimmy L.; Kaur, Jasbir; Kuhlmann, Tanja; Zhang, Weijia; Slesinger, Paul A.

    2015-01-01

    In many cell types, differentiation requires an interplay between extrinsic signals and transcriptional changes mediated by repressive and activating histone modifications. Oligodendrocyte progenitors (OPCs) are electrically responsive cells receiving synaptic input. The differentiation of these cells into myelinating oligodendrocytes is characterized by temporal waves of gene repression followed by activation of myelin genes and progressive decline of electrical responsiveness. In this study, we used chromatin isolated from rat OPCs and immature oligodendrocytes, to characterize the genome-wide distribution of the repressive histone marks, H3K9me3 and H3K27me3, during differentiation. Although both marks were present at the OPC stage, only H3K9me3 marks (but not H3K27me3) were found to be increased during differentiation, at genes related to neuronal lineage and regulation of membrane excitability. Consistent with these findings, the levels and activity of H3K9 methyltransferases (H3K9 HMT), but not H3K27 HMT, increased more prominently upon exposure to oligodendrocyte differentiating stimuli and were detected in stage-specific repressive protein complexes containing the transcription factors SOX10 or YY1. Silencing H3K9 HMT, but not H3K27 HMT, impaired oligodendrocyte differentiation and functionally altered the response of oligodendrocytes to electrical stimulation. Together, these results identify repressive H3K9 methylation as critical for gene repression during oligodendrocyte differentiation. PMID:25568127

  12. The human clotting factor VIII cDNA contains an autonomously replicating sequence consensus- and matrix attachment region-like sequence that binds a nuclear factor, represses heterologous gene expression, and mediates the transcriptional effects of sodium butyrate.

    PubMed Central

    Fallaux, F J; Hoeben, R C; Cramer, S J; van den Wollenberg, D J; Briët, E; van Ormondt, H; van Der Eb, A J

    1996-01-01

    Expression of the human blood-clotting factor VIII (FVIII) cDNA is hampered by the presence of sequences located in the coding region that repress transcription. We have previously identified a 305-bp fragment within the FVIII cDNA that is involved in the repression (R.C. Hoeben, F.J. Fallaux, S.J. Cramer, D.J.M. van den Wollenberg, H. van Ormondt, E. Briet, and A.J. van der Eb, Blood 85:2447-2454, 1995). Here, we show that this 305-bp region of FVIII cDNA contains sequences that resemble the yeast (Saccharomyces cerevisiae) autonomously replicating sequence consensus. Two of these DNA elements coincide with AT-rich sequences that are often found in matrix attachment regions or scaffold-attached regions. One of these elements, consisting of nucleotides 1569 to 1600 of the FVIII cDNA (nucleotide numbering is according to the system of Wood et al. (W.I. Wood, D.J. Capon, C.C. Simonsen, D.L. Eaton, J. Gitschier, D. Keyt, P.H. Seeburg, D.H. Smith, P. Hollingshead, K.L. Wion, et al., Nature [London] 312:330-337,1984), binds a nuclear factor in vitro but loses this capacity after four of its base pairs have been changed. A synthetic heptamer of this segment can repress the expression of a chloramphenicol acetyltransferase (CAT) reporter gene and also loses this capacity upon mutation. Furthermore, we demonstrate that repression by FVIII sequences can be relieved by sodium butyrate. We demonstrate that the synthetic heptamer (FVIII nucleotides 1569 to 1600), when placed upstream of the Moloney murine leukemia virus long terminal repeat promoter that drives the CAT reporter, can render the CAT reporter inducible by butyrate. This effect was absent when the same element was mutated. The stimulatory effect of butyrate could not be attributed to butyrate-responsive elements in the studied long terminal repeat promoters. Our data provide a functional characterization of the sequences that repress expression of the FVIII cDNA. These data also suggest a link between

  13. Translational Repression in Malaria Sporozoites

    PubMed Central

    Turque, Oliver; Tsao, Tiffany; Li, Thomas; Zhang, Min

    2016-01-01

    Malaria is a mosquito-borne infectious disease of humans and other animals. It is caused by the parasitic protozoan, Plasmodium. Sporozoites, the infectious form of malaria parasites, are quiescent when they remain in the salivary glands of the Anopheles mosquito until transmission into a mammalian host. Metamorphosis of the dormant sporozoite to its active form in the liver stage requires transcriptional and translational regulations. Here, we summarize recent advances in the translational repression of gene expression in the malaria sporozoite. In sporozoites, many mRNAs that are required for liver stage development are translationally repressed. Phosphorylation of eukaryotic Initiation Factor 2α (eIF2α) leads to a global translational repression in sporozoites. The eIF2α kinase, known as Upregulated in Infectious Sporozoite 1 (UIS1), is dominant in the sporozoite. The eIF2α phosphatase, UIS2, is translationally repressed by the Pumilio protein Puf2. This translational repression is alleviated when sporozoites are delivered into the mammalian host.

  14. Glucose repression in Saccharomyces cerevisiae

    PubMed Central

    Kayikci, Ömur; Nielsen, Jens

    2015-01-01

    Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration and gluconeogenesis. This dominant effect of glucose on yeast carbon metabolism is coordinated by several signaling and metabolic interactions that mainly regulate transcriptional activity but are also effective at post-transcriptional and post-translational levels. This review describes effects of glucose repression on yeast carbon metabolism with a focus on roles of the Snf3/Rgt2 glucose-sensing pathway and Snf1 signal transduction in establishment and relief of glucose repression. PMID:26205245

  15. The unified theory of repression.

    PubMed

    Erdelyi, Matthew Hugh

    2006-10-01

    Repression has become an empirical fact that is at once obvious and problematic. Fragmented clinical and laboratory traditions and disputed terminology have resulted in a Babel of misunderstandings in which false distinctions are imposed (e.g., between repression and suppression) and necessary distinctions not drawn (e.g., between the mechanism and the use to which it is put, defense being just one). "Repression" was introduced by Herbart to designate the (nondefensive) inhibition of ideas by other ideas in their struggle for consciousness. Freud adapted repression to the defensive inhibition of "unbearable" mental contents. Substantial experimental literatures on attentional biases, thought avoidance, interference, and intentional forgetting exist, the oldest prototype being the work of Ebbinghaus, who showed that intentional avoidance of memories results in their progressive forgetting over time. It has now become clear, as clinicians had claimed, that the inaccessible materials are often available and emerge indirectly (e.g., procedurally, implicitly). It is also now established that the Ebbinghaus retention function can be partly reversed, with resulting increases of conscious memory over time (hypermnesia). Freud's clinical experience revealed early on that exclusion from consciousness was effected not just by simple repression (inhibition) but also by a variety of distorting techniques, some deployed to degrade latent contents (denial), all eventually subsumed under the rubric of defense mechanisms ("repression in the widest sense"). Freudian and Bartlettian distortions are essentially the same, even in name, except for motive (cognitive vs. emotional), and experimentally induced false memories and other "memory illusions" are laboratory analogs of self-induced distortions.

  16. Repression of gene expression by oxidative stress.

    PubMed Central

    Morel, Y; Barouki, R

    1999-01-01

    Gene expression is modulated by both physiological signals (hormones, cytokines, etc.) and environmental stimuli (physical parameters, xenobiotics, etc.). Oxidative stress appears to be a key pleiotropic modulator which may be involved in either pathway. Indeed, reactive oxygen species (ROS) have been described as second messengers for several growth factors and cytokines, but have also been shown to rise following cellular insults such as xenobiotic metabolism or enzymic deficiency. Extensive studies on the induction of stress-response genes by oxidative stress have been reported. In contrast, owing to the historical focus on gene induction, less attention has been paid to gene repression by ROS. However, a growing number of studies have shown that moderate (i.e. non-cytotoxic) oxidative stress specifically down-regulates the expression of various genes. In this review, we describe the alteration of several physiological functions resulting from oxidative-stress-mediated inhibition of gene transcription. We will then focus on the repressive oxidative modulation of various transcription factors elicited by ROS. PMID:10477257

  17. Nitric oxide participates in plant flowering repression by ascorbate

    PubMed Central

    Senthil Kumar, Rajendran; Shen, Chin-Hui; Wu, Pei-Yin; Suresh Kumar, Subbiah; Hua, Moda Sang; Yeh, Kai-Wun

    2016-01-01

    In Oncidium, redox homeostasis involved in flowering is mainly due to ascorbic acid (AsA). Here, we discovered that Oncidium floral repression is caused by an increase in AsA-mediated NO levels, which is directed by the enzymatic activities of nitrate reductase (NaR) and nitrite reducatase (NiR). Through Solexa transcriptomic analysis of two libraries, ‘pseudobulb with inflorescent bud’ (PIB) and ‘pseudobulb with axillary bud’ (PAB), we identified differentially expressed genes related to NO metabolism. Subsequently, we showed a significant reduction of NaR enzymatic activities and NO levels during bolting and blooming stage, suggesting that NO controlled the phase transition and flowering process. Applying AsA to Oncidium PLB (protocorm-like bodies) significantly elevated the NO content and enzyme activities. Application of sodium nitroprusside (-NO donor) on Arabidopsis vtc1 mutant caused late flowering and expression level of flowering-associated genes (CO, FT and LFY) were reduced, suggesting NO signaling is vital for flowering repression. Conversely, the flowering time of noa1, an Arabidopsis NO-deficient mutant, was not altered after treatment with L-galacturonate, a precursor of AsA, suggesting AsA is required for NO-biosynthesis involved in the NO-mediated flowering-repression pathway. Altogether, Oncidium bolting is tightly regulated by AsA-mediated NO level and downregulation of transcriptional levels of NO metabolism genes. PMID:27731387

  18. Repression of vascular endothelial growth factor A in glioblastoma cells using engineered zinc finger transcription factors.

    PubMed

    Snowden, Andrew W; Zhang, Lei; Urnov, Fyodor; Dent, Carolyn; Jouvenot, Yann; Zhong, Xiaohong; Rebar, Edward J; Jamieson, Andrew C; Zhang, H Steven; Tan, Siyuan; Case, Casey C; Pabo, Carl O; Wolffe, Alan P; Gregory, Philip D

    2003-12-15

    Angiogenic factors are necessary for tumor proliferation and thus are attractive therapeutic targets. In this study, we have used engineered zinc finger protein (ZFP) transcription factors (TFs) to repress expression of vascular endothelial growth factor (VEGF)-A in human cancer cell lines. We create potent transcriptional repressors by fusing a designed ZFP targeted to the VEGF-A promoter with either the ligand-binding domain of thyroid hormone receptor alpha or its viral relative, vErbA. Moreover, this ZFP-vErbA repressor binds its intended target site in vivo and mediates the specific deacetylation of histones H3 and H4 at the targeted promoter, a result that emulates the natural repression mechanism of these domains. The potential therapeutic relevance of ZFP-mediated VEGF-A repression was addressed using the highly tumorigenic glioblastoma cell line U87MG. Despite the aberrant overexpression of VEGF-A in this cell line, engineered ZFP TFs were able to repress the expression of VEGF-A by >20-fold. The VEGF-A levels observed after ZFP TF-mediated repression were comparable to those of a nonangiogenic cancer line (U251MG), suggesting that the degree of repression obtained with the ZFP TF would be sufficient to suppress tumor angiogenesis. Thus, engineered ZFP TFs are shown to be potent regulators of gene expression with therapeutic promise in the treatment of disease.

  19. Impaired mouse mammary gland growth and development is mediated by melatonin and its MT1G protein-coupled receptor via repression of ERα, Akt1, and Stat5.

    PubMed

    Xiang, Shulin; Mao, Lulu; Yuan, Lin; Duplessis, Tamika; Jones, Frank; Hoyle, Gary W; Frasch, Tripp; Dauchy, Robert; Blask, David E; Chakravarty, Geetika; Hill, Steven M

    2012-10-01

    To determine whether melatonin, via its MT(1)  G protein-coupled receptor, impacts mouse mammary gland development, we generated a mouse mammary tumor virus (MMTV)-MT1-Flag-mammary gland over-expressing (MT1-mOE) transgenic mouse. Increased expression of the MT(1) -Flag transgene was observed in the mammary glands of pubescent MT1-mOE transgenic female mice, with further significant increases during pregnancy and lactation. Mammary gland whole mounts from MT1-mOE mice showed significant reductions in ductal growth, ductal branching, and terminal end bud formation. Elevated MT(1) receptor expression in pregnant and lactating female MT1-mOE mice was associated with reduced lobulo-alveolar development, inhibition of mammary epithelial cell proliferation, and significant reductions in body weights of suckling pups. Elevated MT(1) expression in pregnant and lactating MT1-mOE mice correlated with reduced mammary gland expression of Akt1, phospho-Stat5, Wnt4, estrogen receptor alpha, progesterone receptors A and B, and milk proteins β-casein and whey acidic protein. Estrogen- and progesterone-stimulated mammary gland development was repressed by elevated MT(1) receptor expression and exogenous melatonin administration. These studies demonstrate that the MT(1) melatonin receptor and its ligand melatonin play an important regulatory role in mammary gland development and lactation in mice through both growth suppression and alteration of developmental paradigms.

  20. Molecular functions of the TLE tetramerization domain in Wnt target gene repression

    PubMed Central

    Chodaparambil, Jayanth V; Pate, Kira T; Hepler, Margretta R D; Tsai, Becky P; Muthurajan, Uma M; Luger, Karolin; Waterman, Marian L; Weis, William I

    2014-01-01

    Wnt signaling activates target genes by promoting association of the co-activator β-catenin with TCF/LEF transcription factors. In the absence of β-catenin, target genes are silenced by TCF-mediated recruitment of TLE/Groucho proteins, but the molecular basis for TLE/TCF-dependent repression is unclear. We describe the unusual three-dimensional structure of the N-terminal Q domain of TLE1 that mediates tetramerization and binds to TCFs. We find that differences in repression potential of TCF/LEFs correlates with their affinities for TLE-Q, rather than direct competition between β-catenin and TLE for TCFs as part of an activation–repression switch. Structure-based mutation of the TLE tetramer interface shows that dimers cannot mediate repression, even though they bind to TCFs with the same affinity as tetramers. Furthermore, the TLE Q tetramer, not the dimer, binds to chromatin, specifically to K20 methylated histone H4 tails, suggesting that the TCF/TLE tetramer complex promotes structural transitions of chromatin to mediate repression. PMID:24596249

  1. ATF3 represses PPARγ expression and inhibits adipocyte differentiation

    SciTech Connect

    Jang, Min-Kyung; Jung, Myeong Ho

    2014-11-07

    Highlights: • ATF3 decrease the expression of PPARγ and its target gene in 3T3-L1 adipocytes. • ATF3 represses the promoter activity of PPARγ2 gene. • ATF/CRE (−1537/−1530) is critical for ATF3-mediated downregulation of PPARγ. • ATF3 binds to the promoter region containing the ATF/CRE. • ER stress inhibits adipocyte differentiation through downregulation of PPARγ by ATF3. - Abstract: Activating transcription factor 3 (ATF3) is a stress-adaptive transcription factor that mediates cellular stress response signaling. We previously reported that ATF3 represses CCAAT/enhancer binding protein α (C/EBPα) expression and inhibits 3T3-L1 adipocyte differentiation. In this study, we explored potential role of ATF3 in negatively regulating peroxisome proliferator activated receptor-γ (PPARγ). ATF3 decreased the expression of PPARγ and its target gene in 3T3-L1 adipocytes. ATF3 also repressed the activity of −2.6 Kb promoter of mouse PPARγ2. Overexpression of PPARγ significantly prevented the ATF3-mediated inhibition of 3T3-L1 differentiation. Transfection studies with 5′ deleted-reporters showed that ATF3 repressed the activity of −2037 bp promoter, whereas it did not affect the activity of −1458 bp promoter, suggesting that ATF3 responsive element is located between the −2037 and −1458. An electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrated that ATF3 binds to ATF/CRE site (5′-TGACGTTT-3′) between −1537 and −1530. Mutation of the ATF/CRE site abrogated ATF3-mediated transrepression of the PPARγ2 promoter. Treatment with thapsigargin, endoplasmic reticulum (ER) stress inducer, increased ATF3 expression, whereas it decreased PPARγ expression. ATF3 knockdown significantly blocked the thapsigargin-mediated downregulation of PPARγ expression. Furthermore, overexpression of PPARγ prevented inhibition of 3T3-L1 differentiation by thapsigargin. Collectively, these results suggest that ATF3-mediated

  2. Something Silent This Way Forms: The Functional Organization of the Repressive Nuclear Compartment

    PubMed Central

    Ritland Politz, Joan C.; Scalzo, David; Groudine, Mark

    2014-01-01

    The repressive compartment of the nucleus is comprised primarily of telomeric and centromeric regions, the silent portion of ribosomal RNA genes, the majority of transposable element repeats, and facultatively repressed genes specific to different cell types. This compartment localizes into three main regions: the peripheral heterochromatin, perinucleolar heterochromatin, and pericentromeric heterochromatin. Both chromatin remodeling proteins and transcription of noncoding RNAs are involved in maintenance of repression in these compartments. Global reorganization of the repressive compartment occurs at each cell division, during early development, and during terminal differentiation. Differential action of chromatin remodeling complexes and boundary element looping activities are involved in mediating these organizational changes. We discuss the evidence that heterochromatin formation and compartmentalization may drive nuclear organization. PMID:23834025

  3. Multiple Gene Repression in Cyanobacteria Using CRISPRi.

    PubMed

    Yao, Lun; Cengic, Ivana; Anfelt, Josefine; Hudson, Elton P

    2016-03-18

    We describe the application of clustered regularly interspaced short palindromic repeats interference (CRISPRi) for gene repression in the model cyanobacterium Synechcocystis sp. PCC 6803. The nuclease-deficient Cas9 from the type-II CRISPR/Cas of Streptrococcus pyogenes was used to repress green fluorescent protein (GFP) to negligible levels. CRISPRi was also used to repress formation of carbon storage compounds polyhydroxybutryate (PHB) and glycogen during nitrogen starvation. As an example of the potential of CRISPRi for basic and applied cyanobacteria research, we simultaneously knocked down 4 putative aldehyde reductases and dehydrogenases at 50-95% repression. This work also demonstrates that tightly repressed promoters allow for inducible and reversible CRISPRi in cyanobacteria.

  4. Molecular basis for the direct inhibition of AP-1 DNA binding by 15-deoxy-Delta 12,14-prostaglandin J2.

    PubMed

    Pérez-Sala, Dolores; Cernuda-Morollón, Eva; Cañada, F Javier

    2003-12-19

    Cyclopentenone prostaglandins may interfere with cellular functions by multiple mechanisms. The cyclopentenone 15-deoxy-Delta 12,14-prostaglandin J2 (15d-PGJ2) has been reported to inhibit the activity of the transcription factor AP-1 in several experimental settings. We have explored the possibility of a direct interaction of 15d-PGJ2 with AP-1 proteins. Here we show that 15d-PGJ2 covalently modifies c-Jun and directly inhibits the DNA binding activity of AP-1. The modification of c-Jun occurs both in vitro and in intact cells as detected by labeling with biotinylated 15d-PGJ2 and mass spectrometry analysis. Attachment of the cyclopentenone prostaglandin occurs at cysteine 269, which is located in the c-Jun DNA binding domain. In addition, 15d-PGJ2 can promote the oligomerization of a fraction of c-Jun through the formation of intermolecular disulfide bonds or 15d-PGJ2-bonded dimers. Our results identify a novel site of interaction of 15d-PGJ2 with the AP-1 activation pathway that may contribute to the complex effects of cyclopentenone prostaglandins on the cellular response to pro-inflammatory agents. They also show the first evidence for the induction of protein cross-linking by 15d-PGJ2.

  5. Contribution of covalent protein modification to the antiinflammatory effects of cyclopentenone prostaglandins.

    PubMed

    Pérez-Sala, Dolores; Cernuda-Morollón, Eva; Pineda-Molina, Estela; Cañada, F Javier

    2002-11-01

    Cyclopentenone prostaglandins, which are produced during inflammatory processes, may exert a negative feedback on inflammation. These reactive compounds may form covalent adducts with thiol groups in glutathione or in proteins. The transcription factor NF-kappaB is key for the expression of numerous proinflammatory genes. We have observed that treatment of mesangial cells with 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) inhibits the cytokine-elicited DNA binding activity of NF-kappaB, both in intact cells and in isolated nuclear extracts, thus suggesting a direct effect on DNA binding. By using a biotinylated 15d-PGJ(2) derivative, we have observed that 15d-PGJ(2) forms an adduct with the p50 subunit of NF-kappaB, as shown by Western blot and detection with horseradish peroxidase-conjugated streptavidin. In contrast, a p50 construct that bears a mutation in the cysteine residue involved in DNA binding (Cys62Ser) and is not susceptible to inhibition by 15d-PGJ(2) does not incorporate biotinylated 15d-PGJ(2). The labeling of several polypeptides after incubation of cells with biotinylated 15d-PGJ(2) suggests that there may be multiple targets for modification by 15d-PGJ(2). We propose that the covalent modification of NF-kappaB (and potentially other proteins) by 15d-PGJ(2) may contribute to the antiinflammatory effects of this prostaglandin.

  6. Neuron type-specific miRNA represses two broadly expressed genes to modulate an avoidance behavior in C. elegans

    PubMed Central

    Drexel, Tanja; Mahofsky, Katharina; Latham, Richard; Zimmer, Manuel

    2016-01-01

    Two broad gene classes are distinguished within multicellular organisms: cell type-specific genes, which confer particular cellular properties, and ubiquitous genes that support general cellular functions. However, certain so-called ubiquitous genes show functionally relevant cell type-specific repression. How such repression is achieved is poorly understood. MicroRNAs (miRNAs) are repressors, many of which are expressed with high cell type specificity. Here we show that mir-791, expressed exclusively in the CO2-sensing neurons in Caenorhabditis elegans, represses two otherwise broadly expressed genes. This repression is necessary for normal neuronal function and behavior of the animals toward CO2. miRNA-mediated repression of broadly transcribed genes is a previously unappreciated strategy for cellular specialization. PMID:27688400

  7. Mitosis-associated repression in development

    PubMed Central

    Esposito, Emilia; Lim, Bomyi; Guessous, Ghita; Falahati, Hanieh; Levine, Michael

    2016-01-01

    Transcriptional repression is a pervasive feature of animal development. Here, we employ live-imaging methods to visualize the Snail repressor, which establishes the boundary between the presumptive mesoderm and neurogenic ectoderm of early Drosophila embryos. Snail target enhancers were attached to an MS2 reporter gene, permitting detection of nascent transcripts in living embryos. The transgenes exhibit initially broad patterns of transcription but are refined by repression in the mesoderm following mitosis. These observations reveal a correlation between mitotic silencing and Snail repression. We propose that mitosis and other inherent discontinuities in transcription boost the activities of sequence-specific repressors, such as Snail. PMID:27401553

  8. Mechanisms and consequences of ATMIN repression in hypoxic conditions: roles for p53 and HIF-1

    PubMed Central

    Leszczynska, Katarzyna B.; Göttgens, Eva-Leonne; Biasoli, Deborah; Olcina, Monica M.; Ient, Jonathan; Anbalagan, Selvakumar; Bernhardt, Stephan; Giaccia, Amato J.; Hammond, Ester M.

    2016-01-01

    Hypoxia-induced replication stress is one of the most physiologically relevant signals known to activate ATM in tumors. Recently, the ATM interactor (ATMIN) was identified as critical for replication stress-induced activation of ATM in response to aphidicolin and hydroxyurea. This suggests an essential role for ATMIN in ATM regulation during hypoxia, which induces replication stress. However, ATMIN also has a role in base excision repair, a process that has been demonstrated to be repressed and less efficient in hypoxic conditions. Here, we demonstrate that ATMIN is dispensable for ATM activation in hypoxia and in contrast to ATM, does not affect cell survival and radiosensitivity in hypoxia. Instead, we show that in hypoxic conditions ATMIN expression is repressed. Repression of ATMIN in hypoxia is mediated by both p53 and HIF-1α in an oxygen dependent manner. The biological consequence of ATMIN repression in hypoxia is decreased expression of the target gene, DYNLL1. An expression signature associated with p53 activity was negatively correlated with DYNLL1 expression in patient samples further supporting the p53 dependent repression of DYNLL1. Together, these data demonstrate multiple mechanisms of ATMIN repression in hypoxia with consequences including impaired BER and down regulation of the ATMIN transcriptional target, DYNLL1. PMID:26875667

  9. Coordinate post-transcriptional repression of Dpp-dependent transcription factors attenuates signal range during development.

    PubMed

    Newton, Fay G; Harris, Robin E; Sutcliffe, Catherine; Ashe, Hilary L

    2015-10-01

    Precise control of the range of signalling molecule action is crucial for correct cell fate patterning during development. For example, Drosophila ovarian germline stem cells (GSCs) are maintained by exquisitely short-range BMP signalling from the niche. In the absence of BMP signalling, one GSC daughter differentiates into a cystoblast (CB) and this fate is stabilised by Brain tumour (Brat) and Pumilio (Pum)-mediated post-transcriptional repression of mRNAs, including that encoding the Dpp transducer, Mad. However, the identity of other repressed mRNAs and the mechanism of post-transcriptional repression are currently unknown. Here, we identify the Medea and schnurri mRNAs, which encode transcriptional regulators required for activation and/or repression of Dpp target genes, as additional Pum-Brat targets, suggesting that tripartite repression of the transducers is deployed to desensitise the CB to Dpp. In addition, we show that repression by Pum-Brat requires recruitment of the CCR4 and Pop2 deadenylases, with knockdown of deadenylases in vivo giving rise to ectopic GSCs. Consistent with this, Pum-Brat repression leads to poly(A) tail shortening and mRNA degradation in tissue culture cells, and we detect a reduced number of Mad and shn transcripts in the CB relative to the GSC based on single molecule mRNA quantitation. Finally, we show generality of the mechanism by demonstrating that Brat also attenuates pMad and Dpp signalling range in the early embryo. Together our data serve as a platform for understanding how post-transcriptional repression restricts interpretation of BMPs and other cell signals in order to allow robust cell fate patterning during development.

  10. Plant stem cell maintenance involves direct transcriptional repression of differentiation program.

    PubMed

    Yadav, Ram Kishor; Perales, Mariano; Gruel, Jérémy; Ohno, Carolyn; Heisler, Marcus; Girke, Thomas; Jönsson, Henrik; Reddy, G Venugopala

    2013-01-01

    In animal systems, master regulatory transcription factors (TFs) mediate stem cell maintenance through a direct transcriptional repression of differentiation promoting TFs. Whether similar mechanisms operate in plants is not known. In plants, shoot apical meristems serve as reservoirs of stem cells that provide cells for all above ground organs. WUSCHEL, a homeodomain TF produced in cells of the niche, migrates into adjacent cells where it specifies stem cells. Through high-resolution genomic analysis, we show that WUSCHEL represses a large number of genes that are expressed in differentiating cells including a group of differentiation promoting TFs involved in leaf development. We show that WUS directly binds to the regulatory regions of differentiation promoting TFs; KANADI1, KANADI2, ASYMMETRICLEAVES2 and YABBY3 to repress their expression. Predictions from a computational model, supported by live imaging, reveal that WUS-mediated repression prevents premature differentiation of stem cell progenitors, being part of a minimal regulatory network for meristem maintenance. Our work shows that direct transcriptional repression of differentiation promoting TFs is an evolutionarily conserved logic for stem cell regulation.

  11. Fisetin Suppresses Lipid Accumulation in Mouse Adipocytic 3T3-L1 Cells by Repressing GLUT4-Mediated Glucose Uptake through Inhibition of mTOR-C/EBPα Signaling.

    PubMed

    Watanabe, Marina; Hisatake, Mitsuhiro; Fujimori, Ko

    2015-05-27

    3,7,3',4'-Tetrahydroxyflavone (fisetin) is a flavonoid found in vegetables and fruits having broad biological activities. Here the effects of fisetin on adipogenesis and its regulatory mechanism in mouse adipocytic 3T3-L1 cells are studied. Fisetin inhibited the accumulation of intracellular lipids and lowered the expression of adipogenic genes such as peroxisome proliferator-activated receptor γ and CCAAT/enhancer-binding protein (C/EBP) α and fatty acid-binding protein 4 (aP2) during adipogenesis. Moreover, the mRNA levels of genes such as acetyl-CoA carboxylase, fatty acid synthase, and stearoyl-CoA desaturase involved in the fatty acid biosynthesis (lipogenesis) were reduced by the treatment with fisetin. The expression level of the glucose transporter 4 (GLUT4) gene was also decreased by fisetin, resulting in down-regulation of glucose uptake. Furthermore, fisetin inhibited the phosphorylation of the mammalian target of rapamycin (mTOR) and that of p70 ribosomal S6 kinase, a target of the mTOR complex, the inhibition of which was followed by a decreased mRNA level of the C/EBPα gene. The results obtained from a chromatin immunoprecipitation assay demonstrated that the ability of C/EBPα to bind to the GLUT4 gene promoter was reduced by the treatment with fisetin, which agreed well with those obtained when 3T3-L1 cells were allowed to differentiate into adipocytes in medium in the presence of rapamycin, an inhibitor for mTOR. These results indicate that fisetin suppressed the accumulation of intracellular lipids by inhibiting GLUT4-mediated glucose uptake through inhibition of the mTOR-C/EBPα signaling in 3T3-L1 cells.

  12. Pseudomonas fluorescens WCS374r-induced systemic resistance in rice against Magnaporthe oryzae is based on pseudobactin-mediated priming for a salicylic acid-repressible multifaceted defense response.

    PubMed

    De Vleesschauwer, David; Djavaheri, Mohammad; Bakker, Peter A H M; Höfte, Monica

    2008-12-01

    Selected strains of nonpathogenic rhizobacteria can reduce disease in foliar tissues through the induction of a defense state known as induced systemic resistance (ISR). Compared with the large body of information on ISR in dicotyledonous plants, little is known about the mechanisms underlying rhizobacteria-induced resistance in cereal crops. Here, we demonstrate the ability of Pseudomonas fluorescens WCS374r to trigger ISR in rice (Oryza sativa) against the leaf blast pathogen Magnaporthe oryzae. Using salicylic acid (SA)-nonaccumulating NahG rice, an ethylene-insensitive OsEIN2 antisense line, and the jasmonate-deficient mutant hebiba, we show that this WCS374r-induced resistance is regulated by an SA-independent but jasmonic acid/ethylene-modulated signal transduction pathway. Bacterial mutant analysis uncovered a pseudobactin-type siderophore as the crucial determinant responsible for ISR elicitation. Root application of WCS374r-derived pseudobactin (Psb374) primed naive leaves for accelerated expression of a pronounced multifaceted defense response, consisting of rapid recruitment of phenolic compounds at sites of pathogen entry, concerted expression of a diverse set of structural defenses, and a timely hyperinduction of hydrogen peroxide formation putatively driving cell wall fortification. Exogenous SA application alleviated this Psb374-modulated defense priming, while Psb374 pretreatment antagonized infection-induced transcription of SA-responsive PR genes, suggesting that the Psb374- and SA-modulated signaling pathways are mutually antagonistic. Interestingly, in sharp contrast to WCS374r-mediated ISR, chemical induction of blast resistance by the SA analog benzothiadiazole was independent of jasmonic acid/ethylene signaling and involved the potentiation of SA-responsive gene expression. Together, these results offer novel insights into the signaling circuitry governing induced resistance against M. oryzae and suggest that rice is endowed with multiple

  13. 15-Deoxy-Delta 12,14-prostaglandin J2 inhibition of NF-kappaB-DNA binding through covalent modification of the p50 subunit.

    PubMed

    Cernuda-Morollón, E; Pineda-Molina, E; Cañada, F J; Pérez-Sala, D

    2001-09-21

    Cyclopentenone prostaglandins display anti-inflammatory activities and interfere with the signaling pathway that leads to activation of transcription factor NF-kappaB. Here we explore the possibility that the NF-kappaB subunit p50 may be a target for the cyclopentenone 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)). This prostaglandin inhibited the DNA binding ability of recombinant p50 in a dose-dependent manner. The inhibition required the cyclopentenone moiety and could be prevented but not reverted by glutathione and dithiothreitol. Moreover, a p50 mutant with a C62S mutation was resistant to inhibition, indicating that the effect of 15d-PGJ(2) was probably due to its interaction with cysteine 62 in p50. The covalent modification of p50 by 15d-PGJ(2) was demonstrated by reverse-phase high pressure liquid chromatography and mass spectrometry analysis that showed an increase in retention time and in the molecular mass of 15d-PGJ(2)-treated p50, respectively. The interaction between p50 and 15d-PGJ(2) was relevant in intact cells. 15d-PGJ(2) effectively inhibited cytokine-elicited NF-kappaB activity in HeLa without reducing IkappaBalpha degradation or nuclear translocation of NF-kappaB subunits. 15d-PGJ(2) reduced NF-kappaB DNA binding activity in isolated nuclear extracts, suggesting a direct effect on NF-kappaB proteins. Finally, treatment of HeLa with biotinylated-15d-PGJ(2) resulted in the formation of a 15d-PGJ(2)-p50 adduct as demonstrated by neutravidin binding and immunoprecipitation. These results clearly show that p50 is a target for covalent modification by 15d-PGJ(2) that results in inhibition of DNA binding.

  14. TDP-43 repression of nonconserved cryptic exons is compromised in ALS-FTD.

    PubMed

    Ling, Jonathan P; Pletnikova, Olga; Troncoso, Juan C; Wong, Philip C

    2015-08-07

    Cytoplasmic aggregation of TDP-43, accompanied by its nuclear clearance, is a key common pathological hallmark of amyotrophic lateral sclerosis and frontotemporal dementia (ALS-FTD). However, a limited understanding of this RNA-binding protein (RBP) impedes the clarification of pathogenic mechanisms underlying TDP-43 proteinopathy. In contrast to RBPs that regulate splicing of conserved exons, we found that TDP-43 repressed the splicing of nonconserved cryptic exons, maintaining intron integrity. When TDP-43 was depleted from mouse embryonic stem cells, these cryptic exons were spliced into messenger RNAs, often disrupting their translation and promoting nonsense-mediated decay. Moreover, enforced repression of cryptic exons prevented cell death in TDP-43-deficient cells. Furthermore, repression of cryptic exons was impaired in ALS-FTD cases, suggesting that this splicing defect could potentially underlie TDP-43 proteinopathy.

  15. Repression of arterial genes in hemogenic endothelium is sufficient for haematopoietic fate acquisition

    PubMed Central

    Lizama, Carlos O.; Hawkins, John S.; Schmitt, Christopher E.; Bos, Frank L.; Zape, Joan P.; Cautivo, Kelly M.; Borges Pinto, Hugo; Rhyner, Alexander M.; Yu, Hui; Donohoe, Mary E.; Wythe, Joshua D.; Zovein, Ann C.

    2015-01-01

    Changes in cell fate and identity are essential for endothelial-to-haematopoietic transition (EHT), an embryonic process that generates the first adult populations of haematopoietic stem cells (HSCs) from hemogenic endothelial cells. Dissecting EHT regulation is a critical step towards the production of in vitro derived HSCs. Yet, we do not know how distinct endothelial and haematopoietic fates are parsed during the transition. Here we show that genes required for arterial identity function later to repress haematopoietic fate. Tissue-specific, temporally controlled, genetic loss of arterial genes (Sox17 and Notch1) during EHT results in increased production of haematopoietic cells due to loss of Sox17-mediated repression of haematopoietic transcription factors (Runx1 and Gata2). However, the increase in EHT can be abrogated by increased Notch signalling. These findings demonstrate that the endothelial haematopoietic fate switch is actively repressed in a population of endothelial cells, and that derepression of these programs augments haematopoietic output. PMID:26204127

  16. Repression of arterial genes in hemogenic endothelium is sufficient for haematopoietic fate acquisition.

    PubMed

    Lizama, Carlos O; Hawkins, John S; Schmitt, Christopher E; Bos, Frank L; Zape, Joan P; Cautivo, Kelly M; Borges Pinto, Hugo; Rhyner, Alexander M; Yu, Hui; Donohoe, Mary E; Wythe, Joshua D; Zovein, Ann C

    2015-07-23

    Changes in cell fate and identity are essential for endothelial-to-haematopoietic transition (EHT), an embryonic process that generates the first adult populations of haematopoietic stem cells (HSCs) from hemogenic endothelial cells. Dissecting EHT regulation is a critical step towards the production of in vitro derived HSCs. Yet, we do not know how distinct endothelial and haematopoietic fates are parsed during the transition. Here we show that genes required for arterial identity function later to repress haematopoietic fate. Tissue-specific, temporally controlled, genetic loss of arterial genes (Sox17 and Notch1) during EHT results in increased production of haematopoietic cells due to loss of Sox17-mediated repression of haematopoietic transcription factors (Runx1 and Gata2). However, the increase in EHT can be abrogated by increased Notch signalling. These findings demonstrate that the endothelial haematopoietic fate switch is actively repressed in a population of endothelial cells, and that derepression of these programs augments haematopoietic output.

  17. PHB biosynthesis in catabolite repression mutant of Burkholderia sacchari.

    PubMed

    Lopes, Mateus Schreiner Garcez; Gosset, Guillermo; Rocha, Rafael Costa Santos; Gomez, José Gregório Cabrera; Ferreira da Silva, Luiziana

    2011-10-01

    Due to the effect of catabolite repression, sugar mixtures cannot be metabolized in a rapid and efficient way implicating in lower productivity in bioprocesses using lignocellulosic hydrolysates. In gram-negative bacteria, this mechanism is mediated by the phosphotransferase system (PTS), which concomitantly internalizes and phosphorylates sugars. In this study, we isolated a UV mutant of Burkholderia sacchari, called LFM828, which transports hexoses and pentoses by a non-PTS uptake system. This mutant presented released glucose catabolite repression over the pentoses. In mixtures of glucose, xylose, and arabinose, specific growth rates and the specific sugar consumption rates were, respectively, 10 and 23% higher in LFM828, resulting in a reduced time to exhaust all sugars in the medium. However, in polyhydroxybutyrate (PHB) biosynthesis experiments it was necessary the supplementation of yeast extract to maintain higher values of growth rate and sugar consumption rate. The deficient growth in mineral medium was partially recovered by replacing the ammonium nitrogen source by glutamate. It was demonstrated that the ammonium metabolism is not defective in LFM828, differently from ammonium, glutamate can also be used as carbon and energy allowing an improvement on the carbohydrates utilization for PHB production in LFM828. In contrast, higher rates of ammonia consumption and CO(2) production in LFM828 indicate altered fluxes through the central metabolism in LFM828 and the parental. In conclusion, PTS plays an important role in cell physiology and the elimination of its components has a significant impact on catabolite repression, carbon flux distribution, and PHB biosynthesis in B. sacchari.

  18. Direct activation and anti-repression functions of GAL4-VP16 use distinct molecular mechanisms.

    PubMed Central

    Lyons, J G; Chambon, P

    1995-01-01

    In order to determine whether the molecular mechanisms used for direct activation by GAL4-VP16 are the same as those used for anti-repression, we have employed monoclonal antibodies specific for the VP16 activation domain. In the absence of added repressors, GAL4-VP16 was able to stimulate transcription from a template containing GAL4-binding sites, and the antibodies raised against the VP16 activation domain failed to inhibit this direct activation. GAL4-VP16 also was able to prevent histone H1-mediated repression by a mechanism that was strongly dependent on the presence of specific GAL4-binding elements in the promoter. However, in contrast to the assays conducted in the absence of repressors, the antibodies were strong inhibitors of GAL4-VP16-activated transcription in the presence of histone H1. Thus the binding of the antibodies distinguished between the direct activation and anti-repression functions of GAL4-VP16, indicating that these functions operate through distinct molecular mechanisms. The anti-repression-specific mechanism that is inhibitable by the antibodies acted at an early stage of preinitiation complex formation. Deletions of individual subdomains of the VP16 activation domain demonstrated that there was not a discrete subdomain responsible for the anti-repression function of GAL4-VP16. Thus, the inhibitory effect of the antibodies appeared to be due to the location of the epitope within the activator protein rather than to some inherent biochemical property of that region of the protein that is required specifically for anti-repression. The inhibitory effect of the antibodies also ruled out the possibility that steric exclusion of repressor proteins from the promoter was the sole means of anti-repression by the transcriptional activator. Images Figure 1 Figure 2 PMID:8554536

  19. Molecular architecture of polycomb repressive complexes

    PubMed Central

    Chittock, Emily C.; Latwiel, Sebastian; Miller, Thomas C.R.

    2017-01-01

    The polycomb group (PcG) proteins are a large and diverse family that epigenetically repress the transcription of key developmental genes. They form three broad groups of polycomb repressive complexes (PRCs) known as PRC1, PRC2 and Polycomb Repressive DeUBiquitinase, each of which modifies and/or remodels chromatin by distinct mechanisms that are tuned by having variable compositions of core and accessory subunits. Until recently, relatively little was known about how the various PcG proteins assemble to form the PRCs; however, studies by several groups have now allowed us to start piecing together the PcG puzzle. Here, we discuss some highlights of recent PcG structures and the insights they have given us into how these complexes regulate transcription through chromatin. PMID:28202673

  20. Protein thiol modification by 15-deoxy-Delta12,14-prostaglandin J2 addition in mesangial cells: role in the inhibition of pro-inflammatory genes.

    PubMed

    Sánchez-Gómez, Francisco J; Cernuda-Morollón, Eva; Stamatakis, Konstantinos; Pérez-Sala, Dolores

    2004-11-01

    The cyclopentenone prostaglandin and PPARgamma agonist 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) displays anti-inflammatory effects in several experimental models. Direct modification of protein thiols is arising as an important mechanism of cyclopentenone prostaglandin action. However, little is known about the extent or specificity of this process. Mesangial cells (MC) play a key role in glomerulonephritis. In this work, we have studied the selectivity of protein modification by 15d-PGJ(2) in MC, and the correlation with the modulation of several proinflammatory genes. MC incubation with biotinylated 15d-PGJ(2) results in the labeling of a distinct set of proteins as evidenced by two-dimensional electrophoresis. 15d-PGJ(2) binds to nuclear and cytosolic targets as detected by fluorescence microscopy and subcellular fractionation. The pattern of biotinylated 15d-PGJ(2)-modified polypeptides is readily distinguishable from that of total protein staining or labeling with biotinylated iodoacetamide. 15d-PGJ(2) addition requires the double bond in the cyclopentane ring. 9,10-Dihydro-15d-PGJ(2), a 15d-PGJ(2) analog that shows the same potency as peroxisome proliferator-activated receptor (PPAR) agonist in MC but lacks the cyclopentenone moiety, displays reduced ability to modify proteins and to block 15d-PGJ(2) binding. Micromolar concentrations of 15d-PGJ(2) inhibit cytokine-elicited levels of inducible nitricoxide synthase, cyclooxygenase-2, and intercellular adhesion molecule-1 in MC. In contrast, 9,10-dihydro-15d-PGJ(2) does not reproduce this inhibition. 15d-PGJ(2) effect is not blocked by the PPARgamma antagonist 2-chloro-5-nitro-N-phenylbenzamide (GW9662). Moreover, compounds possessing an alpha,beta-unsaturated carbonyl group, like 2-cyclopenten-1-one and 2-cyclohexen-1-one, reduce pro-inflammatory gene expression. These observations indicate that covalent modification of cellular thiols by 15d-PGJ(2) is a selective process that plays an important

  1. Splicing repression allows the gradual emergence of new Alu-exons in primate evolution

    PubMed Central

    Attig, Jan; Ruiz de los Mozos, Igor; Haberman, Nejc; Wang, Zhen; Emmett, Warren; Zarnack, Kathi; König, Julian; Ule, Jernej

    2016-01-01

    Alu elements are retrotransposons that frequently form new exons during primate evolution. Here, we assess the interplay of splicing repression by hnRNPC and nonsense-mediated mRNA decay (NMD) in the quality control and evolution of new Alu-exons. We identify 3100 new Alu-exons and show that NMD more efficiently recognises transcripts with Alu-exons compared to other exons with premature termination codons. However, some Alu-exons escape NMD, especially when an adjacent intron is retained, highlighting the importance of concerted repression by splicing and NMD. We show that evolutionary progression of 3' splice sites is coupled with longer repressive uridine tracts. Once the 3' splice site at ancient Alu-exons reaches a stable phase, splicing repression by hnRNPC decreases, but the exons generally remain sensitive to NMD. We conclude that repressive motifs are strongest next to cryptic exons and that gradual weakening of these motifs contributes to the evolutionary emergence of new alternative exons. DOI: http://dx.doi.org/10.7554/eLife.19545.001 PMID:27861119

  2. Active Repression of Methylated Genes by the Chromosomal Protein MBD1

    PubMed Central

    Ng, Huck-Hui; Jeppesen, Peter; Bird, Adrian

    2000-01-01

    MBD1 belongs to a family of mammalian proteins that share a methyl-CpG binding domain. Previous work has shown that MBD1 binds to methylated sites in vivo and in vitro and can repress transcription from methylated templates in transcription extracts and in cultured cells. In the present study we established by several experimental criteria that, contrary to a previous report, MBD1 is not a component of the MeCP1 repressor complex. We identified a powerful transcriptional repression domain (TRD) at the C terminus of MBD1 that can actively repress transcription at a distance. Methylation-dependent repression in vivo depends on the presence of both the TRD and the methyl-CpG binding domain. The mechanism is likely to involve deacetylation, since the deacetylase inhibitor trichostatin A can overcome MBD1-mediated repression. Accordingly, we found that endogenous MBD1 is particularly concentrated at sites of centromeric heterochromatin, where acetylated histone H4 is deficient. Unlike MBD2 and MeCP2, MBD1 is not depleted by antibodies to the histone deacetylase HDAC1. Thus, the deacetylase-dependent pathway by which MBD1 actively silences methylated genes is likely to be different from that utilized by the methylation-dependent repressors MeCP1 and MeCP2. PMID:10648624

  3. zif-1 translational repression defines a second, mutually exclusive OMA function in germline transcriptional repression.

    PubMed

    Guven-Ozkan, Tugba; Robertson, Scott M; Nishi, Yuichi; Lin, Rueyling

    2010-10-01

    Specification of primordial germ cells requires global repression of transcription. In C. elegans, primordial germ cells are generated through four rounds of asymmetric divisions, starting from the zygote P0, each producing a transcriptionally repressed germline blastomere (P1-P4). Repression in P2-P4 requires PIE-1, which is provided maternally in oocytes and segregated to all germline blastomeres. We have shown previously that OMA-1 and OMA-2 repress global transcription in P0 and P1 by sequestering TAF-4, an essential component of TFIID. Soon after the first mitotic cycle, OMA proteins undergo developmentally regulated degradation. Here, we show that OMA proteins also repress transcription in P2-P4 indirectly, through a completely different mechanism that operates in oocytes. OMA proteins bind to both the 3' UTR of the zif-1 transcript and the eIF4E-binding protein, SPN-2, repressing translation of zif-1 mRNA in oocytes. zif-1 encodes the substrate-binding subunit of the E3 ligase for PIE-1 degradation. Inhibition of zif-1 translation in oocytes ensures high PIE-1 levels in oocytes and germline blastomeres. The two OMA protein functions are strictly regulated in both space and time by MBK-2, a kinase activated following fertilization. Phosphorylation by MBK-2 facilitates the binding of OMA proteins to TAF-4 and simultaneously inactivates their function in repressing zif-1 translation. Phosphorylation of OMA proteins displaces SPN-2 from the zif-1 3' UTR, releasing translational repression. We propose that MBK-2 phosphorylation serves as a developmental switch, converting OMA proteins from specific translational repressors in oocytes to global transcriptional repressors in embryos, together effectively repressing transcription in all germline blastomeres.

  4. Keratins mediate localization of hemidesmosomes and repress cell motility.

    PubMed

    Seltmann, Kristin; Roth, Wera; Kröger, Cornelia; Loschke, Fanny; Lederer, Marcell; Hüttelmaier, Stefan; Magin, Thomas M

    2013-01-01

    The keratin (K)-hemidesmosome (HD) interaction is crucial for cell-matrix adhesion and migration in several epithelia, including the epidermis. Mutations in constituent proteins cause severe blistering skin disorders by disrupting the adhesion complex. Despite extensive studies, the role of keratins in HD assembly and maintenance is only partially understood. Here we address this issue in keratinocytes in which all keratins are depleted by genome engineering. Unexpectedly, such keratinocytes maintain many characteristics of their normal counterparts. However, the absence of the entire keratin cytoskeleton leads to loss of plectin from the hemidesmosomal plaque and scattering of the HD transmembrane core along the basement membrane zone. To investigate the functional consequences, we performed migration and adhesion assays. These revealed that, in the absence of keratins, keratinocytes adhere much faster to extracellular matrix substrates and migrate approximately two times faster compared with wild-type cells. Reexpression of the single keratin pair K5 and K14 fully reversed the above phenotype. Our data uncover a role of keratins, which to our knowledge is previously unreported, in the maintenance of HDs upstream of plectin, with implications for epidermal homeostasis and pathogenesis. They support the view that the downregulation of keratins observed during epithelial-mesenchymal transition supports the migratory and invasive behavior of tumor cells.

  5. Keratins mediate localization of hemidesmosomes and repress cell motility

    PubMed Central

    Seltmann, Kristin; Roth, Wera; Loschke, Fanny; Lederer, Marcell; Hüttelmaier, Stefan; Magin, Thomas M.

    2013-01-01

    The keratin-hemidesmosome interaction is crucial for cell-matrix adhesion and migration in several epithelia including the epidermis. Mutations in constituent proteins cause severe blistering skin disorders by disrupting the adhesion complex. Despite extensive studies, the role of keratins in hemidesmosome assembly and maintenance is only partially understood. Here, we address this issue in keratinocytes in which all keratins are depleted by genome engineering. Unexpectedly, such keratinocytes maintain many characteristics of normal counterparts. The absence of the entire keratin cytoskeleton, however, leads to loss of plectin from the hemidesmosomal plaque and scattering of the hemidesmosome transmembrane core along the basement membrane zone. To investigate the functional consequences, we performed migration and adhesion assays. These revealed that in the absence of keratins, keratinocytes adhere much faster to ECM substrates and migrate ~2 times faster compared to wildtype cells. Re-expression of the single keratin pair K5 and K14 fully reversed the above phenotype. Our data uncover a novel role of keratins in the maintenance of hemidesmosomes upstream of plectin with implications for epidermal homeostasis and pathogenesis. They support the view that the downregulation of keratins observed during epithelial-mesenchymal transition supports the migratory and invasive behavior of tumor cells. PMID:22895363

  6. Theoretical and Experimental Dissection of DNA Loop-Mediated Repression

    NASA Astrophysics Data System (ADS)

    Boedicker, James Q.; Garcia, Hernan G.; Phillips, Rob

    2013-01-01

    Transcriptional networks across all domains of life feature a wide range of regulatory architectures. Theoretical models now make clear predictions about how key parameters describing those architectures modulate gene expression, and the ability to construct genetic circuits with tunable parameters enables precise tests of such models. We dissect gene regulation through DNA looping by tuning network parameters such as repressor copy number, DNA binding strengths, and loop length in both thermodynamic models and experiments. Our results help clarify the short-length mechanical properties of DNA.

  7. GWT1 encoding an inositol acyltransferase homolog is required for laccase repression and stress resistance in the basidiomycete Cryptococcus neoformans.

    PubMed

    Zhao, Qiang; Wei, Dongsheng; Li, Zhongming; Wang, Yu; Zhu, Xiangyang; Zhu, Xudong

    2015-12-01

    The transcriptional expression of laccase, which has been confirmed to contribute to the virulence of Cryptococcus neoformans, is often repressed by a high concentration of glucose in many fungi, including C. neoformans. The underlying mechanism of the repression remains largely unknown. In this study, we found that a GWT1 gene that encodes a glycosylphosphatidylinositol (GPI) anchor biosynthesis-related protein is required for laccase repression by glucose in the basidiomycete C. neoformans. Disruption of GWT1 with the Agrobacterium tumefaciens-mediated T-DNA random insertional mutagenesis (ATMT) method resulted in constitutive expression of the laccase gene LAC1 and constant melanin formation. The loss of GWT1 also dramatically affected the cell membrane integrity and stress resistance. Our results revealed a GPI-dependent glucose repression mechanism in C. neoformans, and it may be helpful for understanding the virulence of C. neoformans.

  8. The great repression: chromatin and cryptic transcription.

    PubMed

    Hennig, Bianca P; Fischer, Tamás

    2013-01-01

    The eukaryotic chromatin structure is essential in correctly defining transcription units. Impairing this structure can activate cryptic promoters, and lead to the accumulation of aberrant RNA transcripts. Here we discuss critical pathways that are responsible for the repression of cryptic transcription and the maintenance of genome integrity.

  9. YB-1 regulates tiRNA-induced Stress Granule formation but not translational repression

    PubMed Central

    Lyons, Shawn M.; Achorn, Chris; Kedersha, Nancy L.; Anderson, Paul J.; Ivanov, Pavel

    2016-01-01

    Stress-induced angiogenin (ANG)-mediated tRNA cleavage promotes a cascade of cellular events that starts with production of tRNA-derived stress-induced RNAs (tiRNAs) and culminates with enhanced cell survival. This stress response program relies on a subset tiRNAs that inhibit translation initiation and induce the assembly of stress granules (SGs), cytoplasmic ribonucleoprotein complexes with cytoprotective and pro-survival properties. SG-promoting tiRNAs bear oligoguanine motifs at their 5′-ends, assemble G-quadruplex-like structures and interact with the translational silencer YB-1. We used CRISPR/Cas9-based genetic manipulations and biochemical approaches to examine the role of YB-1 in tiRNA-mediated translational repression and SG assembly. We found that YB-1 directly binds to tiRNAs via its cold shock domain. This interaction is required for packaging of tiRNA-repressed mRNAs into SGs but is dispensable for tiRNA-mediated translational repression. Our studies reveal the functional role of YB-1 in the ANG-mediated stress response program. PMID:27174937

  10. Translational repression by RNA-binding protein TIAR.

    PubMed

    Mazan-Mamczarz, Krystyna; Lal, Ashish; Martindale, Jennifer L; Kawai, Tomoko; Gorospe, Myriam

    2006-04-01

    The RNA-binding protein TIAR has been proposed to inhibit protein synthesis transiently by promoting the formation of translationally silent stress granules. Here, we report the selective binding of TIAR to several mRNAs encoding translation factors such as eukaryotic initiation factor 4A (eIF4A) and eIF4E (translation initiation factors), eEF1B (a translation elongation factor), and c-Myc (which transcriptionally controls the expression of numerous translation regulatory proteins). TIAR bound the 3'-untranslated regions of these mRNAs and potently suppressed their translation, particularly in response to low levels of short-wavelength UV (UVC) irradiation. The UVC-imposed global inhibition of the cellular translation machinery was significantly relieved after silencing of TIAR expression. We propose that the TIAR-mediated inhibition of translation factor expression elicits a sustained repression of protein biosynthesis in cells responding to stress.

  11. Identification of essential nucleotides in an upstream repressing sequence of Saccharomyces cerevisiae by selection for increased expression of TRK2.

    PubMed Central

    Vidal, M; Buckley, A M; Yohn, C; Hoeppner, D J; Gaber, R F

    1995-01-01

    The TRK2 gene in Saccharomyces cerevisiae encodes a membrane protein involved in potassium transport and is expressed at extremely low levels. Dominant cis-acting mutations (TRK2D), selected by their ability to confer TRK2-dependent growth on low-potassium medium, identified an upstream repressor element (URS1-TRK2) in the TRK2 promoter. The URS1-TRK2 sequence (5'-AGCCGCACG-3') shares six nucleotides with the ubiquitous URS1 element (5'-AGCCGCCGA-3'), and the protein species binding URS1-CAR1 (URSF) is capable of binding URS1-TRK2 in vitro. Sequence analysis of 17 independent repression-defective TRK2D mutations identified three adjacent nucleotides essential for URS1-mediated repression in vivo. Our results suggest a role for context effects with regard to URS1-related sequences: several mutant alleles of the URS1 element previously reported to have little or no effect when analyzed within the context of a heterologous promoter (CYC1) [Luche, R.M., Sumrada, R. & Cooper, T.G. (1990) Mol. Cell. Biol. 10, 3884-3895] have major effects on repression in the context of their native promoters (TRK2 and CAR1). TRK2D mutations that abolish repression also reveal upstream activating sequence activity either within or adjacent to URS1. Additivity between TRK2D and sin3 delta mutations suggest that SIN3-mediated repression is independent of that mediated by URS1. Images Fig. 1 Fig. 4 PMID:7892273

  12. Repression: finding our way in the maze of concepts.

    PubMed

    Garssen, Bert

    2007-12-01

    Repression is associated in the literature with terms such as non-expression, emotional control, rationality, anti-emotionality, defensiveness and restraint. Whether these terms are synonymous with repression, indicate a variation, or are essentially different from repression is uncertain. To clarify this obscured view on repression, this paper indicates the similarities and differences between these concepts. Repression is the general term that is used to describe the tendency to inhibit the experience and the expression of negative feelings or unpleasant cognitions in order to prevent one's positive self-image from being threatened ('repressive coping style'). The terms self-deception versus other-deception, and socially related versus personally related repression refer to what is considered to be different aspects of repression. Defensiveness is a broader concept that includes both anxious defensiveness and repression; the essential difference is whether negative emotions are reported or not. Concepts that are sometimes associated with repression, but which are conceptually different, are also discussed in this paper: The act of suppression, 'repressed memories,' habitual suppression, concealment, type C coping pattern, type D personality, denial, alexithymia and blunting. Consequences for research: (1) When summarizing findings reported in the literature, it is essential to determine which concepts the findings represent. This is rarely made explicit, and failure to do so may lead to drawing the wrong conclusions (2) It is advisable to use scales based on different aspects of repression (3) Whether empirical findings substantiate the similarities and differences between concepts described in this paper will need to be shown.

  13. Possible involvement of aiPLA2 in the phosphatidylserine-containing liposomes induced production of PGE2 and PGD2 in microglia.

    PubMed

    Takayama, Fumiko; Wu, Zhou; Ma, Hong Mei; Okada, Ryo; Hayashi, Yoshinori; Nakanishi, Hiroshi

    2013-09-15

    Liposomes containing phosphatidylserine (PSL) produce PGE2 after being phagocytosed by microglia, but the precise underlying mechanism behind it still remains unclear. Here, we showed that liposomes consisting of phosphatidylserine and lysophosphatidylcholine, a lipolysis product of phosphatidylcholine by PLA2, were phagocytosed by microglia, but failed to induce secretion of PGE2. Furthermore, PSL-induced PGE2 secretion was significantly inhibited by MJ33, an aiPLA2 inhibitor, but not by AACOCF3, a cPLA2 inhibitor. PSL also produced PGD2 and 15d-PGJ2 in microglia. We thus hypothesize that free arachidonic acid is supplied through aiPLA2-mediated lipolysis of phagocytosed phosphatidylcholine, leading to the production of PGH2 and its downstream metabolites.

  14. Activation and repression functions of an SR splicing regulator depend on exonic versus intronic-binding position.

    PubMed

    Shen, Manli; Mattox, William

    2012-01-01

    SR proteins and related factors play widespread roles in alternative pre-mRNA splicing and are known to promote splice site recognition through their Arg-Ser-rich effector domains. However, binding of SR regulators to some targets results in repression of splice sites through a distinct mechanism. Here, we investigate how activated and repressed targets of the Drosophila SR regulator Transformer2 elicit its differing effects on splicing. We find that, like activation, repression affects early steps in the recognition of splice sites and spliceosome assembly. Repositioning of regulatory elements reveals that Tra2 complexes that normally repress splicing from intronic positions activate splicing when located in an exon. Protein tethering experiments demonstrate that this position dependence is an intrinsic property of Tra2 and further show that repression and activation are mediated by separate effector domains of this protein. When other Drosophila SR factors (SF2 and Rbp1) that activate splicing from exonic positions were tethered intronically they failed to either activate or repress splicing. Interestingly, both activities of Tra2 favor the exonic identity of the RNA sequences that encompass its binding sites. This suggests a model in which these two opposite functions act in concert to define both the position and extent of alternatively spliced exons.

  15. TORC2 regulates germinal center repression of the TCL1 oncoprotein to promote B cell development and inhibit transformation.

    PubMed

    Kuraishy, Ali I; French, Samuel W; Sherman, Mara; Herling, Marco; Jones, Dan; Wall, Randolph; Teitell, Michael A

    2007-06-12

    Aberrant expression of the TCL1 oncoprotein promotes malignant transformation of germinal center (GC) B cells. Repression of TCL1 in GC B cells facilitates FAS-mediated apoptosis and prevents lymphoma formation. However, the mechanism for this repression is unknown. Here we show that the CREB coactivator TORC2 directly regulates TCL1 expression independent of CREB Ser-133 phosphorylation and CBP/p300 recruitment. GC signaling through CD40 or the BCR, which activates pCREB-dependent genes, caused TORC2 phosphorylation, cytosolic emigration, and TCL1 repression. Signaling via cAMP-inducible pathways inhibited TCL1 repression and reduced apoptosis, consistent with a prosurvival role for TCL1 before GC selection and supporting an initiating role for aberrant TCL1 expression during GC lymphomagenesis. Our data indicate that a novel CREB/TORC2 regulatory mode controls the normal program of GC gene activation and repression that promotes B cell development and circumvents oncogenic progression. Our results also reconcile a paradox in which signals that activate pCREB/CBP/p300 genes concurrently repress TCL1 to initiate its silencing.

  16. Repression and substitutive formation: the relationship between Freud's concepts reconsidered.

    PubMed

    Zepf, Siegfried

    2012-06-01

    This paper examines Freud's concept of repression and the relationship between repression and substitutive formation as it presents itself in Freud's writings. The author shows that Freud gives at least four different meanings to the term "repression": Freud uses it interchangeably with defense, as a consciously intended forgetting, as a specific unconscious mechanism of defense, and to describe the consequence of defense mechanisms leading to substitutive formations. The inconsistencies in this relationship are discussed and clarified, and Freud's economic and linguistic attempts at founding repression are subjected to critique; the need of a primal repression as a necessary condition for repression proper is pointed out. In developing Freud's linguistic foundation of repression further, the author presents defense as a semantic displacement. Ideas are excluded from the realm of the concepts that belong to them historically. These presentations become unconscious, that is, repressed, in that they can no longer be identified as "cases" of these conceptual internal contents. At the same time they are displaced into the extensions of concepts whose internal contents do not belong to them originally. It is by virtue of the internal contents of these concepts that the displaced elements as substitutive formations once again attain consciousness, albeit a false one. The author suggests dismissing repression as a specific defense mechanism of its own; to reversing Freud's thesis that repression, as a rule, creates a substitutive formation into its opposite; and recognizing that the mechanisms used to build substitutes, as a rule, create repression.

  17. Increased generation of cyclopentenone prostaglandins after brain ischemia and their role in aggregation of ubiquitinated proteins in neurons

    PubMed Central

    Liu, Hao; Li, Wenjin; Ahmad, Muzamil; Rose, Marie E.; Miller, Tricia M.; Yu, Mei; Chen, Jie; Pascoe, Jordan L.; Poloyac, Samuel M.; Hickey, Robert W.; Graham, Steven H.

    2013-01-01

    The cyclopentenone prostaglandin (CyPG) J2 series, including prostaglandin J2 (PGJ2), Δ12-PGJ2 and 15-deoxy-Δ12, 14 -prostaglandin J2 (15d-PGJ2), are active metabolites of PGD2, exerting multiple effects on neuronal function. However, the physiologic relevance of these effects remains uncertain as brain concentrations of CyPGs have not been precisely determined. In this study, we found that free PGD2 and the J2 series CyPGs (PGJ2, Δ12-PGJ2 and 15d-PGJ2) were increased in post-ischemic rat brain as detected by UPLC-MS/MS with 15d-PGJ2 being the most abundant CyPG. These increases were attenuated by pre-treating with the cyclooxygenase inhibitor piroxicam. Next, effects of chronic exposure to 15d-PGJ2 were examined by treating primary neurons with 15d-PGJ2, CAY10410 (a 15d-PGJ2 analog lacking the cyclopentenone ring structure), or vehicle for 24 h to 96 h. Because we found that the concentration of free 15d-PGJ2 decreased rapidly in cell culture medium, freshly prepared medium containing 15d-PGJ2, CAY10410 or vehicle was changed twice daily to maintain steady extracellular concentrations. Incubation with 2.5 μM 15d-PGJ2, but not CAY10410, increased neuronal cell death without induction of caspase-3 or PARP cleavage, consistent with a primarily necrotic mechanism for 15d-PGJ2-induced cell death which was further supported by TUNEL assay results. Ubiquitinated protein accumulation and aggregation was observed after 96 h 15d-PGJ2 incubation, accompanied by compromised 20S proteasome activity. Unlike another proteasome inhibitor, MG132, 15d-PGJ2 treatment did not activate autophagy or induce aggresome formation. Therefore, the cumulative cytotoxic effects of increased generation of CyPGs after stroke may contribute to delayed post-ischemic neuronal injury. PMID:23355003

  18. Bile Acids Function Synergistically To Repress Invasion Gene Expression in Salmonella by Destabilizing the Invasion Regulator HilD.

    PubMed

    Eade, Colleen R; Hung, Chien-Che; Bullard, Brian; Gonzalez-Escobedo, Geoffrey; Gunn, John S; Altier, Craig

    2016-08-01

    Salmonella spp. are carried by and can acutely infect agricultural animals and humans. After ingestion, salmonellae traverse the upper digestive tract and initiate tissue invasion of the distal ileum, a virulence process carried out by the type III secretion system encoded within Salmonella pathogenicity island 1 (SPI-1). Salmonellae coordinate SPI-1 expression with anatomical location via environmental cues, one of which is bile, a complex digestive fluid that causes potent repression of SPI-1 genes. The individual components of bile responsible for SPI-1 repression have not been previously characterized, nor have the bacterial signaling processes that modulate their effects been determined. Here, we characterize the mechanism by which bile represses SPI-1 expression. Individual bile acids exhibit repressive activity on SPI-1-regulated genes that requires neither passive diffusion nor OmpF-mediated entry. By using genetic methods, the effects of bile and bile acids were shown to require the invasion gene transcriptional activator hilD and to function independently of known upstream signaling pathways. Protein analysis techniques showed that SPI-1 repression by bile acids is mediated by posttranslational destabilization of HilD. Finally, we found that bile acids function synergistically to achieve the overall repressive activity of bile. These studies demonstrate a common mechanism by which diverse environmental cues (e.g., certain short-chain fatty acids and bile acids) inhibit SPI-1 expression. These data provide information relevant to Salmonella pathogenesis during acute infection in the intestine and during chronic infection of the gallbladder and inform the basis for development of therapeutics to inhibit invasion as a means of repressing Salmonella pathogenicity.

  19. Nimesulide, a cyclooxygenase-2 selective inhibitor, suppresses obesity-related non-alcoholic fatty liver disease and hepatic insulin resistance through the regulation of peroxisome proliferator-activated receptor γ

    PubMed Central

    Tsujimoto, Shunsuke; Kishina, Manabu; Koda, Masahiko; Yamamoto, Yasutaka; Tanaka, Kohei; Harada, Yusuke; Yoshida, Akio; Hisatome, Ichiro

    2016-01-01

    Cyclooxygenase (COX)-2 selective inhibitors suppress non-alcoholic fatty liver disease (NAFLD); however, the precise mechanism of action remains unknown. The aim of this study was to examine how the COX-2 selective inhibitor nimesulide suppresses NAFLD in a murine model of high-fat diet (HFD)-induced obesity. Mice were fed either a normal chow diet (NC), an HFD, or HFD plus nimesulide (HFD-nime) for 12 weeks. Body weight, hepatic COX-2 mRNA expression and triglyceride accumulation were significantly increased in the HFD group. Triglyceride accumulation was suppressed in the HFD-nime group. The mRNA expression of hepatic peroxisome proliferator-activated receptor γ (PPARγ) and the natural PPARγ agonist 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) were significantly increased in the HFD group and significantly suppressed in the HFD-nime group. Glucose metabolism was impaired in the HFD group compared with the NC group, and it was significantly improved in the HFD-nime group. In addition, the plasma insulin levels in the HFD group were increased compared with those in the NC group, and were decreased in the HFD-nime group. These results indicate that HFD-induced NAFLD is mediated by the increased hepatic expression of COX-2. We suggest that the production of 15d-PGJ2, which is mediated by COX-2, induces NAFLD and hepatic insulin resistance by activating PPARγ. Furthermore, the mRNA expression of tissue inhibitor of metalloproteinases-1 (TIMP-1), procollagen-1 and monocyte chemoattractant protein-1 (MCP-1), as well as the number of F4/80-positive hepatic (Kupffer) cells, were significantly increased in the HFD group compared with the NC group, and they were reduced by nimesulide. In conclusion, COX-2 may emerge as a molecular target for preventing the development of NAFLD and insulin resistance in diet-related obesity. PMID:27431935

  20. MeCP2 repression of G9a in regulation of pain and morphine reward.

    PubMed

    Zhang, Zhi; Tao, Wenjuan; Hou, Yuan-Yuan; Wang, Wei; Kenny, Paul J; Pan, Zhizhong Z

    2014-07-02

    Opioids are commonly used for pain relief, but their strong rewarding effects drive opioid misuse and abuse. How pain affects the liability of opioid abuse is unknown at present. In this study, we identified an epigenetic regulating cascade activated by both pain and the opioid morphine. Both persistent pain and repeated morphine upregulated the transcriptional regulator MeCP2 in mouse central nucleus of the amygdala (CeA). Chromatin immunoprecipitation analysis revealed that MeCP2 bound to and repressed the transcriptional repressor histone dimethyltransferase G9a, reducing G9a-catalyzed repressive mark H3K9me2 in CeA. Repression of G9a activity increased expression of brain-derived neurotrophic factor (BDNF). Behaviorally, persistent inflammatory pain increased the sensitivity to acquiring morphine-induced, reward-related behavior of conditioned place preference in mice. Local viral vector-mediated MeCP2 overexpression, Cre-induced G9a knockdown, and CeA application of BDNF mimicked, whereas MeCP2 knockdown inhibited, the pain effect. These results suggest that MeCP2 directly represses G9a as a shared mechanism in central amygdala for regulation of emotional responses to pain and opioid reward, and for their behavioral interaction.

  1. MeCP2 Repression of G9a in Regulation of Pain and Morphine Reward

    PubMed Central

    Zhang, Zhi; Tao, Wenjuan; Hou, Yuan-Yuan; Wang, Wei; Kenny, Paul J.

    2014-01-01

    Opioids are commonly used for pain relief, but their strong rewarding effects drive opioid misuse and abuse. How pain affects the liability of opioid abuse is unknown at present. In this study, we identified an epigenetic regulating cascade activated by both pain and the opioid morphine. Both persistent pain and repeated morphine upregulated the transcriptional regulator MeCP2 in mouse central nucleus of the amygdala (CeA). Chromatin immunoprecipitation analysis revealed that MeCP2 bound to and repressed the transcriptional repressor histone dimethyltransferase G9a, reducing G9a-catalyzed repressive mark H3K9me2 in CeA. Repression of G9a activity increased expression of brain-derived neurotrophic factor (BDNF). Behaviorally, persistent inflammatory pain increased the sensitivity to acquiring morphine-induced, reward-related behavior of conditioned place preference in mice. Local viral vector-mediated MeCP2 overexpression, Cre-induced G9a knockdown, and CeA application of BDNF mimicked, whereas MeCP2 knockdown inhibited, the pain effect. These results suggest that MeCP2 directly represses G9a as a shared mechanism in central amygdala for regulation of emotional responses to pain and opioid reward, and for their behavioral interaction. PMID:24990928

  2. OprD Repression upon Metal Treatment Requires the RNA Chaperone Hfq in Pseudomonas aeruginosa

    PubMed Central

    Ducret, Verena; Gonzalez, Manuel R.; Scrignari, Tiziana; Perron, Karl

    2016-01-01

    The metal-specific CzcRS two-component system in Pseudomonas aeruginosa is involved in the repression of the OprD porin, causing in turn carbapenem antibiotic resistance in the presence of high zinc concentration. It has also been shown that CzcR is able to directly regulate the expression of multiple genes including virulence factors. CzcR is therefore an important regulator connecting (i) metal response, (ii) pathogenicity and (iii) antibiotic resistance in P. aeruginosa. Recent data have suggested that other regulators could negatively control oprD expression in the presence of zinc. Here we show that the RNA chaperone Hfq is a key factor acting independently of CzcR for the repression of oprD upon Zn treatment. Additionally, we found that an Hfq-dependent mechanism is necessary for the localization of CzcR to the oprD promoter, mediating oprD transcriptional repression. Furthermore, in the presence of Cu, CopR, the transcriptional regulator of the CopRS two-component system also requires Hfq for oprD repression. Altogether, these results suggest important roles for this RNA chaperone in the context of environment-sensing and antibiotic resistance in P. aeruginosa. PMID:27706108

  3. Repression activity of Tailless on h 1 and eve 1 pair-rule stripes.

    PubMed

    Andrioli, Luiz Paulo; Dos Santos, Wesley Silva; Aguiar, Francisco Dos Santos; Digiampietri, Luciano Antonio

    2016-10-20

    We investigated the hypothesis that several transcriptional repressors are necessary to set the boundaries of anterior pair-rule stripes in Drosophila. Specifically, we tested whether Tailless (Tll) is part of a repression mechanism that correctly sets the anterior boundaries of hairy 1 (h 1) and even-skipped 1 (eve 1) stripes. Single mutant tll embryos displayed subtle deviations from the normal positions of h 1 and eve 1 stripes. Moreover, we observed stronger stripe deviations in embryos lacking both Tll and Sloppy-paired 1 (Slp 1), a common repressor for anterior pair-rule stripes. Using h 1 and eve 1 reporter constructs in the genetic assays, we provided further evidence that interference with normal mechanisms of stripe expression is mediated by Tll repression. Indeed, Tll represses both h 1 and eve 1 reporter stripes when misexpressed. Investigating the expression of other anterior gap genes in different genetic backgrounds and in the misexpression assays strengthened Tll direct repression in the regulation of h 1 and eve 1. Our results are consistent with tll being a newly-identified component of a combinatorial network of repressor genes that control pair-rule stripe formation in the anterior blastoderm of Drosophila.

  4. Conservation of uORF repressiveness and sequence features in mouse, human and zebrafish

    PubMed Central

    Chew, Guo-Liang; Pauli, Andrea; Schier, Alexander F.

    2016-01-01

    Upstream open reading frames (uORFs) are ubiquitous repressive genetic elements in vertebrate mRNAs. While much is known about the regulation of individual genes by their uORFs, the range of uORF-mediated translational repression in vertebrate genomes is largely unexplored. Moreover, it is unclear whether the repressive effects of uORFs are conserved across species. To address these questions, we analyse transcript sequences and ribosome profiling data from human, mouse and zebrafish. We find that uORFs are depleted near coding sequences (CDSes) and have initiation contexts that diminish their translation. Linear modelling reveals that sequence features at both uORFs and CDSes modulate the translation of CDSes. Moreover, the ratio of translation over 5′ leaders and CDSes is conserved between human and mouse, and correlates with the number of uORFs. These observations suggest that the prevalence of vertebrate uORFs may be explained by their conserved role in repressing CDS translation. PMID:27216465

  5. The C-terminus of H-Ras as a target for the covalent binding of reactive compounds modulating Ras-dependent pathways.

    PubMed

    Oeste, Clara L; Díez-Dacal, Beatriz; Bray, Francesca; García de Lacoba, Mario; de la Torre, Beatriz G; Andreu, David; Ruiz-Sánchez, Antonio J; Pérez-Inestrosa, Ezequiel; García-Domínguez, Carlota A; Rojas, José M; Pérez-Sala, Dolores

    2011-01-06

    Ras proteins are crucial players in differentiation and oncogenesis and constitute important drug targets. The localization and activity of Ras proteins are highly dependent on posttranslational modifications at their C-termini. In addition to an isoprenylated cysteine, H-Ras, but not other Ras proteins, possesses two cysteine residues (C181 and C184) in the C-terminal hypervariable domain that act as palmitoylation sites in cells. Cyclopentenone prostaglandins (cyPG) are reactive lipidic mediators that covalently bind to H-Ras and activate H-Ras dependent pathways. Dienone cyPG, such as 15-deoxy-Δ(12,14)-PGJ(2) (15d-PGJ(2)) and Δ(12)-PGJ(2) selectively bind to the H-Ras hypervariable domain. Here we show that these cyPG bind simultaneously C181 and C184 of H-Ras, thus potentially altering the conformational tendencies of the hypervariable domain. Based on these results, we have explored the capacity of several bifunctional cysteine reactive small molecules to bind to the hypervariable domain of H-Ras proteins. Interestingly, phenylarsine oxide (PAO), a widely used tyrosine phosphatase inhibitor, and dibromobimane, a cross-linking agent used for cysteine mapping, effectively bind H-Ras hypervariable domain. The interaction of PAO with H-Ras takes place in vitro and in cells and blocks modification of H-Ras by 15d-PGJ(2). Moreover, PAO treatment selectively alters H-Ras membrane partition and the pattern of H-Ras activation in cells, from the plasma membrane to endomembranes. These results identify H-Ras as a novel target for PAO. More importantly, these observations reveal that small molecules or reactive intermediates interacting with spatially vicinal cysteines induce intramolecular cross-linking of H-Ras C-terminus potentially contributing to the modulation of Ras-dependent pathways.

  6. Intrathecal rosiglitazone acts at peroxisome proliferator-activated receptor γ to rapidly inhibit neuropathic pain in rats

    PubMed Central

    Churi, Sajay B.; Abdel-Aleem, Omar S.; Tumber, Kiranjeet K.; Scuderi-Porter, Heather; Taylor, Bradley K.

    2008-01-01

    We first demonstrate the transcription, expression, and DNA binding properties of the PPARγ subtype of the peroxisome proliferator-activated nuclear receptor family to the spinal cord with real time PCR, western blot, and electrophoretic mobility shift assay. To test the hypothesis that activation of spinal PPARγ decreases nerve injury-induced allodynia, we intrathecally administered PPARγ agonists and/or antagonists in rats following transection of the tibial and common peroneal branches of the sciatic nerve. Single injection of either a natural (15-deoxy-prostaglandin J2, 15d-PGJ2) or synthetic (rosiglitazone) PPARγ agonist dose-dependently decreased mechanical and cold hypersensitivity. These effects were maximal at a dose of 100μg and peaked at ~60 min after injection, a rapid time course suggestive of transcription-independent mechanisms of action. Concurrent administration of a PPARγ antagonist (bisphenol A diglycidyl ether, BADGE) reversed the effects of 15d-PGJ2 and rosiglitazone, further indicating a receptor-mediated effect. In animals without nerve injury, rosiglitazone did not alter motor coordination, von Frey threshold, or withdrawal response to a cool stimulus. Intraperitoneal and intracerebroventricular administration of PPARγ agonists (100μg) did not decrease mechanical and cold hypersensitivity, arguing against effects subsequent to diffusion from the intrathecal space. We conclude that ligand-induced activation of spinal PPARγ rapidly reverses nerve injury-induced mechanical allodynia. New or currently-available drugs targeted at spinal PPARγ may yield important therapeutic effects for the management of neuropathic pain. PERSPECTIVE PPARγ receptor agonists such as rosiglitazone and pioglitazone remain FDA approved as insulin sensitizers. We demonstrate PPARγ expression in the spinal cord, and report that activation of these receptors inhibits allodynia. BBB-permeant PPARγ agonists may yield important therapeutic effects for the

  7. Pro-/Anti-inflammatory Dysregulation in Patients With First Episode of Psychosis: Toward an Integrative Inflammatory Hypothesis of Schizophrenia

    PubMed Central

    García-Bueno, Borja; Bioque, Miquel; Mac-Dowell, Karina S.; Barcones, M. Fe; Leza, Juan C.

    2014-01-01

    Background: Schizophrenia is a chronic syndrome of unknown etiology, predominantly defined by signs of psychosis. The onset of the disorder occurs typically in late adolescence or early adulthood. Efforts to study pathophysiological mechanisms in early stages of the disease are crucial in order to prompt intervention. Methods: Case-control study of first-episode psychotic (FEP) patients and matched controls. We recruited 117 patients during the first year after their FEP according to the DSM-IV criteria and recruited 106 gender-, race-, and age-matched controls between September 2010 and June 2011. Results: Biochemical studies carried out in peripheral mononuclear blood cells (PMBC) and plasma evidence a significant increase in intracellular components of a main proinflammatory pathway, along with a significant decrease in the anti-inflammatory ones. Multivariate logistic regression analyses identified the expression of inducible isoforms of nitric oxide synthase and cyclooxygenase in PMBC and homocysteine plasma levels as the most reliable potential risk factors and the inhibitor of the inflammatory transcription factor NFκB, IκBα, and the anti-inflammatory prostaglandin 15d-PGJ2 as potential protection factors. Discussion: Taken as a whole, the results of this study indicate robust phenotypical differences at the cellular machinery level in PMBC of patients with FEP. Although more scientific evidence is needed, the determination of multiple components of pro- and anti-inflammatory cellular pathways including the activity of nuclear receptors has interesting potential as biological markers and potential risk/protective factors for FEP. Due to its soluble nature, a notable finding in this study is that the anti-inflammatory mediator 15d-PGJ2 might be used as plasmatic biomarker for first episodes of psychosis. PMID:23486748

  8. Protein inhibitor of activated STAT 4 (PIAS4) regulates pro-inflammatory transcription in hepatocytes by repressing SIRT1.

    PubMed

    Sun, Lina; Fan, Zhiwen; Chen, Junliang; Tian, Wenfang; Li, Min; Xu, Huihui; Wu, Xiaoyan; Fang, Mingming; Xia, Jun; Xu, Yong

    2016-07-12

    Excessive nutrition promotes the pathogenesis of non-alcoholic steatohepatitis (NASH), characterized by the accumulation of pro-inflammation mediators in the liver. In the present study we investigated the regulation of pro-inflammatory transcription in hepatocytes by protein inhibitor of activated STAT 4 (PIAS4) in this process and the underlying mechanisms. We report that expression of the class III deacetylase SIRT1 was down-regulated in the livers of NASH mice accompanied by a simultaneous increase in the expression and binding activity of PIAS4. Exposure to high glucose stimulated the expression PIAS4 in cultured hepatocytes paralleling SIRT1 repression. Estrogen, a known NASH-protective hormone, ameliorated SIRT1 trans-repression by targeting PIAS4. Over-expression of PIAS4 enhanced, while PIAS4 knockdown alleviated, repression of SIRT1 transcription by high glucose. Lentiviral delivery of short hairpin RNA (shRNA) targeting PIAS4 attenuated hepatic inflammation in NASH mice by restoring SIRT1 expression. Mechanistically, PIAS4 promoted NF-κB-mediated pro-inflammatory transcription in a SIRT1 dependent manner. In conclusion, our study indicates that PIAS4 mediated SIRT1 repression in response to nutrient surplus contributes to the pathogenesis of NASH. Therefore, targeting PIAS4 might provide novel therapeutic strategies in the intervention of NASH.

  9. BRCA1 and c-Myc associate to transcriptionally repress psoriasin, a DNA damage-inducible gene.

    PubMed

    Kennedy, Richard D; Gorski, Julia J; Quinn, Jennifer E; Stewart, Gail E; James, Colin R; Moore, Stephen; Mulligan, Karl; Emberley, Ethan D; Lioe, Tong F; Morrison, Patrick J; Mullan, Paul B; Reid, George; Johnston, Patrick G; Watson, Peter H; Harkin, D Paul

    2005-11-15

    Evidence is accumulating to suggest that some of the diverse functions associated with BRCA1 may relate to its ability to transcriptionally regulate key downstream target genes. Here, we identify S100A7 (psoriasin), S100A8, and S100A9, members of the S100A family of calcium-binding proteins, as novel BRCA1-repressed targets. We show that functional BRCA1 is required for repression of these family members and that a BRCA1 disease-associated mutation abrogates BRCA1-mediated repression of psoriasin. Furthermore, we show that BRCA1 and c-Myc form a complex on the psoriasin promoter and that BRCA1-mediated repression of psoriasin is dependent on functional c-Myc. Finally, we show that psoriasin expression is induced by the topoisomerase IIalpha poison, etoposide, in the absence of functional BRCA1 and increased psoriasin expression enhances cellular sensitivity to this chemotherapeutic agent. Therefore, we identified a novel transcriptional mechanism that is likely to contribute to BRCA1-mediated resistance to etoposide.

  10. Krüppel Homolog 1 Inhibits Insect Metamorphosis via Direct Transcriptional Repression of Broad-Complex, a Pupal Specifier Gene.

    PubMed

    Kayukawa, Takumi; Nagamine, Keisuke; Ito, Yuka; Nishita, Yoshinori; Ishikawa, Yukio; Shinoda, Tetsuro

    2016-01-22

    The Broad-Complex gene (BR-C) encodes transcription factors that dictate larval-pupal metamorphosis in insects. The expression of BR-C is induced by molting hormone (20-hydroxyecdysone (20E)), and this induction is repressed by juvenile hormone (JH), which exists during the premature larval stage. Krüppel homolog 1 gene (Kr-h1) has been known as a JH-early inducible gene responsible for repression of metamorphosis; however, the functional relationship between Kr-h1 and repression of BR-C has remained unclear. To elucidate this relationship, we analyzed cis- and trans elements involved in the repression of BR-C using a Bombyx mori cell line. In the cells, as observed in larvae, JH induced the expression of Kr-h1 and concurrently suppressed 20E-induced expression of BR-C. Forced expression of Kr-h1 repressed the 20E-dependent activation of the BR-C promoter in the absence of JH, and Kr-h1 RNAi inhibited the JH-mediated repression, suggesting that Kr-h1 controlled the repression of BR-C. A survey of the upstream sequence of BR-C gene revealed a Kr-h1 binding site (KBS) in the BR-C promoter. When KBS was deleted from the promoter, the repression of BR-C was abolished. Electrophoresis mobility shift demonstrated that two Kr-h1 molecules bound to KBS in the BR-C promoter. Based on these results, we conclude that Kr-h1 protein molecules directly bind to the KBS sequence in the BR-C promoter and thereby repress 20E-dependent activation of the pupal specifier, BR-C. This study has revealed a considerable portion of the picture of JH signaling pathways from the reception of JH to the repression of metamorphosis.

  11. Repression of Igf1 expression by Ezh2 prevents basal cell differentiation in the developing lung

    PubMed Central

    Galvis, Laura A.; Holik, Aliaksei Z.; Short, Kieran M.; Pasquet, Julie; Lun, Aaron T. L.; Blewitt, Marnie E.; Smyth, Ian M.; Ritchie, Matthew E.; Asselin-Labat, Marie-Liesse

    2015-01-01

    Epigenetic mechanisms involved in the establishment of lung epithelial cell lineage identities during development are largely unknown. Here, we explored the role of the histone methyltransferase Ezh2 during lung lineage determination. Loss of Ezh2 in the lung epithelium leads to defective lung formation and perinatal mortality. We show that Ezh2 is crucial for airway lineage specification and alveolarization. Using optical projection tomography imaging, we found that branching morphogenesis is affected in Ezh2 conditional knockout mice and the remaining bronchioles are abnormal, lacking terminally differentiated secretory club cells. Remarkably, RNA-seq analysis revealed the upregulation of basal genes in Ezh2-deficient epithelium. Three-dimensional imaging for keratin 5 further showed the unexpected presence of a layer of basal cells from the proximal airways to the distal bronchioles in E16.5 embryos. ChIP-seq analysis indicated the presence of Ezh2-mediated repressive marks on the genomic loci of some but not all basal genes, suggesting an indirect mechanism of action of Ezh2. We found that loss of Ezh2 de-represses insulin-like growth factor 1 (Igf1) expression and that modulation of IGF1 signaling ex vivo in wild-type lungs could induce basal cell differentiation. Altogether, our work reveals an unexpected role for Ezh2 in controlling basal cell fate determination in the embryonic lung endoderm, mediated in part by repression of Igf1 expression. PMID:25790853

  12. MBNL1 and PTB cooperate to repress splicing of Tpm1 exon 3

    PubMed Central

    Gooding, Clare; Edge, Christopher; Lorenz, Mike; Coelho, Miguel B.; Winters, Mikael; Kaminski, Clemens F.; Cherny, Dmitry; Eperon, Ian C.; Smith, Christopher W.J.

    2013-01-01

    Exon 3 of the rat α-tropomyosin (Tpm1) gene is repressed in smooth muscle cells, allowing inclusion of the mutually exclusive partner exon 2. Two key types of elements affect repression of exon 3 splicing: binding sites for polypyrimidine tract-binding protein (PTB) and additional negative regulatory elements consisting of clusters of UGC or CUG motifs. Here, we show that the UGC clusters are bound by muscleblind-like proteins (MBNL), which act as repressors of Tpm1 exon 3. We show that the N-terminal region of MBNL1, containing its four CCCH zinc-finger domains, is sufficient to mediate repression. The same region of MBNL1 can make a direct protein-to-protein interaction with PTB, and RNA binding by MBNL promotes this interaction, apparently by inducing a conformational change in MBNL. Moreover, single molecule analysis showed that MBNL-binding sites increase the binding of PTB to its own sites. Our data suggest that the smooth muscle splicing of Tpm1 is mediated by allosteric assembly of an RNA–protein complex minimally comprising PTB, MBNL and their cognate RNA-binding sites. PMID:23511971

  13. ArgR-dependent repression of arginine and histidine transport genes in Escherichia coli K-12.

    PubMed

    Caldara, Marina; Minh, Phu Nguyen Le; Bostoen, Sophie; Massant, Jan; Charlier, Daniel

    2007-10-19

    In Escherichia coli L-arginine is taken up by three periplasmic binding protein-dependent transport systems that are encoded by two genetic loci: the artPIQM-artJ and argT-hisJQMP gene clusters. The transcription of the artJ, artPIQM and hisJQMP genes and operons is repressed by liganded ArgR, whereas argT, encoding the LAO (lysine, arginine, ornithine) periplasmic binding protein, is insensitive to the repressor. Here we characterize the repressible Esigma70 P artJ, P artP and P hisJ promoters and demonstrate that the cognate operators consist of two 18 bp ARG boxes separated by 3 bp. Determination of the energy landscape of the ArgR-operator contacts by missing contact probing and mutant studies indicated that each box of a pair contributes to complex formation in vitro and to the repressibility in vivo, but to a different extent. The organization of the ARG boxes and promoter elements in the control regions of the uptake genes is distinct from that of the arginine biosynthetic genes. The hisJQMP operon is the first member of the E. coli ArgR regulon, directly repressed by liganded ArgR, where none of the core promoter elements overlaps the ARG boxes. Single round in vitro transcription assays and DNase I footprinting experiments indicate that liganded ArgR inhibits P artJ and P artP promoter activity by steric exclusion of the RNA polymerase. In contrast, ArgR-mediated repression of P hisJ by inhibition of RNA polymerase binding appears to occur through topological changes of the promoter region.

  14. Repression: Finding Our Way in the Maze of Concepts

    PubMed Central

    2007-01-01

    Repression is associated in the literature with terms such as non-expression, emotional control, rationality, anti-emotionality, defensiveness and restraint. Whether these terms are synonymous with repression, indicate a variation, or are essentially different from repression is uncertain. To clarify this obscured view on repression, this paper indicates the similarities and differences between these concepts. Repression is the general term that is used to describe the tendency to inhibit the experience and the expression of negative feelings or unpleasant cognitions in order to prevent one’s positive self-image from being threatened (‘repressive coping style’). The terms self-deception versus other-deception, and socially related versus personally related repression refer to what is considered to be different aspects of repression. Defensiveness is a broader concept that includes both anxious defensiveness and repression; the essential difference is whether negative emotions are reported or not. Concepts that are sometimes associated with repression, but which are conceptually different, are also discussed in this paper: The act of suppression, ‘repressed memories,’ habitual suppression, concealment, type C coping pattern, type D personality, denial, alexithymia and blunting. Consequences for research: (1) When summarizing findings reported in the literature, it is essential to determine which concepts the findings represent. This is rarely made explicit, and failure to do so may lead to drawing the wrong conclusions (2) It is advisable to use scales based on different aspects of repression (3) Whether empirical findings substantiate the similarities and differences between concepts described in this paper will need to be shown. PMID:17653842

  15. The regulation of transcriptional repression in hypoxia.

    PubMed

    Cavadas, Miguel A S; Cheong, Alex; Taylor, Cormac T

    2017-02-20

    A sufficient supply molecular oxygen is essential for the maintenance of physiologic metabolism and bioenergetic homeostasis for most metazoans. For this reason, mechanisms have evolved for eukaryotic cells to adapt to conditions where oxygen demand exceeds supply (hypoxia). These mechanisms rely on the modification of pre-existing proteins, translational arrest and transcriptional changes. The hypoxia inducible factor (HIF; a master regulator of gene induction in response to hypoxia) is responsible for the majority of induced gene expression in hypoxia. However, much less is known about the mechanism(s) responsible for gene repression, an essential part of the adaptive transcriptional response. Hypoxia-induced gene repression leads to a reduction in energy demanding processes and the redirection of limited energetic resources to essential housekeeping functions. Recent developments have underscored the importance of transcriptional repressors in cellular adaptation to hypoxia. To date, at least ten distinct transcriptional repressors have been reported to demonstrate sensitivity to hypoxia. Central among these is the Repressor Element-1 Silencing Transcription factor (REST), which regulates over 200 genes. In this review, written to honor the memory and outstanding scientific legacy of Lorenz Poellinger, we provide an overview of our existing knowledge with respect to transcriptional repressors and their target genes in hypoxia.

  16. Laser Isotope Separation Employing Condensation Repression

    SciTech Connect

    Eerkens, Jeff W.; Miller, William H.

    2004-09-15

    Molecular laser isotope separation (MLIS) techniques using condensation repression (CR) harvesting are reviewed and compared with atomic vapor laser isotope separation (AVLIS), gaseous diffusion (DIF), ultracentrifuges (UCF), and electromagnetic separations (EMS). Two different CR-MLIS or CRISLA (Condensation Repression Isotope Separation by Laser Activation) approaches have been under investigation at the University of Missouri (MU), one involving supersonic super-cooled free jets and dimer formation, and the other subsonic cold-wall condensation. Both employ mixtures of an isotopomer (e.g. {sup i}QF{sub 6}) and a carrier gas, operated at low temperatures and pressures. Present theories of VT relaxation, dimerization, and condensation are found to be unsatisfactory to explain/predict experimental CRISLA results. They were replaced by fundamentally new models that allow ab-initio calculation of isotope enrichments and predictions of condensation parameters for laser-excited and non-excited vapors which are in good agreement with experiment. Because of supersonic speeds, throughputs for free-jet CRISLA are a thousand times higher than cold-wall CRISLA schemes, and thus preferred for large-quantity Uranium enrichments. For small-quantity separations of (radioactive) medical isotopes, the simpler coldwall CRISLA method may be adequate.

  17. Targeting of Polycomb Repressive Complex 2 to RNA by Short Repeats of Consecutive Guanines.

    PubMed

    Wang, Xueyin; Goodrich, Karen J; Gooding, Anne R; Naeem, Haroon; Archer, Stuart; Paucek, Richard D; Youmans, Daniel T; Cech, Thomas R; Davidovich, Chen

    2017-03-16

    Polycomb repressive complex 2 (PRC2) is a histone methyltransferase that trimethylates H3K27, a mark of repressed chromatin. Mammalian PRC2 binds RNA promiscuously, with thousands of target transcripts in vivo. But what does PRC2 recognize in these RNAs? Here we show that purified human PRC2 recognizes G > C,U ≫ A in single-stranded RNA and has a high affinity for folded guanine quadruplex (G4) structures but little binding to duplex RNAs. Importantly, G-tract motifs are significantly enriched among PRC2-binding transcripts in vivo. DNA sequences coding for PRC2-binding RNA motifs are enriched at PRC2-binding sites on chromatin and H3K27me3-modified nucleosomes. Collectively, the abundance of PRC2-binding RNA motifs rationalizes the promiscuous RNA binding of PRC2, and their enrichment at Polycomb target genes provides a means for RNA-mediated regulation.

  18. From Sensorimotor Inhibition to Freudian Repression: Insights from Psychosis Applied to Neurosis

    PubMed Central

    Bazan, Ariane

    2012-01-01

    First, three case studies are presented of psychotic patients having in common an inability to hold something down or out. In line with other theories on psychosis, we propose that a key change is at the efference copy system. Going back to Freud’s mental apparatus, we propose that the messages of discharge of the motor neurons, mobilized to direct perception, also called “indications of reality,” are equivalent to the modern efference copies. With this key, the reading of the cases is coherent with the psychodynamic understanding of psychosis, being a downplay of secondary processes, and consequently, a dominance of primary processes. Moreover, putting together the sensorimotor idea of a failure of efference copy-mediated inhibition with the psychoanalytic idea of a failing repression in psychosis, the hypothesis emerges that the attenuation enabled by the efference copy dynamics is, in some instances, the physiological instantiation of repression. Second, we applied this idea to the mental organization in neurosis. Indeed, the efference copy-mediated attenuation is thought to be the mechanism through which sustained activation of an intention, without reaching it – i.e., inhibition of an action – gives rise to mental imagery. Therefore, as inhibition is needed for any targeted action or for normal language understanding, acting in the world, or processing language, structurally induces mental imagery, constituting a subjective unconscious mental reality. Repression is a special instance of inhibition for emotionally threatening stimuli. These stimuli require stronger inhibition, leaving (the attenuation of) the motor intentions totally unanswered, in order to radically prevent execution which would lead to development of excess affect. This inhibition, then, yields a specific type of motor imagery, called “phantoms,” which induce mental preoccupation, as well as symptoms which, especially through their form, refer to the repressed motor fragments

  19. From sensorimotor inhibition to freudian repression: insights from psychosis applied to neurosis.

    PubMed

    Bazan, Ariane

    2012-01-01

    First, three case studies are presented of psychotic patients having in common an inability to hold something down or out. In line with other theories on psychosis, we propose that a key change is at the efference copy system. Going back to Freud's mental apparatus, we propose that the messages of discharge of the motor neurons, mobilized to direct perception, also called "indications of reality," are equivalent to the modern efference copies. With this key, the reading of the cases is coherent with the psychodynamic understanding of psychosis, being a downplay of secondary processes, and consequently, a dominance of primary processes. Moreover, putting together the sensorimotor idea of a failure of efference copy-mediated inhibition with the psychoanalytic idea of a failing repression in psychosis, the hypothesis emerges that the attenuation enabled by the efference copy dynamics is, in some instances, the physiological instantiation of repression. Second, we applied this idea to the mental organization in neurosis. Indeed, the efference copy-mediated attenuation is thought to be the mechanism through which sustained activation of an intention, without reaching it - i.e., inhibition of an action - gives rise to mental imagery. Therefore, as inhibition is needed for any targeted action or for normal language understanding, acting in the world, or processing language, structurally induces mental imagery, constituting a subjective unconscious mental reality. Repression is a special instance of inhibition for emotionally threatening stimuli. These stimuli require stronger inhibition, leaving (the attenuation of) the motor intentions totally unanswered, in order to radically prevent execution which would lead to development of excess affect. This inhibition, then, yields a specific type of motor imagery, called "phantoms," which induce mental preoccupation, as well as symptoms which, especially through their form, refer to the repressed motor fragments.

  20. Dexamethasone Induces Cardiomyocyte Terminal Differentiation via Epigenetic Repression of Cyclin D2 Gene.

    PubMed

    Gay, Maresha S; Dasgupta, Chiranjib; Li, Yong; Kanna, Angela; Zhang, Lubo

    2016-08-01

    Dexamethasone treatment of newborn rats inhibited cardiomyocyte proliferation and stimulated premature terminal differentiation of cardiomyocytes in the developing heart. Yet mechanisms remain undetermined. The present study tested the hypothesis that the direct effect of glucocorticoid receptor-mediated epigenetic repression of cyclin D2 gene in the cardiomyocyte plays a key role in the dexamethasone-mediated effects in the developing heart. Cardiomyocytes were isolated from 2-day-old rats. Cells were stained with a cardiomyocyte marker α-actinin and a proliferation marker Ki67. Cyclin D2 expression was evaluated by Western blot and quantitative real-time polymerase chain reaction. Promoter methylation of CcnD2 was determined by methylated DNA immunoprecipitation (MeDIP). Overexpression of Cyclin D2 was conducted by transfection of FlexiCcnD2 (+CcnD2) construct. Treatment of cardiomyocytes isolated from newborn rats with dexamethasone for 48 hours significantly inhibited cardiomyocyte proliferation with increased binucleation and decreased cyclin D2 protein abundance. These effects were blocked with Ru486 (mifepristone). In addition, the dexamethasone treatment significantly increased cyclin D2 gene promoter methylation in newborn rat cardiomyocytes. 5-Aza-2'-deoxycytidine inhibited dexamethasone-mediated promoter methylation, recovered dexamethasone-induced cyclin D2 gene repression, and blocked the dexamethasone-elicited effects on cardiomyocyte proliferation and binucleation. In addition, the overexpression of cyclin D2 restored the dexamethasone-mediated inhibition of proliferation and increase in binucleation in newborn rat cardiomyocytes. The results demonstrate that dexamethasone acting on glucocorticoid receptors has a direct effect and inhibits proliferation and stimulates premature terminal differentiation of cardiomyocytes in the developing heart via epigenetic repression of cyclin D2 gene.

  1. MYC-induced apoptosis in mammary epithelial cells is associated with repression of lineage-specific gene signatures

    PubMed Central

    Haikala, Heidi M.; Klefström, Juha; Eilers, Martin; Wiese, Katrin E.

    2016-01-01

    ABSTRACT Apoptosis caused by deregulated MYC expression is a prototype example of intrinsic tumor suppression. However, it is still unclear how supraphysiological MYC expression levels engage specific sets of target genes to promote apoptosis. Recently, we demonstrated that repression of SRF target genes by MYC/MIZ1 complexes limits AKT-dependent survival signaling and contributes to apoptosis induction. Here we report that supraphysiological levels of MYC repress gene sets that include markers of basal-like breast cancer cells, but not luminal cancer cells, in a MIZ1-dependent manner. Furthermore, repressed genes are part of a conserved gene signature characterizing the basal subpopulation of both murine and human mammary gland. These repressed genes play a role in epithelium and mammary gland development and overlap with genes mediating cell adhesion and extracellular matrix organization. Strikingly, acute activation of oncogenic MYC in basal mammary epithelial cells is sufficient to induce luminal cell identity markers. We propose that supraphysiological MYC expression impacts on mammary epithelial cell identity by repressing lineage-specific target genes. Such abrupt cell identity switch could interfere with adhesion-dependent survival signaling and thus promote apoptosis in pre-malignant epithelial tissue. PMID:26873145

  2. Polycomb Repressive Complex 2 Regulates MiR-200b in Retinal Endothelial Cells: Potential Relevance in Diabetic Retinopathy

    PubMed Central

    Ruiz, Michael Anthony; Feng, Biao; Chakrabarti, Subrata

    2015-01-01

    Glucose-induced augmented vascular endothelial growth factor (VEGF) production is a key event in diabetic retinopathy. We have previously demonstrated that downregulation of miR-200b increases VEGF, mediating structural and functional changes in the retina in diabetes. However, mechanisms regulating miR-200b in diabetes are not known. Histone methyltransferase complex, Polycomb Repressive Complex 2 (PRC2), has been shown to repress miRNAs in neoplastic process. We hypothesized that, in diabetes, PRC2 represses miR-200b through its histone H3 lysine-27 trimethylation mark. We show that human retinal microvascular endothelial cells exposed to high levels of glucose regulate miR-200b repression through histone methylation and that inhibition of PRC2 increases miR-200b while reducing VEGF. Furthermore, retinal tissue from animal models of diabetes showed increased expression of major PRC2 components, demonstrating in vivo relevance. This research established a repressive relationship between PRC2 and miR-200b, providing evidence of a novel mechanism of miRNA regulation through histone methylation. PMID:25884496

  3. Norepinephrine causes epigenetic repression of PKCε gene in rodent hearts by activating Nox1-dependent reactive oxygen species production.

    PubMed

    Xiong, Fuxia; Xiao, Daliao; Zhang, Lubo

    2012-07-01

    Heart disease is the leading cause of death in the United States. Recent studies demonstrate that fetal programming of PKCε gene repression results in ischemia-sensitive phenotype in the heart. The present study tests the hypothesis that increased norepinephrine causes epigenetic repression of PKCε gene in the heart via Nox1-dependent reactive oxygen species (ROS) production. Prolonged norepinephrine treatment increased ROS production in fetal rat hearts and embryonic ventricular myocyte H9c2 cells via a selective increase in Nox1 expression. Norepinephrine-induced ROS resulted in an increase in PKCε promoter methylation at Egr-1 and Sp-1 binding sites, leading to PKCε gene repression. N-acetylcysteine, diphenyleneiodonium, and apocynin blocked norepinephrine-induced ROS production and the promoter methylation, and also restored PKCε mRNA and protein to control levels in vivo in fetal hearts and in vitro in embryonic myocyte cells. Accordingly, norepinephrine-induced ROS production, promoter methylation, and PKCε gene repression were completely abrogated by knockdown of Nox1 in cardiomyocytes. These findings provide evidence of a novel interaction between elevated norepinephrine and epigenetic repression of PKCε gene in the heart mediated by Nox1-dependent oxidative stress and suggest new insights of molecular mechanisms linking the heightened sympathetic activity to aberrant cardioprotection and increased ischemic vulnerability in the heart.

  4. Repression of the Antioxidant NRF2 Pathway in Premature Aging.

    PubMed

    Kubben, Nard; Zhang, Weiqi; Wang, Lixia; Voss, Ty C; Yang, Jiping; Qu, Jing; Liu, Guang-Hui; Misteli, Tom

    2016-06-02

    Hutchinson-Gilford progeria syndrome (HGPS) is a rare, invariably fatal premature aging disorder. The disease is caused by constitutive production of progerin, a mutant form of the nuclear architectural protein lamin A, leading, through unknown mechanisms, to diverse morphological, epigenetic, and genomic damage and to mesenchymal stem cell (MSC) attrition in vivo. Using a high-throughput siRNA screen, we identify the NRF2 antioxidant pathway as a driver mechanism in HGPS. Progerin sequesters NRF2 and thereby causes its subnuclear mislocalization, resulting in impaired NRF2 transcriptional activity and consequently increased chronic oxidative stress. Suppressed NRF2 activity or increased oxidative stress is sufficient to recapitulate HGPS aging defects, whereas reactivation of NRF2 activity in HGPS patient cells reverses progerin-associated nuclear aging defects and restores in vivo viability of MSCs in an animal model. These findings identify repression of the NRF2-mediated antioxidative response as a key contributor to the premature aging phenotype.

  5. Carbon catabolite repression in Thermoanaerobacterium saccharolyticum

    PubMed Central

    2012-01-01

    Background The thermophilic anaerobe Thermoanaerobacterium saccharolyticum is capable of directly fermenting xylan and the biomass-derived sugars glucose, cellobiose, xylose, mannose, galactose and arabinose. It has been metabolically engineered and developed as a biocatalyst for the production of ethanol. Results We report the initial characterization of the carbon catabolite repression system in this organism. We find that sugar metabolism in T. saccharolyticum is regulated by histidine-containing protein HPr. We describe a mutation in HPr, His15Asp, that leads to derepression of less-favored carbon source utilization. Conclusion Co-utilization of sugars can be achieved by mutation of HPr in T. saccharolyticum. Further manipulation of CCR in this organism will be instrumental in achieving complete and rapid conversion of all available sugars to ethanol. PMID:23181505

  6. Dream Recall And Repression: Evidence For An Alternative Hypothesis

    ERIC Educational Resources Information Center

    Cohen, David B.; Wolfe, Gary

    1973-01-01

    An "Inner-rejectant" life style committed to repressing dreams has been described in terms of external locus of control, field dependence, and "poor inner life." However, in empirical studies reported here, results do not provide strong support for the (repression) formulation. The results suggest a distinction between life-style variables related…

  7. Hypnotizability as a Function of Repression, Adaptive Regression, and Mood

    ERIC Educational Resources Information Center

    Silver, Maurice Joseph

    1974-01-01

    Forty male undergraduates were assessed in a personality assessment session and a hypnosis session. The personality traits studied were repressive style and adaptive regression, while the transitory variable was mood prior to hypnosis. Hypnotizability was a significant interactive function of repressive style and mood, but not of adaptive…

  8. Polycomb repressive complex 1 provides a molecular explanation for repeat copy number dependency in FSHD muscular dystrophy.

    PubMed

    Casa, Valentina; Runfola, Valeria; Micheloni, Stefano; Aziz, Arif; Dilworth, F Jeffrey; Gabellini, Davide

    2016-12-30

    Repression of repetitive elements is crucial to preserve genome integrity and has been traditionally ascribed to constitutive heterochromatin pathways. FacioScapuloHumeral Muscular Dystrophy (FSHD), one of the most common myopathies, is characterized by a complex interplay of genetic and epigenetic events. The main FSHD form is linked to a reduced copy number of the D4Z4 macrosatellite repeat on 4q35, causing loss of silencing and aberrant expression of the D4Z4-embedded DUX4 gene leading to disease. By an unknown mechanism, D4Z4 copy-number correlates with FSHD phenotype. Here we show that the DUX4 proximal promoter (DUX4p) is sufficient to nucleate the enrichment of both constitutive and facultative heterochromatin components and to mediate a copy-number dependent gene silencing. We found that both the CpG/GC dense DNA content and the repetitive nature of DUX4p arrays are important for their repressive ability. We showed that DUX4p mediates a copy number-dependent Polycomb Repressive Complex 1 (PRC1) recruitment, which is responsible for the copy-number dependent gene repression. Overall, we directly link genetic and epigenetic defects in FSHD by proposing a novel molecular explanation for the copy number-dependency in FSHD pathogenesis, and offer insight into the molecular functions of repeats in chromatin regulation.

  9. CRP represses the CRISPR/Cas system in Escherichia coli: evidence that endogenous CRISPR spacers impede phage P1 replication.

    PubMed

    Yang, Chi-Dung; Chen, Yen-Hua; Huang, Hsi-Yuan; Huang, Hsien-Da; Tseng, Ching-Ping

    2014-06-01

    The CRISPR/Cas system is an important aspect in bacterial immunology. The anti-phage activity of the CRISPR system has been established using synthetic CRISPR spacers, but in vivo studies of endogenous CRISPR spacers are relatively scarce. Here, we showed that bacteriophage P1 titre in Escherichia coli decreased in the glucose-containing medium compared with that in the absence of glucose. This glucose effect of E. coli against phage P1 infection disappeared in cse3 deletion mutants. The effect on the susceptibility to phage P1 was associated with cAMP receptor protein (CRP)-mediated repression of cas genes transcription and crRNA maturation. Analysis of the regulatory element in the cse1 promoter region revealed a novel CRP binding site, which overlapped with a LeuO binding site. Furthermore, the limited sequence identity between endogenous spacers and the phage P1 genome was necessary and sufficient for CRISPR-mediated repression of phage P1 replication. Trans-expression of the third and seventh spacers in the CRISPR I region or third and sixth spacers in the CRISPR II region effectively reduced phage P1 titres in the CRISPR deletion mutants. These results demonstrate a novel regulatory mechanism for cas repression by CRP and provide evidence that endogenous spacers can repress phage P1 replication in E. coli.

  10. Active and Repressive Chromatin-Associated Proteome after MPA Treatment and the Role of Midkine in Epithelial Monolayer Permeability

    PubMed Central

    Khan, Niamat; Lenz, Christof; Binder, Lutz; Pantakani, Dasaradha Venkata Krishna; Asif, Abdul R.

    2016-01-01

    Mycophenolic acid (MPA) is prescribed to maintain allografts in organ-transplanted patients. However, gastrointestinal (GI) complications, particularly diarrhea, are frequently observed as a side effect following MPA therapy. We recently reported that MPA altered the tight junction (TJ)-mediated barrier function in a Caco-2 cell monolayer model system. This study investigates whether MPA induces epigenetic changes which lead to GI complications, especially diarrhea. Methods: We employed a Chromatin Immunoprecipitation-O-Proteomics (ChIP-O-Proteomics) approach to identify proteins associated with active (H3K4me3) as well as repressive (H3K27me3) chromatin histone modifications in MPA-treated cells, and further characterized the role of midkine, a H3K4me3-associated protein, in the context of epithelial monolayer permeability. Results: We identified a total of 333 and 306 proteins associated with active and repressive histone modification marks, respectively. Among them, 241 proteins were common both in active and repressive chromatin, 92 proteins were associated exclusively with the active histone modification mark, while 65 proteins remained specific to repressive chromatin. Our results show that 45 proteins which bind to the active and seven proteins which bind to the repressive chromatin region exhibited significantly altered abundance in MPA-treated cells as compared to DMSO control cells. A number of novel proteins whose function is not known in bowel barrier regulation were among the identified proteins, including midkine. Our functional integrity assays on the Caco-2 cell monolayer showed that the inhibition of midkine expression prior to MPA treatment could completely block the MPA-mediated increase in barrier permeability. Conclusions: The ChIP-O-Proteomics approach delivered a number of novel proteins with potential implications in MPA toxicity. Consequently, it can be proposed that midkine inhibition could be a potent therapeutic approach to prevent the

  11. Promiscuous RNA binding by Polycomb Repressive Complex 2

    PubMed Central

    Davidovich, Chen; Zheng, Leon; Goodrich, Karen J.; Cech, Thomas R.

    2013-01-01

    Polycomb repressive complex-2 (PRC2) is a histone methyltransferase required for epigenetic silencing during development and cancer. Long non-coding RNAs (lncRNAs) recruit PRC2 to chromatin, but the general role of RNA in maintaining repressed chromatin is unknown. Here we measure the binding constant of human PRC2 to various RNAs and find comparable affinity for human lncRNAs targeted by PRC2 and irrelevant transcripts from ciliates and bacteria. PRC2 binding is size-dependent, with lower affinity for shorter RNAs. In vivo, PRC2 predominantly occupies repressed genes; PRC2 is also associated with active genes, but most of these are not regulated by PRC2. These findings support a model in which promiscuous binding of PRC2 to RNA transcripts allows it to scan for target genes that have escaped repression, leading to maintenance of the repressed state. Such RNAs may also provide a decoy for PRC2. PMID:24077223

  12. Forced FOG1 expression in erythroleukemia cells: Induction of erythroid genes and repression of myelo-lymphoid transcription factor PU.1.

    PubMed

    Fujiwara, Tohru; Sasaki, Katsuyuki; Saito, Kei; Hatta, Shunsuke; Ichikawa, Satoshi; Kobayashi, Masahiro; Okitsu, Yoko; Fukuhara, Noriko; Onishi, Yasushi; Harigae, Hideo

    2017-02-16

    The transcription factor GATA-1-interacting protein Friend of GATA-1 (FOG1) is essential for proper transcriptional activation and repression of GATA-1 target genes; yet, the mechanisms by which FOG1 exerts its activating and repressing functions remain unknown. Forced FOG1 expression in human K562 erythroleukemia cells induced the expression of erythroid genes (SLC4A1, globins) but repressed that of GATA-2 and PU.1. A quantitative chromatin immunoprecipitation (ChIP) analysis demonstrated increased GATA-1 chromatin occupancy at both FOG1-activated as well as FOG1-repressed gene loci. However, while TAL1 chromatin occupancy was significantly increased at FOG1-activated gene loci, it was significantly decreased at FOG1-repressed gene loci. When FOG1 was overexpressed in TAL1-knocked down K562 cells, FOG1-mediated activation of HBA, HBG, and SLC4A1 was significantly compromised by TAL1 knockdown, suggesting that FOG1 may require TAL1 to activate GATA-1 target genes. Promoter analysis and quantitative ChIP analysis demonstrated that FOG1-mediated transcriptional repression of PU.1 would be mediated through a GATA-binding element located at its promoter, accompanied by significantly decreased H3 acetylation at lysine 4 and 9 (K4 and K9) as well as H3K4 trimethylation. Our results provide important mechanistic insight into the role of FOG1 in the regulation of GATA-1-regulated genes and suggest that FOG1 has an important role in inducing cells to differentiate toward the erythroid lineage rather than the myelo-lymphoid one by repressing the expression of PU.1.

  13. Repression of hla by rot is dependent on sae in Staphylococcus aureus.

    PubMed

    Li, Dongmei; Cheung, Ambrose

    2008-03-01

    The regulatory locus sae is a two-component system in Staphylococcus aureus that regulates many important virulence factors, including alpha-toxin (encoded by hla) at the transcriptional level. The SarA homologs Rot and SarT were previously shown to be repressors of hla in selected S. aureus backgrounds. To delineate the interaction of rot and sae and the contribution of sarT to hla expression, an assortment of rot and sae isogenic single mutants, a rot sae double mutant, and a rot sae sarT markerless triple mutant were constructed from wild-type strain COL. Using Northern blot analysis and transcriptional reporter gene green fluorescent protein, fusion, and phenotypic assays, we found that the repression of hla by rot is dependent on sae. A rot sae sarT triple mutant was not able to rescue the hla defect of the rot sae double mutant. Among the three sae promoters, the distal sae P3 promoter is the strongest in vitro. Interestingly, the sae P3 promoter activities correlate with hla expression in rot, rot sae, and rot sae sarT mutants of COL. Transcriptional study has also shown that rot repressed sae, especially at the sae P3 promoter. Collectively, our data implicated the importance of sae in the rot-mediated repression of hla in S. aureus.

  14. Derepression and repression of the histidine operon: role of the feedback site of the first enzyme.

    PubMed Central

    Fernández, V M; Martíndelrío, R; Tébar, A R; Guisán, J M; Ballesteros, A O

    1975-01-01

    Thiazolealanine, a false feedback inhibitor, causes transient repression of the his operon previously derepressed by a severe histidine limitation in strains with a wild-type or feedback-hypersensitive first enzyme but not in feedback-resistant mutants. Since experiments reported here clearly demonstrate that thiazolealanine is not transferred to tRNAHis, it is proposed that this "transient repression" is effected through the interaction of thiazolealanine with the feedback site of the enzyme. Experiments in the presence of rifampin indicate that this thiazolealanine-mediated effect is exerted at the level of translation. We conclude that histidine (free), in addition to forming co-repressor, also represses the operon at the level of translation through feedback interaction with the first enzyme of the pathway (adenosine 5'-triphosphate phosphoribosyltransferase). Rates of derepression in feedback-resistant strains are roughly half of those observed in controls, suggesting a positive role played by a first enzyme with a normal but unoccupied feedback site. Some feedback-resistant mutants, in contrast to the wild type, were unable to exhibit derepression under histidine limitation caused by aminotriazole. PMID:1104584

  15. Translational repression by a miniature inverted-repeat transposable element in the 3′ untranslated region

    PubMed Central

    Shen, Jianqiang; Liu, Juhong; Xie, Kabin; Xing, Feng; Xiong, Fang; Xiao, Jinghua; Li, Xianghua; Xiong, Lizhong

    2017-01-01

    Transposable elements constitute a substantial portion of eukaryotic genomes and contribute to genomic variation, function, and evolution. Miniature inverted-repeat transposable elements (MITEs), as DNA transposons, are widely distributed in plant and animal genomes. Previous studies have suggested that retrotransposons act as translational regulators; however, it remains unknown how host mRNAs are influenced by DNA transposons. Here we report a translational repression mechanism mediated by a stowaway-like MITE (sMITE) embedded in the 3′-untranslated region (3′-UTR) of Ghd2, a member of the CCT (CONSTANS [CO], CO-LIKE and TIMING OF CAB1) gene family in rice. Ghd2 regulates important agronomic traits, including grain number, plant height and heading date. Interestingly, the translational repression of Ghd2 by the sMITE mainly relies on Dicer-like 3a (OsDCL3a). Furthermore, other MITEs in the 3′-UTRs of different rice genes exhibit a similar effect on translational repression, thus suggesting that MITEs may exert a general regulatory function at the translational level. PMID:28256530

  16. Glucocorticoid receptor represses proinflammatory genes at distinct steps of the transcription cycle.

    PubMed

    Gupte, Rebecca; Muse, Ginger W; Chinenov, Yurii; Adelman, Karen; Rogatsky, Inez

    2013-09-03

    Widespread anti-inflammatory actions of glucocorticoid hormones are mediated by the glucocorticoid receptor (GR), a ligand-dependent transcription factor of the nuclear receptor superfamily. In conjunction with its corepressor GR-interacting protein-1 (GRIP1), GR tethers to the DNA-bound activator protein-1 and NF-κB and represses transcription of their target proinflammatory cytokine genes. However, these target genes fall into distinct classes depending on the step of the transcription cycle that is rate-limiting for their activation: Some are controlled through RNA polymerase II (PolII) recruitment and initiation, whereas others undergo signal-induced release of paused elongation complexes into productive RNA synthesis. Whether these genes are differentially regulated by GR is unknown. Here we report that, at the initiation-controlled inflammatory genes in primary macrophages, GR inhibited LPS-induced PolII occupancy. In contrast, at the elongation-controlled genes, GR did not affect PolII recruitment or transcription initiation but promoted, in a GRIP1-dependent manner, the accumulation of the pause-inducing negative elongation factor. Consistently, GR-dependent repression of elongation-controlled genes was abolished specifically in negative elongation factor-deficient macrophages. Thus, GR:GRIP1 use distinct mechanisms to repress inflammatory genes at different stages of the transcription cycle.

  17. Drosophila PTB promotes formation of high-order RNP particles and represses oskar translation

    PubMed Central

    Besse, Florence; López de Quinto, Sonia; Marchand, Virginie; Trucco, Alvar; Ephrussi, Anne

    2009-01-01

    Local translation of asymmetrically enriched mRNAs is a powerful mechanism for functional polarization of the cell. In Drosophila, exclusive accumulation of Oskar protein at the posterior pole of the oocyte is essential for development of the future embryo. This is achieved by the formation of a dynamic oskar ribonucleoprotein (RNP) complex regulating the transport of oskar mRNA, its translational repression while unlocalized, and its translational activation upon arrival at the posterior pole. We identified the nucleo–cytoplasmic shuttling protein PTB (polypyrimidine tract-binding protein)/hnRNP I as a new factor associating with the oskar RNP in vivo. While PTB function is largely dispensable for oskar mRNA transport, it is necessary for translational repression of the localizing mRNA. Unexpectedly, a cytoplasmic form of PTB can associate with oskar mRNA and repress its translation, suggesting that nuclear recruitment of PTB to oskar complexes is not required for its regulatory function. Furthermore, PTB binds directly to multiple sites along the oskar 3′ untranslated region and mediates assembly of high-order complexes containing multiple oskar RNA molecules in vivo. Thus, PTB is a key structural component of oskar RNP complexes that dually controls formation of high-order RNP particles and translational silencing. PMID:19131435

  18. IL-7 signalling represses Bcl-6 and the TFH gene program.

    PubMed

    McDonald, Paul W; Read, Kaitlin A; Baker, Chandra E; Anderson, Ashlyn E; Powell, Michael D; Ballesteros-Tato, André; Oestreich, Kenneth J

    2016-01-08

    The transcriptional repressor Bcl-6 is linked to the development of both CD4(+) T follicular helper (TFH) and central memory T (TCM) cells. Here, we demonstrate that in response to decreased IL-2 signalling, T helper 1 (TH1) cells upregulate Bcl-6 and co-initiate TFH- and TCM-like gene programs, including expression of the cytokine receptors IL-6Rα and IL-7R. Exposure of this potentially bi-potent cell population to IL-6 favours the TFH gene program, whereas IL-7 signalling represses TFH-associated genes including Bcl6 and Cxcr5, but not the TCM-related genes Klf2 and Sell. Mechanistically, IL-7-dependent activation of STAT5 contributes to Bcl-6 repression. Importantly, antigen-specific IL-6Rα(+)IL-7R(+) CD4(+) T cells emerge from the effector population at late time points post influenza infection. These data support a novel role for IL-7 in the repression of the TFH gene program and evoke a divergent regulatory mechanism by which post-effector TH1 cells may contribute to long-term cell-mediated and humoral immunity.

  19. Coordinated repression and activation of two transcriptional programs stabilizes cell fate during myogenesis

    PubMed Central

    Ciglar, Lucia; Girardot, Charles; Wilczyński, Bartek; Braun, Martina; Furlong, Eileen E. M.

    2014-01-01

    Molecular models of cell fate specification typically focus on the activation of specific lineage programs. However, the concurrent repression of unwanted transcriptional networks is also essential to stabilize certain cellular identities, as shown in a number of diverse systems and phyla. Here, we demonstrate that this dual requirement also holds true in the context of Drosophila myogenesis. By integrating genetics and genomics, we identified a new role for the pleiotropic transcriptional repressor Tramtrack69 in myoblast specification. Drosophila muscles are formed through the fusion of two discrete cell types: founder cells (FCs) and fusion-competent myoblasts (FCMs). When tramtrack69 is removed, FCMs appear to adopt an alternative muscle FC-like fate. Conversely, ectopic expression of this repressor phenocopies muscle defects seen in loss-of-function lame duck mutants, a transcription factor specific to FCMs. This occurs through Tramtrack69-mediated repression in FCMs, whereas Lame duck activates a largely distinct transcriptional program in the same cells. Lineage-specific factors are therefore not sufficient to maintain FCM identity. Instead, their identity appears more plastic, requiring the combination of instructive repressive and activating programs to stabilize cell fate. PMID:24961800

  20. Global regulator Anr represses PlcH phospholipase activity in Pseudomonas aeruginosa when oxygen is limiting.

    PubMed

    Jackson, Angelyca A; Daniels, Emily F; Hammond, John H; Willger, Sven D; Hogan, Deborah A

    2014-10-01

    Haemolytic phospholipase C (PlcH) is a potent virulence and colonization factor that is expressed at high levels by Pseudomonas aeruginosa within the mammalian host. The phosphorylcholine liberated from phosphatidylcholine and sphingomyelin by PlcH is further catabolized into molecules that both support growth and further induce plcH expression. We have shown previously that the catabolism of PlcH-released choline leads to increased activity of Anr, a global transcriptional regulator that promotes biofilm formation and virulence. Here, we demonstrated the presence of a negative feedback loop in which Anr repressed plcH transcription and we proposed that this regulation allowed for PlcH levels to be maintained in a way that promotes productive host-pathogen interactions. Evidence for Anr-mediated regulation of PlcH came from data showing that growth at low oxygen (1%) repressed PlcH abundance and plcH transcription in the WT, and that plcH transcription was enhanced in an Δanr mutant. The plcH promoter featured an Anr consensus sequence that was conserved across all P. aeruginosa genomes and mutation of conserved nucleotides within the Anr consensus sequence increased plcH expression under hypoxic conditions. The Anr-regulated transcription factor Dnr was not required for this effect. The loss of Anr was not sufficient to completely derepress plcH transcription as GbdR, a positive regulator of plcH, was required for expression. Overexpression of Anr was sufficient to repress plcH transcription even at 21 % oxygen. Anr repressed plcH expression and phospholipase C activity in a cell culture model for P. aeruginosa-epithelial cell interactions.

  1. Heat shock factor-4 (HSF-4a) represses basal transcription through interaction with TFIIF.

    PubMed

    Frejtag, W; Zhang, Y; Dai, R; Anderson, M G; Mivechi, N F

    2001-05-04

    The heat shock transcription factors (HSFs) regulate the expression of heat shock proteins (hsps), which are critical for normal cellular proliferation and differentiation. One of the HSFs, HSF-4, contains two alternative splice variants, one of which possesses transcriptional repressor properties in vivo. This repressor isoform inhibits basal transcription of hsps 27 and 90 in tissue culture cells. The molecular mechanisms of HSF-4a isoform-mediated transcriptional repression is unknown. Here, we present evidence that HSF-4a inhibits basal transcription in vivo when it is artificially targeted to basal promoters via the DNA-binding domain of the yeast transcription factor, GAL4. By using a highly purified, reconstituted in vitro transcription system, we show that HSF-4a represses basal transcription at an early step during preinitiation complex assembly, as pre-assembled preinitiation complexes are refractory to the inhibitory effect on transcription. This repression occurs by the HSF-4a isoform, but not by the HSF-4b isoform, which we show is capable of activating transcription from a heat shock element-driven promoter in vitro. The repression of basal transcription by HSF-4a occurs through interaction with the basal transcription factor TFIIF. TFIIF interacts with a segment of HSF-4a that is required for the trimerization of HSF-4a, and deletion of this segment no longer inhibits basal transcription. These studies suggest that HSF-4a inhibits basal transcription both in vivo and in vitro. Furthermore, this is the first report identifying an interaction between a transcriptional repressor with the basal transcription factor TFIIF.

  2. Molybdenum effector of fumarate reductase repression and nitrate reductase induction in Escherichia coli.

    PubMed Central

    Iuchi, S; Lin, E C

    1987-01-01

    In Escherichia coli the presence of nitrate prevents the utilization of fumarate as an anaerobic electron acceptor. The induction of the narC operon encoding the nitrate reductase is coupled to the repression of the frd operon encoding the fumarate reductase. This coupling is mediated by nitrate as an effector and the narL product as the regulatory protein (S. Iuchi and E. C. C. Lin, Proc. Natl. Acad. Sci. USA 84:3901-3905, 1987). The protein-ligand complex appears to control narC positively but frd negatively. In the present study we found that a molybdenum coeffector acted synergistically with nitrate in the regulation of frd and narC. In chlD mutants believed to be impaired in molybdate transport (or processing), full repression of phi(frd-lac) and full induction of phi(narC-lac) by nitrate did not occur unless the growth medium was directly supplemented with molybdate (1 microM). This requirement was not clearly manifested in wild-type cells, apparently because it was met by the trace quantities of molybdate present as a contaminant in the mineral medium. In chlB mutants, which are known to accumulate the Mo cofactor because of its failure to be inserted as a prosthetic group into proteins such as nitrate reductase, nitrate repression of frd and induction of narC were also intensified by molybdate supplementation. In this case a deficiency of the molybdenum coeffector might have resulted from enhanced feedback inhibition of molybdate transport (or processing) by the elevated level of the unutilized Mo cofactor. In addition, mutations in chlE, which are known to block the synthesis of the organic moiety of the Mo cofactor, lowered the threshold concentration of nitrate (< 1 micromole) necessary for frd repression and narC induction. These changes could be explained simply by the higher intracellular nitrate attainable in cells lacking the ability to destroy the effector. PMID:3301812

  3. Genetic analysis of transcriptional activation and repression in the Tn21 mer operon. [Bacteria

    SciTech Connect

    Ross, W.; Park, S.J.; Summers, A.O. )

    1989-07-01

    Transcription of the Tn21 mercury resistance operon (mer) is controlled by the toxic metal cation Hg(II). This control is mediated by the product of the merR gene, a 144-amino-acid protein which represses transcription of the structural genes (merTPCAD) in the absence of Hg(II) and activates transcription in the presence of Hg(II). We have used a mer-lac transcriptional fusion to obtain regulatory mutants in this metal-responsive system. Some mutants were defective in Hg(II)-induced activation while retaining repression function, others were defective in repression but not activation, and some had lost both functions. Mutations in three of the four cysteine residues of merR resulted in complete loss of Hg(II)-inducible activation but retention of the repressor function. Other lesions adjacent to or very near these cysteines exhibited severely reduced activation and also retained repressor function. There were two putative helix-turn-helix (HTH) domains in merR, and mutants in each had very different phenotypes. A partially dominant mutation in the more amino-terminal region of the two putative HTH regions resulted in loss of both activation and repression, consistent with a role for this region in DNA binding. Mutations in the more centrally located HTH region resulted only in loss of Hg(II)-induced activation. Lesions in the central and in the carboxy-terminal regions of merR exhibited both Hg(II)-independent and Hg(II)-dependent transcriptional activation. The sole cis-acting mutant obtained with this operon fusion strategy, a down-promoter mutation, lies in a highly conserved base in the -35 region of the merTPCAD promoter.

  4. Celastrol Inhibits Tat-mediated Human Immunodeficiency Virus (HIV) Transcription and Replication

    PubMed Central

    Narayan, Vivek; Kodihalli, Ravindra C.; Chiaro, Chris; Cary, Daniele; Aggarwal, Bharat B.; Henderson, Andrew J.; Prabhu, K. Sandeep

    2011-01-01

    Current drugs used for anti-retroviral therapy against HIV have a narrow spectrum of activity, and more often have associated toxicities and severe side effects in addition to developing resistance. Thus, there is a need to develop new therapeutic strategies against HIV/AIDS to complement the already existing ones. Surprisingly, Tat, an early virus encoded protein required for the efficient transcription of the HIV genome, has not been developed as a target for small molecular therapeutics. We have previously described the ability of an endogenous Michael acceptor electrophile (MAE), 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), to inhibit Tat-dependent transcription, by targeting its cysteine (Cys) rich domain. In an effort to identify other MAEs possessing inhibitory activity against HIV-1 Tat, we tested a collection of plant-derived compounds with electrophilic properties, including curcumin, rosmarinic acid, and gambogic acid, for their ability to inhibit Tat. Celastrol (Cel), a triterpenoid MAE isolated from T. wilfordii, exhibited the highest inhibitory activity against Tat. Using biochemical techniques, we demonstrate that Cel by covalently modifying the cysteine thiols inhibits Tat transactivation function. Using circular dichroism (CD) spectroscopy, we show that alklylation of Tat brought about a change in the secondary structure of Tat, which inhibited the transcription elongation of the HIV proviral genome by effecting mechanisms other than Tat-TAR interaction. Our results demonstrate the underlying mechanism of anti-retroviral activity of the plant-derived MAEs, and suggest that Cel could serve as a lead compound to develop novel anti-viral therapeutics. PMID:21763500

  5. Targeted Transcriptional Repression in Bacteria Using CRISPR Interference (CRISPRi).

    PubMed

    Hawkins, John S; Wong, Spencer; Peters, Jason M; Almeida, Ricardo; Qi, Lei S

    2015-01-01

    Clustered regularly interspersed short palindromic repeats (CRISPR) interference (CRISPRi) is a powerful technology for sequence-specifically repressing gene expression in bacterial cells. CRISPRi requires only a single protein and a custom-designed guide RNA for specific gene targeting. In Escherichia coli, CRISPRi repression efficiency is high (~300-fold), and there are no observable off-target effects. The method can be scaled up as a general strategy for the repression of many genes simultaneously using multiple designed guide RNAs. Here we provide a protocol for efficient guide RNA design, cloning, and assay of the CRISPRi system in E. coli. In principle, this protocol can be used to construct CRISPRi systems for gene repression in other species of bacteria.

  6. Human protein tau represses DNA replication in vitro.

    PubMed

    Li, Wen; Wang, Xing Sheng; Qu, M H; Liu, Ying; He, Rong Qiao

    2005-11-30

    Here, in the experiments of both PCR and real-time PCR, a repression of DNA amplification was observed in the presence of protein tau. Furthermore, a strong repression appeared when an in vitro DNA replication assay was performed at the physiological temperature (37 degrees C). The incorporation of dNTP was markedly decreased to approximately 12% of control by the presence of tau23 and to approximately 15% by tau40. In the competitive experiments, the PCR product could be restored when the competitor DNA was added, indicating that the association of tau with the template gave rise to the repression. However, tau did not repress the yield of RNA in transcription, suggesting that tau was replaced or ejected from the template by the elongating T7 RNA polymerase.

  7. Dominant repression by Arabidopsis transcription factor MYB44 causes oxidative damage and hypersensitivity to abiotic stress.

    PubMed

    Persak, Helene; Pitzschke, Andrea

    2014-02-13

    In any living species, stress adaptation is closely linked with major changes of the gene expression profile. As a substrate protein of the rapidly stress-induced mitogen-activated protein kinase MPK3, Arabidopsis transcription factor MYB44 likely acts at the front line of stress-induced re-programming. We recently characterized MYB44 as phosphorylation-dependent positive regulator of salt stress signaling. Molecular events downstream of MYB44 are largely unknown. Although MYB44 binds to the MBSII element in vitro, it has no discernible effect on MBSII-driven reporter gene expression in plant co-transfection assays. This may suggest limited abundance of a synergistic co-regulator. MYB44 carries a putative transcriptional repression (Ethylene responsive element binding factor-associated Amphiphilic Repression, EAR) motif. We employed a dominant repressor strategy to gain insights into MYB44-conferred stress resistance. Overexpression of a MYB44-REP fusion markedly compromised salt and drought stress tolerance--the opposite was seen in MYB44 overexpression lines. MYB44-mediated resistance likely results from induction of tolerance-enhancing, rather than from repression of tolerance-diminishing factors. Salt stress-induced accumulation of destructive reactive oxygen species is efficiently prevented in transgenic MYB44, but accelerated in MYB44-REP lines. Furthermore, heterologous overexpression of MYB44-REP caused tissue collapse in Nicotiana. A mechanistic model of MAPK-MYB-mediated enhancement in the antioxidative capacity and stress tolerance is proposed. Genetic engineering of MYB44 variants with higher trans-activating capacity may be a means to further raise stress resistance in crops.

  8. Ribosome-associated complex and Ssb are required for translational repression induced by polylysine segments within nascent chains.

    PubMed

    Chiabudini, Marco; Conz, Charlotte; Reckmann, Friederike; Rospert, Sabine

    2012-12-01

    When a polyadenylated nonstop transcript is fully translated, a complex consisting of the ribosome, the nonstop mRNA, and the C-terminally polylysine-tagged protein is generated. In Saccharomyces cerevisiae, a 3-step quality control system prevents formation of such dead-end complexes. Nonstop mRNA is rapidly degraded, translation of nonstop mRNA is repressed, and finally, nonstop proteins are cotranslationally degraded. Nonstop mRNA degradation depends on Ski7 and the exosome; nonstop protein degradation depends on the ribosome-bound E3 ligase Ltn1 and the proteasome. However, components which mediate translational repression of nonstop mRNA have previously not been identified. Here we show that the ribosome-bound chaperone system consisting of the ribosome-associated complex (RAC) and the Hsp70 homolog Ssb is required to stabilize translationally repressed ribosome-polylysine protein complexes, without affecting the folding or the degradation of polylysine proteins. As a consequence, in the absence of RAC/Ssb, polylysine proteins escaped translational repression and subsequently folded into their native conformation. This active role of RAC/Ssb in the quality control of polylysine proteins significantly contributed to the low level of expression of nonstop transcripts in vivo.

  9. The Escherichia coli transcriptional regulator MarA directly represses transcription of purA and hdeA.

    PubMed

    Schneiders, Thamarai; Barbosa, Teresa M; McMurry, Laura M; Levy, Stuart B

    2004-03-05

    The Escherichia coli MarA protein mediates a response to multiple environmental stresses through the activation or repression in vivo of a large number of chromosomal genes. Transcriptional activation for a number of these genes has been shown to occur via direct interaction of MarA with a 20-bp degenerate asymmetric "marbox" sequence. It was not known whether repression by MarA was also direct. We found that purified MarA was sufficient in vitro to repress transcription of both purA and hdeA. Transcription and electrophoretic mobility shift experiments in vitro using mutant promoters suggested that the marbox involved in the repression overlapped the -35 promoter motif and was in the "backward" orientation. This organization contrasts with that of the class II promoters activated by MarA, in which the marbox also overlaps the -35 motif but is in the "forward" orientation. We conclude that MarA, a member of the AraC/XylS family, can act directly as a repressor or an activator, depending on the position and orientation of the marbox within a promoter.

  10. Lamin A/C sustains PcG protein architecture, maintaining transcriptional repression at target genes

    PubMed Central

    Cesarini, Elisa; Mozzetta, Chiara; Marullo, Fabrizia; Gregoretti, Francesco; Gargiulo, Annagiusi; Columbaro, Marta; Cortesi, Alice; Antonelli, Laura; Di Pelino, Simona; Squarzoni, Stefano; Palacios, Daniela; Zippo, Alessio; Bodega, Beatrice; Oliva, Gennaro

    2015-01-01

    Beyond its role in providing structure to the nuclear envelope, lamin A/C is involved in transcriptional regulation. However, its cross talk with epigenetic factors—and how this cross talk influences physiological processes—is still unexplored. Key epigenetic regulators of development and differentiation are the Polycomb group (PcG) of proteins, organized in the nucleus as microscopically visible foci. Here, we show that lamin A/C is evolutionarily required for correct PcG protein nuclear compartmentalization. Confocal microscopy supported by new algorithms for image analysis reveals that lamin A/C knock-down leads to PcG protein foci disassembly and PcG protein dispersion. This causes detachment from chromatin and defects in PcG protein–mediated higher-order structures, thereby leading to impaired PcG protein repressive functions. Using myogenic differentiation as a model, we found that reduced levels of lamin A/C at the onset of differentiation led to an anticipation of the myogenic program because of an alteration of PcG protein–mediated transcriptional repression. Collectively, our results indicate that lamin A/C can modulate transcription through the regulation of PcG protein epigenetic factors. PMID:26553927

  11. MiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures.

    PubMed

    Muraoka, Naoto; Yamakawa, Hiroyuki; Miyamoto, Kazutaka; Sadahiro, Taketaro; Umei, Tomohiko; Isomi, Mari; Nakashima, Hanae; Akiyama, Mizuha; Wada, Rie; Inagawa, Kohei; Nishiyama, Takahiko; Kaneda, Ruri; Fukuda, Toru; Takeda, Shu; Tohyama, Shugo; Hashimoto, Hisayuki; Kawamura, Yoshifumi; Goshima, Naoki; Aeba, Ryo; Yamagishi, Hiroyuki; Fukuda, Keiichi; Ieda, Masaki

    2014-07-17

    Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs) by overexpression of cardiac transcription factors or microRNAs. However, induction of functional cardiomyocytes is inefficient, and molecular mechanisms of direct reprogramming remain undefined. Here, we demonstrate that addition of miR-133a (miR-133) to Gata4, Mef2c, and Tbx5 (GMT) or GMT plus Mesp1 and Myocd improved cardiac reprogramming from mouse or human fibroblasts by directly repressing Snai1, a master regulator of epithelial-to-mesenchymal transition. MiR-133 overexpression with GMT generated sevenfold more beating iCMs from mouse embryonic fibroblasts and shortened the duration to induce beating cells from 30 to 10 days, compared to GMT alone. Snai1 knockdown suppressed fibroblast genes, upregulated cardiac gene expression, and induced more contracting iCMs with GMT transduction, recapitulating the effects of miR-133 overexpression. In contrast, overexpression of Snai1 in GMT/miR-133-transduced cells maintained fibroblast signatures and inhibited generation of beating iCMs. MiR-133-mediated Snai1 repression was also critical for cardiac reprogramming in adult mouse and human cardiac fibroblasts. Thus, silencing fibroblast signatures, mediated by miR-133/Snai1, is a key molecular roadblock during cardiac reprogramming.

  12. Cytotype Regulation Facilitates Repression of Hybrid Dysgenesis by Naturally Occurring KP Elements in Drosophila melanogaster

    PubMed Central

    Simmons, Michael J.; Grimes, Craig D.; Czora, Cody S.

    2016-01-01

    P elements inserted in the Telomere Associated Sequences (TAS) at the left end of the X chromosome are determiners of cytotype regulation of the entire P family of transposons. This regulation is mediated by Piwi-interacting (pi) RNAs derived from the telomeric P elements (TPs). Because these piRNAs are transmitted maternally, cytotype regulation is manifested as a maternal effect of the TPs. When a TP is combined with a transgenic P element inserted at another locus, this maternal effect is strengthened. However, when certain TPs are combined with transgenes that contain the small P element known as KP, stronger regulation arises from a zygotic effect of the KP element. This zygotic effect is observed with transgenic KP elements that are structurally intact, as well as with KP elements that are fused to an ancillary promoter from the hsp70 gene. Zygotic regulation by a KP element occurs only when a TP was present in the maternal germ line, and it is more pronounced when the TP was also present in the grand-maternal germ line. However, this regulation does not require zygotic expression of the TP. These observations can be explained if maternally transmitted piRNAs from TPs enable a polypeptide encoded by KP elements to repress P element transposition in zygotes that contain a KP element. In nature, repression by the KP polypeptide may therefore be facilitated by cytotype-mediating piRNAs. PMID:27172198

  13. Cyclin D1 represses peroxisome proliferator-activated receptor alpha and inhibits fatty acid oxidation

    PubMed Central

    Hanse, Eric A.; Mashek, Douglas G.; Mashek, Mara T.; Hendrickson, Anna M.; Mullany, Lisa K.; Albrecht, Jeffrey H.

    2016-01-01

    Cyclin D1 is a cell cycle protein that promotes proliferation by mediating progression through key checkpoints in G1 phase. It is also a proto-oncogene that is commonly overexpressed in human cancers. In addition to its canonical role in controlling cell cycle progression, cyclin D1 affects other aspects of cell physiology, in part through transcriptional regulation. In this study, we find that cyclin D1 inhibits the activity of a key metabolic transcription factor, peroxisome proliferator-activated receptor α (PPARα), a member of nuclear receptor family that induces fatty acid oxidation and may play an anti-neoplastic role. In primary hepatocytes, cyclin D1 inhibits PPARα transcriptional activity and target gene expression in a cdk4-independent manner. In liver and breast cancer cells, knockdown of cyclin D1 leads to increased PPARα transcriptional activity, expression of PPARα target genes, and fatty acid oxidation. Similarly, cyclin D1 depletion enhances binding of PPARα to target sequences by chromatin immunoprecipitation. In proliferating hepatocytes and regenerating liver in vivo, induction of endogenous cyclin D1 is associated with diminished PPARα activity. Cyclin D1 expression is both necessary and sufficient for growth factor-mediated repression of fatty acid oxidation in proliferating hepatocytes. These studies indicate that in addition to playing a pivotal role in cell cycle progression, cyclin D1 represses PPARα activity and inhibits fatty acid oxidation. Our findings establish a new link between cyclin D1 and metabolism in both tumor cells and physiologic hepatocyte proliferation. PMID:27351284

  14. Cyclin D1 represses peroxisome proliferator-activated receptor alpha and inhibits fatty acid oxidation.

    PubMed

    Kamarajugadda, Sushama; Becker, Jennifer R; Hanse, Eric A; Mashek, Douglas G; Mashek, Mara T; Hendrickson, Anna M; Mullany, Lisa K; Albrecht, Jeffrey H

    2016-07-26

    Cyclin D1 is a cell cycle protein that promotes proliferation by mediating progression through key checkpoints in G1 phase. It is also a proto-oncogene that is commonly overexpressed in human cancers. In addition to its canonical role in controlling cell cycle progression, cyclin D1 affects other aspects of cell physiology, in part through transcriptional regulation. In this study, we find that cyclin D1 inhibits the activity of a key metabolic transcription factor, peroxisome proliferator-activated receptor α (PPARα), a member of nuclear receptor family that induces fatty acid oxidation and may play an anti-neoplastic role. In primary hepatocytes, cyclin D1 inhibits PPARα transcriptional activity and target gene expression in a cdk4-independent manner. In liver and breast cancer cells, knockdown of cyclin D1 leads to increased PPARα transcriptional activity, expression of PPARα target genes, and fatty acid oxidation. Similarly, cyclin D1 depletion enhances binding of PPARα to target sequences by chromatin immunoprecipitation. In proliferating hepatocytes and regenerating liver in vivo, induction of endogenous cyclin D1 is associated with diminished PPARα activity. Cyclin D1 expression is both necessary and sufficient for growth factor-mediated repression of fatty acid oxidation in proliferating hepatocytes. These studies indicate that in addition to playing a pivotal role in cell cycle progression, cyclin D1 represses PPARα activity and inhibits fatty acid oxidation. Our findings establish a new link between cyclin D1 and metabolism in both tumor cells and physiologic hepatocyte proliferation.

  15. Lamin A/C sustains PcG protein architecture, maintaining transcriptional repression at target genes.

    PubMed

    Cesarini, Elisa; Mozzetta, Chiara; Marullo, Fabrizia; Gregoretti, Francesco; Gargiulo, Annagiusi; Columbaro, Marta; Cortesi, Alice; Antonelli, Laura; Di Pelino, Simona; Squarzoni, Stefano; Palacios, Daniela; Zippo, Alessio; Bodega, Beatrice; Oliva, Gennaro; Lanzuolo, Chiara

    2015-11-09

    Beyond its role in providing structure to the nuclear envelope, lamin A/C is involved in transcriptional regulation. However, its cross talk with epigenetic factors--and how this cross talk influences physiological processes--is still unexplored. Key epigenetic regulators of development and differentiation are the Polycomb group (PcG) of proteins, organized in the nucleus as microscopically visible foci. Here, we show that lamin A/C is evolutionarily required for correct PcG protein nuclear compartmentalization. Confocal microscopy supported by new algorithms for image analysis reveals that lamin A/C knock-down leads to PcG protein foci disassembly and PcG protein dispersion. This causes detachment from chromatin and defects in PcG protein-mediated higher-order structures, thereby leading to impaired PcG protein repressive functions. Using myogenic differentiation as a model, we found that reduced levels of lamin A/C at the onset of differentiation led to an anticipation of the myogenic program because of an alteration of PcG protein-mediated transcriptional repression. Collectively, our results indicate that lamin A/C can modulate transcription through the regulation of PcG protein epigenetic factors.

  16. Catabolite Repression and Activation in Bacillus subtilis: Dependency on CcpA, HPr, and HprK

    PubMed Central

    Lorca, Graciela L.; Chung, Yong Joon; Barabote, Ravi D.; Weyler, Walter; Schilling, Christophe H.; Saier, Milton H.

    2005-01-01

    Previous studies have suggested that the transcription factor CcpA, as well as the coeffectors HPr and Crh, both phosphorylated by the HprK kinase/phosphorylase, are primary mediators of catabolite repression and catabolite activation in Bacillus subtilis. We here report whole transcriptome analyses that characterize glucose-dependent gene expression in wild-type cells and in isogenic mutants lacking CcpA, HprK, or the HprK phosphorylatable serine in HPr. Binding site identification revealed which genes are likely to be primarily or secondarily regulated by CcpA. Most genes subject to CcpA-dependent regulation are regulated fully by HprK and partially by serine-phosphorylated HPr [HPr(Ser-P)]. A positive linear correlation was noted between the dependencies of catabolite-repressible gene expression on CcpA and HprK, but no such relationship was observed for catabolite-activated genes, suggesting that large numbers of the latter genes are not regulated by the CcpA-HPr(Ser-P) complex. Many genes that mediate nitrogen or phosphorus metabolism as well as those that function in stress responses proved to be subject to CcpA-dependent glucose control. While nitrogen-metabolic genes may be subject to either glucose repression or activation, depending on the gene, almost all glucose-responsive phosphorus-metabolic genes exhibit activation while almost all glucose-responsive stress genes show repression. These responses are discussed from physiological standpoints. These studies expand our appreciation of CcpA-mediated catabolite control and provide insight into potential interregulon control mechanisms in gram-positive bacteria. PMID:16267306

  17. Identification of novel protein targets for modification by 15-deoxy-Delta12,14-prostaglandin J2 in mesangial cells reveals multiple interactions with the cytoskeleton.

    PubMed

    Stamatakis, Konstantinos; Sánchez-Gómez, Francisco J; Pérez-Sala, Dolores

    2006-01-01

    The cyclopentenone prostaglandin 15-deoxy-Delta12,14-PGJ2 (15d-PGJ2) has been shown to display protective effects against renal injury or inflammation. In cultured mesangial cells (MC), 15d-PGJ2 inhibits the expression of proinflammatory genes and modulates cell proliferation. Therefore, cyclopentenone prostaglandins (cyPG) have been envisaged as a promise in the treatment of renal disease. The effects of 15d-PGJ2 may be dependent on or independent from its role as a peroxisome proliferator-activated receptor agonist. It was shown recently that an important determinant for the peroxisome proliferator-activated receptor-independent effects of 15d-PGJ2 is the capacity to modify proteins covalently and alter their function. However, a limited number of protein targets have been identified to date. Herein is shown that a biotinylated derivative of 15d-PGJ2 recapitulates the effects of 15d-PGJ2 on the stress response and inhibition of inducible nitric oxide synthase levels and forms stable adducts with proteins in intact MC. Biotinylated 15d-PGJ2 was then used to identify proteins that potentially are involved in cyPG biologic effects. Extracts from biotinylated 15d-PGJ2-treated MC were separated by two-dimensional electrophoresis, and the spots of interest were analyzed by mass spectrometry. Identified targets include proteins that are regulated by oxidative stress, such as heat-shock protein 90 and nucleoside diphosphate kinase, as well as proteins that are involved in cytoskeletal organization, such as actin, tubulin, vimentin, and tropomyosin. Biotinylated 15d-PGJ2 binding to several targets was confirmed by avidin pull-down. Consistent with these findings, 15d-PGJ2 induced early reorganization of vimentin and tubulin in MC. The cyclopentenone moiety and the presence of cysteine were important for vimentin rearrangement. These studies may contribute to the understanding of the mechanism of action and therapeutic potential of cyPG.

  18. PICKLE acts throughout the plant to repress expression of embryonic traits and may play a role in gibberellin-dependent responses.

    PubMed

    Henderson, Jim T; Li, Hui-Chun; Rider, Stanley Dean; Mordhorst, Andreas P; Romero-Severson, Jeanne; Cheng, Jin-Chen; Robey, Jennifer; Sung, Z Renee; de Vries, Sacco C; Ogas, Joe

    2004-03-01

    A seed marks the transition between two developmental states; a plant is an embryo during seed formation, whereas it is a seedling after emergence from the seed. Two factors have been identified in Arabidopsis that play a role in establishment of repression of the embryonic state: PKL (PICKLE), which codes for a putative CHD3 chromatin remodeling factor, and gibberellin (GA), a plant growth regulator. Previous observations have also suggested that PKL mediates some aspects of GA responsiveness in the adult plant. To investigate possible mechanisms by which PKL and GA might act to repress the embryonic state, we further characterized the ability of PKL and GA to repress embryonic traits and reexamined the role of PKL in mediating GA-dependent responses. We found that PKL acts throughout the seedling to repress expression of embryonic traits. Although the ability of pkl seedlings to express embryonic traits is strongly induced by inhibiting GA biosynthesis, it is only marginally responsive to abscisic acid and SPY (SPINDLY), factors that have previously been demonstrated to inhibit GA-dependent responses during germination. We also observed that pkl plants exhibit the phenotypic hallmarks of a mutation in a positive regulator of a GA response pathway including reduced GA responsiveness and increased synthesis of bioactive GAs. These observations indicate that PKL may mediate a subset of GA-dependent responses during shoot development.

  19. Repression of Smad3 by Stat3 and c-Ski/SnoN induces gefitinib resistance in lung adenocarcinoma.

    PubMed

    Makino, Yojiro; Yoon, Jeong-Hwan; Bae, Eunjin; Kato, Mitsuyasu; Miyazawa, Keiji; Ohira, Tatsuo; Ikeda, Norihiko; Kuroda, Masahiko; Mamura, Mizuko

    2017-03-04

    Cancer-associated inflammation develops resistance to the epidermal growth-factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in non-small cell lung cancers (NSCLCs) harboring oncogenic EGFR mutations. Stat3-mediated interleukin (IL)-6 signaling and Smad-mediated transforming growth factor-β (TGF-β) signaling pathways play crucial regulatory roles in cancer-associated inflammation. However, mechanisms how these pathways regulate sensitivity and resistance to EGFR-TKI in NSCLCs remain largely undetermined. Here we show that signal transducer and activator of transcription (Stat)3 represses Smad3 in synergy with the potent negative regulators of TGF-β signaling, c-Ski and SnoN, whereby renders gefitinib-sensitive HCC827 cells resistant. We found that IL-6 signaling via phosphorylated Stat3 induced gefitinib resistance as repressing transcription of Smad3, whereas TGF-β enhanced gefitinib sensitivity as activating transcription of Smad3 in HCC827 cells with gefitinib-sensitizing EGFR mutation. Promoter analyses showed that Stat3 synergized with c-Ski/SnoN to repress Smad2/3/4-induced transcription of the Smad3 gene. Smad3 was found to be an apoptosis inducer, which upregulated pro-apoptotic genes such as caspase-3 and downregulated anti-apoptotic genes such as Bcl-2. Our results suggest that derepression of Smad3 can be a therapeutic strategy to prevent gefitinib-resistance in NSCLCs with gefitinib-sensitizing EGFR mutation.

  20. Antenatal hypoxia induces epigenetic repression of glucocorticoid receptor and promotes ischemic-sensitive phenotype in the developing heart.

    PubMed

    Xiong, Fuxia; Lin, Thant; Song, Minwoo; Ma, Qingyi; Martinez, Shannalee R; Lv, Juanxiu; MataGreenwood, Eugenia; Xiao, Daliao; Xu, Zhice; Zhang, Lubo

    2016-02-01

    Large studies in humans and animals have demonstrated a clear association of an adverse intrauterine environment with an increased risk of cardiovascular disease later in life. Yet mechanisms remain largely elusive. The present study tested the hypothesis that gestational hypoxia leads to promoter hypermethylation and epigenetic repression of the glucocorticoid receptor (GR) gene in the developing heart, resulting in increased heart susceptibility to ischemia and reperfusion injury in offspring. Hypoxic treatment of pregnant rats from day 15 to 21 of gestation resulted in a significant decrease of GR exon 14, 15, 16, and 17 transcripts, leading to down-regulation of GR mRNA and protein in the fetal heart. Functional cAMP-response elements (CREs) at -4408 and -3896 and Sp1 binding sites at -3425 and -3034 were identified at GR untranslated exon 1 promoters. Hypoxia significantly increased CpG methylation at the CREs and Sp1 binding sites and decreased transcription factor binding to GR exon 1 promoter, accounting for the repression of the GR gene in the developing heart. Of importance, treatment of newborn pups with 5-aza-2'-deoxycytidine reversed hypoxia-induced promoter methylation, restored GR expression and prevented hypoxia-mediated increase in ischemia and reperfusion injury of the heart in offspring. The findings demonstrate a novel mechanism of epigenetic repression of the GR gene in fetal stress-mediated programming of ischemic-sensitive phenotype in the heart.

  1. Antenatal Hypoxia Induces Epigenetic Repression of Glucocorticoid Receptor and Promotes Ischemic-Sensitive Phenotype in the Developing Heart

    PubMed Central

    Xiong, Fuxia; Lin, Thant; Song, Minwoo; Ma, Qingyi; Martinez, Shannalee R.; Lv, Juanxiu; MataGreenwood, Eugenia; Xiao, Daliao; Xu, Zhice; Zhang, Lubo

    2016-01-01

    Large studies in humans and animals have demonstrated a clear association of an adverse intrauterine environment with an increased risk of cardiovascular disease later in life. Yet mechanisms remain largely elusive. The present study tested the hypothesis that gestational hypoxia leads to promoter hypermethylation and epigenetic repression of the glucocorticoid receptor (GR) gene in the developing heart, resulting in increased heart susceptibility to ischemia and reperfusion injury in offspring. Hypoxic treatment of pregnant rats from day 15 to 21 of gestation resulted in a significant decrease of GR exon 14, 15, 16, and 17 transcripts, leading to down-regulation of GR mRNA and protein in the fetal heart. Functional cAMP-response elements (CREs) at −4408 and −3896 and Sp1 binding sites at −3425 and −3034 were identified at GR untranslated exon 1 promoters. Hypoxia significantly increased CpG methylation at the CREs and Sp1 binding sites and decreased transcription factor binding to GR exon 1 promoter, accounting for the repression of the GR gene in the developing heart. Of importance, treatment of newborn pups with 5-aza-2’-deoxycytidine reversed hypoxia-induced promoter methylation, restored GR expression and prevented hypoxia-mediated increase in ischemia and reperfusion injury of the heart in offspring. The findings demonstrate a novel mechanism of epigenetic repression of the GR gene in fetal stress-mediated programming of ischemic-sensitive phenotype in the heart. PMID:26779948

  2. Targeted manipulation of leaf form via local growth repression.

    PubMed

    Malinowski, Robert; Kasprzewska, Ania; Fleming, Andrew J

    2011-06-01

    A classical view is that leaf shape is the result of local promotion of growth linked to cell proliferation. However, an alternative hypothesis is that leaf form is the result of local repression of growth in an otherwise growing system. Here we show that leaf form can indeed be manipulated in a directed fashion by local repression of growth. We show that targeting expression of an inhibitor of a cyclin-dependent kinase (KRP1) to the sinus area of developing leaves of Arabidopsis leads to local growth repression and the formation of organs with extreme lobing, including generation of leaflet-like organs. Directing KRP1 expression to other regions of the leaf using an miRNA target sequence tagging approach also leads to predictable novel leaf forms, and repression of growth in the leaf margin blocks the outgrowth of lobes, leading to a smoother perimeter. In addition, we show that decreased growth around the perimeter and across the leaf abaxial surface leads to a change in 3D form, as predicted by mechanical models of leaf growth. Our analysis provides experimental evidence that local repression of growth influences leaf shape, suggesting that it could be part of the mechanism of morphogenesis in plants in the context of an otherwise growing system.

  3. Percept-genetic signs of repression in histrionic personality disorder.

    PubMed

    Rubino, I A; Saya, A; Pezzarossa, B

    1992-04-01

    Several types of perceptual distortions of two anxiety-arousing visual stimuli are coded as repression in the Defense Mechanism Test, a tachistoscopic, percept-genetic technique. Given the well-established correspondence between hysteria and repression, the study included a clinical validation of these variants of repression against the diagnosis of histrionic personality disorder. 41 subjects with evidence of this disorder on the Millon Clinical Multiaxial Inventory-II were compared with 41 nonhistrionic controls. Significantly more histrionics were coded for the type of repression in which the threatening figure is transformed into a harmless object (code 1:42), while animal- and statue-repressions, when combined (codes 1:1 and 1:2), were significantly more characteristic of the nonhistrionic group. As an unpredicted finding, significantly more histrionic subjects employed defensive strategies, currently coded as reaction formations (code 4:). Histrionic subjects without concomitant compulsive features were coded more frequently for introaggression (code 6:) compared both with nonhistrionic controls and with histrionic-compulsive subjects. The findings are discussed within the context of the available percept-genetic literature. It is suggested that the Defense Mechanism Test may be further employed to objectify and investigate the defense mechanisms of the DSM-III-R disorders.

  4. Salt stress represses production of extracellular proteases in Bacillus pumilus.

    PubMed

    Liu, R F; Huang, C L; Feng, H

    2015-05-11

    Bacillus pumilus is able to secrete subtilisin-like prote-ases, one of which has been purified and characterized biochemically, demonstrating great potential for use in industrial applications. In the current study, the biosynthesis and transcription of extracellular pro-teases in B. pumilus (BA06) under salt stress were investigated using various methods, including a proteolytic assay, zymogram analysis, and real-time PCR. Our results showed that total extracellular proteolytic activity, both in fermentation broth and on milk-containing agar plates, was considerably repressed by salt in a dosage-dependent manner. As Bacillus species usually secret multiple extracellular proteases, a vari-ety of individual extracellular protease encoding genes were selected for real-time PCR analysis. It was shown that proteases encoded by the aprE and aprX genes were the major proteases in the fermentation broth in terms of their transcripts in B. pumilus. Further, transcription of aprE, aprX, and epr genes was indeed repressed by salt stress. In con-trast, transcription of other genes (e.g., vpr and wprA) was not repressed or significantly affected by the salt. Conclusively, salt stress represses total extracellular proteolytic activity in B. pumilus, which can largely be ascribed to suppression of the major protease-encoding genes (aprE, aprX) at the transcriptional level. In contrast, transcription of other pro-tease-encoding genes (e.g., vpr, wprA) was not repressed by salt stress.

  5. Ethical issues in the search for repressed memories.

    PubMed

    Merskey, H

    1996-01-01

    Currently, concepts of repression and dissociation are in flux. It has been pointed out that there is no scientific evidence for the occurrence of repression and that the whole notion is anecdotal. Dissociation, which is offered as an alternative to repression, cannot logically be held to operate without a motive force, as Freud argued, or a weakness of the organism, as Janet proposed. The concepts have been applied particularly to the idea that early childhood experience could be repressed but recovered many years later. This claim is at variance with established knowledge concerning human memory. Practices of subtle and overt suggestion, employed in recovered-memory treatments, give rise to a false-memory syndrome in which individuals, who have undergone various levels of suggestion, accuse their parents and others of childhood sexual abuse. The common phenomenon of childhood sexual abuse is contaminated by many cases that may be regarded on strong grounds as being false and have been retracted in more than 1,000 instances. Repressed-memory (RM) treatment is also at variance with traditional psychotherapy, which does not encourage confrontation on the basis of uncorroborated information; moreover, many cases of RM therapy seem to result in deterioration. Unlike traditional psychotherapy, some RM practitioners strongly encourage patients to hate individuals in their family circle. The consequences of these developments, the need for informed consent, and the development of legislative initiatives to challenge RM therapy are noted. The impact of these therapies and proposed legislation upon regular psychotherapy and psychiatry is outlined.

  6. Mechanism of promoter repression by Lac repressor-DNA loops.

    PubMed

    Becker, Nicole A; Peters, Justin P; Maher, L James; Lionberger, Troy A

    2013-01-07

    The Escherichia coli lactose (lac) operon encodes the first genetic switch to be discovered, and lac remains a paradigm for studying negative and positive control of gene expression. Negative control is believed to involve competition of RNA polymerase and Lac repressor for overlapping binding sites. Contributions to the local Lac repressor concentration come from free repressor and repressor delivered to the operator from remote auxiliary operators by DNA looping. Long-standing questions persist concerning the actual role of DNA looping in the mechanism of promoter repression. Here, we use experiments in living bacteria to resolve four of these questions. We show that the distance dependence of repression enhancement is comparable for upstream and downstream auxiliary operators, confirming the hypothesis that repressor concentration increase is the principal mechanism of repression loops. We find that as few as four turns of DNA can be constrained in a stable loop by Lac repressor. We show that RNA polymerase is not trapped at repressed promoters. Finally, we show that constraining a promoter in a tight DNA loop is sufficient for repression even when promoter and operator do not overlap.

  7. YAP inhibits squamous transdifferentiation of Lkb1-deficient lung adenocarcinoma through ZEB2-dependent DNp63 repression.

    PubMed

    Gao, Yijun; Zhang, Wenjing; Han, Xiangkun; Li, Fuming; Wang, Xujun; Wang, Rui; Fang, Zhaoyuan; Tong, Xinyuan; Yao, Shun; Li, Fei; Feng, Yan; Sun, Yihua; Hou, Yingyong; Yang, Zhongzhou; Guan, Kunliang; Chen, Haiquan; Zhang, Lei; Ji, Hongbin

    2014-08-13

    Whether the Hippo pathway contributes to cell lineage transition under pathological conditions, especially tumorigenesis, remains largely unknown. Here we show that YAP, the major effector of the Hippo pathway, displays a distinct activation pattern in lung adenocarcinoma (ADC) and squamous cell carcinoma (SCC); YAP is initially activated by LKB1 loss in lung ADC, which upregulates ZEB2 expression and represses DNp63 transcription in a default manner. During transdifferentiation, YAP is inactivated, which in turn relieves ZEB2-mediated default repression of DNp63 and triggers squamous differentiation reprogramming. Disruption of the YAP barrier for phenotypic transition significantly accelerates squamous transdifferentiation, whereas constitutive YAP activation conversely inhibits this transition. More importantly, ectopic DNp63 expression rescues the inhibitory effect of YAP on squamous transdifferentiation. These findings have established YAP as an essential barrier for lung cancer cell fate conversion and provided a mechanism for regulating cancer plasticity, which might hold important implication for YAP-targeted therapies.

  8. Human differentiation-related gene NDRG1 is a Myc downstream-regulated gene that is repressed by Myc on the core promoter region.

    PubMed

    Zhang, Jian; Chen, Suning; Zhang, Wei; Zhang, Jing; Liu, Xinping; Shi, Hai; Che, Honglei; Wang, Weizhong; Li, Fuyang; Yao, Libo

    2008-07-01

    N-Myc downstream-regulated gene 1 (ndrg1) is up-regulated in N-Myc knockout mouse embryos. The human NDRG family consists of 4 highly homologous members and human Ndrg1 exhibits approximately 94% homology with mouse ndrg1. However, the regulatory mechanism of NDRG1 via Myc repression is as yet unknown. We previously identified human NDRG2 and demonstrated that this gene is transcriptionally down-regulated by Myc via Miz-1-dependent interaction with the core promoter region of NDRG2. Here, we provide evidence that human NDRG1 is regulated by Myc in a manner similar to NDRG2. We found that Ndrg1 expression levels were enhanced as Myc expression declined in differentiated cells, but were down-regulated following Myc induction. The data revealed that both N-Myc and c-Myc can repress human NDRG1 at the transcriptional level. We further determined that the core promoter region of human NDRG1 is required for Myc repression, and verified the interaction of Myc with the core promoter region. However, the presence of the protein synthesis inhibitor cycloheximide could reverse the repression of Myc, indicating the indirect repression of human NDRG1 by Myc. Moreover, we found that c-Myc-mediated repression can be inhibited by TSA, an HDACs inhibitor, which suggests the involvement of HDACs in the repression process. Taken together, our results demonstrate that, in common with NDRG2, human NDRG1 can be indirectly transcriptionally down-regulated by Myc via interaction with the NDRG1 core promoter.

  9. Histone Deacetylase Activity Represses Gamma Interferon-Inducible HLA-DR Gene Expression following the Establishment of a DNase I-Hypersensitive Chromatin Conformation

    PubMed Central

    Osborne, Aaron; Zhang, Hongquan; Yang, Wen-Ming; Seto, Edward; Blanck, George

    2001-01-01

    Expression of the retinoblastoma tumor suppressor protein (Rb) is required for gamma interferon (IFN-γ)-inducible major histocompatibility complex class II gene expression and transcriptionally productive HLA-DRA promoter occupancy in several human tumor cell lines. Treatment of these Rb-defective tumor cell lines with histone deacetylase (HDAC) inhibitors rescued IFN-γ-inducible HLA-DRA and -DRB mRNA and cell surface protein expression, demonstrating repression of these genes by endogenous cellular HDAC activity. Additionally, Rb-defective, transcriptionally incompetent tumor cells retained the HLA-DRA promoter DNase I-hypersensitive site. Thus, HDAC-mediated repression of the HLA-DRA promoter occurs following the establishment of an apparent nucleosome-free promoter region and before transcriptionally productive occupancy of the promoter by the required transactivators. Repression of HLA-DRA promoter activation by HDAC activity likely involves a YY1 binding element located in the first exon of the HLA-DRA gene. Chromatin immunoprecipitation experiments localized YY1 to the HLA-DRA gene in Rb-defective tumor cells. Additionally, mutation of the YY1 binding site prevented repression of the promoter by HDAC1 and partially prevented activation of the promoter by trichostatin A. Mutation of the octamer element also significantly reduced the ability of HDAC1 to confer repression of inducible HLA-DRA promoter activation. Treatment of Rb-defective tumor cells with HDAC inhibitors greatly reduced the DNA binding activity of Oct-1, a repressor of inducible HLA-DRA promoter activation. These findings represent the first evidence that HDAC activity can repress IFN-γ-inducible HLA class II gene expression and also demonstrate that HDAC activity can contribute to promoter repression following the establishment of a DNase I-hypersensitive chromatin conformation. PMID:11533238

  10. The adenovirus E1A N-terminal repression domain represses transcription from a chromatin template in vitro

    PubMed Central

    Loewenstein, Paul M.; Wu, Shwu-Yuan; Chiang, Cheng-Ming

    2013-01-01

    The adenovirus repression domain of E1A 243R at the E1A N-terminus (E1A 1–80) transcriptionally represses genes involved in differentiation and cell cycle progression. E1A 1–80 represses transcription in vitro from naked DNA templates through its interaction with p300 and TFIID. E1A 1–80 can also interact with several chromatin remodeling factors and associates with chromatin in vivo. We show here that E1A 243R and E1A 1–80 can repress transcription from a reconstituted chromatin template in vitro. Temporal analysis reveals strong repression by E1A 1–80 when added at pre-activation, activation and early transcription stages. Interestingly, E1A 1–80 can greatly enhance transcription from chromatin templates, but not from naked DNA, when added at pre-initiation complex (PIC) formation and transcription-initiation stages. These data reveal a new dimension for E1A 1–80's interface with chromatin and may reflect its interaction with key players in PIC formation, p300 and TFIID, and/or possibly a role in chromatin remodeling. PMID:22521914

  11. The adenovirus E1A N-terminal repression domain represses transcription from a chromatin template in vitro.

    PubMed

    Loewenstein, Paul M; Wu, Shwu-Yuan; Chiang, Cheng-Ming; Green, Maurice

    2012-06-20

    The adenovirus repression domain of E1A 243R at the E1A N-terminus (E1A 1-80) transcriptionally represses genes involved in differentiation and cell cycle progression. E1A 1-80 represses transcription in vitro from naked DNA templates through its interaction with p300 and TFIID. E1A 1-80 can also interact with several chromatin remodeling factors and associates with chromatin in vivo. We show here that E1A 243R and E1A 1-80 can repress transcription from a reconstituted chromatin template in vitro. Temporal analysis reveals strong repression by E1A 1-80 when added at pre-activation, activation and early transcription stages. Interestingly, E1A 1-80 can greatly enhance transcription from chromatin templates, but not from naked DNA, when added at pre-initiation complex (PIC) formation and transcription-initiation stages. These data reveal a new dimension for E1A 1-80's interface with chromatin and may reflect its interaction with key players in PIC formation, p300 and TFIID, and/or possibly a role in chromatin remodeling.

  12. Progesterone and the Repression of Myometrial Inflammation: The Roles of MKP-1 and the AP-1 System

    PubMed Central

    Lei, K.; Georgiou, E. X.; Chen, L.; Yulia, A.; Sooranna, S. R.; Brosens, J. J.; Bennett, P. R.

    2015-01-01

    Progesterone (P4) maintains uterine quiescence during pregnancy and its functional withdrawal is associated with increased prostaglandin synthesis and the onset of labor. In primary human myometrial cells, the glucocorticoid receptor (GR) rather than the P4 receptor mediates P4 antagonism of IL-1β-induced cyclooxygenase-2 (COX-2) expression, the rate-limiting enzyme in prostaglandin synthesis. We now report that P4 also acts via GR to induce MAPK phosphatase (MKP)-1 and knockdown of MKP-1 impairs the ability of P4 to repress IL-1β-dependent COX-2 induction. Microarray analysis revealed that P4 repressed preferentially activator protein-1-responsive genes in response to IL-1β. Consistent with these observations, we found that the ability of P4 to reduce c-Jun activation was lost upon GR as well as MKP-1 knockdown. Interestingly, c-Jun levels in human myometrial cells declined upon GR and MKP-1 knockdown, which suggests the presence of an activator protein-1 feedback loop. This is supported by our observation that c-Jun levels declined after an initial rise in primary myometrial cells treated with phorbol 12-myrisatate 13-acetate, a potent activator of c-Jun N-terminal kinase. Finally, we show that MKP-1 is an intermediate in P4-mediated repression of some but not all IL-1β-responsive genes. For example, P4 repression of IL11 and IRAK3 was maintained upon MKP-1 knockdown. Taken together, the data show that P4 acts via GR to drive MKP-1 expression, which in turn inhibits IL-1β-dependent c-Jun activation and COX-2 expression. PMID:26280733

  13. PTH and Vitamin D Repress DMP1 in Cementoblasts

    PubMed Central

    Wang, L.; Tran, A.B.; Nociti, F.H.; Thumbigere-Math, V.; Foster, B.L.; Krieger, C.C.; Kantovitz, K.R.; Novince, C.M.; Koh, A.J.; McCauley, L.K.; Somerman, M.J.

    2015-01-01

    A complex feedback mechanism between parathyroid hormone (PTH), 1,25(OH)2D3 (1,25D), and fibroblast growth factor 23 (FGF-23) maintains mineral homeostasis, in part by regulating calcium and phosphate absorption/reabsorption. Previously, we showed that 1,25D regulates mineral homeostasis by repressing dentin matrix protein 1 (DMP1) via the vitamin D receptor pathway. Similar to 1,25D, PTH may modulate DMP1, but the underlying mechanism remains unknown. Immortalized murine cementoblasts (OCCM.30), similar to osteoblasts and known to express DMP1, were treated with PTH (1–34). Real-time quantitative polymerase chain reaction (PCR) and Western blot revealed that PTH decreased DMP1 gene transcription (85%) and protein expression (30%), respectively. PTH mediated the downregulation of DMP1 via the cAMP/protein kinase A (PKA) pathway. Immunohistochemistry confirmed the decreased localization of DMP1 in vivo in cellular cementum and alveolar bone of mice treated with a single dose (50 µg/kg) of PTH (1–34). RNA-seq was employed to further identify patterns of gene expression shared by PTH and 1,25D in regulating DMP1, as well as other factors involved in mineral homeostasis. PTH and 1,25D mutually upregulated 36 genes and mutually downregulated 27 genes by ≥2-fold expression (P ≤ 0.05). Many identified genes were linked with the regulation of bone/tooth homeostasis, cell growth and differentiation, calcium signaling, and DMP1 transcription. Validation of RNA-seq results via PCR array confirmed a similar gene expression pattern in response to PTH and 1,25D treatment. Collectively, these results suggest that PTH and 1,25D share complementary effects in maintaining mineral homeostasis by mutual regulation of genes/proteins associated with calcium and phosphate metabolism while also exerting distinct roles on factors modulating mineral metabolism. Furthermore, PTH may modulate phosphate homeostasis by downregulating DMP1 expression via the cAMP/PKA pathway. Targeting

  14. Orphan nuclear receptor small heterodimer partner inhibits transforming growth factor-beta signaling by repressing SMAD3 transactivation.

    PubMed

    Suh, Ji Ho; Huang, Jiansheng; Park, Yun-Yong; Seong, Hyun-A; Kim, Dongwook; Shong, Minho; Ha, Hyunjung; Lee, In-Kyu; Lee, Keesook; Wang, Li; Choi, Hueng-Sik

    2006-12-22

    Orphan nuclear receptor small heterodimer partner (SHP) is an atypical member of the nuclear receptor superfamily; SHP regulates the nuclear receptor-mediated transcription of target genes but lacks a conventional DNA binding domain. In this study, we demonstrate that SHP represses transforming growth factor-beta (TGF-beta)-induced gene expression through a direct interaction with Smad, a transducer of TGF-beta signaling. Transient transfection studies demonstrate that SHP represses Smad3-induced transcription. In vivo and in vitro protein interaction assays revealed that SHP directly interacts with Smad2 and Smad3 but not with Smad4. Mapping of domains mediating the interaction between SHP and Smad3 showed that the entire N-terminal domain (1-159 amino acids) of SHP and the linker domain of Smad3 are involved in this interaction. In vitro glutathione S-transferase pulldown competition experiments revealed the SHP-mediated repression of Smad3 transactivation through competition with its co-activator p300. SHP also inhibits the activation of endogenous TGF-beta-responsive gene promoters, the p21, Smad7, and plasminogen activator inhibitor-1 (PAI-1) promoters. Moreover, adenovirus-mediated overexpression of SHP decreases PAI-1 mRNA levels, and down-regulation of SHP by a small interfering RNA increases both the transactivation of Smad3 and the PAI-1 mRNA levels. Finally, the PAI-1 gene is expressed in SHP(-/-) mouse hepatocytes at a higher level than in normal hepatocytes. Taken together, these data indicate that SHP is a novel co-regulator of Smad3, and this study provides new insights into regulation of TGF-beta signaling.

  15. Glucose repression of lactose/galactose metabolism in Kluyveromyces lactis is determined by the concentration of the transcriptional activator LAC9 (K1GAL4) [corrected

    PubMed Central

    Zachariae, W; Kuger, P; Breunig, K D

    1993-01-01

    In the budding yeast Kluyveromyces lactis glucose repression of genes involved in lactose and galactose metabolism is primarily mediated by LAC9 (or K1GAL4) the homologue of the well-known Saccharomyces cerevisiae transcriptional activator GAL4. Phenotypic difference in glucose repression existing between natural strains are due to differences in the LAC9 gene (Breunig, 1989, Mol.Gen.Genet. 261, 422-427). Comparison between the LAC9 alleles of repressible and non-repressible strains revealed that the phenotype is a result of differences in LAC9 gene expression. A two-basepair alteration in the LAC9 promoter region produces a promoter-down effect resulting in slightly reduced LAC9 protein levels under all growth conditions tested. In glucose/galactose medium any change in LAC9 expression drastically affects expression of LAC9 controlled genes e.g. those encoding beta-galactosidase or galactokinase revealing a strong dependence of the kinetics of induction on the LAC9 concentration. We propose that in tightly repressible strains the activator concentration drops below a critical threshold that is required for induction to occur. A model is presented to explain how small differences in activator levels are amplified to produce big changes in expression levels of metabolic genes. Images PMID:8441621

  16. Foxk proteins repress the initiation of starvation-induced atrophy and autophagy programs.

    PubMed

    Bowman, Christopher John; Ayer, Donald E; Dynlacht, Brian David

    2014-12-01

    Autophagy is the primary catabolic process triggered in response to starvation. Although autophagic regulation within the cytosolic compartment is well established, it is becoming clear that nuclear events also regulate the induction or repression of autophagy. Nevertheless, a thorough understanding of the mechanisms by which sequence-specific transcription factors modulate expression of genes required for autophagy is lacking. Here, we identify Foxk proteins (Foxk1 and Foxk2) as transcriptional repressors of autophagy in muscle cells and fibroblasts. Interestingly, Foxk1/2 serve to counter-balance another forkhead transcription factor, Foxo3, which induces an overlapping set of autophagic and atrophic targets in muscle. Foxk1/2 specifically recruits Sin3A-HDAC complexes to restrict acetylation of histone H4 and expression of critical autophagy genes. Remarkably, mTOR promotes the transcriptional activity of Foxk1 by facilitating nuclear entry to specifically limit basal levels of autophagy in nutrient-rich conditions. Our study highlights an ancient, conserved mechanism whereby nutritional status is interpreted by mTOR to restrict autophagy by repressing essential autophagy genes through Foxk-Sin3-mediated transcriptional control.

  17. An epigenetic switch ensures transposon repression upon dynamic loss of DNA methylation in embryonic stem cells

    PubMed Central

    Walter, Marius; Teissandier, Aurélie; Pérez-Palacios, Raquel; Bourc'his, Déborah

    2016-01-01

    DNA methylation is extensively remodeled during mammalian gametogenesis and embryogenesis. Most transposons become hypomethylated, raising the question of their regulation in the absence of DNA methylation. To reproduce a rapid and extensive demethylation, we subjected mouse ES cells to chemically defined hypomethylating culture conditions. Surprisingly, we observed two phases of transposon regulation. After an initial burst of de-repression, various transposon families were efficiently re-silenced. This was accompanied by a reconfiguration of the repressive chromatin landscape: while H3K9me3 was stable, H3K9me2 globally disappeared and H3K27me3 accumulated at transposons. Interestingly, we observed that H3K9me3 and H3K27me3 occupy different transposon families or different territories within the same family, defining three functional categories of adaptive chromatin responses to DNA methylation loss. Our work highlights that H3K9me3 and, most importantly, polycomb-mediated H3K27me3 chromatin pathways can secure the control of a large spectrum of transposons in periods of intense DNA methylation change, ensuring longstanding genome stability. DOI: http://dx.doi.org/10.7554/eLife.11418.001 PMID:26814573

  18. Histone demethylase Lsd1 represses hematopoietic stem and progenitor cell signatures during blood cell maturation

    PubMed Central

    Kerenyi, Marc A; Shao, Zhen; Hsu, Yu-Jung; Guo, Guoji; Luc, Sidinh; O'Brien, Kassandra; Fujiwara, Yuko; Peng, Cong; Nguyen, Minh; Orkin, Stuart H

    2013-01-01

    Here, we describe that lysine-specific demethylase 1 (Lsd1/KDM1a), which demethylates histone H3 on Lys4 or Lys9 (H3K4/K9), is an indispensible epigenetic governor of hematopoietic differentiation. Integrative genomic analysis, combining global occupancy of Lsd1, genome-wide analysis of its substrates H3K4 monomethylation and dimethylation, and gene expression profiling, reveals that Lsd1 represses hematopoietic stem and progenitor cell (HSPC) gene expression programs during hematopoietic differentiation. We found that Lsd1 acts at transcription start sites, as well as enhancer regions. Loss of Lsd1 was associated with increased H3K4me1 and H3K4me2 methylation on HSPC genes and gene derepression. Failure to fully silence HSPC genes compromised differentiation of hematopoietic stem cells as well as mature blood cell lineages. Collectively, our data indicate that Lsd1-mediated concurrent repression of enhancer and promoter activity of stem and progenitor cell genes is a pivotal epigenetic mechanism required for proper hematopoietic maturation. DOI: http://dx.doi.org/10.7554/eLife.00633.001 PMID:23795291

  19. Foxk proteins repress the initiation of starvation-induced atrophy and autophagy programs

    PubMed Central

    Bowman, Christopher John; Ayer, Donald E.; Dynlacht, Brian David

    2014-01-01

    Summary Autophagy is the primary catabolic process triggered in response to starvation. Although autophagic regulation within the cytosolic compartment is well established, it is becoming clear that nuclear events also regulate the induction or repression of autophagy. Nevertheless, a thorough understanding of the mechanisms by which sequence-specific transcription factors modulate expression of genes required for autophagy is lacking. Here, we identify Foxk proteins (Foxk1 and Foxk2) as transcriptional repressors of autophagy in muscle cells and fibroblasts. Interestingly, Foxk1/2 serve to counter-balance another forkhead transcription factor, Foxo3, which induces an overlapping set of autophagic and atrophic targets in muscle. Foxk1/2 specifically recruits Sin3A-HDAC complexes to restrict acetylation of histone H4 and expression of critical autophagy genes. Remarkably, mTOR promotes the transcriptional activity of Foxk1 by facilitating nuclear entry to specifically limit basal levels of autophagy in nutrient-rich conditions. Our study highlights an ancient, conserved mechanism whereby nutritional status is interpreted by mTOR to restrict autophagy by repressing essential autophagy genes via Foxk-Sin3-mediated transcriptional control. PMID:25402684

  20. Chromatin assembly factor CAF-1 represses priming of plant defence response genes.

    PubMed

    Mozgová, Iva; Wildhaber, Thomas; Liu, Qinsong; Abou-Mansour, Eliane; L'Haridon, Floriane; Métraux, Jean-Pierre; Gruissem, Wilhelm; Hofius, Daniel; Hennig, Lars

    2015-09-01

    Plants have evolved efficient defence systems against pathogens that often rely on specific transcriptional responses. Priming is part of the defence syndrome, by establishing a hypersensitive state of defence genes such as after a first encounter with a pathogen. Because activation of defence responses has a fitness cost, priming must be tightly controlled to prevent spurious activation of defence. However, mechanisms that repress defence gene priming are poorly understood. Here, we show that the histone chaperone CAF-1 is required to establish a repressed chromatin state at defence genes. Absence of CAF-1 results in spurious activation of a salicylic acid-dependent pathogen defence response in plants grown under non-sterile conditions. Chromatin at defence response genes in CAF-1 mutants under non-inductive (sterile) conditions is marked by low nucleosome occupancy and high H3K4me3 at transcription start sites, resembling chromatin in primed wild-type plants. We conclude that CAF-1-mediated chromatin assembly prevents the establishment of a primed state that may under standard non-sterile growth conditions result in spurious activation of SA-dependent defence responses and consequential reduction of plant vigour.

  1. SUMOylation regulates the transcriptional repression activity of FOG-2 and its association with GATA-4.

    PubMed

    Perdomo, José; Jiang, Xing-Mai; Carter, Daniel R; Khachigian, Levon M; Chong, Beng H

    2012-01-01

    Friend of GATA 2 (FOG-2), a co-factor of several GATA transcription factors (GATA-4, -5 and 6), is a critical regulator of coronary vessel formation and heart morphogenesis. Here we demonstrate that FOG-2 is SUMOylated and that this modification modulates its transcriptional activity. FOG-2 SUMOylation occurs at four lysine residues (K324, 471, 915, 955) [corrected]. Three of these residues are part of the characteristic SUMO consensus site (ψKXE), while K955 is found in the less frequent TKXE motif. Absence of SUMOylation did not affect FOG-2's nuclear localization. However, mutation of the FOG-2 SUMOylation sites, or de-SUMOylation, with SENP-1 or SENP-8 resulted in stronger transcriptional repression activity in both heterologous cells and cardiomyocytes. Conversely, increased FOG-2 SUMOylation by overexpression of SUMO-1 or expression of a SUMO-1-FOG-2 fusion protein rendered FOG-2 incapable of repressing GATA-4-mediated activation of the B-type natriuretic peptide (BNP) promoter. Moreover, we demonstrate both increased interaction between a FOG-2 SUMO mutant and GATA-4 and enhanced SUMOylation of wild-type FOG-2 by co-expression of GATA-4. These data suggest a new dynamics in which GATA-4 may alter the activity of FOG-2 by influencing its SUMOylation status.

  2. BMI-1 promotes Ewing sarcoma tumorigenicity independent of CDKN2A-repression

    PubMed Central

    Douglas, Dorothea; Hsu, Jessie Hao-Ru; Hung, Long; Cooper, Aaron; Abdueva, Diana; van Doorninck, John; Peng, Grace; Shimada, Hiro; Triche, Timothy J.; Lawlor, Elizabeth R.

    2008-01-01

    Deregulation of the polycomb group gene BMI-1 is implicated in the pathogenesis of many human cancers. In this study, we have investigated if the Ewing's Sarcoma Family of Tumors (ESFT) express BMI-1 and whether it functions as an oncogene in this highly aggressive group of bone and soft tissue tumors. Our data show that BMI-1 is highly expressed by ESFT cells and that, although it does not significantly affect proliferation or survival, BMI-1 actively promotes anchorage independent growth in vitro and tumorigenicity in vivo. Moreover, we find that BMI-1 promotes the tumorigenicity of both p16-wild type and p16-null cell lines demonstrating that the mechanism of BMI-1 oncogenic function in ESFT is, at least in part, independent of CDKN2A repression. Expression profiling studies of ESFT cells following BMI-1 knockdown reveal that BMI-1 regulates the expression of hundreds of downstream target genes including, in particular, genes involved in both differentiation and development as well as cell:cell and cell:matrix adhesion. Gain and loss of function assays confirm that BMI-1 represses expression of the adhesion-associated basement membrane protein nidogen 1. In addition, while BMI-1 promotes ESFT adhesion, nidogen 1 inhibits cellular adhesion in vitro. Together these data support a pivotal role for BMI-1 ESFT pathogenesis and suggest that its oncogenic function in these tumors is in part mediated through modulation of adhesion pathways. PMID:18701473

  3. Fibroblast growth factor 10 represses premature cell differentiation during establishment of the intestinal progenitor niche.

    PubMed

    Nyeng, Pia; Bjerke, Maureen Ann; Norgaard, Gitte Anker; Qu, Xiaoling; Kobberup, Sune; Jensen, Jan

    2011-01-01

    Spatio-temporal regulation of the balance between cell renewal and cell differentiation is of vital importance for embryonic development and adult homeostasis. Fibroblast growth factor signaling relayed from the mesenchyme to the epithelium is necessary for progenitor maintenance during organogenesis of most endoderm-derived organs, but it is still ambiguous whether the signal is exclusively mitogenic. Furthermore, the downstream mechanisms are largely unknown. In order to elucidate these questions we performed a complementary analysis of fibroblast growth factor 10 (Fgf10), gain-of-function and loss-of-function in the embryonic mouse duodenum, where the progenitor niche is clearly defined and differentiation proceeds in a spatially organized manner. In agreement with a role in progenitor maintenance, FGF10 is expressed in the duodenal mesenchyme during early development while the cognate receptor FGFR2b is expressed in the epithelial progenitor niche. Fgf10 gain-of-function in the epithelium leads to spatial expansion of the progenitor niche and repression of cell differentiation, while loss-of-function results in premature cell differentiation and subsequent epithelial hypoplasia. We conclude that FGF10 mediated mesenchymal-to-epithelial signaling maintains the progenitor niche in the embryonic duodenum primarily by repressing cell differentiation, rather than through mitogenic signaling. Furthermore, we demonstrate that FGF10-signaling targets include ETS-family transcription factors, which have previously been shown to regulate epithelial maturation and tumor progression.

  4. Repression of cell proliferation by miR319-regulated TCP4.

    PubMed

    Schommer, Carla; Debernardi, Juan M; Bresso, Edgardo G; Rodriguez, Ramiro E; Palatnik, Javier F

    2014-10-01

    Leaf development has been extensively studied on a genetic level. However, little is known about the interplay between the developmental regulators and the cell cycle machinery--a link that ultimately affects leaf form and size. miR319 is a conserved microRNA that regulates TCP transcription factors involved in multiple developmental pathways, including leaf development and senescence, organ curvature, and hormone biosynthesis and signaling. Here, we analyze the participation of TCP4 in the control of cell proliferation. A small increase in TCP4 activity has an immediate impact on leaf cell number, by significantly reducing cell proliferation. Plants with high TCP4 levels have a strong reduction in the expression of genes known to be active in G2-M phase of the cell cycle. Part of these effects is mediated by induction of miR396, which represses Growth-Regulating Factor (GRF) transcription factors. Detailed analysis revealed TCP4 to be a direct regulator of MIR396b. However, we found that TCP4 can control cell proliferation through additional pathways, and we identified a direct connection between TCP4 and ICK1/KRP1, a gene involved in the progression of the cell cycle. Our results show that TCP4 can activate different pathways that repress cell proliferation.

  5. CHES1/FOXN3 regulates cell proliferation by repressing PIM2 and protein biosynthesis.

    PubMed

    Huot, Geneviève; Vernier, Mathieu; Bourdeau, Véronique; Doucet, Laurent; Saint-Germain, Emmanuelle; Gaumont-Leclerc, Marie-France; Moro, Alejandro; Ferbeyre, Gerardo

    2014-03-01

    The expression of the forkhead transcription factor checkpoint suppressor 1 (CHES1), also known as FOXN3, is reduced in many types of cancers. We show here that CHES1 decreases protein synthesis and cell proliferation in tumor cell lines but not in normal fibroblasts. Conversely, short hairpin RNA-mediated depletion of CHES1 increases tumor cell proliferation. Growth suppression depends on the CHES1 forkhead DNA-binding domain and correlates with the nuclear localization of CHES1. CHES1 represses the expression of multiple genes, including the kinases PIM2 and DYRK3, which regulate protein biosynthesis, and a number of genes in cilium biogenesis. CHES1 binds directly to the promoter of PIM2, and in cells expressing CHES1 the levels of PIM2 are reduced, as well as the phosphorylation of the PIM2 target 4EBP1. Overexpression of PIM2 or eIF4E partially reverses the antiproliferative effect of CHES1, indicating that PIM2 and protein biosynthesis are important targets of the antiproliferative effect of CHES1. In several human hematopoietic cancers, CHES1 and PIM2 expressions are inversely correlated, suggesting that repression of PIM2 by CHES1 is clinically relevant.

  6. Yeast nitrogen catabolite repression is sustained by signals distinct from glutamine and glutamate reservoirs.

    PubMed

    Fayyad-Kazan, Mohammad; Feller, A; Bodo, E; Boeckstaens, M; Marini, A M; Dubois, E; Georis, I

    2016-01-01

    Nitrogen catabolite repression (NCR) is a wide transcriptional regulation program enabling baker's yeast to downregulate genes involved in the utilization of poor nitrogen sources when preferred ones are available. Nowadays, glutamine and glutamate, the major nitrogen donors for biosyntheses, are assumed to be key metabolic signals regulating NCR. NCR is controlled by the conserved TORC1 complex, which integrates nitrogen signals among others to regulate cell growth. However, accumulating evidence indicate that the TORC1-mediated control of NCR is only partial, arguing for the existence of supplementary regulatory processes to be discovered. In this work, we developed a genetic screen to search for new players involved in NCR signaling. Our data reveal that the NADP-glutamate dehydrogenase activity of Gdh1 negatively regulates NCR-sensitive gene transcription. By determining the total, cytoplasmic and vacuolar pools of amino acids, we show that there is no positive correlation between glutamine/glutamate reservoirs and the extent of NCR. While our data indicate that glutamine could serve as initial trigger of NCR, they show that it is not a sufficient signal to sustain repression and point to the existence of yet unknown signals. Providing additional evidence uncoupling TORC1 activity and NCR, our work revisits the dogmas underlying NCR regulation.

  7. Runx1 repression by histone deacetylation is critical for Setbp1-induced mouse myeloid leukemia development

    PubMed Central

    Vishwakarma, Bandana A.; Nguyen, Nhu; Makishima, Hideki; Hosono, Naoko; Gudmundsson, Kristbjorn O.; Negi, Vijay; Oakley, Kevin; Han, Yufen; Przychodzen, Bartlomiej; Maciejewski, Jaroslaw P.; Du, Yang

    2015-01-01

    Abnormal activation of SETBP1 through overexpression or missense mutations is highly recurrent in various myeloid malignancies; however, it is unclear whether such activation alone is able to induce leukemia development. Here we show that Setbp1 overexpression in mouse bone marrow progenitors through retroviral transduction is capable of initiating leukemia development in irradiated recipient mice. Before leukemic transformation, Setbp1 overexpression significantly enhances the self-renewal of hematopoietic stem cells (HSCs) and expands granulocyte macrophage progenitors (GMPs). Interestingly, Setbp1 overexpression also causes transcriptional repression of critical hematopoiesis regulator gene Runx1 and this effect is crucial for Setbp1-induced transformation. Runx1 repression is induced by Setbp1-mediated recruitment of a nucleosome remodeling deacetylase (NuRD) complex to Runx1 promoters and can be reversed by treatment with histone deacetylase (HDAC) inhibitors Entinostat and Vorinostat. Moreover, treatment with these inhibitors caused efficient differentiation of Setbp1 activation-induced leukemia cells in vitro, and significantly extended the survival of mice transplanted with such leukemias, suggesting that HDAC inhibition could be an effective strategy for treating myeloid malignancies with SETBP1 activation. PMID:26205084

  8. Transduction of RNA-directed DNA methylation signals to repressive histone marks in Arabidopsis thaliana.

    PubMed

    Numa, Hisataka; Kim, Jong-Myong; Matsui, Akihiro; Kurihara, Yukio; Morosawa, Taeko; Ishida, Junko; Mochizuki, Yoshiki; Kimura, Hiroshi; Shinozaki, Kazuo; Toyoda, Tetsuro; Seki, Motoaki; Yoshikawa, Manabu; Habu, Yoshiki

    2010-01-20

    RNA-directed modification of histones is essential for the maintenance of heterochromatin in higher eukaryotes. In plants, cytosine methylation is an additional factor regulating inactive chromatin, but the mechanisms regulating the coexistence of cytosine methylation and repressive histone modification remain obscure. In this study, we analysed the mechanism of gene silencing mediated by MORPHEUS' MOLECULE1 (MOM1) of Arabidopsis thaliana. Transcript profiling revealed that the majority of up-regulated loci in mom1 carry sequences related to transposons and homologous to the 24-nt siRNAs accumulated in wild-type plants that are the hallmarks of RNA-directed DNA methylation (RdDM). Analysis of a single-copy gene, SUPPRESSOR OF drm1 drm2 cmt3 (SDC), revealed that mom1 activates SDC with concomitant reduction of di-methylated histone H3 lysine 9 (H3K9me2) at the tandem repeats in the promoter region without changes in siRNA accumulation and cytosine methylation. The reduction of H3K9me2 is not observed in regions flanking the tandem repeats. The results suggest that MOM1 transduces RdDM signals to repressive histone modification in the core region of RdDM.

  9. Cyclopentenone prostaglandin, 15-deoxy-Delta12,14-PGJ2, is metabolized by HepG2 cells via conjugation with glutathione.

    PubMed

    Brunoldi, Enrico M; Zanoni, Giuseppe; Vidari, Giovanni; Sasi, Soumya; Freeman, Michael L; Milne, Ginger L; Morrow, Jason D

    2007-10-01

    15-deoxy-Delta12,14-prostaglandin J2 (15-d-PGJ2) is a dehydration product of PGD2. This compound possesses a highly reactive polyunsaturated carbonyl moiety that is a substrate for Michael addition with thiol-containing biomolecules such as glutathione and cysteine residues on proteins. By reacting with glutathione and proteins, 15-d-PGJ2 is believed to exert potent biological activity. Despite the large number of publications that have ascribed bioactivity to this molecule, it is not known to what extent 15-d-PGJ2 is formed in vivo. Levels of free 15-d-PGJ2 measured in human biological fluids such as urine are low, and the biological importance of this compound has thus been questioned. Because of its reactivity, we hypothesized that 15-d-PGJ2 is present in vivo primarily as a Michael conjugate. Therefore, we undertook a detailed study of the metabolism of this compound in HepG2 cells that are known to metabolize other cyclopentenone eicosanoids. We report that HepG2 cells primarily convert 15-d-PGJ2 to a glutathione conjugate in which the carbonyl at C-11 is reduced to a hydroxyl. Subsequently, the glutathione portion of the molecule is hydrolyzed with loss of glutamic acid and glycine resulting in a cysteine conjugate. These findings confirm a general route for the metabolism of cyclopentenone eicosanoids in HepG2 cells and may pave the way for new insights regarding the formation of 15-d-PGJ2 in vivo.

  10. Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA.

    PubMed

    Heo, Jae Bok; Sung, Sibum

    2011-01-07

    Vernalization is an environmentally-induced epigenetic switch in which winter cold triggers epigenetic silencing of floral repressors and thus provides competence to flower in spring. In Arabidopsis, winter cold triggers enrichment of tri-methylated histone H3 Lys(27) at chromatin of the floral repressor, FLOWERING LOCUS C (FLC), and results in epigenetically stable repression of FLC. This epigenetic change is mediated by an evolutionarily conserved repressive complex, polycomb repressive complex 2 (PRC2). Here, we show that a long intronic noncoding RNA [termed COLD ASSISTED INTRONIC NONCODING RNA (COLDAIR)] is required for the vernalization-mediated epigenetic repression of FLC. COLDAIR physically associates with a component of PRC2 and targets PRC2 to FLC. Our results show that COLDAIR is required for establishing stable repressive chromatin at FLC through its interaction with PRC2.

  11. Addressing the repressed needs of the Arabic client.

    PubMed

    Dwairy, M

    1997-01-01

    In comparison to families in Western society, the traditional Arabic family plays a relatively greater role in providing support for adult progeny. This serves to condition adult offspring to continue to comply with the will and values of the family. Therefore, in exchange for familial support, Arabic individuals learn to repress authentic needs and emotions, and within that process they relinquish the need for self-actualization. Arabic society discourages individualism and opposes self-actualization by means of simultaneous punishment and moralization. Thus, there is a relatively greater development of the social value system (or superego) and comparatively less development of the self (or ego). In comparison to Western society, Arabic individuals continue to experience greater oppression during adulthood. Given these cultural differences, the processes of reliving and activating repressed needs and emotions, which ultimately serves to promote self-actualization, will transform intrapsychic conflicts into interpersonal and social ones. Thus, personal actions typically encouraged during Western psychotherapy are likely to produce significant social oppression. Indeed, promoting awareness of repressed needs and emotions often leads the Arabic client to become more helpless, because such wishes will rarely be socially sanctioned or satisfactorily fulfilled. Therefore, when addressing repressed needs and emotions in psychotherapy, ego strength, cultural identity, and degree of strictness of the client's family of origin must be considered.

  12. Impact of expert testimony on the believability of repressed memories.

    PubMed

    Sugarman, D B; Boney-McCoy, S

    1997-01-01

    Research suggests that people question the believability of trial testimony based on an alleged victim's previously repressed memories. Participants read one of six scenarios depicting the trial of a man accused of sexually assaulting a young girl. The alleged victim either reported the assault immediately (child witness) or waited 20 years to report it (adult witness). In the adult witness condition, the woman's memory for the event had either been repressed until recently or had always been available, and expert testimony was offered on behalf of the defense, the prosecution, both, or neither. Regression analyses revealed that women perceived the accuser's testimony as more believable and the defendant's testimony as less believable than men did. Similarly, the belief in the accuser's testimony decreased and the belief in the defendant's testimony increased when the accuser was an adult in contrast to a child, and when the defense offered expert testimony in contrast to its absence. In addition, guilty verdicts were associated with higher levels of accuser believability, lower levels of defendant believability and testimony based on repressed memories in contrast to testimony based on memories that were never repressed.

  13. PICKLE acts during germination to repress expression of embryonic traits

    PubMed Central

    Li, Hui-Chun; Chuang, King; Henderson, James T.; Rider, Stanley Dean; Bai, Yinglin; Zhang, Heng; Fountain, Matthew; Gerber, Jacob; Ogas, Joe

    2008-01-01

    SUMMARY PICKLE (PKL) codes for a CHD3 chromatin remodeling factor that plays multiple roles in Arabidopsis growth and development. Previous analysis of the expression of genes that exhibit PKL-dependent regulation suggested that PKL acts during germination to repress expression of embryonic traits. In this study, we examined the expression of PKL protein to investigate when and where PKL acts to regulate development. A PKL:eGFP translational fusion is preferentially localized in the nucleus of cells, consistent with the proposed role for PKL as a chromatin remodeling factor. A steroid-inducible version of PKL - a fusion of PKL to the glucocorticoid receptor (PKL:GR) - was used to examine when PKL acts to repress expression of embryonic traits. We found that activation of PKL:GR during germination was sufficient to repress expression of embryonic traits in the primary roots of pkl seedlings whereas activation of PKL:GR after germination had little effect. In contrast, we observed that PKL is required continuously after germination to repress expression of PHERES1, a type I MADS box gene that is normally expressed during early embryogenesis in wild-type plants. Thus PKL acts at multiple points during development to regulate patterns of gene expression in Arabidopsis. PMID:16359393

  14. A high-resolution map of transcriptional repression

    PubMed Central

    Liang, Ziwei; Brown, Karen E; Carroll, Thomas; Taylor, Benjamin; Vidal, Isabel Ferreirós; Hendrich, Brian; Rueda, David; Fisher, Amanda G; Merkenschlager, Matthias

    2017-01-01

    Turning genes on and off is essential for development and homeostasis, yet little is known about the sequence and causal role of chromatin state changes during the repression of active genes. This is surprising, as defective gene silencing underlies developmental abnormalities and disease. Here we delineate the sequence and functional contribution of transcriptional repression mechanisms at high temporal resolution. Inducible entry of the NuRD-interacting transcriptional regulator Ikaros into mouse pre-B cell nuclei triggered immediate binding to target gene promoters. Rapid RNAP2 eviction, transcriptional shutdown, nucleosome invasion, and reduced transcriptional activator binding required chromatin remodeling by NuRD-associated Mi2beta/CHD4, but were independent of HDAC activity. Histone deacetylation occurred after transcriptional repression. Nevertheless, HDAC activity contributed to stable gene silencing. Hence, high resolution mapping of transcriptional repression reveals complex and interdependent mechanisms that underpin rapid transitions between transcriptional states, and elucidates the temporal order, functional role and mechanistic separation of NuRD-associated enzymatic activities. DOI: http://dx.doi.org/10.7554/eLife.22767.001 PMID:28318487

  15. PICKLE acts during germination to repress expression of embryonic traits.

    PubMed

    Li, Hui-Chun; Chuang, King; Henderson, James T; Rider, Stanley Dean; Bai, Yinglin; Zhang, Heng; Fountain, Matthew; Gerber, Jacob; Ogas, Joe

    2005-12-01

    PICKLE (PKL) codes for a CHD3 chromatin remodeling factor that plays multiple roles in Arabidopsis growth and development. Previous analysis of the expression of genes that exhibit PKL-dependent regulation suggested that PKL acts during germination to repress expression of embryonic traits. In this study, we examined the expression of PKL protein to investigate when and where PKL acts to regulate development. A PKL:eGFP translational fusion is preferentially localized in the nucleus of cells, consistent with the proposed role for PKL as a chromatin remodeling factor. A steroid-inducible version of PKL [a fusion of PKL to the glucocorticoid receptor (PKL:GR)] was used to examine when PKL acts to repress expression of embryonic traits. We found that activation of PKL:GR during germination was sufficient to repress expression of embryonic traits in the primary roots of pkl seedlings, whereas activation of PKL:GR after germination had little effect. In contrast, we observed that PKL is required continuously after germination to repress expression of PHERES1, a type I MADS box gene that is normally expressed during early embryogenesis in wild-type plants. Thus, PKL acts at multiple points during development to regulate patterns of gene expression in Arabidopsis.

  16. Intellectual Performance as a Function of Repression and Menstrual Cycle.

    ERIC Educational Resources Information Center

    Englander-Golden, Paula; And Others

    Performance on complex (Space Relations and Verbal Reasoning) and simple (Digit Symbol) tests was investigated as a function of Byrne's Repression-Sensitization (RS) dimension, phase of menstrual cycle and premenstrual-menstrual (PM) symptomatology in a group of females not taking oral contraceptives. Two control groups, consisting of males and…

  17. Gene repression by minimal lac loops in vivo.

    PubMed

    Bond, Laura M; Peters, Justin P; Becker, Nicole A; Kahn, Jason D; Maher, L James

    2010-12-01

    The inflexibility of double-stranded DNA with respect to bending and twisting is well established in vitro. Understanding apparent DNA physical properties in vivo is a greater challenge. Here, we exploit repression looping with components of the Escherichia coli lac operon to monitor DNA flexibility in living cells. We create a minimal system for testing the shortest possible DNA repression loops that contain an E. coli promoter, and compare the results to prior experiments. Our data reveal that loop-independent repression occurs for certain tight operator/promoter spacings. When only loop-dependent repression is considered, fits to a thermodynamic model show that DNA twisting limits looping in vivo, although the apparent DNA twist flexibility is 2- to 4-fold higher than in vitro. In contrast, length-dependent resistance to DNA bending is not observed in these experiments, even for the shortest loops constraining <0.4 persistence lengths of DNA. As observed previously for other looping configurations, loss of the nucleoid protein heat unstable (HU) markedly disables DNA looping in vivo. Length-independent DNA bending energy may reflect the activities of architectural proteins and the structure of the DNA topological domain. We suggest that the shortest loops are formed in apical loops rather than along the DNA plectonemic superhelix.

  18. Repression of cancer cell senescence by PKCι.

    PubMed

    Paget, J A; Restall, I J; Daneshmand, M; Mersereau, J A; Simard, M A; Parolin, D A E; Lavictoire, S J; Amin, M S; Islam, S; Lorimer, I A J

    2012-08-02

    Senescence is an irreversible growth arrest phenotype adopted by cells that has a key role in protecting organisms from cancer. There is now considerable interest in therapeutic strategies that reactivate this process to control the growth of cancer cells. Protein kinase-Cι (PKCι) is a member of the atypical PKC family and an important downstream mediator in the phosphoinositide-3-kinase (PI-3-kinase) pathway. PKCι expression was found to be upregulated in a subset of breast cancers and breast cancer cell lines. Activation of the PI-3-kinase pathway by introduction of mutant, oncogenic PIK3CA into breast mammary epithelial cells increased both the expression and activation of PKCι. In breast cancer cells lines overexpressing PKCι, depletion of PKCι increased the number of senescent cells, as assessed by senescence-associated β-galactosidase, morphology and bromodeoxyuridine incorporation. This phenomenon was not restricted to breast cancer cells, as it was also seen in glioblastoma cells in which PKCι is activated by loss of PTEN. Senescence occurred in the absence of a detectable DNA-damage response, was dependent on p21 and was enhanced by the aurora kinase inhibitor VX-680, suggesting that senescence is triggered by defects in mitosis. Depletion of PKCι had no effect on senescence in normal mammary epithelial cell lines. We conclude that PKCι is overexpressed in a subset of cancers where it functions to suppress premature senescence. This function appears to be restricted to cancer cells and inhibition of PKCι may therefore be an effective way to selectively activate premature senescence in cancer cells.

  19. ZBTB7A acts as a tumor suppressor through the transcriptional repression of glycolysis.

    PubMed

    Liu, Xue-Song; Haines, Jenna E; Mehanna, Elie K; Genet, Matthew D; Ben-Sahra, Issam; Asara, John M; Manning, Brendan D; Yuan, Zhi-Min

    2014-09-01

    Elevated glycolysis is a common metabolic trait of cancer, but what drives such metabolic reprogramming remains incompletely clear. We report here a novel transcriptional repressor-mediated negative regulation of glycolysis. ZBTB7A, a member of the POK (POZ/BTB and Krüppel) transcription repressor family, directly binds to the promoter and represses the transcription of critical glycolytic genes, including GLUT3, PFKP, and PKM. Analysis of The Cancer Genome Atlas (TCGA) data sets reveals that the ZBTB7A locus is frequently deleted in many human tumors. Significantly, reduced ZBTB7A expression correlates with up-regulation of the glycolytic genes and poor survival in colon cancer patients. Remarkably, while ZBTB7A-deficient tumors progress exceedingly fast, they exhibit an unusually heightened sensitivity to glycolysis inhibition. Our study uncovers a novel tumor suppressor role of ZBTB7A in directly suppressing glycolysis.

  20. miR-128 represses L1 retrotransposition by binding directly to L1 RNA.

    PubMed

    Hamdorf, Matthias; Idica, Adam; Zisoulis, Dimitrios G; Gamelin, Lindsay; Martin, Charles; Sanders, Katie J; Pedersen, Irene M

    2015-10-01

    Long interspersed element 1 (LINE-1 or L1) retrotransposons compose 17% of the human genome. Active L1 elements are capable of replicative transposition (mobilization) and can act as drivers of genetic diversity. However, this mobilization is mutagenic and may be detrimental to the host, and therefore it is under strict control. Somatic cells usually silence L1 activity by DNA methylation of the L1 promoter. In hypomethylated cells, such as cancer cells and induced pluripotent stem cells (iPSCs), a window of opportunity for L1 reactivation emerges, and with it comes an increased risk of genomic instability and tumorigenesis. Here we show that miR-128 represses new retrotransposition events in human cancer cells and iPSCs by binding directly to L1 RNA. Thus, we have identified and characterized a new function of microRNAs: mediating genomic stability by suppressing the mobility of endogenous retrotransposons.

  1. Dimethylated H3K27 Is a Repressive Epigenetic Histone Mark in the Protist Entamoeba histolytica and Is Significantly Enriched in Genes Silenced via the RNAi Pathway*

    PubMed Central

    Foda, Bardees M.; Singh, Upinder

    2015-01-01

    RNA interference (RNAi) is a fundamental biological process that plays a crucial role in regulation of gene expression in many organisms. Transcriptional gene silencing (TGS) is one of the important nuclear roles of RNAi. Our previous data show that Entamoeba histolytica has a robust RNAi pathway that links to TGS via Argonaute 2-2 (Ago2-2) associated 27-nucleotide small RNAs with 5′-polyphosphate termini. Here, we report the first repressive histone mark to be identified in E. histolytica, dimethylation of H3K27 (H3K27Me2), and demonstrate that it is enriched at genes that are silenced by RNAi-mediated TGS. An RNAi-silencing trigger can induce H3K27Me2 deposits at both episomal and chromosomal loci, mediating gene silencing. Our data support two phases of RNAi-mediated TGS: an active silencing phase where the RNAi trigger is present and both H3K27Me2 and Ago2-2 concurrently enrich at chromosomal loci; and an established silencing phase in which the RNAi trigger is removed, but gene silencing with H3K27Me2 enrichment persist independently of Ago2-2 deposition. Importantly, some genes display resistance to chromosomal silencing despite induction of functional small RNAs. In those situations, the RNAi-triggering plasmid that is maintained episomally gets partially silenced and has H3K27Me2 enrichment, but the chromosomal copy displays no repressive histone enrichment. Our data are consistent with a model in which H3K27Me2 is a repressive histone modification, which is strongly associated with transcriptional repression. This is the first example of an epigenetic histone modification that functions to mediate RNAi-mediated TGS in the deep-branching eukaryote E. histolytica. PMID:26149683

  2. Dimethylated H3K27 Is a Repressive Epigenetic Histone Mark in the Protist Entamoeba histolytica and Is Significantly Enriched in Genes Silenced via the RNAi Pathway.

    PubMed

    Foda, Bardees M; Singh, Upinder

    2015-08-21

    RNA interference (RNAi) is a fundamental biological process that plays a crucial role in regulation of gene expression in many organisms. Transcriptional gene silencing (TGS) is one of the important nuclear roles of RNAi. Our previous data show that Entamoeba histolytica has a robust RNAi pathway that links to TGS via Argonaute 2-2 (Ago2-2) associated 27-nucleotide small RNAs with 5'-polyphosphate termini. Here, we report the first repressive histone mark to be identified in E. histolytica, dimethylation of H3K27 (H3K27Me2), and demonstrate that it is enriched at genes that are silenced by RNAi-mediated TGS. An RNAi-silencing trigger can induce H3K27Me2 deposits at both episomal and chromosomal loci, mediating gene silencing. Our data support two phases of RNAi-mediated TGS: an active silencing phase where the RNAi trigger is present and both H3K27Me2 and Ago2-2 concurrently enrich at chromosomal loci; and an established silencing phase in which the RNAi trigger is removed, but gene silencing with H3K27Me2 enrichment persist independently of Ago2-2 deposition. Importantly, some genes display resistance to chromosomal silencing despite induction of functional small RNAs. In those situations, the RNAi-triggering plasmid that is maintained episomally gets partially silenced and has H3K27Me2 enrichment, but the chromosomal copy displays no repressive histone enrichment. Our data are consistent with a model in which H3K27Me2 is a repressive histone modification, which is strongly associated with transcriptional repression. This is the first example of an epigenetic histone modification that functions to mediate RNAi-mediated TGS in the deep-branching eukaryote E. histolytica.

  3. Yeast genetic analysis reveals the involvement of chromatin reassembly factors in repressing HIV-1 basal transcription.

    PubMed

    Vanti, Manuela; Gallastegui, Edurne; Respaldiza, Iñaki; Rodríguez-Gil, Alfonso; Gómez-Herreros, Fernando; Jimeno-González, Silvia; Jordan, Albert; Chávez, Sebastián

    2009-01-01

    Rebound of HIV viremia after interruption of anti-retroviral therapy is due to the small population of CD4+ T cells that remain latently infected. HIV-1 transcription is the main process controlling post-integration latency. Regulation of HIV-1 transcription takes place at both initiation and elongation levels. Pausing of RNA polymerase II at the 5' end of HIV-1 transcribed region (5'HIV-TR), which is immediately downstream of the transcription start site, plays an important role in the regulation of viral expression. The activation of HIV-1 transcription correlates with the rearrangement of a positioned nucleosome located at this region. These two facts suggest that the 5'HIV-TR contributes to inhibit basal transcription of those HIV-1 proviruses that remain latently inactive. However, little is known about the cell elements mediating the repressive role of the 5'HIV-TR. We performed a genetic analysis of this phenomenon in Saccharomyces cerevisiae after reconstructing a minimal HIV-1 transcriptional system in this yeast. Unexpectedly, we found that the critical role played by the 5'HIV-TR in maintaining low levels of basal transcription in yeast is mediated by FACT, Spt6, and Chd1, proteins so far associated with chromatin assembly and disassembly during ongoing transcription. We confirmed that this group of factors plays a role in HIV-1 postintegration latency in human cells by depleting the corresponding human orthologs with shRNAs, both in HIV latently infected cell populations and in particular single-integration clones, including a latent clone with a provirus integrated in a highly transcribed gene. Our results indicate that chromatin reassembly factors participate in the establishment of the equilibrium between activation and repression of HIV-1 when it integrates into the human genome, and they open the possibility of considering these factors as therapeutic targets of HIV-1 latency.

  4. Tcf3 Represses Wnt–β-Catenin Signaling and Maintains Neural Stem Cell Population during Neocortical Development

    PubMed Central

    Itoh, Yasuhiro; Hirabayashi, Yusuke; Gotoh, Yukiko

    2014-01-01

    During mouse neocortical development, the Wnt–β-catenin signaling pathway plays essential roles in various phenomena including neuronal differentiation and proliferation of neural precursor cells (NPCs). Production of the appropriate number of neurons without depletion of the NPC population requires precise regulation of the balance between differentiation and maintenance of NPCs. However, the mechanism that suppresses Wnt signaling to prevent premature neuronal differentiation of NPCs is poorly understood. We now show that the HMG box transcription factor Tcf3 (also known as Tcf7l1) contributes to this mechanism. Tcf3 is highly expressed in undifferentiated NPCs in the mouse neocortex, and its expression is reduced in intermediate neuronal progenitors (INPs) committed to the neuronal fate. We found Tcf3 to be a repressor of Wnt signaling in neocortical NPCs in a reporter gene assay. Tcf3 bound to the promoter of the proneural bHLH gene Neurogenin1 (Neurog1) and repressed its expression. Consistent with this, Tcf3 repressed neuronal differentiation and increased the self-renewal activity of NPCs. We also found that Wnt signal stimulation reduces the level of Tcf3, and increases those of Tcf1 (also known as Tcf7) and Lef1, positive mediators of Wnt signaling, in NPCs. Together, these results suggest that Tcf3 antagonizes Wnt signaling in NPCs, thereby maintaining their undifferentiated state in the neocortex and that Wnt signaling promotes the transition from Tcf3-mediated repression to Tcf1/Lef1-mediated enhancement of Wnt signaling, constituting a positive feedback loop that facilitates neuronal differentiation. PMID:24832538

  5. GATA3 induces human T-cell commitment by restraining Notch activity and repressing NK-cell fate

    PubMed Central

    Van de Walle, Inge; Dolens, Anne-Catherine; Durinck, Kaat; De Mulder, Katrien; Van Loocke, Wouter; Damle, Sagar; Waegemans, Els; De Medts, Jelle; Velghe, Imke; De Smedt, Magda; Vandekerckhove, Bart; Kerre, Tessa; Plum, Jean; Leclercq, Georges; Rothenberg, Ellen V.; Van Vlierberghe, Pieter; Speleman, Frank; Taghon, Tom

    2016-01-01

    The gradual reprogramming of haematopoietic precursors into the T-cell fate is characterized by at least two sequential developmental stages. Following Notch1-dependent T-cell lineage specification during which the first T-cell lineage genes are expressed and myeloid and dendritic cell potential is lost, T-cell specific transcription factors subsequently induce T-cell commitment by repressing residual natural killer (NK)-cell potential. How these processes are regulated in human is poorly understood, especially since efficient T-cell lineage commitment requires a reduction in Notch signalling activity following T-cell specification. Here, we show that GATA3, in contrast to TCF1, controls human T-cell lineage commitment through direct regulation of three distinct processes: repression of NK-cell fate, upregulation of T-cell lineage genes to promote further differentiation and restraint of Notch activity. Repression of the Notch1 target gene DTX1 hereby is essential to prevent NK-cell differentiation. Thus, GATA3-mediated positive and negative feedback mechanisms control human T-cell lineage commitment. PMID:27048872

  6. AU-Rich-Element-Dependent Translation Repression Requires the Cooperation of Tristetraprolin and RCK/P54

    PubMed Central

    Qi, Mei-Yan; Wang, Zhi-Zhang; Zhang, Zhuo; Shao, Qin; Zeng, An; Li, Xiang-Qi; Li, Wen-Qing; Wang, Chen; Tian, Fu-Ju; Li, Qing; Zou, Jun; Qin, Yong-Wen; Brewer, Gary; Huang, Shuang

    2012-01-01

    AU-rich elements (AREs), residing in the 3′ untranslated region (UTR) of many labile mRNAs, are important cis-acting elements that modulate the stability of these mRNAs by collaborating with trans-acting factors such as tristetraprolin (TTP). AREs also regulate translation, but the underlying mechanism is not fully understood. Here we examined the function and mechanism of TTP in ARE-mRNA translation. Through a luciferase-based reporter system, we used knockdown, overexpression, and tethering assays in 293T cells to demonstrate that TTP represses ARE reporter mRNA translation. Polyribosome fractionation experiments showed that TTP shifts target mRNAs to lighter fractions. In murine RAW264.7 macrophages, knocking down TTP produces significantly more tumor necrosis factor alpha (TNF-α) than the control, while the corresponding mRNA level has a marginal change. Furthermore, knockdown of TTP increases the rate of biosynthesis of TNF-α, suggesting that TTP can exert effects at translational levels. Finally, we demonstrate that the general translational repressor RCK may cooperate with TTP to regulate ARE-mRNA translation. Collectively, our studies reveal a novel function of TTP in repressing ARE-mRNA translation and that RCK is a functional partner of TTP in promoting TTP-mediated translational repression. PMID:22203041

  7. Repression of sulfate assimilation is an adaptive response of yeast to the oxidative stress of zinc deficiency.

    PubMed

    Wu, Chang-Yi; Roje, Sanja; Sandoval, Francisco J; Bird, Amanda J; Winge, Dennis R; Eide, David J

    2009-10-02

    The Zap1 transcription factor is a central player in the response of yeast to changes in zinc status. Previous studies identified over 80 genes activated by Zap1 in zinc-limited cells. In this report, we identified 36 genes repressed in a zinc- and Zap1-responsive manner. As a result, we have identified a new mechanism of Zap1-mediated gene repression whereby transcription of the MET3, MET14, and MET16 genes is repressed in zinc-limited cells. These genes encode the first three enzymes of the sulfate assimilation pathway. We found that MET30, encoding a component of the SCF(Met30) ubiquitin ligase, is a direct Zap1 target gene. MET30 expression is increased in zinc-limited cells, and this leads to degradation of Met4, a transcription factor responsible for MET3, MET14, and MET16 expression. Thus, Zap1 is responsible for a decrease in sulfate assimilation in zinc-limited cells. We further show that cells that are unable to down-regulate sulfate assimilation under zinc deficiency experience increased oxidative stress. This increased oxidative stress is associated with an increase in the NADP(+)/NADPH ratio and may result from a decrease in NADPH-dependent antioxidant activities. These studies have led to new insights into how cells adapt to nutrient-limiting growth conditions.

  8. Arabidopsis DE-ETIOLATED1 represses photomorphogenesis by positively regulating phytochrome-interacting factors in the dark.

    PubMed

    Dong, Jie; Tang, Dafang; Gao, Zhaoxu; Yu, Renbo; Li, Kunlun; He, Hang; Terzaghi, William; Deng, Xing Wang; Chen, Haodong

    2014-09-01

    Arabidopsis thaliana seedlings undergo photomorphogenic development even in darkness when the function of DE-ETIOLATED1 (DET1), a repressor of photomorphogenesis, is disrupted. However, the mechanism by which DET1 represses photomorphogenesis remains unclear. Our results indicate that DET1 directly interacts with a group of transcription factors known as the phytochrome-interacting factors (PIFs). Furthermore, our results suggest that DET1 positively regulates PIF protein levels primarily by stabilizing PIF proteins in the dark. Genetic analysis showed that each pif single mutant could enhance the det1-1 phenotype, and ectopic expression of each PIF in det1-1 partially suppressed the det1-1 phenotype, based on hypocotyl elongation and cotyledon opening angles observed in darkness. Genomic analysis also revealed that DET1 may modulate the expression of light-regulated genes to mediate photomorphogenesis partially through PIFs. The observed interaction and regulation between DET1 and PIFs not only reveal how DET1 represses photomorphogenesis, but also suggest a possible mechanism by which two groups of photomorphogenic repressors, CONSTITUTIVE PHOTOMORPHOGENESIS/DET/FUSCA and PIFs, work in concert to repress photomorphogenesis in darkness.

  9. Integrated genome-wide chromatin occupancy and expression analyses identify key myeloid pro-differentiation transcription factors repressed by Myb.

    PubMed

    Zhao, Liang; Glazov, Evgeny A; Pattabiraman, Diwakar R; Al-Owaidi, Faisal; Zhang, Ping; Brown, Matthew A; Leo, Paul J; Gonda, Thomas J

    2011-06-01

    To gain insight into the mechanisms by which the Myb transcription factor controls normal hematopoiesis and particularly, how it contributes to leukemogenesis, we mapped the genome-wide occupancy of Myb by chromatin immunoprecipitation followed by massively parallel sequencing (ChIP-Seq) in ERMYB myeloid progenitor cells. By integrating the genome occupancy data with whole genome expression profiling data, we identified a Myb-regulated transcriptional program. Gene signatures for leukemia stem cells, normal hematopoietic stem/progenitor cells and myeloid development were overrepresented in 2368 Myb regulated genes. Of these, Myb bound directly near or within 793 genes. Myb directly activates some genes known critical in maintaining hematopoietic stem cells, such as Gfi1 and Cited2. Importantly, we also show that, despite being usually considered as a transactivator, Myb also functions to repress approximately half of its direct targets, including several key regulators of myeloid differentiation, such as Sfpi1 (also known as Pu.1), Runx1, Junb and Cebpb. Furthermore, our results demonstrate that interaction with p300, an established coactivator for Myb, is unexpectedly required for Myb-mediated transcriptional repression. We propose that the repression of the above mentioned key pro-differentiation factors may contribute essentially to Myb's ability to suppress differentiation and promote self-renewal, thus maintaining progenitor cells in an undifferentiated state and promoting leukemic transformation.

  10. Staphylococcus aureus RNAIII coordinately represses the synthesis of virulence factors and the transcription regulator Rot by an antisense mechanism

    PubMed Central

    Boisset, Sandrine; Geissmann, Thomas; Huntzinger, Eric; Fechter, Pierre; Bendridi, Nadia; Possedko, Maria; Chevalier, Clément; Helfer, Anne Catherine; Benito, Yvonne; Jacquier, Alain; Gaspin, Christine; Vandenesch, François; Romby, Pascale

    2007-01-01

    RNAIII is the intracellular effector of the quorum-sensing system in Staphylococcus aureus. It is one of the largest regulatory RNAs (514 nucleotides long) that are known to control the expression of a large number of virulence genes. Here, we show that the 3′ domain of RNAIII coordinately represses at the post-transcriptional level, the expression of mRNAs that encode a class of virulence factors that act early in the infection process. We demonstrate that the 3′ domain acts primarily as an antisense RNA and rapidly anneals to these mRNAs, forming long RNA duplexes. The interaction between RNAIII and the mRNAs results in repression of translation initiation and triggers endoribonuclease III hydrolysis. These processes are followed by rapid depletion of the mRNA pool. In addition, we show that RNAIII and its 3′ domain mediate translational repression of rot mRNA through a limited number of base pairings involving two loop–loop interactions. Since Rot is a transcriptional regulatory protein, we proposed that RNAIII indirectly acts on many downstream genes, resulting in the activation of the synthesis of several exoproteins. These data emphasize the multitude of regulatory steps affected by RNAIII and its 3′ domain in establishing a network of S. aureus virulence factors. PMID:17545468

  11. Transcriptional repression by RING finger protein TIF1 beta that interacts with the KRAB repressor domain of KOX1.

    PubMed Central

    Moosmann, P; Georgiev, O; Le Douarin, B; Bourquin, J P; Schaffner, W

    1996-01-01

    Many of the vertebrate zinc finger factors of the Kruppel type (C2H2 zinc fingers) contain in their N-terminus a conserved sequence referred to as the KRAB (Kruppel-associated box) domain that, when tethered to DNA, efficiently represses transcription. Using the yeast two-hybrid system, we have isolated an 835 amino acid RING finger (C3HC4 zinc finger) protein, TIF1 beta (also named KAP-1), that specifically interacts with the KRAB domain of the human zinc finger factor KOX1/ZNF10. TIF1 beta, TIF1 alpha, PML and efp belong to a characteristic subgroup of RING finger proteins that contain one or two other Cys/His-rich clusters (B boxes) and a putative coiled-coil in addition to the classical C3HC4 RING finger motif (RBCC configuration). Like TIF1 alpha, TIF1 beta also contains an additional Cys/His cluster (PHD finger) and a bromo-related domain. When tethered to DNA, TIF1 beta can repress transcription in transiently transfected mammalian cells both from promoter-proximal and remote (enhancer) positions, similarly to the KRAB domain itself. We propose that TIF1 beta is a mediator of the transcriptional repression exerted by the KRAB domain. PMID:9016654

  12. Enhanced xylose fermentation capacity related to an altered glucose sensing and repression network in a recombinant Saccharomyces cerevisiae.

    PubMed

    Shen, Yu; Hou, Jin; Bao, Xiaoming

    2013-01-01

    The co-fermentation of glucose and xylose is one of the issues in decreasing the price of biofuel or chemicals produced from lignocellulosic materials. A glucose and xylose co-utilizing Saccharomyces cerevisiae was obtained through rational genetic manipulation. Non-rational evolution in xylose was performed, and the xylose utilization efficiency of the engineered strain was significantly enhanced. The results of transcriptome study suggested that Snf1/Mig1-mediated regulation, a part of glucose sensing and repression network, was altered in the evolved strain and might be related to the enhancement of xylose utilization.

  13. Unintended Consequences of Repression: Alliance Formation in South Korea's Democracy Movement (1970-1979)

    ERIC Educational Resources Information Center

    Chang, Paul Y.

    2008-01-01

    Research regarding the impact of repression on social movements has yielded conflicting findings; some argue that repression decreases the total quantity of protest events while others argue that it motivates protest. To move beyond this impasse, various scholars have suggested exploring how repression influences the quality of social movements.…

  14. Repression of multiple CYP2D genes in mouse primary hepatocytes with a single siRNA construct.

    PubMed

    Elraghy, Omaima; Baldwin, William S

    2015-01-01

    The Cyp2d subfamily is the second most abun-dant subfamily of hepatic drug-metabolizing CYPs. In mice, there are nine Cyp2d members that are believed to have redundant catalytic activity. We are testing and optimizing the ability of one short interfering RNA (siRNA) construct to knockdown the expression of multiple mouse Cyp2ds in primary hepatocytes. Expression of Cyp2d10, Cyp2d11, Cyp2d22, and Cyp2d26 was observed in the primary male mouse hepatocytes. Cyp2d9, which is male-specific and growth hormone-dependent, was not expressed in male primary hepatocytes, potentially because of its dependence on pulsatile growth hormone release from the anterior pituitary. Several different siRNAs at different concentrations and with different reagents were used to knockdown Cyp2d expression. siRNA constructs designed to repress only one construct often mildly repressed several Cyp2d isoforms. A construct designed to knockdown every Cyp2d isoform provided the best results, especially when incubated with transfection reagents designed specifically for primary cell culture. Interestingly, a construct designed to knockdown all Cyp2d isoforms, except Cyp2d10, caused a 2.5× increase in Cyp2d10 expression, presumably because of a compensatory response. However, while RNA expression is repressed 24 h after siRNA treatment, associated changes in Cyp2d-mediated metabolism are tenuous. Overall, this study provides data on the expression of murine Cyp2ds in primary cell lines, valuable information on designing siRNAs for silencing multiple murine CYPs, and potential pros and cons of using siRNA as a tool for repressing Cyp2d and estimating Cyp2d's role in murine xenobiotic metabolism.

  15. Selective control of Pax7 expression by TNF-activated p38α/polycomb repressive complex 2 (PRC2) signaling during muscle satellite cell differentiation.

    PubMed

    Mozzetta, Chiara; Consalvi, Silvia; Saccone, Valentina; Forcales, Sonia V; Puri, Pier Lorenzo; Palacios, Daniela

    2011-01-15

    Muscle regeneration relies on adult muscle stem (satellite) cells. Inflammatory cues released within the regenerative microenvironment, such as TNFα, instruct different components of the satellite cell niche toward specialized tasks by regulating specific subsets of genes in each individual cell type. However, how regeneration cues are deciphered and interpreted by the multitude of cell types within the regenerative environment is unknown. We have recently identified an inflammation-activated signaling, consisting of p38α-mediated recruitment of polycomb repressive complex 2 (PRC2) to the Pax7 promoter, in satellite cells. Here we show that p38α-PRC2 regulation of Pax7 expression is restricted to a discrete stage of satellite cell-mediated regeneration. In activated satellite cells, Pax7 locus shows a "bivalent" chromatin signature, with co-existence of H3-K27(3me) and H3-K4(3me), that appears to confer responsiveness to p38α-PRC2 signaling. p38α activation resolves bivalence to H3-K27(3me) which results in Pax7 repression, while p38α blockade promotes Pax7 expression by preventing PRC2-mediated H3-K27(3me) and leading to relative increase in H3-K4(3me). Interestingly, in satellite cell-derived myotubes Pax7 expression cannot be re-induced by p38α blockade, revealing a post-mitotic resistance of Pax7 gene to inflammatory cues. Likewise, in other cell types, such as muscle-derived fibroblasts, Pax7 locus is constitutively repressed by PRC2 and is unresponsive to p38α signaling. Finally, we show that Pax7 repression in embryonic stem cells is not directed by p38α signaling, although it is mediated by PRC2. This evidence indicates a cell type- and differentiation-stage specific control of Pax7 transcription by the p38α-PRC2.

  16. Hox genes control vertebrate body elongation by collinear Wnt repression.

    PubMed

    Denans, Nicolas; Iimura, Tadahiro; Pourquié, Olivier

    2015-02-26

    In vertebrates, the total number of vertebrae is precisely defined. Vertebrae derive from embryonic somites that are continuously produced posteriorly from the presomitic mesoderm (PSM) during body formation. We show that in the chicken embryo, activation of posterior Hox genes (paralogs 9-13) in the tail-bud correlates with the slowing down of axis elongation. Our data indicate that a subset of progressively more posterior Hox genes, which are collinearly activated in vertebral precursors, repress Wnt activity with increasing strength. This leads to a graded repression of the Brachyury/T transcription factor, reducing mesoderm ingression and slowing down the elongation process. Due to the continuation of somite formation, this mechanism leads to the progressive reduction of PSM size. This ultimately brings the retinoic acid (RA)-producing segmented region in close vicinity to the tail bud, potentially accounting for the termination of segmentation and axis elongation.

  17. Construction of glucose-repressible yeast expression vectors.

    PubMed

    Yao, B; Marmur, J; Sollitti, P

    1993-12-31

    A set of two episomal yeast expression vectors, pYME1 and pYME2, were constructed. These Saccharomyces cerevisiae-Escherichia coli shuttle vectors each contain a modified yeast MAL6S (encoding maltase) promoter that is expressed constitutively, but is subject to carbon catabolite repression by glucose. Expression from this promoter is still dependent upon the presence of active MALR (regulatory) protein. These expression vectors are particularly useful because most S. cerevisiae strains are MAL+, thereby exhibiting a wider host range than GAL-based vector systems. These pYME1 and pYME2 vectors are capable of expression to levels comparable to GAL-based expression plasmids and much higher than a variety of other repressible promoter vectors. The vectors are identical, except that their multiple cloning sites (MCS) are in opposite orientations, making them convenient for inserting heterologous genes.

  18. The Involvement of Mig1 from Xanthophyllomyces dendrorhous in Catabolic Repression: An Active Mechanism Contributing to the Regulation of Carotenoid Production

    PubMed Central

    Córdova, Pamela; Marcoleta, Andrés E.; Contreras, Gabriela; Barahona, Salvador; Sepúlveda, Dionisia; Fernández-Lobato, María; Baeza, Marcelo; Cifuentes, Víctor

    2016-01-01

    The red yeast X. dendrorhous is one of the few natural sources of astaxanthin, a carotenoid used in aquaculture for salmonid fish pigmentation and in the cosmetic and pharmaceutical industries for its antioxidant properties. Genetic control of carotenogenesis is well characterized in this yeast; however, little is known about the regulation of the carotenogenesis process. Several lines of evidence have suggested that carotenogenesis is regulated by catabolic repression, and the aim of this work was to identify and functionally characterize the X. dendrorhous MIG1 gene encoding the catabolic repressor Mig1, which mediates transcriptional glucose-dependent repression in other yeasts and fungi. The identified gene encodes a protein of 863 amino acids that demonstrates the characteristic conserved features of Mig1 proteins, and binds in vitro to DNA fragments containing Mig1 boxes. Gene functionality was demonstrated by heterologous complementation in a S. cerevisiae mig1- strain; several aspects of catabolic repression were restored by the X. dendrorhous MIG1 gene. Additionally, a X. dendrorhous mig1- mutant was constructed and demonstrated a higher carotenoid content than the wild-type strain. Most important, the mig1- mutation alleviated the glucose-mediated repression of carotenogenesis in X. dendrorhous: the addition of glucose to mig1- and wild-type cultures promoted the growth of both strains, but carotenoid synthesis was observed only in the mutant strain. Transcriptomic and RT-qPCR analyses revealed that several genes were differentially expressed between X. dendrorhous mig1- and the wild-type strain when cultured with glucose as the sole carbon source. The results obtained in this study demonstrate that catabolic repression in X. dendrorhous is an active process in which the identified MIG1 gene product plays a central role in the regulation of several biological processes, including carotenogenesis. PMID:27622474

  19. Repressing Notch Signaling and Expressing TNFα Are Sufficient to Mimic Retinal Regeneration by Inducing Müller Glial Proliferation to Generate Committed Progenitor Cells

    PubMed Central

    Conner, Clay; Ackerman, Kristin M.; Lahne, Manuela; Hobgood, Joshua S.

    2014-01-01

    Retinal damage in teleosts, unlike mammals, induces robust Müller glia-mediated regeneration of lost neurons. We examined whether Notch signaling regulates Müller glia proliferation in the adult zebrafish retina and demonstrated that Notch signaling maintains Müller glia in a quiescent state in the undamaged retina. Repressing Notch signaling, through injection of the γ-secretase inhibitor RO4929097, stimulates a subset of Müller glia to reenter the cell cycle without retinal damage. This RO4929097-induced Müller glia proliferation is mediated by repressing Notch signaling because inducible expression of the Notch Intracellular Domain (NICD) can reverse the effect. This RO4929097-induced proliferation requires Ascl1a expression and Jak1-mediated Stat3 phosphorylation/activation, analogous to the light-damaged retina. Moreover, coinjecting RO4929097 and TNFα, a previously identified damage signal, induced the majority of Müller glia to reenter the cell cycle and produced proliferating neuronal progenitor cells that committed to a neuronal lineage in the undamaged retina. This demonstrates that repressing Notch signaling and activating TNFα signaling are sufficient to induce Müller glia proliferation that generates neuronal progenitor cells that differentiate into retinal neurons, mimicking the responses observed in the regenerating retina. PMID:25339752

  20. RelB NF-kappaB represses estrogen receptor alpha expression via induction of the zinc finger protein Blimp1.

    PubMed

    Wang, Xiaobo; Belguise, Karine; O'Neill, Christine F; Sánchez-Morgan, Nuria; Romagnoli, Mathilde; Eddy, Sean F; Mineva, Nora D; Yu, Ziyang; Min, Chengyin; Trinkaus-Randall, Vickery; Chalbos, Dany; Sonenshein, Gail E

    2009-07-01

    Aberrant constitutive expression of NF-kappaB subunits, reported in more than 90% of breast cancers and multiple other malignancies, plays pivotal roles in tumorigenesis. Higher RelB subunit expression was demonstrated in estrogen receptor alpha (ERalpha)-negative breast cancers versus ERalpha-positive ones, due in part to repression of RelB synthesis by ERalpha signaling. Notably, RelB promoted a more invasive phenotype in ERalpha-negative cancers via induction of the BCL2 gene. We report here that RelB reciprocally inhibits ERalpha synthesis in breast cancer cells, which contributes to a more migratory phenotype. Specifically, RelB is shown for the first time to induce expression of the zinc finger repressor protein Blimp1 (B-lymphocyte-induced maturation protein), the critical mediator of B- and T-cell development, which is transcribed from the PRDM1 gene. Blimp1 protein repressed ERalpha (ESR1) gene transcription. Commensurately higher Blimp1/PRDM1 expression was detected in ERalpha-negative breast cancer cells and primary breast tumors. Induction of PRDM1 gene expression was mediated by interaction of Bcl-2, localized in the mitochondria, with Ras. Thus, the induction of Blimp1 represents a novel mechanism whereby the RelB NF-kappaB subunit mediates repression, specifically of ERalpha, thereby promoting a more migratory phenotype.

  1. RelB NF-κB Represses Estrogen Receptor α Expression via Induction of the Zinc Finger Protein Blimp1▿ ‡

    PubMed Central

    Wang, Xiaobo; Belguise, Karine; O'Neill, Christine F.; Sánchez-Morgan, Nuria; Romagnoli, Mathilde; Eddy, Sean F.; Mineva, Nora D.; Yu, Ziyang; Min, Chengyin; Trinkaus-Randall, Vickery; Chalbos, Dany; Sonenshein, Gail E.

    2009-01-01

    Aberrant constitutive expression of NF-κB subunits, reported in more than 90% of breast cancers and multiple other malignancies, plays pivotal roles in tumorigenesis. Higher RelB subunit expression was demonstrated in estrogen receptor alpha (ERα)-negative breast cancers versus ERα-positive ones, due in part to repression of RelB synthesis by ERα signaling. Notably, RelB promoted a more invasive phenotype in ERα-negative cancers via induction of the BCL2 gene. We report here that RelB reciprocally inhibits ERα synthesis in breast cancer cells, which contributes to a more migratory phenotype. Specifically, RelB is shown for the first time to induce expression of the zinc finger repressor protein Blimp1 (B-lymphocyte-induced maturation protein), the critical mediator of B- and T-cell development, which is transcribed from the PRDM1 gene. Blimp1 protein repressed ERα (ESR1) gene transcription. Commensurately higher Blimp1/PRDM1 expression was detected in ERα-negative breast cancer cells and primary breast tumors. Induction of PRDM1 gene expression was mediated by interaction of Bcl-2, localized in the mitochondria, with Ras. Thus, the induction of Blimp1 represents a novel mechanism whereby the RelB NF-κB subunit mediates repression, specifically of ERα, thereby promoting a more migratory phenotype. PMID:19433448

  2. BMP-dependent gene repression cascade in Drosophila eggshell patterning

    PubMed Central

    Charbonnier, Enrica; Fuchs, Alisa; Cheung, Lily S.; Chayengia, Mrinal; Veikkolainen, Ville; Seyfferth, Janine; Shvartsman, Stanislav Y.; Pyrowolakis, George

    2015-01-01

    Bone Morphogenetic Proteins (BMPs) signal by activating Smad transcription factors to control a number of decisions during animal development. In Drosophila, signaling by the BMP ligand Decapentaplegic (Dpp) involves the activity of brinker (brk) which, in most contexts, is repressed by Dpp. Brk encodes a transcription factor which represses BMP signaling output by antagonizing Smad-dependent target gene activation. Here, we study BMP-dependent gene regulation during Drosophila oogenesis by following the signal transmission from Dpp to its target broad (br), a gene with a crucial function in eggshell patterning. We identify regulatory sequences that account for expression of both brk and br, and connect these to the transcription factors of the pathway. We show that Dpp directly regulates brk transcription through Smad- and Schnurri (Shn)-dependent repression. Brk is epistatic to Dpp in br expression and activates br indirectly, through removal of a repressor, which is yet to be identified. Our work provides first cis-regulatory insights into transcriptional interpretation of BMP signaling in eggshell morphogenesis and defines a transcriptional cascade that connects Dpp to target gene regulation. PMID:25704512

  3. Repression and activation by multiprotein complexes that alter chromatin structure.

    PubMed

    Kingston, R E; Bunker, C A; Imbalzano, A N

    1996-04-15

    Recent studies have provided strong evidence that macromolecular complexes are used in the cell to remodel chromatin structure during activation and to create an inaccessible structure during repression, Although there is not yet any rigorous demonstration that modification of chromatin structure plays a direct, causal role in either activation or repression, there is sufficient smoke to indicate the presence of a blazing inferno nearby. It is clear that complexes that remodel chromatin are tractable in vitro; hopefully this will allow the establishment of systems that provide a direct analysis of the role that remodeling might play in activation. These studies indicate that establishment of functional systems to corroborate the elegant genetic studies on repression might also be tractable. As the mechanistic effects of these complexes are sorted out, it will become important to understand how the complexes are regulated. In many of the instances discussed above, the genes whose products make up these complexes were identified in genetic screens for effects on developmental processes. This implies a regulation of the activity of these complexes in response to developmental cues and further implies that the work to fully understand these complexes will occupy a generation of scientists.

  4. Trans-inactivation: Repression in a wrong place.

    PubMed

    Shatskikh, Aleksei S; Abramov, Yuriy A; Lavrov, Sergey A

    2016-08-19

    Trans-inactivation is the repression of genes on a normal chromosome under the influence of a rearranged homologous chromosome demonstrating the position effect variegation (PEV). This phenomenon was studied in detail on the example of brown(Dominant) allele causing the repression of wild-type brown gene on the opposite chromosome. We have investigated another trans-inactivation-inducing chromosome rearrangement, In(2)A4 inversion. In both cases, brown(Dominant) and In(2)A4, the repression seems to be the result of dragging of the euchromatic region of the normal chromosome into the heterochromatic environment. It was found that cis-inactivation (classical PEV) and trans-inactivation show different patterns of distribution along the chromosome and respond differently to PEV modifying genes. It appears that the causative mechanism of trans-inactivation is de novo heterochromatin assembly on euchromatic sequences dragged into the heterochromatic nuclear compartment. Trans-inactivation turns out to be the result of a combination of heterochromatin-induced position effect and the somatic interphase chromosome pairing that is widespread in Diptera.

  5. Lysine methylation represses p53 activity in teratocarcinoma cancer cells

    PubMed Central

    Zhu, Jiajun; Dou, Zhixun; Sammons, Morgan A.; Levine, Arnold J.; Berger, Shelley L.

    2016-01-01

    TP53 (which encodes the p53 protein) is the most frequently mutated gene among all human cancers, whereas tumors that retain the wild-type TP53 gene often use alternative mechanisms to repress the p53 tumor-suppressive function. Testicular teratocarcinoma cells rarely contain mutations in TP53, yet the transcriptional activity of wild-type p53 is compromised, despite its high expression level. Here we report that in the teratocarcinoma cell line NTera2, p53 is subject to lysine methylation at its carboxyl terminus, which has been shown to repress p53’s transcriptional activity. We show that reduction of the cognate methyltransferases reactivates p53 and promotes differentiation of the NTera2 cells. Furthermore, reconstitution of methylation-deficient p53 mutants into p53-depleted NTera2 cells results in elevated expression of p53 downstream targets and precocious loss of pluripotent gene expression compared with re-expression of wild-type p53. Our results provide evidence that lysine methylation of endogenous wild-type p53 represses its activity in cancer cells and suggest new therapeutic possibilities of targeting testicular teratocarcinoma. PMID:27535933

  6. Revisiting the Master-Signifier, or, Mandela and Repression.

    PubMed

    Hook, Derek; Vanheule, Stijn

    2015-01-01

    The concept of the master-signifier has been subject to a variety of applications in Lacanian forms of political discourse theory and ideology critique. While there is much to be commended in literature of this sort, it often neglects salient issues pertaining to the role of master signifiers in the clinical domain of (individual) psychical economy. The popularity of the concept of the master (or "empty") signifier in political discourse analysis has thus proved a double-edged sword. On the one hand it demonstrates how crucial psychical processes are performed via the operations of the signifier, extending thus the Lacanian thesis that identification is the outcome of linguistic and symbolic as opposed to merely psychological processes. On the other, the use of the master signifier concept within the political realm to track discursive formations tends to distance the term from the dynamics of the unconscious and operation of repression. Accordingly, this paper revisits the master signifier concept, and does so within the socio-political domain, yet while paying particular attention to the functioning of unconscious processes of fantasy and repression. More specifically, it investigates how Nelson Mandela operates as a master signifier in contemporary South Africa, as a vital means of knitting together diverse elements of post-apartheid society, enabling the fantasy of the post-apartheid nation, and holding at bay a whole series of repressed and negated undercurrents.

  7. Revisiting the Master-Signifier, or, Mandela and Repression

    PubMed Central

    Hook, Derek; Vanheule, Stijn

    2016-01-01

    The concept of the master-signifier has been subject to a variety of applications in Lacanian forms of political discourse theory and ideology critique. While there is much to be commended in literature of this sort, it often neglects salient issues pertaining to the role of master signifiers in the clinical domain of (individual) psychical economy. The popularity of the concept of the master (or “empty”) signifier in political discourse analysis has thus proved a double-edged sword. On the one hand it demonstrates how crucial psychical processes are performed via the operations of the signifier, extending thus the Lacanian thesis that identification is the outcome of linguistic and symbolic as opposed to merely psychological processes. On the other, the use of the master signifier concept within the political realm to track discursive formations tends to distance the term from the dynamics of the unconscious and operation of repression. Accordingly, this paper revisits the master signifier concept, and does so within the socio-political domain, yet while paying particular attention to the functioning of unconscious processes of fantasy and repression. More specifically, it investigates how Nelson Mandela operates as a master signifier in contemporary South Africa, as a vital means of knitting together diverse elements of post-apartheid society, enabling the fantasy of the post-apartheid nation, and holding at bay a whole series of repressed and negated undercurrents. PMID:26834664

  8. 15-Deoxy-Delta(12,14)-prostaglandin-J(2) reveals a new pVHL-independent, lysosomal-dependent mechanism of HIF-1alpha degradation.

    PubMed

    Olmos, Gemma; Arenas, María I; Bienes, Raquel; Calzada, María Jose; Aragonés, Julián; Garcia-Bermejo, Maria Laura; Landazuri, Manuel O; Lucio-Cazaña, Javier

    2009-07-01

    Hypoxia-inducible factor-1alpha (HIF-1alpha) protein is degraded under normoxia by its association to von Hippel-Lindau protein (pVHL) and further proteasomal digestion. However, human renal cells HK-2 treated with 15-deoxy-Delta(12,14)-prostaglandin-J(2) (15d-PGJ(2)) accumulate HIF-1alpha in normoxic conditions. Thus, we aimed to investigate the mechanism involved in this accumulation. We found that 15d-PGJ(2) induced an over-accumulation of HIF-1alpha in RCC4 cells, which lack pVHL and in HK-2 cells treated with inhibitors of the pVHL-proteasome pathway. These results indicated that pVHL-proteasome-independent mechanisms are involved, and therefore we aimed to ascertain them. We have identified a new lysosomal-dependent mechanism of HIF-1alpha degradation as a target for 15d-PGJ(2) based on: (1) HIF-1alpha colocalized with the specific lysosomal marker Lamp-2a, (2) 15d-PGJ(2) inhibited the activity of cathepsin B, a lysosomal protease, and (3) inhibition of lysosomal activity did not result in over-accumulation of HIF-1alpha in 15d-PGJ(2)-treated cells. Therefore, expression of HIF-1alpha is also modulated by lysosomal degradation.

  9. PIC Activation through Functional Interplay between Mediator and TFIIH.

    PubMed

    Malik, Sohail; Molina, Henrik; Xue, Zhu

    2017-01-06

    The multiprotein Mediator coactivator complex functions in large part by controlling the formation and function of the promoter-bound preinitiation complex (PIC), which consists of RNA polymerase II and general transcription factors. However, precisely how Mediator impacts the PIC, especially post-recruitment, has remained unclear. Here, we have studied Mediator effects on basal transcription in an in vitro transcription system reconstituted from purified components. Our results reveal a close functional interplay between Mediator and TFIIH in the early stages of PIC development. We find that under conditions when TFIIH is not normally required for transcription, Mediator actually represses transcription. TFIIH, whose recruitment to the PIC is known to be facilitated by the Mediator, then acts to relieve Mediator-induced repression to generate an active form of the PIC. Gel mobility shift analyses of PICs and characterization of TFIIH preparations carrying mutant XPB translocase subunit further indicate that this relief of repression is achieved through expending energy via ATP hydrolysis, suggesting that it is coupled to TFIIH's established promoter melting activity. Our interpretation of these results is that Mediator functions as an assembly factor that facilitates PIC maturation through its various stages. Whereas the overall effect of the Mediator is to stimulate basal transcription, its initial engagement with the PIC generates a transcriptionally inert PIC intermediate, which necessitates energy expenditure to complete the process.

  10. Prox1 directly interacts with LSD1 and recruits the LSD1/NuRD complex to epigenetically co-repress CYP7A1 transcription.

    PubMed

    Ouyang, Huafang; Qin, Yi; Liu, Yanfeng; Xie, Youhua; Liu, Jing

    2013-01-01

    Cholesterol 7α-hydroxylase (CYP7A1) catalyzes the first and rate-limiting step in the classical pathway of bile acids synthesis in liver and is crucial for maintaining lipid homeostasis. Hepatocyte nuclear factor 4α (HNF4α) and α1-fetoprotein transcription factor (FTF) are two major transcription factors driving CYP7A1 promoter activity in hepatocytes. Previous researches have shown that Prospero-related homeobox (Prox1) directly interacts with both HNF4α and FTF and potently co-represses CYP7A1 transcription and bile acid synthesis through unidentified mechanisms. In this work, mechanisms involved in Prox1-mediated co-repression were explored by identifying Prox1-associated proteins using immunoprecipitation followed by mass spectrometry (IP-MS) methodology. Multiple components of the epigenetically repressive lysine-specific demethylase 1 (LSD1)/nucleosome remodeling and histone deacetylase (NuRD) complex, most notably LSD1 and histone deacetylase 2 (HDAC2), were found to be associated with Prox1 and GST pulldown assay demonstrated that Prox1 directly interacts with LSD1. Sequential chromatin immunoprecipitation (ChIP) assays showed that Prox1 co-localizes with HNF4α, LSD1 and HDAC2 on CYP7A1 promoter in HepG2 cells. Furthermore, by using ChIP assay on HepG2 cells with endogenous Prox1 knocked down by RNA interference, Prox1 was shown to recruit LSD1 and HDAC2 onto CYP7A1 promoter and cause increased H3K4 demethylation. Finally, bile acids treatment of HepG2 cells, which significantly repressed CYP7A1 transcription, resulted in increased Prox1 and LSD1/NuRD complex occupancy on CYP7A1 promoter with a concurrent increase in H3K4 demethylation and H3/H4 deacetylation. These results showed that Prox1 interacts with LSD1 to recruit the repressive LSD1/NuRD complex to CYP7A1 promoter and co-represses transcription through epigenetic mechanisms. In addition, such Prox1-mediated epigenetic repression is involved in the physiologically essential negative feedback

  11. Repression of the soma-specific transcriptome by Polycomb-repressive complex 2 promotes male germ cell development

    PubMed Central

    Mu, Weipeng; Starmer, Joshua; Fedoriw, Andrew M.; Yee, Della; Magnuson, Terry

    2014-01-01

    Polycomb-repressive complex 2 (PRC2) catalyzes the methylation of histone H3 Lys27 (H3K27) and functions as a critical epigenetic regulator of both stem cell pluripotency and somatic differentiation, but its role in male germ cell development is unknown. Using conditional mutagenesis to remove the core PRC2 subunits EED and SUZ12 during male germ cell development, we identified a requirement for PRC2 in both mitotic and meiotic germ cells. We observed a paucity of mutant spermatogonial stem cells (SSCs), which appears independent of repression of the known cell cycle inhibitors Ink4a/Ink4b/Arf. Moreover, mutant spermatocytes exhibited ectopic expression of somatic lamins and an abnormal distribution of SUN1 proteins on the nuclear envelope. These defects were coincident with abnormal chromosome dynamics, affecting homologous chromosome pairing and synapsis. We observed acquisition of H3K27me3 on stage-specific genes during meiotic progression, indicating a requirement for PRC2 in regulating the meiotic transcriptional program. Together, these data demonstrate that transcriptional repression of soma-specific genes by PRC2 facilitates homeostasis and differentiation during mammalian spermatogenesis. PMID:25228648

  12. The zinc finger proteins ZNF644 and WIZ regulate the G9a/GLP complex for gene repression

    PubMed Central

    Bian, Chunjing; Chen, Qiang; Yu, Xiaochun

    2015-01-01

    The G9a/GLP complex mediates mono- and dimethylation of Lys9 of histone H3 at specific gene loci, which is associated with transcriptional repression. However, the molecular mechanism by which the G9a/GLP complex is targeted to the specific gene loci for H3K9 methylation is unclear. In this study, with unbiased protein affinity purification, we found ZNF644 and WIZ as two core subunits in the G9a/GLP complex. ZNF644 and WIZ interact with the transcription activation domain of G9a and GLP, respectively. Moreover, both ZNF644 and WIZ contain multiple zinc finger motifs that recognize consensus DNA sequences. ZNF644 and WIZ target G9a and GLP to the chromatin and mediate the G9a/GLP complex-dependent H3K9 methylation as well as gene repression. Thus, our studies reveal two key subunits in the G9a/GLP complex that regulate the function of this histone methyltransferase complex. DOI: http://dx.doi.org/10.7554/eLife.05606.001 PMID:25789554

  13. Chromatin-Dependent Repression of the Arabidopsis Floral Integrator Genes Involves Plant Specific PHD-Containing Proteins[C][W

    PubMed Central

    López-González, Leticia; Mouriz, Alfonso; Narro-Diego, Laura; Bustos, Regla; Martínez-Zapater, José Miguel; Jarillo, Jose A.; Piñeiro, Manuel

    2014-01-01

    The interplay among histone modifications modulates the expression of master regulatory genes in development. Chromatin effector proteins bind histone modifications and translate the epigenetic status into gene expression patterns that control development. Here, we show that two Arabidopsis thaliana paralogs encoding plant-specific proteins with a plant homeodomain (PHD) motif, SHORT LIFE (SHL) and EARLY BOLTING IN SHORT DAYS (EBS), function in the chromatin-mediated repression of floral initiation and play independent roles in the control of genes regulating flowering. Previous results showed that repression of the floral integrator FLOWERING LOCUS T (FT) requires EBS. We establish that SHL is necessary to negatively regulate the expression of SUPPRESSOR OF OVEREXPRESSION OF CO1 (SOC1), another floral integrator. SHL and EBS recognize di- and trimethylated histone H3 at lysine 4 and bind regulatory regions of SOC1 and FT, respectively. These PHD proteins maintain an inactive chromatin conformation in SOC1 and FT by preventing high levels of H3 acetylation, bind HISTONE DEACETYLASE6, and play a central role in regulating flowering time. SHL and EBS are widely conserved in plants but are absent in other eukaryotes, suggesting that the regulatory module mediated by these proteins could represent a distinct mechanism for gene expression control in plants. PMID:25281686

  14. A conserved structural motif reveals the essential transcriptional repression function of Spen proteins and their role in developmental signaling.

    PubMed

    Ariyoshi, Mariko; Schwabe, John W R

    2003-08-01

    Spen proteins regulate the expression of key transcriptional effectors in diverse signaling pathways. They are large proteins characterized by N-terminal RNA-binding motifs and a highly conserved C-terminal SPOC domain. The specific biological role of the SPOC domain (Spen paralog and ortholog C-terminal domain), and hence, the common function of Spen proteins, has been unclear to date. The Spen protein, SHARP (SMRT/HDAC1-associated repressor protein), was identified as a component of transcriptional repression complexes in both nuclear receptor and Notch/RBP-Jkappa signaling pathways. We have determined the 1.8 A crystal structure of the SPOC domain from SHARP. This structure shows that essentially all of the conserved surface residues map to a positively charged patch. Structure-based mutational analysis indicates that this conserved region is responsible for the interaction between SHARP and the universal transcriptional corepressor SMRT/NCoR (silencing mediator for retinoid and thyroid receptors/nuclear receptor corepressor. We demonstrate that this interaction involves a highly conserved acidic motif at the C terminus of SMRT/NCoR. These findings suggest that the conserved function of the SPOC domain is to mediate interaction with SMRT/NCoR corepressors, and that Spen proteins play an essential role in the repression complex.

  15. Carbon catabolite repression by seryl phosphorylated HPr is essential to Streptococcus pneumoniae in carbohydrate-rich environments

    PubMed Central

    Fleming, Eleanor; Lazinski, David W.; Camilli, Andrew

    2016-01-01

    Summary Carbon catabolite repression (CCR) is a regulatory phenomenon implemented by bacteria to hierarchically organize carbohydrate utilization in order to achieve maximal growth. CCR is likely of great importance to Streptococcus pneumoniae because the human host sites inhabited by this pathogen represent complex carbohydrate environments. In this species, inactivation of the prototypical Gram-positive CCR master regulator, ccpA, attenuates virulence in mice but does not relieve CCR of most metabolic enzymes, suggesting CcpA-independent CCR mechanisms predominate. Here we show the activities of three transcriptional regulators constitute the majority of transcriptional CCR of galactose metabolism operons. We determined seryl-phosphorylated histidine phos-phocarrier protein (HPr-Ser~P)-mediated regulation is a major CCR mechanism and an essential activity in the pneumococcus, as an HPr point mutation abolishing HPrK/P-dependent phosphorylation was not tolerated nor was deletion of hprk/p. The HPr-Ser~P phosphomimetic mutant HPr S46D had reduced phos-photransferase system transport rates and limited induction of CCR-repressed genes. These results support a model of pneumococcal CCR in which HPr-Ser~P directly affects the activity of CcpA while indirectly affecting the activity of pathway-specific transactional regulators. This report describes the first CcpA-independent CCR mechanism identified in the pneumococcus and the first example of lethality from loss of HPr-Ser~P-mediated CCR in any species. PMID:25898857

  16. Chromatin-dependent repression of the Arabidopsis floral integrator genes involves plant specific PHD-containing proteins.

    PubMed

    López-González, Leticia; Mouriz, Alfonso; Narro-Diego, Laura; Bustos, Regla; Martínez-Zapater, José Miguel; Jarillo, Jose A; Piñeiro, Manuel

    2014-10-01

    The interplay among histone modifications modulates the expression of master regulatory genes in development. Chromatin effector proteins bind histone modifications and translate the epigenetic status into gene expression patterns that control development. Here, we show that two Arabidopsis thaliana paralogs encoding plant-specific proteins with a plant homeodomain (PHD) motif, SHORT LIFE (SHL) and EARLY BOLTING IN SHORT DAYS (EBS), function in the chromatin-mediated repression of floral initiation and play independent roles in the control of genes regulating flowering. Previous results showed that repression of the floral integrator FLOWERING LOCUS T (FT) requires EBS. We establish that SHL is necessary to negatively regulate the expression of SUPPRESSOR OF OVEREXPRESSION OF CO1 (SOC1), another floral integrator. SHL and EBS recognize di- and trimethylated histone H3 at lysine 4 and bind regulatory regions of SOC1 and FT, respectively. These PHD proteins maintain an inactive chromatin conformation in SOC1 and FT by preventing high levels of H3 acetylation, bind HISTONE DEACETYLASE6, and play a central role in regulating flowering time. SHL and EBS are widely conserved in plants but are absent in other eukaryotes, suggesting that the regulatory module mediated by these proteins could represent a distinct mechanism for gene expression control in plants.

  17. Interaction of the phospholipid scramblase 1 with HIV-1 Tat results in the repression of Tat-dependent transcription

    SciTech Connect

    Kusano, Shuichi Eizuru, Yoshito

    2013-04-19

    Highlights: •PLSCR1 specifically interacted with HIV-1 Tat in vitro and in vivo. •PLSCR1 repressed Tat-dependent transactivation of the HIV-1 LTR. •Suppression of PLSCR1 expression enhanced the levels of HIV-1 transcripts. •PLSCR1 reduced the nuclear localization of Tat. -- Abstract: Human phospholipid scramblase 1 (PLSCR1) is an interferon (IFN)-stimulated gene and possesses an IFN-mediated antiviral function. We show here that PLSCR1 directly interacts with human immunodeficiency virus type-1 (HIV-1) Tat. This interaction occurs both in vitro and in vivo through amino acids 160–250 of PLSCR1. Overexpression of PLSCR1 efficiently represses the Tat-dependent transactivation of the HIV-1 long terminal repeat (LTR) and reduces the nuclear translocation of Tat. In addition, shRNA-mediated suppression of endogenous PLSCR1 expression enhances the levels of gag mRNA in an HIV-1-infected T-cell line. These findings indicate that PLSCR1 negatively regulates the Tat-dependent transactivation of the HIV-1 LTR during HIV-1 infection.

  18. The glycosyltransferase LARGE2 is repressed by Snail and ZEB1 in prostate cancer.

    PubMed

    Huang, Qin; Miller, Michael R; Schappet, James; Henry, Michael D

    2015-01-01

    Reductions in both expression of the dystroglycan core protein and functional glycosylation of the α-dystroglycan (αDG) subunit have been reported in a number of cancers and may contribute to disease progression. In the case of prostate cancer, one mechanism that contributes to αDG hypoglycosylation is transcriptional down-regulation of LARGE2 (GYLTY1B), a glycosyltransferase that produces the functional (laminin-binding) glycan on αDG, but the mechanism(s) underlying reduction of LARGE2 mRNA remain unclear. Here, we show that αDG hypoglycosylation is associated with epithelial-to-mesenchymal transition (EMT)-like status. We examined immunoreactivity for both functionally-glycosylated αDG and E-cadherin by flow cytometry and the relative expression of ZEB1 mRNA and the αDG glycosyltransferase LARGE2 mRNA in prostate and other cancer cell lines by quantitative RT-PCR. To study the role of ZEB1 and other transcription factors in the regulation of LARGE2, we employed overexpression and knockdown approaches. Snail- or ZEB1-driven EMT caused αDG hypoglycosylation by repressing expression of the LARGE2 mRNA, with both ZEB1-dependent and -independent mechanisms contributing to Snail-mediated LARGE2 repression. To examine the direct regulation of LARGE2 by Snail and ZEB1 we employed luciferase reporter and chromatin immunoprecipitation assays. Snail and ZEB1 were found to bind directly to the LARGE2 promoter, specifically to E/Z-box clusters. Furthermore, analysis of gene expression profiles of clinical samples in The Cancer Genome Atlas reveals negative correlation of LARGE2 and ZEB1 expression in various cancers. Collectively, our results suggest that LARGE2 is negatively regulated by Snail and/or ZEB1, revealing a mechanistic basis for αDG hypoglycosylation during prostate cancer progression and metastasis.

  19. Polycomb Repressive Complex 2 Controls the Embryo-to-Seedling Phase Transition

    PubMed Central

    Bouyer, Daniel; Roudier, Francois; Heese, Maren; Andersen, Ellen D.; Gey, Delphine; Nowack, Moritz K.; Goodrich, Justin; Renou, Jean-Pierre; Grini, Paul E.; Colot, Vincent; Schnittger, Arp

    2011-01-01

    Polycomb repressive complex 2 (PRC2) is a key regulator of epigenetic states catalyzing histone H3 lysine 27 trimethylation (H3K27me3), a repressive chromatin mark. PRC2 composition is conserved from humans to plants, but the function of PRC2 during the early stage of plant life is unclear beyond the fact that it is required for the development of endosperm, a nutritive tissue that supports embryo growth. Circumventing the requirement of PRC2 in endosperm allowed us to generate viable homozygous null mutants for FERTILIZATION INDEPENDENT ENDOSPERM (FIE), which is the single Arabidopsis homolog of Extra Sex Combs, an indispensable component of Drosophila and mammalian PRC2. Here we show that H3K27me3 deposition is abolished genome-wide in fie mutants demonstrating the essential function of PRC2 in placing this mark in plants as in animals. In contrast to animals, we find that PRC2 function is not required for initial body plan formation in Arabidopsis. Rather, our results show that fie mutant seeds exhibit enhanced dormancy and germination defects, indicating a deficiency in terminating the embryonic phase. After germination, fie mutant seedlings switch to generative development that is not sustained, giving rise to neoplastic, callus-like structures. Further genome-wide studies showed that only a fraction of PRC2 targets are transcriptionally activated in fie seedlings and that this activation is accompanied in only a few cases with deposition of H3K4me3, a mark associated with gene activity and considered to act antagonistically to H3K27me3. Up-regulated PRC2 target genes were found to act at different hierarchical levels from transcriptional master regulators to a wide range of downstream targets. Collectively, our findings demonstrate that PRC2-mediated regulation represents a robust system controlling developmental phase transitions, not only from vegetative phase to flowering but also especially from embryonic phase to the seedling stage. PMID:21423668

  20. Polycomb Repressive Complex 2 Confers BRG1 Dependency on the CIITA Locus.

    PubMed

    Abou El Hassan, Mohamed; Yu, Tao; Song, Lan; Bremner, Rod

    2015-05-15

    CIITA (or MHC2TA) coordinates constitutive and IFN-γ-induced expression of MHC class II genes. IFN-γ responsiveness of CIITA requires BRG1 (SMARCA4), the ATPase engine of the chromatin remodeling SWI/SNF complex (also called BAF). SWI/SNF is defective in many human cancers, providing a mechanism to explain IFN-γ resistance. BRG1 dependency is mediated through remote elements. Short CIITA reporters lacking these elements respond to IFN-γ, even in BRG1-deficient cells, suggesting that BRG1 counters a remote repressive influence. The nature of this distal repressor is unknown, but it would represent a valuable therapeutic target to reactivate IFN-γ responsiveness in cancer. In this article, we show that the polycomb repressive complex 2 (PRC2) components EZH2 and SUZ12, as well as the associated histone mark H3K27me3, are codetected at interenhancer regions across the CIITA locus. IFN-γ caused a BRG1-dependent reduction in H3K27me3, associated with nucleosome displacement. SUZ12 knockdown restored IFN-γ responsiveness in BRG1-null cells, and it mimicked the ability of BRG1 to induce active histone modifications (H3K27ac, H3K4me) at the -50-kb enhancer. Thus, PRC2 confers BRG1 dependency on the CIITA locus. Our data suggest that, in addition to its known roles in promoting stemness and proliferation, PRC2 may inhibit immune surveillance, and it could be targeted to reactivate CIITA expression in SWI/SNF deficient cancers.

  1. Sox2 Is an Androgen Receptor-Repressed Gene That Promotes Castration-Resistant Prostate Cancer

    PubMed Central

    Kregel, Steven; Kiriluk, Kyle J.; Rosen, Alex M.; Cai, Yi; Reyes, Edwin E.; Otto, Kristen B.; Tom, Westin; Paner, Gladell P.; Szmulewitz, Russell Z.; Vander Griend, Donald J.

    2013-01-01

    Despite advances in detection and therapy, castration-resistant prostate cancer continues to be a major clinical problem. The aberrant activity of stem cell pathways, and their regulation by the Androgen Receptor (AR), has the potential to provide insight into novel mechanisms and pathways to prevent and treat advanced, castrate-resistant prostate cancers. To this end, we investigated the role of the embryonic stem cell regulator Sox2 [SRY (sex determining region Y)-box 2] in normal and malignant prostate epithelial cells. In the normal prostate, Sox2 is expressed in a portion of basal epithelial cells. Prostate tumors were either Sox2-positive or Sox2-negative, with the percentage of Sox2-positive tumors increasing with Gleason Score and metastases. In the castration-resistant prostate cancer cell line CWR-R1, endogenous expression of Sox2 was repressed by AR signaling, and AR chromatin-IP shows that AR binds the enhancer element within the Sox2 promoter. Likewise, in normal prostate epithelial cells and human embryonic stem cells, increased AR signaling also decreases Sox2 expression. Resistance to the anti-androgen MDV3100 results in a marked increase in Sox2 expression within three prostate cancer cell lines, and in the castration-sensitive LAPC-4 prostate cancer cell line ectopic expression of Sox2 was sufficient to promote castration-resistant tumor formation. Loss of Sox2 expression in the castration-resistant CWR-R1 prostate cancer cell line inhibited cell growth. Up-regulation of Sox2 was not associated with increased CD133 expression but was associated with increased FGF5 (Fibroblast Growth Factor 5) expression. These data propose a model of elevated Sox2 expression due to loss of AR-mediated repression during castration, and consequent castration-resistance via mechanisms not involving induction of canonical embryonic stem cell pathways. PMID:23326489

  2. Tbx2 regulates anterior neural specification by repressing FGF signaling pathway.

    PubMed

    Cho, Gun-Sik; Park, Dong-Seok; Choi, Sun-Cheol; Han, Jin-Kwan

    2017-01-15

    During early embryogenesis, FGF signals regulate the antero-posterior (AP) patterning of the neural plate by promoting posterior cell fates. In particular, BMP signal-mediated attenuation of FGF pathway plays a critical role in the determination of the anterior neural region. Here we show that Tbx2, a T-box transcriptional repressor regulates anterior neural specification by suppressing FGF8 signaling pathway in Xenopus embryo. Tbx2 is expressed in the anterior edge of the neural plate in early neurulae. Overexpression and knockdown of Tbx2 induce expansion and reduction in the expression of anterior neural markers, respectively. It also suppresses FGF8-induced ERK phosphorylation and neural caudalization. Tbx2, which is a target gene of BMP signal, down-regulates FGF8 signaling by inhibiting the expression of Flrt3, a positive regulator of this pathway. We found that Tbx2 binds directly to the T-box element located in the promoter region of Flrt3 gene, thereby interfering with the activity of the promoter. Consistently, Tbx2 augmentation of anterior neural formation is inhibited by co-expression of Flrt3. Furthermore, disruption of the anterior-most structures such as eyes in Tbx2-depleted embryos can be rescued by inhibition of Flrt3 function or FGF signaling. Taken together, our results suggest that Tbx2 mediates BMP signal to down-regulate FGF signaling pathway by repressing Flrt3 expression for anterior tissue formation.

  3. Polycomb repressive complex 2 structure with inhibitor reveals a mechanism of activation and drug resistance

    PubMed Central

    Brooun, Alexei; Gajiwala, Ketan S.; Deng, Ya-Li; Liu, Wei; Bolaños, Ben; Bingham, Patrick; He, You-Ai; Diehl, Wade; Grable, Nicole; Kung, Pei-Pei; Sutton, Scott; Maegley, Karen A.; Yu, Xiu; Stewart, Al E.

    2016-01-01

    Polycomb repressive complex 2 (PRC2) mediates gene silencing through chromatin reorganization by methylation of histone H3 lysine 27 (H3K27). Overexpression of the complex and point mutations in the individual subunits of PRC2 have been shown to contribute to tumorigenesis. Several inhibitors of the PRC2 activity have shown efficacy in EZH2-mutated lymphomas and are currently in clinical development, although the molecular basis of inhibitor recognition remains unknown. Here we report the crystal structures of the inhibitor-bound wild-type and Y641N PRC2. The structures illuminate an important role played by a stretch of 17 residues in the N-terminal region of EZH2, we call the activation loop, in the stimulation of the enzyme activity, inhibitor recognition and the potential development of the mutation-mediated drug resistance. The work presented here provides new avenues for the design and development of next-generation PRC2 inhibitors through establishment of a structure-based drug design platform. PMID:27122193

  4. Protein arginine methyltransferase 1 (PRMT1) represses MHC II transcription in macrophages by methylating CIITA

    PubMed Central

    Fan, Zhiwen; Li, Jianfei; Li, Ping; Ye, Qing; Xu, Huihui; Wu, Xiaoyan; Xu, Yong

    2017-01-01

    Efficient presentation of alien antigens triggers activation of T lymphocytes and robust host defense against invading pathogens. This pathophysiological process relies on the expression of major histocompatibility complex (MHC) molecules in antigen presenting cells such as macrophages. Aberrant MHC II transactivation plays a crucial role in the pathogenesis of atherosclerosis. Class II transactivator (CIITA) mediates MHC II induction by interferon gamma (IFN-γ). CIITA activity can be fine-tuned at the post-translational level, but the mechanisms are not fully appreciated. We investigated the role of protein arginine methyltransferase 1 (PRMT1) in this process. We report here that CIITA interacted with PRMT1. IFN-γ treatment down-regulated PRMT1 expression and attenuated PRMT1 binding on the MHC II promoter. Over-expression of PRMT1 repressed MHC II promoter activity while PRMT1 depletion enhanced MHC II transactivation. Mechanistically, PRMT1 methylated CIITA and promoted CIITA degradation. Therefore, our data reveal a previously unrecognized role for PRMT1 in suppressing CIITA-mediated MHC II transactivation. PMID:28094290

  5. Amphiphilic Nanoparticles Repress Macrophage Atherogenesis: Novel Core/Shell Designs for Scavenger Receptor Targeting and Down-Regulation

    PubMed Central

    2015-01-01

    Atherosclerosis, an inflammatory lipid-rich plaque disease is perpetuated by the unregulated scavenger-receptor-mediated uptake of oxidized lipoproteins (oxLDL) in macrophages. Current treatments lack the ability to directly inhibit oxLDL accumulation and foam cell conversion within diseased arteries. In this work, we harness nanotechnology to design and fabricate a new class of nanoparticles (NPs) based on hydrophobic mucic acid cores and amphiphilic shells with the ability to inhibit the uncontrolled uptake of modified lipids in human macrophages. Our results indicate that tailored NP core and shell formulations repress oxLDL internalization via dual complementary mechanisms. Specifically, the most atheroprotective molecules in the NP cores competitively reduced NP-mediated uptake to scavenger receptor A (SRA) and also down-regulated the surface expression of SRA and CD36. Thus, nanoparticles can be designed to switch activated, lipid-scavenging macrophages to antiatherogenic phenotypes, which could be the basis for future antiatherosclerotic therapeutics. PMID:24972372

  6. Human native lipoprotein-induced de novo DNA methylation is associated with repression of inflammatory genes in THP-1 macrophages

    PubMed Central

    2011-01-01

    Background We previously showed that a VLDL- and LDL-rich mix of human native lipoproteins induces a set of repressive epigenetic marks, i.e. de novo DNA methylation, histone 4 hypoacetylation and histone 4 lysine 20 (H4K20) hypermethylation in THP-1 macrophages. Here, we: 1) ask what gene expression changes accompany these epigenetic responses; 2) test the involvement of candidate factors mediating the latter. We exploited genome expression arrays to identify target genes for lipoprotein-induced silencing, in addition to RNAi and expression studies to test the involvement of candidate mediating factors. The study was conducted in human THP-1 macrophages. Results Native lipoprotein-induced de novo DNA methylation was associated with a general repression of various critical genes for macrophage function, including pro-inflammatory genes. Lipoproteins showed differential effects on epigenetic marks, as de novo DNA methylation was induced by VLDL and to a lesser extent by LDL, but not by HDL, and VLDL induced H4K20 hypermethylation, while HDL caused H4 deacetylation. The analysis of candidate factors mediating VLDL-induced DNA hypermethylation revealed that this response was: 1) surprisingly, mediated exclusively by the canonical maintenance DNA methyltransferase DNMT1, and 2) independent of the Dicer/micro-RNA pathway. Conclusions Our work provides novel insights into epigenetic gene regulation by native lipoproteins. Furthermore, we provide an example of DNMT1 acting as a de novo DNA methyltransferase independently of canonical de novo enzymes, and show proof of principle that de novo DNA methylation can occur independently of a functional Dicer/micro-RNA pathway in mammals. PMID:22118513

  7. Amplification of Kp Elements Associated with the Repression of Hybrid Dysgenesis in Drosophila Melanogaster

    PubMed Central

    Jackson, M. S.; Black, D. M.; Dover, G. A.

    1988-01-01

    Mobile P elements in Drosophila melanogaster cause hybrid dysgenesis if their mobility is not repressed. One type of repression, termed P cytotype, is a complex interaction between chromosomes carrying P elements and cytoplasm and is transmitted through the cytoplasm only of females. Another type of repression is found in worldwide M' strains that contain approximately 30 copies per individual of one particular P element deletion-derivative termed the KP element. This repression is transmitted equally through both sexes. In the present study we show that biparentally transmitted repression increases in magnitude together with a rapid increase in KP copy-number in genotypes starting with one or a few KP elements and no other deletion-derivatives. Such correlated increases in repression and KP number per genome occur only in the presence of complete P elements, supporting the interpretation that they are probably a consequence of the selective advantage enjoyed by flies carrying the highest numbers of KP elements. Analysis of Q strains also reveals the presence of qualitative differences in the way the repression of dysgenesis is transmitted. In general, Q strains not containing KP elements have the P cytotype mode of repression, whereas Q strains with KP elements transmit repression through both sexes. This difference among Q strains further supports the existence of at least two types of repression of P-induced hybrid dysgenesis in natural populations of D. melanogaster. PMID:2852140

  8. Thrombospondin-1 Is a Transcriptional Repression Target of PRMT6*

    PubMed Central

    Michaud-Levesque, Jonathan; Richard, Stéphane

    2009-01-01

    Protein arginine methyltransferase 6 (PRMT6) is known to catalyze the generation of asymmetric dimethylarginine in polypeptides. Although the cellular role of PRMT6 is not well understood, it has been implicated in human immunodeficiency virus pathogenesis, DNA repair, and transcriptional regulation. PRMT6 is known to methylate histone H3 Arg-2 (H3R2), and this negatively regulates the lysine methylation of H3K4 resulting in gene repression. To identify in a nonbiased manner genes regulated by PRMT6 expression, we performed a microarray analysis on U2OS osteosarcoma cells transfected with control and PRMT6 small interfering RNAs. We identified thrombospondin-1 (TSP-1), a potent natural inhibitor of angiogenesis, as a transcriptional repression target of PRMT6. Moreover, we show that PRMT6-deficient U2OS cells exhibited cell migration defects that were rescued by blocking the secreted TSP-1 with a neutralizing peptide or blocking α-TSP-1 antibody. PRMT6 associates with the TSP-1 promoter and regulates the balance of methylation of H3R2 and H3K4, such that in PRMT6-deficient cells H3R2 was hypomethylated and H3K4 was trimethylated at the TSP-1 promoter. Using a TSP-1 promoter reporter gene, we further show that PRMT6 directly regulates the TSP-1 promoter activity. These findings show that TSP-1 is a transcriptional repression target of PRMT6 and suggest that neutralizing the activity of PRMT6 could inhibit tumor progression and therefore may be of cancer therapeutic significance. PMID:19509293

  9. Repression of death consciousness and the psychedelic trip.

    PubMed

    Dutta, Varsha

    2012-01-01

    Death is our most repressed consciousness, it inheres our condition as the primordial fear. Perhaps it was necessary that this angst be repressed in man or he would be hurled against the dark forces of nature. Modern ethos was built on this edifice, where the 'denial of death' while 'embracing one's symbolic immortality' would be worshipped, so this ideology simply overturned and repressed looking into the morass of the inevitable when it finally announced itself. Once this slowly pieced its way into all of life, 'death' would soon become a terminology in medicine too and assert its position, by giving a push to those directly dealing with the dying to shy away from its emotional and spiritual affliction. The need to put off death and prolong one's life would become ever more urgent. Research using psychedelics on the terminally ill which had begun in the 1950s and 1960s would coerce into another realm and alter the face of medicine; but the aggression with which it forced itself in the 1960s would soon be politically maimed, and what remained would be sporadic outpours that trickled its way from European labs and underground boot camps. Now, with the curtain rising, the question has etched itself again, about the use of psychedelic drugs in medicine, particularly psychedelic psychotherapy with the terminally ill. This study is an attempt to philosophically explore death anxiety from its existential context and how something that is innate in our condition cannot be therapeutically cured. Psychedelic use was immutably linked with ancient cultures and only recently has it seen its scientific revival, from which a scientific culture grew around psychedelic therapy. How much of what was threaded in the ritual and spiritual mores can be extricated and be interpreted in our own mechanized language of medicine is the question that nudges many.

  10. The Retinoblastoma Tumor Suppressor Transcriptionally Represses Pak1 in Osteoblasts

    PubMed Central

    Sosa-García, Bernadette; Vázquez-Rivera, Viviana; González-Flores, Jonathan N.; Engel, Brienne E.; Cress, W. Douglas; Santiago-Cardona, Pedro G.

    2015-01-01

    We previously characterized the retinoblastoma tumor suppressor protein (Rb) as a regulator of adherens junction assembly and cell-to-cell adhesion in osteoblasts. This is a novel function since Rb is predominantly known as a cell cycle repressor. Herein, we characterized the molecular mechanisms by which Rb performs this function, hypothesizing that Rb controls the activity of known regulators of adherens junction assembly. We found that Rb represses the expression of the p21-activated protein kinase (Pak1), an effector of the small Rho GTPase Rac1. Rac1 is a well-known regulator of adherens junction assembly whose increased activity in cancer is linked to perturbations of intercellular adhesion. Using nuclear run-on and luciferase reporter transcription assays, we found that Pak1 repression by Rb is transcriptional, without affecting Pak1 mRNA and protein stability. Pak1 promoter bioinformatics showed multiple E2F1 binding sites within 155 base pairs of the transcriptional start site, and a Pak1-promoter region containing these E2F sites is susceptible to transcriptional inhibition by Rb. Chromatin immunoprecipitations showed that an Rb-E2F complex binds to the region of the Pak1 promoter containing the E2F1 binding sites, suggesting that Pak1 is an E2F target and that the repressive effect of Rb on Pak1 involves blocking the trans-activating capacity of E2F. A bioinformatics analysis showed elevated Pak1 expression in several solid tumors relative to adjacent normal tissue, with both Pak1 and E2F increased relative to normal tissue in breast cancer, supporting a cancer etiology for Pak1 up-regulation. Therefore, we propose that by repressing Pak1 expression, Rb prevents Rac1 hyperactivity usually associated with cancer and related to cytoskeletal derangements that disrupt cell adhesion, consequently enhancing cancer cell migratory capacity. This de-regulation of cell adhesion due to Rb loss could be part of the molecular events associated with cancer progression

  11. Polycomb-Mediated Gene Silencing in Arabidopsis thaliana

    PubMed Central

    Kim, Dong-Hwan; Sung, Sibum

    2014-01-01

    Polycomb group (PcG) proteins are conserved chromatin regulators involved in the control of key developmental programs in eukaryotes. They collectively provide the transcriptional memory unique to each cell identity by maintaining transcriptional states of developmental genes. PcG proteins form multi-protein complexes, known as Polycomb repressive complex 1 (PRC1) and Polycomb repressive complex 2 (PRC2). PRC1 and PRC2 contribute to the stable gene silencing in part through catalyzing covalent histone modifications. Components of PRC1 and PRC2 are well conserved from plants to animals. PcG-mediated gene silencing has been extensively investigated in efforts to understand molecular mechanisms underlying developmental programs in eukaryotes. Here, we describe our current knowledge on PcG-mediated gene repression which dictates developmental programs by dynamic layers of regulatory activities, with an emphasis given to the model plant Arabidopsis thaliana. PMID:25410906

  12. RNA-binding protein HuR sequesters microRNA-21 to prevent translation repression of proinflammatory tumor suppressor gene programmed cell death 4.

    PubMed

    Poria, D K; Guha, A; Nandi, I; Ray, P S

    2016-03-31

    Translation control of proinflammatory genes has a crucial role in regulating the inflammatory response and preventing chronic inflammation, including a transition to cancer. The proinflammatory tumor suppressor protein programmed cell death 4 (PDCD4) is important for maintaining the balance between inflammation and tumorigenesis. PDCD4 messenger RNA translation is inhibited by the oncogenic microRNA, miR-21. AU-rich element-binding protein HuR was found to interact with the PDCD4 3'-untranslated region (UTR) and prevent miR-21-mediated repression of PDCD4 translation. Cells stably expressing miR-21 showed higher proliferation and reduced apoptosis, which was reversed by HuR expression. Inflammatory stimulus caused nuclear-cytoplasmic relocalization of HuR, reversing the translation repression of PDCD4. Unprecedentedly, HuR was also found to bind to miR-21 directly, preventing its interaction with the PDCD4 3'-UTR, thereby preventing the translation repression of PDCD4. This suggests that HuR might act as a 'miRNA sponge' to regulate miRNA-mediated translation regulation under conditions of stress-induced nuclear-cytoplasmic translocation of HuR, which would allow fine-tuned gene expression in complex regulatory environments.

  13. Soybean miR172c Targets the Repressive AP2 Transcription Factor NNC1 to Activate ENOD40 Expression and Regulate Nodule Initiation[C][W

    PubMed Central

    Wang, Youning; Wang, Lixiang; Zou, Yanmin; Chen, Liang; Cai, Zhaoming; Zhang, Senlei; Zhao, Fang; Tian, Yinping; Jiang, Qiong; Ferguson, Brett J.; Gresshoff, Peter M.; Li, Xia

    2014-01-01

    MicroRNAs are noncoding RNAs that act as master regulators to modulate various biological processes by posttranscriptionally repressing their target genes. Repression of their target mRNA(s) can modulate signaling cascades and subsequent cellular events. Recently, a role for miR172 in soybean (Glycine max) nodulation has been described; however, the molecular mechanism through which miR172 acts to regulate nodulation has yet to be explored. Here, we demonstrate that soybean miR172c modulates both rhizobium infection and nodule organogenesis. miR172c was induced in soybean roots inoculated with either compatible Bradyrhizobium japonicum or lipooligosaccharide Nod factor and was highly upregulated during nodule development. Reduced activity and overexpression of miR172c caused dramatic changes in nodule initiation and nodule number. We show that soybean miR172c regulates nodule formation by repressing its target gene, Nodule Number Control1, which encodes a protein that directly targets the promoter of the early nodulin gene, ENOD40. Interestingly, transcriptional levels of miR172c were regulated by both Nod Factor Receptor1α/5α-mediated activation and by autoregulation of nodulation-mediated inhibition. Thus, we established a direct link between miR172c and the Nod factor signaling pathway in addition to adding a new layer to the precise nodulation regulation mechanism of soybean. PMID:25549672

  14. Sensation in a single neuron pair represses male behavior in hermaphrodites

    PubMed Central

    White, Jamie Q.; Jorgensen, Erik M.

    2012-01-01

    Summary Pheromones elicit innate sex-specific mating behaviors in many species. We demonstrate that in C. elegans, male-specific sexual attraction behavior is programmed in both sexes but repressed in hermaphrodites. Repression requires a single sensory neuron pair, the ASIs. To represses attraction in adults, the ASIs must be present, active, and capable of sensing the environment during development. The ASIs release TGF-β, and ASI function can be bypassed by experimental activation of TGF-β signaling. Sexual attraction in de-repressed hermaphrodites requires the same sensory neurons as in males. The sexual identity of both these sensory neurons and a distinct subset of interneurons must be male to relieve repression and release attraction. TGF-β may therefore act to change connections between sensory- and interneurons during development to engage repression. Thus, sensation in a single sensory neuron pair during development reprograms a common neural circuit from male to female behavior. PMID:22920252

  15. PIASy Represses CCAAT/Enhancer-binding Protein δ (C/EBPδ) Transcriptional Activity by Sequestering C/EBPδ to the Nuclear Periphery*

    PubMed Central

    Zhou, Shanggen; Si, Junling; Liu, Tong; DeWille, James W.

    2008-01-01

    CCAAT/enhancer binding proteinδ (C/EBPδ) plays a key role in mammary epithelial cell G0 growth arrest, and “loss of function” alterations in C/EBPδ have been reported in breast cancer and acute myeloid leukemia. C/EBPδ is regulated at the transcriptional, post-transcriptional, and post-translational levels, suggesting tight control of C/EBPδ content and function. Protein inhibitors of activated STATs (PIASs) regulate a growing number of transcription factors, including C/EBPs. HC11 nontransformed mammary epithelial cells express PIAS3, PIASxβ, and PIASy, and all three PIAS family members repress C/EBPδ transcriptional activity. PIASy is the most potent, however, repressing C/EBPδ transcriptional activity by >80%. PIASy repression of C/EBPδ transcriptional activity is dependent upon interaction between the highly conserved PIASy N-terminal nuclear matrix binding domain (SAPD) and the C/EBPδ transactivation domain (TAD). PIASy repression of C/EBPδ transcriptional activity is independent of histone deacetylase activity, PIASy E3 SUMO ligase activity, and C/EBPδ sumoylation status. PIASy expression is associated with C/EBPδ translocation from nuclear foci, where C/EBPδ co-localizes with p300, to the nuclear periphery. PIASy-mediated translocation of C/EBPδ is dependent upon the PIASy SAPD and C/EBPδ TAD. PIASy reduces the expression of C/EBPδ adhesion-related target genes and enhances repopulation of open areas within a cell monolayer in the in vitro “scratch” assay. These results demonstrate that PIASy represses C/EBPδ by a mechanism that requires interaction between the PIASy SAPD and C/EBPδ TAD and does not require PIASy SUMO ligase activity or C/EBPδ sumoylation. PIASy alters C/EBPδ nuclear localization, reduces C/EBPδ transcriptional activity, and enhances cell proliferation/migration. PMID:18477566

  16. GW4064, an Agonist of Farnesoid X Receptor, Represses CYP3A4 Expression in Human Hepatocytes by Inducing Small Heterodimer Partner Expression

    PubMed Central

    Zhang, Shu; Pan, Xian

    2015-01-01

    Farnesoid X receptor (FXR) functions as a regulator of bile acid and lipid homeostasis and is recognized as a promising therapeutic target for metabolic diseases. The biologic function of FXR is mediated in part by a small heterodimer partner (SHP); ligand-activated FXR enhances SHP expression, and SHP in turn represses the activity of multiple transcription factors. This study aimed to investigate the effect of FXR activation on expression of the major drug-metabolizing enzyme CYP3A4. The effects of 3-(2,6-dichlorophenyl)-4-(3′-carboxy-2-chlorostilben-4-yl)oxymethyl-5-isopropylisoxazole (GW4064), a synthetic agonist of FXR, on the expression and activity of CYP3A4 were examined in primary human hepatocytes by using quantitative real-time polymerase chain reaction and S9 phenotyping. In human hepatocytes, treatment of GW4064 (1 μM) for 48 hours resulted in a 75% decrease in CYP3A4 mRNA expression and a 25% decrease in CYP3A4 activity, accompanied by ∼3-fold increase in SHP mRNA expression. In HepG2 cells, SHP repressed transactivation of CYP3A4 promoter by pregnane X receptor (PXR), constitutive androstane receptor (CAR), and glucocorticoid receptor. Interestingly, GW4064 did not repress expression of CYP2B6, another target gene of PXR and CAR; GW4064 enhanced CYP2B6 promoter activity. In conclusion, GW4064 represses CYP3A4 expression in human hepatocytes, potentially through upregulation of SHP expression and subsequent repression of CYP3A4 promoter activity. Clinically significant drug-drug interaction involving FXR agonists and CYP3A4 substrates may occur. PMID:25725071

  17. Xbp1 Directs Global Repression of Budding Yeast Transcription during the Transition to Quiescence and Is Important for the Longevity and Reversibility of the Quiescent State

    PubMed Central

    Miles, Shawna; Li, Lihong; Davison, Jerry; Breeden, Linda L.

    2013-01-01

    Pure populations of quiescent yeast can be obtained from stationary phase cultures that have ceased proliferation after exhausting glucose and other carbon sources from their environment. They are uniformly arrested in the G1 phase of the cell cycle, and display very high thermo-tolerance and longevity. We find that G1 arrest is initiated before all the glucose has been scavenged from the media. Maintaining G1 arrest requires transcriptional repression of the G1 cyclin, CLN3, by Xbp1. Xbp1 is induced as glucose is depleted and it is among the most abundant transcripts in quiescent cells. Xbp1 binds and represses CLN3 transcription and in the absence of Xbp1, or with extra copies of CLN3, cells undergo ectopic divisions and produce very small cells. The Rad53-mediated replication stress checkpoint reinforces the arrest and becomes essential when Cln3 is overproduced. The XBP1 transcript also undergoes metabolic oscillations under glucose limitation and we identified many additional transcripts that oscillate out of phase with XBP1 and have Xbp1 binding sites in their promoters. Further global analysis revealed that Xbp1 represses 15% of all yeast genes as they enter the quiescent state and over 500 of these transcripts contain Xbp1 binding sites in their promoters. Xbp1-repressed transcripts are highly enriched for genes involved in the regulation of cell growth, cell division and metabolism. Failure to repress some or all of these targets leads xbp1 cells to enter a permanent arrest or senescence with a shortened lifespan. PMID:24204289

  18. Inorganic arsenic represses interleukin-17A expression in human activated Th17 lymphocytes

    SciTech Connect

    Morzadec, Claudie; Macoch, Mélinda; Robineau, Marc; Sparfel, Lydie; Fardel, Olivier; Vernhet, Laurent

    2012-08-01

    Trivalent inorganic arsenic [As(III)] is an efficient anticancer agent used to treat patients suffering from acute promyelocytic leukemia. Recently, experimental studies have clearly demonstrated that this metalloid can also cure lymphoproliferative and/or pro-inflammatory syndromes in different murine models of chronic immune-mediated diseases. T helper (Th) 1 and Th17 lymphocytes play a central role in development of these diseases, in mice and humans, especially by secreting the potent pro-inflammatory cytokine interferon-γ and IL-17A, respectively. As(III) impairs basic functions of human T cells but its ability to modulate secretion of pro-inflammatory cytokines by differentiated Th lymphocytes is unknown. In the present study, we demonstrate that As(III), used at concentrations clinically achievable in plasma of patients, has no effect on the secretion of interferon-γ from Th1 cells but almost totally blocks the expression and the release of IL-17A from human Th17 lymphocytes co-stimulated for five days with anti-CD3 and anti-CD28 antibodies, in the presence of differentiating cytokines. In addition, As(III) specifically reduces mRNA levels of the retinoic-related orphan receptor (ROR)C gene which encodes RORγt, a key transcription factor controlling optimal IL-17 expression in fully differentiated Th17 cells. The metalloid also blocks initial expression of IL-17 gene induced by the co-stimulation, probably in part by impairing activation of the JNK/c-Jun pathway. In conclusion, our results demonstrate that As(III) represses expression of the major pro-inflammatory cytokine IL-17A produced by human Th17 lymphocytes, thus strengthening the idea that As(III) may be useful to treat inflammatory immune-mediated diseases in humans. -- Highlights: ► Arsenic inhibits secretion of IL-17A from human naïve and memory Th17 lymphocytes. ► Arsenic represses early expression of IL-17A gene in human activated T lymphocytes. ► Arsenic interferes with activation of

  19. Repression of PES1 expression inhibits growth of gastric cancer.

    PubMed

    Li, Jieping; Zhou, Xiaodong; Lan, Xiaopeng; Zeng, Guobin; Jiang, Xuping; Huang, Zongming

    2016-03-01

    Gastric cancer is one of the leading causes of cancer death worldwide. However, precise molecular mechanisms underlining its development are far from clear. We recently reported that PES1 promoted development of breast cancer and ovarian cancer as an oncogene. In this study, we reported that ablation of endogenous PES1 resulted in significant suppression of cell proliferation and growth and led to cell cycle arrest in G2 or G1 phase, respectively, in two gastric cancer cell lines (AGS and N87) in vitro. Meanwhile, silencing of PES1 obviously decreased expressions of cyclin D1, HIF-1α, and vascular endothelial growth factor (VEGF) expressions and increased p21WAF1 expression. Re-expression of PES1 in these two kinds of PES1 knockdown cells rescued these effects. In vivo, repression of endogenous PES1 expression suppressed gastric tumor growth in nude mice. In addition, 40.7 % (24/59) of gastric cancer tissues showed PES1 expression via immunohistochemical (IHC) staining. However, there were not any positive PES1 stainings in matched adjacent tissues. Our results demonstrated that repression of PES1 changed expressions of some cell proliferation- and angiogenesis-related genes and inhibited gastric cancer growth, and PES1 expression increased in gastric cancer tissues. These results suggest that PES1 may play an important role in development of gastric cancer. PES1 may be a potential target for gastric cancer therapy.

  20. Ski represses BMP signaling in Xenopus and mammalian cells

    SciTech Connect

    kluo@lbl.gov

    2001-05-16

    The bone morphogenic proteins (BMPs) play important roles in vertebrate development. In Xenopus, BMPs act as epidermal inducers and also as negative regulators of neurogenesis. Antagonism of BMP signaling results in neuralization. BMPs signal through the cell-surface receptors and downstream Smad molecules. Upon stimulation with BMP, Smad1, Smad5, and Smad8 are phosphorylated by the activated BMP receptors, form a complex with Smad4, and translocate into the nucleus, where they regulate the expression of BMP target genes. Here, we show that the Ski oncoprotein can block BMP signaling and the expression of BMP-responsive genes in both Xenopus and mammalian cells by directly interacting with and repressing the activity of BMP-specific Smad complexes. This ability to antagonize BMP signaling results in neuralization by Ski in the Xenopus embryo and blocking of osteoblast differentiation of murine W-20-17 cells. Thus, Ski is able to repress the activity of all receptor-associated Smads and may regulate vertebrate development by modulating the signaling activity of transforming growth factor-{beta} family members.

  1. A mutation in the Zn-finger of the GAL4 homolog LAC9 results in glucose repression of its target genes.

    PubMed Central

    Kuger, P; Gödecke, A; Breunig, K D

    1990-01-01

    The transcriptional activator LAC9, a GAL4 homolog of Kluyveromyces lactis which mediates lactose and galactose-dependent activation of genes involved in the utilization of these sugars can also confer glucose repression to those genes. Here we report on the isolation and characterization of LAC9-2, an allele which encodes a glucose-sensitive activator in contrast to the one previously cloned. A single amino acid exchange of leu-104 to tryptophan is responsible for the glucose-insensitive phenotype. The mutation is located within the Zn-finger-like DNA binding domain which is highly conserved between LAC9 and GAL4. Glucose repression is also eliminated by duplication of the LAC9-2 allele. The data indicate that LAC9 is a limiting factor for beta-galactosidase gene expression under all growth conditions and that glucose reduces the activity of the activator. Images PMID:2107531

  2. Repression of host RNA polymerase II transcription by herpes simplex virus type 1.

    PubMed Central

    Spencer, C A; Dahmus, M E; Rice, S A

    1997-01-01

    Lytic infection of mammalian cells with herpes simplex virus type 1 (HSV-1) results in rapid repression of host gene expression and selective activation of the viral genome. This transformation in gene expression is thought to involve repression of host transcription and diversion of the host RNA polymerase (RNAP II) transcription machinery to the viral genome. However, the extent of virus-induced host transcription repression and the mechanisms responsible for these major shifts in transcription specificities have not been examined. To determine how HSV-1 accomplishes repression of host RNAP II transcription, we assayed transcription patterns on several cellular genes in cells infected with mutant and wild-type HSV-1. Our results suggest that HSV-1 represses RNAP II transcription on most cellular genes. However, each cellular gene we examined responds differently to the transcription repressive effects of virus infection, both quantitatively and with respect to the involvement of viral gene products. Virus-induced shutoff of host RNAP II transcription requires expression of multiple immediate-early genes. In contrast, expression of delayed-early and late genes and viral DNA replication appear to contribute little to repression of host cell RNAP II transcription. Modification of RNAP II to the intermediately phosphorylated (II(I)) form appears unlinked to virus-induced repression of host cell transcription. However, full repression of host transcription is correlated with depletion of the hyperphosphorylated (IIO) form of RNAP II. PMID:9032335

  3. Evidence that regulatory protein MarA of Escherichia coli represses rob by steric hindrance.

    PubMed

    McMurry, Laura M; Levy, Stuart B

    2010-08-01

    The MarA protein of Escherichia coli can both activate and repress the initiation of transcription, depending on the position and orientation of its degenerate 20-bp binding site ("marbox") at the promoter. For all three known repressed genes, the marbox overlaps the promoter. It has been reported that MarA represses the rob promoter via an RNA polymerase (RNAP)-DNA-MarA ternary complex. Under similar conditions, we found a ternary complex for the repressed purA promoter also. These findings, together with the backwards orientation of repressed marboxes, suggested a unique interaction of MarA with RNAP in repression. However, no repression-specific residues of MarA could be found among 38 single-alanine replacement mutations previously shown to retain activation function or among mutants from random mutagenesis. Mutations Thr12Ala, Arg36Ala, Thr95Ile, and Pro106Ala were more damaging for activation than for repression, some up to 10-fold, so these residues may play a specific role in activation. We found that nonspecific binding of RNAP to promoterless regions of DNA was presumably responsible for the ternary complexes seen previously. When RNAP binding was promoter specific, MarA reduced RNAP access to the rob promoter; there was little or no ternary complex. These findings strongly implicate steric hindrance as the mechanism of repression of rob by MarA.

  4. The X protein of hepatitis B virus activates hepatoma cell proliferation through repressing melanoma inhibitory activity 2 gene

    SciTech Connect

    Xu, Yilin; Yang, Yang; Cai, Yanyan; Liu, Fang; Liu, Yingle; Zhu, Ying; Wu, Jianguo

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer We demonstrated that HBV represses MIA2 gene expression both invitro and in vivo. Black-Right-Pointing-Pointer The X protein of HBV plays a major role in such regulation. Black-Right-Pointing-Pointer Knock-down of MIA2 in HepG2 cells activates cell growth and proliferation. Black-Right-Pointing-Pointer HBx activates cell proliferation, over-expression of MIA2 impaired such regulation. Black-Right-Pointing-Pointer HBx activates hepatoma cell proliferation through repressing MIA2 expression. -- Abstract: Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer deaths globally. Chronic hepatitis B virus (HBV) infection accounts for over 75% of all HCC cases; however, the molecular pathogenesis of HCC is not well understood. In this study, we found that the expression of the newly identified gene melanoma inhibitory activity 2 (MIA2) was reduced by HBV infection invitro and invivo, and that HBV X protein (HBx) plays a major role in this regulation. Recent studies have revealed that MIA2 is a potential tumor suppressor, and that, in most HCCs, MIA2 expression is down-regulated or lost. We found that the knock-down of MIA2 in HepG2 cells activated cell growth and proliferation, suggesting that MIA2 inhibits HCC cell growth and proliferation. In addition, the over-expression of HBx alone induced cell proliferation, whereas MIA2 over-expression impaired the HBx-mediated induction of proliferation. Taken together, our results suggest that HBx activates hepatoma cell growth and proliferation through repression of the potential tumor suppressor MIA2.

  5. hnRNP-Q1 represses nascent axon growth in cortical neurons by inhibiting Gap-43 mRNA translation

    PubMed Central

    Williams, Kathryn R.; McAninch, Damian S.; Stefanovic, Snezana; Xing, Lei; Allen, Megan; Li, Wenqi; Feng, Yue; Mihailescu, Mihaela Rita; Bassell, Gary J.

    2016-01-01

    Posttranscriptional regulation of gene expression by mRNA-binding proteins is critical for neuronal development and function. hnRNP-Q1 is an mRNA-binding protein that regulates mRNA processing events, including translational repression. hnRNP-Q1 is highly expressed in brain tissue, suggesting a function in regulating genes critical for neuronal development. In this study, we have identified Growth-associated protein 43 (Gap-43) mRNA as a novel target of hnRNP-Q1 and have demonstrated that hnRNP-Q1 represses Gap-43 mRNA translation and consequently GAP-43 function. GAP-43 is a neuronal protein that regulates actin dynamics in growth cones and facilitates axonal growth. Previous studies have identified factors that regulate Gap-43 mRNA stability and localization, but it remains unclear whether Gap-43 mRNA translation is also regulated. Our results reveal that hnRNP-Q1 knockdown increased nascent axon length, total neurite length, and neurite number in mouse embryonic cortical neurons and enhanced Neuro2a cell process extension; these phenotypes were rescued by GAP-43 knockdown. Additionally, we have identified a G-quadruplex structure in the 5′ untranslated region of Gap-43 mRNA that directly interacts with hnRNP-Q1 as a means to inhibit Gap-43 mRNA translation. Therefore hnRNP-Q1–mediated repression of Gap-43 mRNA translation provides an additional mechanism for regulating GAP-43 expression and function and may be critical for neuronal development. PMID:26658614

  6. Sex comb on midleg (Scm) is a functional link between PcG-repressive complexes in Drosophila.

    PubMed

    Kang, Hyuckjoon; McElroy, Kyle A; Jung, Youngsook Lucy; Alekseyenko, Artyom A; Zee, Barry M; Park, Peter J; Kuroda, Mitzi I

    2015-06-01

    The Polycomb group (PcG) proteins are key regulators of development in Drosophila and are strongly implicated in human health and disease. How PcG complexes form repressive chromatin domains remains unclear. Using cross-linked affinity purifications of BioTAP-Polycomb (Pc) or BioTAP-Enhancer of zeste [E(z)], we captured all PcG-repressive complex 1 (PRC1) or PRC2 core components and Sex comb on midleg (Scm) as the only protein strongly enriched with both complexes. Although previously not linked to PRC2, we confirmed direct binding of Scm and PRC2 using recombinant protein expression and colocalization of Scm with PRC1, PRC2, and H3K27me3 in embryos and cultured cells using ChIP-seq (chromatin immunoprecipitation [ChIP] combined with deep sequencing). Furthermore, we found that RNAi knockdown of Scm and overexpression of the dominant-negative Scm-SAM (sterile α motif) domain both affected the binding pattern of E(z) on polytene chromosomes. Aberrant localization of the Scm-SAM domain in long contiguous regions on polytene chromosomes revealed its independent ability to spread on chromatin, consistent with its previously described ability to oligomerize in vitro. Pull-downs of BioTAP-Scm captured PRC1 and PRC2 and additional repressive complexes, including PhoRC, LINT, and CtBP. We propose that Scm is a key mediator connecting PRC1, PRC2, and transcriptional silencing. Combined with previous structural and genetic analyses, our results strongly suggest that Scm coordinates PcG complexes and polymerizes to produce broad domains of PcG silencing.

  7. The adenoviral E1A N-terminal domain represses MYC transcription in human cancer cells by targeting both p300 and TRRAP and inhibiting MYC promoter acetylation of H3K18 and H4K16

    PubMed Central

    Zhao, Ling-Jun; Loewenstein, Paul M.; Green, Maurice

    2016-01-01

    Human cancers frequently arise from increased expression of proto-oncogenes, such as MYC and HER2. Understanding the cellular pathways regulating the transcription and expression of proto-oncogenes is important for targeted therapies for cancer treatment. Adenoviral (Ad) E1A 243R (243 aa residues) is a viral oncoprotein that interacts with key regulators of gene transcription and cell proliferation. We have shown previously that the 80 amino acid N-terminal transcriptional repression domain of E1A 243R (E1A 1-80) can target the histone acetyltransferase (HAT) p300 and repress HER2 in the HER2-overexpressing human breast cancer cell line SKBR3. Expression of E1A 1-80 induces death of SKBR3 and other cancer cell lines. In this study, we performed total cell RNA sequence analysis and identified MYC as the regulatory gene for cellular proliferation most strongly repressed by E1A 1-80. By RT-quantitative PCR analysis we show that repression of MYC in SKBR3 cells occurs early after expression of E1A 1-80, suggesting that MYC may be an early responder of E1A 1-80-mediated transcriptional repression. Of interest, while E1A 1-80 repression of MYC occurs in all eight human cancer cell lines examined, repression of HER2 is cell-type dependent. We demonstrate by ChIP analysis that MYC transcriptional repression by E1A 1-80 is associated with inhibition of acetylation of H3K18 and H4K16 on the MYC promoter, as well as inhibition of RNA Pol II binding to the MYC promoter. Deletion mutant analysis of E1A 1-80 suggests that both p300/CBP and TRRAP are involved in E1A 1-80 repression of MYC transcription. Further, E1A 1-80 interaction with p300/CBP and TRRAP is correlated with inhibition of H3K18 and H4K16 acetylation on the MYC promoter, respectively. Our results indicate that E1A 1-80 may target two important pathways for histone modification to repress transcription in human cancer cells. PMID:27382434

  8. Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis.

    PubMed

    Hiratsu, Keiichiro; Matsui, Kyoko; Koyama, Tomotsugu; Ohme-Takagi, Masaru

    2003-06-01

    The redundancy of genes for plant transcription factors often interferes with efforts to identify the biologic functions of such factors. We show here that four different transcription factors fused to the EAR motif, a repression domain of only 12 amino acids, act as dominant repressors in transgenic Arabidopsis and suppress the expression of specific target genes, even in the presence of the redundant transcription factors, with resultant dominant loss-of-function phenotypes. Chimeric EIN3, CUC1, PAP1, and AtMYB23 repressors that included the EAR motif dominantly suppressed the expression of their target genes and caused insensitivity to ethylene, cup-shaped cotyledons, reduction in the accumulation of anthocyanin, and absence of trichomes, respectively. This chimeric repressor silencing technology (CRES-T), exploiting the EAR-motif repression domain, is simple and effective and can overcome genetic redundancy. Thus, it should be useful not only for the rapid analysis of the functions of redundant plant transcription factors but also for the manipulation of plant traits via the suppression of gene expression that is regulated by specific transcription factors.

  9. Differential Recruitment of Methyl CpG-Binding Domain Factors and DNA Methyltransferases by the Orphan Receptor Germ Cell Nuclear Factor Initiates the Repression and Silencing of Oct4

    PubMed Central

    Gu, Peili; Xu, Xueping; Le Menuet, Damien; Chung, Arthur C-K; Cooney, Austin J

    2011-01-01

    The pluripotency gene Oct4 encodes a key transcription factor that maintains self-renewal of embryonic stem cell (ESC) and is downregulated upon differentiation of ESCs and silenced in somatic cells. A combination of cis elements, transcription factors, and epigenetic modifications, such as DNA methylation, mediates Oct4 gene expression. Here, we show that the orphan nuclear receptor germ cell nuclear factor (GCNF) initiates Oct4 repression and DNA methylation by the differential recruitment of methyl-CpG binding domain (MBD) and DNA methyltransferases (Dnmts) to the Oct4 promoter. When compared with wild-type ESCs and gastrulating embryos, Oct4 repression is lost and its proximal promoter is significantly hypomethylated in retinoic acid (RA)-differentiated GCNF−/− ESCs and GCNF−/− embryos. Efforts to characterize mediators of GCNF's repressive function and DNA methylation of the Oct4 promoter identified MBD3, MBD2, and de novo Dnmts as GCNF interacting factors. Upon differentiation, endogenous GCNF binds to the Oct4 proximal promoter and differentially recruits MBD3 and MBD2 as well as Dnmt3A. In differentiated GCNF−/− ESCs, recruitment of MBD3 and MBD2 as well as Dnmt3A to Oct4 promoter is lost and subsequently Oct4 repression and DNA methylation failed to occur. Hypomethylation of the Oct4 promoter is also observed in RA-differentiated MBD3−/− and Dnmt3A−/− ESCs, but not in MBD2−/− and Dnmt3B−/− ESCs. Thus, recruitment of MBD3, MBD2, and Dnmt3A by GCNF links two events: gene-specific repression and DNA methylation, which occur differentially at the Oct4 promoter. GCNF initiates the repression and epigenetic modification of Oct4 gene during ESC differentiation. Stem Cells 2011;29:1041–1051 PMID:21608077

  10. Do microRNAs Mediate Estrogen-Dependent Repression of Genes

    DTIC Science & Technology

    2008-08-01

    stress and RNA binding proteins , which usually bind to sequences in between microRNA recognition sites on mRNAs, determine the target specificity of...RNA binding proteins such as LIN28 (17). The miRNA genes usually appear in polycistronic clusters and more than 50% of miRNA genes are located in...cancer associated genomic regions of fragile sites (5, 18 ). Thus, because of their enormous influence on expression of multiple genes, an alteration

  11. NF-kappaB-Mediated Repression of GADD153/CHOP: A Role in Breast Cancer Initiation

    DTIC Science & Technology

    2005-08-01

    normal versus neoplastic mammary epithelial cells. J Cell Physiol 2001;189(1):91-105. 18 . Bundy LM, Sealy L. CCAAT/enhancer binding protein beta (C...cytoplasm of resting cells through its association with inhibitor-of- kappaB (IKB) proteins and translocates to nucleus upon exposure of cells to cytokines...of proteins to C/EBP homodimers binding elements as well as to C/EBP/CHOP heterodimer binding elements was reduced in MCF IOA/p65 cells compared to

  12. Transformation by homeobox genes can be mediated by selective transcriptional repression.

    PubMed Central

    Qin, X F; Luo, Y; Suh, H; Wayne, J; Misulovin, Z; Roeder, R G; Nussenzweig, M C

    1994-01-01

    Altered transcription is a recurrent theme in the field of cancer biology. But despite the central role of transcription in transformation, little is known about the mechanism by which dominant nuclear oncogenes induce malignancies. Homeobox family proteins are prominent examples of transcriptional regulators which control development and can function as oncogenes. Here we explore the molecular basis for transformation by this class of regulators using Oct-2 and Oct-1. We show that the DNA binding POU domains of these proteins are selective and sequence-specific transcriptional repressors that produce malignant lymphomas when they are expressed in T cells of transgenic mice. Mutagenesis experiments identified a specific set of promoters, those containing octamer regulatory elements, as the targets for transformation by selective inhibition of gene expression. Images PMID:7813434

  13. The Unicellular Ancestry of Groucho-Mediated Repression and the Origins of Metazoan Transcription Factors.

    PubMed

    Copley, Richard R

    2016-06-27

    Groucho is a co-repressor that interacts with many transcription factors playing a crucial role in animal development. The evolutionary origins of Groucho are not clear. It is generally regarded as being a distinct animal-specific protein, although with similarities to the yeast Tup-like proteins. Here, it is shown that Groucho has true orthologs in unicellular relatives of animals. Based on their phylogenetic distribution, and an analysis of ligand-binding residues, these genes are unlikely to be orthologs of the fungal Tup-like genes. By identifying conserved candidate Groucho interaction motifs (GIMs) in nonmetazoan transcription factors, it is demonstrated that the details of molecular interactions between Groucho and transcription factors are likely to have been established prior to the origin of animals, but that the association of GIMs with many transcription factor types can be regarded as a metazoan innovation.

  14. The Unicellular Ancestry of Groucho-Mediated Repression and the Origins of Metazoan Transcription Factors

    PubMed Central

    Copley, Richard R.

    2016-01-01

    Groucho is a co-repressor that interacts with many transcription factors playing a crucial role in animal development. The evolutionary origins of Groucho are not clear. It is generally regarded as being a distinct animal-specific protein, although with similarities to the yeast Tup-like proteins. Here, it is shown that Groucho has true orthologs in unicellular relatives of animals. Based on their phylogenetic distribution, and an analysis of ligand-binding residues, these genes are unlikely to be orthologs of the fungal Tup-like genes. By identifying conserved candidate Groucho interaction motifs (GIMs) in nonmetazoan transcription factors, it is demonstrated that the details of molecular interactions between Groucho and transcription factors are likely to have been established prior to the origin of animals, but that the association of GIMs with many transcription factor types can be regarded as a metazoan innovation. PMID:27189982

  15. MicroProtein-Mediated Recruitment of CONSTANS into a TOPLESS Trimeric Complex Represses Flowering in Arabidopsis

    PubMed Central

    Graeff, Moritz; Straub, Daniel; Eguen, Tenai; Dolde, Ulla; Rodrigues, Vandasue; Brandt, Ronny; Wenkel, Stephan

    2016-01-01

    MicroProteins are short, single domain proteins that act by sequestering larger, multi-domain proteins into non-functional complexes. MicroProteins have been identified in plants and animals, where they are mostly involved in the regulation of developmental processes. Here we show that two Arabidopsis thaliana microProteins, miP1a and miP1b, physically interact with CONSTANS (CO) a potent regulator of flowering time. The miP1a/b-type microProteins evolved in dicotyledonous plants and have an additional carboxy-terminal PF(V/L)FL motif. This motif enables miP1a/b microProteins to interact with TOPLESS/TOPLESS-RELATED (TPL/TPR) proteins. Interaction of CO with miP1a/b/TPL causes late flowering due to a failure in the induction of FLOWERING LOCUS T (FT) expression under inductive long day conditions. Both miP1a and miP1b are expressed in vascular tissue, where CO and FT are active. Genetically, miP1a/b act upstream of CO thus our findings unravel a novel layer of flowering time regulation via microProtein-inhibition. PMID:27015278

  16. Glucocorticoid Receptor-Mediated Repression of Pro-Inflammatory Genes in Rheumatoid Arthritis

    DTIC Science & Technology

    2015-10-01

    reads over 100-bp windows. Read distribution in inputs (In) was used to establish background. Peaks were called (marked in red) using CLC Genomics...acetylation were also limited to initiation-controlled genes, and were not seen at elongations-controlled Tnf (Fig. 3). Modifications are read by so- called ...is driven by immune cells such as macrophages that migrate into the affected joints and produce small proteins called inflammatory cytokines. This

  17. Essential roles of Da transactivation domains in neurogenesis and in E(spl)-mediated repression.

    PubMed

    Zarifi, Ioanna; Kiparaki, Marianthi; Koumbanakis, Konstantinos A; Giagtzoglou, Nikolaos; Zacharioudaki, Evanthia; Alexiadis, Anastasios; Livadaras, Ioannis; Delidakis, Christos

    2012-11-01

    E proteins are a special class of basic helix-loop-helix (bHLH) proteins that heterodimerize with many bHLH activators to regulate developmental decisions, such as myogenesis and neurogenesis. Daughterless (Da) is the sole E protein in Drosophila and is ubiquitously expressed. We have characterized two transcription activation domains (TADs) in Da, called activation domain 1 (AD1) and loop-helix (LH), and have evaluated their roles in promoting peripheral neurogenesis. In this context, Da heterodimerizes with proneural proteins, such as Scute (Sc), which is dynamically expressed and also contributes a TAD. We found that either one of the Da TADs in the Da/Sc complex is sufficient to promote neurogenesis, whereas the Sc TAD is incapable of doing so. Besides its transcriptional activation role, the Da AD1 domain serves as an interaction platform for E(spl) proteins, bHLH-Orange family repressors which antagonize Da/Sc function. We show that the E(spl) Orange domain is needed for this interaction and strongly contributes to the antiproneural activity of E(spl) proteins. We present a mechanistic model on the interplay of these bHLH factors in the context of neural fate assignment.

  18. Targeting arachidonic acid pathway to prevent programmed hypertension in maternal fructose-fed male adult rat offspring.

    PubMed

    Tain, You-Lin; Lee, Wei-Chia; Wu, Kay L H; Leu, Steve; Chan, Julie Y H

    2016-12-01

    Hypertension can be programmed in response to nutritional insults in early life. Maternal high-fructose (HF) intake induced programmed hypertension in adult male offspring, which is associated with renal programming and arachidonic acid metabolism pathway. We examined whether early treatment with a soluble epoxide hydrolase (SEH) inhibitor, 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA) or 15-Deoxy-Δ(12,14)-prostagandin J2 (15dPGJ2) can prevent HF-induced programmed hypertension. Pregnant Sprague Dawley rats received regular chow or chow supplemented with fructose (60% diet by weight) during the whole period of pregnancy and lactation. Four groups of male offspring were studied: control, HF, HF+AUDA and HF+15dPGJ2. In HF+AUDA group, mother rats received AUDA 25 mg/L in drinking water during lactation. In the HF+15dPGJ2 group, male offspring received 15dPGJ2 1.5 mg/kg body weight by subcutaneous injection once daily for 1 week after birth. Rats were sacrificed at 12 weeks of age. Maternal HF-induced programmed hypertension is associated with increased renal protein level of SEH and oxidative stress, which early AUDA therapy prevents. Comparison of AUDA and 15dPGJ2 treatments demonstrated that AUDA was more effective in preventing HF-induced programmed hypertension. AUDA therapy increases angiotensin converting enzyme-2 (ACE2) protein levels and PGE2 levels in adult offspring kidney exposed to maternal HF. 15dPGJ2 therapy increases plasma asymmetric dimethylarginine (ADMA) levels and decreases L-arginine-to-ADMA ratio. Better understanding of the impact of arachidonic acid pathway, especially inhibition of SEH, on renal programming may aid in developing reprogramming strategy to prevent programmed hypertension in children exposed to antenatal HF intake.

  19. Early postnatal treatment with soluble epoxide hydrolase inhibitor or 15-deoxy-Δ(12,14)-prostagandin J2 prevents prenatal dexamethasone and postnatal high saturated fat diet induced programmed hypertension in adult rat offspring.

    PubMed

    Lu, Pei-Chen; Sheen, Jiunn-Ming; Yu, Hong-Ren; Lin, Yu-Ju; Chen, Chih-Cheng; Tiao, Mao-Meng; Tsai, Ching-Chou; Huang, Li-Tung; Tain, You-Lin

    2016-07-01

    Prenatal dexamethasone (DEX) exposure, postnatal high-fat (HF) intake, and arachidonic acid pathway are closely related to hypertension. We tested whether a soluble epoxide hydrolase (SEH) inhibitor, 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA) or 15-deoxy-Δ(12,14)-prostagandin J2 (15dPGJ2) therapy can rescue programmed hypertension in the DEX+HF two-hit model. Four groups of Sprague Dawley rats were studied: control, DEX+HF, AUDA, and 15dPGJ2. Dexamethasone (0.1mg/kg body weight) was intraperitoneally administered to pregnant rats from gestational day 16-22. Male offspring received high-fat diet (D12331, Research Diets) from weaning to 4 months of age. In AUDA group, mother rats received 25mg/L in drinking water during lactation. In the 15dPGJ2 group, male offspring received 15dPGJ2 1.5mg/kg BW by subcutaneous injection once daily for 1 week after birth. We found postnatal HF diet aggravated prenatal DEX-induced programmed hypertension, which was similarly prevented by early treatment with AUDA or 15dPGJ2. The beneficial effects of AUDA and 15d-PGJ2 therapy include inhibition of SEH, increases of renal angiotensin converting enzyme-2 (ACE2) and angiotensin II type 2 receptor (AT2R) protein levels, and restoration of nitric oxide bioavailability. Better understanding of the impact of arachidonic acid pathway in the two-hit model will help prevent programmed hypertension in children exposed to corticosteroids and postnatal HF intake.

  20. Glucose inhibits root meristem growth via ABA INSENSITIVE 5, which represses PIN1 accumulation and auxin activity in Arabidopsis.

    PubMed

    Yuan, Ting-Ting; Xu, Heng-Hao; Zhang, Kun-Xiao; Guo, Ting-Ting; Lu, Ying-Tang

    2014-06-01

    Glucose functions as a hormone-like signalling molecule that modulates plant growth and development in Arabidopsis thaliana. However, the role of glucose in root elongation remains elusive. Our study demonstrates that high concentrations of glucose reduce the size of the root meristem zone by repressing PIN1 accumulation and thereby reducing auxin levels. In addition, we verified the involvement of ABA INSENSITIVE 5 (ABI5) in this process by showing that abi5-1 is less sensitive to glucose than the wild type, whereas glucose induces ABI5 expression and the inducible overexpression of ABI5 reduces the size of the root meristem zone. Furthermore, the inducible overexpression of ABI5 in PIN1::PIN1-GFP plants reduces the level of PIN1-GFP, but glucose reduces the level of PIN1-GFP to a lesser extent in abi5-1 PIN1::PIN1-GFP plants than in the PIN1::PIN1-GFP control, suggesting that ABI5 is involved in glucose-regulated PIN1 accumulation. Taken together, our data suggest that ABI5 functions in the glucose-mediated inhibition of the root meristem zone by repressing PIN1 accumulation, thus leading to reduced auxin levels in roots.

  1. Ubx dynamically regulates Dpp signaling by repressing Dad expression during copper cell regeneration in the adult Drosophila midgut.

    PubMed

    Li, Hongjie; Qi, Yanyan; Jasper, Heinrich

    2016-11-15

    The gastrointestinal (GI) tract of metazoans is lined by a series of regionally distinct epithelia. To maintain structure and function of the GI tract, regionally diversified differentiation of somatic stem cell (SC) lineages is critical. The adult Drosophila midgut provides an accessible model to study SC regulation and specification in a regionally defined manner. SCs of the posterior midgut (PM) have been studied extensively, but the control of SCs in the middle midgut (MM) is less well understood. The MM contains a stomach-like copper cell region (CCR) that is regenerated by gastric stem cells (GSSCs) and contains acid-secreting copper cells (CCs). Bmp-like Decapentaplegic (Dpp) signaling determines the identity of GSSCs, and is required for CC regeneration, yet the precise control of Dpp signaling activity in this lineage remains to be fully established. Here, we show that Dad, a negative feedback regulator of Dpp signaling, is dynamically regulated in the GSSC lineage to allow CC differentiation. Dad is highly expressed in GSSCs and their first daughter cells, the gastroblasts (GBs), but has to be repressed in differentiating CCs to allow Dpp-mediated differentiation into CCs. We find that the Hox gene ultrabithorax (Ubx) is required for this regulation. Loss of Ubx prevents Dad repression in the CCR, resulting in defective CC regeneration. Our study highlights the need for dynamic control of Dpp signaling activity in the differentiation of the GSSC lineage and identifies Ubx as a critical regulator of this process.

  2. G9a regulates group 2 innate lymphoid cell development by repressing the group 3 innate lymphoid cell program

    PubMed Central

    Chenery, Alistair L.; Burrows, Kyle; Gold, Matthew J.; Cait, Alissa; Rossi, F